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ABSTRACT

Raymond Eveleth Fowler III: Information Theoretic Interpretations of Renormalization Group Flow
(Under the direction Louise Dolan and Jonathan Heckman)

We interpret the renormalization group flow between quantum field theories as a communication

channel problem, which allows us to quantify UV-IR mixing in terms of information theoretic quantities,

i.e., we can quantify the information of the UV theory that remains accessible in the IR theory. Because of

the AdS-CFT interpretation of the renormalization group flow, our interpretation applies to the AdS-CFT

correspondence too.

In our interpretation, the UV variables are the input signal for the channel, the output variables are the

IR variables resulting from the renormalization group flow, and the renormalization group transformation

is viewed as the communication channel. To make this interpretation, we make use of the Kullback-

Leibler (KL) divergence, which quantifies the information theoretic distance between two probability

distributions. In order to use the KL divergence with quantum field theories, we study the probability

distributions associated with Euclidean quantum field theories; the KL divergence thus computes the

relative entropy between these Euclidean quantum field theories, as in statistical field theory. We then use

the renormalization group and the techniques of effective field theory to find the probability distributions

that we need to use with the KL divergence in order to measure the information lost upon performing the

renormalization group transformation.

We study both lattice and continuum field theories and find the probability distributions needed to

measure UV-IR mixing in both scenarios. We also find that the results of decimation on a lattice in the

continuum limit matches the continuum results. We finally compute a number of explicit examples. For

lattice examples, we primarily use the 1D and 2D Ising model and the 1D Ising model on a tree. We

also sketch a calculation of some continuum models, including λφ4 theory, the T T̄ deformation to a 2D

free fermionic system, and a Kaluza-Klein compactification of a scalar field theory. From our example

calculations of the 2D Ising model, we find a regime where the KL divergence is negative, and we show
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that this is due to UV effects that were not properly accounted for in the approximation that was used

when decimating the 2D Ising model.
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CHAPTER 1

Introduction

Effective field theories provide a general framework for organizing and calculating physical phe-

nomena. Different particles and physical phenomena become relevant for calculations and observation

at different energy and distance scales. Accordingly, there are different effective field theories for the

different scales at which physics occurs: the effective field theory at each scale allows for making

calculations taking into consideration only those phenomena that are relevant to the scale of the problem,

simplifying calculations. The effects of the particles and physics at higher energy and smaller distance

scales (called ultraviolet physics) are incorprated into the coupling constants of the lower energy (called

infrared physics) effective field theory, and when an effective field theory has divergences or broken

symmetries, changing the scale of the theory to higher energies where new particles become relevant to

interactions can remove or soften the divergences and restore the symmetries. An effective field theory

that breaks down at some energy scale is then not a problem of the theory but a feature: it just means the

effective theory is not the full theory, not containing all particles and their interactions. In the effective

field theory framework, all theories in physics are effective theories, except for the fundamental theory at

the highest of energy and smallest of distance scales.

String theory is a candidate for the fundamental theory. To produce lower energy effective theories,

the extra dimensions of the strings need to be compactified, and the type of compactification made, i.e.,

the geometry of the extra dimensions that exist in the string theory, determines the type of effective theory

that is produced. There are a large number of string vacua (some 10500 [1] or more if background fluxes

are turned on [2]) that produce similar infrared (IR) physics in the effective field theories that we can

access by experiment: the Standard Model. Although the IR physics generated by the string theories is

the same, there should be some information about the string theory that remains in the IR theory, thereby

allowing to determine the extent of distinguishability between the string theories (that generated the IR

theory) from access of the IR physics.

1



A renormalization group (RG) flow is used to change the scale of a theory and generate effective field

theories. In performing a renormalization group flow down from ultraviolet (UV) scales to IR scales,

mixing between the UV and IR modes (UV-IR mixing) will occur. This gives rise to the possibility of

detecting UV effects–and in particular, string compactification effects–while being able to only access

the IR physics of the effective field theory.

Therefore, some questions arise: Is there a way to quantify this UV-IR mixing in order to distinguish

between similar IR theories and thereby access information about the UV, and if so, how can this be

done? It could also turn out that the measure used to distinguish the UV theories will show that classes of

UV theories are indistinguishable: applying this to string theory means that classes of string theories

could turn out to be indistinguishable according to this measure, thereby reducing the number of distinct

string vacua.

Figure 1.1: A schematic representation of viewing the RG transformation as a noisy communication
channel. The variables of the UV theory are the input. The RG transformation is the noisy channel that
produces the output variables of the IR theory.

Our answer is that we can think of the UV information accessible at the IR physics as a signal

sent from the UV scale to the IR scale. The renormalization group transformation is then viewed as a

noisy communication channel that the UV information traverses to the IR scale. We can thus evaluate

the mutual information and find the channel capacity of the channel. See Figure 1.1 for a schematic

representation of this idea.

It might also be possible to use the mutual information to calculate the information bottleneck [3].

The information bottleneck is an optimized intermediate set of variables X̃ that takes a signal X and

compresses it to X̃ then sends it through a communication channel to give an output signal of Y . The

intermediate variables X̃ are optimized to be as small as possible while preserving the maximum amount

of information about Y in X . In our problem, the idea is to read the UV information (X) from the IR

variables (Y ) via the intermediate channel of the RG transformation (X̃ is our renormalized variables

2



before rescaling the lattice or momentum). See Figure 1.2 for a schematic representation of this idea. We

explore this idea a little in this thesis to show how the bottleneck concept works in general and would

work with our ideas, but we do not fully develop this point, and we ultimately conclude it is easier to just

calculate the KL divergence and interpret our results in terms of Figure 1.1.

Figure 1.2: A schematic representation of viewing the RG transformation as communication through
an information bottleneck. The variables of the UV theory are the input. The renormalization/coarse-
graining step of the RG transformation performs the compression to X̃ . The re-scaling step sends the
compressed variables to the output IR theory.

In short, we can think of the renormalization group flow in terms of information theoretic quantities

and thereby provide a direct, information theoretic measure of the UV information accessible at the IR

scale. The renormalization group flow can also be thought of in terms of the AdS/CFT correspondence,

where the energy scale associated with renormalization goes in the direction of the bulk AdS space as in,

e.g., [4–7], so we are also providing an information theoretic interpretation of the AdS/CFT view of the

renormalization group flow.

Thinking along these terms, we will make use of the Kullback-Leibler (KL) divergence as in [8, 9] to

measure the information difference. For normalized probability distributions p and q, it is,

D(p||q) =

∫
Dµ p log

p

q
, (1.1)

where the integration measure goes over all the space on which the probability distributions are de-

fined. We will interpret p and q as normalized Boltzmann distributions for two different statistical (i.e.,

Euclidean) quantum field theories.
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While progress has been made in calculating the UV information in the IR physics by using the geo-

metric entanglement entropy [10–14], using the KL divergence has some advantages over the geometric

entanglement entropy [15, 16]. The geometric entanglement entropy depends on the geometry of how

the subspaces of the Hilbert space are formed: the KL divergence does not depend on the geometry.

The geometric entanglement entropy also has difficulties being defined for gauge theories and dealing

with extended objects like Wilson loops [17], while there is a possibility of using the KL divergence

with gauge theories since all one needs is a well-defined probability distribution produced by the gauge

theory’s action. Furthermore, the interpretation of the renormalization group flow as a communication

channel, thereby allowing for interpretation of the whole problem in information theoretic terms, has not

yet been considered in uses of the geometric entanglement entropy.

There are other measures of information loss under the RG flow via the A and C theorems. In 2D,

there is a number C that decreases monotonically under the RG flow and is equal to the central charge

at fixed points of the RG flow [18]. Similarly, for other even dimensions, there is a number A [19–21].

For odd dimensions, sphere partition functions provide this monotonically decreasing quantity [22, 23].

Because these numbers decrease monotonically under the RG flow, they provide some measure of the

degrees of freedom that are lost under the RG flow and thereby some measure of the information loss.

However, there are two difficulties with using these quantities to quantify information loss. The first is

that these theorems are only proven in 2D, 3D, and 4D: the rest is yet to be proven still. The second is

that these numbers do not directly quantify the information loss: the numbers decrease with information

loss, but unlike the KL divergence, they do not directly measure the information loss in terms of, e.g.,

bits.

We will proceed as follows. We first discuss effective field theories in Section 2. In that section, we

show many examples of effective field theories, their problems, and how new UV physics continues to fix

effective field theories as the scale goes to higher and higher energies. We start with the Standard Model,

then discuss grand unified theories and supersymmetry, then finally string theory compactifications. At

the end of the section, we discuss warped large extra dimensions, since it ties in nicely with an AdS/CFT

interpretation of the renormalization group flow.

Having explained effective field theories and shown both their use and the kinds of UV physics that

may be encoded in theories at the scale of the standard model, we then discuss the renormalization group

flow in Section 3. We discuss the main RG procedures that we use and how to perform them. We show
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the connection between the RG flow and AdS/CFT in Section 3.5 and close the section by discussing the

RG procedure in general to prepare for discussing the information theoretic connection.

Next, in Section 4 we discuss the concept of a communication channel and the tools used for making

calculations of quantities related to a communication channel. We first discuss the KL divergence in

Section 4.1 and then subsequently discuss its use in calculating information-theoretic quantities, such as

the mutual information and the channel capacity. After discussing the channel capacity, we make the

connection to an information theoretic interpretation of the RG flow in Section 4.3. We then discuss

the information bottleneck as another possible information theoretic quantity of interest to our problem

and finish the section by discussing how our procedure with the KL divergence connects to the quantum

theory.

In the discussion of the communication channel and the KL divergence, it is noted in the beginning

of Section 4.2 that a difficulty in using the KL divergence to measure UV-IR mixing is that it naively

requires the use of marginalizing distributions over IR modes, i.e., integrating out IR modes. Integrating

out IR modes leads to non-local interactions in the effective field theory. Another difficulty that is noted

in Section 4.1 is that the KL divergence is quadratic to leading order, which leads to integrated two-point

functions and contact terms.

We therefore study these difficulties next and work to find a way around them. We do so by studying

lattice theories first and then continuum theories. We consider lattice theories in Section 5, studying a

particular RG procedure for general lattice field theories: the decimation procedure. The lattice theories

are in position space and so do not have the conceptual difficulty of integrating out IR modes, and the

lattice theories come with a natural regulator (the lattice spacing), so there is no need for concern about

contact terms. We find that there are two different ways to perform the decimation procedure so as to

calculate the mutual information between a UV theory and an IR theory resulting from the decimation

procedure. At the end of the section, we show an interpretation of the mutual information in terms of

thermodynamic quantities.

We then study continuum theories in Section 6, where we start with a theory, perform a renormal-

ization group flow to a lower energy theory, and calculate the KL divergence between the lower energy

theory and the original theory. As expected, contact terms are found, making the KL divergence generally

dependent on the regularization scheme to regulate the UV divergence of the contact terms. Having

calculated the continuum version of the earlier lattice calculations, we find the continuum limit of the
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lattice theories and find that both decimation procedures produce the same result in the continuum limit.

Finally, in Section 6.3, we find a way to define a UV completion for continuum theories when using the

KL divergence with continuum theories. The UV completion removes the contact terms of our earlier

result. We then find the energy scale dependence of the information of the UV theory in the IR theory.

Having discussed and done much theoretical formulation and general calculations, we then make

concrete calculations for a variety of example models, starting with lattice models and then continuum

models. As a warmup example, we first find the KL divergence between an Ising model and an Ising

model with a perturbation in Section 7. We consider the general calculation for both 1D and 2D Ising

models and then we make a specific calculation with the 1D model, where we also find the thermodynamic

large N limit for the 1D model. We then make calculations for example decimated theories in Section 8.

We study both 1D and 2D Ising models, along with a (1 + ε)D model. We make progress towards an

example calculation of the channel capacity in Section 9 by studying a 1D Ising model on a tree, which

also provides an example of a more general block renormalization group procedure.

We then make progress towards calculations with a few example continuum theories in Section 10.

Our examples are a φχ3 theory, a fermionic CFT with a T T̄ deformation, and a Kaluza-Klein scalar

field theory. In Section 11, we summarize our results and suggest future directions of research in our

conclusion, and we give the Mathematica code that we used for our main calculations in the Appendices.
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CHAPTER 2

Effective Field Theories in the Standard Model and Beyond

The idea of low energy physics being sensitive to the physics at higher energies is encapsulated in the

framework and machinery of effective quantum field theories. Start with a quantum field theory defined

by an action SΛ with a cutoff Λ. An effective quantum field theory is produced by integrating out higher

energy modes down to some lower energy scale Λ′ to produce an action SΛ′ [24]. The mathematics of

this will be discussed in more detail with the discussion of the Renormalization Group in Section 3. See

also [25] for another mathematical treatment of effective field theories.

The effective field theory is understood as capturing the physics that exists at the energy scale Λ′,

which provides a regulator for the theory [24]. The end result of the process of converting SΛ to SΛ′ is

that higher energy variables are eliminated (they are integrated out), which then allows for describing the

theory in terms of variables that exist at the lower energy scale. The effects of the higher energy variables

are encoded in the coupling constants of the lower energy variables.

Thinking of effective actions in terms of Feynman graphs, consider a diagram at the original scale Λ

that includes interactions of the higher energy particles with the lower energy particles. The effective

action at scale Λ′ will have intersecting lines in place of the loops and exchanges of the higher energy

particles. Reversing the process by changing the scale back to the original Λ results in replacing the point

where the lines intersect with loops and exchanges of the higher energy particles [25].

This Feynman graph picture of effective field theories helps conceptualize what an effective action is

describing in terms of particles. There are high energy particles that cannot be detected (or have highly

suppressed interactions) at lower energies. Thus, the exchange and interactions of these higher energy

particles cannot be detected when computing the interactions of the lower energy particles. Instead, there

is an effective interaction of the lower energy particles that remains.

The process of generating an effective field theory can be repeated to continually produce effective

actions for lower and lower scales, producing correspondingly descriptions of physics at lower and lower

energies. As the energy scale is lowered, the higher energy interactions are “blurred” out to produce their
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collective effect at each energy scale. Taking this perspective of effective field theories, we see that all

non-fundamental descriptions of physics are effective theories, and therefore, all physics is dependent on

the energy scale of the problem. Furthermore, because physics can be described in terms of quantities

that are detectable at a particular energy scale, one does not need the full, fundamental description of

physics in order to make use of physics at a lower energy scale.

The dependence of physics on energy scale is in fact the usual procedure in physics. For the purposes

of describing books sliding on ramps, one uses books, centers of mass, normal forces, and friction; one

does not describe the purpose in terms of the molecular interactions that make up the friction, normal

force, books, and ramps. However, if one wished to describe molecular interactions, one must use

variables relevant to the molecular scale.

Figure 2.1: A representation of effective theories of particle physics. We start with the Planck scale and
go all the way down to the scale of the electron mass. At each scale, a new effective theory with its
own fields becomes the useful description, especially as symmetries are broken with the lowering of the
energy scale.
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As an example of an effective quantum field theory, consider the strong interaction [26, 27]. At a

high energy scale (the QCD scale), we can describe our theory in terms of quarks and exchanges of

gluons. For lower energies, spontaneous chiral symmetry breaking occurs, producing Goldstone modes.

In this case, the Goldstone modes are pions. If we are not at a high enough energy scale where we need

to describe physical objects and interactions in terms of quarks and gluons, the pion Lagrangian is easier

to use for describing the lower energy effective interactions, thereby showing the utility of effective field

theories. See Figure 2.1 for a graphical diagram of effective field theories as the energy scale is lowered;

we will discuss a number of these effective theories in the sections that follow.

Effective field theories are not only useful for calculations, but they are also useful for removing

UV divergences in a theory and for naturally having new particles at higher energies than the scale of a

particular effective theory. Furthermore, because effective field theories encode the UV physics in the

coupling constants of the lower energy theory, effective field theories provide a useful way to think about

the problem of quantifying information about UV physics that is present in the IR physics. Furthermore,

in the cases where a variety of different theories at a UV scale produce similar effective field theories at

the IR scale, quantifying the information of the UV physics still present in the IR physics can be used to

distinguish the lower energy effective theories from each other, providing a measure of the proximity of

these quantum field theories to each other.

We shall now give an overview of a variety of quantum field theory models in the remainder of this

section, showing how the idea of a fuller theory existing at a higher energy scale continues to solve the

problems of the corresponding lower energy theories. In particular, we are especially interested in the

Standard Model (SM) and its problems, since whatever UV physics exists needs to reproduce the SM at

lower energies, so we will begin by discussing the Standard Model and its shortcomings.

2.1 Standard Model–Overview

As is well known, the Standard Model (SM) is a quantum field theory that accurately describes most

of the known particles and forces. It covers a wide variety of scales from electrons at 0.511 MeV to the

Higgs at 125 GeV to the top quark at 172 GeV. We will write out the Lagrangian density for the SM

following [28] with some insights from the introductory chapter of [29]. The SM Lagrangian density
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before electroweak symmetry breaking is,

L = Lkinetic + Lh + Lyuk + LνR

= (Lgauge + Lquark + Llept) + Lh + Lyuk + LνR,

(2.1)

where we have broken the Lagrangian down into kinetic terms, a piece involving both the kinetic and mass

terms of the Higgs, and a piece involving kinetic and mass terms for right-handed neutrinos, supposing

they exist. We will use the following conventions. We use the mostly minus metric (+−−−), and we

have assumed the various gauge fields transform as exp(−iα(x)ata)φ(x), thereby giving a covariant

derivative of the form Dµ = ∂µ + igAaµt
a, where the ta is the generator of the corresponding group

symmetry. Notice that the convention for the field transformation is opposite that of Peskin and Schroeder

(Eqs 15.21 and 15.42 in Peskin and Schroeder) [27], which results in a different convention for the

covariant derivative (Eq 15.45 in Peskin and Schroeder). To switch between the conventions, plug in −g

wherever the couplings appear in the equations. However, as in Peskin and Schroeder, we will take the

electron coupling to be g = −|e|.

Because of the above gauge field conventions, we take the gauge fields to infinitesimally transform

with a minus sign as Aaµt
a → Aaµt

a − 1
g∂µα

ata + i[αata, Abµt
b], and we do the same with the finite

transformation. The field strengths are then defined as Gaµν = ∂µG
a
ν − ∂νGaµ − g3fabcG

b
µG

c
ν . We take

the commutator generators to go as [ta, tb] = ifabct
c.

Writing the Standard Model Lagrangian piece by piece we have,

Lgauge = −1

4
GaµνG

µνa − 1

4
BµνB

µν − 1

4
WA
µνW

µνA, (2.2)

where G is the gluon field strength, B and W the field strengths for the B and W bosons. We have

written the Lagrangian in terms of the components of the field strengths.

Lquark =
3∑

N=1

iq̄i,I,NL γµ(δijδIJ∂µ + ig3G
a
µT

a
ijδIJ + ig2W

A
µ t

A
IJδij + ig1Bµ

1

6
δijδIJ)qj,J,NL

+ iūi,NR γµ(δij∂µ + ig3G
a
µT

a
ij + ig1Bµ

2

3
δij)u

j,N
R

+ id̄i,NR γµ(δij∂µ + ig3G
a
µT

a
ij − ig1Bµ

1

3
δij)d

j,N
R ,

(2.3)
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where the g3, g2, g1 are the gauge coupling constants of SU(3)C ×SU(2)W ×U(1)Y , respectively. The

color indices are i = 1, 2, 3, and the flavor indices are I = 1, 2. The N = 1,2,3 is the generation index.

The summation over the color and flavor indices are implied by the summation convention. The q are

the quark fields, and the u and d are the up and down quark fields. We are clearly using Dirac fermions

(because of the presence of γµ) and so q̄ = q†γ0, but we have broken the Dirac fermions into right and

left components, e.g., q = qL + qR.

The covariant derivatives have been written out explicitly. The tAij = 1
2σ

A
ij , where the σAij are the Pauli

matrices. The T aij = 1
2λ

a
ij , where the λaij are the Gell-Mann matrices. The weak hypercharge YW has

already been evaluated in the Lagrangian, and the convention we use is Q = T3 + YW as in Peskin and

Schroeder.

Llept = iψ̄I,NL γµ(δIJ∂µ + ig2W
A
µ T

A
IJ − ig1Bµ

1

2
δIJ)ψJ,NL

+ iēNRγ
µ(∂µ − ig1Bµ)eNR ,

(2.4)

where the ψ are the lepton fields, and the ν and e are the neutrino and electron fields. The sum over the

N generations is implied and will be assumed in the rest of the Lagrangian pieces.

Lh = φ†(∂µ − ig2W
µAtA − ig1B

µ 1

2
)(∂µ + ig2W

A
µ t

A + ig1Bµ
1

2
)φ− λ(φ†φ− ν2

2
)2, (2.5)

where φ is the complex Higgs doublet φT = (1/
√

2)(φ1 + iφ2, φ0 + iφ3). Notice that this is both the

kinetic term and mass term for the Higgs, whereas the previous Lagrangians only included the kinetic

terms for the various particles. We take ν2 = −µ2/λ and µ2 < 0 to achieve symmetry breaking. We

then have the mass of the Higgs m2
h = −2µ2 = 2λν2. Upon spontaneous symmetry breaking from the

Higgs, these interactions generate masses for the W and B bosons.

Lyuk = −yeIJ ψ̄
I,N
L eJ,NR φ− ydIJδij q̄

i,I,N
L dj,NR φ− yuIJδij q̄

i,I,N
L uj,NR iσ2φ∗ + h.c., (2.6)

where the ye, yd, and yu are the Yukawa coupling constants for the fields. Upon spontaneous symmetry

breaking from the Higgs, these interactions generate mass terms for the quarks and leptons (except for

the neutrino). The h.c. indicates to add the Hermitian conjugate.
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Neutrinos are known to have mass and so should have a mass term. Supposing that the neutrinos

are Dirac particles and that right handed neutrinos exist, the following piece must be added to the SM

Lagrangian,

LνR = iν̄NR γ
µ(∂µ)νNR − yνIJ ψ̄

I,N
L νJ,NR iσ2φ∗ + h.c., (2.7)

where we have both a dynamical term and a Yukawa interaction term. In this equation, the h.c. should

only be that of the Yukawa interaction term.

Although very successful experimentally, the Standard Model has a number of shortcomings [29–31].

There is the hierarchy problem [30, 32–36]: the electro-weak force is stronger than gravity by a factor of

1024 without an explanation for this large difference within the Standard Model. There is the problem that

the Standard Model only contains massless neutrinos, despite them having a small mass. The Standard

Model does not have a dark matter sector, which is the most popular solution to explain such things as

galaxy rotation curves and star formation. The Standard Model also cannot explain the observed baryon

asymmetry: a vastly unequal amount of matter and anti-matter [37].

Another fundamental problem is that the Standard Model does not include a renormalizable theory

of quantum gravity. There is also the related problem of requiring a regulator to be well-defined. The

Standard Model cannot be put on a lattice, so there is no UV complete non-perturbative definition of the

Standard Model. We see then that the Standard Model cannot be the full story for physics: there must be

something beyond the Standard Model that explains and solves these difficulties.

Colliders such as the LHC can put bounds on new physics by studying Standard Model interactions.

Even at currently accessible energy scales, there is in fact a tower of higher dimensional operators in the

Standard Model made of Standard Model fields that go beyond the usual Standard Model interactions.

The new physics can be parameterized in terms of the coefficients of these higher dimensional operators,

and colliders seek to find and put bounds on the coefficients of these operators. Putting bounds on these

operators then provides bounds on the kinds of new physics that would generate the coefficients of those

operators.

The problem of not having a regulator–and new physics beyond the SM being needed–can be viewed

as a feature of the SM not a problem: the Standard Model should be viewed as an effective field theory.

It is then expected that the Standard Model will work up to some energy scale at which it breaks down

(often taken to be the Planck scale) and new physics and fields appear. The energy scale at which the
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Standard Model breaks down is therefore just the regulator of an effective field theory. This point of

view also gives an understanding of why the Standard Model breaks down: beyond some energy scale,

the lower energy fields, such as quarks and electrons, no longer provide an accurate description of the

physics. The lower energy fields are a composite of higher energy fields and their interactions. This idea

of the Standard Model as an effective field theory then points in the direction of there being new physics

beyond the scale of the Standard Model.

A question arises as to whether the UV physics of the higher energy theory can fix some of the

Standard Model’s shortcomings. As a first step beyond the SM, there is the idea of Grand Unified

Theories (GUT), in which the coupling constants of the fundamental forces approximately unify around

1015 GeV and a mechanism is provided for a small neutrino mass, among other nice features. A number

of GUT candidates and their properties are discussed in [29].

Two popular GUT candidates are SO(10) [38] and SU(5) [39]. E6 is another possibility [40]. Below

the GUT scale of 1015 GeV, the larger symmetry of the GUT group is broken and breaks so as to produce

the SM gauge group, along with some extra matter. There can be a number of different intermediate

symmetry breakings before reaching the SM. Some examples of how these groups break to the SM are as

follows [29],

E6 → SO(10)× U(1)

SO(10)→ SU(5)× U(1)→ GSM

SU(5)→ GSM ,

(2.8)

where GSM is the SM gauge group.

GUTs still leave many problems of the SM unsolved, such as the hierarchy problem and that of not

including gravity. However, they provide a first look into possible UV physics solving problems with a

lower energy effective field theory, and GUT groups are a motivation for constructing supersymmetry

and string compactification models, as shall be seen.

Of the remaining problems of the SM not solved by GUT theories, the hierarchy problem has been a

big motivator for finding new physics. The hierarchy problem can be reduced to a problem of the Higgs

mass: it is the Higgs field that gives mass to particles at the electroweak scale and so the Higgs mass is

responsible for the large difference between gravity and the electroweak scale. Quantum corrections to

13



the Higgs field mass cause the Higgs mass to have a quadratic UV divergence that should push the Higgs

mass to the Planck scale: but the Higgs mass is small, giving a small electroweak scale.

New UV fields can remove a UV divergence and also provide more matter content (possibly providing

dark matter candidates). Before discussing proposed UV physics beyond the SM, we will discuss the

hierarchy problem to show the manner in which the UV divergence occurs in calculating the Higgs mass

and why UV fields at a higher energy scale could be a solution to the problem.

2.2 Excursis: Hierarchy Problem

The hierarchy problem is not a problem particular to the Standard Model Higgs: it occurs with any

fundamental scalar field with a quartic interaction, and so in particular, it occurs with the the SM Higgs

field. We can compute the quantum 1-loop correction to a fundamental scalar field mass as follows. The

exact two-point function for the scalar field (in Euclidean space) is [27],

∫
d4x exp(ikx)〈φ(x)φ(0)〉 =

1

k2 +m2
+

1

k2 +m2
Π(k2)

1

k2 +m2

+
1

k2 +m2
Π(k2)

1

k2 +m2
Π(k2)

1

k2 +m2
+ ...

=
1

k2 +m2 −Π(k2)
,

(2.9)

where we have summed the geometric series and where Π(k2) (the self-energy) is the sum of all

one-particle irreducible graphs. As can be seen, the self-energy gives the mass correction to the field.

Working in perturbation theory, we can compute the self-energy to 1-loop and thereby compute the 1-loop

correction to the scalar field mass. Using a cutoff Λ0 to regulate the integral, the result is [27],

Π(k2) = −λ
∫
|p|≤Λ0

d4p

(2π)4

1

p2 +m2

=
−λ

16π2

(
Λ2

0 −m2 ln

(
1 +

Λ2
0

m2

))
.

