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1 Introduction

A key factor in the success of perturbative Quantum Chromodynamics (pQCD) is the
resummation of large logarithms that would otherwise spoil the perturbative expansion.
Generally speaking, such logarithms are sensitive to the available phase space for gluon
radiation. In one of the most common approaches, known as collinear factorization, the
cross section is, up to power corrections, written as a convolution of perturbative hard
parts and nonperturbative parton distribution functions (PDFs), and large logarithms in
ln(µ2/Λ2

QCD) are absorbed into the latter with the help of the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) [1–3] evolution equations. A hard scale µ2 is required to be
present in a particle collision for pQCD to be applicable, and is typically provided by the
photon virtuality in deep-inelastic scattering (DIS) or by the mass of the produced boson
in proton-proton collisions.

In collinear factorization, it is tacitly assumed that the center-of-mass energy
√
s is of

the same order as the hard scale. At very high energies, or equivalently very small parton
longitudinal momentum fractions x, this approximation breaks down, and large ‘rapidity’
logarithms in ln(s/µ2)∼ ln(1/x) become equally or even more important than the collinear
ones. Their resummation is often performed using the Balitsky-Fadin-Kuraev-Lipatov
(BFKL) evolution equations [4, 5], which are embedded in another factorization framework
known as kT - or High-Energy Factorization (HEF) [6–8]. BFKL predicts a steep rise of the
unintegrated or kT -dependent gluon density which eventually violates unitarity [9]. How-
ever, below a dynamically generated saturation scale Qs(x), nonlinear gluon recombination
effects will counteract this unphysical exponential growth [10]. At this point, High-Energy
Factorization needs to be generalized to include nonlinear low-x evolution. This is done by
the Color Glass Condensate (CGC) effective theory [11–21] employed in this paper. In the
CGC, the highly dense gluon distribution is treated as a large semiclassical field sharply
localized on the light cone (a ‘shockwave’), whose rapidity evolution of the gluon distri-
bution is governed by the Balitsky-Kovchegov/Jalilian-Marian-Iancu-McLerran-Weigert-
Leonidov-Kovner (BK-JIMWLK) evolution equations [14–25], which can be regarded as a
nonlinear generalization of BFKL.

Another situation where collinear factorization breaks down is when the process is
sensitive to a second scale µ2

b that is much smaller than the hard scale: µ2�µ2
b &Λ2

QCD.
Large ‘Sudakov’ logarithms ln(µ2/µ2

b) [26] need to be resummed in addition to the collinear
ones through the Collins-Soper-Sterman (CSS) evolution equations [27, 28] and can be ab-
sorbed [29, 30] into the parton distributions, which need to be extended to transverse
momentum dependent parton distributions functions (TMD PDFs [31]). Classic exam-
ples are Z-boson hadroproduction (Drell-Yan) or semi-inclusive deep-inelastic scattering
(SIDIS [32]) at low transverse momenta, where the large scale is provided by the boson
mass or the photon virtuality, and the small scale by the transverse momentum of the
produced boson or hadron.

In kinematics with a hierarchy of scales s� µ2� µ2
b & Λ2

QCD, the necessity arises to
simultaneously treat large ln(s/µ2) and ln(µ2/µ2

b) logarithms. Such a combined low-x and
Sudakov resummation is the subject of intensive research, some of which very recent, either
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based on the HEF approach [33–43], BFKL [44, 45], BK [46], the CGC [47–52], and TMD
factorization [53–55].

We should stress, however, that TMD factorization goes beyond Sudakov resummation.
Indeed, gluon (and quark) TMD PDFs depend on the underlying hard process through the
gauge links or Wilson lines in their operator definition [56]. Moreover, they parameterize
the dependence on not only the transverse momentum, but also the spin of the partons
inside the proton or nucleus. The unintegrated gluon distribution in the HEF and BFKL
frameworks, on the other hand, does not contain this Wilson-line dependence and, because
of the particular ‘nonsense’ polarization tensor used, always encodes maximally linearly
polarized gluons [57, 58]. The HEF and BFKL frameworks are, therefore, only applicable at
large transverse momenta kT ∼ µb∼µ, since for kT�µ the unintegrated gluon distribution
cannot be matched to the full structure of the TMD PDFs.

It turns out that the CGC not only generalizes BFKL, but at leading order (LO) in
perturbation theory also encompasses TMD factorization. Therefore, one might hope that
the CGC provides a unified framework for both TMD factorization and (non)linear low-x
evolution. Even at leading order this is not trivial, because a generic CGC cross section
involves a complicated intertwining of perturbative coefficients with nonperturbative cor-
relators of semiclassical fields. In the seminal papers [59, 60] it was demonstrated that, for
a large class of 2→ 2 processes, the CGC and TMD LO calculations do result in the same
cross sections, given a proper identification of the correlators of semiclassical gluon fields
and gluon TMD PDFs [56, 61, 62]. This triggered a series of studies, demonstrating the
sensitivity to the linearly polarized gluon TMD PDF when masses are included [57, 63, 64],
applying JIMWLK evolution to gluon TMDs [65–67], and extending the CGC-TMD corre-
spondence to 2→ 3 processes [68–70]. In parallel, the so-called small-x improved transverse
momentum dependent (ITMD) factorization framework [71, 72] was developed to extend
the applicability region of low-x TMD factorization to µb∼µ by resumming the kinematic
twist corrections in powers of µb/µ, using off-shell matrix elements as in HEF factoriza-
tion [7, 34]. Including, on top of this, the genuine saturation corrections in the ratio of
Qs/µ, eventually the results from the full CGG are recovered [58, 73–77].

The aim of this paper is twofold. First, we contribute to the effort to bring CGC calcu-
lations to higher perturbative accuracy by calculating the full NLO cross section of inclusive
dijet photoproduction, i.e. the process γ + A → dijet + X, using light-cone perturbation
theory (LCPT) [78–80]. This process could be measured at low photon virtualities in the
future Electron-Ion Collider [81], the proposed LHeC [82], or in ultraperipheral lead-proton
collisions at the LHC. Moreover, our calculation provides an important cross-check of the
γ∗T+A→dijet+X impact factor recently obtained in [83] using the covariant formulation of
the CGC. Second, we want to address the important open question whether the compati-
bility of the CGC with TMD factorization is preserved beyond leading order. To do so, we
study the limit in which the dijets are back-to-back in the transverse plane, thus creating
a scale hierarchy s � P2

⊥� k2
⊥, where P⊥ is the typical large transverse momentum of

each jet and k⊥ is their small momentum imbalance. We can reproduce the large Sudakov
double logarithms that are essential ingredients in the CSS evolution of the gluon TMD,
obtaining the same result as what was predicted in refs. [48, 49, 84, 85]. However, we show
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that the usual subtraction of low-x logarithms and their absorption into JIMWLK leads to
an oversubtraction incompatible with the extraction of the Sudakov logarithms performed
in [48, 49], and demonstrate that one must rather employ the kinematically-improved
JIMWLK equation, similar to what has been known since a long time in the context of
kT -factorization [86–89] and the BK equation [90–94]. Finally, we observe that, at least at
first sight, a class of virtual diagrams which contribute to the finite NLO corrections seem
to break factorization. The analysis of these contributions and thus the answer to whether
the CGC-TMD correspondence holds at full NLO accuracy is left for future work.

Note that the central role of the large semiclassical gluon field, as well as the non-
linearity of the evolution equations, introduce additional complications into CGC compu-
tations. Therefore, we are still far away from the next-to-next-to-leading-order precision
reached for some collinear observables. In the last decade, however, a huge effort has
been made to bring CGC calculations to NLO accuracy. Prominent examples are the
cross sections for inclusive hadron production in proton-nucleus collisions [95, 96], inclu-
sive deep-inelastic-scattering (DIS) [97–102], DIS with massive quarks [103–105], exclusive
vector meson production in DIS [106–108], photon+dijet production in DIS [109], diffrac-
tive dijet production in DIS [110] and very recently inclusive dijet production in DIS [83].
Moreover, the next-to-leading logarithmic extension of the BK-JIMWLK equations was
studied in refs. [111–114].

The paper is organized as follows. In section 3, we use light-cone perturbation theory
to calculate the loop corrections to γ+A→ q+ q̄ + X. One set of diagrams: the initial-
state loop corrections, were already calculated in ref. [100] and are not recomputed here.
In section 3.2, we revisit the calculation of the real NLO corrections, i.e. the process
γ+A→q+q̄+g+X, which was calculated earlier in [69].

As in any NLO calculation, individual diagrams can be plagued by ultraviolet (UV)
divergences, while squared diagrams or interferences might exhibit soft and collinear di-
vergences. We demonstrate their cancellation in sections 4, 5, and 8, respectively. Large
rapidity logarithms are absorbed in the JIMWLK equation for the LO cross section, as is
shown in section 6. The full NLO cross section is then presented in section 9, after which
we investigate the back-to-back or ‘correlation’ limit in section 10.

2 Leading-order calculation

Throughout this work, we will work in LCPT in the conventions of Bjorken-Kogut-
Soper [78, 79]. In this picture, the dynamics of the ‘projectile’, i.e. the photon splitting into
the quark-antiquark pair (with, at next-to-leading order, a gluon), take place on a much
longer timescale than the partonic dynamics of the ‘target’ proton or nucleus [115, 116].
The Color Glass Condensate effective theory then asserts that the target effectively be-
haves as a localized ‘shockwave’ of semiclassical gluon fields, which may be described by
an external potential built from Wilson lines.

Taking the incoming photon to travel along the + light-cone (LC) direction, colliding
head on with the hadronic target which travels along the − LC direction, the differential
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cross section for the process γA→ qq̄X (see figure 1) is given by:

dσ = 1
2q+

dp+
1 dD−2p1θ(p+

1 )
(2π)D−12p+

1

dp+
2 dD−2p2θ(p+

2 )
(2π)D−12p+

2
2πδ(q+ − p+

1 − p
+
2 ) 1
D − 2

∣∣M∣∣2 . (2.1)

The vectors ~p1 ≡ (p+
1 ,p1) and ~p2 ≡ (p+

2 ,p2) describe the + and transverse components of
the quark and antiquark, respectively, and q+ is the photon + momentum. The total +
momentum is conserved, as encoded in the delta function. Note that the factor 1/(D − 2)
accounts for the averaging over the photon polarization, and that we work for the moment
in D dimensions.

In the above formula, the amplitudeM is defined as:

f 〈(q)[~p1]s1 ; (q̄)[~p2]s2 |F̂ − 1|(γ)[~q]λ〉i = 2πδ(q+ − p+
1 − p

+
2 )M . (2.2)

In the l.h.s., the operator F̂ , which describes the interaction with the shockwave, acts on
the Fock states of the incoming (i) photon and outgoing (f) quark-antiquark pair. Since
these Fock states are asymptotic, their evolution to and from x+ = 0: the light-cone time
when the scattering takes place, should be calculated up to a given perturbative order:

f 〈(q)[~p1]s1 ; (q̄)[~p2]s2 |F̂ − 1|(γ)[~q]λ〉i
= 〈(q)[~p1]s1 ; (q̄)[~p2]s2 |U(+∞, 0)(F̂ − 1)U(0,−∞)|(γ)[~q]λ〉 ,

(2.3)

where U is the LC-time evolution operator. At lowest non-trivial order, the photon splits
into a quark-antiquark pair before the scattering off the shockwave, while the outgoing
quark pair evolves to the asymptotic states without perturbative modifications. We thus
have from the LCPT Feynman rules [69, 79, 100]:

〈(q)[~p1]s1 ; (q̄)[~p2]s2 |U(+∞,0) = 〈(q)[~p1]s1 ; (q̄)[~p2]s2 |+O(ge,gs) ,

U(0,−∞)|(γ)[~q]λ〉= |(γ)[~q]λ〉+
∫

PS(~p′1, ~p′2)(2π)D−1δ(D−1)(~q−~p′1−~p′2)
×geef

ūs1(~p′1)�ελ(~q)us2(~p′2)
q−−p′−1 −p

′−
2

|(q)[~p′1]; (q̄)[~p′2]〉+O(gs) .

(2.4)

In the above, we introduced the notation PS for the measure of the phase space integrations:∫
PS(~q) = µ4−D

∫ dD−1~q θ(q+)
(2π)D−12q+ , (2.5)

where ~q ≡ (q+,q) and where θ is the Heaviside step function defined as θ(x ≥ 0) = 1 and
θ(x < 0) = 0. Combining eqs. (2.3) and (2.4), we can reshuffle the terms in the following
form:

f 〈(q)[~p1]s1 ; (q̄)[~p2]s2 |F̂ − 1|(γ)[~q]λ〉i

= geef

∫
PS(~p′1, ~p′2)× (2π)D−1δ(D−1)(~q − ~p′1 − ~p′2)

× ūs1(~p′1)�ελ(~q)us2(~p′2)
q− − p′−1 − p

′−
2

× 〈(q)[~p1]; (q̄)[~p2]|F̂ − 1|(q)[~p′1]; (q̄)[~p′2]〉 .

(2.6)
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The last term in the above expression encodes the scattering of the ‘bare’ qq̄ state off the
target. In the eikonal approximation, it can be written as:

〈(q)[~p1]; (q̄)[~p2]|F̂ − 1|(q)[~p′1]; (q̄)[~p′2]〉
= 2p+

1 2πδ(p′+1 − p+
1 )2p+

2 2πδ(p′+2 − p+
2 )

×
[
Ũ(p′1 − p1)Ũ †(p′2 − p2)− (2π)2(D−2)δD−2(p′1 − p1)δD−2(p′2 − p2)

]
,

= 4p+
1 p

+
2 2πδ(p′+1 − p+

1 )2πδ(p′+2 − p+
2 )

×
∫

x1,x2
e−ix1·(p1−p′1)e−ix2·(p2−p′2)

[
Ux1U

†
x2 − 1

]
,

(2.7)

where we introduced the short-hand notation
∫
x = µD−4 ∫ dD−2x, and where

Ux = P exp
(
igs

∫
dx+A−a (x+, 0−,x)ta

)
(2.8)

denotes a Wilson line (and Ũ its Fourier transform) in the fundamental representation
going from x+ = −∞ to x+ = +∞ with x− = 0 and transverse position x. We will use the
notation Wx for Wilson lines in the adjoint representation, and suppress the fundamental
color indices. Note that in the eikonal approximation, there is no exchange of spin nor +
momentum between the projectile and the target.

Collecting the delta functions in eqs. (2.6) and (2.7), the phase space integration can
be written as follows:∫

PS(~p′1, ~p′2)(2π)D−1δ(D−1)(~q − ~p′1 − ~p′2)2πδ(p′+1 − p+
1 )2πδ(p′+2 − p+

2 )

= 2πδ(q+ − p+
1 − p

+
2 )

4p+
1 p

+
2

∫
p′1
,

(2.9)

with the convention
∫
q = µ4−D ∫ dD−2q/(2π)D−2 (note the factor (2π)D−2 which is not

present in the integrations over transverse coordinate space).
Suppressing the spinor indices, the Dirac structure in eq. (2.6) can be rewritten in

function of ‘good’ spinors [100] with the help of the following intermediary result:

ū(~p1)�ελ(~q)v(~p2)

= ūG(p+
1 )γ+

[
δλλ̄
(
qλ̄

q+ −
pλ̄2

2p+
2
− pλ̄1

2p+
1

)
− iσλλ̄

(
pλ̄2

2p+
2
− pλ̄1

2p+
1

)]
vG(p+

2 ) ,
(2.10)

which holds irregardless of whether we work with quark or antiquark spinors (since we
consider only massless quarks in this work). A very useful feature of the above formula
is that the good spinors only depend on the + component of the momenta, which means
that they are not affected by the shockwave. Note as well that, to arrive at eq. (2.10), we
choose linear polarization vectors εiλ = δiλ. Using the identity (2.10) and taking the delta
functions in (2.9) into account, the Dirac structure in eq. (2.6) eventually becomes:

ū(~p′1)�ελ(~q)v(~p′2) = − q
+p′λ̄1

2p+
1 p

+
2
ūs1G (p+

1 )γ+[(1− 2z)δλλ̄ − iσλλ̄
]
vs2G (p+

2 ) , (2.11)
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where we defined z ≡ p+
1 /q

+ and σij ≡ i
2 [γi, γj ]. Note that, in our frame, the photon does

not have any transverse momentum.
On the other hand, the energy denominator in (2.6) gives:

q− − p′−1 − p
′−
2 = −q+

2p+
1 p

+
2

p′21 . (2.12)

Putting everything together, we obtain the intermediary result (using the short-hand x12 ≡
x1 − x2):

MLO = geef

∫
x1,x2

e−ip1·x1e−ip2·x2Diracλ̄LO

∫
p′1
eip
′
1·x12 p′λ̄1

p′21

[
Ux1U

†
x2 − 1

]
, (2.13)

with:
Diracλ̄LO ≡ ū

s1
G (p+

1 )γ+[(1− 2z)δλλ̄ − iσλλ̄
]
vs2G (p+

2 ) . (2.14)

Finally, we can perform the integration over p′1, which gives:∫
p′1
eip
′
1·x12 p′λ̄1

p′1
2 = −iAλ̄(x12) , (2.15)

where the Weizsäcker-Williams field Ai(x) in D − 2 dimensions is defined as:

iAi(x) ≡
∫

k
e−ik·x

ki

k2 = −iµ
4−D

2πD2 −1
xi

(x2)D2 −1
Γ
(
D

2 − 1
)
D→4= −i

2π
xi

x2 . (2.16)

We eventually arrive at the following result for the LO scattering amplitude:

MLO = −igeefDiracλ̄LO

∫
x1,x2

e−ip1·x1e−ip2·x2Aλ̄(x12)
[
Ux1U

†
x2 − 1

]
, (2.17)

and obtain after multiplying with its complex conjugate∣∣MLO
∣∣2 = 4παeme

2
fTr

(
Diracλ

′†
LODiracλ̄LO

)
×
∫

x1,x2,x1′ ,x2′
e−ip1·x11′e−ip2·x22′Aλ̄(x12)Aλ′(x1′2′)

×
〈

Tr
[
Ux2′U

†
x1′
− 1

][
Ux1U

†
x2 − 1

]〉
,

(2.18)

where the brackets 〈〉 denote the average of the semiclassical gluon fields in the target (see
also section 6.1).

The Dirac trace is performed as follows:

Tr
(
Diracλ

′†
LODiracλ̄LO

)
= Tr

(
v̄s2G (p+

2 )γ+[(1−2z)δλλ′+ iσλλ
′]
us1G (p+

1 )

× ūs1G (p+
1 )γ+[(1−2z)δλλ̄− iσλλ̄

]
vs2G (p+

2 )
)
,

= 4p+
1 p

+
2 Tr

(
PG
[
(1−2z)δλλ′+ iσλλ

′]PG[(1−2z)δλλ̄− iσλλ̄
])
,

(2.19)

where we used the completeness relations for good spinors [100]:∑
s

uG(p+)ūG(p+)γ+ = 2p+PG , (2.20)

– 7 –
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with the same relation holding for antiquark spinors vG, and with PG = γ−γ+/2 the
projector on the good components of the spinor field.

Since PG commutes with all transverse gamma matrices and since PGPG = PG, we get:

Tr
(
Diracλ

′†
LODiracλ̄LO

)
= 4p+

1 p
+
2

(
(1− 2z)2δλ

′λ̄Tr
{
PG
}

+ 2i(1− 2z)Tr
{
PGσλ̄λ

′}+ Tr
{
PGσλλ

′
σλλ̄

})
.
(2.21)

We finally obtain, using the identities (A.5) and (A.7):

Tr
(
Diracλ

′†
LODiracλ̄LO

)
= 16p+

1 p
+
2 δ

λ′λ̄
(
z2 + z̄2 + D − 4

2

)
, (2.22)

where we defined z̄ ≡ 1−z = p+
2 /q

+. Our final result for the LO amplitude squared is then:∣∣MLO
∣∣2 = 64παeme

2
fNcp

+
1 p

+
2

(
z2 + z̄2 + D − 4

2

)
×
∫

x1,x2,x1′ ,x2′
e−ip1·x11′e−ip2·x22′Aλ̄(x12)Aλ̄(x1′2′)

×
〈
Q122′1′ − s12 − s2′1′ + 1

〉
,

(2.23)

which leads to the following cross section1 in D = 4 dimensions:

dσLO

dp+
1 dp+

2 d2p1d2p2
=

2αeme
2
fNc

(2π)4
δ(1− z − z̄)

(q+)2 (z2 + z̄2)

×
∫

x1,x2,x1′ ,x2′
e−ip1·x11′e−ip2·x22′Aλ̄(x12)Aλ̄(x1′2′)

×
〈
Q122′1′ − s12 − s2′1′ + 1

〉
.

(2.24)

In the above two expressions, we introduced the following compact notations for the dipole
and quadrupole color operators:

s12 ≡
1
Nc

Tr
(
Ux1U

†
x2

)
,

Q122′1′ ≡
1
Nc

Tr
(
Ux1U

†
x2Ux2′U

†
x1′

)
.

(2.25)

3 Next-to-leading order diagrams

The calculation of the next-to-leading order amplitudes follows largely the same method
as the leading-order case. We will therefore not reproduce all the intermediate steps but
rather give the result for each Feynman diagram, depicted in figures 1 and 3. Of course,
all diagrams have a counterpart in which the quark and antiquark are reversed. We will
denote these contributions with an overline: for example, GESW is the graph in which the
gluon is radiated by the quark and, after scattering off the shockwave, absorbed by the
antiquark. These ‘q ↔ q̄ conjugate’ amplitudes can be obtained in a straightforward way
from their counterparts applying the following steps:

1For ease of notation, in this work we suppress the overall summation over light quark flavors in the
cross section.
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Real NLO
|MQSF|2 & |MQSF|

2 M†QSFMQSF & c.c. |MQSW|2 & |MQSW|
2 cross

JIMWLK 3 3 3 3

collinear 3

soft ? 3

Sudakov leading Nc

Table 1. Overview of the divergencies and large logarithms encountered in our calculation, for
the different real NLO contributions to the cross section. In the column ‘cross’, all cross terms are
meant between the gluon emissions before and after the shockwave, from the quark or from the
antiquark, i.e. the interference between MQFS, MQFS, MQSW, MQSW. Terms involving a real
instantaneous gluon emission are strictly finite and do not contribute to the Sudakov logarithms at
our accuracy. In this work, we do not attempt to analyze the Sudakov double logarithms beyond the
large-Nc limit. Moreover, in our regularization scheme, it is not always possible to unambiguously
distinguish soft from rapidity divergences. The question mark indicates this is the case for |MQSF|2
and |MQSF|

2. The only certainty is that these two diagrams combine with FSIR (table 2) into a
contribution to the cross section that has rapidity divergences only, see also section 8.

1. Interchange all the indices 1 and 2 except in the Wilson lines and in the spinors
ūG(p+

1 ) and vG(p+
2 ).

2. Take the complex conjugate of the part of the Dirac structures sandwiched between
the spinors ūG(p+

1 ) and vG(p+
2 ).

3. In LCPT, the vertex for the emission or absorption of a gluon from the antiquark
has an overall minus sign. Add it to the diagrams ISW, QSW and QSF.

4. Calculate the Wilson line structure separately, there is no simple rule here.

In tables 1 and 2, we list all NLO contributions to the cross section and their possible contri-
bution to ultraviolet or infrared divergencies. Their regularization and either cancellation
or renormalization will be the subject of sections 4 to 8.

3.1 Virtual corrections

ISW: instantaneous gluon traversing shockwave. The amplitude for the instan-
taneous production of a quark, antiquark, and gluon from the photon, where the gluon
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Virtual NLO
SESW, sub GESW GEFS + IFS SESW,UV IS FSIR FSUV

ultraviolet 3 3 3

JIMWLK 3 3 3 ? ? 3 ?
collinear 3

soft 3 ? ? ? ?

Table 2. Overview of the possible divergencies or large logarithms encountered in our calculation,
for the different virtual NLO contributions to the cross section. IS stands for all the initial-state
virtual corrections, which were already obtained in ref. [100] and are not recalculated here. FSIR
and FSUV, related to the self-energy corrections in the final state, are not calculated in section 3
neither, but are introduced in section 4. Just like the real contributions involving an instantaneously
created gluon (RI, RI and interferences), the virtual diagram ISW with an instantaneously emitted
gluon does not exhibit any singularity or large logarithm, and hence merely contributes to the finite
part of the cross section. Note that all contributions in the above table, except for IS, FSIR, and
FSUV, have a q ↔ q̄ counterpart with the same singularity structure. The contributions SESW,UV,
IS, and FSUV exhibit soft- or rapidity singularities, between which we cannot make a distinction,
although their combination is finite (see section 4).

