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ABSTRACT 

A detailed analysis of W pair production in e+e- annihilation at LEP-11 en

ergies is presented by using helicity amplitudes for the process e+e- --> w+w
with arbitrary WW 1 and WW Z couplings. Expressing the complete angular dis

tribution of W decay products in terms of these helicity amplitudes, we perform 

a systematic search for the most sensitive angular distributions or correlations 

for anomalous couplings. As a result precise tests of the gauge-theory cancella

tions between different diagrams are suggested. Angular distributions sensitive 

to w+w- rescattering effects and/or CP-violating vector boson couplings are 

studied as well. Complete helicity amplitudes for the process e+e---; w+w- --t 

{q1iJ2g)(q3q4g) with arbitrary quark masses and finite W width are presented 

in a form convenient for their direct numerical evaluation. Amplitudes for the 

processes e+e---; ZZ and Z1 are also included. 
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1. Introduction 

The prime target of experiments at LEP in its second phase (LEP~II) is 

the production of charged weak boson (W) pairs in e+ e- annihilation.1
-

33 
The 

production cross section reaches its maximum('""' 20pb) at JS '""'200GeV and 

one expects to observe 104 W pairs a year with the design luminosity of 5 x 

1031 cm- 2 sec- 1 . Detailed quantitative tests of electroweak theories should thus 

be possible at LEP~IL 

There are two distinctive aspects of W pair production studies in e+ e

annihilation.1 First, a precise determination of the W boson properties, e.g., 

its mass, width, and its couplings to different quark flavors (Cabibbo-Kobayashi

Maskawa matrix elements) can be achieved in the clean environment of e+e

annihilation. A precise measurement of mw is particularly important
1

'
34 

to test 

the standard theory. of electroweak unification at the loop level. Second, this 

process provides the best opportunity to measure directly the three-vector-boson 

couplings, WW 1 and WW Z, via s~channel 1 and Z exchange contributions (see 

Fig. 1 ). Indeed, the requirement of tree unitarity for the process e t e- ----> W ~ W

restricts uniquely the three-vector-boson couplings to the form prescribed by the 

Yang-Mills self-interaction.
35 

In other words, a small deviation of these cou

plings from the.ir gauge theory values violates the subtle cancellation among the 

three contributions shown in Fig. 1 and hence can lead to observable effects. We 

shall see in the following that the sensitivity to these couplings in the process 

e+e-----> w+w- is far greater than that achievable at SppS or the Tevatron col

lider by W pair production,11
'
30

-
38 

W')' production,36
'
39 and W radiative decay 39 

processest1 even at the moderate energies reachable at LEP-11. 

A number of authors have made important contributions to the subject. 

Charged vector boson pair production in e+e- collision was examined already 

in 1961 by Cabibbo and Gatto,
2
'
3 

and these papers were followed by several 

ti See also Ref. 40 for W pair production studies in hadron collisions. 

studies.4 '
5

'
7 Dolgov and Solov'ev 6 were the first to include the weak (v exchange) 

contribution in 1965. 

In contrast to these early results, the amplitude for e+e- --+ w+w- in spon~ 

taneously broken gauge theories was shown 41 to have good high~energy behavior. 

The converse was also shown to hold: good high~energy behavior singled out 

gauge theories.35 After the opening of the gauge-theory era, the process received 

more intensive investigation. 

The cross section in the standard SU(2)®U(1) theory was calculated by 

many authors. The total cross section was first calculated by Sushkov, Flam

baum, and Khriplovich.8 Alles, Boyer, and Buras
9 

presented the differential 

cross section and displayed the gauge-theory cancellation. Bletzacker and Nieh 
10 

included transverse beam polarization and numerically calculated various distri

butions including the final lepton energy and lepton-beam angle distributions, 

the azimuthal-angle correlation between the two final leptons, and the average 

dilepton mass. The analytic form of the lepton energy and angle distributions was 

obtained by Mery and Perrottet.15 Koval'chuk, Rekalo, and Stoletnii,
25 

studied 

th(• energy-angle distributions of the lepton, while the double energy distribu

tions of the two final leptons were examined by Dicus and Kallianpur?
8 

Duncan, 

Kane, and Repko 29 showed that a certain azimuthal-angle correlation of two 

decay planes is very small in the standard model. 

Meanwhile, the density matrix for single W polarization was derived by Ko

val'chuk and Rekalo/ 4 and the ratio of the three helicity states was calculated 

by Bilchak, Brown, and Stroughair.22 The one-loop radiative corrections to the 

process were evaluated by Lemoine and Veltman 
13 

and by Philippe.
17 

Without 

explicitly referring to the "intermediate" W state, the process can be described in 

terms of the initial and final fermions. The helicity amplitudes in this approach 

(which is different from ours) were calculated by Kleiss
31 

and by Gunion and 

Kunszt.
32 

W -pair production in extended non-gauge models has also been studied. The 
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polarization amplitudes with the most general three-vector-boson couplings were 

presented by Gaemers and Gounaris.
12 

However, most studies of these anomalous 

couplings restricted themselves to just a few couplings which satisfy C, P, and 

T invariance separately. The effect of these nongauge terms was examined in 

the differential and total cross section,21
'
26

'
30 the single W helicity ratios,

22 
the 

lepton-beam angular distribution,
26 

and in the single and double lepton energy 

distributions.Z8 

The purpose of this paper is to systematize these previous studies. First, we 

will present a general expression for the distribution of the decay products of the 

two W's in terms of the e+e-----> w+w- helicity amplitudes. Then we will study 

the effects of various possible anomalous three-vector-boson couplings in detail. 

The paper is organized as follows. In Section 2, we give the most general 

form of the WW1 and WW Z couplings and show which constraints on these 

couplings come from electroweak gauge symmetry, C, P, and electromagnetic 

U(l) gauge in variance. This section updates the work of Gaemers and Gounaris.
12 

In Section 3, we present the complete helicity amplitudes for the process e+e- __ ., 

w+w- in a compact form, making the gauge-theory cancellation between /, 

Z, and v exchange graphs manifest. These amplitudes are derived for the most 

general couplings of the previous section. Section 4 presents all 81 coefficients 

of the quadri-differential angular distributions of thew+ and w- decays into 

massless fermion pairs, expressed in terms of the helicity amplitudes for W pair 

production. Section 5 gives the main results of this paper, which are angular 

distributions and correlations of W decay products providing tests of the three

vector-boson couplings. In this section the separation of longitudinally polarized 

W's from transversely polarized W's, polar and azimuthal angle distributions of 

W decay products, and also correlations between w+ and w- decays are studied 

systematically. Finally Section 6 gives a summary and some conclusions. 

We include four appendices for completeness. In Appendix A, we show that 

only seven of the nine form factors given by Gaemers and Gounaris are inde-

...... - ---- -

pendent. ln Appendix B, the twofold solutions for the neutrino momenta in the 

process e+e- ----> w+w- -+ (t+v)(e-v) is explicitly given in terms of the ob

servable charged lepton momenta, in the zero W width limit. In Appendix C, 

we_ provide a dosed expression for the helicity amplitudes for W pair produc

tion, followed by decays of each W into massive fermion pairs with or without 

a single gluon emission. Here we include finite W width effects since they are 

necessary for a precise measurement of mw and for flavor identification.1 The 

helicity amplitudes are expressed in a formalism developed by two of us,42 which 

makes their direct numerical evaluation simple and efficient. Finally, Appendix 

D gives helicity amplitudes for the processes e+e-----> ZZ and Z1. 
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2. Three-Vector-Boson Couplings 

The gene'ral couplings of two charged vector bosons with a neutral vector 

boson, WW1 and WW Z, can be derived from the following effective Lagrangian *2 

.Cwwv/9WW\-' = igi(W}vwpyv -- W}VvWJlv) + i~~:yW}WvV~-'" 

+ t'Av wt W~' yvA- gvWtW (B~'Vv + B~'VP) 
m~ >.ll v 4 p. v 

v """'(wt- w )" ·- wlw v-"" +Usl p8p v ra-l-lKy p. v 

(2.1) 

+ £Av wt w~ yv,\ 
m~ .\p v . 

Here V~'(= Vllt) stands for either the photon or the Z field, corresponding to 

V = 1 or Z respectively, W~' is the w- field, Wp.v = OpWv- OvWp, Vpv = 

Op.Vv- OvVp, Vp.v = ~fJ>vpaypu, and (A:9p.B) = A(OpB)- (Op.A)B. 

The seven_ operatorst
3 

in (2.1) exhaust all possible Lorentz structure when 

we neglect the scalar component of all three vector bosons: 

a~'v~' = o, a~'w~' =a. (2.2) 

This condition Is automatic for on-shell W 's: 

(D + mf., )W" ~ 0, Op.WJI.=O. (2.3) 

It also holds for the virtual photon and is valid for the Z in the process we are 

investigating. Terms containing a~'z~> are in fact proportional to the electron 

mass and negligible. 

f 2 Throughout the paper, we use the Bjorken-Drell metric with (QJ23 = -(0123 =+I. 

P Seven operators are sufficient due to the fact that only seven out of the nine helicity 

states of the W pair can be reached by s-channel vector boson exchange ( J = I 

channel). The other two helicity combinations have both W spins pointing in the 

same direction and thus have J ~ 2. 

7 

The Lagrangian (2.1) contains 5 operators with dimension four and 2 with 

dimension six. All the higher~dimensional operators for on-shell W's are obtained 

from the operators in Eq. (2.1) simply by replacing V~' by onv~t (D = 8 2) with 

an arbitrary positive integer n. These operators form a complete sett4 of WWV 

couplings under the conditions (2.2) and {2.3). Any other operator can be reduced 

to a combination of these_ts 

In momentum space as depicted in Fig. 2, the corresponding WWV vertex 

can be expressed as follows 

f~~"(q, if, P) ~ fi (q- ij)"g"~- ~~ (q- ij)" P" P~ + /[ (P"g"~- pPg"") 
mw 

+if{ (POgJI.{J + pf3gp.o) + ifi' fJI.et{Jp(q- ij)p 

- J'{ (p.o[Jp Pp - ~~ (q- q)JI. (o{jpa Pp(q- iJ)a , 
mw 

(2.4) 

for V = 1, Z. Here all the form factors fi are dimensionless functions of P2 • 

ThP expression (2.4) agrees with the one adopted by Gaemers and Gounaris 12 

apart from their form factors J% and ft which are actually redundant. This fact 

is shown in Appendix A. 

It is straightforward to calculate the contribution of the lowest-dimensional 

H If theW's are off mass-shell, additional derivatives otwJ, omwl' (l, m integer) 

complete all possible operators. The spin-0 part can still be neglected in so far as 

theW's couple to massless fermion pairs. 

+5 It should be kept in mind that the choice of the two dimension-6 operators in (2.1) 
is not unique. Actually, the operators which correspond to the vertex function 

(2.4) represent another choice. However, this nonuniqueness merely amounts to a 

different P 2 dependence of the form factors. 
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operators (2. 1) to the seven form factors. We find, 

1r = gf + -'->.v 
2 2 ' mw 

f[ = Av , 

[j = gf + Ky + Av , 
(2.5) 

1r = gr fori= 4, 5, 

v - -f6 = Ky - .\v, 

v ,-h = -2.\y. 

Contributions from the higher dimensional operators provide the P2 dependence 

of the form factors. (For instance, if we restrict ourselves to the corresponding 

operators of dimension 6 or less, the form factors h and h are constants, and 

the others are linear functions of P2 .) Hermiticity requires that the fY 's should 

be real for P 2 < 0. However, the form factors may have imaginary parts above 

threshold, which we will discuss shortly. 

Without losing generality, we can fix the overall coupling constants Ywwv. 

We choose for convenience 

= -e, Yww"1 Ywwz = -ecot8w, (2.6) 

where e denotes the positron charge and Dw is the weak mixing angle of the 

standard model. 

For the photon couplings (V = 1), the first term in Eq. (2.1) (with g{ = 1 

determining the charge of theW) is the so-called 'minimal' coupling term, and the 

second coefficient K 7 is conventionally called the 'anomalous' magnetic moment of 

the W .
43 This term and the third coefficient 

3
'
5

'
44 

.\7 are related to the magnetic 

9 

moment Mw and the electric quadrupole moment Qw of the w+ by 

' Mw ~-
2

-(1 +K1 -;-!.1), mw 
(2.7a) 

Qw ~ --",-+,- >.,). 
mw 

(2.7b) 

These first three couplings respect the discrete symmetries P, C, and T separately 

with the following definitions: 

cwllc-1 = -wJ, cvllc-1 = -v~', 

PBp(x,t)p-' ~ B"(-x,t), (2.8) 

T Bp(x, t) T-' ~ B"(x, -t), 

for Bll = W ll, V ll. The symmetry properties are most easily established by 

applying the above transformation to the effective Lagrangian (2.1). 

Two of the parity-violating couplings ~7 and >:"7 respect charge conjugation 

invariance. They are related to the electric dipole moment dw and the magnetic 

quadrupole moment Ow of W-.- by 

' ( -dw=-
2

- K7 +A7 ), 
mw 

Qw ~ ---',-(<,- :1,). 
mw 

(2.9a) 

(2.9b) 

Finally, the other two couplings g] and g~ in Eq. (2.1) violate charge con

jugation symmetry. However, the former coupling respects parity whereas the 

latter is CP invariant. These properties of the form factors J; under discrete 

transformations are summarized in Table I. 