(2.10)

We see that the loop correction grows quadratically with the cutoff. This means that the physical mass is

[27],

m2
phys = m2 − Λ2

0

λ

16π2
−O(ln(Λ2

0)), (2.11)

so we see that the physical mass depends quadratically on the cutoff.
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Not only the Higgs self-interaction, but the Higgs interaction with the Standard Model particles also

give contributions to the Higgs mass that grow quadratically with the cutoff from the 1-loop diagrams

[30]. Now, the physical mass of the Higgs is 125 GeV, and the cutoff is the scale of new physics. For a

fundamental scalar field, the scale of new physics should go all the way to the Planck scale of 1019 GeV.

Hence, the bare mass m2 will need to undergo a fine cancellation with the quantum corrections in order

to produce the relatively small Higgs mass.

We used a cutoff to compute the correction to the Higgs mass, but we could have used dimensional

regularization. Using dimensional regularization we get [27],

Π(k2) =
−λm2

16π2

(
2

ε
− γE + 1− log

(
m2

4π

))
(2.12)

No quadratic divergence appears. Instead, a divergence proportional to 1/ε appears, as it does for

anything done with dimensional regularization. The ε is not a physical parameter and represents no scale,

so it would appear there is no hierarchy problem. However, the quadratic divergence is just hidden in

the dimensional regularization scheme, which treats all divergences the same. To see that the hierarchy

problem still appears, consider a coupling of a light scalar field to a heavy massive scalar particle Φ with

mass M at a high energy scale where new physics should occur: λφ2Φ2. The one-loop Φ correction to

the light φ mass is [27, 30],

Π(k2) =
−λM2

16π2

(
2

ε
− γE + 1− log

(
m2

4π

))
, (2.13)

with similar results for coupling to fermionic fields. We see then that we still have a quadratic dependence

of the physical mass on the heavy particle with mass M . A finely tuned cancellation still needs to occur

to produce the small mass of the light scalar field (and therefore also needed to produce the small Higgs

mass).

Notice that the hierarchy problem occurs because (1) the scalar Higgs field is taken to be fundamental,

and (2) there is no natural reason (like a symmetry or preferred regulator) to cancel the quadratic

divergences. There have been a number of solutions proposed for the hierarchy problem that seek to

address these causes. Technicolor takes the Higgs to be a composite particle instead of a fundamental

particle, thereby allowing the Higgs field to have a naturally lower energy scale than the Planck scale

15



[33, 34, 41–43]. Another proposal is to make use of extra dimensions, see [44–46] and [47–49]. See [50]

for another take on extra dimensions to solve the hierarchy problem that uses the extra dimension as a

mere tool, leaving a 4d physical space-time.

Still another proposal is supersymmetry, where each bosonic field has a fermionic pair. This new

symmetry can be used to cancel the quadratic divergences and give the Higgs field a naturally lower mass.

We will now discuss supersymmetry as an example of UV physics that addresses the SM’s shortcomings

and should have information encoded about itself in the SM’s couplings (as all effective theories have

about their higher energy counterparts).

2.3 Supersymmetry

As just noted, supersymmetry (SUSY) is one proposal to address the problems of the SM, especially

the hierarchy problem (as discussed above). This symmetry relates bosons to fermions as [29, 30],

Q|fermion〉 = |boson〉

Q|boson〉 = |fermion〉,
(2.14)

where Q is the generator of the SUSY algebra and the details depend on the specifics of the SUSY theory.

SUSY is classified by the number of generators: N = 1 SUSY corresponds to having one generator, Q,

etc.

The generator Q has the following anti-commutation relations (extensions of the SUSY algebra for

multiple generators use a similar anti-commutation relation),

{Qα, Q̄β̇} = 2σµ
αβ̇
Pµ

{Qα, Qβ} = 0,

(2.15)

where the Q are anticommuting Weyl spinors and the Pµ is the spacetime momentum; the dotted indices

indicate that the object transforms in the conjugate (right-handed) representation. The commutation

relation between Q and P is zero, and the commutation relation between P ’s is also zero. Because the

generators are related to the spacetime momentum, we thus see that SUSY is a spacetime symmetry, not

merely an internal symmetry like isospin.
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There are a variety of proposed SUSY extensions of the SM, with the minimal supersymmetric

standard model (MSSM) among them. SUSY extensions of the SM are discussed in [29, 30] with some

early SUSY extensions of the SM found in [51–54]. Early proposed SUSY scales can be found in [55].

Usually, we are interested in a minimal supersymmetric extension of the Standard Model, and we

thereby choose N = 1 SUSY [29]. Because SUSY has not been observed at the scale of the SM, the

N = 1 SUSY must also be broken at some energy scale above the Standard Model. In order for SUSY

to result in a naturally small Higgs mass, the SUSY scale must be set around 1 TeV. However, SUSY

still has not been observed despite probing higher energies, and there is increasingly less room for

finding 1 TeV SUSY [56]. When we discuss string compactifications, it should be noted that the goal of

compactification historically has been to preserve N = 1 SUSY after the compactification is performed

and to generate a GUT group that breaks to the SM, but because of the non-observence of 1 TeV SUSY,

string compactification models will instead skip preserving SUSY at all and try to generate the Standard

Model group directly from the compactification.

As noted earlier, SUSY addresses the hierarchy problem [55, 57]. This new proposed symmetry

makes the Higgs mass naturally low because the fermionic loops (which contribute with opposite sign)

cancel the paired bosonic loops to eliminate the quadratic divergences [29, 30, 58–61]. A specific

example of this calculation to one loop can be seen in Ibañez with the Wess-Zumino model (a simple

SUSY theory) [29].

SUSY also provides new (as yet) unobserved particles and thereby dark matter candidates [62].

Furthermore, it allows for a more exact gauge coupling unification by changing the running of the

couplings of the Standard Model forces. The gauge couplings can now unify at 1016 GeV, instead of only

approximately unifying [29, 39, 54, 55, 63–68].

When turned into a local symmetry, SUSY theories contain a graviton, thereby addressing the lack of

gravity in the SM [69–73]. These supergravity theories can exist in a variety of dimensions, up to 11d

[74] withN = 8 supercharges [75], where the extra dimensions are compactified. N = 8 4d supergravity

[76, 77] is one of the SUGRAs of historical interest and can be obtained from compactifying 11d SUGRA.

The 11d SUGRA (N = 1) is also of interest because it is a unique theory by having the maximal number

of dimensions without having fields of spin higher than 2 and having a single graviton [78] (unless one

takes a 12d theory with two time-like dimensions [79]).
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We thereby see how the UV physics of SUSY and SUGRA can address a number of the problems

of the low energy SM. Because these theories produce the same low energy SM, as previously stated,

these too should have information encoded about themselves in the lower energy SM theory. However,

supersymmetry is not the fundamental theory. None of the SUGRA theories are known to be UV finite

non-perturbatively, and they do not contain chiral fields, even when compactifying extra dimensions [29].

Hence, if they have any connection to the SM, these supergravity theories must also be low energy limits

of a more fundamental theory that will allow for reduction to the SM.

2.4 String Compactification

String theory is one candidate for the fundamental physics at the Planck scale from which all the

effective theories of SUGRA and the SM are generated. The quantum strings need to be supersymmetric

and in 10D in order to produce fermions at low energies and in order for the string theory to be

mathematically consistent. The 10d SUGRA models are still useful in the string framework because they

provide the low energy effective field theory (i.e., massless tree level) to the 10d superstring theories.

String theory solves a number of problems that are in the SM and remain in the SUGRA theories.

String theory solves the problem of quantizing gravity by always including a closed string in its spectrum

(which corresponds to the spin 2 graviton). Unlike the SUGRA models, string theory is UV finite by

introducing the string length as a smallest length scale regulator. By compactifying the extra dimensions

and taking a low energy limit, string theory can produce quantum fields that resemble existing SM

particles, including chiral fields. We will discuss how string theory compactifications can produce the

SM gauge group in this chapter, following the discussions in [29] throughout. From our discussion, it

will also become apparent that there are many different compactification schemes; counting the distinct

compactifications produces the 10500 (or larger) number for the number of distinct string vacua (with

some 1015 different F-theory compactifications that have been found that produce the chiral SM gauge

group [80]).

String compactification takes the extra dimensions and rolls them up into a circle or puts them on

another compact space. This is often done by factorizing the 10D space into M4 ×X6, where X6 is a

compact space and M4 is the usual 4D Minkowski spacetime. Because the extra dimensions are curled

up or compact, they are not observable at the energy levels experiments have observed.
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As stated previously, when performing these compactifications, it is usually desirable to preserve

SUSY (although sometimes desirable to reduce the amount of supersymmetry upon compactification)

and then break SUSY at a lower scale after compactification. To preserve SUSY, Calabi-Yau manifolds

are often used for the compactification space [81–84]. Orbifolds are also used as compactification spaces

[85–88], getting rid of more supersymmetry and not requiring one to use a supergravity approximation to

the string theory.

For making string compactifications in general, there are five consistent supersymmetric string

theories. Type I, Type IIA, Type IIB, E8 x E8 heterotic, and SO(32) heterotic. They differ in the gauge

symmetries that they have, the charges and branes that exist in them, and whether they include open

strings on the perturbative level. The five superstring theories are related by dualities, so they are not

entirely different theories. They are in fact believed to be low energy limits of a more fundamental M-

theory: a theory of 2d and 5d membranes. 11d SUGRA is then believed to be a low energy approximation

(massless, tree-level) of M-theory, as the 10d SUGRA is for the 10d superstring theories.

M theory is defined as the strong coupling limit of Type IIA theory; in that limit, the Type IIA

theory gains an 11th dimension [89]. F theory [90–93] has a similar relation to Type IIB theory, which

can be seen as follows. F theory can be defined as M-theory compactified on a 2-torus in the limit

of vanishing area. Compactifying M theory on one of the circles of the vanishing 2-torus produces

Type IIA theory with a dimension compactified on a vanishing circle; T-duality then produces Type IIB

theory compactified on a circle with infinite radius, i.e., the full Type IIB theory [94, 95]. The Type IIB

theory comes with a varying axio-dilaton, and F theory then geometrically parameterizes the varying

axio-dilaton by having two extra auxiliary dimensions via elliptic fibration over the Type IIB spacetime.

Heterotic string compactifications are one way to produce chiral fields [96, 97]. Other ways to obtain

chiral fields include forming stacks of intersecting D6-branes in Type IIA theory and stacks of intersecting

D7-branes in Type IIB theory [98–103]. (To get chiral matter in 4d from the intersecting branes in Type

IIB theory, fluxes need to be turned on in the compactified space.) The intersecting D-brane models are

of interest because M theory and F theory can also produce chiral matter via compactifications [104–107]

and do so in a similar manner to the compactifications involving intersecting D-branes.

To show how M theory and F theory compactifications produce chiral matter, we will review how

intersecting D-branes produce chiral matter and then lift the intersecting D-brane models to the M and F
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theory limits [108]. However, first we will show a simple example of compactification that we also will

use later: Kaluza-Klein reduction on a circle.

2.5 Excursis: Kaluza-Klein Compactification

For a simple concrete example of how compactification works, consider a Kaluza-Klein (KK)

reduction of a 5d theory onto a circle [109, 110]. Start with a free scalar field theory in 5d (For this

subsection and the remainder of this chapter, we switch to using the mostly plus metric convention

(−+ ++).),

S5d = −1

2

∫
d5x∂Mφ∂

Mφ, (2.16)

where M,N run from 0 to 4. Now put the 5th dimension (which we will label by y) on a circle S1 and

Fourier expand φ to get,

φ =
∑
k

φk(x
µ) exp(iky/R), (2.17)

where R in this equation is the radius of the S1. Placing this back into the 5d action and integrating out y

gives,

S4d = −2πR

2

∫
d4x∂µφ0∂

µφ0 − (2πR)
∞∑
k=1

∫
d4x∂µφk∂

µφ∗k +
k2

R2
φkφ

∗
k, (2.18)

where φ∗k = φ−k. We see then that we have a 4d free scalar field theory for the zero modes and a tower

of 4d massive scalar fields for the other Fourier modes. The massive modes are suppressed by 1/R, so at

energies that are much smaller than 1/R, the massive fields cannot be observed, leaving just the massless

scalar field from the zero modes. Choosing a smaller circle makes R small and so the non-zero modes

become very massive and harder to observe at low energies.

To see how other kinds of particles can be produced from compactification, consider a 5d metric

GMN , where M,N again run from 0 to 4. The action is,

S5d =
M3

5

2

∫
d5x
√
−GR5d, (2.19)

where M5 is the 5d Planck mass and G = det(GMN ). Now put the 5th dimension on a circle again and

Fourier expand G to get,

GMN =
∑
k

GkMN (xµ) exp(iky/R), (2.20)
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where R in this equation is again the radius of the S1. As before, this could be substituted back into

the 5d action and integrated over y to get a 4d massless action plus a tower of massive 4d fields from

the Fourier modes. The zero modes give us a scalar G0
44 = σ, a vector G0

µ4 = Aµ, and a 4d graviton

G0
µν = gµν . The zero mode action gives Einstein gravity along with electromagnetism and an extra

scalar,

S0
4d = M3

5πR

∫
d4x
√
−gR4d(g)− 1

6
∂µσ∂

µσ − 1

4 exp(σ)
F 2
µν , (2.21)

where Fµν is the usual Maxwellian field strength.

A simple KK reduction is not a realistic compactification, but the calculation outlines how particles

can be produced with more complicated compactifications and how the tower of unobserved particles are

heavy when the compactified dimension is small (thereby making them unobservable at low energies).

One ingredient of finding realistic compactifications is finding compactifications that both produce the

correct SM gauge fields and chiral matter. Gauge groups in string theory can be produced from stacks

of branes at the same location. N branes at the same position produce a U(N) gauge group from open

strings beginning and ending at the various branes in the stack. The U(N) gauge group can decompose

into the Standard Model gauge groups, along with some extra U(1)’s, as follows,

U(N) = SU(N)× U(1). (2.22)

The extra U(1) field is usually assumed to be heavy and unobservable at low energies.

As for producing chiral matter in string theory, we will discuss how chiral matter can be generated

from M and F theory, after first reviewing how chiral matter appears from intersecting D-brane models as

a first step towards understanding the M and F theory compactifications.

2.6 Intersecting Branes and Chiral Matter from M/F theory

As has been stated, to understand how chiral matter can appear in M and F theory, first it is

helpful to see how chiral matter is produced from intersecting brane models. For considering M theory

compactifications, first consider D6-branes in Type IIA. A stack of N + M parallel D6-branes have

a U(N + M) gauge group in the open string sector. Consider now unfolding the D6-branes so as to

produce a stack ofM D6-branes intersecting withN D6-branes at a point in the 10D space, i.e., rotate the
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stack of M D6-branes by an angle θ so that they fill and intersect in the 4D space and thereby intersect at

a point in the remaining six dimensions. This produces three intersection angles θ1, θ2, and θ3 in 2-planes

of the remaining six dimensions. The gauge group for the system is now U(N)× U(M).

Because we started with (N +M)2 = N2 +M2 + 2NM degrees of freedom, this same number

of degrees of freedom must be found in the system after unfolding. The stack of N carries N2, due to

its U(N) gauge group (from strings going between branes on the stack of N ), and similarly the stack

of M carries M2. The remaining 2NM degrees of freedom can be found from the decomposition of

U(N +M) into U(N)×U(M): there are two bifundamentals in the adjoint of U(N)×U(M) that are

not in the adjoint of U(N + M). They are the (N, M̄) and (N̄ ,M). Because these are created from

strings going between the two stacks, the chiral matter is found at the intersection of the brane stacks

so that the string tension is minimized. Hence, the chiral matter is found in the 4D intersection and has

massless modes. Intuitively, the chiral matter has appeared because parity was broken in the 6D space: a

preferred direction was established with the angles θi.

The SM group can be directly generated by having four stacks of intersecting branes. A stack of three

branes gives the SU(3), the stack of two gives the SU(2), and the intersections produce chiral matter.

Two stacks each with one brane are also used, which intersect with the stack of three and stack of two, in

order to produce the U(1) and the SU(2) singlet field. However, note that there are some extra scalar

fields that appear from the decomposition of the U(3) and U(2), which (as noted previously) are usually

assumed to be too heavy to be observed at low energies.

In the M theory lift of the D6-branes, the D6-branes become geometrized to a purely metric back-

ground. The space transverse to the D6-branes asymptotically goes according to a multi-center 4D

Taub-Nut geometry,

ds2 = V (x)dx2 + V (x)−1(dx10 + ω · dx)2,

V (x) = 1 +
N∑
a=1

1

2|x− xa|
,

∇× ω = −∇V (x),

(2.23)

where x ∈ R3 parameterizes the 3D space that is transverse to the D6 branes, and ω is the 3D vector

potential for N Dirac magnetic monopoles located at xa. The D6 branes are located at the positions xa

in the transverse space R3. The x10 is a periodic coordinate that we have labeled as x10 in anticipation of
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its role in M-theory compactifications; it is the 11th dimension of M-theory: the direction along which

the M-theory compactification circle S1 lies.

The total 11d space breaks up as M7 × X4, where X4 has the Taub-Nut geometry (arising from

the X4 needing to preserve half the supersymmetries and therefore having SU(2) holonomy) and is a

fibration of S1 (the M-theory compactification circle) over R3: X4 = R3 × S1.

As can be seen from (2.23), intersecting branes are located at singularities of the Taub-Nut geometry

xa, which are places where the S1 fibers shrink to zero size. Stacks of branes enhance the singularities.

2-cycles can be defined between the locations of non-intersecting branes, and the singularities from the

non-intersecting branes pinch the 2-cycles. As branes approach each other to overlap, the 2-cycles vanish.

M2 branes can be wrapped on these vanishing 2-cycles. The intersection pattern of the wrapped M2

branes then produces the Dynkin diagram of ADE singularities. ADE singularities are those that have an

intersection pattern that is in the shape of the Dynkin diagram of the A, D, or E types of simply laced

algebras (strictly speaking, the singularities need to be "blown up," and the blow ups of the singularities

have the Dynkin diagram intersection pattern). ADE singularities can be described as the singularities of

hypersurfaces of C3, e.g., the AN singularity is described by y2 + x2 + zN+1 = 0.

To produce N = 1 supersymmetry, a manifold with G2 holonomy is needed. To produce chiral

matter, the manifold must be singular. As already noted, in M-theory, the singularities produced are of

the ADE type. Although the A and D type can be recognized as resulting from the lift of overlapping D6

branes, the E type is a non-perturbative result.

Instead of considering two stacks of intersecting D6 branes (which are now part of the geometrical

background), consider the intersection of two Taub-NUT geometries. The Taub-NUT geometries produce

AN−1 and AM−1 singularities with an enhanced co-dimension 7 AN+M−1 singularity at the intersection.

The singularities in the geometry can then be viewed as being unfolded in the same way as unfolding the

stacks of D6 branes: AN+M−1 → AN−1 ×AM−1. When doing so, extra chiral degrees of freedom are

found at the co-dimension 7 singularity.

This unfolding procedure can then be generalized to other G2 manifolds with other kinds of ADE

singularities as an unfolding of G→ ⊗rGr, where G is the symmetry of the enhanced ADE singularities

and Gr are the symmetries of the other singularities. These then produce other gauge groups with chiral

matter at the locations of the enhanced co-dimension 7 singularities. An example of an E type singularity
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generated this way is [29, 111],

E6 → SO(10)× U(1),

27→ 161 + 10−2 + 14

78→ 450 + 10 + (16−3 + 1̄63).

(2.24)

Some examples of an SU(5) GUT group generated this way are [29, 111],

SU(6)→ SU(5)× U(1),

6→ 51 + 1−5

20→ 10−3 + 1̄03

35→ 240 + 10 + (56 + 5̄−6).

SO(10)→ SU(5)× U(1),

10→ 52 + 5̄−2

16→ 10−1 + 1−5 + 5̄3

45→ 240 + 10 + (104 + 1̄0−4).

(2.25)

Chiral matter in F theory appears in a similar manner to how it appears in M theory. First, consider

intersecting D7 branes in Type IIB and perform the same unfolding as with the intersecting D6 branes.

The chiral matter will appear at the intersection. However, the D7 branes intersect in a 6d space, so the

chiral matter is 6d. The 6d chiral matter cannot be dimensionally reduced to produce 4d chiral matter:

only vector-like fermion objects appear upon reduction. To produce 4d chiral matter, a flux on the D7

branes must be turned on. A 6d chiral fermion contains both a left and right Weyl spinor. The flux

ensures that only the massless zero mode of the left or right Weyl spinor survives the compactification to

4d, hence ensuring chirality in 4d.

In the F theory limit, the location of a 7 brane produces a singularity in the elliptic fiber; an enhanced

singularity in the fiber appears for multiple 7 branes at the same location. The deformed fibers generate

the Dynkin diagram of ADE symmetry groups. The unfolding perspective can be taken here too: the

enhanced singularities of the fiber have extra chiral degrees of freedom when unfolding the singularity.

The chiral matter is 6d here too, so a flux must be turned on for the 7 branes to generate 4d chiral matter.
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In the internal space of the base, the 7 branes wrap 4-cycles and intersect in 2 cycles. The 7 branes

additionally intersect in a 4d Minkowski space. The singularity intersection patterns and different

symmetry groups thus depend on the intersection of their 4-cycles in the internal space. Gauge fields then

live on the base space, and matter is located at the intersection curves on the base (hence the 2 cycles are

called matter curves). A triple intersection produces Yukawa couplings. By this scheme, the SM group

can be directly generated [80, 112].

F theory can also generate GUT groups. As one example, F theory can generate SU(6) and SO(10)

groups just like M theory, so see again (2.25) for some examples of SU(6) and SO(10) breaking into

SU(5).

We have thereby seen how the fundamental theory (M theory) can produce chiral matter and the SM

gauge group via compactifications. We have worked our way up to higher and higher energies through

various effective theories to finally arrive at the proposed fundamental theory that should have some

information encoded about itself in the lower energy theory of the SM. There are a number of different

proposed UV physics that could produce the SM, and quantifying their information content in the SM

could be used to distinguish between their effective field theories at the SM energy scale.

We will now discuss the Renormalization Group, which provides the mathematical tools for generating

effective field theories, after a brief discussion of another possibility for higher energy physics via warped

Large Extra Dimensions (LEDs). The possibility of warped LEDs provides another solution to the

hierarchy problem, should 1 TeV SUSY not be found (although at this time, it appears the warped LED

solution is highly constrained), and it provides a geometrical picture for the AdS/CFT correspondence

that we will be using as an additional interpretive framework of our concepts and results.

2.7 Excursis: Warped Large Extra Dimensions

With branes, it is possible to have larger dimensions in a warped space, referred to as “warped Large

Extra Dimensions,” while remaining within experimental bounds. This scenario of warped LEDs can

provide another possible solution to the hierarchy problem [29, 113, 114], as we shall see. However, it

should be noted that in recent years, the possibility of large extra dimensions has been highly constrained

by gravitational wave experiments [115–117] and by the Large Hadron Collider [118–120]. We will

discuss warped LEDs in the context of the Standard Model fields, but it should be noted that warped

LEDs can also be combined with GUT theories, e.g., [121].
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Take a 5d spacetime with a finite 5th dimension with coordinate y ∈ [0, L]. One way to do this is to

take S1/Z2 with S1 radius L/π, so that y → −y. Place a 3 brane at y = 0 and another 3 brane at y = L.

The Standard Model is localized on the brane at L with tension T , and the Planck scale physics is on

the y = 0 brane with tension −T . So we have Lagrangians Lbrane = ±
√
−gT . The space between the

branes is the “bulk” space that traverses the energy scales between them.

Compactification of any extra dimensions produces a 4d graviton, as before, but the SM fields are

localized on a brane at the start [122, 123]: the localization process must then be what produces the chiral

fields. There is no tower of states for the localized Standard Model fields, since the compactification was

performed in the bulk, so the extra dimensions can be larger and still be consistent with experimental

bounds.

The warped metric in this scheme with an exponential warping factor goes as,

ds2 = exp

(
−2|y|

r

)
ηµνdx

µdxν + dy2,

Λ =
−24M3

r2
,

r =
24M3

T
,

(2.26)

where M is the 5d gravity scale, Λ is the 5d bulk cosmological constant. Thinking of the hierarchy

problem in terms of the strength of gravity in comparison to the other forces, gravity propagates throughout

the full higher dimensional space, so its strength is diluted accross the extra dimensions. However, the

strength of the Standard Model interactions is not diluted, since the interactions are localized to the SM

brane.

More precisely, we have an exponential shift of the metric within the fifth dimension,

gµν(y = L) = exp(−2L/r)gµν(y = 0), (2.27)

so mass scales are exponentially suppressed on the SM brane compared to the Planck brane. Hence, the

Higgs mass will also be exponentially suppressed as,

m2
Higgs ≈ exp(−2L/r)M2

Planck. (2.28)
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The exponential factor thus suppresses the quantum correction to the bare Higgs mass so as to produce

the correct low energy value (with an appropriate positioning of the SM brane and Planck brane in the

extra dimension). With L/r ≈ 16, the Higgs mass is on the order of the TeV scale.

We have discussed various effective field theories and possible higher energy physics that produces the

SM and addresses its shortcomings. We will now discuss the Renormalization Group as the mathematical

machinery that is used to produce effective field theories.
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CHAPTER 3

Renormalization Group–Overview

The discussion of effective field theories and integrating out variables to have an effective description

at a lower energy scale is tied into the renormalization group. We here discuss the concept of the

renormalization group and various procedures that are in use and that we will use to make calculations

later.

The renormalization group procedure is a way to transform a description of a theory at higher

energy physics into a description at lower energy physics. The procedure results in a loss in the number

of degrees of freedom. There are a number of ways to perform this transformation. Three common

procedures are those of Kadanoff [124, 125], Wilson [24, 126], and Polchinski [127–129].

3.1 Kadanoff

The Kadanoff procedure, often called the block-spin method, is a lattice procedure. It is also the

primary method that we use since we make specific calculations involving various Ising models. The

procedure is as follows. Start with a large lattice of spins, σr, where r is a vector index labeling the spin’s

position in the lattice. The action is S[σ;K], where K are the coupling constants. The partition function

is then,

Z =
∑
σ

exp(−S[σ;K]). (3.1)

Next, group neighboring spins together. These spins form a block. The block can be formed in all

sorts of ways. For example, if we grouped nearest neighbor spins together in a block around a spin at site

r, then the grouped spins would consist of σr and the spins located one lattice unit away from it; since

the nearest neighbors are in the block, the block will look like a diamond.

Next, replace the spins in the block with a single spin at site r that summarizes the spins in the

block, σ′r. There are a variety of ways to do this. One way is to take the average value of all the spins
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in the block, σ′r = average of all the spins in a block centered at σr and consisting of σr and all spins

located one lattice unit away from σr. Another possibility is to take the majority spin in the block, aka

the majority rule (e.g., if most of the spins were up, then the spin that replaces the block will also be

up). So for example, σ′r = the spin that occurred the most frequently in the block centered at σr. If a

tie-breaker is needed, the new spin takes a random value of the allowed spin values. See Figure 3.1 for an

example of blocking spins in a 2D lattice.

Figure 3.1: An example of grouping spins into blocks in a 2D lattice. In this particular case of blocking,
the blocks are squares and contain nine spins; the center spin is chosen for the block, resulting in a lattice
with fewer spins and a greater spacing between spins. Other blocking methods could be chosen, e.g.,
triangles, and different amounts of spins could be included in the blocks.

