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Abstract The European Organization for Nuclear
Research (CERN), headquartered in Geneva, Switzer-
land, operates the Large Hadron Collider (LHC), the
world’s most powerful particle accelerator. One of the
four main LHC experiments is A Large Ion Collider
Experiment (ALICE), which is dedicated to studying
the properties of quark–gluon plasma, a state of matter
that existed shortly after the Big Bang. To enhance its
data collection capabilities, ALICE underwent a sig-
nificant upgrade during the LHC’s Long Shutdown 2
(2019–2021). This upgrade focused on modernizing
the experiment’s detector and data acquisition (DAQ)
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Faculty of Automatic Control and Computer Science,
National University of Science and Technology
POLITEHNICA Bucharest, Bucharest, Romania
e-mail: nicolae.tapus@upb.ro
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systems. The result is a vastly improved ability to cap-
ture and analyze data from heavy-ion collisions. This
article provides an overview of the software and pro-
cesses used to transfer and manage the experiment’s
massive datasets and highlights the key achievements
and insights gained since the upgraded system became
operational.
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1 Introduction

The Large Hadron Collider (LHC), the largest and most
powerful particle accelerator in the world, is run by the
European Organization for Nuclear Research (CERN)
[1], one of Europe’s top research institutions. CERN,
which is situated in Geneva, Switzerland, studies sub-
atomic particles and their interactions through heavy-
ion and proton–proton collisions in order to conduct
fundamental research into the structure of matter. With
detectors that enable physicists to test particle physics
theories and observe new phenomena, the LHC is home
to four large experiments. A Large Ion Collider Exper-
iment (ALICE) [2] is one of the experiments, which
was created especially to investigate heavy-ion colli-
sions and the characteristics of quark–gluon plasma,
which was present soon after the Big Bang.
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During the Long Shutdown 2 (2019–2021), ALICE
upgraded its detector and data acquisition (DAQ) sys-
tems, allowing it to collect data at a ∼100 times higher
rate than in Run 1 & 2 [3]. Thus, during LHC Run 3
[3], which began in 2022, ALICE processes around
3.5 TB/s of data from its detectors, which is com-
pressed to 200 GB/s and stored on a 150 PB disk buffer
for offline processing. The data is processed in real
time by a computing farm consisting of two types of
nodes: First Level Processors (FLPs), which receive
data directly from the detectors and perform initial pro-
cessing, and Event Processing Nodes (EPNs), which
are a second layer of nodes that are equipped with CPUs
and GPUs. The EPNs reconstruct and compress events,
and produce data needed for detector calibration. Then,
they temporarily store the data on high-capacity SSDs
before transferring it to remote storage using a tool
called EPN2EOS. This system operates under strict
constraints [4], being optimized for parallel data trans-
fer and monitoring to ensure smooth operation and con-
tinuous data collection. It runs on the EPNs and opti-
mizes the use of their computing resources, allowing
them to focus on data collection, compression, and stor-
age [4–6].

This paper provides an overview of the EPN2EOS
role in the ALICE data processing workflow, detail-
ing its implementation and features. It also describes
the EPN2EOS state machine and its modeling using
the Jackson network model [7], followed by the results
observed after its deployment into production.

The structure of this article is as follows: Section 2
discusses DAQ systems, highlighting their character-
istics and usage at CERN, detailing the current design
employed by the ALICE experiment. This section also
explains the role of EPN2EOS in the data processing
workflow.

Section 3 offers an overview of the key features
related to the implementation of EPN2EOS.

Section 4 introduces the concept of queueing theory
and provides a characterization of several queueing net-

work models, with one of these models being used to
simulate the EPN2EOS.

Section 5 goes further by describing the EPN2EOS
in detail, presenting its state machine and modeling it
using the Jackson network model.

After giving a technical overview of EPN2EOS, Sec-
tion 6 analyzes the results obtained by EPN2EOS since
its deployment to production.

2 Data Acquisition Systems

DAQ systems are used for collecting, processing, and
analyzing data from real-time systems by measuring
various physical properties. These systems are com-
posed of both hardware and software components,
which can be managed either through direct human
interaction or remotely via remote access. A typical
DAQ system can be seen in Fig. 1 and includes elec-
trical signal equipment that provides precise data mea-
surement and acquisition, sensors that convert the data
into a format understandable by the software, compu-
tational nodes that handle the processing and analysis
of the collected data, and hardware such as switches,
routers, Ethernet links, optical links, or InfiniBand
that facilitates data transfer between system compo-
nents. Additionally, DAQ systems incorporate tem-
porary storage to hold processed results before they
are transferred to a persistent storage system located
remotely [8].