If the underlying dynamics respects some of the above discrete symmetries, 

the corresponding form factors which are odd under these transformations would 

be identically zero. To be completely general, however, one should retain all 

these form factors in the WW 1 or WW Z coupling. 
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For the photon the effective Lagrangian (2.1) is not gauge invariant when 

g~ or g~ is nonvanishing. However, this can be cured by considering higher

dimensional operators. At the level of the vertex function (2.4) we may modify 

the n and N terms to 

ifJ(P"g"P + pPg"" ~ 2P" p• pP I P') 

+if;: [<""PP(q ~ ij)p ~ pP ,•Ppu P,(q ~ iJ),j P'] (2.10) 

without affecting the amplitudes for e+e- ----t w+w-. Now the absence of a pole 

at P 2 = 0 implies that J1 and fi should be proportional to P 2 = 8. Another 

constraint arises because thew+ charge is fixed [g{ = 1 in Eq. (2.5)]. We thus 

obtain the following constraints on the WW 1 couplings at 8 = 0 

Ji(s~o)~l, (2.lla) 

J?(s~O) ~o fori= 4, 5. (2.11b) 

The imaginary parts of the form factors are essentially the absorptiv12 part 

of the WWV vertex function. Such effects are proportional to small coupling 

constants in a weakly coupled theory such as the standard model. However, they 

can be substailtial if the W boson sector is strongly interacting in the relevant 

region of 8. Actually in such a situation, not only the WWV vertex we are 

parametrizing but also the amplitudes for the whole process e+e- ----t w+w
may be affected substantially by the strong interaction. In what follows we 

neglect this possibility and shall study mainly the case where all the form factors 

are approximately real. We shall return to this point in Section 4 and see that 

such strong rescattering effects have distinctive experimental signatures. 

In principle, there are some purely phenomenological constraints on the cou

plings in Eq. (2.4) arising from the anomalous magnetic moment of charged 

leptons,45 the electric dipole moment of leptons and neutrons,
46 

and the so-called 

11 

p parameter .47 However, we shall largely ignore these constraints for the follow

ing reasons. First, the couplings which enter in these calculations have different 

kinematical configurations: p; ::::: 0 in the first two cases and p~ or pfv ::::: 0 in 

the last case. Second, even if one assumes constant form factors in the relevant 

regions, there is always apossibility of cancellation among different contributions 

which renders these bounds ineffective. Direct studies of W -pair production at 

high-energy experiments are in this sense quite complementary to these precision 

experiments at low energies. Although the interplay between high- and low

energy experimental constraints is important, the latter bounds by no means can 

replace the rOle of high-energy measurements. 

Strong constraints on the 8 dependence of the form factors occur if the size 

of the W boson, A -l, is much smaller than.. the s€ale one can probe, (1/ JS). In 

such a case we can expand all the form factors around 8 = 0, 

f,v(s) ~ Jr(o) + O(s/A 2
), (2.12) 

and thus constraints like Eqs. (2.11) become effective. Furthermore, naive di

mensional considerations tell us that all the dimension d > 4 operators should 

scale as A4-d, which implies 

J,'(s) ~ O(sjA2) fori=2,4,5,7, 
(2.13) 

J,'(s) ~ O(s/A 2
) fori=2,7. 

It is often argued that the scale of compositeness may be of the order of 1 TeV 

or higher.i6 However, because of the ambiguity in defining A and also because 

of the high energies of LEP-11, V$,...., 0.2TeV, it may not be completely safe to 

tG For a recent review on the compositeness scale, see e.g., Ref. 48. 
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ignore the O(s/ A2) terms.P In any case, in the energy region covered by LEP-II, 

we may take the form factors to be approximately constant 

rr (s) - rr (4m/v) ' 

Note, however, that these values of the form factors may be different from those 

at s = 0. 

In the standard model, non-Abelian gauge symmetry gives very strong con

straints on the couplings of Eq. (2.4): 

fi (s) ~ 1+ O(a), (2.14a) 

/[ (s) ~ O(a), (2.14b) 

ff (s) ~ 2+ O(a) , (2.14c) 

for both V = "f, Z, while all other form factors which violate either P or C 

invariance are either O(o:) or higher. (Actually they receive contributions only 

from fermion loops.) Notice that the s dependence appears only at order a and 

hence the standard-model constraint (2.14a) is much stronger than the condition 

(2.1la). The constraints (2.14} can also be written as 

forV="f,Z. 

Ky ~ 1 + O(a) 

Av ~ O(a) 

(2.15a) 

(2.15b) 

t7 We have chosen the seven operators to give the most general spin structure. From 
the viewpoint of dimensional counting, it may be more consistent to choose fz = 
h = 0 or give extra linear s dependence to the other five form factors: fi(s) -=
ft(O) + t:·s. However, we are not interested in the energy dependence of the form 
factors {except for threshold behavior) because LEP·ll will not cover a wide energy 
range. If one is to study higher-energy behavior of the reaction, one should take 
into account the effect of unitarity and final state interactions (Ref. 49). 

13 

3. Helicity Amplitudes for e+e- ---> w+w-

In this section we give polarization amplitudes for the process 

,-(k,a) +,+(I<, a)~ w-(q,A) + w+(q, ~), (3.1) 

as depicted in Fig; 3, with the general three-vector-boson couplings (2.4). (The 

four-momentum and the helicity of each particle are shown in parenthesis.) We 

discuss here only the amplitudes for on-shell W pair production; the more general 

case with off-shell W's is treated in Appendix C. 

Helicity amplitudes contain more information than the cross section for polar

ized W's. The relative phases of the amplitudes are important for the distribution 

of the final fermions because the interference of different W helicity states gives a 

nontrivial azimuthal-angle dependence. Furthermore, polarization of the initial 

e+e- beams can be taken into account in a straightforward manner. 

The helicity of a massive particle is not a relativistically invariant quantity. 

It is invariant only for rotations or boosts along the particle's momentum, as long 

as the momentum does not change its sign. In this paper we define the helicities 

of theW in the e+e- c.m. frame, which is the natural frame of the problem. 

It is well known that a longitudinally polarized vector boson leads to a possi

ble bad high-energy behavior. If we take theW boson momentum in the positive 

z direction 

Pw = (Ew,O,O,pw), (3.2) 

the transverse (helicity-±1) polarization vectors are given by 

f(±t) = }z(O,=t=l,-i,O), (3.3a) 

whereas the longitudinal (helicity-0) vector is 

t:(o) = mW1 (Pw,D,D,Ew) 
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~ (1~,0,0,o), (3.3b) 

where 1 = Ew /mw, {3 == (1 - m~ / Ea, )112• It is this 1 factor that leads, with 

its extra power of energy, to a possible breakdown of unitarity at high energies. 

For example, if we restrict ourselves to dimension-4 interactions, the high energy 

behavior of a tree amplitude is given by "'N, where N is the number of longitudinal 

W's in the final state. (Note that the longitudinal part of the virtual Z does not 

contribute because it couples to a conserved electron current.) For dimension-6 

interactions there are two extra factors of/, and so on. 

3. 1 HELl CITY AMPLITUDES 

We have calculated the polarization amplitudes by using two different spinor 

calculus techniques. One 
42 

is a very straightforward and general method based on 

two-component spinors developed by two of us. The other 49 uses a non-covariant 

d-function representation of spinors and vectors, and is convenient for two-body 

reactions. Both methods give the same result. Our results also agree with the 

result of Gaemers and Gounaris 12 who used a rectangular basis for W's. 

In this section we present the results ts in a compact form 49 using the helicity 

basis for W's. For convenience we extract some factors from the amplitude 

.Mou;H(e) = V2e2 Mou;.\~(8) edi~,f)..\(8), (3.4) 

where e = !:l.a( -I)~ is a sign factor, !:l.a = ~(a- a), 6..A = A- .X, Jo = 

max{[!:l.a!, l!:l.AI), and e denotes the scattering angle of w- with respect to the 

l8 Our results can be obtained by evaluating the sum }.jv + }.jl + _MZ presented in 
Eqs. (C.ll) and {C.l2) in the e+e- c.m. frame where the electron beam direction 
is chosen as the .z-axis and the w- transverse momentum as the x-axis. The 
phase convention thus follows that of Ref. 42. The amplitudes in Jacob-Wick phase 
convention in the above frame can be obtained from Eq. (3.4) by dropping the sign 
factor e. Also, in this paper we normalize the fermion helicities to ±I. 

15 

e- direction in the e+ e·- c.m. frame. Finally d/..~,1::.>. is the d function in the con

vention of Rose.50 The explicit form of the d functions needed here is reproduced 

in Table II. Note that .M is not a partial wave amplitude because it can still have 

a e dependence. Rather, Jo is the minimum angular momentum of the system 

and the amplitude includes partial waves of J == Jo, Jo+1, · · ·. 

Two of the three lowest-order diagrams, namely those with s-channel1 and Z 

exchange (Fig. la, b), have only J = 1 partial wave because of angular momentum 

conservation. On the other hand, the diagram with t-channel v exchange (Fig. lc) 

has all the partial waves with J ::=: Jo. It is convenient to discuss the cases Jo = 1 

and 2 separately. (Since we are neglecting the electron mass, conservation of the 

electron chirality excludes the case Jo = 0, because !:l.a is either I or -1.) 

The case J0 = 2 is simple. The above argument shows that only the v 

exchange diagram contributes to this final state. Moreover, because [!:l.A[ = 2, 

the final W bosons are both transverse [(AX) = (+-)or (-+)). Thus these 

amplitudes do not have a bad high-energy behavior: 

- y'2 I 
M~---- b 

sin28w I + /3 2 2/3 cos e f).o,-l 
(ll,\ ~ ±2). (3.5) 

The other seven final helicity combinations give J0 = I. Five of them have at 

least one longitudinal W, which could give a possible divergent behavior at high 

energies. We write the amplitude as a sum of three contributions 

j;{ = ,M1 + _MZ + _Mv (ll,\ <;I), (3.6) 

where 

;{1 = -,861Llrrj,l A~~' (3.7a) 

- [ I l ' AZ-, Mz = f3 Clf).oji- . -,- Cilcr,-! s- m2 -'-' 
' 2sm Ow Z 

(3.7b) 
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~ 1 . ______ c>.>. I l .M.
11

= ?~ ~6t::.u,-t[B>.x-l+[JZ-2[Jcose (3.7c) 

The coefficients A, B, C for the standard model are shown in Table III. For the 

general WWV coupling the A coefficients are tabulated in Table IV. 

3.2 STANDARD MODEL 

Using Eq. (3.7) one can readily appreciate the structure of the gauge-theory 

cancellation in the standard model, which provide a good high~energy behavior. 

First note that the bad high-energy behavior is confined to the J = 1 partial 

wave, because the second term of the /.1 exchange contribution (3.7c) is regular 

at high energies (see the coefficient C in Table III). This is in fact necessary for 

the cancellation, because the 1 and Z exchange diagrams have J = 1 only. So 

one need only concentrate on the A and B contribution. 

Some of the coefficients A and B (Table III) are proportional to 1 or 1 2 as 

expected from longitudinal W counting. However, all the divergent parts are 

common to all three diagrams. At high energies (I -> oo, {3 -> 1), we have 

Al>. = Af>. = B>.>. (3.8) 

up to an 0(1) term. 

The Z contribution (3.7b} is separated into two terms. The first term con~ 

serves parity (thus 'electromagnetic' component), and is canceled by the "j

exchange contribution at high energies. The second term in (3.7b), which ex~ 

ists for the left~handed electron only (thus weak isovector or 'W 0 ' component) is 

canceled by the /.!~exchange B term. 

Because the cancellation reduces the power of 1 by 2, the amplitudes for 

one longitudinal and one transverse W pair (A.\= ±1) go down as 1-l at high 

energies. From Table III one also readily sees that the amplitudes for two of the 

.6..\ = 0 states [(>..X)=(++) and(-~)] are suppr~ssed by ,..,- 2
• Thus only three 

l7 

of the nine helicity combinations, namely ( --t-- ), ( -+ ), and (00), survive at high 

energies for finite scattering angle e. 

These three amplitudes do not contribute to the cross section equally. The 

.6.X = -2 (-+)amplitude (3.5) dominates over the other two at high energies 

because of the t-channel pole factor 1/(1 + .tP- 2fhos B) which peaks at cos e = 1 

with a 1 4 enhancement. (In practice the peak in the (-+) amplitude appears 

slightly below cos e = 1 because the function d~l,-2 is proportional to sine and 

vanishes at icost91 = 1.) A kinematic zero kills the t~channel pole for the(+~) 

amplitude. For the (00) final state the pole term is suppressed by a dynamical 

,..,- 2 factor in the C coefficient and further softened by a kinematical sine factor. 

Moreover, even at large angles, the (00) amplitude happens to be numerically 

smaller than the transverse amplitudes. Thus the dominant final state is purely 

transverse and there is a strong forward peaking. These characteristics can be 

seen from Fig. 4a, where the cross section for each final helicity state at .j8 = 
500 GeV is shown. 

Even at LEP-II energies (.jS;:; 200GeV), these tendencies already appear. 

At Js "0;; 190 GeV, the ratio of transverse to longitudinal W's is about 3: 1. The 

cross section for polarized W's is plotted in Fig. 4b for this energy. The .6.>. = ~1 

states have an appreciable contribution to the cross section at this energy, which 

in fact is the second largest. However, the dominance of the 6,). = ~2 state 

already holds. 

At threshold, the behavior of the cross section is quite restricted. Since no 

orbital angular momentum is allowed between the final W's, the total spin is equal 

to total angular momentum. It can take the values 0, 1, 2. However, it turns out 

that only J = 2 is. allowed under quite general conditions, as we shall explain 

below. In this case all helicity amplitudes at threshold are related by Clebsch

Gordan coefficients irrespective of detailed dynamics. This fact may provide an 

interesting opportunity to uncover exotic interactions. A chirality-nonconserving 

interaction of electrons (scalar or heavy lepton exchange,16 for example) gives a 
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J = 0 final state, and CP-violaling three-boson interaction can give J = 1. (The 

latter possibility will be discussed later in this section.) 