The replacing of the spins in the block by one spin can be described as a transformation T [σ′|σ],

which is normalized as,

∑
σ′

T [σ′|σ] = 1. (3.2)

The transformation T is known as a block-spin transformation. Notice the similarity to a conditional

probability distribution. This similarity will be exploited in later sections.

The new effective action is then defined as,

exp(−Seff [σ′;K ′]) =
∑
σ

T [σ′|σ] exp(−S[σ;K]), (3.3)

where we have taken a further step and changed the coupling constants to K ′, re-writing the action in

terms of local spin operators (to be explained momentarily). Note that the new partition function is the
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same as the old partition function,

Znew =
∑
σ′

exp(−Seff [σ′;K ′])

=
∑
σ′

∑
σ

T [σ′|σ] exp(−S[σ;K])

=
∑
σ

exp(−S[σ;K]) = Z.

(3.4)

Because each block of spins was replaced with a single spin (known as a block spin), we now have a

lattice of spins that have fewer spins than before. Because the block spins are located at the center of each

block, the resulting spins are separated by a larger distance (from center to center), thereby indicating a

change of scale to lower energy. Once the spins are replaced with new spin variables, the form of the

action can be re-written in terms of the interactions between sites σ′. Hence, we have new couplings K ′

for these interactions. We now have a new action S[σ′;K ′] that has the same form of interactions as

the earlier action but with effective coupling constants and defined on a lattice with fewer sites. This

effective action in general will also include higher order interactions than the original action, which can

be understood to have had zero coupling constant in the original action.

Continuing our example of using a block centered at r, if the lattice originally had a spacing a, it now

has a spacing
√

2a. The new lattice will be rotated relative to the original lattice. Since the new spins are

separated by a larger distance, our description of the spin lattice can be understood as a lower energy

effective description in terms of the new spin variables σ′r.

Finally, the new lattice spacing is rescaled to be equivalent to the old spacing. This rescaling will

also involve rescaling the spin operators so that the action remains invariant; however, the coupling

constants will be unaffected by the rescaling operation. The rescaling is done so that the effective action

looks like the original action but with the different coupling constants generated by the renormalization

transformation, i.e., the new spins with new couplings are now described by the old lattice. The rescaling

is necessary so that fixed points can be defined after iterating the Kadanoff procedure a number of times.

However, it might not be possible to iterate the Kadanoff procedure without an approximation if there are

new higher order interactions in the effective action; this is a mere practical problem with the procedure

arising from the inability to exactly solve models with the higher order interactions.
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Aside from a constant (i.e., spin-independent) shift in the action, the only thing that will change in

the action is the coefficients in front of the spin operators in the action. The partition function is held

fixed, so the physics is the same (alternatively, the constant shift in the action can be absorbed into the

partition function, in which case the new partition function will differ from the old by an exponential

factor of the constant shift).

3.2 Wilson

The Wilsonian method is a continuum procedure for renormalization. It is not really a different

method from the Kadanoff procedure but should be thought of as a continuum limit of the Kadanoff

procedure with a particular choice of transformation T . Historically, Wilsonian renormalization was used

to find fixed points in an RG flow and thereby find universal behavior [126]. In this section, we will be

following the treatment of [24].

Unlike the Kadanoff procedure that is used in position space, the Wilsonian renormalization occurs

in momentum space. As with the Kadanoff procedure, one starts with an action S[Φ;K], where Φ are

the original field variables (not necessarily scalar) and the K are the original coupling constants. Using

the path integral representation, the partition function is,

Z =

∫
DΦ exp(−S[Φ;K]). (3.5)

As before, a transformation must be chosen in order to define the effective action. For the Wilsonian

method, variables that represent momenta that are higher than some scale Λ are integrated out, while the

variables that represent momenta lower than the scale Λ are left for describing the physics at the lower

scale Λ. An easy way to do this is to first define a cutoff for the momentum Λ0. Then split the fields into

fast (χ) and slow modes (φ) as,

Φ(x) =

∫
p>Λ

dDp Φ(p)eipx +

∫
p<Λ

dDp Φ(p)eipx ≡ χ(x) + φ(x). (3.6)

We can then integrate out the χ fields to produce the lower energy theory. The transformation looks like,

T [φ|Φ] =

∫
Dχ δ(φ+ χ− Φ). (3.7)
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We define an effective action as,

exp(−Seff [φ;K ′]) =

∫
DΦ T [φ|Φ] exp(−S[Φ;K])

=

∫
Dχ exp(−S[φ+ χ;K]),

(3.8)

where the K ′ are again the new coupling constants after re-writing the effective action in terms of local

operators. Note that the effective action has a cutoff at the scale Λ because momentum between Λ and

Λ0 was integrated out. The effective action therefore describes the physics in terms of lower energy

variables, i.e., the scale has been changed. The partition function is again the same,

Znew =

∫
Dφ exp(−Seff [φ;K ′])

=

∫
DφDχ exp(−S[φ+ χ;K])

=

∫
DΦ exp(−S[Φ;K]) = Z.

(3.9)

As with the Kadanoff procedure, the action must be re-written in terms of local interactions and

effective coupling constants K ′. When doing so, new higher order interactions will generally appear;

indeed, all possible higher order terms consistent with the symmetries will appear and so will all lower

order terms (including a constant operator-independent term: the identity operator). Also, to return the

effective action to its original form and to be able to iterate the Wilsonian procedure to find fixed points,

a rescaling of the momenta must be done to return the cutoff to its original value Λ0. After rescaling, one

could even relabel the fields φ as Φ so that the end result is an effective action that looks the same as the

original action but with different couplings and additional interactions.

The Wilsonian procedure uses a specific transformation T that allows the procedure to continually

be iterated, which is usually used to find fixed points in the RG flow. The rescaling does not affect the

numerical values of the coupling constants, and the form of the action is the same, so there is again a

flow in the coupling constants with a change in scale (understanding the new higher order interactions to

have had coupling constant of zero in the original action) while the rest of the action remains the same:

S[Φ;K]→ S[Φ;K ′].
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Also as with the Kadanoff procedure, a constant, operator-independent term will appear in the

effective action. This term can be absorbed into the partition function or left in the effective action to

keep the partition function fixed.

3.3 Wilson and the Callan-Symanzik Equation

The conceptual result of Wilsonian renormalization as changing the scale of a theory can be applied to

the partition function. Doing so results in an example of a Callan-Symanzik equation. A Callan-Symanzik

equation shows how observables change with scale to compensate for changes in the coupling constants

of the action as the scale is changed. Callan-Symanzik equations are then useful for solving for the

couplings and renormalization factors (like the wave-function renormalization factor) as a function of

scale, and we will make use of relating observables to changes in scale when we make use of the KL

divergence later.

Let us now see an example of a Callan-Symanzik equation. Let ZΛ(g(Λ)) be the partition function at

scale Λ with coupling constants g(Λ). Because the partition function is invariant under scale changes, we

must have [24, 27],

Λ
d

dλ
ZΛ(g) =

(
Λ
∂

∂Λ
|g(Λ) + Λ

∂g(Λ)

∂Λ

∂

∂g
|Λ
)
Z(g) = 0. (3.10)

By definition,

β ≡ Λ
∂g(Λ)

∂Λ
=

∂g(Λ)

∂ log(Λ)
(3.11)

is the beta function for the coupling constant. Likewise, the wavefunction renormalization factor, Z , will

reappear in the kinetic term after performing a renormalization group transformation, and its logarithmic

scale derivative is also labeled as,

γ ≡ −1

2
Λ
∂ log(Z(Λ))

∂Λ
= −1

2

∂ log(Z(Λ))

∂ log(Λ)
, (3.12)

and γ is known as the anomalous dimension of the field.

Renormalization of correlation functions changes the correlation functions as,

〈φ(x1)...φ(xn)〉 = Z−n/2(Λ)〈φ0(x1)...φ0(xn)〉, (3.13)
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where φ0 is the bare field before redefining in terms of the canonically renormalized φ field. Correlation

functions should also remain the same after a scale change, so the Callan-Symanzik equation for

correlation functions Γ is,

Λ
d

dΛ
Γ(x1, ..., xn; g(Λ)) =

(
Λ
∂

∂Λ
|g(Λ) + β(Λ)

∂

∂g
+ nγ(Λ)

)
Γ(x1, ..., xn; g(Λ)) = 0. (3.14)

Solving for the beta functions and anomalous dimension gives the partial differential equations that can

then be used to solve for the couplings and renormalization factors in terms of scale as done in [24, 27].

3.4 Polchinski

The Polchinski renormalization approach is computationally the same as Wilson’s, except instead of

having a hard momentum cutoff, a smooth momentum regulator is used. The regulator is a function of

the momentum and becomes large when the momentum is greater than the cutoff and does not affect the

action for the momentum below the cutoff. For example, a cutoff function K(p2/Λ2) is defined to be 1

for momentum below the scale Λ and rapidly and smoothly go to zero above the scale Λ [127]. However,

Polchinski’s approach differs in that the action remains defined in the continuum without having recourse

to a lattice (as Wilson’s approach does), and the change of the action is observed and computed as the

energy scale changes: the action flows about in coupling space as renormalization is applied.

One way to derive Polchinski’s equation is to make use of the fact that the scale derivative of the

partition function is zero, as discussed earlier. One then finds a differential form of Wilson’s effective

action equation. This differential equation is known as Polchinski’s Exact Renormalization Group

Equation (ERGE), and it shows how the action changes with the scale Λ of the theory. The differential

equation is [24],

− ∂Sint
∂ log Λ

=

∫
dDxdDy

(
δSint
δφ(x)

DΛ(x, y)
δSint
δφ(y)

−DΛ(x, y)
δ2Sint

δφ(x)δφ(y)

)
, (3.15)

where Sint is the interaction piece of the action. DΛ(x, y) is the infinitesimal χ propagator resulting

from lowering the energy scale from Λ′ to Λ = Λ′ − δΛ and is equal to

DΛ(x, y) =
1

(2π)D
ΛD−1δΛ

Λ2 +m2

∫
SD−1

dΩ eiΛp̂·(x−y). (3.16)
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This is the position space version of Polchinski’s ERGE, which we will find useful later when using

the KL divergence with continuum field theories. Polchinski originally derived a momentum space

version of the ERGE, and we will now sketch a derivation of the momentum space ERGE, following

Polchinski [127] and [129]. As Polchinski, we use an action with an external source J(p), where

J(p) = 0 for p > Λ the cutoff. The action is,

S[φ] =
1

2

∫
d4p

(2π)4
φ(p)φ(−p)p2K−1(p2/Λ2) + Sint[φ], (3.17)

where we have placed possible mass interactions into the interaction part of the action, Sint[φ]. The

generating functional is then,

Z[J ] =

∫
Dφ exp(−S[φ] + J · φ). (3.18)

The goal is for the generating functional to not change with scale. That is, we want to impose

Λ (dZ/dΛ) = 0. Taking the derivative produces,

Λ
dZ[J ]

dΛ
=

∫
Dφ

(
−1

2

∫
d4p

(2π)4
φ(p)φ(−p)p2Λ

∂K−1(p2/Λ2)

∂Λ
+ Λ

dSint
dΛ

)
exp(−S[φ] + J · φ).

(3.19)

This equation ignores field independent terms that would appear.

A solution for Λ (dSint/dΛ) that satisfies Λ (dZ/dΛ) = 0 is Polchinski’s ERGE,

Λ
dSint
dΛ

=
−1

2

∫
d4p

(2π)4
φ(p)φ(−p)p−2Λ

dK(p2/Λ2)

dΛ

(
δSint
δφ(p)

δSint
δφ(−p)

− δ2Sint
δφ(p)δφ(−p)

)
. (3.20)

Other exact renormalization group equations can be derived by having different momentum cutoffs,

including a general cutoff. As already noted, a sharp cutoff corresponds to Wilson’s method. Other

effects, such as the effect of rescaling, can be included in the ERGE, for which we refer to the derivations

and equations in [129].

We have now discussed the three main RG techniques: Kadanoff, Wilson, and Polchinski. We will

now look into the AdS/CFT interpretation of the RG transformation that we will make use of from time

to time in this thesis.
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3.5 AdS/CFT Holography

The renormalization group flow can be understood and interpreted in terms of the AdS/CFT corre-

spondence [4, 7, 130–133]. We will sketch how this can be done below.

The AdS/CFT correspondence states that a string theory on an asymptotically AdS space times a

compact manifold M in d + 1 dimensions is dual to a QFT in d dimensions at the boundary of the

asymptotically AdS space. The string theory at strong coupling is dual to a weak coupling in the QFT,

and weak coupling in the string theory is dual to a strong coupling in the QFT. This duality is supposed

to be an exact equivalence, and it has been proven to be exact in some cases. The duality arises in the

large N limit of the QFT.

On example of this correspondence is type IIB string theory in AdS5 × S5 and N = 4 Super Yang

Mills theory in 4 dimensions. Following deBoer’s summary [130], the Poincare patch of the AdS5 is

described by,

ds2 = dr2 + exp(2r/L)ηµνdx
µdxν , (3.21)

where L is the radius of the AdS5 and r →∞ is the boundary of the AdS5. The radius L = (g2
YMN)1/4.

The low energy limit of the string theory with D3 branes is the Yang Mills theory, while the low energy

limit of the Yang Mills theory gives rise to the AdS5 × S5. The N = 4 super Yang Mills is a CFT, and

we can see indeed that the metric (3.21) is invariant under,

r → r + a,

ηµν → ηµν exp(−2a/L).

(3.22)

The metric ηµνdxµdxν is to be identified with the metric on the boundary QFT, so we see that this metric

is invariant under a change of scale. Indeed, we see that a change of scale compensates for moving

radially through the AdS5.

In general, the radial coordinate r is identified with the energy scale of the boundary theory, and

therefore, r is related to the cutoff of the boundary theory. Truncating the AdS space with an IR cutoff at

r = r0 will correspond to a UV cutoff in the boundary theory. Thus, we have a relation between RG

flow on the boundary theory and radial movement in the AdS space. However, it is not known what

regularization or renormalization scheme this cutoff is to be identified with [130].
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There are relations between the correlation functions of fields in the bulk Φ and correlation functions

of operators in the boundary theory O. Working in the low energy limit of string theory, we use the

supergravity approximation that has an asymptotically AdS ground state. The result for the bulk partition

function is then [131],

Zbulk[φ(0)] =

∫
Φ∂AdS=φ(0)

DΦ exp(−S[Φ])

= 〈exp(−
∫
∂AdS

φ(0)O)〉QFT ,
(3.23)

where the last integral is intended to be over the boundary ∂AdS of the asymptotically AdS theory, the

φ(0) are the values of the boundary fields, and the expectation value is taken with the path integral on the

boundary QFT. As part of the limits of the path integration, the φ(0) becomes the boundary value of the

bulk field Φ, and it becomes a source for the boundary operators. Correlation functions of the operator O

can now be calculated by taking functional derivatives. In a leading order saddle point approximation, we

have Sonshell[φ(0)] = −WQFT [φ(0)], where W is the generating function for the connected QFT graphs.

Hence,

〈O(x)〉 =
δSonshell
δφ(0)(x)

|phi(0)=0,

〈O(x1)O(x2)...O(xn)〉 = (−1)n+1 δnSonshell
δφ(0)(x1)...δφ(0)(xn)

|phi(0)=0.

(3.24)

These expressions still require renormalization. The need to regulate the infinite spacetime volume of the

AdS corresponds to the need for regulating the UV divergences in the QFT.

3.6 RG in General

In general, the renormalization procedure maps one set of operators {O} at one energy scale Λ to

another set of operators {O′} that exist at a smaller energy scale Λ′, while retaining the same form of

the action in order to keep the partition function fixed: a transformation from one set of operators to a

smaller set of operators followed by a rescaling of the points where the operators act. Since the partition

function is fixed, the physical system is still the same, although it is described by different operators. The

operators at the larger scale are composites of the operators at the smaller scale, e.g., a proton operator is

described by a composite of quark operators at a smaller scale.

Furthermore, since one set of operators is mapped into another set, not all operators remain when the

scale is changed under the RG flow. Operators that are highly suppressed when going to larger scales

37



under the RG flow are termed irrelevant operators. Operators that are present at the larger scale of the

problem and that increase in strength with a larger scale are termed relevant operators. Operators that

exhibit a different behavior to always increasing or always decreasing are termed marginal. As expected

from our discussion of effective field theories, this allows physics at a larger scale to be independent of

the operators from a smaller scale. So for example, it is possible to describe the physics of a proton at its

own scale without having to refer to quarks because the quark operators are only relevant when we try to

describe physics at their smaller scale.

Thinking of the RG transformation in this general setting lends itself to an information theoretic

interpretation of the RG flow, which we will use to quantiy the information lost upon performing the RG

transformation and to quantify the information that remains about the UV theory in the effective theory.

We shall now turn to that subject.
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CHAPTER 4

Communication Channel

Because irrelevant operators are suppressed and degrees of freedom are lost when performing a

renormalization group transformation, information is lost as the renormalization group transformation

is performed. We can view this loss of information as a communication channel problem. We start

with one set of operators that have some amount of information. This information is sent down a noisy

communication channel [134]: the renormalization group transformation is the noisy channel. We then

end up with another set of operators: operators and couplings that are a result of the operators at the

smaller scale, e.g., the proton is a result of the quark interactions. Our larger scale operators then must

have some information about the smaller scale operators. Because the channel is noisy, some information

is lost and so not all information about the smaller scale operators is present in the larger scale operators.

Understanding the RG transformation in terms of information lost in a communication channel raises

a number of questions. How can we measure this information loss? In what sense is this information

being lost? Having quantified it, what is the capacity of the communication channel? Is there an optimum

theory or renormalization procedure we can choose that minimizes the information lost in the channel or

maximizes the capacity? We discuss the possible answers to these questions in the next sections.

4.1 The KL Divergence

We first discuss the KL divergence [135–138] for normalized probability distributions p and q

associated with different statistical field theories, which is the main tool we use in this paper to quantify

information. In the case where p = p(X,Y ), we also define marginalized distributions as,

p1(X) ≡
∫

Dµ2 p(X,Y )

p2(Y ) ≡
∫

Dµ1 p(X,Y ),

(4.1)
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where Dµ2 indicates integrating over the space associated with the variable Y , resulting in integrating

out the variable Y . The Dµ1 is defined in like manner.

The KL divergence is non-negative and results in a c-number, but it is not a metric: it is generally

asymmetric. The KL divergence can be understood as the relative entropy of theory p relative to theory

q. In the context of probability theory, the KL divergence is understood as the difference or distance

(proximity) between probability distributions p and q, where q is a best guess distribution chosen to

approximate or model p. The probability that the best guess distribution q is in fact the distribution p

after N draws (at large N ) is [137–139],

Pr(p|E) = e−NDKL(p||q), (4.2)

where E is a set of N independent events drawn from the distribution q.

The KL divergence can also be used to calculate the mutual information between random variables

X and Y associated with the distributions p(X,Y ) and q(X,Y ). For marginalized distributions p1 and

p2, the mutual information is defined as [137],

I(X;Y ) ≡ D (p(X,Y )||p1(X)p2(Y )) =

∫
Dµ p log

p

p1p2

=

∫
Dµ p log p−

∫
Dµ1 p1 log p1 −

∫
Dµ2 p2 log p2,

(4.3)

where advantage has been taken of the fact that the log p1,2 terms do not depend on the space in µ2,1,

respectively. Hence, the space can be summed over for the distribution p, producing marginalized

distributions multiplying the log terms.

Although the KL divergence is generally asymmetric, it is symmetric to lowest order. It is also

quadratic to lowest order, producing the Fisher information metric, which thereby allows for an appro-

priate distance metric between probability distributions. The presence of the Fisher information metric

to lowest order is also important because we could have considered more general alpha divergences,

instead of considering the KL divergence (a special case of alpha divergences when α = 1). However,

these alpha divergences also all reduce to the Fisher information metric to lowest order, so we lose no

opportunities by using the KL divergence in our measurements of proximity between distributions/field

theories.
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The claims that the KL divergence is quadratic to lowest order and produces the Fisher information

metric to lowest order will be shown simultaneously below. Consider a distribution p that can be obtained

from q by changing p’s parameters, causing p itself to change by some (not necessarily infinitesimal)

amount dp: q = p+ dp. To lowest order, the KL divergence of q and p is then,

D(p||q) =

∫
Dµ p log

p

q
=

∫
Dµ p log

p

p+ dp
= −

∫
Dµ p log(1 +

dp

p
), (4.4)

where, as before, the Dµ just integrates over the space on which the probability distributions p and q are

defined. We expand the logarithm about the parameter dp/p to the lowest order (which is quadratic) in

dp to get,

D(p||q) =

∫
Dµ − (pdp/p− pdp

2

2p2
) +O(dp3) =

∫
Dµ (−dp+ p

dp2

2p2
) +O(dp3), (4.5)

where we simply define dp3 ≡ (dp)3. We now drop the dp in the integrand because it is assumed the

probability distributions fall to zero towards the boundary of integration, which then gives,

D(p||q) =

∫
Dµ p

dp2

2p2
+O(dp3) = 〈dp

2

2p2
〉p +O(dp3), (4.6)

where the integral becomes an expectation value with respect to p. We now put the result in terms of

both q and p to remove the dependence on dp, and we also put the result in terms of d log p to show the

quadratic symmetry of the result. We arrive at,

D(p||q) =
1

2
〈(q
p
− 1)2〉p +O(dp3)

=
1

2
〈d log p d log p〉p +O(dp3).

(4.7)

We see then the quadratic symmetry of the KL divergence to lowest order, and we see that the Fisher

information metric appears as the lowest order term! Of course, if dp is small enough, then this would

not only be the lowest order piece but also the only piece of the KL divergence needed for calculations to

lowest order.
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On the other hand, we will see the same result to lowest order for the KL divergence with p and q

reversed,

D(q||p) =

∫
Dµ q log

q

p
=

∫
Dµ (p+ dp) log(1 +

dp

p
)

=

∫
Dµ p

dp

p
+ dp

dp

p
− pdp

2

2p2
+O(dp3) =

∫
Dµ p

dp2

2p2
+O(dp3),

(4.8)

where we have carried out many of the same steps as before, e.g., substituting for the value of q in terms

of p, expanding the logarithm, and dropping the boundary dp term. We continue to simplify the result as,

D(q||p) = 〈dp
2

2p2
〉p +O(dp3) =

1

2
〈(q
p
− 1)2〉p +O(dp3)

=
1

2
〈d log p d log p〉p +O(dp3), .

(4.9)

where we have again placed the result in terms of q and p and in terms of d log p. This is the exact same

result as the KL divergence with p and q reversed in the arguments, so we see that the KL divergence is

indeed both quadratic and symmetric in its arguments to lowest order.

When studying QFTs, it is easier to Wick rotate and study Euclidean QFTs. Hence, we use Boltzmann

factors for the probability distributions (as in statistical field theory) that we will be measuring with the

KL divergence. In terms of the Hamiltonian, the Boltzmann distributions go as,

p =
e−βHp

Zp
, (4.10)

where β is the inverse temperature and Zp is the partition function. For general Boltzmann factors e−κS

(with a constant κ for generality and S some sort of an action), the KL divergence is,

D(p||q) =

∫
Dµ

e−κSp

Zp
log

e−κSp/Zp
e−κSq/Zq

=

∫
Dµ

e−κSp

Zp

(
log

Zq
Zp

+ κ(Sq − Sp)
)

= log
Zq
Zp
− κ〈Sq − Sp〉p,

(4.11)
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where 〈〉p again indicates that the expectation value is taken with respect to theory p. The partition

function to lowest order is,

Zq =

∫
Dµ e−κSq =

∫
Dµ e−κSpe−κ(Sq−Sp)

= Zp(1− κ〈(Sq − Sp)〉p + ...).

(4.12)

So to lowest order, the KL divergence of the general Boltzmann distributions we defined is (making use

of our earlier result (4.7)),

D(p||q) =
1

2
〈(q
p
− 1)2〉p +O(dp3) =

1

2
〈(Zp
Zq
e−κ(Sq−Sp) − 1)2〉p +O(dp3), (4.13)

where we have used the general Boltzmann distributions for q and p. We now expand the exponential and

the partition functions to lowest order (quadratic in κ), making use of our earlier result for Zq (4.12) to

get,

D(p||q) =
1

2
〈( 1

1− κ〈(Sq − Sp)〉p
(1− κ(Sq − Sp))− 1)2〉p +O(dp3, κ3)

=
1

2
〈((1 + κ〈(Sq − Sp)〉p)(1− κ(Sq − Sp))− 1)2〉p +O(dp3, κ3).

(4.14)

Multiplying through now gives (neglecting terms of higher order than κ2),

D(p||q) =
1

2
〈(1 + κ〈(Sq − Sp)〉p − κ(Sq − Sp)− 1)2〉p +O(dp3, κ3)

=
1

2
〈(κ〈(Sq − Sp)〉p − κ(Sq − Sp))2〉p +O(dp3, κ3),

(4.15)

where the 1’s cancel in the second line. We then expand the square to get,

D(p||q) =
1

2
〈(κ〈(Sq − Sp)〉p)2 + κ2(Sq − Sp)2 − 2κ2〈(Sq − Sp)〉p(Sq − Sp)〉p +O(dp3, κ3)

=
κ2

2
(〈(Sq − Sp)2〉p − (〈(Sq − Sp)〉p)2) +O(dp3, κ3)

=
κ2

2
(〈(Sp − Sq)2〉p − (〈(Sp − Sq)〉p)2) +O(dp3, κ3),

(4.16)

where we have distributed the expectation value to the other terms in the last two lines, and we emphasize

the symmetry between p and q in the KL divergence by rearranging the distributions in the last line.

When we put in operators for the actions Sq and Sp, we end up with integrated two-point functions.

These two-point functions have an IR divergence due to a volume factor, and they have a UV divergence
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due to contact terms [9]. The UV divergence will be discussed in Section 6.3. The IR divergence suggests

that the physical quantity of interest may be the KL divergence per space-time volume, rather than the

KL divergence alone.

Notice also from our result and from our discussion of the KL divergence that the KL divergence is

general enough that any two (Euclidean) QFTs could be compared, so long as they have the same field

content or descend from the same master theory [9] (e.g., maybe both are deformations of the same string

compactification to lower energy effective field theories). The two theories do not necessarily have to

be related by an RG transformation, and if we directly had the distributions for both an UV theory and

an IR theory, we could compute the KL divergence without having to find the IR theory from the UV

theory first. However, we will be turning our attention to UV and IR distributions that are related by a

change of scale/RG flow so that we can try to isolate the UV information and interpret the RG flow as a

communication channel.

Having discussed the KL divergence and its properties, we will discuss in the remainder of the section

the uses of the KL divergence in quantifying information and possible tools we can use to quantify the

information about UV physics accessible at IR scales.

4.2 Channel Capacity and UV/IR Mixing

One way to find the information about the UV theory in the IR theory is by directly using the mutual

information (4.3). UV-IR mixing is then studied in a theory p(UV, IR) by forming a joint distribution

q = pUV pIR, where,

pUV =

∫
DµIR p(UV, IR)

pIR =

∫
DµUV p(UV, IR),

(4.17)

but there is a conceptual difficulty in summing over the IR space: summing over the IR space means

we are integrating out IR modes, which leads to non-local interactions in the effective field theory. So

in Section 5, we study the QFT on a lattice in order to better understand UV/IR mixing. A lattice QFT

avoids the problem of summing over IR modes by exploring the question in position space and providing

a well-defined marginalization procedure via decimation.

