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FOREWORD 

This Volume XIVA contains Lectures presented during 
the first part of the Boulder Summer Institute for Theo- 
retical Physics held in June, 1971. 

This part of the Institute was devoted to several 
active areas of the past years in Particle and High Energy 
Physics. Accordingly, the Volume is divided into four 
parts: eikonal approximations, dual resonance models, as 
Well as other related models, and to analytic approxima- 
tion methods. 

We have tried to present in each area a comprehensive 
picture including introductory reviews as well as recent 
material, and different but related viewpoints. 

The Institute was sponsored by the National Science 
Foundation. 

I wish to thank the lecturers and the participants 
for their effort for a lively Institute and to 
Mrs. Charlotte Walker for her invaluable contribution to 
the organization of the Institute. I would like to ex- 
tend my appreciation to Mrs. Walker, assisted by 
Mrs. Ruth Henard, for the typing of the manuscript. 

Boulder, February 1972 

A. 0. Barut 
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Part I 

EIKONAL APPROXIMATIONS IN 

STRONG INTERACTIONS 





EIKONAL APPROXIMATIONS IN COLLISION THEORY* 

Henry D. I. Abarbane1** 
Joseph Henry Laboratories 

Princeton University 
Princeton, N.J. 08540 

Introduction: 

In this series of lectures I would like to discuss an 
approximation scheme which is useful in very short wave— 
length or, equivalently, very high energy scattering pro- 
cesses or propagation of waves through a medium. We will 
envisage the potential causing the scattering or the index 
of refraction characterizing the medium to be very "smooth". 
so that the direction of propagation of a high frequency 
incident beam is essentially unaltered. Smoothness of the 
scattering force means, in practice, that the scale on 
which changes in its shape occur is much larger than a typi- 
cal wavelength from the incident beam. This has the conse- 
quence that it is a good first guess to associate a modu- 
lated plane wave with the scattered or deflected beam. The 
modulation due to the potential can properly describe ab- 
sorptive and dispersive properties of the wave propagation. 
One can further describe a systematic procedure for improv- 
ing upon his original wave amplitude. 

The usefulness of the method we will be considering is 
already apparent in non-relativistic potential scattering 
where the basic approximation provides one with a vast im- 
provement over the Born approximation and, yet, for appro- 
priate potentials reduces to the Born term for very large 
energies. The main advantage gained is a scattering ampli- 
tude which satisfies unitarity, which the Born approxima- 
tion manifestly fails to do, and which is a good represent- 
ation of the true amplitude over a wide range of energies. 

*Work supported by the U.S. Atomic Energy Commission under 
Contract AT(30-l)-4159. 

**A1fred P. Sloan Foundation ReSearch Fellow. 
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4 HENRY ABARBANEL 

The technique also has its place in quantum field 
theories where it enables one to sum up the high energy be- 
havior of a very interesting set of Feynman graphs in a 
compact and useful manner. Furthermore it justifies the 
usa of a Bessel-transform or eikonal representation of the 
S-matrix which is familiar from non-relativistic problems. 

II . Metrics; 9L1“ 

We will first discuss the basic ideas in the context 
of wave propagation in a medium and then proceed to ex- 
plore the properties of such an approximation scheme within 
potential scattering. Finally the expression of the eikon- 
a1 method in quantum electrodynamics will be presented. 

So let us begin by considering a wave characterized 
by an amplitude A(r, t) propagating through a medium of 
spatially varying index of refraction n(f5. A(r, t) could 
well represent any component of the E or B fields of an 
electromatnetic disturbance and satisfies the wave equation 

[v2 - Pig)”— %]A(i‘°,t) = o. (1) 

We want to address the physical situation in which the 
variation of n(f0 is very slow. More precisely if a length 
L characterizes the spatial distance over which n(r) changes 
significantly (say by a factor of 2) or equally well sets 
the scale for the gradient of n(f§, then we are interested 
in the propagation of wave whose wavelength A is such that 

1 << L (2) 

or whose wavenumber satisfies 

kL >> 1. (3) 

If we are in this situation then it is physically 
pretty clear that the major effect of the medium will be 
primarily to alter the phase of the wave by k times the 
optical path,but that the direction of propagation will 
be unaltered. With this in mind let us seek a solution of 
the wave equation in the form 

A(?,t) = expi(E-f-wt) B(?) ,  ' (4) 
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where the free space relation [file = w is taken to be 
true. All of the effects of the medium or of the deviation 
of n(f) from 1 are contained in the modulation factor B(?) 
which we will regard as slowly varying through space. 

Since We are using as our uncorrected wave in (4) a 
plane wave appropriate to free Space, or n = 1 everwhere, 
if we are to'have B(?) slowly varying in space then we 
cannot require it to make up the difference between n - l 
and some value significantly different from that. We will 
require, therefore, that the deviation of n(E5 from 1 re- 
main small throughout the medium. Should the medium have 
an index of refraction that varies slowly about some other 
value not equal to one, then the unmodulated plane wave 
should have its w,IEI relation chosen to reflect this, and 
our discussion is otherwise unaltered. 

From (1) we determine an equation for B(f) 

vane?) + ziE-vui') + k2[n(r°)2- 1 ]B(i‘)= o. (5) 

Since we will treat various Spatial derivatives of B(¥) as 
small, one's inclination is to drop the V33 term with re- 
spect to the rest and evaluate the resulting B(¥) .  Indeed, 
that is what we shall now.do in a Systematic manner by re- 
writing the equation for B as an integral equation 

3(a) = 30(3) + fdar'gkfi’j') (-v:_.B(1':")), (6) 
where the inhomogeneous term Bo(f§ satisfies 

zik-vno(¥)+ Hum?)a - 1130(3) = o (7) 

and the Green function gk(?,f') has the obvious property 

{Zik-Vr + 18mm?)2 - 1]} gk(£-’,i~") = 63(3-3'). (8) 

The approximation scheme is simply the Neumann series for 
the integral equation (6). Although we shall casually ig- 
nore such questions when convenient, itzb perhaps useful 
to point out that the kernel of the integral equation con= 
tains the rather singular operator Va and that the true 
series expansion is unlikely to be convergent. Neverthe- 
less a few terms in the series may provide useful, compact, 
and often excellent asymptotic approximation to B ( i § .  
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There is no proper discussion of this matter to my know- 
ledge so let's close our eyes and proceed. 

The first approximation to B(f§ is a one dimensional 
equation expressing the variation of the modulated plane 
wave along its direction of propagation (E/IEI)  = E. 
There is no kinematical statement about the dependence on 
coordinates transverse to K, and it is deeply in the nature 
oftin approximation we are pursuing that these transverse 
degrees of freedom are decoupled from longitudinal ones. 
{This is the first hint that the method may not be entirely 
unrelated to real high energy physics.} In an heuristic 
manner one may simply attribute this to inertia; namely, 
fast moving things primarily keep moving forward. This 
persistence of the initial directions and consequent 
straight like paths is labeled the eikonal approximation. 

We will solve for B°(E§ by using these remarksqto 
motivate the separation of space into a two vector b ortho- 
gonal to K and a piece along E. Thus one writes 

r=‘b’+m, (9) 

and the equation for Bo becomes 

Zik _a 3005 + x12) + k2 [n6 + m a  - 113003 + x12)= o. 
ax (10) 

This can be immediately integrated to yield 

30(3 + m)= exp __;21k_ I‘d-qua? + T12)? - 1], (11) 
with the boundary condiéiOn that 30(55 = 1. The full wave 
amplitude becomes 

1 
A(;,t) = exp i{1'<'.1':' + —12‘— j' d'r[n(b + T12)B - 1] -wt}, (12) 

which for real n(F) is the alteration of an ordinary plane 
wave by a phase reflecting the properties of the medium. 
For complex n we can get some insight into the properties 
of (12) by writing 

n N 1 + 1 Im n, (13) 
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so that A is 
X 

A(i—’,t) a exp in}; - 42L d (Im n (f; +Tfi))3 -wt}x 
0 

exp - k IodT Im n(g + TE), (14) 

The last term represents the exponential damping of the in-, 
cident wave that one ordinarily associates with an absorp- 
tive medium. 

When the index of refraction varies slowly in space, 
as we have assumed all along, then the damping term in 
A(r, t) is approximately 

exp - kl dT Im n(b + TE) m exp - kl Im n(o), (15) 
0 

whose form is that of a standard 

exp - $[Path length/mean free path]. (16) 

Since the mean free path is inversely proporional to 
the density of scattering centers, N, times the cross sec- 
tion for interaction, 6, we find 

_ _______£_l_ o _ 2k lg n o . (17) 

To evaluate the next correction to the modulation 
function B(r) it is necessary to exhibit the Green function 
g(r, r') corresponding to the one dimensional propogation 

waves. It is convenient to seek this function in the 
"mixed representation" where we Fourier transform away the 
f' dependence. So let us define 

~ '~.—.' —0 a gk(a,a')= Idar' elq 1” gk(r,r'), (18) 
which satisfies the differential equation 

[ZiE-vr + k3[n(i')3- 1]] "g‘k(£’,c]') = ei‘l'r . (19) 

We will seek a solution to this in the parametric form 

Ek(¥,c'f) = eiq'r iImdc eZic’k'q '" Fk(°’ E). (20) 
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The equation (19) then requires of us that 

1JF°°da [k3(n(i')9- 1) + 21 E-ek(o,i‘) - 2E-51e21°k'Q+Fk(°.r) 
° = 1. (21) 

Now integrate by parts on the 2K0; term 

. m 21012-3 + F  (a a?) _ no d ziofi-a‘ Fk(o E) 
'11 do e k ,do _ 'J d°< do e De , 

O O 

a eFk(o,r) + ‘1?d eZi-q + Fk(c,r) 3:315:63} ’ 
o , 

dropping the "surface term" at 0 = + G. (One may append a 
+ie to the E-E, if you wish.) Now let us choose Fk(o,?)=0, 
then there reSults an equation for Fk(0,55 

1 lemma - 1) - ZE-ek(o,¥) + iEggLQ— = o. (23) 
This has the solution which vanishes at a = 0: 

Fk(c,£-’) = -ijc 1am; + 2T1?)a - 1]. (24) 
O 

The straight line or eikonal Green function is now 

'-.' F. on —0 —o _. N E' If) = elq r if do exp Zia k-q -- i °k2[n(r+2¢k)9-1Jd¢ gk( . J 
° ° (25) 

This may be understood if we regard 0 as a kind of path 
length parameter so that 3k is the resultant wave gotten“ H 
by integrating over all paths of the "free wave" exp Ziok-q 
modified by the effects of the medium contained in the in- 
tegral over n2 - 1. The form (25) may be cast into the 
form of an integral over our first modulation function, 
B o ( f 0 ,  if you desire. 

The next approximation to B(;) is now given by com- 
bining (25) with the integral equation (6) 
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3(5') = 300?) + .‘(I—S-g-fi ~[dar' §k(¥,3)e'1q'r'(-v;.no(m) 
(26) 

= B°(r) + ijm dc exp{- ijo k?[n(r + 20k)3- 1]}(- Va Bo(r+2?E;;. 

This is not an unexpected result being a one dimensional 
path integral along the direction k of unperturbed func- 
tions Bo(r). 

Before proceeding onto potential scattering let' 8 
briefly note another variation on the thgne we have been 
pursuing. The manner in which we found gk(r,q is s 
gestive of seeking the entire modulating function B(E% as 
an exponential integral. So we write 

3(3) = J“) (28) 

Using the equation for B(r)We arrive directly at a differ- 
ential equation for F(i5 

v2f(¥)+vF(;)-vfi‘(3) + zii-vF‘G) + 1801(2)? - 1) = o. (29) 
We will again treat the derivatives as small and fomnally 
write 

2112'.v flan) + 1601965) - 1) 

= -n [vzflam + vflim-vflim], (30) 
in which n is a derivative labeling parameter which we 
will set equal to one at the end of time. Then we seek a 
power series solution_ for F(r, n) 

§'(r,n) = 2 VP“ fm(r). (31) 
[11:0 

The equation for §$(r§ is familiar and has the solution 

F003. + AI?) = 32; PM {nu-a. + T103 - 1] (32) 
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which reproduces the result (11) for 30(23. The advantage 
of the present method is that when we seek the next correc- 
tion which satisfies 

2112mm (E) = {vane} + vFo(¥)-vfo<i‘)l (33) 
the solution to which is elementary, we arrive at a cor- 
rected B(r) = exp (Fo(r) + W103) Which is in the form of 
a product rather than a sum. This small improvement is 
useful for numerical work with modulated waves. Further, 
every order in n leads to the same equation (33) which 
makes higher order iterating straightforward. 

III. m a m  
We now turn our attention to the use of eikonal or 

straight line approximations in the scattering of point 
particles from fixed potentials in non-relativistic quan- 
tum theory. Some years ago at this very institute R. 
Glauberz delivered a series of quite lucid lectures on 
this subject and we shall not overlap with his present- 
ation except in the results. He emphasizes the modulated 
planewave approach of the previous section. We shall have 
our eyes slightly more focused on the quantum field theory 
to come in the next section. 

The problemqisqto find an expression for the scatter- 
ing amplitude f(kf,ki) for a particle of mass m to go from 
initial momentum E1 to final momentum kf in the pre- 
sence Of a potential V(;5. The differential cross sec- 
tion for this process is simply 

d_o = lf<kf.ki) lg. (33) 
dnfif 

We will find it convenient to discuss instead of f the T 
matrix 

" a 21m2 - a 
T(kf9ki) = - m f(kfakj_) a (34) 

which satisfies the Schrodinger integral equation 
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—o -| = ~ — o  --O d 3  N — O  - —5 V 
T(kf,ki) v(kf k1) + j 15%;3 v(kf q) SEE5%EEEE—;iex 

2m 

Where V (X) is the4Fou§ier transform of the potential at 
momentum transfer A = - ki and e > 0 guarantees out- 
going waves. We will consider (35) as the matrix element 
of operators T,V, and Go and write 

T = V + V Go T = V + T Go V, (36) 

where 931(E) = E - 33/2m + is taking E = hakg/Zm which is 
the energy of the beam and p the familiar momentum operator. 

The formal solution of (36) is easily constructed 

-1 -1 

T = V + VGV = VGGo = Go CV, (37 )  

where the full Green function 

_1 
a = E - 32/2m - v + is (38) 

appears. 

We want to examine an approximation scheme to T which 
is baSed on high energy or short wave length of the initial 
beam. Let us imagine that the potential has a "range" char- 
acterized by a length a, and that it is for all purposes 
zero outside that distance. It will be useful to keep the 
old favorite 

Voa 

v<¥> = ‘fir exp - (El/a), (39) 
in mind. We want to consider the limit of geometrical op- 
tics wherein the wave length associated with the incident 
beam is much smaller than a; that is 

ka >> 1. (40) 
Further we wish to aSSume that the potential is both 
"smooth" enough and small enough so that the wave is not 
strongly distorted as it passes through. Smoothness can 
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be stated by asking that the fourier components contained 
in the potential be small for large values in Fourier 
space. To make this quantitative consider IV(A)I2 to be 
a measure of the probability of finding momentum IAI in 
this distribution be Small with respect to k or 

<IZI> = I‘M A lv<K>la/ Fem Ive)!a << k. (41) 
Physically this means that the momentum which can be trans- 
ferred to the beam by the potential is small relative to 
the beam momentum, and, thus, most scattering will be in a 
cone about the forward direction. It is clear for dimen- 
sional reasons that (41) is equivalent to (40) for most 
potentials. 

we can guarantee that the potential is "small enoug " 
by asking that its "depth" be small compared to E, or for 
the Yukawa potential in (39) simply 

We now can motivate the idea that during the scatter- 
ing the expectation value of B will never appreciably dif- 
fer from the incoming momentum k and that an expansion of 
G 1 about p = R1 might be warranted. To that end we 
write 

G J = E -  33 -v+1e+_(,L-_Ei)f.'.(?_'_£1):. 
2m 2m 2m 

(43) 

= (le’i-I-Iql“;m {2-121 - v +ie> - (2 _; __ki)i- (44) 
m 

The idea is to treat the second term as small in the evalu- 
ation of the T matrix via (37) and make a perturbation ex- 
pansiona in that small quantity. This was suggested by 
Glaubera and carried out elegantly by Blankenbecler and 
Sugar3 . 

Let us call the unperturbed Green function G1 and 
the perturbation F1, so 
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-1 k3-2".'f£. 2’ , Gi - fidfli- — v + 1_ (45) 

and F1 = (3 - 1292mm. (46) 

In the spirit of our argument we could equally well have 
made an expansion about the final momentfig.Ef since this 
is Supposed to  d i f fer  only slightly from k1. We would be 
led then to  

with -‘ d a , G: =kflif£$fiflfi - V + 1c (48) 

and Ff = (p - kfwzm. (49) 
A symmetric form of approximation to  G is then suggested. 
We note tha t  

G = G i + G i F i G = G i + G F i G i fi  (50)  

and G = Gf + Gf Ff F = Gf + G Ff GE.  (51) 

Using these together yields 

The contribution t o  the T matrix from the zeroth or- 
der term in F ' s  is  equal to  

and a similar expression for  TEf' We may formally recast 
TEi into the form 
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. 1 + V (56) 
T E 1 ¥ K  (151* k =-2§-1ci)_- v + is > 

= , a a - ".“‘a 35 v G1<_k1 + 1: 2m 22 kg). (57) 

So that the matrix element (if lTEil Ki) is 

-4 . .  B _ a 

<kf ITE11 k1) = lim (kf Iv G1|k1> (11min). (58) 
ka kzi 

This is most easily evaluated in a mixed representation 
to yield 

-0 —o _ H j —o 8 - —o —o 

(kf lTEilki) 13:2 e31‘ e ikfrv(r)'(k—El_ki) G10? 1 
ski) 9 

(59) 

where the Green function Gi(;,£i) satisfies 

lka + k3 + 21 Eiovr - v03] (4311131) = ei ki' r (50) 9 

2m 

Whose resemblance to (19) is not entirely coincidental. 
Having solved this equation before we will not delve into 
fancier techniques to do it again, but remind ourselves 
of the answer 

616,121) = irdt exp{i(fl)t ' i It“ VG: ' E10}- 
0 2“ ° .1”- (61) 

When we take the limit to go onto the energy shell, we 
find 

— o — o  

(hf lTEil E1) = % Idar V(;5 e-iA'r exp -ifm dT V(r-ki_), 

(62) 

and for the term in which we expand about if the same 
operatiom yield 
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. — | — )  
~ 1 A - r  

(Ef ITEfI E1) = %Id3r V(;) e exp - 1 d w  V(;+k:T : .  