The proof of the above assertion is rather straightforward. Among the three 

possible angular momenta J = 0, 1, 2, J = 0 is forbidden by electron chirality 

conservation because the initial state can have only J 2: 1 [up to O(me):. CP 

invariance forbids J = 1 because the initial e+ e- state should have CP = --t-1 

(JPC = 1++ /1--, 2++ /2--, ... ) and the final w+w- state should have jPC = 

o++, 1..,__, or 2++. For J = 2 there is no selection rule to forbid the reaction. In 

fact, in the standard model, the process receives a contribution from v exchange. 

Finally we note that for polarized beams containing eR and/or el, only the 

pure longitudinal final state {00) remains at high energies because v exchange 

does not contribute. However, the cross section for this helicity combination is 

only "" w-2 of the unpolarized cross section. 

3.3 GENERAL THREE-BOSON COUPLINGS 

For general coupling~ {Tahir IV), tht' cancellation detailed above no longer 

occurs. The worst case exhibits a ')'4 behavior. Of course, form factors and/or 

higher order contributions should provide the neccesary damping in this case to 

guarantee eventually that partial-wave unitarity is not violated. 

Even for general couplings, however, the cancellation in the 'electromagnetic' 

part takes place if J? = Jl is satisfied. Numerically, more than 70% of the 1 

exchange amplitude (3.7a) is canceled by the 'electromagnetic' term of the Z 

exchange (3.7b) already at Js = 200GeV. Violation of this cancellation by 

f{ i fl can be seen most directly in the b.a = 1 channel. Separation of this 

channel from the dominant b.a '-'- -1 channel can be achieved by measuring the 

azimuthal-angle dependence when the beams arf' transversely polarized, or by 

using longitudinally polarized beam(s) (see Subsection 5.4 below). 

For the 'weak isovector' part, the cancellation between the Z- and v~exchange 

contributions (B terms only) is numerically less significant (40% at Js = 200 
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Ge V) because of the difference in the threshold behavior. Indeed, the v-exchange 

amplitude dominates near thresholdt
9 

(S wave) whereas the s-channel exchange 

contribution is suppressed by at least a factor of (3 (P wave). Hence, in the 

threshold region, the reaction e+ e- --Jo w+w- is not very sensitive to the three

vector-boson coupling. 

There is an exception to the above conclusion which was already noted in the 

preceding subsection. We see from Table IV that if the CP-violating coupling Jci 
is nonzero, the 1- and Z-exchange amplitudes haveS-wave behavior. Tests of CP 

(see Section 5.2) near the threshold can thus constrain Jri rather independently 

of the other couplings. 

Because the standard model prediction is far below the unitarily limit, the 

cross section will become very sensitive to anomalous couplings at high energies 

(1 » 1) through the violation of the gauge-theory cancellation. Unfortunately, 

the energy range available at LEP-11 is not high enough (1 2 ::::- 1.5 at Js = 

200GeV) and we need a detailed study to constrain these couplings, as will be 

discussed in the next two sections. 

3.4 SYMMETRY PROPERTIES 

Before closing this section, we remark on some general restrictions to the full 

amplitudes {3.4). (Corresponding details for the cross section appear in Section 

4.3.) It is easy to see that if all the form factors Jt are real the following equation 

holds: 

J.i · .. ~ J.i· ... - . 
ucr,A), -o:r,-,r,-),, ), (3.9) 

This is a consequence of CPT invariance and the absence of absorptive parts. 

Hence violation of this relation immediatel,v indicates substantial rescattering 

t9 The (3- 1 factor in (3.7c) is spurious and thf' B -• 0 limit is finite. 
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effects. This fact can be seen as follows. CPT invariance gives the following 

relation between scattering amplitudes (with appropriate phase convention) 

Tti = Tii' (3.10) 

where i(i) denotes the CPT conjugate state of a state i(f). This relation is not 

immediately useful for our purpose, because it connects the amplitude for the 

reaction e+e- ----t w+w- to that for w+w- ----t e+e-. However we find 

Tti ~ Tji = Tti - T
1
j 

~ r
1
, _ rt fi. 

(3.11) 

Here we have used CPT invariance for the second equality. If the T matrix is 

hermitian, we have 

Tti = Tj1 . (3.12) 

This is actually the case in the Born approximation. Unitarity tells us that T-Tt 

is the absorptive part which arises from rescattering effects. Thus in a weakly 

coupled theory Eq. (3.12) holds to a good approximation. When applied to the 

reaction e+e- ----t w+w-, it gives Eq. (3.9). 

CP invariance leads to the relation 

Mcr<'Hj = .M_o -u·-..\ -.\ 
' ' ' ' 

(3.13) 

which can be directly used as a test of CP conservation. This test does not 
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assume the absence of absorptive parts.tlO 

It is also possible to write down similar relations derivable from C or P 

invariance. However, they are not very useful since the v-exchange contribution 

already violates C and P maximally. It is not easy to obtain simple relationships 

for the amplitudes which signal C or P nonconservation in the vector boson 

sector.*11 

il0 It should be noted that the relations (3.9) and (3.13) are simpler than their appear
ance. Actually they connect the same initial state for nonvanishing amplitudes: 
(au)= (:::::~) = { -11, -u). As for the final state, they relate states with same tl>.: 

"" ~ +1, (>X)~(+o)~ (o-), 
o, (++)~(--), 

-L (D+)~(-o). 

til For the three-boson coefficient Ai'>:• we can write down the requirement from P, C, 
and CP invariance as follows: 

P:Ai'>: =A~.\-3:' 

c :Ai>: = AL) 
v v 

CP: A.\j = A-3:.-.\. 

The first two equations relate final states with opposite .6.A, while the last one 
relates those with the same ClA. 
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4. Angular Correlations for Final State Fermions 

In this section we present the most general angular distributions of thf' decay 

products in the process 

,-(k.a) + ,+(k,o) ~ w-(q,\) + w+(q,~), 

w-(q,-1) ~ fJ(p,,a!) + f,(p2 ,a2), (4.1) 

w+(q,~) ~ [J(p,,a,) + f,(p,,a,), 

with massless fermions. As the material in this section is rather technical, the 

reader who is only interested in the results may proceed to Section 5. 

Since we understand the decay interactions well, we can extract explicitly 

the dependence of the cross section on final fermion angles. The fact that the 

W has spin one restricts the possible form of the angular dependence to a finite 

but large number of terms {actually 81). The coefficient of each term can be 

written in terms of the production density matrix, which may be obtained from 

the polarization amplitudec; pn'sented in Section 3 or Appendix C. 

4.1 DERIVATIO!\' 

The full amplitude can bE' expressed as follows (see Fig. 5): 

M(k,a; k, a; p, a,) ~ Dw(.') Dw (q2
) 2:::2:::: M, (k, a; k, a; q, ,\; q, ~) 

A ' 

x M2(q,.\;pJ,ai;pz,az) · M3(q,.\;p3,a3;p4,a4) · 

with the Breit- Wigner propagator factor for \.1' bosons: 

Dw(l) = (g'l- rntv + unwf w)· 1 

(4.2) 

(4.3) 

Here the summations over intermediate H' polarizations can either be done in 

the Cartesian basis),,.\= 1,2,3 or in the helicity basis,\,,\= ±,0. The former 
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basis is convenient for the numerical evaluation of the amplitude (see Appendix 

C), whereas the latter, which we take here, is more suited for theoretical consid

erations. 

The production amplitude .M 1 is a sum of three contributions which are given 

in Eqs. (C.11) and (C.12). Its explicit form in the e+e- c.m. frame for on-shell 

W 's has been presented in Section 3. 

In the massless fermion limit [see Eq. (C.I9)], thew- decay amplitude .M2, 

as evaluated in Appendix C !see Eq. (C.16)], simplifies to give 

Mz = eg~'fl/o C hu 1,-bo2 ,+ 2~ S(p1, t:(q, A), P2):- (4.4) 

Here g~fd2 is the standard V-A coupling (C.15). The effective color factor C 

is 1 for leptons and J3 for quarks. The corresponding W ... decay amplitude M3 

is obtained from (4.4) by the replacement (1,2,q,.\)--> (3,4,q,~)- The spinorial 

string S ;see Eq. (C.7) for its definitionj can be explicitly expressed in a given 

Lorentz framf'. 

In the c.m. frame of the colliding beams, we choose thew- momentum direc

tion as the z-axis and the k( e-) x q(W-) direction as the y-axis; the scattering 

e- e ....... w+w- takes place in the x-z plane (see Fig. 6). The production am

plitude .Ml is then a function of the scattering angle e between e~ and w

momentum dirPctions in this frame, as explicitly shown in the previous section. 

The decay amplitudes M2 and .M3 are most simply expressed in thew- and w+ 

rest frame, respectively. We define each of these frames by a boost of the above 

e e c.m. frame along the z-axis. 

In thew· rest frame, we parametrize f 1 and / 2 four-momenta as 

p: 

" p, 

~y-qz {1, sinOcosd>, sin6sin¢, cosO), 

hl?" (1, -sinOcos¢, -sinOsin¢, -cosO). 
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(4.5) 



and in the w+ rest frame, we choose the antiparticle (/4) angles as 8 and If>, 

p~ = !Jf (1, ~sinO cos¢, -sinO sin¢, -cosO), 
(4.6) 

~ = !Jq2 (1, sinO cos¢, sinUsin,P, cosii). 

In this convention the angles of the charged lepton or the d-type quark are chosen 

as (8,¢) in w- decays and (8,¢) in w+ decays. 

It is a straightforward exercise to evaluate the spinorial string S in (4.4) in 

these two frames. One finds 

where 

with 

.M2 = eg~/Lh C .JQi Oa,,-Oo~,+ l>., 

M - wJ,J, -c q ' ' ,-_ 3 - -eg_ V q~ Uu3,-uu,,+ ,\ , 

(L,lo,l+) = (d+e-i.P, -do, d_e1¢), 

(LJo.f+) = (d+ei¢, -do, i.Le-1¢), 

(-) 1 f-) 

d± = -.fi (1 ±cos 8) ' 
(-) 1-) 

do=sin8. 

(4.7a) 

(4.7b) 

(4.8a) 

(4.8b) 

(4.9) 

Here C and C denote the effective color factors (1 or vfa:) for the corresponding 

w- and w+ decay processes. 
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4.2 CROSS SECTION FORMULAS 

It is now straightforward to obtain the polarization-summed squared matrix 

elements 

I: IMI' = L:L:L:L:L:L: IM(k,u;k,o;p,,u,)l' 
u it u 1 o2 a 3 "'• 

(4.10) 

~ •'l•w'"'•~M'I' c'c' q'II'IDw(q') Dw(ii')l' r,~i. v;,vi .. 

Here, and in the following, summation over repeated indices (.\,A', X, X') = ±,0 

is implied. The production tensor reads 

P.x~i. = L E .MI(o,a, .\).;e) M~ (o,o, .\'),';e), (4.11) 
' . 

and the decay tensors are 

D;, = l.xl~, (4.12a) 

->: - -. 
D>., = l>J>., (4.12b) 

Equation {4.10) gives the general structure of the polarization·summed squared 

matrix element for the process (4.1) with pure V-A couplings of theW to mass· 

less fermions. After integration over the virtual W mass squared, q2 and <P, the 

differential cross section can be expressed as (in the narrow width approximation) 

du . 9p _ 
dcosedcosOd¢dcosOd1 ~ 8192_,,B(W~hh)B(W~Jsf4)P'' D'75~ 'I' " ).').' ).' ).' ' 

(4.13) 

where j3 = (1- 4m~/s)l/2. 

By integrating over w+ decays, we obtain the inclusive w- --+ fl/2 decay 
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distribution 

da _ --~Y!__ B(W --~hf2) P>.~~ o;, • 
---" J "J_,_ - 1024w2s (4.14a) 

and alternatively we obtain the w-1 ----' h/4 decay distribution as 

- _<f:' 3/3 - -
dcose dcos iJ d(/> = 1024w2s B(W-----> hf4) P>.\~ D}, . (4.14b) 

By further integrating out all the decay fermion angles, we simply get the 

differential cross section for the process e+e- ---> w+w-: 

do 
dcose 

{3 >.5. 
1287r s p>.5. . (4.15) 

By comparing Eqs. (4.13)-(4.15), one can appreciat!O' the additional information 

on the w+w- production amplitudes contained in decay fermion angular distri

butions. 

It is useful to isolate explicitly the azimuthal-angl"' dependence in Eq. (4.13). 

On"' finds 

P,.~~~~ D{,Dl. = A + { 2Re[Bcos dJ-:-- il cos¢- C cos 2o ~ C cos 2(/J 

~ D-:1: cos(¢±¢)+ E± cos(2t,b ± ¢) + E:~: cos(d; ± 2d>) (4.16) 

--t G:!__ cos(2¢ ± 2r,b): --c- (Re --1 Im, cos-----> sin)}, 

where a shorthand notation such as D± cos(m±¢) for D. cos(tP+¢)·-:-D- cos(¢-¢) 

is used, and 

A=P:>..~d 2d - 2 
),),_ ->. ->. ' (4.17a) 

B~(P 0 Jd., +PSJd_)(-doJ_,'), (4.17b) 
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H ~ (Pi6 d_ +Pi~ d+)( -d0 d_, 2), (4.17c) 

C = P+~ d+d_d_x 2
, (4.!7d) 

C= P~~d,.d_d_>, 2 , (4.17e) 

D:t = [(PQ ~ d'~' +PO¥ d:t)d+ + (P_~~ d'f + P~~ d±)d-] d0 d0 , (4.17f) 

E± ~ (P~~ d, + P~~ d±)(-d0 d+d-), (4.17g) 

E± ~ (P 0*d+ + P~~d-ll-dod+d-), (4.17b) 

G± = P+~ d+d_d+d-. (4.J7;) 

There are 25 independent azimuthal-angle distributions (including the con

stant piece A), as seen explicitly in (4.16). By taking into account the polar angle 

distributions in(} and iJ (see Eq. (4.9)]. one sees that there are nine independent 

distributions in A, 24 in Band B (counting both the real and imaginary parts), 

12 inC and C. 16 in D±, 16 in E± and E±, and four in G±, which altogether 

give the 81 independent angular distributions. This is of course just the number 

of components of the density matrix P>.~~ •. 

