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Abstract

The work presented in my thesis develops advanced Bayesian statistical methods for

using astrophysical data to probe our understanding of the Universe, I cover three

main areas:

Should we doubt the cosmological constant?

While Bayesian model selection is a useful tool to discriminate between competing

cosmological models, it only gives a relative rather than an absolute measure of how

good a model is. Bayesian doubt introduces an unknown benchmark model against

which the known models are compared, thereby obtaining an absolute measure of

model performance in a Bayesian framework. I apply this new methodology to the

problem of the dark energy equation of state, comparing an absolute upper bound

on the Bayesian evidence for a presently unknown dark energy model against a

collection of known models including a flat Lambda cold dark matter (ΛCDM )

scenario. I find a strong absolute upper bound to the Bayes factor between the

unknown model and ΛCDM. The posterior probability for doubt is found to be less

than 13 per cent (with a 1 per cent prior doubt) while the probability for ΛCDM rises

from an initial 25 per cent to almost 70 per cent in light of the data. I conclude

that ΛCDM remains a sufficient phenomenological description of currently available

observations and that there is little statistical room for model improvement

Improved constraints on cosmological parameters from su-

pernovae type Ia data

I present a new method based on a Bayesian hierarchical model to extract constraints

on cosmological parameters from SNIa data obtained with the SALT-II lightcurve

fitter. I demonstrate with simulated data sets that our method delivers considerably

tighter statistical constraints on the cosmological parameters and that it outperforms

the usual chi-square approach 2/3 of the times. As a further benefit, a full posterior

probability distribution for the dispersion of the intrinsic magnitude of SNe is ob-

tained. I apply this method to recent SNIa data and find that it improves statistical

constraints on cosmological parameters from SNIa data. From the combination of

SNIa, CMB and BAO data I obtain Ωm = 0.28± 0.02,ΩΛ = 0.73± 0.01 (assuming

w = −1) and Ωm = 0.28 ± 0.01, w = −0.90 ± 0.05 (assuming flatness; statistical

uncertainties only). I constrain the intrinsic dispersion of the B-band magnitude of

the SNIa population, obtaining σint
µ = 0.13± 0.01[mag].
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Robustness to systematics for future dark energy probes

I extend the Figure of Merit formalism usually adopted to quantify the statistical

performance of future dark energy probes to assess the robustness of a future mission

to plausible systematic bias. I introduce a new robustness Figure of Merit which

can be computed in the Fisher Matrix formalism given arbitrary systematic biases

in the observable quantities. I argue that robustness to systematics is an important

new quantity that should be taken into account when optimizing future surveys. I

illustrate our formalism with toy examples, and apply it to future type Ia supernova

(SNIa) and baryonic acoustic oscillation (BAO) surveys. For the simplified system-

atic biases that I consider, I find that SNIa are a somewhat more robust probe of

dark energy parameters than the BAO. I trace this back to a geometrical alignment

of systematic bias direction with statistical degeneracy directions in the dark energy

parameter space.
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Chapter 1

Introduction

1.1 Epistemology of the Cosmos

This thesis is about using advanced statistical methods, namely Bayesian, to make

best use of astrophysical probes of cosmology. The particular aspect of cosmology

on which it focusses on is the apparent late time acceleration of our Universe. As

observers, our immediate experience of the Universe is limited to a very small sphere

of sensory perception that has been extended by a few space probes which have

ventured no further than the edge of our Solar System. Even then, the information

gathered by our space-borne instruments is limited to what lies within our past light

cone.

Our a posteriori knowledge of the wider Universe is based on our local obser-

vations of distant regions of space. Many of these observations are of astrophysical

objects for example stars, galaxies and supernovae. The question is how to make

best use of these locally collected photons from distant astrophysical objects, to tell

us about the Universe in which we live.

The fundamental cosmological questions I am interested in answering are: How

do we translate our observations of astrophysical phenomena into probabilistic state-

ments about the parameters of the underlying physical theories such as dark energy?

How do we quantify our degree of belief about those fundamental models? How do

we discriminate between different models such as a cosmological constant vs. modi-

fied gravity? My research presented in this thesis focuses on using Bayesian methods

to investigate the apparent late time acceleration of the Universe and how this affects

our choice of cosmological model and determination of the cosmological parameters.

The evidence for the apparent late time acceleration of the Universe which

came in the form of observations of supernovae type Ia (Riess et al., 1998; Perl-

mutter et al., 1999b) resulted in a paradigm shift away from the Cold Dark Matter
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Figure 1.1: Schematic showing that various observations point towards the ap-
parent late time acceleration of the Universe, and some of the possible different
types of models which could explain this. The goal is to be able to use astrophys-
ical observations to discriminate between the different cosmological models and
infer the values of the parameters within those models. The research presented in
this thesis develops statistical tools with which to do this.

(CDM) model to the current reigning model: Lambda Cold Dark Matter (ΛCDM).

Will new observations gathered from the next generation of surveys such as LSST,

DES, EUCLID and WFIRST confirm the status of ΛCDM or will they point beyond

to a new model? Figure 1.1 shows how various observations all point towards the

apparent late time acceleration of the Universe, and some of the possible different

cosmological models offered in explanation. The current most widely accepted ex-

planation for the apparent late time acceleration is the ΛCDM model which belongs

to a sub set of the dark energy class of models. The most popular alternatives are

other types of dark energy models, or modified gravity models. Cosmological models

in which the Universe is not really accelerating but only appears to be accelerating

include void models and differing descriptions of the backreaction. My research is

about developing advanced statistical techniques to (1) Discriminate between dif-

ferent cosmological models; (2) Infer the parameters within those models; and (3)

plan future observing strategies in order to be able to better constrain the various

models and their parameters.

The question as to what is causing the apparent late time acceleration of our

Universe has been identified by the Decadal Survey NRC (2010) as being one of

the ‘most fundamental questions in astrophysics’. Answering this question has far

reaching implications not just for astrophysics, but also for our understanding about

the fundamental laws of nature: either there is a new and previously unknown energy
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field with exotic properties, or the laws of gravity need to be re-thought. The

findings of our astrophysical observations will change our understanding of physics

of the most fundamental level. To quote from the Decadal Survey NRC (2010): ‘this

survey recommends supplementing our current ability to use the universe as a giant

cosmic laboratory to study dark energy, inflation, and black holes. Success in this

endeavour would provide critical constraints on the laws of physics and the behaviour

of the universe that would inform efforts to realize a unification of gravity and

quantum mechanics through string theory or other approaches’. Well planned and

well executed observational surveys will shed light on some of the most fundamental

questions in physics. Given the large financial outlay required to initiate and run

these large scale surveys, it is crucial that the best possible statistical methods are

used to analyse the data and ensure that no information is wasted.

These surveys utilize several different astrophysical probes: supernovae Ia,

baryon acoustic oscillations, weak lensing and galaxy clustering, and involve huge

data sets. We need to give careful consideration to how this data is analysed, and

how the different astrophysical probes are best combined. What are the best and

most interesting questions we can ask about the Universe with this data? How can

we extract the maximum information about the Universe from our observations?

A Bayesian statistical approach offers a holistic world view in which to answer

these questions. Bayesian statistical methods are becoming increasingly popular in

cosmology [e.g. Trotta (2008); Hobson, M. P., Jaffe, A. H., Liddle, A. R., Muke-

herjee, P., & Parkinson, D. (2010) and refs. therein] because this Bayesian per-

spective gives a universal strategy for deciding how to ask the right questions, how

to do model selection, parameter inference and how to quantify the unknown. My

research presented in this thesis looks at applying these methods to problems at the

interface between astrophysical probes and cosmological theory. The three types of

problems I look at are: Firstly: What is the best way to constrain the parameters

of a given model using a given data set? (i.e. problems of parameter inference);

Secondly: How do we use the observational data to distinguish between competing

theoretical models? (i.e. problems of model selection); And thirdly: How do we

design and optimise future surveys to obtain the most useful information?

Aspects of these three types of question are addressed in the three work chapters

of this thesis, which are based on three papers written with my collaborators during

the course of my PhD. The three areas of investigation can be categorized as model

building, parameter inference and future surveys. In the following paragraphs I give

a brief overview of these three areas of investigation covered in this thesis.
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1.2 Areas of research presented in this thesis

Cosmological Model Building: Bayesian Doubt

Several different types of explanation are possible for the apparent late time ac-

celeration of the Universe, including different classes of dark energy model such as

ΛCDM, wCDM or quintessence models; theories of modified gravity; void models or

the back reaction. Through comparison of the model evidences, Bayes theory offers

a way of comparing the relative degree of goodness of the different models on offer.

However, Bayesian model selection only offers a relative not an absolute measure

of goodness of fit - it tells us which is the best model in a given set, but it does not

tell us whether an unknown and potentially better model may exist. The research

presented in chapter 6 is about extending the concept of Bayesian model selection to

the concept of Bayesian Doubt (Starkman et al., 2008; March et al., 2011a) which

gives an absolute measure of the degree of goodness of a model. I have applied

the methodology of Bayesian Doubt to the question of whether we should doubt

ΛCDM given the current data, and found the answer to be negative.

Parameter Inference: Cosmology from the supernovae type Ia data

I have been developing a new fully Bayesian method for constraining cosmological

parameters from SALT lightcurve fits of SNIa data, based on hierarchical modelling,

this work is presented in chapter 7. My new method has several advantages over

the standard χ2 method:

• In trials with simulated data it outperforms the χ2 method in the recovery of

the cosmological parameters 2/3 of the time.

• My new method is fully Bayesian and as such can be used with the full suite

of other Bayesian techniques such as model selection.

• It can be used to investigate supernovae evolution, contamination by other

supernovae populations and how this affects recovery of the cosmological pa-

rameters.

• My new method will allow me to develop a new tool for the analysis of possible

systematic error sources in the SNIa data.

• My new fully Bayesian approach can be used with existing, fast sampling

techniques which are expected to vastly increase the efficiency of current SNIa

parameter determination analysis pipelines.
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Preliminary results for this work were presented at the 217th AAS meeting, January

2011, and a preprint of the associated paper is available (March et al., 2011c).

This chapter and associated initial paper expounds the basic implementation of the

new Bayesian methodology and gives preliminary results using currently available

supernova data.

Future Surveys: Robustness to systematic errors

Future proposed surveys and survey techniques are frequently assessed by a figure

of merit which often takes the form of the inverse of the area of the Fisher matrix

of the proposed new probe, marginalized down to the parameter space of interest.

The traditional inverse area figure of merit for the joint posterior of several probes

is independent of the location of the probes in parameter space - i.e. that figure of

merit remains the same regardless of the potential size or direction of any bias that

may affect the location of the proposed probe.

• How to we optimize future surveys which may be subject to unforeseen bias?

• How do we quantify the degree of complementarity between the different

probes of dark energy?

Chapter 8 describes work I have been contributing to in developing an additional

statistic, ‘Robustness’, (March et al., 2011b) based on the Bayesian evidence, which

gives a measure of how compatible any two probes are. Probes which have a high

degree of overlap in parameter space have a higher numerical value for Robustness,

and probes are said to be more compatible, probes which have a lower degree of

overlap in parameter space have a lower value for Robustness. As a test case I

evaluated Robustness for a EUCLID type BAO survey and a SNAP type supernovae

Ia survey.

1.3 Structure of this thesis

After this introduction there are three chapters describing the background pertaining

to the work chapters following. Chapter 2 briefly describes the cosmological back-

ground to this work, outlining the Friedman Robertson Walker and ΛCDM model

of the Universe. Chapter 4 describes in some detail the supernovae type Ia which

are the major astrophysical probe treated in this work, in particular in chapter

7, whilst chapter 5 describes the statistical methods (primarily Bayesian) utilised.

These background chapters are not intended to give an exhaustive description of
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current cosmology and statistics, but serve to place in context and give sufficient

technical background for the understanding of the work chapters.

Following the work chapters, chapter 9 summarises the main conclusions of the

work presented in this thesis and gives an overview of the future directions of this

work.
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Chapter 2

Cosmology background

The current standard model of the Universe is one which is homogeneous and

isotropic (cosmological principle) in which we as observers occupy no privileged

vantage point (Copernican principle). This model is described as the Friedmann-

Lemâıtre-Robertson-Walker model (FLRW) and the particular matter-energy den-

sities of roughly 70% dark energy (Λ), 25% dark matter (CDM) and 5% baryonic

matter are described as the ΛCDM model. As a sign that the FLRW ΛCDM model

has become the current accepted concordance model of cosmology, we see that there

are many excellent and comprehensive standard texts describing this model. The

content of this background chapter is largely drawn from the following standard

texts: (Dodelson, 2003; Mukhanov, 2005; Weinberg, 2008; Peacock, 1999; Schnei-

der, 2006).

This chapter serves to give a brief overview of some of the cosmological back-

ground necessary for the research presented in later chapters. The bulk of the

research in this thesis is concerned with the extraction of cosmological parame-

ters from the supernovae data, and in that context, it is sufficient to consider the

smooth expanding Universe and its distance measures described in sections 2.2 and

2.3. However, this thesis also makes use of CMB data sets, and baryon acoustic

oscillation (BAO) data sets, which depend on our understanding of the perturbed

Universe, hence a brief overview of the inhomogeneous Universe is also included.

2.1 Prelude: An historical overview

Since much of the work in this thesis is focussed on investigating the apparent late

time acceleration of the expansion of our Universe it seems fitting to include a brief

historical note about the first observations which suggested that our Universe is

indeed expanding, Einstein’s independent suggestion of the cosmological constant,



2.1 Prelude: An historical overview 23

and an early use of standard candles.

In 1929 Edwin Hubble published a paper describing the relationship between

the radial velocity and distance of certain extragalactic ‘nebulae’. (Hubble, 1929).

Hubble’s methodology for determining distance depended on the knowledge that

certain types of astrophysical objects within the extragalactic ‘nebulae’ had a known

absolute magnitude, or at the very least had an absolute magnitude which lay within

a small, well known range. By observing the apparent magnitude of known types of

objects and comparing this to their supposed absolute magnitude, their distances

could thus be calculated. Hubble essentially used objects of known brightness (such

as Cepheid variables, novae and blue stars) as ‘standard candles’, that would appear

dimmer at greater distances and brighter at closer distances. The velocities of the

extra galactic nebulae were obtained from observations of their redshift.

Hubble concluded that a ‘roughly linear’ relationship existed between the veloc-

ities and distances of these extragalactic nebulae, as shown in fig. 2.1. The velocity,

vobs, as observed from Earth, was proportional to the distance, d(t0), for low redshift

z . 0.1, extragalactic objects:

vobs = H0d(t0) + vpec (2.1)

Where H0 is the value of the Hubble parameter today and vpec is the peculiar velocity

of the object due to local gravitational interactions. The recessional velocity, v(t0),

is defined as:

v(t0) = H0d(t0) (2.2)

where subscript 0 denotes values today. On scales larger than 100Mpc, the universe

appears to be both isotropic and homogeneous and the Hubble parameter has no

spatial dependence. For scales greater than the scale of homogeneity, the pecu-

liar velocity is small with respect to the recessional velocity and can be neglected.

Hubble’s observations that the further away an object is, the more rapidly it is re-

ceding, confirmed the theoretical predictions of Friedmann (1924) that an expanding

universe was indeed a valid solution to Einstein’s theory of General Relativity.

Hubble’s tentative 1929 result for extragalactic objects at low red shift, has been

subsequently confirmed by modern observations. Furthermore, it has been shown

that the Hubble parameter varies with higher redshift (or earlier times), such that

H = H(t) and:

ṙ(t) = H(t)r(t) (2.3)

where r(t) is the distance in the radial direction and overdots denote derivatives
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with respect to time, t. The relationship between the physical distance, r(t) and

the comoving distance, χ is given by:

r(t) = χa(t) (2.4)

Where a(t) is known as the scale factor and the Hubble parameter is defined as:

H(t) ≡ ȧ(t)

a(t)
(2.5)

Having defined the Hubble parameter which describes the expansion rate of the

Figure 2.1: Plot from Hubble (1929) showing that more distant objects recede
more rapidly than nearby objects, a result that challenged the conventional wis-
dom of the time, suggesting that the universe was not static, but dynamic and
expanding.

universe, it is of interest to know what physical processes control this parameter.

As shall be discussed in some detail later, it is Friedmann’s equation which describes

the physics governing the Hubble Rate:

H2(t) =

(
ȧ(t)

a(t)

)
= H2

0 (ρm(t) + ρr(t) + ρΛ(t) + ρK(t)) (2.6)

H0, is the value of the Hubble Rate today and is a constant, meaning that the time

dependent Hubble rate, H(t) is governed entirely by the sum of the evolving energy

densities, (i.e. ρ(t)s) of the principal constituents of the universe. The equations

describing the energy densities due to matter, ρm(t) and radiation, ρr(t) are well
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understood and shall be discussed in due course. ρK(t) represents the contribution

to the energy density due to the curvature of the universe, a term which vanishes in

the case of a flat universe. However, it is ρΛ(t) which is the term of special interest

for the research presented in this thesis.

When ρΛ(t) is considered to be constant, such that ρΛ(t) = ρΛ0 , then it is

traditionally termed the ‘Cosmological Constant’, but when it is allowed to vary

with time, it is known as ‘Dark Energy’. The form which ρΛ(t) takes is by no means

certain and there are many unanswered questions regarding its nature and origin.

Some of the initial questions which this project seeks to answer include identifying

whether ρΛ(t) has evolved with time, whether it is still evolving with time, what

values it may take and whether it is the same in all directions.

In order to constrain the form of the dark energy term, ρΛ(t), it is necessary to

map out how H(t) varies in time and discern how this can be affected by the ρΛ(t)

term in Eq. (2.6). Edwin Hubble mapped out the evolution of H(t) using a ‘standard

candle’ technique and a similar methodology is used today with the supernovae type

Ia - this is the particular focus of chapter 7. As well as ‘standard candles’, ‘standard

rulers’ can be used to map out the expansion history of the Universe. The idea of a

standard ruler is to take some object of fixed co-moving length, χ and measure its

physical length, r(t) at various known times (i.e. at different redshifts).

No astrophysical objects have been identified as being suitable candidates for

standard rulers, but a cosmological phenomenon has been identified as being appro-

priate: Baryon Acoustic Oscillations. Although in accordance with the cosmological

principle, the universe is isotropic and homogeneous on large scales, it is lumpy on

small scales (< 100Mpc). On small scales, matter is clumped into over and under

densities which are distributed according to preferred length scales, preferred scales

which were established by the physical processes occurring around the time of re-

combination. The idea is to use these preferred scales in the matter distribution as

standard rulers to probe the history of the universe and the evolution or otherwise of

the dark energy. Astrophysical observations of galaxies and their spatial distribution

reveal the imprint of the baryon acoustic oscillations. Astrophysical observations of

this type are used in chapters 6 and 8 as probes of cosmology and in particular dark

energy.
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2.2 The Friedmann Lemâıtre Robertson Walker

Universe

Assuming that the Universe is isotropic and homogeneous, the simplest description

of this type of expanding spacetime is give by the Friedman-Lemâıtre-Robertson-

Walker (FLRW) metric; where ds is the spacetime interval. In Cartesian coordinates

this is given by:

ds2 = gµνdx
µdxν (2.7)

where for an unperturbed universe the FLRW metric is:

gµν = diag(−1, a2(t), a2(t), a2(t)) (2.8)

Transforming into spherical polar coordinates gives another useful form of the FLRW

metric, in which the universe can be considered as a 3 dimensional hypersurface

embedded in 4-space:

ds2 = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2dΩ2

]
(2.9)

where:

dΩ2 = dθ2 + sin2 θdφ2 (2.10)

K describes the curvature of the universe:

K =
|a|2
a2

(2.11)

K =


+1 bounded, positively curved

0 unbounded, flat

−1 unbounded, negatively curved

(2.12)

In the case of the curved universe, K 6= 0, then the magnitude of the scale factor has

geometrical meaning as the radius of curvature of the universe. A further coordinate

transformation allows the FLRW metric to be re written in terms of co-moving

distance, χ:

ds2 = −dt2 + a(t)2(dχ2 + S2
K(χ)dΩ2) (2.13)
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where SK(χ) is given by:

SK(χ) =


sin(χ) positively curved

χ flat

sinh(χ) negatively curved

(2.14)

The relationship between the matter and the gravitational forces (i.e. geometry) of

the Universe, are codified in the Einstein equations; which are stated here without

proof. For a detailed description see for example (Misner et al., 1973).

Gµν = 8πGTµν (2.15)

where the Einstein Tensor is:

Gµν = Rµν − 1

2
gµνR (2.16)

with and Rµν and R being the Ricci tensor and scalar respectively:

Rµν = Γαµν,α − Γαµα,ν + ΓαβαΓβµν − ΓαβνΓ
β
µα (2.17)

R = gµνRµν (2.18)

The comma notation indicates a partial derivative. Tµν is the stress-energy tensor,

which describes the characteristics of the 4-momentum flowing through spacetime

at any point. The stress-energy tensor for a perfect fluid of pressure, p and density,

ρ, flowing with 4-velocity uµ may be written as:

Tµν = (ρ+ p)uµuν + pgµν (2.19)

The right hand side of Einstein’s equation quantifies the amount of matter and the

left hand side is a statement about the geometry of the spacetime. The Einstein

tensor is constructed from the Ricci tensor and scalar. Einstein realized that the

initial equation he proposed allowed for a dynamic, expanding universe, which at

the time was counter intuitive to him, as a static universe was the favoured model

of the day. In order to compensate for this and force the universe described in his

equation to be static, Einstein added an additional term, the cosmological constant,

Λ:

Gµν = Rµν − 1

2
gµνR− gµνΛ (2.20)
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Einstein originally added his additional term gµνΛ to the left hand side of Eq. (2.20),

signifying a modification to gravity, but in modern discussions of the cosmological

constant the term is generally subtracted from the right hand side of Eq. (2.20)

indicating a modification to the matter-energy content of the Universe. The effect

of introducing Λ was to alter the dynamics to prevent the possible expansion or

collapse of the universe, but once it became established through Hubble’s observa-

tions that the universe was indeed expanding, the additional term could be removed.

However as modern cosmological observations seem to indicate that the universe is

accelerating (Riess et al., 1998; Perlmutter et al., 1999b), a fact which cannot be

accounted for by ordinary matter and energy densities, recent years have seen a

reinstatement of Λ as a means of explaining this acceleration. Whereas Einstein

sought to halt the universe with Λ, modern cosmologists are seeking to accelerate

the universe with Λ.

For this background description of the ΛCDM Universe, we shall consider the

cosmological constant to be in the form of an additional energy density, in the stress

energy tensor. Alternative explanations for the apparent late time acceleration of

the Universe are discussed in chapter 3. In order to obtain solutions to the Einstein

equation, it is necessary first of all to obtain the metric connections for the Ricci

tensor, which may be calculated directly from the metric. The non zero metric

connections obtained are as follows; where overdots denote derivatives with respect

to time:

Γi0j = Γij0 = δij
ȧ(t)

a(t)
(2.21)

Γ0
ij = δija(t)ȧ(t) (2.22)

Using the metric connections in Eq. (2.21) and Eq. (2.22), with the FLRW metric

Eq. (2.8)), the Ricci scalar can be calculated via the Ricci tensor to give:

R = 6

[
ä(t)

a(t)
+

(
ȧ(t)

a(t)

)2
]

(2.23)

Using this to calculate the time, time component of the Einstein equation gives the

first Friedmann equation for spatially flat spacetime:

H(t)2 =

(
ȧ(t)

a(t)

)2

=
8

3
πGρ(t) (2.24)

Calculation of the space, space components of the Einstein equation leads to the
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Figure 2.2: The evolution of energy density with scale factor, shown here for
the WMAP best fit parameters (table 2.1). After the radiation era, the universe
passed through matter-radiation equality, and entered the matter dominated era.
Matter and radiation densities are diluted as the universe expands, but the relative
amount of dark energy or cosmological constant has increased, allowing its density
to remain constant or near constant. It is only in the present era that dark energy
has begun to dominate the universe.

second Friedmann equation:

ä(t)

a(t)
= −4

3
πG(ρ(t) + 3p(t)) (2.25)

These two Friedmann equations are of fundamental importance, as they sum-

marise the history of the universe. For a curved universe, the curvature term appears

in the Friedmann equation as:

H(t)2 +
K

a2(t)
=

(
ȧ(t)

a(t)

)2

=
8

3
πGρ(t) (2.26)

The pressure p(t) and density ρ(t) terms in Eq. (2.24) and Eq. (2.25) can be ex-

pressed as sums of the p(t)s and ρ(t)s of the various fluids that make up the universe,

provided that the fluids are non-interacting. The cosmological constant and curva-

ture term may be included as fluids with contributing densities, such that:

ρ(t) = ρm(t) + ργ(t) + ρΛ(t) + ρκ(t) (2.27)
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Description Symbol Value
Hubble constant H0 71.9 ± 2.7 km/s/Mpc
Baryon density Ωb 0.0441 ± 0.0030
Dark matter density Ωc 0.214 ± 0.0027
Dark energy density ΩΛ 0.742 ± 0.030
Curvature fluctuation amplitude, k0 = 0.002 Mpc−1 ∆2

R (2.41 ± 0.11)x10−9

Scalar spectral index ns 0.963 ± 0.015
Reionization optical depth τ 0.087 ± 0.017

Table 2.1: Summary for WMAP 5-year update best fit parameters for flat ΛCDM
model Dunkley et al. (2009)

where:

ρm(t) non relativistic pressureless matter (dust) w = 0

ργ(t) relativistic matter (photons) w = 1/3

ρΛ(t) cosmological constant w = −1

ρκ(t) curvature w = −1/3

(2.28)

The energy densities can be calculated, using the relativistic continuity equation

(Dodelson, 2003), where w is the equation of state parameter w = p/ρ:

∂ρ

∂t
+ 3H(t)(ρ+ p) = 0 (2.29)

which in terms of a is:
∂ρ

∂t
+ 3

ȧ(t)

a(t)
(1 + w)ρ = 0 (2.30)

which in the case of constant w has solutions of the form below:

ρ(t) = ρ0a(t)−3(1+w) (2.31)

So the Friedmann equation can be written as:

H(t)2 =

(
ȧ(t)

a(t)

)2

=
8

3
πG(ρ0

ma(t)−3 + ρ0
γa(t)−4 + ρ0

Λ + ρ0
κa(t)−2) (2.32)

Typically, the densities of the various components of the universe are written in

terms of the critical density as cosmological parameters, Ω:

Ω(t) =
ρ(t)

ρc(t)
(2.33)
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where the critical energy density ρc(t) is defined as:

ρc(t) =
3H2(t)

8πG
(2.34)

In terms of the critical energy density, the Friedmann equation becomes:

H(t)2 = H2
0 (Ω0

ma(t)−3 + Ω0
γa(t)−4 + Ω0

Λ + Ω0
κa(t)−2) (2.35)

which also leads to:

Ωκ = 1− Ωtotal (2.36)

where:

Ωtotal = Ωm + ΩΛ + Ωγ (2.37)

and

Ωκ =
−K
a2

0H
2
0

(2.38)

giving a value for the scale factor today, in a non flat, (K 6= 0), universe:

a−1
0 =

√
|Ωtotal − 1|H0 (2.39)

The energy density of the dust scales as the inverse volume of the universe, the

energy density of the photons also decreases with increase in scale factor, as ∼ a−4.

However, in the model currently under discussion, with wΛ = −1 the energy density

of the cosmological constant does not vary with time, it is not conserved in the

same way as the other quantities - it is not diluted as the universe expands, which

means that the relative dominance of the cosmological constant must increase as

the universe expands and ΩΛ → 1.

Our main cosmological interest in the work presented in this thesis is in verifying

whether or not this ‘cosmological constant’ is truly constant with time and whether

wΛ is well constrained to−1. We shall generally use the term ‘dark energy’ to refer to

ρΛ(t) and reserve the term ‘cosmological constant’ for models in which ρΛ(t) = ρΛ0

and wΛ = −1. For more details on dark energy models for which wΛ = −1 see

chapter 3.

2.3 Cosmological Distance Measures

For our later discussion on the use of standard candles and standard rulers, it is first

useful to define a few cosmological distances and measures; for which we generally
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follow the methodologies of Mukhanov (2005) and Dodelson (2003).

2.3.1 Conformal Time

Thus far we have distinguished between physical size of an extended object, r(t)

and its comoving size, χ and their relationship via the scale factor:

r(t) = χa(t)

The comoving time, η(t), is the maximum comoving distance a photon could have

traveled in a given time. Supposing a photon travels a physical distance, dr during

a time interval dt, at a velocity, c, in units where c = 1, from the metric:

dr = dt

in comoving coordinates:
dη

dt
= a(t) (2.40)

which may be integrated to give the conformal time, η(t):

η(t) ≡
∫ t2

t1

1

a(t)
dt (2.41)

A comoving distance of particular interest is the maximum comoving distance, ηp(t)

a photon could have traveled since the begining of the universe:

ηp(t) =

∫ t

0

1

a(t)
dt (2.42)

The comoving distance, ηp(t) acts as a boundary which demarcates regions which are

causally connected from those which are not causally connected. Any regions which

are separated by a comoving distance greater than ηp(t) are not causally connected.

η(t) is known as the ‘particle horizon’ or ‘comoving horizon’ and its size increases

with the age of the universe.

2.3.2 Redshift and Comoving Distance

The expansion of the universe affects the wavelength of photons in such a way as to

be shifted from shorter wavelengths to longer wavelengths, by a measurable amount,

known as ‘redshift’, z(t), which is also a useful measure of distance or time in the

universe. This increase in wavelength is indicative of the energy loss of the photon
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Figure 2.3: A pulse of light, of wavelength, λe, physical duration, ∆te, conformal
duration ∆η is emitted from a distant source, at conformal time, ηe and is received
by an observer at conformal time, η0. χ is the conformal distance, between the
observer and the distant emitter.

as it does work against the expansion of the universe. Suppose a source at ηe emits

a pulse of light of physical duration ∆te and conformal duration ∆η, as shown in

fig.2.3. The conformal duration is fixed, but the physical duration will vary as the

light pulse travels through the expanding universe and will change between the point

of emission and the point of observation. At the point of emission, the duration of

the pulse is:

∆te = ∆ηa(te)

at the point of observation, the duration of the pulse is:

∆t0 = ∆ηa(t0)

and as the conformal period is invariant:

∆te
a(te)

=
∆t0
a(t0)

The time interval of the pulse, ∆t can be considered to be the time period of the

photon, such that ∆t = cλ, with c = 1 to give :

λ0

λe
=
a(t0)

a(te
(2.43)

As can be seen from Eq. (2.43), the wavelength of the photon on arrival at the

observer today, λ0 is longer its wavelength on emission from the source, λe, some

time in the past. The photon’s wavelength has been shifted towards the red end

of the spectrum. The ‘cosmological redshift’, z is defined as the fractional shift in
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Figure 2.4: A distant source, of luminosity, L, emits photons in a thin spherical
shell, of comoving thickness ∆χ ≡ ∆η and physical radius d, which travels out
towards the observer.

wavelength:

z ≡ λ0 − λe
λe

(2.44)

such that:
ae
a0

=
1

(1 + z)
(2.45)

It is also useful to have an expression for the comoving distance from the observer

out to the distant emitter, labeled χ(ae) in fig. 2.3. This comoving distance can be

obtained fromEq. (2.41), but instead of integrating from the begining of time to the

present day, the limits need to be changed to find the the conformal time between

the time of emission of the light pulse, te, z and time of its observation t0, z = 0.

It is also convenient to change to the coordinate of integration to z, such that the

comoving distance out to an object at redshift z is:

χ(z) =
1

a0

∫ z

0

1

H(z)
dz′ (2.46)

2.3.3 Luminosity Distance

In a generic non-expanding spacetime, the observed flux, F , a distance, d from a far

away object of intrinsic luminosity, L is given by:

F =
L

4πd2
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Where the luminosity is the total energy, E per unit time, t. To calculate flux in

an expanding universe, it is necessary to switch to comoving coordinates, as shown

in fig. 2.4 and consider the path of a thin shell of photons, of comoving thickness

∆χ ≡ ∆η and physical duration ∆t, emited from the distant source at ηe. The

energy emited by the source is given by:

∆E(te) = L∆te (2.47)

which in comoving coordinates is:

∆E(ηe) = La(ηe)∆η (2.48)

The energy of a single photon is E = 1/λ, as the photons in the thin spherical

shell move through the expanding universe, they are redshifted and loose energy, as

described in Eq. (2.43), such that the energy of each observed photon is E0 = Ee
ae
a0

.

This means that there is an overall decrease in the energy contained in the thin shell

by the time it reaches the observer:

∆E(η0) = L
a(ηe)

2

a(η0)
∆η (2.49)

On reaching the observer, the physical surface area, A(η0) of the shell is:

A(η0) = 4πχ(ae)
2a(η0)2 (2.50)

and its physical duration is:

∆t(η0) = a(η0)∆η (2.51)

Thus in a flat expanding universe, the flux, i.e the energy per unit area per unit

time, at the observer is given by:

F (η0) =
L

a2
04πχ2

e(1 + z)2
(2.52)

where the comoving distance out to the object, χe ≡ χ(ae) is given by Eq. (2.46)

in the general case of a curved universe, the flux is:

F (η0) =
L

a2
04πSκ(χe)2(1 + z)2

(2.53)

Where Sκ(χe) is given byEq. (2.14) and a0 is given byEq. (2.39). The flux received by

the observer can be measured, which is usually recorded in terms of the astronomical
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units of apparent bolometric magnitude, mbol:

mbol(z) = −2.5 log10 F (z) (2.54)

which for an expanding universe is:

mbol(z) = 5 log10(Sκ(χe)(1 + z)) + constant (2.55)

The distance modulus, µbol is the difference between the intrinsic magnitude of an

object, Mbol and the observed magnitude of an object:

µbol = mbol −Mbol (2.56)

The luminosity distance, dL, is formally defined as:

dL ≡
(

L

4πF

)1/2

(2.57)

substituting Eq. (2.52) into Eq. (2.57), gives, for a flat universe:

dL = (1 + z)

∫ z

0

1

H(z)
dz (2.58)

The distance modulus can be written in terms of the luminosity distance:

µ = 5 log

[
c

H0

dL
1Mpc

]
+ 25 (2.59)

This is the key equation for probing the expansion history of the universe using

so-called standard candles. For a class of objects of fixed intrinsic magnitude, dis-

tributed over various redshifts, the distance modulus can be predicted for a given

cosmology and compared with observed measurements to identify which cosmologi-

cal model gives the best description of the observed universe.

2.3.4 Angular Diameter Distance

If a distant object at redshift, z, of known physical length, l, is subtended by an

angle, θ, as in fig. 2.5, then the distance, dA out to that object is the angular

diameter distance; which in physical coordinates is:

θ =
l

dA
(2.60)
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Figure 2.5: Angular Diameter Distance, dA: A distant extended object of phys-
ical length, l, subtends an angle θ on the sky. Physical dimensions are shown in
red; comoving distances and coordinates are shown in black; θ is the same in both
comoving and physical dimensions.

or in comoving coordiantes:

θ =
l

ae

1

χ(ae)
(2.61)

Equating Eq. (2.60) andEq. (2.61) gives an expression for the angular diameter

distance in a flat universe:

dA = aeχ(ae) =
χ(z)

(1 + z)
(2.62)

where the comoving distance out to the object, χ(ae) is given byEq. (2.46). It can

also be useful to write the luminosity distance in terms of the angular diameter

distance in this way:

dL = (1 + z)2dA (2.63)

where the scale factor today is unity a0 = 1.

2.4 Inflation

The theory of inflation was devised primarily by Guth (1981) and Linde (1984)

in the early 1980s as a means of explaining several cosmological problems, which

were yet unexplained by the standard big bang model. A very brief overview of

inflation is included here, partly because of its role in the description of the initial

inhomogeneities and partly because there are some similarities between the mecha-

nisms which drove inflation and some of the ideas used to describe dark energy. The

similarities arise because both inflation and dark energy deal with the case of an ac-

celerating universe; the acceleration during inflation was much more extreme than
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the slow acceleration seen today, however, the two scenarios share some common

ground.

The main problems which inflation sought to solve were the so-called flatness

and horizon problems. The distribution of the photons released at recombination and

observed today initially by Penzias and Wilson and later by space borne instruments

such as COBE and WMAP, was seen to be inhomogeneous on small scales, but

statistically homogeneous on large scales, θ & 1◦. The problem is why do regions

that would not have been not causally connected at recombination (when the CMB

was released) appear to be statistically statistically homogeneous today? According

to inflation, this problem can be solved if the universe undergoes a brief period of

rapid expansion at early times.

The expression for the comoving horizon, Eq. (2.41) may be re-written as:

η(a) =

∫ a

0

1

aH(a)

da

a
(2.64)

where the comoving Hubble radius is defined as:

1

aH(a)

The comoving horizon separates regions which are currently causally separated and

have been causally separated since all time. The comoving Hubble radius sepa-

rates regions which are currently causally separated, but may have been causally

connected in the past (Dodelson, 2003). If the Hubble radius is smaller than the co-

moving horizon, then regions which are today separated by the Hubble radius, but

lie within the comoving horizon, could have been causally connected in the past,

even though they are causally disconnected.

In order to have a decreasing Hubble radius, aH(a) must be increasing:

d

dt

(
a

a

da

dt

)
> 0

such that we have an accelerating universe:

d2a

dt2
> 0 (2.65)

Our main interest here is to discern what drives this acceleration. Substituting

Eq. (2.65) into the second Friedmann equation, Eq. (2.25) tells us something about
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the energy density involved:

0 < −4

3
πG (ρ(t) + 3P (t))︸ ︷︷ ︸

must be negative

(2.66)

P (t) < −ρ(t)

3
(2.67)

which demands that the pressure, P (t) is negative, as the energy density, ρ(t) is

positive. This describes something completely different from ordinary matter and

radiation, which always has a positive pressure. Guth identified this negative pres-

sure as the driving force behind the exponential expansion Guth (1981) and this

negative pressure could, for example, be supplied by a scalar field with a Lagrangian:

L =
1

2
gµν∂µφ∂nuφ− V (φ) (2.68)

which has a stress-energy tensor:

T µν =
1

2
φ̇2 − 1

2
(∇φ)2 − gµνV (φ) (2.69)

whose time-time component gives the energy density:

ρ =
1

2
φ̇2 + V (φ) (2.70)

and whose spatial components give the pressure:

P =
1

2

(
∂φ

∂t

)2

︸ ︷︷ ︸
kinetic term

− V (φ)︸ ︷︷ ︸
potential term

(2.71)

In order for P to be negative, then the potential energy must be greater than the

kinetic energy. Guth’s original idea for such a scenario was to have a field trapped in

a false minimum; because the field was trapped, it would have little kinetic energy

and because it was in a false minimum, the potential energy could be a suitable non-

zero value. The problem with Guth’s original idea was how a ‘graceful exit’ could

be made from entrapment in the false minimum, bringing the epoch of inflation to

an end.

Linde (1984) reviewed some of the various modifications to Guth’s ‘old’ infla-

tionary theory and developed a ‘new’ inflationary model in which the field was not

trapped in a false minimum, but began at some positive potential from which it

could freely and slowly ‘roll’ towards the true vacuum potential. As well as solving
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the problem of escape from the false minimum, Linde’s new model also had the

added and important benefit of predicting that the density perturbations produced

during the slow roll inflation are inversely proportional to φ̇ (Linde, 2005), such that

the over-densities, δρ for different momenta, k are given by Linde (1984):

δρ(k)

ρ
=

1√
2π3

H2

|φ̇|

∣∣∣∣
φ=φ∗

(2.72)

where φ∗ is the value of the field at the moment at which the momentum k of this

perturbation was equal to k∗ = H. The end of inflation occurs when the field finally

reaches the true minimum and oscillates about that minimum for some time before

decaying and producing elementary particles as it decays. Thus ends our brief and

highly simplified description of inflation. The so-called ‘new’ inflation that we have

outlined serves to illustrate the main principles of inflation, however there are other

inflationary theories offering refinements and developments. Some of these developed

theories include ‘chaotic inflation’, which does not assume thermal equilibrium for

its initial conditions and ‘hybrid inflation’ which uses multiple scalar fields.