DAQ systems are specifically designed to contin-
uously and automatically collect data from a physical
environment, process it quickly and efficiently, provide
accurate real-time measurements, enable fast trans-
fer of processed data to a persistent storage location,
and temporarily store the results for a period of time,
depending on the data transfer capacity to the persistent
storage [8].

At CERN, DAQ systems respect the general archi-
tecture and are employed in the major experiments

Fig. 1 General architecture of a DAQ system - illustrates the main components, including data acquisition modules, processing units,
and data storage elements
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along the LHC to ensure accurate and reliable data col-
lection and processing from the detectors.

The following subsection describes the current
implementation of the DAQ system used by the ALICE
experiment during Run 3, as well as the role of
EPN2EOS in the data processing workflow.

2.1 ALICE DAQ System in Run 3

In the Run 3 operation mode, the detector signals are
read out continuously. This means that the data readout
does not consist of distinct, isolated events, but rather
multiple collisions that may overlap in time. Conse-
quently, the fundamental processing unit for the ALICE
experiment is not an individual event, but the Time
Frame (TF), which typically captures around 10 mil-
liseconds of continuous data-taking.

In order to optimize the architecture, an initial real-
time compression step is applied to handle the large
volume of data generated by the detectors. This com-
pression is carried out by the First Level Processors
(FLPs), which are the closest computational nodes to
the experiment and thus receive data directly from it.
The FLP cluster is composed of 200 Dell PowerEdge
R740 nodes, which are tasked with reading, aggregat-
ing, and transmitting data from the detectors to the
EPNs [9]. The FLP farm receives data from the detec-
tors at a total rate of 3.5 TB/s across 8000 optical links
and performs a preliminary data compression, reduc-
ing the rate to 900 GB/s through zero suppression. The
FLPs then organize this data into Sub-Time Frames

(STFs), which are sent to an available EPN to assem-
ble the complete TF [4].

The EPN farm consists of 275 computing nodes
equipped with AMD Rome 32-core CPUs and AMD
MI50 GPUs with 32 GB VRAM, and 70 computing
nodes equipped with AMD Rome 48-core CPUs and
AMD MI100 GPUs with 32 GB VRAM. An Infini-
Band physical network supports the transfer of STF
data, enabling real-time communication between the
FLPs and EPNs [9]. Once an EPN receives and assem-
bles a complete TF, it has 30 seconds to process it. This
process involves interpreting the data through various
algorithms, ultimately resulting in the creation of Com-
pressed Time Frames (CTFs) [10]. The compressed
data is first stored on the EPN’s local storage (SSD)
before being transferred to the main storage [4].

The storage solution, referred to as EOS [11], is
designed with low latency and high capacity, efficiently
managing the storage of large volumes of data in file
format while also supporting interactive analysis. EOS
comprises two primary components: the client-side,
which offers a command-line interface and access to a
mounted file system, and the server-side, which encom-
passes components for storing file metadata, the actual
data, and a message queue for asynchronous message
transmission [12]. The main storage system has a total
capacity of 150 PB [4].

The ‘Computational Nodes’ item from Fig. 1 con-
sists of FLP and EPN nodes shown in Fig. 2. The ‘Data
Storage’ entity is represented by the EOS component.

The EPN2EOS tool operates on each EPN, handling
the essential task of managing compressed experimen-

Fig. 2 DAQ architecture for ALICE in Run 3 [4] - represents the DAQ architecture used in the ALICE experiment during Run 3,
highlighting the placement of the EPN2EOS component within the data processing workflow
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Fig. 3 Transfer watcher diagram [4] - illustrates the flow a data
file goes through to be transferred to storage, from the discovery
of its associated metadata file by a file event watcher to its place-

ment in the appropriate transfer queue and the actual transfer of
the corresponding data file

tal data and facilitating its transfer from the EPNs’ local
storage to EOS.

3 EPN2EOS Implementation Details

This section presents an overview of the features related
to the implementation of the EPN2EOS. More imple-
mentation details can be found in the article ‘EPN2EOS
Data Transfer System’ [4].

