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Abstract One of the possible ways to test gravity theories
and get constraints on parameters of a gravity theory and a
black hole is based on studies of black hole shadow applying
Event Horizon Telescope (EHT) data from the shadow sizes
of M87* and Sgr A*. In this sense, we study the shadow
of rotating charged black holes in Einstein–Maxwell scalar
(EMS) theory. First, we obtain a rotating EMS black hole
solution and analyze the horizon properties. We derive the
effective potential for the circular motion of photons along
null geodesics around the rotating black hole and obtain the
black hole shadow using celestial coordinates. The effects
of the black charge and spin and EMS theory parameters
on the shape of the black hole shadow, its radius, and dis-
tortion parameters are analyzed in detail. We have obtained
upper and lower limits for spin and black hole charges of
Sgr A* and M87* using their shadow size for various val-
ues of EMS parameters. Lastly, we computed and examined
the standard shadow radius, equatorial, and polar quasinor-
mal modes using the geometric-optic relationship between
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the parameters of the quasinormal mode and the conserved
values along the geodesics.

1 Introduction

Testing gravity theories, including Einstein’s theory of gen-
eral relativity and modifications or alternatives, is a critical
area of theoretical physics and astrophysics research. Vari-
ous alternative theories to general relativity have been pro-
posed. These include scalar-tensor theories, f (R) gravity,
and theories with extra dimensions. These alternatives are
tested against observations and experiments.

In the context of the low-energy regime of string theory, it
is possible to introduce the dilaton scalar field, which serves
as an additional extension to the Einstein action. This exten-
sion can take the form of axions, gauge fields, and other
complex interactions involving the dilaton and various fields.
Researchers have investigated the causal structures and ther-
modynamic characteristics of black hole solutions that incor-
porate this dilaton field, as detailed in the specified references
[1–10].

An intriguing aspect arises when investigating black hole
solutions in the presence of a cosmological constant. The
connection between anti-de Sitter solutions and conformal
field theory offers a means to unite quantum fields and gravi-
tons. Theories incorporating negative cosmological constants
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can be considered integral components of supergravity the-
ories formulated within higher-dimensional spacetime. Sev-
eral investigations of such gravity theories and black hole
solutions are performed in Refs. [11–16].

Within the framework of heterotic string theory, the scalar
dilaton field is intricately linked to higher-order expressions
involving the electromagnetic field tensor. As a result, when
the electromagnetic field tensor is non-zero, it can lead to a
non-constant dilaton term. This, in turn, means that in the
Reissner–Nordström limit, the solution diverges from being
an approximate solution within the context of string theory
[2]. In Refs. [17,18], the authors provide estimations of the
black hole merger and thin-accretion disc model studied in
Einstein–Maxwell-Dilaton theory.

In our previous studies [19–21], we extensively explored
the characteristics of the spacetime surrounding charged
black holes within the Einstein–Maxwell-scalar (EMS) the-
ory. These investigations involved a comprehensive analysis
of the behavior of test particles with electric charge and mag-
netic dipole moment, shedding light on the structure of the
spacetime. Additionally, we also tested EMS gravity through
data from astrophysical phenomena, in particular, quasiperi-
odic oscillations [22]. Recent progress in studying rotating
charged black holes within the EMS theory has resulted
in important breakthroughs in comprehending their shadow
properties. The interplay of charge, rotation, and scalar fields
in these black holes significantly influences the form and size
of their shadows, providing valuable insights into the grav-
itational dynamics involved [23]. Studies have shown that
scalar fields can cause unique distortions in shadows, mak-
ing them a valuable tool for evaluating EMS theory using
real-world observations [24]. Comparisons with observations
from the Event Horizon Telescope (EHT), specifically those
of Sgr A* and M87, offer valuable opportunities to refine
our understanding of these fascinating objects and constrain
theoretical models [25]. By utilizing shadow measurements,
we can strengthen our capacity to evaluate predictions of
different gravity theories [26]. In addition, examining shad-
ows in alternative theories of gravity, such as scalar-tensor
and dilaton-axion models, provides a wider framework for
exploring black hole physics [27,28]. These developments
highlight the significance of shadow studies in investigating
the fundamental aspects of gravity and black hole physics.

In 2019, the EHT Collaboration made a groundbreaking
announcement. They unveiled the first image of a black hole,
a shadow-like representation of the supermassive black hole
located in the center of the M87 galaxy [29]. Their work ren-
dered the black hole physically discernible, enabling them to
establish constraints on the size of the black hole’s shadow.
The revelation of the black hole shadow image in 2019 has
significantly heightened scientific interest in investigating
black hole shadows. In the context of black hole shadows,
one of the initial and notable efforts to quantitatively vali-

date the Kerr metric through shadow analysis was conducted
in Refs. [30–32]. Since strong field phenomena are the only
indirect tests that can access the event horizon [33], the black
hole shadow plays an important role in GR [34]. The shadow
is characterized by a central flux depression greater than a
factor of approximately 10, along with a compact emission
zone with an angular diameter of approximately θd = 42±3
microarcseconds [35–38].

In 2022, researchers from the Event Horizon Telescope
(EHT) project presented an image of the black hole at the
center of the Milky Way, known as Sgr A*. This image was
generated with the assistance of star dynamical priors, which
consider the mass and distance estimates derived from the
motion of stars in the vicinity of the black hole [39–41], and
show that the angular shadow of diameter (dsh = 48.7 ± 7
microarcsecs) According to General Relativity (GR), the
recorded images of two black holes, M87* and Sgr A*, are
in alignment with the characteristics expected from a Kerr
black hole. This consistency suggests that these black holes
are well-described by the Kerr metric, which is the solu-
tion to the Einstein field equations for a rotating black hole
[29,39]. Although Kerr-like black holes arising under mod-
ified gravities are not entirely confirmed in the relative devi-
ation of quadrupole moments and the current measurement
error of spin or angular momentum, they are not completely
excluded [42]. Furthermore, Sgr A * shows concordance with
GR predictions of three orders of magnitude in central mass
compared to EHT results for M87* [39]. In recent years,
studying black hole’s shadows has garnered considerable
interest, especially considering modified theories of grav-
ity [43–47]. Furthermore, investigating spinning black holes
has provided a fresh understanding of these celestial entities’
optical characteristics and shadow qualities [48,49]. Further-
more, observational data, such as the data obtained from the
EHT, have played a vital role in limiting the range of theoreti-
cal parameters [50,51]. Hence, one of the pressing challenges
in contemporary astrophysics is the assessment of modified
or alternative gravity models using the data provided by the
EHT Collaboration.