2.5 The Evolution of the Inhomogeneities

One of the useful outcomes of the inflation model is that it predicts the initial

distribution of density inhomogeneities, in Eq. (2.72), which eventually give rise to

the large scale structure of the present day universe and the temperature anisotropies

in the CMB. The power spectrum of these initial over and under densities is usually

parametrized in the following way, (e.g. Bridle et al. (2003)) and is termed the

‘primordial power spectrum’:

Pχ(k) = As

(
k

ks0

)ns−1

(2.73)

The power spectrum amplitude, As, determines the variance of the fluctuations.

The potential of the inflation field determines the spectral index, ns, with ns = 1

corresponding to the scale invariant power spectrum or Harrison-Zel’dovich-Peebles

spectrum. In the slow roll models, where the field is rolling towards the true vacuum,

ns varies very slowly such that |ns − 1| << 1.

Having now defined the primordial power spectrum, we wish to know what

changes the matter density distribution undergoes in order to produce the present

day matter power spectrum and the CMB power spectrum.

The principal constituents of the early universe were photons, baryons and dark
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matter. Protons and electrons were tightly coupled due to Coulomb scattering and

since the mass of the protons is much greater than the mass of the electrons, electrons

are included under the title of ‘baryons’. Neutrinos were also present, but we shall

omit them from our current discussion.

At early times, the photons and baryons were tightly coupled by Compton

scattering into a photon-baryon fluid. Oscillations were set up in this fluid, driven

by perturbations in the density distribution of dark matter: the mass of the baryons

meant that the fluid tended to fall into the gravitational potential wells in dark

matter over dense regions and the radiation pressure of the photons would tend to

force the fluid out of the gravitational potential wells. Hence acoustic waves were

set up within the photon-baryon fluid with areas of compression having an over

density of baryons and areas of rarefaction having an under density of baryons; as

long as the photons and baryons were coupled, the fluid continued to oscillate, at

characteristic wavelengths related to the speed of sound in the photon-baryon fluid.

Near the time of recombination, the photon-baryon fluid decoupled and the

oscillations ceased; baryon over-densities and under-densities were ‘frozen in’ on a

characteristic scale determined by the wavelength of the acoustic oscillations. De-

coupled from the baryons, the photons are then free to travel or ‘free stream’ from

the place which they were last scattered, through the universe to be observed today.

The surface which connects all the points from which a photon last scattered is

known as the last scattering surface or LSS, these photons which were released at

the LSS and are observed by us today make up the cosmic microwave background

radiation, or CMB. After recombination, the baryons and dark matter continued to

interact gravitationally, giving rise to the large scale matter inhomogeneities we see

today, and the characteristic matter power spectrum

The physics which governs growth of the inhomogeneities and the behaviour of

the photon-baryon fluid is given by perturbation theory, of which a brief overview

shall be given. We will give a brief description of the evolution of perturbations

in some of the principal constituents of the universe, specifically, we shall look at

how photons, baryons and dark matter are distributed and how these distributions

change with time. We will also take note of how the perturbations in these affect

the metric and how the perturbations in the metric in turn affect the distribution of

the photons, baryons and dark matter. We shall not reproduce the full derivation

of these perturbations here, (for the full derivation see Dodelson (2003)) however,

we shall highlight some of the main ideas involved.

The general strategy is to perturb the metric at first order and then look at

how this affects the distribution functions of the various quantities of interest, by
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looking at how the perturbations to the metric affect the paths of the particles as

they move through the universe.

Here, we are considering the growth of perturbations in the early universe, up

until the time of recombination. These are the perturbations which are manifested

as small inhomogeneities in the CMB, hence we can make linear approximations in

this calculation.

For a flat, smooth, expanding universe, spacetime is described by the Friedmann-

Robertson-Walker metric; as in Eq. (2.8). In a perturbed universe, small changes in

the Newtonian potential, Φ(~x, t) and spatial curvature, Ψ(~x, t), can be introduced

to perturb the smooth FLRW metric of Eq. (2.8) in this way:

gµν =


−1− 2Ψ(~x, t) 0 0 0

0 a2(t)(1 + Φ(~x, t)) 0 0

0 0 a2(t)(1 + Φ(~x, t)) 0

0 0 0 a2(t)(1 + Φ(~x, t))


(2.74)

Where the sign convention is such that Φ(~x, t) < 0 and Ψ(~x, t) > 0 describe over-

dense regions, whilst Φ(~x, t) > 0 and Ψ(~x, t) < 0 describe underdense regions. One

of the key points here is that Φ(~x, t) and Ψ(~x, t) are small and therefore terms which

are quadratic and above in these terms may be dropped. In Eq. (2.74), an explicit

choice of gauge has been made, that of the conformal Newtonian gauge. Only scalar

perturbations are being considered here.

The distribution function, f(~x, ~p) describes the phase space distribution of the

various particles;

f(~x, ~p) =
1

e(E(p)−µ)/T ± 1
(2.75)

(+ for fermions, - for bosons, where E(p)2 = m2 + p2, in units where c = kB = 1).

The Boltzmann relationship describes how the rate of change in the phase space

distribution is related to the collision term C[f(t)] for a given species, it can be

expressed as:
df

dt
= C[f(t)] (2.76)

The derivation of the Boltzmann equations looks at how the distribution function

for each of the species changes with respect to time in the presence of the perturbed

metric. If the species under consideration were non interacting, then the collision

term on the right of Eq. (2.76) would be zero; if the species is interacting, then a

suitable expression for the interactions must be given, describing the scattering of

particles in to and out of the phase space element.
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The first order Boltzmann equations we present here are written in Fourier

space, in terms of the wave vector, k̄ of magnitude k. Primes, (′), represent differ-

entials with respect to conformal time, η.

2.5.0.1 Photon and Baryon Perturbations

Photons, protons and electrons are coupled to the metric via gravity and are also

coupled to each other. Photons are coupled to electrons through Compton scattering

and protons are coupled to electrons through Coulomb scattering; the tight coupling

between the the protons and electrons means they share a common over-density, δb

and a common velocity, vb

As the photons travel through the perturbed universe, they gain energy falling

into potential wells, lose energy climbing out of potential wells and lose energy

overcoming the expansion of the universe. The change in photon energy can be

characterized by a change in the photon temperature, δT and we define Θ = δT
T

,

where T is the average photon temperature.

A calculation of the amplitude for Compton scattering provides the collision

terms for photon - electron interactions and this scattering affects the direction

of the scattered photons. The direction of the photons is given by the momentum

direction of the photons, p̂ and the relationship between the direction of the photons

and the direction of the wave vector is characterized by µ, where µ = k̄.p̂
k

. To deal

with the directional importance of the photons, the photon perturbations can be

described by the Θl(k, µ) which are expanded in terms of Legendre polynomials, Pl,
such that:

Θl ≡ 1

(−i)l
∫ l

−1

dµ

2
Pl(µ)Θ(µ) (2.77)

l = 0 is the monopole Θ0(k) which corresponds to the difference between the

temperature perturbation at a specific point, and the the average temperature per-

turbation over all space; l = 1 is the dipole Θ1(k) which is related to the gradient

of the energy density of the photons. Omiting contributions from polarisation, the

Boltzmann equation (Dodelson, 2003) describing photon temperature perturbations

is:

Θ′ + ikµΘ = −iΦ′ − ikµΨ− τ ′
[
Θ0 −Θ + µvb − 1

2
P2(µ)Θ2

]
(2.78)

which may be expanded using Eq. (2.77). τ(η) is the optical depth and is the

distance which a photon may travel on average before being scattered:

τ(η) =

∫ η0

η

a(η)neσT dη
′ (2.79)
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where ne is the number density of the electrons and σT is the Thompson scattering

cross section. The Boltzmann equations for the baryon perturbations are:

δ′b + ikvb = −3Φ′ (2.80)

v′b +
a′

a
vb = −ikΨ +

τ ′

R
[vb + 3iΘ1] (2.81)

where the photon to baryon ratio, R, is defined as:

1

R
≡ 4ρ

(0)
γ

3ρ
(0)
b

(2.82)

The above equations describe the oscillations of the photon-baryon fluid. Although

they seem not to contain an explicit dependence on the dark matter distribution,

the dependence on the dark matter is implicit through the dependence on the per-

turbations to the metric, which are in turn coupled to the perturbations in the dark

matter density.

2.5.0.2 Cold Dark Matter Perturbations

Cold dark matter accounts for some ∼ 25% of the energy density of the universe and

dominates the matter distribution; it is non-baryonic and interacts only weakly with

other particles, but does interact gravitationally. The precise identity of cold dark

matter is unknown, but favoured candidates include WIMPs such as the neutralino.

The first order Boltzmann equations (Dodelson, 2003) for cold dark matter with

over density, δ and velocity, v are as follows:

δ′ + ikv = −3Φ′ (2.83)

v′ +
a′

a
v = −ikΨ (2.84)

The first order Boltzmann equations, Eq. (2.78), Eq. (2.80) and Eq. (2.83) described

in this section govern the development of the perturbations in the distributions

of photons, baryons and dark matter. In the following sections we shall look at

how these equations can be used to explain the inhomogeneities in the large scale

distribution of matter today and the anisotropies in the photon distribution of the

CMB.
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2.6 CMB Angular Power Spectrum

The anisotropies we observe in the CMB today are due to four main factors: Firstly

the distribution of photon under densities and over densities at the time of recom-

bination, described by the monopole, Θ0(η?) (where η? is the conformal time at

recombination). Secondly, there are anisotropies due to the perturbations in the

gravitational potential at the time of recombination Φ(η?); photons released at re-

combination which were in over dense regions at the time of recombination had to do

work to climb out of the gravitational well; photons observed today from over dense

regions are less energetic than photons from under dense regions. Thirdly, there is

the ‘Doppler’ effect due to the peculiar velocity of the photons at recombination,

as described by the dipole term, Θ1(η?). Fourthly, the effect of a photon falling in

to a potential well which is deepening with time causes an overall redshift of that

photon.

The effects which are principally responsible for the multiple peak structure in

the CMB angular power spectrum are the photon density distribution at recombi-

nation, Θ0(η?), and the Doppler effect, Θ1(η?). Since our principal interest in the

CMB is the prospect of using the spacing of the acoustic peaks as a standard ruler

to probe the expansion history of the universe, we will briefly highlight a few of the

necessary steps for obtaining the monopole and dipole terms at recombination, and

hence the spacing of the CMB peaks.

We need to obtain suitable expressions for the monopole and dipole from the

Boltzmann equation for photons Eq. (2.78). Because we are dealing with the time

before recombination, in the tight coupling limit, we can make the approximation

that there is no anisotropic stress, such that:

Ψ = −Φ (2.85)

and the photon distribution can be completely described by the monopole and dipole

terms. Expanding Eq. (2.78) and retaining only the monopole and dipole terms

gives:

Θ′0(k) + kΘ1(k) = −Φ′ monopole equation (2.86)

Θ′1(k) +
k

3
Θ0(k) =

k

3
Ψ + τ ′ [Θ1 − ivb] dipole equation (2.87)

Along with the dark matter perturbation equations Eq. (2.83) and baryon pertur-

bation equations Eq. (2.80) there is one other equation we need to describe the

evolution of the inhomogeneities: an equation to describe the perturbations in the
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gravitational potential - for this, we quote without proof (Dodelson, 2003) the per-

turbed time-time component of the Einstein equation:

k2Φ + 3
a′

a

(
Φ′ +

a′

a
Φ

)
= 4πGa2[ρcδ + 4ρrΘ0] (2.88)

where ρc and ρr are the dark matter and radiation energy densities respectively.

In theory, there are two main types of initial conditions possible, as set by in-

flation: adiabatic modes and isocurvature modes. In practice however, observations

of the CMB rule out pure isocurvature modes (Väliviita et al., 2001), although mix-

tures of adiabatic and isocurvature modes are possible, (Trotta et al., 2001). Specific

possibilities for isocurvature initial conditions include the baryon isocurvature mode,

cold dark matter isocurvature mode, neutrino isocurvature density mode and the

neutrino isocurvature velocity mode (Bucher et al., 2000). Adiabatic initial condi-

tions are those for which there were spatial fluctuations in the total energy density,

but not in the entropy, giving initial temperature fluctuations. Isocurvature initial

conditions are those for which there were fluctuations in the entropy, but not in the

total energy density, leading to near ‘isothermal’ initial conditions. Here we choose

to use adiabatic initial conditions, which for initial time ηi are:

Φ(ηi) = 2Θ0(ηi) (2.89)

δ(ηi) = 3Θ0(ηi) (2.90)

δb(ηi) = 3Θ0(ηi) (2.91)

where the initial velocities and monopole are given by:

Θ1(ηi) =
ivb(ηi)

3
=
iv(ηi)

3
= −kΦ(ηi)

6aH
(2.92)

In principle, the differential equations for the photon perturbations Eq. (2.86),

baryon perturbations Eq. (2.80), dark matter perturbations Eq. (2.83), and gravi-

tational potential Eq. (2.88), can be solved numerically using the adiabatic initial

conditions Eq. (2.89), in order to obtain the photon distribution at the time of re-

combination Θ(η?). However, there is also an analytic approach, aspects of which

we will briefly highlight here as it gives a physical insight into the physics of the

early universe, and the resulting spacing of the CMB peaks.

Hu & Sugiyama (1995) developed an analytical method for obtaining the photon

density and velocity distribution: From Eq. (2.86), along with the equation for the

baryon velocity Eq. (2.80), a second order differential equation can be obtained for
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Figure 2.6: Solid line shows model CMB angular power spectrum produced using
CAMB (Lewis et al., 2000) for a ΛCDM model using WMAP best fit parameters
(table 2.1). Data points are from WMAP 5 (Nolta et al., 2009) and ACBAR
(Reichardt et al., 2008). The ‘acoustic peaks’ due to oscillations in the photon-
baryon fluid can be seen very clearly from l = 200 onwards; these acoustic peaks
are also manifest in the galaxy power spectrum. The idea is to use the spacing
of these acoustic peaks as a ‘standard ruler’ for probing the expansion history of
the universe.

the monopole:

Θ′′0 +
a′

a

R

1 +R
Θ′0 + k2c2

sΘ0 = −k
2

3
Ψ− a′

a

R

1 +R
Φ′ − Φ′′ (2.93)

where the sound speed of the photon-baryon fluid is defined as:

cs ≡
√

1

3(1 +R)
(2.94)

Hu and Sugiyama obtained the following monopole solution to Eq. (2.93), for the

case of adiabatic initial conditions:

Θ0(η)+Φ(η) = [Θ0(0)+Φ(0)] cos(krs)+
k√
3

∫ η

0

dη′[Φ(η′)−Ψ(η′)] sin[k(rs(η)−rs(η′))]
(2.95)
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where rs(η) is the sound horizon, i.e. the co-moving distance traveled by a sound

wave in conformal time η, and is defined as:

rs(η) ≡
∫ η

0

dη′cs(η
′) (2.96)

Differentiating Eq. (2.95) gives an expression for the dipole:

Θ1(η) =
1√
3

[Θ0(0) + Φ(0)] sin(krs)− k√
3

∫ η

0

dη′[Φ(η′)−Ψ(η′)] cos[k(rs(η)− rs(η′))]
(2.97)

The physical insight we gain here is that at recombination the locations of the peaks

in the monopole are related to the cosine of the sound horizon, and the locations

of the peaks in the dipole are related to the sine of the sound horizon - hence the

terminology ‘acoustic peaks’. The monopole and dipole terms are out of phase, with

the effect that the peaks in the dipole serve to ‘fill in’ the troughs of the monopole

to some extent.

Eq. (2.95) and Eq. (2.97) go most of the way to describing the photon perturba-

tion at the time of recombination, but to completely describe the photon distribution

at the time of recombination, an additional term must be added to describe diffusion

damping - i.e to account for the fact that even before recombination, the photons

did have some freedom to free stream short distances. However, Eq. (2.95) and

Eq. (2.97) do accurately predict the location of the ‘acoustic peaks’ in the CMB

angular power spectrum.

Today, we observe the CMB photons coming from all directions on the sky, with

temperature:

T (~x, p̂, η) = T (η)[1 + Θ(~x, p̂, η)] (2.98)

Since we are observing the projection of the CMB on to a spherical sky, we generally

expand Θ(~x, p̂, η) in terms of spherical harmonics:

Θ(~x, p̂, η) =
∞∑
l=1

l∑
m=−l

alm(~x, η)Ylm(p̂) (2.99)

where Ylm(p̂) are the spherical harmonics and alm(~x, η) are the observables given by:

alm(~x, η) =

∫
d3k

(2π)3
ei
~k.~x

∫
dΩY ∗lm(p̂)Θ(~x, p̂, η) (2.100)

The quantity of interest is the angular power spectrum, Cl which is the variance of
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the alm(~x, η):

〈alma∗l′m′〉 = δll′δmm′Cl (2.101)

The observed angular power spectrum for the CMB, as measured by WMAP (Nolta

et al., 2009) and ACBAR (Reichardt et al., 2008) is shown in fig. 2.6, along with

the ΛCDM model for the WMAP best fit parameters (table 2.1). The ‘acoustic

peaks’ due to the oscillations in the photon-baryon fluid can be clearly seen from

l = 200 onwards - these same peaks show up as ‘baryonic wiggles’ in the matter

power spectrum. The idea is to use the spacing of the peaks manifest in the CMB

angular power spectrum and the galaxy power spectrum as a ‘standard ruler’ to

probe the expansion history of the universe and constrain dark energy.

The CMB data alone do not constrain dark energy, since dark energy only began

to dominate at late times (see for example fig. 2.2), however the CMB data can be

used in conjunction with other astrophysical probes of cosmology to place tighter

constraints on the cosmological parameters. The full CMB data set and likelihood

is used directly in our work on Bayesian doubt in chapter 6, section 6.3.2. In the

work on cosmological parameter inference from the SNe Ia data, the cosmological

constraints are combined with the effective constraints from the CMB. Wang &

Mukherjee (2007) have shown that the information from the CMB observations

relevant to dark energy constraints in the case of a redshift independent dark energy

equation of state can be summarised by the CMB shift parameters:

R ≡
√

ΩmH2
0r(zCMB) (2.102)

lA ≡ π
r(zCMB)

rs(zCMB)
(2.103)

where rs(zCMB) is the comoving sound horizon at recombination as in Eq.(2.96), and

r(zCMB) is the comoving distance to the recombination surface, where the comoving

distance to redshift surface z is given by:

r(z) =
c

H0

|Ωκ|−1/2sinn

[
|Ωκ|1/2

∫ z

0

H0

H(z)
dz

]
(2.104)

Following Kessler et al. (2009a) we use the R shift parameter to include the con-

straints from the CMB from the WMAP-5 data (Komatsu et al., 2009) in this way:

χ2
CMB =

[
R(zCMB;w,Ωm,ΩΛ)− 1.710

0.019

]2

(2.105)

Inclusion of the CMB constraints in this way are described in section 7.8 and the
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confidence intervals produced can be seen in fig. 7.17.

2.7 Matter Power Spectrum and Baryon Acoustic

Oscillations

The distribution of dark matter may be inferred by making observations of galaxies

which trace the underlying distribution of dark matter. From these observations,

the galaxy (or dark matter) power spectrum can be obtained, which is the Fourier

transform of the correlation function and is the matter analogue of the CMB angular

power spectrum. The dark matter power spectrum is defined as:

P (k) = 〈δ(~k)δ?(~k′)〉 (2.106)

The acoustic oscillations described in the previous section should show up in the

matter power spectrum in a similar way, albeit less pronounced, to the acoustic

peaks in the CMB angular power spectrum. The matter power spectrum at late

times is given by:

P (k, a) = Pχ(k)T (k)2

(
D1(a)

D1(a = 1)

)2

(2.107)

where Pχ(k) is the primordial power spectrum described by Eq. (2.73) and where

the transfer and growth functions, T (k) and D1(a) are defined as:

T (k) ≡ Φ(k, alate)

Φlarge scale(k, alate)
(2.108)

(for a > alate)
D1(a)

a
≡ Φ(a)

Φ(alate)
(2.109)

In the regime where the linear approximations are valid, a function for the

gravitational potential today Φ(k, a) may be obtained by numerically solving the

differential equations for the photon perturbations Eq. (2.86), baryon perturba-

tions Eq. (2.80), dark matter perturbations Eq. (2.83), and gravitational potential

Eq. (2.88), using the adiabatic initial conditions Eq. (2.89) described in the previous

section.

The description we have outlined above, is based on the the Boltzmann equa-

tions and perturbed Einstein equations for which a number of linear approximations

were made. Hence following this methodology leads to the linear matter power spec-

trum. Although the linear power spectrum may give a good approximation on large
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Figure 2.7: Linear and non-linear matter power spectra produced using CAMB
(Lewis et al., 2000) for a ΛCDM model using WMAP best fit parameters (table
2.1). Calculation of non-linear power spectrum makes use of the HALO fit model
(Smith et al., 2003). Linear and non-linear power spectra diverge at small scales,
where the linear approximations are no longer valid. Baryon acoustic oscillations
show up as ‘wiggles’ in the power spectrum, to the right of the turnover from the
radiation dominated to matter dominated era.

scales, it is not valid on small scales. Fig. 2.7 shows that the linear and non-linear

matter power spectra diverge on small scales (large k). To obtain an accurate non-

linear matter power spectrum, an alternative method must be used, such as large

N-body simulations (Smith et al., 2003).

The ‘baryon acoustic oscillations’, steming from the same origin as the acoustic

peaks in the CMB angular power spectrum can be seen in fig. 2.7, they appear as

small wiggles to the right of the turnover point. These baryon acoustic oscillations

are washed out by non-linear structure growth at high k. However, baryon acoustic

oscillations can still be seen quite distinctly at lower k, well within the regime which

is well described by the linear power spectrum. At higher redshifts, the validity of

the linear power spectrum extends to higher k.

The location of the peaks of the baryon acoustic oscillations in the matter power

spectrum are directly related to the size of the sound horizon at recombination. The

empirical relationship between the oscillations in the matter power spectrum, the
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acoustic peaks in the CMB power spectrum and the sound horizon at recombination

is given by Blake & Glazebrook (2003):

P (k)

Pref

= 1 + Ak exp

[
−
(

k

0.1hMpc−1

)1.4
]

sin

(
2πk

kA

)
(2.110)

where A is an amplitude fitting parameter and Pref is a smooth reference power

spectrum with no baryons. Crucially, kA is given by kA = 2π
rs

where rs is the

sound horizon at recombination given by Eq. (2.96). The idea is that the co-moving

separation of the acoustic peaks or acoustic oscillations in Fourier space act as a

cosmological standard ruler. The values for kA were fixed by the physics of the early

universe, which is well understood.

In practice, in the work presented in chapter 7 the BAO constraint is included

using the method suggested by Kessler et al. (2009a) based on Eisenstein et al.

(2005) where the value A which is independent of the dark energy model is defined

as:

A(z1;w,Ωm,ΩΛ) =

√
ΩmH

1/3
0

H(z1)1/3

[
1

z1

√|Ωκ|
sinn

(
|Ωκ|1/2

∫ z1

0

H0

H(z)
dz

)]2/3

(2.111)

The SDSS LRG constraint can be included in the parameter inference analysis in

the following way:

χ2
BAO =

[
(A(z1;w,Ωm,ΩΛ)− 0.469)

0.017

]2

(2.112)

The inclusion of this constraint from the BAO data is discussed in section 7.8 and

the confidence intervals produced can be seen in fig. 7.17.
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Chapter 3

Dark energy and apparent late

time acceleration

Astrophysical observations suggest that the expansion of the Universe is accelerat-

ing. This cannot be explained by matter, either ordinary or dark since matter is

gravitationally attractive and would lead to deceleration not acceleration. Instead,

another explanation must be sought. There are four main categories of cosmological

model offered in explanation as indicated in figure 1.1 and as listed below:

(i) Dark energy: An additional energy density which has a repulsive gravitational

force, this category includes the cosmological constant model. Models in this

category modify the right hand side of Einstein’s equation Eq. (2.16).

(ii) Modified gravity: the laws of gravity need to be adjusted for different scales

to match our observations. Models in this category modify the left hand side

of Einstein’s equation Eq. (2.16).

(iii) Void models: we as observers are at the centre of a large under density - this

has the effect of making it appear as if the Universe is accelerating.

(iv) Backreaction: the appearance of acceleration is an artefact of the way in which

we smooth and average the matter content of the Universe.

The distinction between (i) and (ii) above is a fairly arbitrary classification depend-

ing on which side of the Einstein equation is modified, dark energy or ‘modified

matter’ models modify the right hand side and modified gravity models modify the

left hand side (Amendola & Tsujikawa, 2010). In this chapter we shall outline briefly

some of the theoretical ideas behind these different cosmological models. The re-

search in this thesis focusses primarily on the ΛCDM model and its close cousin the
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wCDM model. Do we live in a ΛCDM Universe or not? However we also include

a few brief comments on the alternative explanations for completeness. Two recent

standard texts which give an excellent and comprehensive overview of dark energy

are Amendola & Tsujikawa (2010); Ruiz-Lapuente, P. (2010), for review papers see

for example Peebles & Ratra (2003); Tsujikawa (2010); Frieman et al. (2008).

3.1 Dark energy models

In dark energy models an additional energy density component is added to the total

matter-energy content of the Universe. Phenomenologically, this additional energy

density appears in the Friedmann equation in the following way:

H(z)2 = H2
0

(
Ωm(1 + z)3 + Ωγ(1 + z)4 + Ω2

κ(1 + z)2 + ΩDE exp

[∫ z

0

1 + w(z)

1 + z
dz

])
(3.1)

where ΩDE is the dark energy density today and w(z) is the dark energy equation of

state. In this thesis we describe dark energy models with w(z) ≡ −1 as ΛCDM or

cosmological constant models; models with w(z) ≡ w where w is some fixed number

as wCDM models. More exotic dark energy models allow w(z) to assume a range

of different functional forms.

3.1.1 The cosmological constant and the energy density of

the vacuum

Although convincing astrophysical evidence for the presence of a cosmological con-

stant or ΛCDM model has only arisen since the late 1990s with the advent of the

supernovae Ia data (Riess et al., 1998; Perlmutter et al., 1999b), theoretical ideas

about the existence of a cosmological constant have been around for longer, in the

form of ideas about the significance of the energy of the vacuum. Einstein’s equation

(2.16) states that the curvature of spacetime is governed by the total energy density,

as expressed in the stress energy tensor. At first glance it would seem that in empty

space, that is, in a vacuum, there would be no energy densities contributing to the

stress energy tensor. However, ideas in quantum field theory suggest that the energy

density of the vacuum is not in fact zero.

Even before the development of modern quantum field theory, as early as 1916,

Nernst and later Pauli in 1920, postulated that the vacuum had an energy density

due to the zero point energy of the electromagnetic field, which would have ob-

servable physical manifestations (Peebles & Ratra, 2003). In 1948 Casimir made a
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classical calculation to predict the change in the electromagnetic zero point energy

(Casimir, 1948), this prediction was proven experimentally by Sparnaay in 1957 and

has been subsequently confirmed by many modern experiments Bordag et al. (2001).

In quantum field theory, everything (except gravity) is described by all pervasive

fields which are made up of a series of harmonic oscillators, which give rise to

particles and interactions, or forces between particles. When the field is in its lowest

energy state, all of the harmonic oscillators are in the ground state, however, it is

not necessarily the case that the ground state energy of a harmonic oscillator should

be zero. For example, as an oscillating particle is cooled, its oscillations will decrease

in amplitude, but it can never be cooled to a point where it is completely stationary;

Hesienberg’s Uncertainty Principle forbids it. This residual energy which remains

and allows the particle to move even in its lowest energy state is the zero point

energy.

The energy of the vacuum, or the zero point energy, may be calculated by con-

structing the energy operator, or Hamiltonian of a field and applying it to the lowest

energy state, the ground state. Here we will obtain an order of magnitude estimate

for the zero point energy, by considering the energy of the ground state of a free

scalar field.

Consider a scalar field, φ with Lagrangian, L:

L(φ, φ̇) =
1

2
gµν∂µφ∂νφ−mφφ (3.2)

the field can be expressed in Fourier space as:

φ(x) =

∫
d3k

(2π)3

1√
2ωk

(ak̄e
ik̄x̄ + a†

k̄
e−ik̄x̄) (3.3)

and the conjugate momentum, π, is:

π(x) =
∂L
∂φ̇(x)

= φ̇(x) (3.4)

The Hamiltonian, H is defined as:

H =

∫
d3x(π(x)φ̇(x)− L) (3.5)

The Hamiltonian for the scalar field can be constructed by substituting (3.2), (3.3)



3.1 Dark energy models 56

and (3.4) into (3.5), to give:

H =

∫
d3k

(2π)3
ωk̄(a

†
k̄
ak̄ +

1

2
(2π)3δ(3)(0)) (3.6)

when this operates on the ground state, the first expression in (3.6) vanishes, as by

definition, ak̄|0〉 = 0, leaving only:

H|0〉 =

∫
d3k

(2π)3
ωk̄

1

2
(2π)3δ(3)(0) (3.7)

which is the energy of the vacuum.

Most problems in quantum field theory are concerned with changes in energy,

rather than absolute values of energy, hence this energy of the vacuum is generally

set to zero and omitted from most calculations Peskin et al. (1996). However, in

our investigation of the cosmological constant, we are dealing with a problem of

gravity and as gravity ‘sees’ all energy, the absolute value of vacuum energy density

becomes important, so it becomes necessary to evaluate (3.7).

The first problem with (3.7) is that the delta function evaluated at zero is

infinite, which arises because the total energy of infinite space is being calculated.

We proceed by dividing by the total volume, V , to get the energy density, ε0:

ε0 =
Hvacuum

V
=

∫
d3k

(2π)3

ωk̄
2

(3.8)

To obtain the contributions to the vacuum density from all of the possible modes,

k̄ it is necessary to integrate over all possible values of wavenumber, k:

ε0 =

∫ ∞
−∞

d3k

(2π)3

1

2

√
k2 +m2 (3.9)

where ω2
k̄

= k̄2 +m2. It is easiest to evaluate this integral by switching to spherical

polar coordinates:

ε0 =

∫ ∞
0

dk

(2π)3

k2

2

√
k2 +m2

∫ π

0

∫ 2π

0

sin θdθdφ (3.10)

=

∫ ∞
0

d3k

(2π)3

k2

2

√
k2 +m2 4π (3.11)

as in Weinberg (1989). This integral will diverge as k approaches ∞, i.e. at higher

energies and short wavelengths we seemingly have the problem of ultraviolet diver-

gence. However, it is not the case that quantum field theory is valid at arbitrarily
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high energies, indeed, there is an upper energy limit, beyond which ordinary quan-

tum field theory is expected to break down. The actual upper limit where quantum

field theory breaks down is unknown, but we shall label this upper limit as Λ. In

the limit where Λ >> m, we may write:

ε0 =

∫ Λ

0

dk

(2π)3

k3

2
4π (3.12)

=
Λ4

16π2
(3.13)

Our main question now concerns assigning a suitable value for Λ. Weinberg (1989)

suggests that the Planck scale would be an appropriate limit, such that Λ = G−1/2,

as both General Relativity and Quantum Field Theory are expected to break down

at these energies.

Can this energy of the vacuum be identified as the ‘dark energy’ of cosmological

observations? It happens that the energy density of the vacuum which is obtained

by evaluating (3.12) at the Planck scale is ∼ 120 orders of magnitude greater than

the current observed value of the dark energy density ρΛ. This discrepancy between

the observed dark energy density obtained from cosmological observations and the

vacuum energy density predicted by quantum field theory was discussed in some

detail by Weinberg in 1989, who described it as the ‘Cosmological Constant Problem’

(Weinberg, 1989).

The main so-called ‘problem’ here really stems from our incomplete understand-

ing of the relationship between gravity and quantum field theory. Quantum field

theory has been derived with no reference to or description of gravity and yet we

have attempted to insert it directly into Einstein’s description of gravity, but it is

not clear it is entirely correct to do so. The solution to this problem may well lie

in a better description of the link between gravity and quantum field theory; the

vacuum energy of a quantum field in the presence of gravity may turn out to be

vanishingly small.

3.1.2 wCDM and more general dark energy models

Current observations are consistent with w(z) = −1 but only constrain w to within

10%, meaning that there is still room for dark energy models for which w(z) 6= 1.

Here we give a brief mention of physical theories which give rise to dark energy

equations of state for which w(z) 6= 1. If w(z) 6= −1, then what other values might

it take, and what type of dark energy models could give rise to w(z) 6= −1? The

purpose of introducing the dark energy fluid is to cause acceleration of the Universe,
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similar to the way in which inflation caused acceleration in the early Universe, albeit

on a much shorter time scale. From our discussions on inflation in chapter 2, section

2.4, we know from Eq. (2.67) that w(z) < −1/3 in order to cause acceleration,

hence w < −1/3 places an upper bound on the value w may take, and forms the

upper bound for the prior on w in our work on Bayesian Doubt (chapter 6) and

cosmological parameter estimation (chapter 7).

Scalar field or ‘Quintessence’ models of dark energy can be constructed using

the same Lagrangian as given for the basic inflation model described by Eq. (2.68).

The dark energy equation of state is given by the ratio of Eq. (2.70) and Eq. (2.71)

w =
p

ρ
(3.14)

=
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

(3.15)

=
φ̇2/2V (φ)− 1

φ̇2/V (φ) + 1
. (3.16)

In this scenario, a slowly evolving field would give φ̇2/2V (φ) << 1, hence w ≈ −1

and a very rapidly evolving field would give φ̇2/2V (φ) >> 1 hence w ≈ 1 (Frieman

et al., 2008). Of course models for which w > −1/3 are ruled out as they do not

cause acceleration. This scalar field model has a lower bound on w > −1.

Although the scalar field model places a lower bound on w > −1, values for w

below this are not ruled out observationally. Models which allow w < −1 are known

as Phantom dark energy models, and they require more unorthodox Lagrangians,

see for example Caldwell (2002); Kunz & Sapone (2006).

Once we have relaxed the condition that w(z) = −1, there is no special reason

to constrain w(z) to be a fixed number, but it is also not clear what form w(z)

should take. Several simple empirical parametrizations have been suggested for

investigating a redshift dependent dark energy equation of state, the most common

of these is the Chevalier-Polarski-Linder (CPL) formalism (Chevallier & Polarski,

2001; Linder, 2003). The CPL formalism allows for a constant component w0 and a

component which scales with redshift wa.

w(z) = w0 + wa
1

1 + z
(3.17)

This CPL parametrization is used in our work on Robustness described in chapter

8. Although our work on Bayesian Doubt and cosmological parameter inference is

currently restricted to the investigation of fixed w models, the intention is to extend
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that work to investigate CPL models at a later stage.

In addition to quintessence and phantom models, there are a whole host of

other dark energy models including k-essence models, Chameleon models, Holo-

graphic models, and unified dark energy dark matter models to name a few (for a

comprehensive review see Amendola & Tsujikawa (2010)). In theory these models

will all have a predictable different dark energy equation of state, however as we

shall discuss in chapter 6 it is very difficult to constrain w(z) using current observa-

tional data as even large variations in w(z) only show up as small variations in the

observables.

3.2 A note on Modified Gravity

The most closely related alternative explanations to dark energy models for explain-

ing apparent late time acceleration are modified gravity models. Modified gravity

models are not explicitly addressed in this thesis, but it is important to highlight

their existence as real alternative to dark energy or ‘modified matter’ models. Modi-

fied gravity models give the appearance of late time acceleration by weakening grav-

ity on large scales (Ruiz-Lapuente, P., 2010). As for dark energy, there are many

different approaches to modifying gravity, including scalar-tensor theories such as

the Brans-Dicke theory, f(R) models and Brane world models. For reviews see for

example Copeland et al. (2006); Clifton et al. (2011) in addition to the standard

texts listed at the start of this chapter.

Distinguishing between dark energy and modified gravity models presents a par-

ticular observational and statistical challenge, the data sets and methods discussed

in this thesis cannot make that distinction, and there are theoretical reasons why the

supernovae data alone will never be able to discriminate. Differentiation between

modified gravity and dark energy models requires the particular combination of

baryon acoustic oscillation data and weak lensing data, a particular combination of

astrophysical probes which will be investigated by the proposed EUCLID (Laureijs

et al., 2009) and wFIRST (Green et al., 2011) missions.

3.3 Alternatives: Voids and the Backreaction

Completely different alternative explanations which do not require modifications to

the Einstein equation, and require neither new physics nor new theories of gravity

have also been put forward. Two of these theories are Void models, and explanations

concerned with the backreaction.
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Void models are based on the idea of an inhomogeneous Universe, which is less

dense at the centre (the underdense ‘void’ ) and more dense at the edges. Typically

these void models are based on a spherically symmetric Lemâıtre-Tolman-Bondi

(LTB) Universe (Bondi, 1947; Tolman, 1934) with the observers placed close to the

centre of the void, for a discussion of how void models produce the appearance of

late time acceleration see for example Enqvist (2008). One of the main criticisms of

void models are that they violate the Copernican principle, however this criticism

may be side stepped to some degree by constructing a model in which there are many

voids and that the void in which the observers find themselves is no different to any

of the other voids. Void models of this type are known by their descriptive title as

‘Swiss Cheese models’, see for example Marra et al. (2007). Future observations of

BAO data could rule out large scale inhomogeneities and void models, see Clarkson

(2009) for one method.

In section 2.2, when describing the background cosmology, we presented the

FRLW Universe as a smooth Universe - the Friedman equation and the Hubble rate

were presented with the assumption that all the matter and energy in the Universe

could be treated as if it were smoothed out and equally distributed throughout the

whole Universe; in calculating the metric and expansion of the background Universe,

an assumption is made that there is a uniform matter and density throughout the

Universe. This is true for the early Universe at the end of inflation, but it is not true

today. Today the Universe is only homogeneous on large scales, on smaller scales

this is manifestly untrue: matter, ordinary and dark, forms clusters around galaxies,

galaxy clusters and galaxy superclusters (Clarkson, 2009).

It has been argued that this process of averaging over all the matter and energy

and then solving the Einstein equations for the homogeneous Universe is an incorrect

approach that could cause us to draw wrong conclusions about the Universe we

observe. Instead, it has been argued that a correct approach would be to solve

the Einstein equations for the inhomogeneous Universe and then take the average.

The discrepancy which arises between the two methods could explain why we see an

apparent late time acceleration, without the need to introduce ark energy or modified

gravity. Explanations concerning the correct methodology for averaging over the

matter-energy content of the Universe are described as ‘Backreaction’ explanations,

for a review of the Backreaction, see for example Rasanen (2010); Kolb et al. (2005)
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Chapter 4

Supernovae Ia

The purpose of this chapter is to give a brief introduction and background to the

supernovae type Ia sufficient to put my work on cosmological parameter inference

from SNe Ia into context.

Observations of supernovae have been recorded since ancient times, transient

objects which flare brightly and appear as ‘new stars’ against the unchanging back-

drop of fixed stars, before fading after a month or so. The term ‘nova’ was first used

by the Danish astronomer Tycho Brahe (1546-1601) to describe the ‘new star’ which

appeared in Cassiopeia on November 11th 1572, which he observed from Herrevad

Abbey, Sweden. Brahe’s sketch of the location of this nova is shown in the left

hand panel of fig.4.1. Much later, Swiss and German astronomers Fritz Zwicky and

Walter Baade differentiated between ‘two well-defined types of new stars or novae

which might be distinguished as common novae and super-novae’. Baade & Zwicky

(1934); Zwicky (1940).