(63) 
we may understand these formulae as saying that, for (62) 
say, the particle begins the scattering process by enter- 
ing as a plane wave exp i k i '  - f  and picks up a phase due 
to movement through the potential along the direction 
until i t  reaches the potential at r .  At  this point it  
scatters once, as  i a Born approximation, and leaves as  
a plane wave along 

If  we decompose three space as we did previously in- 
to a piece along E- and coordinates orthogonal to .Ei we 
may cast TEi(kf,ki  into 

- — 0  

-1k e 
. — 0 _  m —o A f r i E-I:dT V(b + ki T) 

TE1(££:E1) = *Jdar . (64) 

in which our modulated plane wave of before is now exhit- 
ited. {The boundary condition on i t  is now taken at -".} 
Indeed, recall the general form for the fu l l  T-matrix 

T(12f,12'.) = [as]: e‘fl—éf'E v0?) wki”) (E), (55) 

where a ( +)(r)  is the solution to the Schrodinger equa- 
tion having as boundary conditions incoming plane waves 
eiki' - r  and outgoing spherical waves. Our method here 
has been recisely to make a modulated wave approximation 
for ¢k ( ) ( ifi .  

i 
I f  We introduce the shorthand for the phases associ- 

ated with the eikonal approximation 

I d  V(;  - EiT/m),  (66) Xi(;)  

and xf(E5 j d  V(; + EfT/m),  (67) 
0 

the ful l  f i rs t  eikonal approximation reads 
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= alder VG) e'iK"P [e-ixiG) + e'ixf<?>] (68) 

Consider now the limit in which the energy is very 
large and neglect the difference between k1 and kf in the 
phases x .  When we write 

A = K + lk 

H1
 

1.
 

and note that ¥ . K  m b - K ,  TE may be expressed a? 
- o - o  m _, ,. 

TE(k3,A)= Idzb i+ d1 V(b + Ak)e -1A.b e-i‘E LdV(b + Tk) 
(69) 

—o m —0 a =rd3b e-iA-g it I+§ x_g_ e-i E'Id V(b + Tk) (70) 
d “ 1 - ”  d)‘. 

=(ik/m) Idzb <9-ix(b,k) _1> e-iA-b’ (71) 

where 
+0: 

x(b, k ) =  d V(b + Tk). (72) 

In these expressions A is t o  be interpreted as  a two vec- 
tor whose magnitude is the momentum transferred by the 
potential 

A3 = 2k2 (1 - cos a ) ,  (73) 

cos a =kf'ki. The form (71) of the eikonal approximation 
as a tw0 dimensional integral over the space unpact para- 
meters b is probably most familiar .  

We can cast  the whole eikonal expression into a two 
dimensional form by introducing the Fourier transform of 
the potential 3(a) into (72) 
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+°° 2 , A . . A 
x(b,k) 11H dT {(37312 d N“ “L b + 1‘1 1” v<a,,q.k) 

dag ' -8' ~ = % l(2n)2 e1 9 Vm’ (74) 
where q,is the two vector 3 - E(€-k). The eikonal T-ma- 
trix TE is thus revealed to be dependent in its dynamical 
content, namely its dependence on V, only through those 
coordinates transverse to the high speed initial beam. 
The longitudinal dependences have become essentially a 
kinematic structure appearing through the magnitude of ki 
or kf only. This is a real virtue of eikonal approxima- 
tions since in actual high energy collisions there appears 
to be a decoupling between longitudinal and transverse de- 
grees of freedom. More precisely stated we would note that 
the eikonal form for T provides a natural framework in 
which to describe the transverse dynamics with the more 
trivial longitudinal properties already accounted for.. 
What one must do still is to demonstrate the relevance of 
the form of (72) and (74) for relativistic problems, but 
we shall soon come to that. 

At this point, however, it will be useful to discuss 
the particular potential 

e-uli’l 
V(;) = - Z e2--1E;r—- (75) 

both for its obvious physical interest and as a particular 
exercise in our formalism. First we evaluate x(B,k) 

+m -u Vbz + T3 
e X033) = E l  dT (-Ze2) « W  , (76) 

-oo 

mile2 1‘d e-u b cosh 6 
or x(b,k) = -2 k 

0 

.. 2“?“ K0 (ub), (77) 
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where Ko(ub) is a modified bessel function. The eikonal 
T-matrix is then 

TE(A,k) - as [deb e'iK'B [efigfi‘ K°(”b) - 1]. (78) 

For large k and fixed A, the only term which survives is 
the k independent term which a moments contemplation shows 
to be the Born term: 

TE(A,k) ~ WA) + 0(1/k). (79) 
k—m: 

A fixed 

This is known to be the correct limit for the potential 
scattering T-matrix. Clearly, TE has this limit for a 
wide class of potentials. Further I will let the reader 
verify that our TE satisfies the optical theorem when We 
approximate the angular integral involved by its value 
near A m 0. That is, we take TE seriously only within the 
forward scattering cone but argue that it constitutes so 
much of the actual amplitude that we may use it over all 
angular intervals. 

Suppose we now examine the eikonal TE for very small 
values of u; namely, as we go over to the Coulomb poten- 
tial. For Small argument Ko(x) behaves as 

2 

K000 ~ - (v + 1039;) (1 +§+ ...) 
+ x2/4 +. . .  , (80) 

where Y = 0 . 5 7 7 . . .  . 

So TE (A,k) is approximately 

H A -21mZ-ea 
~ 1.1: ~21m 3 a -iA-b '33; k _ TE(A,k)u-»0 m e —1‘—@ Id b e . [(2) 1] 

(81) 

The - 1 term doesn't contrkbute for A $ 0 and we will now 
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agree t o  stay away f rom that point.  The remaining inte- 
gral  is 

-2imx§e8 -2imZe2 
k . k ~ 21111: y x 

TE(A’k)  Ll-O m 3—11-— t%) 

1-2im2ea x in“ M") x k_ , (82) 

or upon dropping an irrelevant phase and a tricky phase 
associated with the uA term, we may write 

_ 41'IEe2 I ‘ m - fi e ”  mg). 
TE Coulomb (A’k) _ - A5 F(1 + ifie‘m/k) (83) 

This function has a se t  of poles a t  the points 

. a 
1 - i1?“ = - n, n=0,1,2, (84) 

_‘ hzka = fl !  (85) 
°r En 2m (n+1)3’ 

me4 where Ry = 55? = 13.5 e V. (86) 

There are familiar poles, and it  is rather a pleasant 
surpr ise  t o  f ind  them in a T-matrix whose realm of valid- 
i ty  we suspected t o  be  f o r  E a m, not  f o r  E below the 
threshold in the bound s t a t e  region. What explanation can 
we f i nd  f o r  th is?  Perhaps the following heuristic argu- 
ment will  appeal t o  the reader (perhaps n o t ) :  Binding by 
a potential is a non-perturbative process involving an in- 
f ini te  number of interactions with that potential. Con- 
sider a particle which has jus t  interacted with a poten- 
tial . If i t  received a large momentum kick from that 
interaction i t  will  have a very small overlap with the 
bound state wave function i t  is  trying t o  generate. One 
might well  expect that ,  therefore, the primary contribu- 
tion t o  binding comes from the low momentum components 
of the potential ,  i . e .  those governing the long wavelength 
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behavior of V; Since these are what we have summed up in 
the eikonal approximation we are not so Surprised the bind- 
ing energies are reasonable. What one should, I think, be 
surprised at is the fact that the exact answer emerges. 
This is  not the only surprise the Coulomb potential has 
ever produced. A more significant test of TE would come 
in examining the binding energies for the Yukawa poten- 
tial with “*0; this has not yet been done. 

Now instead of evaluating the corrections to the 
first eikonal approximation which are contained in our 
expression (52) for G, let us mention a techniQue of ap- 
proximation which is stmilar to  that we employed for the 
modulating function in the previous section. As we now 
know the problem we are interested in is essentially that 
of constructing G. When we have G then we can find 
(kflrlkv by 

(kfIT|k1> = 1““ a [1:21:12 1 Wu" "1' V14?) “3.113)? 1‘3q 

(87) 
and we know G(E,Ei) satisfies the differential equation 

[E + Vrs - v03] 96,121) = eiii'; , (88) 
2m 

so that 116,121) = e'ifii'; 663,121) will obey 

[E + “I ‘2’ 55203 - v65] 363,121) = 1. (39) 
m 

Now we seek a solution of this in the forms' 

.. _. °° due-y -1e)>~+ F6? E x) 
H(r.ki) =1} d1 e ’ 1’ , (90) 

O 

which has the virtue that when V - O, F = 0 and 

- o - o  k a - k a  . \ — 1  H(r,k1) = (E-—zfi-i—— - 16/ which is expected. In the 
now familiar manner we wi l l  find the differential equation 
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for F to be 

@3172 + vr2/2m+ia—2)F(¥,Eix) - V(E)+e(i:’,Ei,x).e(i:',1Eix) 
m 

= 0. (91) 

There are two routes to take now: (1) treat the VeF and 
(VF)- (VF)  terms perturbatively as we have done above or 
(2) expand F in powers of the potential by giving it a 
scale factor g and writing 5‘ 

—D —) {3—0 —o —v 
F(r,ki,>\) = I; g“ Fn(r,ki,l). (92) 

nil 

For variety weflwill pursue the latter path. The lowest 
order term F1(r,R- A) satisfies 

' .  I i  ' 2 —v —) --9 (1‘1"; + ‘1 + i §>F1(r,ki,x) = V(r), (93) 
m 2m 

and has the solution which vanishes at A - 0: 
_; 

—v —o )t 3 ~ _. a fi . ‘ _ . — ‘ . .  , 2 

F1<r,k-,x) = 'ildT i—q—a We» a“! r 1.1% q -q /2m 94 
1 . (2n) , 

0 

which differs from our previous form by the q2/2m term. 
This can be regarded as a form of curvature correction to 
the straight line approximation of our other examples. 
The T-matrix which results from this method is from (87) 

T(£f,Ei) = Idar e-IA.r V(r) eF(r’ki’m) ; (95) 

this is a general result. Inserting (94) gives this ver- 
sion of the eikonal approximation. Again the major virtue 
of this technique is to provide a final expression for the 
T-matrix which is a single integral rather than a sum of 
terms. 

The potentials we have treated to this point are r 
dependent potentials only. It is of some interest to ex- 
plore the eikonal T-matrices for certain energy dependent 
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potentials also, The first one We shall explore is an old 
friend, the spin orbit potential, 

= v1 (r) + 3-1? vs (r) , (96) 
where we take V1, and V3 to be central and the 3 operator 
could refer to any spin, but We '11 be happy with spin %. 

_. 
The operator L is, of course, r x p. 

The Green function we wish is 
—. 

G-1(E) = E - 5:: - V1(r) - (E x E)-3va(r) + is (97) 
We will approximate this by expanding about fi- as uSual 
and treating the remainder as a perturbation. The Green 
function for the basic eikonal path will be 

.1 -c —n —o —0 —v 

31 (E)= ka+k:-2p-ki - v1 - (oxr)-kiV2 + is. (98) 
2m 

The T-matrix which results is easily read off from (71) 
and ( 7 2 ) .  We have 

+00 

x(13',k) = %  j V1(b +Tk)dT + mc-(b x 10].: Vg(b+Tk)dT 
(99) 

— ‘fi x; (13') + m E. (3x12)x2(13') , (100) 

and a 
Spin orbit _ .* . r  'i X (b k) n TE(k, A)= i_k Jdab e “A b E ' {cos MbXa (b) - 

-1 E’- (B/b x 12) sin mb x3033}. (101) 

There are two basic differences between this result and 
(71).  First, of course, there is the additional spin de- 
pendent term. More significant, however, is the limit as 
k~w for fixed momentum transfer A. Whereas the ordinary 
central potential yielded a constant in k which we recog- 
nized to be the Born approximation, for this potential we 
see that in this limit the xlterm is irrelevant and we are 
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left with 

Spin orbit 
TE (k,A) ~ i k F ( A ) .  (102) 

k—bm 

Afixed 

Now this is an intriguing result for we know that in actu- 
al high energy scattering experiments the elastic scatter- 
ing amplitude does not retreat to the Born approximation 
but becomes very close to being purely imaginary and grows 
with the center of mass energy W as We. Here we have a 
clue as to how this might transpire. We have yet to dis- 
cuss relativistic scattering, but we are encouraged to seek 
the equivalent of a spin-orbit potential and must discover 
how k goes over into W2. 

Next consider the potential 

V = is Vo e -ur/r (103) 

where V0 is a constant. This is not a terribly realistic 
form for V, but it will illustrate an interesting point. 
As usual We expand the full Green function about p =  k1 or 
kf and via (71) and (72) construct TE. The eikonal phase 
is 

x(§,k) = 2% (ksbz) vo Kama), (104) 
and 

i k ' -1Z-B’ [e-ZimkbzvoKowb) TE(k,A) = -m— vdab e a]. (105) 

Now for fixed A and large k we encounter a rather different 
situation from our previous examples. In this case the 
phase in the exponential oscillates wildly and we must seek 
the point of stationary phase; that is, we must search for 
a minimum of 

v0 2m k b2 Ko(ub). (106) 

The small b region does not contribute much to the limit 
we are taking. However, if We note the large b behavior 
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of Ko(ub), namely 

K°(“b) b: a \. 2—ub>%e “lb [1 ' sTb+m1 (107) A, 

we see that we may achieve a stationary phase in the re- 
gion of b space where 

b re log ELLE—1°- , (108) 

and that the leading behavior of the eikonal amplitude is 

TE (k, A) k—m i k(log 103, (109) 
A fixed 

dropping some uninteresting constants. 

Two comments are in order about this result. First, 
the same leading behavior Would occur if higher powers of 
energy dependence ware allowed to enter the model poten- 
tial (103), so that (109) is in some sense a maximum high 
energy behavior. Second, were we to replace k by W2 to 
pretend we were relativistic, we would recognize this be- 
havior as exactly the Froissart bound. Since that bound 
is deeply ingrained in our beliefs of what is consistent 
with unitarity, it is pleasant indeed to have an approxi- 
mation scheme which respects it. 

This ends what I have to say about the use of eikonal 
methods in potential Scattering. There are a number of 
real uses of these methods in nuclear physics where poten- 
tial theory appears to be important. I refer you again to 
Glauber's lectures and subsequent work by many physicists 
for discussion of thesa interesting topics. As for us, we 
will proceed on to field theory. 

IV. Field Theory 

Since relativistic field theory is much richer in its 
physical content than potential scattering, it will take 
a bit more cleverness to extract from it the equivalent of 
our eikonal approximations. The approach we will take is 
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to effectively reduce field theory to a problem in poten- 
tial scattering and then begin approximating. The basic 
observation necessary for this task was made by Feynman 
and Schwinger so long ago that we have ceased teaching it 
in our schools. Namely, particle emission, absorption, 
and exchange which We think are the basic processes in 
the description of forces among relativistic quantum ob- 
jects are all contained in the knowledge of the response 
of a particle to external potentials (or as some would put 
it more forcefully these days, external c-number sources.) 
More precisely, if we know the amplitude T(A) for motion 
in an external potential A(X) we can extract from it the 
amplitude for emission and absorption of the quanta asso- 
ciated with the quantum numbers of A(x) by varying TQA) 
with respect to A(x). Since A(x) is a function, we will 
need to take functional derivatives, but we'll proceed 
as if they were ordinary derivatives and leave any problems 
to the squeamish. 

We will deal in these lectures exclusively with quan- 
tum electrodynamics of (usually) massive photons. So the 
object of interest to us is the amplitude for some process 
occurring in an external c-number potential A 0L(x) This 
potential satisfies 

(52 + H2) Aa(x) = Ja(x), (110) 

where Ja(x) is the conserved external current giving rise 
to A (x) and u is the mass associated with the quantized 
A0L f1e1d. We establish our notation a bit more by remind- 
ing ourselves that the solution to (110) involving causal 
propagation is 

A0100 = Id“ Y D+<x ' y) 5010’), (111) 

with 
_ -i<1-x . g L_,__ . (112) 

13+”) I(2rr)‘ ua-q‘ -1e 

If we are given T(A), the transition matrix element for the 
processes in Aa(x9 and wish instead the amplitude for the 
same process to occur accompanied with the emission of a 
photon (of mass M) with wave function G B(X1), then we ask 
how T(A) varies as we alter A (x), thm replace at x Aa(x) 
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by Ga(X) and integrate over all x. Thus we arrive at 

.[d4x % )  (129;) _ (113) 

as the amplitude for T plus the emission of a photon Ga. 
If we are interested in the final process in the absence 
of the external field, we simply set A - 0 at the end of 
all operations. 

An example of this may be useful. Suppose we have an 
electron described by the Dirac equation 

(? - e A - m) V = 0 (114) 

in an external potential Aa(x)°7'  The amplitude for the 
electron to go from momentum p, and spin X; to p; and lg 
to second order in the action of Aa(x) is as usual 

T<prp2;A) = jcfizcfiy Emma) e'lpzz eY°A(z) x 
X 8(2 - y) eY-A(y.) elpl'y u(p1,M), (115) 

with S(z-y) the electron causal propagator. From this we 
may find the amplitude for the electron to scatter to first 
order in the potential Aa(x) and also emit a photon of wave 
function Ga(x) = eé elqa-x. Using (113) there are two 
terms 

e2e1“* 5(92,ka)fd‘°‘zd4y{e-1(qa+P3) '2 Ya S(z-y)\(-A(y)elpl'y 

W mast-” WW) } «w- <1“) 
These are just the well known Feynman graphs which include 
emission of the photon of momentum qg before and after the 
action of the potential A“. 

Also contained in (115) is the amplitude for the ab- 
sorption of a photon of momentum q; and then the emission 
of qz while the electron goes from p1 to p3. We arrive at 
this piece of the Compton effect by applying (113) to our 
last result 
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T(P1,>\1 + c11,6: " P2, ) \2  + ‘ 1 2 , € ' )  = 

e2 s’a* eB E(pg,k2) Id4zd4y { 

e-i(pl+q2)'z i(p1+q1)-y+e-i(pa-q1)-ZYBS(Z vaS(z-y)YBe -y)YaX 

xe1(P1-q2) ay} u(p1, x1) , (117) 

again a well known result for the Born approximation to 
the Compton effect. 

Finally there is another piece of information in (115), 
namely the amplitude for p1 to go to P2 including radiation 
corrections to order e2. That is, the first order in e2 
corrections to the electron propagator S(x-y). To exhibit 
this we need consider the possibility that the electron 
emits a photon of momentum q and then reabsorbs it, the 
initial emission acting as a source for the subsequent ab- 
sorption. To emit the photon we take one derivative of 
T(A) and to absorb it another. Since it is the same photon 
which is emitted and absorbed we must Supply a D+(x-y) to 
take it from one act to the other. The resultant amplitude 
for p1 a pa to our order in e2 is 

‘ 5 5 
%Jd4Xd4Y EX;(X) gaBD+(X‘Y) EX;(y) T(PITP2;A), (118) 

the factor of % arising because we integrate over all pos- 
sible positions of photon creation and annihilation. 