EPN2EOS is a system written in Java that runs as a
daemon service on EPN nodes. It has two main tasks:
transferring files containing data collected from the
ALICE experiment and registering the metadata asso-
ciated with each data file in the ALICE catalog [5, 13],
a database that keeps track of all data files that have

been transferred to the disk buffer. Each file containing
collected data has a unique associated metadata file.
These metadata files are placed in a specific directory
defined in a configuration file used during the service
startup. The activity of this directory is monitored by
a file event watcher created by EPN2EOS, which, for
simplicity, we will refer to as the transfer watcher. The
primary function of the transfer watcher is to notify
EPN2EOS whenever a new metadata file is added to the
directory. Each file is assigned a specific priority, and
for each priority, EPN2EOS creates a separate queue
where the corresponding files are placed. Additionally,
EPN2EOS spawns a separate set of threads to manage
the transfer of files from each priority queue [4]. The
data transfer process is illustrated in Fig. 3.

Fig. 4 Registration watcher diagram - outlines the flow through which the metadata associated with a successfully transferred file is
registered in the catalogue
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Table 1 Global monitoring metrics [4]

Metric name Metric description

Services reporting number of EPN2EOS instances that report metrics to the monitoring system

Queued number of files in the transfer queues / registration queue

Ongoing number of active transfers / active registrations

Queued size total size of files waiting to be transferred

Slots maximum number of transfers / registrations that can run in parallel per priority

Copy rate data transmission rate

Success rate success rate in files per second

Failure rate error rate in files per second for both the transfer and registration processes

In this example, 6 metadata files have been detected
in the directory, 5 with low priority and 1 with high
priority. The files with low priority are placed in the
transfer queue associated with this priority. The same
happens for the high-priority file. Additionally, each
transfer queue has 4 workers assigned to handle the file
transfers. Since the low-priority queue contains 5 files
but only 4 available workers, this means that 4 data
files will be transferred in parallel, while the fifth will
remain in the queue, waiting for a worker to become
available. On the other hand, the high-priority transfer
queue has only one file and 4 associated workers. Thus,
one of the workers will transfer the data file to storage,
while the remaining three workers will stay idle.

After the file transfer is successfully completed, the
data file is removed from the local storage of the EPN
node, and the metadata file is moved to another direc-
tory specified in the previously mentioned configura-
tion file. The activity of this directory is monitored
by another file event watcher created by EPN2EOS,
which we will refer to as the registration watcher.
The primary function of the registration watcher is to
notify EPN2EOS whenever a new metadata file that is
ready for registration is added to the directory. Then,
EPN2EOS queues each metadata file in a registration
queue and spawns separate threads for this operation,
each thread being responsible for one of the metadata
files. The registration path is illustrated in Fig. 4. Here,
6 files have been detected in the directory. These are

placed in the registration queue, which has a worker
assigned to handle the metadata registration in the cat-
alog. Since there is only one thread, only one file is
processed at a time, with the others waiting in the reg-
istration queue. After the file registration is successfully
completed, the metadata file is removed from the local
storage of the EPN node.

If the data transfer fails, the copy operation is retried
after a delay calculated using the Exponential Backoff
[4] strategy. Once this delay is determined, the meta-
data file is re-added to the appropriate transfer queue.
Similarly, if the registration process fails, the same retry
method is applied.

EPN2EOS is a vital component of the ALICE exper-
iment, making real-time monitoring and detailed log-
ging of its activities essential. The EPN2EOS metrics
and system parameters are transmitted to the MonAL-
ISA [4, 14] monitoring framework, where the data is
aggregated for accounting purposes and presented to
operators.

Figure 5 provides a global view extracted from the
monitoring page during a rate performance test. This
view includes the information detailed in Table 1.

The failure rate represents the number of files per
second for which the transfer or registration has failed
but remains in the retry cycle, ensuring that no data files
are lost and no metadata files remain unregistered.

In addition to the aggregated information reported
by all EPN2EOS instances, we also monitor these met-

Fig. 5 Global view during a rate performance test - shows a snapshot from the monitoring page and highlights a global overview of
EPN2EOS’s operation, providing insights into its performance and functionality
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Fig. 6 Entry in the monitoring page during a rate performance test - illustrates a row from the monitoring page that highlights the
metrics reported per EPN node

rics individually for each node (Fig. 6). Thus, besides
the metrics mentioned previously, there are also metrics
such as: the time that has passed since the last restart
of the EPN2EOS (Uptime), the version of EPN2EOS
that runs on the EPN node (Version), metrics for dif-
ferent types of errors like transfer or registration errors,
and also a metric that represents the status of the local
storage of each EPN node (Write status).