It is a special class of supernovae, supernovae type Ia (SNe Ia) which are useful

to us for investigating dark energy, as they all have similar absolute magnitudes and

can be made into standard candles by applying small empirical corrections based on

their colour and the shape of their light curves. This correction process is described

in section 4.5. Historically, SNe Ia were classified by their spectra and it was only

later that physical models were developed to explain the different classes of observed

spectra. Understanding the physics of the SNe Ia explosions is important as it will

ultimately enable us to refine the methodology which we use to make the SNe Ia into

standard candles. Currently this standardization process is essentially empirical, and

lack of physical understanding limits our ability to improve cosmological parameter

inference from SNe Ia. We shall briefly outline the spectral classification in section

4.1 and introduce some of the physics of SNe Ia models in sections 4.2 and 4.3.
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Figure 4.1: SN 1572: Tycho’s SNe. The left hand panel show’s Tycho Brahe’s
sketch included in De nova stella of the ‘new star’ he observed in Cassiopeia on
11th November 1572. The right hand panel shows a modern composite image of
Tycho’s supernovae remnant using optical and X-ray data. Tycho’s SN 1572 has
been spectroscopically confirmed as a type Ia supernova

4.1 Spectral classification of SNe Ia

Once spectral data became available for supernovae, these objects were subdivided

into two types: supernovae type I which have no hydrogen Hα lines in their spectra,

and supernovae type II which do have hydrogenHα lines. The type I supernovae were

further subdivided in to those with strong silicon Si II absorption lines (λ = 6150Å)

in their spectra, and those which do not, see fig. 4.2 for an illustration of the spectra

from the different classes of supernovae. As cosmological distance indicators, it is

the supernovae type Ia which command our attention. For a modern review see for

example Hillebrandt & Niemeyer (2000); Howell (2011). Modern observations of the

remnants of Tycho’s supernova, SN 1572 have confirmed spectroscopically that SN

1572 was a type Ia supernova. (Krause et al., 2008).

The classification of supernovae has historically been made based on empirical

observations of their spectra and the presence or absence of particular features in

those spectra. However, we are also interested in the physical processes which give

rise to these particular objects, as by better understanding the physics of these su-

pernovae, we are better able to model their observed properties and make better
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Figure 4.2: Figure taken from Filippenko (1997) showing differentiation of su-
pernovae by their spectra. The supernovae type Ia spectrum is labelled (a), it is
distinguished by an absence of hydrogen Hα features and the presence of a strong
silicon Si II absorption line.

use of them as standardizable candles. Supernovae are not ‘new stars’, but rather

they are explosive events that occur at the end of stellar life cycles when a star un-

dergoes a catastrophic disruption. There are two principle categories of supernovae

progenitors, which cut across the classification by spectral type:

(i) Core collapse supernovae (which produce Type II and Type Ib,c supernovae

spectra) which occur when a massive (M & 8M�) star dies.

(ii) Supernovae produced from a degenerate star, which produce Type Ia super-

novae spectra.
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The useful property of supernovae type Ia is that they all have a similar absolute

magnitude, making them ideal candidates for use as standardise-able candles. The

absence of hydrogen features in their spectra suggests that the original progenitor

star has already expended all or almost all of its hydrogen supply before exploding,

and the presence of silicon is an indication that carbon burning has occurred. The

similar luminosities of these objects suggest they had a similar mass when they

exploded. A number of different progenitor systems have been proposed for the

type Ia, all of which involve mass transfer in a binary system, in which a white

dwarf gradually accumulates enough matter to just push it to the brink of the

Chandrasekar limit of 1.4 Solar masses, (1.4M�).

4.2 Progenitor scenarios for SNe Ia

The most popular scenario was originally the single degenerate accretion system,

which consists of a binary pairing of a white dwarf and a red giant. The white dwarf

is a star made up of carbon, nitrogen and oxygen and is prevented from collapsing

under its own mass by the electron degeneracy pressure. This electron degeneracy

pressure can prevent gravitational collapse for stars up to a mass of the Chandrasekar

limit (1.4M�), above this, the degeneracy pressure is insufficient, and the star will

begin to collapse. In the single degenerate system, matter from the binary partner,

in this case the red giant, gradually accretes on to the white dwarf, the mass of the

white dwarf steadily increases until it approaches 1.4M�. At this point, the white

dwarf begins to collapse under gravity and this collapse triggers carbon burning.

The principle alternative progenitor scenario is the double degenerate merger

system, which begins with a binary pairing of two white dwarves which eventually

merge and coalesce. The main difference between this and the single degenerate

system is that the mass of the star at the point of explosion is much more variable.

In the single degenerate system all of the progenitor stars go supernova at around

1.4M� whereas in the double degenerate system the final mass may be considerably

greater if two more massive white dwarves merge. The greater variation in final

mass in the double degenerate scenario means a greater variation in fuel available

and a greater variation in luminosity of the ensuing supernova explosion, which has

consequences for the ability of SNe Ia produced in this way to act as standardizable

candles. Recent work by Gilfanov & Bogdán (2010) based on X-ray observations

suggests that the double degenerate merger scenario may be responsible for a much

greater fraction of the SNe Ia than we first thought, which has implications for the

way in which we use SNe Ia to infer the cosmological parameters.
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Figure 4.3: Schematic showing the two most popular SNe Ia progenitor scenarios
- both involve mass transfer in a binary system. The left hand panel shows the
single degenerate accretion scenario in which a red giant or other main sequence
star gradually accretes on to the white dwarf. The right hand panel shows the
double degenerate merger scenario in which two white dwarfs merge.

4.3 Detonation and deflagration models

Early simulations of SNe Ia explosions focused on detonation (supersonic explo-

sion) models, which produced the iron peak elements (Fe,Co,Ni) but were unable

to reproduce other important characteristics of observed SNe Ia light curves. As an

alternative, the Carbon deflagration model was put forward Nomoto et al. (1976),

which describes a subsonic explosion. The most important of these early deflagra-

tion models was the W7 model of Nomoto et al. (1984). In the deflagration model

the thermonuclear flame spreads more slowly through the white dwarf so more of the

intermediate mass elements are produced (Si,S,Ca,Mg,O), which characterise SNe

Ia spectra (see fig.4.2).

Neither detonation nor deflagration models alone can fully reproduce observed

SNe Ia light curves, but combined models which begin with deflagration and then

move to detonation have been more successful and are the current best physical

explanation for SNeIa. Khokhlov (1991); Gamezo et al. (2005). The initial set up of

the physical model can affect the subsequent SNe Ia light curve and spectrum in a
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number of different ways: The SNe Ia light curve is driven by the radioactive decay

of 56Ni into 56Co then 56Fe. The amount of 56Ni produced in the explosion controls

the luminosity of the SNe Ia Howell et al. (2009). The 56Ni yield depends in turn

on the initial mass of the progenitor (which can vary depending on whether it is a

double degenerate or single degenerate system) and the metallicity of the progenitor.

Deflagration produces less 56Ni than detonation and so produces dimmer SNe Ia.

Howell (2011). Other factors such as the location of the original deflagration flame,

whether it is centrally located or off centre also affect the resulting SNe Ia light

curve. Kasen et al. (2009).

This discussion on supernovae progenitors and physical models for deflagration

and detonation serves to illustrate the point that there are many different physical

factors which can affect the luminosity of SNe Ia and the properties of their observed

light curves, but the light curve fitting techniques use very simple empirical approach

which do not distinguish between the physical causes of the different light curve

properties.

4.4 SNe Ia as standardizable candles

Standard candles are any class of object for which all members of the class have the

same absolute magnitude M . The distance modulus µ(z) is the difference between

the absolute magnitude M and the apparent magnitude mB(z) in the B-band

µ(z) = mB(z)−M (4.1)

The distance modulus can be calculated from the luminosity distance DL as

follows

µ = 5 log10

(
DL(z)

1Mpc

)
+ 25 (4.2)

where the luminosity distance is given by

DL(z) =
c(1 + z)

H0

√−Ω0
κ

sin

(√
−Ω0

κ

∫ z

0

H0

H(z)
dz

)
(4.3)

and the Friedmann equation relates the cosmological parameters {H0,Ω
0
m,Ω

0
κ,Ω

0
Λ, w}

to Hubble rate H(z)

H(z)2 = H2
0

(
Ω0
m(1 + z)3 + Ω0

r(1 + z)4 + Ω0
κ(1 + z)2 + Ω0

DE exp

[
3

∫ z

0

1 + w(z)

1 + z
dz

])
(4.4)
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The idea of standard candles is that since they all have the same absolute magnitude,

they appear brighter or dimmer depending on their redshift and the cosmological

parameters. If their redshifts are known, then the relative brightness or dimness of

the standard candles can be used to derive the cosmological parameters.

SNe Ia are not themselves perfect standard candles, as their absolute magni-

tudes vary somewhat (by ±0.8 mag in the B band) due to the physical reasons

mentioned previously, and also due to photon absorption by dust. However, by

applying small corrections for absolute magnitude, this scatter can be reduced con-

siderably (to around ±0.15 mag in the B band) hence SNe Ia may be made into

standard candles. How these corrections are made is the subject to the light curve

fitting method used, as will be discussed section 4.5

4.5 Light curve fitting

The aim of SNe Ia light curve fitting is to be able to standardise supernovae absolute

magnitudes in order that the supernovae can be used as standard candles.

SNe Ia are found by repeatedly imaging large areas of the same patch of sky

every few days. Image subtraction is then carried out and any bright spots remaining

become SNe Ia candidates. These candidates are then followed up spectroscopically

to determine whether they are indeed SNe Ia. The apparent magnitude of the

supernova in all pass-bands is recorded over several weeks, as for example in fig.

4.5. The redshift z of the supernovae is usually taken by measuring the redshift of

the host galaxy.

After the initial explosion, the luminosity of the SNe Ia increases before reaching

a maximum after around 10 days then turning over and declining. Phillips (1993)

noticed that there was a tight correlation between the absolute magnitude of the su-

pernova and the initial decline rate of the light curve after the maximum, supernovae

with broader light curves and slower decline rates are brighter than supernovae with

narrower light curves and a fast decline rate. Phillips (1993) also noted that the

fastest declining light curves corresponded to the reddest supernovae and the slower

declining light curves corresponded to the bluer supernovae. The ‘Phillips correc-

tions’ refer to the original method of correcting supernovae magnitudes using the

decline rate ∆m15. From this original concept, several different phenomenological

methods for light curve fitting and supernovae standardization have been developed,

the most popular methodologies currently in use are SALT-II (Guy et al., 2007) and

MLCS2k2 (Jha et al., 2007), both of which have are motivated by slightly different

philosophies, other light curve fitters include CMAGIC (Wang et al., 2003). The
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different methods of light curve fitting do give slightly different cosmological results,

e.g. (Kessler et al., 2009a) and the relative merits of the various light curve fitters

is a topic of much debate. My work on cosmological parameter inference presented

in this dissertation is based exclusively on the SALT-II light curve methodology.

Figure 4.4: The upper panel shows the light curves from nearby supernovae, for
which it can be seen there is considerable scatter ∼ ±0.8mag in the maximum
magnitude. The lower panel shows the same light curves after the application of
the stretch correction, here the scatter in maximum magnitude is greatly reduced
but not eliminated. Understanding this residual scatter will be one of the main
motivations for my work presented in chapter 7

4.5.1 SALT-II Light curve fitting

The second Spectrally Adaptive Lightcurve Template (SALT) method for light curve

fitting and cosmological parameter inference was the method originally used by

Perlmutter et al. (1999a), the current version is SALT-II. SALT-II is essentially

a two step process: first, the data points for each supernova are fitted to a light

curve template to fit a model to the observed data (see for example fig.4.5). For

SALT-II, the light curve template is ‘trained’ using nearby and distant SNeIa. Step

one derives the following parameters for each supernovae, see for example Guy et al.

(2005); Astier & Guy (2006):
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(i) m∗Bi The rest frame B-band maximum magnitude of the supernovae at maxi-

mum luminosity.

(ii) x1i The stretch or shape parameter, which is related to the width of the fitted

light curve.

(iii) ci The colour parameter, which is the colour excess in B-band at maximum

luminosity. c = (B − V )Bmax + 0.057

The information we have at the end of the first step are estimates for the best fit

values for m∗Bi, x1i, ci and the covariance matrix Ĉi for each supernovae.

Ĉi =

 σ2
m∗Bi

σm∗Bi,x1i σm∗Bi,ci

σm∗Bi,x1i σ2
x1i

σx1i,ci

σm∗Bi,ci σx1i,ci σ2
ci

 . (4.5)

where Ĉi describes the covariances between the three fitted parameters from the

light curve fitting.

In the second step, the free parameters α, β and the absolute magnitude M0,

are fitted simultaneously with the cosmological parameters, where α, β and M0 are

global parameters common to all SNe Ia and control how the stretch and colour

corrections should be applied to make SNe Ia into standard candles. The SALT-II

corrected version of 4.1 becomes (see Guy et al. (2007)):

µi = m∗Bi −M0 + αx1i − βci (4.6)

where i = 1 . . . N and N is the total number of SNeIa in the sample. An important

conceptual point is that in the standard SALT-II literature the absolute magnitude

of the supernovae always appears as a global parameter M0 in Eq. (4.6), whereas in

our Bayesian Hierarchical Model we present this differently, see chapter 7. The lack

of uniformity in the supernovae absolute magnitudes has been corrected for by the

application of the small correction terms αx1i and βci. Notice here that regardless

of whether the colour excess is due to host galaxy reddening or intrinsic colour

variation of the SNe Ia, the colour excess is parametrized by a single parameter ci,

it is a purely empirical parametrization. Chapter 7 presents a detailed analysis of

how the cosmological parameter inference step should be carried out.
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Figure 4.5: Example light curve from Guy et al. (2007). Solid points are the
observed data and their error bars, solid lines are the best fit light curve model
and the dashed lines are the 1σ uncertainties on that model

4.5.2 MLCS2k2 Light curve fitting

Multicolour Light Curve Shapes, MLCS, and the latest version, MLCS2k2 (Jha

et al., 2007) is the major alternative to the SALT-II light curve fitting method,

and MLCS was the method used by Riess et al. (1998) in one of the first papers

to infer cosmological acceleration from the SNe Ia data. We do not go into detail

discussing this method since it is not used in the work presented in this thesis,

but we will highlight some of the differences with respect to the SALT-II method.

The MLCS2k2 fitter is trained only on the nearby sample of SNE Ia, for which the

distance moduli are known (unlike SALT-II which includes high-z SNe Ia in the

training set). Whereas the first stage of the SALT-II light curve fitting process

gives estimates for the stretch, colour and apparent B-band magnitude, MLCS2k2

gives a direct estimation of the distance modulus µ̂.

MLCS2k2 attributes all colour variation in the SNe Ia to host galaxy redden-

ing, which is parametrized by Av, and there is a strong prior which controls this

parameter. Since dust from the host galaxy can only cause reddening of the SNe Ia,

there is a sharp cut off on the Av prior which forces Av > 0 - this is in contrast to

the SALT-II method which allows the colour parameter c to indicate a bluer SNe
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Ia c < 0 (Kessler et al., 2009a). The shape of the light curve is parametrized by ∆

(which is similar to the stretch parameter x1 in SALT-II), and is the free parameter

in the light curve fitting process.

Once the MLCs2k2 light curve fitting process has produced distance estimates,

then the cosmological parameters are inferred by minimizing over the χ2
µ which is

given by:

χ2
µ =

∑
i

[µ̂i − µ(zi;w,Ωm,ΩΛ, H0)]2

σ2
µ

(4.7)

where the theoretical µ is given by Eq. (2.59). There is a tension between the

cosmological results produced from the MLCS2k2 method and the SALT-II method,

Kessler et al. (2009a) trace discrepancy back to two causes: (i) A difference in

the way the colour parameter is treated: SALT-II allows bluer SNe Ia, MLCS2k2

cuts them off with a strong prior. (ii) A discrepancy arising from problems with

calibration of u-band data: because SALT-II uses both high and low redshift SNe

Ia for calibration it is less sensitive to u-band calibration than MLCS2k2 which only

uses the nearby sample. Currently it is not clear which method is more ‘correct’,

it depends on a better understanding of the systematics and calibration techniques.

One of the best ways of improving the standardization of SNe Ia is to include data

from other wavelengths, most notably the near infra-red (NIR). For important work

using NIR data to improve SNe Ia as distance indicators see Wood-Vasey et al.

(2008); Mandel et al. (2011, 2009).

This chapter has given a brief overview and discussion of the current understand-

ing of SNe Ia both in terms of their physical origins, and their observed properties.

There is currently a gap between the physical understanding of SNe Ia and the way

in which the observed SNe Ia light curves are fitted and standardized. Ultimately

the ability of SNe Ia to be used for cosmological parameter inference will only be

considerably improved when there is a better crossover between the physics of SNe

Ia and the observed properties of their light curves. The work I shall present in

chapter 7 describes a way of improving the cosmological parameter inference step of

the SALT-II light curve fitter, and opens a way for investigating other properties of

SNe Ia such as their evolution with redshift and correlation with their host galaxies.
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Chapter 5

Statistical techniques

5.1 Elements of Bayesian Statistics

In statistics, there are two schools of thought about the exact nature of probability,

one being the Frequentist school which defines probability as ‘the ratio of the times

the event occurs in a test series to the total number of trials in the series’ (D’Agostini,

1995), or the ‘frequencies of outcomes in random experiments’ (Mackay, 2003) the

other being the Bayesian school of thought which defines probability as ‘a measure

of the degree of belief that an event will occur’ (D’Agostini, 1995). In my work in

cosmological parameter inference and model selection I adopt a Bayesian approach,

partly as it allows for a more holistic approach to solving problems involving proba-

bility, and partly as it allows us to explicitly include in the probability, information

based on our prior experience and physical understanding of the situation. Rather

than a collection of statistical tests, a Bayesian approach to probability provides a

more flexible framework within which to construct solutions to problems of param-

eter inference and model selection. Standard texts describing Bayeisan statistical

methods used in this research include Jaynes & Baierlein (2004); Gregory (2005);

Sivia & Skilling (2006); Box & Tiao (1992) for Bayesian statistics in the cosmological

context see especially Hobson, M. P., Jaffe, A. H., Liddle, A. R., Mukeherjee, P., &

Parkinson, D. (2010); Trotta (2008); Loredo (1990)

Bayes theorem is named after the Rev. Thomas Bayes (1701?-1761) (Bellhouse,

2004), whose now famous theorem was published posthumously. In the simplest

terms, Bayes theorem can be seen as a rearrangement of some of the basic rules

in probability theory Riley (2004). Consider an event, A, whose probability of

occurring is denoted by p(A) and an event, B, whose probability of occurring is

denoted by p(B). The probability of both events A and B occurring is denoted by

p(A,B), whilst the probability of event A occurring given that event B has already
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occurred is shown by p(A|B) and vice versa, p(B|A). The product rule states that:

p(A,B) = p(B)p(A|B)

and

p(A,B) = p(A)p(B|A)

setting the two expressions equal gives:

p(B)p(A|B) = p(A)p(B|A)

which can be rearranged to give Bayes Theorem:

p(A|B) = p(B|A)
p(A)

p(B)
(5.1)

5.1.1 Bayesian parameter inference

Eq. (5.1) is uncontroversial until event A is replaced by the unknown parame-

ter of interest, θ and event B is replaced by the observed data, d and the ques-

tion is then asked; ‘What is the probability of the unknown set of parameters

θ = {θ1, . . . θi . . . θn}, given the data, d? The answer to this question is given by:

p(θ|d) = p(d|θ)p(θ)
p(d)

(5.2)

where all we have done is re-labeled the quantities in Eq. (5.1).

5.1.1.1 Bayes Theorem

More usefully, we can write Eq. (5.1) being conditional on a particular model, Mj,

as follows:

p(θ|d,Mj) =
p(d|θ,Mj)p(θ|Mj)

p(d|Mj)
(5.3)

Eq. (5.3) is Bayes theorem as it is commonly written out for problems of parameter

inference. p(θ|d,Mj) is the joint posterior probability for the parameters, it is

a function of θ and in Bayesian parameter inference is the quantity we are most

interested in. p(d|θ,Mj) is also a function of θ, it is the probability of the data

given the parameters, it is known as the likelihood and often labelled L(θ), it is

the main quantity of interest in a Frequentist approach to parameter inference.

p(θ|Mj) is also a function of θ and is known as the prior. The prior is a function

which describes our prior belief about where in parameter space we believe the true
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value of the parameter lies.

The slight controversy from the Frequentist point of view lies in the necessity

of specifying the prior probability of the unknown parameter, p(θ), as it implies

that some form of informed guess must be made, in advance of the collection of the

observed data, about the plausible values of the unknown parameter. Priors can be

a sensitive issue and must be carefully specified. However, the advantage of being

able to explicitly specify priors and indeed one’s prior belief about the parameters

is that theoretical ideas, scepticism about the quality of the experiment or other

considerations may be knowingly quantified. A well motivated prior means that

we are making the best possible use of whatever prior information we have before

gathering data. (See the following section for more discussion on the choice and role

of priors)

The quantity p(d|Mj) is a single number obtained by integrating the product

of the likelihood and prior over all of parameter space:

p(d|Mj) =

∫
p(d|θ,Mj)p(θ|Mj) dθ (5.4)

In problems of parameter inference, this number p(d|Mj) can be thought of as a

normalizing constant. p(d|Mj) goes by several names, it is most commonly known

as the Bayesian evidence (or simply the evidence), or the model likelihood, as it gives

the probability of the model given the data. For problems of parameter inference

only, it is not necessary to compute the Bayesian evidence, as one may simply

consider:

p(θ|d,Mj) ∝ p(d|θ,Mj)p(θ|Mj) (5.5)

but for problems of model selection, the Bayesian evidence plays a crucial role, as

will be explained in following sections.

To obtain the posterior probability for a single parameter θk from the joint

posterior probability distribution over all the parameters θ, one must integrate over

all the other parameters θ6=k in the set:

p(θk|d,Mj) ∝
∫
p(d|θ,Mj)p(θ|Mj) dθ6=k (5.6)

this posterior probability for a single parameter is known as the marginalised pos-

terior.
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5.1.2 Priors and the Bayesian definition of a model

The prior quantifies our existing knowledge, and may be based on past experiments,

or on theoretical predictions. There are three types of prior used in this thesis: flat,

Gaussian and Jeffreys’. A flat (or uniform) prior represents a belief that all parts

of parameter space within the prior range are equally probable, it is an appropriate

choice of prior for location parameters. One (possible) disadvantage of a flat prior is

that it definitively excludes some parts of parameter space - if that is not intended,

one must ensure that the prior range is wide enough that the likelihood lies com-

pletely within the prior and is not truncated by the prior. We make frequent use

of Gaussian priors in this work, and they have several advantages: They have long

tails and so do not categorically exclude any part of parameter space; They can be

easily adjusted to be broader or narrower, and they are easy to manipulate alge-

braically. A Jeffreys’ prior is 1/θ and equivalently is flat (uniform) in log space of

the parameter. A Jeffreys’ prior is used for range or scale parameters, representing

indifference about the value of a range or scale parameter.

With less information, a broader prior should generally be used, although some-

times a prior may be specified with a sharp cut off to eliminate non-physical results

such as negative masses. With more information, perhaps arising from a well tested

theory, it may be advantageous to use a narrower prior which will prevail even in

the case when poor data are used. The choice of prior can be controversial when the

prior dominates over the likelihood, but this is usually a sign that either the data

are insufficient to make a strong claim about the parameters of interest, or that an

inappropriately strong prior has been chosen.

In the Bayesian sense, a specific model Mj is defined as being a particular

function with a number of free parameters, and the priors on those parameters. The

important point to note here is that within the Bayesian sense a model is not defined

only by its free parameters, but also the priors on those parameters. If the priors

are not specified, the model is not fully defined.

For an example in the cosmological context, consider that the standard model

of cosmology today is the flat ΛCDM model, with its parameters. For ΛCDM to

be fully defined as a model in the Bayesian sense, one would also need to specify

the priors on those parameters, e.g. p(Ωm) = 0.0 < Ωm < 2.0. A different choice

of prior on any of those parameters, either in form or in range would constitute a

different model in the Bayesian sense, for example ΛCDM with a prior on Ωm of

p(Ωm) = 0.0 < Ωm < 1.0 would be a different model from the one just mentioned,

and would be different again from a ΛCDM model with a Gaussian prior on Ωm.

A model is said to be ‘nested’ within another model if the more complex model
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reduces to the simpler model when one of its free parameters is fixed. For example,

curved ΛCDM with a curvature density parameter with a prior of p(Ωκ) = −1.0 <

Ωκ < 1.0 reduced to flat ΛCDM when one of its free parameters Ωκ is fixed to to

zero Ωκ ≡ 0. Here the flat ΛCDM model is nested within the curved ΛCDM model.

5.1.3 Bayesian model selection

Thus far we have discussed Bayesian techniques for extracting model parameters for

a specific model. However the question often arises as to which is the ‘best’ model to

use; ‘model selection’ is a technique that can be used when we wish to discriminate

between competing models and identify the best model in a set, {M1........Mn},
given the data (see for example Trotta (2008)).

For a specific model,Mj, with a specific choice of parameters and prior, Bayes

theory states that:

p(θj|Mj, d) =
p(d|θj,Mj)p(θj|Mj)

p(d|Mj)︸ ︷︷ ︸
model evidence

(5.7)

The denominator of (5.7) is known variously as the model likelihood, Bayesian

evidence, model evidence or marginal likelihood and is given by:

p(d|Mj) =

∫
p(d|θj,Mj)p(θj|Mj)dθ (5.8)

For a specific model, the model evidence acts as a normalisation constant, so for

questions of parameter inference it was not necessary to compute it. However, it does

become important in questions of model selection. Once the model likelihood (i.e.

model evidence) has been calculated for each model in the set, then Bayes theorem

can be applied to calculate the posterior probability p(Mj|d) of each model in the

following way:

p(Mj|d) =

model evidence︷ ︸︸ ︷
p(d|Mj) p(Mj)

p(d)
(5.9)

Where p(Mj) is the prior belief in the model and p(d) is a normalisation constant

given by:

p(d) =
∑
i

p(d|Mi)p(Mi) (5.10)

The relative ‘goodness’ of models is given by a comparison of their posterior prob-

abilities, so to compare two models Ma and Mb, we look at the ratio of the model
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| lnBij| Odds Strength of evidence
< 1.0 ∼< 3 : 1 Inconclusive
1.0 ∼ 3 : 1 Weak evidence
2.5 ∼ 12 : 1 Moderate evidence
5.0 ∼ 150 : 1 Strong evidence

Table 5.1: Empirical scale for evaluating the strength of evidence from the
Bayes factor Bij between two models (so–called ‘Jeffreys’ scale’). The right–most
column gives our convention for denoting the different levels of evidence above
these thresholds, following Gordon & Trotta (2007).

posterior probabilities:
p(Ma|d)

p(Mb|d)
=
p(d|Ma)p(Ma)

p(d|Mb)p(Mb)
(5.11)

The Bayes factor, Bab is defined as the ratio of the model likelihoods:

Bab =
p(d|Ma)

p(d|Mb)
(5.12)

The Bayes factor gives a measure of the ‘goodness’ of a model, regardless of the prior

belief about the model; the higher the Bayes number, the better the model. In many

cases, the prior belief in each model in the set of proposed models will be equal,

so the Bayes factor will be equivalent to the ratio of the posterior probabilities of

the models. The relative strength of the Bayesian evidence between two competing

models may be interpreted using the Jeffrey’s scale, shown in table 5.1.

The advantage of using the Bayes factor as a marker to discriminate between

models is that it incorporates information about both the quality of fit of the model

to the data and the number of free parameters in the model; models with fewer

free parameters are favoured, which accords with Occam’s maxim that the simplest

model should be prefered. The ‘best’ model in the Bayesian sense is the one which

gives the best fit to the data with the smallest parameter space.

5.2 Numerical Methods

We turn our attention now to the practical numerical methods used when inves-

tigating problems of parameter inference and model selection, which we illustrate

with a simple Gaussian linear model, M which relates the true xi and yi thus:

yi = θ0 + θ1xi (5.13)
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where the model parameters θ = {θ0, θ1} are the parameters of interest to be inferred,

and the observed values from n observations ŷ = {ŷ1 . . . ŷi . . . ŷn} are subject to a

small amount of Gaussian noise of variance σ2 such that:

ŷi ∼ N (yi, σ) (5.14)

For simplicity in this example there are no errors in the x direction and we write

x = {x1 . . . xi . . . xn}. The data d = {x, ŷ} are shown in the upper left panel of

figure 5.1, in which the straight line represents our model M for one choice of θ0

and θ1. If we wished to investigate whether the data were better fitted to a different

model,Mnew such as a low order polynomial, then that would be a problem of model

selection rather than parameter inference. Bayes theorem for this problem can be

written as:

p(θ|d,M) =
L(θ)p(θ|M)

p(d|M)
(5.15)

Our goal is to infer the most probable region for the parameters θ, given the data;

this probability distribution is the joint posterior. Before looking at the data, a

prior must be specified, which can be based on past experiments or theoretical

predictions. In this example, we specify broad Gaussian priors on both parameters.

The likelihood function L(θ) also needs to be specified, it describes the probability

of obtaining the data for given parameters and it depends on the experimental

technique used to gather the data. In this case, the data were gathered subject to

a small amount of Gaussian noise, so a Gaussian likelihood is appropriate.

L(θ) ≡ p(d|θ) (5.16)

= (2πσ2)−n/2 exp

(
−1

2

n∑
i=1

(ŷi − yi(θ))2

σ2

)
(5.17)

where

yi(θ) = θ1 xi + θ0 (5.18)

In the case of parameter inference, it is not necessary to calculate the Bayesian

evidence, which here acts as a normalization constant, the posterior distribution is

sufficiently specified by the numerator of Eq. (5.15). An analytic solution exists

for this simple Gaussian linear model, however, for illustration, we calculate the

required quantities numerically. As can be seen in the lower left panel of figure 5.1,

the likelihood is strongly peaked and when this is multiplied by the broad prior,

to give the posterior, the posterior is dominated by the data rather than by the

prior. If the data had been less conclusive, then the prior would have had a greater
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Figure 5.1: Upper left panel: points show experimental data, straight line shows
model M for one choice of θ0 and θ1. We wish to infer the most probable values
of θ0 and θ1, given the data - this is described by the posterior distribution, shown
in the lower right panel. Red contours enclose 95% of the prior, likelihood and
posterior probability; green contours enclose 68.3%.

influence in shifting the location of the posterior within parameter space. Likewise,

if the prior had been more narrowly specified, it would have dominated over the

data.

For this example, the posterior was calculated numerically for each point on a

grid in parameter space. Although this is feasible for our simple model, it is not

practical on grander scales for problems which have many more parameters and

complicated likelihood functions. Parameter inference and model selection present

two different numerical challenges: firstly, parameter inference requires the sampling

of a potentially large parameter space in order to find the shape and peak of the joint

posterior probability distribution; secondly, model selection requires the calculation

of what can be a large multidimensional integral. For low dimensional problems

with only one or two unknown parameters, these challenges become easy to solve,

as the joint posterior may be evaluated over a one or two dimensional grid and

the associated integral easily evaluated, as described in the preceding paragraphs.

However, as the number of parameters increase, evaluating the posterior over a grid
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becomes increasingly unfeasible. Rather than calculating the posterior at every point

in parameter space, it is more efficient to evaluate the posterior only at some points,

concentrating on the regions around the peak of the posterior. One method for

exploring the posterior in this way is to use a Markov Chain Monte Carlo (MCMC)

method, for example the Metropolis-Hastings algorithm Metropolis et al. (1953);

Hastings (1970), which is the MCMC algorithm used in this thesis; the other method

used in this thesis to explore parameter space, which crucially also computes the

Bayesian evidence, is the Nested Sampling technique (Skilling, 2004, 2006).

Metropolis-Hastings methods are useful for exploring parameter space and find-

ing the peak whereas nested sampling techniques are primarily for calculating the

Bayesian evidence but also explore parameter space and find the peak of the poste-

rior. Alternative sampling techniques not used in this thesis include Gibbs Sampling,

Importance Sampling, Rejection Sampling, Slice Sampling and Hamiltonian Monte

Carlo techniques. Alternative techniques for calculating the Bayesian evidence in-

clude thermodynamic integration (simulated annealing) techniques, although these

tend to be more computationally intensive than Nested Sampling. Here we shall

give a brief overview of MCMC methods and Nested Sampling techniques which are

used in the research presented in this thesis.

5.2.1 Markov Chain Monte Carlo (MCMC) techniques

In MCMC methods, a series of consecutive points (the ‘chain’) are produced in pa-

rameter space, with the density of the points being proportional to the posterior and

converging to a stable distribution. We shall briefly describe here the Metropolis-

Hastings algorithm and apply it to the Gaussian linear model described above. In

the Metropolis-Hastings algorithm, a start point θs is chosen at random within a

specified area of parameter space and the un-normalized posterior is evaluated at

that point, Ps. A jump is then made in accordance with the proposal density (see

later) to a candidate point, θc and the posterior at that point is evaluated, Pc. A

decision is then made to either move to the candidate point and add it to the chain,

or remain at the start point, again adding the start point to the chain and choose a

different candidate point; the probability, α that the move is made to the candidate

point is given by α = min
(
Pc
Ps
, 1
)

i.e. if Pc > Ps then the jump is made, but if

Pc < Ps then the jump is less likely, but still possible. When the jump is made,

the candidate point is added to the chain and becomes the new start point and the

process is repeated. Allowing the jump to be made even to a point with a lower

value of the posterior means that the tails of the distribution can be explored.
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Figure 5.2: The application of MCMC methodology to the Gaussian linear
model described by Eq. (5.13) and Eq. (5.14). The density of the points in pa-
rameter space corresponds to the posterior distribution. (Here the points are
uniformly weighted) The first few points in the chain have been discarded as
‘burn in’ points and the chain has been ‘thinned’ by retaining only every 100th
point.

How the candidate point is selected, is governed by the proposal density, which

needs to be chosen with some care; in our example, we use a proposal density which is

a Gaussian distribution centred on the location of the start point. This means that,

depending on the width of the Gaussian, it is more likely that the candidate point

will be quite near to the start point, but also allows the possibility of a candidate

point being selected some distance away. If the width of the Gaussian is too small,

the candidate will most likely be chosen very near to the start point, such that only

a small region of the parameter space is investigated. If the width of the Gaussian

is too broad, then the candidates will be selected far from the start point, in which

case there will be little or no movement and it may take a long time for the chain

to converge. The posterior distribution for a single parameter, i.e. the ‘marginal

distribution’ may be obtained by integrating over the other parameters, for example,

to obtain the un-normalised marginal posterior for θ0, the numerator of (5.15) must
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Figure 5.3: From the simple Gaussian linear model: The marginal posteriors
for the two parameters are obtained by integrating out the unwanted parameter,
which in practice means binning the points from the chain shown in figure 5.2.
The dashed line indicates the mean of the distribution, the dotted lines indicate
±σ

be integrated over with respect to θ1:

p(θ0|d,M) ∝
∫
L(θ)p(θ|M)dθ1 (5.19)

When the joint posterior distribution has been obtained by MCMC methods and

is represented by the density of points in parameter space which form the ‘chain’,

integrating over the unwanted parameter, θ1 is simply a matter of dividing the range

of the parameter of interest into a series of bins and counting the number of points

that lie within each bin, since the density of samples is proportional to the posterior.

Figure 5.3 shows the marginal posteriors of the two parameters.

5.2.1.1 MCMC Cosmological Parameter Inference in Practice: Cos-

moMC

Anthony Lewis and Sarah Bridle have developed an MCMC package, known as

CosmoMC, for cosmological parameter inference (Lewis & Bridle, 2002), based on

the Metropolis -Hastings algorithm described above. We include a brief description

of CosmoMC as it is used for some of the numerical work in chapter 6. The MCMC



5.2 Numerical Methods 83

sampler is a more sophisticated version of that described above using the example of

the Gaussian linear model, and it has a cosmological interface for use in cosmological

problems.

Within a specified cosmological model, e.g. ΛCDM, CosmoMC can be used

to infer the various cosmological parameters, for a given data set such as WMAP

(Dunkley et al., 2009). In the evaluation of the likelihood, CAMB (Lewis et al.,

2000), itself based on CMBfast, (Seljak & Zaldarriaga, 1996), is used to calculate

the theoretical model and flat priors are used throughout. CosmoMC produces

chains which can be plotted and marginalised over in a similar way as the chains

produced by our simple example code for our Gaussian linear model, to produce plots

of the marginal posterior probabilities for the cosmological parameters, as shown in

figures 5.4 and 5.5, using the supplied ‘Getdist’ package. (The slight difference in

the implementation of the marginalization is that our basic example MCMC sampler

produces unweighted chains, whereas CosmoMC produced weighted chains.) Thus

CosmoMC provides a useful numerical method for Bayesian cosmological parameter

inference, and for exploring the posterior. CosmoMC is used in our work on Bayesian

Doubt in chapter 6 to explore a likelihood function and find its maximum.
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Figure 5.4: The application of MCMC methodology to WMAP data (Dunkley
et al., 2009) using CosmoMC. As for figure 5.2, but here the samples are weighted.
The weighted density of points in parameter space corresponds to the posterior
distribution.

5.2.2 Nested Sampling

MCMC methods are useful for exploring uni-modal parameter spaces and doing

parameter inference but less efficient when used to compute the Bayesian evidence.
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Figure 5.5: Cosmological parameter inference using WMAP data (Dunkley
et al., 2009)and CosmoMC. ‘Getdist’ was used with the chains produced by Cos-
moMC shown in figure 5.4 to automatically produce plots of the marginal poste-
riors, using a similar technique to that demonstrated in figure 5.3, but taking into
account the weight of the samples. Solid lines show marginal posterior, dotted
lines show average likelihood.

Numerical calculations of Bayesian evidence in the cosmological context are often

difficult and involve the calculation of a large multidimensional integral. Fortunately,

several nested sampling codes have been developed based on the algorithm of Skilling

(2004, 2006), such as MultiNest (Feroz & Hobson, 2008a; Feroz et al., 2009a) and

CosmoNest (Mukherjee et al., 2006; Parkinson et al., 2006), these nested sampling

algorithms compute the Bayesian evidence directly.

Rather than calculating the posterior first and then the evidence, Skilling’s

Nested Sampling algorithm aims for a direct calculation of the evidence and produces

posterior samples as a subsidiary element. The methodology we briefly outline here

is taken from Sivia & Skilling (2006) in which the the likelihood, L(θ) and prior,

p(θ) as are treated as inputs and the evidence, Z and posterior, p(θ|d) as outputs:

L(θ)p(θ) = Zp(θ|d) (5.20)
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and the evidence is defined in the usual way as:

Z =

∫
L(θ)p(θ)dθ (5.21)

Skilling then asks the question: ‘for a given value, λ of the likelihood, what pro-

portion ξ(λ) of the prior has a likelihood greater than λ?’. The calculation of this

quantity is made easier if the values of the likelihood have already been sorted into

order of decreasing magnitude. ξ(λ) is defined formally as:

ξ(λ) =

∫
L(θ)>λ

p(θ)dθ (5.22)

and we also define:

L(ξ(λ)) ≡ λ (5.23)

The evidence Z is then given by the area under the curve of a plot of L(ξ(λ)) against

ξ(λ):

Z =

∫ 1

0

L(ξ)dξ (5.24)

The trick here is in how to calculate the function ξ(λ) given by Eq. (5.22) without

having to calculate the likelihood and posterior over a grid of points in parameter

space. The Nested Sampling method draws a number of random points with respect

to the prior, initially across the whole range of ξ(λ) (which can run from 0 to 1). The

point within the set with the highest value of ξ(λ) (corresponding to the lowest value

of L(ξ)) is then rejected and a new point is randomly selected on the condition that

ξ(λ)new < ξ(λ)rejected this new set of points covers a subset of the range of the old

set of points; the rejection and selection process is repeated, each set of new points

being a subset ‘nested’ within the previous set, gradually converging on the area of

maximum likelihood. Mathematically, the effect has been to replace a potentially

cumbersome multidimensional integral over a large parameter space Eq. (5.21) with

a simpler one dimensional integral Eq. (5.24), which represents a great saving in

computational power.

For solving cosmological problems, Multinest can be used as an alternative

sampler within the CosmoMC package. As a natural by product, Multinest produces

a set of samples from the posterior which can be processed by ‘GetDist’ to give the

marginalised posterior distributions of the parameters in a similar fashion to that

shown in figure 5.5.