In principle one can imagine measuring all possible combinations of products 

of the nine helicity amplitudes, summed over initial polarizations. In practice, 

this requires charge( flavor) identification of both thew- and w+ decay products. 

Although this is easy when both W's decay leptonical!y, these rates are rather 

small and one has the twofold identification ambiguity discussed in Appendix B. 

Experimentally the most favorable mode is thus "semi-leptonic," with one W 

decaying leptonically, the other hadronically. In view of the difficulty of flavor 

identification, for most of the hadronic decays one cannot tell(} from n-9 (8 from 

w- iJ) and¢ from¢+ 1r (¢from¢+ n). This makes it very difficult to measure 
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any of the coefficients in D± and one combination of the coefficients in A. Apart 

from these, there is a reasonable chance that one can determine the remaining 64 

coefficients. We remark that the nontrivial azimuthal-angle correlation recently 

studied by Duncan, Kane, and Repko 29 is just one of these coefficients, ReG-, 

In Section 5, we will describe in some detail how to project out some of these 

coefficients experimentally, as a function of the scattering angle EJ. There we 

shall also discuss the accuracy with which they may be determined. 

4.3 SYMMETRY PROPERTIES AND INCLUSIVE DISTRIBUTIONS 

Although each of the 81 coefficients gives independent information on the W 

pair production mechanism, some of these coefficients may be related even in 

the presence of anomalous couplings. This is the case, for instance, if CP is a 

good symmetry or if no strong interactions exist in theW-boson sector. Even 

in models where one expects a strongly interacting W sector at high energies, 

one generally gets small WW interactions near the threshold, that is, at LEP-11 

energies. In contrast, C or P invariance do not lead to a useful classification, 

because the neutrino-exchange contributiou to the amplitude violates C and P 

maximally, thereby hiding C and P invariance of the vector-boson sector. 

Let us first examine the consequences of CP invariance. Since the relevant 

initial e+e- state is CP-invariant, the CP transformation simply reverses all 

the momenta of final particles and changes particles to antiparticles. Thus CP 

invariance leads to the following relation in the differential cross section 

da(e;0,¢;11,¢) CJ: da(e;•-11,¢+•;•-0,¢+•). (4.18) 

In other words, the angular distributions which change sign under the exchange 

(0,¢,1f,<f,) ,EE'_, (<-ll,<f,H,<-0,¢H) (4.19) 

are called CP-odd and should have vanishing coefficients if CP is a good symme

try. The terms which remain unchanged are called CP-even and can be nonzero. 
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It is straightforward to organize the 81 coefficients into 45 CP-even combinations 

and 36 CP-odd ones.t12 

Secondly, we study the implications of having only weak interactions among 

W's. The concomitant smallness of rescattering for the produced W pairs leads 

to small absorptive amplitudes. As is discussed in subsection 3.4, if an amplitude 

has no absorptive part, CPT invariance gives the relation (3.9). We will refer 

to this symbolically as CPT symmetry.*
13 

Thus the observation of a CPf-odd 

asymmetry would indicate the existence of rescattering effects. As a consequence 

of CPT invariance we find 

da(e;0,¢;11,¢) cEj da(e;.-11.•-¢;•-0,•-¢). (4.20) 

We can easily separate the angular distributions into CPf'-even and CP'f-odd 

parts according to their behavior under the exchange 

--eFT - -
(0,¢,0,¢) ~ (•-0 •• -¢.•-0,•-¢)' (4.21) 

The eighty-one angular coefficients can thus be divided into four categories 

under CP and CP'f: even-even, even-odd, odd-even, and odd-odd terms. CP-odd 

coefficients directly measure CP violation and CP'f-odd terms indicate rescat

tering effects. Once both CP-odd and CP:f-odd terms are found to be small 

experimentally, it is then safe to ignore odd-odd terms since they should be dou

bly suppressed. 

l 12 In terms of helicity amplitudes, CP invariance reduces the number of independent 
amplitudes from nine to six [see Eq. (3.13) and the footnote following thereafter], 
leading to 6 x 6 = 36 distributions. The remaining nine CP-even terms arise from 
a product of two CP-odd amplitudes, and may be ignored. Similar remarks also 
apply to the ciT properties discussed below. 

i 13 When the interaction respects T invariance, we can similarly define observables 
which are proportional to rescattering effects. They are traditionally called T-odd 

quantities (see, e.g., Ref. 51). Here we use the term CPT to avoid confusion with 
real CPT violation effects. 
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With regard to these properties, we shall present a detailed study of three 

kinds of distributions which are more inclusive than the completely differential 

cross section (4.13). These are the azimuthal angle distributions after polar 

angle (0 and 9) integration, the polar angle correlations after azimuthal angle 

integration, and the inclusive \.1-'- and H.'-r decay angular distributions (4.14). 

After the integration over polar angles 0 and tJ, we can regard the 25 coeffi

cients appearing in Eq. (4.16) as functions of the scattering angle f9 only. Besides 

the trivial constant piece A, the remaining 24 azimuthal angle distributions are 

classified in Table V according to their CP and CPT properties. We find that 

all the sine terms are either CP-odd or CPT-odd whereas certain combinations 

of cosine terms are both CP- and CPT-odd. The standard model contributes 

exclusively to the even-even sector in the lowest (a2 ) order. CP-even, CPf

odd terms il<t are down by an additional factor of o:, and CP-odd coefficients are 

even further suppressed. This structure is not changed by the introduction of 

CP-conserving anomalous couplings such as 11: and A. 

If, on the other hand, one integrates over the azimuthal angles first, only the 

term A in Eq. (4.16) remaim. The surviving double polar angle distribution is 

given by Eq. {4.lia). We can define the cross section for producing polarized 

W's by the coefficients PAY since they are nothing but the squared polarization 

amplitudes [see· Eq. (4.11)]: 

dc(>.,X) _ .8 P'' 
dcose - 12g1rs AX 

(>., .X not summed). (4.22) 

The nine cross sections can be easily projected out from the polar angle distri

bution ( 1.17a) which can be expressed as follows: 

da - - 9 2 2 
do(!.,!.) . B(w· ~ [, fz) B(W" ~ hf•) l6 d_, d_j , 
dcosEI (4.23) d cased cos 0 d cos 0 

where now the summation over >. and .X should be performed. Among these nine 

tl4 The one-loop Higgs contribution to these terms is calculated in Ref. 52. 
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cross sections, six combinations satisfy both CP and CPT, the remaining three 

violate both. They are listed in Table VI. 

Identification of all nine polarized W cross sections is difficult because of 

the necessity of double charge(flavor) identification. It is, however, possible to 

distinguish longitudinal W's from transverse ones without charge identification. 

Hence it is useful to define slightly more inclusive distributions 

and 

doTT 

dcosE> 

doLL 

~ ~ ~ dc(>.,X) 
A==± 5:=± dcose 

da(O,O) 
d~~sEi = dcose ' 

dan _ ~ da(!.,O) 
dcose -A==± ·dcose-' 

doLT _ ~ da(O, X) 
dcose- >:=± dcose ' 

daT daTT doTL 
d case =· d cos8 + d~~8 ' 

daL daLT doLL 
-~--+--

dcose - dcosE> dcose' 

-~~f- darT daLr 

dcose dcose + dcose ' 

da"[ dorL dOLL 
--·- =- -- + -·- . 
d case d cose d case 

Some properties of these distributions have been studied in Ref. 1. 

(4,24) 

(4.25) 

Finally, the inclusive w-- or w~ distributions (4.14) should be most useful 

\vhen we study leptonic decay channels. We can parametrize these distributions 

as follows: 

da(w- ·~lo) 

dcosedcosOd¢ 

9 
~ F;(c.os Ei) L,(O,¢), 
1==! 
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(4.26a) 



da(w+~lv) 

dcose dcos 8 d¢ 

9 

L F,(co,e)L,(O,~). 
i=l 

(4.26b) 

Here the Li's are the following nine orthogonal functions which are normalized 

to 411": 

Lt = 1, 

£ 2 = ¥(1 - 3 cos28), 

£3 = v'3cos8, 

L4 = J3sin0cos¢, 

Ls = ~sin20cos¢, 

£6 = ~sin28cos2¢, 

L1 = V3sin8sin¢, 

L 05 . 2" . " 8 = 
2
-Slll fJSlll<y, 

Lg = ~ sin28 sin 2¢. 

(4.27) 

Note that we have used thew- scattering angle e in both F1 and F\. The coeffi

cients F1 and F\ are then proportional to the total inclusive angular distribution 

(4.15), 

F,(co,e) ~ F,(c"'e) B(W~lv) __<Jc:._ 
A- dcose' 

(4.28) 

It is an elementary exercise to express theFt's and F\'s in terms of our production 

tensors P.\~~ and P>.}.~, respectively. The CP and CPT properties of these 18 

coefficients are listed in Table VII. 
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5. Observable Consequences of 

Anomalous Three- Vector-Boson Vertices 

---· 

From the discussion of Section 3, and in particular from Table IV, it is ap

parent that different anomalous three-vector-boson vertices lead to deviations of 

different helicity amplitudes from their standard model values. In order to dis

cover and then distinguish the anomalous couplings from each other, one thus 

has to separate the various helicity amplitudes. As has been discussed in the last 

section, the unique way of doing this is by studying angular distributions of the 

w+ and w- decay products. 

Let us estimate the various experimental branching fractions. Consider the 

decay of each of theW's into a fermion-antifermion pair (quark-antiquark q1 iJ2 

or charged lepton-neutrino t±vt} at tree level. Assuming a top quark of 40GeV, 

the branching ratio for W ----t lvt (l = e, p,, or r) is about 9% each. We thus 

expect the following final state combinations: 

(qq) (qq) => 4-jet 53% 

(qq) (lv) => dijet + t± + p 40\'ii 

(lv) (lv) => t+l- + p 7% 

(5.1) 

where; stands for the momentum of the escaping neutrino(s). In this paper we 

shall mainly concentrate on the lepton+ dijet decay mode,115 because it is most 

amenable to a complete determination of angular distributions. However, to the 

extent that flavor and/or charge identification of the dijet subsystem is possible, 

the four-jet events can also contribute to the analysis. A very large fraction of 

a!! the W pair events can thus be used. Assuming a luminosity of LEP-II of 

tl 5 In the clean environment of e+ e- annihilation, the rv decay of theW can be used 

as well as e/ p decays. The decay products of the r are easy to identify. Because the 
r mass is much smaller than the W mass, the direction of the final ej /J or hadrons 
from r decay well approximates that of the parent r. Although the energy of the r 

cannot be measured directly, it can be calculated from other observable quantities 
using the kinematic constraints of the reaction. 
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500pb- 1jyear and using a(e+e- ----> w+w-) ~ 20pb at Js = 190-200GeV, 

one should have several thousand clean events per year, which is a statistically 

significant sample. 

In the last section we gave a complete expression for the angular distribution 

of the two fermion-antifermion pairs arising from the decay of the W +w- pair. 

These angular distributions are particularly simple when measured in the rest 

frame of the parent W. Experimentally it is thus necessary to first identify the 

direction of theW axis which gives e, the angle of thew- with respect to thee

beam. The momenta of the decay products (the two jets and the charged lepton, 

say) then have to be boosted to their parent rest frames, which are moving 

with known velocities P(W±) = =t=(l - 4mW I s) 112 along this axis. From the 

measurement of the opening angle between the two jets and the energy of both 

the charged lepton and the dijet system, it should be possible even to correct for 

initial radiation and finite width of both theW's. 

Schematically, the differential cross section has the form [see Eq. (4.13)] 

81 

du- I: P;(S;s) D;(O,¢,ii,~). (5.2) 

'""' 

Here the funct.ions Di form a linearly independent set consisting of low-order 

spherical harmonics, which reflects the known decay dynamics. The dynamics 

of the production process is solely contained in the factors Pi. These are given 

essentially by the density matrix for the W pair, obtained from the helicity am

plitudes. The fact that one can in principle measure 81 functions (instead of 

one for do I d cos e) shows that it is possible to extract an enormous amount of 

information on the production mechanism. Even though no polarization mea

surement is involved here, the parity-violating W decay provides a complete spin 

analyzer for the W. 

With a few thousand events it is impossible to perform an 81-parameter fit 

(corresponding to the 81 angular coefficients in Eqs. (4.16) and (4.17)) for each 
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of several cos e bins. Rather one would like to obtain from the experimental 

data the moments of those angular distributions that are most sensitive to new 

physics, i.e., the anomalous three-boson vertices for the case at hand. 

The most sensitive distribution for any anomalous coupling will in general be 

some linear combination of the 81 angular distributions, whose coefficients depend 

on the W scattering angle e. lt is in principle straightforward to maximize 

sensitivity for each coupling with respect to these 81 coefficients. Rather than 

pursuing such maximization, which would require detailed information on both 

detectors and actual event topologies, we have performed a systematic scan of 

all polar angle as well as azimuthal angle correlations and of all one-W -inclusive 

distributions. 

In the following we mainly concentrate on the distributions which do not 

require double charge identification, because the charge of the parent quark of 

jets is difficult to measure. As seen from the discussion following (5.1), at least 

40% of the events can be used to extract these distributions. 

