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ABSTRACT

A detailed analysis of W pair production in e*e™ annihilation at LEP-II en-
ergies is presented by using helicity amplitudes for the process eTe™ — WHW~
with arbitrary WW ~y and W Z couplings. Expressing the complete angular dis-
tribution of W decay products in terms of these helicity amplitudes, we perform
a systematic search for the most sensitive angular distributions or correlations
for anomalous couplings. As a result precise tests of the gauge-theory cancella-
tions between different diagrams are suggested. Angular distributions sensitive
to W*W ~ rescattering effects and/or CP-violating vector boson couplings are
studied as well. Complete helicity amplitudes for the process ete™ — WTW~ —
{91929} 93g4g) with arbitrary quark masses and finite W width are presented
in a form convenient for their direct numerical evaluation. Amplitudes for the

processes eTe” — ZZ and Z-y are also included.



1. Introduction

The prime target of experiments at LEP in its second phase {LEP-II) is
1-33
The

production cross section reaches its maximum {~ 20pb) ai /5 ~ 200GeV and

the production of charged weak boson (W) pairs in eTe™ annihilation,

one expects to observe 10* W pairs a year with the design luminosity of & x
10% em~?sec™!. Detailed quantitative tests of electroweak theories should thus

be possible at LEP-II. -

There are two distinctive aspects of W pair production studies in ete”
annihilation.' First, a precise determination of the W boson properties, e.g.,
its mass, width, and its couplings to different quark flavors (Cabibbo-Kobayashi-
Maskawa matrix elements) can be achieved in the clean environment of ete”
annihilation. A precise measurement of my is particularly important]‘u to test
the standard theory. of eleciroweak unification at the loop level. Second, this
process provides the best opportunity to measure directly the three-vector-bosor
couplings, WW -~y and WW Z, via s-channel 4 and Z exchange contributions {see
Fig. 1). Indeed, the requirement of iree unitarity for the process e*e™ — W™W~
restricts uniquely the three-vector-boson couplings to the form prescribed by the
Yang-Miils self-interaction.” In other words, a small deviation of these cou-
plings from their gauge theory values violates the subtle cancellation among the
three contributions shown in Fig. 1 and hence can lead to observable effects. We
shall see in the foilowing that the sensitivity to these couplings in the process
ete” — WTW is far greater than that achievable at SppS or the Tevatron col-

11,3638

lider by W pair production, W~ prc.oduct’.ion,?’ﬁ’39 and W radiative decay 3

[.')z'ocesse.fsn even at the moderate energies reachable at LEP-II.

A number of authors have made important contributions to the subject.

+

Charged vector boson pair production in e7e™ collision was examined already

in 1981 by Cabibbo and Ga,tt.o,ﬁ’3 and these papers were followed by several

1 See also Ref. 40 for W pair production studies in hadron collisions.

studies.*™ Dolgov and Solov'ev® were the first to include the weak (v exchange)

contribution in 1965.

In contrast to these early results, the amplitude for ete™ — W W™ in spon-
taneously broken gauge theories was shown”' to have good high-energy behavior.
The converse was also shown to hold: good high-energy behavior singled out
gauge theories.”® After the opening of the gauge-theory era, the process received

more intensive investigation.

The cross section in the standard SU(2)®U{1}) theory was calculated by
many authors. The total cross section was first calculated by Sushkov, Flam-
baum, and Khriplovich.s Alles, Boyer, and Buras® presented the differential
cross section and displayed the gauge-theory cancellation. Bletzacker and Nieh "
included transverse beam polarization and numerically calculated various distri-
butions including the final lepton energy and lepton-beam angle distributions,
the azimuthal-angle correlation between the two final leptons, and the average
dilepton mass. The analytic form of the lepton energy and angle distributions was
obtained by Mery and Perrottet.' Koval’chuk, Rekalo, and Stoletnii,25 studied
the energy-angle distributions of the lepton, while the double energy distribu-
tions of the two final leptons were examined by Dicus and Kalli.a.npur.23 Duncan,
Kane, and Repko29 showed thal a certain azimuthal-angle correiation of two

decay planes is very small in the standard model.

Meanwhile, the density matrix for single W polarization was derived by Ko-
val’chuk and Rekalo,“ and the ratio of the three helicity states was calculated
by Bilchak, Brown, and Strougha.ir.?'2 The one-loop radiative corrections to the
process were evaluated by Lemoine and Veltman'® and by Phiiippe.” Without
expiicitly referring to the “intermeaiate” W state, the process can be described in
terms of the initial and final fermions. The helicity amplitudes in this approach
(which is different from ours) were calculated by Kleiss®' and by Gunion and

a2
Kunszt.

W -pair production in extended non-gauge models has aiso been studied. The



polarization amplitudes with the most general three-vector-boson couplings were
presented by Gaemers and Counaris.'? However, most studies of these anomalous
conplings restricted themselves to jusl a few couplings which satisfy C, P, and
T invariance separately. The effect of these nongauge terms was examined in

. . .o,
the differential and total cross section,

30 e single W helicity ratios.” the
lepton-beam angular distribm;ion,26 and in the single and double lepton energy

distributions.

The purpose of this paper is to systematize these previous studies. First, we
will present a general expression for the distribution of the decay products of the
iwo W’s in terms of the ete™ — WTW ™ helicity amplitudes. Then we will study

the effects of various possible anomalous three-vector-boson couplings in detail.

The paper is organized as follows. In Section 2, we give the most general
form of the WW+ and WW Z couplings and show which constraints on these
couplings come from eleciroweak gauge symmetry, C, P, and electromagnetic
U(1) gauge invariance. This section updates the work of Gaemers and Gounaris,'>
In Section 3, we present the complete helicity amplitudes for the process eTe™ -+
W+*W - in a compact form, making the gauge-theory cancellation between -y,
Z, and v exchange graphs manifest. These amplitudes are derived for the most
general couplings of the previous section. Section 4 presents all 81 coefficients
of the quadri-differential angular distributions of the W* and W~ decays into
massless fermion pairs, expressed in terms of the helicity amplitudes for W pair
production. Section 5 gives the main results of this paper, which are angular
distributions and correlations of W decay products providing tests of the three-
vector-boson couplings. In this section the separation of longitudinally polarized
W’s from transversely polarized W's, polar and azimuthal angle distributions of
W decay products, and also correlations between W and W~ decays are studied

systematically. Finally Section 6 gives a summary and some conelusions.

We include four appendices for completeness. In Appendix A, we show that

only seven of the nine form factors given by Gaemers and Gounaris are inde-
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pendent. In Appendix B, the twofold solutions for the neutrino momenta in the
process ete” — WTW ™ — (¢*t2)(£7 D) is explicitly given in terms of the ob-
servable charged lepton momenta, in the zero W width limit. In Appendix C,
we provide a closed expression for the helicity amplitudes for W pair produc-
tion, followed by decays of each W into massive fermion pairs with or without
a single gluon emission. Here we include finite W width effects since they are
necessary for a precise measurement of my and for flaver identification. The
helicity amplitudes are expressed in a formalism developed by two of us,” which
makes their direct numerical evaluation simple and efficient, Finally, Appendix

D gives helicity amplitudes for the processes ete™ — ZZ and Z+.



2. Three-Vector-Boson Couplings

The general couplings of two charged vector bosons with a neutral vector

boson, WW-y and WW Z, can be derived from the following effective Lagrangian ¥
Lwwy/dwwy = ig}'(WJ»W“V” - WJV,,W”") + MVWJWUVW

iA
+ %w}ﬂw%vw‘ — g wlw,(av + 3ve)

(2.1)
+ o el wav, 1w, wiw, e

+ 2wl we
iy

Here V#({= V"‘T) stands for either the photon or the Z field, corresponding to
V = v or Z respectively, W# is the W~ field, Wy, = oW, - 3, W, V,, =
GV — 3V, ﬁnv = %e,,,,p,VW, and (49,8} = A(2,B) - (8,4)B.

The seven operators:3 in (2.1) exhausi all possible Lorentz structure when

we neglect the scalar component of all three vector bosons:
a¥¥=0, W' =0. (2.2)
This cendition is automatic for on-shell W’s:

(O+mi )W+t =0, W =0. {(2.3)

It also holds for the virtual photon and is valid for the Z in the process we are
investigating. Terms containing 8,Z* are in fact proportional to the electron

mass and negligible.

12 Throughout the paper, we use the Bjorken-Drel) metric with egras = — %% = +1.

1 Seven operators are sufficient due to the fact that oniy seven out of the nine helicity
states of the W pair can be reached by s-channel vector boson exchange (J = 1
channel). The other wo helicity combinations have both W spins pointing in the
same direction and thus have J > 2.

The Lagrangian {2.1) contains 5 operators with dimension four and 2 with
dimension six. All the higher-dimensional operators for on-shell W's are obtained
from the operators in Eq. (2.1) simply by replacing V# by O"V*# (O = 8%} with
an arbitrary positive integer n. These operators form a complete set™ of WWV
couplings under the conditions (2.2) and {2.3). Any other operator can be reduced

to a combination of these

In momentum space as depicted in Fig. 2, the corresponding WWV vertex

can be expressed as follows

3 _ fy i
I57%(9,4, P) = f¥ (g — 9)*¢*" - “ile - g P PP fY (Pog*f — PPg*)
W

Fif} (Pog® + PPgH) 4 if) PP (q — q),

v
_ fé/ E.u&ﬁﬂpp — f%(q _ q)rz(aﬂmpp(q — e s
Miy
(2.4}
for V. = 5, Z. Here all the form factors ft—v are dimensionless functions of PZ.
The expression (2.4) agrees with the one adopted by Gaemers and Gounaris'?
apart from their form factors f§ and f;’ which are actually redundant. This fact

is shown in Appendix A.

It is straightforward to calculate the contribution of the lowest-dimensional

- L
4 If the W’s are off mass-shell, additicnal derivatives thjj, O™W, (€, m integer)
complete all possible operators. The spin-0 part can still be neglected in so far as
ihe W's couple to massless fermicon pairs.

15 1t should be kept in mind that the choice of the two dimension-6 operators in (2.1)
is not unigue. Actually, the operators which correspond to the vertex function
(2.4) represent another choice. However, this nonuniqueness merely amounts to a
different P2 dependence of the form factors. ‘



operators (2.1) to the seven form factors. We find,

&
f:/:g}/+ ’\Vs
Qmﬁ,

{2.5)

Contributions from the higher dimensional operators provide the P? dependence
of the form factors. (For instance, if we restrict ourselves to the corresponding
operators of dimension 6 or less, the form factors f; and fr are constants, and
the others are linear functions of P*.} Hermiticity requires that the f,V ’s should
be real for P? < 0. However, the form féctors may have imaginary parts above

threshold, which we will discuss shortly.

Without losing generality, we can fix the overall coupling constants gy -

We choose for convenience

Gwwy = "€, Gwwg = —ecotfy , {2.6)

where & denotes the positron charge and 8y is the weak mixing angle of the

standard model.

For the photon couplings (V = 7), the first term in Eq. (2.1) (with ¢f = 1
determining the charge of the W) is the so-called ‘minimal’ coupling term, and the
second coefficient &, is conventionally called the ‘anomalous’ magnetic moment of

the W.** This term and the third coefficient™ ™ Ay are related to the magnetic

moment gy and the electric quadrupole moment Qw of the W by

[
Hw = 2y (1 + Ky + A"l) » (2.73.}
€
QW = m—n;.zuj(nT - »\.}.) . (27b)

These first three couplings respect the discrete symmetries P, C, and T separately

with the foliowing definitions:
(WL =W, VLt =V,
PByu(x,8)P! = B¥(—x,1), (2.8)
TBu(x,t)T ! = B(x,—t},

for B = W#, V# The symmetry properties are most easily established by

applying the above transformation to the effective Lagrangian {2.1).
Two of the parity-violating couplings K, and :\'7 respect charge conjugation
invariance. They are related to the electric dipole moment dy and the magnetic

quadrupole moment éw of W™ by

dy = e (Ry 4 Ay), (2.9a)
Qw = —nf;gv(%w -%). (2.9b)

Finally, the other two couplings g and g} in Eq. (2.1) violate charge con-
jugation symmetry. However, the former coupling respects parity whereas the
latter is CP invariant. These properties of the form factors f}” under discrete

transformations are summarized in Table L

If the underlying dynamics respects some of the above discrete symmetries,
the corresponding form factors which are odd under these transformations would
be identically zero. To be completely general, however, one should retain all

these form factors in the WW- or WW Z coupling.