The Multinest-CosmoMC configuration is used in our work on Bayesian Doubt

in chapter 6 for computing Bayesian evidences. MultiNest (like the MCMC part of
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CosmoMC) can also be used as an independent sampler, and it is in this configura-

tion that MultiNest is used extensively in our work on parameter inference from the

supernovae type Ia data described in chapter 7 - we chose to use MultiNest for this

work as ultimately we wish to use the SNe I analysis to address problems of model

selection.

5.3 Forecasting: Fisher matrix formalism

The background statistical ideas presented so far all concern the analysis and inter-

pretation that takes place once the data have been gathered. A distinct but related

question is how to plan the best data gathering strategy for future observation cam-

paigns or astrophysical probes of cosmology, which includes the important question

of how to choose the best metric for evaluating and comparing the expected returns

for proposed strategies. A common metric for evaluating and comparing proposed

probes is based on the Fisher matrix. Here we shall outline the basics of the Fisher

matrix formalism, which is used in our work in chapter 8. we shall discuss some of

the limitations of the Fisher matrix formalism and introduce a new statistic ‘Ro-

bustness’.

The Fisher information matrix, named after R. A. Fisher (1890 - 1962) is a

way of predicting the errorbars on parameters of interest given a proposed set of

observations and expected errors on those observations. For a discussion of the

Fisher matrix formalism in cosmology and a useful implementation, see for example

(Hobson, M. P., Jaffe, A. H., Liddle, A. R., Mukeherjee, P., & Parkinson, D., 2010;

Bassett et al., 2009a,b; Amendola & Tsujikawa, 2010). The Fisher matrix formalism

approximates the Likelihood function by Taylor expanding the log likelihood lnL(θ)

about the maximum likelihood:

lnL(θ) ≈ lnLmax − 1

2

∑
ij

∂2 lnL(θ)

∂θi∂θj

∣∣∣∣
max

(θi − θmaxi )(θj − θmaxj ), (5.25)

where Lmax is the maximum likelihood and θmaxi are the values of θi which maximize

the likelihood. The Fisher matrix Fij is then defined as the expectation value of

the curvature of the log likelihood at the maximum likelihood, averaged over all the

realizations of the data:

Fij ≡
〈
∂2 lnL(θ)

∂θi∂θj

∣∣∣∣
max

〉
(5.26)

The inverse of the Fisher matrix Fij is the average expected covariance matrix. For

Forecasting the Fisher matrix for future surveys, the Fisher matrix is evaluated at



5.4 Some aspects of Frequentist statistics 87

the point in parameter space corresponding to the fiducial model, which on average

corresponds to the point in parameter space which gives the maximum likelihood.

2D contour plots can be made from the Fisher matrix showing the expected

error ellipses on the parameters of interest, centred on some fiducial model. Figure

5.6 shows an example 95% error ellipse for the dark energy parameters of interest

w0, wa. The figure of merit with which to compare future proposed astrophysical

probes is usually related to the inverse area of the expected error ellipse derived

from the Fisher matrix. The figure of merit chosen by the DETF is precisely ‘the

reciprocal of the area of the error ellipse enclosing the 95% confidence limit in the

w0, wa plane.’ (Albrecht et al., 2006). Large error ellipses give small figures of merit

which indicate large uncertainties. Astrophysical probes with a large figure of merit

are favoured as this indicates smaller expected errors on the parameters of interest.

In chapter 8 we shall discuss some of the limitations of this inverse-area figure of

merit and introduce a new statistic ‘Robustness’ as an extension to the inverse area

figure of merit.

Figure 5.6: Example 95% error ellipse derived from the Fisher matrix for the
dark energy parameters of interest, w0, wa taken from (Albrecht et al., 2006). The
figure of merit is the inverse area of the 95% confidence level or error ellipse.

5.4 Some aspects of Frequentist statistics

Although the work presented in this thesis is based primarily on a Bayesian approach

to probability, we make some reference to Frequentist methods for comparison es-
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pecially in the work on parameter inference from supernovae type Ia discussed in

chapter 7. In this section I will outline some of the ideas and concepts encountered

in the Frequentist approach, and explain where appropriate how it relates to the

Bayesian approach. Texts with sections on Frequentist approaches referenced for

this section include Williams (2001); Frodesen et al. (1979); Young & Smith (2005).

As mentioned in the introductory remarks to this chapter, one of the main differ-

ences between the Frequentist and Bayesian approaches are the differing concepts

of probability. For the Bayesians, probability is a measure of their degree of belief

about a particular statement, for the Frequentists, it concerns the number of ex-

pected outcomes in a series of repeated tests. The questions asked in both cases are

different, and consequently the answers obtained differ in their meaning. Frequen-

tists are primarily concerned with the likelihood p(d|θ) which is the probability of

the data d given the parameters θ (or the likelihood of the parameters θ). In the

Frequentist sense, the best estimator for a parameter, is the value of the parame-

ter θmax which maximises the likelihood. Along with the maximum likelihood, the

1-dimensional profile likelihood is often given, which is the maximum likelihood at

every fixed value of the parameter of interest. Instead of the Likelihood, Bayesians

are primarily interested in the posterior p(θ|d) which is the probability of the param-

eters θ given the data d, and this should be the quantity of interest in cosmology - we

are interested in the probability of the cosmological parameters {Ωm,ΩΛ,Ωκ, H0, w}
given the data, not vice versa.

The Frequentist quantity of interest p(d|θ) and the Bayesian quantity of interest

p(θ|d) are related through the Bayes equation, as in Eq. (5.3). For problems of

parameter inference, the normalizing Bayesian evidence may be neglected, and for

the case where the priors are flat and fully enclose the likelihood, then the posterior

is proportional to the likelihood

p(θ|d) ∝ p(d|θ). (5.27)

In this case, both the posterior and the likelihood peak in exactly the same place in

parameter space, here both methods in some sense give the ‘same’ answer, but to

two slightly different questions.

5.4.1 Maximum Likelihood and the Chi square statistic

Frequentists seek to identify the maximum likelihood estimator (MLE), which max-

imises the likelihood L(θ). For the example of the Gaussian linear model described
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above, this means maximizing Eq. (5.17), which may be re-written as:

L(θ) ≡ p(d|θ) (5.28)

= (2πσ2)−n/2 exp

(
−1

2

n∑
i=1

χ2

)
(5.29)

where the random variable χ2 has been defined as

χ2 ≡
n∑
i=1

(ŷi − yi(θ))2

σ2
. (5.30)

Here, adjusting θ so as to minimize the χ2 random variable will maximize the like-

lihood. We label the value of θ which gives the maximum likelihood Lmax as θmax.

In this Gaussian linear example, maximization of the likelihood can be carried out

neglecting the prefactor (2πσ2)−n/2 as it is constant and acts as a normalization

factor, it does not change the value of θmax. I emphasize here that in this example

minimizing the χ2 maximizes the likelihood, as the prefactor may be neglected -

this becomes important for our work on the SNe Ia analysis in chapter 7 where the

prefactor cannot be neglected.

When the data ŷi are independent and identically distributed, and their errors

are Gaussian, then the random variable χ2 itself follows a chi-square distribution

χ2
ν where ν is the number of degrees of freedom given by ν = n − m, where n is

the number of data points and m is the number of free parameters, which is Wilks’

theorem (Wilks, 1938). The mean of the χ2
ν distribution is located at ν. When the

theoretical model is a good fit for the data, the value for the χ2 random variable is

expected to fall close to the mean value of the chi-square distribution χ2
ν , giving rise

to the popular criteria that χ2/d.o.f. ≈ 1 gives a good indication that the model is

a good fit to the data, and that χ2/d.o.f. >> 1 indicates that the model should be

rejected. For a discussion of some of the problems with the chi-square goodness of

fit test in specific scenarios, see Protassov et al. (2002).

In chapter 7 section 7.3 we shall look at an example where the χ2
µ statistic as

defined in Eq. (7.6) will not follow a chi-square distribution χ2
ν because χ2

µ in Eq. (7.6)

is of a different form to the χ2 statistic defined in Eq. (5.30). The chi-square statistic

as defined in Eq. (5.30) only has unknown parameters in its numerator, whereas χ2
µ

statistic defined in Eq. (7.65) has a parameter dependence in both the numerator

and denominator - hence we do not expect it to follow a chi-square distribution χ2
ν ,

and cannot use the approximation that χ2
µ/d.o.f. ≈ 1 is the mark of a good model.
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Chapter 6

Bayesian Doubt: Should we doubt

the Cosmological Constant?

6.1 Introduction

One of the most fundamental questions in cosmology today is to identify which

cosmological model best describes the Universe in which we live, given the current

observational data. The standard model of cosmology describes a hot big bang

scenario followed by an expanding Universe. But the standard model of cosmology

is not yet finalised, and there are several open questions, most notably, we desire

to know which is the best explanation for the apparent late time acceleration which

we seem to observe.

Observations of distance supernovae type Ia made in the late 1990s appear to

show that the expansion of the Universe is accelerating. Is the Universe really accel-

erating or does it only appear to be doing so? Models which only give the appearance

of acceleration, rather than actual acceleration include void models and alternative

explanations of the backreaction. If the Universe is genuinely accelerating, then

what is the cause of this acceleration? Ordinary matter, dark or otherwise cannot

explain an acceleration in the expansion, being gravitationally attractive, matter

may only explain a deceleration in the expansion rate. Instead, alternative theories

must be postulated in explanation, most alternative theories fall into two categories:

either they are modified gravity models, or they are dark energy models which posit

an additional component which has a negative pressure. The cosmological constant

model is a special case of a dark energy model for which the dark energy equation

of state is fixed at precisely w = −1.0.

One way for discriminating between competing models of the Universe is to use
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Bayesian model selection, the Bayesian evidences for each of the proposed models

can be computed and the models can then be ranked by their Bayesian evidence.

This is a good method for identifying which is the best model in a given set of

models, but it gives no indication of the absolute goodness of the model. Bayesian

model selection can identify the best model in a given set, but it says nothing about

the overall quality of the set of models as a whole - the best model in the set may

merely be the best of in a set of poor models.

Within the Bayesian model selection framework there is no mechanism for de-

scribing the absolute goodness of a model, however, it would be useful to have some

method for quantifying just how good a model is. Knowing that the best model in

the current set of models, while being better the known alternatives, is not particu-

larly good model would provide motivation to search for a better model, and hence

may lead to model discovery.

One way of assigning some measure of the absolute goodness of a model is to use

the concept of Bayesian doubt, first introduced by Starkman et al. (2008). Bayesian

doubt works by comparing all the known models in a set with an idealized model,

which acts as a benchmark model. In this chapter I review the concept of Bayesian

doubt and apply it to cosmological model selection with regard to the dark energy

equation of state. This chapter follows closely the work presented in the paper

March et al. (2011a)

6.2 Bayesian doubt and model discovery

6.2.1 Bayesian doubt described

In standard Bayesian model selection, for a given set of N known models,

{M1 . . .Mi . . .MN}; the Bayesian evidences of each model may be computed and

the models ranked accordingly:

p(Mi|d) =
p(d|Mi)p(Mi)

p(d)

where p(Mi) is the model prior, p(d) is the probability of the data acts as a normal-

izing constant. p(Mi|d) is the posterior probability of the ith model and p(d|Mi) is

the model likelihood or model evidence, given by the integral over all of parameter

space, θi for the parameters within that model:

p(d|Mi) =

∫
dθip(d|θi,Mi)p(θi|Mi) (6.1)
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p(d|θi,Mi) is the likelihood of the parameters given the data for model Mi and

p(θi|Mi) is the prior on the parameters with in model Mi. But what if the set of

models is incomplete and does not contain the true model? {M1 . . .Mi . . .??? . . .MN}.
The methodology of Bayesian doubt dictates that an unknown idealized model X

should be introduced against which the other models may be compared. Following

Starkman et al. (2008) ‘doubt’ may be defined as the posterior probability of the

unknown model:

D ≡ p(X|d) =
p(d|X)p(X)

p(d)
(6.2)

where p(X) is the prior doubt, i.e. the prior on the unknown model, which represents

the degree of belief that the list of known models does not contain the true model.

The sum of all the model priors must be unity, so we can write:

N∑
i=1

p(Mi) + p(X) = 1. (6.3)

If we assign equal prior probability to each of the known models within the set, then

we may also write that the prior on each of the known models is:

p(Mi) =
1

N
(1− p(X)). (6.4)

The probability of the data p(d) is the product of the model likelihood and model

prior, summed over all models:

p(d) =
N∑
i=1

p(d|Mi)p(Mi) + p(d|X)p(X) (6.5)

Substituting for p(d), doubt, D may be expressed as:

D =
p(d|X)p(X)∑N

i=1 p(d|Mi)p(Mi) + p(d|X)p(X)
(6.6)

=

(
1 +

∑N
i=1 p(d|Mi)p(Mi)

p(d|X)p(X)

)−1

(6.7)

We can define the Bayes factor as:

Bij ≡ p(d|Mi)

p(d|Mj)
(6.8)
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The methodology of Bayesian doubt requires a baseline model, for which we will

chose to use ΛCDM. The average Bayes factor between ΛCDM and each of the

known models is given by:

〈BiΛ〉 ≡ 1

N

N∑
i=1

BiΛ. (6.9)

[N.B. the sum over the modelsMi includes i = ΛCDM and as such 〈BiΛ〉 ≥ 1 ] We

may re-write Eq.(6.7) in terms of the ΛCDM model:

D =

(
1 +
〈BiΛ〉
BXΛ

(
1− p(X)

p(X)

))−1

(6.10)

As well as looking at posterior doubt D, we may also look at the ratio between the

posterior doubt and prior doubt, which we call the relative change in doubt, R.

R ≡ D
p(X)

(6.11)

=

(
p(X) + (1− p(X))

〈BiΛ〉
BXΛ

)−1

(6.12)

For doubt to grow, i.e. the posterior doubt to be greater than the prior doubt

(R � 1), then the Bayes factor between the unknown model X and the baseline

model, in this case ΛCDM, must be much greater than the average Bayes factor:

〈BiΛ〉
BXΛ

� 1, (6.13)

To genuinely doubt the baseline model, ΛCDM, it is not sufficient that (R > 1),

but additional, the probability of ΛCDM must also decreace such that its posterior

probability is greater than its prior probability, i.e. p(Λ|d) < p(Λ). We can define:

RΛ ≡ p(Λ|d)

p(Λ)
(6.14)

= ((1− p(X))〈BiΛ〉+ p(X)BXΛ)−1 . (6.15)

For ΛCDM to be doubted, the following two conditions must be fulfilled:

• R > 1

• RΛ < 1

If these two conditions are fulfilled, then it suggests that the set of known models

is incomplete, and gives motivation to search for a better model not yet included

considered, which may lead to model discovery.
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6.2.2 Bayesian evidence of the unknown model

One of the most important practical considerations in implementing the doubt for-

malism is how to estimate or select the Bayesian evidence (or model likelihood)

p(d|X) of the unknown model. By definition, the unknown model is not fully speci-

fied, hence p(d|X) cannot be computed directly. Instead, a suitable value for p(d|X)

must be chosen, it should be representative of a ‘good’ Bayesian model, in as much

as it gives a good fit to the data without being penalized by having a large number

of free parameters. However, it must be based on a realistic but not perfect model,

otherwise doubt will always grow. In this work, we choose to use an approach which

uses the absolute upper bound of the model evidence p(d|X). Using the absolute

upper bound of the model evidence is a context specific approach, so I shall describe

the context and data sets used before going on to describe how to compute the

absolute upper bound of the evidence.

In this work, we are specifically investigating the dark energy component of the

cosmological model. Our question is whether we should doubt the ΛCDM model,

for which the dark energy equation of state is precisely −1, i.e for the ΛCDM model

w(z) ≡ −1.0. Given the data from the standard astrophysical probes of dark energy,

namely the cosmic microwave background (CMB), matter power spectrum (mpk)

and supernovae type Ia (SNeIa), the ΛCDM model is currently the best model in

the set of known models which is why we choose it to be the bench mark model.

In the context of exploring the dark energy sector, we are comparing ΛCDM with

alternative models for w(z), we can propose a number of different models, (e.g. the

most basic would be w(z) 6= −1.0, but some other fixed number) which would consti-

tute our set of known models. However, the point of Bayesian doubt is to investigate

whether the set of known models is indeed complete, or whether another unknown

model could exist. We seek a phenomenological description for the unknown model

X for w(z) which will provide a high degree of flexibility without incurring a high

Occam’s Razor penalty for having a high number of free parameters.

In general, the maximum Bayesian evidence for a model is given when the

priors on the parameters θ are delta functions co-located exactly at the peak of

the likelihood function for those parameters, θmax, such that the prior is p(θ =

δ(θ − θmax). These priors are not well motivated in the ordinary Bayesian sense, as

they can only be applied aposteriori, however, they do delimit the absolute upper

bound that may be placed on the Bayesian evidence. For two nested models, for

which the simpler modelM0 can be obtained from the more complex modelM1 by

fixing one of the parameters θ in the complex model, to a value θ∗, the maximum

improvement in the Bayes factor B̄10 between the more complex and the simpler
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model is given by: (see Gordon & Trotta (2007))

B̄10 =
p(d|θmax,M1)

p(d|θ∗,M0)
(6.16)

In the case we are considering here, the more complex model is the unknown model

X which allows w(z) to vary, and the simpler model nested within it is ΛCDM which

has w(z) fixed. The parameter likelihood is given by: p(d|θ,M) = exp−1
2
χ2, so we

can write the maximum upper bound on the Bayes factor between the unknown

model X and ΛCDM as:

BXΛ < B̄XΛ (6.17)

BXΛ < exp

(
−1

2

(
χ2
X − χ2

Λ

))
(6.18)

In order to evaluate the upper bound BXΛ it is sufficient to calculate the difference

∆χ2 = χ2
X − χ2

Λ from the best fit χ2 for both the ΛCDM and X models. The

question of how to obtain χ2
X is context specific, and will be discussed in the next

section.

6.2.3 Behaviour of doubt and the posterior probability for

ΛCDM

In this subsection, we shall consider the behavior of doubt and the posterior proba-

bility of ΛCDM in three cases, which we shall describe in terms of the Bayes factors

and the absolute upper bound on the Bayes factor between the unknown model

and ΛCDM model. For a fixed choice of prior doubt p(X) we can see that from

Eqs. (6.10) and (6.14) the two factors which control the relative change in doubt

R and the relative change in the probability of ΛCDM , RΛ are the average Bayes

factor 〈BiΛ〉 and the Bayes factor between the unknown model and ΛCDM, BXΛ.

The three cases are as follows:

• CASE 1: BXΛ � 1 and 〈BiΛ〉 ∼ 1 Here the unknown model has a much

stronger Bayesian evidence than ΛCDM, and ΛCDM has a similar Bayesian

evidence to the other known models. As BXΛ � 1, we expect that there will

be a significant amount of doubt, and in this case, Eq. (6.7) will become:

D ≈
(

1 +
1

p(X)BXΛ

)−1

(6.19)

≈ 1 (6.20)
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if p(X)BXΛ � 1. Hence in this case doubt grows, as R > 1 if BXΛ is large

enough to overcome the prior doubt p(X). This fulfills the first necessary

condition for ΛCDM to be doubted. In order to ascertain whether the second

condition is fulfilled, we look at Eq. (6.14), which becomes:

RΛ ≈
(
1 + p(X)BXΛ

)−1
(6.21)

< 1 (6.22)

so in this set up, the change in probability for ΛCDM has decreased: both

conditions have been fulfilled: R > 1 and RΛ < 1, thus ΛCDM is genuinely

doubted.

• CASE 2: BXΛ � 1 and BiΛ � 1(i 6= Λ) This is similar to case 1, but here

the difference is that ΛCDM has a much stronger Bayesian evidence than

the other known models and is demonstrably the best model in the set of

known models. Here the average evidence is 〈BiΛ〉 ≈ 1/N . As in case 1, BXΛ

indicates that the unknown model is favored over ΛCDM as it has a larger

Bayesian evidence. The doubt in this case is given by:

D ≈
(

1 +
1

Np(X)BXΛ

)−1

≈ 1. (6.23)

if p(X)BXΛ � 1/N . But now we check the relative change the probability of

ΛCDM:

RΛ ≈
(

1

N
+ p(X)BXΛ

)−1

. (6.24)

In order for ΛCDM to be doubted in this case, then we require p(X)BXΛ �
1. If this condition is not met, then the probabilities of both ΛCDM and

the unknown model will both grow and they will accrue probability from the

other less favored models in the known set of models, whose probabilities will

decrease.

• CASE 3: BXΛ ∼ 1 In this case the absolute upper bound on the improvement

between the unknown model and ΛCDM is of order unity. So the maximum

value the Bayesian evidence of the unknown model can take is the same value

as the Bayesian evidence of ΛCDM, hence the unknown model may have equal

weight with ΛCDM but cannot be favored over ΛCDM. In this case, doubt

is given by:

D ≈
(

1 +
〈BiΛ〉
p(X)

)−1

(6.25)
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For doubt to approach unity, D → 1, we would require p(X) � 〈BiΛ〉 which

would mean that we would to have had to assign the unknown model a much

higher prior probability than any of the other known models, to which we

assigned an indifferent, equal prior.

In the more usual case where we do not assign the unknown model an ex-

ceptionally high prior probability, then doubt would not grow, and we would

have no reason to doubt that our set of known models was indeed complete

and did contain the true model. The true model could be then be identified

by ranking the known models in the usual way in accordance with standard

Bayesian model selection.

To summarize, these three cases show that the baseline ΛCDM model will only

be doubted when

p(X)BXΛ � 1 (6.26)

in addition to the condition that RΛ < 1. If these necessary conditions are met,

then the way is opened for the possibility of model discovery.

6.3 Application of doubt to the dark energy equa-

tion of state

We chose four models for our set of known models. For the baseline model we chose

flat ΛCDM, with the following set of free parameters: θ = {As, nS, ωb, ωc,ΩΛ, H0},
where As is the amplitude of scalar fluctuations, nS is the spectral index, ωb the

physical baryon density, ωc the cold dark matter density, ΩΛ the density parameter

for the cosmological constant and H0 the Hubble constant today. Purely adiabatic

fluctuations were assumed for this work.

The additional three models are one or two parameter extensions of the baseline

model, such that the simpler baseline model is nested within the more complex

extended models. The first extension is to allow non-zero curvature, which requires

the addition of the curvature density parameter Ωκ, the second extension is to allow

the dark energy equation of state to vary such that w 6= −1.0. The most complex

model in the set of known models allows both Ωκ and w to vary.

For the priors on these additional parameters; we use the astronomers prior on

the curvature density −1.0 ≤ Ωκ ≤ 1.0, as suggested by Vardanyan et al. (2009),

and the prior on the dark energy equation of state is −1.3 ≤ w ≤ −1/3. The upper

bound on w is fixed by physical constraints as w ≤ −1/3 is a necessary condition for
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dark energy to be repulsive, the lower bound is somewhat arbitrary and is chosen so

as to allow models which just slip into the phantom domain. Other choices of priors

can of course also be well motivated, and these would constitute additional distinct

models, since a model in a Bayesian sense is comprised of both its parameters and

the choice of priors on those parameters.

It is also possible to deduce analytically the effect of changing those priors,

since the models are nested so the Bayes factors between the various known models

and the baseline flat ΛCDM model can be calculated analytically using the Savage-

Dickey density ratio (SDDR) - see Trotta (2008) for details:

BΛj =
p(θ|d,Mj)

p(θ|Mj)

∣∣∣∣
θ=θ0

(6.27)

Where θ represents the additional free parameter in the more complex model, in

this case either w or Ωκ, and θ0 represents the fixed value of that parameter in the

simpler model, which in this case is the flat ΛCDM model which has fixed values

of Ωκ = 0 and w = −1.0.

In the case (such as the one considered in this work) where the additional

parameters have flat priors, which fully enclose the likelihood, then from the SDDR

we can see that the Bayes factor BΛj is proportional to the width of the prior

∆θ = θmax − θmin

BΛj =
p(θ = θ0|d,Mj)

1/∆θ
(6.28)

= p(θ = θ0|d,Mj)∆θ (6.29)

Increasing the width of the prior decreases the evidence in favour of the more complex

model - the additional wasted parameter space is penalised. In order to give a

significant shift in the model odds in accordance with the Jeffreys’ scale (see table

5.1) one would need to have a change in the log evidence of ∼ 2.5, i.e. we would

require ∆ lnBΛj ∼ 2.5, which in turn would require a change in width of the prior

corresponding to a factor of exp(2.5) ∼ 12. A twelve fold increase in the width of

the prior on either w or Ωκ would give a much wider prior than any prior which

could be physically well motivated. Hence we are confident that the results in this

work are robust to different choices of reasonable priors on w and Ωκ.

Other choices of known model could also be included in our set of known models,

for example a redshift dependent parametrization of w(z) such as the Chevalier-

Polarski-Linder parametrization w(z) = w0 + (1 + z)wa. However it has already

been shown that these models are penalized for their additional parameter space
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and have lower evidences than ΛCDM (see for example Liddle et al. (2006b)) and

hence would make only a small contribution to 〈BiΛ〉, resulting in only a small

change to the posterior doubt D.

Additional, more exotic models exist for the explanation of the apparent late

time acceleration of the Universe which involve not simply the addition of extra

parameters, but instead a completely different physical model of the underlying

cosmology, such alternative models include void models, and a range of different

modified gravity models. These models are not included in our current set of known

models in this work, since our principle objective here is to showcase the concept

and application of Bayesian doubt in a simple case study. Further investigations of

Bayesian model selection and Bayesian doubt with these alternative models is left

for future studies, but as long as it is feasible to compute the numerical Bayesian

evidence for these models, they can be included in doubt calculations.

6.3.1 Parametrization of the unknown model

Thus far we have discussed every quantity necessary to compute doubt, except for

the chi-square value for the unknown model χ2
X . Up until now, our discussion has

been completely general (bar our nomination of ΛCDM as the baseline model),

but now we must make a specific choice as to how we calculate χ2
X within the

context of our investigations into the dark energy component of the standard model

of cosmology. We need a value for χ2
X which represents a well fitting model, but not

a perfect model.

One idea may have been to use the common rule that a model with χ2 per

degree of freedom 1 represents a model which is a good fit to the data, but that

rule only holds true when: (1) The number of data points approaches infinity; (2)

The data points are independent and (3) The data points are Gaussian distributed.

But in this case, conditions (2) and (3) are not true for all the data sets we are

considering. For example, with the CMB data the C`’s are neither independent nor

Gaussian distributed. A further problem is that the SNe data as it is presented

at the time of doing this work has its error bars constructed in such a way as to

artificially give χ2/d.o.f. = 1 for the specific choice of a flat ΛCDM model. (The

identification of this particular problem with the SNe data led to my work on the

SNe Ia analysis which forms the major part of my dissertation). The consequence

of all this is that an alternative method must be used to compute χ2
X .

Instead, we choose a phenomenological model to use in the numerical compu-

tation of χ2
X . Our phenomenological model should be one which has a high enough
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degree of flexibility to give a good fit to the data, without over fitting the model. In

the context of dark energy, allowing w(z) to be a function which is able to vary freely

with time (i.e. redshift z) is the principle way of improving the fit of the model.

One such suitable model is the parametrized-post Friedmann (PPF) prescription

developed by Hu & Sawicki (2007); Hu (2008). The PPF was originally developed

to describe the behaviour of theories of modified gravity in a metric framework that

describes leading order deviations from General Relativity, but it is also useful for

our purposes as it can be used to describe evolving dark energy models which cross

the phantom divide of w = −1.0. For our purely phenomenological model we use

the PPF to describe a model for w(z) in which w may take a different value for

each of N redshift bins. In this work we choose to use N = 10, so our model for

computing χ2
X is comprised of 16 parameters: the original six ΛCDM parameters

and the additional ten wi parameters from each of the ten redshift bins.

6.3.2 Numerical implementation and data sets

For the data sets, we used the 307 SNe Ia from the “Union” data set compiled by

Kowalski et al. (2008). The CMB data and likelihood used was the WMAP five year

data set (Dunkley et al., 2009). Tegmark & Eisenstein (2006) provided the data and

likelihood code for the matter power spectrum using SDSS DR4.

The computation of χ2
X was carried out numerically by modifying CosmoMC1

to include the following additional parameters: wi ≡ w(zi) where zi are N uniformly

spaced redshift bins at intervals of z = 0, . . . , 1.5. The PPF prescription was im-

plemented by using CAMB2 (Lewis et al., 2000) with the publicly available plugin

developed by Fang et al. (2008a,b).

Eq. (6.17) requires the best fitting value for χ2
X , which we obtain using Cos-

moMC to do an MCMC reconstruction of the posterior of the 16-parameter model.

Each run yields 5 × 105 samples in each of eight parallel chains. We verified that

the Gelman & Rubin mixing criterion (Gelman & Rubin, 1992) was satisfied (i.e.,

R � 0.1, where R is the inter-chain variance divided by the intra-chain variance).

However, MCMC methods are not optimized for searching for the absolute best fit

point in the probability distribution, and this is a particular problem when higher

dimension spaces are being explored. As a result of this, we expect that the best

fit χ2
X values in the 16-dimensional models are going to be systematically under

estimated for, and this must be corrected for. In order to determine what this

1Modification of CosmoMC was carried out by Pascal Vaudrevange
2http://camb.info/ppf/
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systematic under estimate is, trials were conducted using a 16D Gaussian of unit

variance and then comparing the MCMC recovered best fit χ2 with the true location

of the minimum χ2, over 5000 trials. These trials showed that MCMC systemati-

cally overestimates the best fitting χ2 value by 0.94± 0.14, hence this was quantity

was subtracted from the MCMC recovered values for χ2
X . The trials also showed

that the systematic uncertainty on the MCMC recovered value for χ2 for the lower

dimensional ΛCDM models was negligible, and hence no correction had to be made

to those values.

The total error on the best fitting chi-square value is given by adding in quadra-

ture the above described systematic error and also the inter chain variance of the

recovered χ2 from each of the eight chains. Another source of uncertainty is the

sensitivity of χ2
X to the number of redshift bins used to parametrize w(z). Trials

conducted with half as many redshift bins and twice as many redshift bins shifts the

value of χ2
X by a maximum of 0.5 units, include this additional uncertainty as part

of the systematic error.

The evidence for the known models is computed using the publicly available

MultiNest code (Feroz & Hobson, 2008a; Feroz et al., 2009a; Trotta et al., 2008),

which implements the nested sampling algorithm, employed as an add-in sampler

to CosmoMC (Lewis & Bridle, 2002) and CAMB (Lewis et al., 2000).

6.4 Results and discussion

Tabel 6.1 shows the Bayes factors between each of the known models and ΛCDM (see

columns 1-3) and also shows the upper bound on the Bayes factor between the

unknown model and ΛCDM. In this table, a negative Bayes factor shows that

ΛCDM is favoured, and the magnitude of the Bayes factor can be interpreted

using the Jeffreys’ scale to give an indication of by how much one model is favoured

over another. Looking only at the Bayes factors between the known models, we

can see that in all cases ΛCDM is favoured over the more complex alternatives.

Evidence against flat wCDM is inconclusive when only the cmb data is used, but

builds towards being weak evidence when the SNeI and matter power spectrum data

sets are used. There is moderate evidence against spatially curved ΛCDM which

agrees with the results presented by Vardanyan et al. (2009). Evidence against

the most complex model which allows both spatial curvature Ωκ 6= 0 and a dark

energy equation of state of w 6= −1 is moderate approaching strong, showing that

the penalty incurred for the additional parameter space outweighs the advantage of

whatever slight improvement in fit is achieved by using a more flexible model.
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The results of the Bayes factors between the different known models are in

good agreement with other published values e.g. Liddle et al. (2006a,b) and Li

et al. (2009). Using ordinary Bayesian model selection, these results confirm that

ΛCDM is indeed the best models in the set of known models considered here, and

is a good choice for the baseline model.

The improvement in the best fitting χ2 (or log-likelihood) of ΛCDM over the

unknown model X, shown in column four is slight, even when all data sets are used.

There are two explanations for this: First of all this confirms quantitatively the

commonly held view of the cosmological community that ΛCDM is indeed a model

that fits the data well with little room for improvement; Secondly, it shows numeri-

cally the difficulty in improving the fit of the model by increasing the flexibility of

w(z) - this is because moving from w(z) to the observable µ(z) involves a double

integral over w(z), huge variations in w(z) show up as only very tiny fluctuations

in µ(z) - see for example Huterer & Turner (1999); Maor et al. (2001) and Clarkson

(2009). Allowing a greater degree of freedom to w(z) does not significantly improve

the fit of the model to the data.

When the SNe Ia data are included in the analysis, then the improvement in the

chi-square for the unknown model is much more pronounced and the upper bound

on the Bayes factor between the two models shows that there is weak evidence in

favour of the unknown model, against the baseline ΛCDM model. This would seem

to suggest that the SNeIa which are distributed in redshift space from z = 0.0 . . . 0.5

require the extra degrees of freedom which allow the dark energy equation of state

to vary with redshift. However, other factors besides cosmology may be responsible

for this apparent variation with redshift, for example, the evolution of the colour

correction parameter with redshift, as highlighted by Kessler et al. (2009a)

Thus far we have shown that there is moderate to strong evidence that ΛCDM is

the best model in the set of known models, and there is weak evidence in favour of

the unknown model against ΛCDM. But to answer the question as to whether we

should doubt ΛCDM and the cosmological constant, we need to look at whether

the necessary condition for doubt to grow, p(X)BXΛ � 1, is fulfilled. From table

6.1, we can see that the upper limit on the Bayes factor 〈BiΛ〉 is just around ∼ 5.

The most generous prior doubt would be to assign all models equal prior probability,

such that p(X) = 0.5, hence even under these generous arrangements the condition

that p(X)BXΛ � 1 is not fulfilled and ΛCDM is not genuinely doubted.

Table 6.2 presents the results in terms of doubt D and the posterior probability

for ΛCDM, for two different choices of prior doubt: p(X) = 1 × 10−2 representing

a prior belief that we have a 99% belief that the set of known models is complete,
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−1.3 < w < −0.3 w = −1.0 −1.3 < w < −0.3 “Unknown” model X 〈BiΛ〉 BXΛ

Ωκ = 0.0 −1.0 < Ωκ < 1.0 −1.0 < Ωκ < 1.0
lnBjΛ lnBjΛ lnBjΛ ∆χ2 lnBXΛ

CMB only −0.30± 0.09 −2.25± 0.09 −2.79± 0.09 −1.02± 0.2 0.51± 0.2 0.48± 0.02 1.67± 0.2
CMB + SN −0.85± 0.09 −2.52± 0.09 −3.33± 0.09 −3.05± 0.2 1.53± 0.2 0.39± 0.01 4.60± 0.7
CMB + mpk −0.98± 0.08 −3.79± 0.08 −4.39± 0.08 −0.84± 0.2 0.42± 0.1 0.35± 0.01 1.52± 0.2
CMB + SN + mpk −0.96± 0.09 −3.73± 0.09 −4.43± 0.09 −3.38± 0.3 1.69± 0.2 0.35± 0.01 5.42± 1.0

Table 6.1: In the first three columns, we report the Bayes factors between the
known models and ΛCDM for different combinations of data sets, where lnBjΛ <
0 favours ΛCDM. The fourth columns gives ∆χ2 = χ2

X −χ2
Λ, the improvement in

the best-fit log-likelihood obtained by using model X (specified in the text) over
ΛCDM. The last column gives the corresponding absolute upper bound to the
Bayes factor between model X and ΛCDM.

with a 1% chance that the true model is not included; p(X) = 1 × 10−6 represents

a much higher degree of belief that the set of known models is complete, but still

allows a one in an million chance that the true model is as yet undiscovered. We can

see that for both choices of prior, doubt grows such that D > p(X), thus fulfilling

one of the two necessary conditions for ΛCDM to be doubted, R > 1. However,

the second condition for doubt to grow, namely that RΛ < 1 is not fulfilled. Equal

prior probability of around 25% was assigned to each of the four known models,

so p(Λ) ≈ 0.25. As we can see from column 3 of table 6.2, for all combinations of

data sets, the degree of belief assigned to ΛCDM has increased, with the posterior

probability of ΛCDM p(Λ|d) accruing 50 − 70% of the total posterior probability.

Since the probabilities of both ΛCDM and the unknown model have increased, then

the probability of some of the other known models must have decreased, as the total

posterior probability must be unity.

The first two columns of table 6.2 show that doubt has increased by a factor

of 3 − 15 for the different data sets, irrespective of the prior. These results are

shown in fig.6.1 which shows graphically the probabilities of the unknown model

and ΛCDM have increased for both choices of prior.

By using the upper bound on the Bayes factor between the baseline model and

the unknown model the doubt methodology gives a strong advantage to the unknown

model, as by construction, any penalty that may have been incurred by the Occam’s

razor term has been removed. The idea of Bayesian doubt is not to compare the

unknown model with the known model as if it had equal prior probability, but rather

it is a way of measuring just how confident we are justified in being when we have

found the best model in the set and are wondering if a better model could possibly

exist. In this context, we do not wish to assign a high prior probability to the

unknown model - the unknown model already has a huge advantage over the known

models, as the Occam’s razor term has been artificially removed.
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Doubt D Posterior for ΛCDM, p(Λ|d)
Prior doubt: p(X) = 10−2 Prior doubt: p(X) = 10−6 (with p(X) = 10−2 and p(Λ) ≈ 0.25)

CMB only (3.41± 0.3)× 10−2 (3.49± 0.3)× 10−6 0.51± 0.02
CMB+SN (10.8± 1.0)× 10−2 (11.9± 1.2)× 10−6 0.58± 0.02
CMB+mpk (4.18± 0.4)× 10−2 (4.32± 0.4)× 10−6 0.68± 0.01
CMB+SN+mpk (13.4± 1.6)× 10−2 (15.3± 2.1)× 10−6 0.61± 0.02

Table 6.2: First two columns: Posterior doubt for different data sets combina-
tions and two prior doubt assumptions. Last column: posterior probability for
the ΛCDM model when allowing for the possibility of a 1% prior doubt on the
completeness of our list of known models.

Doubt D Posterior for ΛCDM, p(Λ|d)
Prior doubt: p(X) = 0.2 (with p(X) = 0.2 and p(Λ) = 0.2)

CMB only (0.46± 0.02) 0.28± 0.02
CMB+SN (0.75± 0.02) 0.16± 0.02
CMB+mpk (0.52± 0.03) 0.34± 0.03
CMB+SN+mpk (0.79± 0.02) 0.15± 0.02

Table 6.3: Posterior doubt and posterior probability for ΛCDM for the case
where doubt is given the same prior probability as the known models, i.e.
p(X) = 1/(N + 1). Een in this extremely favourable case for doubt, the pos-
terior probability for ΛCDM does not decrease, showing that ΛCDM cannot be
genuinely doubted.

However, for the purposes of testing the robustness of the conclusions presented

in this work, it is interesting to consider the case in which the unknown model is

assigned the same prior as the known models, i.e.:

p(X) = p(Mi) =
1

N + 1
(6.30)

The results for this choice of prior doubt p(X) = p(Λ) = 0.2 are presented in table

6.3. In this case, the posterior doubt grows, but by a smaller factor ∼ 2 − 4, and

the probability of ΛCDM either stays roughly the same or increases. Even in these

extreme cases with a large prior doubt, ΛCDM cannot be genuinely doubted as the

condition RΛ < 1 is not met.

6.5 Impact of the addition of further known mod-

els

We have carried out this work with a test case of a set of four known models, when

in reality we know that many more models have also been proposed to describe

dark energy and the apparent late time acceleration of the Universe. It would be
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Figure 6.1: Posterior probability for doubt for the ΛCDM model as a function of
different combinations of data sets. The probability of ΛCDM increases from the
initial 25% to just about over 50%, while the probability of doubt increases from
the initial 1% to just over 6%, mostly as a consequence of acquiring probability
from the other 3 known models considered in the analysis. This signals that
ΛCDM remains the most valid statistical description of the data.

reasonable to ask how using this limited set of known models impacts our final

results, so we will now proceed to consider analytically what happens as additional

models are included in the known set.