Figure 1. LO: the leading-order Feynman diagram. The shockwave of semiclassical gluon fields
from the hadron target is depicted by the full vertical line. SESW: self-energy correction traversing
the shockwave. ISW: instantaneous gluon emission crossing the shockwave. GESW: gluon
exchange crossing the shockwave. GEFS: gluon exchange in the final state. IFS: instantaneous
gluon exchange in the final state. Virtual corrections before the shockwave are not explicitly
calculated in this work and not shown here, and neither are the self-energy corrections on the
asymptotic final states.
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Figure 2. Two diagrams with a virtual (left) and instantaneous (right) gluon in the s-channel after
the shockwave. As explained in the main text, these diagrams disappear when considering only the
three lightest quarks.

crosses the shockwave and is absorbed by the outgoing quark (figure 1), is found to be:

MISW = i
geefg

2
s

2

∫ p+
1

0

dk+
3

2π
p+

1 − k
+
3

p+
1 k

+
3 (p+

2 + k+
3 )

(
k+

3
p+

1

)D−2(
p+

2 − p
+
1 + k+

3
)
Diracη

′

ISW(k+
3 )

×
∫

x1,x2,x3
e
−ip1·

( p+1 −k+
3

p+1
x1+

k+
3
p+1

x3
)
e−ip2·x2

×Aη′(x31)C
(
k+

3
p+

1
x13 + x21,

k+
3
p+

1
x13; q

+(p+
1 − k

+
3 )

p+
2 k

+
3

)
×
[
tcUx1t

dU †x2W
cd
x3 − CF

]
,

(3.1)

with

Diracη
′

ISW(k+
3 ) = ūs1G (p+

1 )
{[(

2p
+
1
k+

3
− 1

)
− (D − 3)

(
q+ + k+

3
p+

2 − p
+
1 + k+

3

)]
δλη

′ (3.2)

+ iσλη
′
[
1−

(
2p

+
1
k+

3
−D + 3

)(
q+ + k+

3
p+

2 − p
+
1 + k+

3

)]}
γ+vs2G (p+

2 ) ,

and where we introduced the generalization of the Coulomb field (see [69]) to D − 4 di-
mensions, defined as:

C
(
x,y, c

)
≡
∫

k,p
eip·xeik·y

1
k2 + cp2

= µ2(4−D) Γ(D − 3)
4πD−2

c
D
2 −2

(x2 + cy2)D−3
D→4= 1

(2π)2
1

x2 + cy2 .

(3.3)

Note that eq. (3.1) involves a Wilson line in the adjoint representation, as does any am-
plitude in which a real or virtual gluon from the projectile interacts with the shockwave.
Throughout this work, all such Wilson lines will eventually be written as fundamental ones
using the Fierz identity:

tbW ab
x = U †xt

aUx . (3.4)
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GESW: gluon exchange traversing shockwave. The amplitude for gluon exchange
interacting with the shockwave (figure 1) is found to be:

MGESW = − igeefg
2
s

2

∫ p+
1

0

dk+
3

2π
k+

3
p+

1 (p+
2 + k+

3 )
Diracλ̄η̄η

′

q̄→q(k+
3 )

×
∫

x1,x2,x3
e
−i

p+1 −k
+
3

p+1
p1·x1

e−ip2·x2e
−i

k+
3
p+1

p1·x3

×Aη′(x31)Aη̄(x32)Aλ̄
(
p+

2 x12 + k+
3 x13

p+
2 + k+

3
,

k+
3

p+
2 + k+

3
x32; q+p+

2
k+

3 (p+
1 − k

+
3 )

)
×
[
tcUx1t

dU †x2W
dc
x3 − CF

]
.

(3.5)

To arrive at the above expression, we made use of the intermediary result:∫
K,P

P i

P 2
Kj

K2 + cP 2 e
iK·r′eiP·r = −Aj(r′)Ai(r, r′, c) , (3.6)

where A is the modified Weizsäcker-Williams field2 defined as:

Ai
(
r,r′,C

)
≡ −µ

4−D

64πD/2
ri

(r2)D/2−1

{
32πΓ

(
D

2 −1
)
−2D

√
πC

D
2 −2

(r′2

r2

)D
2 −2

Γ
(
D

2 −
3
2

)

×
[
(r2)D−4(Cr′2−r2)(Cr′2 +r2)3−D

+F2,1

(
D

2 −2,D−4, D2 −1,−C r′2

r2

)]}
.

(3.7)

Luckily, it turns out that we will only need to evaluate A in finite contributions to the
cross section, where we can work in D = 4 dimensions for which its expression reduces to:

Ai
(
r, r′, C

)
= −1

2π
ri

r2 + Cr′2 .
(3.8)

The spinor structure in (3.5) has the following form:

Diracλ̄η̄η
′

q̄→q(k+
3 ) = ūs1G (p+

1 )
[(

2p
+
1
k+

3
− 1

)
δηη
′ + iσηη

′
][(

1− 2p
+
2 + k+

3
q+

)
δλλ̄ + iσλλ̄

]

×
[(

1 + 2p
+
2
k+

3

)
δηη̄ + iσηη̄

]
γ+vs2G (p+

2 ) ,

= Diracλ̄η̄η
′

q̄→q,(i) + Diracλ̄η̄η
′

q̄→q,(ii) ,

(3.9)

where we defined:

Diracλ̄η̄η
′

q̄→q,(ii) = 4 p
+
1 p

+
2

(k+
3 )2 δ

η̄η′ ūs1G (p+
1 )
[(

1− 2p
+
2 + k+

3
q+

)
δλλ̄ + iσλλ̄

]
γ+vs2G (p+

2 ) , (3.10)

which is the most singular part of the Dirac structure, scaling like 1/(k+
3 )2.

2Note that we use a slight redefinition of this field with respect to earlier work [69].
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SESW: self-energy correction traversing shockwave. For the self-energy correc-
tions crossing the shockwave (figure 1), we obtain:

MSESW = i
geefg

2
s

2

∫ p+
1

0

dk+
3

2π
k+

3
(p+

1 )2

[(
2p

+
1
k+

3
− 1

)2
+ (D − 3)

]
Diracλ̄LO

×
∫

x1,x2,x3
e−ip1·x1e−ip2·x2e

i
k+
3
p+1

p1·x13
Aη̄(x13)Aη̄(x13)

×Aλ̄
(
k+

3
p+

1
x13 + x21,

k+
3
p+

1
x13; q

+(p+
1 − k

+
3 )

k+
3 p

+
2

)[
tcUx1t

dU †x2W
dc
x3 − CF

]
.

(3.11)

The above amplitude contains an ultraviolet divergence in the limit where x3 → x1. Fol-
lowing ref. [100], we construct a counterterm MSESW,UV by taking the x3 → x1 limit in
MSESW except in the singular part, and by subtracting an infrared (IR) divergent contri-
bution ∝ Aη̄(x13)Aη̄(x23) as follows:

MSESW,UV = i
geefg

2
s

2 CF

∫ p+
1

0

dk+
3

2π
k+

3
(p+

1 )2

[(
2p

+
1
k+

3
− 1

)2
+ (D − 3)

]
Diracλ̄LO

×
∫

x1,x2,x3
e−ip1·x1e−ip2·x2Aη̄(x13)

[
Aη̄(x13)−Aη̄(x23)

]
Aλ̄(x21)

×
[
Ux1U

†
x2 − 1

]
,

(3.12)

where we used that, even in D dimensions:

Ai
(
r, 0, C

)
= Ai(r) . (3.13)

By construction, the counterterm MSESW,UV has the same UV pole asMSESW while not
possessing any other divergences. To show this is the case, let us explicitly evaluate the x3
integration in eq. (3.12). We have that:∫

x3
Ai(x13)Ai(x13) = µ4−DΓ(D2 − 1)2

4πD−2

∫ dD−2x3
(x2

13)D−3 = 0 , (3.14)

since scaleless integrals disappear in dimensional regularization. This is equivalent to the
statement that the above integral contains two divergences, an UV (x3 → x1) and an IR
(x3 →∞) one, which cancel each other.

The second integration in eq. (3.12) reads:

∫
x3
Ai(x13)Ai(x23) = µ4−DΓ

(
D
2 − 1

)2
4πD−2

πD/2−1(
D
2 − 2

)
Γ
(
D
2 − 1

) 1
(x2

12)D2 −2
,

= µ4−DΓ
(
D
2 − 1

)
4πD/2−1

1(
D
2 − 2

) 1
(x2

12)D2 −2
,

(3.15)

which is divergent in the infrared. Combining eqs. (3.14) and (3.15), the IR pole of the
latter cancels the one hidden in the former, and the overall divergence of MSESW,UV can
be interpreted as an UV one.
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Since MSESW,sub ≡ MSESW −MSESW,UV is now free from UV divergences, we can
evaluate it in D = 4 dimensions:

MSESW,sub = i
geefg

2
s

2

∫ p+
1

0

dk+
3

2π
k+

3
(p+

1 )2

[(
2p

+
1
k+

3
−1
)2

+1
]
Diracλ̄LO

×
∫

x1,x2,x3
e−ip1·x1e−ip2·x2Aη̄(x13)

×
{
e
i
k+
3
p+1

p1·x13
Aη̄(x13)Aλ̄

(
k+

3
p+

1
x13 +x21,

k+
3
p+

1
x13; q

+(p+
1 −k

+
3 )

k+
3 p

+
2

)
(3.16)

×
[
tcUx1t

dU †x2W
dc
x3−CF

]
−
[
Aη̄(x13)−Aη̄(x23)

]
Aλ̄(x21)CF

[
Ux1U

†
x2−1

]}
.

GEFS: gluon exchange in final state. We find for the amplitude where, after pass-
ing through the shockwave, the antiquark emits a gluon which is absorbed by the quark
(figure 1):

MGEFS = −igeefg
2
s

2

∫ p+
1

0

dk+
3

2π
p+

1 − k
+
3

q+p+
1

Diracλ̄η̄η
′

q̄→q(k+
3 )

×
∫

x1,x2
e
−ip1·

( p+1 −k+
3

p+1
x1+

k+
3
p+1

x2
)
e−ip2·x2

×Aλ̄(x12)Jη′η̄(k3,x12)×
[
tcUx1U

†
x2t

c − CF
]
,

(3.17)

with:

Jη
′η̄(k+

3 ,x12) =
∫

K
e−iK·x12 Kη′

K2 − iε

Kη̄ − k+
3 q

+

p+
1 p

+
2

Pη̄
⊥(

K + p+
1 −k

+
3

p+
1

P⊥
)2 − p+

2 +k+
3

p+
2

p+
1 −k

+
3

p+
1

P2
⊥ − iε

. (3.18)

In the above expression, P⊥ is a transverse vector defined as:

P⊥ ≡
p+

2
q+ p1 −

p+
1
q+ p2 , (3.19)

while the loop momentum K is related to the virtual gluon transverse momentum through
p+

1 K ≡ p+
1 k3 − k+

3 p1.

IFS: instantaneous gluon exchange in final state. In the case of an instantaneous
qq̄ → qq̄ final-state interaction mediated by an instantaneous gluon (figure 1) we obtain:

MIFS = igeefg
2
s

∫ p+
1

0

dk+
3

2π
1

(k+
3 )2

2(p+
2 + k+

3 )(p+
1 − k

+
3 )

q+

× ūs1G (p+
1 )γ+

[(
1− 2p

+
2 + k+

3
q+

)
δλλ̄ + iσλλ̄

]
vs2G (p+

2 )

×
∫

x1,x2
e
−ip1·

(
p+1 −k

+
3

p+1
x1+

k+
3
p+1

x2

)
e−ip2·x2Aλ̄(x12)

×
∫

K

e−iK·x12(
K + p+

1 −k
+
3

p+
1

P⊥
)2 − (p+

2 +k+
3 )(p+

1 −k
+
3 )

p+
1 p

+
2

P2
⊥ − iε

×
[
tcUx1U

†
x2t

c − CF
]
,

(3.20)

where the loop momentum is again defined as p+
1 K ≡ p+

1 k3 − k+
3 p1.
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Combining diagrams GEFS and IFS. The amplitudes (3.17) and (3.20) both exhibit
an unphysical (1/k+

3 )2 power divergence, which cancels when summing them. In diagram
GEFS, this divergence stems from the Dirac structure Diracλ̄η̄η

′

q̄→q,(ii). The subamplitude
corresponding to this part of the Dirac structure, which we denote by MGEFS,(ii), reads:

MGEFS,(ii) = −igeefg2
s

∫ p+
1

0

dk+
3

2π
2(p+

1 − k
+
3 )

q+p+
1

p+
1 p

+
2

(k+
3 )2

× ūs1G (p+
1 )
[(

1− 2p
+
2 + k+

3
q+

)
δλλ̄ + iσλλ̄

]
γ+vs2G (p+

2 )

×
∫

x1,x2
e
−ip1·

( p+1 −k+
3

p+1
x1+

k+
3
p+1

x2
)
e−ip2·x2Aλ̄(x12)Jη′η′(k3,x12)

×
[
tcUx1U

†
x2t

c − CF
]
,

(3.21)

and is clearly divergent ∝ 1/(k+
3 )2 in the k+

3 → 0 limit. The situation changes when the
above (sub)amplitude is summed with the IFS amplitude (3.20):

MGEFS,(ii)+IFS = i
geefg

2
s

π

∫ p+
1

0

dk+
3

k+
3

p+
1 − k

+
3

q+

× ūs1G (p+
1 )γ+

[(
1− 2p

+
2 + k+

3
q+

)
δλλ̄ + iσλλ̄

]
vs2G (p+

2 )

×
∫

x1,x2
e
−ip1·

(
p+1 −k

+
3

p+1
x1+

k+
3
p+1

x2

)
e−ip2·x2Aλ̄(x12) (3.22)

×
∫

K

(
1 + q+

p+
1

K ·P⊥
K2

)
e−iK·x12(

K + p+
1 −k

+
3

p+
1

P⊥
)2 − (p+

2 +k+
3 )(p+

1 −k
+
3 )

p+
1 p

+
2

P2
⊥ − iε

×
[
tcUx1U

†
x2t

c − CF
]
,

and we are left with a logarithmic k+ → 0 divergence, which will contribute to JIMWLK.

Final state with gluon in s-channel. Finally, in figure 2, two virtual diagrams are
depicted in which, after the scattering off the shockwave, the quark-antiquark pair annihi-
lates and a new pair is created. This process either takes place through an s-channel gluon
or as an instantaneous qq̄ → qq̄ vertex mediated by a fictitious instantaneous gluon. When
multiplied with the conjugate leading-order amplitude, these two diagrams contribute to
the cross section with a coupling:

(∑
f

efge

)2
g2
s . (3.23)

In the above, the summation over quark flavors takes place for the two quark lines sepa-
rately, since at the level of the cross section the two fermion loops are distinct and only
connected by a gluon. This is a unique feature of the two diagrams under consideration;
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Figure 3. QSW: real gluon emission from the quark, scattering off the shockwave (vertical full
line). QFS: gluon radiated from the quark in the final state. RI: instantaneously created real gluon
scatters off shockwave.

all other contributions to the NLO dijet photoproduction cross section have a coupling∑
f e

2
fg

2
eg

2
s . In particular, since we only consider the three lightest quarks in this work:

( ∑
f=u,d,s

efge

)2
g2
s =

(
eu + ed + es

)2
g2
eg

2
s =

(2
3 −

1
3 −

1
3

)2
g2
eg

2
s = 0 , (3.24)

hence these diagrams can be disregarded.

3.2 Real corrections

QSW: real gluon scatters off shockwave. For the diagram where the gluon is emitted
from the quark and then interacts with the shockwave (figure 3), we obtain:

MQSW =−geefgsDiracη̄λ̄QSW
p+

3
p+

1 +p+
3

×
∫

x1,x2,x3,v
e−ip1·x1e−ip2·x2e−ip3·x3δ(D−2)

(
v− p+

1
p+

1 +p+
3

x1−
p+

3
p+

1 +p+
3

x3

)
×Aη̄(x13)Aλ̄

(
v−x2,x31,

p+
1 p

+
3 q

+

p+
2 (p+

1 +p+
3 )2

)[
Ux1U

†
x3t

dUx3U
†
x2− t

d
]
,

(3.25)

with the Dirac structure:

Diracη̄λ̄QSW = ūG(p+
1 )
[(

1 + 2p
+
1
p+

3

)
δηη̄ − iσηη̄

]
×
[(

1− 2p
+
1 + p+

3
q+

)
δλλ̄ − iσλλ̄

]
γ+vG(p+

2 ) .
(3.26)

QFS: gluon emitted from quark in final state. The amplitude corresponding to a
final-state gluon emission from the quark (figure 3) reads:

MQFS = igeefgsp
+
3 Diracη̄λ̄QSW

∫
x1,x2

e−i(p1+p3)·x1e−ip2·x2

×Aλ̄(x12) (p+
3 p1 − p+

1 p3)η̄(
p+

3 p1 − p+
1 p3

)2

[
tdUx1U

†
x2 − t

d
]
,

(3.27)

– 16 –



J
H
E
P
1
0
(
2
0
2
2
)
1
8
4

which can be written as:

MQFS = geefgs
p+

3
p+

1 +p+
3

Diracη̄λ̄QSW

×
∫

x1,x2,x3,v
e−ip1·x1e−ip2·x2e−ip3·x3δ(D−2)

(
v− p+

1
p+

1 +p+
3

x1−
p+

3
p+

1 +p+
3

x3

)
×Aλ̄(v−x2)Aη̄(x13)

[
tdUvU

†
x2− t

d
]
.

(3.28)

RI: real gluon created instantaneously before shockwave. Finally, the real gluon
can be radiated instantaneously from the photon in addition to the quark-antiquark pair
(figure 3), yielding the amplitude:

MRI = geefgs
p+

1 p
+
3 (p+

1 +p+
3 )

(q+)3 DiracRI

×
∫

x1,x2,x3
e−ip1·x1e−ip2·x2e−ip3·x3C

(
p+

1
q+ x21 + p+

3
q+ x23,x31,

p+
1 p

+
3

q+p+
2

)
×
[
Ux1t

cU †x2W
cd
x3− t

d] ,
(3.29)

where

DiracRI = ūG(p+
1 )
[

q+(p+
1 − p

+
2 )

(p+
1 + p+

3 )(p+
2 + p+

3 )
δλη + q+(p+

1 + p+
2 + 2p+

3 )
(p+

1 + p+
3 )(p+

2 + p+
3 )
iσλη

]
γ+vG(p+

2 ) . (3.30)

4 UV safety

The diagrams SESW and SESW, i.e. the quark- and antiquark self-energy corrections where
the gluon crosses the shockwave, are UV divergent and need to be regularized by adding
a counterterm, as we demonstrated in eqs. (3.11)–(3.16). These are the only diagrams we
calculated that exhibit a UV singularity. There are, however, virtual contributions that we
did not explicitly compute but whose UV poles will cancel with the one in our counterterms,
resulting in a UV-finite total NLO amplitude. This is what we will now demonstrate.

First, comparing expression (3.12) for the UV counterterm with the LO ampli-
tude (2.17), we can write:

MLO +MSESW,UV = −igeefDiracλ̄LO

∫
x1,x2

e−ip1·x1e−ip2·x2Aλ̄(x12)

×
(

1 + αsCF
2π VSESW,UV

)[
Ux1U

†
x2 − 1

]
,

=MLO

(
1 + αsCF

2π VSESW,UV

)
,

(4.1)

where, in the last line, for future convenience we introduced a slight abuse of notation since
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the factorization of the term VSESW,UV is really on the integrand level. This term reads:

VSESW,UV = 2π
∫ p+

1

k+
min

dk+
3

k+
3

(p+
1 )2

[(
2p

+
1
k+

3
− 1

)2
+ (D − 3)

]
×
∫

x3
Aη̄(x13)

[
Aη̄(x13)−Aη̄(x23)

]
,

= −Egluon(p+
1 , k

+
min)

Γ
(
D
2 − 1

)
2πD/2−2

1(
D
2 − 2

) µ4−D

(x2
12)D2 −2

.

(4.2)

To arrive at the above expression, we made use of eqs. (3.14) and (3.15) and introduced
the following phase space integral over the gluon + momentum:

Egluon(p+
1 , k

+
min) =

∫ p+
1

k+
min

dk+
3

k+
3

(p+
1 )2

[(
2p

+
1
k+

3
− 1

)2
+ (D − 3)

]
, (4.3)

where k+
min is a regulator which will be further specified in subsection (6.1). Writing

D = 4− 2εUV, one can calculate further to obtain:

Γ
(
D
2 − 1

)
2πD/2−2

1(
D
2 − 2

) 1
(µ2x2

12)D2 −2
= −1

2

[ 1
εUV

+ γE + ln(πµ2x2
12)
]

+O(εUV) , (4.4)

and:
Egluon(p+

1 , k
+
min) = −4

(
ln k

+
min
p+

1
+ 3 + εUV

4

)
, (4.5)

such that:

VSESW,UV = −2
[ 1
εUV

+ γE + ln(πµ2x2
12)
](

ln k
+
min
p+

1
+ 3

4

)
− 1

2 . (4.6)

There is a similar term stemming from when the antiquark self-energy loop scatters off the
shockwave, which gives:

VSESW,UV = −2
[ 1
εUV

+ γE + ln(πµ2x2
12)
](

ln k
+
min
p+

2
+ 3

4

)
− 1

2 , (4.7)

hence in total:

VUV = VSESW,UV + VSESW,UV

= −2
[ 1
εUV

+ γE + ln(πµ2x2
12)
][3

2 + lnk
+
min
p+

1
+ lnk

+
min
p+

2

]
− 1 .

(4.8)

In ref. [100] (see eq. 144 therein), it was demonstrated that the loop corrections to the
initial state, which we did not explicitly calculate in this work, can be cast into a similar
form factor VIS as the one that appears in (4.1):

VIS =
[ 1
εUV

+ γE + ln(πµ2x2
12)
][3

2 + lnk
+
min
p+

1
+ lnk

+
min
p+

2

]
+ 1

2ln2 p
+
1
p+

2
− π2

6 + 3 . (4.9)
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Adding eqs. (4.8) and (4.9) gives:

VUV + VIS = −
[ 1
εUV

+ γE + ln(πµ2x2
12)
][3

2 + lnk
+
min
p+

1
+ lnk

+
min
p+

2

]

+ 1
2ln2 p

+
1
p+

2
− π2

6 + 2 .
(4.10)

Clearly, the initial-state loop corrections are not sufficient to fully cancel the UV poles from
the SESW counterterms. A final ingredient is provided by the self-energy corrections to
the quark and antiquark in the final state. We did not compute these diagrams explicitly,
since they are simply zero. This is because in dimensional regularization the UV and IR
contributions to a scaleless integral — such as self-energy loops on an asymptotic massless
state — exactly cancel (cfr. eq. (3.14)). This property can, however, be exploited to
construct the missing piece for the UV cancellation in (4.10), writing the total contribution
of the asymptotic (anti)quark leg corrections as VFS = VFSUV + VFSIR = 0 with:

VFSUV =
[ 1
εUV

+ γE + ln(πµ2x2
12)
][3

2 + lnk
+
min
p+

1
+ lnk

+
min
p+

2

]
,

VFSIR = −
[ 1
εIR

+ γE + ln(πµ2x2
12)
][3

2 + lnk
+
min
p+

1
+ lnk

+
min
p+

2

]
,

(4.11)

where we added subscripts to distinguish between positive infinitesimal numbers parame-
terizing the UV resp. IR pole.

Therefore, the sum of the leading-order diagram, the initial state loop corrections (4.9),
the UV counterterms from the SESW and SESW diagrams (4.8), and the UV-divergent
part of the final-state corrections (4.11), is UV-finite:

MLO+IS+UV+FSUV ≡MLO +MSESW,UV +MSESW,UV +MIS +MFSUV

=MLO

(
1 + αsCF

2π VUV + αsCF
2π VIS + αsCF

2π VFSUV

)
,

=MLO

(
1 + αsCF

2π

(1
2ln2 p

+
1
p+

2
− π2

6 + 2
))

.