In Ref. [52], the shadow of the Simpson–Visser black
holes (wormholes) was recently investigated. Constraints on
the length parameter were obtained using the image size of
supermassive black holes/wormhole candidates at the center
of galaxies M87 and Milky Way observed by EHT obser-
vations. The similarity of the SV black hole shadow and
the shadow of the Kerr black holes was given. However,
the SV wormhole (with l > 2) with a large spin can cast
a closed photon ring. Gravitational lensing and retrolensing
in both weak and strong gravitational field limits, together
with quasinormal spectra and gray-body factors, have been
studied in Refs. [53–56]. Also, the strong deflection lim-
its of the Simpson–Visser spacetime have been studied in
Refs. [57,58] and found that the photonsphere around the
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SV spacetime does not depend on (weakly depend on) the
length parameters when l ≤ 3. This implies that distinguish-
ing the black hole from the wormhole in the SV metric is not
possible.

Furthermore, the investigation of the interaction between
the electric charge of Schwarzschild-de Sitter black holes and
the parameters governing the bounce effect was carried out
in the study referenced as [59]. This study revealed that the
orbital motion around black-bounce-Reissner–Nordström
black holes closely resembles that around Schwarzschild
black holes, thus highlighting the degeneracy in their effects.

To mitigate the degeneracy properties of the black hole
parameters, the relationship between black hole charge and
bounce parameters has been explored to utilize precession
data obtained from the S2 star orbits around Sgr A* as
detected by the GRAVITY Collaboration. Additionally, mea-
surements of the shadow size of Sgr A* by the Event Horizon
Telescope (EHT) have been employed. Similar tests involv-
ing various black holes within different gravity theories and
utilizing observations from both the EHT and GRAVITY
Collaborations have been conducted as outlined in Refs. [60–
66].

The main focus of this paper is to explore the behavior
of photon motion in the vicinity of charged rotating black
holes within the framework of EMS theory. We also focus on
understanding the optical properties of the spacetime around
the black hole, including the presence of a photon sphere,
an appearance, and distortion of the black hole’s shadow.
Furthermore, we derived constraints on the charge of the
black holes and the parameters of EMS theory using data
from the Event Horizon Telescope (EHT), particularly the
shadow sizes of the supermassive black holes SgrA* and
M87*. Additionally, we analyzed the emission rate of rotat-
ing EMS black hole evaporation through Hawking radiation
near the black hole horizon.

The work is organized as follows: in Sect. 2, we provide
a brief explanation of charged black hole solutions in EMS
theory and obtain a rotating charged black hole solution using
the NJA. Also, we study the horizon properties of the obtained
rotating black hole spacetime. The null geodesic equations
are derived in the spacetime of the rotating black hole, and
circular photon orbits around the rotating black holes are
investigated in Sect. 3. Also, we studied the radius and devi-
ation parameters of the shadow of the black hole in Sect. 3.
Section 4 is devoted to getting constraint values on the black
hole charge and spin parameters for different values of the
EMS parameters using data from the image sizes of Sgr A*
and M87* measured by EHT Collaboration. Finally, we dis-
cuss and summarize our main results in Sect. 6.

2 Charged rotating EMS black holes

In this section, we intend to present the black hole solution
of the EMS field equations. The action that governs the grav-
itational field of the EMS theory is given as [1,2,67],

S =
∫

d4x
√−g

[
R − 2∇αφ∇αφ

− K (φ)FαβF
αβ − V (φ)

]
, (1)

where ∇α represents the covariant derivative, g denotes the
determinant of the metric tensor gμν , R corresponds to the
Ricci scalar characterizing curvature, and φ is the massless
scalar field, Fαβ represents the electromagnetic field tensor,
and K (φ) denotes the coupling function between the dilaton
field and the electromagnetic fields, and finally, V (φ) stands
for the potential of the scalar field.

By applying the principle of least action and varying the
action (1) for the metric gαβ , the vector potential Aα , and the
dilaton (scalar) φ fields, we derive the equations of motion
for the EMS system in the following form [67]

Rαβ = 2∇αφ∇βφ + 1

2
gαβV

+ 2K

(
Fαγ F

γ
β − 1

4
gαβFμνF

μν

)
, (2)

∇α

(
K Fαβ

) = 0 , (3)

∇α∇αφ − 1

4

(
V,φ + K,φFμνF

μν
) = 0, (4)

where ,φ denotes derivative with respect to the dilaton field,
Rαβ is the Ricci tensor.

It’s evident that Eqs. (2)–(4) represent a system of cou-
pled differential equations, making it challenging to discover
exact solutions for such a system of nonlinear equations.
However, it is possible to find exact analytical solutions for
complex systems under certain assumptions.