The write status metric is very important because
depending on the status of the disk, alert messages are
sent as follows:

If the disk usage reaches 50% of its capacity, a cor-
responding message is shown on the monitoring page
reporting the status of the disk space (Fig. 7).

If the disk usage reaches 90% of its capacity, the
EPN2EOS starts transferring the files to the fallback
storage (ALICE::CERN::EOSP2) and sends an email
alert with a corresponding message. Additionally, a
corresponding message is displayed on the monitoring
page, as shown in Fig. 8.

If the disk usage reaches 95% of its capacity, the
EPN2EOS stops running and sends an email alert. The
tool will repeatedly attempt to restart until the disk
space issue is resolved.

Fig. 7 Warning storage threshold alert - indicates a notification
displayed on the monitoring page when the disk usage per EPN
node reaches 50% of its capacity

Finally, an alert will be sent if EPN2EOS does not
respond for longer than 15 minutes on one or more
nodes in production (Fig. 9). The list of nodes consid-
ered to be in production is obtained by querying the
EPN node info service.

4 Queueing Network Models

Queueing theory examines the behavior of systems
where jobs wait in a queue to be served because the
demand for a resource exceeds the system’s processing
capacity at a given period. These types of systems are
prevalent in many areas today, such as in healthcare sys-
tems when patients call to schedule an appointment, in
supermarkets where customers line up to pay for their
groceries, in web servers handling requests from con-
nected users, or in systems managing the flow of cars,
airplanes, network packets, and more [7, 15].

Queueing theory is useful for evaluating system per-
formance and, on a more detailed level, helps deter-
mine key metrics like the average number of jobs in
the system at any given time, the waiting time for a
job before it is processed and the average time a job
spends within the system. A typical queueing system
(Fig. 10) involves a job entering the system, waiting in
a queue, being processed, and then leaving the system
once completed [7, 15].

Before implementing the EPN2EOS tool, we ana-
lyzed three queueing network models to determine
which one best fits our case. Therefore, the following
subsection outlines the characteristics of three related
queueing network models used to estimate job flow
and server utilization within a system, based on the
network’s type and structure.

4.1 Jackson Network Model

The Jackson network model [7] is a general model of
queueing networks that allows the existence of cycles
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Fig. 8 Fallback storage threshold alert - indicates a notification displayed on the monitoring page when the disk usage per EPN node
reaches 90% of its capacity, triggering the transfer of files to the fallback storage (ALICE::CERN::EOSP2)

Fig. 9 EPN2EOS running status - errors detected - shows an email notification sent when EPN2EOS does not respond for more than
15 minutes on one or more production nodes, helping to detect potential failures

Fig. 10 A typical queueing system [7] - illustrates the process where a job enters the system, waits in a queue, undergoes processing,
and exits once completed
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Fig. 11 A server as modeled by a Jackson network [7] - outlines
the general characteristics of the model, where a server has an
unbounded queue that holds incoming jobs

within the network. Figure 11 illustrates the general
characteristics of the model. It presents a server that has
an unbounded queue where jobs are placed as they enter
the system. Each job is ordered in the queue according
to a timestamp representing the time it entered the sys-
tem, and processed according to First Come First Serve
(FCFS) policy. For example, if we consider a job i that
entered the system at time ti and a job j that entered
the system at time t j , where ti < t j , then job i will be
processed before job j [7].

The routing of jobs in this model is probabilistic.
The parameter p denotes the probability that a job will
fail, which implies its return to the system, and added
back into the processing queue, consequently 1 − p is
the probability that a job will successfully execute and
leave the system. The system works with two types of

jobs: those that come from outside and those that have
failed and are re-queued for processing. The jobs that
come from outside appear in the system with rate λ,
and the service rate of the server is denoted by μ [7].

4.2 Gordon–Newell Network Model

The Gordon–Newell model [16] is a network model
generally applied to closed networks, where no new
jobs can enter from outside, and the existing jobs do
not leave the system. As a result, the number of jobs in
the system remains constant. The job processing policy
follows FCFS, and routing within the system is proba-
bilistic [16].