We are prepared now to construct a framework in which 
to describe interaction. Essentially we shall ask that we 
know how a particle, call it number 1, moves in an external 
potential Ala, while,independently, number 2 moves in Aza. 
Next we ask of 1 that it emit a photon via 6T1(A1)/6A1a(x), 
then allow the photon to go to y by D+(y-x) and be absor- 
bed by 2 there via 6T3(A2)/6A2a(y). The propagation func- 
tion D+(z) acts as the potential or mediator of the reac- 
tion. If our experimence with potential theory is rele- 
vant (and it is) we shall expect to find that the two par- 
ticle scattering amplitude is at very large energies of 
an eikonal form with the eikonal phase given by an 
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appropriate integral over D+(x).  

Before we launch into more formalism it will be use- 
ful to see what this "appropriate integral" must be. Re- 
call that in potential theory one spatial direction E was 
singled out and that the eikonal phase was a path integral 
over the potential along this direction. In relativistic 
scattering two "directions" are singled out by the parti- 
cles coming along i K. Take the spatial direction to be 
the z-axis, then for very large momenta the trajectories 
of colliding particles are near the light cones z = i t. 
We may anticipate that the eikonal phase will be propor- 
tional to 

I+°°dzdt D+(x,y,z,t) , (119) 
-oo 

. . . _. +iq'IlB which is d?g _ 

with b = (x,y). Furthermore, since in electrodynamics we 
are dealing with the relativistic analog of the spin or- 
bit force, ( 9 6 ) ,  we can expect that no energy dependence 
will appear in the eikonal phase. 

To demonstrate that these expectations are fulfilled 
We need to construct an equation for the Green function of 
an electron moving in an external field A a ( x ) .  Were there 
no self-interaction, we know from the Dirac equation that 
the Green function QA(x,y) would satisfy 

[1 7x - m - e 4100] QA(X,y) = 64(x-y), (121) 
with appropriate boundary conditions. With self action the 
Green function must be altered to reflect the apossibility 
of the electron providing its own potential A“ self ( x ) .  
This self potential can be found by asking how the electron 
responds to an external source Jo and (121) is altered to 
read 

. . 6 [1 fix - m - e(4(x) -1YB 33E(x))] GA(x,y) - 54(x-yiizz) 

and at the same time the potential Aa(x) must satisfy 



EIKONAL APPROXIMATIONS 29 

(u2 + as) Aa(x) = Ja(X) + ifg tr Ya GA(x,x). (123) 

The derivation of these equations is given by Schwin- 
gere' and by Fradkins'n We pass over that but pause to in- 
terpret them. The appearance of 5/6 J3 in (122) is exactly 
what one would expect since it is the response to an exter- 
nal source that provides a potential. The self potential 
of an electron is thus provided by its own response to an 
outside source. In (123) the "extra" term on the right is 
just the source term of photons due to the electron cur- 
rent ¢(x) Ya¢(x). It gives rise to vacuum polarization 
effects in photon propagation and is the origin of most of 
the interesting non-linear aspects of field theory. 

Our first approximation is to either ignore this po- 
larization term or to replace it by some appropriately 
path averaged equivalent. That is we begin our discussion 
of motion in an external potential by ignoring the ability 
of photons to create pairs or by replacing the photon pro- 
pogator D+(x-y) as given above by an effective D reflecting 
some knowledge of the off shell behavior of D. This is 
tantamount to discarding in graphical language all those 
diagrams in which an electron pair lying on a photon line 
connects to anything else. With this approximation we may 
eliminate 6/6J  in favor of G/éA in the equation for QA 
yielding 

(iyx -m -eEK - 1Y5 Jd4z D+(x-z) Eggzgy I) qA(x,y) =54(x-y) 

(124) 

The advantage of this result is immediate since a formal 
solution to (124) is 

' 4 4 V6 _ 5 GA(x,y) = exp k-sd 2 d W —6Aa(z)' D+(z W) —‘5Aq(w)>qh(x,y). 
(125) 

where QA satisfies (121).  This states that if we know how 
to construct the Green function 9A for-motion in the absence 
of vacuum polarization and self action, then we will, by 
differentiation, be able to extract the full Green function 
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GA for electron motion in an external potential without 
vacuum polarization effects. 

Constructing 9A, of course, is no easy task in gener- 
al. It is, however, exactly the relativistic equivalent 
of evaluating the Green function in a potential V that we 
spent the last sections learning about. To proceed let's 
introduce an operator notation whereby QA(x,y) is regarded 
as a matrix element of an operator GA in an appropriate 
space 

CIA(X,Y) = (lAly). (124) 

The operator P is i Vx as usual and the operator X has the 
commutation relation with it 

[Xu’Pv] = -i guv' (125) 

The Green function equation reads 

[r - m - exam 9A = 1 (126) 
in this notation. 

Now suppose we are interested in a process where a 
very fast electron of momentum p1 scatters from our exter- 
nal potential into a state of momentum p1’. If we evaluate 

I (p1 QAlpl), then the transition matrix (p{)IT(A)Ip1) fol- 
lows in the usual manner 

(p;IT(A)1p1> = e<p1 Ia GA qo‘l In), (127) 
Where 90 = QA=0 = (P ' m)-l. 

As in the non-relativistic case it is useful to ex- 
pand P about the fast momentum p1 which is a c-number. We 
write 

1 / ( F  - m - e A) (128) 

(m + ¢ 1 ) 2  (129) 

GA 

1 
(m + #1)j(F - m - e4) 

' 2P1’P'(m.§+P1%3'e(m+l‘1)£‘.+(r‘i1)(m-é1)(m + 1‘1), (13°) 
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and begin expanding about p1 by treating the term (F_fi1)x  
X ( m - ¢ 1 )  a s  a perturbation.  That i s ,  wr i te  

a p p - m a p fi ) - a m + m m = q f % m ,  an) 

and GA '3' m i  (111 + # 1 )  , (132) 

with  F1 = ' ( P  - # 1 ) ( m  ' f l ) -  

The f i r s t  eikonal approximation t o  GA becomes 

Q1(A) (m + ¢1>. (133) 
The next  approximation would b e  

(51(A) F 1  C9103) (m + [51) , (134) 

and s o  f o r t h .  I f  one wished t o  expand abou t  the f i n a l  mo-  
mentum, p1 , then the  appropr i a t e  o b j e c t  t o  cons t ruc t  would 
be  

Q{(A) = p - P  - (m2+p{2) - e A(m+p{) ,  (135) 

and the f i r s t  eikonal Green func t ion  is 

(m + 161’) (MA). (136) 

L e t ' s  consider in some de ta i l  the eikonal T-matrix 
ar is ing f rom the approximate GA in (133).  The on mass- 
she l l  T matrix wi l l  be given by 

3 E ( P 1 ” P f 3 A ) =  l im 3 ( é 1 | A ( X ) Q 1 ( A ) ' P 1 ) ( P 1 2 ' m 2 )  (137) P12‘m2 

= 11m e G<pi>jd4y e'ipi'y A<y> (ql(A>lpl)<p12-m2). 
P12_mg (138) 

Now look a t  ( y I Q 1 ( A ) l p 1 )  near p12 = me.  We f i r s t  exponen- 
t i a t e  the denominator in  Q1(A) 
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Q1(A) = ‘ijd ei TEZPI 'P ' (m2+P12)  -e(m+p$1)A((X)]. 

O 
(139) 

Next we use the following identity for operators A and B 

1 At -At 
A+B I dt 9 B e D A (140) e u e o _ e 

where C >- means anti ordering according to the parameter 
t. {This identity is proved by exactly the same procedure 
as one uses to establish the time ordered form for the U- 
matrix in scattering theory.} Identifying the operators 
A = 2p1-P —(m2 + p13) and B = - e(m + ¢1)4(X) we find di- 
rectly from (139) and (140) T 
(y I91(A)|p1) = are“ e'1 e(mfl‘flfdt 46-2910 

x e-i T(m2-p12) e1 play u(pl) (141) 

yielding a T matrix 

3E(P1"p1' ;A) = jam, ei<Pl‘P1'>’Y Gm) em) >< 
xexp [-ief at (m + 251) My -2p1t>}u<p1). (142) 

Upon noting that for any vector V the quantity exp [(m+§)V] 
u(p) simplifies by use of the Dirac equation (m-p)u(p) = 0 
to exp [2poV] u(p), we may cast (142) into 

3E<p1~pnA> = Id‘wrfiei‘Pl'Pl')‘y fi<pJ> e My) u(pn 
x exp (fzi e Ifidt pl-A(y - 2p1t)> (143) 

our result for the eikonal T matrix expanded about p1. 

If we wanted the full eikonal T-matrix including 
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radiative corrections along the electron line (but, of 
course, without vacuum polarization effects), our instruc- 
tions are to operate on 3E with 

TE(A) = exp <f%Jd4w d4z gzizab D+(W-Z) EXETEF >3E(A), 

(144) 

which action inserts photons at all points z propagates 
them to W and then absorbs them. Even without computation, 
we can see that something is terribly amiss in our formula. 
Nate that the spin structure of the amplitude 3E0» is such 
that only the convective part of the electron current 
uCPQYm u(p) enters, the possible magnetic piece 
fi(p)o {p'_QBu(p) is absent. The photon insertion opera- 
tor w 1 not change this fact, yet we well know that even 
the lowest order radiative correction to the Born approxi- 
mation (neglecting the modulation factor in (143))yields 
a magnetic moment term with the famous a/Zn as its strength 
at zero momentum transferred to the potential. You may see 
where we have lost this contribution by examining the appro- 
priate lowest order Feynman graphs and making on them the 
high energy approximation we have been discussingo What 
you will discover is that you have not only thrown away the 
magnetic moment term but also have arranged that the con- 
vective term is no longer renomalizable by the standard 
(physically acceptable) procedure of abtracting the value 
of the graph at zero momentum transfer. 

The reason we have encountered this difficulty is 
that We took very seriously the external potential formal— 
ism as providing a generating functional for photon loop 
insertions connecting electron lines not moving rapidly 
with respect to one another. That is, until We asked that 
(143) generate T we were in no trouble. The proper manner 
in which to handle radiative corrections to the scattering 
of a fast electron in an external potential has been given 
by Bjorken, et al8 who treat photon insertions into elec- 
tron lines and photon propagations exactly while using the 
eikonal on the interaction with an external potential. As 
they point out, one finds in this way the correct anoma- 
lous moment and charge form factors arising from photonic 
vertex corrections, and one also exhibits the unfortunate- 
ly very complex structure of the radiative corrections to 
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the rather simple (physically intuitive) form for SE“) 
given above. Our lesson in this is to use 3 E(A) 
as a generating functional only for connecting the exter- 
nal potential to our fast electron or for connecting an- 
other electron to the first. Be very wary of photons con- 
nected to the sage electron line in the eikonal approxima- 
tion. We will resurrect this warning when we discuss the 
form factor in eikonal electrodynamics. 

With this caveat we may now examine the eikonal ap- 
proximation to the scattering of two electrons. We can 
evaluate this in the absence of vacuum polarization cor- 
rections by letting each electron move in its own exter- 
nal potential and then picking up all the connections be- 
tWeen the individual electrons. So let electron number 
one go from momentum p;, helicity A1 to p1,l{ in the poten- 
tial A1 while nunber two goes from P3, l3~p2,lg in Aa' The 
scattering matrix for this with no self-action or interac- 
tion is 

3A1A3(p1,h+pz,>xa-'pi,7V1+pé,>»£) = 8(pl,h-'p{,>~'1;A1) X 
3(P8,)‘2 a P5,)“; ; A 2 ) o  (145) 

We now need an operation to insert photons at all external 
potentials and connect these insertions by photon propaga- 
tions. That operator is, of course, 

i 4, 4 ‘ 6 5 \ _ — - — —  + — _  X eXP 2 Id W d Z “_ 6A1a(w) 6A3cc<WV 

5' a \  
x D+(w-Z)L \5A1m(2)+ QAeu(z) )' (146) 

We have received our instructions to discard the self ac- 
tion terms in (146) or treat the Self photons more exactly 
so we take only the A1,A3 cross terms and find for the full 
T-matrix without vacuum polarization and self action 

T (P1,A1 + P2,Aa ” P{.A{ + Pe,AE) = 
' ‘ 5 5 

expcfi Jd‘w d‘z EzgzzabD+(w-z) Egzgzz) > x (147) 
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3(91X1~p£11 ;A1) 3(pa,>~a~pé,ké;Aa (147) 
A1 = A2 = 0. 

We have built an eikonal approximation to 3 by ex- 
panding P about a convenient fast momentum. Before We 
took the indident or final momentum as the point of ex- 
pansion; now let us choosc the average of the two for Sym- 
metry and ease. So we expand 3CA1) about Q 1 =  (p1+p1)/2 
and 3(A2) about Qg(p2+ p;)/2. If we further note that 

5(pi,l'1) Ya u(1>1,?~1) NQx_a 611’ h (148) . m , 

to leading order in large momenta, we may write for the 
eikonal approximation to 3(A1) 

3E(P1.’\1 * PLM ;A1) = 

_ I . -'ie dt2Q'A1 (y-2Q1t) 
AAJCI“ ei(P1 P1) Y e l 2 Q 1 . A 1 ( y ) e  16f” 1 

(149) 

a _ I _ .  9‘” _ xix, I‘m” e1(p1 pawl i. (e 1elgdt12Q1-A1W1 2Q1t0> 
2m 1 d0 1 . 0:0 

(150) 

where we have let the charge on electron one be e1° 

To evaluate T we observe that the connecting opera- 
tor in (147) is just a displacement operator which we ap- 
ply twice to yield 

16' 1 6 , p , x 
TE(P1M+P2)\2 " P;>‘1+Pal)‘é) = M'éa—a- x 

4“ (151) 
, I . I 

x‘l‘dg'YidéYz ei(P1‘P1)'yi+J-(P2'P2)-Yz 1—. .d_ d— X 
i2 do do, 
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X<exp(-i) 5461 ea -Q2 etl t[titre D+(Y1 "Y2 '2Q1 t1 +2Qa 1:24)). (151) 
a 
1 2 01:03: 0 

Since we have turned off the external potential we expect 
to find in (150) a delta function of energy momentum con- 
servation. To exhibit this,change variables to 
W=(y1+y2)/2,W=(y1-y2)and do the d‘W integration. This ‘ 
yields a i(2n)46‘(p1+pz-p£-pé) which we remove from TE 
without taking the trouble to define a new symbol at this 
point. This leaves us with the on-shell T-matrix 

+16 . 6 I . I w w x' A x l; 4 1(p1-p1)-Wd d ’ . 1 3 - ——-Z$§-——-—-— Id w e doldOSCexp lidtligta x 

4e1e2Q1°QaD+(W - 2Q1t1 + 2Q2t3)) . (152) 
’ 5 1 = 5 3 = 0  

We will evaluate this in the center of momentum frame in 
which the spatial parts of Q1 and Q2 are equal and oppo- 
site 

63 + 52 = o. (153) 
Decompose the integration variable w into a two vector b 
orthogonal to Q1 and Q3 and pieces along the Q's 

W = 2 + T1Q1 + TgQg. (154) 

The Jacobian involved in this change is 

(Q10 + Q20) léll, (155) 
so the T-matrix reads 

—. . , ‘ + m  l+m . 

i(Q1 o+Qso) |Q1 161111 51": g IdTlidTQIdsb eH‘A h x 
4m: -w - 

X (1— i- ran on 

doldoQCExp-ieleq-Q3Jdel Ids; n+(hrelql+eaQa)7 
- 1'1 +2 O1 T3+202  I 01 =Ug=o 

(156) 
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=+i (Q1 0 + a )  |Q1 I 6111}; 6 A2, *2 J‘dzbeJ-A‘R exp<nie1eaQ1 q x 

' fi f  m . 

+09 +00 

eel Idea D+<g - m; + 82%)) - 1 1. (157) 
-CD -¢u 

The component of the momentum transfer pf-p; along the 
direction b has been denoted by A. The integrals over 81 
and 33 may ~also be performed using the representation of 
n+(x) in (112). 

jdpa sa D+(b ' Ha + Un) = 

+09 P+°° , . ' 

ldm 'dua fig" (2n); e'iq‘Q'WQ‘w‘Q") = (158) 
UF-qa-ie 

(159) 

*=‘ ETA-T— d_‘cn_‘ e. '~ (160) 
1‘(Q10+Qeo‘ (2“33 H +|g|§ 

-1 , , K°(ub) , (161) 
‘2fl|61|<Q10+a) 

which, by now, should be no surprise. 

We may simplify this a bit more by introducing the 
invariants 

= (P1+P2)a and t = (pl-pf)”. (162) 

To leading order in s for t finite the eikonal T-matrix 
reads9 

TE (8, t ) =  2mg Gxgxléxéxg x (163) 
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x Ida, e ~~ [exp- (”3% Kenn») - 1'], (163) 

where t = - IA|3. 

The characteristic and significant features of this 
result are (1) no spin flip on the electron lines occurs 
to this order in the eikonal expansion; (2) the T-matrix 
is of the form 1 s F(t) which is standard for the spin 
orbit form of interaction involved in electrodynamics 
and which leads to gonstant total cross segtions. (3) 
This form cannot be correct for a very large range of t 
since it violates t-channel unitarity.° 

It is very meaningful to inquinaas to what set of 
Feynman graphs is summed by the eikonal T-matrix (163). 
The answer is not terribly difficult to come by since in 
arriving at that anSWer we explicitly eliminated vacuum 
polarization graphs, that is graphs where an electron po- 
sition pair forms a closed loop which connects to the out- 
side world by photons only and we discarded radiative cor- 
rections to electron lines. That leaves us with the gen- 
eralized ladder graphs shown in Figure 1. It is amusing 
-to note by the way that the asymptotic behavior of the 
first graph is se Fg(t) for large 3 and fixed t. For the 
second graph it is (3 log s)e‘ F4(t) which seems inconsis- 
tent with the expansion of TE in powers of e. However, 
for the third graph the asymptotic behavior is 
(- s log(-s))e4 F4(t) with the same F4(t) as before. These 
fourth order graphs then combine to yield - i s fie F4(t). 
So there is a neat cancellation which occurs. In order 
to demonstrate the equivalence of the expansion of TE 
term by term with the Feynman graphs it is still necessary 
to show that the correct functions of t appear. This can 
be done9 with a certain amount of labor. That it must 
work is physically pretty clear. 

Having made this connection with Feynman graphs one 
is immediately led to ask whether one can find other 
graphs, neglected by our procedure, which have an aSymp- 
totic behavior which dominates over i s F(t). There are 
such graphs. They correspond to "towers” of exchanges in 
the t-channel. Figure 2 is the prototype of such graphs 
in which photons shaken off the electron lines interact 
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via a photon-photon scattering loop. Such a diagram b- 
haVes for large 3, fixed t as s (logs) f(t) a contribu- 
tion which is 39; cancelled by other graphs of the same 
order in as.11 Adding more loops gives more logarithms 
- one extra per loop. In a manner familiar from the 
discussion of the generation of Regge behavior in field 
theories, the sum of these leading logarithms builds up 
to a power. 