In Ref. [67], the authors obtain the exact analytical solu-
tions for spacetime around the static spherically symmetric
black hole in EMS theory in the following general form:

ds2 = − f (r)dt2 + dr2

f (r)
+ h(r)(dθ2 + sin2 θdφ2), (5)

where f (r) andh(r) are radial functions. In Ref. [67] Authors
have used the following special form for the function K (φ)

K (φ) = 2e2φ

βe4φ + β − 2γ
(6)

and obtained the solution in the form

f (r) = 1 − 2M

r
+ βQ2

h(r)
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h(r) = r2
(

1 + γ Q2

Mr

)
. (7)

Spacetime metric (5) with the functions (7) is the solution of
static and spherically symmetric black holes in EMS theory.
When the conditions β = 1 and γ = 0 are applied, the
Reissner–Nordström solution can be obtained, and the metric
reduces to Schwarzschild black hole at β = γ = 0.

The metric of a rotating black hole is considered one of
the most straightforward extensions of a static black hole,
incorporating an extra spin component conventionally repre-
sented by the symbol a. The characteristics and dynamics of
the spacetime framework surrounding a revolving black hole
exhibit notable distinctions compared to its static counterpart,
particularly regarding the trajectory of photons. Estimating
the significance of a revolving black hole can be achieved
using an analysis that compares the black hole’s shadow with
the observational data obtained from the EHT for supermas-
sive black holes. Given that supermassive black holes exhibit
rotation, it is advisable to consider rotating black holes for a
comprehensive and precise analysis of their shadows.

The Newmann–Janis Algorithm (NJA) was developed to
construct rotating solutions for black hole metrics within the
framework of general relativity (GR) [68,69]. Black holes
commonly possess only three fundamental parameters: mass,
spin, and charge. In a study conducted by Hansen and Yunes
in 2013, it was discovered that applying the No-Hair Theorem
to static black holes within gravity theories other than gen-
eral relativity reveals the emergence of hitherto unidentified
characteristics of black holes. In recent research undertaken
by Azreg-Aïnou, improvements were made to the NJA to
obtain rotating counterparts without encountering additional
challenges [70,71]. Therefore, this approach can be readily
implemented for black hole metrics in general relativity and
modified gravity theories.

In recent works, the rotating black hole metrics have been
successfully constructed from non-rotating black hole solu-
tions [72,73]. Hence, we employ the modified NJA method
to derive the rotational version of the static metric (5). Ini-
tially, we introduce the Eddington-Finkelstein coordinates
(u, r, θ, φ) and proceed by employing the corresponding
transformation

du = dt − dr

f (r)
, (8)

the static metric (5) is transformed to the form

ds2 = − f (r)du2 − 2dudr + r2dθ2 + r2 sin2 θdφ2. (9)

Moreover, the conjugate metric tensor can be represented as
follows:

gab = −lanb − nalb + mam̄b + m̄amb, (10)

where the null tetrads are defined as:

la = δar , (11)

na = δau − f (r)

2
δar , (12)

ma = 1√
2r

(
δaθ + i

sin θ
δaφ

)
. (13)

The symbol m̄a represents the complex conjugate of ma . It is
readily apparent that the aforementioned null tetrads exhibit
the following relationships:

lal
a = nan

a = mam
a = m̄am̄

a = 0, (14)

lam
a = lam̄

a = nam
a = nam̄

a = 0, (15)

−lan
a = −lana = mam̄

a = mam̄a = 1. (16)

In this analysis, we proceed with the intricate coordinate
transformations within the (u, r )-plane,

u′ → u − ia cos θ, r ′ → r + ia cos θ, (17)

where a is the spin parameter of the black hole.
The subsequent NJA stage introduces complexity to the

radial coordinate, denoted as r . However, it is not deemed
essential, as demonstrated by the findings in the study con-
ducted by [70]. The compactification process can be avoided
by considering the transformation properties of δ

μ
ν as a vector

under transformation (17). Simultaneously, the metric func-
tions associated with the metric (9) transform unspecified
functions

f (r) → F(r, a, θ), r2 → H(r, a, θ), (18)

in such a manner

lim
a→0

F(r, a, θ) = f (r), lim
a→0

H(r, a, θ) = r2. (19)

Through these changes, the null tetrads are altered

la = δar , (20)

na = δau − F

2
δar , (21)

ma = 1√
2H

(
(δau − δar )ia sin θ + δaθ + i

sin θ
δaφ

)
. (22)

Utilizing the new null tetrads, the rotating metric in the
Eddington-Finkelstein coordinates is as follows:

ds2 = −Fdu2 − 2dudr + 2a sin2 θ(F − 1)dudφ

+2a sin2 θdrdφ + Hdθ2

+ sin2 θ
(
H + a2 sin2 θ(2 − F)

)
dφ2. (23)

By transforming these coordinates to the Boyer-Lindquist
coordinates, we may get the rotational counterpart for the
static black hole metric (5). Hence, the implementation of
global coordinate transformations is proposed

du = dt + λ(r)dr, (24)
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dφ = dφ′ + χ(r)dr, (25)

with

λ(r) = − a2 + r2

a2 + r2 f (r)
, (26)

χ(r) = − a

a2 + r2 f (r)
. (27)

Furthermore, it is possible to compose as follows:

F =
(
r2 f (r) + a2 cos2 θ

)
H

, (28)

H = r2 + a2 cos2 θ. (29)

Then, the rotational version of the black hole metric in
the context of Einstein–Maxwell scalar theory is described
as follows.

ds2 = −Δ − a2 sin2 θ

Σ
dt2 + Σ

Δ
dr2 + Σdθ2

+ (Σ + a2 sin2 θ)2 − a2 sin2 θΔ

Σ
sin2 θdφ2

−2
a

(
2Mr + (2γ − β)Q2

)
Σ

sin2 θdφdt (30)

where

Σ = r2 + a2 cos2 θ + γ Q2

Mr
, (31)

Δ = r2 + a2 − 2Mr + Q2
[
β + γ

(
2 − r

M

)]
. (32)

It is evident that as the limit a → 0 is approached, the
metric (30) undergoes a reduction to the static metric (5)
while simultaneously satisfying the conditions (19). When
conditions γ = 0 and β = 1 are applied to the metric (30),
it results in the Kerr–Newman black hole solution, which
is further simplified to the Kerr black hole when the charge
vanishes (Q = 0).