5.1 CP-CONSER\"1!\G COUPLINGS 

A conveni('nt way of organizing our findings is according to the sensitivity of 

the angular coefficients to CP Yiolation and rescattering effects. We first discuss 

distributions which are even under the transformations (3.9) and (3.13) and thus 

in general are nonvanishing in the standard model at tree level. The couplings 

f 1 , h, h, and /5 are the ones to consider. Setting g1 = 1 in ft = YI + 212
.\ 

[Eq. (2.5)], we shall take tht> more conventional quantities K and .\, and fs as 

variables. 

The simplest distribution of this kind is the differential cross section du I d cosB 

which is given in Fig. 7 for the standard model and for an anomalous "magnetic" 

moment K. z = 0.5 and 1.5 at yS = 190 Ge V .t16 
The effect of the anomalous 

tJG For all the numerical results in this paper we choose mw = 82 GeV, mz = 93 GeV, 

sin 29w = 0.223, and e2 j 41r = o(mW) = l/128. 

36 

·~ 



couplings is more clearly displayed in Fig. 8, where the deviation from the stan

dard model is shown for Kz = 1.5, Az = 0.5, and ff = 0.5 at the same energy. 

Comparing with the expected statistical error of the cross section measurement 

as shown by the error bars in Fig. 8, we find that a deviation by 0.5 from the 

standard model value gives a very clean signal for Kz and >.z, while the effect is 

considerably smaller for If. 

The error bars in this and the following figures represent the statistical error 

for N=4000 W-pair events in which one of theW's decays leptonically, and the 

other hadronically, thereby allowing single charge identification and a complete 

kinematical reconstruction. This number roughly corresponds to the production 

of 104 W-pair events [see the estimate (5.1)], expected with an integrated lumi

nosity of 500pb- 1
. When a double charge identification for both w-and w+ 

decay products is required, only part of these 4000 events with clean heavy quark 

signals will be effective. On the other hand, a part of purely hadronic events can 

be useful with flavor identification and also purely leptonic decay channels can 

be used with the help of the kinematic reconstruction (Appendix B). Since the 

statistical error scales as 1/ v'N, it is easy to correct for these details as well as 

for detection inefficiencies. 

By measuring the polar angle distribution of the W decay products, one 

can directly determine the differential cross section for fixed W helicities. 

Eq. (4.23) we obtain for example 

du du(>.~+), o' du(>.~o),.zo 
dcosedcosO = dcose 8(1- cos ) + dcosE> 4 sm 

du(>. ~ -) ~(! + coe O)' · 
+ 'cose 8 

From 

(5.3) 

By projecting the experimental data onto (1 ±cos 0) 2 and sin20 for each cos e bin 

[this can be achieved by taking the expectation values of ~ ( -1 ± 2 cos 0 + 5 cos2 0) 

and 2- 5cos20], one will thus obtain the differential cross section for fixed w
helicities from the moments. Unfortunately, the cross sections (4.24) and (4.25) 
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are in general not particularly sensitive to small deviations from the standard 

model couplings. The main exception we have found is d(aL+ar)jdcose (re

quiring either w- or w+ to be longitudinally polarized) which is reasonably 

sensitive to a variation of 1c Actually this quantity should make it possible to 

distinguish an anomaly in 1\. from others, as is demonstrated in Fig. 9. 

While the previous distributions only require distinction of w+ from w
decay products (to identify cos 8), charge (or flavor) identification of the decay 

products gives their forward-backward asymmetry in the W rest frame. This 

asymmetry is, however, somewhat less sensitive to anomalous couplings than the 

previous distributions, as can be seen from Fig. 10 where the sensitivity of the 

coefficient (F3 - F3)j F1 is shown. Incidentally, the strong charge asymmetry 

implies that the full polarization information on theW's is essential to reliably 

calculate the energy distribution of the charged leptons. 

When the azimuthal angle of, say, the charged lepton is measured, new angu

lar distributions can be obtained. Figure 11 shows the sensitivity of (F4- F4)/ Ft 
to a variation of K, ..\,and fs [Ji4 is the coefficient of sinO cos¢, which is essen

tially the left-right asymmetry of the lepton; Eq. (4.26)[. It turns out that F4 is 

only slightly less sensitive than dajdcosB (Fig. 7) to variations of order 0.5 of 

K or ). from their standard model values. For smaller deviations from the stan-

dard model the relative sensitivity of these two distributions changes in favor of 

da / d cos (9, due to the effect of terms quadratic in the anomalous couplings. 

Additional flavor identification in the lv plus dijet sample will increase the 

statistics for the inclusive w -decay distributions, because both w+ and w- de

cays can then be counted whereas the number of events contributing to da jdcos e 
remains unchanged. For all the w+ or w- inclusive distributions, we show sta

tistical errors on the basis of 2000 w- - ev and 2000 w+ --j lv events only, 

neglecting any improvement from possible quark flavor identification. 

It is clear from Fig. 11 that the measurement of F4 - F 4 alone cannot distin

guish between anomalies in K and ..\. This distinction is provided not only by the 
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distribution d(aL a~:L dcos 8 (set• Fig. 9), but also by measuring in addition 

( F;, ...,. F ;;) i F1 iF';; is the codficient of sin 28 cos 6, or the quadrant asymmetry in 

the x-z plane; see Eq. (4.26);, as demonstrated in Fig. 12. 

In all the distributions shown so far, sensitivity to the C- and P-violat.ing 

coupling h was much smaller than that for K.- 1 or ..\. The reason for this is 

obvious when looking at Table IV: in the amplitudes h has aD-wave threshold 

and is suppressed by an extra factor f3 ~ 0.5 at .JS = 190GeV, mw = 82GeV. 

Better sensitivity to the coupling/;. requires higher c.m. energies. 

5.2 CP- VJOLATING COUPLINGS 

As the next class of anomalous couplings we consider the CP-violating terms 

proportional to [4 , fo, and h. Without absorptive parts, they contribute imagi

nary parts to the he!icity amplitudes (see Table I\"). Provided that they are not 

so large, they have very little effect on "real" distributions,t 17 such as da/dcos e, 

because in the standard-mod£'! amplitude;; there is no large imaginary part to in

terfere with. A largt' sen~it ivit.y can only lw obtain0d by measuring coefficients of 

sines of azimuthal angles. where the dynamical imaginary part from CP violation 

interferes with the relativt· phases between different helicity amplitudes. 

The most sensitive mt~asure appears to be the quantity ( F7 ..... F 7 ) / F1 [ F7 is the 

coefficient of sine sin 0; set• li:q. { 4 .26);, which is plotted for f,z (i = 4, 6, 7) -=- 0.5 

in Fig. 13. It is essentially the up-down asymmetry of the lepton with respect to 

the scattering plane. A deYiation from the standard model prediction (identically 

zero) is clearly visible for all these couplings with 4000 W-pair events with dijet _,_ 

tv topology. 

\Vhile the dependenct:> of the above quantity on the W scattering angle is 

distinct for h. separation of / 4 and /G may be achievable by studying some of 

H7 When their absolute value becomes 0{1), thE-y do have measurable effects on e.g., 

do/ d cosB, llowever. 
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the azimuthal correlations, namely, the coefficients of sin(¢- 2¢) - sin(2¢- ~) 

(Fig. 14) or sin(¢-¢) (Fig. 15) in the double decay distributions [see Eq. (4.16)). 

However, the former is not very sensitive to anomalous couplings, and the latter 

requires additional flavor identification, even when the charged lepton+ dijet 

signal is considered. (T~is additional requirement has crudely been taken into 

account in the error bars of Fig. 15, which are based on a sample of 1000 W pairs 

only.) Alternatively, a measurement near the WW threshold could single out 

[G, because it is the only three-boson coupling that gives an S-wave threshold 

behavior. 

It should be noted that the distributions shown in Figs. 13-15 provide a 

genuine measure of CP violation in the vector-boson sector. Even with arbitrarily 

strong final-state interactions, all of them vanish as long as CP is conserved. 

5.3 FINAL-STATE INTERACTIONS 

In order to adequately treat rescattering effects, a partial wave analysis of the 

WW system is required. However, one can approximately include these effects 

by allowing for imaginary parts in the form factors {1 (i=1, ... ,7). Tables V-VII 

in Section 4 give thf' distributions which are sensitive to rescattering, with and 

without CP violation. Here one example should suffice. Figure 16 shows the 

effect of a small imaginary part of K.z (x:z = 1 + 0.2i) on F1- F1. [F1 is the 

coefficient of sin 8sin r,b and F1 that of sin iisin¢; see Eq. (4.26).] It should be 

noticed that F1- F 1 does vanish even in the presence of CP violation, as long as 

there are no absorptive parts. 

A careful study of the angular distributions of W decay products thus pro

vides a unique separation of anomalous effects into those due to strong final-state 

interactions, CP violation in the vector-boson couplings, or real anomalous mo

mPnls of theW (such asK. or.>.). 
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5.4 PHOTON versus Z COUPLINGS 

So far we have only considered anomalous WW Z couplings. The question 

arises whether adding anomalous WW 1 couplings as well may produce new fea

tures in angular distributions, The answer is no in the absence of transverse 

beam polarization. Let us explain this statement. 

The differential cross section is a sum of contributions from left-handed {b. a= 

-1) and right-handed ( + 1) electrons: 

da ~ IM+I' + IM-12 
• (5.4) 

Adding photon and Z contributions, we deduce from Eq. (3.7) that M+ and M_ 

are always proportional to the same linear combinations of couplings f' and JZ: 

' M+ ~ f"- -· - fz 
s- m} 

= fR ~ !"- 1.32 fz ' (5.5a) 

M-~r+ -- -1 --fz ( I ) ' 
2sin28w s- m} 

'= fL ~ f" + 1.63 fz , (5.5b) 

where the numerical value holds for JS = 190 Ge V, mz = 93 Ge V, and sin2 0w = 
0.223. However, only the left-handed contribution (5.5b) can interfere with the 

neutrino-exchange graph which contributes the dominant part of the cross sec

tion. One thus finds a much larger sensitivity of almost all angular distributions 

to the combination JL than to JR. This effect is clearly demonstrated in Fig. 17 

for A'! = 0.3 and Az adjusted such that either An or ).L vanishes. As a result it 

will be rather difficult to distinguish anomalous WWJ from WW Z couplings. 

In principle, experiments with longitudinally polarized beams can measure 

JR and JL separately. However, since IM+]2 is much smaller than IM-12 [the 
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former is typically 10-2 of the latter at JS = 190GeV after integration], the 

accuracy of the JR measurements will be severely limited by statistics. 

The best way out is provided by transverse beam polarization. When the 

e± beams have natural transverse polarizations P:J:, the differential distribution 

Eq. (5.4) changes to 

da ~ IM-t ]2 + IJ.LI2 + P; Pi { 2Re (.M~M-) cos24i 

(5.6) 

+2Im(M~M-) ,in2<1>}, 

where 4i denotes the azimuthal angle of thew- momentum about the e- beam 

axis, measured from the e- polarization direction in the e+e- c.m. frame.t18 

The IIi-dependent terms contain the interference of the large neutrino-exchange 

amplitude with the right-handed amplitude (5.5a). One will thus obtain a much 

better measurement of JR, which allows separation of f1 from JZ. 

5 5 ENERGY DEPENDENCE 

So far we have discussed various angular distributions only at a fixed beam 

energy 2Et. ~ ,jS = 190 Ge V. Actually their sensitivity to anomalous couplings 

strongly depends on VS/mw, in particular near threshold. At low beam energies 

the photon and Z amplitudes are down by an extra factor of {3 compared to the 

neutrino exchange graph [see Eq. (3.4)]. Thus a small deviation of these ampli

tudes from their standard model values will be difficult to detect, with a notable 

exception of the CP-violating couplings Jci as mentioned earlier. When the beam 

energy and therefore 1 = Eb/mw becomes large, the anomalous couplings will 

tJS The distribution (5.6) can easily be obtained from the general expression in Ref. 42 
[see Eq·. (7.15) therein] by choosing the x-z plane to be theW pair production plane, 
as was done in Section 3 to present explicit forms of the helicity amplitudes. It also 
can be directly read off from Eq. (3.8) in Ref. 53 with the replacement P2 ---+ P; Pi. 
The difference in the sign comes from the different phase convention used. 
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enhance the W pair amplitude because the subtle gauge-theory cancellation is 

switched off. However, --yZ is only :=::l 1.5 even at yS = 200 Ge V, the highest en

ergy that LEP-Il will be able to reach. Hence this enhancement effect will not be 

observable at LEP-11 for the small [0(/o-)) deviations from the standard model 

couplings that we are interested in. 

We have made a rough estimate of the accuracy with which anomalous cou

plings can be determined as the center-of-mass energy varies. For an integrated 

luminosity of 500 pb -I and assuming that 40% of all the W pairs can be used to 

determine angular distributions, we have plotted the deviations t:lK z (Fig. 18) 

and llAz (Fig. 19) needed to produce ala effect in the most sensitive angular dis

tributions. As is clearly seen from these figures, going beyond 200 GeV with JS 
does not lead to a large increase of sensitivity. In the case of CP-conserving real 

anomalous couplings such as Kz and Az, the total angular distribution do J d cos e 

(solid lines) is found to give the most sensitive measure. Other distributions are 

still useful to distinguish among effects from different anomalous couplings as 

discussed earlier in this section. If one uses only dojdcose, we find almost no 

improvement beyond ..(S = 190 Ge V. More generally, we find that a factor of 4 in

crease of luminosity at JS = 190GeV is more valuable for measuring anomalous 

couplings than an increase of ..jS to 200 Ge V. 