(4.12)

After this procedure, all that is left from the cancellation of UV divergencies is the
finite term above, together with a new contribution to the virtual diagrams which stems
from the IR-divergent part of the asymptotic leg corrections (4.11):

MFSIR =MLO
αsCF

2π VFSIR . (4.13)

The above contribution will eventually cancel with the IR poles from the real NLO correc-
tions (see section 8).

5 Soft safety in gluon exchange and interferences

A second type of infinities present in our calculation are soft divergences, which show up
when the gluon momentum ~k3 = (k+

3 ,k3) → 0. In this section, we show how they appear
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in virtual diagrams with a gluon exchange after the shockwave, or in the interference
between diagrams with quark- or antiquark induced real final-state gluon radiation. We
will demonstrate how they completely disappear from the final cross section, without any
leftover large logarithms. There are, however, additional soft divergences that appear
together with collinear ones, and which will be discussed in section 8.

It should be noted that soft divergences are distinct from the so-called rapidity di-
vergences associated with k+

3 → 0 but where k3 stays finite. The latter will be regulated
with a cutoff k+

min and the remaining logarithms resummed by the JIMWLK equation (see
section 6).

5.1 Virtual contributions

When computing the virtual diagrams in section 3.1, we have performed the integration over
the transverse loop momentum k3. Therefore, the information on possible soft singularities
has been lost. To investigate whether a diagram contains a soft divergence, one needs to
rescale the gluon transverse momentum with its + momentum: k3 → k̃3 = (k+

3 /p
+
1 )k3 and

then take the k+
3 → 0 limit. The only virtual diagrams with a soft singularity are the ones

with a gluon exchange in the final state: GEFS and IFS (and their q ↔ q̄ counterparts).
Let us start with the GEFS amplitude, (3.17), and perform a rescaling K = χ`/z with

χ = k+
3 /p

+
2 (remember the definitions z = p+

1 /q
+ and z̄ = p+

2 /q
+) in the transverse integral

J (3.18):

Jη
′η̄(k+

3 ,x12) = χ2

z2

∫
`
e−iχ`·x12 (χ/z)`η′

(χ/z)2`2

×
(χ/z)`η̄ − (χ/z)Pη̄

⊥(
(χ/z)`+ (1− z̄

zχ)P⊥
)2 − (1 + χ)(1− z̄

zχ)P2
⊥ − iε

.

(5.1)

The denominator tends to zero when χ → 0. Hence, after a first-order Taylor expansion,
one obtains in the limit:

lim
k+

3 →0
Jη
′η̄(k+

3 ,x12) = k+
3 q

+

p+
1 p

+
2

∫
`

`η
′

`2
`η̄ −Pη̄

⊥
2` ·P⊥ −P2

⊥ − iε
. (5.2)

The only other source of powers 1/k+
3 in MGEFS is the Dirac structure, which needs to

scale as 1/(k+
3 )2 in order to combine with the above integral to give a singularity. We can

therefore pick up only the simple contribution Diracλ̄η̄η
′

q̄→q,(ii) to the full Dirac structure (3.10),
which gives:

lim
soft
MGEFS = −igeefg

2
s

π

∫ p+
1

0

dk+
3

(k+
3 )2

p+
1 p

+
2

q+ Diracλ̄LO

×
∫

x1,x2
e−ip1·x1e−ip2·x2Aλ̄(x12) lim

k+
3 →0

Jη
′η′(k+

3 ,x12)

×
[
tcUx1U

†
x2t

c − CF
]
.

(5.3)

In the above expression, Diracλ̄LO is the q ↔ q̄ conjugate of the leading-order Dirac structure
eq. (2.14)), obtained by interchanging 1 ↔ 2 and taking the complex conjugate of the
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structure between the spinors (cfr. the algorithm in the beginning of section 3):

Diracλ̄LO ≡ ū
s1
G (p+

1 )γ+[(1− 2z̄)δλλ̄ + iσλλ̄
]
vs2G (p+

2 ) . (5.4)

Combined with the Kronecker delta from the Dirac structure, the soft limit of the integral J
in (5.2) is thus reduced to two integrals which both can be analytically solved in dimensional
regularization:

I1 =
∫
`

−1
P2
⊥ − 2` ·P⊥ + iε

,

I2 =
∫
`

1
`2

` ·P⊥
P2
⊥ − 2` ·P⊥ + iε

.

(5.5)

Let us start with the integral I2. Applying the ‘real’ resp. ‘complex’ Schwinger trick to
the first and the second denominator:∫ +∞

0
dα e−α∆ = 1

∆ ,

∫ +∞

0
dβ eiβ∆ = i

∆ + iε
, (5.6)

we obtain

I2 = i

∫
`

∫ +∞

0
dαdβ ` ·P⊥e−α`

2
eiβ
(
−2P⊥·`+P2

⊥

)
`→`+i β

α
P⊥= i

∫
`

∫ +∞

0
dαdβ

(
`− iβ

α
P⊥
)
·P⊥e−α`

2
e−

β
α

(
β−iα

)
P2
⊥

= µ4−DP2
⊥

(4π)D−2
2

∫ +∞

0
dαdβ β

αD/2
e−

β
α

(
β−iα

)
P2
⊥ .

(5.7)

Evaluating the integral over α, one finds:

I2 = µ4−D(P2
⊥)2−D2

(4π)D−2
2

Γ
(
D

2 − 1
)∫ +∞

0
dβ β3−DeiβP2

⊥ . (5.8)

Using the integral representation of the gamma function:

Γ(α)
Aα

=
∫ ∞

0
dt tα−1e−tA , (5.9)

we end up with:

I2 = (−i)D−4µ4−D(P2
⊥)D2 −2

(4π)D−2
2

Γ
(
D

2 − 1
)

Γ
(
4−D

)
. (5.10)

Writing −i = ei(−
π
2 +2nπ) and D = 4− 2εIR:

I2 = 1
8π

( 1
εIR
− γE − ln

( P2
⊥

4πµ2

)
− 2iπ

(
2n− 1

2

))
+O(εIR) . (5.11)

Likewise, applying (5.6) to the (finite) integral I1 yields:

I1 = −i
∫
`

∫ +∞

0
dβ eiβ

(
−2P⊥·`+P2

⊥

)
. (5.12)

– 21 –



J
H
E
P
1
0
(
2
0
2
2
)
1
8
4

The next step is to rewrite the D − 2 dimensional `-integration as follows:∫
`

= µ4−D

(2π)D−2

∫
dΩD−3

∫
d cos θ

∫
d` `D−3 ,

= µ4−D

(2π)D−2
2πD−3

2

Γ
(
D−3

2
) ∫ d cos θ

∫
d` `D−3 .

(5.13)

The I1 integral can then be evaluated starting with the integration over cos θ, followed by
the β integral:

I1 = −2i µ4−D

(4π)D−3
2

1
Γ
(
D−3

2
) ∫ d` `D−3

∫ +∞

0
dβJ0

(
2β`|P⊥|

)
eiβP2

⊥ ,

= 2µ4−D

(4π)D−3
2

1
Γ
(
D−3

2
) 1
P2
⊥

∫
d` `D−3 1√

1− 4`2/P2
⊥

,

= 2µ4−D

(4π)D−3
2

1
Γ
(
D−3

2
) 1
P2
⊥

i21−D
√
π

(
− 1

P2
⊥

)1−D/2
Γ
(3−D

2

)
Γ
(
D − 2

2

)
D→4= i

4π .

(5.14)

We finally obtain:

lim
k+

3 →0
Jη
′η′(k+

3 ,x12) = k+
3 q

+

p+
1 p

+
2

1
8π

( 1
εIR
− γE − ln

( P2
⊥

4πµ2

)
− 2iπ

(
2n− 1

2

)
+ 2i

)
. (5.15)

The soft limit of diagram IFS can be extracted in a similar way. Rescaling k3 =
k+

3 q
+

p+
1 p

+
2
`− k+

3
p+

1
P⊥ −

k+
3
q+ k⊥ in eq. (3.20)):

∫
k3

e−ik3·x12(
k3 + P⊥ + k+

3
q+ k⊥

)2
− (p+

2 +k+
3 )(p+

1 −k
+
3 )

p+
1 p

+
2

P2
⊥ − iε

=
(
k+

3 q
+

p+
1 p

+
2

)2 ∫
`

e
−i
( k+

3 q
+

p+1 p
+
2
`−

k+
3
p+1

P⊥−
k+
3
q+

k⊥
)
·x12(

k+
3 q

+

p+
1 p

+
2
`+ ξ̄P⊥

)2
− (p+

2 +k+
3 )(p+

1 −k
+
3 )

p+
1 p

+
2

P2
⊥ − iε

,

lim k+
3 →0
'

(
k+

3 q
+

p+
1 p

+
2

)∫
`

1
2` ·P⊥ −P2

⊥ − iε
=
(
k+

3 q
+

p+
1 p

+
2

)
I1 .

(5.16)

Combining this with eqs. (3.20), (5.3), and (5.15) yields (writing ξ = k+
3 /p

+
1 ):

lim
soft

(
MGEFS +MIFS

)
= −igeefg

2
s

π

∫ dξ
ξ

DiracLO

∫
x1,x2

e−ip1·x1e−ip2·x2Aλ̄(x12)

× 1
8π

( 1
εIR
− γE − ln

( P2
⊥

4πµ2

)
− 2iπ

(
2n− 1

2

))
×
[
tcUx1U

†
x2t

c − CF
]
.

(5.17)

The IR pole will be canceled with certain real NLO corrections, as will be shown in the next
subsection. This cancellation takes place on the level of the amplitude squared, obtained
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by multiplying withM†LO. Adding as well the q ↔ q̄ diagrams and the complex conjugate
(c.c.), we obtain:

lim
soft
M†LO

(
MGEFS +MIFS +MGEFS +MIFS

)
+ c.c.

= 64αeme
2
fαsN

2
c p

+
1 p

+
2 (z2 + z̄2)

∫ dξ
ξ

×
∫

x1,x2
e−ip1·x11′e−ip2·x22′Aλ̄(x12)Aλ̄(x1′2′)×

[ 1
εIR
− γE − ln

( P2
⊥

4πµ2

)]
×
〈
s12s2′1′ − s12 − s2′1′ + 1− 1

N2
c

(
Q122′1′ − s12 − s2′1′ + 1

)〉
,

(5.18)

where we made use of the spinor trace (2.22) with D = 4, as well as:

Tr
(
Diracλ

′†
LODiracλ̄LO

)
= −16p+

1 p
+
2 δ

λ̄λ′(z2 + z̄2) . (5.19)

5.2 Real contributions

The IR pole found in the previous subsection stems from a soft virtual gluon exchange in
the final state. It will cancel with real contributions that have the same topology, i.e. a soft
final-state gluon radiated from the quark in the amplitude (3.27) and from the antiquark
in the complex conjugate amplitude, or vice versa. The corresponding contribution to the
cross section is:∫

PS(~p3)M†QFSMQFS =
∫ dp+

3
4πp+

3
gee

2
fg

2
s(p+

3 )2N
2
c

2 Tr
(
Diracη

′λ′†
QSWDiracη̄λ̄QSW

)
×
∫

x1′ ,x2′ ,x1,x2
e−ip1·x11′e−ip2·x22′e−ip3·x12′Aλ

′(x1′2′)Aλ̄(x12)

×
∫

p3

(p+
3 p1 − p+

1 p3)η̄(
p+

3 p1 − p+
1 p3

)2
(p+

3 p2 − p+
2 p3)η′(

p+
3 p2 − p+

2 p3
)2

×
〈
s12s2′1′ − s12 − s2′1′ + 1− 1

N2
c

(
Q122′1′ − s12 − s2′1′ + 1

)〉
.

(5.20)

Introducing p3 = p+
3
p+

1
` and taking the p+

3 → 0 limit, the above equation becomes:

∫
PS(~p3)M†QFSMQFS = 64(2π)αeme

2
fαsN

2
c p

+
1 (p+

2 )2(z2 + z̄2)
∫ dξ

ξ

×
∫

x1′ ,x2′ ,x1,x2
e−ip1·x11′e−ip2·x22′Aλ̄(x1′2′)Aλ̄(x12)

∫
`

(`− p1) · (p+
1 p2 − p+

2 `)

(`− p1)2
(
p+

1 p2 − p+
2 `
)2

×
〈
s12s2′1′ − s12 − s2′1′ + 1− 1

N2
c

(
Q122′1′ − s12 − s2′1′ + 1

)〉
,

(5.21)

where we wrote dp+
3 /p

+
3 → dξ/ξ and extracted the leading-power of the Dirac structure:

lim
p+

3→0
Diracη̄λ̄QSW = 2p

+
1
p+

3
δηη̄Diracλ̄LO +O

(
(p+

3 )0) , (5.22)
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which leads to:

lim
p+

3→0
Diracη

′λ′†
QSWDiracη̄λ̄QSW = −64

(
p+

1 p
+
2

p+
3

)2
(z2 + z̄2)δλ̄λ′δη′η̄ +O

(
(p+

3 )0) . (5.23)

The integral over transverse momentum can be cast into the following form (where P⊥ is
again the momentum vector defined in (3.19)):∫

`

(`− p1) · (p+
1 p2 − p+

2 `)

(`− p1)2
(
p+

1 p2 − p+
2 `
)2 = − z̄

q+

∫
`

1
(P⊥ + z̄`)2 −

1
q+

∫
`

` ·P⊥
`2 (P⊥ + z̄`)2 . (5.24)

The first integral disappears in dimensional regularization because it is scaleless. The
second one can be computed by applying the real Schwinger trick (5.6) twice:

−
∫
`

` ·P⊥
q+`2 (P⊥+ z̄`)2 =− 1

p+
2

∫
`

` ·p
`2(`+p)2

= 1
p+

2

P2
⊥µ

4−D

(4π)D−2
2

1
2(1+eiπD)(−1)−D/2(P2

⊥)D/2−3Γ(5−D)Γ
(
D

2 −2
)
,

=− 1
p+

2

1
4π

[ 1
εIR
−γE +2inπ− ln

( P2
⊥

4πµ2

)]
, (5.25)

where we wrote −1 = ei(π+2nπ). Combining the above result with eq. (5.21) and adding
the complex conjugate, we finally obtain:∫

PS(~p3)M†QFSMQFS + c.c. = −64αeme
2
fαsN

2
c p

+
1 p

+
2 (z2 + z̄2)

∫ dξ
ξ

×
∫

x1′ ,x2′ ,x1,x2
e−ip1·x11′e−ip2·x22′Aλ̄(x1′2′)Aλ̄(x12)

[ 1
εIR
− γE − ln

( P2
⊥

4πµ2

)]
×
〈
s12s2′1′ − s12 − s2′1′ + 1− 1

N2
c

(
Q122′1′ − s12 − s2′1′ + 1

)〉
= −(9.3) .

(5.26)

The above result is exactly the opposite of the soft limit of the virtual contributions,
eq. (5.18). Therefore, the total cross section is free from soft divergences from contributions
with final-state gluon exchange topology (including interferences of real final-state gluon
emission from the quark or the antiquark).

6 JIMWLK

6.1 Kinematics

So far, among the virtual NLO corrections to the dijet cross section that we have calcu-
lated, many have a logarithmically divergent integral over the + momentum k+

3 of the
virtual gluon stemming from the k+

3 → 0 regime. In some cases, like the SESW,UV con-
tribution (3.12) or the IS contribution (4.9), in which the transverse loop integration can
be performed explicitly, one could have used dimensional regularization to deal with these
divergences. But in other cases, like the GESW contribution (3.5) or the SESW, sub con-
tribution (3.16), the integration over the transverse position of the gluon x3 cannot be
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performed explicitly due to the presence of a Wilson line at x3. In such cases, dimensional
regularization cannot handle the k+

3 → 0 singularities. For this reason, we regularize all
divergent k+

3 loop integrals in this work with a lower cutoff k+
min. Similarly, one encounters

divergences in the real NLO corrections (at the cross section level) from the p+
3 → 0 regime

in the integration over the real gluon + momentum p+
3 (either inside or outside the mea-

sured jets, as we will see in sections 7 and 8), which we regularize with the same cutoff k+
min.

Part of these k+
3 → 0 or p+

3 → 0 divergences are genuine soft divergences which cancel
at the dijet cross section level, as we have seen in the previous section 5. However, others
are rapidity divergences which survive in the form of single logs of k+

min after regularization.
These large logs of k+

min are high-energy leading logs, which can be extracted from the NLO
correction to the cross section, and resummed into the LO term via the JIMWLK evolution
of the target-averaged color- or Wilson-line operators, as we will now explain.

In the LO cross section (2.24), the target-averaged color operator is unevolved and
should not yet include high-energy logarithms. We can, therefore, use the notation:〈

Q122′1′ − s12 − s2′1′ + 1
〉

0
. (6.1)

In the simplest scheme for the JIMWLK evolution, which we will use in most of the present
study, JIMWLK is viewed as an evolution equation along the k+ axis in logarithmic scale.
In this scheme, one defines〈

Q122′1′ − s12 − s2′1′ + 1
〉
Y +
f

≡
〈
Q122′1′ − s12 − s2′1′ + 1

〉
ln(k+

f
/k+

min) (6.2)

as the same target-averaged operator but now including the resummation of high-energy
leading logs associated with gluons with light-cone momentum k+ between the cutoff k+

min
and the factorization scale k+

f , in the notations of ref. [91]. The evolution with the factor-
ization scale k+

f , or equivalently with Y +
f ≡ ln(k+

f /k
+
min), is given by the JIMWLK equation

for the LO operator:

∂Y +
f

〈
Q122′1′ − s12 − s2′1′ + 1

〉
Y +
f

=
〈
ĤJIMWLK

(
Q122′1′ − s12 − s2′1′ + 1

)〉
Y +
f

. (6.3)

A more explicit version of this equation, with the action of the JIMWLK Hamiltonian
ĤJIMWLK fully worked out, can be found in ref. [117]. Integrating eq. (6.3), one finds〈

Q122′1′ − s12 − s2′1′ + 1
〉
Y +
f

=
〈
Q122′1′ − s12 − s2′1′ + 1

〉
0

(6.4)

+
∫ Y +

f

0
dY +

〈
ĤJIMWLK

(
Q122′1′ − s12 − s2′1′ + 1

)〉
Y +

.

The JIMWLK Hamiltonian is of order αs. Hence, the dependence of a target-averaged oper-
ator on Y + is an effect suppressed by one extra power of αs in fixed-order perturbation the-
ory. Therefore, expanding eq. (6.4) in powers of αs and reshuffling the terms, we can write:〈
Q122′1′−s12−s2′1′+1

〉
0

=
〈
Q122′1′−s12−s2′1′+1

〉
ln(k+

f
/k+

min)
(6.5)

− ln(k+
f /k

+
min)

〈
ĤJIMWLK

(
Q122′1′−s12−s2′1′+1

)〉
+O(α2

s) ,
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with the scale unspecified for the operator in the second line, since it is not under control
at this perturbative order. Hence, inserting eq. (6.5) into the LO cross section (2.24), one
substitutes the unevolved target-averaged operator with its evolved (up to the factorization
scale k+

f ) version, generating an extra NLO term which involves the JIMWLK Hamiltonian.
This new NLO term will subtract the logarithmic dependence on the cutoff k+

min found in
the NLO cross section due to rapidity divergences at k+

3 → 0 or p+
3 → 0. Writing formally

the NLO correction to the dijet cross section found from the fixed-order calculation as

dσNLO =
∫ +∞

k+
min

dp+
3

p+
3

dσ̃NLO , (6.6)

to separate the gluon + momentum integral from the rest of the cross section (with other
Heaviside or Dirac delta functions constraining p+

3 included in σ̃NLO), one has:

dσNLO =
∫ k+

f

k+
min

dp+
3

p+
3
ĤJIMWLKdσLO

+
∫ +∞

k+
min

dp+
3

p+
3

[
dσ̃NLO − θ(k+

f − p
+
3 )ĤJIMWLKdσLO

]
.

(6.7)

By construction, the first term in eq. (6.7), extracted from the total NLO correction,
identically cancels the second term from eq. (6.5) after substituting the left hand side of
eq. (6.5) into the LO cross section (2.24). Then, the statement that rapidity divergences
are subtracted and resummed thanks to the JIMWLK evolution is equivalent to saying
that in the second term of eq. (6.7), the cutoff k+

min can be dropped, thanks to cancelations
happening at low p+

3 between the terms in the square bracket. In the rest of this section,
we will check this statement, by studying the p+

3 → 0 (or k+
3 → 0) limit for each of the

NLO contributions to the cross section.
Finally, we should discuss appropriate values for k+

f and k+
min (and thus for Y +

f ) in
order to resum high-energy logarithms via JIMWLK evolution. The factorization scale
k+
f should be of the order of the + momenta of the measured jets (or at most q+). The

cutoff k+
min represents the typical + momentum scale set by the valence (and other large-x)

partons inside the target, before evolution. Modeling the target before low-x evolution as
a collection of partons carrying a fraction of at least x0 of the target momentum p−A and
with a typical transverse mass Q0, one has:

k+
min = Q2

0
2x0 p

−
A

. (6.8)

Moreover, we have chosen a frame in which the photon momentum qµ = (q+, 0, 0) lies
entirely in the light-cone + direction, and the target nucleus pµA = (p+

A , p
−
A , 0) mostly in the

light-cone − direction, up to p+
A = M2

A/2p−A , where MA is the target mass. Then, the total
energy squared of the collision is

s = (q + pA)2 = 2q+p−A +M2
A ' 2q+p−A (6.9)

at high energy. Hence, one can write the cutoff as

k+
min '

q+Q2
0

x0 s
, (6.10)
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and the range for JIMWLK evolution as

Y +
f = ln

(
k+
f

k+
min

)
= ln

(
k+
f x0 s

q+Q2
0

)
. (6.11)

For this reason, Y +
f is considered to be a high-energy logarithm. x0 can be taken to be

0.01, or at most 0.1. Q0 should be a scale around the transition between perturbative and
non-perturbative QCD, or should be related to the initial saturation scale Qs,0 in the case
of a large enough nucleus. However, in practice, Q2

0/x0 can be treated as a parameter in a
BK/JIMWLK global fit, together with the shape of the initial condition for the evolution.

The scheme chosen for the JIMWLK resummation, based on an evolution strictly along
the p+ axis, is particularly simple to handle. However, this scheme is not unique and, in
fact, neither is it optimal as we will discuss in section 10.3, in particular for the study of
Sudakov logarithms.

In the rest of this section, we start by considering the virtual NLO amplitudes and
studying their k+

3 → 0 limit. After that, we bring them to the level of the cross section
by multiplying them with the complex conjugate of the LO amplitudeM†LO, constructing
the total virtual contribution to JIMWLK. For the real NLO amplitudes the procedure
is similar, as it turns out to be easiest to take the p+

3 → 0 limit at the amplitude level.
Interestingly, we find that the thus obtained ‘virtual’ and ‘real’ contributions to JIMWLK
are separately free of subleading-Nc terms. In the end, we demonstrate how in the k+

3 , p
+
3 →

0 limit, the cross section corresponds to the JIMWLK evolution equations applied to the
Wilson-line structure

Q122′1′ − s12 − s2′1′ + 1 (6.12)

of the leading-order result, which is consistent with the resummation of high-energy logs
by JIMWLK into the LO term, as presented in this section.

6.2 Virtual diagrams

GEFS+IFS. In the k+
3 → 0 limit, the subamplitudeMGEFS,(ii)+IFS (3.22) becomes:

lim
k+

3 →0
MGEFS,(ii)+IFS = i

geefg
2
s

π

∫ k+
f

k+
min

dk+
3

k+
3

Diracλ̄LO ×
[
tcUx1U

†
x2t

c − CF
]

×
∫

x1,x2
e−ip1·x1e−ip2·x2Aλ̄(x12)

×
∫

K

(
p+

1
q+ + K ·P⊥

K2

)
e−iK·x12

(K + P⊥)2 −P2
⊥ − iε

.