To investigate the structure of the event horizon of the
rotating black hole in EMS theory, as described by the metric
(30), we proceed by solving the equation grr = 0 to obtain
the roots that correspond to the radius of the horizon.

In Fig. 1, we presented an analysis of the relationship
between the radius of the horizon and the parameters of an
EMS black hole. On the left panel, black and red dashed leg-
ends correspond to the Kerr and Kerr–Newman black holes,
respectively, according to the chosen fixed values of parame-
ters. Therefore, following this graph when comparing rotat-
ing black holes in Einstein–Maxwell-Scalar (EMS) theory
and the Kerr and Kerr–Newman solutions makes sense. What
can be revealed from Fig. 1 is that an increase in the value of
parameter β, at γ = 0, causes an extreme value of charge Q
increase. In contrast, the limiting value of Q decreases with
an increase of β when γ is less than zero. Furthermore, there
are apparent differences in the positive and negative values
of the parameter, γ , as described in the right panel.

The behavior of the horizon of the black hole by varying
parameters is illustrated in Fig. 2. We can see from these
pictures that some values of the parameters of the black hole
may have one horizon. For instance, if we fix γ = 0 and
β = 0.5, there is one horizon in a/M = 0.8 and Q/M =
0.85. A further increase in Q/M causes the black hole’s
horizon to disappear. To these properties, we can construct
some expression for the maximum spin that separates with
black hole and naked singularity. From the set of conditions,
Δ = 0 = Δ′ we can easily find,

amax = M

2

√√√√(
2 + γ

Q2

M2

)2

− 4
Q2

M2 β , (33)

where the prime denotes the derivative with respect to r . From
this, we find the highest value of a appears when β = 0 and
γ = 0 cases write as follows,

amax

M
= 1 + γ Q2

2 M
, and,

amax

M
=

√
1 − β

Q2

M2 , (34)

respectively. It is easy to see that this value is more than one
for γ > 0 and less than one for γ < 0.

It is well-known that the selection of black hole parame-
ters is subject to certain limits, and it is impossible to choose
values for these parameters arbitrarily. Whether an object is a
black hole or a naked singularity depends on the presence or
absence of an event horizon. In Fig. 3, we described the black
hole region depending on the values of the black hole param-
eters. One can conclude that an increase in the β parameter
leads to a decrease in the maximum spin, and a decrease in
γ increases the range of maximum spin and charge values.

3 Null geodesics and the black hole shadow

We start this section by examining the geodesic structure
surrounding the rotating black hole in the EMS theory, as
described by Eq. (30). We will analyze the circular photon
orbits around a black hole by considering the effective poten-
tial, a crucial parameter for investigating the shadow pro-
duced by a rotating black hole. Geodesic equations must be
solved to determine the motion of the particles in a given
background. The derivation of geodesic equations can be
accomplished using the Hamilton–Jacobi (HJ) method. The
HJ equation that characterizes the motion of a particle is given
by

∂S

∂τ
= −1

2
gμν ∂S

∂xμ

∂S

∂xν
, (35)

where τ is the affine parameter. In the context of the black
hole metric being examined, there are two Killing vector
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Fig. 1 Dependence of the event horizon radius of the black hole with parameters a, β, γ and Q

Fig. 2 Dependency between Δ and r in different value of parameters a, Q, β and γ

fields denoted as ∂t and ∂φ , representing translational and
rotational invariance with respect to proper time. These vec-
tor fields give rise to two constants of motion, namely the
particle energy E and the orbital angular momentum L ,

− E = gtμ ẋ
μ = pt , (36)

L = gφμ ẋ
μ = pφ, (37)

The variables pt and pφ represent the generalized momenta
in their respective orientations. It can be postulated that the

Jacobi action can be expressed in the following way,

S = 1

2
m2

pτ − Et + Lφ + Sr (r) + Sθ (θ). (38)

The symbol mp represents the rest mass of the particle. The
functions Sr (r) and Sθ (θ) are dependent solely on the vari-
ables r and θ , and their specific forms are still undetermined.
By substituting the Jacobi action (Eq. 38) into the Hamilton–
Jacobi equation (Eq. 35) and taking into account that a photon
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Fig. 3 Relationship between the extremal black hole parameters

mass is zero, one may get the following expressions

Sr (r) =
∫ r √R(r)

Δ(r)
dr, Sθ (θ) =

∫ θ √
�(θ)dθ, (39)

with

R(r) =
[
E(h(r) + a2) − aL

]2 − Δ(K + (L − aE)2),

(40)

�(θ) = K + cos2 θ

(
a2E2 − L2

sin2 θ

)
, (41)

Here, the symbol K represents the Carter constant, asso-
ciated with the Killing–Yano tensor field, and serves as the
fourth constant of the geodesics. Given that there are four
equations associated with four coordinate variables and the
system of equations is fully integrable, it follows that there
are four constants. In the case of the photon motion, we have
restricted the mass as mp = 0. By computing the deriva-
tives of the Hamilton–Jacobi action for the four constants as
mentioned above and, after that, solving the resulting equa-
tions by equating them to zero, we can derive the subsequent
geodesic equations,

Σ
dt

dτ
= a(L − aE sin2 θ) + h + a2

Δ
(E(h + a2) − aL),

(42)

Σ
dr

dτ
= ±√

R, (43)

Σ
dθ

dτ
= ±√

�, (44)

Σ
dφ

dτ
=

(
L

sin2 θ
− aE

)
+ a

Δ
(E(h + a2) − aL). (45)

The present investigation centers on examining circular
photon orbit by analyzing radial motion. The significance of
the circular motion of photons is crucial in this investigation.
The equation denoted as (43) can alternatively be formulated
as the radial geodesic equation,