Figs. 18 a!l·d 19 show that .:\ or fi: can be determined with an accuracy of 

:t:O.l within one year of running at. y'S = 190GeV. Thus a measurement of the 

"magnetic" moment of the W at the 5% level seems to be possible up to the 

1-Z ambiguity addressed in Subsection 5.4. Similar results hold for the other 

couplings fi (i = 4, ... , 7). After one year of running one is sensitive to variations 

6./; of roughly ±0.1 except for /s which can be determined with an error of ±0.2. 
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6. Conclusion 

In this paper we have made a systematic study of observable experimenal. 

distributions connected with the process e+ e- ----. w+w-, which could serve¥ 

tests of possible anomalous three-vector-boson couplings. Since the W's decaf 

into fermion-antifermion pairs, one may make use of the decay distributions¥ 

polarimeters to efficiently analyze the produced W helicities. Because the W dt

cay properties are well known, a careful study of the reaction e+e- ---t w+w--+ 
Jd?./3[4 therefore reveals information on the W-pair production process aad: 

the associated three-vector-boson couplings, through the particular correlatioas 

produced for the final fermions. 

More specifically, we have shown that at LEP-II it is feasible to search for 

anomalous moments K- 1 or ,\ connected with the WW Z (or WW1) vertex. 

For these couplings, whose presence does not violate any conservation laws, tbe 

most sensitive experimental measure turns out to be the differential angular 

distribution of the produced w·s. For a sample of 104 W pairs at y'S = 100 GeV 

at LI~P-II one should be able to measurf' deviations in K - 1 and ,\ at th<' 10% 

level. More specific angular correlations involving the final fermions are not as 

sensitive to those deviations. However, these distributions get affected differently 

by K- 1 and ,\ (see, e.g., Fig. 9) and supply information complementary to that 

provided by theW differential cross section. 

The situation is radically different when one considers the effect of CP

violating anomalous three-boson couplings or imaginary parts of the form fac· 

tors indicating strong WW rescattering effects. In these circumstances, even 

for sizable couplings, these effects are not particularly visible in the \{l angular 

distributions. However a careful study of the polar and azimuthal distributions 

of leptons and antileptons produced in W decays can be used to isolate these 

phenomena. If 0, ¢and 8, ;pare the polar and azimuthal angles of the produced 

leptons and antileptons in W .. or w+ decay, respectively, we have found that 

the terms proportional to sin 0 sin¢± sin 8 sin¢ (lepton asymmetry with respect 
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to the scattering plane) provide the most sensitive distributions for CP violation 

(+sign) or rescattering effects(- sign). 

Our detailed calculations considered the relevant processes e+e- --1 w+w-, 

W ----7 f f only in the lowest order in the electroweak interactions. Obviously, 

a detailed study of possible anomalous contributions must include electroweak 

radiative corrections to be really significant. Because in our considerations we 

have treated the production process separate from the decay and mostly studied 

kinematical effects, it should be relatively straightforward to perform radiative 

corrections separately for the w+w- production and the decay. These correc

tions should modify our amplitudes in detail but not in overall structure. As an 

example, in Appendix C, we have already indicated what modification arises if 

the hadronic W decay is not into qij but qijg. At any rate, we believe that our 

calculations do indicate the approximate size of measurable effects at LEP-II. 
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APPENDIX A: Constraints on the Form Factors 

Parametrized by Gaemers and Gounaris 

The most general WW Z coupling for on-shell W 's parametrized by Gaemers 

and Gounaris 
12 

(G-G) contains nine form factors whereas we keep only seven in 

Eq. (2.4). Explicitly, we find 

r~PPI = r~PPI + 1r -/!% pa [PQ]~<P + f~ +/JY pP [PQ]~.~a, 
G-G (2.4) mw mw 

(A.!) 

where Q 11 = (q- iJ) 11
, and [PQ]~'a is a shorthand notation for f~'"f!a PpQa. 

Spin counting and rotational invariance tells us that there are only seven 

independent helicity combinations, which are given explicitly in Table IV. It 

is then clear that our seven form factors are enough to make all the helicity 

amplitudes arbitrary. The nine form factors in Eq. (A.l) should therefore be 

redundant. 

This can easily be seen as follows. Since no rank-5 completely antisymmetric 

tensor exists in four dimensions, 

9Ajltappa - 9Aafp.J1pa + 9Ap€papa - 9Ap€p.af1cr + 9Aa(11a(_lp = 0 • (A.2) 

By multiplying the above equation by P), Pf!Qcr and Q>. PPQa, we find 

- Pa[PQ["p + Pp[PQ["" ~ ''""p,Q', (A.3) 

Pa[PQ["p + Pp[PQ["" ~ s{J''""p,P'- Q"[PQ[ap. (A.4) 

Here we used P 2 = s, P·Q = 0, and Q2 = -s/32 . Terms proportional to P
11

, qa, 

or ijf_l have been set to zero, because they correspond to the scalar component of 

the vector bosons and do not contribute to the process e+e- ____,. w+w-. 
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Using the above equations in Eq. (A.l) and recalling that 

r"P"I v (2.4) 

we immediately find 

+if[ (p.afJpQp- !% f.p.afJp Pp- ~~ QP-IPQ]"fJ, 
mw 

rr ~ ur + 4~' m1 . 
G-G 

![ ~ (![ - h'li' Ji) IG-G , 

fi ~ (fi + JJ'll -
G-G 

(.U) 

(A.Ia) 

(Hb) 

(A.&e) 

With the above replacements, all the amplitudes presented in Ref. 12 agree with 

ours. 
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APPENDIX B: Kinematics of e+e- ~ w+w- ~ (lv)(tv) 

Purely leptonic decay modes of a W pair, although small in rate, give the 

cleanest signal of the W -pair production process in e+ e- collisions: 

,-(k)+e+(k) ~w- + w+ 

Lt(I)+D(p,) Ll(l)+v(pv). 
(B. I) 

This is observed experimentally as 

e- + e+ --' l + l +missing energy-momentum, (8.2) 

where the final lepton pair can be either one of ee, e{i, IJ.f, or J.Lji.. The four

momenta of the particles are given in parentheses. The observable dilepton dis

tributions were studied rather extensively by Dicus and Kallianpur.28 

Because of the cleanliness of the signal, this process deserves close attention. 

A simple kinematical analysis, presented below, shows that the two unobserved 

neutrino momenta can be determined from the observed lepton momenta up to a 

twofold discrete ambiguity, in the limit where theW width and photon radiation 

are neglected. Under certain circumstances, e.g., when the contribution from 

one of the two kinematically possible configurations is negligible compared to the 

other, this makes it possible to perform the full angular correlation studies, as 

presented in Section 5, even with this purely leptonic signal. Such an approach 

has been shown to be useful
39 

in the W1 production studies at hadron colliders, 

where the use of the W leptonic decay signal is inevitable to avoid large back

grounds and the neutrino longitudinal momentum can be determined up to a 

twofold discrete ambiguity. 

The kinematics of the process {B.l) is determined by six angles, two for the 

scattering, and two each for the W decays. Since we observe the two three

momenta of the leptons, generically we have sufficient observables to fix the 

whole configuration. A twofold ambiguity occurs, however, because the solution 
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involves a quadratic equation. Here we present an explicit solution for the two 

unobserved neutrino momenta pv and p., in terms of the observed lepton momenta 

land l. We work in the e+e- c.m. frame and assume massless neutrinos. 

It suffices to solve for the three-momentum p 11 because pg = IPvl and p., is 

given by momentum conservation. As the W- energy is equal to the beam energy 

Eb, we have 

pg = Eb- lo, (B.3) 

DC 

P~ ~ (E, -lo) 2 
• (B.4) 

A similar equation holds for thew+ ---t lv decay: 

Pe = (Eb - lo)2 . (B.5) 

Using momentum conservation p., = -(p11 +l+I) and Eq. (B.4), this last equation 

can be rewritten in terms of P;:;: 

(I+ I) p, ~ E,(lo- lo) -16 -1·1 + j(ml + mj) . (B.6) 

The third constraint. comes from the condition that the lepton-antineutrino sys

tem should haYe the mass of the W: 

)
2 2 

(l+Pi• =mw, (B.7) 

which gives 

l · P;:; = Ebf.o - eg - ~m~ + ~m~ . (B.B) 

Equations (B.6) and (B.8) lead to 

I· Pii = -Eblo -l·I + !m~ + ~mj. (B.9) 

The three conditions (B.4), (B.S), and (B.9) provide the solution for Pv· We 

49 

' 

rewrite the right-hand sides of these equations for the sake of clarity: 

P~ = L, (B.4') 

l·Pv = M, (B.B') 

·pi.i = N, (B.9') 

Let us assume, for the moment, that the two three-momenta 1 and 1 are not 

parallel. Then we can expand Pv in terms of the lepton momenta 

PD =al+bl+clxi, (B.IO) 

The two linear equations (8.8') and (B.91
) constrain Pv to lie on a line in three

dimensional space. They give 

al2 +bl·I=M, 
(B.ll) 

al·I+bP = N, 

which can be explicitly solved: 

(") 1 (F -l·I)(M) 
b ~ 1'12 - (J.l) 2 ~ l·i 12 N 

(B.12) 

The remaining variable c is determined using (B.41
): 

2 1 r 2 '' 2-2 -~ c = -.--_ :L-a}-- b I -2abJ.l . 
II X II' . 

(B.l3) 

The sign of c cannot be determined. This explicitly exhibits the twofold discrete 

ambiguity we mentioned earlier. The inequality c2 > 0 is expected to be violated 

only by finite W -width effects and by radiative corrections, and hence may serve 

as a test of the W -pair signal. 

In the exceptional case where the tv:o lepton momenta are parallel, one ob

tains a one-parameter family of solutions for which the azimuthal angle of Pv 

with respect to the lepton momentum is left undetermined. 
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APPENDIX C: Helicity Amplitudes for Event Simulation 

The angular correlation formulas presented in Section 4 are quite useful for 

obtaining theoretical insight into the problem, and correctly take into account 

the correlations caused by W boson spins. However, they are still far from 

satisfactory if they are to be used as a basis for a realistic event generator. In 

order to achieve the goal of precision tests of the standard model at LEP-II such as 

an accurate measurement of mw, a test of electroweak radiative corrections in W 

pair production, and a direct measurement of the Cabibbo-Kobayashi-Maskawa 

matrix elements, it is essential to understand the event topology of each W decay 

mode as much as possible. 

First of all, it is important to include final quark mass effects for thew- ........ b[ 

mode. At least one hard gluon emission should also be incorporated exactly in 

addition to the leading logarithmic multigluon emission which can easily be sim

ulated at the classical level by using a QCD shower Monte Carlo program.54 

Although it is possible to present a complete polarization-summed cross section 

with the above effects included in the usual density matrix technique, the results 

turn out to be quite cumbersome since we need the double density matrix for 

w- and w+ decays. We find it most convenient to present our results for he

licity amplitudes in the formalism 
42 

recently developed by two of us, where the 

final expression allows efficient and straightforward numerical evaluation in an 

arbitrary Lorentz frame. In this approach, it becomes trivial to incorporate an 

arbitrary polarization of the colliding beams (in particular the natural transverse 

polarization in storage rings), and it is easy to add new contributions such as 

a t-channel exchange of .an excited neutrino 
55 

or a contact eeWW interaction. 

It is also straightforward to include final state polarization effects, e.g., of top 

quarks.
56 

In order to render this paper self-contained we first briefly review the basic 

ingredients of the helicity basis calculus. Further details can be found in Ref. 42. 

For fermions we use the chiral representation of Dirac matrices and go to two 
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component notation. Spinors ¢(= u(p, A) or v(p, A)) are given by 

V'~ (~J ,)' ~ ( >P1 .pl ) ' (C.!) 

with 

u(p, )), ~ «±>(P)x,(P), 
(C.2) 

v(p, ))± ~ ±)oc,,(p)x_,(p). 

Here ). denotes the helicity of the on-shell fermion with four-momentum pJl = 

(E, Px, py, Pz), x,~,(p) is a normalized helicity eigenspinor, explicitly given by 

X+(P) ~ [2Jp] (]p] + p,)]-I/2 (]pi +p,) ' 
Pz + tpy 

X-(P) ~ [2]p] (IP] + p,Jri/2 ( -p, + ip,) 
IPI + p, ' 

and 

«±(P) ~IE± ]p]j 1
/

2
• 

Given the explicit form of 1-matrices 

with 

¢ ~ ap1 P ~ ( 0 ~+) 
?- 0 

jl, ~ . 
( 

a0 + a3 

-=t=(a 1 + ia2
) 

'f(a1 
- ia2

)) 

ao ± a3 

(C.3a) 

(C.3b) 

(C.4) 

(C.5) 

(C.6) 

an arbitrary product of ')'-matrices with spinors at both ends can be expressed 

by the basic quantity 

S(p,, a1, ... ,a., p1)>,,, ~ xl,(p,)(?I)o(?,)-o(~,)o ··(?o)wx,,(p1) (C.7) 

foro:=± [here l = (-l)n-IJ. Arbitrary polarization amplitudes are then ex

pressed in terms of the basic quantity S, which is easily evaluated by 2 x 2 matrix 

52 



multiplication.119 

Analogous to Eq. (C.2) for spin-! fermions, polarization vectors for vec

tor bosons are defined such that they depend only on the vector boson four

momentum q = (q0 , q;e, qy, qz)- We define the rectangular polarization basis 

by 

1 
<"(q, ), ~ 1) ~ -1 -1 - (0, q,q, "'"" -q}), (C.8a) 

q qT 

1 
<"(q, ), ~ 2) ~ ~ (0, -q,, q, 0), 

qT 
(C.Sb) 

qo ( q' ) 
fP.(q, ..\ = 3) = PI -, Qx, qy, qz , 

q ql qo 
(C.Sc) 