Another quantity of interest that might be used for quantifying UV information in IR physics and is

related to the KL divergence is the channel capacity [137], and we will discuss the channel capacity in
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the rest of this subsection. The channel capacity measures the upper bound on how much information

can pass through a communication channel: it is the maximum rate that information can be transferred

through a communication channel with zero error. Channel capacity is defined as,

C = suppX(x)I(X;Y ), (4.18)

where I is the mutual information between the X and Y random variables, and the supremum is taken

over all possible probability distributions (produced by Lorentz invariant actions) for the random variable

X .

In our case, we will take random variables φ (IR fields) and J (the usual field theory generator,

which functions as a coupling constant for the linear φ term) as follows. Thinking in terms of string

compactifications, the J coupling constant becomes a dynamical field variable with p(J) being viewed

as the random dynamics of moduli that cause J to fluctuate in value. In an AdS/CFT interpretation, the

p(J) corresponds to fluctuations in the couplings on the CFT boundary theory due to string fluctuations

in the AdS space. The use of p(J) in the relative entropy could also be viewed as a disorder average over

J , where p(φ) is the result of the disorder average.

We see then from our discussion that J is a UV variable, so we can directly find the mutual information

between the UV and IR variables. The mutual information between φ and J becomes,

p(φ) ≡
∫

DJ p(φ, J) =

∫
DJ p(φ|J)p(J),

I(φ, J) = DKL(p(φ, J)||p(φ)p(J)) =

∫
Dφ p(φ, J) log

p(φ|J)

p(φ)
,

(4.19)

where notice that p(J) does not need to explicitly appear in the calculation at this stage, so one does not

need to think in terms of integrating out IR modes, thereby removing the conceptual difficulty of the

previous section. The action for p(φ|J) is of the following form,

S = S[φ] + J ·O[φ], (4.20)

where O[φ] is some functional of φ fields that couples to J .

When calculating the channel capacity, which requires maximizing over all p(J), it seems unavoidable

that one will need to speak of p(J). However, this still does not require one to think in terms of integrating
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out IR modes because the p(J) is simply just a given of the problem (rather then resulting from integrating

out), and it describes the fluctuations of the coupling constant J .

Another quantity of interest for a communication channel that is related to channel capacity is the

distortion rate. It is the minimum amount of information in a signal that needs to be sent so that the signal

can be reconstructed up to some given distortionD. It is defined as the infimum of the mutual information

over all possible conditional probability distributions, i.e., over all possible communication channels.

We will discuss this more with the concept of the information bottleneck in Section 4.4. However, we

will first draw a connection between a communication channel (and its properties, such as the channel

capacity) and the RG transformation.

4.3 Communication Channel: RG Connection

We can use the channel capacity to understand our RG procedure as follows. As we have done before

when discussing the RG transformation, a RG procedure can be encapsulated in a kernel (or transition or

transformation matrix), which obeys the following property,

∫
Dφ′ T (φ′, φ) = 1, (4.21)

where φ′ are the new variables that result after an RG transformation and φ are the original variables. T

applies the RG transformation as follows,

p(φ′) =

∫
Dφ T (φ′, φ)p(φ), (4.22)

which given (4.23) implies, ∫
Dφ′ p(φ′) = 1. (4.23)

For Boltzmann factors, T with the above properties preserves the partition function.

We can now interpret T as a conditional probability distribution,

p(φ′, φ) ≡ p(φ′|φ)p(φ) = T (φ′, φ)p(φ). (4.24)
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T is normalized as a conditional probability distribution, and T can be used to reproduce the marginal

distributions of both φ and φ′ in the manner of a conditional probability distribution, so T mathematically

behaves as a conditional probability distribution. Physically, we see that T transforms the φ variables

into φ′, so it is a transition matrix, which is a conditional probability distribution over operators.

Defining then T ≡ p(φ′|φ), we can make a connection to a communication channel: this conditional

distribution T gives the probability of receiving variables φ′ given source variables φ. T is then the

distribution for the communication channel.

Furthermore, we can understand marginalizing distributions as being produced by the distribution

p(φ′|φ) = δ(φ′ − φ) (as one example; other, smoother choices could be made). That is, we have,

pUV =

∫
DµIR δ(UV − IR)p(IR)

pIR =

∫
DµUV δ(UV − IR)p(UV ).

(4.25)

We see then a connection between the RG transformation and a communication channel. We can

view the IR variables as a signal from the UV variables sent through a communication channel defined

by the RG transformation. In the case of a lattice with operators localized at points, we can make the

same interpretation for decimation schemes and other block transformations.

Having interpreted the RG transformation as a communication channel, we can then ask questions

about its properties. What is the channel capacity of this communication channel? What is the distortion

rate? What distributions will maximize mutual information and minimize distortion rate?

We can make a guess at the distributions that make the channel operate at the channel capacity:

because a CFT is invariant under the RG transformation, the CFT should be the optimal distribution

so as to communicate at the channel capacity rate. A general QFT that has undergone an RG flow

loses information after the transformation, but a CFT remains invariant, having the same information

before and after. Hence, it must be the input that allows for the maximum amount of information to be

communicated without error.

As for minimizing the distortion rate, we have discussed how the CFT has a dual ADS space and

how the ADS space can be viewed as an RG flow by slices in the radial direction. So the dual AdS space

can be viewed as a communication channel in the radial direction. Because the CFT does not change as it
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passes through this channel, there is zero distortion and so the ADS channel should provide the optimal

channel distribution that minimizes distortion rate.

These statements about AdS/CFT conceptually make sense, but we have not been able to prove them

yet.

Having discussed the connection between the RG transformation and a communication channel with

its properties, we will discuss another potential tool for quantifying information by making use of the KL

divergence: the information bottleneck.

4.4 Information Bottleneck

The concept of the information bottleneck provides another way to think about our problem. We

will be following the presentation in [3], which relies heavily on the presentation of [137] for the mutual

information and distortion rate material.

Consider a signal x ∈ X used to predict a signal y ∈ Y . The relevant information in x is defined as

the amount of information about y in x. There is a certain minimal amount of information in the signal x

that is needed to predict the signal y. Equivalently, there is a way to represent X in a short code so as to

preserve the maximum information about Y . The information about Y in X is thus squeezed through the

bottleneck of a set of codewords X̃ . We thereby have for the information flow,

X → X̃

X̃ → Y.

(4.26)

Information about Y in X is represented by a limited set of codewords X̃ and then the limited set of

codewords is used to predict Y with the goal of maximizing the amount of information about Y .

The mapping between elements of X and the codewords x̃ ∈ X̃ can be represented by a probability

density p(x̃|x). The mapping thereby partitions X into blocks with each block associated to a codeword

x̃ with probability

p(x̃) =
∑
x

p(x)p(x̃|x). (4.27)

Notice here that the probability p(x̃) is just one of the marginal distributions produced from the joint

p(x, x̃).
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To determine the quality of a signal, two things are needed: the rate of transmission and the accuracy

of the transmission. The rate of transmission, i.e., the average number of of bits per message needed to

specify an element in the codebook without confusion, is determined by the mutual information. The

mutual information bounds from below the rate per element of X ,

I(X; X̃) =
∑
x∈X

∑
x̃∈X̃

p(x, x̃) log

(
p(x̃|x)

p(x̃)

)
. (4.28)

To determine the accuracy of a signal, the distortion function is used. The distortion function is supposed

to be small, and so it gives a measure for the most relevant aspects of X . The expected distortion for the

partitioning of X from p(x̃|x) is,

〈d(x, x̃)〉 =
∑
x∈X

∑
x̃∈X̃

p(x, x̃)d(x, x̃). (4.29)

As noted earlier, the rate distortion function R(D) is given by the minimal achievable rate (i.e., the

minimal mutual information) for a given distortion D,

R(D) ≡ min I(X; X̃), (4.30)

where the minimum is taken over {p(x̃|x) : 〈d(x, x̃)〉 ≤ D}. The rate distortion function R(D) captures

the relation between rate and distortion. A larger rate R means there is a smaller achievable distortion D.

The optimal distribution can be found, and it is,

p(x̃|x) =
p(x̃)

Z(x, β)
exp(−βd(x, x̃)), (4.31)

where Z is a normalization function (the partition function) and β is the Lagrange multiplier (and is

positive) used to solve the constrained optimization problem for R(D),

δR

δD
= −β. (4.32)

A difficulty with the usual distortion rate tools is that it is hard to find a correct and non-arbitrary distortion

measure d(x, x̃). So Tishby et al. propose using an information bottleneck to determine the relevant
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information content of a signal [3]. Access to p(x, y) is assumed, like access to p(x) is assumed for rate

distortion theory. X and Y must have positive mutual information: the relevant information about Y is

found in X . X̃ compresses X as much as possible but so as to preserve as much information about Y as

possible. Hence, the following relation must hold,

I(X̃;Y ) =
∑
y

∑
x

p(y, x̃) log
p(y, x̃)

p(y)p(x̃)
≤ I(X,Y ), (4.33)

since the compression cannot in general preserve more information about Y than what X has. The goal

is then to keep fixed the amount of information about Y in X while minimizing the number of bits

needed to represent that information in X̃ . The method of Lagrange multipliers then gives the following

functional to minimize,

L[p(x̃, x)] = I(X̃;X)− βI(X̃;Y ). (4.34)

It is then shown that the solution to the optimization problem is,

p(x̃|x) =
p(x̃)

Z(x, β)
exp

(
−β
∑
y

p(y|x) log
p(y|x)

p(y|x̃)

)
,

p(y|x̃) =
1

p(x̃)

∑
x

p(y|x)p(x̃|x)p(x).

(4.35)

Because of the multiple appearances of p(x̃, x), the solution for p(x̃, x) and p(x̃) must be determined

self-consistently.

Notice that this solution (4.35) is equivalent to,

p(x̃|x) =
p(x̃)

Z(x, β)
exp(−βDKL(p(y|x)||p(y|x̃))),

Z(x, β) =
∑
x̃

p(x̃) exp(−βDKL(p(y|x)||p(y|x̃))).
(4.36)

So the KL divergence appears as the correct distortion measure for this problem of optimizing the

information bottleneck.

The connection to our problem should be clear from the above discussion. With the stochastic

association of blocks ofX into elements of X̃ , we here see another way to understand the renormalization

group procedure. The X represents the UV variables. The X̃ represents the renormalized variables, e.g.,
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in the Kadanoff procedure they are the block-spins that summarize the information about the spins in

a block. The Y is then the variables after performing a rescaling, e.g., of the lattice in the Kadanoff

procedure.

The KL divergence that we have been calculating can be understood as an effective distortion measure

of passing information from the UV variables to the IR variables via renormalized variables: in particular,

it can be understood as an effective distortion measure of passing information from string physics to SM

physics as the scale is changed. The distribution p(y|x) is the final distribution after renormalization and

rescaling; p(x) is the original UV distribution, giving p(x, y) = p(y|x)p(x); p(x̃|x) is the kernel T that

transforms from the UV variables to the blocked variables, which allows us by (4.35) to find p(y|x̃) by

finding p(y, x̃) and then marginalizing over y to get p(x̃). However, it is not clear how to find p(y, x̃),

and it is not clear how to easily invert (4.35) to find p(y|x̃) directly. Due to these difficulties, we continue

on with our procedure of using the KL divergence to directly quantify the information.

4.5 Quantum Relative Entropy

All of our results in discussing quantifying information have so far been for Euclidean QFTs. However,

they are the same results for the quantum theory with commuting density matrices (i.e., there needs to be

a basis in which both density matrices are diagonal), so long as the states have non-zero overlap and so

long as there is some suitable notion of taking a log of a pure state. In such cases, the quantum relative

entropy is exactly the KL divergence. See [140] for a review of basic quantum information theory.

Consider the representation of a density matrix for a theory at finite temperature,

ρ =
∑
E

e−βH

Z
|E〉〈E| =

∑
E

∫
dφdφ′

e−βH

Z
|φ〉〈φ||E〉〈E||φ′〉〈φ′|

=

∫
dφdφ′

e−βH[φ]

Z
|φ〉〈φ||φ′〉〈φ′|

=

∫
dφ

e−βH[φ]

Z
|φ〉〈φ|.

(4.37)
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We now find the relative entropy of density matrices ρ and σ. If there is a basis in which both of the

density matrices are diagonal, the relative entropy can be evaluated as,

DKL(ρ||σ) = Tr(ρ log ρ− ρ log σ)

=

∫
dφ

e−βHρ[φ]

Zρ
log

e−βHρ[φ]/Zρ

e−βHσ [φ]/Zσ
,

(4.38)

which is the earlier expression for the KL divergence. As is typical, diagonal density matrices reduce

the quantum behavior to the classical: the relative entropy to the KL divergence. Also, note that the

β → ∞ limit computes the relative entropy between the ground states of the Hamiltonians. Because

in this case, the contribution of other states is much smaller, the density matrices will automatically be

diagonal. However, the density matrices will be pure states in this zero temperature limit (unless the

ground state is degenerate), so care needs to be taken in using the KL divergence to evaluate the quantum

relative entropy.

We can measure UV/IR mixing in a similar way to our method for classical distributions. Take a

density matrix ρ and trace out some subset to get a density matrix ρA. Tracing out the complementary

subset produces ρB . A joint distribution can then be formed ρA ⊗ ρB and compared to the original ρ

using the quantum relative entropy. If the diagonal terms are small, we could approximate the matrices as

diagonal, in which case the KL divergence would be measuring the quantum effects in the system.

The approximation of the matrices as diagonal can be understood in a MERA setup [141–143]. After

producing a new Hamiltonian from tracing out the density matrix ρ, perform a disentangling step. Use

a disentangler on the Hamiltonian to make it is as diagonal as possible in the original basis. Then a

joint distribution can be formed and the process can repeated. The relative entropy in this case will then

measure the complexity of the MERA circuit.

Having discussed the information theoretic interpretation of the RG flow and the methods that

can be used to quantify information about UV physics in IR theories, we will look at a particular RG

transformation that we will use in our example calculations: decimation.
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CHAPTER 5

Decimation

We describe the decimation procedure, which is a specific and simple choice of Kadanoff block-spin

renormalization (as we will soon explain). We will be making extensive use of the decimation procedure

in our later calculations.

With regards to measuring the proximity between theories and quantifying information using the KL

divergence, there are two distinct decimation procedures: one is to decimate, followed by a rescaling of

the lattice, and the other is to create a joint distribution from the decimated theories. We describe the

latter in this section and will show at the end Section 5.1 how these two procedures for decimation are

distinct.

Figure 5.1: A 2D lattice of with sites labeled as black and white as a preparation to decimating the lattice.

Suppose we take a general lattice QFT and decimate it, where half the sites are labeled as “even” and

half the sites are labeled as “odd.” As an example in 2D with black and white sites playing the role of

even and odd sites, see Figure 5.1. Creating a joint distribution by multiplying the decimated probability

distributions, this decimated theory can be compared to the original, undecimated theory because the

joint distribution is supported on the same space as the original, undecimated theory.
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Let p be the distribution of the original theory and let q = poddpeven be the joint distribution resulting

from multiplying the decimated theory, where podd/even is the theory where the even/odd sites have been

summed over,

peven ≡
∫

Dµodd p. (5.1)

In 2D, the lattice sites are rotated relative to the original lattice by 45 degrees after a decimation step, and

the nearest neighbor sites are now a distance of
√

2 larger than previously, instead of the space between

sites doubling (as in 1D models Figure 5.4). A second decimation step will rotate the lattice again back

to its original orientation, and the lattice spacing will now be doubled from the original spacing. See

Figure 5.2 to see how the sites are rotated after decimation.

Figure 5.2: A 2D lattice of white sites after decimating the black sites. The lattice is rotated by 45 degrees
relative to its original orientation, as can be seen by simply rotating it by 45 degrees, and the nearest
neighbors lie along the diagonals of the squares of the original lattice, resulting in a lattice spacing of

√
2

times the original lattice spacing.

In terms of the Kadanoff block-spin procedure, the transformation T [σ′|σ] for the decimation

procedure is simply the delta function δσ′,σ, where σ′ is an element of the sublattice of operators that we

wish to remain after decimation, and σ is an operator in the whole, original lattice. In summing over σ,

we sum over all the operators in the lattice, so this choice of T ensures that we sum over one sublattice of

operators (e.g., the odd sites) while leaving the remaining operators σ′ (e.g., the even sites) untouched.

The blocks for the decimation procedure contain the two nearest-neighbor operators (one operator is on

an even site, the other operator on an odd site) in each block; each of these blocks of two operators has

one of these operators removed from the block while the other remains untouched.
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For concreteness, let us take p to be a Boltzmann distribution with HamiltonianH . We will absorb the

inverse temperature β into the coupling constants of the Hamiltonian, so the Boltzmann factor becomes

e−H . The decimated Hamiltonians are defined by,

e−Heven ≡
∫

Dµodd e
−H ,

e−Hodd ≡
∫

Dµeven e
−H ,

(5.2)

where the new Hamiltonians Heven/odd are of the same form as H up to an operator independent constant.

We need this to be the case in order to iterate the decimation procedure, but as is well known from

particular examples (such as the 2D Ising Model, Section 8.2), the Hamiltonian in general does not retain

the same form (up to an operator independent constant) during the decimation procedure.

Letting Z be the partition function for theory p, notice that the partition function after decimation

remains the same,

Zeven =

∫
Dµeven e

−Heven

=

∫
Dµeven

(∫
Dµodd e

−H
)

= Z.

(5.3)

As noted in the earlier section about the Kadanoff procedure (Section 3.1), we could choose to let the

partition function change by an operator independent constant, while the Hamiltonian remains of the

same form, or we can keep the partition function the same, while letting the Hamiltonian remain of the

same form but shifted by an operator independent constant (i.e., let the Hamiltonian’s zero of energy

shift). We have chosen to keep the partition function the same.

We will now calculate the KL divergence for theory p and q where,

q = pevenpodd = (e−Heven/Zeven)(e−Hodd/Zodd)

≡ e−Hq/Zq.
(5.4)
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Note that,

Zq =

∫
Dµ e−Hq

=

∫
DµevenDµodd e

−Hevene−Hodd

=

(∫
Dµevene

−Heven
)(∫

Dµodd e
−Hodd

)
= ZevenZodd = Z2.

(5.5)

The KL divergence is then,

D(p||q) =

∫
Dµ p log

(
p

q

)
=

∫
Dµ p log

(
p

poddpeven

)
=

∫
Dµ p (log p− log podd − log peven)

=

∫
Dµ p log p−

∫
Dµodd podd log podd −

∫
Dµeven peven log peven,

(5.6)

where we have p go to podd/even because we can sum over the sites not found in podd/even since the

respective logarithms do not depend on those sites. This results in p going to podd/even after this

summation. In other words, 〈φ〉odd/even = 〈φ〉, where we define expectation values for an operator φ as,

〈φ〉 =

∫
Dµ pφ,

〈φ〉odd/even =

∫
Dµodd/even podd/even φ.

(5.7)

While we do not in principle need translation invariance to go through this decimation procedure and

calculate the KL divergence, for the purposes of our computations, we will look at the case that our QFT

is translation invariant. In that case, we get for the KL divergence,

D(p||q)tr =

∫
Dµ (p log p− 2podd log podd) . (5.8)
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Putting in the Boltzmann distributions for p and q, we get,

D(p||q) =

∫
Dµ p log

e−HZoddZeven
Ze−Hodde−Heven

=

∫
Dµ p log

e−HZ

e−Hodde−Heven

= logZ + (−〈H〉+ 〈Hodd〉odd + 〈Heven〉even)

= logZ + (−〈H〉+ 〈Hodd〉+ 〈Heven〉)

D(p||q)tr = logZ + (−〈H〉+ 2〈Hodd〉)

= logZ + (−E(β) + 2(E(βodd)− C))

(5.9)

where C is the constant energy shift to the Hamiltonian after decimation, and for any coupling β and

no constant energy shift in the Hamiltonian E(β) ≡ 〈H(β)〉 is the internal energy as a function of the

coupling. Hence, in our case E(βodd) = 〈Hodd〉 − C.

Because we have made the assumptions needed to iterate the decimation procedure, we can generalize

the above equation (5.9) to any number of decimation steps. That is, we can also calculate the relative

entropy between the original theory and a theory decimated k times, forming the latter by a joint

probability distribution from all possible decimations as was done in the above.

To do this, we define Hk to be the resulting Hamiltonian after decimating the original Hamiltonian

k times. We define Zk = Z to be the partition function after decimating k times and gki to be the

coupling constants after decimating k times. We let Ck be the constant shift to the Hamiltonian that

occurs with the kth decimation step and C =
∑k

i=1Ci becomes the total accumulated energy shift after

k decimation steps. In the case where all the coupling constants are the same (and so can be pulled out of

the Hamiltonian), we define βk = gki to be the coupling constant at the kth decimation step and H̄k as

Hk = βkH̄k − C.

We can then define pk as the distribution for theory p decimated k times, and we can define the joint

probability distribution as q(k) =
∏2k

j=1 pj (each pj is a copy of the theory that is decimated k times;

there are 2k such copies at the kth decimation step). We denote the expectation value with respect to the

theory decimated k times as 〈〉k.

If a method (such as a recursion relation) exists for finding the coupling constants at each decimation

step, we can then find for the relative entropy between the original theory and a theory decimated k times
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(assuming translation invariance),

D(p||q(k)) =

∫
Dµ p log

(
p

q(k)

)
=

∫
Dµ p log

(
p∏2k

j=1 pj

)

=

∫
Dµ p

log p−
2k∑
j=1

log pj


=

∫
Dµ

(
p log p− 2kpk log pk

)
=

∫
Dµ p log

e−H∏2k

j=1 Zj∏2k

j=1 e
−HjZ


= logZ2k−1 +

∫
Dµ

(
p log(e−H)− p log(e−2kHk)

)
= (2k − 1) logZ +

(
−〈H〉+ 2k〈Hk〉

)
= (2k − 1) logZ +

(
−E(β) + 2k(E(βk)− C)

)
.

(5.10)

Following the same reasoning as above, we can calculate the relative entropy between a theory decimated

k times and the same theory decimated l times (the following result does not depend on whether k or l is

greater). The joint distributions are over the same space as the original, undecimated theory. The result is

(assuming translation invariance),

D(q(l)||q(k)) =

∫
Dµ

(
2lpl log pl − 2kpk log pk

)
= (2k − 2l) logZ +

(
−2l〈Hl〉+ 2k〈Hk〉

)
= (2k − 2l) logZ +

(
−2l

(
E(βl)−

l∑
i=1

Ci

)
+ 2k

(
E(βk)−

k∑
i=1

Ci

)) (5.11)

which reduces to the earlier equation when l = 0, as expected.

Finally, if we wish to calculate the KL density then, we divide by N , where N is the total, original

number of lattice sites (because multiplying the joint distributions makes theory q have N sites, just like

theory p has N sites).

5.1 Different Decimation Procedures

Notice that this version of decimation we have described is distinct from the usual procedure where a

theory is decimated and the lattice is rescaled. Consider a 1D chain of black and white sites with nearest
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neighbor couplings, as in Figure 5.3. We decimate by summing over (and hence removing) the black

sites or the white sites. Decimating once and rescaling corresponds to Figure 5.4, while decimating once

and making a joint distribution of the black and white sites corresponds to Figure 5.5.

Different lattice sites are coupled together in these two different schemes, showing that they are

distinct procedures. Notably, the joint distribution method no longer has nearest neighbor interactions,

while the decimation-plus-rescaling continues to have them.

Figure 5.3: A 1D chain of sites labeled as black and white as preparation for decimating the lattice. The
lines show which sites are coupled to each other (nearest neighbors).

Figure 5.4: Result of decimation of white sites of 1D lattice before rescaling. Rescaling just changes the
spacing between the sites to the original lattice spacing.

Figure 5.5: Result of decimating white sites of 1D lattice, then black sites, and forming a joint distribution.

5.2 Thermodynamic Interpretation

The relative entropy we have calculated can be written in terms of thermodynamic quantities (using

F for the free energy and S for entropy of the whole system, and we will now separate out the inverse

temperature β from the coupling to make the equations clearer). Taking the translation invariant case for
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the entropy between a theory and the theory decimated k times results in,

D(p||q(k)) = (2k − 1) logZ + β
(
−E(J) + 2k(E(Jk) + C)

)
= −(2k − 1)F/T +

(
−E(J)/T + 2k(E(Jk)/T + C/T )

)
,

(5.12)

where we have put the KL divergence in terms of E and F (and also the constant shift C). Alternatively,

we could, of course, put the KL divergence in terms of F and S as,

D(p||q(k)) = −(2k − 1)F/T +
(
−F (J)/T + S(J) + 2k(F (Jk)/T + S(Jk) + C/T )

)
, (5.13)

which we have arrived at by using standard thermodynamic identities.
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CHAPTER 6

Continuum

Having investigated the RG flow with lattice theories in general, we will now investigate the RG flow

for continuum theories and use the KL divergence to measure the UV-IR mixing. We expect the RG flow

of the continuum theory to match both of the previously-used decimation procedures in the continuum

limit, and we will show later in this section that this is in fact the case.

Conceptually, it is straightforward to see how the decimation plus rescaling the lattice spacing ought

to correspond to the continuum renormalization plus rescaling the momentum modes of the Wilson

procedure. As for the other decimation procedure of forming a joint distribution after decimation, suppose

we have a continuous probability distribution that takes values pi at i sites. Perform the RG flow by

averaging nearest neighbors to produce a new probability distribution p̂i = (pi + pi+1)/2. This new

probability distribution is equivalent to the lattice case of averaging the nearest neighbors of the even and

odd sites separately and then forming a joint distribution poddpeven. Hence, we expect the continuum

renormalization group flow to also match to the procedure of decimating and forming a joint distribution.

Before we discuss the continuum case with the KL divergence, we first discuss some useful properties

of conformal field theories that we will make use of in our continuum calculations. We then will make

our calculations for the continuum case in Section 6.2 and run into problems with contact terms. We then

resolve the problems with the contact terms by defining the UV completion for the models of interest in

Section 6.3. In the last sections, we show how the lattice results match the continuum results that we find

in Section 6.2.

6.1 CFTs

In our description of conformal field theories (CFTs), we follow the notation of [144]. CFTs are

quantum field theories that are the same at all scales (invariant under a scale transformation) and are

thereby also UV complete. In the context of renormalization flows, CFTs play a special role: as a result

of their scale invariance, they are the fixed points of RG flows. CFTs also have relatively easy correlation
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functions to compute: their one-point functions vanish, and their two-point functions take a simple form.

For scalar primary operators of dimension ∆, the two-point functions go as,

〈O(x)O(y)〉 ∼ 1

(x− y)2∆
, (6.1)

where ∆ is the scaling dimension of the field O(x). For two dimensions, the fundamental scalar field

(called the “primary” field) is ∂φ, while the fundamental fermion field remains ψ. In two dimensions, the

propagators for the free fields go as,

〈φ(x)φ(y)〉 ∼ − log(x− y)2

〈∂xφ(x)∂yφ(y)〉 ∼ − 2

(x− y)2

〈ψ̄(x)ψ(y)〉 ∼ 1

(x− y)
.

(6.2)

In two dimensions, the fields are often rewritten in terms of complex coordinates that separate into

holomorphic and antiholomporhic parts. Aside from replacing x and y in our above expressions by the

holmorphic coordinates z and w, the only propagator that changes is the logarithm, which becomes

log(z − w). Also, the fermion propagator is generated by ψ(z)ψ(w) in holomorphic coordinates. The

antiholomorphic propagators are the same as the holomorphic but with antiholomorphic coordinates.