1

2

(
Σ

dr

dτ

)2

+ Vef f = 0, (46)

where Vef f is the effective potential. It takes the following
form in the equatorial plane,

Vef f = −R(r)

2r4 . (47)

The following standard conditions give the unstable circular
photon orbits forming the Black hole shadow,

Vef f = 0,
∂Vef f

∂r
= 0,

∂2Vef f
∂r2 < 0. (48)

Introducing the new definitions ξ = L
E and η = K

E2 , and solv-
ing the equations in (48), the following results are obtained
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[74]

ξ =
(
a2 + h

)
Δ′ − 2Δh′

aΔ′ , (49)

η = 4a2Δh′2 − (
Δ′h − 2Δh′)2

a2Δ′2 . (50)

3.1 Black hole shadow

We are interested in investigating the shadow produced by
the rotating black hole within the framework of the EMS
theory. It is useful to mention that, in our particular scenario,
all light sources are positioned at an infinite distance and
are uniformly scattered in all directions. Furthermore, it is
important to note that there is no discernible light source
between the black hole and the observer. We assume that the
observer is at an infinite distance from the black hole. The
shadow images, based on the assumptions stated above, are
determined by two celestial coordinates [75]

μ = − lim
r0→∞

(
r2

0 sin θ0
dφ

dr

∣∣∣∣
θ→θ0,r→r0

)

= −ξ(rp) csc θ0, (51)

λ = lim
r0→∞

(
r2

0
dθ

dr

∣∣∣∣
θ→θ0,r→r0

)

= ±
√

η(rp) + a2 cos2 θ0 − ξ(rp)2 cot2 θ0. (52)

The variable θ0 represents the inclination angle of the
observer relative to the symmetry axis of the spacetime.
When the viewer is situated on the equatorial plane, the celes-
tial coordinates are rendered in a simpler form

μ = −ξ(rp), λ = ±
√

η(rp). (53)

The shadow can be acquired by generating a parametric rep-
resentation in the celestial plane of μ-λ, which adheres to the
Eqs. (49) and (50). The parameter that governs the represen-
tation is denoted as rp. As mentioned above, the zone does
not get illumination from sources that emit photons. Deter-
mining the shadow’s boundary is contingent upon the radius
of the circular photon orbits.

In Fig. 4, the shadow images of rotating black holes in
EMS theory have been illustrated in different ranges of the
parameters a, Q, β, and γ . These plots explain how the size
of the shadow changes depending on black hole parameters.
The size of the shadow region diminishes as the Q parameter
increases, and the shape of the shadow becomes more dis-
torted as the Q/M approach’s unity. Moreover, the shadow
area experiences a reduction as the parameter β increases,
whereas the shadow radius increases with increasing value
of γ .

3.2 Shadow observables

The silhouette of the black hole serves as a distinctive rep-
resentation of the characteristics of the surrounding space-
time in terms of its configuration and dimensions. There-
fore, this approach can be a valuable technique for eval-
uating novel theories of gravity and limiting the parame-
ters associated with black holes. Constraints for the black
hole parameters can be obtained by utilizing shadow observ-
ables. It is necessary to establish the measurable variables
that delineate the shape and size of the black hole’s silhou-
ette to accomplish this. For the first time, Hioki and Maedia
developed two observational parameters related to the black
hole shadow [76]; for an alternative approach, see Ref. [77].
The first parameter, known as the shadow radius, quantifies
the shadow’s size. The second parameter is called the devi-
ation parameter, which is used to characterize the distortion
exhibited by the circular shape of the shadow.

The characteristic of being circular is exclusive to static
black holes, whereas rotating black holes possess a different
set of characteristics. Hence, an investigation of distortion is
conducted to analyze the contrast between shadows of rotat-
ing black holes and static black holes and those exhibiting
minimal distortion in their shadows. A readily observable
parameter quantifies the measurement of distortion called
the linear radius of the shadow, as determined in previous
studies [76,78].

Rsh = (μt − μr )
2 + λ2

t

2|μt − μr | , (54)

The variable Rsh represents the radius of a theoretical circle
that is expected to contact the shadow curve at three specific
places: (μt , λt ), (μb, λb), and (μr , 0). The shadow of the
black hole can be defined as the set of points in the space
(μ, λ), where each point is identified by the subscripts t , b,
and r , denoting the top, bottom, and rightmost points, respec-
tively. Please consult Figure 9 in Ref. [78] for additional
information. Equation (54) is relevant exclusively to rotat-
ing black holes, as static black holes possess circular shad-
ows that the coordinates of the curve may describe on any
coordinate axes. Subsequently, the distortion can be acquired
through the established equation.

δs = |μ̄l − μl |
Rsh

. (55)

The points (μl , 0) and (μ̄l , 0) overlap the −μ axis, the former
residing in the shadow and the latter in the imaginary circle.
The points on the shadow are identified by the subscript l
positioned on the left side of the λ-axis. In contrast, the loca-
tions on the imaginary circle are indicated by the presence
of a bar.

Figure 5 illustrates the graphical representation of the vari-
ation in distortion with the spin parameters of the black
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Fig. 4 Black hole shadow for various parameter a, γ , Q and β

Fig. 5 Variation of the δ with respect to charge parameter Q (upper left panel), β (upper right panel), parameter γ (lower left panel) and spin
parameter a (lower right panel)
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hole a, charge Q, and the parameters of the EMS theory,
β and γ . The distortion parameter increases sufficiently with
increased black hole spin and charge values. However, the
effects of the parameters of the scalar field γ and β on δ

become stronger at higher values of Q and a. The top left
panel shows that the difference of δ in the cases β = 0.6 and
β = 0.8 is negligible when Q ≤ 0.5M or less than the error
in measurements of shadow distortion.