10



For the photon the effective Lagrangian (2.1) is not gauge invariant when
g; or g is nonvanishing. However, this can be cured by considering higher-
dimensional operators. At the level of the vertex function (2.4) we may modify

the f and f{ terms to

if(Pog" + PPg*> — 2PFP* PP P?)
_ o \ (2.10)

+ify [‘Mﬁp(‘? —§)p — P¥e" P Plq — 4)o /P ] ’
without affecting the amplitudes for ete™ — W1W ~. Now the absence of a pole
at P? = 0 implies that f and f7 should be proportional to P? = s. Another
constraint arises because the W+ charge is fixed {g] = 1 in Eq. (2.5)]. We thus

obtain the following constraints on the WIWW~ couplings at s = 0

Hs=01=1, (2.11a)

fHls=0)=0 fori=4,5. {2.11b)

The imaginary parts of the form factors are essentially the absorptive part
of the WWV vertex function. Such effects are proportional to small coupling
constants in a weakly coupled theory such as the standard model. However, they
can be substantial if the W boson sector is strongly interacting in the relevant
region of s. Actually in such a situation, not only the WWV vertex we are
parametriging but also ihe amplitudes for the whole process ete™ — W*W ™
may be affected substantially by the strong interaction. In what follows we
neglect this possibility and shall study mainly the case where all the form factors
are approximately real. We shall return to this peint in Section 4 and see that

such strong rescattering effects have distinctive experimental signatures.

In principle, there are some purely phenomenological constraints on the cou-
plings in Eq. (2.4) arising from the anomalous magnetic moment of charged

leptons,ﬂ' the electric dipole moment of leptons and neul;rons:IIG and ihe so-called

it

P paramet.er.“ However, we shall largely ignore these constraints for the follow-
ing reasons. First, the couplings which enter in these calculations have different
kinemadical configurations: p%, = 0 in the first two cases and p or p§, = 0 in
the last case. Second, even if one assumes constani form factors in the relevant
regions, there is always a possibility of cancellation among different contributions
which renders these bounds ineffective. Direct studies of W-pair production at
high-energy experiments are in this sense guite complementary to these precision
experiments at low energies. Although the interplay between high- and low-
energy experimental constraints is important, the latter bounds by no means can

repiace the role of high-energy measurements.

Strong constraints on the s dependence of the form factors occur if the size
of the W boson, A™!, is much smaller than.the scale one can probe, (1/4/5). In

such a case we can expand all the form factors around s =0,

7L (s) = f(0) + O(s/A%) (2.12)

and thus constraints like Egs. (2.11) become effective. Furthermore, naive di-
mensional considerations teli us that ali the dimension d > 4 operators should

scale as A*"%, which implies

77(s) = O(s/A%)  fori=12,4,5,1,
{2.13)
FZ(s) = O(s/AY)  fori=2,7.

It is often argued that the scale of compositeness may be of the order of 1 TeV
or higher.*6 However, because of the ambiguity in defining A and also because

of the high energies of LEP-II, \/s ~ 0.2 TeV, it may not be completely safe to

1€ For a recent review on the compositeness scale, see e.g., Ref. 48.

12



ignore the O(s/A?) terms.” In any case, in the energy region covered by LEP-II,

we may take the form factors to be approximately constant
v v 2
f(s) ~ f; (dmy) .

Note, however, that these values of the form factors may be different from those

at s = 0.

In the standard model, non-Abelian gauge symmetry gives very strong con-

straints on the couplings of Eq. (2.4):

(8)=1+0(a}, (2.142)
fi {s) = 0(a), (2.14b)
f3 (s} =2+ Ofa) , (2.14c)

for both V = «, Z, while all other form factors which viclate either P or C
invariance are either O(a) or higher. (Actually they receive contributions only
from fermion loops.) Notice that the s dependence appears only at order o and
hence the standard-model constraint (2.14a) is much stronger than the condition

{2.11a). The constraints (2.14} can also be written as

ky = 1+ O(cr) (2.152)
Ay = Ofa) {2.15b)

for V=1,2.

7 We have chosen the seven operators to give the most general spin structure. From
the viewpoint of dimensional counting, it may be more consistent to choose fy =
f2 = 0 or give extra linear & dependence Lo the other five form factors: fi{s) =
L)+ j"fas. However, we are not interested in the energy dependence of the form
factors (except for threshold behavior) because LEP-11 will not cover a wide energy
range. If one is to study higher-energy behavior of the reaction, one should take
into account the effect of unitarity and final state interactions {Ref. 49).

13

3. Helicity Amplitudes for e*e™ — WW~
In this section we give polarization amplitudes for the process
e (k,0) + et (k,a) =W (g, ) + WH(g,2), (3.1)

as depicted in Fig: 3, with the general three-vector-boson couplings (2.4). (The
four-momentum and the helicity of each particle are shown in parenthesis.} We
discuss here only the amplitudes for on-shell W pair production; the more general

case with off-shell W’s is treated in Appendix C.

Helicity amplitudes contain more information than the cross section for polar-
ized W's. The relative phases of the amplitudes are important for the distribution
of the final fermions because the interference of different W helicity states gives a
nontrivial azimuthal-angle dependence. Furthermore, polarization of the initial

ete™ beams can be taken into account in a straightforward manner,

The helicity of a massive particle is not a relativistically invariant quantity.
It is invariant only for rotations or boosts along the particle’s momentum, as long
as the momentum does not change its sign. In this paper we define the helicities

of the W in the ete™ ¢.m. frame, which is the natural frame of the problem.

It is well known that a longitudinally polarized vector boson leads to a possi-
ble bad high-energy behavior. If we take the W boson momentum in the positive

z direction
Pw — (EW:0101PW) 3 {32) .

the transverse (helicity-+1) polarization vectors are given by
€41) = ﬁ(oﬁl, -1,0), (3.3a)
whereas the longitudinal (helicity-0) vector is

goy = my (pw,0,0, Bw)

14



= (v8,0,0,}, {3.3b)

where 1 = Ew /iy, = (1 —m¥, /EL)Y/?2 1t is this 4 factor that leads, with
its extra power of energy, to a possible breakdown of unitarity at high energies.
For example, if we restrict ourselves to dimension-4 interactions, the high energy
behavior of a tree amplitude is given by +¥, where &V is the number of longitudinal
W’s in the final state. {Note that the longitudinal part of the virtual Z does not
contribute because it couples to & conserved electron current.) For dimension-6

interactions there are two extra factors of ~, and so on.

3.1 HELICITY AMPLITUDES

We have calculated the polarization amplitudes by using two different spinor
calculus techniques. Oneisa very straightforward and general method based on
two-component spinors developed by two of us. The other*® uses a non-covariant
d-funciion representation of spinors and vectors, and is convenient for two-body
reactions. Both methods give the same result. Qur results also agree with the

. 12 .
result of Gaemers and Gounaris™~ who used a rectangular basis for W's.

In this section we present the results™ in a compact form* using the helicity

basis for W’s. For convenience we exiract some factors from the amplitude
Mzas(0) = ﬁezMaa;,\;\(e) 9‘1;‘.},&)(9} ! (3.4)

where 6 = Aa{ﬁl):‘ is a sign factor, Ac = Lo — &), Ad = A - A, Jp =

max(|Aal,|AX]), and @ denotes the scattering angle of W~ with respect to the

8 Our results can be obtained by evaluating the sum MY + M7 + MZ presented in
Egs. (C.11) and {C.12) in the ¢"¢™ c.m. frame where the electron beam direction
is chosen as the z-axis and the W™ transverse momentum as the z-axis. The
phase convention thus follows that of Ref. 42. The amplitudes in Jacob-Wick phase
convention in the above frame can be obtained from Eq. (3.4) by dropping the sign
factor £. Also, in this paper we normalize the fermion helicities to +1.

15

¢~ direction in the ete” c.m. frame. Finally di“'r,AA is the d function in the con-
vention of Rose.”® The explicit form of the 4 functions needed here is reproduced
in Table II. Note that M is not a partial wave amplitude because it car stiil have
a © dependence. Rather, Jy is the minimum angular momentum of the system

and the amplitude includes partial waves of J = Jg, Jo+1, ---.

Two of the three lowest-order diagrams, namely those with s-channel v and Z
exchange (Fig. 1a, b), have only J = 1 partial wave because of angular momentum
conservation. On the other hand, the diagram with ¢-channel » exchange {Fig. 1¢)
has all the partial waves with J > Jy. It is convenient to discuss the cases Jp = 1
and 2 separately. {Since we are neglecting the electron mass, conservation of the

electron chirality excludes the case Jy = 0, because Ao is either 1 or —1.)

The case Jy = 2 is simple. The above argument shows that only the v
exchange diagram contributes to this final state. Moreover, because |AX| = 2,
the final W bosons are both transverse [(A}) = {+—) or (—+)]. Thus these
amplitudes do not have a bad high-energy behavior:

~ V2 1
= - Sae - AX=12). 3.5
M sin20W 1+ ,82 - 2’3 cos & Ao, -1 ( ) ( ]

The other seven final helicity combinations give J; = 1. Five of them have at
least one longitudiral W, which could give a possible divergent behavior at high

energies. We write the amplitude as a sum of three contributions

M=M"+MI+ M (Ax<1), (3.6)
where
M7 = _'Bb‘f'ﬁﬂinl AI;\ 7 (3.73)
R = 8601y — g Baoa] ——y AZ,, (3.7b)
' 2sin 8y Tls— m% Al
16



_ 1
2sindy B

~ 1
p B -___mwc-]. 3.7
dao, ![BAA T3 A7~ 3fcond UM (8.7¢)
The coefficients A, B, € for the standard model are shown in Table HI. For the

general WWV coupling the A coefficients are tabulated in Table IV.
3.2 STANDARD MODEL

Using Eq. (3.7) one can readily appreciate the structure of the gauge-theory
cancellation in the standard model, which provide a good high-energy behavior.
First note that the bad high-energy behavior is confined to the J = 1 partial
wave, because the second term of the v exchange contribution (3.7¢} is regular
at high energies (see the coefficient € in Table III}. This is in fact necessary for
the cancellation, because the v and Z exchange diagrams have J = 1 only. So

one need only concentrate on the A and B contribution.

Some of the coefficients A and B (Table I11) are proportional to v or 7% as
expected from longitudinal W counting. However, all the divergent parts are

commeon to all three diagrams. At high energies {y — o0, § — 1), we have
Z _
A}j = A5y = By (3.8)

up to an O{1} term.

The Z contribution {3.7b) is separated into two terms. The first term con-
" serves parity (thus ‘electromagnetic’ component}, and is canceled by the ~-
exchange contribution at high energies. The second term in (3.7b), which ex-
ists for the left-handed electron only (thus weak isovector or ‘W?' component) is

canceled by the v-exchange B term.

Because the cancellation reduces the power of v by 2, the amplitudes for
one longitudinal and one transverse W pair (AX = L1) go down as 4! at high
energies. From Table III one also readily sees that the amplitudes for two of the
A = 0 states [(AX) = {++) and {—-)] are suppressed by ~~%. Thus only three

17

of the nine helicity combinations, namely (+-), (—+), and {00), survive at high

energies for finite scattering angle ©.

These three amplitudes do not contribute to the cross section equally. The
AX = -2 (—+) amplitude (3.5) dominates over the other two at high energies
because of the t-channel pole factor 1/(1+ 4% 2 cos &) which peaks at cos & = 1
with a ! enhancement. (In practice the peak in the (—+} amplitude appears
slightly below cos @ = 1 because the function d31r2 is proportional to sin & and
vanishes at |cos &| = 1.) A kinematic zero kills the t-channel pole for the (+-)
amplitude. For the (00) final state the pole term is suppressed by a dynamical
~~? factor in the ¢ coefficient and further softened by a kinematical sin & factor.
Moreover, even at large angles, the {00} amplitude happens to be numerically
smaller than the transverse amplitudes. Thus the dominant final state is purely
transverse and there is a strong forward peaking. These characteristics can be
seen from Fig. 4a, where the cross section for each final helicity state at /s =

500 GeV is shown.

Even at LEP-1I energies (/5 5 200 GeV), these tendencies already appear.
At /s = 190 GeV, the ratio of transverse to longitudinal W’s is about 3 : 1. The
cross section for polarized W's is plotted in Fig. 4b for this energy. The Al = -1
states have an appreciable contribution to the cross section at this energy, which
in fact is the second largest. However, the dominance of the AX = —2 state

already holds.