As we increase the number of models N we may continue to assume that the

average value of the Bayes factors between ΛCDM and the other known models

would continue to scale as 〈BiΛ〉 ∝ 1/N , as we are expecting that ΛCDM will

continue to be the best model in the set of known models. If ΛCDM was found not

to be the best model in the set, then we would re-label whatever the best model in

the set was as the new baseline model. We are interested in knowing what change in

∆χ2 is required in order for the posterior doubt to approach the posterior probability

of the baseline model ΛCDM as a function of the number of models N in the set

of known models.

We begin by equating the posterior doubt (Eq. (6.10)) and the posterior prob-
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ability of ΛCDM (Eq. (6.14)):

p(X|d) = p(Λ|d) (6.31)(
1 +
〈BiΛ〉
BXΛ

(
1− p(X)

p(X)

))−1

=

(
p(X) + (1− p(X))

〈BiΛ〉
BXΛ

)−1

p(Λ) (6.32)

Using the approximations 〈BiΛ〉 ≈ 1/N and p(X)� 1, we find that:

∆χ2 ≈ 2 ln(Np(X)) (6.33)

i.e. the change in ∆χ2 required for posterior doubt to approach the posterior prob-

ability of ΛCDM scales with the logarithm on the number of models in the known

set. For the case where p(X) = 10−2, the required values of ∆χ2 as a function of

N are shown in the first column of table 6.4 - as more models are added to the

set of known models it becomes easier to doubt ΛCDM. This effect is mainly due

to the fact that when more models are added to the set, the prior on each known

model becomes smaller, Eq.(6.4) whilst the prior on the unknown model remains

unchanged. The prior on ΛCDM decreases while the prior doubt is constant, caus-

ing the posterior doubt to increase with N and the posterior of ΛCDM to decrease

with N , as can be seen in fig.6.2.

In order to investigate the effect of increasing N independently of the change

in relative sizes of the priors p(Λ) and p(X) we can change our assignment of priors

such that the prior of X is always some fixed fraction f of the prior on Λ, replacing

our original asignment of priors in Eq. (6.4) with the following:

p(Λ) =
1

N
(1− p(X)) (6.34)

p(X) =
p(Λ)

f
(6.35)

= (Nf + 1)−1 (6.36)

using the above formulation, the relative difference in the size of the priors on X

and Λ remains the same as N increaces. As before, we can equate the posteriors

of ΛCDM and the unknown model in order to investigate what change in ∆χ2 is

required in order for the p(X|d) to approach p(Λ|d), and we find that the requirement

is:

∆χ2 = −4 ln f (6.37)

Now the required change in ∆χ2 is no longer a function of N and depends only on

the relative difference between the priors of the unknown model and the baseline
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Prior: p(X) = 10−2 Prior: p(X) = p(Λ)/f
N Required ∆χ2 f Required ∆χ2

4 −6.4 4 −5.5
10 −4.6 10 −9.2
20 −3.2 102 −18.4
50 −1.4 103 −27.6

Table 6.4: Improvement in the χ2 of ΛCDM required for the unknown model
X to have the same a posteriori probability as ΛCDM. First two columns: as a
function of the number of known models, N , assuming a fixed prior doubt p(X) =
10−2. Last two columns: assuming a fixed fractional prior doubt, p(X) = p(Λ)/f ,
and as a function of f . It is assumed that the evidence of the known models is
much smaller than the evidence for ΛCDM.

ΛCDM model. The last two columns of table 6.4 show how the required ∆χ2

changes with f , independently of N - even if the unknown model was just 4 times

less likely than the baseline ΛCDM model a quite considerable of improvement of

∆χ2 = −5.5 is required. For the more realistic case where the unknown model is

assigned a much lower prior, such as f = 20 (which would correspond to our earlier

case with p(X) = 10−2 and p(Λ) = 0.2) then a larger still change in χ2 is required,

∆χ2 = −12.0. As f increases and the gap between the prior on X and the prior on

ΛCDM widens, it becomes increasingly difficult to doubt ΛCDM.

Table 6.4 shows that for both choices of prior assignment, a minimum change

in χ2 of 5 units is required for ΛCDM to be doubted. Table 6.1 shows that for the

data sets we used, the maximum change in χ2 is less than the theoretical thresholds

and is ∼ 4. Analysis of the real data does not give a significant enough change in

χ2 for ΛCDM to be genuinely doubted.

6.6 Conclusions of Bayesian Doubt

In this chapter we have endeavoured to extend Bayesian model selection to give an

absolute rather than relative measure of the goodness of the best model in the set of

known models, by introducing an unknown idealized model to act as a benchmark

against which the known models can be compared. The absolute upper bound on

the Bayes factor between the current best model (i.e. the baseline model) and

the unknown model was used to estimate the maximum evidence for the unknown

model. The framework for Bayesian doubt is general up to the point at which a

specific model must be chosen from which to compute a numerical value for χ2
X .

In the work presented in this chapter, we chose specifically to investigate the
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Figure 6.2: Posterior for doubt (dashed lines) and for ΛCDM (solid lines) as a
function of −∆χ2 = χ2

Λ−χ2
X assuming a fixed prior doubt p(X) = 10−2. Different

curves are for different numbers of known models, N = 1, 4, 10, 20 (from thin to
thick), assuming that 〈BiΛ〉 ≈ 1/N .

dark energy sector of the standard cosmological model and ask whether ΛCDM is

indeed absolutely the best possible model, or whether there was statistical room for

improvement to find a better fitting model. For this specific investigation we chose

an empirical model to compute χ2
X which allowed the dark energy equation of state

to vary over a number of redshift bins. In this work, we found ΛCDM to be a good

model for the data in the statistical sense with little room for improvement, and

there is currently no reason to doubt ΛCDM.
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Chapter 7

Bayesian parameter inference for

SNeIa data

7.1 Motivations for this work

Whilst carrying out the work for Bayesian Doubt described in chapter 6, two prob-

lems became apparent with the supernovae type Ia data:

(i) The SNe Ia data is affected by an unknown intrinsic dispersion in the SNe Ia

absolute magnitudes, increasing the number of SNe Ia observed will not reduce

this error.

(ii) The common method for doing cosmological parameter inference from the SNe

Ia data cannot be used for Bayesian model selection.

In this chapter I present a new method for Bayesian analysis of SNe Ia data fitted

with the SALT2 light curve fitter. This method replaces the second step (parameter

inference step) of the SALT2 method. The aims of this new methodology are twofold:

(i) To provide a rigorous statistical framework for assessing and understanding

the unknown intrinsic dispersion.

(ii) To provide a fully Bayesian method for cosmological parameter inference from

the SNe Ia data in order that the SNe Ia data can be used in Bayesian model

selection, and exploited with the full suite of Bayesian methods.

This chapter describes how the new Bayesian method for cosmological parameter

inference was developed and tested, and also describes the beginnings and plans for

applications of this method to investigations of evolution of SNe Ia with redshift.

Use of this new method in problems of Bayesian model selection is not covered in

this work, but will be implemented in future papers.
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7.2 Notation and a description of the problem

The objective of the parameter inference step of the SALT2 light curve fitting process

is to constrain the cosmological parameters Ωm,ΩΛ,Ωκ, w using the fitted parameters

m̂∗Bi, x̂1i, ĉi resulting from the first step of the process. In this chapter, quantities

which are measured are denoted by a circumflex, and we label the set of measured

values as

Di = {ẑi, m̂∗Bi, x̂1i, ĉi, Ĉi}. (7.1)

where index i labels each of the N SNe Ia in the dataset and Ĉi is the covariance

matrix for the measured values

Ĉi =

 σ2
m∗Bi

σm∗Bi,x1i σm∗Bi,ci

σm∗Bi,x1i σ2
x1i

σx1i,ci

σm∗Bi,ci σx1i,ci σ2
ci

 . (7.2)

Since dark energy can mimic curvature and vice versa, we conduct this work either

in a ΛCDM model of the Universe with w fixed w ≡ −1 but allowing non zero

curvature, or alternatively in a flat wCDM model of the Universe with Ωκ ≡ 0

but allowing w 6= −1 but constant with redshift. We denote the complete set of

cosmological parameters in the context of a ΛCDM model as:

C = {Ωm,ΩΛ,Ωκ, h} (7.3)

in considering a flat wCDM model of the Universe we use the following set of cos-

mological parameters:

C = {Ωm,ΩΛ, w, h}. (7.4)

h is defined as H0 = 100hkm/s/Mpc, where H0 is the value of the Hubble

rate today. H0 is degenerate with the absolute magnitude of the supernovae M0

and cannot be determined from the SNe Ia data alone, H0 is effectively a nuisance

parameter in this work.

In a Friedman-Robertson-Walker cosmology defined by the parameters C , the

theoretical distance modulus to a SN at redshift zi is given by

µi = µ(zi,C ) = 5 log

[
DL(zi,C )

Mpc

]
+ 25, (7.5)

where DL denotes the luminosity distance to the SN, and is related to cosmological

parameters by Eq. (4.3) and the Friedman equation, Eq. (4.4). The problem is

how to infer the cosmological parameters C given the measured values D. I shall
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describe the standard χ2 method for solving this problem in section 7.3 before going

on to describe our new Bayesian method in 7.5. Both methods describe the same

set up, but there are a few conceptual differences in the way in which the set up

is described. The real difference between the two methods is that in the Bayesian

hirearchiacal model the full joint posterior probability is computed.

7.3 The standard χ2 method

The most common method found in the literature for estimating the cosmological

parameters from SNe Ia data fitted using SALT2 involves some variation of the χ2

method outlined in this section (e.g. Astier & Guy (2006); Kowalski et al. (2008);

Kessler et al. (2009a)). The exact χ2 method varies between consortia, but the

essential elements are common to all, and are outlined below.

The χ2 statistic is defined as

χ2
µ =

N∑
i=1

(µi − µobs
i )2

σ2
µi

. (7.6)

where µi is the theoretical distance modulus given by Eq. (7.5) and is a function of

redshift and the cosmological parameters C . The ‘observed’ distance modulus µobs
i

is given by Eq. (4.6) with the estimated values from step 1 of the light curve fitting

process for m̂∗Bi, x̂1i, ĉi

µobs
i = m̂∗Bi −M0 + α · x̂1i − β · ĉi (7.7)

The total error on the distance modulus σ2
µi is the sum of several errors added in

quadrature

σ2
µi = (σfit

µi)
2 + (σzµi)

2 + (σint
µ )2, (7.8)

The three components of the error are:

(i) Fitting error σfit
µi which is given by

(
σfit
µi

)2
= ΨT ĈiΨ (7.9)

where Ψ = (1, α,−β) and Ĉi is the covariance matrix given in Eq. (7.2). Here

we see that the global fit parameters α, β enter into the denominator as well

as the numerator of the χ2
µ expression.

(ii) Redshift error σzµi, error in the redshift measurement (given by host galaxy
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redshift) due to uncertainties in the peculiar velocity of the host galaxy and

uncertainties in the spectroscopic measurements.

(iii) The intrinsic dispersion of the SNe Ia absolute magnitudes, σint
µ an unknown

quantity which must be estimated from the data and parameter estimation

process. This number describes the variation in the SNe Ia absolute magni-

tudes which remain after correction for stretch and colour, the variation may

be due to physical differences in the SNe Ia population as described in chapter

4 or differences in the survey and data reduction technique.

Additional errors due to lensing, Milky Way dust extinction etc. can also be added

in at this stage, but we do not consider those errors in this work.

The χ2
µ statistic of Eq. (7.6) is minimized by sampling over parameter space and

simultaneously fitting for both the cosmological parameters Ωm,ΩΛ,Ωκ, w and the

SNeIa global fit parameters α, β,M0. Variations on this include using an iterative

process to update the α, β values in the denominator e.g. Astier & Guy (2006) who

point out that Tripp (1998) realized that minimizing over α, β directly could result

in artificially inflated values of α, β so as to reduce the χ2
µ value.

The problem with the unknown intrinsic dispersion σint
µ is dealt with by us-

ing an iterative process in which χ2
µ is minimized, then σint

µ is adjusted between

minimizations in such a way as to give χ2
µ per degree of freedom to be unity i.e.

χ2
µ/d.o.f ∼ 1.

Although the method described above has been fully tested by the consortia

that use this method and has been found to give satisfactory results for cosmological

parameter inference, several problems remain:

(i) The use of the χ2
µ expression is not well motivated statistically, but is based

on a heuristic derivation.

(ii) The global fit parameters α, β act as both range and location parameters,

appearing in both the numerator and denominator, hence the errors on these

parameters are not Gaussian. The informal test which states that χ2/d.o.f ∼ 1

for a good fit model only holds in the Gaussian case, and its use cannot be

justified here.

(iii) The total error on the distance modulus σ2
µi is adjusted in a way which assumes

that the model under consideration (generally either ΛCDM or flat wCDM) is

a good fit for the data. This means that this method of parameter inference, or

error bars produced using this method cannot be used to investigate problems
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of model selection, since the model used to derive σint
µ will by construction be

the favoured model.

(iv) This method obtains a single value for σint
µ , giving no indication of the error on

that value. A better approach would be to obtain a probability distribution

function for σint
µ so that an indication can be given about the degree of belief

about the value obtained for σint
µ .

(v) Because the different parameters are not treated in the same way (e.g. some

are updated iteratively, sometimes marginalization is used, other times mini-

mization is used), this method cannot be used with standard MCMC or nested

sampling techniques.

The new method for Bayesian parameter inference from the SNe Ia data which

I will present in this section seeks to address some of these problems with the χ2
µ

method and provide a statistically well motivated framework for parameter inference

which can also be used in problems of model selection. This method replaces the

second step in the SALT2 light curve fitting process. I first describe the Bayesian

Hierarchial Model for the system, and then present the details of the calculation.

7.4 In search of a Bayesian solution

7.4.1 Identifying the bias problem

One of the major features of our new Bayesian Hierarchical Model (BHM) method

is the introduction of the latent variables and the priors on those variables. I will

include here a short discussion of why this step is so crucial, and how we came

to understand its necessity. The bias problem described here has to do with the

measurement errors on {m̂∗Bi, ĉi, x̂1i} and is independent of the unknown intrinsic

dispersion problem σint
µ . Hence for simplicity in these examples we assume there is

no intrinsic dispersion in the absolute magnitudes σint
µ . As mentioned in section 7.5,

the problem described in this work is essentially an extension of the linear model. A

simple linear model describing the relationship between the true variables xi and yi

and characterized by a slope parameter a and intercept parameter b can be expressed

as:

yi = axi + b (7.10)

The observed values for the dependent and independent variables are denoted by

hats (x̂i, ŷi, i = 1, . . . , N), and they are obtained from the latent values under the
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assumption of Gaussian noise (with known variances σ2
x, σ

2
y):

x̂i ∼ N (xi, σ
2
x) and ŷi ∼ N (yi, σ

2
y). (7.11)

The Bayesian hierarchical network showing the dependencies of the different param-

eters in the linea toy model is shown in Fig. 7.1. As before, the solid lines show

probabilistic connections and dashed lines show deterministic connections.

This linear toy model is very similar in form to the relationship between the

latent parameters in the SNe Ia case described in Eq. 7.73 which is as follows:

µi = m∗Bi −Mi + α · x1i − β · ci (7.12)

The problem in both cases is how to use the true relationships above to infer the

parameters (either a, b for the linear toy model or α, β and the cosmology parameters

for the SNe Ia case) given that we only have noisy ‘observed’ values {x̂i, ŷi} and

{m̂∗Bi, ĉi, x̂1i} respectively. We use the term ‘observed’ somewhat colloquially to

signify that these quantities are subject to error, in reality {m̂∗Bi, ĉi, x̂1i} are not

observed directly, but are the result of the first stage of the SALT2 fitting process,

and the errors on these quantities are fitting errors which depend indirectly on the

observational errors.

The first special feature of this problem of parameter inference is that there

are errors on all the axes - i.e. there are errors on both the x and y axes for the

linear toy model and on the m∗B, x1 and c axes for the SNe Ia case. A proposed

Bayesian solution for this type of problem for the linear toy model has been given

by D’Agostini (2005) who gives the following expression for the posterior probability

of a, b for the linear toy model with errors on both axes:

p(a, b|x̂, ŷ) ∝
n∏
i

1√
σ2
y + a2σ2

x

exp

[
−1

2

(ŷi − ax̂i − b)2

(σ2
y + a2σ2

x)

]
p(a, b) (7.13)

∝ (σ2
y + a2σ2

x)
−n

2︸ ︷︷ ︸
prefactor

exp

[
−1

2
χ2
x

]
︸ ︷︷ ︸

exp. term

p(a, b) (7.14)

where p(a, b) = p(a)p(b) are the uniform (and in this example separable) priors

on the parameters a, b (see table 7.1 for priors used in the numerical trials). The

chisquare χ2
x for the linear toy model is defined as:

χ2
x =

n∑
i

(ŷi − ax̂i − b)2

(σ2
y + a2σ2

x)
(7.15)
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Figure 7.1: Bayesian networks showing the deterministic and probabilistic con-
nections in the toy linear model. Solid lines indicate probabilistic connections,
dashed lines represent deterministic connections. Parameters to be constrained
are in red, latent variables in blue and data in green (denoted by hats). θ denotes
the parameters a, b, i.e. the intercept and slope of the linear relation of Eq. (7.10).
LH panel shows network as depicted by D’Agostini (2005); RH panel shows ex-
plicit description of parent distribution of latent xi, necessary when using Gull
(1989) methodology.

As we later show below, this expression for the posterior only works in a limited

number of cases. An analogous expression can be derived for the SNe Ia case using

the same principles. For clarity we consider the simplified case for which there is no

intrinsic dispersion in the absolute magnitudes such that Mi = M0 and we specify

that there are no intra SNe Ia correlations. Based on the methodology of D’Agostini
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(2005) the posterior would be:

p(C , α, β|m∗B, x1, c) ∝
n∏
i

1√
σ2
m + α2σ2

x1 + β2σ2
c

× exp

[
−1

2

(µi − m̂∗Bi +M0 − αx̂1i + βĉi)
2

(σ2
m + α2σ2

x1 + β2σ2
c )

]
× p(C , α, β)

∝

likelihood︷ ︸︸ ︷
(σ2

m + α2σ2
x1 + β2σ2

c )
−n

2︸ ︷︷ ︸
prefactor

exp

[
−1

2
χ2
µ

]
︸ ︷︷ ︸

exp. term

×
Prior︷ ︸︸ ︷

p(C , α, β) (7.16)

where χ2
µ is as defined in Eq. (7.6). Our initial trials for Bayesian cosmological

parameter inference from the SNe Ia data used the expression for the posterior in

Eq. (7.16). However, it became apparent that using this expression resulted in the

biased recovery of the SNe Ia global parameters α and β. By bias, we mean that

the recovered values for α and β are always systematically shifted several standard

deviations away from their true values, in the same direction every time. The

statistical definition of bias is:

bias = 〈θ̂ − θtrue〉 (7.17)

Data realizations are subject to noise, so one expects that there will be some dis-

crepancy between the true value θtrue and the recovered value θ̂. However, averaged

over many realizations, one expects this difference to be close to zero such that

bias = 〈θ̂ − θtrue〉 ≈ 0 as sometimes the recovered value will be a little higher than

the true value, and sometimes a little lower. However for the SNe Ia global param-

eters α and β in this specific case, because they are always systematically shifted in

the same direction, the bias for these parameters is large and equivalent to several

standard deviations. This bias can only be correctly identified as ‘bias’ rather than

‘outlying realization’ after looking at many realizations of the data.

Numerical trials with simulated SNe Ia data from a known cosmological model

attempting parameter inference using Eq. (7.16) always resulted in systematically

lower values for α and β being recovered, as can be seen in the left hand panel of

fig.7.2. Many trials were conducted with different data sets, the example posteriors

shown in the left hand panel of fig.7.2 are typical and are not merely the result of an

outlying realization of the data. In the course of conducting the numerical trials and

checking the methods of data simulation and parameter inference code, we realized
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Figure 7.2: 1D Marginalized posterior plots of the cosmological parameters
and SNe Ia parameters obtained using the naive Bayesian expression given by
Eq. (7.16). In the LH panel the full expression is used and a clear bias can be
seen in the recover of the α, β SNe Ia parameters. In the RH panel, the prefactor in
Eq. (7.16) is dropped and α, β are recovered without bias - the small discrepancy
between the true and recovered values is due to realization noise. Red dashed line
indicates location of true parameter.

that if the prefactor of Eq. (7.16) was dropped, (effectively reducing it to a version

of the χ2) then α and β were no longer biased, as shown in the RH panel of fig.7.2.

As will be shown later, this is because there is an approximate relationship between

the true Bayesian solution (not yet presented) and the χ2 method.

7.4.2 Locating the cause of the bias problem

Having ruled out coding error as being responsible for the apparent bias, we began

numerical trials with the linear toy model described by Eq. (7.10) and the associated

expression for the posterior Eq. (7.14) in order to have a better understanding of the

general statistical problem without being concerned with the added complication of

cosmological parameter inference. Initial trials with the linear model showed that

for the simulated linear model data, a bias was seen in the recovery of the slope

parameter a.

A lead in Sivia & Skilling (2006) regarding the particular problem of parameter

inference in the presence of errors in both the x and y axes directions brought to

light a short paper, Gull (1989), the abstract of which is reproduced below:

‘A Bayesian solution is presented to the problem of straight-line fitting

when both variables x and y are subject to error. The solution, which

is fully symmetric with respect to x and y, contains a very surprising

feature: it requires an informative prior for the distribution of sample
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Parameter Prior
a flat interval (0.1 3.0)
b flat interval (0.1 3.0)

Table 7.1: Priors on linear model data parameters.

Series Distribution of latent xi ΣX σx σy a b
1 uniform grid (−5, 5) - 0.05 0.15 2.0 1.0
2 ∼ N (5,Σx) 2.0 0.05 0.15 2.0 1.0
3 uniform grid (−0.2, 0.2) - 0.05 0.15 2.0 1.0
4 uniform grid (−0.2, 0.2) - 0.0 0.1 2.0 1.0
5 uniform grid (−0.2, 0.2) - 0.05 0.1 2.0 1.0
6 uniform grid (−0.2, 0.2) - 0.0 0.15 2.0 1.0

Table 7.2: Parameters used for the generation of the linear model data sets.

positions. An uninformative prior leads to a bias in the estimated slope.’

(Gull, 1989)

Further trials with the linear model confirmed that the bias problem described by

Gull (1989) in the recovery of the slope parameter was exactly the same as the bias

problem found in the linear toy model and the SNe Ia data. We generated 100

simulated data sets for x̂, ŷ for a series of six different noise models as described in

table 7.2 and fig.7.3. We then used a numerical implementation of the D’Agostini

expression, Eq. (7.16) coupled with the MultiNest sampler to recover the slope and

intercept parameters a and b, using the mean value of the 1D marginalized posterior

probability distribution for the parameter of interest. The results of the mean value

of a recovered for each of the 100 trials for the series of six noise models are shown

in histogram form in fig.7.4.

For noise models 3 and 5, a very clear bias can be seen in the recovery of the

slope parameter a for every trial in noise models 3 and 5 the estimator for a is

systematically and significantly lower than the true value of a. For data series 3 and

5, two conditions are fulfilled: (1) There are errors in both the x and y directions

and (2) The error size is large compared with the range of the data points in that

same direction. Data series 1 and 2 show that if the size of the error is small with

respect to the range of the data points there is no bias in the estimator for a, and

likewise there is no bias if the size of the error is large with respect to the range of

the data points in one direction only.

Having established through numerical trials of the linear toy model that a biased

value for the slope parameter was recovered when (1) there were errors on in both
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ŷ

series 3 data sets

−0.4 −0.2 0 0.2
0

0.5

1

1.5

2

x̂

ŷ
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Figure 7.3: Examples of the simulated linear model data sets from series 1-6.
For each series, 100 data sets were simulated. For the characteristics of each data
set, see table 7.2. Two example data sets are shown for each series, one in red
and one in blue. Each data set has 300 points.

axes directions and (2) the size of the errors was large compared with the range of

the parameters we were able to conduct a quick check as to whether this was in

fact the root of the bias problem in the SNe Ia case. A special test case realization

of the SNe Ia data was created for which the ranges of the ci and x1i data points

was increased ten fold whilst keeping the errors on those data points the same, such

that in this special test case the size of the error bars was approximately ten times

smaller than the range of those data points. (Ordinarily the size of the error bars on

x̂1i, ĉi are similar to the range of x̂1i, ĉi). The results of this simple test are shown in

fig. 7.5 where it can be seen that the SNe Ia parameters α, β have been recovered

apparently without bias. Although only trialled with a few such data sets (not all

presented here), this test was sufficient to show that the cause of bias in when using

the naive proposed posterior probability distribution given by Eq. (7.16) was due

to the fact that (1) there were errors in all axes directions and (2) the size of the

errorbars was large compared with the range of the data points. For the SNe Ia

case, Kowalski et al. (2008) had already alluded to the fact that there was a known
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Figure 7.4: Linear model: yi = axi + b. Histograms show mean values of a
recovered from 1D posteriors from 100 trials for six different data series. For
series 3 and 5 a clear bias can be seen and a systematically lower value for a is
recovered.

problem with the recovery of the SNe Ia global parameters {α, β} which was related

to the relative sizes of the error bars with respect to the range of the stretch and

colour parameters, and stated that this was the cause of the bias seen in certain

Frequentist methodologies for recovering {α, β}.
The conclusions of these preliminary trials and preparatory survey of the liter-

ature were:

(i) The proposed Bayesian posterior of D’Agostini (2005) for the linear toy model

with errors on both axes only holds when the size of the errors is small com-

pared with the range of the data points in those respective directions.

(ii) The SNe Ia are a special case of a data set for which the size of the errors

on the stretch and colour parameters is large with respect to the range of the

stretch and colour parameters, as noted by Kowalski et al. (2008)

(iii) The problem of bias in the recovery of the slope parameter in a linear toy

model had already been identified and solved by Gull (1989)
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Figure 7.5: Multinest recovered parameters for data set with Σx = 10.0 and
Σc = 10.0, all other parameters are as in table 7.3. Here there is no bias on α and
β because the ranges of s and c are much larger than their associated observational
noise. There is a small discrepancy between the true and recovered values of α
and β, but this is due to realization noise rather than a systematic offset.

(iv) The structure of the relationship between the cosmological parameters, the

SNe Ia global fit parameters and the SNe Ia data is essentially an extension

of the linear toy model, hence whatever method was used by Gull (1989) to

solve the bias problem in the linear toy model could in theory be adapted to

solve the similar problem in the SNe Ia case.

Following this, the course of action chosen was to investigate the methodology of

Gull (1989) more closely and adapt it to the SNe Ia case. I shall describe the

methodology of Gull (1989) and explain how we adapted it to the SNe Ia problem.

(N.B. The unknown σint
µ is an additional problem not addressed by Gull (1989), but

which we treat in the the full SNe Ia calculation described in section 7.5).



7.4 In search of a Bayesian solution 122

7.4.3 Bias solved in the linear toy model

Gull’s insight into the bias problem was to recognise that it is necessary to place a

prior on the distribution of the latent or true xi. In implementing this solution, Gull

also makes a coordinate transformation for convenience, rescaling all the observed

x̂i, ŷi into the interval {−1, 1}. Here we consider the linear toy model described by

Eq. (7.10) and Eq. (7.11). The Bayesian network for this set up is shown in fig.

7.1. The observed values are indicated by circumflexes: x̂i, ŷi. Quantities x, y, x̂, ŷ

without the subscript i denote N -dimensional vectors e.g. x = {x1, . . . , xN}

There are four main components of Gull’s derivation:

(i) Use of a prior for the range of the latent xi. This is the key step which solves

the bias problem.

(ii) Integration over the nuisance parameters xi to remove them from the final

expression for the joint posterior distribution.

(iii) A coordinate transformation to ease the algebra.

(iv) A further integration over the remaining nuisance parameters x0 and y0.

Here we shall outline a derivation based on these concepts which will lead to

Gull’s expression for the joint posterior distribution. Later we shall show how a

similar idea may be applied to the case of the SNe Ia. For the SNe Ia we shall

use the idea of a prior on the range of the latent variables, but we shall not use

the coordinate transformation, because the coordinate transformation requires the

intercept parameter b to be the same for each i, whereas for the supernovae case

there is a different intercept µi for each supernova.

I will now present a derivation of Gull’s expression for the joint posterior for

the linear toy model. The coordinate transformation is as follows:

X =
(x̂− x0)

Rx

(7.18)

Y =
(ŷ − y0)

Ry

(7.19)

a =
Ry

Rx

(7.20)

b = y0 − ax0 (7.21)
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where x0, y0 are (unknown) offset parameters, and we have the following relationship:

X = ±Y (7.22)

The range parameter, R is defined as:

R = (RxRy)
1/2 (7.23)

which allows the useful relations:

R2
x =

R2

a
(7.24)

and

R2
y = aR2 (7.25)

The joint likelihood is:

p(x̂, ŷ|x, y, a, b, σx, σy) = (4π2σ2
xσ

2
y)
−N/2

× exp(−1

2
(

∑
i(x̂i − xi)2

σ2
x

+

∑
i(ŷi − yi)2

σ2
y

)) (7.26)

Crucially, Gull assigns a Gaussian prior to the range of the latent xi as follows:

p(x|x0, y0, Rx, Ry) = (4π2R2
x)
−1/2 exp

(
−1

2

∑
i(xi − x0)2

R2
x

)
(7.27)

Neglecting the normalizing Bayesian evidence term, the joint posterior can be writ-

ten as:

p(x, y,x0, y0, logRx, logRy|x̂, ŷ, σx, σy, )
∝ p(x̂, ŷ|x, x0, y0, Rx, Ry)

× p(x|x0, y0, Rx, Ry)p(x0, y0, Rx, Ry) (7.28)
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With Jeffries priors on the range parameters, uniform in log space logRx, logRy and

uniform priors on the location parameters x0, y0, this is:

p(x, y,x0, y0, log a, logRx, logRy) ∝ (8π3σ2
xσ

2
yR

2
x)
−N/2

× exp(−1

2
(

∑
i(x̂i − xi)2

σ2
x

+

∑
i(ŷi − yi)2

σ2
y

+

∑
i(xi − x0)2

R2
x

)) (7.29)

Where for convenience we have now dropped explicit reference to the conditionals

|x̂, ŷ, σx, σy on the left hand side of the equation.

Eliminate yi then b from Eq. (7.29) using Eq. (7.10) and Eq. (7.21) respectively

to obtain:

p(x, x0, y0, log a, logRx, logRy) ∝ (8π3σ2
xσ

2
yR

2
x)
−N/2

× exp(−1

2
(

∑
i(x̂i − xi)2

σ2
x

+

∑
i(ŷi − axi − y0 + ax0)2

σ2
y

+

∑
i(xi − x0)2

R2
x

)) (7.30)

[For the SNe case we shall use the equivalent of Eq. (7.10) but we shall not use the

coordinate transformation Eq. (7.21) to eliminate the analogue of b - this will be the

main difference between the current application of Gull’s ideas to the linear model

and the future application of Gull’s ideas to the SNe case.]

Now the aim is to rewrite the above expression into a form which can easily

be integrated w.r.t. the xi - this essentially means gathering together the xi and

writing the expression in a Gaussian form.

We make a temporary change of variables for ease of calculation:

τi = xi − x0 (7.31)
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so the joint posterior becomes:

p(x, x0, y0, log a, logRx, logRy) ∝ (8π3σ2
xσ

2
yR

2
x)
−N/2

× exp(−
∑

i

2
(
(τi − (x̂i − x0))2

σ2
x

+
(aτi − (y0 − ŷi))2

σ2
y

+
τ 2
i

R2
x

)) (7.32)

Rearrange:

p(x,x0, y0, log a, logRx, logRy) ∝ (8π3σ2
xσ

2
yR

2
x)
−N/2

× exp(−
∑

i

2
(
a2τ 2

i

a2R2
x

+
(aτi − a(x̂i − x0))2

a2σ2
x

+
(aτi − (y0 − ŷi))2

σ2
y

)) (7.33)

Relabel:

ti = aτi gi = a(x̂i − x0) fi = y0 − ŷi (7.34)

σ1 = a2R2
x σ2 = a2σ2

x σ3 = σ2
y (7.35)

again, the joint posterior may be written as:

p(x,x0, y0, log a, logRx, logRy) ∝ (8π3σ2
xσ

2
yR

2
x)
−N/2

× exp(−
∑

i

2
(
t2i
σ2

1

+
(ti − gi)2

σ2
2

+
(ti − fi))2

σ2
3

)) (7.36)

Now we are able to integrate out the nuisance parameters xi from Eq. (7.36)

p(x0, y0, log a, logRx, logRy) =

∫
dx p(x, x̂, ŷ, x0, y0, Rx, Ry) (7.37)

(Use dxi = dti
a

)

So the joint posterior marginalized over the latent xi is:

p(x0, y0, log a, logRx, logRy) = (8π3σ2
xσ

2
yR

2
x)
−N/2 1

aN

×
∫

dN ti exp(−
∑

i

2
(
t2i
σ2

1

+
(ti − gi)2

σ2
2

+
(ti − fi))2

σ2
3

)) (7.38)
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which is:

= (8π3σ2
xσ

2
yR

2
x)
−N/2 1

aN

×
∫

dN ti exp(−
∑

i

2
(
σ2

2σ
2
3t

2
i + σ2

1σ
2
3(ti − gi)2 + σ2

1σ
2
2(ti − fi)2

σ2
1σ

2
2σ

2
3

)) (7.39)

Complete the square and perform Gaussian integral to obtain:

= (8π2σ2
xσ

2
yR

2
x)
−N/2 1

aN
(2π)N/2

(
σ2

1σ
2
2σ

2
3

σ2
1σ

2
2 + σ2

1σ
2
3 + σ2

2σ
2
3

)N/2
× exp

(
−1

2

∑
i

σ2
1σ

2
2σ

2
3((σ2

1 + σ2
3)g2

i + (σ2
1 + σ2

2)f 2
i − 2σ2

1figi
σ2

1σ
2
2 + σ2

1σ
2
3 + σ2

2σ
2
3

)
(7.40)

Replace σ2
1, σ

2
2, σ

2
3, fi, gi:

= (4π2(σ2
xσ

2
y + σ2

yR
2
x + a2σ2

xR
2
x))
−N/2

× exp

(
−1

2

∑
i

σ2
1σ

2
2σ

2
3((σ2

1 + σ2
3)g2

i + (σ2
1 + σ2

2)f 2
i − 2σ2

1figi
σ2

1σ
2
2 + σ2

1σ
2
3 + σ2

2σ
2
3

)
(7.41)

This completes the first Gaussian integral - the nuisance parameters xi have now

been integrated out. The next step is to integrate out the nuisance parameters x0, y0.

We begin by expanding σ2
1, σ

2
2, σ

2
3, fi, gi and rearranging the resulting expression into

a simpler form.

Relabel:

α2 =
a2R2

x + σ2
y

a2R2
xσ

2
x +R2

xσ
2
y + σ2

xσ
2
y

(7.42)

β2 =
R2
x + σ2

x

a2R2
xσ

2
x +R2

xσ
2
y + σ2

xσ
2
y

(7.43)

γ =
aR2

x

a2R2
xσ

2
x +R2

xσ
2
y + σ2

xσ
2
y

(7.44)

so our expression for the joint posterior becomes:

p(x0,y0, log a, logRx, logRy) =

(4π2(a2σ2
xR

2
x + σ2

xσ
2
y + σ2

yR
2
x))
−N/2

× exp(−1

2

∑
i

α2(x̂i − x0)2 + β2(ŷi − y0)2

− 2γ(x̂i − x0)(ŷi − y0)) (7.45)
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The following relations may be derived:∑
i

(x̂i − x0)2 = N [S2
xx + (x̄− x0)2] (7.46)

∑
i

(ŷi − y0)2 = N [S2
yy + (ȳ − y0)2] (7.47)

∑
i

(x̂i − x0)(ŷi − y0) = N [S2
xy + (x̄− x0)(ȳ − y0)] (7.48)

where:

S2
xx =

1

N

∑
i

(x̂i − x̄)2 (7.49)

S2
xy =

1

N

∑
i

(x̂i − x̄)(ŷi − ȳ) (7.50)

S2
yy =

1

N

∑
i

(ŷi − ȳ)2 (7.51)

Which allows us to separate out the nuisance parameters x0, y0 from the other i

dependent quantities such that Eq. (7.45) may be written as:

p(x0, y0, log a, logRx, logRy) =

= (4π2(a2σ2
xR

2
x + σ2

xσ
2
y + σ2

yR
2
x))
−N/2

× exp(−N
2

(α2S2
xx + β2S2

yy − 2γ2
xy)

× exp(−N
2

(α2(x0 − x̄)2 + β2(y0 − ȳ)2

− 2γ(x0 − x̄)(y0 − ȳ))) (7.52)

Now we can write the required integral over the nuisance parameters x0 and y0 as:

p(log a, logRx, logRy) =

(4π2(a2σ2
xR

2
x + σ2

xσ
2
y + σ2

yR
2
x))
−N/2

× exp(−N
2

(α2S2
xx + β2S2

yy − 2γS2
xy)

×
∫

exp(−N
2

(α2(x0 − x̄)2 + β2(y0 − ȳ)2

− 2γ(x0 − x̄)(y0 − ȳ))) dx0 dy0 (7.53)



7.4 In search of a Bayesian solution 128

Looking only at the integral part, the exponential term may be rewritten in matrix

form: ∫
exp(−N

2
(α2(x0 − x̄)2 + β2(y0 − ȳ)2

− 2γ(x0 − x̄)(y0 − ȳ))) dx0 dy0

=

∫
exp

(
−1

2
W tFW

)
d2W (7.54)

Where:

W =

[
(x0 − x̄)

(y0 − ȳ)

]
(7.55)

and

F =

[
Nα2 −2γN

−2γN Nβ2

]
(7.56)

∫
exp

(
−1

2
W tFW

)
d2W =

(2π)2/2

√
detF

=
2π

N
(a2σ2

xR
2
x + σ2

xσ
2
y + σ2

yR
2
x)

1/2 (7.57)

Substituting the result of the second Gaussian integral Eq. (7.57) back into Eq. (7.53)

gives:

p(log a, logRx, logRy) =
1

N
(4π2)−

1
2

(N−1)

× (a2σ2
xR

2
x + σ2

xσ
2
y + σ2

yR
2
x)
− 1

2
(N−1)

× exp(−N
2

(α2S2
xx + β2S2

yy − 2γS2
xy) (7.58)

The terms in the exponential may be expanded to give Gull’s expression for the

marginalized joint posterior distribution:

p(log a, logR) =
1

N
(4π2)−

1
2

(N−1)

× (a2σ2
xR

2
x + σ2

xσ
2
y + σ2

yR
2
x)
− 1

2
(N−1)

× exp(−1

2
(
Vxx(a

2R2
x + σ2

y)− 2VxyaR
2
x + Vyy(R

2
x + σ2

x)

a2σ2
xR

2
x + σ2

xσ
2
y + σ2

yR
2
x

) (7.59)

where: Vxx = NS2
xx , Vxy = NS2

xy and Vyy = NS2
yy
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Substitute for Rx using R2
x = R2

a
:

p(log a, logR) =
1

N
(4π2)−

1
2

(N−1)

× (aσ2
xR

2 + σ2
xσ

2
y + a−1σ2

yR
2)−

1
2

(N−1)

× exp(−1

2
(
Vxx(aR

2 + σ2
y)− 2VxyR

2 + Vyy(a
−1R2 + σ2

x)

aσ2
xR

2 + σ2
xσ

2
y + a−1σ2

yR
2

) (7.60)

Taking logs:

log p(log a, logR) = constant

− 1

2
(N − 1) log(aσ2

xR
2 + σ2

xσ
2
y + a−1σ2

yR
2)

− 1

2
(
Vxx(aR

2 + σ2
y)− 2VxyR

2 + Vyy(a
−1R2 + σ2

x)

aσ2
xR

2 + σ2
xσ

2
y + a−1σ2

yR
2

) (7.61)

where the constant is a constant for a given N . Eq. (7.61) is Gull’s expression for

the log of the marginalized joint posterior distribution.