(6.13)

There is another contribution to JIMWLK due to the Diracλ̄η̄η
′

q̄→q,(i) spinor structure in the
amplitudeMGEFS (3.17), which yields:

lim
k+

3 →0
MGEFS,(i) = −igeefg

2
s

π

∫ k+
f

k+
min

dk+
3

k+
3

p+
1 − p

+
2

2q+ Diracλ̄LO ×
[
tcUx1U

†
x2t

c − CF
]

×
∫

x1,x2
e−ip1·x1e−ip2·x2Aλ̄(x12)

∫
K

e−iK·x12

(K + P⊥)2 −P2
⊥ − iε

.

(6.14)
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Subamplitudes eqs. (6.13) and (6.14) nicely combine into:

lim
k+

3 →0
MGEFS ≡ lim

k+
3 →0

(
MGEFS,(ii)+IFS +MGEFS,(i)

)
= i

geefg
2
s

2π

∫ k+
f

k+
min

dk+
3

k+
3

Diracλ̄LO ×
[
tcUx1U

†
x2t

c − CF
]

×
∫

x1,x2
e−ip1·x1e−ip2·x2Aλ̄(x12)

∫
K

e−iK·x12

K2 .

(6.15)

Finally, with the help of definition (2.16) of the Weizsäcker-Williams fields, it is easy to
show that:∫

x3
Aη
′(x13)Aη′(x23) = −

∫
x3

∫
`

∫
k
e−i`·x13e−ik·x23 ` · k

`2k2 =
∫

K

e−iK·x12

K2 . (6.16)

Multiplying with the complex conjugate of the leading-order amplitude, we finally obtain:

lim
k+

3 →0
M†LOMGEFS = 64παeme

2
fαsNcp

+
1 p

+
2 (z2 + z̄2)

∫ k+
f

k+
min

dk+
3

k+
3

×
∫

x1′ ,x2′ ,x1,x2
e−ip1·x11′e−ip2·x22′Aλ̄(x12)Aλ̄(x1′2′)

∫
x3
Aη
′(x13)Aη′(x23)

×
〈
s12s2′1′ − s12 − s2′1′ + 1− 1

N2
c

(
Q122′1′ − s12 − s2′1′ + 1

)〉
= lim

k+
3 →0
M†LOMGEFS .

(6.17)

GESW. Since the modified Weizsäcker-Williams structure is finite in the limit k+
3 → 0:

lim
k+

3 →0
Aλ̄
(
p+

2 x12 + k+
3 x13

p+
2 + k+

3
,

k+
3

p+
2 + k+

3
x32; q+p+

2
k+

3 (p+
1 − k

+
3 )

)
= Aλ̄(x12) , (6.18)

the only contribution to JIMWLK from this diagram, see eq. (3.5), comes from the
Diracq→q̄(ii) term:

lim
k+

3 →0
MGESW = − igeefg

2
s

π

∫ k+
f

k+
min

dk+
3

k+
3

Diracλ̄LO

×
∫

x1,x2,x3
e−ip1·x1e−ip2·x2Aη

′(x31)Aη′(x32)Aλ̄(x12)

×
[
tcUx1t

dU †x2W
dc
x3 − CF

]
.

(6.19)

After multiplying withM†LO, making use of eq. (5.19), one obtains:

lim
k+

3 →0
M†LOMGESW = −128παeme

2
fαsN

2
c p

+
1 p

+
2 (z2 + z̄2)

∫ k+
f

k+
min

dk+
3

k+
3

×
∫

x1′ ,x2′ ,x1,x2,x3
e−ip1·x11′e−ip2·x22′Aλ̄(x12)Aλ̄(x1′2′)Aη

′(x31)Aη′(x32)

×
〈
Q322′1′s13 − s13s32 − s2′1′ + 1− 1

N2
c

(
Q122′1′ − s12 − s2′1′ + 1

)〉
.

(6.20)
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It is easy to see that the q ↔ q̄ counterpart of this diagram will give the contribution:

lim
k+

3 →0
M†LOMGESW = −128παeme

2
fαsN

2
c p

+
1 p

+
2 (z2 + z̄2)

∫ k+
f

k+
min

dk+
3

k+
3

×
∫

x1′ ,x2′ ,x1,x2,x3
e−ip1·x11′e−ip2·x22′Aλ̄(x12)Aλ̄(x1′2′)Aη

′(x31)Aη′(x32)

×
〈
Q2′1′13s32 − s13s32 − s2′1′ + 1− 1

N2
c

(
Q122′1′ − s12 − s2′1′ + 1

)〉
.

(6.21)

SESW, sub. Taking the k+
3 → 0 limit of (3.16) is trivial and yields, after multiplying

withM†LO:

lim
k+

3 →0
M†LOMSESW,sub = 128παeme

2
fαsN

2
c p

+
1 p

+
2 (z2 + z̄2)

∫ k+
f

k+
min

dk+
3

k+
3

×
∫

x1′ ,x2′ ,x1,x2,x3
e−ip1·x11′e−ip2·x22′Aλ̄(x1′2′)Aλ̄(x12)Aη′(x31)

×
{
Aη
′(x31)

〈
Q322′1′s13 − s13s32 − s2′1′ + 1− 1

N2
c

(
Q122′1′ − s12 − s2′1′ + 1

)〉

−
(
Aη
′(x31)−Aη′(x32)

)(
1− 1

N2
c

)〈
Q122′1′ − s12 − s2′1′ + 1

〉}
.

(6.22)

Likewise, we get for the diagram with a gluon loop on the antiquark:

lim
k+

3 →0
M†LOMSESW,sub = 128παeme

2
fαsN

2
c p

+
1 p

+
2 (z2 + z̄2)

∫ k+
f

k+
min

dk+
3

k+
3

×
∫

x1′ ,x2′ ,x1,x2,x3
e−ip1·x11′e−ip2·x22′Aλ̄(x1′2′)Aλ̄(x12)Aη′(x32)

×
{
Aη
′(x32)

〈
Q132′1′s32 − s13s32 − s2′1′ + 1− 1

N2
c

(
Q122′1′ − s12 − s2′1′ + 1

)〉

−
(
Aη
′(x32)−Aη′(x31)

)(
1− 1

N2
c

)〈
Q122′1′ − s12 − s2′1′ + 1

〉}
.

(6.23)

FSIR. The last set of virtual diagrams that exhibit a rapidity divergency and hence
contribute to JIMWLK are the IR parts of the self-energy corrections to the asymptotic
(anti)quark, eq. (4.13):

lim
k+

3 →0
MFSIR =MLO ×

αsCF
2π lim

k+
3 →0
VFSIR , (6.24)

where, from eq. (3.15):

lim
k+

3 →0
VFSIR = 2

[ 1
εIR

+ γE + ln(πµ2x2
12)
] ∫ k+

f

k+
min

dk+
3

k+
3

,

= −8π
∫

x3
Aη
′(x13)Aη′(x23)

∫ k+
f

k+
min

dk+
3

k+
3

.

(6.25)
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Multiplying withM†LO:

lim
k+

3 →0
M†LOMFSIR =

∣∣MLO
∣∣2 × αsCF

2π lim
k+

3 →0
VFSIR ,

= −128παeme
2
fαsN

2
c p

+
1 p

+
2 (z2 + z̄2)

∫ k+
f

k+
min

dk+
3

k+
3

×
∫

x1,x2,x1′ ,x2′
e−ip1·x11′e−ip2·x22′Aλ̄(x12)Aλ̄(x1′2′)

∫
x3
Aη
′(x13)Aη′(x23)

×
(

1− 1
N2
c

)〈
Q122′1′ − s12 − s2′1′ + 1

〉
.

(6.26)

Total virtual contribution to JIMWLK. Collecting all the above virtual contribu-
tions to JIMWLK, we finally obtain:

lim
k+

3 →0
M†LO

(
MGEFS +MGEFS +MGESW +MGESW

+MSESW,sub +MSESW,sub +MFSIR
)

= 128παeme
2
fαsN

2
c p

+
1 p

+
2 (z2 + z̄2)

∫ k+
f

k+
min

dk+
3

k+
3

×
∫

x1′ ,x2′ ,x1,x2
e−ip1·x11′e−ip2·x22′Aλ̄(x12)Aλ̄(x1′2′)

×
∫

x3
Aη
′(x13)Aη′(x23)

〈
s12s2′1′ − s12 − s2′1′ + 1

〉
+Aη

′(x13)
(
Aη
′(x13)−Aη′(x23)

)〈
Q322′1′s13 − s13s32 − s2′1′ + 1

〉
+Aη

′(x23)
(
Aη
′(x23)−Aη′(x13)

)〈
Q132′1′s32 − s13s32 − s2′1′ + 1

〉
−
(
Aη
′(x13)−Aη′(x23)

)(
Aη
′(x13)−Aη′(x23)

)〈
Q122′1′ − s12 − s2′1′ + 1

〉
−Aη′(x13)Aη′(x23)

〈
Q122′1′ − s12 − s2′1′ + 1

〉
.

(6.27)

An interesting feature of the above formula is that all subleading-Nc contributions have
cancelled.

6.3 Real diagrams

Taking the p+
3 → 0 limit of the real gluon emission amplitudes MQSW and MQFS,

eqs. (3.25) and (3.28), is very straightforward due to the simple leading-power behav-
ior (5.22) of the Dirac structure:

lim
p+

3→0
MQFS = 2geefgsDiracλ̄LO

∫
x1,x2,x3

e−ip1·x1e−ip2·x2e−ip3·x3

×Aλ̄(x12)Aη(x13)
[
tdUx1U

†
x2 − t

d
]
, (6.28)

lim
p+

3→0
MQSW = −2geefgsDiracλ̄LO

∫
x1,x2,x3

e−ip1·x1e−ip2·x2e−ip3·x3

×Aλ̄(x12)Aη(x13)
[
Ux1U

†
x3t

dUx3U
†
x2 − t

d
]
. (6.29)
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Care should be taken with the amplitudes MQFS and MQSW, which as we remarked in
section 3, receive an additional minus sign from the LCPT Feynman rules due to the q̄ → q̄g

vertex:

lim
p+

3→0
MQFS = 2geefgsDiracλ̄LO

∫
x1,x2,x3

e−ip1·x1e−ip2·x2e−ip3·x3

×Aλ̄(x12)Aη(x23)
[
Ux1U

†
x2t

d − td
]
, (6.30)

lim
p+

3→0
MQSW = −2geefgsDiracλ̄LO

∫
x1,x2,x3

e−ip1·x1e−ip2·x2e−ip3·x3

×Aλ̄(x12)Aη(x23)
[
Ux1U

†
x3t

dUx3U
†
x2 − t

d
]
. (6.31)

With the above expressions, constructing the real part of the JIMWLK equation is a trivial
task, yielding:

lim
p+

3→0

∫
PS(~p3)

∣∣MQFS +MQFS +MQSW +MQSW
∣∣2

= 128παeme
2
fαsp

+
1 p

+
2 N

2
c (z2 + z̄2)

∫ k+
f

k+
min

dp+
3

p+
3

×
∫

x1′ ,x2′ ,x1,x2
e−ip1·x11′e−ip2·x22′Aλ(x12)Aλ(x1′2′)

×
∫

x3

(
Aη(x13)Aη(x1′3) +Aη(x23)Aη(x2′3)

)〈
Q122′1′ − s12 − s2′1′ + 1

〉
−
(
Aη(x13)Aη(x2′3) +Aη(x23)Aη(x1′3)

)〈
s12s2′1′ − s12 − s2′1′ + 1

〉
+
(
Aη(x13)Aη(x1′3)−Aη(x23)Aη(x1′3)−Aη(x13)Aη(x2′3) +Aη(x23)Aη(x2′3)

)
×
〈
s11′s2′2 − s13s32 − s2′3s31′ + 1

〉
−Aη(x1′3)

(
Aη(x13)−Aη(x23)

)〈
Q322′1′s13 − s13s32 − s2′1′ + 1

〉
−Aη(x13)

(
Aη(x1′3)−Aη(x2′3)

)〈
Q122′3s31′ − s31′s2′3 − s12 + 1

〉
+Aη(x2′3)

(
Aη(x13)−Aη(x23)

)〈
Q2′1′13s32 − s13s32 − s2′1′ + 1

〉
+Aη(x23)

(
Aη(x1′3)−Aη(x2′3)

)〈
Q31′12s2′3 − s31′s2′3 − s12 + 1

〉
.

(6.32)

Just like in the case of the virtual diagrams, all subleading-Nc contributions have cancelled.

6.4 Full JIMWLK limit

Combining eq. (6.32) with eq. (6.27) and its complex conjugate, we obtain:

lim
p+

3→0

∫
PS(~p3)

∣∣Mreal
∣∣2 + lim

k+
3 →0

∣∣Mvirtual
∣∣2

= 64παeme
2
fp

+
1 p

+
2 Nc(z2 + z̄2)

∫
x1′ ,x2′ ,x1,x2

e−ip1·x11′e−ip2·x22′Aλ(x12)Aλ(x1′2′)
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×
(
αsNc

(2π)2

∫ k+
f

k+
min

dk+
3

k+
3

)∫
x3

{
−K1(x1,x2,x2′ ,x1′ ; x3)× 〈Q122′1′〉 (6.33)

+A(x1,x2,x2′ ,x1′ ; x3)× 〈s11′s2′2〉+ B(x1,x2,x2′ ,x1′ ; x3)× 〈s12s2′1′〉
+K2(x1; x2,x1′ ; x3)× 〈Q322′1′s13〉+ c.c.

+K2(x2; x1,x2′ ; x3)× 〈Q2′1′13s32〉+ c.c.+ 2 x2
12

x2
13x2

23

〈
s12 − s13s32

〉
+ c.c.

}
.

The above expression is the JIMWLK equation for
∣∣MLO

∣∣2, eq. (2.23), consisting in the
evolution of the quadrupole Q122′1′ (eq. 4 in ref. [117]) and, in the last line, of the dipole
s12 and its complex conjugate. We have, therefore, proven what we asserted in eq. (6.7),
namely that the part of the cross section dσ enhanced by large logarithms ln(k+

f /k
+
min)

takes the form ĤJIMWLKdσLO.
The structures A ,B ,K1 and K2 in eq. (6.33) are defined according to the notation

in [117], and read:

A(x1,x2,x2′ ,x1′ ; x3) = 2(2π)2
(
Aη(x13)Aη(x1′3)−Aη(x23)Aη(x1′3)

−Aη(x13)Aη(x2′3) +Aη(x23)Aη(x2′3)
)
,

= x2
1′2

x2
1′3x2

23
+ x2

2′1
x2

2′3x2
13
− x2

1′1
x2

1′3x2
13
− x2

2′2
x2

2′3x2
23
, (6.34)

B(x1,x2,x2′ ,x1′ ; x3) = 2(2π)2
(
Aη(x13)Aη(x23) +Aη(x1′3)Aη(x2′3)

−Aη(x13)Aη(x2′3)−Aη(x23)Aη(x1′3)
)
,

= x2
12′

x2
13x2

2′3
+ x2

1′2
x2

1′3x2
23
− x2

12
x2

13x2
23
− x2

1′2′

x2
1′3x2

2′3
, (6.35)

K1(x1,x2,x2′ ,x1′ ; x3) = −2(2π)2
(
Aη(x13)Aη(x1′3) +Aη(x23)Aη(x2′3)

−Aη(x13)Aη(x13) +Aη(x13)Aη(x23)−Aη(x23)Aη(x23)

−Aη(x1′3)Aη(x1′3) +Aη(x2′3)Aη(x1′3)−Aη(x2′3)Aη(x2′3)
)
,

= x2
11′

x2
13x2

1′3
+ x2

12
x2

13x2
23

+ x2
22′

x2
23x2

2′3
+ x2

1′2′

x2
1′3x2

2′3
, (6.36)

K2(x1; x2,x1′ ; x3) = 2(2π)2
(
Aη(x13)−Aη(x1′3)

)(
Aη(x13)−Aη(x23)

)
,

= x2
12

x2
23x2

13
+ x2

11′

x2
13x2

1′3
− x2

21′

x2
23x2

1′3
. (6.37)

7 Jet definition

In the previous sections, we were always concerned with partonic scattering amplitudes,
hiding any hadronic physics inside the nonperturbative CGC averages over the Wilson
lines. The aim of this work, however, is to compute the NLO dijet photoproduction cross
section, not the diquark one, which implies that at a certain point we need to quantify
what we mean by a jet.
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At leading order, transforming the γ+A→q+q̄+X cross section to the γ+A→dijet+X
one is trivial and done by simply identifying the quark and antiquark partonic momenta
~p1 and ~p2 with the jet momenta ~pj1 and ~pj2. This same trivial identification can be done
for the virtual NLO contributions to the cross section. It is implicitly assumed that the
outgoing momenta are sufficiently separated to prevent the quark and antiquark being
grouped within the same jet.

For the real NLO corrections, the situation is different. In this case, two steps are
needed to go from the tree-level γ+A→q+q̄+g+X partonic cross section to the real NLO
correction to the dijet cross section. First, a jet algorithm needs to be applied in order to
determine in what part of the phase space the three partons are considered to form three
separate jets, and in what part two of the partons are clustered into a single jet. Second,
in the case of the three jet configuration, in order to obtain the corresponding contribution
to the inclusive dijet cross section at NLO, two jets should be identified with the measured
jets with momenta ~pj1 and ~pj2 while the third jet should be integrated over.

The jet definition or algorithm that we use in this NLO calculation is as follows: if two
partons i and j in the final state are such that

(p+
i + p+

j )
|pi + pj |

∣∣∣∣∣ pip+
i

− pj
p+
j

∣∣∣∣∣ < R , (7.1)

then they are considered to be part of the same jet with momentum (p+
i + p+

j ,pi + pj).
Otherwise, the partons i and j are considered to form separate jets. This definition depends
on the jet radius parameter R, satisfying 0 < R < 1.

In the present study, for simplicity and in order to be able to perform analytic calcu-
lations as far as possible, we are using our jet definition in the narrow-jet limit, meaning
that formally R → 0. In practice, this means that terms in log(R) or terms independent
of R are kept in the cross section, whereas terms suppressed as positive powers of R are
neglected. In diagrams without a collinear divergence, one can then always identify each
of the three partons with a separate jet, because the merging of two partons into one jet
takes place only in a parametrically small part of the phase space, suppressed by powers
of R. The only real NLO corrections that exhibit a collinear divergence are |MQFS|2 and
|MQFS|

2. In the narrow-jet limit, these two squared amplitudes are, therefore, the only
contributions to the cross section in which one needs to distinguish whether the quark
(resp. antiquark) and the gluon are clustered into a single jet or not by the jet algorithm.

As a remark, when the left hand side of eq. (7.1) is much smaller than 1, one has the
equivalence

(p+
i + p+

j )
|pi + pj |

∣∣∣∣∣ pip+
i

− pj
p+
j

∣∣∣∣∣ ∼ √(∆yij)2 + (∆φij)2 , (7.2)

where ∆yij and ∆φij are the difference in rapidity and in azimuthal angle between the
two partons. For this reason, our jet algorithm and the Cambridge/Aachen algorithm (see
refs. [118, 119]) become equivalent in the narrow-jet limit R→ 0.

Moreover, in the case of three-jet configurations, we always consider the quark jet to
be the first measured jet, the antiquark jet to be the second measured jet, and the gluon
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jet to be the jet which is unmeasured and integrated over. Hence, the results we present
correspond specifically to the flavor-tagged inclusive quark-antiquark dijet cross section at
NLO. Other contributions to the full inclusive dijet cross section at NLO, for example with
a gluon jet and a quark jet, do not involve any conceptual difficulty (in particular, they do
not contain any divergence whatsoever), and could be obtained in a straightforward way
from our intermediate results on the quark-antiquark-gluon partonic cross section.

From the |MQFS|2 contribution to the qq̄g partonic cross section

dσ|QFS|2
qq̄g

dp+
1 dD−2p1dp+

2 dD−2p2dp+
3 dD−2p3

= θ(p+
1 )

(2π)D−12p+
1

θ(p+
2 )

(2π)D−12p+
2

θ(p+
3 )

(2π)D−12p+
3

× 2πδ(q+−p+
1 −p

+
2 −p

+
3 )

2q+
1

(D−2) |MQFS|2 ,
(7.3)

applying our jet definition in the narrow-jet limit, we thus obtain two contributions to the
dijet cross section. The first one, in which each of the three partons is forming a jet and
in which the gluon jet is integrated over, reads

dσ|QFS|2; out
dijet

dp+
j1dD−2pj1dp+

j2dD−2pj2

=
∫

PS(~p3)
[
1− θin(~pj1, ~p3)

] dσ|QFS|2
qq̄g

dp+
j1dD−2pj1dp+

j2dD−2pj2dp+
3 dD−2p3

=
θ(p+

j1)
(2π)D−12p+

j1

θ(p+
j2)

(2π)D−12p+
j2

∫
PS(~p3)

2πδ(q+ − p+
j1 − p

+
j2 − p

+
3 )

2q+

×
[
1− θin(~pj1, ~p3)

] 1
(D − 2) |MQFS|2

∣∣∣∣
~p1=~pj1; ~p2=~pj2

.

(7.4)

We have excluded the region in which the quark and the gluon are merged into one jet
thanks to θin(~pi, ~pj), which is defined as

θin(~pi, ~pj) = θ

(
(pi + pj)2R2 − (p+

i + p+
j )2

( pi
p+
i

− pj
p+
j

)2)
(7.5)

and enforces the condition (7.1). The second contribution, in which the quark and the
gluon are combined into one jet of momentum ~pj1 = ~p1 + ~p3 whereas the antiquark forms
a jet of momentum ~pj2 = ~p2, reads

dσ|QFS|2; in
dijet

dp+
j1dD−2pj1dp+

j2dD−2pj2
=

θ(p+
j1)

(2π)D−12p+
j1

θ(p+
j2)

(2π)D−12p+
j2

2πδ(q+ − p+
j1 − p

+
j2)

2q+

×
∫

PS(~p3)θin(~pj1−~p3, ~p3)θ(p+
j1−p

+
3 )

p+
j1

(p+
j1−p

+
3 )

1
(D−2) |MQFS|2

∣∣∣∣
~p1=~pj1−~p3;~p2=~pj2

.

(7.6)

For the |MQFS|
2 contribution, which is the square of the gluon emission by the anti-

quark in the final state, one obtains two contributions to the NLO dijet cross section in a
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similar way. Their expressions are the same as eqs. (7.4) and (7.6), up to the exchange of
the role of the quark and the antiquark, meaning in particular ~p1 ↔ ~p2 and ~pj1 ↔ ~pj2.

Finally, for all the contributions to the qq̄g partonic cross section other than |MQFS|2

and |MQFS|
2, which are collinear safe, we go from the partonic to the dijet cross section by

integrating over the gluon momentum and identifying the produced quark and antiquark
with the measured jets, as

dσNLO real; coll. safe diags.
dijet

dp+
j1dD−2pj1dp+

j2dD−2pj2
=
∫

PS(~p3)
dσcoll. safe diags.

qq̄g

∣∣
~p1→~pj1,~p2→~pj2

dp+
j1dD−2pj1dp+

j2dD−2pj2dp+
3 dD−2p3

. (7.7)

8 Collinear and soft safety in final state fragmentation

As already mentioned in the previous section, the real contributions |QFS|2 and |QFS|2
to the dijet cross section have collinear divergences. Such divergences come from the
transverse integration, and we are handling them with dimensional regularization. In
addition, these diagrams also lead to soft divergences at the dijet cross section level. In
our regularization scheme, using dimensional regularization for transverse integrals and the
cutoff k+

min for the p+
3 integral, it is difficult to distinguish unambiguously between genuine

soft divergences and rapidity divergences, since both arise from the p+
3 → 0 regime. In this

section, after calculating the real contributions from |QFS|2 to the dijet cross section, we
will show that the collinear and soft divergences cancel when the real corrections |QFS|2
and |QFS|2 are added to the virtual corrections FSIR and FSIR†. This is evident from
the fact that, in the resulting sum, the only leftover singularity is the rapidity divergence
associated with the JIMWLK evolution (section 6).

In order to calculate the real correction |QFS|2 to the dijet cross section, following the
discussion in section 7, we first split it into the in contribution (7.6), in which the quark
and the gluon belong to the same jet, and the out contribution (7.4), in which they form
separate jets.