Again from our experience With Reggeology We can 
forsee the disaster that is approaching from the power 
behavior due to the sum. When one adds up the contribu- 
tions of graphs like Fig. 2 at t=0, the positive definite 
contributions of these various contributions to what is 
effectively the unitarity relation for elastic scattering 
will take'the original pOWer $1, the ”l" of which we were 
so proud before, and push the power to l + e, e > 0. For 
the particular set of graphs in Fig. 2, e = llon/32; a 
number with no dramatic significance in itself. What is 
significant is that the power is greater than one, and 
this set of graphs considered leads to a T-matrix which 
violates the unitarity bound.13 One may consider curing 
this by iterating these "tOWers" down the s-channel argu- 
ing that they eikonalize and, following closely the argu- 
ment given from Eqs. (104) - (109), expect the resultant 
amplitude to saturate the unitarity bound s(logs)3. This 
is what appears to occur, but I will leave it for Profes- 
sor Sugar to defend the point in detail. 

The final eikonalistic topic I would like to treat 
by the methods we have been discussing is that of the 
electromagnetic form factor or vertex function. Actually 
this is such an ancient topic11 one, perhaps, ought to be 
embarrassed to raise the issue at this date. Othersla 
having overcome this reluctance of late it seems more or 
less appropriate to include the matter here. 

We are interested in the amplitude for an electron 
to go from momentum p; to p; emitting a photon of moment- 
um q. Were there no self action the anSWer to the Quest- 
ion would be 

1‘°(q) = - d‘y eiq'y 5 (palt‘: '1 lp) B I afl‘ry)‘ A 1 A = o (164) 
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= Id‘y ei(p1-pz-q)°y e 5(P2) YB u(P1) (165) 

1(2w)‘ 6*(p1-p2-q) e a (pa) YB u(pl). (166) 
We are, of course, interested in the coefficient of the 
delta function which will give us a measure of the dyna- 
mical response to an external source Ta- 

When we include Self action,but as is our procedure 
here leave aside vacuum polarization terms, the vertex 
function becomes 

r8<q> = - zigza3 (PEIGA-IIP1)IA=0 (167) 
l 

The general form for TB(q) is well known to be 

1‘8(q) = i(2n)‘6"'(pa+q-P1) 5(p2) {YBF1(C13) 
T a 

+OBT q F 3 < q  )} u ( P 1 ) ,  (168) 

and we are interested in an eikonal approximation to the 
F i ( q 2 ) l  

To proceed we write (167) in matrix notation 
scA'l T ~ - (169) 

B FEE— A = o 
and using GA-IGA = 1 note that 

- 6G -1 I 1“ - G 1 + G B A 6A A | A=0 (170) 
. '1 5QA ‘ '1 

GA K ('55:) GA | A=0 . (171) 

where K is the operator exponential of functional deriva- 
tives which as in (125) converts QA to GA- 

Now observe that 
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5 172 as? —-r(—L- M. ‘ ’ 
“a #1 - (173) _, Win-ed 

What we wish to do is to expand the right hand Q in 
(173) about the incoming momentum p; and the le t hand 
Q about p2. For this purpose we employ our eikonal 
Green function as recorded in (141) and its counterpart 
for P2. The resulting vertex function before the connect- 
ing operator is applied is given by 

°° °° _ .  3 _  2 _ .  o _ _ .  I 
-‘]‘d4y IdldTa e 11-20“ P 2 ) e  1P2 y U(Pa)eYBe lq Y 

T2 T1 
XexPE-iejdt24(y+292ta)(m+16a) file! dt1(m+¢1)¢(y-2p1t1)] 

. _ '  3 -  3 x eipl Y e “1““ P1 )u(p1). (174) 
The application of the functional operator to insert pho- 
tons in all possible ways is aided by the elementary re- 
sult 

exp[jd4w d4z Efuzz3D+(z-W)'3Ki?;5] expid‘xA“(x)Bq(x) 

= exp Id4xA“(X) exp‘fd‘w d‘z B“(W) D+(w-2) Baa). (175) 
for any1 vector function Ba(x) .  If we use this, employ 
the G A 1  '8 to go to the mass shell and finally turn off 
the potential Au, we may extract from (174) the eikonal 
vertex function 

rim) = i<2n)*64(p2+q-p1) fi<p2>ev6u(p1>F1E<qa), (176) 
where 

at. [32 
F1E(q3) = exp{- n d HER '18 [ilk—Tt - P——a>:k ]}3 (177) 

and, as noted, 
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F2E<q2> = o. (178) 
The question one must ask about this reSult is, of 

ecurse, where we might expect2 it to be valid. It is 
clearly not correct for all q2 since we know quite well 
that in electrodynamics F2 is not zero but at q 2=0, say, 
is the famous a/Zn + 0(oca /n3) terms. Since we have no Fa 
form factor the only way we may reasonably interpret 
(177) and (178) is that in some limit we are finding F2 
negligible with respect to F1. Since the onlyz variable 
around is q2 the only limit around is larges q: . The 
aSymptotic behavior of F1E(q2 ) is exp - (logs q 2); an an- 
swer which is not inconsistent with the experimental re- 
sults for large spacelike momentum transfers in elastic 
electron scattering. 

Even in the large qa region one must worry seriously 
about the interpretation I have suggested. First, it is 
unusual, even for physicists to compare the magnitude of 
coefficients of distinct tensor characters. Yet there is 
no instruction in the calculation to indicate how else to 
interpret (178). Second, to my knowledge no one has in- 
vestigated contributions like those in Figure 2 to elas- 
tic Scattering to demonstrate that, at least order by or- 
der in e2 , t h e y  are not (or are) important. Their pre- 
dominance in elastic scattering should make them of some 
concern. Even then, since those contributions alone vio- 
late unitarity in scattering processes, their real signi- 
ficance for the form factor has yet to be found. It can- 
not be said that the eikonal approximation to the vertex 
function is beyond all reproach. There are interesting 
questions yet to ask. 



EIKONAL APPROXIMATIONS 43 

Figure l. 

The se t  of generalized Fenyman graphs summed by the 
eikonal T-matrix. 

Figure g. 

The lowest order diagrams which.contribute a large 8 ,  
f ixed t behavior which dominates the basic eikonal graphs 
of Figure 1. The whole set of these contributions leads 

to  a behavior 31+e’ e>0,l which violates unitarity. 
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THE RELATIVISTIC EIKONAL MDDEL* 

Robert L. Sugar 
Department of Physics, University of California 

Santa Barbara, California 93106 

I ., mg- pam- "tign 
In his lectures Professor Abarbanel has Shown us how 

the eikonal approximation can be uSed to discuss a wide 
range of scattering processes. I shall focus my attention 
.on its application to the Scattering of relativistic par- 
ticles. The goal is to construct a simple model of ultra- 
high energy hadron interactions. 

In non-relativistic potential Scattering and in clas- 
sical electrodynamics one can prove that the eikonal ap- 
proximation is valid at high energies for a wide class of 
potentials or indicies of refraction. There is, of course, 
no such proof in quantum field theory. In fact the simple 
eikonal picture of high energy particles propagating 
through the interaction region in a straight line can not 
be the entire story in field theory, since it neglects the 
possibility of the high energy particles fragmenting. The 
best that one has been able to do so far is to study the 
.high energy behavior of classes of Feynman diagrams to see 
when the eikonal approximation can be expected to hold, 
and, at least as important, when and why it breaks down. 

I shall start by considering the Scattering of two 
high energy particles which interact via the exchange of 
elementary quanta. These diagrams have already been dis- 
cussed by Professor Abarbanel, I shall use them to orient 
our discussion and to introduce the moment space techniques 
which We shall need when we move on to more complicated 
diagrams. The elementary particle exchange diagrams are 

* 
Work supported in part by the National Science Foundation. 
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not a satisfactory starting point for constructing a 
model of high energy hadron interactions since they pre- 
dict that scattering becomes pure elastic at high ener- 
gies. In order to introduce inelasticity into the model 
we shall be led to consider the exchange of compound ob- 
jects such a km“ ladders and quantum electrodynamic 
(Q.E.D.) towers. These diagrams do lead to interesting 
models whose predictions I shall discuss in some detail. 
Finally I shall use the intuition we have gained from our 
study of Feynman graphs to construct a simple model of 
production amplitudes. These amplitudes will be used to 
build a model of the Pomerachuk singularity. 

II . W Pg'ricg EXCHANGE 

Let us start by considering the elastic scattering 
of two high energy particles which interact via the ex- 
change of elementary quanta.1’2’a In addition to the _ 
ladder graph shown in figure la we must take into account 
all of the graphs that can be obtained from it by cross- 
ing the lines of the exchanged particles” A typical ex- 
ample is shown in figure 1b. There are n! distinct dia- 
grams associated with the exchange of n quanta. 

We are interested in scattering at very high energy 
for fixed, small values of the momentum transfer. It is 
convenient to work in the center of mass and to take the 
z axis along the incident direction of particle 1. We 
can then write (see figure 1) 

P1 a ( f3- ; 0 1 0 :  J ? )  

P2 t < f? ; 0,0,- f?) (1) 
A 9" ( 0 ; A x  I A y I O )  ~=- ( 0 ; £ I 0 ) ’  

where /s is the center of mass energy and t - A2 is the 
invariant momentum transfer. In writing Eqo (1) we have 
dropped terms of order ma/Js and tl/s. It will be con- 
venient to write a general four-vector, q, in terms of the 
variables 
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q i  = qc * qz 
(2) 

g — (qxiqy). 

2 + 2 

In particular P1... a P3. = /s and 133+ s:- p1_mE§/S_F_la_. 

The results that we will obtain are essentially in- 
dependent of the spins of the incident particles, so, for 
simplicity, I will take them both to be spinless. 0n the 
other hand the spins of the exchanged particles are cru- 
cial. Let us start with spin zero quanta. The amplitude 
for single particle exchange is given by 

k2 

“1 = m <3) 

where u is the mass of the exchanged particle. The two 
particle exchange diagrams are shown in figure 2. They 
give 

M a =  -il4 I ?  ")‘[q9 -u3 + ie]1[(q-A)a -u3 + ie]1(4) 

[(Pa-q)9 -mga+i:11 {[(P1+q)9-m12+ie]'1+[(Pl+A-q)3-m13+ig14} 

The basic idea of the eikonal approximation is that 
the incident particles propagate through the interaction 
region in a straight line retaining their large momentum 
even in the intermediate states. Let us start by assuming 
that this picture is correct. We shall discuss its valid- 
ity at the end. Under this aSSumption the main contribu- 
tion to the integral in Equ (4) comes when the components 
of q are small compared to P1+ and P2—, so We can write 

[(a)a - mlzfiej'l + [(P1+A-q)a ms + 1J1 

= [q3+2P1- q+ie]-1 + [(A-q)2 + 221. (A-q) + ie]'1 (5) 

= {/3 q_ +ieJ'1 + [-/s q- + 161'1 = -2ni6 (/3q_). 

Notice that this is the same reSult that one would have 
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obtained by replacing the propagator [(P1+q)2-m13+ie]-1 
by its mass shell del ta  function, since 
5[(P1+Q)2 ' m19] “ 5(JSQ- ) 

Figure 2b is obtained from 2a by interchanging the 
order in which the exchanged quanta are absorbed by par- 
ticle 1. If in each of these diagrams we interchange the 
order in which the quanta are emitted by particle 2, we 
obtain the diagrams of figure 3 which are, of course, 
identical to the original oneso 1Thus we can replace the 
propagator [(Pg-q)a - mag + is]1 in Eq. (4) by the quan- 
tity 

HRH-q)“ mg” +ieJ'1 + [(Pz-Mq)? - mg2 + ieJ'l} 

(6) 
a % ° (-2ni) 5(JB q+). 

Again, aside from the factor of %, this is equivalent to 
replacing the propagator [(Pa-q)3 - mga +ie:]'1 in figure 
2a by its mass shell delta function° 

Eq. (4) now becomes 

2 
M2=2+§i— ‘13 13 . A? (7) 

(2n)2 ga+ua (Sré)2+u§ 

where we have used the fact that d4q = % dq+dq_daq. 0b- 
serve that the momenta carried by the exchanged quanta is 
space-like, lying in the xyy plane. It should also be no- 
ticed that an important cancellation has occurred betWeen 
the two Feynman diagrams of figure 2. It is well known 
that the box graph of 2a has the asymptotic form 

M a * f(t) Ln(-s)/s (8) 

whereas the crossed box graph of 2b has the form 

M b a f(t) £n (-u)/u. (9) 

Since for large 3 and fixed t, u a -s Eq. (7) is recovered 
and the functional form of f(t) can be read offo 
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The rather trivial calculation which we have just 
done contains most of the ideas which we will need for 
the rest of our work. We must now extend it to the n 
particle exchange graphs illustrated in figure 1. Again 
if the incident particles retain their large momenta, 
.their propagators can be linearized by dropping quadratic 
terms in the loop momenta relative to terms of the form 
pioqo For example, in the diagram of figure la the propa- 
gators of particle 1 become 

f(q1..qn_1)°‘ l a l -- _ file . 
2121 -q1'+ia 2P1 °(q1+q3)+ie 2hu(q1+qa+. .qn_1)+ie 

a S=(n-l)/2 1 . 1 G n u  1 I 

Ila-+1: ql-Harfiie q1-+...qn_1_+ie 
(10) 

There are n: distinct terms corresponding to the 
different orders in which particle 1 can absorb the ex- 
changed quanta. After summing over all these terms we 
can obtain a result analogous to Eq, ( 5 ) .  To see this it 
is convenient to treat all the exchanged particles on an 
-equal footing so we introduce the dummy variable qn- by 
writing. n 

1= I¢qn_ a<§.qi) 
and define 

. n -.__L__ 1 5 
F ( q l n o n q n )  q 1 - + i € ‘ u ° q 1 = + u a o q l ‘ _ 1 _ + i €  ( E  (1.1-) (11)  

so that 

f<q1a.oqn_1) = jdqn_ F(q1...qn). (12) 
For a diagram in which particle 1 absorbs the exchang- 

ed quanta in the order V1,v3,...v , F ( q 1 . . . q n )  is replaced 
in Eqs. (11) and (12) by F(qv1.o.&vn). 

We now prove the rather remarkable identity 
n 

2 F<qv1...qvn) = 121 o<q1_> <-2ni)“‘1 (13) 
P 
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where 2 indicates the sum over all permutations of v1...v . 
The fourier transform of F is given by n 

= i Z T  q ' -  f('rvl,...'rv n) Iifll qi_e 11 F(qv1...qvn). 

(14) 
Writing 

k1 = q'Vl- 

ki = ki-l + qv. (15) 
1 -  

and using Eq. (11) we find 

n-l dk . 
~ _ ___ih.aika(T ' T ) 
F(Tvl’mTvn ) I131 .kific‘e ‘71 Va 

. e1k2<TVB- TV]; n o .  eikn-1(TVn-1- TVn) ( 1 6 )  

-(-2111)“'1 en -- T ) .eu - T ) 
vh Vn-l °° v; v1 ‘ 

So 

n-l z f<¢v1...Tvn) = (-21'ri) , (17) 
P 

and Eq. (15) is obtained immediately by taking the inverse 
fourier transform. Thus after summing over all orderings 
of absorption, the propagators of particle 1 can all be re- 
placed by their mass shell delta functions, i.e. by the 
quantity 

n-l 
(-2mL)“'1 1&1 Ws qi_). (18> 

ggghlgm 1: Obtain Eq. (18) directly in momentum 
space. Hint: It is convenient to first prove the identity 
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2 l . l ... 1 
+1 + +1 + . . .  +' P(V1...vh_l)qv1 e qv; qva e qvl qvn_1 16 

= n-l 1 

i=1 qi+1e 

figmgg_;k problgm : In approximating the propagators it 
is sometimes convenient to drop  terms of the form qi- qj 
but retain the qia terms i e we write 

4 g L 
L L L ' 

2 8 2 (P1+§qi) -m +ie igl qi +2P1oi§1 q. 1+ie 

Show that in this approximation the propagators of parti- 
cle 1 can be replaced by 

1 
:H: _ [ q  ?+2P1 q. +ic + qia-2P10qi+ie] 

which of course reduces to Eq. (18) if we drop the qia 
terms. 

A result similar to Eq° (18) clearly holds for the 
propagatax of particle 2. However, if we sum over all 
orderings of emission of the exchanged quanta, We count 
each Feynman diagram n! times, so we must divide by this 
factor. 

The eikonal approximation thus predicts that the to- 
tal amplitude for the exchange of n aquanta is 

A? _ n- -l g g [ n  

'r11—:<2s D n j  lj (2n) [=1 111 911+}?— r] (231,1— A) +11“r (19) i=1 

Defining 1 a . X3 
= _  .SLL'I'P, . 50(2) ZS I (2“93 e 1 q5+u§3 (20) 

~‘ 
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Eq. (19) becomes 
- 2 '  ' A o b  

Mn = 717,-!t e1~ ~ [160(2) 1“ (21) 
or 

M(s,A) = i M = Zis Idab e1£°2(1-e150(2)) 
~ 1 ~ n (22) 

which is the familiar eikonal result. 

The above calculation can easily be repeated for the 
case of the massive photon exchange. The vertex shown in 
figure 4, which contributes a factor X for the case of sea- 
lar exchange, takes the form X(2P1u+q ) for vector ex- 
change. Since we are assuming that the components of the 
loop momenta are small compared to those of P1 we can drop 
the q termo Then.all vertices along the_wor1d line of 
particle 1 become KZPlu. Similarly all those along the 
world line of particle 2 become AZPQV. The only other 
change is that each propagator of an exchanged particle 
is now multiplied by guvo Thus the calculation goes 
through unchanged and we again obtain Eq. (22)  with 60 re- 
placed by 

51(2) = 4P1 'Pa 60 2' 25 50 (R) s (23 )  

Again the eikonal phase is given by the two dimensional 
fourier transform of the Born approximation divided by Zs. 