7.4.4 Gull’s estimator for a

As an approximate estimator for a, for the case where R → ∞, Gull recommends

dropping the determinant term from Eq. (7.61) and using:

= min
aVxx − 2Vxy + a−1Vyy

aσ2
x + a−1σ2

y

(7.62)

Gull’s estimator for a Eq. 7.62 can be re written as

= min
∑
i

(ŷi − ax̂i − 〈b〉)2

(σ2
y + a2σ2

x)
(7.63)

This is essentially the χ2
x expression which looks similar to the log of the D’Agostini’s

expression in Eq. (7.14) with the prefactor dropped, but the important difference is

that here b is replaced by an estimator 〈b〉 where

〈b〉 = ȳ − ax̄ (7.64)

where x̄ and ȳ are the means of the observed values x̂ and ŷ respectively. Although

the estimator 〈b〉 does depend on a, 〈b〉 changes only slowly with a. Depending on

the data set, a 100% change in a causes only a 10% or 1% change in 〈b〉. This means
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that even when a reasonable range for a is chosen, 〈b〉 will remain close to the true

value of b. This is effectively like minimizing the simple chisquare χ2
x expression

with b fixed at or near the true value of b.

7.4.5 Comparison between Gull’s estimator for a and the

marginalized simple χ2 expression

For the linear model Eq. (7.10), the simple chisquare expression is:

p(a, b|x̂, ŷ, σx, σy) = exp

(
−1

2

∑
i

(ŷi − ax̂i − b)2

σ2
y + a2σ2

x

)
(7.65)

In order to compare the simple chisquare expression Eq. (7.65) with Gull’s estimator

for a, we integrate b out of the simple chisquare expression in Eq. (7.65)

p(a|x̂, ŷ) =

∫
exp

(
−1

2

∑
i

(ŷi − ax̂i − b)2

(σ2
y + a2σ2

x)

)
db (7.66)

relabel:

γ̂i = ŷi − ax̂i (7.67)

S2 = σ2
y + a2σ2

x (7.68)

separate b from i dependent quantities:

p(a|x̂, ŷ) =

∫
db exp

(
−1

2

∑
i

(γ̂i − b)2

S2

)

=

∫
db exp

(
−1

2

(
N

S2
(b− γ̄)2

))
× exp

(
−1

2

(∑
i

γ̂2
i

S2
−N γ̄2

S2

))
(7.69)

where:

γ̄ =

∑
i γ̂i
N

(7.70)

perform Gaussian integral over b:

p(a|x̂, ŷ) =

√(
2πS2

N

)
exp

(
−1

2

(∑
i γ̂

2
i

S2
− Nγ̄2

S2

))
(7.71)
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replace relabeled quantities and write in terms of estimator 〈b〉 as defined in

Eq. (7.64):

p(a|x̂, ŷ) =

√
2π

N
(a2σ2

x + σ2
y) exp

(
−1

2

(∑
i(ŷi − ax̂i − 〈b〉)2

a2σ2
x + σ2

y

))
(7.72)

which is similar to Gull’s estimator for a. The exponential terms are identical, but

the marginalized chisquare expression has an additional prefactor. This shows the

relationship between Gull’s joint posterior and D’Agostini’s proposed joint posterior.

The D’Agostini solution without the prefactor is similar to Gull’s approximate case,

and this is essentially analogous to the simple χ2 method generally used in the SNe

Ia analysis as described in section 7.3. D’Agostini’s full posterior gives biased results

when the errors are large compared to the range of the data points.

figs. 7.6 and 7.7 show a comparison between the results using the 1D

marginalised posterior from the full Gull expression Eq. (7.60) and the profile likeli-

hood from the simple χ2
x expression Eq.(7.15), for two different data sets. The two

data sets and their respective errors are plotted in the upper left panels of figs. 7.6

and 7.7. Data set 1, fig. 7.6 has large errors in the x direction and small errors in

the y direction whereas data set 2 fig. 7.7 is more extreme having large errors in

both the x and y directions.

Dropping the prefactor from the D’Agostini posterior provides an apparently

unbiased approximation in some cases, as shown in fig. 7.6 for the less extreme data

set, where the χ2 profile likelihood follows closely the 1D marginalized posterior

from the full Gull method. However, this approximation breaks down with more

extreme data sets e.g. as shown in fig. 7.7, here the profile likelihood from the χ2

method diverges from the Gull 1D marginalized posterior: although the Gull 1D

marginalized posterior is broader (i.e. puts weaker constraints on the a parameter),

it provides an estimate for a which is closer to the true value of a. It is better to have

weaker constraints and a more accurate estimator than to have tighter constraints

con-straining a to the wrong value.

To summarize, there are three proposed expressions for the joint posterior for

the linear toy model with errors on both the x and y axes, and only one of these,

the full expression from Gull (1989) gives correct results for extreme data sets. To

summarise, these three proposed expressions are:

(i) The D’Agostini (1995) proposed Bayesian solution, including prefactor, as

given in Eq.(7.14). This gives biased results when there are errors in both

directions and those errors are large compared with the range of the data

points, as shown in panels 3 and 5 of fig. 7.4.
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Figure 7.6: Numerical comparison between the χ2 approach and the Bayesian
method for linear fitting. Upper left panel: data set of N = 300 observations
with errors both in the x and y directions, given by the error bar. Upper right
panel: reconstruction of the slope a and intercept b using a χ2 likelihood (red
cross is the true value, green circle the maximum likelihood value). Lower left
panel: Gull’s Bayesian posterior (Eq. (7.60)) in the log a, logR plane, with green
circle showing posterior mean. In both panels, contours enclose 1σ, 2σ and 3σ
regions. Lower right panel: marginalized Bayesian posterior (blue) and profiled
χ2 likelihood (black, lying exactly on top of the blue curve), with the dashed line
showing the true value. The two methods give essentially identical results in this
case.
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Figure 7.7: As in Fig. 7.7, but now with a larger statistical uncertainty in
the data compared to their spread. The Bayesian marginal posterior for the slope
(blue, lower right panel) peaks much closer to the true value than the χ2 expression
(black). In the lower left panel, the 3σ contour from the Bayesian method lies
outside the range of the plot.
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(ii) The Gull (1989) Bayesian solution, as given in Eq.(7.60). Initial trials show

this method to give unbiased results even for more extreme data sets where

the errors on both axes are large compared with the range of data points.

(iii) The approximate Gull (1989) solution, as given in Eq. 7.62 which is similar

to the D’Agostini expression without the prefactor Eq.(7.14) or the simple χ2

expression given in Eq. (7.15). This expression is valid in certain limits and

does not suffer from the extreme bias of the full D’Agostini method, but does

break down for more extreme data sets. The exact limits for the validity of

this approximation have not been fully tested, but Gull (1989) suggests that it

is valid for the case where R → ∞. More extensive numerical trial described

in the later sections of this work make a more detailed analysis as to whether

the simple χ2 methodology is valid for the levels of uncertainty found in SNe

Ia data sets.

7.5 Bayesian Hierarchical Model (BHM): De-

scription

The method which I present here takes the methodology of Gull (1989) and applies

it to the SNe Ia case. We use a similar initial set up to the χ2 approach described

above, with one important difference. Whereas the in the χ2 approach M0 appears as

a global fit parameter explicitly in Eq. (4.6), where it is the mean absolute magnitude

of the SNe Ia population, we use Mi to represent the absolute magnitude of each

individual SNe Ia. Mi is different for each SNe Ia because even after correction

for colour and stretch some variation remains in the SNe Ia population. (M0 also

appears explicitly in our method as the mean absolute magnitude of the SNe Ia

population in Eq. (7.74)). Our version of Eq. (4.6) is:

µi = m∗Bi −Mi + α · x1i − β · ci (7.73)

The graphical representation of the Bayesian hierachical network in fig. 7.8 shows

the dependencies of the parameters within the problem. One can see that each SNe

Ia has a true (unobserved) redshift zi, and a true absolute magnitude Mi. The Mi

are drawn from a Gaussian distribution with mean M0 and standard deviation σint
µ .

Mi ∼ N (M0, (σ
int
µ )2). (7.74)
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x?, Rx C α, β M0, σ
int
µ c?, Rc

x1i zi µi Mi ci

m∗
Bi

x̂1i ẑi m̂∗
Bi ĉi

Figure 7.8: Graphical representation of the Bayesian hierarchical network show-
ing the deterministic (dashed) and probabilistic (solid) connections between vari-
ables in our Bayesian hierarchical model (BHM). Variables of interest are in red,
latent (unobserved) variables are in blue and observed data (denoted by hats) are
in green.

This σint
µ is the intrinsic dispersion of the absolute magnitudes which remains in

the SNe Ia absolute magnitudes even after correction for stretch and colour, σint
µ

characterizes the scatter in absolute magnitudes remaining in the stretch corrected

light curves shown in the lower panel of fig.4.4.

The cosmological parameters C = {Ωm,ΩΛ or w, h} are unknown as are the

SNe Ia global fit parameters α, β, these are the parameters we would like to infer.

If C and zi were known, then we could deterministically specify µi using Eq. (7.5).

Each SNe Ia also has its own stretch parameter x1i and colour parameter ci, drawn

from their parent distributions. In this work, we model the distributions of the true

stretch and colour parameters as Gaussians parameterised each by a mean (c?, x?)

and a variance (R2
c , R

2
x) as

ci ∼ N (c?, R
2
c), x1i ∼ N (x?, R

2
x) (7.75)

The choice of a Gaussian distribution for the latent variables c and x1 is justified by



7.6 Bayesian Hierarchical Model: Calculation 135

the fact that the observed distribution of ĉ and x̂1, shown in Fig. 7.9 for the actual

SNIa sample described in section 7.7 below, is fairly well described by a Gaussian.

As shown in Fig. 7.9, there might be a hint for a heavier tail for positive values of ĉ,

but this does not fundamentally invalidate our Gaussian approximation. It would

be easy to expand our method to consider other distributions, for example mixture

models of Gaussians to describe a more complex population or a distribution with

heavier tails, if non-Gaussianities in the observed distribution should make such

modelling necessary. In our work, we consider the simple uni-modal Gaussians

given by Eq. (7.75). If the true values discussed so far were known, then we could

Figure 7.9: Histogram of observed stretch parameters x̂1i and observed colour
parameters ĉi from the 288 SNIa from Kessler et al. (2009a), compared with a
Gaussian fit (red curve).

deterministically specify m∗Bi. But we do not have the latent or true values (blue

circles), we only have the corresponding observed or fitted values ẑi, ĉi, x̂1i, m̂
∗
Bi.

The true redshift zi of each SNe Ia is subject to a small amount of Gaussian noise

giving us a slightly different observed redshift zi. Likewise the true stretch, colour

and maximum magnitudes are also subject to uncertainties in the fitting process,

giving us the measured values ĉi, x̂1i, m̂
∗
Bi (green circles). The problem of parameter

inference we now have is how to obtain the parameters of interest C , α, β given the

observed or measured data ẑi, ĉi, x̂1i, m̂
∗
Bi.

7.6 Bayesian Hierarchical Model: Calculation

Having described the Bayesian Hierarchical Model (BHM) up in terms of the graphi-

cal representation of the Bayesian hierarchical network, I will now present the details

of the calculation. The purpose of this calculation is to determine the joint posterior
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probability of the parameters of interest Θ = {C , α, β, σint
µ } given that we have the

measured values D, that is, we wish to determine p(Θ|D).

7.6.1 A note on notation

Throughout this work we use the notation:

x ∼ N (m,σ2) (7.76)

to denote a random variable x being drawn from an underlying Gaussian distribution

with mean m and variance σ2. In vector notation, m is replaced by a vector m, while

σ2 is replaced by the covariance matrix Σ.

x ∼ N (m,Σ) (7.77)

where x has the probability density function

p(x) ≡ |2πΣ|− 1
2 exp

[
−1

2
(x−m)TΣ−1(x−m)

]
(7.78)

and we use the compressed notation to write the probability density function as:

Nx(m,Σ) ≡ |2πΣ|− 1
2 exp

[
−1

2
(x−m)TΣ−1(x−m)

]
(7.79)

7.6.2 Calculation expressed in matrix notation

We re-write Eq. (7.74) and (7.75) in matrix notation as:

M ∼ N (M0,Σ∆), (7.80)

c ∼ N (c? · 1n, diag
(
R2
c · 1n

)
) (7.81)

x1 ∼ N (x? · 1n, diag
(
R2
x · 1n

)
) (7.82)

where

M = (M1, . . . ,Mn) ∈ Rn, (7.83)

M0 = M0 · 1n ∈ Rn, (7.84)

Σ∆ = diag
(
(σint

µ )2 · 1n
) ∈ Rn×n. (7.85)

Having introduced 3n latent (unobserved) variables (c, x1,M), where n is the

number of SNe in the sample, the fundamental strategy of our method is to link
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them to underlying population parameters via Eqs. (7.74) and (7.75), then to use the

observed noisy estimates to infer constraints on the population parameters of interest

(alongside the cosmological parameters), while marginalizing out the unobserved

latent variables.

In doing so we are following the methodology of Gull (1989) and essentially

placing a prior on the range of the latent (true) quantities c, x1,M .

p(c|c?, Rc) = Nc(c? · 1n, diag
(
R2
c · 1n

)
) (7.86)

p(x1|x?, Rx) = Nx1
(x? · 1n, diag

(
R2
x · 1n

)
) (7.87)

It is necessary to apply this prior because two conditions are fulfilled (1) there

are errors on both the measured values ĉ, x̂1 and (2) the errors on ĉ, x̂1 are large

compared with the range of ĉ, x̂1. Failure to apply this prior on the range of the

latent quantities when these two conditions are met results in a biased recovery of

the SNe Ia population parameters α, β. For further discussion of this crucial step,

see appendix.

We chose to model the probability of the true absolute magnitudes M also as

a Gaussian.

p(M |M0, σ
int
µ ) = NM(M0 · 1n, diag

(
(σint

µ )2 · 1n
)
) (7.88)

(7.89)

Notice that there are two levels of specification or choice here: (1) The choice of the

underlying distributions, described by Eq. (7.80) (7.82) (7.81) and (2) The choice

of the priors on those latent parameters. Throughout this work we assume that

(1) are Gaussian, and when trialling the method with simulated data, we choose

Gaussians for (1). We also chose to use Gaussian priors for (2). Obviously the

natural choice is to match the shape of prior with the shape of the underlying

distribution, this is possible when using simulated data, but with the real data the

precise shape of the unknown distribution is unknown but assumed Gaussian. An

interesting question is what happens when a different shaped prior is chosen from

the underlying distribution e.g. what happens if a uniformly distributed population

of c are used with a Gaussian prior on c - a question which I will investigate in future

work.

The absolute magnitude Mi is related to the observed B-band magnitude m̂∗B
and the distance modulus µ by Eq. (7.73), which can be rewritten in vector notation
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as:

m∗B = µ+M − αx1 + βc (7.90)

The above relation is exact, i.e. M,x1, c are here the latent variables (not the

observed quantities), while m∗B is the true value of the B-band magnitude (also

unobserved). This is represented by the dotted (deterministic) arrows connecting

the variables in Fig. 7.8.

We seek to determine the posterior pdf for the parameters of interest Θ =

{C , α, β, σint
µ }, while marginalizing over the unknown population mean absolute

magnitude, M0. From Bayes theorem, the marginal posterior for Θ is given by:

p(Θ|D) =

∫
dM0p(Θ,M0|D) =

∫
dM0

p(D|Θ,M0)p(Θ,M0)

p(D)
, (7.91)

where p(D) is the Bayesian evidence (a normalizing constant) and the prior p(Θ,M0)

can be written as

p(Θ,M0) = p(C , α, β)p(M0, σ
int
µ ) = p(C , α, β)p(M0|σint

µ )p(σint
µ ). (7.92)

We take a uniform prior on the variables C , α, β (on a sufficiently large range so

as not to truncate likelihood, except in the case of Ωm > 0 which rules out an

unphysical choice of parameter), as well as a Gaussian prior for p(M0|σint
µ ), since M0

is a location parameter of a Gaussian (conditional on σint
µ ). Additionally, we apply a

prior which excludes that part of parameter space which is the ‘no Big Bang’ region

in the Ωm,ΩΛ plane.

The prior on M0 is

p(M0|σint
µ ) = NM0(Mm, σ

2
M0

), (7.93)

where the mean of the prior (Mm = −19.3 mag) is taken to be a reasonable value

based on observations of nearby SNe Ia, and the variance (σM0 = 2.0 mag) is suffi-

ciently large so that the prior is very diffuse and non-informative (the precise choice

of mean and variance for this prior does not impact on our numerical results). Fi-

nally, the appropriate prior for σint
µ is a Jeffreys’ prior, i.e., uniform in log σint

µ , as

σint
µ is a scale parameter.

The likelihood p(D|Θ,M0) = p(ĉ, x̂1, m̂
∗
B|Θ,M0) can be expanded out an re-
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written as:

p(ĉ, x̂1, m̂
∗
B|Θ,M0) =

∫
dc dx1 dM p(ĉ, x̂1, m̂

∗
B|c, x1,M,Θ,M0)p(c, x1,M |Θ,M0)

(7.94)

=

∫
dc dx1 dM p(ĉ, x̂1, m̂

∗
B|c, x1,M,Θ)

×
∫

dRc dRx dc? dx? p(c|c?, Rc)p(x1|x?, Rx)p(M |M0, σ
int
µ )

× p(Rc)p(Rx)p(c?)p(x?) (7.95)

In the first line, we have introduced a set of 3n latent variables, {c, x1,M}, which

describe the true value of the colour, stretch and absolute magnitude for each SNIa.

Since these variables are unobserved, we need to marginalize over them. In the

second line, we have replaced p(c, x1,M |Θ,M0) by the priors on the latent {c, x1,M}
given by Eq. (7.88) and Eqs. (7.86–7.87), (assumed separable) and marginalized out

the population parameters {Rc, Rx, c?, x?}:

p(c, x1,M |Θ,M0) =

∫
dRc dRx dc? dx? p(c|c?, Rc)p(x1|x?, Rx) (7.96)

× p(M |M0, σ
int
µ )p(Rc)p(Rx)p(c?)p(x?) (7.97)

(we have also dropped M0 from the likelihood, as conditioning on M0 is irrelevant

if the latent M are given). If we further marginalize over M0 (as in Eq. (7.91),

including the prior on M0), the expression for the effective likelihood, Eq. (7.95),

then becomes:

p(ĉ, x̂1, m̂
∗
B|Θ) =

∫
dc dx1 dM p(ĉ, x̂1, m̂

∗
B|c, x1,M,Θ)

×
∫

dRc dRx dc? dx? dM0 p(c|c?, Rc)p(x1|x?, Rx) (7.98)

× p(M |M0, σ
int
µ )p(Rc)p(Rx)p(c?)p(x?)p(M0|σint

µ ) (7.99)

The term p(ĉ, x̂1, m̂
∗
B|c, x1,M,Θ) is the conditional probability of observing

values {ĉ, x̂1, m̂
∗
B} if the latent (true) value of c, x1,M and of the other cosmo-

logical parameters were known. From Fig. 7.8, m∗B is connected only determinis-

tically to all other variables and parameters, via Eq. (7.90). Thus we can replace
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m∗B = µ+M − α · x1 + β · c and write

p(ĉ, x̂1, m̂
∗
B|c, x1,M,Θ) =

n∏
i=1

N[ĉ,x̂1,m̂
∗
B](µi +Mi − α · x1i + β · ci, Ĉi) (7.100)

= |2πΣC |− 1
2 exp

(
−1

2
[(X −X0)TΣ−1

C (X −X0)]

)
(7.101)

where µi ≡ µi(zi,Θ) and we have defined

X = {X1, . . . , Xn} ∈ R3n, X0 = {X0,1, . . . , X0,n} ∈ R3n, (7.102)

Xi = {ci, x1,i, (Mi − αx1,i + βci)} ∈ R3, X0,i = {ĉi, x̂1,i, m̂
∗
Bi − µi} ∈ R3, (7.103)

as well as the 3n× 3n block covariance matrix1

ΣC =


Ĉ1 0 0 0

0 Ĉ2 0 0

0 0
. . . 0

0 0 0 Ĉn

 . (7.104)

Finally we explicitly include redshift uncertainties in our formalism. The ob-

served apparent magnitude, m̂∗B, on the left-hand-side of Eq. (7.100), is the value at

the observed redshift, ẑ. However, µ in Eq. (7.100) should be evaluated at the true

(unknown) redshift, z. As above, the redshift uncertainty is included by introducing

the latent variables z and integrating over them:

p(c, x1,M |c, x1,M,Θ) =

∫
dz p(c, x1,M |c, x1,M, z,Θ)p(z|ẑ) (7.105)

where we model the redshift errors p(z|ẑ) as Gaussians:

ẑ ∼ N (z,Σz) (7.106)

p(z|ẑ) = Nz(ẑ,Σz) (7.107)

with a n× n covariance matrix:

Σz = diag(σ2
z1
, . . . , σ2

zn). (7.108)

1Notice that we neglect correlations between different SNIa, which is reflected in the fact that
ΣC takes a block-diagonal form. It would be however very easy to add arbitrary cross-correlations
to our formalism (e.g., coming from correlated systematic within survey, for example zero point
calibration) by adding such non-block diagonal correlations to Eq. (7.104).
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It is now necessary to integrate out all latent variables and nuisance parameters

from the expression for the likelihood, Eq. (7.99). This can be done analytically, as

all necessary integrals are Gaussian.

7.6.3 Integration over intrinsic redshifts

In order to perform the multi-dimensional integral over z, we Taylor expand µ around

ẑ (as justified by the fact that redshift errors are typically small: the error from 300

km/s peculiar velocity is σzi = 0.0012, while the error from spectroscopic redshifts

from SNe themselves is σzi = 0.005, see Kessler et al. (2009a)):

µj = µ(zj) (7.109)

= 5 log10

(
DL(zj)

Mpc

)
+ 25 (7.110)

≈ µ(ẑj) + 5(log10 e)
∂zjDL(zj)

DL(zj)

∣∣∣∣
ẑj

(zj − ẑj). (7.111)

With this approximation we can now carry out the multi-dimensional integral of

Eq. (7.105), obtaining

p(m̂∗B|c, x1,M,Θ) = |2πΣm|− 1
2

× exp

[
−1

2
(m̂∗B − (µ+M − α · x1 + β · c))TΣ−1

m

(m̂∗B − (µ+M − α · x1 + β · c))
]

(7.112)

where from now on, µ = µ(ẑ) and

σm∗Bi → σraw data
m∗Bi

+ fiσzifi (7.113)

f = diag(f1, . . . , fn) (7.114)

fi = 5 log10(e)
D′L(zi)

DL(zi)

∣∣∣∣
ẑi

(7.115)

=
5 log10(e)

DL(ẑi)

[
DL(ẑi)

1 + zi
+

c

H0

(1 + ẑi) (7.116)

× cosn{
√
|Ωκ|

∫ ẑ

0

dz′
[
(1 + z′)3Ωm + Ωde(z) + (1 + z)2Ωκ

]−1/2} (7.117)

×((1 + z′)3Ωm + Ωde(z) + (1 + z)2Ωκ]
−1/2)

]
(7.118)

Strictly speaking, one should integrate over redshift in the range 0 ≤ zi < ∞,
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not −∞ < zi <∞, which would result in the appearance of Gamma functions in the

final result. However, as long as
σzi
zi
� 1 (as is the case here), this approximation is

expected to be excellent.

7.6.4 Integration over latent {c?, x?,M}
From Eq. (7.95) and using the expression in Eq. (7.100), we wish to integrate out

the latent variables

Y = {Y1, . . . , Yn} ∈ R3n, (7.119)

Yi = {ci, x1,i,Mi} ∈ R3, (7.120)

(7.121)

We therefore recast expression (7.100) as

p(ĉ, x̂1, m̂
∗
B|c, x1,M,Θ) = |ΣC |− 1

2 exp

(
−1

2
[(AY −X0)TΣ−1

C (AY −X0)]

)
(7.122)

where we have defined the block-diagonal matrix

A = diag(T, T, . . . , T ) ∈ R3n×3n (7.123)

with

T =

 1 0 0

0 1 0

β −α 1


 ci

xi

Mi

 (7.124)

The prior terms appearing in Eq. (7.99), namely p(c|c?, Rc)p(x1|x?, Rx)p(M |M0, σ
int
µ ),

may be written as:

p(c|c?, Rc)p(x1|x?, Rx)p(M |M0, σ
int
µ ) = |2πΣP |− 1

2 exp

(
−1

2
[(Y − Y∗)TΣ−1

P (Y − Y∗)]
)

(7.125)

where

S−1 = diag
(
R−2
c , R−2

x , (σint
µ )−2

) ∈ R3×3 (7.126)

Σ−1
P = diag

(
S−1, S−1, . . . , S−1

) ∈ R3n×3n (7.127)
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Y∗ = J · b ∈ R3n×1 (7.128)

J =



1 0 0

0 1 0

0 0 1
...

...
...

1 0 0

0 1 0

0 0 1


∈ R3n×3, (7.129)

b =

 c∗

x∗

M0

 ∈ R3×1. (7.130)

Now the integral over dY = dc dx1 dM in Eq. (7.99) can be performed, giving:∫
dY p(ĉ,x̂1, m̂

∗
B|c, x1,M,Θ)p(c|c?, Rc)p(x1|x?, Rx)p(M |M0, σ

int
µ ) =

= |2πΣC |− 1
2 |2πΣP |− 1

2 |2πΣA| 12 exp

(
−1

2
[XT

0 Σ−1
C X0 − Y T

0 Σ−1
A Y0 + Y T

∗ Σ−1
P Y∗]

)
(7.131)

where

Σ−1
A = ATΣ−1

C A+ Σ−1
P ∈ R3n×3n, (7.132)

Σ−1
A Y0 = ATΣ−1

C X0 + Σ−1
P Y∗, (7.133)

Y0 = ΣA(ATΣ−1
C X0 + Σ−1

P Y∗)ΣA(∆ + Σ−1
P Y∗), (7.134)

∆ = ATΣ−1
C X0 ∈ R3n×1. (7.135)

Substituting Eq. (7.131) back into Eq. (7.99) gives:

p(ĉ, x̂1, m̂
∗
B|Θ) =

∫
dRc dRx dc? dx? |2πΣC |− 1

2 |2πΣP |− 1
2 |2πΣA| 12

× exp

(
−1

2
[XT

0 Σ−1
C X0 − Y T

0 Σ−1
A Y0 + Y T

∗ Σ−1
P Y∗]

)
× p(Rc)p(Rx)p(c?)p(x?)p(M0|σint

µ ). (7.136)
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7.6.5 Integration over population variables {c?, x?,M0}
The priors on the population variables b = {c?, x?,M0} in Eq. (7.136) can be written

as:

p(b) = p(c?)p(x?)p(M0|σint
µ )

= |2πΣ0|− 1
2 exp

(
−1

2
(b− bm)TΣ−1

0 (b− bm)

)
(7.137)

where

Σ−1
0 =

 1/σ2
c∗ 0 0

0 1/σ2
x∗ 0

0 0 1/σ2
M0

 (7.138)

and

bm =

 0

0

Mm

 ∈ R3×1 (7.139)

Thus Eq. (7.136) can be written as:

p(ĉ, x̂1, m̂
∗
B|Θ) =

∫
dRc dRx db |2πΣC |− 1

2 |2πΣP |− 1
2 |2πΣA| 12 |2πΣ0|− 1

2p(Rc)p(Rx)

× exp

(
−1

2
[XT

0 Σ−1
C X0 − (ΣA(∆ + Σ−1

P J · b))TΣ−1
A (ΣA(∆ + Σ−1

P J · b))

+ bTJTΣ−1
P Jb+ (b− bm)TΣ−1

0 (b− bm)]
)

=

∫
dRc dRx |2πΣC |− 1

2 |2πΣP |− 1
2 |2πΣA|− 1

2 |2πΣ0|− 1
2p(Rc)p(Rx)

× exp

(
−1

2
[XT

0 Σ−1
C X0 −∆TΣA∆− kT0 K−1k0 + bTmΣ−1

0 bm]

)
×
∫

db exp

(
−1

2
[(b− k0)TK−1(b− k0)]

)
(7.140)
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where

K−1 = −JTΣ−1
P ΣAΣ−1

P J + JTΣ−1
P J + Σ−1

0 ∈ R3×3, (7.141)

K−1k0 = JTΣ−1
P ΣA∆ + Σ−1

0 bm ∈ R3×1, (7.142)

k0 = K(JTΣ−1
P ΣA∆ + Σ−1

0 bm). (7.143)

We can now carry out the Gaussian integral over b in Eq. (7.136), obtaining our

final expression for the effective likelihood,

p(ĉ, x̂1, m̂
∗
B|Θ) =

∫
d logRc d logRx |2πΣC |− 1

2 |2πΣP |− 1
2 |2πΣA| 12 |2πΣ0|− 1

2 |2πK| 12

× exp

(
−1

2
[XT

0 Σ−1
C X0 −∆TΣA∆− kT0 K−1k0 + bTmΣ−1

0 bm]

)
,

(7.144)

where we have chosen an improper Jeffreys’ prior for the scale variables Rc, Rx:

p(Rc) ∝ R−1
c ⇒ p(Rc)dRc ∝ d logRc, (7.145)

and analogously for Rx. These two remaining nuisance parameters cannot be inte-

grated out analytically, so they need to be marginalized numerically. Hence, Rc, Rx

are added to our parameters of interest and are sampled over numerically, and then

marginalized out from the joint posterior.

The expression for the effective likelihood given by Eq. (7.144) is the major

result presented in this chapter. Having shown how this effective likelihood is moti-

vated and arrived at, I will now present some numerical trials in which the effective

likelihood is tested using simulated data.

7.7 Numerical trials with simulated data

7.7.1 Description of the real SNe Ia data sets

The simulated data sets used in the numerical trials are modeled on the (then) recent

compilation of 288 SNIa from Kessler et al. (2009a), which presents analysis of new

data from SDSS-II along with publicly available data from four existing surveys.

The Kessler et al. (2009a) compilation comprises of:

• SDSS: 103 SNe (Kessler et al., 2009a)

• ESSENCE: 56 SNe (Miknaitis & Pignata, 2007; Wood-Vasey et al., 2007)
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Parameter Symbol True Value
Matter energy density parameter Ωm 0.3
Dark energy density parameter ΩΛ 0.7
Dark energy equation of state w −1
Spatial curvature Ωκ 0.0
Hubble expansion rate H0 [km/s/Mpc] 72.0
Mean absolute magnitude of SNe M0 [mag] -19.3
Intrinsic dispersion of SNe magnitude σint

µ [mag] 0.1
Stretch correction α 0.13
Colour correction β 2.56
Mean of distribution of x1 x? 0.0
Mean of distribution of c c? 0.0
s.d. of distribution of x1 Rx 1.0
s.d. of distribution of c Rc 0.1
Observational noise on m∗B σm∗Bi Depending on survey
Observational noise on x1 σx1i Depending on survey
Observational noise on c σci Depending on survey
Correlation between x1 and c σx1i,ci 0.0

Table 7.3: Input parameter values used for the fiducial model in the generation
of the simulated SNe SALT2 data sets.

• SNLS: 62 SNe (Astier & Guy, 2006)

• Nearby Sample: 33 SNe (Jha et al., 2007)

• HST: 34 SNe (Garnavich et al., 1998; Knop et al., 2003; Riess & Strolger, 2004,

2007)

The compiled set of 288 SNe Ia were analysed by (Kessler et al., 2009a) using both

the SALT2 method and the MLCS method. In the following, we are exclusively

employing the results of their SALT2 fits and use those as the observed data set for

the purposes of our current work, as described in the previous section. More refined

procedures could be adopted, for example by simulating lightcurves from scratch,

using e.g. the publicly available package SNANA (Kessler et al., 2009b). In this

work we chose a simpler approach, which is to simulate the SALT2 fit results in

such a way to broadly match the distributions and characteristics of the real data

set used in Kessler et al. (2009a).

7.7.2 Description of the simulated SNe Ia data sets

The numerical values of the parameters used for the simulated data sets are shown in

Table 7.3. We adopt a flat ΛCDM cosmological model as fiducial cosmology. The α

and β global fit parameters are chosen to match the best-fit values reported in Kessler
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et al. (2009a), while the distributional properties of the colour and stretch correction

match the observed distribution of their total SN sample. For each survey, we

generate a number of SNe matching the observed sample, and we model their redshift

distribution as a Gaussian, with mean and variance estimated from the observed

distribution within each survey. The observational error of m∗B, c, x1 is again drawn

from a Gaussian distribution whose mean and variance have been matched to the

observed ones for each survey. Finally, the simulated data (i.e., the simulated SALT2

fits results m̂∗B, ĉ, x̂1) are generated by drawing from the appropriate distributions

centered around the latent variables. For simplicity, we have set to 0 the off-diagonal

elements in the correlation matrix (7.104) in our simulated data, and neglected

redshift errors. None of these assumptions have a significant impact on our results.

In summary, our procedure for simulating data for each survey is as follows:

(i) Draw a value for the latent redshift zi from a normal distribution with mean

and variance matching the observed ones. As we neglect redshift errors in the

simulated data for simplicity (since the uncertainty in z is subdominant in the

overall error budget), we set ẑi = zi.

(ii) Compute µi using the fiducial values for the cosmological parameters C and

the above zi from Eq. (7.5).

(iii) Draw the latent parameters x1i, ci,Mi from their respective distributions (in

particular, including an intrinsic scatter σint
µ = 0.1 mag in the generation of

Mi).

(iv) Compute m∗Bi using x1i, ci,Mi and the SALT2 relation Eq. (7.73).

(v) Draw the value of the standard deviations σx1i, σci , σmi , from the appropriate

normal distributions for each survey type. A small, zi-dependent stochastic

linear addition is also made to σx1i, σci , σmi , to mimic the observed correlation

between redshift and error.

(vi) Draw the SALT2 fit results from x̂1i ∼ N (x1i, σx1i), ĉi ∼ N (ci, σci) and m̂∗Bi ∼
N (m∗Bi, σmi).

As shown in Fig. 7.10, the simulated data from our procedure have broadly

similar distributions to the real ones. The two notable exceptions are the overall

vertical shift observed in the distance modulus plot, and the fact that our simulated

data cannot reproduce the few outliers with large values of the variances (bottom

panels). The former is a consequence of the different absolute magnitude used in our

simulated data (as the true one is unknown). However, the absolute magnitude is
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Figure 7.10: An example realization of our simulated data sets (coloured ac-
cording to survey), superimposed on real data (black). Colour code for simulated
data survey: nearby sample (cyan), ESSENCE (green), SDSS (red), SNLS (blue)
and HST (magenta).

marginalized over at the end, so this difference has no impact on our inferences. The

absence of outliers is a consequence of the fact that our simulation is a pure phe-

nomenological description of the data, hence it cannot encapsulate such fine details.

While in principle we could perform outlier detection with dedicated Bayesian pro-

cedures, we do not pursue this issue further in this paper. We stress once more that

the purpose of our simulations is not to obtain realistic SNIa data. Instead, they

should only provide us with useful mock data sets coming from a known model so

that we can test our procedure. More sophisticated tests based on more realistically

generated data (e.g., from SNANA) are left for future work.

7.7.3 Numerical sampling

After analytical marginalization of the latent variables, we are left with the following

eight parameters entering the effective likelihood of Eq. (7.144):

{Ωm,Ωκ or w,H0, σ
int
µ , α, β, Rc, Rx} . (7.146)

As mentioned above, in keeping with the literature we only consider either flat

Universes with a possible w 6= −1 (the ΛCDM model), or curved Universes with a
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Parameter ΛCDM wCDM

Ωm Uniform: U(0.0, 1.0) Uniform: U(0.0, 1.0)
Ωκ Uniform: U(−1.0, 1.0) Fixed: 0
w Fixed: −1 Uniform: U(−4, 0)
H0 [km/s/Mpc] N (72, 82) N (72, 82)

Common priors
σint
µ [mag] Uniform on log σint

µ : U(−3.0, 0.0)
M0 [mag] Uniform: U(−20.3,−18.3)
α Uniform: U(0.0, 1.0)
β Uniform: U(0.0, 4.0)
Rc Uniform on logRc: U(−5.0, 2.0)
Rx Uniform on logRc: U(−5.0, 2.0)

Table 7.4: Priors on our model’s parameters used when evaluating the posterior
distribution. Ranges for the uniform priors have been chosen so as to generously
bracket plausible values of the corresponding quantities.

cosmological constant (w = −1, the wCDM model). Of course it is possible to relax

those assumptions and consider more complicated cosmologies with a larger number

of free parameters if one so wishes (notably including evolution in the dark energy

equation of state).

Of the parameters listed in Eq. (7.146), the quantities Rc, Rx are of no interest

and will be marginalized over. As for the remaining parameters, we are interested in

obtaining their marginal 1 and 2-dimensional posterior distributions. This is done

by inserting the likelihood (7.144) into the posterior of Eq. (7.91), with priors on the

parameters chosen in accordance with Table 7.4. We use a Gaussian prior on the

Hubble parameter H0 = 72± 8 km/s/Mpc from local determinations of the Hubble

constant (Freedman et al., 2001). However, as H0 is degenerate with the intrinsic

population absolute magnitude M0 (which is marginalized over at the end), replacing

this Gaussian prior with a less informative prior H0[km/s/Mpc] ∼ U(20, 100) has

no influence on our results.

Numerical sampling of the posterior is carried out via a nested sampling algo-

rithm (Skilling, 2004, 2006; Feroz & Hobson, 2008b; Feroz et al., 2009b). Although

the original motivation for nested sampling was to compute the Bayesian evidence,

the recent development of the MultiNest algorithm (Feroz & Hobson, 2008b; Feroz

et al., 2009b) has delivered an extremely powerful and versatile algorithm that has

been demonstrated to be able to deal with extremely complex likelihood surfaces in

hundreds of dimensions exhibiting multiple peaks. As samples from the posterior

are generated as a by-product of the evidence computation, nested sampling can also

be used to obtain parameter constraints in the same run as computing the Bayesian
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evidence. In this paper we adopt the publicly available MultiNest algorithm (Feroz

& Hobson, 2008b) to obtain samples from the posterior distribution of Eq. (7.91).

We use 4000 live points and a tolerance parameter 0.1, resulting in about 8 × 105

likelihood evaluations.

We also wish to compare the performance of our BHM with the usually adopted

χ2 minimization procedure. To this end, we fit the simulated data using the χ2 ex-

pression of Eq. (7.6). In order to mimic what is done in the literature as closely

as possible, we chose a value of σint
µ then minimize the χ2 w.r.t. the fit parameters

ϑ = {Ωm,Ωκ or w,H0,M0, α, β}. We update the value of σint
µ then repeat the min-

imization process as described below, until a value of χ2/dof = 1 is obtained. The

steps in the process can be enumerated as follows:

(i) Select a trial value for σint
µ .

(ii) Minimise the χ2 given in Eq. (7.6) by simultaneously fitting for the cosmology

and SNe Ia parameters ϑ = {Ωm,Ωκ or w,H0,M0, α, β}.

(iii) Evaluate χ2/dof at minimum (i.e. the best fit point). If χ2/dof > 1 select

a higher trial value for σint
µ , if χ2/dof < 1 select a lower trial value for σint

µ ,

repeat from the minimization step (ii) onwards.

(iv) Stop the process of minimization and iterative updating of σint
µ when a value

of χ2/dof = 1 is obtained.