For a general D 6= 2 dimensions and for when ∆ is the physical dimension of the field, we have for

the propagators,

〈φ(x)φ(y)〉 ∼ 1

(x− y)D−2

〈ψ(x)ψ(y)〉 ∼ 1

(x− y)D−1
.

(6.3)

Because of these useful properties of CFTs, they will especially be useful in our continuum calculations

that follow.

6.2 Continuum RG Result

In this section, we show the result of the KL divergence when making use of a general continuum

renormalization procedure for a CFT (so the one point functions vanish and the propagator is simple). We

will follow a Wilsonian procedure to perform the renormalization group transformation. First, we will

integrate out momentum shells. In integrating out momentum shells, the coupling constants for the fields
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will change, and we can find an RG flow for the trajectory of the couplings, as discussed in an earlier

section. Next, we will rescale the momenta to put the whole theory on the same space as the original

theory.

In this renormalization procedure, the partition function remains the same (as discussed in earlier

sections) when integrating out momentum shells, so it is the same at all scales. This can be seen because

we just need to perform the remaining integral over the lower energy momentum modes after performing

the integral over part of the higher modes. This statement can be captured in a Callan-Symanzik equation

for the partition function Z that depends on couplings gi and scale Λ,

dZ(g)

d log Λ
=

(
∂

∂ log Λ
|gi +

∂gi(Λ)

∂ log Λ

∂

∂gi
|Λ
)
ZΛ(g) = 0, (6.4)

which we showed earlier on. As also noted earlier, an operator-independent constant appears in the action

after performing the RG transformation. This constant can either be absorbed into the partition function

to keep the partition function fixed (as the Callan-Symanzik equation above assumes), or it can be put in

the action, which means the partition function changes with scale. For our following calculation, we will

allow the partition function to change and place the constant in the action.

Now take a theory at scale Λ and integrate out momentum shells to produce a theory at a lower but

infinitesimally close scale Λ′ = Λ− δΛ. A rescaling of the momenta will then allow the distributions to

have the same support in momentum space, and it (combined with the RG flow) also makes the partition

functions for the two theories have different values, since the new partition function is no longer related

to the old one by simply integrating out momentum shells.

Let ZΛ′ , SΛ′ be the resulting partition function and action after the RG transformation. For conve-

nience, we define ĝ(Λ) = g(Λ)Z(Λ), where the g is the coupling as before and Z is the wavefunction

renormalization. The difference in the actions for general dimension D is,

〈SΛ′ − SΛ〉Λ =

∫
dDx ΛD−∆(ĝ(Λ′)− ĝ(Λ))O(x)

≈ −δΛΛD−∆∂ĝ(Λ)

∂Λ

∫
dDx O(x)

(6.5)
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We then produce for the KL divergence between these theories, using (4.11),

D(p||q) ≈ (β̂δ log Λ)2

2

∫
dDxdDy 〈O(x)O(y)〉Λ

=
(β̂δ log Λ)2

2
V ol(MD)Ω(SD)

∫
dz zD−1−2∆,

(6.6)

where we have expanded the logarithm in the KL divergence and made use of the CFT properties to

evaluate the one-point function (vanishes) and the two-point function that remains. We see that we are

left here with an integrated two point function that becomes a contact term. To evaluate further, we make

use of dimension regularization to get,

D(p||q) = lim
ε→0

(β̂δ log Λ)2

2
V ol(MD)Ω(SD)µε

∫
dz zD−ε−1−2∆

= lim
ε→0

(β̂δ log Λ)2

2
V ol(MD)Ω(SD)µεΓ(D − ε− 2∆)Γ(−D + ε+ 2∆),

(6.7)

where we used the following form of the beta function (the beta function related to products of the Γ

functions; not the derivative of the coupling constants with respect to scale) to do the integral,

β(x, y) ≡ Γ(x)Γ(y)

Γ(x+ y)
=

∫ ∞
0

ds
sx−1

(1 + s)x+y
, (6.8)

where x = −y in our case.

We now take the ε→ 0 limit to find that the factors from the integral become,

µεΓ(D − ε− 2∆)Γ(−D + ε+ 2∆) = Γ(D − 2∆)Γ(2∆−D) (6.9)

This result gives an infinite and scheme dependent answer to our KL divergence calculation for when

D − 2∆ is an integer. There is also both a finite scheme independent part and a finite scheme dependent

part: the finite scheme independent part is negative. For when D − 2∆ is a half-integer, the answer is

finite and scheme independent.

To arrive at this answer, we had to use a regularization scheme because of the contact term in (6.6),

which then results in a generally scheme dependent answer. The reason a contact term appears is due

to a lack of clear definition of the UV theory. In our next section, we will therefore work to find a UV

completion for calculations to measure UV-IR mixing with the KL divergence.
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6.3 Fast and Slow Modes

As already noted, due to the problem of contact terms appearing in the integrated two-point function

that appears at the lowest order term of the KL divergence, our final result is currently scheme dependent.

The contact terms happened because of a lack of definition of the UV theory. We will again make use of

integrating out momentum shells, following Skinner’s presentation [24] of splitting the fields into fast

(UV) and slow (IR) modes, in order to define what is meant by a UV completion of a model.

We split our fields into fast (χ) and slow modes (φ) as,

Φ(x) =

∫
p>Λ

dDp Φ(p)eipx +

∫
p<Λ

dDp Φ(p)eipx

≡ χ(x) + φ(x).

(6.10)

We can then integrate out the χ fields to produce the IR theory, which has a finite two-point function. We

will expand about φ = 0 in order to produce a low energy approximation to the action of the IR and UV

fields mixed together. Making use of the following definitions for the free part of the actions,

S0[φ] ≡
∫

dDx
1

2
(∂φ)2 +

1

2
m2
φφ

2

S0[χ] ≡
∫

dDx
1

2
(∂χ)2 +

1

2
m2
χχ

2,

(6.11)

the full action becomes,

S = S0[φ] + S0[χ] + S[φ, χ],

= S0[φ] + S0[χ] +

∫
dDx L[0, χ] +

∂L[φ, χ]

∂φ
|φ=0 φ+

1

2!
φ
∂2L[φ, χ]

∂φ2
|φ=0 φ+ ...,

(6.12)

where we took the lowest order piece of the higher order mixed action S[φ, χ]. We now integrate out the

χ fields to produce an effective action,

Seff = − log

∫
Dχ exp(−S0[φ])

× exp(−S0[χ]−
∫

dDx L[0, χ] +
∂L[φ, χ]

∂φ
|φ=0 φ+

1

2!
φ
∂2L[φ, χ]

∂φ2
|φ=0 φ+ ...)

≡ S0[φ] +

∫
dDx J(x)φ(x) +

∫
dDx φ(x)

Q

2
φ(x) + ...

≡ S0[φ] + J · φ+ φ · Q
2
· φ,

(6.13)
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where we have defined various quantities in the last two lines to simplify the analysis. The J(x) is the

result of integrating out all the dependence on χ and represents the heavy mass of the χ fields to which

the IR theory couples; the J can be understood as sourcing the φ fields. The Q is the result of integrating

out the χ fields on the φ2 term: this term must be included because it is consistent with the symmetries

of the Lagrangian, but note that it will produce logarithmic divergences. We will show how the source

terms and UV logarithmic divergence appears in a scalar φ4 theory in Section 10.1. Also note that the

Q may depend on higher derivative interactions, but we may neglect interaction terms higher than two

because we are working with an effective field theory and those operators are irrelevant. The S0 and L0

refer to the free action and Lagrangian.

We can apply this expansion to the KL divergence so as to measure the UV information in the IR

theory in two ways. First, one can take the KL divergence between theories with two different UV

completions. The actions of interest are,

Sp = S0[φ] + Jp · φ+ φ · Qp
2
· φ,

Sq = S0[φ] + Jq · φ+ φ · Qq
2
· φ,

(6.14)

where we assume Jp − Jq ≡ ∆J and Qp − Qq ≡ ∆Q are small so that the KL divergence can be

calculated to lowest order. Using the earlier results for the KL divergence, the result to lowest order is,

DKL(p||q) =
1

8

∫
dDxdDy 〈∆J(x)∆J(y)∆Q∆Qφ(x)φ(y)〉p, (6.15)

where theory p could be redefined as free by moving the perturbation to the q action.

The second way to apply this expansion to the KL divergence is to compare the following two actions,

Sp = S0[φ] + S0[χ] + S[0, χ],

Sq = S0[φ] + S0[χ] + S[0, χ] +
δS[0, χ]

δφ
· φ+

1

2
φ · δ

2S[0, χ]

δφ2
· φ,

(6.16)

which directly measures the UV/IR mixing between the theories. We used a free field action for φ in

order to make the calculations easier, but in principle, interacting φ terms could be added.
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We now find the beta function for the KL divergence to lowest order. To do this, simply take the

derivative of the expression we found earlier (4.16) to produce,

∂

∂ log Λ
D(p||q) = κ2

(
〈(Sp − Sq)

∂(Sp − Sq)
∂ log Λ

〉p − 〈(Sp − Sq)〉p〈
∂(Sp − Sq)
∂ log Λ

〉p
)
, (6.17)

where the derivative of the exponential is of higher order O(κ3) because it produces another κ. To

measure UV/IR mixing, we use,

Sp = S0[φ] + S0[χ]

Sq = S0[φ] + S0[χ] + Sint[φ, χ]

∂

∂ log Λ
D(p||q) = κ2

(
〈Sint

∂Sint
∂ log Λ

〉0 − 〈Sint〉0〈
∂Sint
∂ log Λ

〉0
)
,

(6.18)

where the end result is to lowest order. We can now evaluate the derivatives of Sint using Polchinski’s

equation [24], which gives the RG equation for the effective action. To use Polchinski’s equation, we

define the effective action as,

e
−Seff [φ]
Λ ≡

∫
Dµp>Λ e−SΛ0

[φ+χ], (6.19)

where Λ0 is a reference scale at which the original action is defined, Λ is the scale at which the effective

action is defined, and the measure is to be understood as integrating over all momenta that are greater

than Λ (i.e., integrating out the χ field). The effective action can be broken into free and interacting

pieces. Denote the interacting piece as SintΛ . Polchinski’s equation is,

− ∂Sint
∂ log Λ

=

∫
dDxdDy

(
δSint
δφ(x)

DΛ(x, y)
δSint
δφ(y)

−DΛ(x, y)
δ2Sint

δφ(x)δφ(y)

)
,

DΛ(x, y) =
1

(2π)D
ΛD−1δΛ

Λ2 +m2

∫
SD−1

dΩ eiΛp̂·(x−y).

(6.20)

The DΛ(x, y) is the infinitesimal χ propagator resulting from lowering the energy scale from Λ′ to

Λ = Λ′ − δΛ. This equation, then, gives an expression for the derivatives of Sint in (6.18).

This procedure can also be done for the exact KL divergence on these two theories. It is,

∂

∂ log Λ
D(p||q) = κ2

(
∂ logZ0

∂ log Λ
− κ〈Sint

∂S0

∂ log Λ
〉0 + 〈 ∂Sint

∂ log Λ
〉0
)
, (6.21)
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where the derivative of Zq vanishes because it is the full partition function and so is scale-invariant. To

calculate the entire expression requires evaluating the derivative of the free part of the action S0 with

respect to scale ∂S0/∂ log Λ. However, we do not currently know what this derivative is.

6.4 Matching Lattice to Continuum: Part 1

We now show in this and the next section that the earlier lattice results match the continuum limit

that we found. In both cases, we take a lattice theory p on a square lattice with constant interactions

and decimate k times. We will assume that the operators are localized at points of the lattice. Gauge

theories would correspond to links of the lattice, but there is hope that our procedure can be extended to

lattice gauge theories because defining the decimation procedure just requires dividing a lattice into two

sublattices.

As previously noted, there are two procedures for decimation: decimation plus rescaling or decimation

plus multiplying marginalized distributions. We will here study decimation plus rescaling. We therefore

associate with the rescaled lattice a distribution q with coupling constant λ(k) and constant shift c(k).

Notice that the rescaling does not affect the coupling constant, so theory p could just as well be another

decimated version of an original theory (say, l times) and q another decimated version (k times) of that

same theory.

We now take a limit where we go one decimation step downwards, so that the coupling constants are

close to each other. We will also make use of the vector v ∈ L, where L is the lattice, in order to label

the operators at the lattice sites. We then get,

Zq(k = l − 1) =

∫
Dµ exp[−K(λ(k)

∑
v

Ov + c(k))]

=

∫
Dµ exp[−K(λ(l)

∑
v

Ov + c(l))]exp[K(∂kλ(l)
∑
v

Ov + ∂kc(l))]

= Zp(1 +K〈∂kHp〉p +
K2

2
〈(∂kHp)

2〉p + ...)

(6.22)
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The resulting KL divergence is (to lowest order in K),

D(p||q) = log

(
Zq
Zp

)
+K〈(Hq −Hp)〉p

≈ log

(
1 +K〈∂kHp〉p +

K2

2
〈(∂kHp)

2〉p
)
−K〈∂kHp〉p

≈ K2

2

(
〈(∂kHp)

2〉p − (〈∂kHp〉p)2
)
.

(6.23)

To show that this lattice result is the same as the continuum result, we need to rewrite our result for the

KL divergence in terms of the lattice spacing at the kth decimation step, so that we can take a continuum

limit by taking a→ 0. To rewrite the KL divergence, we note that V ol/a(k)D = N/2k = V ol/(aD2k),

where D is the dimension of our model, V ol its volume, a the original lattice spacing, and a(k) the

lattice spacing at decimation step k. Hence, we have a(k) = a2k/D.

We now use the chain rule to rewrite the derivatives in terms of the lattice spacing, resulting in,

∂

∂k
=
∂a

∂k

∂

∂a

= a(k) log 21/D ∂

∂a
.

(6.24)

Rewriting the KL divergence that we just calculated (6.23) in terms of a, we get,

D(p||q) =
K2

2

(
〈(log 21/Da∂aHp)

2〉p − (〈log 21/Da∂aHp〉p)2
)

=
(K log 21/D)2

2

(
〈(∂log(a)λ(a)

∑
v

Ov + ∂log(a)c(a))2〉p

− (〈∂log(a)λ(a)
∑
v

Ov + ∂log(a)c(a)〉p)2

)
,

(6.25)

where we have inserted the operators on the lattice for the Hamiltonians. We now recognize that

∂log(a)λ(a) ≡ β(a) is in fact the beta function of the coupling constants β(a). Using this and expanding
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out the squares gives,

D(p||q) =
(K log 21/D)2

2

(
〈(β(a)

∑
v

Ov + ∂log(a)c(a))2〉p − (〈β(a)
∑
v

Ov + ∂log(a)c(a)〉p)2

)

=
(K log 21/D)2

2
(〈(β(a)

∑
v

Ov)
2 + 2β(a)

∑
v

Ov∂log(a)c(a)〉p

− (〈β(a)
∑
v

Ov〉p)2 − 2〈β(a)
∑
v

Ov〉p∂log(a)c(a)).

(6.26)

Note that the operator-independent constants in the Hamiltonians cancel out. Cancelling them and

simplifying the result gives,

D(p||q) =
(K log 21/D)2

2

(
〈(β(a)

∑
v

Ov)
2〉p − (〈β(a)

∑
v

Ov〉p)2

)

=
(Kβ(a) log 21/D)2

2

(
〈(
∑
v

Ov)
2〉p − (〈

∑
v

Ov〉p)2

)
.

(6.27)

Notice that the β(a) function for the coupling constants is in terms of the lattice spacing. Because the

lattice spacing is the inverse of the energy, just change β to −β to put the result in terms of the energy

scale, instead of the lattice spacing. Of course, flipping the sign on the β does not change the answer

because it is squared.

This result for the KL divergence matches the general answer derived in (4.16). Also, notice that this

matches the continuum answer we derived earlier (6.6) (which used a CFT, so the one-point functions

vanished) when the lattice spacing is taken to 0 or to some UV cutoff, with the log factor playing the role

of some volume factor (or maybe it is a lattice artifact). Indeed, it would seem the log 21/D matches the

δ log Λ exactly, which we will now show.

We note that our new lattice spacing after one decimation step is a(1) = a21/D. The log 21/D factor

describes the difference between the new lattice spacing and the old,

log 21/D = log
a(1)

a
. (6.28)

This log 21/D factor is a fixed constant ratio between our new spacing after one decimation step and our

old. The factor is always the same because the decimation procedure is discrete and increases the spacing

by a constant factor after each decimation step. However, because we are interested in the continuum
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limit, we can take our decimation step k to be a continuous quantity, as we have in fact assumed in

our earlier derivation (where we are taking derivatives with respect to k and assume the new coupling

constants to be infinitesimally near the old ones). Having a continuous RG procedure then allows the

new spacing to be infinitesimally close to the original spacing, since the 2k in the a(k) = a2k/D can now

be made infinitesimally small. We can quantify the infinitesimal change in spacing as a(k) = a+ δa.

The result is,

log 21/D = log
a+ δa

a
= log

(
1 +

δa

a

)
≈ δa

a
= δ log a,

(6.29)

where we have expanded the logarithm and have taken only the first term because it is infinitesimally

small as we take k continuous and k → 0 to get the continuum RG limit. Placing this result into

our expression for the KL divergence (6.27) then gives something that looks exactly like our earlier

continuum result with cutoff Λ but instead in terms of the lattice spacing a. If we convert the lattice

spacing to an energy scale, we will indeed produce (in the continuum limit) the δ log Λ of our earlier

continuum result,

log 21/D = log
a(1)

a
= log

Λ

Λ′

= log
Λ

Λ− δΛ
= − log

Λ− δΛ
Λ

= − log

(
1− δΛ

Λ

)
≈ δΛ

Λ
= δ log Λ,

(6.30)

where we have been able to expand the logarithm to lowest order because we are interested in the

continuum RG limit where δΛ is infinitesimally small compared to Λ.

6.5 Matching Lattice to Continuum: Part 2

Having observed the result with one lattice decimation procedure (decimation plus rescaling), we

will now see the result when we use the decimation plus multiplication of marginalized distributions

procedure. Let p be some theory and q be the theory resulting from decimating p and then forming a

joint distribution. We will now find sublattices (e.g., black and white sites; or odd and even sites) in order

to perform the decimation procedure and take b and w to be elements of these sublattices. The coupling

constants should be close to each other in this case too, so following the procedure in the previous section,
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to lowest order we have,

D(p||q) ≈ K2

2

(
〈(
∑
v

λ(k)Ov −
∑
w

λ(l)Ow −
∑
b

λ(l)Ob)
2〉p

− (〈
∑
v

λ(k)Ov −
∑
w

λ(l)Ow −
∑
b

λ(l)Ob〉p)2

)
,

(6.31)

where we have plugged in our operators for our Hamiltonians. Notice that this time we have operators

defined over sublattices b and w. We now take the coupling constants to be infinitesimally near each

other, so we get,

D(p||q) ≈ K2

2

(
〈(
∑
v

(λ(a)− ∂a

∂k
∂aλ(a))Ov −

∑
w

λ(a)Ow −
∑
b

λ(a)Ob)
2〉p

− (〈
∑
v

(λ(a)− ∂a

∂k
∂aλ(a))Ov −

∑
w

λ(a)Ow −
∑
b

λ(a)Ob〉p)2

)

=
K2

2

(
〈(
∑
v

(λ(a)− β(a) log 21/D)Ov −
∑
w

λ(a)Ow −
∑
b

λ(a)Ob)
2〉p

− (〈
∑
v

(λ(a)− β(a) log 21/D)Ov −
∑
w

λ(a)Ow −
∑
b

λ(a)Ob〉p)2

)
,

(6.32)

where we have substituted β(a) for the derivatives of the coupling constants, as before. We now

expand the squared expressions and simplify, as we did in the previous section. However, make use of∑
v Ov =

∑
bOb +

∑
w Ow (which holds because the expression on the right hand side is just summing

over all the operators on the lattice) in order to achieve the cancellations that we had when expanding the

squared expressions last time. The result is,

D(p||q) =
K2

2

(
〈(
∑
v

(λ(a)− β(a) log 21/D)Ov −
∑
v

λ(a)Ov)
2〉p

− (〈
∑
v

(λ(a)− β(a) log 21/D)Ov −
∑
v

λ(a)Ov〉p)2

)

=
K2

2

(
〈(
∑
v

β(a) log 21/DOv)
2〉p − (〈

∑
v

β(a) log 21/DOv〉p)2

)

=
(Kβ(a) log 21/D)2

2

(
〈(
∑
v

Ov)
2〉p − (〈

∑
v

Ov〉p)2

)
.

(6.33)
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The final result here is exactly the same result for the decimation plus rescaling procedure! Therefore,

both decimation procedures produce the same result in the continuum RG limit and match the continuum

result that we calculated earlier.
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CHAPTER 7

Warm-up Example: Ising Model Perturbations

We now will start making calculations of the KL divergence with example models: starting with

decimation and lattice models, then continuum models. We want to perform decimation with an Ising

model, but as a warm-up, we will first consider adding a perturbation to the Ising model with no magnetic

field. For both 1D and 2D Ising models, the KL divergence is calculated between a theory and the same

theory with a “perturbation” (it will turn out that our result is exact, so the “perturbation” does not have

to be small but could be any size). Allow the Ising model to have spins with the usual two values: 1 and

-1. The Hamiltonian produced by the perturbation δ is,

H0 =
∑
i

σiσi+1

H ′ = H0 − δσIσJ ,
(7.1)

where H0 is the Hamiltonian for the unperturbed Ising model, and the perturbation connects the sites I

and J . In light of (4.11), the partition functions of both theories are needed. The partition function, Zpert,

for the perturbed theory can be written in terms of the partition function for the unperturbed theory, Z0,

and it is,

Zpert =

∫
Dσ e−βH0+βδσIσJ

=

∫
Dσ e−βH0

∞∑
m=0

(
(βδ)2m

(2m)!
+

(βδ)2m+1σIσJ
(2m+ 1)!

)
=

∫
Dσ

e−βH0

Z0
Z0 (cosh(βδ) + σIσJ sinh(βδ))

= Z0 (cosh(βδ) + 〈σIσJ〉0 sinh(βδ)) ,

(7.2)

where the correlation function is taken with respect to the unperturbed theory and the series expansion

was broken into odd and even parts in order to make use of (σIσJ)n = σIσJ for n odd and (σIσJ)n = 1

for n even. Note that the partition function is written in terms of the correlation function 〈σIσJ〉0. It

turns out that the entire KL divergence can be written in terms of the correlation function 〈σIσJ〉0.
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Now in general, the KL divergence becomes (taking p to be the theory without the perturbation and q

to be the theory with the perturbation),

D(p||q) = log
Zq
Zp

+ β〈H0 − δσIσJ −H0〉p

= log
Zq
Zp
− βδ〈σIσJ〉p,

(7.3)

where use was made of (4.11). Plugging in the partition function for the perturbed theory q that was

previously calculated, we get,

D(p||q) = log
Zp (cosh(βδ) + 〈σIσJ〉p sinh(βδ))

Zp
− βδ〈σIσJ〉p

= log (cosh(βδ) + 〈σIσJ〉p sinh(βδ))− βδ〈σIσJ〉p.
(7.4)

Going in the other direction, calculating D(q||p), we get,

D(q||p) = log
Zp
Zq

+ β〈H0 −H0 + δσIσJ〉q

= log

(
Zp

Zp (cosh(βδ) + 〈σIσJ〉p sinh(βδ))

)
+ βδ

∫
Dσ

e−βHq

Zq
σIσJ

= − log (cosh(βδ) + 〈σIσJ〉p sinh(βδ))

+ βδ

∫
Dσ

e−βHp+βδσIσJ

Zp

σIσJ
cosh(βδ) + 〈σIσJ〉p sinh(βδ)

.

(7.5)

We now make use of the series summation performed in calculating the perturbed partition function

in (7.2): the exponential with the δ perturbation can be resummed into a series of cosh and sinh. This

results in,

D(q||p) = − log (cosh(βδ) + 〈σIσJ〉p sinh(βδ))

+ βδ

∫
Dσ

e−βHp

Zp

(cosh(βδ) + σIσJ sinh(βδ))σIσJ
cosh(βδ) + 〈σIσJ〉p sinh(βδ)

= − log (cosh(βδ) + 〈σIσJ〉p sinh(βδ)) + βδ

∫
Dσ

e−βHp

Zp

σIσJ cosh(βδ) + sinh(βδ)

cosh(βδ) + 〈σIσJ〉p sinh(βδ)

= − log (cosh(βδ) + 〈σIσJ〉p sinh(βδ)) + βδ
〈σIσJ〉p cosh(βδ) + sinh(βδ)

cosh(βδ) + 〈σIσJ〉p sinh(βδ)
,

(7.6)

where in the first line we made use of the fact that σ2
I = 0 regardless of the index.
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We see from our results of the KL divergence in both directions that if the two-point function is

known, then the KL divergence can be calculated exactly for the Ising model with a perturbation.

7.1 1D Perturbations

Having considered the perturbed Ising model in general, we now consider a 1D Ising model with a

perturbation. The model has N sites and periodic boundary conditions, and the spins can again take the

two values of 1 and -1. We first perturb the spin site at the boundary by a small amount δ, producing a

Hamiltonian,

H ′ = H0 − δσNσ1, (7.7)

where H0 is the usual 1D Ising model Hamiltonian with periodic boundary conditions. In this case, the

last site is perturbed, but if a different site was perturbed, the indices could be relabeled to make the last

site the perturbed one. Using the method of transfer matrices, we define matrix components of matrices

P and Q as,

Q1,1 = Q−1,−1 = eβ(J+δ),

Q1,−1 = Q−1,1 = e−β(J+δ),

Pij = Qij |δ=0.

(7.8)

This choice of transfer matrix elements makes the partition function reduce to

Tr[PN−1Q]. (7.9)

It turns out that both Q and P have the same eigenvectors ( 1√
2
(1,+/− 1)) and so can be simultaneously

diagonalized. Thus, the trace is just (using Mathematica to calculate the eigenvalues/eigenvectors and

sum them),

λN−1
p1 λq1 + λN−1

p2 λq2

=
(
e−βJ + eβJ

)N−1 (
e−β(J+δ) + eβ(J+δ)

)
+
(
eβJ − e−βJ

)N−1 (
eβ(J+δ) − e−β(J+δ)

)
= 2N (coshN−1(βJ) cosh(β(J + δ)) + sinhN−1(βJ) sinh(β(J + δ))),

(7.10)
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where the λ’s are the eigenvalues of P and Q. The relative entropy between the theory with and the

theory without the perturbation δ can now be calculated. Observe that the relative entropy is just the

expectation value of the perturbation subtracted from the logarithm of the ratio of the partition functions,

D(p||q) =
∑
σi

1

Zp
e−βHp log

(
e−βHpZq
e−βHqZp

)
=
∑
σi

1

Zp
e−βHp

(
β(Hq −Hp) + log

(
Zq
Zp

))
= log

(
Zq
Zp

)
−
∑
σi

βδσNσ1
1

Zp
e−βHp

= log

(
Zq
Zp

)
− βδ〈σNσ1〉p,

(7.11)

where in the last two lines, we took p to be the unperturbed theory and q to be the perturbed theory.