At threshold, the behavior of the cross section is quite restricted. Since no
orbital angular momentum is allowed between the final W's, the total spin is equal
to total angular momentum. It can take the values 0, 1, 2. However, it turns out
that only J = 2 is allowed under quite general conditions, as we shall explain
below. In this case all helicity amplitudes at threshold are related by Clebsch-
Gordan coefficients irrespective of detailed dynamics. This fact may provide an
interesting opportunity to uncover exotic interactions. A chirality-nonconserving

interaction of electrons (scalar or heavy lepton exchange,m for example} gives a

18



J = 0 final state, and CP-violating three-boson interaction can give J = 1. (The

latter possibility will be discussed later in this section.)

The proof of the above assertion is rather straightforward. Among the three
possible angular momenia J = 0,1,2, J =0 is forbidder by electron chirality
conservation because the initial state can have only J > 1 [up to O(m,.)}. CP
invariance forbids J = 1 because the initial e¥e™ state should have CP = +1
(JPC = 1#+/17 7, 2%% /277, ..) and the final W*W " state should have JFC =
0t+, 177, or 2t*. For J = 2 there is no selection rule to forbid the reaction. In

fact, in the standard model, the process receives a contribution from » exchange.

Finally we note that for polarized beams containing ez and/or €] , only the
pure longitudinal final state {00) remains at high energies because v exchange
does not contribute. However, the cross section for this helicity combination is

only ~ 1072 of the unpolarized cross section.
3.3 GENERAL THREE-BOSON COUPLINGS

For general couplings {Table IV), the cancellation detailed above no longer
occurs. The worst case exhibits a ~* behavior. Of course, form factors and/or
higher order contributions should provide the neccesary damping in this case to

guarantee eventually that partial-wave unitarity is not violated.

Even for general couplings, however, the cancellation in the ‘electromagnetic’
part fakes place if ff = f,-z is satisfied. Numerically, more than T0% of the ~
exchange amplitude {3.7a} is canceled by the ‘electromagnetic’ term of the Z
exchange {3.7b) already at /s = 200GeV. Violation of this cancellation by
T4 fl.z can be seen most directly in the Ag = 1 channel. Separation of this
channel fromn the dominant &g — —1 channet can be achieved by measuring the
azimuthal-angle dependence when the beams are transversely polarized, or by

using longitudinally polarized beam(s) (see Subsection 5.4 below).

For the ‘weak isovector’ part, the cancellation between the Z- and v~exchange

contributions {B terms only} is numerically iess significant (40% al /s = 200
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GeV) because of the difference in the threshold behavior. Indeed, the v-exchange
amplitude dominates near threshold (S wave) whereas the s-channel exchange
contribution is suppressed by at least a factor of J {P wave). Hence, in the
threshold region, the reaction e*e™ — W W™ is not very sensitive to the three-

vector-boson coupling.

There is an exception to the above conciusion which was already noted in the
preceding subseciion. We see from Table [V that if the CP-violating coupling fev
is nonzero, the v- and Z-exchange amplitudes have S-wave behavior. Tests of CP
{see Section 5.2) near the threshold can thus constrain fY rather independently

of the other couplings.

Because the standard model prediction is far below the unitarity limit, the
cross section will become very sensitive to anomalous couplings at high energies
(v = 1) through the violation of the gauge-theory cancellation. Unfortunately,
the energy range available at LEP-II is not high enough (v = 1.5 at /s =
200 GeV) and we need a detailed study to constrain these couplings, as will be

discussed in the next two sections.

3.4 SYMMETRY PROPERTIES

Befjore closing this section, we rematk on some general restrictions to the full
amplitudes (3.4). {Corresponding details for the cross section appear in Section
4.3.) It is easy io see that if ali the form factors flv are real the following equation

holds:

g M {3.9)

o ~F, == A=A

This is a consequence of CPT invariance and the absence of absorptive parts.

Hence violation of this relation immediately indicates substantial rescattering

1% The ! factor in {3.7c) is spurious and the 3 - O limit is finite.
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effects. This fact can be seen as follows. CPT invariance gives the following

relation between scattering amplitudes (with appropriate phase convention}
(3.10)

where i(f) denotes the CPT conjugate state of a state #{f}. This relation is not
immediately useful for our purpose, because it connects the amplitude for the

reaction ete™ — WHTW ™ to that for WTW— — ete™. However we find

o t

Tj= T =15 - Ty

(3.11)

T

=Ty - Tj{ .

Here we have used CPT invariance for the second equality. If the T matrix is

hermitian, we have

Tf,' = T}i‘ . : ) [3.12)

This is actually the case in the Born approximation. Unitarity tells us that 77t

is the absorptive part which arises from rescattering effects. Thus in a weakly

_ coupled theory Eqg. (3.12) holds to a good approximation. When applied to the
reaction ete” — WHW -, it gives Eq. {3.9).

CP invariance leads to the relation

Maa;)&i = Mfﬁ,—o;Af\,—/\ (3'13)

which can be directly used as a test of CP conservation. This test does not
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assume the absence of absorptive parts.no

It is also possible Lo write down similar relations derivable from C or P
invariance. However, they are not very useful since the v-exchange contribution
already violates € and P maximally. It is not easy to obtain simple relationships
for the amplitudes which signal C or P nonconservation in the vector boson

11
sector .t

19 14 should be noted that the relations (3.9) and (3.13) are simpler than their appear-
ance. Actually they connect the same initial state for nonvanishing amplitudes:
{08) = (¥) = (—&, —¢). As for the final state, they relate states with same AA:

Ak =+1:(AX)=(+0)~ (0-),

0: (#+) (=),
-1: (0t} (-0]. .

H1 For the three-boson coefficient Af\]i’ we can write down the requirement from P, C,

and CP invariance as follows:

L A 4
PoAY =aY, .
AV v
CrAy =450

LAV 4V
cP:Ayy =AUy .

The first two equations relate final states with opposite AX, while the last one
relates those with the same A,
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4. Angular Correlations for Final State Fermions

In this section we present the most general angular distributions of the decay

products in the process
e (k.e) + et (k,a) = W (g A + wHg, A,
W7 (g,A) = fi(pr.on) + falpz,02), (4.1)

W(g,3) — falps,oa) + falps.o4)

with massless fermions. As the material in this section is rather technical, the

reader who is only interested in the results may proceed to Section 5.

Since we understand the decay interactions well, we can extract explicitly
the dependence of the cross section on final fermion angles. The fact that the
W has spin one restricts the possible form of the angular dependence to a finite
but large number of terms {actually 81). The coefficient of each term can be
written in terms of the production density matrix, which may be obtained from

the polarization amplitudes presented in Section 3 or Appendix C.
4.1 DERIVATION

The full amplitude can be expressed as follows (see Fig. 5):

M(kaa;"—caa;pu{f:] = DW(Q2) Dy (‘}2) SE .Ml(k,(l:l;',é:q,);q',:\}
A

(4.2)
% Malg, X1, 015p2,02) - Ma(§, X p3, o5; p4,04)
with the Breit- Wigner propagator factor for ¥ bosons:
Dw(q") = (¢° - mly +amy Ty} " {4.3)

Here the summaiions over intermediate W polarizations can either be done in

the Cartesian basis A, A = 1,2,3 or in the helicity basis A, A = &,0. The lormer
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basis is convenient for the numerical evaluation of the ampiitude (see Appendix
C), whereas the latter, which we take here, is more suited for theoretical consid-

erations.

The production amplitude M, is 2 sum of three contributions which are given
in Egs. {C.11) and (C.12). Its explicit form in the ete” ¢.m. frame for on-shell

W's has been presenied in Section 3.

In the massless fermion limit [see Eq. {C.19)], the W~ decay amplitude Mg,
as evaluated in Appendix C [see Eq. (C.16}], simplifies to give

Mg = egf’f'j’ C o), By 4 2y PipS S{p1.clg, ), p2) T (4.4)

Here g,w""h is the standard V — A coupling (C.15). The effective color factor C
is 1 for leptons and /3 for quarks. The corresponding W* decay amplitude Ma
is obtained from (4.4) by the replacement (1,2,g,3] — {3,4,4,4). The spinorial
string § isee By. {C.7) for its definition] can be explicitly expressed in a given

Lorentz frame.

In the c.m. frame of the colliding beams, we choose the W~ momentum direc-
tion as the z-axis and the k{e™) x q{W ") direction as the y-axis; the scattering
e e — WTW- takes place in the -z plane (see Fig. 6). The production am-
plitude M; is then a function of the scattering angle & between e and W~
momentum directions in this frame, as explicitly shown in the previous section.
The decay amplitudes My and Ma are most simply expressed in the W™ and w
rest frame, respectively. We define each of these frames by a boost of the above

¢” ¢~ ¢.m. frame along the 2-axis."
In the W~ rest frame, we parametrize f; and f2 four-momenta as
%\/‘q—é {1, sin # cos ¢, sin fsin ¢, cos 8} ,

(4.5)

P, = %v’?(], —sinfcos¢, —sinfsing, —cosd),
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and in the W rest frame, we choose the antiparticle (fi) angles as § and ¢,

ph =2V (1, —sindcos$, —sinfsing, —cosh),
(4.6}
P = 1/g (1, sinfcos 4, sinfsing, cosf) .

In this convention the angles of the charged lepton or the d-type quark are chosen
as (6,4) in W™ decays and (0,4) in W decays.

It is a straightforward exercise to evaluate the spinorial string § in (4.4) in

these two frames, One finds

Mg = 39"1”-[!2 C \/(?55“_ oot I s {4.7a)
Mz = —eg" DI T /@ by b0 4 15 » (4.7b)
where
{I-Jdo.14) = (dye™*, —do, d_¢¥) (4.8a)
(oo I2) = (dee'®, ~do, d e, (4.8b)
with
-3 1 -y -1 ]
d:t:W(lﬂ:cosB), do=-sing . (4.9}

Here C and € denote the effective color factors {1 or \/?_)) for the corresponding

W~ and WT decay processes.
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4.2 CROSS SECTION FORMULAS

It is now straightforward to obtain the polarization-summed squared matrix

elements

SIME= LR E T T IMk, 03k, 85 pi o)
g F 0| @2 O3 T4
(4.10)
afa 2 = P 2 ey
= eHgW 2 WEI 2 CIT 24 | Dy (¢F) Dw (&) P AT, -
Here, and in the following, summation over repeated indices (X, A", 3,1} = +,0

is implied. The production tensor reads
P =Y ¥ M(2,9,3,:6) Mi(e,2, X, X;6), (4.11)
[

and the decay tensors are

oh =44, (4.12a)
I (4.12b)

Equation {4.10) gives the general structure of the polarization-summed squared
matrix element for the process {4.1) with pure V — A couplings of the W to mass-
less fermions. After integration over the virtual W mass squared, ¢ and 4°, the

differential cross section can be expressed as (in the narrow width approximation)

do aB

: — = W fi f — fa T, M pipl
dcos® deos f dpdeos b dg 8192«35B( fif2) BW = fafa) Py D3P

MM ERT Y
(4.13)

where g = (1 - 4mi, /s)1/2.
By integrating over W* decays, we obtain the inclusive W~ — hi fz decay
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distribution

do 35

= BW - fifa) P2 D2, 4.14
deos@dcosOdd  1024w%s (W 1) A Dr\ ( a)
and alternatively we obtain the W= — f3f, decay disiribution as
do 36 7\ pAL 7
I B(W— PO 4.14b
deos@dcosfdg  102dxnls ( faf4) AX ( ]

By further integrating out all the decay fermion angles, we simply get the

differential cross section for the process ete™ — WHW —:

do Fi] 33

deos@  128ns AL

(4.15)

By comparing Egs. (4.13)-{4.15), one can appreciate the additional information
on the W*W ™~ production amplitudes contained in decay fermior angular distri-

butions.

It is useful to isolate explicitly the azimuthal-angle dependence in Eq. (4.13).

One finds
PA’\,::\\, D:,Ei, =A+ {2}&3{Bcos¢ ~ Beosd = Ceos2e~ Ccos2é
+ Dy cos(¢p = @) + Ey cos{2¢ & ¢) + E4 cos(¢ % 24) (4.16)

+ G cos(2¢ . 24)] + (Ke -+ Im, cos — sin)} ,

where a shorthand notation such as s cos(o19) for I, cos{¢+¢}+ D_ cos(p—¢)

is used, and
A= Piid gt (4.17)

B=(Pild. + PUYd )(-dod B, (4.17b}
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B=(Pitd-+Pi0di)(-dod "), (4.17¢)
C=rdadd i, (4.17d)
C=Pitd,d d 2, (4.17¢)

De= [(Pogds + Pplda)dy + (PUTde + PISda)d | dody, (4.170)

E.= (P 3ds+ P %d:)(~dodsd ), {4.17g)
Fi=(Potd. + Ptd )(—dodid. ), (4.17h)

L op% 7 d .
Gi=Piidyd did_. (4.17i)

There are 25 independent azimuthal-angle distributions (including the con-
stant piece A}, as seen explicitly in {(4.16). By taking into account the polar angle
distributions in § and @ |see Eq. (4.9)]. one sees that there are nine independent
distributions in A, 24 in B and B (counting both the real and imaginary paris),
12in ¢ and C, 16 in D4, 16 in Eyx and E., and four in G+, which altogether
give the 81 independent angular distributions. This is of course just the number

of components of the density matrix P’\’}é,.