Once we have obtained the global best fit point, we derive 1- and 2-dimensional

confidence intervals on the parameters by profiling (i.e., maximising over the other

parameters) over the likelihood

L(ϑ) = exp

(
−1

2
χ(ϑ)2

)
, (7.147)

with χ2 given by Eq. (7.6). According to Wilks’ theorem, approximate confidence

intervals are obtained from the profile likelihood as the regions where the χ2 increases

by ∆χ2 from its minimum value, where ∆χ2 can be computed from the chi-square

distribution with the number of degree of freedoms corresponding to the number of

parameters of interest and is given in standard look-up tables. The appropriate ∆χ2

values for the 1D likelihoods are shown in table 7.5. Obtaining reliable estimates of

the profile likelihood using Bayesian algorithms (such as MultiNest) is a considerably

harder numerical task than mapping out the Bayesian posterior. However, it has

been shown that MultiNest can be successfully used for this task even in highly

challenging situations (Feroz et al., 2011), provided the number of live points and
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Likelihood content 68.3% (1σ) 95.4% (2σ)
∆χ2 1.00 4.00

Table 7.5: Change in ∆χ2 required in 1D profile likelihood for 1σ and 2σ confi-
dence intervals.

tolerance value used are adjusted appropriately. For our χ2 scan, we adopt 104

live points and a tolerance of 0.1. We have found that those values give accurate

estimates of the profile likelihood more than 2σ into the tails of the distribution

for an 8 dimensional Gaussian toy model (whose dimensionality matches the case

of interest here). With these MultiNest settings, we gather 1.5× 105 samples, from

which the profile likelihood is derived.

Our implementation of the χ2 method is designed to match the main features of

the fitting procedure usually adopted in the literature (namely, maximisation of the

likelihood rather than marginalization of the posterior, and iterative determination

of the intrinsic dispersion), although we do not expect that it exactly reproduces

the results obtained by any specific implementation. Its main purpose is to offer a

useful benchmark against which to compare the performance of our new Bayesian

methodology.

7.7.4 Parameter reconstruction

We compare the cosmological parameters reconstructed from the standard χ2

method and our Bayesian approach in Fig. 7.11 for a typical data realization. The

left-hand-side panel shows constraints in the Ωm − ΩΛ plane for the ΛCDM model,

both from our Bayesian method (filled regions, marginalized 68.3% and 95.4% poste-

rior) and from the standard χ2 method (red contours, 68.3% and 95.4% confidence

regions from the profile likelihood). In the right-hand-side panel, constraints are

shown in the w − Ωm plane for a flat wCDM model Universe. In a typical recon-

struction, our Bayesian method produced considerably tighter constraints on the

cosmological parameters of interest than the usual χ2 approach. Our constraints

are also less biased w.r.t. the true value of the parameters, an important advantage

that we further characterize below.

Our BHM further produces marginalized posterior distributions for all the other

parameters of the fit, including the global SNe Ia parameters α and β and the

intrinsic dispersion of the SNe. The 1D marginal posteriors for those quantities

are shown in Fig. 7.12. The recovered posterior means lie within 1σ of the true

values. Notice that we do not expect the posterior mean to match exactly the true
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Figure 7.11: Reconstruction of cosmological parameters from a simulated data
set encompassing 288 SNIa, with characteristics matching presently available sur-
veys (including realization noise). Blue regions contain 95.4% and 68.3% of
the posterior probability (other parameters marginalized over) from our BHM
method, the red contours delimit 95.4% and 68.3% confidence intervals from the
standard χ2 method (other parameters maximised). The yellow star indicates the
true value of the parameters. The left panel assumes w = −1 while the right
panel assumes Ωκ = 0. Notice how out method produced considerably less biased
constraints on the parameters.

value, because of realization noise in the simulated data. However, as shown below,

our method delivers less biased estimates of the parameters, and a reduced mean

squared error compared with the standard χ2 approach. The stretch correction α is

determined with 8% accuracy, while the colour correction parameter β is constrained

with an accuracy better than 3%. A new feature of our method is that it produces

a posterior distribution for the SN population intrinsic dispersion, σint
µ (right-hand-

side panel of Fig 7.12). This allows one to determine the intrinsic dispersion of the

SNIa population to typically about 10% accuracy.

0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

0.2

0.4

0.6

0.8

1

α

po
st

er
io

r 
de

ns
ity

2.2 2.4 2.6 2.8 3
0

0.2

0.4

0.6

0.8

1

β

po
st

er
io

r 
de

ns
ity

−2.6 −2.4 −2.2 −2
0

0.2

0.4

0.6

0.8

1

Ln σµ
int

po
st

er
io

r 
de

ns
ity

Figure 7.12: Marginalised posterior for the stretch correction α, colour correc-
tion β parameter and logarithm of the intrinsic dispersion of SNe, log σint

µ , from
a simulated data set from our Bayesian method. The vertical, dashed line gives
the true value for each quantity.
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7.7.5 Comparison of performance of the two methods over

100 trials

As we are dealing with a system subject to Gaussian statistical noise, the results of

one single trial are not sufficient to validate the claim that the BHM method outper-

forms the χ2 method. In order to demonstrate further the relative performance of

the two methods we conducted a series of trials using 100 different realizations of the

data, i.e. we generated 100 simulated data sets each with 288 SNe Ia, as detailed in

section 7.7.2. During the numerical sampling phase of the parameter reconstruction,

several trials failed due to computational problems, in these cases the results for the

relevant trials for both the BHM and χ2 methods were omitted from the final anal-

ysis. We are interested in comparing the average ability of both methods to recover

parameter values that are precise, accurate and as much as possible unbiased with

respect to their true values, as well as to establish the coverage properties of the

credible and confidence intervals.

Coverage is defined as the probability that an interval contains (covers) the

true value of a parameter, in a long series of repeated measurements. The defining

property of a e.g. 95.4% frequentist confidence interval is that it should cover the

true value 95.4% of the time; thus, it is reasonable to check if the intervals have the

properties they claim. Coverage is a frequentist concept: intervals based on Bayesian

techniques are meant to contain a given amount of posterior probability for a single

measurement (with no reference to repeated measurements) and are referred to as

credible intervals to emphasize the difference in concept. While Bayesian techniques

are not designed with coverage as a goal, it is still meaningful to investigate their

coverage properties. To our knowledge, the coverage properties of even the standard

χ2 method (which, being a frequentist method would ideally be expected to exhibit

exact coverage) have never been investigated in the SN literature.

We generate 100 realizations of the simulated data from the fiducial model

of Table 7.3 as described in section 7.7.2, and we analyse them using our BHM

method and the standard χ2 approach, using the same priors as above, given in

Table 7.4. We quantify the performance of the two methods in two ways: in terms

of the precision (i.e. error bar size) and in terms of accuracy (i.e. distance of

reconstructed parameter value from true parameter value). For each parameter of

interest θ, we compare the precision by evaluating the relative size of the posterior

68.3% range from our BHM method, σBHM
θ , compared with the 68.3% confidence

interval from the χ2 method, σχ
2

θ , which is summarized by the quantity Sθ which

shows the percentage change in error bar size with respect to the error bar derived
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using the χ2 method

Sθ ≡
(
σBHM
θ

σχ
2

θ

− 1

)
× 100. (7.148)

A value Sθ < 1 means that our BHM method delivers tighter error bars on the

parameter θ, so is more precise. A histogram of this quantity for the variables of

interest is shown in Fig. 7.13, from which we conclude that our BHM method gives

smaller error bars on Ωm,ΩΛ and w in almost all cases. However the uncertainty on

α, β is larger from our method than from the χ2 approach in most data realizations,

as expected from the numerical trials with the toy model described in section 7.4.

Precision and tight error bars are good, but not if they come at the expense of

a less accurate reconstruction. To evaluate the accuracy of each method, we build

the following test statistic for each reconstruction:

Tθ ≡ |θBHM/θtrue − 1| − |θbf
χ2/θtrue − 1|, (7.149)

where θBHM is the posterior mean recovered using our BHM method, θbf
χ2 is the

best-fit value for the parameter recovered using the standard χ2 approach and θtrue

is the true value for that parameter. Tθ can be interpreted as follows: for a given

data realization, if the reconstructed posterior mean from our BHM is closer to

the true parameter value than the best-fit χ2, then Tθ < 0, which means that our

method is more accurate than χ2. A histogram of the distribution of Tθ across the

100 realizations, shown in Fig. 7.14, can be used to compare the two methods: a

negative average in the histogram means that the BHM outperforms the usual χ2.

For all of the parameters considered, our BHM method is more accurate than the χ2

method, outperforming χ2 about 2/3 of the time. Furthermore, the reconstruction

of the intrinsic dispersion σint
µ is better with our BHM method almost 3 times out of

4. We emphasize once more that our methodology also provides an estimate of the

uncertainty in the intrinsic dispersion, not just a best-fit value as the χ2 approach.

We can further quantify the improvement in the statistical reconstruction by

looking at the bias, defined in EQ. (7.4.1) and mean squared error (MSE) for each

parameter, defined as

MSE = bias2 + Var, (7.150)

respectively, where the expectation is taken by averaging over the observed values

in our 100 simulated trials, θ̂ = θBHM (θ̂ = θbf
χ2) for the BHM (for the χ2 approach)

and Var is the observed parameter variance. The bias is the expectation value

of the difference between estimator and true value, and tells us by how much the
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estimator systematically over or under estimates the parameter of interest. The

MSE measures the average of the squares of the errors, i.e., the amount by which

the estimator differs from the true value for each parameter. A smaller bias and a

smaller MSE imply a better performance of the method. The results for the two

methods are summarized in Table 7.6, which shows how our method reduces the

bias by a factor ∼ 2 − 3 for most parameters, while reducing the MSE by a factor

of ∼ 2. The only notable exception is the bias of the EOS parameter w, which is

larger in our method than in the χ2 approach.

Parameter Bias Mean squared error
Bayesian χ2 Improvement Bayesian χ2 Improvement

ΛCDM Ωm -0.0188 -0.0183 1.0 0.0082 0.0147 1.8
ΩΛ -0.0328 -0.0223 0.7 0.0307 0.0458 1.5
α 0.0012 0.0032 2.6 0.0001 0.0002 1.4
β 0.0202 0.0482 2.4 0.0118 0.0163 1.4
σint
µ -0.0515 -0.1636 3.1 0.0261 0.0678 2.6

wCDM Ωm -0.0177 -0.0494 2.8 0.0072 0.0207 2.9
ΩΛ 0.0177 0.0494 2.8 0.0072 0.0207 2.9
w -0.0852 -0.0111 0.1 0.0884 0.1420 1.6
α 0.0013 0.0032 2.5 0.0001 0.0002 1.5
β 0.0198 0.0464 2.3 0.0118 0.0161 1.4
σint
µ -0.0514 -0.1632 3.2 0.0262 0.0676 2.6

Table 7.6: Comparison of the bias and mean squared error for our Bayesian
method and the usual χ2 approach. The columns labelled “Improvement” give
the factor by which our Bayesian method reduces the bias and the MSE w.r.t. the
χ2 approach.

Finally, in Fig. 7.15 we plot the coverage of each method for 68.3% and 95.4%

intervals. Error bars give an estimate of the uncertainty of the coverage result, by

giving the binomial sampling error from the finite number of realizations considered,

evaluated from the binomial variance as Np(1−p), where N = 100 is the number of

trials and p is the observed fractional coverage. Both methods slightly undercover,

i.e. the credible region and confidence intervals are too short, although the lack of

coverage is not dramatic: e.g., the typical coverage of the 1σ (2σ) intervals from our

method is ∼ 60% (90%). Our method shows slightly better coverage properties than

the χ2 method, while producing considerably tighter and less biased constraints (as

demonstrated above). This further proves that the tighter intervals recovered by

our method do not suffer from bias w.r.t the true values.

To summarise, the results from our numerical trials with simulated data show

that:

(i) In general, our BHM method gives more precise constraints on the cosmo-

logical parameters, but gives less precise constraints on the SNe Ia global fit
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parameters α, β

(ii) In 60− 70% of trials, our BHM method recovers a more accurate value of the

parameter of interest.

(iii) Our BHM method is less biased than the χ2 method, except in the reconstruc-

tion of the w parameter

(iv) Both methods undercover, with our BHM method giving slightly better cov-

erage.

7.8 Cosmological constraints from current SNIa

data using BHM

We now apply our BHM to fitting real SN data. We use the SALT2 fits result for

288 SNIa from Kessler et al. (2009a), which have been derived from five different

surveys described briefly in section 7.7.1. Our method only includes statistical errors

according to the procedure described in section 7.6, coming from redshift uncertain-

ties (arising from spectroscopic errors and peculiar velocities), intrinsic dispersion

(which is determined from the data) and full error propagation of the SALT2 fit

results. Systematic uncertainties play an important role in SNIa cosmology fitting,

and (although not included in this study) can also be treated in our formalism in a

fully consistent way. We comment on this aspect further below, though we leave a

complete exploration of systematics with our BHM to a future, dedicated work.

We show in Fig. 7.16 the constraints on the cosmological parameters Ωm − ΩΛ

(left panel, assuming w = −1) and w−Ωm (right panel, assuming Ωκ = 0) obtained

with our method. All other parameters have been marginalized over. In order to

be consistent with the literature, we have taken a non-informative prior on H0,

uniform in the range [20, 100] km/s/Mpc. The figure also compares our results

with the statistical contours from Kessler et al. (2009a), obtained using the χ2

method. (We compare with the contours including only statistical uncertainties for

consistency.) In Fig. 7.17 we combine our SNIa constraints with Cosmic Microwave

Background (CMB) data from WMAP 5-yrs measurements (Komatsu et al., 2009)

and Baryonic Acoustic Oscillations (BAO) constraints from the Sloan Digital Sky

Survey LRG sample (Eisenstein et al., 2005), using the same method as Kessler

et al. (2009a). The combined SNIa, CMB and BAO statistical constraints result

in Ωm = 0.28 ± 0.02,ΩΛ = 0.73 ± 0.01 (for the ΛCDM model) and Ωm = 0.28 ±
0.01, w = −0.90±0.05 (68.3% credible intervals) for the wCDM model. Although the



7.8 Cosmological constraints from current SNIa data using BHM 157

statistical uncertainties are comparable to the results by Kessler et al. (2009a) from

the same sample, our posterior mean values present shifts of up to ∼ 2σ compared

to the results obtained using the standard χ2 approach. This is a fairly significant

shift, which can be attributed to our improved statistical method, which exhibits a

reduced bias w.r.t. the χ2 approach.

Fig. 7.18 shows the 1D marginalized posterior distributions for the SNe Ia global

fit parameters α, β and for the intrinsic dispersion σint
µ . All parameters are well

constrained by the posterior, and we find α = 0.12± 0.02, β = 2.7± 0.1 and a value

of the intrinsic dispersion (for the whole sample) σint
µ = 0.13 ± 0.01 mag. Kessler

et al. (2009a) find values for the intrinsic dispersion ranging from 0.08 (for SDSS-II)

to 0.23 (for the HST sample), but their χ2 method does not allow them to derive

an error on those determinations. With our method, it would be easy to derive

constraints on the intrinsic dispersion of each survey – all one needs to do is to

replace Eq. (7.74) with a corresponding expression for each survey. This introduces

one pair of population parameters (M0, σ
int
µ ) for each survey. In the same way, one

could study whether the intrinsic dispersion evolves with redshift. A detailed study

of these issues is left for future work.

The value of α found in Kessler et al. (2009a) is in the range 0.10 − 0.12, de-

pending of the details of the assumptions made, with a typical statistical uncertainty

of order ∼ 0.015. These results are comparable with our own. As for the colour

correction parameter β, constraints from Kessler et al. (2009a) vary in the range

2.46 − 2.66, with a statistical uncertainty of order 0.1 − 0.2. This stronger depen-

dence on the details of the analysis seems to point to a larger impact of systematic

uncertainties for β, which is confirmed by evidence of evolution with redshift of the

value of β (Kessler et al. (2009a), Fig. 39). Our method can be employed to carry

out a rigorous assessment of the evolution with redshift of colour corrections. A

possible strategy would be to replace β with a vector of parameters β1, β2, . . . , with

each element describing the colour correction in a different redshift bin. The analysis

proceeds then as above, and it produces posterior distributions for the components

of β, which allows to check the hypothesis of evolution. Finally, in such an analysis

the marginalized constraints on all other parameters (including the cosmological pa-

rameters of interest) would automatically include the full uncertainty propagation

from the colour correction evolution, without the need for further ad hoc inflation

of the error bars. These kind of tests will be pursued in a forthcoming publication.
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7.9 Bayesian Hierarchical Model Future Planned

Work

Capitalising on the initial work presented in this chapter, I intend to extend and

develop this new methodology in a number of different ways, both in the field of

SNe Ia cosmology and also to other fields which have problems of a similar form to

the SNe Ia problem. In this section I briefly outline some of the future directions of

this work.

7.9.1 Applications using SNe Ia BHM

One of the primary motivations for the SNe Ia work presented in this chapter was

to be able to use the SNe Ia data to be able to discriminate between different

cosmological models. One scenario I plan to investigate using the new BHM and

Bayesian model selection is the spatial symmetry of the Universe. Many theoretical

models make statements about the inhomogeneity or otherwise of the Universe,

either in terms of its expansion history or composition or both, e.g. Wiseman &

Withers (2010). By using the directional information we have about the supernovae

I will investigate claims for directional asymmetry. Some work has been done in this

area e.g. Schwarz & Weinhorst (2007) Antoniou & Perivolaropoulos (2010) Cooke &

Lynden-Bell (2010) - but the advantage of using my new method for the supernovae

analysis is that we can now use Bayesian model selection to discriminate between

symmetric and asymmetric models for the Universe in a quantitative manner. In

particular I am planning to use the my new method to explore claims that there is

a spatial asymmetry in the fine structure constant. Webb et al. (2010).

Independently of model selection problems, there are many other areas of in-

vestigation within the realm of parameter inference. One of the most interesting

questions concerns the colour evolution of the SNe Ia. The colour correction is key

to standardizing the SNe Ia. In this work we have assumed a global fit parameter β

which is universal for all SNe Ia at all redshifts in all directions. In reality however

the colour of SNe Ia may evolve with redshift as high redshift SNe Ia come from

progenitor stars with a different chemical composition (lower metallicity) from those

at low redshift. Work is already being carried out in investigating colour evolution

with redshift. We can contribute to this effort by modifying our method to allow

for evolution of β with redshift either by characterising the evolution with a simple

empirical expression such as:

β(z) = β0 + zβ1 (7.151)
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or by allowing β to take a range of different values βi for different redshift bins zi.

Fig.7.19 shows a preliminary example of what happens when a simulated data set

which incorporates β evolving with redshift as in Eq. (7.151) is fitted incorrectly

using a static model β(z) = β (upper panel) and then correctly fitted using the

evolving model of Eq. (7.151) (lower two panels). Fig.7.20 shows what happens

when a simulated data set with a static β is fitted with the correct static model

(upper panel) and the incorrect evolving model. In this case the simpler, correct

model is nested within the more complex model such that when β1 = 0 the static

model is regained. The lower panel of fig.7.20 shows that indeed a value of β1 = 0

is favoured for this data set. As well as evolution with redshift, the other colour

relationship to investigate is the correlation between host galaxy type and colour.

Spiral and elliptical galaxies have different dust properties and hence their SNe Ia

have different degrees of reddening due to host galaxy dust, important work has

already begun in this area by Sullivan et al. (2006); Mandel et al. (2010); Sullivan

et al. (2011) and it is an area we can easily adapt our BHM method to investigate.

In the model described in this chapter, the distribution of the colour correction

terms ĉi is assumed Gaussian such that there is a match between the shape of

the underlying distribution described in Eq. (7.75) and the prior placed on that

distribution Eq. (7.86). Another interesting question is what happens if the ‘wrong’

prior is used to fit the underlying distribution? In a purely abstract case one might

ask what happens if an underlying uniform distribution is fitted using a Gaussian

prior, numerical trials could be conducted accordingly to see how large an effect

is observed on the ability on the method to recover the parameters of interest. In

practice, for the real SNe Ia case there are claims within the SNe Ia community that

the underlying colour distribution is not Gaussian - our question here is two fold (1)

To what extent does that affect the accuracy and precision of our new BHM method

and (2) Can our method be adapted to identify the true underlying distribution of

the colour parameters. These investigations into the colour evolution and colour

correction distribution will form the basis of our next planned paper.

7.9.2 Bayesian Hierarchical Network Analysis of Gamma

ray-burst data

The problem of linear fitting of data in the presence of large errors is a problem

found in other areas of cosmology. Our solution for the SNeIa case can be adapted

to provide solutions to other problems which have a similar structure, for example,

cosmology with Gamma ray bursts (GRBs). We plan to develop the work of Diaferio
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et al. (2011) in using Gamma-ray bursts as cosmological probes. We will:

(i) Apply the Bayesian Hieraierarchical Network methodology (hereafter, BHN)

described in this chapter and March et al. (2011c) to the analysis of GRB data

as cosmological probes, replacing Eq.A3 in Diaferio et al. (2011).

(ii) Re-do the joint SNe-GRB analysis described in Diaferio et al. (2011) using the

BHN analysisis of the SNe data, (replacing Eq.A7 in Diaferio et al. (2011)

The motivation and aims of the proposed GRB project are to provide a fully Bayesian

analysis of the GRB data in order to:

(i) Be able to use the GRB data for Bayesian model selection.

(ii) Be able to use the BHN method to better understand the systematics of the

GRB data.

Adapting from Diaferio et al. (2011) Eq.44, the true bolometric peak flux P i
bol

for each GRB is given by:

log10 P
i
bol =

∑
j

(
aj + bj log10Q

i
j

)− log10[4πd2
L(zi,C )] + ∆i (7.152)

where index i = 1, n labels each of the n GRBs and index j runs from j = 1, 4 where

Qi is the vector of latent parameters: Qi = {τ ilag, τ
i
RT, V

i, Ei
peak} such that:

log10 P
i
bol =a1 + b1 log10 τ

i
lag + a2 + b2 log10 τ

i
RT + a3 + b3 log10 V

i + a4 + b4 log10E
i
peak

− log10[4πd2
L(zi,C )] + ∆i (7.153)

Note that we have included the additional term ∆i which models the intrinsic dis-

persion, such that:

∆i ∼ N (∆0, σ
2
int) (7.154)

In the current set up, ∆0 ≡ 0, which is equivalent to saying that log10 P
i
bol is drawn

from a Gaussian distribution of mean
(∑

j

(
aj + bj log10Q

i
j

)− log10[4πd2
L(zi,C )]

)
and standard deviation σint.

The observed bolometric peak flux P̂ i
bol is drawn from a Gaussian distribution

with mean P i
bol and variance σ2

int such that:

P̂ i
bol ∼ N (P i

bol, σ
2
p) (7.155)
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The other observables are similarly subject to Gaussian noise:

τ̂ ilag ∼ N (τ ilag, σ
2
τlag

) (7.156)

τ̂ iRT ∼ N (τ iRT, σ
2
τRT

) (7.157)

V̂ i ∼ N (V i, σ2
V ) (7.158)

Êi
peak ∼ N (Ei

peak, σ
2
Epeak

) (7.159)

ẑi ∼ N (zi, σ2
z) (7.160)

This proposed application to the GRB data is still in the planning stage, and I

intend to implement it along with my collaborators soon after the completion of my

PhD.

7.10 Conclusions

The primary aim of the work presented in this chapter was to address certain de-

ficiencies in the existing methods for extracting the cosmological parameters from

SNe Ia data in conjunction with the SALT2 lightcurve fitter. The two main motiva-

tions were the lack of an appropriate framework for assessing the unknown intrinsic

dispersion σint
µ and its uncertainty, and the incompatibility of existing parameter

reconstruction methods with methods of Bayesian model selection. In order to ad-

dress these dual problems, we have derived a new and fully Bayesian method for

parameter inference based on a Bayesian Hierachical Model, BHM.

The main novelty of our method is that it produces an effective likelihood that

propagates uncertainties in a fully consistent way. We have introduced an explicit

statistical modeling of the absolute magnitude distribution of the SNIa population,

which for the first time allows one to derive a full posterior distribution of the SNIa

intrinsic dispersion.

We have tested our method using simulated data sets and found that it compares

favourably with the standard χ2 approach, both on individual data realizations and

in the long term performance. Statistical constraints on cosmological parameters

are significantly improved, while in a series of 100 simulated data sets our method

outperforms the χ2 approach at least 2 times out of 3 for the parameters of interest.

We have also demonstrated that our method is less biased and has better coverage

properties than the usual approach.

We applied our methodology to a sample of 288 SNIa from multiple surveys.

We find that the flat ΛCDM model is still in good agreement with the data, even
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under our improved analysis. However, the posterior mean for the cosmological

parameters exhibit up to 2σ shifts w.r.t. results obtained with the conventional χ2

approach. This is a consequence of our improved statistical analysis, which benefits

from a reduced bias in estimating the parameters.

While in this chapter I have only discussed statistical constraints, our method

offers a new, fully consistent way of including systematic uncertainties in the fit. As

our method is fully Bayesian, it can be used in conjunction with fast and efficient

Bayesian sampling algorithms, such as MCMC and nested sampling. This will al-

low to enlarge the number of parameters controlling systematic effects that can be

included in the analysis, thus taking SNIa cosmological parameter fitting to a new

level of statistical sophistication. The power of our method as applied to systematic

errors analysis will be presented in a forthcoming, dedicated work.

At a time when SNIa constraints are entering a new level of precision, and with

a tenfold increase in the sample size expected over the next few years, we believe

it is timely to upgrade the cosmological data analysis pipeline in order to extract

the most information from present and upcoming SNIa data. This work represents

a first step in this direction.
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Figure 7.13: Histograms of the quantity defined in Eq. (7.148), comparing of
the error bars on each parameter from our method and from the standard χ2

approach for 100 realization, for the ΛCDM model (upper panel) and the wCDM
model (lower panel). A change in error bar size of −10% indicates BHM error
bars are 10% smaller than χ2 error bars. A change in error bar size of +10%
indicates BHM error bars are 10% larger than χ2 error bars. Our BHM method
generally delivers smaller errors on the cosmological parameters (top row) so is
more precise, but larger errors on the SNe Ia global fit parameters α, β (bottom
row) so is less precise.



7.10 Conclusions 164

−0.5 0 0.5
0

5

10

15

20

25

63% < 0

Test statistics for Ω
M

F
re

qu
en

cy

−0.5 0 0.5
0

10

20

30

64% < 0

Test statistics for ΩΛ

Λ CDM

−0.1 0 0.1
0

5

10

15

20

60% < 0

Test statistics for α

F
re

qu
en

cy

−0.05 0 0.05
0

5

10

15

20

25

57% < 0

Test statistics for β
−0.1 0 0.1

0

5

10

15

20

25
75% < 0

Test statistics for Ln σµ
int

−0.5 0 0.5
0

5

10

15

20

25

73% < 0

Test statistics for Ω
M

F
re

qu
en

cy

−0.5 0 0.5
0

10

20

30

40

73% < 0

Test statistics for ΩΛ

wCDM

−0.5 0 0.5
0

5

10

15

20

25

63% < 0

Test statistics for w

−0.1 0 0.1
0

10

20

30

63% < 0

Test statistics for α

F
re

qu
en

cy

−0.05 0 0.05
0

5

10

15

20

25

59% < 0

Test statistics for β
−0.2 0 0.2

0

10

20

30

75% < 0

Test statistics for Ln σµ
int

Figure 7.14: Histograms of the test statistics defined in Eq. (7.149), comparing
the long-term performance of the two methods for the parameters of interest in
the ΛCDM model (lower panel) and the wCDM model (upper panel). A pre-
dominantly negative value of the test statistics means that our method gives a
parameter reconstruction that is closer to the true value than the usual χ2, i.e.,
less biased. For the cosmological parameters (top row), our method outperforms
χ2 about 2 times out of 3.
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Figure 7.15: Coverage of our method (blue) and standard χ2 (red) for 68.3%
(solid) and 95.4% (dashed) intervals, from 100 realizations of simulated data for
the ΛCDM model (left) and the wCDM model (right). While both methods
show significant undercoverage for all parameters, our method has a comparable
coverage to the standard χ2, except for w. Coverage values for the intrinsic
dispersion σint

µ are not available from the χ2 method, as it does not produce an
error estimate for this quantity.
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assuming w = −1) and w,Ωm (right panel, assuming Ωκ = 0) from our Bayesian
method (light/dark blue regions, 68.3% and 95.4% marginalized posterior), com-
pared with the statistical errors from the usual χ2 approach (yellow/red regions,
same significance level; from Kessler at al. (2009a)). The yellow star gives the
posterior mean from our analysis.
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Figure 7.17: Combined constraints on the cosmological parameters Ωm,ΩΛ (left
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CMB and BAO data. Red contours give 68.3% and 95.4% regions from CMB
alone, green contours from BAO alone, blue contours from SNIa alone from our
Bayesian method. The filled regions delimit 68.3% and 95.4% combined con-
straints, with the yellow star indicating the posterior mean.
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µ from
current SNIa data.
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Figure 7.19: A simulated data set in which β evolves with z such that β(z) =
β0 + zβ1. Upper panel: fitted using an the incorrect static model (red). Lower
panels: fitted using the correct evolving model (blue). Green dashed lines show
location of true parameter.
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Figure 7.20: A simulated data set in which β is static such that β(z) = β.
Upper panel: fitted using an the correct static model (red). Lower panels: fitted
using the incorrect evolving model (blue) β(z) = β0 + zβ1. Parameter inference
for the incorrect case correctly shows that the additional degree of freedom is not
necessary and the evolving contribution β1 may be set to zero. Here the true
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lines show location of true parameter.
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Figure 7.21: Bayesian hierarchical network showing the deterministic (dashed)
and probabilistic (solid) connections between variables in our Bayesian hierarchi-
cal model (BHM). Variables of interest are in red, latent (unobserved) variables
are in blue and observed data (denoted by hats) are in green. Note the additional
parameter ∆i which models the intrinsic dispersion. In this case ∆0 ≡ 0
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Chapter 8

Robustness to Systematic Error

for Future Dark Energy Probes

The Fisher matrix formalism outlined in section 5.3 gives a useful methodology for

predicting the error ellipses around the fiducial model on the parameters of interest

for future proposed astrophysical probes of cosmology. One of the most common

Figures of Merit (FoM) used as a metric for comparing proposed probes is the inverse

area of the error ellipse derived from the Fisher matrix formalism (Albrecht et al.,

2006, 2009) which gives a measure of the expected statistical power or ability of

a probe to be able to constrain the parameters of interest. Alternative FoMs in

higher dimesnions are given by (Huterer & Turner, 2001; Albrecht & Bernstein,

2007; Wang, 2008; Crittenden et al., 2009; Mortonson et al., 2010), and a more

general Bayeisan approach to FoMs is given in (Trotta et al., 2010). The purpose of

the FoM is to evaluate in advance the expected statistical power of future probes.

Survey parameters can be adjusted in order to maximise the statistical power of a

particular probe, and proposed probes can be ranked by their FoM. This ranking

can then assist in the decision making process of how to allocate limited resources

to get the best science return.

One of the limitations of the inverse area FoM is that it does not take into con-

sideration what would happen if either the current or future proposed probe were

biased - these inverse area FoMs are evaluated at the fiducial model in parameter

space. But what happens if the future proposed probe is biased, that is shifted

somewhat in parameter space with respect to the fiducial model due to unforeseen

systematic errors? How can we evaluate the possible impact of bias inducing system-

atic errors which shift the proposed probe with respect to the fiducial model? How

can we quantify which probes are more or less robust to systematic errors? In order

to address these questions and provide a method for quantifying the robustness to
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systematic errors of future proposed probes, we have extended the FoM formalism

to give a new ‘Robustness’ statistic.

In this chapter I first give an overview of the standard statistical FoM and then

introduce our new Robustness FoM, discussing its properties with reference to a

Gaussian linear model. I then present a case study in which I apply the Robustness

FoM to two future dark energy probes, supernovae type Ia (SNe Ia) and Baryon

Acoustic Oscillations (BAO). This chapter follows closely the paper March et al.

(2011b).

8.1 Figures of Merit for Future Dark Energy

Probes

8.1.1 Gaussian linear model

Suppose there are two different dark energy probes, whose likelihood function is as-

sumed to be Gaussian and is characterized by a Fisher matrix (i.e. inverse covariance

matrix) Li (i = 1, 2), i.e.

Li(Θ) ≡ p(di|Θ) = Li0 exp

(
−1

2
(µi −Θ)tLi(µi −Θ)

)
(8.1)

where Θ are the parameters of interest and µi is the location of the maximum like-

lihood value in parameter space. In the absence of systematic errors, the maximum

likelihood point, µi, is located at the true value of the parameters (i.e. fiducial val-

ues), which here we take to be the origin. Here we neglect realization noise, i.e. such

that µi is interpreted as the expectation value of the maximum likelihood estimator

averaged over many data realizations. However, the presence of unforeseen system-

atic errors could introduce a non-zero shift in µi. In sections 8.4.2 and 8.4.1 we shall

show how plausible but unforeseen systematics in the observables of two different

dark energy probes translate into a systematic shift in µi in the w0, wa parameter

space. The posterior distribution for the parameters, p(Θ|D), is obtained by Bayes

theorem as

p(Θ|D) =
p(Θ)p(D|Θ)

p(D)
, (8.2)

where p(Θ) is the prior, p(D) the Bayesian evidence and D are the data being used.

If we assume a Gaussian prior centered on the origin with Fisher matrix Σ, the
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posterior from each probe is also a Gaussian, with Fisher matrix

Fi = Li + Σ (i = 1, 2) (8.3)

and posterior mean

µi = F−1
i (Liµi) (8.4)

If we combine the two probes, we obtain a Gaussian posterior with Fisher matrix

F = L1 + L2 + Σ (8.5)

and mean

µ = F−1

2∑
i=1

Liµi. (8.6)

The precision of the posterior, as characterised by itsFisher matrix, does not depend

on the degree of overlap of the likelihoods of the individual probes. In terms of

their associated error ellipses, the area of the joint posterior ellipse depends only on

the size and relative orientation of the error ellipses associated with the individual

probes, it does not depend on their degree of overlap or relative position in parameter

space. A FoM which depends only on the the joint posterior Fisher matrix assigns

equal merit to an unbiased proposed future probe, and a biassed future probe subject

to systematic error, as both would have the same FoM. This prompts us to define

an additional FoM, which we call ‘Robustness’ which quantifies the effect of bias

due to systematic error.

8.1.2 The Statistical Figure of Merit

As described in section 5.3, the reciprocal of the area of the error ellipse is often used

to describe the statistical power of a future dark energy probe. This FoM or measure

of statistical performance, widely known as the DETF FoM (Albrecht et al., 2006;

Huterer & Turner, 2001), is usually defined (up to multiplicative constants) as

|Li|1/2 (8.7)

As an alternative to the standard statistical FoM described by Eq. (8.7) we suggest

to adopt a more statistically motivated measure of the information gain, namely the

Kullback-Leibler divergence (KL) between the posterior and the prior, representing

the information gain obtained when upgrading the prior to the posterior via Bayes
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theorem:

DKL ≡
∫
p(Θ|D) ln

p(Θ|D)

p(Θ)
dΘ (8.8)

The KL divergence measures the relative entropy between the two distributions: it

is a dimensionless quantity which expresses the information gain obtained via the

likelihood. For an example case study with Gaussian prior:

p(Θ) = NΘ(θπ,Σ) (8.9)

and a Gaussian likelihood

L(Θ) = L0 exp

(
−1

2
(θ0 −Θ)tL(θ0 −Θ)

)
(8.10)

the evidence for data d is given by

p(d) ≡
∫

dΘp(d|Θ)p(Θ) (8.11)

= L0
|Σ|1/2
|F |1/2 exp

[
−1

2

(
θt0Lθ0 + θtπΣθπ − θtFθ

)]
(8.12)

where F = L+ Σ and θ = F−1(Lθ0 + Σθπ)

the information gain (w.r.t. the prior Σ) from the combination of both probes

is given by

DKL =
1

2

(
ln |F | − ln |Σ| − tr[1− ΣF−1]

)
(8.13)

In section 8.1.3 we shall be interested in assessing the statistical performance of

future dark energy probes, in a context where probe 1 is taken to represent present-

day constraints on dark energy parameters, while probe 2 is a future proposed dark

energy mission. We normalize the KL divergence for the combination of probe 1

and probe 2, given by Eq. (8.13), w.r.t. the case where probe 2 is assumed to be

a hypothetical experiment that would yield identical dark energy constraints as the

existing ones (probe 1). This is not meant to represent a realistic dark energy probe,

but merely to give a benchmark scenario for the normalization of the information

gain. This choice of normalization has the added advantage of cancelling out most

of the prior dependence in Eq. (8.13). After exponentiating the normalized KL

divergence, we therefore suggest to adopt as a statistical FoM the dimensionless
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quantity

S ≡|L1 + L2 + Σ|1/2
|2L1 + Σ|1/2

× exp

(
1

2
tr[Σ((L1 + L2 + Σ)−1 − (2L1 + Σ)−1)]

)
.

(8.14)

Thus far we have not dealt with the issue of systematic errors leading to bias, but

have merely suggested an alternative to the existing statistical FoM, in the next

section we shall develop the formalism which leads to the additional Robustness

FoM which deals with systematic errors.

8.1.3 Robustness of Dark Energy Probes

In order to quantify the robustness to potential systematics of a combination of

probes, we wish to derive a measure of the degree of consistency between them.

The fundamental idea underlying our new robustness FoM is that our confidence

in the robustness of a new dark energy probe is increased if it returns constraints

which overlap significantly with previously existing probes constraints. If on the

contrary the new probe has a small degree of consistency with previous experiments,

this might point to either a failure of the underlying theoretical model or to the

presence of unforseen and unmodelled systematics in the new probe (or both). In

the following, we focus on the latter hypothesis.

The idea is to perform a Bayesian model comparison between two hypotheses,

namely H0, stating that the data D are all compatible with each other and the

model, versus H1, purporting that the observables are incompatible and hence tend

to pull the constraints in different regions of parameter space. The Bayes factor

between the two hypotheses, giving the relative probabilities (odds) between H0

and H1 is given by

R =
p(D|H0)∏2
i=1 p(di|H1)

, (8.15)

where the Bayesian evidence for a given hypothesis H is

p(d|H) =

∫
dΘp(d|Θ,H)p(Θ|H). (8.16)

IfR� 1, this is evidence in favour of the hypothesisH0 that the data are compatible.

If insteadR� 1 the alternative hypothesisH1 is preferred (namely, that the data are

incompatible). Examples of the application of the statistics R introduced above can

be found in Hobson et al. (2002); Feroz et al. (2008) – see the Appendix of Feroz

et al. (2009) for a toy model illustration. For a review of Bayesian methods in
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cosmology, and in particular of model selection techniques, see Trotta (2008).

We can restrict our considerations to just two probes, hence D = {d1, d2}.
Then the criterium of Eq. (8.15) can be written as (omitting for brevity the explicit

conditioning on hypotheses)

R =
p(d1, d2)

p(d1)p(d2)
=
p(d2|d1)p(d1)

p(d1)p(d2)
=
p(d2|d1)

p(d2)
. (8.17)

The conditional evidence for d2 given dataset d1 can be calculated as

p(d2|d1) =

∫
p(d2|Θ)p(Θ|d1)dΘ, (8.18)

where the first term is the likelihood for the second probe and the second term is

the posterior from the first probe. By using the likelihood (8.1), and making use of

Eq. (8.12) we obtain:

p(d2|d1) = L(2)
0

|F1|1/2
|F |1/2

exp

[
−1

2

(
µt2L2µ2 + µt1F1µ1 − µtFµ

)]
,

(8.19)

where µ is given by Eq. (8.6), F by Eq. (8.5) and µ1 by Eq. (8.4). Using again

Eq. (8.12) we obtain for the denominator in Eq. (8.17)

p(d2) = L(2)
0

|Σ|1/2
|F2|1/2 exp

[
−1

2

(
µt2L2µ2 − µt2F2µ2

)]
, (8.20)

so that we obtain

R =
|F1|1/2|F2|1/2
|F |1/2|Σ|1/2

exp

[
−1

2

(
µt1F1µ1 + µt2F2µ2 − µtFµ

)]
.

(8.21)

Therefore we can recast Eq. (8.15) into

lnR =
1

2
µtFµ− 1

2

2∑
i=1

µtiFiµi

− 1

2
ln
|F |
|Σ| +

1

2

2∑
i=1

ln
|Fi|
|Σ| .