In addition to the approach proposed by Hioki and Maeda,
an alternative method can be utilized to estimate the black
hole parameter. This method is based on the coordinate inde-
pendent formalism [79,80] and leverages the shadow observ-
ables, namely the shadow area and oblateness. The concepts
of the black hole shadow area denoted as A, and oblateness,
denoted as D, can be introduced as [80,81]

A = 2
∫ r+

r−
λ(r)

dμ(r)

dr
dr, (56)

D = Δμ

Δλ
, (57)

where r± are radii of stable circular photon orbits obtained
by solving the equation ηc = 0 [82].

The dependencies of the shadow area A and the oblateness
D on the parameters of a rotating black hole in EMS theory
are plotted in Figs. 6 and 7. These dependencies are obtained
using numerical computations. What can be revealed from
Fig. 6 is that the observable parameter A decreases with an
increase of a and Q, while the shadow area increases when
γ increases. Similarly, oblateness D also decreases with an
increase in spin and charge parameters and increases within
the influence of the parameter γ . In addition, the parameter
β causes a decrease in the values of both area and oblateness.

4 Comparison with EHT data

The acquisition of observational data on the shadow images
of two supermassive black holes, namely Sgr A* and M87*,
through the collaborative efforts of the Event Horizon Tele-
scope (EHT), serves as a compelling impetus for the scientific
community to undertake further investigations into the study
of black hole shadows. Using the provided data, it is possible
to constrain the black hole parameters within the context of
several modified or alternative gravity models [81,83–89].
This allows for an evaluation of whether the outcomes of
the model align effectively with theoretical proposals. In our
study, we incorporate constraints on the parameters of the
rotational black hole in the EMS theory based on the observa-
tional outcomes obtained from the Event Horizon Telescope
(EHT) observations of M87* and Sgr A*.

The restrictions were obtained by utilizing the angular
diameters of the two black holes, as estimated by the EHT
team. The angular diameter of the shadow picture observed

by an observer located at a distance d from the black hole
can be mathematically represented as

θd = 2
Ra

d
, Ra =

√
A

π
(58)

where Ra is the area shadow radius. When Eq. (56) is taken
into account, it can be observed that the angular diameter
of the shadow is contingent upon the properties of the black
hole and the observation angle. Additionally, the dependence
on the mass of the black hole is implicit.

Now, we examine the rotating black holes M87* and Sgr
A* within the context of the EMS theory. Our objective is to
compare the theoretical results of shadow analysis with the
shadow images obtained from observational data of M87*
and Sgr A* captured by the Event Horizon Telescope. The
mass of the supermassive black hole known as M87* and
its distance from Earth are denoted as M = 6.5 × 109M�
and d = 16.8Mpc, respectively, as reported in references
[37,38]. To maintain simplicity, we have disregarded the
uncertainties associated with the observations of mass and
distance of supermassive black holes. According to the find-
ings of the Event Horizon Telescope [29], the angular diam-
eter of the picture of the supermassive black hole M87* is
measured to be θd = 42 ± 3μas at a 1-σ confidence level.

In Fig. 8, we show the density visualizations of the angular
diameter θd in the a-Q domain for the various fixed values
of β and γ . The black curves represent the lower boundaries
of the measured angular diameter of the black hole M87*
shadow image. It can be seen that when we choose the pos-
itive parameter γ instead of the negative one, the threshold
value of Q/M is almost double (approximately 0.35 to 0.76):
in addition, reducing the parameter β leads to a decrease in
the restricted area.

Constraints on the shadow image of Sgr A* can also be
derived from the EHT data. The angular diameter of the
shadow of the supermassive black hole Sgr A* is measured
to be θd = 48.7 ± 7μas according to the Event Horizon
Telescope [39]. The mass of Sgr A* and its distance from the
solar system are estimated to be approximately 4 × 106M�
and 8 kpc, respectively [40,41].

The limitations of Sgr A * are described in Fig. 9 for
the two scenarios for inclination angles of 90◦ and 50◦. The
black curves correspond to the mean value of the measured
angular diameter of Sgr A*. In the lower panels, the density
plots obtained from fitting the data show that the black hole
angular diameter is within the range of the reported angu-
lar diameter of Sgr A*, which is θd = 48.7 ± 7μas. Hence,
we may assert that our theoretical findings about the rotat-
ing EMS black hole can theoretically match the supermas-
sive black hole at our galaxy’s core. The figure indicates an
increase in the upper limit of the charge parameter Q (which
rises from around 0.58M to over 0.7M) as the fixed value
of the parameter β decreases. However, there is a significant
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Fig. 6 Variation of the shadow area with respect to spin parameter a (left panel) and charge Q (right panel)

Fig. 7 Variation of the oblateness with respect to spin parameter a (left panel) and charge Q (right panel)
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Fig. 8 Variation of the angular diameter observable for spin parameter a and charge Q with fixed parameters γ = 0.2 and β = 0.4 (left panel)
and parameter β with fixed parameters Q/M = 0.3 and γ = 0.2 (right panel) for M87∗. The bar chart represents the angular diameter

Fig. 9 Variation of the angular diameter observable for spin parameter a and charge Q with fixed parameters γ = 0.2 and β = 0.4 for inclination
angle 900(left panel) and 500 (right panel) for Sgr. A∗. The bar chart represents the angular diameter

disparity between the instances when the parameter γ has
contrasting values. Furthermore, an alteration of the inclina-
tion angle impacts the angular diameter variation in the a-Q
space. These density plots allow for examining the relation-
ship between the angular diameter of the black hole shadow
and its parameters. Therefore, this study clearly shows that
one can estimate black hole parameters using observational
data of black hole shadows.