‘Hgmgwork problgm 2: Consider the scattering of two spin 
% particles which exchange massive photons” Take the in= 
teraction to be A Agviyuwi. Show that the eikonal ampli- 
tude is given by 

.5 . o 
M = i s [dzbu-el (2))elé 2 

6A1"}. I Blake] mime 

Where dag 

I? eiflr'z (‘42 + “2)" 2n 6(2) = 4! 
and X1 and 1-! stand for the initial and final helicities 
of the spin % particleS. 
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Hint: It is helpful to define Y: = Yo i Y3 and to notice 
that 

[Y+ I 'Y_ ]+  

Eqn (22) was obtained under the assumption that the 
eikonal approximation is valid. It has been showu by Tik- 
topoulos and Treiman that it is for the case of massive 
photon exchange.5 In fact the correction terms are down 
from the leading ones by a full power of l/sa However, 
the same authors have also shown that the eikonal approxi= 
mation does not hold for the exchange of four or more Sca- 
larquanta.5 The reason is not difficult to see. There 
is a well defined prescription for reading off the high 
energy behavior of Feynman diagrams made up Solely of sca- 
lar particles.4 The easiest terms to consider are those 
arising from so called end point contributions. One mere- 
ly searches for the shortest path by which either incident 
particle can traverse the diagram. The number of distinct 
paths of minimum length determines the pOWer of ins. Thus 
if the minimum path has length L and can be achieved in m 
distinct ways, the asymptotic behavior of the dia ram aris- 
ing from end point contributions is (l/s) ({ns)m' . For 
example, for the diagram of figure la we obtain ans/sn' . 
For diagrams involving the exchange of n quanta the eikon- 
a1 paths are of length n—l. Unfortunately for n 2 4 there 
are always diagrams of the type illustrated in figure 5 
which have paths of lingth three. All such graphs have 
asymptotic behavior (a) so the eikonal paths do not give 
rise to the leading asymptotic behavior of these graphs. 
The numerator factors in the diagrams for spin 1 exchange 
prevent this catastrophe from happening there. 

The fact that the eikonal approximation breaks down 
for scalar exchange is not terribly serious since the 
scattering amplitude just goes to the Born approximation 
for large 5 in any event. Eq. (22% even gives the scatter- 
ing amplitude correctly to order(1 since there are no 
short circuit paths for the two and three particle exchange 
graphs. However, we are advised to be careful. Although 
the eikonal approxhnation is intuitively appealing, it is 
not always correct. It would appear to be necessary to 
check its validity carefully in each application. 
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Even though the eikonal approximation is correct for 

the case of spin 1 exchange, these diagrams are not a use- 
ful starting point for constructing a model of high energy 
hadron scattering since they predict that the scattering 
is pure elastic at high energies, i.e. that there is no 
particle production. Recall that after all the cancella- 
tions have taken place the propagators of the incident 
particles can all be replaced by mass shell delta func- 
tions. Furthermore, since the plus and minus components 
of all loop momenta vanish, the momenta of the exchanged 
particles is entirely space-like and lies in the x-y plane. 
Thus these particles are never near the mass shell, so 
there are no contributions from multi-particle interme- 
diate states. 

We can also see this point directly. In our normal- 
ization, the scattering amplitude, M, is related to the 
S-matrix by 

4 i - .  I_ l g . I (P1’Pa’|slP1Pa)= 1 + 5 P W P ‘ 
[ZPIOZPSOZPIOZPBO ' 

(24) 
so the contribution of the two-particle intermediate 
states to the imaginary part of the forward scattering am- 
plitude is 

(3) 4 d‘Pl’d‘P; I I a m M (Plasma) = Wu) |M(P1P2’P1Pa) I 
I (211)"5 , 

+ + 
' 5  (P{s_m12)5 (Pa'mss)54(P1+P2'P{ ' P4) 

= 35 W jd‘q IMl26+EP1+q)a-m1315+[(Pa'Q)a'maaJ 

dzq 
°‘ 4% I We |M(S.g) la (25) 

In the last step we have made our uSual high energy approx- 
imations. Denoting the eikonal amplitude given in Eq° (22) 
by ME(s,£Q we see that 

Im ME(s,O) = 2s Idab[l=cos6(b)] (26) 
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and 

iTJ'<'-u'2:)= "43‘s,?” = Sham-e“) <1-e'”*). (27) 
So if 6 is real as it always is for elementary particle 
exchange, the eikonal amplitude satisfies two-particle 
unitarity exactly. Since the contribution to Im M(s,0) 
from each type of intermediate state is positive definite, 
all production amplitudes must be identically zero if 6 
is reala 

III° LADDER EXCHANGE 

We have seen that if the eikonal picture is correct, 
the incident particles will propagate through the inter- 
action region in a straight line, staying on the mass- 
shell at all times. The quanta that are emitted and ab- 
sorbed will have space-like momenta and therefore will 
never be near the mass shell° Thus, if we wish to intro- 
duce inelasticity into the model, it seems necessary to 
consider the exchange of compound objects. Since we are 
considering strong interactions, a natural choice is Regge 
pole exchange. If the "Born term" is taken to be the ex- 
change of a single Reggeon, one would guess on the basis 
of our previous work that the full amplitude is given by 

MR(s,9) = 213 f dab e152 (1 - ei5R(§)), (28) 
where 

2 d q -iq- w — Iw- e ~ 2 «an M” (29) 
a(t) is the trajectory function and Y(t) is the residue 
function multiplied by the signature factor. Equations 
(28) and (29) are usually referred to as the Regge-Eikonal 
Model (REM). This model was prqgmed several years ago on 
the basis of analogy with non-relativistic potential scat- 
tering, and it has been used rather successfully in fitting 
high energy scattering data.6 If one expands the right- 
hand side of Eq. (28) in pOWers of 6R! the first order term 
just gives the simple Regge pole amplitude. The higher or- 
der terms give rise to cuts in the angular momentum plane 
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associated with the exchange of two or more Reggeons° 
The REM provides a particularly appealing model of cuts 
since no new parameters enter once the trajectory and res- 
idue functions of the pole are known" 

We are now in a position to investigate the extent 
to which the REM can be justified in field theory. It is 
clearly not sufficient to return to the diagrams of fig- 
ures l and 2 and reinterpret the wavy lines as Reggeons. 
For example, it is well known that the diagrams of figure 
2, which are eSSentially planar, do not give rise to 
Regge cuts,4 Theiraswnptotic behavior is much weaker 
than that of the diagrams which do. In order to proceed 
it is necessary to have a specific model of the Regge 
poles° A simple one can be obtained by considering the 
ladder and crossed ladder graphs in Ada theoryov”e These 
diagrams are shown in figure 6. The asymptotic behavior 
of the sum of these graphs has the well known form 

B(t) (1 + e'i"°‘(t)) ea“) (30) 

where t - A8 = 1A3. The eikonal model suggests that we 
nowconsider the exchange of an arbitrary number of ladders, 
summing over all possible ways in which the legs of the 
ladders are attached to the world lines of the incident 
particles° Typical examples are shown in figures 7 and 8. 
Some of these diagrams do give rise to Regge cuts. Our 
task is to evaluate their high energy behavior and either 
verify Eqsn (28) and (29) or see where it breaks down. 

Before embarking on this program I should mention 
that there is a second model based on the ideas we have 
been discussing which has attracted considerable interest. 
That is the model of Cheng and Wu.9 In their stupendous 
study of high energy behavior in quantum electrodynamics, 
they were led to consider the Q.E.D.  analogue of ladder 
graphs which they call tOWers° Examples are shown in fig- 
ure 9. The heavy lines represent electrons and the wavy 
lines photons. Topologically the only difference between 
the tOWers and the x43 ladders is that in QoEoD. it is 
necessary to include crOSSed electron boxes (shown in fig- 
ure 9b) in order to maintain gauge invariance. The asymp- 
totic behavior of the sum of single tower graphs is found 



RELATIVISTIC EIKONAL MODEL 59 

to be 
_ 11 3 

i6 , 6 ,F(t) (lns) a s1'32 °‘ (31) 
11X1 X212 

where a is the fine structure constanto This amplitude 
corresponds to a fixed cut in the angular momentum plane 
in contrast to the ladder exchange amplitude which gives 
rise to a moving pole“ Notice that the tower exchange am- 
plitude by itself violates the Froissart bound since it 
-goes to infinity faster than a single power of s. A simi- 
lar difficulty would arise for the Ada ladders if the 
coupling constant were large enough so that a(t)>l for 
1:50° If, as expected, the scattering amplitude takes the 
form of Eq. (28) after multi-ladder or multi-tower ex- 
changes are included, then there will be no violation of 
the Froissart boundo I will return to this point and to 
the very interesting predictions of the Cheng-Wu model 
after discussing the Ida ladder graphs. 

I have no intention of reproducing the rather lengthy 
calculations necessary to obtain the high enagy behavior 
of the multi-ladder exchange diagrams; however, I would 
like to briefly review the results of this work. 

For the simple ladder and crossed ladder graphs Eq. 
(30) is valid for all values of the coupling constant.1° 
The correction terms are down by at least a fractional 
power of so Unfortunately the multi-ladder graphs are SO 
complicated that it is extremely difficult to do more 
than calculate the leading behavior in Lns at each order 
in the coupling constant. It is important to keep in mind 
the consequences of restricting ourselves to a leading log 
calculation. For ladder graphs the Regge trajectory and 
residue functions have the perturbation expansions 

a(t) = -1 + x2 aa(t) + x“ are) + 
(32) 

B(t) = 13 + l‘ b4(t) + 

so we can write 

5(t) sa(t) = [l3 + l‘b4 + ] l e£ns[x2a3+x4a4+.o.] 
a n  s ( 3 3 )  

n 
= [x3 + A‘bdnj in; 13:39—— [l3a3+l‘a4.+°.,]n 
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Thus, if at each order in X2 we retain only the leading 
power in ins, then in effect we are working to order l2 in 
the perturbation expansion of the residue and trajectory 
functions. 

NowGribov has shown on rather general grounds that 
the amplitude arising from an n-Reggeon cut will have 
the asymptotic form1 

(Zs)fl‘ 1 Ii=H1%;§§5 Y( 'q M)sa( f) fn(flh2P¢°°fln) 

:
3
 

9 5( Z gill-A). (34)  
i=1 

Substituting q (33) into Eq. (34) we see that in the 
case of Regge cuts, the leading log approxunation is equi- 
valent to working to lowest order in l3 for the trajectory 
and residue functions and for the function fno It is f 
of course, which we wish to calculate. q (28)  predicts 
fn(q1,°nogn) = E" but we can at best verify this to lead- 
ing ~order in ' l2 if we are only able to do a leading 
log calculation° 

Let us start by considering the two ladder exchange 
diagrams illustrated in figures 7 and 80 The situation 
here is completely different from the case of elementary 
particle exchange. In the latter case the two second or- 
der graphs had the same asymptotic behavior and a delicate 
cancellation occurred between themo The two-ladder graphs 
on the other hand have a wide variety of aSymptotic behav- 
iors. For example, the planar diagram shown in figure 7a 
has only the end point contributions which we have previ- 
ously discussed. Its asymptotic behavior is Lns/sa indepen- 
dent of the number of rungs in the ladders. This type of 
diagram does not give rise to Regge cuts and is negligible 
compared to those that doo The diagram of figure 7b does 
give rise to a cut, but it too can be neglected in the weak 
coupling limito In fact the only diagrams that contribute 
in the leading log calcuktion are the four shown in figure 
8 and the tWelve that can be obtained from them by replac- 
ing one or both of the ladders by a crossed ladder 13 13 
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The four diagrams of figure 8 can be redrawn in the 
more familiar Mandelstam form shown in figure 10. We no- 
tice at once that if we blindly follow the eikonal preScrip- 
tion we will over count each of the leading graphs by a 
factor of four. No such difficulty arises in Q . E . D .  

Originally there was an even more alarming problem: 
the first calculation of the Mandelstam diagram_(figure 
10), which was widely quoted in the literature,4 was in 
disagreement with the eikonal model° Fortunately, this 
calculation was incorrect. The asymptotic behavior of 
the Mandelstam graph plus the associated graphs with 
crossad ladders just gives the second order term in the 
expansion of Eq. (28).”,13 Thus, the eikonal model does 
check to second order, at least in the Weak coupling 
limit. 

The eikonal picture can also be restored. There are 
four contributions to the asymptotic behavior of the Man- 
delstam graph. The large momentum P1 can follow either 
the path ABCD or AEFD° Similarly Pa can follow either 
A’B’C'D’ or A'E'F’D’. Returning to figure 8 we see that 
if we retain all four diagrams, but keep only the contri- 
butions arising when the large momenta stay on the eikonal 
paths (the straight lines in figure 8), then all over 
counting problems are eliminated and We recover the cor- 
rect result for the Mandelstam graph. Furthermore, the 
asymptotic behavior of the non-leading diagrams also comes 
when the large momenta stay on the eikonal paths so these 
graphs could be added in for free. Thus a blind applica- 
tion of the eikonal identity would indeed give the correct 
result! 

The calculation becomes much more complicated when 
more than two ladders are exchanged.13 From Eq. (32) we 
see that the leading Regge pole goes to L = -l in the weak 
coupling limit. q (34) then tells us that the cut aris- 
ing from exchanging this pole n times has its branch point 
at & = -(2n-l) in this limit. Thus terms contributing to 
this cut will have large s behavior of the form s‘(2n'1) 
x powers of Lns. 

In figure lla we have drawn a typical three ladder 
exchange diagram. If the large momenta follow the eikonal 
paths AEFGHD and A ’E ’F ’G’H’D' we do indeed get 



62 ROBERT SUGAR 

contributions which go like 5'5 as expected for the 3-Reg- 
goon cut. However, there are ”short circuit" paths ABCD 
and A’B’C’D' which give contributions to the aSymptotic 
behavior of order 8 - 3 .  These terms do not contribute to 
the 3-Reggeon cut, but they may well contribute to the 
tWo Reggeon cut. In figure llb we have redrawn the dia- 
gram in the Mandelstam form. Notice that when the large 
momenta follow the paths ABC and A'B’C’, the diagram cor- 
responds to the exchange of a ladder (BCB’C’) and a rather 
camplicated object (EHE’H’)° As the number of rungs in 
either ladder making up EHE’H' is increased, there is no 
corresponding increase in powers of Lns. So in the weak 
coupling limit, and only in the weak coupling limit, the 
contribution of the short circuit path can be neglected 
compared to the 3'3 contribution of the two ladder graphs. 

It is not difficult to see that all short circuit 
paths correspond to the exchange of at least one object 
more complicated than a ladder. Since at each order in 
the coupling constant, the leading power of ins comes 
from the exchange of a pure ladder, the contributions 
from the short circuit paths can be dropped in the Weak 
coupling limit. 0n the other hand, the contributions 
from the eikonal paths of the n-ladder exchange graphs 
just give the n-th order term in the expansion of Eq. ( 2 8 ) .  
It must be emphasized that we are not computing the leading 
asymptotic behavior of the n-ladder graphs. That comes 
from the short circuit paths and is of order s'3 for 
n2 2. What we are doing is to compute the leading contri- 
bution in the weak coupling limit to the cut which arises 
from exchanging the leading Regge pole n times. This con- 
tribution comes from the eikonal paths of the n ladder 
graphs. 

The situation in Q . E . D .  is much cleaner. There the 
contributions from the short circuit paths are smaller 
than those from the eikonal paths. The enhancement of 
the eikonal paths comes about because of the numerator 
factors associated with the spin of the photono Further- 
more, since the amplitude for n tower exchange has the 
aSymptotic form sl+n%% c’ it makes much more sense to 

keep this term in the weak coupling limit, than the corres- 
ponding term arising from n ladder exchange. 
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One can use the momentum space techniques which we 
have developed to extract the contribution to the n-lad- 
der graphs arising when the indident momenta follow the 
eikonal paths. However, it is necessary to show that the 
leading asymptotic behavior of the ladder and crossed lad- 
der graphs of figure 6 actually does arise when the inci- 
dent particles retain their large momentag This calcula- 
tion is quite instructive because it shows explicitly why 
the simple eikonal model must break down away from the 
weak coupling limit. 

Let us start by considering the ladder graph of fig- 
ure 6a. The amplitude is given by 

. -1 
_ “fligrjn LE1 d4ki[k§'ma+ie] [(ki+A)a'm2+i€]-1 

-1 -1 
- 2 -  2 . 1-1 H - 3 - 2 

.[(1’a+kn)a = m3+ie]-1 

We first perform all the ki- integrations. We adopt the 
convention of closing all the ki- contours in the upper 
half plane when ki+ > 0 and in the lowar half plane when 
ki+ < 0. Since Ai “ 0, we never pick up poles from propa- 
gators making up the sides of the ladders. It will be ob- 
vious in a minute that the pole arising from the deonomina- 
tor [Gd-kn)s -m 2+ie] does not contribute to the leading be- 
havior in &ns, so we have k 

n dak f? dk1+ 1+ (11(34- 3 

Mn (5 A): "A3 E'Tfi” _1 (211)3 73-73;- 0 k1+"ka+ 

k _1 
n-l dkn+ ° fl [ki-m"‘a+ie]-1 [(ki+A)3~m3+ie] 

. .. j kn_1+-kn+ i=1 
0 

[(Pa+kn)3 -m3 + ie]'1 (36) 
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It is now convenient to make the change of variables 

k. 

Notice that 

so that 

and 

1+ = 
/s yl...yi i=1,...n. (37) 

E: - m2+kfla 
“3 7%(1-y1) (38) 

k - ma+(Ei-1'5i)a ' _ 1 _  — — n — — .  
1 JS yloayi_1(1-yi) 

ki_ < 0 (39) 

k 0 .  

Also 
2 n 

2 _ 2 = m_ _ 3 _ 2 (Pa+kn) m (/s + kn_)('/.S + /s g yi> 5n m 

a [sflyi - mg] (40) 

m9 is a positive definite quantit whose weak dependence y 
on the k. and y. can be neglected for our purposesu 
(36) nowlbecomes 

A3 n = _ a __ 
Mn(s’£9 X [4n] 

where 
n 

f(y1,o..yn) = I g 
1 (25)” [k: 

Eq. 

1 n  _1 
- a ‘  g i=1 dyi f(yl,o-.yn)[8fiyi m +161 

(41) 

:d'k _1 =1 
-m2+ie] [(ki+A)3-ma+ie] a 

(42) 
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Having isolated a l l  of the s dependence of Mh in a 
single denominator i t  is an eaSy matter  to  s tudy the asymp- 
totic behavior of Mh(s ,A)  by means of the Mellin transform. 
We define N 

N = °° _ -(L+l) Mn(&,A) _ (J; ( s )  Mn(s,A) ds (43) 

1 n ,. {+1 on -(%+1) l2 n 1 dx x = 13 —]  n d . f — — - —  [4n  g i=1 y1 (Y1 yn) ( . m 9 >  g [xnyi + 1 ]  

l n r 1 4+1 L 3 19[— —1n 2 I - E  dy. y. f(y1..oy ) ___11_.___._ a 4n Km 0 1—1 1 1 n sin” (‘*1) 

Notice that the integral defining fin(L,£Q only exists  f o r  
- l  < Re L < 00 Thus the inverse transform is given by 

c+i0° L ~ Mn<s,,g =27e czrim dM-s) Mnugg) (44) 

with - l  < c < 0 .  