I 
'"(q, ), ~ 4J ~ R (qo,q,q,,q,J, (C.Sd) 

with qT = (q; + q~) 1 12 . In the usual helicity basis, the polarization vector (C.8c) 

describes longitudinaUy polarized vector bosons with helicity ,\ =- 0, and helicity 

eigenvectors for ,\ = ± are given by 

' I . <"(q, ), ~ ±) ~ v'2 F"(q, ), ~ 1) - i<"(q, ), ~ 2) I . (C.9) 

The ..\ = 4 component, which is proportional to qP., corresponds to the scalar part 

of a virtual vector boson. Its coupling to fermions is proportional to fermion 

masses and hence will be important only in the bf decay of virtual W 's. We 

find no advantage of using the helicity basis for intermediate W's in numerical 

simulation and will choose the Cartesian basis (C.8). One can, of course, obtain 

identical final cross sections using the helicity basis(..\=±, 0, 4) in summations. 

i 19 A simple FORTRAN program to evaluat.e t.he complex number S as a function of 
an arbit.rary number of four momenta and three indices (a, A., Aj} is available from 
the authors of Ref. 42. 
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ln terms of the fermion strings Sand the polarization vectors (C.8) or (C.9), 

we can now give the polarization amplitudes for the production process 

,-(k, a)+,+(!<, o) ~ w-(q, >,) + w+(q, X), (C.10) 

which in contrast to Eqs. (3.2-6) are Lorentz covariant. For the neutrino exchange 

graph depicted in Fig. lc we obtain 

Mv(a, a; ..\, - ''(gw'")' ' ' ~k-0 S(k- '(!,-) k '(>,) k)->.) = 2 Oq -- ou + 2V k"k" ' f ' -q, f ' -- . (k- q) . , 
(C.ll) 

The analogous expression for s-channel vector exchange is 

.Mv (a, 
Va 

0-. >, >,-) ~ ,g, gwwv b . 2 r;;DkO s(k , , 2 cr,-u Vkuku , 
s- m\, 

rv(>,,X), k)~,, (C.l2) 

for V = 1 and Z. The four vector r~ is obtained from the tensor r~PP. of Eq. (2.4) 

by contraction with the W polarization vectors 

rr(!,, \) ~ r;Y'"(q, q, P) <:(q. !,) <p(i/, \). (C.i3) 

The WW1 and WW Z couplings Ywwv are given in Eq. (2.6). The left- and 

right-handed fermion couplings to vector bosons are defined by the interaction 

Lagrangian 

' - "' Vf,j, .T. p ·'· V" 1--V[Ih- -e L. Y>. '1-'f,/JJ >.'Ph • 
>.=± 

(C.l4) 

where e denote the positron charge and P;, = Hl + ..\1s) is the chiral projection. 
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The couplings we need are 

ure=-1, 

g~~e = 
2sin Ow cos Ow +tan Ow , 

ze~-tan8w, g+ -

I Wev _ --g~ve = g_ - vlzsin8w 

Uif 
Wu;d1 = (g~d;u;r = v'zsin8w g_ 

(C.l5) 

where (u.I,ttz,u3) = (u,c,t), (d1,d2,d3) = (d,s,b), and Uif denotes the Cabibbo

Kobayashi-Maskawa matrix elements for three generations. 

Using the same notation as before, the decay matrix elements for w±---> fif2 

or flf.Jg depicted in Fig. 20 can easily be written down. Denoting the fermion 

momenta and helicities by (Pt,aJ) and (pz,a2) one finds for thew- decays 

.M(w--hi~l(A; a 1,a2) = eg'l!hhcu:_..,.,(p 1);.e.,.2(Pz)az S(pi,t:(q,.\),pz)~·,,-u2 , 

(C.!6) 

and 

,M(w- -->JJ/2g)(.\; a1 ,a2, K:) = eg~hhgsC1 t.E-u
1
(pi) t.t:,.,. 2(Pz) Oz 

X { [''(p,,<)·Pl 
Pg'PI 

<'(p,, <) ·pzl S(pi' <(q, .l.)' pz)~,_-,, 
Pg·Pz 

+ -
2 

1 S(p1 ,t:'(pg,K),pg,f(q,~),pz);;,,-,.,., 
Pg'Pl 

- 2_l_S(pJ.<(q,.l.),p,,<'(p,.<),p,);, - .. } 
Pg'P2 ' 

(C.l7) 

Here we employ the gluon polarization vector EJJ(pg,K) with K = I, 2 or± for 

massless gluons. g8 = yl47ro:8 is the QCD coupling constant, and the effective 

5S 

color factors are 

c~{v-;~vs for quarks, 

for leptons, 

C' = VCFfV = 2 for quarks. 

(C.l8a) 

(C.l8b) 

These factors automatically take care of color summations in the final states. For 

w+ decay one merely needs to substitute ~(q, .\) --+ f(Q, X) in both Eqs. (C.16) and 

(C.17). Formulas (C.16) and (C.l7) are valid for arbitrary masses of the fermions 

ft and f2. When fermion masses can be neglected, the u::-factors simplify to 

pz---+0 ~ 
t.C±u(P) _______. V 2p0 bu,± . (C.l9) 

We should note that the simple formulas (C.ll) and (C.I2) contain all the 

information regarding the process e~ e- ---> w+\.y·- in lowest order, and that the 

formulas (C.16) and (C.J7) alone include the complete description of polarized 

W decay into a quark pair of arbitrary masses and an additional hard gluon. 

In Section 3, we have shown explicit analytic expressions of the production am

plitudes in the e+e- c.m. frame, whereas in Section 4 we evaluated (C.16) in 

the W rest frame for massless fermions. The implicit expressions given in this 

appendix allow, however, a direct numerical evaluation of all the amplitudes in 

an arbitrary Lorentz frame. Since the individual amplitudes transform nontriv

ially under boosts, the Lorentz invariance of the polarization-summed squared 

amplitudes gives an excellent test of a numerical program.
42 

The procedure to evaluate cross sections from these amplitudes is essentially 

the same as that explained in Section 4 . .M 1 is just the sum of}.{"' (C.ll), .M"Y 

and .MZ (C.l2), .M 2 and M3 are either (C.l6) or (C.1 i) depending on whether 

one wants to include the possibility of hard gluon emission. Only one further 

complexity appears when one deals with the decay mode W ---> b[. In this case 
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the scalar (>. = 4) component of the W polarization cannot be neglected for 

off-mass-shell W's and theW polarization sum should be extended to 

I: ~ 
A=l,2,3 

2 2 
I: + I: q -

2
mw = L:u , 

>.=1,2,3 >.=4 mw >. 
(C.20) 

which arises from the Proca (or unitary gauge) spin projector -gJJ 11 + Qp.Q11 /m'tv. 

As an example, we give the exclusive cross section for the case 

,-(k,o) +,+(I<, a)~ w-(q,>.) + w+(q,X); 

w-(q, !.) ~ b(p, ,at)+ f(p2, 02) + g(p,,o,) ; 

w+(q,X) ~ l(p,,o,) + v(ps,os). 

The full amplitude can be written 

.M = .M(o,O";ot.oz,os;o4,os) 

~ Dw(q') Dw(<l2) L;UL; 

' ' x .MI(o,o;>.,X) · .Mz(>.;ot,oz,os) · Ms{X;o4,os), 

(C.21) 

(C.22) 

where we show only particle polarization indices to denote each amplitude. For a 

given set of four-momenta of particles and their polarizations, all .M1 and hence 

the total amplitude .M is just a complex number. 

The polarization-averaged cross section for the process (C.21) is then ob

tained simply by the following formula: 

I I 2 
do~ 

2
, . 4DMI ·d~s. (C.23a) 

with d~5 being the invariant five-body phase space 

5 5 d3 . 

d~, ~ (2~)' o'(k + 1<- I: p,) IT '" ,!':~ (C.23b) 
i=l i=l 

and 
2 

I:IMI' ~ I: I: I: I: IMI2
• (C.23c) 

a""± a,=± 02=± a3=l 

Here we used the fact that .M 1 is proportional to 6a,-u [see (C.ll} and (C.l2)], 
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-- ---)•---

and that .Ma is proportional to Da.,- 00 ~,+ i(C.l6) and (C.l9)]. If we can neglect 

the b quark mass, summation on the b spin is reduced to a single value at = -

for the standard V-A interactions. In the Monte Carlo event generation, one 

can perform not only the phase space integration but also the polarization sum 

on a statistical basis. 
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APPENDIX D: Helicity amplitudes 
for e+e- ---t ZZ and e+e- --+ Z1 

Unlike w+w- production, ZZ and Z1 production proceed only by well 

known fermion-vector-boson couplings in the leading order of the standard model 

(see Fig. 21). Effects of the WWV coupling (2.1) appear only at the O(a) 

leve1.57
'
58 Anomalous interactions of three neutral bosons,

59 
however, may con

tribute to the reactions. Z1 production can be studied already at LEP-1/SLC at 

energies above the Z resonance, and ZZ production is within the reach of LEP

IL The latter reaction contributes
1 

as a background to the Higgs boson search 

using the ZH final state when mn "'mz. 

In this appendix we present helicity amplitudes for these processes 

e-(k,a) + e+(k,a) ~ V1(q1 ,-1!) + V,(q2 ,-12), (D.!) 

where VI v2 denote zz or Zj. We include the most general z zz, z Z1, and Z11 

couplings in the same spirit as that of our WWF. wupling studies. We also give 

the Z -4 jf and Z--) jfg decay amplitudes with arbitrary fermion masses. By 

combining these amplitudes, it is straightforward to make numerical simulations 

for processes such as e+e- --) (Z -~ fl) + (Z --) ttg), with full polarization 

correlations included. 

In the standard model, only t- and a-channel electron exchange contribute 

to the processes. The corresponding production matrix element is 

.M(o,O'; A~oA2) = e2 g:'ug~7u6a,-u2-Jk0ko 

X {S(k, <'(q,,-l,),k-qJ,<'(qJ,,\!),k)~, 
(k- q!)' 

S(k, <'(ql, -'1 ), k-q,, <'( q,, -1,), k )~. } 
+ (k-•)' . 

(D.2) 

As before !see Eqs. (C.l4) and (C.l5)] g~oee denote the left- and right-handed 

couplings of electrons to the vector boson Vi· 
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The explicit form of the helicity amplitudes for e-' e- ---+ Z Z in the e+ e- c.m. 

frame reads 

2 A.x~,~,~(e) 
.M(e+e-_,zz) = 4J2e2 (gX~e) 6i.6.al,±l 4JJ2sin26l + 1 • ed~~.,,(e), (D.3) 

where 1 = .fi/2mz, {3 = (1 ~ 4m~/8) 1 1 2 , Ll.). = )11 - ). 2, and 61= Ll.a(~l)A2 . 

Otherwise the notation is the same as that for e+e- --) w+w- (see Subsection 

3.1). The coefficients A are listed in Table VIII. Note that the divergent B terms 

which exist in w+w- production jsee Eq. (3.7c)] are absent here because of 

cancellations between the two diagrams. 

Similarly for the amplitudes for e+e---) Z1 we find 

.M(e+e-->Z'f) _ 2y2 2 Zee l5 8A,A~(e) edJ" (8), 
- e 9tJ.a lturl,±l (I ~ r2) sin2e A,.,tJ.A 

(D.4) 

where r = mzf.fi. The coefficients 8 are shown in Table VIII. The apparent 

singularity at cose = ±1 in (D.4) is cut off by the electron mass, which leads to 

a finite total cross section. 

In general, one may expect nonvanishing interactions of three neutral vector 

bosons, which contribute to vl v2 production via a photon or z in the 8 channel. 

However, due to Bose symmetry and electromagnetic gauge invariance, the form 

of such interactions is restricted to a smaller number of couplings than in the 

\VWV case. 

For ZZ production, i.e., for two z·s on mass-shell, Bose symmetry allows 

only two couplings. The most general ZZV vertex (V = Z or 1) for on-shell Z's 

is given by (see Fig. 22) 

m' r~~v(q1,q2,P) = 
8 ~2 v [iffzv(P0 g~fl + P11g~0 ) _j_ iffzv (p.of3p(q1 ~ q2),]. 

z 
(D.5) 

As in Section 2 any terms proportional toP~' have been neglected, since they do 

not contribute in e+e- annihilation (for me--) 0). For V = 1 such terms can 
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restore gauge invariance, however !cf. Eq. (2.10)]. The vertex functions vanish at 

.s = m~ because of gauge invariance for V = 1, and Bose symmetry for V = Z. 

The interactions thus should come from dimension-six operators. CP invariance 

forbids ffZV and parity conservation requires ffZV = 0. If at least one of the 

final Z's are off-shell, five other couplings are possible, as in the WWV vertex. 

They are, however, proportional to qf - m~. 

Z1 production may have a contribution from anomalous Z1V couplings, 

where V = 1 or Z is the virtual boson in the .s channel. The most general 

anomalous Z1V coupling (for on-shell Z and 1) is given by 

,of:JJ.I _ 5 - m~ { V Jl o/3 c. JJ.fl 
Iz'l'y(QI,Q2,P)- --2- h1 (q2g -q2g ) 

mz 

hv 
+ - 2- P 0 (P·q2 gP-fJ - qp, pf:J) 
m~ 2 

+ hr (p,a{J p Q2p -· hr po tp.f:Jpa PpQ2u} , 
m~ 

(D.6) 

where terms proportional toP~' or qf are omitted because they do not contribute 

to the reaction. The above expression is manifestly gauge invariant for the final 

on-shell photon. The couplings hY and hr are P-even, h~ and h~' are CP-even; 

all couplings are C-odd. 

The overall factor .s - m~ in (D.6) comes from gauge invariance for V = 1, 

Bose symmetry for V = Z. Because of this factor, there are no corresponding 

operators of dimension four. If we restrict ourselves to dimension ::; 6 operators, 

only hf and hr remain; the other two receive a contribution from operators with 

dimension 8 and higher. 