5 Equatorial and polar QNMs and their relation with
typical shadow radius

This section explores the correlation between the shadow and
Quasinormal Modes (QNMs). QNMs are well-recognized as
modes associated with the ringdown phase of a black hole.
They may be expressed in terms of their real and imaginary
components, denoted Σ = Σr − iΣi . Here, Σr and Σi are
respectively denoting the real and imaginary QNMs. A recent
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argument has been made about the relationship between the
shadow radius and the real component of QNMs for static
metrics, as [90,91]

Rs = Ω + 1
2

Σr
. (59)

In Eq. 59, Ω represents angular momentum of the perturba-
tion. It was shown in Ref. [92] that the Kerr black hole’s
QNM frequency in the eikonal limit reads,

ΣQ =
(

Ω + 1

2

)
ωr − iσ

(
n + 1

2

)
, (60)

where n is the overtone number and

ωr = ωθ + m

Ω + 1
2

ωpre. (61)

The symbol ωθ represents the orbital frequency in the polar
direction. Furthermore, ωpre specifies the Lense–Thiring
precision frequency of the orbit plane, while σ represents the
orbit’s Lyapunov exponent. In the following part, we exam-
ine the relationship between QNMs and the shadow radius
observed by an observer at a significant distance from the
black hole. It is well known that rotation distorts the black
hole shadow; as a consequence, the form of the shadow varies
with the viewing angle. In the following, we will look at two
separate cases.

5.1 For θ0 = π
2

Typically, there is no specific term for the shadow [93]. How-
ever, for the sake of this discussion, we will focus on the sce-
nario when θ0 = π

2 . To simplify matters, we will additionally
consider the equatorial orbit, which may be used to calculate
the standard shadow radius. In addition, we will utilize the
fact that the Lense–Thirring precession frequency is con-
nected to the orbital frequency and the Keplerian frequency.
Specifically, the Lense–Thirring precession frequency for
orbits that rotate in the same direction as the perturbation,
with a small deviation from the equatorial plane, can be
expressed as follows [94]:

ωpre = ±ωφ ∓ ωθ (62)

where

ωφ = −∂r gtφ ± √
(∂r gtφ)2 − (∂r gtt )(∂r gφφ)

∂r gφφ

. (63)

The WKB analysis method may be used to examine Kerr
QNMs by representing the integral 2

∫ θ+
θ−

√
�dθ as 2π(L −

|LQ |), which can be interpreted as the Bohr-Sommerfeld
Condition. This may be linked to the eigenvalue problem
in the θ direction for the Kerr QNMs (see Ref. [92] for more

information). There was a debate over

κ + L2 � L2
Q − a2E2

2

(
1 − L2

L2
Q

)
. (64)

Upon simplification of the equation mentioned above, we get

ξ + η2 � L2
Q

E2 − a2

2

(
1 − L2

L2
Q

)
. (65)

Now, as stated in Reference [92], we possess

L ←→ m

E ←→ Σr

LQ ←→ Ω + 1

2
. (66)

The equation Σr = LQωr is stated here. In the Eikonal limit,
when m = Ω >> 1, we find that ν = m/(Ω + 1/2) = 1, in
addition to

ωpre = ωφ − ωθ . (67)

Therefore, we have,

ωr = ωθ + ωpre = ωφ. (68)

To better understand, these Quasi-Normal Modes (QNMs)
are associated with the Kepler frequency, as stated in the
Ref. [93].

Σ±
r =

(
Ω + 1

2

)

×−∂r gtφ ± √
(∂r gtφ)2 − (∂r gtt )(∂r gφφ)

∂r gφφ

, (69)

where 1 << Ω = m. Now, for the shadow radius, we have

R̄s = 1

2

(
α+(r+

p ) − α−(r−
p )

)
. (70)

here α±(rp) = ±√
f (r0)η and ξ(r±

p ) = 0. Now from
Eq.(65) we have,

η± = ±
√

(Ω + 1
2 )2

Σ2
r (r±

p )
− a2

2
(1 − ν2). (71)

Therefore, we have [94].

R̄s =
√

f (r0)

2

√
(Ω + 1

2 )2

Σ2
r (r+

p )
− a2

2
(1 − ν2)

+
√

f (r0)

2

√
(Ω + 1

2 )2

Σ2
r (r−

p )
− a2

2
(1 − ν2). (72)

The symbol r0 denotes the position of the observer. Now,
for the eikonal limit if we set m = ±Ω (i.e. ν = ±1), we
have [95]

R̄s(ν = ±1) =
(

Ω + 1

2

)
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×
√

f (r0)

2

(
1

Σr (r
+
p )

− 1

Σr (r
−
p )

)
. (73)

The static case occurs when Σ+
r = Σ−

r = Σr . Therefore,
we possess

R̄s = √
f (r0)

Ω + 1
2

Σr
. (74)

By using algebraic methods in the geometric limit and metric
functions, it is possible to make Eq. (69) easier to understand,
as shown in Ref. [93]. Making this simpler as

Σ±
r =

(
Ω + 1

2

)
− 1

a ±
√

2r±
p

f ′(r)|r±
p

. (75)

It is possible to simplify the typical shadow radius equa-
tion to acquire a more concise expression, as the following:

R̄s =
√

2 f (r0)

2

⎛
⎝

√√√√ r+
p

f ′(r)|r+
p

+
√√√√ r−

p

f ′(r)|r−
p

⎞
⎠ . (76)

The above equation is the same as the one found in a prior
Ref. [92], where r±

p values can be found by solving [93],

r2
p − 2rp

f ′(r)|r±
p

f (rp) ∓ 2a

√
2rp

f ′(r)|r±
p

= 0. (77)

5.2 For θ0 = 0 and π

Let’s examine the polar orbit where θ = 0. In this scenario,
it is appropriate to calculate the observer’s viewing angle,
denoted as θ0, for two cases: when θ0 = 0 and θ0 = π . The
polar orbit lacks azimuthal angular momentum, leading to a
L = 0 value. By considering the circular geodesics, it can be
shown that

(a2 + r2)2 − R2
p(a

2 + r2 f (r)) = 0, (78)

and

(a2 + r2)4r − 2r R2
p f (r) − r2R2

p f
′(r) = 0. (79)

It is important to mention that in this particular situation,
Rp denotes the impact parameter and is defined as Rp =
a2 + κ/E2 [96]. Now, using Eq. (78), we may infer

R±
p = ± r2 + a2√

a2 + r2 f (r) rp
. (80)

Using the given specification R̄s := (1/2)(
√

f (r0)R+
p −√

f (r0)R−
p , the formula for the shadow radius may be based

on the reference [94].