I t  is convenient to  expand f ( y 1 ° . g y n  ) in a Taylor 
series about the point y .  —00 

n a 7 
f ( y l . . . y n )  = f ( 0 , . . 9 0 )  + iél yi M a ?  + . u  (45) 

s o  
l3 n l c+ im 

Mn<s,A>= mm] 2—- n? my“ (46) 
n n ‘ n - l  

.[f(0,...,0) (711) +:la—f-(9-5;?-Ql(zi—D + m ]  . 

For large 5 the leading behavior of Mh(s,£) clearly comes 
f rom the pole a t  L = -1.  We have 

a la :1. Mn(s,g) 1 flfiln GE) [£(o,...o) __(_T2 
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-1 
+ Z w M _ +  + i o g u ]  ( 4 7 )  

ayi (n-l)‘ 

From E q s .  (39) and (42) we see that 

dak a ]  _1 
(,9..0)=[I;.)3[(k3(2finl[(k+A)z-I1n3]]n 

5W9) 3“. (48) 

so that the leading log approximation 

M(s, A) = n21“ M (s, A)= A9 <1_Sn=> 21h" 1(A)An(- 9]“l 

3x2 (-S)Q(AA) ( 4 9 )  

with 
x2 

MA) = -1 + 4n 1(3) 

in agreement With q (32). 

Notice that the leading log term comes entirely from 
the region of phase space in which all the yi are infini- 
tesimal. In particular we have 

k1+ = /5 Y1 << P 1 +  = \ / - S .  ( 5 0 )  

Furthermore, it is clear from Eqa (41) that the leading be- 
havior comes from the region n 8 so 

1E1 yi 2‘ m /s, 
n-l 

a _ a a _ a lkn_| [(Aw1 15“) + m ]//s n yi(l yn) ]  yn/s << 
i=1 
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<<P2+ = fSu (51) 

Thus for this term the incident particles do retain their 
large momenta in the intermediate states. 

W W 4 :  

Consider the n-ladder exchange diagrams in the weak 
coupling limit. Use the eikonal identity in the form sug= 
gested in problem 2 to extract the contribution arising 
when the large momenta stay on the eikonal paths. Show 
explicitly that your answer agrees with the n-th term in 
the expansion of Eq. ( 2 8 ) .  

Let us now consider the second leading log terms in 
Eq. ( 4 7 ) .  Here the incident particles do not necessarily 
retain their large momenta. For example, the term propor- 
tional to g; arises when y1 is finite so it corresponds 
to the By; fragmentation of the incident particle in- 
to two virtual ones which share the large incident momen- 
tum. This term makes a contribution of order A“ to the 
Regge residue function. Clearly terms corresponding to 
the fragmentation of the incident particles into large num- 
bers of fast virtual particles give rise to lower logarithms 
and to higher order corrections to the residue function. 

It is now clear that the simple eikonal picture can 
only be correct in the weak coupling limit because it ig- 
nores the possibility of fragmentation of the incident 
particles. The best that a dedicated eikonalist can hope 
for is that after fragmentation, each of the fast virtual 
particles moving in one direction will only exchange soft 
objects (ladders, towers, etc,) with those moving in the 
opposite direction. In this picture there would be one 
term in the scattering amplitude for each type of fragmen- 
tation. For example, a term in which particle 1 did not 
fragment, but particle 2 went into two fast virtual partic- 
les would be expected to have the form 

. 1 

M<s,A> = 21s J‘dzlg elA°RId3£ fdxl¢<g,x> I2 
0 

(i _ ei[6(bf%£;sx) + 6(Ef%£;(l-x)s)]> (52) 
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where v(r, x) is the probability amplitude for particle 2 
to fragment into two virtuals with x-y separation r. x is 
the fraction of the large incident momentum retained by 
the incident particle” 

This picture is based primarily on analogy with the 
Glauber formula for the high energy scattering of bound 
systems. To my knowledge there has been no attempt to de- 
rive an expression like Eq. (52) from field theory due to 
the difficulty in calculating non-leading log terms for the 
multi-ladder exchange diagrams. 

IV, w 0_F LHE __MODEL 
Let us put aside questions concerning the fragmenta- 

tion of the incident particles and ask what the eikonal 
model in its simplest form predicts. We shall be interest- 
ed primarily in the enagy dependence of the scattering am- 
plitude which is determined by the energy dependence of the 
eikonal phase. As a result, most of our results will not 
be changed qualitatively by the addition of terms of the 
type illustrated in Eq. (52). 

We begin With the Regge-eikonal model defined by Eqa 
(28) and ( 2 9 ) .  If the trajectory function is analytic at 
t=0 and if residue function does not vary too rapidly 
there, then at very high energies we can write 

5 R ( S , E )  = lg-‘S- J1 dag ‘ -11202 Y ( _ g 2 ) s a ( - 1 2 )  

a: 1Q). 8 6 ( 0 )  $5131 e-ig-R 3-3.8“,(0) {as (53) 

= __m>1__ son(0)-1 'b2/40L'(0)&ns. 
8m.’(0)&n3‘ e 

Since 

Y(t) = '60:) [e-ina(t) d: ll/sin‘nodt), (54) 

Im 6(s,b) > 0 (55) 
as required by unitarityn 
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For an ordinary Regge trajectory a(0) 2 1, so we can 
expand the right hand side of Eq° (28) in a power series 
in 6 R 0  

M:(s,g) = -Zis J‘dzb e°iA E[16(s,R)J“/n: 

,, -218 41%} swam-1) 
811a 

u _ 2 l "%T I dabeIA R e nb /4a (0)1ns (56) 

nn. mbfla’(0) :ns]n 

l sna(0)-n+l e-Aaa'(0)&ns/n 

11‘0) sna - a - 
% [ 8  (0)Lns: 

M1<S A) is, of courSe, just the amplitude for the 
exchange ofN a single Regge pole, while MRn(s, 9), n2 2, cor- 
responds to a cut in the angular momentum plane arising 
from the n-fold exchange of the Regge pole. The leading 
L-plane singularity of MR? is most easily studied by means 
of the Mellin transform discussed in the last section. Re- 
call that the Sommerfield-Watson representation of the scat- 
tering amplitude takes the form 

M(s,t) = f; g gag-fl)- [Pg-2t) 1 P5291150», (57) 
where the contour c runs from -i0° to +1» staying to the 
right of all singularities of ML(t). Now zt = 1 + s , 
so 2P 3 

t 

“(8,” s —. «3 2:1 I a “using; ML“) (232‘ 

. 1*(2L+1)/2"r3(4+1) (58) 

=_1. 4 — 2ni g dL 3 f&(t) 
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Thus the right most singularity of f4(t) and therefore of 
ML(t) can be found by taking the Mellin transform of M(s,t) 

fL(t) = of ds s'w'l) 
so 

M(s,t) . (59) 

Since the leading singularity in f&(t) depends only on the 
asymptotic behavior in s of M(s,t), the value of so is ir- 
relevant for our purposes. Returning to Eq. (56)  we can 
write 

331(9)) = Kn gods 8-(L+1) sAn(A)/(&ns)n-1 (60) 
where ' 

K - m _,._”<°> 1H <6» “ ' ‘na (0) 
and 

AnQ) = na(-ga/n2) - (n-l). (62) 

Making the change of variables s = ex gives 

f 411%) - Kn of dx e‘x("An) xl'n (63) 
X0 

30 

Yo 

53(9) = was <64) 
£&“(A) = knw-An)”2 Ln(&-An) + Rn<&.e), (65) 

where n 2 2. Rn(L,é) contains terms which either vanish 
more rapidly than (L-An)n-2 Ln(L-An) as L d An or which 

are analytic there. The position of the branch points 
given in Eq. (62) and the behavior of the amplitude at the 
branch point given in Eq. (65) are in agreement with the 
general reSults of Gribov and his co-workers.11’1‘ 
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As I mentioned before the eikonal model of cuts has 
been used to fit the experimental data with reasonable 
successo Rather than discuss these fits I would like to 
move on to the rather exotic situation which arises when 
a(0) becomes larger than onea For a(0) < l, in the 
&-p1ane there is a pole and an infinite sequence of branch 
points. Notice that An(0) > An_1(0) in this case. As 
a(0) increases to 1 the pole and cuts all collide at i=1 
t=0. The L-plane structure of the amplitude changes dra- 
matically if a(0) is increased further. For a(0) > 1 it 
is convenient to rewrite Eq. (53) in the form 

53(S’P)= and x(o()9)£ns ‘&ns[a(O)-l-ba/40L’(0)(Lns)a] (66) 

Now if b9 < 4$a(0)- l)a’(0), 6 R(s, b grows like a power of 
s, while if b > 4(a(0)- l)a’ ( 0 ) ,  (s, b)goes to zero like 
a power of s. Combining this information With Eq. (55) we 
see that 

M R ( S ’ R )  2is (1-eiéR(s’b)) ~ 21se(b°-b) (67) 

Ill
 

where 

boa = 4(a(0)-1)u'(0) (Lns)3 (R0 Lns)a . (68) 

Eq. (67) tell us that in impact parameter space all the 
scattering takes place inside a disc whose radius increases 
like £ns. Since Mp(s, b) is pure imaginary, the disc is per- 
fectly absorbing, i° e. it is black° Eq. (67 )  should be 
contrasted with the amplitude for the exchange of a single 
Regge pole with a(0)< 1. In our present approximation We 
have 

MRegge(S"~°)8116:!(0Mnse-ba/40L (onns’ (69) 

so virtually all of the scattering takes place inside a 
disc whose radius grows like fins. The disc is obviously 
not black in this case. 

The first model involving a black disc with a logari- 
thmically increasing radius was that of Chang and Wu. In 
their case the eikonal phase is given by 
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1 1  _ —-‘IT(1 ~ 

écw(s,b) - saa f(b) (70) 

with €(b H e-ub for large ba As a result their scatter- 
ing amp itude in impact parameter space has the same form 
as Eq. (67) with be again proportional to Lns. Therefore, 
virtually all of the predictions of the Regge-eikonal 
model with a(0) > 1 are identical to those of Cheng and 
Wu. However, in the Chang-Nu model the quantity analogous 
to a(0), (1 +135 no), is 2;g_;g;§_ to be greater than one. 

All of the predictions of the model can be read off 
from Eq. (67) .  The forward scattering amplitude is given 
by 

MR(s,A = o) = f dab MR(s,b) = 2111s8 . (71) 

The optical theorem tells us that 

I (3,3 = 0) 
I A a 

a a, = 21m? = 2n(Ro&ns)2, (72> tot 

so the Froissart bound is saturated. 

The elastic cross-section is given by 

Gel. = (211-?)2 Id‘Pl ’d‘Pa ’54 (P1+P2'P1 I'Pz ’) 6+(P112_m2) 6+(Pa’3 

11130115; P1'Pa ')|‘ 1 (73) 
2P102P20 2P1 /P1°  

a 1 d2 A _l_ V I _._~_ I,MR<s A) I 452 ydab IMR<s,,b) Ia 
- "(Rotns)a. 

The inelastic cross-section is equal to the elastic cross- 
section since 

a = a - a = memos. (74) in tot e1 

m3) 
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Notice that in the REM Ro depends on a(0) and a’(0), but 
not on the Regge residue function y. As a result, Eq. (72) 
predicts that all total cross-sections become equal at in- 
finite energieso Similarly according to Eqs. (73) and (74) 
all elastic and inelastic cross-sections should become 
equal at infinite energies. These predictions are of 
course not in agreement with present experiments, nor is 
there any evidence that total cross-sections increase with 
energy. HOWever, one can always argue that We have not 
yet reachedasymptotic energies and that R0 is small. 
Furthermore, if one includes effects associated with the 
fragmentation of the incident particles, the cross-sections 
for different processes will ahnost certainly become un- 
equal, even though the energy dependence is likely to re- 
main the same, The above remarks apply equally to the 
Cheng-Wu model. 

Away from the forward direction the scattering ampli- 
tude is given by 

19:12, MR(s,9) = 2is Idab e 9(bo-b) 

(Zis) (2n) f bdb Jo(bA)6(bo-b) (75) 
o 

21-ris (R0 ms) 2 [J1 (R0 ms f-t) an, Lnsf-t] 

Where A = [AI = Jet. For large values of s the t depend- 
ent term in the square bracket is sharply peaked at t = 0. 
The width of the forward peak is given by 

-to = c/(ROLns)8 (76) 
where c is a constant depending on the properties of J1. 
The l/(Lns)a shrinkage of the width of the diffraction peak 
should be contrasted with the l/Lns shrinkage predicted by 
simple Regge pole exchange. There is no evidence for the 
more rapid shrinkage in the Serpukhov data on proton-proton 
elastic scattering, and the preliminary ISR results indi- 
cate even a slower shrinkage than l/Lns. In my opinion the 
models that we are discussing are quite likely to founder 
on this point. 

The L-plane structure of the amplitude given in Eq. 
(75)  can be studied by use of the Mellin transform, 
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'(&+1) fé(t) = g; s MR(s,t) 

= f dx e'("1)x x J1(Ro x/zt ) [4n1 Ro//=t ] 
X0 

(77) 
- (L-1)x  = f dx e x J1(R° x /;t ) [4ni Ro/frt ] 

0 

+ C(L,t) 

_ 1 R02 ' W ”(4’0 
C(£,t) is clearly an entire function of L. The pole and 
infinite sequence of cuts present in the L—plane for «(0) 
2 l, have coalesced into a single cut with branch points 
at 

t = 1 e iRof-to (78) 

At t = 0 this cut collapses into a third order pole at 
L = 1, as is necessary if the total cross section is to 
grow like (£ns)g. 

As a final example of the exotic predictions made by 
the REM with «(0) > 1, consider a process such as p-n 
charge exchange scattering where quantum numbers are ex- 
changed. We expect the amplitude to be dominated by the 
exchange of a single 9 meson, a (0) < 1. However, it is 
also necessary to exchange our eading trajectory an arbi- 
trary number of times. By now the counting should be 
straightforward. Neglecting the spin of the incident par- 
ticles we find 

6 'A° Mb Eo(s,A = 213 I dab ei (S’P)[-iap(s,§)] e1~ 2° (79) 

In the forward direction the answar is extremely simple. 
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v (0) , = P ___ a (0) a -b/4a (0)Lns _ 
MC.E.(S’0) 4nm;(0)tns s 9 Id b e p 9(b be) 

gyp(o) s[ap(o)'Roz/4aé(0)]. (80) 

Clearly if our model is correct and if R0 is appreciably 
different from zero, the enagy dependence of n-p charge 
exchange amplitude near the forward direction will be 
quite different from what one would predict by looking at 
the Chew-Frautschi plot. 

V. EEQDQQTION AggLITQDES 

It has long been assumed that in order to have a 
real understanding of high energy hadron interactions one 
will have to have a satsifactory model of production am- 
plitudes. Let us see whether the insight that we have 
gained from studying the eikonal model of elastic scatter- 
ing can help us with this problem.16 

At present the most popular model of production am- 
plitudes is the multiperipheral model. Let us consider a 
world with only one type of particle which has Spin zero° 
The multiperipheral amplitude for the production of n-l 
particles is shownschematically in figure 12. The varia- 
bles have been chosen to be the same as in our discussion 
of the ladder graph, and as there the independent varia- 
bles will be taken to be the and y1, i = 1,...n. The 
high energy behavior of the la der graph came when all 
the produced particles except the one carrying momentum 
P2+kn were on the mass shell. In the present case, this 
particle is also on the mass shell and we see from Eq. 
(40) that this imposes the constraint 

n 
s H y. - ms. (81) 
i=1 1 

The physical significance of the y. can be seen by notic- 
ing that the Sub-energy between any two adjacent particles 
is given by 

31 = (k1-1= ki+1>a = 
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) +m3 (k -k )3 +'ma ~1~+ ~i =J3 Y1‘°Y1-1(1 y. 1yi+1){/Sy1..yi(1' 'Yi+1)+ J331-0Y1-1(1 Y1)] 

. (E1-1'51)2’ i = 1,...n (82) 

with k0 = P1 and kn + 1 —  :‘Pa. For Small values of the yi 
we have 

31 a [(Ei-Ei+l)a + mal/yi mialyi' (83) 

For large values of the sub-energies Eq. (81) can be re- 
written in the form 

n s‘ = 3A (84) 

In the simplest version of the multiperipheral model 
one assumes that only nearest neighbor interactions along 
the chain are important. One then writes the amplitude 
shown in figure 12 in the form 

n a n-l 
T - H M k H k k. an 1:1 (819 1 ) j=1 g( 5 J+1) ( 8 5 )  

where M is the two-body scattering amplitude. For simpli- 
city I shall approximate the vertex functions, g, by con- 
stants, although this is by no means crucial. 

It is well known that one of the major problems asso- 
ciated with the multiperipheral model is that it leads to 
a violation of the Froissart bound if the leading L-plane 
singularity of the elastic scattering amplitude reaches 
1.15 We shall see this explicitly in a few minutes. This 
difficulty can of course be avoided by assuming that the 
Pomeranchuk pole has a t = 0 intercept slightly less than 
one. Let us take an alternative approach and try to con- 
struct a model of production amplitudes whose form guaran- 
tees that unitarity will be satisfied independent of the 
structure of the two-body amplitude. 



RELATIVISTIC EIKONAL MODEL 77  

p I will only consider the region of phase space in 
which all  sub-energies are large. The amplitude will be 
taken to be zero elsewhere. The region of small sub-en- 
ergies is of course far from negligible, but the question 
that I would like to ask is whether it  is possible to tame 
the high sub-energies tail of the amplitude which leads to 
the violation of the Froissart bound in the multiperipher- 
a1 model. 

I f  M(s ,  t )  a s8 for  large s ,  then we See from Eqs. 
(84) and (85) that Tan # 38‘ when al l  the sub-energies are 
large. Our experience with the eikonal model tells us 
that for  a m 1 ,  i t  w i l l  be necessary to  consider the ex- 
change of more than one chain. Consider the two chain 
diagrams shown in figure 13.  I f  the incident particles 
retain a large fraction of their momenta, then we expect 
to be able to  replace their propagators by their mass 
shell delta functions. Thus the constraint of Eq. (84) 
holds for the sub-energies along each chain 

“1 
jnls i j  sAi i = 1 , 2  (86) 

where S i  is the jth sub-energy on the ith chain. We can 
nee the gelta functions to do the integrals over the plus 
and minus iomponents of the loop momenta, q ,  picking up a 
factor o f _  as usual. The amplitude will thus have a n ‘ s  
dependence25 of the form s’a‘l, so  it will be just as imp 
portant as the single chain diagram for a a 1 .  Clearly 
it will be necessary to  consider the exchange of an arbi- 
trary number of chains. 