The amplitude for the diagram QFS is given in eq. (3.27). Squaring it and summing
over the colors, helicities and the photon polarization, one finds∣∣MQFS

∣∣2 = (4π)2αeme
2
fαsCFNc8p+

1 p
+
2 (p+

3 )2

×
[
2
(
p+

1 + p+
3

q+

)2
+ 2

(
p+

2
q+

)2
+ (D − 4)

][(
1 + 2p

+
1
p+

3

)2
+ (D − 3)

]
× 1

(p+
3 p1 − p+

1 p3)2

∫
x1,x2,x1′ ,x2′

e−i(p1+p3)·x11′e−ip2·x22′Aλ̄(x12)Aλ̄(x1′2′)

×
〈
Q122′1′ − s12 − s2′1′ + 1

〉
.

(8.1)

8.1 Contribution |QFS|2; in

When the gluon and the quark are merged into a single jet by the jet algorithm, we have
by definition ~p1 + ~p3 = ~pj1. Introducing the transverse momentum of the gluon relative to
the one of jet j1

P3 ≡ p3 −
p+

3
p+
j1

pj1 , (8.2)
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one can rewrite the denominator of eq. (8.1) as

(p+
3 p1 − p+

1 p3)2 =(p+
j1)2P2

3 , (8.3)

Then, comparing with the LO squared amplitude (2.23), eq. (8.1) becomes:

∣∣MQFS
∣∣2∣∣∣∣

~p1=~pj1−~p3

=
∣∣MLO

∣∣2
~p1,2→~pj1,j2

× 4παsCF
(p+

3 )2(p+
j1−p

+
3 )

(p+
j1)3P2

3

[(
1+2

(p+
j1−p

+
3 )

p+
3

)2
+(D−3)

]
.

(8.4)

Moreover, with the notation (8.2),

θin(~p1, ~p3) = θin(~pj1 − ~p3, ~p3) = θ

(
p2
j1R

2 −
(p+
j1)4

(p+
j1 − p

+
3 )2 (p+

3 )2 P2
3

)
. (8.5)

Inserting eqs. (8.4) and (8.5) into eq. (7.6), one finds that the inside jet radiation contri-
bution from |QFS|2 factorizes as

dσ|QFS|2; in
dijet

dp+
j1dD−2pj1dp+

j2dD−2pj2
= dσdijet

LO
dp+

j1dD−2pj1dp+
j2dD−2pj2

× αsCF
2π V

in
|QFS|2 , (8.6)

where

V in
|QFS|2 = (2π)(4π)

∫
PS(~p3) θ(p+

j1 − p
+
3 ) 1

(p+
j1)2P2

3

× θ
(

(p+
j1 − p

+
3 )2(p+

3 )2

(p+
j1)4 p2

j1R
2 −P2

3

) [
(2p+

j1 − p
+
3 )2 + (D − 3)(p+

3 )2
]
.

(8.7)

In eq. (8.7), the transverse integral is straightforward to calculate in dimensional regular-
ization, and yields

4πµ4−D
∫ dD−2P3

(2π)D−2
1

P2
3
θ

(
(p+
j1 − p

+
3 )2 (p+

3 )2

(p+
j1)4 p2

j1R
2 −P2

3

)

= − 1
εcoll

1
Γ(1− ε)

[
(p+
j1 − p

+
3 )2(p+

3 )2

(p+
j1)4

p2
j1R

2

4πµ2

]−ε

= − 1
εcoll

+ γE + ln
p2
j1

4πµ2 + 2 lnR+ 2 ln p+
3
p+
j1

+ 2 ln
(
p+
j1 − p

+
3

p+
j1

)
+O(ε) .

(8.8)

Note that we perform the D → 4 expansion before taking the integration over p+
3 , since in

our scheme, only transverse integrals (and thus UV and collinear divergences) are regulated
with dimensional regularization, whereas p+

3 -integrals are always regulated with the lower
cutoff k+

min.
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Thus, eq. (8.7) becomes:

V in
|QFS|2 =

∫ p+
j1

k+
min

dp+
3

2p+
3

1
(p+
j1)2

[
4(p+

j1)2 − 4p+
j1p

+
3 + 2(1− ε)(p+

3 )2
]

×
[
− 1
εcoll

+ γE + ln
p2
j1

4πµ2 + 2 lnR+ 2 ln p+
3
p+
j1

+ 2 ln
(
p+
j1 − p

+
3

p+
j1

)
+O(ε)

]

=
(
−3

2 + 2 ln
p+
j1

k+
min

)(
− 1
εcoll

+ γE + ln
p2
j1

4πµ2 + 2 lnR
)

− 2
(

ln
p+
j1

k+
min

)2

− 2π2

3 + 13
2 +O(ε) .

(8.9)

As explained in section 6.1, k+
min plays a double role in our calculation. On the one hand it

is used as a regulator for the integrals in p+
3 or k+

3 . On the other hand, it is used to specify
the physical scale set by the target at which the low-x evolution is starting, or equivalently
to encode the dependence on the total energy

√
s of the collision. The JIMWLK evolution

resums single high-energy logarithms, written as logarithms of k+
min, and unlike the jet

radius parameter R does not depend on details of the process. Hence, in the result (8.9),
the term in ln2 k+

min and the term in lnR ln k+
min can definitely not be subtracted and

resummed by JIMWLK. Instead, these two terms in eq. (8.9) should be understood as
manifestations of the standard soft-collinear double logarithmic divergence for final state
gluon radiation in our hybrid regularization scheme, having nothing to do with rapidity
divergences and low-x evolution. In the remainder of this section, we will see how these
ln2 k+

min and lnR ln k+
min terms as well as the collinear 1/εcoll pole are canceled by other

contributions, leaving only the expected single high-energy logarithm to be subtracted and
resummed by JIMWLK, following section 6.

For the diagram |QFS|2, the contribution from the regime in which the antiquark and
the gluon are merged into the same jet can be calculated in the same way, leading to

V in
|QFS|2 =

(
−3

2 + 2 ln
p+
j2

k+
min

)(
− 1
εcoll

+ γE + ln
p2
j2

4πµ2 + 2 lnR
)

− 2
(

ln
p+
j2

k+
min

)2

− 2π2

3 + 13
2 +O(ε) .

(8.10)

8.2 Contribution |QFS|2; out

Let us now consider the other contribution to the dijet cross section from the |QFS|2
diagram, in which the quark and the gluon are forming separate jets according to our
jet definition. In that case, the quark and antiquark momenta are identified with the
momenta of the measured jets, as ~p1 = ~pj1 and ~p2 = ~pj2. Using again the notation (8.2),
the expression (8.3) for the denominator in eq. (8.1) stays valid. By contrast, the x11′

dependent phase factor in eq. (8.1) now becomes:

e−i(p1+p3)·x11′ = e−i(pj1+p3)·x11′ = e−ipj1·x11′e−iP3·x11′e
−i

p+3
p+
j1

pj1·x11′

.
(8.11)
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With all this, the squared amplitude |MQFS
∣∣2 from eq. (8.1) can be written in the case of

three separate jets as

∣∣MQFS
∣∣2∣∣∣∣

~p1=~pj1, ~p2=~pj2
=
∣∣MLO

∣∣2
~p1,2→~pj1,j2

×4παsCF
(p+

3 )2

(p+
j1)2

[(
1+2

p+
j1

p+
3

)2
+(D−3)

]

× e
−iP3·x11′e

−i
p+3
p+
j1

pj1·x11′

P2
3

2
(
p+
j1+p+

3
q+

)2
+2
(
p+
j2
q+

)2
+D−4

2
(
p+
j1
q+

)2
+2
(
p+
j2
q+

)2
+D−4

, (8.12)

with
∣∣MLO

∣∣2 written as in eq. (2.23). Note that eq. (8.12) is, once again, a slight abuse of
notation, since the factorization actually happens at the integrand level and the integrations
over x1 and x1′ are hidden inside |MLO|2.

Moreover, from the definition (7.5), one has now

1− θin(~pj1, ~p3) = θ

(
(p+
j1 + p+

3 )2
(p3

p+
3
− pj1
p+
j1

)2
− (pj1 + p3)2R2

)

= θ

(
P2

3 −
(p+

3 )2

(p+
j1 + p+

3 )2

((p+
j1 + p+

3 )
p+
j1

pj1 + P3

)2
R2
)
.

(8.13)

In the narrow jet R → 0 limit, this theta function changes values from 0 to 1 at a para-
metrically small value of |P3|, which scales as R. Hence, in this limit, P3 is negligible
compared to pj1, so that

1− θin(~pj1, ~p3)→ θ

(
P2

3 −
(p+

3 )2

(p+
j1)2 p2

j1R
2
)
. (8.14)

Inserting the expressions (8.12) and (8.14) into eq. (7.4), we can write the contribution
to the dijet cross section from |QFS|2 with three separate jets as

dσ|QFS|2; out
dijet

dp+
j1dD−2pj1dp+

j2dD−2pj2

=
θ(p+

j1)
(2π)D−12p+

j1

θ(p+
j2)

(2π)D−12p+
j2

1
2q+

1
(D − 2)

∣∣MLO
∣∣2
~p1,2→~pj1,j2

4παsCF
∫

PS(~p3)

× 2πδ(q+ − p+
j1 − p

+
j2 − p

+
3 )θ

(
P2

3 −
(p+

3 )2

(p+
j1)2 p2

j1R
2
)

1
P2

3
e−iP3·x11′e

−i
p+3
p+
j1

pj1·x11′

×

[
2
(
p+
j1+p+

3
q+

)2
+ 2

(
p+
j2
q+

)2
+ (D − 4)

]
[
2
(
p+
j1
q+

)2
+ 2

(
p+
j2
q+

)2
+ (D − 4)

] (p+
3 )2

(p+
j1)2

[(
1 + 2

p+
j1

p+
3

)2
+ (D − 3)

]
.

(8.15)

In eq. (8.15), the integral over P3 is actually finite, since the phase prevents UV divergences
to occur while the theta function cuts off the collinear regime, preventing the gluon to
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belong to the quark jet. Hence, dimensional regularization is actually not necessary here
and one can take D = 4 − 2ε → 4. The transverse integral in eq. (8.15) can then be
calculated as

4π
∫ d2P3

(2π)2
1

P2
3
e−iP3·x11′θ

(
P2

3 −
(p+

3 )2

(p+
j1)2 p2

j1R
2
)

= 2
∫ +∞

0

d|P3|
|P3|

J0
(
|P3||x11′ |

)
θ

(
|P3| −

p+
3
p+
j1
|pj1|R

)

= −2 lnR− ln
(

p2
j1x2

11′

c2
0

)
− 2 ln p+

3
p+
j1

+O(R2) ,

(8.16)

in the narrow-jet limit R→ 0. In eq. (8.16), J0 is the Bessel function of the first kind, and
c0 ≡ 2e−γE . At this stage, eq. (8.15) becomes

dσ|QFS|2; out
dijet

dp+
j1d2pj1dp+

j2d2pj2

=
θ(p+

j1)
(2π)32p+

j1

θ(p+
j2)

(2π)32p+
j2

1
2q+

1
2
∣∣MLO

∣∣2
~p1,2→~pj1,j2

αsCF
2π

∫ +∞

k+
min

dp+
3

p+
3
e
−i

p+3
p+
j1

pj1·x11′

× 2πδ(q+ − p+
j1 − p

+
j2 − p

+
3 )
[
−2 lnR− ln

(
p2
j1x2

11′

c2
0

)
− 2 ln p+

3
p+
j1

]

×
[
(p+
j1 + p+

3 )2 + (p+
j2)2][

(p+
j1)2 + (p+

j2)2]
[
2 + 2 p

+
3
p+
j1

+ (p+
3 )2

(p+
j1)2

]
.

(8.17)

In this expression, we could simply use the delta function in order to perform the p+
3 integra-

tion. However, the result would be proportional to 1/(q+− p+
j1− p

+
j2), which could diverge

depending on the kinematics of the jets, unless the cutoff k+
min is taken into account. In order

to obtain a well-behaved result and to extract the sensitivity of the expression (8.17) on the
cutoff k+

min, let us split it into several pieces. First, let us evaluate the integrand at p+
3 → 0,

including in the delta function. The corresponding piece of eq. (8.17) can be written as

dσ|QFS|2; out; soft
dijet

dp+
j1d2pj1dp+

j2d2pj2
=

dσLO
dijet

dp+
j1d2pj1dp+

j2d2pj2
× αsCF

2π V
out; soft
|QFS|2 (8.18)

where

Vout; soft
|QFS|2 = 2

∫ p+
j1

k+
min

dp+
3

p+
3

[
−2 lnR− ln

(
p2
j1x2

11′

c2
0

)
− 2 ln p+

3
p+
j1

]

= 2
(

ln
p+
j1

k+
min

)2

− 4 ln
(
p+
j1

k+
min

)
lnR− 2 ln

(
p+
j1

k+
min

)
ln
(

p2
j1x2

11′

c2
0

)
,

(8.19)

introducing p+
j1 as an upper bound in this soft contribution. The first two terms in

eq. (8.19): in ln2 k+
min and lnR ln k+

min, precisely cancel the ones found in from the in-jet
radiation contribution (8.9), as we will show in subsection 8.3. As discussed earlier, these
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terms cannot be associated with high-energy evolution but are, instead, manifestations
of soft-collinear divergences in our regularization scheme. Their cancellation is a crucial
requirement for the consistency of our hybrid regularization scheme in which we combine
transverse dimensional regularization with a lower cutoff for p+

3 .
Subtracting the term (8.18) from (8.17) is sufficient to remove any divergence from the

p+
3 integral, or more precisely any logarithmic sensitivity on k+

min, so that one can remove
the cutoff k+

min in the leftover piece. Nevertheless, the finite p+
3 integral can still produce

a potentially large logarithm. The reason for this is that the approximation p+
3 → 0 in

the integrand of eq. (8.17), in order to obtain (8.18), breaks down at small but finite
p+

3 � p+
j1, p+

j2. Indeed, in this regime, the smallness of p+
3 compared to p+

j1 can be
compensated for by very large values of |pj1 · x11′ |, making the phase factor in eq. (8.17)
non trivial even at small p+

3 . In order to have control on this issue, let us as well extract
from eq. (8.17) the following contribution:

dσ|QFS|2; out; phase
dijet

dp+
j1d2pj1dp+

j2d2pj2
=

dσLO
dijet

dp+
j1d2pj1dp+

j2d2pj2
× αsCF

2π V
out; phase
|QFS|2 (8.20)

where

Vout; phase
|QFS|2 = 2

∫ p+
j1

0

dp+
3

p+
3

[
e
−i

p+3
p+
j1

pj1·x11′

− 1
] [
−2 lnR− ln

(
p2
j1x2

11′

c2
0

)
− 2 ln p+

3
p+
j1

]

= 2
∫ 1

0

dξ
ξ

[
e−iξpj1·x11′ − 1

] [
−2 lnR− ln

(
p2
j1x2

11′

c2
0

)
− 2 ln ξ

]
,

(8.21)

where we introduced once again ξ ≡ p+
3 /p

+
j1. The above expression will be further studied

in section 10, in the back-to-back jets limit.
Finally, we call regular the leftover part of eq. (8.17) obtained after subtracting the

terms (8.18) and (8.20), as

dσ|QFS|2; out; reg
dijet = dσ|QFS|2; out

dijet − dσ|QFS|2; out; soft
dijet − dσ|QFS|2; out; phase

dijet , (8.22)

since in this contribution, the integration over p+
3 cannot produce a divergent result even

without cutoff, and neither can it produce further large logarithms. It can be written
explicitly as

dσ|QFS|2; out; reg
dijet

dp+
j1d2pj1dp+

j2d2pj2
=

θ(p+
j1)

(2π)32p+
j1

θ(p+
j2)

(2π)32p+
j2

1
2q+

1
2
∣∣MLO

∣∣2
~p1,2→~pj1,j2

× αsCF
2π

∫ +∞

0

dξ
ξ
e−iξpj1·x11′

[
−2 lnR− ln

(
p2
j1x2

11′

c2
0

)
− 2 ln ξ

]

×
{

2πδ
(
q+ − (1 + ξ)p+

j1 − p
+
j2
)[

1 +
(2ξ + ξ2)(p+

j1)2

(p+
j1)2 + (p+

j2)2

](
1 + (1 + ξ)2)

− 4πδ(q+ − p+
j1 − p

+
j2)θ(1− ξ)

}
. (8.23)
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For the diagram |QFS|2, the contribution from the regime in which the antiquark and
the gluon form two separate jets can be split into three contributions in the same way, and
one obtains

Vout; soft
|QFS|2 = Vout; soft

|QFS|2 (1↔ 2) , (8.24)

Vout; phase
|QFS|2 = Vout; phase

|QFS|2 (1↔ 2) , (8.25)

and
dσ|QFS|2; out; reg

dijet

dp+
j1d2pj1dp+

j2d2pj2
=

dσ|QFS|2; out; reg
dijet

dp+
j1d2pj1dp+

j2d2pj2
(1↔ 2) . (8.26)

8.3 Cancellation of collinear and soft divergences

As already discussed, soft and collinear divergences manifest themselves in various ways
when |QFS|2 is calculated using transverse dimensional regularization and a cutoff k+

min.
In addition to the 1/εcoll collinear pole in the inside jet radiation contribution (8.9), both
eqs. (8.9) and (8.19) contain terms of soft-collinear origin, namely in ln2 k+

min and in
lnR ln k+

min. It is then difficult to disentangle single logarithms ln k+
min associated with

either soft or rapidity divergences.
Adding eqs. (8.9) and (8.19) together, the terms in ln2 k+

min and in lnR ln k+
min cancel,

and one obtains:

V in
|QFS|2 + Vout; soft

|QFS|2 =
[

3
2 − 2 ln

(
p+
j1

k+
min

)] [ 1
εcoll

+ γE + ln
(
πµ2x2

11′
)]

− 3
2 ln

(
p2
j1x2

11′

c2
0

)
− 3 lnR− 2π2

3 + 13
2 +O(ε) .

(8.27)

The other two contributions (8.21) and (8.23) from |QFS|2 do not contain any divergence.
Similarly, for the diagram |QFS|2, one finds

V in
|QFS|2 + Vout; soft

|QFS|2 =
[

3
2 − 2 ln

(
p+
j2

k+
min

)] [ 1
εcoll

+ γE + ln
(
πµ2x2

22′
)]

− 3
2 ln

(
p2
j2x2

22′

c2
0

)
− 3 lnR− 2π2

3 + 13
2 +O(ε) .

(8.28)

In the NLO virtual corrections to DIS dijets, the only contribution containing a
collinear divergence is FSIR, see eq. (4.11), which factorizes as well from the LO cross
section at integrand level. This contribution corresponds to the IR part of the self energy
diagrams for the quark and for the antiquark in the final state. With the identification of
the momenta of partons and jets, it can be written as

VFSIR =
[ 1
εcoll

+ γE + ln(πµ2x2
12)
] [
−3

2 + ln
(
p+
j1

k+
min

)
+ ln

(
p+
j2

k+
min

)]
. (8.29)

The above equation corresponds to a virtual correction in the amplitude. We should also
consider the same virtual correction in the complex conjugate amplitude, which only differs
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from (8.29) in that it depends on x1′ and x2′ rather than x1 and x2:

VFSIR† =
[ 1
εcoll

+ γE + ln(πµ2x2
1′2′)

] [
−3

2 + ln
(
p+
j1

k+
min

)
+ ln

(
p+
j2

k+
min

)]
. (8.30)

In the sum of the contributions (8.27), (8.28), (8.29) and (8.30), the collinear poles
cancel, and one finds

Vjet ≡ V in
|QFS|2 + Vout; soft

|QFS|2 + V in
|QFS|2 + Vout; soft

|QFS|2 + VFSIR + VFSIR†

= −2 ln
(
p+
j1

k+
min

)
ln
(

x2
11′

|x12| |x1′2′ |

)
− 2 ln

(
p+
j2

k+
min

)
ln
(

x2
22′

|x12| |x1′2′ |

)

− 3 ln
( |pj1| |pj2| |x12| |x1′2′ |

c2
0

)
− 6 lnR− 4π2

3 + 13 .

(8.31)

In this expression, all soft and collinear divergences have canceled [120]. Only a single
logarithmic dependence on k+

min remains, which now corresponds to high-energy evolution.
This can be shown as follows: introducing the factorization scale k+

f , one can isolate the
dependence on the cutoff k+

min as

Vjet = 2 ln
(
k+
f

k+
min

)
ln
(

x2
12x2

1′2′

x2
11′x22′

)
− 2 ln

(
p+
j1

k+
f

)
ln
(

x2
11′

|x12| |x1′2′ |

)

− 2 ln
(
p+
j2

k+
f

)
ln
(

x2
22′

|x12| |x1′2′ |

)
− 3 ln

( |pj1| |pj2| |x12| |x1′2′ |
c2

0

)

− 6 lnR− 4π2

3 + 13 .

(8.32)

The first term in eq. (8.32) amounts to a multiplication of the LO cross section by

αsCF
2π 2 ln

(
k+
f

k+
min

)
ln
(

x2
12x2

1′2′

x2
11′x22′

)

= 2αsNc

(
1− 1

N2
c

)
ln
(
k+
f

k+
min

)∫
x3

(
Aη(x13)Aη(x1′3)

+Aη(x23)Aη(x2′3)−Aη(x13)Aη(x23)−Aη(x1′3)Aη(x2′3)
)
.

(8.33)

This corresponds indeed to the part of the JIMWLK evolution proportional to αsCF times
the LO cross section. Hence, in our resummation scheme for high-energy leading logs, the
first term in eq. (8.32) is the part which is subtracted and resummed by the JIMWLK
evolution.

9 Inclusive dijet cross section

In this section, we present the full differential NLO cross section for γ+A→ dijet+X in
the CGC. It is given by the sum:

dσγA→dijetX
NLO = dσLO + dσjet + dσsoftGE + dσSudakov

real + dσfinite
virtual + dσfinite

real , (9.1)
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where it is understood that the rapidity divergences are subtracted and absorbed into
JIMWLK according to eq. (6.7). The cross section is written in terms of different contri-
butions which are each separately soft- and collinear safe. We will shortly discuss each of
the terms, and provide their explicit expressions in the next subsections.

The first part of the cross section is the leading-order one, given in eq. (2.24), where
the outgoing partons are identified with jets: ~p1,2 → ~pj1,j2.

Second, following the discussion in sections 7 and 8, the real NLO corrections due to
final-state gluon emission contain soft-collinear singularities. These singularities are cured
when applying the jet algorithm and summing the contributions due to gluon emission
inside the jet, soft gluon emission outside the jet, and the IR part of the virtual self-energy
corrections to the final state:

dσjet

dp+
j1d2pj1dp+

j2d2pj2
=

dσLO
dijet

dp+
j1dD−2pj1dp+

j2dD−2pj2
× αsCF

2π Vjet . (9.2)

The explicit expression for Vjet is given in eq. (8.32).
Third, as explained in section 5, the contribution to the cross section due to diagram

GEFS, (ii) + IFS and its q ↔ q̄ counterpart contains a soft divergence. This singularity
cancels with the one found in the interference between quark- and antiquark induced real
final-state emission in the amplitude resp. complex conjugate amplitude, and vice versa.
Summing both virtual and real contributions, one ends up with the following finite contri-
bution to the cross section which we might call softGE for soft final-state gluon exchange:

dσsoftGE
dp+

j1dD−2pj1dp+
j2dD−2pj2

= 1
2q+

θ(p+
j1)

(2π)D−12p+
j1

θ(p+
j2)

(2π)D−12p+
j2

× 1
D − 2

[
2πδ(q+ − p+

j1 − p
+
j2)
(
M†LOMGEFS,(ii)+IFS + q ↔ q̄ + c.c.

)
~p1,2→~pj1,j2

+
∫

PS(~p3)2πδ(q+ − p+
j1 − p

+
j2 − p

+
3 )
(
M†QFSMQFS + c.c.

)
~p1,2→~pj1,j2

]
.