In principle one car imagine measuring all possible combinations of products
of the nine helicity amplitudes, summed over initial polarizations. In practice,
this requires charge(flavor) identification of both the W~ and W decay products.
Although this is easy when both W’s decay leptonically, these rates are rather
small and one has the twofold identification ambiguity discussed in Appendix B.
Experimentally the most favorable mode is thus “semi-leptonic,” with one W
decaying leptonically, the other hadronically. In view of the difficulty of flavor
identification, for most of the hadronic decays one cannot tell # from 7 — 8 {# from

7 ~ @) and ¢ from ¢ + 7 (¢ from ¢ + n). This makes it very difficult to measure

28



any of the coefficients in D+ and one combination of the coefficients in 4. Apart
from these, there is a reasonable chance that one can determine the remaining 64
coefficients. We remark that the nontrivial azimuthal-angle correlation recently

studied by Duncan, Kane, and Repkozg is just one of these coefficients, Re G_.

In Section 5, we will describe in some detail how to project out some of these
coefficients experimentally, as a function of the scattering angle 8. There we

shall also discuss the accuracy with which they may be determined.
4.3 SYMMETRY PROPERTIES AND INCLUSIVE DISTRIBUTIONS

Although each of the 81 coefficients gives independent information on the W
pair production mechanism, some of these coefficients may be related even in
the presence of anomalous couplings. This is the case, for instance, if CP is a
good symmetry or if no strong interactions exist in the W-boson sector. Even
in models where one expects a strongly interacting W sector at high energies,
one generally gets small WW interactions near the threshold, that is, at LEP-II
energies. In contrast, C' or P invariance do not lead to a useful classification,
because the neutrino-exchange contribution to the amplitude violates C and P

maximally, thereby hiding C and P invariance of the vector-boson sector.

Let us first examine the consequences of CP invariance. Since the relevant
initial ete™ state is CP-invariant, the CP transformation simply reverses all
the momenta of final particles and changes particles to antiparticles. Thus CP

invariance leads to the following relation in the differential cross section
do(©;0,;8,8) Z do(@;7—8,+m;7—8,¢+m) . (4.18)
In other words, the angular distributions which change sign under the exchange
(0,6,8,8) < (-8, f+m,m—8, p+7) (4.19)

are called CP-odd and should have vanishing coefficients if CP is a good symme-

try. The terms which remain unchanged are called CP-even and can be nonzero.
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It is straightforward to organize the 81 coefficients into 45 CP-even combinations
and 36 CP-odd ones}

Secondly, we study the implications of having only weak interactions among
W's. The concomitant smallness of rescattering for the produced W pairs leads
to smalt absorptive amplitudes. As is discussed in subsection 3.4, if an amplitude
has no absorptive part, CPT invariance gives the relation (3.9). We will refer
Y2 Thus the observation of a CPT-0dd

asymmetry would indicate the existence of rescattering effects. As a consequence

to this symbolically as cPT symmetry.

of CPT invariance we find
do{©;8,$;8, ) cEr do(0;n—8,1—g;,m—8,7m—¢) . (4.20)

We can easily separate the angular distributiens into CPT-even and CPT-odd

parts according to their behavior under the exchange

(0,6,0,8) L (n—B,1—G, 70,7~ (4.21)

The eighty-one angular coefficients can thus be divided inte four categories
under CP and CPT: even-even, even-odd, odd-even, and odd-odd terms. CP-odd
coefficients directly measure CP viclation and CPT-0dd terms indicate rescat-
tering effects. Once both CP-odd and CPT-0dd terms are found to be small
experimentally, it is then safe to ignore odd-odd terms since they should be dou-

bly suppressed.

12 1 terms of helicity amplitudes, CP invariance reduces the number of independent
amplitudes from nine to six [see Eq. (3.13) and the footnote following thereafter],
leading to 6 x 6 = 36 distributions. The remaining nine CP-even terms arise from
a product of two CP-odd amplitudes, and may be ignored. Similar remarks also
apply to the CPT properties discussed below.

'3 When the interaction respects T invariance, we can similarly define observables

which are proportional to rescattering effects. They are traditionally called T-odd
quantities {(see, ¢.g., Rel. 51}. Here we use the term CPT 1o avoid confusion with
real CPT violation effects.
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With regard to these properties, we shall present a detailed study of three
kinds of distributions which are more inclusive than the completely differential
cross section (4.13). These are the azimuthal angle distributions after polar
angle (¢ and ) integration, the polar angle correlaiions after azimuthal angle

integration, and the inclusive W~ and W~ decay angular distributions (4.14).

After the integration over polar angles & and §, we can regard the 25 coeffi-
cients appearing in Eq. (4.16) as functjons of the scattering angle © only. Besides
the trivial constant piece A, the remaining 24 azimuthal angle distributions are
classified in Table V according to their CP and cPT properties. We find that
all the sine terms are either CP-odd or CPT-0dd whereas certain combinations
of cosine terms are both €;P- and CPT-odd. The standard model contributes
exclusively to the even-even sector in the lowest {o?) order. CP-even, CcPT-

W 4re down by an additional factor of &, and CP-odd coefficients are

odd terms
even further suppressed. This structure is not changed by the introduction of

CP-conserving anomalous couplings such as « and X,

If, on the other hand, one integrates over the azimuthal angles first, only the
term A in Eq. (4.16) remains. The surviving double polar angle distribution is
given by Eq. {4.17a). We can define the cross section for producing polarized
W's by the coefficients P’\)i-\:\ since they are nothing but the squared polarization

amplitudes {see Eq. (4.11)}:

do(r2) 4 L

deos®  128ms i {A. A not summed). {4.22)

The nine cross sections can be easily projected out from the polar angle distri-

bution {4.17a) which can be expressed as follows:

do _do(A, )
deos®dcosfdeosd  dcosd

BW ™ — i) BW = fafy) §d_,%d 5",
(4.23)

where now the summation over A and X should be performed. Among these nine

114 The one-loop Higgs contribution to these terms is calculated in Ref. 52.
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cross sections, six combinations satisfy both CF and CP‘f’, the remaining three

violate both. They are listed in Table VI

Identification of all nine polarized W cross sections is difficult because of
the necessity of double charge(Ravor) identification. It is, however, possible to
distinguish longitudinal W's from transverse ones without charge identification.

Hence it is useful to define slightly more inclusive distributions

dorp da(, A)

o~ 1
i dcos@

JC.iULL dO{U,O)
dcos@  dcos@ ’

(4.24)
dory, - do()\,U}
dcos® Py cos@ '
dogr 5 do(0, A}
dcos® jo, deos@
and
dop _ dopr | dory
dcos®  dcos® dcos@’
dop _ dogr | dopi
dcos®  dcos@  deos@’
(4.25)

dog dopy | dorr
deos®  dcos®  deos@ ]

dog _ dori | dour
deos®  dcos@  dcos@®

Some properties of these distributions have been studied in Ref. 1.

Finally, the inclusive W~ or W~ distributions (4.14) should be most useful

when we study leptonic decay channels. We can parametrize these distributions

as follows:
dﬂ[W‘ —aff/) 9
S icoagdg ~ = File (8,9) . 4.26
TeosD deosdp 2y s @1 L(0:9) (4.26a)
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B e e e i e ¥ e I i e AN P

de(W+ HEI/)

9
o= = 2 Fi(cos 0} Li(8, ) - 4.26b
dcos® deos b d E {cos @) Ly(8,¢) { )

h=Y]
T

Here the L;’s are the following nine orthogonal functions which are normalized

to 4m:

Ly = Y3(1 - 3cos?f)
Ly = \/gcosﬂ ,
Ly = V3sinfcos g,

Ls = ¥ sin 20 cos (4.27)

L = @sinzﬂcos 2¢,
L1 =+/3sindsind,
Ly = 3%1—3 sin 20 sin ¢,

Ly = Y2 sin®0sin2¢ .
Note that we have used the W scattering angle @ in both F, and F,. The coeffi-
cients Fy and Fy are then proportional to the total inclusive angular distribution
(4.15):
B(W—tv) do
4m dcos® '’

Fi(cosB) = F(cosO) = (4.28)

It is an elementary exercise o express the F;’s and F’s in terms of our production
fensors PA)% and PA‘\;‘, respectively. The CP and CPT properties of these 18
coefficients are listed in Table VII.
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5. Observable Consequences of

Anomalous Three-Vector-Boson Vertices

From the _discussfon of Section 3, and in particular from Table IV, it is ap-
parent that different anomalous three-vecior-boson vertices lead to deviations of
different helicity amplitudes from their standard model values. In order to dis-
cover and then distinguish the anomalous couplings from each other, one thus
has to separate the various helicity amplitudes. As has been discussed in the last
section, the unique way of doing this is by studying angular disiributions of the
W+ and W~ decay products.

Let us estimate the various experimental branching fractions., Consider the
decay of each of the W's into a fermion-antifermion pair (quark-antiquark g1z
or charged lepton-neutrino £} at tree level. Assuming a top quark of 40 GeV,
the branching ratic for W — vy (£ = e, p, or 7} is about 9% each. We thus

expect the following final state combinations:

(93) (99) = 4-jet 53%
(gd) (£v) = dijet + £+ + g 405 {5.1)
(80 (Bv) = £78 + ¢ %

where g stands for the momentum of the escaping neutrino(s). In this paper we
shall mainly concentrate on the lepton + dijet decay mode,115 because it is most
amenable to a complete determination of angular distributions. However, to the
extent that flavor and/or charge identification of the dijet subsystem is possible,
the four-jet events can also contribute to the analysis. A very large fraction of '

all the W pair events can thus be used. Assuming a luminosity of LEP-II of

#15 In the clean environment of e¥ ¢~ annihilation, the 7v decay of the W can be used
as well as ¢/u decays. The decay products of the 7 are easy Lo identify. Because the
7 mass is much smailer than the W mass, the direction of the final ¢/p or hadrons
from r decay well approximates that of the parent 7. Although the energy of the 7
cannot be measure¢ directly, it can be calculated from other observable quantities
using the kinematic constraints of the reaction.
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500pb~! fyear and using o(ete” — WTW ™) ~ 20pb at /5 = 180-200GeV,
one should have several thousand clean events per year, which is a statistically

significant sample.

In the last section we gave a complete expression for the angular distribution
of the two fermion-antifermion pairs arising from the decay of the W W~ pair.
These angular distributions are particularly simple when measured in the rest
frame of the parent W. Experimentally it is thus necessary to first identify the
direction of the W axis which gives &, the angle of the W~ with respect to the e
beam. The momenta of the decay products (the two jets and the charged lepton,
say) then have to be boosted to their parent rest frames, which are moving
with known velocities S{WE) = F{l — 4m% /s)'/* along this axis. From the
measurement of the opening angle between the two jets and the energy of both
the charged lepton and the dijet system, it should be possible even to correct for
initial radiation and finite width of both the W's.

Schematically, the differential cross section has the form [see Eqg. (4.13)]
81 o
do ~ 3 Pi(6;s) Di(9,¢.0,9) . (5.2)
=1

Here the functions D; form a linearly independent set consisting of low-order
spherical harmonics, which reflects the known decay dynamics. The dynamics
of the production process is solely contained in the factors F;. These are given
essentially by the density matrix for the W pair, obtained from the helicity am-
plitudes. The faci that one can in principle measure 81 functions [instead of
one for do/dcos@} shows that it is possible to extract an enormous amount of
information on the production mechanism. Even though no pelarization mea-
surement is involved here, the parity-violating W decay provides a complete spin

analyzer for the W',

With a few thousand events it is impossible to perform an 81-parameter fit

{corresponding to the 81 angular coefficients in Eqs. (4.16) and (4.17)} for each

a5

of several cos @ bins. Rather one would like to obtain from the experimental
data the moments of those angular distributions that are most sensitive fo new

physies, i.e., the anomalous three-boson vertices for the case at hand.

The most sensitive distribution for any anomalous coupling will in general be
some linear combination of the 81 angular distributions, whose coefficients depend
on the W scattering angle . 1t is in principle straightforward to maximize
sensitivity for each coupling with respect to these 81 coefficients. Rather than
pursuing such maximization, which would require detailed information on both
detectors and actual event topologies, we have performed a systematic scan of
all polar angle as well as azimuthal angle correlations and of all one-W-inclusive

distributions.