Consider the example shown in Fig. 12, where there
are n = 4 servers, each with its own processing queue
and service rate denoted by μi , where i is a number
between 1 and 4. The routing policy for this example
works as follows: a job processed by server i is moved
to server j with probability pi j , where [16]

n∑

j=1

pi j = 1 ∀i = 1, 2, ..., n . (1)

For instance, the probability that a job processed
by server 2 is moved to server 4 is denoted by p24.
This probabilistic routing policy between servers cre-

Fig. 12 Example Gordon–Newell network - a system with four servers, each with its own processing queue and service rate μi , where
jobs are routed probabilistically, moving from server i to server j with probability pi j
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Fig. 13 Example BCMP network [7] - a server operating under
a Processor Sharing policy, where n jobs enter the system simul-
taneously, and each job is processed at a rate of μ

n with a total
service rate of 1

ates interdependence between their processing queues
because each job can be added to another server’s queue
with a certain probability.

A computer system with several CPUs sharing vari-
ous resources (memory units and I/O devices) can serve
as a real-world illustration of this model. Because pro-
cesses in this type of system are neither generated or
destroyed but instead travel between various service
units (CPUs, memory units, and I/O devices), the num-
ber of processes stays constant.

4.3 BCMP Network Model

BCMP is a network model named after its four develop-
ers: Baskett, Chandy, Muntz, and Palacios-Gomez [17].
The model is more general than the Jackson network
model, allowing for multiple job processing policies
within the system, such as FCFS, Processor-Sharing
(PS), or Infinite Server Stations. Additionally, it can
be applied to both open and closed networks. How-
ever, this flexibility introduces greater complexity, as it
supports multiple job processing methods and classifi-
cations. Essentially, the model allows the servers in the
system to have different properties, meaning they can
handle jobs in different ways. This makes the model
more suitable for systems where job flows vary based
on job type or the processing rules applied [17].

Consider a scenario where n jobs enter the system
simultaneously, and the server has a service rate of 1
(Fig. 13). The processing policy is PS, meaning that
each job is processed at a rate of μ

n . Each job requires
one unit of time to be fully processed, meaning the
server must allocate one unit of processing time to com-
plete each job. Since all n jobs arrive at the same time,
the server splits its processing capacity equally among
them. A common practical example of this is a CPU
using a round-robin scheduling policy to process its
tasks [7].

4.4 Summary

Using the Jackson network model, we can efficiently
and easily determine the flow of jobs within the sys-
tem and the server utilization under similar conditions.
In this model, jobs are treated the same regardless of
which server processes them, making the server queues
independent of each other.

The Gordon–Newell network model can be viewed
as a Jackson network model, but applied to closed net-
works, where no new jobs from outside are allowed.
In other words, this network model is more suited for
systems with a fixed number of jobs, where server
queues are interdependent, and the network is effec-
tively closed.

The Jackson network model can be seen as a par-
ticular case of the BCMP network model, where job
processing follows an FCFS policy, and the network
is open, allowing new jobs to enter into the system.
In other words, for systems where each job is treated
the same regardless of which server processes it, the
Jackson network model is simpler and more efficient
to apply.

A summary of the characteristics of the three ana-
lyzed models is presented in Table 2.

In conclusion, these chosen models from queueing
network theory are related, but only the Jackson net-
work model is perfectly suited for modeling the file

Table 2 Key findings from the analysis of the three queueing newtork models

Model Network Queue policy Queue dependency Number of jobs Job routing

Jackson network Open, Closed FCFS independent queues arbitrary probabilistic

Gordon–Newell network Closed FCFS interdependent queues fixed probabilistic

BCMP network Open, Closed FCFS, PS independent queues arbitrary probabilistic
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transfer scheduler used in the ALICE experiment. The
reasoning behind this choice is explained in Section 5.

5 EPN2EOS Design

This section describes the EPN2EOS state machine as
well as its modeling using the Jackson network model
[7].

Figure 14 illustrates the steps of the data file transfer
process within the EPN2EOS tool. In the initial state
(S0), a metadata file is placed in a specific directory
monitored by the transfer watcher. The watcher queues
the metadata file for transfer (S1). Next, this metadata
file is dequeued, and the transfer of the associated data
file to remote storage is initiated (S2). If the transfer is
successful (S3), the associated data file is deleted (S3’)
from the local storage of the EPN node. At the same
time, the metadata file is moved to a specific directory

defined by the registration watcher (S3”). At this point,
the watcher queues the metadata file for registration
(S5), the metadata file is dequeued and its attributes
are registered in the ALICE catalog (S6) [13]. If the
registration is successful, the metadata file is deleted
from the local storage of the EPN node (S7). Otherwise,
a delay time is calculated, which determines the time
at which the registration of the attributes mentioned in
the metadata file will be retried (S8) and the metadata
file is placed back in the registration queue (S5).