(9.3)

The explicit expressions for the different terms are listed in subsection 9.1.
Fourth, there are terms due to final-state gluon radiation outside the jet, that in certain

kinematics will become enhanced by a large Sudakov double logarithm (see sections 8
and 10):

dσSudakov
real

dp+
j1d2pj1dp+

j2d2pj2
=

dσLO
dijet

dp+
j1d2pj1dp+

j2d2pj2
× αsCF

2π
(
Vout; phase
|QFS|2 + Vout; phase

|QFS|2

)
. (9.4)

The explicit formulae for Vout; phase
|QFS|2 and Vout; phase

|QFS|2 are given in eqs. (8.21) and (8.25).
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The final contributions to eq. (9.1) are due to purely finite virtual and real NLO
corrections:

dσfinite
virtual

dp+
j1d2pj1dp+

j2d2pj2
= 1

2q+
θ(p+

j1)
(2π)32p+

j1

θ(p+
j2)

(2π)32p+
j2

2πδ(q+ − p+
j1 − p

+
j2)

× 1
2

[(
M†LOMSESW,sub +M†LOMGESW +M†LOMISW

+M†LOMGEFS,(i) + q ↔ q̄
)

+M†LOMIS+UV+FSUV + c.c.
]
~p1,2→~pj1,j2

,

(9.5)

and

dσfinite
real

dp+
j1d2pj1dp+

j2d2pj2

=
dσ|QFS|2;out;reg

dijet

dp+
j1d2pj1dp+

j2d2pj2
+

dσ|QFS|2;out;reg
dijet

dp+
j1d2pj1dp+

j2d2pj2
+ 1

2q+
θ(p+

j1)
(2π)32p+

j1

θ(p+
j2)

(2π)32p+
j2

1
4p+

3

×
∫

p3

{
|MQSW|2 +M†QSWMQFS +M†QFSMQSW

+ |MQSW|
2 +M†QSWMQFS +M†QFSMQSW

+M†QSWMQSW +M†QSWMQFS +M†QFSMQSW +c.c.

+M†RI

(
MQSW +MQFS

)
+c.c.

+M†RI

(
MQFS +MQSW

)
+c.c.+

∣∣MRI
∣∣2}∣∣∣∣

~p1,2→~pj1,j2,p+
3 =q+−p+

j1−p
+
j2>0

.

(9.6)

The explicit expressions for all the above terms are gathered in subsections 9.2 and 9.3.
In table 3 on page 45, we provide an overview of the different Wilson-line correla-

tors that appear in the NLO cross section. They are all build from simple dipoles and
quadrupoles in the fundamental representation (2.25), and never become more compli-
cated than a six-point function made from a quadrupole and a dipole. Remember that
1, 2, 3, and v are short-hand notations for the positions in coordinate space of, respectively,
the quark x1, antiquark x2, gluon x3 and quark or antiquark before a final-state emission v.

9.1 SoftGE

As discussed in section 3, the amplitudes due to gluon exchange in the final state exhibit
an unphysical power-divergence in k+

3 . This is cured by summing the problematic part
of the amplitude, MGEFS,(ii), with the amplitude MIFS corresponding to the final-state
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LO 2.24, jet 9.2
Sudakov 9.4

IS+UV+FSUV 9.25
real terms 9.26 dσ|QFS|2; out; reg

dijet Q122′1′−s12−s2′1′ +1
9.27 dσ|QFS|2; out; reg

dijet

finite virtual 9.12 M†LOMSESW,sub

9.13 M†LOMSESW,sub

softGE 9.7 M†LOMGEFS,(ii)+IFS

9.9 M†LOMGEFS,(ii)+IFS s2′1′s12−s12−s2′1′ +1− 1
N2

c

(
Q2′1′12−s12−s2′1′−1

)
finite virtual 9.22 M†LOMGEFS,(i)

9.24 M†LOMGEFS,(i)

softGE 9.10 M†
QFS
MQFS sv′1′sv2−sv2−sv′1′ +1− 1

N2
c

(
Qv2v′1′−sv2−sv′1′ +1

)
9.10 M†QFSMQFS s1vs2′v′−s2′v′−s1v+1− 1

N2
c

(
Q1v2′v′−s2′v′−s1v+1

)
finite virtual 9.12 M†LOMSESW,sub

9.14 M†LOMGESW,sub Q322′1′s13−s13s32−s2′1′ +1− 1
N2

c

(
Q122′1′−s12−s2′1′ +1

)
9.18 M†LOMISW,sub

9.13 M†LOMSESW,sub

9.16 M†LOMGESW,sub Q132′1′s32−s13s32−s2′1′ +1− 1
N2

c

(
Q122′1′−s12−s2′1′ +1

)
9.20 M†LOMISW,sub

real terms 9.28 |MQSW|2

9.29 |MQSW|
2

9.30 M†
QSW
MQSW+c.c. s11′s2′2−s32s13−s31′s2′3+1− 1

N2
c

(
Q122′1′−s12−s2′1′ +1

)
9.33 |MRI|2

9.35 M†RIMQSW

9.37 M†RIMQSW

9.28 M†QSWMQFS

9.30 M†
QSW
MQFS Qv22′3s31′−s31′s2′3−sv2+1− 1

N2
c

(
Qv22′1′−sv2−s2′1′ +1

)
9.35 M†RIMQFS

9.28 M†QFSMQSW Q322′v′s13−s13s32−s2′v′ +1− 1
N2

c

(
Q122′v′−s2′v′−s12+1

)
9.30 M†QFSMQSW

9.29 M†
QSW
MQFS

9.30 M†QSWMQFS Q31′1vs2′3−s2′3s31′−s1v+1− 1
N2

c

(
Q2′1′1v−s1v−s2′1′ +1

)
9.37 M†RIMQFS

9.29 M†
QFS
MQSW Qv′1′13s32−s32s13−sv′1′ +1− 1

N2
c

(
Qv′1′12−sv′1′−s12+1

)
9.30 M†

QFS
MQSW

Table 3. The different Wilson-line structures appearing in the NLO cross section.
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exchange of an instantaneous gluon:

M†LOMGEFS,(ii)+IFS

= 64(2π)αeme
2
fαsN

2
c p

+
j1p

+
j2

∫ p+
j1

k+
f

dk+
3

k+
3

p+
j1 − k

+
3

q+

[
(z2 + z̄2) + (1− 2z)k

+
3
q+

]

×
∫

x1′ ,x2′ ,x1,x2
e−ipj1·x11′e−ipj2·x22′e

i
k+
3
p+
j1

pj1·x12
Aλ(x1′2′)Aλ(x12)

×
∫

K

(
1 + K ·P⊥

zK2

)
e−iK·x12

(K + p+
j1−k

+
3

p+
j1

P⊥)2 − (p+
j2+k+

3 )(p+
j1−k

+
3 )

p+
j1p

+
j2

P2
⊥ − iε

×
〈
s2′1′s12 − s12 − s2′1′ + 1− 1

N2
c

(
Q2′1′12 − s12 − s2′1′ − 1

)〉
,

(9.7)

where we used that:

Tr
(
Diracλ

′†
LODiracλ̄η̄η

′

q̄→q,(ii)

)
= −64

(p+
j1p

+
j2)2

(k+
3 )2 δη̄η

′
δλ̄λ

′
[
(z2 + z̄2) + (1− 2z)k

+
3
q+

]
, (9.8)

and where z and z̄ now denote + momentum fractions of the jets: z ≡ p+
j1/q

+ and z̄ ≡
p+
j2/q

+. Due to its simple Wilson-line structure, the q ↔ q̄ conjugate contributions to the
cross section can be simply obtained from the above result by exchanging the quark and
antiquark indices:

M†LOMGEFS,(ii)+IFS =M†LOMGEFS,(ii)+IFS(1↔ 2) ,

Tr
(
Diracλ

′†
LODiracλ̄η̄η

′

q→q̄

)
= Tr

(
Diracλ

′†
LODiracλ̄η̄η

′

q̄→q

)
(1↔ 2) .

(9.9)

The terms due to interference between final-state emission from the quark and anti-
quark read:
∫

p3

[
M†QFSMQFS +M†QFSMQFS

]
= −4(2π)2αeme

2
fαsTr

(
Diracη

′λ′†
QSWDiracη̄λ̄QSW

) p+
3

p+
j1 + p+

3

p+
3

p+
j2 + p+

3

×
{∫

v,v′

∫
x1,x1′ ,x2,x2′ ,x3

e−ipj1·x11′e−ipj2·x22′

× δ(2)
(

v−
p+
j1

p+
j1 + p+

3
x1 −

p+
3

p+
j1 + p+

3
x3

)
δ(2)

(
v′ −

p+
j2

p+
j2 + p+

3
x2′ −

p+
3

p+
j2 + p+

3
x3

)
×Aη̄(x13)Aη′(x2′3)Aλ̄(v− x2)Aλ′(v′ − x1′)

×
〈
sv′1′sv2 − sv2 − sv′1′ + 1− 1

N2
c

(
Qv2v′1′ − sv2 − sv′1′ + 1

)〉
+ c.c.

}
,

(9.10)
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with the Dirac trace, calculated with the help of identity (A.8):

Tr
(
Diracη

′λ′†
QSWDiracη̄λ̄QSW

)
= −32

p+
j1p

+
j2

q+p+
3

[(
2p+
j1p

+
j2 + (p+

j1 + p+
j2)p+

3
)(

(p+
j1)2 + (p+

j2)2 + (p+
j1 + p+

j2)p+
3
)

q+p+
3

δλ̄λ
′
δη̄η
′

− (p+
j1 − p

+
j2)2ελ̄λ

′
εη̄η
′
]
.

(9.11)

9.2 Finite virtual

SESW. The virtual contributions to the cross section due to the gluon self-energy cor-
rection scattering off the shockwave read, after having subtracted the UV divergence:

M†LOMSESW,sub = −32(2π)αeme
2
fαsN

2
c p

+
j1p

+
j2(z2 + z̄2)

×
∫ p+

j1

k+
f

dk+
3

k+
3

[
1 +

(
1− k+

3
p+
j1

)2] ∫
x1′ ,x2′ ,x1,x2,x3

e−ipj1·x11′e−ipj2·x22′Aλ̄(x1′2′)Aη̄(x13)

×
{
e
i
k+
3
p+
j1

pj1·x13
Aη̄(x13)Aλ̄

(
k+

3
p+
j1

x13 + x21,
k+

3
p+
j1

x13;
q+(p+

j1 − k
+
3 )

k+
3 p

+
j2

)

×
〈
Q322′1′s13 − s13s32 − s2′1′ + 1− 1

N2
c

(
Q122′1′ − s12 − s2′1′ + 1

)〉

−
(
Aη̄(x13)−Aη̄(x23)

)
Aλ̄(x21)

(
1− 1

N2
c

)〈
Q122′1′ − s12 − s2′1′ + 1

〉}
,

(9.12)

and:

M†LOMSESW,sub = +32(2π)αeme
2
fαsN

2
c p

+
j1p

+
j2(z2 + z̄2)

×
∫ p+

j2

k+
f

dk+
3

k+
3

[
1 +

(
1− k+

3
p+
j2

)2] ∫
x1′ ,x2′ ,x1,x2,x3

e−ipj1·x11′e−ipj2·x22′Aλ̄(x1′2′)Aη̄(x23)

×
{
e
i
k+
3
p+
j2

pj2·x23
Aη̄(x23)Aλ̄

(
k+

3
p+
j2

x23 + x12,
k+

3
p+
j2

x23;
q+(p+

j2 − k
+
3 )

k+
3 p

+
j1

)

×
〈
Q132′1′s32 − s13s32 − s2′1′ + 1− 1

N2
c

(
Q122′1′ − s12 − s2′1′ + 1

)〉

−
(
Aη̄(x23)−Aη̄(x13)

)
Aλ̄(x12)

(
1− 1

N2
c

)〈
Q122′1′ − s12 − s2′1′ + 1

〉}
.

(9.13)

– 47 –



J
H
E
P
1
0
(
2
0
2
2
)
1
8
4

GESW. We find for the contributions due to a gluon being exchanged between the
antiquark and quark, traveling through the shockwave:

M†LOMGESW = 2παeme
2
fαsN

2
c

∫ p+
j1

k+
f

dk+
3

k+
3

(k+
3 )2

p+
j1(p+

j2 + k+
3 )

Tr
(
Diracλ

′†
LODiracλ̄η̄η

′

q̄→q

)

×
∫

x1′ ,x2′ ,x1,x2,x3
e−ipj1·x11′e−ipj2·x22′e

i
k+
3
p+
j1

pj1·x13
Aλ
′(x1′2′) (9.14)

×Aη′(x13)Aη̄(x23)Aλ̄
(
p+
j2x12 + k+

3 x13

p+
j2 + k+

3
,

k+
3

p+
j2 + k+

3
x32;

q+p+
j2

k+
3 (p+

j1 − k
+
3 )

)

×
〈
Q322′1′s13 − s13s32 − s2′1′ + 1− 1

N2
c

(
Q122′1′ − s12 − s2′1′ + 1

)〉
,

where the Dirac trace is easily calculated applying identity (A.8), with the following result:

Tr
(
Diracλ

′†
LODiracλ̄η̄η

′

q̄→q

)
= 32

p+
j1p

+
j2

(q+k+
3 )2

[(
(k+

3 )2 + k+
3 (p+

j2 − p
+
j1)− 2p+

j1p
+
j2

)
×
(
(p+
j1)2 + (p+

j2)2 + k+
3 (p+

j2 − p
+
j1)
)
δλ̄λ

′
δη̄η
′

+ q+k+
3 (k+

3 + p+
j2 − p

+
j1)2ελ̄λ

′
εη̄η
′
]
.

(9.15)

The q ↔ q̄ conjugate, where the gluon is emitted from the quark and, after interaction
with the shockwave, absorbed by the antiquark, is given by:

M†LOMGESW = 2παeme
2
fαsN

2
c

∫ p+
j2

k+
f

dk+
3

k+
3

(k+
3 )2

p+
j2(p+

j1 + k+
3 )

Tr
(
Diracλ

′†
LODiracλ̄η̄η

′

q→q̄

)

×
∫

x1′ ,x2′ ,x1,x2,x3
e−ipj1·x11′e−ipj2·x22′e

i
k+
3
p+
j2

pj2·x23
Aλ
′(x1′2′) (9.16)

×Aη′(x32)Aη̄(x31)Aλ̄
(
p+
j1x21 + k+

3 x23

p+
j1 + k+

3
,

k+
3

p+
j1 + k+

3
x31;

q+p+
j1

k+
3 (p+

j2 − k
+
3 )

)

×
〈
Q132′1′s32 − s13s32 − s2′1′ + 1− 1

N2
c

(
Q122′1′ − s12 − s2′1′ + 1

)〉
,

and the Dirac trace yields:

Tr
(
Diracλ

′†
LODiracλ̄η̄η

′

q→q̄

)
= −32

p+
j1p

+
j2

(q+k+
3 )2

[(
k+

3 (p+
j1 − p

+
j2)− 2p+

j1p
+
j2

)(
(k+

3 )2 + k+
3 (p+

j1 − p
+
j2)− 2p+

j1p
+
j2

)
δλ̄λ

′
δη̄η
′

− q+(k+
3 )2(k+

3 + p+
j1 − p

+
j2)ελ̄λ′εη̄η′

]
. (9.17)
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ISW. The following contributions are due to the instantaneous splitting of the photon
into a gluon, quark and antiquark where, after traveling through the shockwave, the gluon
is absorbed by the quark:
M†LOMISW

= −32(2π)αeme
2
fαsN

2
c p

+
j1p

+
j2

∫ p+
j1

k+
f

dk+
3
p+
j1 − k

+
3

q+p+
j1

(
p+
j1

p+
j2 + k+

3
+
p+
j2(p+

j1 − k
+
3 )

(p+
j1)2

)

×
∫

x1′ ,x2′ ,x1,x2,x3
e−ipj1·x11′e−ipj2·x22′e

ipj1·
k+
3
p+
j1

x13

×Aλ′(x1′2′)Aλ
′(x31)C

(
k+

3
p+
j1

x13 + x21,
k+

3
p+
j1

x13;
q+(p+

j1 − k
+
3 )

p+
j2k

+
3

)

×
〈
Q322′1′s13 − s13s32 − s2′1′ + 1− 1

N2
c

(
Q122′1′ − s12 − s2′1′ + 1

)〉
.

(9.18)

In the above, we used the following result for the Dirac trace:

Tr
(
Diracλ

′†
LODiracη

′

ISW

)
= 32p+

j1p
+
j2δ

λ′η′
(p+
j1)3 + p+

j2(p+
j1 − k

+
3 )(p+

j2 + k+
3 )

k+
3 q

+(k+
3 + p+

j2 − p
+
j1)

. (9.19)

Likewise, when the gluon is absorbed by the antiquark, one obtains:
M†LOMISW

= 32(2π)αeme
2
fαsN

2
c p

+
j1p

+
j2

∫ p+
j2

k+
f

dk+
3
p+
j2 − k

+
3

q+p+
j2

(
p+
j2

p+
j1 + k+

3
+
p+
j1(p+

j2 − k
+
3 )

(p+
j2)2

)

×
∫

x1′ ,x2′ ,x1,x2,x3
e−ipj1·x11′e−ipj2·x22′e

ipj2·
k+
3
p+
j2

x23

×Aλ′(x1′2′)Aλ
′(x32)C

(
k+

3
p+
j2

x23 + x12,
k+

3
p+
j2

x23;
q+(p+

j2 − k
+
3 )

p+
j1k

+
3

)

×
〈
Q132′1′s32 − s13s32 − s2′1′ + 1− 1

N2
c

(
Q122′1′ − s12 − s2′1′ + 1

)〉
,

(9.20)

where we used that:

Tr
(
Diracλ

′†
LODiracη

′

ISW

)
= −32p+

j1p
+
j2δ

λ′η′
(p+
j2)3 + p+

j1(p+
j2 − k

+
3 )(p+

j1 + k+
3 )

k+
3 q

+(k+
3 + p+

j1 − p
+
j2)

. (9.21)

GEFS, (i). The following contribution is what is left after subtracting MGEFS,(ii) from
the amplitude due to final-state gluon exchange:

M†LOMGEFS,(i) = (2π)αeme
2
fαsN

2
c

∫ p+
j1

k+
f

dk+
3
p+
j1 − k

+
3

q+p+
j1

Tr
(
Diracλ

′†
LODiracλ̄η̄η

′

q̄→q,(i)

)

×
∫

x1′ ,x2′ ,x1,x2
e−ipj1·x11′e−ipj2·x22′e

i
k+
3
p+
j1

pj1·x12

×Aλ′(x1′2′)Aλ̄(x12)Jη′η̄(k3,x12)

×
〈
s2′1′s12 − s12 − s2′1′ + 1− 1

N2
c

(
Q2′1′12 − s12 − s2′1′ − 1

)〉
,

(9.22)
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with the Dirac trace:

Tr
(
Diracλ

′†
LODiracλ̄η̄η

′

q̄→q,(i)

)
= 32

p+
j1p

+
j2

(q+k+
3 )2

[(
(k+

3 )2 + k+
3 (p+

j2 − p
+
j1)
)

×
(
(p+
j1)2 + (p+

j2)2 + k+
3 (p+

j2 − p
+
j1)
)
δλ̄λ

′
δη̄η
′

+ q+k+
3 (k+

3 + p+
j2 − p

+
j1)2ελ̄λ

′
εη̄η
′
]
.

(9.23)

The q ↔ q̄ conjugate contributions to the cross section can be simply obtained from
the above result by exchanging the quark and antiquark indices:

M†LOMGEFS,(i) =M†LOMGEFS,(i)(1↔ 2) ,

Tr
(
Diracλ

′†
LODiracλ̄η̄η

′

q→q̄

)
= Tr

(
Diracλ

′†
LODiracλ̄η̄η

′

q̄→q

)
(1↔ 2) .

(9.24)

IS+UV+FSUV. Finally, the contributions due to the initial-state corrections, ultravio-
let counterterms, and ultraviolet part of the self-energy corrections to the asymptotic final
states read:

M†LOMIS+UV+FSUV =
∣∣MLO

∣∣2αsCF
2π

(1
2ln2 p

+
j1

p+
j2
− π2

6 + 2
)
. (9.25)

9.3 Real terms

Final-state gluon radiation outside jet. The two terms in the first line of eq. (9.6)
are due to what we call the regular parts of |QFS|2 and |QFS|2 (see section 8), where the
gluon is emitted outside the jet (with ξ = p+

3 /p
+
j1):

dσ|QFS|2; out; reg
dijet

dp+
j1d2pj1dp+

j2d2pj2
=

θ(p+
j1)

(2π)32p+
j1

θ(p+
j2)

(2π)32p+
j2

1
2q+

1
2
∣∣MLO

∣∣2
~p1,2→~pj1,j2

× αsCF
2π

∫ +∞

0

dξ
ξ
e−iξpj1·x11′

[
−2 lnR− ln

(
p2
j1x2

11′

c2
0

)
− 2 ln ξ

]

×
{

2πδ(q+ − (1 + ξ)p+
j1 − p

+
j2)
[
1 +

(2ξ + ξ2)(p+
j1)2

(p+
j1)2 + (p+

j2)2

](
1 + (1 + ξ)2)

− 4πδ(q+ − p+
j1 − p

+
j2)θ(1− ξ)

}
. (9.26)
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and

dσ|QFS|2; out; reg
dijet

dp+
j1d2pj1dp+

j2d2pj2
=

θ(p+
j1)

(2π)32p+
j1

θ(p+
j2)

(2π)32p+
j2

1
2q+

1
2
∣∣MLO

∣∣2
~p1,2→~pj1,j2

× αsCF
2π

∫ +∞

0

dξ
ξ
e−iξpj2·x22′

[
−2 lnR− ln

(
p2
j2x2

22′

c2
0

)
− 2 ln ξ

]

×
{

2πδ(q+ − p+
j1 − (1 + ξ)p+

j2)
[
1 +

(2ξ + ξ2)(p+
j2)2

(p+
j1)2 + (p+

j2)2

](
1 + (1 + ξ)2)

− 4πδ(q+ − p+
j1 − p

+
j2)θ(1− ξ)

}
. (9.27)

QFS and QSW. The next terms are due to gluon emission before the shockwave and
the interference with the final-state emission:∫

p3

[
|MQSW|2 +M†QSWMQFS +M†QFSMQSW

]
= 2(2π)2αeme

2
fαsN

2
c Tr

(
Diracη̄λ̄QSWDiracη

′λ′†
QSW

)( p+
3

p+
j1 +p+

3

)2

×
∫

v,v′

∫
x1,x1′ ,x2,x2′ ,x3

e−ipj1·x11′e−ipj2·x22′ δ(2)
(

v−
p+
j1

p+
j1 +p+

3
x1−

p+
3

p+
j1 +p+

3
x3

)

×δ(2)
(

v′−
p+
j1

p+
j1 +p+

3
x1′−

p+
3

p+
j1 +p+

3
x3

)
Aη̄
(
x13
)
Aη
′(x1′3

)
×
{
Aλ′

(
v′−x2′ ,x31′ ,

p+
j1p

+
3 q

+

p+
j2(p+

j1 +p+
3 )2

)
Aλ̄
(

v−x2,x31,
p+
j1p

+
3 q

+

p+
j2(p+

j1 +p+
3 )2

)

×
〈
s11′s2′2−s32s13−s31′s2′3 +1− 1

N2
c

(
Q122′1′−s12−s2′1′+1

)〉

−Aλ′
(

v′−x2′ ,x31′ ,
p+
j1p

+
3 q

+

p+
j2(p+

j1 +p+
3 )2

)
Aλ̄(v−x2)

×
〈
Qv22′3s31′−s31′s2′3−sv2 +1− 1

N2
c

(
Qv22′1′−sv2−s2′1′+1

)〉
+c.c .

}
.

(9.28)

Likewise, when the gluon is radiated from the antiquark:∫
p3

[
|MQSW|

2 +M†QSWMQFS +M†QFSMQSW

]
= 2(2π)2αeme

2
fαsN

2
c Tr

(
Diracη

′λ′†
QSWDiracη̄λ̄QSW

)( p+
3

p+
j2 +p+

3

)2

×
∫

v,v′

∫
x1,x1′ ,x2,x2′ ,x3

e−ipj1·x11′e−ipj2·x22′ δ(2)
(

v−
p+
j2

p+
j2 +p+

3
x2−

p+
3

p+
j2 +p+

3
x3

)

×δ(2)
(

v′−
p+
j2

p+
j2 +p+

3
x2′−

p+
3

p+
j2 +p+

3
x3

)
Aη̄(x23)Aη′(x2′3) (9.29)
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×
{
Aλ′

(
v′−x1′ ,x32′ ,

p+
j2p

+
3 q

+

p+
j1(p+

j2 +p+
3 )2

)
Aλ̄
(

v−x1,x32,
p+
j2p

+
3 q

+

p+
j1(p+

j2 +p+
3 )2

)

×
〈
s11′s2′2−s2′3s31′−s13s32 +1− 1

N2
c

(
Q122′1′−s12−s2′1′+1

)〉

−Aλ′
(

v′−x1′ ,x32′ ,
p+
j2p

+
3 q

+

p+
j1(p+

j2 +p+
3 )2

)
Aλ̄(v−x1)

×
〈
Q31′1vs2′3−s2′3s31′−s1v+1− 1

N2
c

(
Q2′1′1v−s1v−s2′1′+1

)〉
+c.c.