In the following we mainly concentrate on the distributions which do not
require double charge identification, because the charge of the parent guark of
jets is difficult to measure. As seen from the discussion following (5.1), at least

40% of the events can be used to extract these distributions.
5.1 CP-CONSERVING COUPLINGS

A convenient way of orgatizing our findings is according to the sensitivity of
the angular coefficients to CP viclatien and rescattering effects. We first discuss
distributions which are even under the transformations (3.9} and (3.13) and thus
in general are nonvanishing in the standard model ai tree level. The couplings
fis f2, f3. and fs are the ones to consider. Setting gy = 1in fi = g1 + 27%A
{Eq. (2.5)], we shall take the more conventional quantities x and A, and f5 as

variabies.

The simplest distribution of this kind is the differential cross section do/dcosB
which is given in Fig. 7 for the standard model and for an anomalous “magnetic”

moment &, = 0.5 and 1.5 at /s = 190 GeVM® The effect of the anomalous

116 Fop all the numerical results in this paper we choose my, = 82GeV, mg = 93 GeV,
sin®y, = 0.223, and ?/d4x = a(md,} = 1/128.
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couplings is more clearly displayed in Fig. 8, where the deviation from the stan-
dard model is shown for kK, = 1.5, Az = 0.5, and fsz = 0.5 at the same energy.
Comparing with the expected statistical error of the cross section measurement
as shown by the error bars in Fig. 8, we find that a deviation by 0.5 from the
standard model value gives a very clean signal for kz and Ag, while the effect is

considerably smaller for iz

The error bars in this and the following figures represent the statistical error
for N=4000 W-pair events in which one of the W’s decays leptonically, and the
other hadronically, thereby allowing single charge identification and a complete
kinematical reconstruction. This number roughty corresponds to the production
of 10" W-pair events [see the estimate (5.1)], expected with an integrated tumi-
nosity of 500 pb~!. When a double charge identification for both W~ and W+
decay products is required, only part of these 4000 events with clean heavy quark
signals will be effective. On the other hand, a part of purely hadronic events can
be useful with flavor identification and also purely leptonic decay channels can
be used with the help of the kinematic reconstruction (Appendix B). Since the
statistical error scales as I/Jﬁ, it is easy to correct for ihese details as well as

for detection inefficiencies.

By measuring the polar angle distribution of the W decay products, one
can directly determine the differential cross section for fixed W helicities, From

Eq. (4.23) we obtain for example

do do(A=+), 2 do{A =0 .4
= a1 — ¢ .= é
dcosOdcost dcos @ s cos )" + deos® 4 s
dor — ) (5.3)
o{h = -

1 2

=1 8)".

dcos @ 51 +cosd)

By projecting the experimental data onto {1+ cos 8)? and sin# for each cos © bin
[this can be achieved by taking the expectation values of %(—1 +2cosf + 5costh)
and 2 — 5cos8], one will thus obtain the differential cross section for fixed W~

helicities from the moments. Unfortunately, the cross sections {4.24) and (4.25)
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are in general not particularly sensitive to small deviations from the standard
model couplings. The main exception we have found is d(o,+05)/dcos & {re-
quiring either W~ or W™ 1o be longitudinally polarized) which is reasonably
sensitive to a variation of k. Actually this quantity should make it possible to

distinguish an anomaly in « from others, as is demonstrated in Fig. 9.

While the previous distributions only reguire distinction of W1 from W—
decay products (to identify cos @}, charge (or flavor) identification of the decay
products gives their forward-backward asymmetry in the W rest frame. This
asymmetry is, however, somewhat less sensitive to anomalous couplings than the
previous disiributions, as can be seen from Fig. 10 where the sensitivity of the
coefficient (F3 — F3)/Fy is shown. Incidentally, the strong charge asymmetry
implies that the full polarization information on the W’s is essential to reliably

calculate the energy distribution of the charged leptons.

When the azimuthal angle of, say, the charged lepton is measured, new angu-
lar distributions can be obtained. Figure 11 shows the sensitivity of (Fy— F4)/F
to a variation of k, A, and f5 [Fy is the coefficient of sin § cos ¢, which is essen-
tially the left-right asymmetry of the lepton; Eq. (4.26)]. It turns out that Fy is
only slightly less sensitive than do/dcos @ (Fig. 7) to variations of order 0.5 of
% or X from their standard mode} values. For smaller deviations from the stan-
dard model the relative sensitivity of these two distributions changes in favor of

do/dcos @, due to the effect of terms quadratic in the anomalous couplings.

Additional flavor identification in the £ plus dijet sample will increase the
statistics for the inclusive W-decay distributions, because both W™ and W~ de-
cays can then be counied whereas the number of events contributing to do/dcos 8
remains unchanged. For all the W or W™ inelusive distributions, we show sta-
tistical errors on the basis of 2000 W~ — £F and 2000 W+ — £ events only,

neglecting any improvement from possible quark flavor identification.

It is clear from Fig. 11 that the measurement of Fy — F, alone cannot distin-

guish between anomalies in « and A. This distinction is provided not only by the
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distribution d{g; ~ o5} /dcos© (see Fig. 9}, but also by measuring ia addition
{7y~ F5)/Fy (Fy is the coefficient of sin 26 cos ¢, or the quadrant asymmetry in

the -z plane; see Eq. (4.26):, as demonstrated in Fig. 12.

In all the distributions shown so far, sensitivity to the C- and P-violating
coupling f; was much smaller than that for k — 1 or A, The reason for this is
obvious when looking at Table 1V: in the amplitudes f; has a I>-wave threshold
and is suppressed by an extra factor 8 ~ 0.5 at /s = 190 GeV, my = 82GeV.

Better sensitivity to the coupling f; requires higher c.mn. energies.

5.2 CP-VIOLATING COUPLINGS

As the next class of anomalous couplings we consider the CP-violating terms
propertional to fy, fs, and f7. Without absorptive parts, they contribute imagi-
nary parts to the helicity amplitudes (see Table IV}. Provided that they are not
so large, they have very little effect on “real” distrihutions}rr such as do;dcos 8,
because in the standard-mode! amplitudes there is no large imaginary part fo in-
terfere with. A large sensitivity can orly be obtained by measuring coefficients of
stnes of azimuthal angles. where the dynaical imaginary part from CP violation

interferes with the relative phases between different helicity amplitudes.

The most sensitive measure appears to be the quantity {F-,--—Fﬂ;‘Fl [Fy is the
coeflicient of sinfsin & see Eq. (4.26)), which is plotted for fl-z(z' =4.6,7) = 0.5
in Fig. 13. 1t is essentially the up-down asymmetry of the lepton with respect to
the scattering plane. A deviation from the standard model prediction (identically
zero) is clearly visible for all these couplings with 4000 W-pair events with dijet +

(i topology.

While the dependence of the above quantity on the W scattering angle is

distinct for f;. separation of f; and f; may be achievable by studying some of

17 When their absolute value becomes O{1), they do have measurable effects on e.g.,
do /d cos @, however.
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the azimuthal correlations, namely, the coefficients of sin{¢ — 2q_5) - sin(2¢ — ¢
(Fig. 14) or sin{¢ — &) (Fig. 15) in the double decay distributions [see Eq. (4.16)].
However, the former is not very sensitive to anomalous couplings, and the latter
requires additional flavor identification, even when the charged lepton + dijet
signal is considered. (This additional requirement has crudely been taken inio
account in the error bars of Fig. 15, which are based on a sample of 1060 W pairs
only.} Alternatively, a measurement near the WW threshold could single out
fs, because it is the only three-boson coupling that gives an S-wave threshold

behavior.

It should be noted that the distributions shown in Figs. 13-15 provide a
genuine measure of CP viclation in the vector-boson sector. Even with arbitrarily

strong final-state interactions, all of them vanish as long as CP is conserved.
5.3 FINAL-STATE INTERACTIONS

In order to adequately treat rescattering effects, a partial wave analysis of the
WW system is required. However, one can approximately include these effects
by allowing for imaginary parts in the form factors f, (i=1,...,7). Tables V-VII
in Section 4 give the distributions which are sensitive to rescattering, with and
without CP violation. Here one example should suffice. Figure 16 shows the
effect of a small imaginary part of k; (k; = 1+ 0.2¢) on Fy — F;. |Fy is the
coefficient of sinfsing ard F7 that of sin §sin¢; see Eq. {4.26).] It should be
noticed that Fy — F7 does vanish even in the presence of CP violation, as long as

there are no absorptive parts.

A careful study of the angular distributions of W decay products thus pro-
vides a unique separation of anomalous effects into those due to strong final-state
interactions, CP violation in the vector-boson couplings, or real anomalous mo-

ments of the W (such as k or A).
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5.4 PHOTON versus Z COUPLINGS

So far we have only considered anomalous WW Z couplings. The question
arises whether adding anomalous W W~y couplings as we!l may produce new fea-
tures in angular distributions, The answer is no in the absence of transverse

beam polarization. Let us explain this statement.

The differential cross section is a sum of contributions from ieft-handed (Ao =

-1} and right-handed (+1) electrons:
do ~ | MaP 4+ | M- (5.4)

Adding photon and Z contributions, we deduce from Eq. {3.7} that M, and M-

are always proportional to the same linear combinations of couplings 7 and 1%

M+ ~ f’T - : F) fz
i
= fR=f1_132f%, {5.52)
Mo~ 7+ ( 1 _ 1) s 7%
2sin*dy s—mb
= fk= 1418357, (5.5b)

where the numnerical value holds for /s = 190 GeV, mz = 93 GeV, and sinlfy =
0.223. However, only the left-handed contribution (5.5b) can interfere with the
neutrino-exchange graph which contributes the dominant part of the cross sec-
tion. One thus finds a much larger sensitivity of almost all angular distributions
to the combination f% than to fR. This effect is clearly demonstrated in Fig. 17
for A, = 0.3 and Az adjusted such that either Ap or Ap vanishes. As a result it
will be rather difficult to distinguish anomalous WW+ from WW Z couplings.

In principle, experiments with longitudinally polarized beams can measure

7B and fU separately. However, since |[M,|* is much smaller than |M_{? |the
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former is typically 1077 of the latter at /s = 100 GeV after integration], the

accuracy of the f% measurements will be severely limited by statistics.

The best way out is provided by transverse beam polarization. When the
e* beams have natural transverse polarizations P?Et, the differential distribution

Eq. (5.4) changes to

do ~ (Mo 1?4 M-+ P Pp {2Re (M, M) cos 20
(5.6)
+2Im (MY M) sin 245} ,

where @ denotes the azimuthal angle of the W~ momentum about the e~ beam
axis, measured from the ¢~ polarization direction in the e*e™ cm. franfle.t18
The ¢-dependent terms contain the interference of the large neutrino-exchange
amplitude with the right-handed amplitude (5.5a). One will thus obtain a much

better measurement of f%, which allows separation of f7 from fZ.
5.5 ENERGY DEPENDENCE

So far we have discussed various angular distributions only at a fixed beam
energy 2E; = /5 = 190 GeV. Actually their sensitivity to anomalous couplings
strongly depends on /s/my,, in particular near threshold. At low beam energies
the photon and Z amplitudes are down by an extra factor of 8 compared to the
neutrino exchange graph [see Eq. {(3.4)]. Thus a small deviation of these ampli-
tudes from their standard model values will be difficult to detect, with a notable -
exception of the CP-violating couplings f¥ as mentioned earlier. When the beam

energy and therefore v = E,/m,, becomes large, the anomalous couplings will

113 The distribution (5.6) can easily be obtained from the general expression in Ref. 42
[see Eq. (7.15) therein] by choosing the 2~z plane 1o be the W pair production plane,
as was done in Section 3 to present explicit forms of the helicity amplitudes. It also
can be directly read off from Eq. (3.8) in Ref. 53 with the replacement P? — P; Fr.
The difference in the sign comes from the diflerent phase convention used.
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enhance the W pair amplitude because the subtle gauge-theory cancellation is
switched off. However, 42 is only = 1.5 even at 8 = 200 GeV, the highesi en-
ergy that LEP-11 will be able to reach. Hence this enhancement effect wili not be
observable at LEP-II for the small [O{)] deviations from the standard model

couplings that we are interested in.