(8.22)

We shall use below the robustness R to define a new FoM. For now, let us notice
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that it is the product of two terms: the terms involving determinants of the Fisher

matrices add up to an Occam’s razor factor, which is always > 0. The second part

(summing over quadrating forms involving the various Fisher matrices) expresses

the degree of overlap of the posteriors from the two probes. This term will reduce R

if the posteriors from the two probes are significantly displaced from the posterior

obtained using the combined data set (a smoking gun for systematic bias). The

generalization of Eq. (8.22) to an arbitrary number of probes is derived in section

8.2.

8.1.4 The Robustness Figure of Merit

We now specialize to the situation where probe 1 describes our current knowledge

about dark energy parameter, while probe 2 represents a proposed future dark energy

mission. Notice that probe 1 does not need to be a single experiment (i.e., just SN

Ia or just BAO), but it can be interpreted as being the effective joint constraint

from a combination of all available present-day dark energy probes. Without loss of

generality, we assume that the current constraints are unbiased, i.e. we set µ1 = 0

in the following, and we wish to evaluate the robustness of a future probe, as defined

in Eq. (8.22), which might be subject to systematic bias.

Let us assume for the moment being that we can estimate the bias b in parameter

space which probe 2 might be subject to. A procedure to achieve this will be

presented below for the specific cases of SN Ia and BAO observations. For now, we

remain completely general, and assume that the maximum likelihood estimate for

the dark energy parameters from probe 2 is displaced from their true value by a bias

vector b, i.e. µ2 = b. This, together with the assumption that probe 1 is unbiased

(i.e., µ1 = 0) gives µ̄2 = F−1
2 L2b and the joint posterior mean from both probes is

µ = F−1L2b. (8.23)

Then we can write for the robustness R, Eq. (8.22)

lnR =
1

2
(F−1L2b)

tF (F−1L2b)− 1

2
(bL2)tF−1

2 (L2b)

− 1

2
ln
|F |
|Σ| +

1

2

2∑
i=1

ln
|Fi|
|Σ| ,

(8.24)
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which can be rewritten as

lnR = −1

2
(bL2)t(F−1

2 − F−1)(L2b) +R0

= −1

2
btF ∗b+R0

(8.25)

where we have defined

F ∗ ≡ L2(F−1
2 − F−1)L2 (8.26)

R0 ≡ −1

2
ln
|F |
|F1|
|Σ|
|F2| . (8.27)

If the prior Σ is negligible with respect to L2 we have F2 = L2 and F ∗ = F2 −
F2F

−1F2.

In order to normalize the value of R, we adopt the ‘repeated experiment’ pro-

cedure we used for the normalization of the statistical FoM. This is defined as the

hypothetical case where the new experiment (probe 2) yields exactly the same Fisher

matrix as the existing probe 1, and is unbiased, i.e. F1 = F2 and b = (0, 0). For this

identically repeated case the robustness of the two probes is given by

R∗ =
|F1|

(|2L1 + Σ||Σ|)1/2
. (8.28)

Normalizing R from Eq. (8.25) to the above value means that R/R∗ = 1 is the

robustness that one would achieve by carrying out a new dark energy measurement

that would yield exactly the same constraints as we currently have, and no bias. We

therefore define the quantity

RN ≡ R

R∗
(8.29)

as our robustness FoM, which expresses the robustness of probe 2 under the assump-

tion that it will be affected by a bias b.

The robustness FoM above represents a “worst case scenario” (for a given b) for

probe 2, because we are assuming that it will be for sure systematically biased. A

more balanced approach is to average the robustness along the direction defined by

the systematic bias vector b. This gives an “average robustness”, which accounts for

different possible sizes in the strength of the bias1. In order to perform the average,

1Notice that as we average R along b we do not re-evaluate the Fisher matrix of the probe as a
function of b, but we simply translate the Fisher matrix found at the fiducial point (i.e., the true
parameters values). The Fisher matrix typically depends only weakly on the fiducial model chosen,
as long as we consider the models within the parameter confidence region. If the bias vector is
not much larger than the statistical errors we can therefore approximate the Fisher matrix at the
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we rotate the coordinate axes so that the new x-axis is aligned with the vector b

(assuming here a 2-dimensional parameter space for simplicity):(
1

0

)
= Λb (8.30)

where Λ is a suitable rotation matrix, and Λt = Λ−1. Then the average robustness

along the direction defined by b is given by

〈R〉 ≡
∫
W (x)

R

R∗
dx =

eR0

R∗

∫
W (x)e−

1
2
D11x2

dx (8.31)

where

D ≡ ΛF ∗Λt (8.32)

and W (x) is a suitable weighting function. A natural choice for W is a Gaussian

with characteristic scale for the bias given by the length of the bias vector, |b|,

W (x) =
1√

2π|b|e
− 1

2
x2

|b|2 , (8.33)

so that Eq. (8.31) becomes

〈R〉 =
eR0

R∗
√

2π|b|
∫
e−

1
2
x2[D11+|b|−2]dx

=
(|F2||2L1 + Σ|)1/2

|FF1|1/2 ||b|2D11 + 1|−1/2,

(8.34)

The Gaussian weight is centered at the unbiased parameter values, but it also has a

tail that stretches above the characteristic scale of the bias, |b|, in order to account

for a potentially much larger bias. We have checked that the use of other weight

functions (e.g., a top-hat weight out to a maximum bias value given by the size of

the bias vector) give a qualitatively similar result. We define the quantity given by

Eq. (8.34) as the “average robustness” FoM.

Finally, we can also combine the statistical and robustness FoMs to obtain an

overall FoM expressing both the statistical power and the robustness to systematic

biased parameters values with the one evaluated at the fiducial point.
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bias of the probe as

TN ≡ RN × S, (8.35)

〈T 〉 ≡ 〈R〉 × S, (8.36)

where S is given by Eq. (8.14), while RN and 〈R〉 by Eqs. (8.29) and (8.31), respec-

tively.

8.2 Generalization to arbitrary number of probes

The generalization of Eq. (8.22) to an arbitrary number of probes proceeds as follows.

First, we notice that one can always summarize current constraints from several

observations in one single joint posterior. Let us call the data from the combination

of all available present-day probes d0 (with Fisher matrix F0). If one wishes to

consider N future probes, we can ask whether all of the N probes are mutually

compatible2. Eq. (8.17) gives in this case

Rall =
p(dNdN−1 . . . d1|d0)∏N

j=1 p(dj|d0)
(8.38)

=
N∏
j=1

p(dj|dj−1 . . . d1d0)

p(dj|d0)
(8.39)

=
N∏
j=2

p(dj|dj−1 . . . d1d0)

p(dj|d0)
(8.40)

where in the last line we have cancelled out the very last term in both the numerator

and the denominator, so that the sum starts with j = 2. We now refer to Eq. (8.19)

2An alternative test would be to check whether the N -th probe is compatible with the previous
N − 1 (assuming those are already available and they are free of systematics themselves). In this
case the relevant quantity is

RN =
p(dN |dN−1 . . . d1)
p(dN )p(dN−1 . . . d1)

(8.37)

which can be computed by appropriate substitutions in Eq. (8.22).
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to obtain

p(dj|dj−1 . . . d1d0) = L(j)
0

|F012...(j−1)|1/2
|F012...j|1/2 (8.41)

× exp

[
−1

2

(
µtjLjµj

+ µt012...(j−1)F012...(j−1)µ012...(j−1)

− µt012...jF012...jµ012...j

)]
,

where the definitions correspond to those before, so that F012...j ≡ F0 +
∑j

i=1 Li,

and in particular F012...N ≡ F . Notice already that most terms in the numerator of

Eq. (8.40) will cancel. Similarly, following Eq. (8.20)

p(dj|d0) = L(2)
0

|F0|1/2
|F0j|1/2 (8.42)

× exp

[
−1

2

(
µtjLjµj + µt0F0µ0 − µt0jF0jµ0j

)]
,

Now one can evaluate Eq. (8.40) with the help of Eqs. (8.41) and (8.42):

Rall =
|F01|1/2
|F |1/2

N∏
j=2

|F0|−1/2

|F0j|−1/2
× exp

[
−1

2
(µt01F01µ01 − µtFµ

− (N − 1)µt0F0µ0 +
N∑
j=2

µt0jF0jµ0j)

] (8.43)

We thus obtain for the robustness

lnRall =
1

2

(
N∑
i=1

ln |F0i| − (N − 1) ln |F0| − lnF

)

− 1

2
(
N∑
i=1

µt0iF0iµ0i − (N − 1)µt0F0µ0 − µtFµ),

(8.44)

which generalizes Eq. (8.22).

8.3 Properties of the Robustness FoM

Before applying the above formalism to future dark energy probes, we wish to gain

some further insight into the behaviour of our robustness FoM by considering it in

the context of a Gaussian toy model. We start with the normalized expression for
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the average robustness, Eq. (8.34) and assume now that the confidence regions of the

two probes are identical up to a roto-translation (and therefore the determinants

of F1, F2 are equal). If moreover the prior is very weak we can approximate the

posterior with the likelihood, hence

〈R〉 ≈ 2
|F1|
|F | ||b|

2D11 + 1|−1/2. (8.45)

Let us further assume that probes 1 and 2 are aligned, i.e., they have a degener-

acy direction lying along the same straight line. This means also that their Fisher

matrices are simultaneously diagonalizable (i.e. they commute) and that F is also

diagonalizable. Since the bias vector b by definition connects the maximum likeli-

hood points of the two probes, its direction is also aligned with one of the principal

axis of the probes in this particular example. Then we can write

D = Λ(F2 − F2F
−1F2)Λ−1 (8.46)

= FD
2 − FD

2 (FD
1 + FD

2 )−1FD
2 (8.47)

where the superscript D denotes the diagonalized version of a matrix. The last step

follows because for any matrix A diagonalized by Λ and any power k one has

ΛAkΛ−1 = (AD)k. (8.48)

Now let us denote the length of the j-th semiaxis of the i-th probe by σi,j where

(after diagonalization) the semiaxis j = 1(2) lies along the abscissa (ordinate) .

Then we have

D11 = σ−2
2,1

(
1− σ2

1,1

σ2
1,1 + σ2

2,1

)
(8.49)

and therefore

〈R〉 ≈ 2(σ2,1σ2,2)

(σ2
1,2 + σ2

2,2)1/2(|b|2 + σ2
1,1 + σ2

2,1)1/2
. (8.50)

This expression shows that the average robustness is invariant with respect to rescal-

ing of the axes: in fact, if the distances along the abscissa, σ1,1, σ2,1, |b|, are rescaled

by an arbitrary factor, 〈R〉 does not change; the same applies in the y-direction.

Since we assumed the ellipses to be congruent, we have two qualitatively dif-

ferent cases: orthogonal ellipses (⊥), i.e. σ2,2 = σ1,1 and σ2,1 = σ1,2; and parallel
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ellipses (‖), i.e. σ1,1 = σ2,1 and σ1,2 = σ2,2. In the orthogonal case we obtain

〈R〉⊥ =
2r

1 + r2

(
1 +

|b|2r2

σ2
2,1(1 + r2)

)−1/2

(8.51)

where r = σ2,1/σ2,2 measures the elongatedness of the ellipses. In the parallel case

we obtain instead for any r

〈R〉‖ =

(
1 +

|b|2
2σ2

2,1

)−1/2

(8.52)

From these expressions we can derive some general consequences. Because of our

choice of normalization, unbiased identical probes have unity robustness. In general,

if the bias length is small with respect to the statistical errors of the second probe,

then parallel probes are more robust than orthogonal ones. If the second probe

is very elongated (degenerated) along the bias direction, i.e. r � 1, then again

parallel probes are more robust than orthogonal ones. If instead the degeneracy of

the second probe lies orthogonally to the bias direction, r � 1, there are two cases:

parallel probes are more robust if the bias is smaller than the long axis (|b|2 < σ2,2),

but less robust in the opposite case. Of course the general case, with arbitrary bias

direction and length and arbitrary sizes and orientation of the probes cannot be

reduced to such simple conclusions.

Armed with the above intuition, we now consider in Fig. 8.1, a numerical illus-

tration of 4 different cases for the relative orientation of the two probes (orthogonal

or parallel) and the direction of the bias vector (along the short or long semiaxis).

The two sets of iso-likelihood contours enclose 68% and 95% confidence levels; as

above, the second probe (blue contours) has the same area as the first (i.e., L1 = L2),

but its degeneracy direction can be rotated, and its maximum likelihood value is

displaced from the true value by a systematic bias (of fixed length in all cases), given

by the green vector. The first probe (red contours) is assumed to be unbiased. The

prior is Π = diag(1, 1) (i.e. a prior of 1.0 in each parameter with no correlations

imposed). For each case, we give the corresponding statistical FoM, Eq. (8.14), the

robustness FoMs, (8.29) and (8.31), and the total FoM (for the averaged robustness),

Eq. (8.36).

The robustness FoM (with or without averaging) depends both on the direction

along which the bias is directed and on the relative orientation of the degeneracy di-

rections of the two probes. When the bias is directed along the degeneracy direction

of probe 1 and probe 2 is aligned along that direction (lower left panel), the robust-
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ness is maximal. It decreases if the two probes are orthogonal to each other, since

this reduces the degree of overlap between them (upper panels). Finally, robustness

is smallest when the two probes are aligned but the bias is direct orthogonally w.r.t

the degeneracy direction (lower right panel), as argued above. Looking ahead to the

application of the robustness formalism to the dark energy equation of state param-

eters in the next section, we can anticipate here that the most relevant case is the

one where the two probes are similarly oriented (bottom panels of Fig. 8.1). This

is because different dark energy probes are typically degenerate in the equation of

state parameters along quite similar directions. Therefore, their relative robustness

can be expected to depend mainly on the orientation of the bias w.r.t. the main

degeneracy direction.

The statistical FoM is largest when the probes are orthogonal to each other,

as expected. Notice that the statistical FoM is unaffected by the bias, and only

depends on the relative alignment of the two probes. For a given orientation and

size of the bias vector, the total FoM allows one to decide which configuration for

probe 2 is to be preferred. For the example of Fig. 8.1, if the bias vector points along

the degeneracy direction of probe 1 (left-hand side panels), one would prefer probe

2 to be aligned with probe 1 (〈T 〉 = 0.71) as opposed to probe 2 being orthogonal to

probe 1 (〈T 〉 = 0.61). If instead the bias is orthogonal to the degeneracy of probe 1

(right-hand side panels), then the best choice for probe 2 is for it to be orthogonal

to probe 1 (〈T 〉 = 0.62 compared to 〈T 〉 = 0.44).

We can also ask what is the optimal orientation of probe 2 with respect to

probe 1 if one wanted to maximise its robustness, given a bias direction. In Fig. 8.2,

we plot both the statistical and the average robustness FoMs as a function of the

rotation angle between the principal direction of the two probes. The average ro-

bustness is evaluated for 3 different directions of the bias (coloured vectors in the

top panel). We notice once more that the statistical FoM is maximised when the

probes are orthogonal. However, the robustness FoM is maximised when the degen-

eracy direction of probe 2 is close to being aligned with the direction of the bias

vector, as this maximizes the overlap with probe 1 even when probe 2 suffers from

a systematic error. Finally, increasing the length of the bias by a factor of 2 (fainter

green vector in the top panel) reduces the overall average robustness.

In summary, the robustness of a future probe is a function of its statistical

properties (i.e., the direction along which its main degeneracy is aligned, compared

with the degeneracy direction of probe 1) as well as of the direction and size of

the systematic bias. The performance of a future probe should be assessed by con-

sidering simultaneously its statistical power but also its robustness to systematics.



8.4 Robustness of Future Dark Energy Probes 184

Figure 8.1: Illustration of statistical and robustness FoM for a future probe (blue
ellipses, 68% and 95% C.L.) which is systematically biased w.r.t. the present-day
constraints (red ellipses) in the direction given by the green bias vector. The black
dotted ellipses represent the combined constraints. Notice that the statistical FoM
(S) does not change in the presence of a systematic bias.

Optimizing a future dark energy experiment in terms of its statistical errors alone

would generically lead to an experiment which is less robust, for a given overall level

of plausible systematics. Any optimization procedure should therefore involve the

complementary criteria of statistical strength and robustness to systematic bias.

We now turn to applying the above concept to the concrete scenario of two

classes of future dark energy missions, namely type Ia SN and BAO measurements.

8.4 Robustness of Future Dark Energy Probes

We consider a simple and widely used phenomenological description of an evolving

dark energy model, where the equation of state is w(z) = w0 + waz/(1 + z), char-

acterized by the two free parameters (w0, wa) (Chevallier & Polarski, 2001; Linder,

2003). For probe 1 (representing current constraints on w0, wa) we take a Gaussian

approximation to the joint likelihood resulting from the combination of Union 2
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Figure 8.2: Dependency of FoMs on the angle between the degeneracy direction
of the two probes. Upper panel: the red (blue) ellipses represent the 68% and
95% likelihood contours of probe 1 (probe 2, which is potentially biased). The
degeneracy direction of probe 2 is offset by an angle θ w.r.t probe 1. The three
vectors gives three possible directions for the bias. Lower panel: value of statistical
FoM S (black dashed line, right-hand axis), and average robustness FoM, 〈R〉,
(coloured solid lines, left-hand axis, colour and thickness matching the bias vectors
in the upper panel), as a function of the relative angle θ. Vertical coloured lines
give the angle of each bias vector.

SNe Ia data (Amanullah et al., 2010), SDSS BAO (Percival et al., 2010), WMAP7

measurements of the shift parameters (Komatsu et al., 2010), and SHOES mea-

surements of the Hubble constant (Riess et al., 2009). We further assume a flat

Universe. For the prior on the dark energy parameters, we take a Gaussian centered

at (w0 + 1, wa) = (0, 0) with Fisher matrix Π = diag(1, 1/100). In the following,

when we look at the Fisher matrix we mean the 2D marginalised Fisher matrix (i.e.,

marginalised down to the dark energy parameter space). Although in the rest of this

paper we focus exclusively on the robustness FoM for dark energy parameters, we

note that our robustness formalism is equally applicable to any other cosmological

parameter one is interested in.

In order to evaluate robustness, we need to specify the bias vector b. There
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are several plausible ways of doing this, and the outcome will depend on what one

thinks a possible systematic bias might be due to. In our case, in order to illustrate

our new FoM, we determine b by assuming a possible systematic bias in the probe’s

observables, and then projecting the resulting systematic shift onto the dark energy

parameter space of interest, as described in detail below. We stress that this is by

no means the only procedure by which one can estimate b. Other assumptions about

the origin of systematic errors will in general lead to a different b, and therefore to

a different value for the robustness of the future probe.

8.4.1 Future SN Ia Measurements

The data, analysis and text in this section 8.4.1 are the work of Dragan Huterer and

are not my own.

We consider a survey dedicated to observing type Ia supernovae from space, with

a redshift distribution like the one expected from SNAP, with 2000 SNe distributed

as in Kim et al. (2004), plus a low-z sample of 300 SNe distributed uniformly in the

redshift range 0.03 < z < 0.08. The projected SNAP magnitude errors include both

statistical and systematic components, and are modelled as follows:

σ2
b =

[
0.152

Nb

+ A2
syst

(
1 + zb

1 + zmax

)2
]
, (8.53)

where Nb is the number of SNe in each bin centered at zb and of width dz = 0.1.

The second term on the right-hand side of Eq. (8.53) models a systematic floor

that increases linearly with z up to a maximum of Asyst mag per dz = 0.1 bin at

zmax = 1.7 (Linder & Huterer, 2003). In order to evaluate the robustness of SNa data

for different levels of systematics, we will consider values of Asyst = 0.01, 0.02, 0.05.

We assume a flat universe with four parameters relevant for this analysis, matter

density relative to critical ΩM , equation of state today w0, its variation with scale

factor wa, and a nuisance offset in the Hubble diagram M. Marginalizing over

ΩM and M and assuming Asyst = 0.02, we find that our fiducial survey produces

statistical errors of σw0 = 0.075 and σwa = 0.30, corresponding to the black 68% C.L.

ellipse in Fig. 8.3. The bias in the dark energy parameters, b, reconstructed from

SN measurements induced by an arbitrary bias in the observed magnitudes δm(z)

can be derived from the Fisher matrix for SNe (e.g. Knox et al. (1998); Huterer &



8.4 Robustness of Future Dark Energy Probes 187

-1.2 -1.1 -1 -0.9 -0.8
w

0

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
w

a

Statistical 68% CL
Fiducial δm(z) bias

Worst-case δm(z) excursions

z=1.7

z=1.0

Figure 8.3: Systematic bias in the w0-wa plane for future SNIa data. The square
denotes our fiducial value and the ellipse gives the 68% CL statistical contour from
future SNIa data. The blue curve shows the systematic bias given by Eq. (8.56),
with points showing cumulative contributions from each of the 16 redshift bins –
that is, cumulative value of the sum in Eq. (8.55).For clarity, we explicitly label
bias contributions accumulated by redshifts z = 1 and z = 1.7. The red segments
denote the worst-case bias, where the sign of δm(z) at each redshift bin conspires
to shift the (w0, wa) value away from the true value (“Maximum excursion bias”);
see Eq. (8.57). For clarity, we have also plotted the biases with the opposite sign
relative to the fiducial model parameter values. This figure is the work of Dragan
Huterer.

Turner (2001)), and is given by

bi =
∑
j

(F−1)ij
∑
α

dm(zα)

dµj

1

σ2
α

δmsys(zα) (8.54)

≡
∑
α

c(i)
α δmsys(zα) (8.55)

where µi are the cosmological parameters, c
(i)
α ≡ ∑j(F

−1)ij(dm(zα)/dµj)/σ
2
α and

where α runs over redshift bins. We adopt a systematic bias of the same form as

the “floor” that was previously included in the total statistical error:

δmsys(zα) = Asyst

(
1 + zα

1 + zmax

)
(8.56)

Bias of this magnitude leads to the bias on cosmological parameters which can be
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calculated using Eqs. (8.55) and (8.56), and is shown as the blue curve in Fig. 8.3.

Each point on the curve shows cumulative contributions to the excursion in w0 and

wa around the fiducial model (with (w0, wa) = (−1, 0)) for each of the 16 redshift

bins we consider, z ∈ [0.1, 0.2], . . . , z ∈ [1.6, 1.7]. In other words, points on the blue

curve show cumulative contribution of the sum in Eq. (8.55).

But this form of the bias assumes that the excursions in δm(zα) are of the same

sign (taken to be positive), and equal to the maximum allowed value in Eq. (8.56).

The worst-case bias to the dark energy parameters is obtained if δm(zα) changes

sign in each redshift bin just so as to maximize the excursion in w0 and wa. Such a

worst-case bias can be straightforwardly calculated (Huterer & Takada, 2005)

bworst
i =

∑
α

|c(i)
α | δmsys(zα) (8.57)

for a single dark energy parameter µi, where δmsys(zα) > 0 was taken by default.

In other words, the systematic error takes a plus or minus sign equal to that of the

coefficient c
(i)
α in each redshift bin 3. Such a worst-case excursion in the (w0, wa)

plane is shown as the red curve with points in Fig. 8.3. We call this scenario the

“maximum excursion bias” (MEB), and use it as an estimate for the bias vector b

in the computation of our robustness FoM.

8.4.2 Future Baryonic Acoustic Oscillations Measurements

The data, analysis and text in this section 8.4.2 are the work of Luca Amendola and

are not my own.

The second class of future probe we consider consists of a full-sky spectro-

scopic redshift survey modelling a future spacee mission with specifications close

to WFIRST or Euclid (or a Stage-IV mission in the language of the DETF). The

probe is fully specified by choosing a number of redshift bins and giving the ex-

pected number densities of galaxies per bin and the sky coverage, assumed here to

be 20,000 square degrees. Table 8.1 gives the redshift binning and the galaxy num-

ber densities, taken from the data published by the Euclid collaboration (Laureijs

et al., 2009). We assume however that only half of these galaxies can be effectively

employed (efficiency ε = 0.5), corresponding to one half of values in the Table.

In order to forecast the statistical errors on dark energy parameters, we adopt

3For multiple parameters, there is ambiguity to define the worst-case error, since a sign of
δmsys(zα) that makes excursion in w0 positive may actually make the wa excursion negative or
vice versa. We make a choice that the excursion in w0 is positive in a given redshift bin, which
determines the sign of δmsys(zα); then the excursion in wa in that bin is simply c(wa)

α δmsys(zα).
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z n(z)× 10−3

0.5-0.7 3.56
0.7-0.9 2.42
0.9-1.1 1.81
1.1-1.3 1.44
1.3-1.5 0.99
1.5-1.7 0.55
1.7-1.9 0.29
1.9-2.1 0.15

Table 8.1: Expected galaxy number densities per redshift bin in units of
(h/Mpc)3 for the Euclid survey.

the Fisher matrix method of Seo & Eisenstein (2003, 2007), also employed in Amen-

dola et al. (2005). Here we give a short summary of the method and refer to these

papers for the implementation details. In the limit where the survey volume Vsurvey

is much larger than the scale of any features in Pobs(k), it has been shown that the

redshift survey Fisher matrix in a redshift bin ∆z can be approximated as (Tegmark,

1997)

Fij =

∫ 1

−1

∫ kmax

kmin

∂ lnPobs(k, µ)

∂µi

∂ lnPobs(k, µ)

∂µj

× Veff(k, µ)
2πk2dkdµ

2(2π)3
(8.58)

Here, k, µ are the wavevector moduls and direction cosine with respect to the line

of sight, respectively, and the derivatives are evaluated on the parameters µi of the

fiducial model. The upper cut-off kmax is chosen so as to avoid the non-linear regime,

while the large-scale cut-off kmin is set to 0.001h/Mpc but its precise value has a

very weak impact. Veff is the effective volume of the survey:

Veff(k, µ) =

[
ngPg(k, µ)

ngPg(k, µ) + 1

]2

Vsurvey, (8.59)

where Vsurvey is the 20,000 square degrees survey volume contained in a given redshift

bin. The galaxy comoving number density ng(z) is assumed to be spatially constant

within a redshift bin, while Pg is the galaxy spectrum defined below. The total Fisher

matrix is obtained by summing over all the redshift bins of Table 8.1. The matter

power spectrum in any given cosmology can be written in terms of the spectrum in
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the fiducial (or “reference”, subscript “ref”) cosmology as

Pobs(kref⊥, kref‖, z) =
D(z)2

refH(z)

D(z)2H(z)ref

Pg(kref⊥, kref‖, z) + Pshot , (8.60)

where

Pg(kref⊥, kref‖, z) = b(z)2

[
1 + β(z)

k2
ref‖

k2
ref⊥ + k2

ref‖

]2

Pmatter(k, z) . (8.61)

In Eq. (8.60), H(z) and D(z) are the Hubble parameter and the angular diameter

distance, respectively, and the prefactor encapsulates the geometrical distortions

due to the Alcock-Paczynski effect (Seo & Eisenstein, 2003, 2007). k⊥ and k‖ are

the wave-numbers across and along the line of sight in the given cosmology, and

they are related to the wave-numbers calculated assuming the reference cosmology

by kref⊥ = k⊥D(z)/D(z)ref and kref‖ = k‖H(z)ref/H(z). Pshot is the unknown white

shot noise that remains even after the conventional shot noise of inverse number

density has been subtracted (Seo & Eisenstein, 2003, 2007). In Eq. (8.61), b(z) is

the linear bias factor between galaxy and matter density distributions, fg(z) is the

linear growth rate, β(z) = fg(z)/b(z) is the linear redshift-space distortion parameter

(Kaiser, 1987) and Pmatter is the linear matter power spectrum. The fiducial values

for the bias and the growth factor are b(z) = 1 and fg = Ω0.545
M , respectively. In Di

Porto et al. (2011) it has been shown that the precise fiducial value of b(z) does not

have a large impact on the results.

This method employs all the information contained in the power spectrum,

including the redshift distortion, not just the position of the baryonic wiggles. As

above, we choose a flat fiducial cosmology with ΩM = 0.24, h = 0.7, ΩDE = 0.737,

ΩK = 0, Ωbh
2 = 0.0223, ns = 0.96, w0 = −1, wa = 0. Unlike in the SN case, we

do not impose an explicit systematic floor in the forecasted BAO errors; the finite

sky coverage and density of galaxies provide an effective floor for any given BAO

survey. As mentioned above, beside the cosmological parameters, for each redshift

bin we also include as free parameters to be differentiated (and then marginalized)

in the Fisher matrix a matter-galaxy bias factor and an additive shot noise term in

the power spectrum (for details see Amendola et al. (2005)). These terms act as

additional effective systematic floors.

The systematic effect we assume for the redshift survey is a fractional er-

ror in estimating the value of the Hubble function H(zi) of magnitude Asyst =

0.001, 0.002, 0.005 in each bin i. Such a bias in H(z) propagates to a bias in the angu-

lar diameter distance D(z), as well, if the standard flat-space Friedman-Robertson-
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Walker relation

D(z) = (1 + z)−1

∫ z

0

dz′

H(z′)
(8.62)

holds true, which we assume here. The angular diameter distance bias is then related

to the Hubble function bias by

δ(lnD) = −δ(lnH)
H(z)

(1 + z)D(z)

∫ z

0

dz′

H2(z′)
. (8.63)

where we have used the assumption that the bias in lnH is redshift-independent.

This simple choice for modelling systematic errors in BAO is meant to approximately

capture a possible systematic shift in the baryon peak position due to e.g. the

presence of isocurvature modes (Zunckel et al., 2011) or non-linear effects, of the

kind described e.g. in Seo et al. (2008). A more realistic choice of systematic errors

is difficult to model accurately (as, for example, a bias in H(z) and/or D(z) also

modifies in general the whole spectrum behavior and the redshift distortions), and

it is left for future work. Our present choice is meant as a simple illustration of the

method and a first step towards evaluating the robustness FoM.

If instead of the true matter power spectrum, P (k), we measure a spectrum that

contains a systematic error δsα = δ(lnHα) or δsα = δ(lnDα) in the value of H(zα)

and D(zα) (where the systematic shifts are related by Eq. (8.63)), the maximum

likelihood estimate for the i-th parameter will be shifted w.r.t. its true value by a

bias given by (see e.g. Taylor et al. (2007))

δµi = F−1
ij

[
1

8π2

∫
dµk2dk

∂ lnP

∂µj

∂ lnP

∂sα

]
δsα

≡ c(i)
α δsα (8.64)

(sum over repeated indexes). Analogously to the previous subsection we have defined

c(i)
α ≡ F−1

ij

[
1

8π2

∫
dµk2dk

∂ lnP

∂µj

∂ lnP

∂sα

]
. (8.65)

In this particular case, however, the i-th parameters coincide with δsi = δ(lnHi), δ(lnDi)

and therefore the matrix c
(i)
α is the identity matrix. We can then directly project the

systematic bias onto the dark energy parameters (w0, wa), obtaining a bias vector b
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of the form

bl =
∑
β

(
∂wl

∂ lnH(zβ)
−

H(zβ)

(1 + zβ)D(zβ)

∫ zβ

0

dz′

H2

∂wl
∂ lnD(zβ)

)
δ lnH(zβ)

(8.66)

where δ lnH(zβ) = 0.001, 0.002, 0.005, the subscript β runs over the redshift bins,

and l = 0, a. We have chosen to consider systematic shifts in the range of 0.1%

to 0.5% to reflect ballpark estimates of what BAO systematic errors due e.g. to

residual non-linear corrections might be. We stress once more that this is a simplified

treatment used here mainly for illustration purposes of our method.

We evaluate bl for each redshift bin and then estimate the maximum bias by

following the same method discussed in the previous subsection. Here it happens

that the contributions to bl are always positive and therefore automatically select

the worst case scenario, i.e., the maximum excursion bias. The resulting maximum

excursion bias for different levels of systematics is shown as the green vectors in the

bottom panel of Fig. 8.4, together with the statistical errors from our BAO probe

(blue ellipses) and current constraints (red ellipses), plotted for comparison.

8.5 Results

Our results for the statistical and robustness FoMs are summarized in Table 8.2,

where we give the values of our robustness, statistical and total FoM. We also show

the value of the DETF FoM (normalized to the value obtained from the current

probes) for comparison.

First, by inspecting Fig. 8.4, we notice that the systematic bias projected onto

the (w0, wa) plane is much better aligned with the degeneracy direction of the probes

for SNIa than for BAO. From our discussion in section 8.3, this leads to expect a

higher value for the robustness FoM for SNIa than for BAO. Also, the size of the

bias vectors in the dark energy parameters is roughly comparable for SNIa and

BAO, although in the latter case we have adopted a bias in the observables (H and

D) which is a factor of 10 smaller than for the SNIa observables (the magnitudes).

Table 8.2 shows that indeed both the robustness and the average robustness FoMs

are slightly larger for SNIa than for BAO across the range of systematic error levels

we adopted for each probe. This is a consequence of the fact that the BAO bias

leads to a smaller degree of overlap of the BAO constraints with the present-day

constraints, which is a more serious lack of robustness than for the SNIa. In the latter
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BAO SNIa
Maximum excursion bias Maximum excursion bias

Fom Symbol Defined in 0.1% 0.2% 0.5% 1% 2% 5%

Robustness RN Eq. (8.29) 1.4 0.83 0.026 1.7 1.3 0.24
Average robustness 〈R〉 Eq. (8.34) 1.4 1.1 0.54 1.7 1.4 0.81
Statistical FoM S Eq. (8.14) 2.7 7.0
Total FoM TN Eq. (8.35) 3.6 2.2 0.070 11.9 9.1 1.7
Total average FoM 〈T 〉 Eq. (8.36) 3.8 2.9 1.4 11.9 9.8 5.7
Bias length |b| caption 0.18 0.36 0.90 0.34 0.68 1.7
DETF FoM Eq. (8.7) 4.4 13

Table 8.2: Robustness and statistical Figure of Merits for future BAO and SNIa
surveys, for different levels of systematic errors in the observables. We also give
the DETF FoM for comparison (normalized to its value from current constraints).
We also give the length of the bias vector b in the (w0, wa) plane. The Maximum
excursion bias errors refer to both D(zb) and H(zb) in the case of BAO, and m(zb)
in the case of SNIa.

case, although the bias vectors are slightly larger in the dark energy parameters

(typically by a factor of 2, cf Table 8.2), the bias direction is well aligned with

the statistical degeneracy, and therefore the reduction in the overlap between the

present constraints and future SNIa constraints is less severe, translating in a higher

robustness. For the highest level of systematic error in each case (0.5% for BAO

and 5% for SNIa), we find that the robustness FoM for BAO is about a factor of

10 smaller than for SNIa. The average robustness of BAO is also smaller, but only

by about 1/3, which reflects the more balanced assessment given by the average

robustness. Thus, for our particular choice of systematics, our findings run against

the general lore that BAO observations are more robust to systematics than SNIa.

In terms of our statistical FoM, the SNIa survey is better by a factor of about

3, in good agreement with the result obtained from the usual DETF FoM. Taken

together, the better values of both the statistical and robustness FoM for SNIa lead

to a higher value of the total FoM for SNIa than for BAO.

It is important to stress that our robustness results above are not a generic fea-

ture of SNIa and BAO observations. Rather, they reflect our specific choices for the

systematic bias in the observables for BAO and SNIa. Other choices of systematic

bias are possible and will in general give a different results for the robustness, which

we shall explore in a dedicated paper.
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Figure 8.4: Construction of the robustness FoM for a future SNIa survey (top
panel) and a future BAO Euclid-like survey (bottom panel). Red ellipses show
current 68%, 95% constraints (in a Gaussian approximation) from a combination
of all available probes, blue ellipses show projected constraints from the future
probe at the fiducial point (assumed to be ΛCDM). The green vectors show the
systematic maximum excursion bias (MEB) for systematic erros of 1%, 2% and
5% for SNIa and 0.1%, 0.2% and 0.5% for BAO.
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8.6 Conclusions

We have introduced a new formalism to quantify the robustness of future dark energy

probes to systematic bias, and argued that this important new quantity should be

taken into account when evaluating the performance of future surveys. In constrast

to usual measures of statistical performance, our robustness FoMs depend on the

direction and size of the systematic bias induced in the dark energy parameters by

residual systematics in the observables. We have thus described an approach to

include the effect of systematic errors in the dark energy figures of merit.

We have applied this formalism to future SNIa and BAO probes by developing

a simple phenomenological model of possible residual systematic errors. Our results

indicate that – for the specific choice of systematics adopted here – SNIa are slightly

more robust to systematics than BAO, despite having assumed a systematic shift in

the observables for SNIa which is a factor of 10 larger than for BAO. Coupled with

the higher statistical performance of SNIa, this would lead to prefer SNIa over BAO

in terms of their overall FoM. It is clear however that this particular result cannot

be generalized beyond our choice of systematics and surveys. In a future work we

will investigate how this result change by adopting more refined descriptions of the

systematic bias for each probe.
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Chapter 9

Summary and Conclusions

This thesis sought to provide practical solutions to the question of how we trans-

late observations of astrophysical phenomena into probabilistic statements about

the parameters of the underlying physical theories such as dark energy; how we

quantify our degree of belief about those fundamental cosmological models; how we

discriminate between different cosmological models.

In this thesis I have presented our work on extensions to Bayesian model se-

lection, i.e. Bayesian Doubt (chapter 6), cosmological parameter inference from the

supernovae type Ia (chapter 7) and a new figure of merit, Robustness (chapter 8)

for planning future surveys.

In our work on Bayesian Doubt we developed a new methodology for assigning

an absolute value to the quality of a model, rather than just having the relative

measure of the goodness of a model. In the work presented in chapter 6 I de-

scribed the concept of Bayesian Doubt and applied it to the question of whether

the ΛCDM model is absolutely the best possible model given the data, or whether

there was room in model space for a better as yet un-thought of model. The analy-

sis supported the claim that the ΛCDM model should not be doubted, however, as

more data are gathered then the level of doubt may be re-assessed, possibly leading

to model discovery.

In the future I want to use Bayesian model selection and Bayesian Doubt in

conjunction with fast Nested Sampling algorithms such as MultiNest to discriminate

between the other types of model offered in explanation for late time acceleration. I

also want to apply Bayesian Doubt to different categories of cosmological model on

offer (e.g. modified gravity) to provide a benchmark ideal yet realistic model within

each category against which the various models can be compared. This would give

an absolute measure of how well any one model within the class performs, and would

indicate whether there is room with the current model space for an additional as
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yet unknown model.

The work on cosmological parameter inference presented in chapter 7 developed

a new Bayesian Hierarchical Model approach to parameter inference which success-

fully overcomes the shortcomings of the standard χ2 approach, now analysing the

SNe Ia data in a way which is fully consistent with Bayesian model selection tech-

niques. This methodology allows for many other applications to the SNe Ia data, for

example investigating the colour evolution of the SNe Ia. The Bayesian Hierarchical

Model developed can also be applied to similar problems in cosmology which suffer

from the same problem as the SNe Ia data of having large error bars compared with

the range of the data points. We are currently developing this method for use in

inferring the cosmological parameters from the Gamma Ray Burst data.

Strategic planning for future missions or astrophysical probes of cosmology is an

area which requires careful statistical analysis to predict which missions and which

configurations of those missions give the best returns for the investment. Previously,

the ability of a particular mission to be able to constrain the parameters of interest

was quantified by a figure of merit which was typically the reciprocal area of the

Fisher matrix of those parameters. However, this standard figure of merit did not

take into account the possible effect of unforeseen systematic errors. We introduced

a new figure of merit, ‘Robustness’ which does quantify by how much a particular

proposed astrophysical probe would be affected by unforeseen systematic errors. We

evaluated the Robustness of a plausible future SNe Ia mission, and a future BAO

mission and found that in this particular example the SNe Ia were more robust than

the BAO.

In the future I intend to use the Robustness statistic to quantify how well

different proposed survey configurations perform, for different types of dark energy

probes, in order to identify which are the best configurations to use. As new types of

dark energy probe are developed I will use Robustness to quantify to what degree the

proposed new probe is compatible with existing probes, thereby providing strategic

information, which can be used to decide which are the most robust probes to invest

in.
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