D(p||q) is first calculated, followed byD(q||p), although they should give the same result. The correlation

function is (without loss of generality, we assume n < m, so take m = N + 1 by the periodic boundary

condition),

〈σnσm〉p =
1

Zp

∑
a,b

λN+n−m
pa λm−npb 〈a|τ3|b〉〈b|τ3|a〉,

〈σNσ1〉p =
1

Zp

∑
a,b

λN−1
pa λpb〈a|τ3|b〉〈b|τ3|a〉,

(7.12)

where |a〉 and |b〉 are the normalized eigenvectors of the transfer matrix for theory p. This equation

assumes that the site on the left is smaller is less than the site on the right, i.e., that N < 1. This is works

because the periodic boundary condition makes 1 = N+1 and taking the absolute value at an appropriate

place will make the result independent of which site is less than the other. Noting that 〈1|τ3|1〉 = 0 (and

so 〈σN 〉 = 〈σ1〉 = 0), we get,

〈σNσ1〉p =
1

Zp
(λN−1
p1 λp1|〈1|τ3|1〉|2 + λN−1

p2 λp2|〈2|τ3|2〉|2

+ λN−1
p1 λp2|〈1|τ3|2〉|2 + λN−1

p2 λp1|〈1|τ3|2〉|2)

=
λN−1
p1 λp2|〈1|τ3|2〉|2 + λN−1

p2 λp1|〈1|τ3|2〉|2

λNp1 + λNp2

=

(
λp2
λp1

) λNp1 + λNp2

(
λp1
λp2

)2

λNp1 + λNp2
|〈1|τ3|2〉|2,

(7.13)
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where we now simplify our answer in terms of a correlation length 1
ζ to get,

〈σNσ1〉p = |〈1|τ3|2〉|2e−1/ζ = |〈1|τ3|2〉|2e−1/ξe−1/χ,

1

ζ
=

1

ξ
+

1

χ
,

1

ξ
≡ − log(

λp2
λp1

),

1

χ
≡ − log

λNp1 + λNp2

(
λp1
λp2

)2

λNp1 + λNp2
,

(7.14)

where note that we have defined 1/ζ to be the negative logarithm of the combination of eigenvalues that

multiplies the |〈1|τ3|2〉|2, and we have the usual correlation length from the 1D Ising model when there

is no perturbation 1/ξ. Notice that the combination of eigenvalues splits into a product of two fractions.

Hence, we finally find that (noting that 〈1|τ3|2〉 = 1, since the eigenvectors are normalized),

〈σNσ1〉p = |〈1|τ3|2〉|2e−1/ζ = e−1/ζ ,

−1

ζ
= log

(
sinh(βJ)

cosh(βJ)

)
+ log

cosh(βJ)N + sinh(βJ)N
(

cosh(βJ)
sinh(βJ)

)2

cosh(βJ)N + sinh(βJ)N


= log(tanh(βJ)) + log

(
cosh(βJ)N + sinh(βJ)N coth(βJ)2

cosh(βJ)N + sinh(βJ)N

)
.

(7.15)

In the limit of N >> 1, the only thing that changes is the ζ, so we find that (since λp1 >> λp2 in this

limit),
−1

χ
|N>>1 = log

(
λNp1

λNp1

)
= 0

→ 1

ζ
=

1

ξ
= − log (λp2/λp1)

= log

(
cosh(βJ)

sinh(βJ)

)
= log(coth(βJ))

→ 〈σNσ1〉p = e−1/ξ = tanh(βJ),

(7.16)

We hence see that in general (with N >> 1) for an expectation value taken with respect to theory p,

1/ξ = − log(λp2/λp1). Subtracting from the logarithm of the partition functions, the exact result for the

78



relative entropy is (Note that the following result does not require δ to be small.),

D(p(J)||q(J, δ)) = log

(
Zq
Zp

)
− βδe−1/ζ

= log

(
(coshN−1(βJ) cosh(β(J + δ)) + sinhN−1(βJ) sinh(β(J + δ)))

(coshN (βJ) + sinhN (βJ)

)
− βδe−1/ξe−1/χ

= log

(
(coshN−1(βJ) cosh(β(J + δ)) + sinhN−1(βJ) sinh(β(J + δ)))

(coshN (βJ) + sinhN (βJ)

)
− βδ

(
tanh(βJ)

cosh(βJ)N + sinh(βJ)N coth(βJ)2

cosh(βJ)N + sinh(βJ)N

)
,

(7.17)

where the leading order behavior for small perturbations (δ small) is quadratic as expected,

D(p(J)||q(J, δ)) = 2(βδ csch(2βJ))2 cosh2N (βJ) sinh2(βJ)− sinh2N (βJ) cosh2(βJ)

(coshN (βJ) + sinhN (βJ))2
. (7.18)

For N >> 1, we have,

D(p(J)||q(J, δ)) = log

(
Zq
Zp

)
|N>>1 − βδe−1/ξ

= log

(
coshN−1(βJ) cosh(β(J + δ))

coshN (βJ)

)
− βδe−1/ξ

= log

(
cosh(β(J + δ))

cosh(βJ)

)
− βδ tanh(βJ),

(7.19)

with leading order,

D(q(J, δ)||p(J)) =
(βδ)2

2
sech2(βJ). (7.20)

Computing the relative entropy the other way gives a similar result. We have for the relative entropy,

D(q||p) =
∑
σi

1

Zq
e−βHq

(
β(Hp −Hq) + log

(
Zp
Zq

))
= − log

(
Zq
Zp

)
+ βδ〈σNσ1〉q.

(7.21)
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The correlation function is,

〈σnσm〉q =
1

Zq

∑
a,b

λN+n−m−1
pa λqaλ

m−n
pb 〈a|τ3|b〉〈b|τ3|a〉,

〈σNσ1〉q =
1

Zq

∑
a,b

λN−1
pa λqb〈a|τ3|b〉〈b|τ3|a〉

=
λN−1
p1 λq2|〈1|τ3|2〉|2 + λN−1

p2 λq1|〈1|τ3|2〉|2

λN−1
p1 λq1 + λN−1

p2 λq2

=

(
λq2
λq1

) λN−1
p1 λq1 + λN−1

p2 λq2

(
λq1
λq2

)2

λN−1
p1 λq1 + λN−1

p2 λq2
|〈1|τ3|2〉|2

= |〈1|τ3|2〉|2e−1/ζ = |〈1|τ3|2〉|2e−1/ξe−1/χ,

(7.22)

where the first correlation function equation is one for which the spin site is not the perturbed one (siteN ),

and the second correlation function equation is for the case of interest, where site N is correlated. Notice

that this case is the same as before, except that ζ has changed, this time defining 1/ξ ≡ − log
(
λq2
λq1

)
. We

thus get for the relative entropy,

D(q(J, δ)||p(J)) = − log

(
(coshN−1(βJ) cosh(β(J + δ)) + sinhN−1(βJ) sinh(β(J + δ)))

coshN (βJ) + sinhN (βJ)

)
+ βδ tanh(β(J + δ))

×
(

coshN−1(βJ) cosh(β(J + δ)) + sinhN−1(βJ) sinh(β(J + δ)) coth(β(J + δ))2

coshN−1(βJ) cosh(β(J + δ)) + sinhN−1(βJ) sinh(β(J + δ))

)
,

(7.23)

which is to leading order the same as calculated in the other direction,

D(p(J)||q(J, δ)) = 2(βδ csch(2βJ))2 cosh2N (βJ) sinh2(βJ)− sinh2N (βJ) cosh2(βJ)

(coshN (βJ) + sinhN (βJ))2
. (7.24)

And the results for N >> 1 are,

〈σNσ1〉q|N>>1 =

(
λq2
λq1

)
= tanh(β(J + δ))

D(q(J, δ)||p(J)) = − log

(
cosh(β(J + δ))

cosh(βJ)

)
+ βδ tanh(β(J + δ)),

(7.25)
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with leading order piece the same as calculated before,

D(q(J, δ)||p(J)) =
(βδ)2

2
sech2(βJ). (7.26)

All of these results are independent of N for large N and do not blow up. As an explanation for

why this is the case, consider the usual scaling argument for a free field propagator. We have that

φ(x) ∼ (1/L)(D−2)/2, where D is the dimension. Hence, the two-point function goes as,

〈φ(x)φ(y)〉 ∼ 1

(x− y)D−2
. (7.27)

Taking D = 1 gives no singularity, so there are no contact terms in 1D. We are working with a 1D Ising

model, so we can expect from this analogy that we have no contact terms in our result. If there was a

contact term though, the lattice spacing would provide a natural regulator to prevent the results from

blowing up.

Having considered a perturbation on the boundary of the 1D Ising model, now consider the case

where all the spin sites are perturbed by different perturbations δJijσiσj , but the spin sites still interact

in a nearest neighbor fashion, so j = i+ 1. In this case, again using periodic boundary conditions, the

partition function is simply,

Zq = Tr[Q1Q2...QN ],

Qi11 = Qi,−1,−1 = eβ(J+δJi,i+1),

Qi,1,−1 = Qi,−1,1 = e−β(J+δJi,i+1)

→ Zq = λ1,1λ2,1...λN,1 + λ1,2λ2,2...λN,2,

(7.28)

having simultaneously diagonalized the P matrices as done before. The eigenvalues are,

λi,1 = 2 cosh(β(J + δJi,i+1)),

λi,2 = 2 sinh(β(J + δJi,i+1)),

(7.29)

keeping with the convention from before where the cosh is labeled as the first eigenvalue. Note that this

method is completely general, i.e., the partition function for spin sites, even without periodic boundary
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conditions, is the same as just calculated except an subscript j is used instead of i + 1. Hence, there

seems to be no advantage to calculating the relative entropy resulting from nearest neighbor interactions

first. Instead, the general calculation will be made, which will contain the nearest neighbor interactions

as a special case.

First, the relative entropy D(p(J)||q(J, δJij)) will be calculated. The correlation function for one

pair of sites i′ and j′ is,

〈σi′σj′〉p =
1

Zp

∑
a,b

λN+i′−j′
pa λj

′−i′
pb 〈a|τ3|b〉〈b|τ3|a〉

=
1

Zp

(
λNp1

λp2
λp1

j′−i′

+ λNp2
λp1
λp2

j′−i′
)
|〈1|τ3|2〉|2

=
λp2
λp1

j′−i′ λNp1 + λNp2
λp1
λp2

2j′−2i′

λNp1 + λNp2
|〈1|τ3|2〉|2.

(7.30)

We again define a correlation length 1/ζ, where 1/ξ is the same as in (7.16). This gives,

〈σi′σj′〉p = |〈1|τ3|2〉|2e−1/ζ(j′,i′) = e−|j
′−i′|/ξe−1/χ(j′,i′),

1

χ(j′, i′)
= − log

λNp1 + λNp2
λp1
λp2

2j′−2i′

λNp1 + λNp2
.

(7.31)

Now, since the difference in the actions is the sum of all the perturbations, the relative entropy becomes

(sum over all pairs of sites on i′ and j′; implicit product on i from 1 to N ),

D(p(J)||q(J, δJij)) = log

(
Zq
Zp

)
− β

∑
i′,j′

δJi′,j′〈σi′σj′〉p

= log

(
Zq
Zp

)
− β

∑
i′,j′

δJi′,j′e
−1/ζ(i′,j′)

= log

(
cosh(β(J + δJi,j)) + sinh(β(J + δJi,j))

coshN (βJ) + sinhN (βJ)

)
− β

∑
i′,j′

δJi′j′e
−|j′−i′|/ξe−1/χ(j′,i′)

= log

(
cosh(β(J + δJi,j)) + sinh(β(J + δJi,j))

coshN (βJ) + sinhN (βJ)

)
− β

∑
i′,j′

δJi′j′

(
tanh(βJ)|j

′−i′| cosh(βJ)N + sinh(βJ)N coth(βJ)2|j′−i′|

cosh(βJ)N + sinh(βJ)N

)
,

(7.32)

82



where each i in the log term could have a different j, i.e., each site i is coupled to distinct site j’s; each i

site is not necessarily coupled to the same j site. So the log term has a sum of products over the paired i

and j sites, while the correlation function is a sum over all the paired i and j sites (labeled by dummy

indices i′ and j′).

For N >> 1, the correlation function becomes,

〈σiσj〉p|N>>1 =
1

Zp

∑
a,b

λN+i′−j′
pa λj

′−i′
pb 〈a|τ3|b〉〈b|τ3|a〉

= |〈1|τ3|2〉|2e−|j
′−i′|/ξ = e−|j

′−i′|/ξ,

(7.33)

and the relative entropy is (implicit product over i from 1 to N and sum again on i′ and j′),

D(p(J)||q(J, δJij))|N>>1 = log

(
Zq
Zp

)
− β

∑
i′,j′

δJi′j′e
−|j′−i′|/ξ

= log

(
Zq
Zp

)
− β

∑
i′,j′

δJi′j′ tanh|j
′−i′|(βJ)

= log

(
cosh(β(J + δJij)) + sinh(β(J + δJij))

coshN (βJ) + sinhN (βJ)

)
− β

∑
i′,j′

δJi′j′ tanh|j
′−i′|(βJ).

(7.34)
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CHAPTER 8

Example: Ising Model Decimation

For both 1D and 2D Ising models, the relative entropy is calculated between a theory decimated k

times and the original, undecimated theory. Also, the relative entropy is calculated between a theory

decimated k times and the same theory decimated l times. The exact expressions for these relative

entropies that are true for any dimension and a general lattice QFT (with Boltzmann distributions)

were calculated in Section 5, so we directly use these expressions with the Ising models. As in those

expressions, to make the calculations easier, we will absorb the constant factor of the partition function

into the Hamiltonian (an example of the shift in the Hamiltonian is in (8.1)), which makes the partition

function for both theories the same at all decimation steps.

8.1 1D Decimation

Unlike with the Hamiltonian of the perturbed theory in Section 7, there will be no periodic boundary

conditions, but instead there will be a chain with sites going from−2N +1 to 2N . Using and generalizing

the results of [125] for 1 to 3 decimations, the Hamiltonian after k decimations is,

−βHk =

N/2k∑
i=1

ck + βkσ2k(i+1)σ2ki(N even)

=

(N−1)/2k∑
i=1

ck + βkσ2k(i+1)σ2ki(N odd),

(8.1)
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where the recursion relations for the βk and the ck are,

βk ≡ gk(βJ) = g(g(g(...g(βJ))))(k times),

= g(βJ) =
1

2
log cosh(2βJ),

ck =
k−1∑
m=0

2k−1−mh(gm(βJ)),

h(gm(βJ)) ≡ h(βm) =
1

2
log(4 cosh(2βm)),

h(g0(βJ)) ≡ h(βJ) =
1

2
log(4 cosh(2βJ)).

(8.2)

We already have logZ, since Z was calculated earlier in (7.10) (where δ = 0 in this case), and (8.2)

gives the relation between β and βodd (just perform the decimation once). Putting this into the equation

(5.9) for relative entropy in the translation invariant case and then calculating with Mathematica yields

(to leading order in the limit of large N with small and large β),

D(p||q)|β,N→∞ = NβJ(3− e−βJ)− log(2N−1)

D(p||q)|β→0,N→∞ = log(2N ) + log(1 + (βJ)N ) +
N(βJ)N+1

1 + (βJ)N
.

(8.3)

Using periodic boundary conditions, we can calculate the relative entropy between the 1D Ising model

and the 1D Ising model decimated k times as a function of k, using (5.10) for the translation invariant

case. We will treat βJ as one constant and will take the number sites N = 219. We calculate the relative

entropy density and plot the relative entropy density versus decimation step, Figures 8.1 and 8.2.
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● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆▲
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Figure 8.1: The KL density for the 1D Ising model as a function of decimation step for fixed, low values
of βJ . There is no critical value for the 1D Ising model, but we cover the parameter space that includes
the critical value of the 2D Ising model.
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Figure 8.2: The KL density for the 1D Ising model as a function of decimation step for fixed, higher
values of βJ . We start to see the curves converge on the final curve shown in this figure.
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We can also calculate the beta function of the KL divergence density by performing,

βKL =
∂

∂k
D(p||q) =

D(p||q(k + 1))−D(p||q(k))

2k
, (8.4)

where we divide by 2k because the KL divergence density is a dimensionful quantity. By (6.24),

this expression for the beta function of the KL divergence is correct, except for needing to divide by

log 21/D = log 2. The missing numerical factor occurs due to calculating with respect to the decimation

step instead of the energy scale or lattice spacing directly.

Our results for the beta function of the KL density follow in Figures 8.3 and 8.4.
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Figure 8.3: The beta function of the KL density for the 1D Ising model as a function of decimation step
for fixed, low values of βJ . These are the same values that were used for the KL density at low values of
βJ .
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Figure 8.4: The beta function of the KL density for the 1D Ising model as a function of decimation step
for fixed, higher values of βJ . These are the same values that were used for the KL density at higher
values of βJ .
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8.1.1 1D Decimation: Rescaling

We will now calculate the KL divergence for a 1D Ising model by using the method of decimation

plus rescaling. In doing this, we start with one probability distribution with a set of couplings β, p[H(β)].

After decimation and rescaling, we are left with a probability distribution p[H(βk)] that has the same

form and spin operators but with new coupling constants βk and a spin independent constant in the

Hamiltonian. The KL divergence is simply then,

D(p||q) = (−〈H〉+ 〈Hk〉)

= (−E(β) + (E(βk)− C))

= logZk − logZ + (−E(β) + E(βk)) ,

(8.5)

where all the quantities βk, C, etc., are defined as previously in the 1D Ising model calculated with

decimation plus forming a joint distribution. The partition function disappears because it was held fixed.

We have C = logZ− logZk as the spin-independent constant that keeps the decimated partition function

fixed. The only difference between this case and the previous is that the 2k factors have disappeared

from our final result (although the 2k factors in the other case cancelled with the number of sites at each

decimation step N/2k).

Our results for the KL density when using decimation with rescaling are shown below in Figures

8.5 and 8.6. There are many similarities to the earlier results that used decimation plus forming a joint

distribution.
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Figure 8.5: The KL density for the 1D Ising model as a function of decimation step for fixed, low values
of βJ . The distribution q is formed from decimation plus rescaling. There is no critical value for the 1D
Ising model, but we cover the parameter space that includes the critical value of the 2D Ising model.
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Figure 8.6: The KL density for the 1D Ising model as a function of decimation step for fixed, high values
of βJ . The distribution q is formed from decimation plus rescaling. We start to see the curves converge
on the final curve shown in this figure.
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8.2 2D Decimation

We now calculate the relative entropy for 2D Ising models. We have a square, zero-field 2D Ising

model on a plane (no periodic boundary conditions). The model has the same coupling strength in

both directions: −H = β
∑

n.n. σiσj , where β is the coupling as before in Section 5. Decimating once

produces a Hamiltonian of the form,

−H1 = K1

∑
n.n.

σiσj + L1

∑
n.n.n

σiσj +M1

∑
sq.

σiσjσkσl + C. (8.6)

Note that each nearest neighbor pair is a nearest neighbor pair for two different lattice sites that are

summed over when decimating. The Hamiltonian we have written is the final result for the decimation

process, rather than the result for decimating one lattice site. Hence, the coupling K1 is what appears in

the partition function, rather than something half its value K1/2.

This Hamiltonian is not of the same form we started with, so in order to iterate the decimation

procedure, we will drop the quartic terms in the Hamiltonian that arise from decimation. This approxima-

tion is justified because the quartic term is irrelevant at long distances. However, as will be seen, this

approximation slightly changes the location of the fixed point in the RG flow. We will also approximate

the next-nearest neighbor interactions by re-writing them as nearest neighbor interactions and rewriting

K1 as β1 = K1 + L1.

By the Kramers-Wannier duality between low and high temperature Ising models [145], the critical

point is determined by,

e−2Kc = tanhKc, (8.7)

which produces a critical value of Kc = (1/2) log(1 +
√

2) = 0.4407. This agrees with the value

Onsanger found in his exact solution for the 2D Ising model. Our approximation slightly changes the

value of this fixed point to βJ = 0.50698. This is calculated by finding the fixed point of the coupling

constant, using the recursion relation (8.9).
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We have in this approximation (the below is recorded in Pathria’s Statistical Mechanics [146]),

logZapprox = N log
(√

2 cosh(2βJ)
)

+
N

π

∫ π/2

0
dφ log

(
1 +

√
1− κ2 sin2 φ

)
,

κ =
2 sinh(2βJ)

cosh2(2βJ)
,

E0 = Eapprox = 〈H〉 = −NJ coth(2βJ)

(
1 +

2

π
K(κ)(2 tanh2(2βJ)− 1)

)
,

(8.8)

and the recursion relation for the coupling constant is (from [125]),

βeven = βodd = (3/8) log(cosh(4βJ)), (8.9)

where K is the complete elliptic integral of the first kind. Running through numerical values of βJ ,

we can calculate the relative entropy density and beta function of the relative entropy density for the

2D model as was done with the 1D model (number of sites is now N = 219219). Because there are

no periodic boundary conditions, translation invariance is an approximation due to the large number of

lattice sites.

We show the plots of the relative entropy density and the beta function of the relative entropy density

in Figures 8.7-8.9.
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Figure 8.7: The KL density for the 2D Ising model as a function of decimation step for fixed values of
βJ above the critical value ≈ 0.50698.
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Figure 8.8: The KL density for the 2D Ising model as a function of decimation step for fixed values of
βJ below the critical value ≈ 0.50698.
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Figure 8.9: The beta function of the KL density for the 2D Ising model as a function of decimation step
for fixed values of βJ above the critical value ≈ 0.50698.
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Figure 8.10: The beta function of the KL density for the 2D Ising model as a function of decimation step
for fixed values of βJ below the critical value ≈ 0.50698.
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As can be seen, in calculating the relative entropy density, we find the KL divergence is negative

above the critical value (Figure 8.7), although it eventually drops to zero for large enough values of βJ

or decimation step (above the critical point, βJk increases with decimation step). See the plots of the

relative entropy density versus βJ in Figures 8.11 - 8.12. There is a spike near the critical point, which

is due to the growth of the correlation length near the critical point. The growth in correlation length

indicates that there is a greater sensitivity to all the operators that are brought down by the RG flow; the

theories are thereby more distinct. Hence, there is a spike before being forced down to zero (at the critical

point, the theories are invariant under RG flow, so the KL divergence for them must be zero).

The KL divergence is negative above the critical point because of neglecting the quartic and higher

order irrelevant operators, as will be seen below.
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Figure 8.11: The KL density for the 2D Ising model as a function of the coupling βJ for various
decimation steps. Only a few steps are shown because the curves merge to the exact same curve around
decimation step 8, i.e., the KL density stops significantly changing after each decimation step after around
eight decimation steps. The critical value is ≈ 0.50698.
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Figure 8.12: The KL density for the 2D Ising model as a function of the coupling βJ after one decimation
step. The critical value is ≈ 0.50698.
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First, note that we get negative values above the critical point even after one decimation step (Figure

8.12), where we only have a quartic term to drop. So the negative values cannot be blamed on the quartic

interaction or higher interactions changing the recursion relation for the coupling constant: the only

approximation for the recursion relation made at this step is combining the nearest and next-nearest

neighbor interactions.

Next, the negative values are not a result of the distributions not being properly normalized. The

exact thing that is plotted is,

DKL =2k logZapprox(N/2k, Jk)− logZapprox(N, J)

+ 2kEapprox(N/2k, Jk)− Eapprox(N, J).

(8.10)

The partition function and average energies come from two normalized distributions. One of them is

a normalized distribution for a 2D square Ising model with N sites and coupling J . The other is also

a square 2D Ising model with N/2k sites and coupling constant Jk. The procedure we use in general

to form the distributions for the KL divergence is to 1) decimate the Hamiltonian, 2) drop the quartic

and higher interactions, 3) define the partition function in terms of the decimated Hamiltonian. We can

see that step 3) produces a partition function given by the approximation recorded in Pathria’s book by

inspecting the resulting partition function. Our distributions are therefore automatically normalized, and

in particular, they are normalized distributions when using these approximations recorded in Pathria’s

book as done above in (8.10).

If we wished, we could have kept the quartic interaction as a perturbation around the approximation

recorded in Pathria’s book. The linear terms would have cancelled, leaving a lowest order positive

contribution at quadratic order that (8.10) drops. However, this cannot explain the negative values

because the distributions in (8.10) are properly normalized: even if the KL divergence was wildly

inaccurate from dropping the quartic interaction contribution at quadratic order, the KL divergence should

still be positive everywhere.

The reason for the negative values instead comes from approximating the expectation value for

the decimated Hamiltonian. This is the only other place where an approximation has been made (the

thermodynamic limit is also an approximation, but we used large N in our calculations for the Figures,

and higher order corrections should be small, being suppressed by factors of N ), and this approximation
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can result in negative values even for normalized distributions because the approximation is made to the

KL divergence, not the distributions. So we end up with an approximate KL divergence instead of the

exact KL divergence between approximated distributions.

The exact expectation value is with respect to the undecimated theory, but by using the approximation

recorded in Pathria’s book to evaluate the expectation value, we are assuming that we can evaluate

the expectation value with respect to the decimated theory and get the same results. This is not the

case: evaluating the expectation value with respect to the decimated theory requires us to drop quartic

interactions.

Defining Hk(σ
2) to be the decimated Hamiltonian after dropping the quartic and higher interactions,

leaving just the quadratic and lower; H2D to be the Hamiltonian of the square 2D Ising model, which

is the Hamiltonian approximation Pathria uses to calculate the expectation values recorded in his book;

Hk(σ
4) to be the part of the decimated Hamiltonian that includes all the quartic and higher interactions

Hk = Hk(σ
2) +Hk(σ

4); C the constant energy shift resulting from decimation; we can see that,

〈Hk(σ
2)〉 = 〈H2D(Jk, Nk)〉 =

1

Z

∫
[dσ]H2D(Jk, Nk) exp(−H2D(J,N))

=
1

Z

∫
[dσk]H2D(Jk, Nk) exp(−H2D(Jk, Nk)) exp(−Hk(σ

4)) exp(C)

=
1

Zk

∫
[dσk]H2D(Jk, Nk) exp(−H2D(Jk, Nk)) exp(−Hk(σ

4)),

(8.11)

where [dσk] indicates integrating over the spin variables that appear at the kth decimation step. From

this equation, we see that we must drop the quartic and higher interactions in order for this expression

to be equivalent to taking an expectation value with respect to the decimated distribution. Note that the

quartic and higher terms need to be dropped from the partition function too to evaluate with respect to

the undecimated theory,

Zk =

∫
[dσk] exp(−H2D(Jk, Nk)) exp(−Hk(σ

4))

= Zk(σ
2)

1

Zk(σ2)

∫
[dσk] exp(−H2D(Jk, Nk))(1−Hk(σ

4) + ...)

≡ Z2D(Jk, Nk)
1

Z2D(Jk, Nk)

∫
[dσk] exp(−H2D(Jk, Nk))(1−Hk(σ

4) + ...)

= Z2D(Jk, Nk)(1− 〈Hk(σ
4)〉k + ...),

(8.12)
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where Z2D is the partition function for the square 2D Ising model. An expression for its logarithm

logZapprox ≡ logZ2D can be found in Pathria’s book. Our final result to lowest order is,

〈H2D(Jk, Nk)〉 =
1

Zk

∫
[dσk]H2D(Jk, Nk) exp(−H2D(Jk, Nk)) exp(−Hk(σ

4))

=
1

Z2D(Jk, Nk)(1− 〈Hk(σ4)〉k + ...)

×
∫

[dσk]H2D(Jk, Nk) exp(−H2D(Jk, Nk))(1−Hk(σ
4) + ...)