We have made a rough estimate of the accuracy with which anomalous cou-
plings can be determined as the center-of-mass energy varies, For an integrated
luminosity of 500 pb™! and assuming that 40% of all the W pairs can be used to
determine angular distributions, we have plotted the deviations Ak, (Fig. 18)
and AAz (Fig. 19) needed to produce a 1o effect in the most sensitive angular dis-
tributions. As is clearly seen from these figures, going beyond 200 GeV with /5
does not lead to a large increase of sensitivity. In the case of CP-conserving real
anomalous couplings such as £z and Az, the total angular distribution do/dcos &
(solid lines} is found to give the most sensitive measure. Other distributions are
still useful to distinguish among effects from different anomalous couplings as
discussed eariier in this section. If one uses only do/dcos @, we find almost no
improvement beyond /5 = 190 GeV. More generally, we find that a factor of 4 in-
crease of luminosity at 4/5 = 190 GeV is more valuable for measuring anomalous

couplings than an increase of /5 to 200 GeV.

Figs. 18 and 19 show that A or x can be determined with an accuracy of
+0.1 within one year of running at /5 = 190 GeV. Thus a measurement of the
“magnetic” moment of the W at the 5% level seems Lo be possible up to the
~-Z ambiguity addressed in Subsection 5.4. Similar results hold for the other
couplings f; (i = 4,...,7). After one year of running one is sensitive to variations

Af; of roughly 10.1 except for fs which can be determined with an error of £0.2.
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6. Conclusion

In this paper we have made a systematic study of observable experimental
distributions connecled with the process e*e” — WTW ™, which could serve #
tests of possibie anomalous three-vector-bosor couplings. Since the W’s decay
into fermion-antifermion pairs, one may make use of the decay distributions as
polarimeters to efficiently analyze the produced W helicities. Because the W de
cay properties are well known, a careful study of the reaction ete” - W~ -
f1f2fafs therefore reveals information on the W-pair production process and
the associated three-vector-boson couplings, through the particular correlations

produced for the final fermions.

More specifically, we have shown that at LEP-II it is feasible to search for
anomalous moments « — } or A connected with the WW Z {or WW+~) vertex.
For these couplings, whose presence does not violate any conservation laws, the
most sensitive experimental measure turns out to be the differential angular
distribution of the produced W's, For a sample of 10* W pairs at /s = 190 GeV
at LEP-II one should be able to measure deviations in & — 1 and X at the 10%
level. More specific angular correlations invoiving the final fermions are not as
sensilive to those deviations. However, these distributions get affected differently
by k — 1 and A (see, e.g., Fig. 9) and supply information corapiementary to that

provided by the W diflerential cross section.

The situation is radically different when one considers the effect of CP-
violating anomalous three-boson couplings or imaginary parts of the form fac-
tors indicating strong WW rescattering effects. In these circumstances, even
for sizable couplings, these effecis are not particularly visible in the W angular
distributions. However a careful study of the polar and azimuthal distributions
of leptons and antileptons produced in W decays can be used to isolate these
phenomena. If 8, ¢ and 8, ¢ are the polar and azimuthal angles of the produced
leptons and antileptons in W™~ or W™ decay, respectively, we have found that

the terms proportional to sin #sin ¢ + sin fsin ¢ {l'epton asymmetry with respect
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to the scattering piane) provide the most sensitive distributions for CF violation

(+ sign) or rescattering eflects (— sign}.

Our detailed calculations considered the relevant processes ete™ — WTW ™,
W — ff only in the lowest order in the electroweak interactions. Obviously,
2 detailed study of possible anomalous contributions must include electroweak
radiative corrections to be really significant. Because in our considerations we
have treated the production process separate from the decay and mostly studied
kinematical effects, it should be relatively straightforward to perform radiative
corrections separately for the WYW ™ production and the decay. These correc-
tions should modify our amplitudes in detail but not in overall structure. As an
example, in Appendix C, we have already indicated what modification arises if
the hadronic W decay is not into g7 but gfg. At any rate, we believe that our

calculations do indicate the approximate size of measurable effects at LEP-IL
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APPENDIX A: Constraints on the Form Factors
Parametrized by Gaemers and Gounaris

The most general WW Z coupling for on-shell W’s parametrized by Gaemers

.12 . .
and Gounaris’ {G-G} contains nine form factors whereas we keep only seven in
Eq. (2.4). Explicitly, we find

fV _ lfv o V 44 v
s 18— papgs 4 fs * ik B pepgie, (A
(2.4) My My

8
ry

— I‘;ﬁ“
GG

where @ = (g — §)¥, and [PQ|** is a shorthand notation for ¥ P,Q,,.

Spin counting and rotational invariance tells us that there are only seven
independent helicity combinations, which are given explicitly in Table IV. It
is then clear that our seven form factors are enough to make all the helicity

amplitudes arbitrary, The nine form factors in Eq. {A.1) should therefore be

redundant.,

This can easily be seen as follows. Since no rank-5 completely antisymmetric

tensor exists in four dimensions,

Gaptafpe ~ Gratufps + Wglpape = Gaptpafic T Grotuafs = 0. (A‘Z)

By multiplying the above equation by P*P?Q7 and Q* P*Q?, we find

_PC'[PQ]M.E + Pﬂ[PQ}MQ = SEFQﬁpr y (A.3}

Pa|PQlup + P3| PQlpa = Sﬁzfuaﬂﬂpp - QFIPQ}G.G . (A4)

Here we used P? = 5, P-Q = 0, and Q% = —sf?, Terms proportional to Py, ¢a,
or §p have been set to zero, because they correspond to the scalar component of

the vector bosons and do not contribute to the process ete™ — W+,
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Using the above equations in Eq. (A.1) and recalling that

14
I‘;ﬁ" . tf;/ E#aﬁﬂQa _ féf’{mﬁppﬂ — %Q"‘EPQ}‘”@ , (A,B)
(2.4) My

we immediately find

=+t (%)
1= -8 (Asb)
H= ., (A%e)

With the above replacements, all the amplitudes presented in Ref. 12 agree with

ours.
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APPENDIX B: Kinematics of efe” — WTW™ — (Ev)(f_’ﬂ)

Purely leptonic decay modes of a W pair, although small in rate, give the

cleanest signal of the W-pair production process in ete™ collisions:

e (k) + et(k) > W~ + wt
L . L (B.1}
£(8) + o(ps) 28 +vip) .
This is observed experimentally as
e” 4+ ¢t — £+ [ + missing energy-momentum , (B.2}

where the final lepton pair can be either one of eg, ej, pe, or ui. The four-
momenta of the particles are given in parentheses. The observable dilepton dis-

tributions were studied rather extensively by Dicus and I(allia.npu:z28

Because of the cleanliness of the signal, this process deserves ciose attention.
A simple kinematical analysis, presented below, shows that the two unobserved
neutrino mormenta can be determined from the observed lepton momenta up 1o a
twofold discrete ambiguity, in the limit where the W width and photon radiation
are neglected. Under certain circumstances, e.g., when the contribution from
one of the two kinematically possible configurations is negligible compared to the
other, this makes it possible to perform the full angular correlation studies, as
presented in Section 5, even with this purely leptonic signal. Such an approach
has been shown to be useful™ in the W production studies at hadron coiliders,
where the use of the W leptonic decay signal is inevitable to avoid large back-
grounds and the reutrino longitudinal momentumn can be determined up to a

twofold discrete ambiguity.

The kinematics of the process {B.1) is determined by six angles, two for the
scattering, and two each for the W decays. Since we observe the two three-
momentia of the leptons, generically we have sufficient observables to fix the

whoie configuration. A twofold ambiguity occurs, however, because the selution
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involves a quadratic equation. Here we present an explicit solution for the two
unobserved neutrino momenta py and p.. in terms of the observed lepton momenta

£ and §. We work in the ete™ c.m. frame and assume massless neutrinos.

It suffices to solve for the three-momentum p, because 7S = |py] and p, is
given by momentum conservation. As the W™ energy is equal to the beam energy

Ey, we have
8 =F—fo, (B.3)
or
7 _ 2
pi = (Ep— &))" . (B.4)
A similar equation holds for the wt — fv decay:

pL = (B — Bo)*. (B.5)

Using momentum conservation p,, = —(pz+1+1) and Eq. (B.4), this last equation

¢an be rewritten in terms of p;:
(1+1)-py = Ey(to— bs) — & - 11+ Lmj +m}). {B.8)

The third constraint comes from the condition that the lepton-antineutrino sys-

tem should have the mass of the W:
(£ pu)t = mly (B1)
which gives
1-p, = Bty — £ — Ymiy + jmj. (B.8)
Equations (B.6) and (B.8) lead to
1-py = —Eplo— 11+ imiy + %m% . {B.9)
The three conditions (B.4), (B.8), and (B.9) provide the solution for p;. We
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rewrite the right-hand sides of these equations for the sake of clarity:

pt=1L, (B.4')
1-p, =M, (B.8)
I-p, =N, (B.9")

Let us assume, for the moment, that the two three-momenta 1and 1 are not

parallel. Then we can expand p; in terms of the lepton momenta
p,=eal+bl+clxT, (B.10}

The two linear equations (B.8') and (B.9') constrain p; to lie on 2 line in three-
dimensional space. They give
aP+b11=M,
(B.11)
all+b1* =N,

which can be explicitly solved:

a1 B (M .
») T ER-azl-1 N (B12)

The remaining variable ¢ is determined using (B.4'):

9 1

= —— L -a® V- ¥T* —2abl1]. B.13
i ab1] (B-13)

(4

The sign of ¢ cannot be determined. This explicitly exhibits the twolold discrete
ambiguity we mentioned earlier. The inequality ¢ > 0 is expected to be violated
onty by finite W-width effects and by radiative corrections, and hence may serve

as a test of the W-pair signal.

In the excepiional case where the two lepton momenta are parallel, one ob-
tains a one-parameter family of solutions for which the azimuthal angle of p;

with respect to the lepton momentum is left undetermined.

50



APPENDIX C: Helicity Amplitudes for Event Simulation

The angular correlation formulas presented in Section 4 are quite useful for
obtaining theoretical insight into the problem, and correctly take into account
the correlations caused by W boson spins. However, they are still far from
satisfactory if they are to be used as a basis for a realistic event generator. In
order to achieve the goal of precision tests of the standard model at LEP-II such as
an accurate measurement of rmy, a test of electroweak radiative corrections in W
pair production, and a direct measurement of the Cabibbo-Kobayashi-Maskawa
matrix elements, it is essential to understand the event topology of each W decay

mode as much as possible.

First of all, it is important to include final quark mass effects for the W~ — bf
mode. At least one hard gluon emission should also be incorporated exactly in
addition to the leading logarithmic multigluon emission which can easily be sim-
ulated at the classical level by using a QCD shower Monte Carlo program.ﬂ
Although it is possible to present a complete polarization-summed cross section
with the above effects included in the usual density matrix technique, the results
turn out to be quite cumbersome since we need the double density matrix for
W= and W decays. We find il most convenient to present our results for he-
licity amplitudes in the formalism recently developed by two of us, where the
final expression allows efficient and straightforward numerical evaluation in an
arbitrary Lorentz frame. In this approach, it becomes Lrivial to incorporate an
arbitrary polarization of the colliding beams (in particular the natural transverse
polarization in storage rings), and it is easy to add new contributions such as
a t-channel exchange of an excited neutrino® or a contact eeWW interaction.
It is also straightforward to inciude final state polarization effects, e.g., of top

quarl'ls‘56

In order o render this paper self-contained we first briefly review the basic

ingredients of the helicity basis calculus. Further details can be found in Ref. 42.