If the transfer of the data file fails, another delay time
is computed, which determines the time at which the
transfer of the file will be retried (S4), and the metadata
file is placed back in the transfer queue (S1).

If the local storage of the EPN node reaches 95%
of its capacity, EPN2EOS stops running and sends the
appropriate email alert.

As shown in Fig. 14, in the case of a failed transfer
or registration, a cycle is created within the system (S1

Fig. 14 EPN2EOS state machine - represents the sequence of steps involved in transferring data files and registering their metadata
within the system
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- S2 - S4 - S1 or S5 - S6 - S8 - S5). Additionally,
files are placed in unbounded transfer queues, with each
node’s queue being independent from the others. All
file transfers are processed in the same way, regardless
of the node handling them. Thus, the design behavior
of EPN2EOS is compatible with the Jackson network
model.

The following analogy is considered:

• The server presented in Fig. 11 is considered to be
an EPN node on which an instance of EPN2EOS is
running.

• A job entering the system is associated with the
transfer of a data file from the local storage of the
EPN node to the remote storage.

• The time a job entered the system is associated with
the time a metadata file was placed in the transfer
directory.

• The parameter p represents the probability that the
transfer of a data file will fail.

• The probability that the transfer of a data file will
succeed is represented by 1 − p.

• The server receives jobs from outside when new
metadata files are added to the transfer directory.
Thus, the parameter λ denotes the arrival rate of
the jobs that come from outside.

• The server receives jobs from inside when the trans-
fer of a data file fails. Thus, the expression λ ∗ p
denotes the arrival rate of the jobs that come from
inside.

• The parameter μ represents the service rate of the
server.

Taking into account the general characteristics of
the Jackson network model presented in Section 4.1,
the following equations are defined:

The total arrival rate for the system, denoted by (λ
′
),

is defined as [7]

λ
′ = outside arrival rate + inside arrival rate . (2)

The system utilization, denoted by ρ, is defined as
[7]

ρ = λ
′

μ
. (3)

The mean number of jobs in the system, denoted by
E[N ], where N represents the total number of jobs, is

defined as [7]

E[N ] = ρ

1 − ρ
. (4)

The mean response time, denoted by E[T ], is
defined using the Little’s Law for open systems [7]

E[N ] = λ
′ · E[T ] . (5)

E[T ] = E[N ]
λ

′ . (6)

The total arrival rate of the files into the EPN2EOS
is obtained using the (2)

λ
′ = λ + p · λ . (7)

�⇒ λ
′ = λ · (1 + p) . (8)

The EPN2EOS system utilization is obtained using
the (3) and (8)

ρ = λ · (1 + p)

μ
. (9)

The average number of transfers present in the sys-
tem is obtained using the (4) and (9)

E[N ] = λ · (1 + p)

μ
· 1

1 − λ·(1+p)
μ

. (10)

�⇒ E[N ] = λ · (1 + p)

μ − λ · (1 + p)
. (11)

The average response time to process a file transfer
is obtained using the (6), (8), and (11)

E[T ] = λ · (1 + p)

μ − λ · (1 + p)
· 1

λ · (1 + p)
. (12)

�⇒ E[T ] = 1

μ − λ · (1 + p)
. (13)
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Fig. 15 Data accumulation starting with the end of 2021 - the volume of data transferred by EPN2EOS from the end of 2021 until
August 2024

The result obtained in (13) shows that the response
time depends on the rate at which new files appear in
the system, the processing rate of the server, and the
probability that the transfer of a file fails.

6 EPN2EOS Evaluation

This section presents the results obtained after EPN2EOS
was deployed into production. EPN2EOS has been
running as a daemon service on EPNs since Novem-
ber 2021, following the ALICE experiment upgrade.
From then until August 2024, EPN2EOS has trans-

ferred approximately 315 PB of data across about 100
million files, with an average file size of 3 GB (Fig. 15).