=
1

Z2D(Jk, Nk)

∫
[dσk]H2D(Jk, Nk) exp(−H2D(Jk, Nk))

× (1−Hk(σ
4) + ...)(1 + 〈Hk(σ

4)〉k + ...)

= 〈H2D(Jk, Nk)〉k + 〈H2D(Jk, Nk)〉k〈Hk(σ
4)〉k − 〈H2D(Jk, Nk)Hk(σ

4)〉k + ...

= Eapprox(Jk, Nk) + Eapprox(Jk, Nk)〈Hk(σ
4)〉k − 〈H2D(Jk, Nk)Hk(σ

4)〉k + ...

= Eapprox(Jk, Nk)

− 〈(H2D(Jk, Nk)− 〈H2D(Jk, Nk)〉k)(Hk(σ
4)− 〈Hk(σ

4)〉k)〉k + ....

(8.13)

Plugging in the spin operators for the 2D model, and defining Mk to be the quartic coupling at the kth

decimation step, we get,

〈H2D(Jk, Nk)〉 = Eapprox(Jk, Nk) + JkMk〈
∑
n.n.

σ2〉k〈
∑
pl

σ4〉k − JkMk〈
∑
n.n.

σ2
∑
pl

σ4〉k + ...

= Eapprox(Jk, Nk) + JkMk〈(
∑
n.n.

σ2 − 〈
∑
n.n.

σ2〉k)(
∑
pl

σ4 − 〈
∑
pl

σ4〉k)〉k,

(8.14)

where we calculate Mk assuming only the quadratic coupling matters in calculating it, and both Mk < 0

and Eapprox < 0, while Jk > 0. We use
∑

pl to indicate summing over all the plaquettes of four-spin

interactions, and
∑

n.n. indicates summing over nearest neighbors. Note that the last term is a connected

Green’s function, which could also be seen in the last line of (8.13). Although Mk is approximate, recall

that the problem of a negative KL divergence occurs even with one decimation step, and we know M1

exactly.

Near the critical point,Mk ≈ −0.056 ≈ −Jk/10. So we learn that (1) the orderM2
k ≈ J2

k/100 terms

can safely be neglected relative to the quadratic coupling, and (2) the terms of order JkMk ≈ −J2
k/10.

Just above the critical point, the KL divergence is small: less than -0.056 (approximately -0.0052). The
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biggest the KL divergence gets is around -0.02 (during which Mk ≈ −0.08 and Jk is still roughly 10

times Mk in magnitude) so the terms are of the right order to make the KL divergence non-negative.

Also, Mk gets drastically bigger with decimation step and with initial coupling constant, getting to 1/3 of

Jk in magnitude. So although the correlation functions will get smaller with decimation step (they are

larger at first, so not much smaller than 1), it should be compensated by the growth of Mk.

Hence, we can expect the magnitude of everything to be the correct size to make the KL divergence

non-negative in the appropriate regions (the KL divergence becomes flatly zero at a large enough coupling

≈ 2.5 because at large coupling, Eapprox = − logZapprox).

Furthermore, because we know that the only irrelevant operator is quartic at one decimation step,

we can have some idea of the size of its contribution to the KL divergence from the connected Green’s

function. It is possible that other irrelevant operators make a significant contribution for greater decimation

steps, and the quartic coupling changes with decimation step, so we cannot find the size of the contribution

of any particular irrelevant operators at higher decimation steps. Because the quartic coupling changes

with decimation step, we also cannot determine an ordering of which irrelevant operators make a greater

or smaller contribution.

8.2.1 2D Decimation: Rescaling

As a further confirmation that the negative values of the KL divergence come from higher order terms

that are neglected in taking the expectation value of the decimated Hamiltonian, we will calculate the

KL divergence for the 2D Ising model using decimation plus rescaling. This requires us to drop quartic

and higher interactions in the Hamiltonian (and therefore partition function too), but we can evaluate

the expectation value of the decimated Hamiltonian exactly. We shall see that the KL divergence is

non-negative in this case.

For decimation plus rescaling, the rescaled Hamiltonian is (rescaling performed after dropping the

quartic and higher interactions and combining the nearest and next-nearest neighbor interactions as

usual),

Hk = −Jk
∑
n.n.

σiσj , (8.15)

where the nearest neighbor sum goes over N sites. That is, it is the exact same Hamiltonian as the N -site

2D Ising model with a different coupling constant. We now evaluate the KL divergence as (the partition
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function drops quartic and higher interactions so as to normalize Hk in (8.15)),

DKL(p||q) = logZk − logZ + (−〈H〉+ 〈Hk〉) , (8.16)

where we have,

〈Hk〉 =
Jk
J
〈H〉. (8.17)

This equation (8.17) follows because we can just pull the coupling constant J out of the integral and

evaluate the correlation function and then substitute in the Jk coupling constant from the decimation

procedure. This is just the same as multiplying the expectation value of the original Hamiltonian by

Jk/J . Notice also in (8.16) that we have no factors of 2k because there is no need to multiply copies of

the decimated distribution together: the rescaled Hamiltonian has the same spin support as the original

Hamiltonian.

The factors of 2k do not make a difference anyway: logZk and Ek are proportional to the number of

sites, so the 2k cancels with the N/2k in front of these terms, whenever we do this decimation procedure

(which makes the number of sites N/2k).

We then substitute in the values of the free energy and internal energy as before (logZk must

= logZapprox because it is just normalizing a square 2D Ising model with a coupling Jk) to get,

DKL(p||q) = logZk − logZ +

(
Jk
J
− 1

)
〈H〉

= logZapprox(N, Jk)− logZapprox(N, J) +

(
Jk
J
− 1

)
Eapprox(N, J)

(8.18)

The results are shown in the below Figures 8.13-8.14. Notice the similarities to the earlier results when

using decimation plus forming a joint distribution for the values below the critical value.
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Figure 8.13: The KL density for the 2D Ising model as a function of decimation step for fixed values of
βJ below the critical value of ≈ 0.50698. The distribution q is formed from decimation plus rescaling.
There are similarities to the results when using decimation plus forming a joint distribution for values
below the critical value.
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Figure 8.14: The KL density for the 2D Ising model as a function of decimation step for fixed values of
βJ above the critical value of ≈ 0.50698. The distribution q is formed from decimation plus rescaling.
These are very different results from when using decimation plus forming a joint distribution: notably,
the curves are non-negative in the present case.
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As we see, the KL divergence is non-negative, as it should be, thus confirming that the negative values

from before must be coming from approximating the expectation value of the decimated Hamiltonian.

8.2.2 2D Decimation: Mean Field Theory

Because the value of the KL divergence was negative for some values of couplings, we need to make

a better approximation. We will accomplish this by taking the quartic interaction into account, using

mean field theory to evaluate 〈Hk〉 and lnZk. Because thinking in terms of a constant energy shift is

equivalent to thinking in terms of a changing partition function, we will work in the picture that does not

have a constant energy shift but lets the partition function change with decimation step. This will make

our calculations easier.

For the decimated Hamiltonian, we get (β = 1, σk the spins remaining at decimation step k after

some chosen decimation path),

〈Hk〉 ≡
1

Z

∫
[dσ]Hk exp(−H)

=
1

Z

∫
[dσk]Hk exp(−Hk),

(8.19)

where,

Hk = −

J1,k

∑
n.n

σki σ
k
j + J2,k

∑
n.n.n

σki σ
k
j + J3,k

∑
plaq.

σki σ
k
j σ

k
kσ

k
l

 . (8.20)

Mean field theory then gives,

Hk = −J1,kzm
∑
i

σki − J2,kzm
∑
i

σki − J3,kzm
3
∑
i

σki

= −(J1,k + J2,k)zm
∑
i

σki − J3,kzm
3
∑
i

σki

≡ −Jkzm
∑
i

σki − J3,kzm
3
∑
i

σki

(8.21)

where z = 2D = 4 (D = dimension of the lattice) is the number of neighboring sites of the spin σki and

we define Jk ≡ J1,k + J2,k to simplify notation. Notice that the magnetization m is the magnetization of

the system at decimation step k. Furthermore, we have made an assumption that terms of higher order

than the quartic can be neglected, so that each time we decimate, we get a Hamiltonian of the above

form. Also, we have assumed that any corrections to the recursion relations can be neglected and that the
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quadratic term dominates, so that we still have,

Jk =
1

4
log (cosh 4Jk−1) +

1

8
log (cosh 4Jk−1)

=
3

8
log(cosh(4βJk−1)),

J3,k =
1

8
log (cosh 4Jk−1)− 1

2
log (cosh 2Jk−1) .

(8.22)

We can then calculate expectation values in this theory as,

〈Hk〉 =
1

Z

∫
[dσk]Hk exp(−Hk)

= − 1

Z

∫
[dσk]Jkzm

∑
i

σki exp(−Hk)

− 1

Z

∫
[dσk]J3,kzm

3
∑
i

σki exp(−Hk)

= −Nz
(
Jkm

2 + J3,km
4
)
,

(8.23)

where N = n/2k is the number of spin sites in our decimated theory with n = total number of spins

in the undecimated theory. We now calculate the magnetization in the decimated theory. Notice that,

relative to the mean field theory of a 2D Ising model, the effective magnetic field just gets an additional

term from m3. Hence, the magnetization in our theory is the same as that in the usual 2D Ising model but

with this extra term in the effective magnetic field. The magnetization then is,

m = tanh(z
(
Jkm+ J3,km

3
)
). (8.24)

We can then proceed to find solutions to this equation graphically in the usual manner. The critical

temperature can be found by expanding near m = 0,

m = (z
(
Jkm+ J3,km

3
)
− (zJk)

3

3
m3

→ m = 0,m = ±
√

3
√
−1 + zJ√

z3(Jk)3 − 3zJ3,k

.

(8.25)

We see then that we need zJk > 1 and z3(Jk)
3 > 3zJ3,k in order for a real non-zero solution to exist. In

our case, J3,k ≤ 0 for all values, while we are working with a positive Jk, so the second condition is
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automatically satisfied. So we must have m = 0 for whatever values of βJk, βJ3,k that do not satisfy the

conditions. In particular, the first condition shows that m = 0 for small enough values of βJk.

For very large values of βJk, the tanh goes to 1, so m = 1 in this limit.

The expression for logZk is found similarly. We have,

Zk =

∫
[dσk] exp(−Hk)

=
N∏
i

∫
[dσk] exp(z

(
Jkm+ J3,km

3
)
σki )

=
(
2 cosh(z(Jkm+ J3,km

3))
)N

→ logZk = N log
(
2 cosh(z(Jkm+ J3,km

3))
)
,

(8.26)

where since this is the decimated theory, as with finding the expectation value of Hk, we have N = n/2k

and m is the magnetization in the decimated theory.

So in Mathematica, for small Jk, we set m = 0; for large Jk we set m = 1, and for in between we

numerically solve the equation with the tanh. We can then plug this value of magnetization into our

expressions for 〈Hk〉 and logZk and calculate the KL divergence. This will be reserved for future work.

8.3 (1 + epsilon) Dimensions

We now consider an Ising model in 1 + ε dimensions. To do this, we take a 2D asymmetric Ising

model with constant couplings in the x-direction much stronger than the constant couplings in the y-

direction, Jx >> Jy. We use perturbation theory to calculate the KL divergence at each decimation step

to lowest order, i.e., quadratic in Jy. Because Jy is much smaller than Jx, the probability distribution q

can be treated as a stack of 1D Ising models with perturbations that connect the models in the y-direction,

Hq = Hp + δH = H1D + δH =
∑
i,j

Jσi,jσi+1,j + δ
∑
i,j

σi,jσi,j+1, (8.27)

where we have relabeled Jx as J and Jy as δ to emphasize that the term is being treated as a perturbation.

More generally, suppose we have a probability distribution p and a distribution q that is the distribution p

plus a sum of operators O that are perturbations Θ(x) = λi(x)Oi(x), where λ is taken to be small. The
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partition function Zq is,

Zq =

∫
Dµ e−βHp−βΘ(x)

=

∫
Dµ e−βHp

∞∑
m=0

(−βΘ(x))m

(m)!

≈
∫

Dµ
e−βHp

Zp
Zp

(
1− βΘ(x) +

β2

2
Θ(x)Θ(y)

)
= Zp

(
1− β〈Θ(x)〉p +

β2

2
〈Θ(x)Θ(y)〉p

)
,

(8.28)

where the partition function has been expanded to second order in the final line. The KL divergence is

then,

D(p||q) =

∫
Dµ

e−βHp

Zp

(
log

(
Zq
Zp

)
+ βΘ(x)

)
= log

(
1− β〈Θ(x)〉p +

β2

2
〈Θ(x)Θ(y)〉p − ...

)
+ β〈Θ(x)〉p

≈ β2

2
(〈Θ(x)Θ(y)〉p − 〈Θ(x)〉p〈Θ(y)〉p) ,

(8.29)

where the partition function and logarithm has been expanded to second order. In the case of the (1+ε)-D

model we are considering, we have Θ(x) = δ
∑

i,j σi,jσi,j+1, so to lowest order, the KL divergence is,

D(p||q) =
(βδ)2

2

∑
i,j

∑
i′,j′

(
〈σi,jσi,j+1σi′,j′σi′,j′+1〉p − 〈σi,jσi,j+1〉p〈σi′,j′σi′,j′+1〉p

)
, (8.30)

where an exact expression for the KL divergence cannot be found because of uncertainty in rewriting the

expanded exponential
∑

m(
∑

i,j σi,jσi,j+1)m/m! in terms of something tractable.

As will be shown, because theory p is just a stack of 1D Ising models, the correlation functions

can be re-written in terms of correlation functions for a 1D Ising model. First note that in general

〈σx,yσx′,y′〉p = 0 when y 6= y′. This is because the spins in different y-columns are uncorrelated in

theory p. Theory p is just a sum of independent 1D Ising models; there is no coupling between spins at

different y sites. So we are limited to correlation functions with the same y.
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Next, note that the partition function for theory p is just a product of 1D partition functions because

the Hamiltonian is a sum of independent 1D Ising models,

Zp =

∫
Dσ e−βJ

∑
i,j σi,jσi+1,j

=

∫ ∏
j

Dσj
∏
j

e−βJ
∑
i σi,jσi+1,j

=
∏
j

∫
Dσj e

−βH1D,j =
∏
j

Z1D,j .

(8.31)

We then have for the two-point function,

〈σx,yσx′,y〉p =

∫
Dσ σx,yσx′,y

e−βHp

Zp

=

∏
j

∫
Dσj 6=y e

−βH1D,j
∫

Dσy σx,yσx′,ye
−βH1D,y∏

j 6=y Z1D,jZ1D,y

=

∫
Dσy σx,yσx′,y

e−βH1D,y

Z1D,y

= 〈σxσx′〉1D,

(8.32)

and the 4-point function is similarly,

〈σx,yσx′,yσx,y+1σx′,y+1〉p =

∫
Dσ σx,yσx′,yσx,y+1σx′,y+1

e−βHp

Zp

=

∫
Dσy+1 σx,y+1σx′,y+1e

−βH1D,y+1
∫

Dσy σx,yσx′,ye
−βH1D,y

Z1D,y+1Z1D,y

= 〈σxσx′〉1D〈σxσx′〉1D.

(8.33)

The KL divergence to lowest order is then,

D(p||q) =
(βδ)2

2

∑
i,j

∑
i′,j

(〈σiσi′〉1D)2

=
(βδ)2

2
Ny

∑
i

∑
i′

(〈σiσi′〉1D)2

=
(βδ)2

2
Ny

∑
i

∑
i′

(
e−2|i−i′|/ξe−2/χ(i,i′)

)
1

χ(i, i′)
= − log

λNxp1 + λNxp2
λp1
λp2

2i−2i′

λNxp1 + λNxp2
,

(8.34)
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where Ny,x is the number of sites in the y(x)-direction, and for periodic boundary conditions, the

correlation function was calculated in (7.31) and 1/ξ = log[λp1/λp2] = log[coth(βJ)]. Although Nx

and Ny are distinguished for generality, we only consider 2D Ising models with Nx = Ny. In the limit of

large Nx, only the exponential factor with the ξ survives, and the correlation function does not depend on

the boundary conditions, which makes the KL divergence become,

D(p||q)|Nx>>1 =
(βδ)2

2
Ny

∑
i

∑
i′

(
e−2|i−i′|/ξ

)
=
Ny(βδ)

2

2

1− e−2Nx/ξ

1− e−2/ξ
,

(8.35)

where a shift of indices has occurred to turn the double sum on the exponential into a geometric series

(“center of mass” coordinates), and again, Nx = Ny for our models. In using this equation for the KL

divergence with decimation, the equation will only be valid while a large number of sites remains, so not

as many decimation steps can be achieved accurately.

The last thing needed for calculation the KL divergence at each decimation step is the recursion

relation for the coupling constants. These are just the recursion relations for decimating an asymmetric

square 2D Ising model with Jy = δ taken to be smaller than Jx = J . They are,

βJ ′1,x = βJ ′1,y = βJ ′1 =
1

4
log

cosh(2β(Jx + Jy))

cosh(2β(Jx − Jy))
,

βJ ′2,x =
1

8
log

((
cosh(βJx)

cosh(βJy)

)2

cosh(2β(Jx + Jy)) cosh(2β(Jx − Jy))

)
,

βJ ′2,y =
1

8
log

((
cosh(βJy)

cosh(βJx)

)2

cosh(2β(Jx + Jy)) cosh(2β(Jx − Jy))

)
,

βJ ′x = βJ ′1 + βJ ′2,x =
1

8
log

((
(cosh(βJx)

cosh(βJy)

)2

cosh3(2β(Jx + Jy)) cosh−1(2β(Jx − Jy))

)
,

βJ ′y = βJ ′1 + βJ ′2,y =
1

8
log

((
(cosh(βJy)

cosh(βJx)

)2

cosh3(2β(Jx + Jy)) cosh−1(2β(Jx − Jy))

)
,

(8.36)

where the same trick is being used as with the symmetric case: the four-point interaction is ignored (so

no recursion relation for βJ3 has been given) and the remaining coupling constants are added together to

keep the Hamiltonian in the same form. Notice that the recursion relation reduces to the symmetric case

(8.9) when Jx = Jy, as expected.
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CHAPTER 9

Channel Capacity Example: Ising Model

We now study how to calculate the channel capacity by re-interpreting and generalizing our deci-

mation procedure as follows. Start with an Ising model in the UV. Perform a blocking transformation

(which reduces to decimation in the case the block has two spins). This results in a new Ising model. We

can repeat this procedure until we arrive at an Ising model in the IR. The geometry of the setup is then a

number of Ising models on B-ary trees multiplied together with a UV Ising model on one boundary and

an IR Ising model on the other boundary.

Let us label the tree in the following manner. Let a tree have B branches at a node. Take a vector

index a, where each element takes values ai = 0, ..., B − 1. We take a to be of length L, where L is the

level of the tree. Our vector at level L is (aL, aL−1, ..., a0). To get the indices at level L− 1, we leave

off the first entry in the vector, giving (aL−1, ..., a0). Our spins then connect as σaL,aL−1,...,a0σaL−1,...,a0

across the levels. The total number of nodes on the tree with L levels is then N = BL +BL−1 + ...+ 1

9.1 1D Ising Model on Tree

For a 1D Ising model on a tree, the Hamiltonian looks like,

−Htree = JL
∑

aL,aL−1,...,a0

σaL,aL−1,...,a0σaL−1,...,a0

+ JL−1

∑
aL,aL−1,...,a0

σaL−1,...,a0σaL−2,...,a0 + ...

= −(HL +HL−1 + ...).

(9.1)

We will tak all the couplings Ji to be the same Ji = Jtree.

Taking HUV , HIR and p(HUV ), p(HIR) to be the Hamiltonians and distributions for the 1D Ising

models on the UV and IR boundaries of the tree, our total distribution is,
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p(σUV , σIR) = p(HUV )p(HIR)
∏
i,NIR

p(Htree,i)

≡ p(HUV )p(HIR)P (Htree),

(9.2)

where NIR is the number of sites of the 1D Ising model on the IR boundary. We can write the total

distribution as a product of a conditional and marginal. To calculate channel capacity, we then have the

following,

p(σUV , σIR) = p(σUV )P (σIR|σUV )

= p(HUV + hσUV )P (σIR|σUV ),

(9.3)

where we identify p(σUV ) = p(HUV + hσUV ). If we integrate out all the IR modes to produce the

UV distribution, we are left with the UV 1D Ising model and a bunch of spins attached to a magnetic

field h. Our marginal distribution must then be the 1D UV Ising model plus a magnetic field, where the

magnetic field is calculated by integrating out all the other modes of the tree and IR boundary. Likewise,

p(σIR) = p(HIR + hσIR).

Now, we already know what the full distribution is in terms of p(HUV ), p(HIR), and P (Htree), so

we can find the conditional distribution as,

p(σUV , σIR) = p(HUV )p(hσUV )
p(Htree)

p(hσUV )p(hσIR)
p(HIR)p(hσIR)

→ P (σIR|σUV ) = p(HIR)p(hσIR)
p(Htree)

p(hσUV )p(hσIR)

= p(HIR)
p(Htree)

p(hσUV )

(9.4)

The mutual information is then,

I(UV ; IR) =

∫
Dσ p(σUV , σIR) log

P (σIR|σUV )

p(HIR)p(hσIR)

=

∫
Dσ p(σUV , σIR) log

p(Htree)

p(hσUV )p(hσIR)

= log
ZhUV ZhIR
Ztree

−
∫

Dσ p(Htree)p(HUV )p(HIR)(Htree − hUV
∑

σUV − hIR
∑

σIR),

(9.5)

117



where,

ZhUV =
ZUV (hUV )

ZUV
,

ZhUV =
ZIR(hIR)

ZIR
,

(9.6)

where ZUV (hUV ) is the partition function for the UV 1D Ising model with the magnetic field hUV , etc.

The problem now reduces to calculating correlation functions. First, for a 1D Ising model on a tree,

we can calculate correlation functions using a transfer matrix method. We build the transfer matrix as

follows.

For a B-ary tree (so a block size of B), find the transfer matrix T (B) for B leaves going to a single

node. This matrix T (B) will be of size 2B x 2. For a full tree with B leaves on each node (including the

root), we can then find the transfer matrix at each level of the tree. The transfer matrix TL;B at level L

(transitioning from level L to L− 1; T0 is just the identity) is a tensor product of the transfer matrices at

each block,

TL;B ≡ T (L→ L− 1;B) = ⊗NUV /BT (B)

= ⊗BL−1T,

(9.7)

where we have taken the number of UV sites NUV = BL to keep the number of sites divisible by B as

we go through the tree. Note that TL is of size 2B
L

x 2B
L−1

To get the transfer matrix across more than

one level of a tree, just multiply the transfer matrices together,

T (L→ k;B) = TL;BTL−1;B...Tk+1;B

=
k+1∏
i=L

Ti;B,
(9.8)

where k < L is the final level of the tree to which we want to transfer (so the index i decreases in

increments of 1), and we could have extended the product to k since T0 is the identity in our convention.

We can now calculate the partition function of a full B-ary tree with a total of L levels and free

boundary conditions by having spin vectors on both sides of the total transfer matrix (they will have

length twice the number of sites at each boundary) with equal weight to spin up and spin down. For an

initial state 〈ψUV | and final state |ψIR〉, the partition function is,
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Ztree(L, B) =
∑

|ψUV 〉,|ψIR〉

〈ψUV |T (L→ 0;B)|ψIR〉. (9.9)

Because we are interested in the partition function for a full tree, the final state is that of a single spin site:

the root node. The initial state represents BL independent spins, so our state vectors (for an all spin-up

configuration) are,

|ψUV 〉 = ⊗NUV =BL

1

0



=


1

...

0


|ψIR〉 =

1

0

 ,

(9.10)

where we take the tensor product of BL spin states. Now, we must sum over all possible configurations,

e.g., a single spin down and the rest spin up represented by a 1 in the bottom of one of the vectors and 1s

on top for the rest. To easily perform the sum over all configurations, notice that 〈ψUV | is a 2B
L

x 1 row

vector having a single entry 1 and the rest are 0s. Each of the unique 2B
L

configurations corresponds to a

unique position in the row vector for the 1. Hence, if we summed all 2B
L

vectors together, we would

get a 2B
L

x 1 row vector of ones. Similarly, if we summed together all the column vectors representing

different configurations for the |ψIR〉, we would get a 2 x 1 column vector of 1s.
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Hence, when we perform the sum over all configurations, we get,

Ztree(L, B) =
∑
|ψUV 〉

〈ψUV |T (L → 0;B)

1

0


+ 〈ψUV |T (L → 0)

0

1




=
∑
|ψUV 〉

〈ψUV |T (L → 0;B)

1

1


=

((
1 . . . 0

)
+ ...+

(
0 . . . 1

))
T (L → 0;B)

1

1


=

(
1 . . . 1

)
T (L → 0;B)

1

1

 .

(9.11)

That is, we have confirmed an intuition that the initial and final state vectors are vectors of 1s, representing

that each state has equal probability of occurring. We could easily have derived the initial state vector by

taking tensor products of BL state vectors (1, 1) (i.e, an equal probability of spin up or spin down for

each spin site)

We could similarly calculate the partition function of a tree that is not full, which would be a product

of two full trees. We could do this either by multiplying the partition functions of the two trees together

(since without the root node, the two parts of the tree are independent of each other), or we could think of

the two trees as a single incomplete tree and repeat the same calculation as above except change the final

state vector into a tensor product of NF column vectors (1, 1), where NF is the number of spin sites at

the final state (e.g., for a full 2-level binary tree without the root node, there would be 2 spin sites at the

final state).

Having calculated the partition function for the tree, we can now calculate correlation functions for

the tree. We insert an operator that is made up of a tensor product of 2 x 2 identity matrices with Pauli

matrices σz inserted at the spin sites of interest i = 0, ..., BL−1 at layer L. The operator is,

Σ({σz(i)})L ≡ I2 ⊗ ...⊗ σz(i)⊗ ...⊗ I2, (9.12)
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where we are taking a tensor product of a total of BL objects and IN is an N ×N identity matrix. The

correlation functions are then (using (1N ) to denote a row vector of ones of sizeN and (1N )T the column

vector),

〈σ(i)L...σ(i′)′L〉 =
1

Ztree

× (12NUV )T (L → L;B)Σ({σz(i)})LT (L→ L′;B)Σ({σz(i′)})′LT (L′ → 0;B)(12NUV )T .

(9.13)

These results can then be taken further to calculate the KL divergence as in the earlier Ising model

examples. However, it is a computational problem that we leave for future work.
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CHAPTER 10

Continuum Examples

We have shown how the lattice renormalization group results matches the results of the continuum

renormalization group, and we have calculated the KL divergence between lattice models: Ising models.

We will now make some sample calculations for some continuum theories: a scalar field φ4 theory, a

T T̄ deformation of a CFT, and a Kaluza-Klein theory. The first two models are related to Ising models.

The scalar φ4 theory is the continuum limit of a 4d Ising model at the critical value. The 2D Ising

model becomes a theory of 2D massless fermions (a CFT) in the continuum limit; adding an irrelevant

deformation is then just a perturbation around the conformal fixed point. The Kaluza-Klein theory is of

interest for measuring the information of an extra-dimensional and compactified UV theory that remains

in an IR theory.

In this section, we sketch out and set up the calculations but do not carry them to completion because

they will need to be done numerically.