For fermions we use the chiral representation of Birac matrices and go to two
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component notation. Spinors ¢(= u(p, A) or v{p, A)) are given by

w—(i); d=(wl wl), (C.1)

with

wlp, A)x = wxalp)xa(p)
(C.2)

v{p, A)x = L (p)x_s(p) .
Here X denotes the helicity of the on-sheil fermion with four-momentum p* =

(E, pz, Py, p2). x,(p) is 2 normalized helicity eigenspinor, explicitly given by

[+ pe
x+(p) = [2ip] (bl + p2)] ( »! +.p ) ; (C.3a)
Pz + tpy
x-(p) = [2Ip] (Ip| + p)] ™"* ("””""”) : (C.3b)
|pF+pz
and
@i (p) = [E £ p])'/*. (C.4)

Given the explicit form of v-matrices
0 4y
= gy = c5
d Y (Si— o ) (C.5)

with

DIa3 aliiGZ
g - ( a 3 F{ )) ! (C.6) -
q:

(' +ia?) x4
an arbitrary product of ~-matrices with spinors at both ends can be expressed

by the basic quantity

S(pi, @1, ooy @y p)50; = XI,.(P:'] (#1)alf2)-alfs)a - (dn)ea Xa,(p;) (C.7)

for & = £ |here ¢ = (—1)"!|. Arbitrary polarization amplitudes are then ex-

pressed in terms of the basic quantity S, which is easily evaluated by 2 % 2 matrix
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multiplicaticm.ng

Analogous to Eq. (C.2) for spin-% fermions, polarization vectors for vec-
tor bosons are defined such that they depend only on the vector boson four-
momentam ¢ = (go, Gu, Gy 9z)- We define the rectangular polarization basis
by

g, A=1) = iAo (0, g8z, 9y0s, —42) (C.8a)
T
1
g, A=2)=— (0, —gy, Gz, 0}, (C.8b)
ar
B q’
(g, A=3)= _|q] ( v Gz, Qys ‘h) ) (C.8c)
1
Mg, A=4)= Vi {00, 92, 95, 92) » {C.8d)

with ¢p = (g + qg)lﬁ. In the usual helicity basis, the polatization vector (C.8¢c)
describes longiiudinally polarized vector bosons with helicity A = 0, and helicity
eigenvectors for A = + are given by

g, A= Fetg, A=1) -ie(g, A = 2)} {C9)

£)= |
The A = 4 component, which is proportional to ¢#, corresponds to the scalar part
. of a wvirtual vector boson. Its coupling to fermions is proportional to fermion
masses and hence will be important only in the b decay of virtual W’s. We
find no advantage of using the helicity basis for intermediate W's in numerical
simulation and will choose the Cartesian basis (C.8). One can, of course, obtain

identical final cross sections using the helicity basis (A = %, 0, 4) in summations.

19 A simple FORTRAN program to evaluate the complex number S as a function of
an arbitrary number of four momenta and three indices (&, A;, A;) is available from
the authors of Ref. 42.
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In terms of the fermion strings $ and the polarization vectors {C.8) or {C.9),

we can now give the polarization amplitudes for the production process
ek, o) +et{k,a) =W (g, N+ WT{g, A), (C.10)

which in contrast to Egs. (3.2-8) are Lorentz covariant. For the neutrino exchange

graph depicted in Fig. lc¢ we obtain

2(gWev

M¥o, a; A, X)) = (k— e

by b5 4 2VEORO S(R, €(R), k—q, (), K)I_ .
(C.11)

The analogous expression for s-channe! vector exchange is

Mo, o, A, }) = “g"—‘ma s 2VEOKY S(k, Ty (M), k)%,  (C.12)

S*m‘,

for V = vy and Z. The four vector T}, is obtained from the tensor I'nﬂ” of Eq. (2.4)

by contraction with the W polarization vectors

T4(), 3) =T%%(q, 4, P) eslg. N (g, X) . (C.13)

The WW+~ and WW Z couplings gy ate given in Eaq. (2.6). The left- and ‘
right-handed fermion couplings to vector bosons are defined by the interaction

Lagrangian

Lypg = —eAZ o v Py, VE, (C.14)
=%

where ¢ denote the positron charge and Py, = %[1 + Avs) is the chiral projection.
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The couplings we need are

g =1,
gg" = ——-—,——*1“-*"—"—' + tan Oy |
2 sin fy cos Gy
Zee
= tan#
9+ W (C.15)
1
Wye Wev
L -
V2 sin B ’
givmd,- _ (gﬁrd,-u.-)l _ U, ,
V2 sin fw

where {u1,ue, 43} = (u,¢,t), (d1,dg,ds) = (d, 5,8}, and Uy; denotes the Cabibbo-
Kobhayashi-Maskawa matrix elements for tiree generations.

Using the same notation as before, the decay matrix elements for W¥ — f, f;
or fifog depicted in Fig. 20 can easily be written down. Denoting the fermion

momenta and helicities by (py, 1) and (py, o2) one finds for the W~ decays

MFT=0D) (X a1, 09) = e 2 C o (1) olp2) 02 S(p1,e(a,A). P2)g, o s

(C.16)

and

M(W_—’hhg)(’\; 0;,02,rc) = egg/flhgscj‘f—m(?’l)‘éﬂz(pﬂ)o2

5 elg. A oo
2,71 Py (p1,e(g.A),p2)5, — 50

x { {ta{pglx‘)'pl _ (*(ngﬂ)'pz

+ S(p,€'(py. ),y (a0 M), P2)7, o

2p,m

" Ty Si{pr.elg, A pg €' (p5. 8} p2)s, -0,
(C.17}
Here we employ the gluen polarization vector ¢#{p,,x} with kx = 1, 2 or + for

massless gluons. g, = v47a, is the QCD coupling constant, and the effective
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color factors are

N =+3 f k

C= Vi V3  for quarks, (C.18a)
1 for leptons,

€'=/CpN =2 for quarks. (C.18b)

These factors automatically take care of color summations in the final states. For
W+ decay one merely neeéds to substitute e(g, \] — €(g, ) in both Egs. (C.16) and
{C.17). Formulas (C.16) and {C.17) are valid for arbitrary masses of the fermions

fi and fo. When fermion masses can be neglected, the w-factors simplify to

20
béia(p] p_} \:‘2110 60‘:{: . (C.lg)

We should note that the simple formulas (C.11) and (C.12) contain all the
information regarding the process e*e- — W W ™ in lowest order, and that the
formulas {C.16) and {C.17) alone include the complete description of polarized
W decay into a quark pair of arbitrary masses and an additional hard gluon.
In Section 3, we have shown explicit analytic expressions of the production am-
plitudes in the e*e” c.m. frame, whereas in Section 4 we evaluated (C.16) in
the W rest frame for massless fermions, The implicit expressions given in this
appendix allow, however, a direct numerical evaluation of all the amplitudes in
an arbitrary Lorentz frame. Since the individual ampiitudes transform nontriv-
ially under boosts, the Lorentz invariance of the polarization-summed squared

. . . 42
amplitudes gives an excellent test of a numerical program.

The procedure to evaluate cross sections from these amplitudes is essentially
the same as that explained in Section 4. Mj is just the sum of M¥ (C.11), M”
and MZ (C.12), M; and M; are either {C.16} or {C.17) depending on whether
one wants to include the possibility of hard gluon emission. Oniy one further

complexity appears when one deals with the decay mode W — b, In this case
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the scalar (A = 4) component of the W polarization cannot be neglected for
off-mass-shell W’s and the W polarization sum should be extended to
¢~ mjy v
Y o— X o+ g =0 (C.20)
A=1,2,3 A=123 a=4 My A
which arises from the Proca {or unitary gauge) spin projector —gu + 9uu /iy
As an example, we give the exclusive cross section for the case
e (ko) + e (k,8) » W {g,A) + W (q,});
W™ (g,) — blpy,en) + E{p2, 2) + 9(ps, 03) (c.21)
W+{q1j') - E(P4,0’4) + V(pS;US) -
The full amplitude can be written

M = M(0,5;01,02,03,04,05)

= U
= Dw () Dw (T) 732 (C.22)
A A
x M1(0,d; 0,3} - Ma(X;01,02,03) - M3(3; 04,05} ,
where we show only particle polarization indices to denote each amplitude, For a
given set of four-momenta of particies and their polarizations, all M; and hence
the total amplitude M is just a complex number.
The polarization-averaged cross section for the process {C.21} is then ob-
tained simply by the following formula:

1! z,
do = - S TIMP - dds, (C.23a)

with d®;5 being the invariant five-body phase space

P _ 5 5 d3p,-
deg = (27)° 6 (Hk—‘;m}}:]lm, (C.23b)
and
TIME=T T L% IME. (C.23¢)

o=t o=t g3=F g3=1

Here we used the fact that M; is proportional to 8.5 [see (C.11} and (C.12}],
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and that M3 is proportional to 8, — 6, 4+ {(C.16) and (C.19}]. If we can neglect
the b quark mass, sumrmation on the b spin is reduced to a single value o7 = —
for the standard V — A interactions. In the Monte Carlo event generation, one
can perform not only the phase space inlegration but also the polarization sum

on a statistical basis.
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APPENDIX D: Helicity amplitudes

forete” — ZZandeew — Zny

Unlike W*W~ produciion, ZZ and Z~ production proceed only by well
known fermion—vector-boson couplings in the leading order of the standard model
(see Fig. 21). Effects of the WWV coupling (2.1) appear only at the O(a)
Jevel”®® Anomalous interactions of three neutral i:msonsf9 however, may con-
tribute to the reactions. Z+ production can be studied already at LEP-I/SLC at
energies above the Z resonance, and ZZ production is within the reach of LEP-
IL The latter reaction contributes' as a background to the Higgs boson search

using the ZH final state when my ~ my.

In this appendix we present helicity amplitudes for these processes
e'(k,o) +8+(E,5} — V][t}],z\]) + Vz(qz,/\g) s (Dl)

where ViV, denote ZZ or Z4. We include the most general 227, ZZ~, and Zvy~
couplings in the same spirit as that of our WWV coupling studies. We aiso give
the Z — ff and Z — ffg decay amplitudes with arbitrary fermion masses. By
combining these amplitudes, it is straightforward to make numerical simulations
for processes such as ete™ — (Z — ) + (Z — tig), with full polarization

correlations included.

In the standard model, only {- and u-channel electron exchange contribute

to the processes. The corresponding production matrix element is

Mo,0; A, he) = €2l eg)7* b, _5 2V kOKO

8 S(k, f(ga, do}. b—aqi, (a1, M), k)%,
(k—q)t {D-2)

+ S(E:E‘(qla)‘l)skgqﬁtf‘(qh)\?)sk)gg }
(k—q}? '

As before |see Egs. (C.14) and (C.15)] g;‘lu denote the left- and right-handed

couplings of electrons to the vector boson V;.
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The explicit form of the helicity amplitudes for e*e™ — ZZ in the ete™ cam.

frame reads
- A3, (9)

M(c"'c —Z7) :4\/562 Zee 26 1Az &d’v gy, D3

(ng') A1 4ﬂ251n29+7‘4 AU!Q,\( ) ( )

where v = \/s/2mg, B = (1- 4m22/s)1"2, AA = A — Az, and ©= Ao({-1)}.

Otherwise the notation is the same as that for ete™ — W¥W ™ (see Subsection

3.1). The coefficients A are listed in Table VIII. Note that the divergent B terms

which exist in W'W™ production [see Eq. {3.7¢)| are absent here because of

cancellations between the two diagrams.

Similarly for the amplitudes for ete™ — Z~ we find

fefe™—Z~) _ 2 Fee Bt\u\z(e) Ja
M = 2v/2 e 955 6 aci a1 = an'a IR {D.4)
where r = mpg/\/s. The coefficients B are shown in Table VIII. The apparent
singularity at cos @ = %1 in (D.4) is cut off by the electron mass, which leads to

a finite total cross section.

In general, one may expect nonvanishing interactions of three neutral vector
hosons, which contribute to ¥;V; production via a photon or Z in the s channel.
However, due to Bose symmetry and electromagnetic gauge invariance, the form
of such interactions is restricted to a smaller number of couplings than in the

WWYV case.

For ZZ production, t.e., for two Z's on mass-shell, Bose symmetry allows
only two couplings. The most general ZZV vertex {V = Z or v} for on-shell Z’s
is given by (see Fig, 22)

3
s—mi . .
e lanan Py = = oV [iffV (Pog + PR) + i fE2Y 97 (g — )]
z
(D.5)

As in Section 2 any terms proportional o P* have been negiected, since they do

not contribute in ete” annihilation (for m, — 0). For V = ~ such terms can
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restore gauge invariance, however icf. Eq. (2.10)]. The vertex functions vanish at
5= m%,. because of gauge invariance for ¥V = ~, and Bose symmetry for V = Z.
The interactions thus should come from dimension-six operators. CP invariance
forbids ffzv and parity conservation requires fZ2¥ = 0. If at least one of the
final Z’s are ofl-shell, five other couplings are possible, as in the WWV vertex.

They are, however, proportional to q,? - m"z

Z~ production may have a contribution from anomalous Z~V couplings,
where ¥V = ~ or Z is the virtual boson in the s channel. The most general

anomalous Z+vV coupling {for on-shell Z and ) is given by

2
I\aﬂ,u( P]i‘sf'm’v hV(,un,B_*a,u,G)
2V 41,92, - o 1 \4a 8 G G
Z
hV
+ —*22 P“(P-ng“ﬁ - q;Pﬁ) (D.6)
mz

. hY
+ hé Emﬁpqu - _4_2 P* Eﬂﬂﬂﬂppq2a} ,
Mg
where terms proportional to P¥ or ¢f are omitted because they do not contribute
to the reaction. The above expression is manifestly gauge invariant for the final
on-shell photon. The couplings h‘l" and h‘{ are P-even, hg and h}; are CP-even;

ail couplings are C-odd.