}
.

The contributions to the cross section due to the interference between gluon radiation from
the quark and from the antiquark read:

∫
p3

[
M†QSWMQSW +M†QSWMQFS +M†QFSMQSW + c.c.

]
= −2(2π)2αeme

2
fαsN

2
c Tr

(
Diracη

′λ′†
QSWDiracη̄λ̄QSW

) p+
3

p+
j1 + p+

3

p+
3

p+
j2 + p+

3

×
∫

v,v′

∫
x1,x1′ ,x2,x2′ ,x3

e−ipj1·x11′e−ipj2·x22′ δ(2)
(

v′ −
p+
j2

p+
j2 + p+

3
x2′ −

p+
3

p+
j2 + p+

3
x3

)

× δ(2)
(

v−
p+
j1

p+
j1 + p+

3
x1 −

p+
3

p+
j1 + p+

3
x3

)
Aη
′(x2′3)Aη̄(x13)

×
{
Aλ′

(
v′ − x1′ ,x32′ ,

p+
j2p

+
3 q

+

p+
j1(p+

j2 + p+
3 )2

)
Aλ̄
(

v− x2,x31,
p+
j1p

+
3 q

+

p+
j2(p+

j1 + p+
3 )2

)

×
〈
s11′s2′2 − s2′3s31′ − s13s32 + 1− 1

N2
c

(
Q122′1′ − s12 − s2′1′ + 1

)〉

−Aλ′
(

v′ − x1′ ,x32′ ,
p+
j2p

+
3 q

+

p+
j1(p+

j2 + p+
3 )2

)
Aλ̄(v− x2)

×
〈
Qv22′3s31′ − sv2 − s2′3s31′ + 1− 1

N2
c

(
Qv22′1′ − sv2 − s2′1′ + 1

)〉

−Aλ′(v′ − x1′)Aλ̄
(

v− x2,x31,
p+
j1p

+
3 q

+

p+
j2(p+

j1 + p+
3 )2

)

×
〈
Qv′1′13s32 − s13s32 − sv′1′ + 1− 1

N2
c

(
Qv′1′12 − s12 − sv′1′ + 1

)〉

+ c.c.
}
.

(9.30)
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The Dirac traces appearing in the above two expressions are easily calculated using the
identities (A.5) and (A.7), and read:

Tr
(
Diracη

′λ′†
QSWDiracη̄λ̄QSW

)
= 32p+

j1p
+
j2

[
(p+
j1)2 + (p+

j1 + p+
3 )2

(p+
3 )2

(p+
j2)2 + (p+

j1 + p+
3 )2

(q+)2 δλ̄λ
′
δη̄η
′

+
(2p+

j1 + p+
3 )(p+

j1 − p
+
j2 + p+

3 )
p+

3 q
+ ελ̄λ

′
εη̄η
′
]
, (9.31)

Tr
(
Diracη

′λ′†
QSWDiracη̄λ̄QSW

)
= Tr

(
Diracη

′λ′†
QSWDiracη̄λ̄QSW

)
(1↔ 2) . (9.32)

RI: instantaneous gluon emission. We find for the contribution due to the instanta-
neous emission of a gluon:∫

p3

∣∣MRI
∣∣2 = 4(2π)2αeme

2
fαs

p+2
1 p+2

3 (p+
j1 + p+

3 )2

(q+)6

× Tr
∣∣DiracRI

∣∣2 ∫
x1′ ,x2′ ,x1,x2,x3

e−ipj1·x11′e−ipj2·x22′

× C
(
p+
j1
q+ x21 + p+

3
q+ x23,x31,

p+
j1p

+
3

q+p+
j2

)
C
(
p+
j1
q+ x2′1′ + p+

3
q+ x2′3,x31′ ,

p+
j1p

+
3

q+p+
j2

)

×
〈
s11′s2′2 − s2′3s31′ − s13s32 + 1− 1

N2
c

(
Q122′1′ − s12 − s2′1′ + 1

)〉
,

(9.33)

with the Dirac trace:

Tr
∣∣DiracRI

∣∣2 =
16(q+)2p+

j1p
+
j2

(p+
j1 + p+

3 )2(p+
j2 + p+

3 )2

(
(p+
j1 − p

+
j2)2 + (p+

j1 + p+
j2 + 2p+

3 )2
)
. (9.34)

Interference terms. Finally, the interference terms due to instantaneous gluon emission
in the complex conjugate amplitude and radiation from a quark in the amplitude read:∫

p3
M†RI

(
MQSW +MQFS

)
= 2(2π)2αeme

2
fαsN

2
c

p+
j1(p+

3 )2

(q+)3 Tr
(
Dirac†RIDiracη̄λ̄QSW

)
×
∫

x1′ ,x2′ ,x1,x2,x3,v
e−ipj1·x11′e−ipj2·x22′ δ(2)

(
v−

p+
j1

p+
j1 +p+

3
x1−

p+
3

p+
j1 +p+

3
x3

)

×C
(
p+
j1
q+ x2′1′+

p+
3
q+ x2′3,x31′ ,

p+
j1p

+
3

q+p+
j2

)
Aη̄(x13)

×
{
−Aλ̄

(
v−x2,x31,

p+
j1p

+
3 q

+

p+
j2(p+

j1 +p+
3 )2

)

×
〈
s11′s2′2−s32s13−s31′s2′3 +1− 1

N2
c

(
Q122′1′−s12−s2′1′+1

)〉

+Aλ̄(v−x2)
〈
Qv22′3s31′−sv2−s31′s2′3 +1− 1

N2
c

(
Qv22′1′−sv2−s2′1′+1

)〉}
,

(9.35)

with the Dirac trace:

Tr
(
Dirac†RIDiracη̄λ̄QSW

)
= −32p+

j1p
+
j2δ

λ̄η̄ 1
p+

3

((p+
j1 + p+

3 )2

p+
j2 + p+

3
+

p+
j1p

+
j2

p+
j1 + p+

3

)
. (9.36)
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Likewise, for the interference between instantaneous emission with gluon radiation from
the antiquark, we find:∫

p3
M†RI

(
MQSW +MQFS

)
=−2(2π)αeme

2
fαsN

2
c

p+
j1(p+

3 )2(p+
j1 +p+

3 )
(q+)3(p+

j2 +p+
3 )

Dirac†RIDiracη̄λ̄Q̄SW

×
∫

x1′ ,x2′ ,x1,x2,x3,v
e−ipj1·x11′e−ipj2·x22′ δ(2)

(
v−

p+
j2

p+
j2 +p+

3
x2−

p+
3

p+
j2 +p+

3
x3

)

×C
(
p+
j1
q+ x2′1′+

p+
3
q+ x2′3′ ,x3′1′ ,

p+
j1p

+
3

q+p+
j2

)
Aη̄(x23)

×
{
−Aλ̄

(
v−x1,x32,

p+
j2p

+
3 q

+

p+
j1(p+

j2 +p+
3 )2

)

×
〈
s2′2s11′−s13s32−s2′3s31′+1− 1

N2
c

(
Q122′1′−s12−s2′1′+1

)〉

+Aλ̄(v−x1)
〈
Q31′1vs2′3−s1v−s2′3s31′+1− 1

N2
c

(
Q2′1′1v−s1v−s2′1′+1

)〉}
,

(9.37)

with the Dirac trace:

Tr
(
Dirac†RIDiracη̄λ̄QSW

)
= 32p+

j1p
+
j2δ

λ̄η̄ 1
p+

3

((p+
j2 + p+

3 )2

p+
j1 + p+

3
+

p+
j1p

+
j2

p+
j2 + p+

3

)
. (9.38)

10 Correlation limit

In the so-called ‘correlation limit’ (refs. [59, 60]), the two outgoing jets are back-to-back in
the transverse plane. In this kinematic configuration, we recover a scale k⊥ = pj1 + pj2
set by the vector sum of the transverse jet momenta, which is small with respect to the
center-of-mass energy

√
s and the large transverse momentum of the jets P2

⊥ ∼ p2
j1 ∼ p2

j2.
k2
⊥ is typically of the order of the saturation scale Q2

s but can in principle even become
nonperturbative:

s� P2
⊥ � k2

⊥ ∼ Q2
s . (10.1)

The emergence of the large ratio P2
⊥/k2

⊥ � 1 implies the appearance of large ‘Sudakov’
logarithms, which need to be resummed on top of the rapidity logarithms Y +

f ∝ ln s. Su-
dakov resummation is governed by the Collins-Soper-Sterman (CSS [27, 28]) evolution equa-
tions, which are embedded in the framework of transverse momentum dependent (TMD)
factorization (refs. [29, 31]). Cross sections in TMD factorization can be written as the
convolution of a hard part with TMD parton distribution functions and/or fragmentation
functions (TMD PDFs and TMD FFs), which evolve according to CSS.

It has been known since a long time [60] that, in the correlation limit, the leading-order
CGC cross section (2.24) can be written as the product of a hard part with a gluon TMD
PDF, consistent with what one would find in TMD factorization at tree level. One part
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of the proof that this correspondence holds at higher orders, is to demonstrate that the
Sudakov logarithms in our NLO cross section have the right form and can be absorbed
into CSS. It turns out that this first step is already highly non-trivial, and we will limit
ourselves in this work to the Sudakov double logarithms at large Nc.

At double leading logarithmic (DLL) accuracy, the TMD factorization formula for our
process γA→ dijet +X is:

dσTMD
DLL

dzdz̄d2P⊥d2k⊥
= dσTMD

LO
dzdz̄d2P⊥d2k⊥

× e−
1
2SA(b−b′,P⊥) , (10.2)

with some slight abuse of notation, since the product is really at the integrand level,
and where SA is the perturbative Sudakov factor which reads at LO and in the DLL
approximation:

SA(b− b′, P⊥) = αsNc

2π ln2 P2
⊥(b− b′)2

c2
0

. (10.3)

In the above formulas, b− b′ is the transverse coordinate conjugate to k⊥.
We will show in this section that the NLO cross section, in the correlation limit, takes

the form

dσNLO
γA→dijet+X

corr. lim.= dσTMD
LO

(
1− αsNc

4π ln2 P2
⊥(b− b′)2

c2
0

+O(single logs)
)

+O(finite terms) ,
(10.4)

hence proving agreement between the CGC and the TMD calculations, at least to DLL
accuracy. The Sudakov double logarithm comes, at least at leading Nc, from soft-collinear
gluon radiation just outside the jet, i.e. from the contribution Vout; phase

|QFS|2 (eqs. (8.20)
and (8.21)) and its q ↔ q̄ counterpart. However, as was remarked very recently in [120],
taken at face value the double logarithm in this contribution comes with the wrong sign (see
section 10.2). We will demonstrate in subsection 10.3 that this wrong sign is compensated
for by the mismatch between naive and kinematically-improved low-x resummation.

Finally, we should remark that in the seminal paper ref. [49], eq. (10.4) was already
inferred from an analysis of Higgs hadroproduction combined with kinematical arguments.
While physically insightful, the approach to the dijet case in [49] has some limitations. The
calculation presented in this section relies on the complete NLO dijet calculation instead,
which requires a systematic treatment of the low-x resummation. As such, our treatment
constitutes an important step towards reaching full NLO accuracy in the back-to-back limit.

10.1 Leading order

Introducing the vector sum of the transverse momenta of the outgoing (anti)quark:

k⊥ = p1 + p2 , (10.5)

one can rewrite the transverse coordinates in function of b and r which are conjugate to
k⊥ and to P⊥, respectively (remember that z = p+

1 /q
+ and z̄ = p+

2 /q
+):

x1 = b + z̄r, x2 = b− zr . (10.6)
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After this coordinate transform, the squared of the LO amplitude (2.23) becomes:∣∣MLO
∣∣2 = 16(4π)αeme

2
fp

+
1 p

+
2 (z2 + z̄2)Nc

×
∫

r,r′,b,b′
e−iP⊥·(r−r′)e−ik⊥·(b−b′)Aλ

′(r)Aλ′(r′)

× Tr
〈
Q122′1′ − s12 − s2′1′ + 1

〉
.

(10.7)

Taking the correlation limit P⊥ � k⊥ then implies b,b′ � r, r′, which we will use to
perform a Taylor expansion of the Wilson lines. At the lowest non-trivial order, the only
nonzero contribution will come from the quadrupole operator since all O(r) corrections on
dipoles evaluated in either two unprimed or two primed coordinates disappear:

Tr
[
∂ir(Uxi)U

†
b

]∣∣∣
r=0

= Tr
[
∂ir∂

j
r(Uxi)U

†
b

]∣∣∣
r=0

= 0 . (10.8)

It is then easy to see that:

Tr
〈
Q122′1′ − s12 − s2′1′ + 1

〉
' rir′j Tr

Nc

〈
Ub
(
∂iU †b

)(
∂jUb′

)
U †b′

〉
(10.9)

up to higher orders in the Taylor expansion. Eq. (10.7) then simplifies to:

∣∣MLO
∣∣2 TMD= 16

αeme
2
f

π
p+

1 p
+
2 (z2 + z̄2)

∫
r,r′

e−iP⊥·(r−r′) r · r′

r2r′2
rir′j

×
∫

b,b′
e−ik⊥·(b−b′)Tr

〈
Ub
(
∂iU †b

)(
∂jUb′

)
U †b′

〉
.

(10.10)

In the thus obtained Wilson-line structure, one can recognize the so-called ‘hadron cor-
relator’ which is parameterized by the unpolarized FWW and linearly-polarized HWW
Weizsäcker-Williams gluon TMD [61]:∫

b,b′
e−ik⊥·(b−b′)Tr

〈
Ub
(
∂iU †b

)(
∂jUb′

)
U †b′

〉
= g2

s(2π)3 1
4

[
δij

2 FWW(xA,k⊥) +
(ki⊥kj⊥

k2
⊥
− δij

2

)
HWW(xA,k⊥)

]
.

(10.11)

Finally, using eq. (2.1), we end up with (note that at LO and at the level of the cross
section, the parton momenta can be identified with jet momenta):

dσTMD
LO

dzdz̄d2P⊥d2k⊥
=

2αeme
2
f

(2π)7 (z2 + z̄2)2πδ(z + z̄ − 1)
∫

r,r′
e−iP⊥·(r−r′) r · r′

r2r′2 rir′j

×
∫

b,b′
e−ik⊥·(b−b′)Tr

〈
Ub
(
∂iU †b

)(
∂jUb′

)
U †b′

〉
,

=
αeme

2
fαs

P4
⊥

(z2 + z̄2)δ(1− z − z̄)FWW(xA,k⊥) ,

(10.12)

which is the same expression as one would find in a leading-order TMD factorization
approach [60]. Note that, at the present lowest perturbative order, one needs an extra
scale, such as a nonzero photon virtuality Q2 or heavy-quark mass, to be sensitive to the
linearly-polarized gluon TMD HWW [63, 64, 67].
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10.2 Sudakov double logs in the NLO cross section

The contributions Vout; phase
|QFS|2 and Vout; phase

|QFS|2 (see eqs. (8.20), (8.21) and (8.25)) factorize
from the LO cross section (at integrand level), and can produce double large logarithms.
In the correlation limit, since pj1 → P⊥ and x11′ → b− b′, Vout; phase

|QFS|2 becomes

Vout; phase
|QFS|2 =

corr. lim.
2
∫ 1

0

dξ
ξ

[
e−iξP⊥·(b−b′) − 1

]
×
[
−2 lnR− ln

(
P2
⊥(b− b′)2

c2
0

)
− 2 ln ξ

]
,

(10.13)

and Vout; phase
|QFS|2 has the same expression in the correlation limit. For simplicity let us restrict

ourselves to the case in which the azimuthal angle of P⊥ is integrated over. Then, we have

Vout; phase
|QFS|2 =

corr. lim.
2
∫ 1

0

dξ
ξ

[
J0
(
ξ|P⊥| |b− b′|

)
− 1

] [
−2 lnR− ln

(
ξ2 P2

⊥(b− b′)2

c2
0

)]

= 1
2

(
ln
(

P2
⊥(b− b′)2

c2
0

))2

+ 2 lnR ln
(

P2
⊥(b− b′)2

c2
0

)

+O
(

1√
|P⊥| |b− b′|

)
. (10.14)

Hence, in the correlation limit, the NLO corrections from eqs. (8.20) and (8.25) reduce to:

∫
φP⊥

dσ|QFS|2+|Q̄FS|2; out; phase
dijet

dp+
j1d2pj1dp+

j2d2pj2

=
∫
φP⊥

dσLO
dijet

dp+
j1d2pj1dp+

j2d2pj2
×αsCF2π

[
Vout; phase
|QFS|2 + Vout; phase

|QFS|2

]
corr. lim.=

∫
φP⊥

dσTMD
LO

dzdz̄d2P⊥d2k⊥
×
[
αsCF

2π

(
ln
(

P2
⊥(b− b′)2

c2
0

))2

− 2αsCF
π

ln
( 1
R

)
ln
(

P2
⊥(b− b′)2

c2
0

)
+O

(
αsCF√

|P⊥| |b− b′|

)]
,

(10.15)

where once again the product takes place at the level of the integrand. These logarithms
are indeed of the Sudakov type. However, the coefficient of the double log is positive,
whereas the total Sudakov double log term should be negative.

Note that the only possible sources of Sudakov double logarithms are contributions to
the cross section that exhibit soft divergences. In addition, since Sudakov logs exponentiate,
they should have the same Wilson-line operator as at LO. In our calculation, apart from
the contribution considered above, the only other possible sources of soft singularities are
the ones discussed in section 5, i.e. the final-state exchange diagrams GEFS + IFS, and
the real interference between QFS and QFS. However, there, only subleading-Nc terms
are proportional to the LO color operator, while the leading-Nc operators do not include
quadrupoles (and drop in the correlation limit). Due to the complexity of the diagrams
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in section 5, we are not attempting in this study to calculate their possible subleading-
Nc contribution to Sudakov logarithms, and we stay instead at large Nc. Hence, we can
actually replace CF by Nc/2 in eq. (10.15) at this accuracy.

In our calculation of the NLO dijet cross section in the correlation limit, we thus obtain
Sudakov double logarithms with the expected coefficient at large Nc but the wrong sign.
We will now discuss the effect on this result from the kinematical improvement of the
high-energy leading-log resummation.

10.3 Sudakov double logs from the mismatch of naive and kinematically con-
sistent low-x resummation

In order to perform the subtraction and resummation of low-x (or high-energy) logs for the
NLO dijet cross section, we have used the simplest scheme for JIMWLK resummation. As
explained in section 6.1, in this scheme the evolution takes place along the p+ axis, from
a cutoff k+

min to a factorization scale k+
f . The JIMWLK evolution then resums multiple

gluon emissions within this interval, which are strongly ordered in p+ only.
However, such a simple scheme for the low-x resummation is known to fail beyond

low-x leading logarithmic accuracy. Indeed, in a scheme like this, in order to simplify
the kinematics, implicitly the approximation of infinite collision energy

√
s→∞ is made.

This then leads to serious issues, like NLO cross sections which can become negative, and
unstable low-x evolution equations at next-to-leading log accuracy. The main ingredient for
a resolution of these issues is an improvement of the kinematics in the high-energy evolution
equation [86–94], also known as a consistency- or kinematical constraint, which can be also
understood as an all-order resummation of leading collinear logarithms within the high-
energy evolution equation, either BFKL [86–90] or BK [90–93]. Due to its complexity, so
far the case of the JIMWLK equation has been much less studied, although the same issue
is present and can be addressed following a similar strategy [94].

For a large but finite collision energy
√
s, the strong p+-ordering of successive emissions

is necessary but not sufficient for large high-energy leading logs to arise in higher-order cal-
culations. Instead, the necessary and sufficient condition is that successive emissions should
be strongly ordered both in p+ and in p−, in opposite directions. The JIMWLK equation in
the scheme that we have used thus leads to an oversubtraction of high-energy logarithms, in
the domain satisfying the p+-ordering but violating the p−-ordering. Note that the situa-
tion would have been similar if we had chosen a scheme for JIMWLK based on p−-ordering
only, except that the oversubtraction would have happened in a different kinematic domain.

The contribution to be subtracted from the NLO correction and resummed into the
LL evolution of the LO term should thus be defined with two conditions, which require
two factorization scales. Schematically, in addition to the condition p+

3 < k+
f for the gluon

of momentum p3 to participate to the high-energy evolution, one should also include a
condition of the type p−3 > k−f . Note that both factorization scales k+

f and k−f are used to
specify the endpoint of the high-energy evolution of the target. They should thus be chosen
in relation to the kinematics of the observable (the dijet in our case), and be independent
of the kinematics of the target and of the collision energy

√
s. First, k+

f should be smaller
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or equal to the + momenta of both jets. A natural choice for k+
f is then:

k+
f =

p+
j1p

+
j2

q+ . (10.16)

The other factorization scale, k−f , should be a typical − momentum scale set by the dijet
final state. Using the dijet mass squared

2pµj1pj2µ =
(
p+
j2pj1 − p

+
j1 pj2

)2
p+
j1p

+
j2

= (q+)2 P2
⊥

p+
j1p

+
j2

(10.17)

and q+, a natural choice for k−f can be written as:

k−f =
2pµj1pj2µ

2q+ = q+ P2
⊥

2p+
j1p

+
j2

= P2
⊥

2k+
f

. (10.18)

The BK and JIMWLK evolution equations are usually written in mixed space, with +
momenta and transverse positions. Hence, one has no direct access to the p− of the gluon,
which complicates imposing a condition of the type p−3 > k−f . In practice, one is led to
build a proxy for the p− of the gluon out of the available mixed-space variables, so that k−f
becomes a lower bound on a combination of + momenta and transverse positions involved
in the gluon emission [90–94]. In the present section, we do not need to enter into such
technicalities. We can stay at a quite schematic level in order to understand the interplay
between Sudakov double logs and the kinematical improvement of the JIMWLK equation.

Sudakov logarithms are known to exponentiate, and thus to appear at higher orders
in terms containing the same Wilson-line operator (or the same parton distribution) as the
LO term. Hence, we will now focus on the part in the JIMWLK evolution that involves
this same LO operator. It is not a surprise that this part is the one corresponding to
the radiative corrections absorbed into the jet definition eq. (8.33). From the results of
section 6, in our naive scheme for JIMWLK, at the cross section level this contribution
amounts to multiplying the LO cross section with the factor

2αsNc ln
(
k+
f

k+
min

)∫
x3

[
Aη(x1′3)Aη(x13) +Aη(x2′3)Aη(x23)

−Aη(x13)Aη(x23)−Aη(x1′3)Aη(x2′3)
]

= 2αsNc

∫ k+
f

k+
min

dp+
3

p+
3

∫
P3

1
P2

3

[
eiP3·x1′1 + eiP3·x2′2 − eiP3·x12 − eiP3·x1′2′

]
,

(10.19)

using the momentum representation (2.16) of the Weizsäcker-Williams fields.
For the contribution (10.19), we can implement the extra condition p−3 > k−f corre-

sponding to kinematical improvement directly in momentum space as

P2
3

2p+
3
>k−f = P2

⊥
2k+

f

. (10.20)
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In other sections, we have obtained the NLO dijet cross section using a naive scheme for
high-energy log subtraction (and resummation). Using instead a kinematically improved
scheme for this subtraction, we would obtain the same result for the NLO cross section, plus
an extra term: the difference between the naive and the kinematically improved integrated
JIMWLK evolutions of the LO cross section. The contribution to this difference which is
proportional to the LO operator would then be

2αsNc

∫ k+
f

k+
min

dp+
3

p+
3

∫
P3

1
P2

3

[
eiP3·x1′1 + eiP3·x2′2 − eiP3·x12 − eiP3·x1′2′

]
×
[
1− θ

(
P2

3
2p+

3
− P2

⊥
2k+

f

)]
,

(10.21)

with the term 1 in the bracket corresponding to the naive evolution with p+ ordering
only, whereas the theta function implements the condition (10.20), meaning imposing as
well the p− ordering of the gluons participating to the evolution with respect to the k−f
scale set by the dijet kinematics. Making all the bounds explicit as theta functions, the
expression (10.21) becomes:

2αsNc

∫ +∞

0

dp+
3

p+
3

∫
P3

1
P2

3

[
eiP3·x1′1 + eiP3·x2′2 − eiP3·x12 − eiP3·x1′2′

]
× θ

(
k+
f −p

+
3

)
θ
(
p+

3 −k
+
min

)
θ

(
p+

3
k+
f

P2
⊥−P2

3

)
.