10.1 Scalar field

To show how our method of calculating the KL divergence with continuum theories produces a

source term in the IR theory and a UV logarithmic divergence (as we noted in Section 6.3), consider a

toy example in 4 dimensions where we have free scalar fields, slow φ modes and fast χ modes, along

with φ(x)χ(x)3 and φ(x)2χ(x)2 interaction terms. Notice that this is the result of having a scalar Φ4

theory and then splitting the field Φ = φ+ χ,

S =

∫
d4x

1

2
(∂Φ)2 +

m2
Φ

2
Φ2 +

g

4!
Φ4

=

∫
d4x

1

2
(∂(φ+ χ))2 +

m2
Φ

2
(φ+ χ)2 +

g

4!
(φ+ χ)4

→ S0[φ] + S0[χ] +

∫
d4x g1φ(x)χ(x)3 +

g2
2

2
φ(x)2χ(x)2,

(10.1)
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where S0 denotes the free parts of the action (including any mass terms).

We want to integrate out the χ fields, where the χ fields are very heavy relative to the cut-off of the

theory (so the kinetic terms are much smaller than the mass term, giving a propagator of 1/M2 to leading

order); equivalently, the χ fields are constant or slowly varying with respect to the cut-off. Before doing

this, re-write our action as,

S = S0[φ] + S0[χ] +

∫
d4x g1φ(x)χ(x)3 +

g2
2

2
φ(x)2χ(x)2

= S0[φ] + S0[χ] +

∫
d4x φ(x)

∂L[0, χ(x)]

∂φ
+
φ(x)2

2

∂2L[0, χ(x)]

∂φ2
,

(10.2)

so we see that the form of the action has the derivative of the interaction Lagrangian multiplying a single

φ field. Now we integrate out the χ fields. This produces an effective action with a leading order Jφ

interaction, where J must have units of M3, and a Qφ2/2 interaction, where Q must have units of M2.

The integrated two-point function is then,

J2

∫
d4xd4y 〈φ(x)φ(y)〉0 +

Q2

4

∫
d4xd4y 〈φ(x)2φ(y)2〉0 ∼

J2

Λ4
IR

∫
dz

z3

z2
+

Q2

Λ4
IR

∫
dz

z3

z4

=
J2

2Λ4
IRΛ2

IR

+
Q2

Λ4
IR

log
ΛUV
ΛIR

∼ (
M

ΛIR
)6 + (

M

ΛIR
)4 log

ΛUV
ΛIR

,

(10.3)

which diverges with the space-time volume and logarithmically diverges in the UV (the first term is UV

finite). Because of this no greater than UV log divergences, one could instead start with the IR theory

and then add the φχ3 and φ2χ2 interactions as a UV completion of the IR theory.

Notice also that this result in general only holds when the scaling dimension of the field is (D−2)/2 <

∆ < D/2. For dimensions that are greater than D/2, we can add more χ fields in our UV theory that

couple to the φ field and include the other interactions that are compatible with the symmetries of the

Lagrangian.

10.2 Irrelevant deformation

In the context of CFTs, adding an irrelevant deformation to the CFT moves the QFT to a higher

energy scale: it is a perturbation around a conformal fixed point. In the AdS/CFT picture, an irrelevant

deformation moves the QFT into the bulk. We will consider applying our set-up to a CFT of 2D massless
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fermions with a particular irrelevant deformation: the T T̄ deformation ((T T̄ = ψ∂ψψ̃∂̄ψ̃)). The T T̄

deformation and other irrelevant deformations have previously been studied by [147], [148], [149], [150].

The action is,

S =

∫
d2x ψ∂̄ψ + ψ̃∂ψ̃ + µT T̄ . (10.4)

We first split into fast and slow modes (ψ = ψfast + ψslow). For the deformation (the rest of the

action gives a free action that splits into fast and slow mode free actions, since mixed modes should

vanish due to momentum conservation) this gives,

ψ∂ψψ̃∂̄ψ̃ = ψfast∂ψfastψ̃fast∂̄ψ̃fast + ψslow∂ψslowψ̃slow∂̄ψ̃slow + ..., (10.5)

where the rest is all the remaining permutations and the µ is ignored because it simply multiplies

everything (it will be restored in the final result). Taking the leading order terms gives,

S[0, ψfast] =

∫
d2x ψfast∂ψfastψ̃fast∂̄ψ̃fast + ψfast∂ψslowψ̃fast∂̄ψ̃fast

+ ψfast∂ψfastψ̃fast∂̄ψ̃slow + ψfast∂ψslowψ̃fast∂̄ψ̃slow

δS[0, ψfast]

δψslow
· ψslow =

∫
d2x ψslow∂ψfastψ̃fast∂̄ψ̃fast

δS[0, ψfast]

δψ̃slow
· ψ̃slow =

∫
d2x ψfast∂ψfastψ̃slow∂̄ψ̃fast

δ2S[0, ψfast]

δψ2
slow

·
ψ2
slow

2
= 0

ψ̃slow ·
δ2S[0, ψfast]

δψ̃slowδψslow
· ψslow

2
=

∫
d2x

ψ̃slowψslow
2

∂ψfast∂̄ψ̃fast

= −ψslow ·
δ2S[0, ψfast]

δψslowδψ̃slow
· ψ̃slow

2
.

(10.6)

When adding the mixed partial derivatives, their contribution goes to zero because they add with opposite

sign.

Integrating out fast modes results in,

Seff = S0[ψslow, ψ̃slow] + µ

∫
d2x J2∂ψslow + J̃2∂̄ψ̃slow

+Q∂ψslow∂̄ψ̃slow + J1ψslow + J̃1ψ̃slow,

(10.7)
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where the J1 have mass dimension M7/2, the J2 dimension M5/2, and the Q dimension M . Notice that

J are fermionic, while the Q is an ordinary number. Also, the µ has dimension M−2.

The two-point functions for the J2 and Q terms are descendants of the two-point function for the J1

term.

10.3 Kaluza-Klein tower of masses

As an exercise to see what occurs in theories with extra compactified dimensions, as in string theory,

consider a 5D free, massless scalar field theory and place the 5th dimension on a circle. This allows the

5D field to be expressed as a free, massless 4D theory plus a tower of free, massive scalar fields,

S5D =

∫
d4xdy ∂Mφ∂Mφ

=

∫
d4xdy

∞∑
n=−∞

∂µφn(xµ)∂µφn(xµ)∗ − n2

r2
|φn|2

= 2πr

∫
d4x ∂µφ0∂µφ

∗
0 + ... = S4D + ....

(10.8)

We see that the resulting 4D theory is the action for a free massless scalar field plus the sum of actions for

free massive scalar fields. As a result, producing the split between fast and slow modes will not produce

any non-zero interactions. Instead, the actions exactly divide into free actions for the fast and for the

slow modes. There is thus no UV/IR mixing.

We must then include a mixing term for the 5D theory. It is not clear how to do this with an odd

interaction, so take self-interactions that are even for the interaction Lagrangian, which in particular, will

effectively create a mass term for the 5D theory,

S5D =

∫
d4xdy ∂Mφ∂Mφ+ Sint[φ]. (10.9)

This then results in the same 4D theory as above, but now there are even interaction actions associated

with each scalar field mode. Performing the slow and fast split then leads to the following 4D action,

S[φslow, φfast] = S0
0 [φfast] + S0

0 [φslow] + S0
int[φslow, φfast]

+
∑
i=1

Si0[φfast] + Si0[φslow] + Siint[φslow, φfast],
(10.10)
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where the 0 term is massless but the remainder have increasingly heavy masses. This is the same result

as the previous scalar field example (φχ3), except now there are sums of fields (or equivalently, products

of the previous result) and the zero mode action now has a mass (due to a φ2 interaction term). Because

of this, there is no reason to keep the zero mode action outside of the summation, producing,

S[φslow, φfast] =
∑
i=0

Si0[φfast] + Si0[φslow] + Siint[φslow, φfast],

Sint =
∑
i=0

Siint[φslow, φfast].

(10.11)

Expanding around zero and integrating out fast modes as before for the scalar field theory then produces,

Seff =
∑
i=0

Si0[φslow] + 2πrJ i · φslow + 2πrQi · |φslow|2. (10.12)

The scale derivative of the KL divergence is then a sum of the previous scale derivative of the KL

divergence.

We have thereby shown in this section a sketch of how the calculations should proceed for a number

of continuum examples of interest, some of them being of interest because they are continuum versions

of Ising models. Further work could carry these calculations through to completion to track the KL

divergence density as we did with the Ising models.
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CHAPTER 11

Conclusion

We have studied the use and interpretation of the KL divergence in quantifying RG flows in terms of

information. We have interpreted the RG transformation as a noisy communication channel: there is loss

of information as the irrelevant and marginally irrelevant operators of QFTs are suppressed and higher

energy modes are integrated or blocked out. The KL divergence can then be used to calculate various

information theoretic quantities, such as the mutual information and the channel capacity. We have also

found some connection between our problem and that of the information bottleneck, which also makes

use of a KL divergence: the RG transformation compresses the information about the UV variables via

a blocking transformation or integrating out and then transmits the compressed information to the IR

variables via rescaling. The RG flow can also be understood in terms of the AdS/CFT correspondence, as

we have explained.

We then used the KL divergence to measure the proximity between QFTs. This proximity has then

been used to measure the UV/IR mixing in a low energy theory that has flown down the RG from a

higher energy theory. The general difficulties in using the KL divergence are a UV divergence from a

contact term and an IR divergence from the space-time volume, suggesting that the physical quantity of

interest is the KL divergence per volume. A difficulty in our particular case of measuring UV/IR mixing

is avoiding integrating out IR modes and avoiding contact terms in the continuum case.

To circumvent these difficulties, we first studied lattice theories. Lattice theories provide a natural

UV cutoff and a position space renormalization procedure via decimation that thus avoids notions of

integrating out IR modes. We also found that there were two notions of decimation: decimation plus

rescaling and forming a joint distribution of decimated theories. As expected, we found that both

corresponded to the continuum notion of Wilsonian renormalization. By making use of the decimation

procedure, we found that the KL divergence is negative in the case of the 2D Ising model when using

decimation plus forming a joint distribution: signaling the absence of the irrelevant operators and thereby

putting a bound on how important the irrelevant operators are to the IR theory. In the case of a positive
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KL divergence in the other cases, we are more directly measuring the amount of information remaining

from the UV operators in the IR theory.

We then studied continuum theories. By expanding the UV theories about a low energy point, we

found a way to measure UV/IR mixing without integrating out IR modes. The channel capacity concept

was found to be another promising way to avoid integrating out IR modes by re-interpreting the UV

distribution as encoding the fluctuations of couplings (i.e., sources) in the IR theory. Our results for

the KL divergence of continuum theories were scheme dependent, so we found a UV completion to

remove the contact term. We also found the lowest order beta function of the KL divergence when used

to measure UV-IR mixing.

Some questions for further study remain. We have shown a way to calculate the KL divergence for

an 1D Ising model on a tree, but we did not perform the calculation because of computational difficulties:

What does the KL divergence for this model produce? We have also found a correspondence between our

treatment and that of the information bottleneck but could not set up the correspondence exactly: How

exactly do we assign the distributions and calculate the information bottleneck for our situation? It seems

that we know p(x|, x̃) already (the kernel of the RG transformation) and need to invert the equation for

the bottleneck to find p(y|x̃), although it is not clear how knowing this distribution is helpful. Perhaps a

variational method will be required to invert the equation, seeing how Tishby uses a variational method to

find p(x|, x̃). There is also a question about how lattice gauge theories would work in our setup, although

we have suggested a way by thinking of the gauge fields as living on the links of the lattice. This question

should be explored more and example the KL divergence of lattice gauge theories calculated.

We did not calculate the channel capacity for simple models, although we set up the calculation

for finding the mutual information for the 1D Ising model on a tree. What would a channel capacity

calculation produce? Is there a way to show that in the continuum case a CFT optimizes the information

rate of the channel and thereby produces the channel capacity? The AdS/CFT connection to the RG

procedure and to our information theoretic interpretation is also interesting but complicated: Is there some

simple calculation that could be done under an AdS/CFT setup that will show how the KL divergence

changes with coupling and scale?

There was another simple model we could have calculated: the hierarchical Ising model, which

makes the RG decimation procedure to be exact (we had to make an approximation in 2d in this thesis).
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Also, numerical methods could be used to calculate more realistic examples and might be necessary for

calculating the 1D Ising model on a tree example.
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APPENDIX A: MATHEMATICA CODE FOR 1D ISING MODEL FIGURES

We list the code used for generating the figures for the 1D Ising model when using decimation plus

forming a joint distribution, Figures 8.1-8.4.

calc1DDensity[βfirst_ , pow_, density_ : 1] := Module[{βlast = βfirst, n = 2^pow, β, J, Num, β

temp = βfirst, i, d = 0, rawLogZ, rawE0, Z, lnZ0, E0, lnZtemp, Etemp, lambdaplus,

lambdaminus, dkldensity },

(*

By default , this calculates the relative entropy density by first calculating the

relative entropy and then dividing by a volume factor . The relative entropy is

computed between a 1D Ising Model with no magnetic field and its decimated version .

The decimated theory is a joint distribution formed from the other decimated

versions of the original theory .

The relative entropy for a given β (the β is absorbed into the J) is calculated at each

decimation step from 1 to pow, where pow is the number of decimation steps to carry

out . Of course , the β changes with each decimation step , which is determined by a

recursion relation .

If one inputs ’0’ as the third optional argument, the relative entropy will be computed

instead of the relative entropy density .

*)

(* The partition function and internal energy = average energy of the Hamiltonian for

the 1D Ising Model with no magnetic field . Found via the transfer matrix method. *)

lambdaplus = (Exp[β*J] + Exp[−β*J]);
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lambdaminus = (Exp[β*J] − Exp[−β*J]);

rawLogZ = (Log[lambdaplus^Num + lambdaminus^Num]);

rawE0 = −((D[rawLogZ, β]) /. β −> 1) /. J −> β;

rawLogZ = rawLogZ /. J −> 1;

(* Keeps the computation from failing when the coupling is small or large by using large

and small coupling expansions . *)

If [βfirst < 10^(−15),

E0 = ( Series [rawE0, {β, 0, 4}] //

Normal) /. {β −> βfirst, Num −> n},

If [(βfirst > 1000),

E0 = −n*βfirst,

E0 = rawE0 /. {β −> βfirst, Num −> n}

]

];

(* Force the energy to be a numerical value . *)

E0 = N[E0, 50];

(* Keeps the computation from failing when the coupling is small or large by using large

and small coupling expansions . *)

If [βfirst < 10^(−2),

lnZ0 = ( Series [Log[Z], {β, 0, 4}] //

Normal) /. {β −> βfirst, Num −> n},

If [(βfirst > 1000),

lnZ0 = Log[2] + n*βfirst,

lnZ0 = rawLogZ /. {β −> βfirst, Num −> n}

]
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];

lnZ0 = N[lnZ0, 50];

(* Create an array to store values of the relative entropy . *)

dkldensity = Array[0 &, pow];

(* This computes the relative entropy at each step and stores the value . *)

For[i = 1, i <= pow, i++,

(* The recursion relation for the new coupling constant . *)

If [βlast < 10^(−2),

βtemp = βtemp^2 − (2/3)*βtemp^4,

If [(βlast > 1000),

βtemp = N[(βtemp − (1/2)*Log[2]), 50],

βtemp = N[(1/2)*Log[Cosh[2*βtemp]], 50]

]

];

If [βtemp < 10^−100,

βtemp = 0,

Continue

];

(* Calculate energy and LogZ at each step . *)
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(* Keeps the computation from failing when the coupling is small or large by using

large and small coupling expansions . *)

If [βtemp < 10^(−15),

Etemp = (Series [rawE0, {β, 0, 4}] //

Normal) /. {β −> βtemp},

If [(βtemp > 1000),

Etemp = −(n/2^i)*βtemp,

Etemp = rawE0 /. {β −> βtemp}

]

];

(* Forces the Etemp to a numerical value *)

Etemp = N[Etemp /. Num −> (n/2^i), 50];

(* Keeps the computation from failing when the coupling is small or large by using

large and small coupling expansions . *)

If [βtemp < 10^(−2),

lnZtemp = ( Series [rawLogZ, {β, 0, 4}] //

Normal) /. {β −> βtemp},

If [(βtemp > 1000),

lnZtemp = Log[2] + (n/2^ i )*βtemp,

lnZtemp = rawLogZ /. {β −> βtemp}

]

];

(* Forces the lnZtemp to a numerical value *)
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lnZtemp = N[lnZtemp /. Num −> (n/2^i), 50];

(** The following block keeps from dividing by the volume if density selected is 0, i .e

., calculates relative entropy , not relative entropy density , if density selected

is 0.

The relative entropy is computed using an equation I derived .

**)

If [ density != 0,

dkldensity [[ i ]] =

N[(((2^ i )*lnZtemp − lnZ0) + (−E0 + (2^i)*Etemp))/(n) , 50],

dkldensity [[ i ]] =

N[(((2^ i )*lnZtemp − lnZ0) + (−E0 + (2^i)*Etemp)), 50]

];

βlast = βtemp

(* End of For Loop *)

];

(* Return *)

dkldensity

];

betafunc1D[βmin_, βmax_, stepSize_: 1, k_] := Module[{dkl, diffs },
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(*

Calculates the Beta Function of the KL divergence = (KL Density_(k+1) − KL Density_(k))

/2^k for the 1D Ising model, where k is the decimation step . The KL Density is

calculated by making a table of values for different k and β, and then taking the

difference along each list that corresponds to a different β. The step size is an

optional argument so that β doesn’t have to only increase by 1.

*)

(* Table of values for the KL divergence of the 1D Ising Model. *)

dkl = Table[

calc1DDensity[ j , k ], {j , βmin, βmax, stepSize}];

(* Prepare array to hold the beta function of the KL divergence . *)

diffs = Array[0 &, Length[dkl ]];

(* Computes the beta function of the KL divergence . *)

For[i = 1, i <= Length[dkl], i++,

kl = dkl [[ i ]];

diffs [[ i ]] =

Table[N[(kl [[m + 1]] − kl [[m]])/2^m, 50], {m, 1, k − 1}]

];

(* Return *)
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diffs

];

(* Plot the KL density . *)

ListLinePlot [Table[calc1DDensity[ j , 19], {j , 0.2, 1.7, 0.1}], PlotMarkers −> Automatic,

PlotLabel −> "KL Density vs Decimation Step", Frame −> True, FrameLabel −> {"

Decimation step k", "KL Density"}, PlotLegends −> LineLegend[Table[Row[{"βJ = ", j}], {j,

0.2, 1.7, 0.1}], LegendMarkers −> Automatic], PlotMarkers −> Automatic, PlotRange −> All]

(* Plot the beta function *)

ListLinePlot [betafunc1D [0.2, 1.7, 0.1, 19], PlotMarkers −> Automatic, PlotLabel −> "Beta

Function of KL Density vs Decimation Step", Frame −> True, FrameLabel −> {"

Decimation step k", "Beta Function"}, PlotLegends −> LineLegend[Table[Row[{"βJ = ", j}],

{j, 0.2, 1.7, 0.1}], LegendMarkers −> Automatic], PlotMarkers −> Automatic, PlotRange −>

All]
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APPENDIX B: MATHEMATICA CODE FOR 2D ISING MODEL FIGURES

We list the code used for generating the figures for the 2D Ising model when using decimation plus

forming a joint distribution, Figures 8.7-8.12.

calc2DDensity[βfirst_ , pow_, density_ : 1] := Module[{βlast = βfirst, n = 2^pow, βtemp = βfirst,

β, i, d = 0, E0, lnZ0, lnZtemp, Etemp, Ktemp, dkldensity , κ, c = 0},

(*

By default , this calculates the relative entropy density by first calculating the

relative entropy and then dividing by a volume factor . The relative entropy is

computed between a 2D Ising Model with no magnetic field and its decimated version .

The decimated theory is a joint distribution formed from the other decimated

versions of the original theory .

The relative entropy for a given β (the β is absorbed into the J) is calculated at each

decimation step from 1 to pow, where pow is the number of decimation steps to carry

out . Of course , the β changes with each decimation step , which is determined by a

recursion relation .

If one inputs ’0’ as the third optional argument, the relative entropy will be computed

instead of the relative entropy density .

*)

(* The internal energy = average energy of the Hamiltonian for the 2D Ising model with

no magnetic field . This value was found in Pathria . *)

κ = 2*Sinh[2*βfirst]/Cosh[2*βfirst]^2;
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If [βfirst < 10^−15,

E0 = N[−n^2*(2*βfirst^2 + (10/3)*βfirst^4), 50],

If [βfirst > 10^3,

E0 = N[−n^2*βfirst*2, 50],

E0 =

N[−n^2*βfirst*

Coth[2*βfirst]*(1 + (2/Pi)*

EllipticK [κ^2]*(2*Tanh[2*βfirst]^2 − 1)), 50]

]

];

(* The Log of the partition function . Also found in Pathria . n^2 = the total number of

sites . *)

If [κ < 10^−10,

lnZ0 =

N[n^2*Log[Sqrt[2]*Cosh[2*βfirst]] + (n^2/2)*Log[2], 50],

lnZ0 =

N[n^2*Log[Sqrt[2]*Cosh[2*βfirst]] + (n^2/Pi)*

NIntegrate[

Log[1 + Sqrt[1 − (κ)^2*Sin[\[Phi ]]^2]], {\[ Phi ], 0,

Pi /2}], 50]

];

(* Create an array to store values of the relative entropy . *)

dkldensity = Array[0 &, pow];
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(* This computes the relative entropy at each step and stores the value . *)

For[i = 1, i <= pow, i++,

If [βlast < 10^(−2),

Ktemp = N[−2*βtemp^4, 50],

If [(βlast > 1000),

Ktemp = N[(3/8)*Log[2] − (1/2)*βtemp, 50],

Ktemp =

N[(1/8)*Log[Cosh[4*βtemp]] − (1/2)*

Log[Cosh[2*βtemp]], 50]

]

];

(* The recursion relation for the new coupling constant . *)

If [βlast < 10^(−2),

βtemp = N[3*βtemp^2 − 8*βtemp^4, 50],

If [(βlast > 1000),

βtemp = N[3*(4*βtemp − Log[2])/8, 50],

βtemp = N[(3/8)*Log[Cosh[4*βtemp]], 50]

]

];

(* Calculate energy and LogZ at each step . *)

κ = 2*Sinh[2*βtemp]/Cosh[2*βtemp]^2;

If [βtemp < 10^(−15),
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Etemp =

N[−(n^2/2^i)*(1)*(2*βtemp^2 + (10/3)*βtemp^4), 50],

If [βtemp > 10^3,

Etemp = N[−(n^2/2^i)*βtemp*2, 50],

Etemp =

N[−(n^2/2^i)*βtemp*

Coth[2*βtemp]*(1 + (2/Pi)*

EllipticK [κ^2]*(2*Tanh[2*βtemp]^2 − 1)), 50]

]

];

κ = 2*Sinh[2*βtemp]/Cosh[2*βtemp]^2;

If [κ < 10^−10,

lnZtemp =

N[(n^2/2^i )*Log[Sqrt[2]*Cosh[2*βtemp]] + ((n^2/2^i)/2)*

Log[2], 50],

lnZtemp =

N[(n^2/2^i )*Log[Sqrt[2]*Cosh[2*βtemp]] + ((n^2/2^i)/Pi)*

NIntegrate[

Log[1 + Sqrt[1 − (κ)^2*Sin[\[Phi ]]^2]], {\[ Phi ], 0,

Pi /2}], 50]

];

(** The following block keeps from dividing by the volume if density selected is 0, i .e

., calculates relative entropy , not relative entropy density , if density selected

is 0.

The relative entropy is computed using an equation I derived .
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**)

If [ density != 0,

dkldensity [[ i ]] = N[(((2^ i )*lnZtemp − lnZ0) + (−E0 + (2^i)*Etemp))/(n^2) , 50],

dkldensity [[ i ]] = N[(((2^ i )*lnZtemp − lnZ0) + (−E0 + (2^i)*Etemp)), 50]

];

βlast = βtemp;

(* End of For Loop *)

];

(* Return *)

dkldensity

];

betafunc2D[βmin_, βmax_, stepSize_: 1, k_] :=

Module[{dkl, diffs },

(*

Calculates the Beta Function of the KL divergence = (KL Density_(k+1) − KL Density_(k))

/2^k for the 2D Ising model, where k is the decimation step . The KL Density is

calculated by making a table of values for different k and β, and then taking the

difference along each list that corresponds to a different β. The step size is an

optional argument so that β doesn’t have to only increase by 1.

*)

(* Table of values for the KL divergence of the 2D Ising Model. *)
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dkl = Table[

calc2DDensity[ j , k ], {j , βmin, βmax, stepSize}];

(* Prepare array to hold the beta function of the KL divergence . *)

diffs = Array[0 &, Length[dkl ]];

(* Computes the beta function of the KL divergence . *)

For[i = 1, i <= Length[dkl], i++,

kl = dkl [[ i ]];

diffs [[ i ]] =

Table[N[(kl [[m + 1]] − kl [[m]])/2^m, 50], {m, 1, k − 1}]

];

(* Return *)

diffs

];

(* Plots . Our figures below our plotted in terms of the critical point of the 2D Ising

model that we used in our calculations : 0.506981.... We look at points above and below

the critical point in even steps of 0.01 or 0.1, etc ., so we use points like

0.306981... for our starting and/or ending values in the plots . *)

(* Plot the KL density *)
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ListLinePlot [Table[calc2DDensity[ j , 19], {j ,

0.30698101907756665365267663270784405816039132035413,

0.50698101907756665365267663270784405816039132035413, 0.01}], PlotMarkers −>

Automatic, PlotLabel −> "KL Density vs Decimation Step", Frame −> True, FrameLabel

−> {"Decimation step k", "KL Density"}, PlotLegends −> LineLegend[Table[Row[{"βJ = ", j

}], {j, 0.30698101907756665365267663270784405816039132035413,

0.50698101907756665365267663270784405816039132035413, 0.01}], LegendMarkers −>

Automatic], PlotMarkers −> Automatic, PlotRange −> All]

(* Plot the beta function *)

ListLinePlot [betafunc2D[0.50698101907756665365267663270784405816039132035413,

0.70698101907756665365267663270784405816039132035413, 0.01, 19], PlotMarkers −>

Automatic, PlotLabel −> "Beta Function of KL Density vs Decimation Step", Frame −>

True, FrameLabel −> {"Decimation step k", "Beta Function"}, PlotLegends −> LineLegend[

Table[Row[{"βJ = ", j}], {j, 0.50698101907756665365267663270784405816039132035413,

0.70698101907756665365267663270784405816039132035413, 0.01}], LegendMarkers −>

Automatic], PlotMarkers −>Automatic, PlotRange −> All]

(* Prepare to plot the KL density versus coupling *)

kltempplot = Table[calc2DDensity[ j , 19], {j ,

0.00698101907756665365267663270784405816039132035413,

1.30698101907756665365267663270784405816039132035413, 0.01}];

(* Plot the KL density versus coupling at different decimation steps *)

ListLinePlot [Table[kltempplot [[1 ;; All , k ]], {k, 1, 8, 1}], DataRange −>

{0.00698101907756665365267663270784405816039132035413,

1.30698101907756665365267663270784405816039132035413}, PlotMarkers −> Automatic,

PlotLabel −> "KL Density vs Coupling", Frame −> True, FrameLabel −> {"βJ", "KL
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Density"}, PlotLegends −> LineLegend[Table[Row[{"Decimation step k = ", j}], {j, 1, 8, 1}],

LegendMarkers −> Automatic], PlotMarkers −> Automatic, PlotRange −> All]
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