The consequences of the two dimension-six interactions in the radiative decay 

Z ___, {f."'' have been studied by several authors.
60 LEP-1/SLC is actually best 

suited to limit these couplings using radiative Z decay events. The reaction 

e+e- _, Z1 in the presence of these couplings was discussed by Renard.59 

61 

It is interesting to note that the four Z1Z' interactions in (D.6) and the two 

ZZ1' interactions in (D.S) are completely independent. If we keep all the three 

bosons off mass-shell, there are seven couplings altogether. Four of them survive 

for.e+e----> Z1, while two different ones contribute to e+e- _, ZZ. 

The contribution of the anomalous Z ZV vertex (D.5) to ZZ production can 

be read off from Eq. (C.l2) by an appropriate change of the couplings: 

v, 
uZZV( __ , ')- eg, Yzzv' - ~kOk-OS(k- f (' ') k)o m o,o, ...... 1,"2 - .s-m2 oa,-a2Ykvkv , v "1,"2, 00 

v 
(D.7) 

with 

rt(>q,..\2) = rtfv(qi,Q2,P)t~(qt,..\!)ip(q2,..\2). (D.B) 

Similar results with an obvious change of Z to 1 apply for the process e+e- _, Z1. 

Without loss of generality, we may choose 

gzzz = gzz'l' = gz"fz = gz"f'l' = e · (D.9) 

Note that the s-channel pole in (D.7) is cancelled by the zero in the couplings 

(D.5) and (D.6). 

With all the contributing amplitudes given in Eqs. (D.2) and (D.7), it is 

straightforward to calculate arbitrary polarized cross sections for the processes 

e+ e- ___,. Z Z and Z1- In order to study the angular distributions and correlations 

of the Z decay products, one further needs the Z decay amplitudes for 

Z(q,!.) ~ f(p,a) + f(fi,o), (D.!O) 

and 

Z(q,!.) ~ f(p,a) + f(p,o) + g(p9 ,~). (D.ll) 

The Z---> ff decay amplitude reads [see Fig. 20(a)] 

MIZ-ffl(>.,a,o) ~ -e L: g~ffccc.,(p)<<-ou(fi)ooS(p,<(q,!.),fi)~,-• (D.l2) 
o=± 
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and the amplitude with gluon radiation reads [see Fig. 20(b,c)] 

.M(Z->Jfg)(A,o,a,~~:) = -e L g!11 gsC'u;etc;{p)u;-ae(P)aa 
et=± 

x { [''(p,,<)·p- r'(p,,.<)·p]s(p, r(q,A), 1')~,-• 
Pg'P Pg p 

+ 
2
___.!:_ S(p, t:*(p9 , ~~:), p9, t:(q, A), p)~,-u 

P9·P 

- ____l:_,S(p, r(q,A), p,, r'(p,,<), 1'1~-•}. 
2p9·p ' 

(D.13) 

The color factors C and C' are given by (C.l8). The above two formulas are ap

plicable to any value of the fermion mass. For massless fermions, the expressions 

simplify significantly by the condition (C.l9). The angular distribution of the 

final lepton for the process e+e- ---J. Z1 in the standard model was calculated by 

Hayashi and Katsuura 61 and by one of us.58 
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Table I. Properties of couplings JY (V = /, Z) under discrete transformations. 

1~3 4 5 6,7 

p + + -

CP + - + 

c + - - + 

Table II. Explicit form of the d functions needed. 

di,2 = -a':_ 1,_ 2 = !(1 +cosO) sinO 

di,_ 2 = -d:_1,2-= -!(1- cosO) sinO 

dL1 = d~ 1 ,_ 1 =!(I+ cosO) 

d}._l = d~l,l = }(1- cos 0) 

dl-dt_J·o 
1,0 --- -1,0-- 0 sm 
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Table Ill. Coefficients A~~= Af~, B>.~• and C>.~ in (3.7) for the standard model. 

FJ = (1- 4m~/s) 1 12 and 1 = .,(Sj2mw. 

11.\ (.IX) A'"~~z 

" B>.:.. C>.:.. 

I (+o),(o-) 2') 2o 2(1+~)/1 

-I (o+),(~o) 21 21 2(1-~)/1 

0 (++),(--) I I 1/1' 

0 (00) 21 2+1 2')' 2h' 

Table IV. Coefficients Ar:.. for the general coupling (2.4). The last coefficient AKo 

can be alternatively written as gf + 2J2Ky. 

11.\ (.IX) \' A, 

I (+0) oUi- if:' , ~g + ii! 1 f'f:) 

I ( 0-) 1U:i +iff+ ~fV, - i~-~ f'f:l 
-I (o+) 1Ui' +iff - f3IY + i/3- 1 //!) 
-I (-0) ,(!'[-iff-- ~g - i~~J f[) 
0 (++) Ji + i/3-l Jt + 4iJ2f3JJ' 
0 (--) !Y - ip-l fci - 4iJ2 B JJ' 
0 (00) 12 [--(1+~ 2 )/i +1')2~2 fi +2{( 
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Table V. CP and CPT properties of azimuthal-angle distributions and correla
tions. 

CP CPT 

even even 

even odd 

odd even 

odd odd 

Azimuthal-angle distributions 

cos¢- cos¢, cos 2¢+ cos 2¢, cos(¢±¢), 

cos(¢± 2¢)-cos(¢ ± 2¢), cos(2¢ ± 2¢) 

sin¢- sin¢, sin 2¢+ sin 2¢, sin(¢+¢), 

sin(¢± 2¢)- sin(¢± 2¢), sin(2¢ + 2¢) 

sin¢+sin¢, sin 2¢- sin 2¢, sin(¢-¢), 

sin(¢± 2¢)+ sin(¢± 2¢), sin(2¢- 2¢) 

cos¢+ cos¢, cos 2¢- cos 2¢;, 

cos(¢± 2¢)+ cos(¢± 2¢) 
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Number 

8 

6 

6 

4 

Table VI. CP and CPf properties of polar angle distributions. 

CP CPT 

even even 

odd odd 

Polarized W cross sections 

a(+,-), a(-,+), a(O,O), 

a(+,O) + u(O,- ), u(-,0) + u(O, + ), 

u(+,+) +a(-,-) 

u(+,O) -u(O,-), a(-,0) -u(O,+), 

u(+,+) -a(-,-) 
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Number 

6 

3 



Table VII. CP and CPT properties of inclusive W- or W' decay angular distri

butions. See text for the definition of the coefficients Fi and F\. Note 

that F1 - F\ is identically zero as long as CP violation in the decay 

process is neglected. 

CP CPT Inclusive angular coefficients Number 

F1 + F\, Fz + Fz, F3- F3 
even even 6 

F4- F4, Fs + Fs, FG + FG 

even odd F1- F1, Fa+ Fa, Fg + Fg 3 

odd even F1 + F1, Fa- Fa, Fg- Fg 3 

odd odd 
Ft- Ft, F2- Fz, F3 + F3 

6 
F4 + F4, F5 · Fs, FG- FG 
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Table VIII. Coefficients for the helicity amplitudes for the processes e+e- ..__,. ZZ 

and e+e- ..__,. z,. 

t,,\ ( ,\ l >.,) A>.,.\2 8).1).2 

±2 (±'f) -/2 (I+ !3') /2 
±I (oco) ~-'[t>o·t>!.(l+/32)- 2cose] 

±I (0±) ~-'[t.o·t>!.(l+/32)- 2cose] 2r(cos e + ~a·>.z) 
0 (±±) - 1 - 2 cos e r 2(cos e + ~a·>.z) 

0 (0 0) -2')'- 2 -::ose 
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FIGURE CAPTIONS 

Fig. 1. Feynman diagrams for the process e+e- --+ w+w-. 

Fig. 2. Feynman rule for the general WWV (V = 1 or Z) vertices. 

Fig. 3. Schematical view of the process e+e- ---t w+w-. lndices a, a,>., and.>. 

denote helicities. 

Fig. 4. Angular distribution do'(>.,5.)jdcos8 of polarized w-w+ production in 

e+e- annihilation at (a) V5:::: 500GeV and (b) 190GeV, averaged over 

initial lepton polarizations. Shown in parentheses are w- and w+ helic

ities in the e+e- c.m. frame. 

Fig. 5. Schema.tica.l view of the process e+e- ---t (w- ---t !If2) + (W+ ---t fa[4), 

Shown in parentheses are four-momentum and helicity of the particles. 

Fig. 6. The coordinate system in the colliding e+e- c.m. frame. They-axis is 

chosen along the k(e-) x q(W-) direction and is pointing towards the 

reader. The coordinate systems in thew- and w+ rest frames are ob

tained from it by boosts along the z-axis. 

Fig. 7. Angular distribution dnjdcose at y's = J90GeV. Curves are shown 

for the standard model (solid line) and anomalous magnetic moments 

K.z = 0.5 (dash-dotted line) and K.z = 1.5 {dashed line). All the other 

couplings are as in the standard model. 

Fig. 8. Deviation of dajdcose from the standard model (S.M.) value for K.z=L5 

(solid line), >.z :::: 0.5 (dash-dotted line), and J{ = 0.5 (dashed line) at. 

..jS = 190GeV. The error bars indicate the statistical error for 4000 

W -pair events. 

Fig. 9. Polar angle distribution for one of the W 's being longitudinally polar

ized. Deviations from the standard model (S.M.) distribution are shown. 

Couplings and parametrization are chosen as in Fig. 8. The error bars 

indicate the statistical error expected for 4000 W -pair events. 

75 

Fig. 10. W-scattering~angle dependence of (F3- F3)/FJ. the 'sum' of forward

backward charge asymmteries [see Eqs. (4.26) and (4.27)]. Standard 

model predictions at .,fS = 190GeV are shown by the solid circles with 

expected error bars based on 2000 w- ----> lP and 2000 w+ --+ lv events. 

The three curves _denote predictions with Kz = 1.5 (solid line), >.z = 0.5 

(dash-dotted line), and If= 0.5 (dashed line). 

Fig. 11. W-scattering-angle dependence of (F4 - F,.)fFt, the coefficient of 

sin8cos¢ minus the coefficient ofsintJcos<P [see Eqs. (4.26) and (4.27)]. 

Couplings and parameters are chosen as in Fig. 10. 

Fig. 12. W-scattering-angle dependence of (Fs + Fs)/F1 , the sum of the coeffi

cient of sin29cos¢ and that of sin2Ucos¢ [see Eqs. (4.26) and (4.27)]. 

Couplings and parameters are the same as in Fig. 10. 

Fig. 13. W -scattering-angle dependence of (F1 + F1 )/ F1 , the sum of the coefficient 

of sin 9sin rP and that of sin Us in¢ at y's = 190GeV, for ff = 0.5 (dashed 

line), ff = 0.5 (dash-dotted line), and If = 0.5 (solid line). The solid 

circles show the standard model expectation (zero), with the error bars 

indicating the expected statistical error for 2000 w- ---t liJ and 2000 

l¥+ ---t lv events. 

Fig. 14. W-scattering-angle dependence of the coefficient of sin(¢- 2(/>) +sin(¢-

2¢), ;,,., 

J dcosO J dcos/J Im(E_- E-)/ J dcosO J dcosiJ A 

[see Eqs. (4.16) and (4.17)[ at.('~ 190GeV, for Jf ~ 0.5 (dashed line), 

Jf ::::: 0.5 (dash-dotted line), and ff = 0.5 (solid line). The solid circles 

indicate the standard model value (zero), with statistical errors expected 

for 4000 w pairs where either w- or w+ decays leptonically. 

Fig. 15. Same as Fig. 13 but for the coefficient of sin(¢- {fi), i.e., 

J dcos 0 J dcos iJ lmD-/ J dcosO J dcos/J A 
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[see Eqs. (4.16) and (4.17)). Expected statistical errors are shown for 1000 

W -pair events where the charges of both W -decay products are identified. 

Fig. 16. Sensitivity of F1 - F 7 (the coefficient of sin 0 sin 4> minus that of sin thin¢) 

to an imaginary part in K.z ( K.z = 1 + 0.2 £) at Js = 190 Ge V. The solid 

cirdes show the standard model expectation, slightly away from zero due 

to the finite Z width (which is a part of one-loop electroweak corrections}, 

with expected statistical errors for 2000 w- ___, ev and 2000 w+ __, tv 
events. 

Fig. 17. Deviation of dujd cos e from the standard model value at Js = 190 GeV. 

For ). 1 = 0.3, Az is chosen such that either >..R (the combination of >.. 1 

and Az entering the amplitude for right-handed electrons, solid line) or 

>..L (dashed line) vanishes. The error bars show statistical errors expected 

for 4000 W-pair events with either w- or W-'- decaying leptonically. 

Fig. 18. Minimum deviation of K.z from its standard model value needed to pro

duce a la effect in the four most sensitive angular distributions as a func

tion of the center-of-mass energy. The cun·f>s are for dajdcosG (solid 

line}, (F4 - T4)/ Fl (dashed line), d(o L +or). dcos e (dash-dotted line). 

and (F~-' f 5 )/F1 (short-dashed line). 

Fig. 19. Same as Fig. 18 but for Az. The curves give the sensitivities of da / d cos E:J 

(solid line). ( F4 - F4 )j F1 (dashed line), the coefficient of cos(¢-¢) (dash

dotted line). and the forward-backward charge asymmetry of W decay 

products (f3- F3) I h (short-dashed line). 

Fig. 20. Feynman diagrams for the decay processes (a) w- ___, Jdz and (b,c) 

w- - !d29 at tree level. 

Fig. 21. Feynman diagrams for the processes e+e- -·• ZZ and e+e- -~ Z1 in the 

standard model. 

Fig. 22. Feynman rule for anomalous V1 Vz V vertices. 
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