Another lesson we learned from the eikonal model is 
that scattering amplitudes are sometimes simpler in impact 
parameter space. From Eq. (39) we see thata for large sub- 
energies the momentum transfer variables k1 Hu-k i .  e .  
they can be expressed in terms of tWo-dimensi “%1 variables 
in the x-y plane. I t  is therefore convenient to take two- 
dimensional fourier transforms with respect to  the E1 and 
write Eq. (85) in the form 

n - l  n 

T311 (Si: 2’1) B 8 n M ( s i ’  21) a ( 8 7 )  

i=1 
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For the two-chain diagrams of figure 13 the integrations 
over the loop momenta g just introduce a delta function 
which sets the total impact parameter of chain 1 equal to 
that of chain 2, i.e° 

n1 n2 2 bli - 2 1321 . (88) ~ 
i=1 i=1 

This is exactly analogous to the reSult of Eq. ( 2 1 ) .  

The above ideas can be put together to write down a 
concrete model for the production amplitude. We assume 
that only interactions between nearest neighbors are 
important. This is a popular, but probably bad assmnption.‘ 
my only excuse for it is that it makes the model simple 
enough to solve. Before any particles are produced the 
incident particles are nearest neighbors so I will include 
interactions between them. I assume that the basic inter- 
action comes from the exchange of a simple object such as 
a ladder or tower. A typical diagram is shown in figure 
14. The wavy lines are of course to be crossed in all 
possible ways. Notice that unlike the case of elastic 
scattering there are diagrams in which the incident par- 
ticles interact directly zero times. Their interaction 
introduces a factor 

as 

S<s,;>) a z [ié<s,g)J“/n:=1+§;M(s,g). (s9) 
n-O ' 

The amplitude for the exchange of N chains with n1-l par- 
ticles produced from the first chain, na-l from the second, 
etc., is given by 

Ma¥m°°°nN (5’23 sij’ Bij) (9o) 
1 N-l N n--1 “1 =S(sb)(-) n g l  n M(s.,b) ’ ZS i=1 j=1 iJ ~ij 

with the constraints 

n1 n .  (91)  

n s1 = sAi, :1 b E 
j=1 3 3-1 5 1 = 1,...N 
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In the process of crossing the lines of all exchanged ob- 
jects we interchange all the chains. So to avoid over- 
counting We take n1 2 n3...2 nN. 

Having constructed a model of production amplitudes 
we can calculate directly the hmaginary part of the elas- 
tic amplitude using the unitarity equation. Let us first 
recall how the calculation goes in the multiperipheral 
model. We call Im Tn(s, A) the contribution to the imagi- 
nary part of the elastic ~amplitude arising from intermedi- 
ate states of n+1 particles In our normalization 

n . 
Im Tn (S, A): 11' J. 1:111 % a  5 + [ ( P 1 ' k 1 ) 2  - “[3] 

° n31 6+[(k -k )51 - a] 6"" (P +k )2 - 3] j j+1 “‘ E a n m 51-1 
(92) 

° T2n(Si,ki) Tin (si,ki+A) 
3 _ l  n d 2 k  1 n n a 

“(5-)“ In A J‘ n dy. 5(HY'm/s) 4s 4n 1:1 (211)?" 0 i=1 1 1 1 

H M(m: /y i ,  k.) M*(m;/yi,ki+£9 
i=1 

In Eq. (92)  we have performed all the ki- integrations by 
means of the delta functions, and have made the same 
change of variables as in Eq. (37 ) .  Since we are setting 
the production amplitude equal to zero when any of the sub- 
energies are not large, we have made approximations appro- 
priate for small values of the yi g Taking the two-dflmen- 
sional fourier transform with respect to A gives 

1 n 
- 1 !  2 a Ia (3,]: —( '3‘ _ d b  di 6(IIy-n ls) 

J % I i u 1 ” 1 0  1= 1 1 in 
n z 2 n 

a “g“ 1mmi /yi,131)| :5 (13 - 2 31) (93) 
1-1 i=1 
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We now return to the production amplitudes defined 
by Eqs. (90) and (91). When we square the amplitude for 
the production of n particles We find two types of terms: 
diagonal ones in which chains of equal length come to- 
gether and off diagonal ones in which three or more chains 
are joined together. The latter clearly correspond to 
non-nearest neighbor interactions and must be disaarded 
to be consistent with our earlier neglect of such inter- 
actionso The contribution to the imaginary part of the 
elastic amplitude arising from the production amplitude 
with N chains of length n1,n3,...nN is easily seen to be 

|N-1 N Im M“1--nN(s,p) = ls(s:,la)|a Ii ‘1 1m Tni(S:R>, (9“) 
=1 

where Im'Tn(s,b) is defined by Eq. (93 ) .  The total con- 
tribution to Im M(s,b) coming from the N chain diagrams 
is given by 

Im MN(s,Ep E 2 Im Mn1"‘nN(s,b) 
n12n32.,,2n N 

'fi‘: >:_ ImMn1""nN(s,b) (95) 
ni—l 

= IS(s,2)Ia Ifilu'1C(s,g)/N! . 
where 

C(,b a 2 I Tn(,b 5.) F1 m S.) (96) 

is the multiperipheral model's prediction for the imagi- 
nary part of the elastic scattering amplitude. In our 
model the total imaginary part of the elastic amplitude 
is given by 

In M(s,2) = 4% IM(s,b) |= + 2 Im MN(s,b) 
n l 

= 2% |M<eu13>|a + |S(S.§) Ia s<ec‘s"3«”s -1). (97) 
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We have consistently written M(s,b) in the form 

may) M(s,b) = Zis(l-e (93) 

However we are presently interested in diffraction scatter- 
ing so we expect M to be pure imaginary which means the 5 
is also pure imaginary. It is therefore convenient to 
write 

6(S,E) = 13(5:E)9 (99) 

(97) then becomes 

fia(eC/s 23(1-e'a) = s(1-e'a)3 + -1), (100) 

so unitarity is satisfied exactly provided 

a(s,b) = C(s,b)/23. (101) 

Eq° (101) is a bootstrap equation for the elastic scatter- 
ing amplitude. One guessas an input form for a(s,b 
equivalently for M(s, b) and uses Eqs. (93) and (96 to com- 
pute C(s, b) If the output value of a(s ,2) obtained from 
Eq. (101) ~matches the input a we have a self consistent 
model in which the elastic amplitude satisfies unitarity 
exactly. 

As a first example let us take the input amplitude to 
be dominated by a single Regge pole with intercept a(0)=l. 
In this case it turns out to be simplest to work in moment 
rather than impact parameter spacea We write 

Min(S,A) = Y(£)sa(9 (102) 

Substituting into Eq. (92) and taking the Mellin transform 
gives 

Ia(L,g) E I ds s 
so 

-(L+1) Ia(S,é) a 
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1 5: n-l % dBEd ds e: - 7 . Y(k. )y(k  + A (103) 4 (4,”) J. i=1 ———(2fi) a 1 ~1 ~i l‘) 

. 8:051) + “(51 + 9-4-2 . 

”In the last line of Eq. (103) we have made the change of 
variables 31 - wig/yi. We must cut off the lower end of 
the 81 integrations at some large number, call it fig, 
.sinee We have consistently assumed that Tan vanishes if 
any of the Si are not large. Defining 

”‘43) E f%)a Y(1<,)Y(Ig+g) j‘ds s“(1£)+“(E+A)-L-2 
So 

=f sflLz v(§)y(1£+£)(50)“(19+a(1;+§)-&-1 (104) 
L-o(§)-a(§j§)+l 

we see that for L e 2q(%£)-1 

10,3) ~ $312.13) women-11 (105) 

50 

00,9) a ImT“(L,9 
1'1 "

M
S

 

1 

I?
 

c
u

p
 

we) [1 - i 10,9]‘1 . (106) 
4n 

Since «(0) = l, C(L ,0 )  must have a pole in the L-plane 
for’l < L < 2. 

In the multiperipheral model where C is the imaginary 
part of the elastic Scattering amplitude this pole leads 
directly to a violation of the Froissart bound. In the 
present model there is no such violation provided we take 
aout - C; however, it is clear that Eq. (102) does not 
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lead to a self consistent solution to the model. 

The fact that an input Regge pole with a(0) = 1 
leads to a function C(s,b) which grows with 5 suggests 
that we try an input amplitude of the form 

Min(s,2) = Zis 6(bo-b)  (107) 

with 

b0 = R0 Lns‘, 

Substituting into Eq. (93) and again taking the Mellin 
transform yields 

11 a l g: n-l n a -L _ ImT (1513) 49m) $121 d 13,1 dsi 451 9(1)10 bi) 

i=1 (108) 

1 3 11-1 d8 - o n 0 

“Z (2;) fag? e 1% R f 11:11 dab dsielfl. 12,1 

' 4s-L 

where bio = R0 Lns . The integrals over the b and s 
can be done as in aqs. (75) and (77) .  Retain ng only the 
leading t-plane singularlities We find 

Im'rnw b) ~ A (53ml i } q  dq J (qb) ’~ 4 4w 2n 0 
o 

.[8nRoa/[M-1)” + Roaqal / Tl , (109) 

The inverse Mellin transform of Eq. (109) is surprisingly 
simple.17 
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Ia (s, b) = - cffi)“' '1 %; g q dq Jo(qb) 

311-35 1‘ (Jaws (R0 ms q) a n sn'% 

'(8"R° ) 3““8) r(1§> (2Roq)§n'% 2 -1* a 35 3 _2 (110) - 3 (2g mo)n “be -b”> ] n 6(bo-b) 
(boa-bi>% (an-2): 

For virt 11y the entire internal 0 S b S be, the quantity 
(boa-b3) is large, so the series can be summed to give 

C(s,h) = ; ImIn(s,b) 
“=1 N % (111) 

1 S “(boa-b2) 

° 3 " filler-'6'")? “bf” 

where 

a = egg/no)é . 
Writing 

acutg C(s,§)/2s (112) 

we see that aout grows like a power of s for b < be so 

MW“: b) = 213(1-e '30“) a 213 6(bo - b) = Mi n(s, b). 

(113) 

We therefore have a self consistent two-particle scatter- 
ing amplitude which satisfies unitarity exactly. 

The above calculation does not constitute too strong 
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an argument in favor of the black disc model of diffrac- 
tion scattering. Even within the context of the model 
there is no good reason for ignoring interactions between 
non-nearest neighbors. Such interactions would clearly 
introduce more factors of the S-matrix into the production 
amplitude. This final state could therefore lead to a 
self-consistent elastic amplitude for which the total 
cross-section does not increase with energy. In my opin- 
ion the main lesson of this calculation is that when the 
leading bplane singularity of the elastic amplitude ap- 
proaches one, it is probably necessary to consider produc- 
tion from more than one multiperipheral chain. How this 
idea can be used to construct a realistic model of dif- 
fraction scattering remains a challenging problem. 
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Figure l 
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Figure 4 
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Figure 6 
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Figure  7 
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Figure 8 
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Figure 8 
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Figure  9 
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F igure  11 
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F igure  12 
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Figure 13 
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Figure  14 



9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

RELATIVISTIC EIKONAL MODEL 99 

W 
S.J. Chang and S. Ma, Phys. Rev. Lett. 22, 1334 
(1969); Phys.  Rev. 188, 2389 (1969). 

M. Levy and J. Sucher, Phys. Rev. 186, 1656 (1969)o 

H.D.I. Abarbanel and 0.1. Itzykson, Phys. Rev. Lett. 
23, 53 (1969). 

R.J. Eden, et. a1., "The Analytic S-Matrix" Cambridge 
University Press ,  London (1966). 

G. Tiktopoulos and S.B. Treiman, Phys.  Rev. 23, 1037 
(1971). 

R. Arnold, Phys. Rev. 153, 1523 (1967); S. Frautschi 
and B. Margolis, Nuovo Cimento 56A, 1155 (1969). 

S.J. Chang and T.M. Yan, Phys. Rev. Lett. 25, 1586 
(1970). 

B0 Hasslacher, et. a1., Phys. Rev. Lett. 25, 1591 
(1970). 

H. Cheng and T.T. Wu, Phys. Rev. Lett. 24, 1456 (1970)o 

B.W. Lee and R.F. Sawyer, Phys. Rev. 121, 2266 (1962) 

V.N. Gribov, JETP g, 414 (1968). 

G.M. Cicuta and R.L° Sugar, Phys. Rev. 2;, 970 (1971). 

B. Hasslacher and D.K. Sinclair ,  Phys. Rev. 23, 1770 
(1971). 

V.N. Gribov, I .Pomeranchuk, and K. Tar-MartorOSyan,  
Phys. Rev. 139, B184 (1965). 

J. Finkelstein and K. Kajant ie ,  Phys. Lett. 26B, 305 
(1968)o 

J.R. Fulco and R.Lu Sugar,  Phys. Rev. (To be pub- 
lished.) 



100 ROBERT SUGAR 

17., A. Erdelyi, et. a l . ,  "Tables of Integral Transform" 
McGraw-Hill (1954). 



EIKONAL DESCRIPTION OF HIGH-ENERGY PARTICLE SCATTERING 

M. M. Islam 
Department of Physics ,  University of Connecticut 

Storrs, Connecticut 06268 

A few years ago at this institute I gave a set of 
lectures on the same subject.1 My primary motivation at 
that time was to generate interest in this field by point- 
ing out that the eikonal description provides not only a 
useful but probably a powerful tool to explore hadron in- 
teractions. An added motivation was that new accelerators 
were being built, and we needed a suitable theoretical 
framew0rk to discuss experimental results in an energy re- 
gion where the partial wave expansion is hopelessly imprac- 
tical. It is with some satisfaction that one can look 
back, and notice that considerable work has been done in 
this area during the last couple of years. Various field 
theory models have been studied - a number of which have 
indeed led to the eikonal description of high energy scat- 
tering. Phenomenologically the eikonal description has 
been used to obtain full scattering amplitudes after assum- 
ing Suitable input amplitudes, and then compared with the 
ever increasing volume of experimental data. To these 
efforts We can now add the fact that Serpukhov and CERN 
ISR have begun producing experimental results, and NAL 
will have results in the near future. It is therefore an 
appropriate time to try to understand in a simple physical 
way some of the important aspects of the eikonal descrip- 
tion of high energy scattering, and in these lectures we 
shall be mainly concerned with the following aspects: 

1) How does a field theory model lead to an eikonal 
description? 

2) What does it mean to take the input amplitude in 

101 



102 M. Ma ISLAM 

the eikonal representation as a Regge pole ampli- 
tude? 

3) How can a phenomenological complex energy-depend~ 
ent optical potential be interpreted in the lan- 
guage of the S-matrix theory? 

2. Eikgnal Ampligggg from Field Theory 

By summing the generalized ladder diagrams of field 
theory (Fig. l), the eikonal description of high-energy 
elastic Scattering has been obtained by many authors. 
Apart from elaborate and rigorous mathematical methods? 
various approximate methods such as (i) functional tech- 
niques with soft-meson approximation,a" (ii) infinite 
momentum technique,5 (iii) modification of the Feynman 
propagators'e have been used. We shall adopt the last 
method for our diScussion. Even though mathematically not 
very rigorouS, this method provides a straightforward 
graphical way of obtaining the desired result, and also 
lends itself easily to the description of large momentum 
transfer scattering and to the investigation of radiative 
corrections.9 An added feature of the method is that it 
is very similar to the graphical analysis of infrared di- 
vergence in quantum electrodynamics (QED),1° and we shall 
have occasions to go over to QED to check with results 
known there. We shall also be interested in discussing 
radiative corrections to the eikonal amplitude, mainly for 
two reasons: (1) a number of authors have already investi- 
gated the question of radiative corrections to all orders 
to the eikonal amplitude in QED;11’13’13 (2) such correct- 
ions have been proposed as an explanation for the precipi- 
touséfall of high-energy large-angle pp elastic scatter- 
ing. 

2(a). m s  in an miteietpifiisxrass. 

We began with the diagram in Fig. 2 which is somewhat 
more general than the generalized ladder diagram in Fig. l. 
The shaded blob in this diagram represents some unspecified 
interaction; we consider this interaction as not known to 
us at the beginning. The wavy lines represent mesons which 
are being exchanged between two particles a and b. The ini- 
tial 4-momenta of the particles are pa and Pb) and their 
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final 4-momenta are p; and p6. For simplicity we shall 
first consider the particles 3 and h_as spinless and the 
mesons as scalar mesons. Let k1.ka.---;kn+a are the 4-mo- 
menta emitted along the 5 line, and E1,k3,...Eh+1 are the 
4-momenta absorbed along the h line. The unknown inter- 
action carries off 4-momentum kr from c g_line, and will 
be represented by a Feynman amplitude (kt).15 The Feyn- 
man amplitude“ for the process in Fig. 2 is now 

-15: n ma d‘ki 4 Mb “+1 
M = [-(2n)4] fiul W d kr (kr) 8Q; ‘1; k1) 

(#r) 

X 1 1 _ . . 1 
(pa-k1)’-m’- +16 (pa-k1 'ka) 5* '-m’+ie (pgflcnfl) ’m‘fle 

x 1 C I .  1 , 

(pb3§1)5-m5+ie (pb:§1:i;)5‘m§+1€ (pgifin+l)“-m34ie 

(2.1) 

where q = pa-p’. we use the standard notation: s=(pa+pb)§ 
t=(pa-pé)a, u= Pa' ')3. The 6 - function in (2.1) is eli- 
minated by integrat over kr, and the following approxi- 
mation is then made. For propagatOrs along‘g line before 

1‘: 
1 41 

- . a r -  o ' ’ (pa-K) . m.+1€ E Cki 2pa ki)+ 16 (2.2) 

where K = k1;this means we drop the kik.(i ¥ j) terms 
in the denominator. This is our basic apfiroximation. The 
reasoning behind is that we are interested in the limit 
where the external 4~momentum pa has components (p30 and 
Paz) going to infinity, so that the part of the 4—momentum 
k1 that can contribute significantly is in the neighborhood 
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of ki  = 0 .  The reason fo r  keeping, hOWever, the ki2 terms 
is that no unknown cut- -off is needed, as will be seen 1a- 
t e r ,  fo r  integrals over d4 k i .  Mesons whose 4-momenta a re  
such that ( 2 .  2 )  is just if iable wil l  be referred to by us 
as sof t  mesons. In the above approximation we have f o r  
propagators a f t e r  k r  

1 7 . 1 
’ 5 _ 2 n m : 7  g I .  _ T——.,— ' l  (pa +-K) m + 16 % (k1 + Zpa k1) + 16 ’ 

(2.3) 
similar approximations a re  made along the b _ l i n e  before  
and a f t e r  absorption of  k r '  From now on,  we s h a l l  re fer  
t o  Mh(kr) a s  the hard in teract ion.  From ( 2 . 2 )  and ( 2 . 3 )  
i t  is seen tha t  the hard interaction a s  defined here speci-  
f i e s  the propagator approximations along a and b l ines, 
and need not correspond t o  large values of the momentum 
tra.nsfer kr 

(2 .1)  with the propagator approximation becomes 

. 72  n+1 
M= %§F)4TLE1 1—11t :2 kia>PPa’Pb , (2.4) 

(#r) ' 6&1) 
where 

1 1 1 
. k  1+k3_ + c o -  ’ 

= k 1 ' 2 P a  1 k1 2Pa ’(k1 k 2 )  r-1(k:-2Pa.ki) 

i=1 
( 2 . 5 )  

P ' =  1 
kn+1+2pak n+1 kn +14-k n+epa‘(kn 4 1  fin) n: (k:+2Pa ki)  

i=r+l 

(2 .6 )  
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P and P ’b  are similar products of propagators along Pb 
line and p’b line.17 Each propagator has a +16 term 
which is no longer explicitly wri t ten .  

