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Abstract:

There exists in atomic dysprosium a pair of nearly-degenerate levels of opposite parity.
These levels are of potential interest for the study of parity non-conservation because the small
energy separation enhances level mixing due to weak-interaction processes. In this paper, we
review the unique properties of these levels which make them attractive for measurements of parity
non-conservation, and outline the principle of such an experiment now underway.
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Introduction
The study of parity non-conservation (PNC) in atoms is now a mature field. Measurements

3
. Measurements

of PNC effects have reached a precision of 2% or better in several elements'
with higher precision are of interest for several reasons. First, it should be possible to observe the
nuclear anapole moment, which arises from PNC in the nucleus and induces a nuclear spin-
dependent component of atomic PNC*. In addition, if PNC can be measured to high precision in a
chain of isotopes of the same element, information can be obtained about neutron distributions in
the nucleus’. Finally, if some other method of obtaining neutron distributions is available,
measurement of PNC in a chain of isotopes can serve as a high-precision test of the standard model
of weak interactions®”’.

Measurement of PNC in the system of nearly-degenerate levels of opposite parity in atomic
dysprosium (Z=66) offers the possibility in principle to make such a measurement at a level of
precision orders of magnitude better than that achieved so far in other elements. This possibility
arises because the small energy splitting enhances the weak-interaction induced mixing between the
levels. We describe here the unique properties of this system, and will outline the effort now
underway to make a first observation of PNC in dysprosium.

The nearly-degenerate levels A (even parity) and B (odd

GHz F=12.5

12- ———— | parity) both have angular momentum J=10 and lie 19797.96 cm™
- 12.5 above the ground level (J=8). (The level structure of atomic Dy is
B tabulated in Ref. 8 .) Dysprosium has both even and odd neuwon-
: 115 11.5 number stable isotopes ranging from A=156 to A=164. The
- magnitude of the energy splitting between A and B is of the order
- 10.5 10.5 typically associated with hyperfine and isotope shifts’, and thus
B 9.5 varies greatly among the various HF and IS components. For the
: 8.5 3 even isotopes (which have nuclear spin I=0, and thus no hyperfine
L 5 8.5 structure) this splitting ranges from 235 MHz for '“Dy to 4200

- 7.5 MHz for ]56Dy. The two odd isotopes (mDy and 163Dy) both have

oL A B nuclear spin I = 5/2. Fig. 1 shows the hyperfine structure of levels

Figure 1: Hyperfine A and B in '®’Dy. The hyperfine components with F=10.5 of '**Dy

structurefof }23" els AandB | are the closest pair, with a separation of only 3.1 MHz. This pair of
or Dy.

levels is used in the current search for PNC.
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of the PNC Experiment

In the PNC experiment now underway, we observe Stark-induced quantum beats between

levels A and B and look for interference between the Stark amplitude and the much smaller PNC

amplitude connecting the two levels. A magnetic field is applied in order to bring Zeeman sublevels

of A and B with the same value of mg to near crossing, and thus to enhance the PNC mixing

between them. (Fig. 2 shows some of the Zeeman structure of the 163Dy F=10.5 levels of A and B in

Level A
= == LevelB

crossing

a weak magnetic field) An electric
field is applied parallel to the
magnetic field to induce ~100%

_ amplitude of the quantum beats. The
mr=-9.5
Crossing

Stark and PNC amplitudes have a
relative phase of m/2 and so do not

interfere if the electric field is DC.

0.5 1.0

Magnetic Field

s =o|| In order to adjust the phases in such a

, Gauss way as to produce interference

Figure 2: Partial Zeeman structure of the "Dy F=10.5

between these two amplitudes, the

sublevels of A and B.
+E
-E pulse 1
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-E
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Figure 3: Electricfield pulses used
in the nonadiabatic switching scheme.
The PNC signal is the fractional
difference between the signals
obtained with these two pulses.

consecutive laser pulses at 626 nm and

polarity of the electric field is rapidly
(non-adiabatically) switched. This scheme of PNC
detection was originally proposed in a slightly different
form for use in the 2s-2p system in hydrogenm .

Quantum beats are observed by populating level A
instantaneously at time t=0 and probing level B at some
later time t=2T. The electric field polarity is switched
between the population and probe pulses at t = T (see Fig.
3). Level A is populated by two-step excitation from the
ground state via an intermediate odd-parity level with
J=9; the corresponding El transitions are excited by two

2614 nm. Level B is probed by excitation to a high-lying

even-parity level with another pulsed laser at 571 nm and detection of the subsequent fluorescence.

The PNC signal is the fractional difference between the signals from two consecutive population-

probe sequences with opposite ordering

of the E-field polarity (Fig. 3).
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Calculation of the Quantum Beats and the Stark-PNC Interference
The Hamiltonian for the 2-level system formed by the nearly-crossed components of A and

B (with the same value of F and mg) in the presence of an electric field E parallel to the magnetic

field is:

T
|(lA dE +i3 |

H=| 2 . )
ap o)

Here, I'4(I'p) is the natural width of level A(B), A is the energy splitting in the absence of mixing
(determined by the applied magnetic field), id is the PNC matrix element (pure imaginary due to T-
reversal invariance), and d is the electric dipole matrix element between these sublevels. The

experimentally determined values of I'y, I'; and d are’:

T, = 20kHz @
I <1kHz (3
| d(F=10.5, mp=10.5)| = 4 kHz/ (V/cm). @

In addition, the PNC matrix element & has been estimated'' using multiconfiguration Hartree-Fock
wavefunctions for Dy:
I3l = 40 Hz. ®)
The nonzero value of § arises from configuration mixing and core-polarization effects: the
dominant configurations of A and B differ by the exchange of an f electron for a d electron, whereas
the PNC Hamiltonian mixes only s and p states. As a comparison, it can be noted that the PNC
matrix element between the 6p,, and 7s,, states of Tl has magnitude ~ 100 kHz. The electric
dipole matrix element is also suppressed, because El selection rules are not satisfied in the
transition between the dominant terms of A and B; a typical value for an allowed E1 amplitude is
eag ~ 1 MHz/(V/cm).
(a,)

The complex eigenvalues A, , and corresponding eigenstatesL J of the Hamiltonian in
12

eqn. 1 are found by solving the characteristic equation. The linear combination of these eigenstates

which corresponds to state A is excited at time t=0:
(1) (a))  (ay)
(t=0)=LJ=cL J+CL J (6)
W 0 1 b] 2 b2

Just before the electric field switching, the wavefunction has evolved to:
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(al\ N (az)
t=T)=c.e MT oo T ) 7
y( )=cie LbJ co€ Lbz )

In the above wavefunction there appears no Stark-PNC interference term, since the PNC
matrix element is pure imaginary and the Stark matrix element is real. Non-adiabatic switching of
the polarity of the electric field can adjust the relative phases of the PNC and Stark mixing terms to

produce interference. After the electric field has been switched, there are new eigenvalues A, and

A
eigenfunctions LB J Thus, just after the switching, the wavefunction can be written in the form
1,2
A 1\ A, 3
Y(t=T=C J+C2 J ®
By B,

where C; and C, are determined by setting y/(t =T) = y(t =T). At the time t = 2T of the probe

pulse, the wavefunction is:

AT Aﬂ (A,
w(t=2T)=Ce M J+ Cze_‘AZTL J ©)
Bl B2
Since the probe pulse couples only to state B, the signal has the form
. . 2
See|CieMTB, 4 CpeM2TB, [ . (10)
Fig. 4 shows the measured and expected dependence of the signal as a function of the applied
magnetic field near a level crossing.

For dE > &, The signal asymmetry

_ S(E+ - E-)~S(E- > E+)
~ S(E+ — E-)+S(E- - E+)

a1

is linear in 8. With T, E, and the magnetic field chosen so that (1/T) = dE = A = T, the population
of state B at the time of the probe pulse is a considerable fraction of the initial population of state A,
and the asymmetry ~# is on the order of (8/A) = 2x1073, This asymmetry changes sign with the
overall applied magnetic field and with the detuning A; it has the signature of the P-odd, T-even
invariant

(E; —Eg)-(B-B;), (12)



344

10, where the subscripts f and i
—_ denote final and initial, and B, is
wn
= 0.8
‘g the magnetic field required to
=
5 06| produce an exact level crossing.

5

= 0.4 |

g Systematics and Sensitivity

(I A full analysis of possible
systematic effects in the PNC

0.0 - - - ‘ .

1.35 1.40 1.45 1.50 1.55[] measurement is beyond the scope
Magnetic Field (Gauss) of this paper. Briefly, however,

Figure 4: Magnetic field dependem:el gsf the nonadiabatic- | <.\ oro points can be made. First,
switching quantum beat signal near the "Dy F = 10.5, mg =
10.5 level crossing, which occurs at 1.46 G. The line shows | it can be noted
the expected dependence; the points are experimental data. availability of multiple field
The conditions are: E = +7 V/cm, T = 4 ps. The lineshape is
asymmetric becasue of contributions from the nearby mg =
9.5 level crossing. asymmetry leads to rejection of

that the

reversals to change the sign of the

systematic effects due to stray and nonreversing fields. In particular, we find that the use of
balanced E-field switching (i.e., with both polarities for each pulse, as in Fig. 3) greatly suppresses
spurious effects due to nonreversing E-fields. In addition, the presence of spurious fields can be
detected and corrected for by means of numerous auxiliary measurements using the Dy atoms
themselves. It is also of interest to note that the magnitude of a stray or non-reversing electric field
required to produce mixing as large as the expected PNC mixing is macroscopic:
|5/d| ~ 10 mV /cm. For these reasons, we believe that systematic effects can be controlled to a high
level of precision.

Study of PNC in the nearly-degenerate levels offers the potential for unprecedented levels of
statistical precision in the measurement of PNC effects. This potential arises both because the
predicted PNC asymmetry for these levels is large (# ~ 2x10™) and because this asymmetry is
obtained using E transitions in every stage of the experiment, which means that high counting rates

can be achieved. Both properties are important because, in the shot-noise limit, the fractional

uncertainty in the PNC matrix element & is given by (#vN )_1, where N is the total number of

detector counts.
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Current Status and Conclusion
The current statistical sensitivity of our apparatus to the asymmetry # is ~5x 1072 /JHz.

This sensitivity is limited by two primary difficulties. First, our laser system is far from optimal for

the PNC measurement; the pulsed lasers have a repetition rate of 10 Hz, which gives an effective

duty cycle of ~107*. Second, pulse-to-pulse fluctuations in the laser intensities and spectral profiles
lead to noise far above the shot noise limit. Nevertheless, it should be possible to unambiguously
detect PNC at the predicted level with only a few hours of integration time. Before this is
attempted, however, we are investigating in detail all possible sources of systematic effects and
attempting to reduce the stray and nonreversing fields now present in our apparatus. With control
over these fields at levels similar to those obtained in other PNC experiments and with an optimized

laser system, it is a reasonable goal to measure PNC in the nearly-degenerate levels of Dy to a

precision of 10~ or better.
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