A rate performance test was carried out on August
24, 2023, involving 330 EPN nodes. During this test, we
obtained a maximum aggregated transfer speed of 240
GB/s (Fig. 16), and the maximum transfer speed per
EPN node was 2.5 GB/s (Fig. 17). Currently, EPN2EOS
runs on 275 EPN nodes.

Figure 18 shows the number of files queued for reg-
istration in the ALICE catalog during the rate perfor-
mance test, demonstrating that the registration process
kept pace with the data transfer.

Fig. 16 Aggregated transfer speed - shows the results obtained during the rate performance test conducted on August 24, 2023, involving
330 EPN nodes
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Fig. 17 Transfer speed, where each color represents a single EPN - shows the results obtained during the rate performance test conducted
on August 24, 2023, highlighting individual node transfer speeds

The observed limit of 200 GB/s represents the max-
imum achievable network transfer rate, meaning that
any additional transfer requests beyond this threshold
result in an accumulation of files in the transfer queues
of EPNs. This accumulation does not indicate a freeze
in the transfer process but rather a natural consequence
of the network operating at full capacity. Once the
backlog decreases, all files are successfully transferred
(Fig. 19).

The theoretical equations outlined in Section 5 can
be applied to the results obtained during the rate per-
formance test. Taking into account the conditions men-
tioned in Table 3, we can compute for a single EPN node
the input rate at which files entered into the system, the
system service rate, and the outside arrival rate.

input rate = total number of transferred files · average file size

evaluation period
. (14)

�⇒ input rate = 120 GB/s . (15)

μ = maximum transfer speed

number of EPN nodes · average file size
. (16)

�⇒ μ = 0.18 files/s . (17)

λ = input rate

number of EPN nodes · average file size
. (18)

�⇒ λ = 0.09 files/s . (19)

From Fig. 20 we can notice that the transfer error rate
during the performance test was approximately 0.08

Fig. 18 Files queued for catalogue registration - illustrates the pending files at the last stage of the process during the rate performance
test
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Fig. 19 Queued transfers during the rate performance test,
where each color represents a single EPN - illustrates the accu-
mulation of transfer requests when the network reaches its 200

GB/s limit, showing how files queue up until bandwidth becomes
available for successful transfer

files/s. Thus, we can determine the probability that a
file transfer failed (p)

p = number files whose transfer failed

number files successfully transferred + number files whose transfer failed
. (20)

p = 18000 s · 0.08 files/s

542642 + 18000 s · 0.08 files/s
. (21)

�⇒ p = 0.002 . (22)

The probability of a file transfer failing within this
system is shown to be very low.

From (8), (19), and (22) we can compute the total
arrival rate (λ

′
) obtained during the rate performance

test for a single EPN node

λ
′ = 0.09 files/s · (1 + 0.002) . (23)

�⇒ λ
′ = 0.09 files/s . (24)

From (9), (17), and (24) we can calculate the utiliza-
tion of one EPN node (ρ) during the rate performance

test

ρ = 0.09 files/s

0.18 files/s
. (25)

�⇒ ρ = 0.50 . (26)

The mean response time (E[T ]) can be obtained
using the (13), (17), and (24)

E[T ] = 1

0.18 files/s − 0.09 files/s
. (27)

�⇒ E[T ] = 11 s . (28)

Therefore, during the rate performance test, each
EPN2EOS instance used only 50% of the capacity of

Table 3 Metrics extracted from the rate performance test

Metric name Metric value

Maximum transfer speed 240 GB/s

Total number of transferred files 542642

Average file size 4 GB

Number of EPN nodes involved in the performance test 330

Evaluation period August 24 09:00 until August 24 14:00 => 5 hours => 18000 seconds
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Fig. 20 Transfer error rate - shows that the transfer error rate during the rate performance test remained low, at approximately 0.08
files/s, indicating a stable and reliable transfer process

the EPN node it operated on to facilitate the data trans-
fer. This indicates that the remaining resources of the
EPN node are used to collect, compress, and store the
data received from the ALICE experiment so that the
EPN2EOS can further handle the data transfer. Addi-
tionally, the average time a file spent in the system was
11 seconds.

7 Conclusion

EPN2EOS represents the exclusive mechanism for data
transfer between the ALICE computing cluster (EPNs)
and the 150 PB disk buffer located in CERN IT. Written
in Java, it has two main tasks: transferring files contain-
ing data collected from the ALICE experiment and reg-
istering the metadata associated with each data file in
the ALICE catalog. It operates reliably in the demand-
ing environment of real-time data acquisition, having
capabilities such as transfer and registration priority
scheduling, error handling, monitoring, and a mail alert
system. This article also describes the state machine
modeling the tool’s operation and demonstrates that it
respects the Jackson network model of distributed sys-
tems.