The overall factor s —~ m{ in {D.8) comes from gange invariance for V = 1,
Bose symmetry for V = Z. Because of this factor, there are no corresponding
operators of dimension four. If we restrict ourselves to dimension < 6 operators,
only h¥ and kY remain; the other two receive a contribution from operatars with

dimension & and higher.

The consequences of the two dimension-six interactions in the radiative decay
Z — fI~ have been studied by several authors”’ LEP-I/SLC is actually best
suited to limit these couplings using radiative Z decay events. The reaction

ete™ — Z~ in ihe presence of these couplings was discussed by Renard.”
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It is interesting to note that the four Z+4Z* interactions in (D.6) and the two
ZZ~" interactions in {D.5) are completely independent. If we keep all the three
bosons off mass-shell, there are seven couplings altogether. Four of them survive

for ete™ — Z-y, while two different ones contribute to eTe™ — ZZ.

The contribution of the anomalous ZZV vertex (D.5) to ZZ production can
be read off from Eq. (C.12) by an appropriate change of the couplings:

Vee

MZZY (0,030, 0a) = Z2222Y 5,5 0V/kORO S(k,Ty (A1, 2a), k)G, (D)
-y

with

T4 (A1, h2) = F.QZ'BZ*;’(QHQ‘Z’P) exla, M) eplge, de) . (D.8)

Similar results with an obvious change of Z to -y apply for the process ete™ — Z-.

Without loss of generality, we may choose

9222 = 922+ = 8242 = Qg4 = €- (D.9)
Note that the s-channel pole in (D.7) is cancelled by the zero in the couplings
(D.5) and (D.6).

With all the contributing amplitudes given in Eqs. (D.2) and (D.7), it is

straightforward to calculate arbitrary polarized cross sections for the processes

ete” — ZZ and Z+. In order to study the angular distributions and correlations

of the Z decay products, one further needs the Z decay amplitudes for

Z{q,2) — f{p,0) + f(p,5), (D.10)

and

C g, A) = f(po) + f(B,0) + alpy k) - (D.11)
The Z — ff decay amplitude reads [see Fig. 20(a)]
M(z_'fn()\,a,c‘r) =-e 3 g2tic wac(p)e-as(p) &5 S{p, (g, ), P)2 _5 (D.12)
a=%t
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and the amplitude with gluon radiation reads [see Fig. 20(b,c}]

ME=IIN() 0.5,6) = ¢ T 9271 9,C" weao(p) eue (p) 0B

o=t
e'(pg.c)p  €(py, f‘i)‘ﬁ}
X - S(p, €lq, )}, PYS _;
{[ 2 SRS, o), s
1 {D.13)
+ %S(pa E‘(pg:""‘% pg> e(qv)‘)a ﬁ):,—&

1 * =
- 5;;’5 S(p, E(Q:’\)! Py € {Pgt'c]: p):,—r?'} .
The color factors C and C' are given by (C.18). The above two formulas are ap-
plicable to any value of the fermion mass. For massless fermions, the expressions
simplify significantiy by the condition (C.19). The angular distribution of the

+

final lepton for the process eTe¢™ -+ Z~ in the standard model was calculated by

Hayashi and Katsuura®™ and by one of us %
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Table 1. Properties of couplings f1V (V = ~, Z) under discrete transformations.

P o+ + - -
cPo+ - o+ -
C o+ - -+

Table II. Explicit form of the d functions needed.

dl, =—d*, ;= {1 +cosB)siné
& = -dy, = —1(1 ~ cosf)sinf
d{‘l = dl_l._1 = ,i—,[l + cos 8}

, = dt = %(1 — cosf)

dg=—d = —\Lﬁ sind
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Table IIt. Coefficients A;:\ = A’\Zx, B,;,and C,3 in (3.7) for the standard model.
8= (1 —4md /s}V/? and v = \/5/2my,.

A (A3 A}f By o
1 {+o),{o-) 2y 2v 201+8)/n
-t (0+),{-0) 29 2y 201-8)/~
0 (++),(—-) 1 1 1/~*
0 (o0) 29341 247 2/~

Table IV, Coefficients A‘;j for the general coupling (2.4). The last coefficient AI;’O

can be alternatively written as gr + 2’}'2K,V.

AX (AN AY,

1 {v0) AU —afy - B i Y
1(0-) A +if] 81 87
~1 (o4} Al il - AR 8T
=1 (-0} v iy -8f i)
0 (+4) YUY+ ai?p Y

0 (=-) fY =i Y — 48y
0 (00) V[-{1+8Y) /7 +428% 1) + 207
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Table V. CP and CPT properties of azimuthal-angle distribufions and correla-

tions.
cp orT Azimuthal-angle distributions Number
cosd—cos @, cos2g+cos2p, cos(¢p L),
even even - - - 8
cos(s £ 2¢) —cos(¢ £+ 24), cos{2¢ + 2¢)
sing—sing, sin2¢tsin2d, sin{sé + @),
even odd _ _ _ 6
sin(¢ + 2¢)— sin{¢ + 2¢), sin{2¢ + 2¢)
sind+sing, sin2¢—sin2d, sin($ — ¢),
odd even . - - 6
sin(¢ % 2¢)+ sin(¢ £ 2¢), sin(2¢ — 2¢)
odd  odd cos ¢+ cos P, C€os2¢—cos 29, 4

cos(¢ £ 24) + cos(¢ £ 24)
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Table VI. CP and CPT properties of polar angle distributions.

cp CPT Polarized W cross sections Number
a(+,-), ol-,+), o(0,0),
even even oa(+,0)+0(0,-), e{—,0)+6c{0,+), 6
o+, +} +ol-,-)
+30 - 0;" s _10 - U':'+' ]
gy RO —0@) =) -o0s),

o(+,+) - o(—,-)
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Table VIL. CP and CPT properties of inclusive W~ or W™ decay angular distri-
butions. See text for the definition of the coefficients F; and F;. Note
that Fy — F is identically zero as long as CP violation in the decay
process is neglected.

CP  CPT  Inclusive angular coefficients  Number
Fi+Fy, F+F, F-F;

even even , — _ 6
Fy—Fy, Fi+Fs, Fot+Fs

even odd Fr—Fy, Fy+Fs, Fo+ Fy 3

odd even Fr+ F'I, Fy -~ F.s, g — ?g 3
F-F, F,-TF, F+F

odd odd ! ,l : _2 ¢ _3 6
Fy+ Fy, Fy - F5, Fo— Fg
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Table VIII. Coefficients for the helicity amplitudes for the processes ete” — ZZ

and ete™ — Z7.

AX (M) Ariae Byiae

2 (+F) -VZ(1+ 5% V2

£1 (x0) A 'AgAM1+67%) - 2¢0s 0] —

1 {0+) 7' AeAM1+8%) — 2c0s8] 2r(cos® + Ag-hy)

0 (1) -77%cos @ r*{cos @ + Aeo-dg)
(00) 297 %cos @ -
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Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

FIGURE CAPTIONS

Feynman diagrams for the process ete™ — WTW .
Feynman rule for the general WWV (V =~ or Z} vertices.

Schematical view of the process ete” — WTW ., Indices o, 4, A, and )

denote helicities.

Angular distribution da{},X)/d cos & of polarized W ~W+ production in
ete” annihilation at (a) /5 = 500 GeV and (b) 190 GeV, averaged over
initial lepton polarizations. Shown in parentheses are W~ and W™ helic-

ities in the ete™ c.m. frame.

Schematical view of the process ete™ — (W™ — fi ) + (W > fafi),

Shown in parentheses are four-momentum and helicity of the particles.

The coordinate system in the colliding ete™ c.m. frame. The y-axis is
chosen along the k(e™) x q(W ™) direction and is pointing towards the
reader. The coordinate systems in the W~ and W rest frames are ob-

tained from it by boosts along the z-axis.

Angular distribution do/dcos& at /5 = 190GeV. Curves are shown
for the standard model (solid line} and anomalous magnetic moments
&z = 0.5 {dash-dotted line) and k; = 1.5 (dashed line). All the other

couplings are as in the standard model.

Deviation of do/dcos@ from the standard model (§.M.) value for £ ;=1.5
(solid line}, Az = 0.5 {dash-dotted line}, and fgz = 0.5 (dashed line) at
/6 = 190 GeV. The error bars indicate the statistical error for 4000

W-pair events.

Polar angle distribution for one of the W's being longitudinally polar-
ized. Deviations from the standard model {S.M.} distribution are shown.
Couplings and parametrization are chosen as in Fig. 8. The error bars

indicate the statistical error expected for 4000 W-pair events.
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Fig. 10.

Fig. 11.

Fig. 12.

Fig. 13.

Fig. 14.

Fig. 15.

W -scattering-angle dependence of (F3 — F3)/F;, the ‘sum’ of forward-
backward charge asymmteries [see Eqs. (4.26) and (4.27)]. Standard
model predictions at /s = 190 GeV are shown by the solid circles with
expected error bars based on 2000 W~ — £7 and 2000 W+ — fu events.
The three curves denote predictions with xz = 1.5 (solid line}, Az = 0.5
(dash-dotted line), and fZ = 0.5 {dashed line).

W -scattering-angle dependence of {Fy — F4)/Fj, the coefficient of
sin  cos ¢ minus the coefficient of sin§cos ¢ [see Eqs. (4.26) and (4.27)}.
Couplings and parameters are chosen as in Fig. 10.

W -scattering-angle dependence of (F5 + Fs}/Fi, the sum of the coeffi-
cient of sin 28 cos ¢ and that of sin 28 cos $ [see Eqs. (4.26) and (4.27)].
Couplings and parameters are the same as in Fig. 10.

W -scattering-angle dependence of (Fr+ F7)/Fy, the sum of the coefficient
of sin #sin ¢ and that of sinfsin ¢ at /5 = 190GeV, for fZ = 0.5 (dashed
line), f& = 0.5 (dash-dotted line}, and f# = 0.5 (solid line). The solid
circles show the standard model expectation (zero), with the error bars
indicating the expected statistical error for 2000 W~ — £F and 2000
W+ — v events.

W-scattering-angle dependence of the coefficient of sin{¢ — 2¢) + sin(¢ —
24), i.e.,

fdcost fdeos# Im{(E_ — E_)/ fdcos® fdcosf A

isee Egs. (4.16) and {4.17)] at /5 = 190 GeV, for ff = 0.5 (dashed line),
f& = 0.5 {dash-dotted line}, and fZ = 0.5 (solid line). The solid circles
indicate the standard model value (zero), with statistical errors expected

for 4000 W pairs where either W~ or W decays Ie]ﬁtonically.

Same as Fig. 13 but for the coefficient of sin(¢ — &), f.e.,

Jdcostd [dcos@ ImD_[ [dcos fdecosF A
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Fig. 16.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

17.

i8.

19.

20.

21.

22.

[see Egs. (4.16) and (4.17)]. Expected statistical errors are shown for 1000

W -pair events where the charges of both W-decay products are identified.

Sensitivity of Fy — F7 (the coeflicient of sin # sin ¢ minus that of sin fsin ¢)

to an imaginary part in xz (ky = 1+ 0.27) at /s = 190 GeV. The solid .

circles show the standard model expectation, slightly away from zero due
to the finite Z width (which is a part of one-loop electroweak corrections},
with expected statistical errors for 2000 W~ — £0 and 2000 W+ — B

evernts.

Deviation of do/d cos @ from the standard model value at /5 = 190 GeV.
For Ay = 0.3, Az is chosen such that either Ag {the combination of Ay
and Az entering the amplitude for right-handed electrons, solid line} or
AL (dashed line) vanishes. The error bars show statistical errors expected

for 4000 W -pair events with either W~ or W™ decaying leptonically.

Minimum deviation of k; from its standard model value needed to pro-
duce a 1o effect in the four most sensitive angular distributions as a func-
tion of the center-of-mass energy. The curves are for do/dcos© (solid
line), (Fy — F4)/F) (dashed iine}, (v + 07), dcos @ (dash-dotted line).
and (Fg -+ F:)/F, (short-dashed line).

Same as Fig. 18 but. for Az. The curves give the sensitivities of do/dcos &
{solid line}, (Fy — F4)/ F1 (dashed line), the coefficient of cos(¢— @) (dash-
dotted line). and the forward-backward charge asymmetry of W decay
products (Fa — Fa)/F, (short-dashed line}.

Feynman diagrams for the decay processes (a) W~ — fif; and (bc)
W= — fif2g at tree level.

Feynman diagrams for the processes ete™ ~» ZZ and ete™ — Z~ in the

standard model,

Feynman rule for anomalous Vi V3V vertices.
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