(10.22)

There is one upper and two lower bounds for p+
3 . k+

min was first introduced as a cutoff to
regulate the p+

3 -integral. In the high-energy resummation, k+
min also plays the role of the

starting point of the evolution of the target, and allows us to implement the dependence of
the cross section on the energy of the collision as k+

min ∝ 1/s. According to both of these
interpretations for k+

min, the lower bound p+
3 > k+

min is less restrictive than the other one in
the expression (10.22), and can be dropped. Then, eq. (10.22) becomes

(10.22) = 2αsNc

∫
P3

1
P2

3
θ
(
P2
⊥−P2

3

)
ln
(

P2
⊥

P2
3

)
×
[
eiP3·x1′1 + eiP3·x2′2 − eiP3·x12 − eiP3·x1′2′

]
= 2αsNc

π

∫ |P⊥|
0

d|P3|
|P3|

ln
( |P⊥|
|P3|

)
×
[
J0 (|P3| |x1′1|) + J0 (|P3| |x2′2|)− J0 (|P3| |x12|)− J0 (|P3| |x1′2′ |)

]
.

(10.23)

In the correlation limit, one has x12 → 0, x1′2′ → 0, x1′1 → b′ − b and x2′2 → b′ − b,
so that the expression (10.23) becomes

4αsNc

π

∫ |P⊥| |b′−b|
0

dτ
τ

[
ln
(
|P⊥| |b′ − b|

)
− ln (τ)

][
J0 (τ)− 1

]
= −αsNc

2π

{
ln2
(

P2
⊥ (b′ − b)2

c02

)
+O

(
1√

|P⊥| |b′ − b|

)} (10.24)
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for |P⊥||b′ − b| � 1. This is a Sudakov double log type term, this time with the ex-
pected negative sign. Combining this contribution together with the leading-Nc term from
eq. (10.15), one finally obtains the following total double logarithmic contribution

− αsNc

4π ln2
(

P2
⊥ (b′ − b)2

c02

)
(10.25)

at leading Nc, which is indeed the expected Sudakov double log term from eq. (10.4).
Several remarks are in order:

• The calculation outlined in this subsection provides an extra motivation for the kine-
matical improvement of high-energy evolution equations like JIMWLK: it allows one
to obtain the correct Sudakov double logarithms after including the leftover in the
NLO cross section after high-energy resummation. The situation can be summarized
as follows. In the naive scheme for JIMWLK resummation based on p+-ordering
only, any gluon radiation with smaller p+ than the dijet scale k+

f is treated as part of
the evolution of the target. By contrast, including kinematical improvement allows
one to split such small-p+ gluon radiation into two parts: the true contribution to
the evolution of the target with smaller p+ but larger p− than the dijet, and the soft
radiation with both p+ and p− smaller than the dijet. Sudakov logarithms originate
from the soft regime only, which is thus distinct from the true regime contribut-
ing to the evolution of the target. But the naive scheme in p+ without kinematical
improvement for the target evolution misses this fact, and leads to oversubtracting
high-energy logs out of the soft regime. This motivates future studies in order to un-
derstand the practical implementation of the proposal of ref. [94] for the kinematical
improvement of JIMWLK, or to construct other prescriptions.

• We have focused on the leading-Nc contribution only. Subleading-Nc terms cancel
in the naive version of the BK and JIMWLK equation, but this cancelation can be
broken when kinematical improvement is included, as can be seen from ref. [91] in
the BK case. Hence, at this stage, we have no control on a possible subleading-Nc

correction to the coefficient of the Sudakov double log.

• If we had used a scheme for JIMWLK resummation based on p−-ordering only, the
situation before kinematical improvement would have been more favorable. In that
case, only gluon radiation with larger p− than the dijet (and any p+) would have
been treated as part of the evolution of the target. This would not overlap with the
soft regime characterized by both smaller p+ and p− than the dijet. Hence, Sudakov
logs should be obtained correctly in this case even without kinematical improvement
of JIMWLK, since the oversubtraction of high-energy logs happens in the regime of
larger p+ and larger p− than the dijet, which is well separated from the soft regime.
A formulation of the BK equation as evolution along p− was proposed in ref. [93].
However, it is crucially based on specific properties of BK, and for the moment such
a scheme does not exist for JIMWLK.
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10.4 Beyond the double leading logarithmic approximation

In principle, having obtained the full NLO cross section in general kinematics, one should
be able to extend the notion of the correlation limit and write down a TMD-factorized
NLO cross section for back-to-back dijets. All virtual diagrams would contribute since
they preserve the leading-order kinematics. The most important real NLO corrections
stem from gluon emissions inside or close to the jets, yielding Sudakov double- and single
logarithms as well as finite terms.

A first step is to extend the calculation above to the Sudakov single logarithms, which is
left for future work. In the second step, where all the virtual diagrams need to be analyzed
to obtain the finite contributions to the NLO cross section, we immediately encounter some
difficulties. Indeed, TMD factorization is obvious for all diagrams with initial- or final-state
loop corrections (i.e. IS + UV + FSUV, GEFS, IFS), at least in the sense that up to power
corrections one can write the Wilson lines as the WW gluon TMDs (10.11) which decouple
from the hard part. Note that the rationale for this power expansion in our approach
comes from the phases eiP⊥·reik⊥·b which imply that r � b when P⊥ � k⊥. However,
in all virtual graphs where the gluon scatters off the shockwave (SESW, GESW, ISW)
this procedure is compromised due to the phase eiP⊥·(r+ξx13)eik⊥·b, which now enforces
r + ξx13 � b. With this condition, the Wilson-line structure

Q322′1′s13 − s13s32 − s2′1′ + 1− 1
N2
c

(
Q122′1′ − s12 − s2′1′ + 1

)
(10.26)

cannot be cast in any form resembling a TMD. Such a form can only be established when
one requires that r� b and x13 � b separately, which yields:〈

Q322′1′s13 − s13s32 − s2′1′ + 1− 1
N2
c

(
Q122′1′ − s12 − s2′1′ + 1

)〉
'
(2CF
Nc

rir′j − xi13r′j
)Tr
Nc

〈
Ub
(
∂iU †b

)(
∂jUb′

)
U †b′

〉
,

(10.27)

and would bring the virtual NLO contributions in a TMD-factorized form. Unfortunately,
it is not clear to us whether such an expansion can be justified.

11 Conclusions

Making use of the dipole picture of the CGC effective theory and of LCPT, we have cal-
culated the cross section for the inclusive production of two jets in the scattering of a
real photon with a target proton or nucleus at low x. The computation was performed
at next-to-leading order in αs, while resumming the multiple rescatterings of the partons
off the semiclassical gluon fields in the target to all orders in the eikonal approximation.
Using dimensional regularization, we explicitly showed the cancellation of ultraviolet sin-
gularities between different virtual NLO corrections on the amplitude level. Likewise, we
demonstrated how both soft and collinear divergences, which appear in final-state radia-
tion, cancel through an intricate interplay between the jet definition and certain virtual
diagrams. Moreover, we regularized rapidity divergences with the standard cutoff method
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and absorbed the resulting large logarithms into the JIMWLK equations. This hybrid
scheme, i.e. the dimensional regularization of UV and soft-collinear divergences combined
with a cutoff for rapidity divergences, is commonly used in higher-order CGC calculations.
However, it has the drawback that it obfuscates the distinction between ‘genuine’ soft di-
vergences on the one hand, and rapidity divergences on the other. The former are typically
associated with initial- and final state radiation, while the latter are the hallmark of low-x
physics and related to the highly boosted target. The fact that, as we show in section 8,
not only all soft and collinear singularities cancel in the final-state, but the only large
high-energy logarithms left are those removed by JIMWLK, is a powerful confirmation of
the consistency of this scheme.

After having obtained the NLO dijet cross section, we have explored the back-to-back
limit to investigate whether our result could be cast in a form consistent with TMD factor-
ization. At leading order, the overlap of the CGC and the TMD frameworks for processes
such as this has been demonstrated already some time ago [59, 60]. However, a full next-to-
leading order matching is much more involved, since it constitutes an analysis of all Sudakov
double and single logarithms as well as finite NLO contributions. A first demonstration
that Sudakov double logarithms arise in the hadroproduction of a Higgs boson at low-x was
performed in [49], where also the precise form of these double logs in dijet production was
inferred based on kinematical arguments. In this work, we revisited the analysis of the Su-
dakov double logarithms in the dijet case, this time based on the full NLO calculation. We
argue that a kinematical improvement of the JIMWLK resummation is crucial to obtain the
correct result for the Sudakov double logarithms. We have also identified a class of virtual
contributions that, at least at first sight, break TMD factorization on the finite or poten-
tially single-logarithmic level. Before drawing definite conclusions a more thorough study of
the correlation limit of our process is needed, which is left for future work. The inclusive di-
jet electroproduction process has been studied within TMD factorization in refs. [121, 122].

While this work was in progress, the NLO calculation of the inclusive dijet elec-
troproduction cross section appeared in ref. [83]. This calculation was performed in a co-
variant formulation of the CGC rather than in LCPT, and using a different UV subtraction
scheme. In the photoproduction limit Q2 → 0, our cross section and the γ∗T+A→dijet+X
cross section in [83] should coincide. The largest difference between both results stems
from the treatment of the jet. Indeed, the final result eq. 7.16 of [83] for the dijet cross sec-
tion is still sensitive to both single- and double logarithms in the rapidity renormalization
scale zf = k+

f /q
+ (or in the rapidity cutoff k+

min if the JIMWLK subtraction is performed
after the application of the jet algorithm.) Since these logarithms cannot be absorbed into
JIMWLK and have a soft origin, not a rapidity one, they are unphysical and still need
to cancel with soft gluon emission outside the jet, as demonstrated in section 8. Other
differences between our results are relatively minor and mainly related to the precise +
momentum due to the Dirac traces. In appendix B, we cast our partonic cross section in
the same notations and conventions as [83] to facilitate a detailed comparison.
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A Gamma matrices in dimensional regularization

In this appendix, we establish the gamma matrix identities in D − 2 transverse Euclidean
dimensions.

From the definition {γµ, γν} = 2gµν , we immediately obtain:

{γi, γj} = −2δij , (A.1)

from which the following identity trivially follows:

γiγi = −(D − 2) . (A.2)

Repeatedly applying identity (A.1) allows us to write:

γiγjγkγl = γkγlγiγj + 2δilγkγj − 2δikγlγj + 2δjlγiγk − 2δjkγiγl . (A.3)

With the help of the above relation, it is straightforward to work out the commutation
relation for the Dirac sigma, defined as σij = (i/2)[γi, γj ], in D − 2 dimensions:[

σij , σkl
]

= 2iδilσkj − 2iδikσlj + 2iδjlσik − 2iδjkσil , (A.4)

as well as the contraction:

σijσil = (D − 3)δjl + i(D − 4)σjl . (A.5)

When evaluating Dirac traces, one can use the fact that γ+ (and γ−) commute with the
transverse gamma matrices and hence also with σij , and then apply the completeness
relation

usG(q+)ūsG(q+)γ+ = 2q+PG , (A.6)
where PG = γ−γ+/2 is the projector on good spinor states.

The above definitions allow one to easily demonstrate the following identities:

Tr
(
PG
)

= 2 ,
Tr
(
PGσij

)
= 0 ,

Tr
(
PGσijσkl

)
= 2(gikgjl − gilgjk) D→4= 2εijεkl ,

Tr
(
PGσijσklσimσkn

) D→4= Tr
(
PGσklσijσimσkn

) D→4= 2δjmδln .

(A.7)
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Moreover, using the above relations as well as the commutation relation (A.4), it is straight-
forward to prove the following relation:

Tr
{
PG
(
Aδλλ

′ + iσλλ
′)(
Bδηη

′ + iσηη
′)(
Cδλλ̄ + iσλλ̄

)(
Dδηη̄ + iσηη̄

)}
D→4= 2

[
(AC − 1)(BD − 1)δη̄η′δλ̄λ′ + (A− C)(D −B)ση̄η′σλ̄λ′

]
.

(A.8)

B Cross section in the notation of Caucal-Salazar-Venugopalan

In this appendix, we provide our cross section (section 9) cast in the notations and
conventions of ref. [83], to facilitate comparison with the results in that paper for the
γ∗T +A→ q+ q̄+X and γ∗T +A→ q+ q̄+g+X NLO impact factors in the limit of vanishing
photon virtuality Q2 → 0.

In [83], the indices x, y, and z are used instead of 1, 2, and 3 for the coordinates of
the quark, antiquark, and gluon, respectively, such that e.g. rxy = x12. Plus momenta are
always written as fractions with the photon + momentum q+, i.e. zq ≡ p+

1 /q
+, zq̄ ≡ p+

2 /q
+,

and zg ≡ k+
3 /q

+ (or zg ≡ p+
3 /q

+ in real diagrams). The coordinate vectors

RSE ≡ −
k+

3
p+

1
x13 + x12 ,

RV ≡
k+

3
p+

2 + k+
3

x23 + x12 = p+
2 x12 + k+

3 x13

p+
2 + k+

3
,

(B.1)

and
X2
V ≡

p+
2
q+

p+
1 − k

+
3

q+ x2
12 + k+

3
q+

p+
1 − k

+
3

q+ x2
31 + k+

3 p
+
2

(q+)2 x2
32 , (B.2)

appear in the virtual diagrams SESW, GESW and ISW. The following short-hand nota-
tions are used for the Wilson-line structures:

ΞLO ≡
〈
Q2′1′12 − s12 − s2′1′ + 1

〉
,

2
Nc

ΞNLO,1 ≡
〈
Q322′1′s13 − s13s32 − s2′1′ + 1− 1

N2
c

(
Q122′1′ − s12 − s2′1′ + 1

)〉
,

2
Nc

ΞNLO,3 ≡
〈
s2′1′s12 − s12 − s2′1′ + 1− 1

N2
c

(
Q122′1′ − s12 − s2′1′ + 1

)〉
,

(B.3)

while the compact notation∫
dΠLO ≡

∫
x1′ ,x2′ ,x1,x2

e−ip1·x11′e−ip2·x22′ (B.4)

is used for the transverse integral.
With the above notations, it is easy to show that the modified Weizsäcker-Williams-

and Coulomb fields that appear in SESW, GESW, and ISW can be cast in the following
form:

Aλ̄
(
k+

3
p+

1
x13 + x21,

k+
3
p+

1
x13; q

+(p+
1 − k

+
3 )

k+
3 p

+
2

)
= 1

2πzqzq̄
Rλ̄

SE
X2
V

Aλ̄
(
p+

2 x12 + k+
3 x13

p+
2 + k+

3
,

k+
3

p+
2 + k+

3
x32; q+p+

2
k+

3 (p+
1 − k

+
3 )

)
= − 1

2π (zq − zg)(zq̄ + zg)2 Rλ̄
V

X2
V

,

C
(
k+

3
p+

1
x13 + x21,

k+
3
p+

1
x13; q

+(p+
1 − k

+
3 )

p+
2 k

+
3

)
= 1

(2π)2 zqzq̄
1
X2
V

.

(B.5)
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Finally, with the indices J ≡ j1 and K ≡ j2 for the jet initiated by the quark resp.
antiquark, we can write the contribution to the cross section due to SESW, sub as follows:

dσSESW,sub
dηJdηKd2pJd2pK

=
αeme

2
fNc

(2π)6 δ(1− zJ − zK)
∫

dΠLO2z2
Jz

2
K

1
r2
x′y′

× αs
π

∫ zJ

zmin

dzg
zg

∫ d2z⊥
π

(z2
J + z2

K)
(

1− zg
zJ

+
z2
g

2z2
J

)

×
{
e
−i zg

zJ
pJ ·rzx 1

r2
xz

RSE · rx′y′
X2
V

ΞNLO,1

+ 1
zJzK

( 1
r2
xz

− rxz · ryz
r2
xzr2

yz

)rxy · rx′y′
r2
xy

CFΞLO

}
,

(B.6)

in complete agreement with eq. B.1 in [83] up to the replacements zg
2z2
J
→ z2

g

2z2
J
and rxy →

rx′y′ in the third line, which are likely typos.
Likewise, for the contribution due to GESW:

dσGESW
dηJdηKd2pJd2pK

=
αeme

2
fNc

(2π)6 δ(1− zJ − zK)
∫

dΠLO2z2
Jz

2
K

1
r2
x′y′

× αs
π

∫ zJ

zmin

dzg
zg

∫ d2z⊥
π

e
−i zg

zJ
pJ ·rzx (zJ − zg)(zK + zg)

2z2
JzK

×
[(
z2
g + zg(zK − zJ)− 2zJzK

)(
z2
J + z2

K + zg(zK − zJ)
)rzx · rzy

r2
zxr2

zy

RV · rx′y′
X2
V

− zg(zg + zK − zJ)2 rzx × rzy
r2
zxr2

zy

RV × rx′y′
X2
V

]
ΞNLO,1 .

(B.7)

The term RV · rx′y′ is equal to a factor zK + zg times the one in eq. B.1, assuming the
Bessel function in the fourth line should read K1(QXV). With the same assumption, for
the term RV × rx′y′ , the discrepancy is bigger with a prefactor:

termTABM
RV×rx′y′ = (zK + zg)(zg + zK − zJ)

1 + zg − 2zJ(zK + zg)
termCSV

RV×rx′y′ . (B.8)

Finally, for ISW:

dσISW
dηJdηKd2pJd2pK

=
αeme

2
fNc

(2π)6 δ(1− zJ − zK)
∫

dΠLO2z2
Jz

2
K

1
r2
x′y′

× αs
π

∫ zJ

zmin

dzg
zg

∫ d2z⊥
π

e
−i zg

zJ
pJ ·rzxΞNLO,1

×−zg(zJ − zg)2zJ

(
zJ

zK + zg
+ zK(zJ − zg)

z2
J

)rzx · rx′y′
r2
zxr2

x′y′

1
X2
V

,

(B.9)

which is a factor 1/2 times the result in eq. B.1 if we assume that a factor −1 was forgotten
in front of the term zg(zg − zJ)2zK/z

3
J in the second line.
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Likewise, the notations k⊥ ≡ p1, p⊥ ≡ p2, and kg⊥ ≡ k3 or p3 are employed for the
transverse momentum of the quark, antiquark, and virtual resp. real gluon. The vector
sum of the quark- and gluon momenta is written as ∆⊥ ≡ p1 + p2, while P⊥ denotes the
same momentum combination as in our work. With the notation:

∆2
V3 ≡ −

p+
2 + k+

3
p+

2

p+
1 − k

+
3

p+
1

P2
⊥ , (B.10)

and making use of the identity:∫
K

eiK·x

K2 + Q2 = 1
2πK0

(∣∣x∣∣∣∣Q∣∣) , (B.11)

we can rewrite the integral J (3.18) as follows:

δη
′η̄Jη

′η̄(k+
3 ,x12) = e

i(1− zg
zq

)P⊥·rxy 1
2πK0

(
rxy∆V3

)
+ zg

2zK(zJ − zg)
1

2πJ�
(

rxy,
(

1− zg
zq

)
P⊥,∆V3

)
,

εη̄η
′
Jη
′η̄(k+

3 ,x12) = −i zg
(zJ − zg)zK

1
2πJ⊗

(
rxy,

(
1− zg

zq

)
P⊥,∆V3

)
.

(B.12)

The contributions to the cross section due to the virtual diagrams GEFS, (i) and
GEFS, (ii) + IFS can then be written as follows:

dσGEFS,(i)
dηJdηKd2pJd2pK

=
αeme

2
fNc

(2π)6 δ(1− zJ − zK)
∫

dΠLO2z2
Jz

2
K

1
r2
x′y′

× αs
π

∫ zJ

zmin

dzg
zg

1
r2
xy

ΞNLO,3
1

zJzK

zJ − zg
zJzg

×
{(
z2
g + zg(zK − zJ)

)(
z2
J + z2

K + zg(zK − zJ)
)

×
(
ei(P⊥+zg∆⊥)·rxy(rxy · rx′y′)K0

(
rxy∆V3

)
+ zg

2zK(zJ − zg)
e
i
zg
zJ

pJ ·rxy(rxy · rx′y′)J�
(

rxy,
(

1− zg
zq

)
P⊥,∆V3

))

− i
z2
g(zg + zK − zJ)2

(zJ − zg)zK
e
i
zg
zJ

pJ ·rxy(rxy × rx′y′)J⊗
(

rxy,
(

1− zg
zq

)
P⊥,∆V3

)}
,

(B.13)

and:
dσGEFS,(ii)+IFS

dηJdηKd2pJd2pK
=
αeme

2
fNc

(2π)6 δ(1− zJ − zK)
∫

dΠLO2z2
Jz

2
K

1
r2
x′y′

× αs
π

∫ zJ

zmin

dzg
zg

1
r2
xy

ΞNLO,32zJ − zg
zJzK

(
z2
J + z2

K + zg(zK − zJ)
)

×
{
ei(P⊥+zg∆⊥)·rxy(rxy · rx′y′)K0

(
rxy∆V3

)
− 1

2(zJ − zg)
e
i
zg
zJ

pJ ·rxy(rxy · rx′y′)J�
(

rxy,
(

1− zg
zq

)
P⊥,∆V3

)}
.

(B.14)
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We completely agree with eq. B.4 in [83] for the terms involving K0 and J� (up to
− zg

2zJzK → −
z2
g

2zJzK which is likely a typo). However, we do not agree for the prefactor of J⊗.
For the real partonic contribution due to |MQFS|2, we have:

dσQFS2

dηqdηq̄dηgd2k⊥d2p⊥
=
αeme

2
fNc

(2π)6 δ(1− zq − zq̄ − zg)αs
∫

dΠLO

× CFΞLO8zqzq̄
(
z2
q̄ − (1− zq̄)2

)(
1 + zg

zq
+

z2
g

2z2
q

)

×
rxy · rx′y′
r2
xyr2

x′y′

e−ikg⊥·rxx′

(kg⊥ − zg/zqk⊥)2 ,

(B.15)

which exactly corresponds to B.5, and for the interference term M†QFSMQFS:

dσQFS†QFS
dηqdηq̄dηgd2k⊥d2p⊥d2kg⊥

=
αeme

2
fNc

(2π)8 δ(1−zq−zq̄−zg)αs

×
∫

dΠLOΞNLO,38zqzq̄e−ikg⊥·rxx′
{

(zq+zq̄−2zqzq̄)
(

1+ zg
2zq

+ zg
2zq̄

)
(B.16)

×
−rxy ·rx′y′

r2
xyr2

x′y′

(
kg⊥− zg

zq
k⊥
)
·
(
kg⊥− zg

zq̄
p⊥
)

(
kg⊥− zg

zq
k⊥
)2(kg⊥− zg

zq̄
p⊥
)2

− zg(zq−zq̄)
2

2zqzq̄
−rxy×rx′y′

r2
xyr2

x′y′

(
kg⊥− zg

zq
k⊥
)
×
(
kg⊥− zg

zq̄
p⊥
)

(
kg⊥− zg

zq
k⊥
)2(kg⊥− zg

zq̄
p⊥
)2
}
,

which agrees with B.7 up to the difference 1 + zg
zq

+ zg
zq̄
→ 1 + zg

2zq + zg
2zq̄ in the third line and

obvious typos in the transverse momentum structures.
For the remaining real contributions, the authors of [83] do not provide an explicit

evaluation of the Dirac traces hence we cannot compare further.
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