EPN2EOS has been in production since November
2021, and from then until August 2024, it has trans-
ferred approximately 315 PB of data in about 100 mil-
lion files, with an average file size of 3 GB.

During the rate performance test, we obtained a max-
imum aggregated transfer speed of 240 GB/s, and a
maximum transfer speed per EPN node of 2.5 GB/s.
We applied the Jackson network model to analyze the
rate performance test results. Our findings show that
EPN2EOS instances utilize only half of the EPN node’s
CPU capacity for data transfer. This implies that the
remaining resources are dedicated to data collection,

compression, and storage. Consequently, EPN2EOS
does not dominate the EPN node, enabling it to pri-
oritize the collection and processing of experimental
data.

Regarding future work, the following tasks should
be considered for implementation:

• Adding support for automatic cleanup of EPN local
disks. For example old data files for which the meta-
data was not created or is corrupted could be auto-
matically deleted if the disk space runs low, priori-
tizing data-taking over a potential data recovery.

• Implementing a workflow to delete data from main
storage when transferred files are flagged unsuit-
able for further analysis.

• Implementing an automatic workflow to move data
from the main storage to lower storage elements.
This could be triggered at a watermark of total
storage occupancy, ensuring sufficient space on the
main storage to support continuous data-taking.
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Costan, Alexandru, Legrand, Iosif: Monitoring, Accounting
and Automated Decision Support for the ALICE Experi-
ment Based on the MonALISA Framework. Int. Symp. High
Perform. Distrib. Comput. (2007). https://doi.org/10.1145/
1272680.1272688

15. Shortle, John F., Thompson, James M., Gross, Donald, Har-
ris, Carl M.: Fundamentals of Queueing Theory, 5th edn.
Wiley, New Jersey (2018)

16. Medhi, J.: Stochastic Models in Queueing Theory. Aca-
demic Press, New York (2002)

17. Baskett and Chandy and Muntz and Palacios-Gomez: Open,
Closed, and Mixed Networks of Queues with Different
Classes of Customers. J. Ass. Comput. Mach. (1975). https://
doi.org/10.1145/321879.321887

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123

https://github.com/alicesuiu/FileSpooler
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://home.cern/about
https://home.cern/science/experiments/alice
https://home.cern/science/experiments/alice
https://doi.org/10.1088/1748-0221/19/05/P05062
https://doi.org/10.1088/1748-0221/19/05/P05062
http://arxiv.org/abs/2302.01238
https://doi.org/10.1051/epjconf/202429501023
https://doi.org/10.1109/ICCP60212.2023.10398714
https://doi.org/10.1109/ICCP60212.2023.10398714
https://doi.org/10.1145/3459960.3461559
https://doi.org/10.1145/3459960.3461559
https://doi.org/10.1088/1742-6596/664/8/082046
https://doi.org/10.1088/1742-6596/664/8/082046
https://doi.org/10.1051/epjconf/202125104026
https://doi.org/10.1051/epjconf/202125104026
http://arxiv.org/abs/2106.03636
https://eos-web.web.cern.ch/eos-web/
https://eos-web.web.cern.ch/eos-web/
https://doi.org/10.1051/epjconf/202024501027
https://doi.org/10.1051/epjconf/202024501027
https://doi.org/10.1016/S0168-9002(03)00462-5
https://doi.org/10.1016/S0168-9002(03)00462-5
https://doi.org/10.1145/1272680.1272688
https://doi.org/10.1145/1272680.1272688
https://doi.org/10.1145/321879.321887
https://doi.org/10.1145/321879.321887

	High Throughput Data Transfer System for ALICE Experiment in Run 3
	Abstract
	1 Introduction
	2 Data Acquisition Systems
	2.1 ALICE DAQ System in Run 3

	3 EPN2EOS Implementation Details
	4 Queueing Network Models
	4.1 Jackson Network Model
	4.2 Gordon–Newell Network Model
	4.3 BCMP Network Model
	4.4 Summary

	5 EPN2EOS Design
	6 EPN2EOS Evaluation
	7 Conclusion
	Acknowledgements
	References