R̄s = √
f (r0)

r2 + a2√
a2 + r2 f (r)

rp . (81)

To get the values of rp in this situation, one may use the
following equation:

(r2
p + a2)2 − 4(r2

p + a2)(a2 + r2
p f (rp))

2 f (rp) + rp f ′(rp)
= 0. (82)

Given that L = 0 and based on Eq. (63), the shadow radius
may be calculated as

R̄s = √
f (r0)

√
(Ω + 1

2 )2

Σ2
r (rp)

+ a2

2
. (83)

As anticipated, it is straightforward to ascertain that the
shadow radius decreases to the value specified in Eq. (73)
when there is no rotation. By combining Eqs. (73) and
(80), we may represent the real component of Quasi-Normal
Modes (QNMs) as follows,

Σr =
√

2
(
a2 + r2 f (r)

)
2(r2 + a2)2 − (a2 + r2 f (r))a2

(
Ω + 1

2

)
r=rp .

(84)

The corresponding numerical values of equatorial (first and
second row) and polar (third row) QNMs have been docu-
mented in Table 1. As the value of Ω increases, we anticipate
that the frequency of the QNMs will be more precisely iden-
tified.

6 Conclusion

Theoretical studies of black hole shadows and recent EHT
observations have opened new possibilities for testing grav-
ity theories and obtaining constraints on their parameters.
This work has focused on photon motion and the shadow
of charged rotating black holes in EMS theory. In the first
step, we obtained a rotating charged black hole solution in
EMS gravity using NJA and investigated the structure of the
event horizon of the rotating black hole in EMS theory, as
described by the metric (30), we proceed by solving the equa-
tion grr = 0 to obtain the roots that correspond to the radius
of the horizon.

We have demonstrated that an increase in the parameter
β, with γ = 0, significantly increases the extreme value of
the charge Q. In contrast, the limiting value of Q decreases
with an increase of β when γ is negative. In addition, there
are noticeable distinctions between the scenarios of positive
and negative values of the parameter γ .

In specific parameter configurations, a black hole might
possess a single horizon. For example, setting γ = 0 and
β = 0.5, a black hole exhibits a single horizon at a/M = 0.8
and Q/M = 0.85. A subsequent increase in Q/M leads to
the disappearance of the black hole’s horizon. In light of these
characteristics, it is possible to formulate an expression for
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Table 1 Numerical values of the real part of QNMs for equatorial modes and polar mode at M = 1, Q = 0.1, β = 0.25, a = 0.5, γ = 0.5 and
r = rp

Ω 1 2 3 4 5 6 7 8 9 10

Σ+
r 1.35987 2.35987 3.35987 4.35987 5.35987 6.35987 7.35987 8.hl35987 9.35987 10.3599

Σ−
r 1.82327 2.82327 3.82327 4.82327 5.82327 6.82327 7.82327 8.82327 9.82327 10.8233

Σr 0.293771 0.489618 0.685465 0.881313 1.07716 1.27301 1.46885 1.6647 1.86055 2.0564

the maximum spin that distinguishes between a black hole
and a naked singularity.

The geodesic structure near the rotating black hole within
the EMS theory, as outlined by Eq. (30), has been subject to
investigation. We examined the circular photon orbits around
the black hole by evaluating the effective potential, a pivotal
parameter for studying the shadow generated by the rotating
black hole. The geodesic equations were derived using the
HJ method. Subsequently, we obtained the effective potential
governing the circular motion of photons in the spacetime of
the rotating black hole along null geodesic lines.

The investigation of the shadow cast by a rotating black
hole in the EMS theory involved exploring various parame-
ter ranges, including a, Q, β, and γ . The findings revealed
that the size of the shadow is contingent on the black hole
parameters. As the Q parameter increases, the shadow region
decreases in size, and the shape of the shadow becomes more
distorted, particularly as Q/M approaches unity. Further-
more, the shadow area experiences a reduction with a growth
in the parameter β, while the shadow radius expands with an
increase in the value of γ .

Indeed, the silhouette of a black hole serves as a unique
manifestation of the features of the black hole spacetime.
To achieve constraints on spacetime parameters, it is essen-
tial to define measurable variables, namely the shape and
size of the shadow. We have shown that the shadow area A
decreases with increasing a and Q, while the shadow area
expands as γ increases. Likewise, the oblateness D decreases
with an augmentation in the spin and charge parameters and
increases under the influence of the parameter γ . Further-
more, the parameter β reduces the area and the oblateness
values.

Finally, we have investigated rotating black holes M87*
and Sgr A* within the framework of the EMS theory to
contrast the theoretical results derived from shadow anal-
ysis with the shadow images of M87* and Sgr A* observed
by the EHT. Our analysis of density plots has shown that
the upper limit of the charge parameter Q increases as the
fixed value of the parameter β decreases. The maximum
value of Q increases from around 0.58M to more than 0.7
M . However, there is a significant difference between the
results when the parameter γ has different values. In addi-
tion, the angular diameter varies across the a − Q space
as the inclination angle changes. Ultimately, we identified

and examined standard shadow radius, equatorial, and polar
QNMs using the geometric-optic link between QNM param-
eters and conserved values along geodesics. As Ω increases,
it is observed that the frequency of QNMs is more accurately
recognized.
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