Let  us now assume that out of the 4-momenta k 1 , k s . . .  
. . ,k§-1 emitted by the p line, L momenta denoted by 
k f , k g , . . . . . , k £  are absorbed by the pb line and the rest 
13-1-4, momenta kahkfi , . . . . . $15-1 by the p ’b line. 
Similarly, we assume a t  out of the 4-momenta kr+1,kr+2, 
t....,kn+1 emitted by the p'a line, m momenta denoted by 
k i ; k § , . . . . . , k &  are absorbed by the 9b line, and the rest 
'u+l-r-m momenta ”+1,k;l+2 , . . . . . :kxflfil-r by the p 'b line. 
Obviously, the E 5 introduced earlier are a particular 
labeling of the "s ,  k"s, and kr -  We now want to sum 
over all  diagrams obtained by all possible ways of attach- 
ing the k " s  and k"s .  This summation is easily carried 
out because of the following identity: 

n n m n l n . -  1 + 1 71 L e e ‘  ’ g 

a 1 : 1  a1+a$ noo+ai+a m = 1  1:" 1 a 1 + a 3 + u  .+aiiém 814983.". . e fl i fl  

n I 1 1 —— — -  . ( 2 . 7 )  
a ifll a1+a3+...+ai 

To see explicitly the remarkable simplification resulting 
from this identity, let us suppose thata set  of 4-momenta 
are attached to the Pb line as shown in Fig. 3.  Let us 
take the product of a l l  propagators and sum over a l l  pos- 
sible ways of attaching the 4-momentum k .  Then because of 
(2o7) the sum is  

1 1 1 o o n l ‘ W q1a‘+2pb-€I1 qamhai's' ((114113) ’ - a iai(qi+2Pb°qi) 

This means that in the sum the term due to k factorizes 
out and the rest remains unchanged. Therefore, the scat- 
tering amplitude obtained from Eq. (2 .4 )  by summing over 
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all possible ways of attaching k 's and kfl's to the Pb 
and p lb lines is 

n+1 

M—[sfljil sa-zk 
(#r) i 1 (a) 

L r-l 

H, k15+2p -k. n k.=-2p:-kI i b 1 b j i=1 j=-b+l J 

m‘ n+l-r 1 

X n k”5+2pb- -k’.’ n kfié2pb7°kf i=1 j=m+1 5' J (2.8) 

Now the L momenta k 1 , k 2 , . . . . , k ¢  is a subset of the set of 
momenta k1 ,k2  , . . . . , k r _ 1 .  Let us call this Subset s . The 
m momenta k” , k é , . . . . , k $  are also a subset of the set of 
momenta kr+1 ,kr+2 , . . . . , kn+1 ,  and let us call this Subset 
s' . Eq. (2. 8) then corresponds to a particular choice of 
the subsets s and s” . To include all possible topologi- 
cally different Feynman diagrams where & momenta from 
the Pa line and m momenta from the pa line are absorbed by 
the pb line, we have to sum over alla such subsets. 

At this point we observe that if the Sum over all 
possible permutations of k 1 , k g , . . . . , k r _ 1  and of kr+1,kr+2, 
""’kn+1 are considered in Eq. (2. 8), then the products 
of propagators along the Pa and pa lines factorize. This 
is because of the identity 

2 1 1 g; = _;_ l..._1_ 

(2.9)  

where 11, iZ,...,ij is a permutation of l, 2, . , . , j  and 
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Zrepresents Sum over all permutations. Using this 
result we can now write the desired scattering ampli- 

tude as 

n+1 :‘ku n+ 
= fits] n1] '4t '12: 1‘1) 

(:r) (:1?) 

r-‘l n+1 X ' tr; "’5=_1— 1 g ' Tl Til—'— (3-1). h ki-Zpa-ki (1141'!) .‘ kj+2Pa '1‘} 
i=1 j=r+1 

r-l 
x for—'2- TLT‘T'. 

m n+1-r 
' -' 1 ' '7-—‘;"7"“ X Z, P. W F. ‘b-ZP L 3 i=1 1 1 3*!“ 

(2.10) 

The divisidn by (r-l)! and (n+1-r)! above is to compen- 
sate for the overcounting introduced by summing over all 
possible permutations. Introducing the Fourier transform 

Mh=(k1:) 

Mh(kr) = f d4x e'ikr'x Mh(x), (2.11) 

Eq. (2.10) can be written in the form 

M = in fd"x e-iq-x Mh(x) _(_rlT)_:_ 20104, (Ua)r-1-L 

s !  

x (n+iI-T): Z” (Ua)m (U4)n+1-r-m , (2.12) 
s 
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where the U's are defined by 

U; = U(X;pa,pb) , Us = U(X;Pa,'Pl;) 

Us = U(x;-p;,pb) , U'. = U(X;-p;,-pb'); 

eik-X ‘ _ 1 1 . U(xsp,P > (girlifiF F-zp.k+ie E5+2p’-k+ie 
(2.13) 

We note that the sums over s'and s” introduce the follow- 
ing factors: 

X= Cr?) : Z=Cn+1'r) ’ 
I II 

3 

so that Eq. (2.12) becomes 

Misfit; I: in fd‘x e-iq-x Mh(x) [ U I L  {U :rr-l-L 
, &! (r-l-L)! 

m n+1-r-m 
£1132 9’42 X m. 111+ -r-m¥. o (2.14) 

The Superscripts and the subscripts for the amplitude are 
put in to indicate (1) that it corresponds to the exchange 
of n soft meSOns and one hard interaction, (ii) that the 
hard interaction occurs after r-l soft mesons have been 
emitted by the Pa line, (iii) that L mesons emitted from 
the pa line and m mesons from the p line are absorbed by 
the Pb line. We now sum over all t e possible values of 
L and m for fixed n and r. This leads to the amplitude 
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r- -1 n+1-r 
+1, r +1,r 

Mn : 2 0 ;  m=0 fi’m 

r- 1 M n + l  r 
-iq x U1+Ua Wlfd x e Mh(x )((;:iy;-M (n+1rr)' 

In Eq. (2.15) the hard interaction has been taken to 
occur at the r-th position. To obtain the scattering 
amplitude for n soft exchange and one hard interaction 
we want to sum (2.15) over all values of r. However, 
at this point we have to distinguish between two cases: 
(i) the hard interaction is the same process as the soft 
exchange; (ii) the hard interaction is different from 
the soft exchange. In the first case, the sum over r has 
to be divided by n+1, since all diagrams with different1 
values of r are topologically the same Feynman diagram.16 
In the second case, diagrams with different values of r 
are different, and so no division by n+1 is required. we 
thus obtain 

+1 4. 'I ' 1%“ Mn = [ d x e q  Mh(x) {$.25} for case (1), 

(2.15) 

(2.16a) 
- fd‘x e-iq'x Mh(x) £918: for case (11), 

(2.16b) 

where 

=x(x) =111 +Uz +Ua +U4. (2'17) 

This leads to two different results for the total scatter- 
ing amplitude: 

g 4 _. _ ix 
M s l  DIP-H-fdxeqMh(x)e—1‘R-—1" 

=0 " (case 1) (2.18a) 
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= /.d‘x e-iq'X Mh(x) eix. (case ii) (2.18b) 

Eq. (2.18a) is the formula derived by Lévy and Sucher6 
which holds if the hard interaction is the same as the 
soft interaction, while Eq. (2.18b) is the formula that 
corresponds to Schiff s large-angle result19 and holds 
when the hard interaction is different from the soft 
interaction.3° 

We should notice that Eq. (2.18a) is exact in 
fourth order (i.e., exchange of two mesons) since the 
approximation of dropping kik. (i # j) terms do not come 
in till we go to sixth order. On the other hand, if Eq. 
(2.18b) is used in the same order the amplitude will be 
larger by a factor of 2. This result has been noted by 
Lévy and Sucher in the asymptotic limfl:sa¢, Itl fixedel’zg 
Another point worth commenting on is that, contrary to 
popular belief, the eikonal description can be used for 
large momentum transfer scattering. Suppose we know 
about a mechanism that can carry off large momentum trans- 
fer. Now, notice that in the derivation of Eq. (2.18b) 
no restriction was made on the magnitude of kr, the re- 
quirement was that the ki's are small (i # r). There- 
fore, (2.18b) retains its validity for large q. This in- 
dicates that the analysis of large-momentum transfer 
scattering in terms of Fig. 2 and Eq. (2.18b) will pro- 
vide insight into interactions at small distances. In 
this context we should notathat Eq. (2.18b) essentially 
corresponds to the distorted wave Born approximation or 
absorptive correction formula, if x(x) becomes a function 
of the impact parameter only. 

2(b). Radiative Corrections 

We shall investigate radiatiVe corrections to all 
orders due to soft mesons. These corrections are of two 
types: (1) vertex type where a soft meson emitted from 
an external line is absorbed by it after the hard inter- 
action; (ii) self-energy type where the soft-meson emit- 
ted by an external line is absorbed by it before the hard 
interaction. A typical diagram to be considered is 
shown in Fig. 4. For simplicity we shall first discuss 
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vertex type radiative corrections and ignore self-energy 
corrections. 

Let us begin with Fig. 2 and make a vertex type in- 
sertion connecting Pa line and p; line by a meson line. 
Let q; be the 4-momentum of this meson line. Thenapart 
from the obvious modification of the propagator products 
P and Pg, the Feynman amplitude will be multiplied by 
the factor 

_1_ a d‘cn 
(2w)‘ g [q—f-u’ + 16 ' 

We now sum over all passible ways of attaching q; to p 
line and then sum over all possible ways of attaching it 
to Pa line. Because of the factorization of the q; pro- 
pagator part arising from the identity ( 2 . 7 ) ,  the net re- 
sult is multiplying the original Feynman amplitude of Fig. 
2 by the factor 

I 

_i_r g3 d‘ ‘11 1 1 
(2n) E-u‘ue qf aipa-ql-ue HELE- p;.q1+t‘e ' 

This is the radiative correction due to a single vertex 
type insertion. Notice that this factor does not depend 
on x since q1 does not enter into the equation for kr- 

Next consider two vertex insertions, and let q; and 
q; be the 4-momenta of the meson lines connecting pa and 
p' lines. Keeping the initial positions and q1 and q; 
fixed, we first sum over all possible ways of attaching 
them to the p; line. Then we sum over their initial po- 
sitions along the pa line. The result is to multiply the 
original Feynman amplitude by the factor 

i 83 d‘Q: 1 1 , = . 1_1__. . 7 —  (£115: g sax-u. +5.6 «211-2pa'<11+iE qf—Epa-qfiie 

x 1—1 g” d‘ <12 1 1 
(211') q: -|J. +16 (13. - 2P8. ' q2 +16 EEBI‘EP; - Qa'l'a E 
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This factor however does not represent correctly the ef- 
fect of two vertex type insertions since contributions 
from all diagrams with ql and qg interchanged have been 
counted, while topologically they represent the same Feyn- 
man diagram. To compensate for this we have to divide the 
above factor by 2!. Thus the radiative correction due to 
two vertex insertions connecting Pa and pa lines is to 
multiply the Feynman amplitude of Fig. 2 by the factor 
2'(: . ,V1)3,  Where 

1 1 
=121-r')‘ 5 ’ n  W a s  E” ~8§p ok+i§€ k 'ZPa k+i€ (2.19) 

The generalization of this result when there are 11 lines 
connecting pa and pa is —.( (1v1 n. Therefore, if we sum 
over all these vertex type radiative corrections the re- 
sult will be multiplying the original Feynman amplitude 
by the factor e1V . Similarly, the sum over all vertex 
type insertions connecting Pb and p’ b will be eivg , where 
V2 is obtained from V; by replacing pa by pb and Pa by Pb° 

We now want to find how the scattering amplitude is 
modified due to self-energy insertions. To this end let 
us consider the external line Pa and make a self—energy 
insertion (Fig. 5) . The propagator product along Pa line 
will be modified in the usual way and the scattering amp- 
litude will be multiplied by the factor 

1 J1. _d.‘.L 
qf— u3+1e 

We now regard both ends of the radiative correction as 
corresponding to emission of 4-momenta, q; and (11' , so 
that q1' = -q;. Keeping the q; and fixed, we sum over all 
possible ways in which q; can be attached to the Pa line. 
Then we sum over all possible ways in which q; can 8be at- 
tached to the a, line. The net result will be multiplying 
the original Feynman amplitude by the factor 

1 l l . 
i2w5'f—g‘_S§—_ 1&1 +16 q;"-§patq1+ie qf-i'pa-qyf-ié 
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The radiative correction due to one self-energy insertion 
is then the above multiplicative factor divided by 2. 
The division by 2 is necessary, since the same Feynman 
diagram has been considered twice while summing over both 
ends. 

Next we consider the case Where two self-energy in- 
sertions are made to the p line. As before both ends of 
each self-energy insertions are taken as corresponding to 
emission of 4-momenta, so that we have q{=-q1, qJ--qg. 
We sum over all possible positions of q; end and then 
over q; end. The same thing is repeated for q’1 and q1 
ends. The result is that the sumlover all radiative cor- 
rections due to two self-energy insertions to the Pa line 
is the multiplicative factor 

_1_ l is” f a“ 1 1 
232(210‘ ql-u +116 Ef‘+2pa-q1+ie fi-zpa-gue 

4 x i 1;: f _diL. 1 1 ,_ 
2 Zr-zn)‘ q§ -u3+1e qz+2pa-qa+1e qS-zpa°qa+1e 

The factor 1/2!  included above is to take into account 
the fact that diagrams with Q1 and qa interchanged corres- 
pond to the same Feynman diagram. Generalization of the 
above result is now straightforward. If there are n num- 
ber of self-energy insertions to the p line, then tfie 
Feynman amplitude is to be multiplied %y 

n —r as» a . a 
where 

51 .a 3’ d‘k 1 1 . 
(2n‘ k?-p?+i€ RP-Zpark+1é kp+2pa°k+i€ 

(2.20) 

If self-energy corrections to all orders are taken into 
account, then this means multiplying the scattering am- 
plitude by the factor exs 181). 
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The above arguments can be equally applied for the 
selfsenergy corrections to the other external lines. 
Hence the net effect of including self-energy and vertex 
type radiative corrections to all orders is to modify the 
amplitude (2.18s) to 

M = eiCZ Vii-£52 Si) fd‘x e-iq°x Mh(X) eix-l : 
i=1 i=1 1X 

(2.213) 

and the amplitude (2.18b) to 

a 4 

M = eicizlvi+giizalsi> fd‘x e-iq'x Mh(x) e1x . 
(2.21b) 

Sa,Sa,Sa in the above equatidns are obtained from 81 by 
replacing Pa by pg, pb and p’ respectively. It is worth- 
while to note that the radiaEive corrections do not de- 
pend on x and therefore factor out without any new approx- 
imations. This factorization has also been obtained by 
Barbashov et a1.13 using functional integration technique. 

2(c). nucleon-Nucleon Scatteringivia Vector meson 
Exchange 

We now consider particles a and h as spin % nucleons, 
and the meson they exchange to be a massive neutral vector 
meson. Physically this case is more realistic than the 
scalar case discussed earlier in section 2(a). The reason 
is in the scalar case when s d w the Born amplitude domi- 
nateS,as so that our summing of an infinite set of diagrams 
is of no practical value. 0n the other hand, in the present 
case the eikonal amplitude far 3 n m does retain contribu- 
tions from all higher order diagrams, and shows that the 
eikonal description provides in‘a compact form the sum of 
an infinite set of diagrams. 

Let us first define the soft-meson approximation in 
the present case. We shall assume the vector meson to be 
coupled to a conserved source, so that in the propagator 
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of the Vector meson the kv/mP term can be dropped. Ex- 
amining Fig. 2 we note that, because of the fermion nature 
of the particles and the vector nature of the meson, the 
propagator part of the pa line will now be of the form 

fia -Ra-Ks+m ta -Kam 

"'YH 309 :-k1-ka)’-m='+1"e ma m y ”  u(pa.) 

The denominators are exactly the same as We encountered 
in the scalar case, and the same approximation, namely, 
drapping kikj (1%3) terms will be made for them. As for 
the numerators, we approximate them by neglecting meson 
4-momenta compared to the 4-momenta of the external par— 
ticles. The rationale like before is that at high energy 
the 4-momentum of an external particle is very large, 
While the dominating contribution to the scattering ampli- 
tude comes from small values of the meson 4-momenta. The 
above approximation has the following consequences: 

‘8 ‘uhm ta + m 
V111 W Y W  ”@113“ ”u 1mV1-1 “(P113 

(2131,)“L1 
— Vt u<pa> W "  (2.22) 

and 

16a -1€1 “We Ila-M1 
"'Yua (pa -k1-k2.)4'_a -m +16 We (13: -k1)‘3"—"1 -m +16 Yu u(pa ) 

(2p ) a “a (Zpa) 
H1 

=...vu3u(pa) a 2 
k1+ka'2Pa'(k1+k2)+i€ k’f-zpa-k1 + 16 

(2.23) 
Similar results are obtained for the outgoing particles. 
Thus for the p; line 
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I I . 

F5a. +K'n+l+m Y I“a“(n+l4l‘éif'lm Y 
L1 I s a H I 3 _  '. L1 _ n+1 (Pa+kn+l) -m n (pq n+1+kh) m? n l 

<?Pa>un+1 (2Pa>uh 

2 I a a I. 
kn+1+2pa kn+1 kn+1+kn+2Pa (kn+1+kn) 

30);) v 

a: _ I u(pa) Yum-1... 

(2.24) 

Eqs. (2.23) and (2 .24)  show that all the y '5 along any 
external line can be replaced by the corregponding compo- 
nents of the external 4-momentum vector. This leads to 
the result that if a meson is attached to two external 
lines, say p1 and P2, then we have a factor 4p1-pa in the 
amplitude. As seen above the denominators along the ex- 
ternal lines are precisely the same as those in the case 
of scalar particles (sec. 2(a)). Therefore, the results 
obtained there regarding sum over all final positions and 
average over all initial permutations, can be used here 
without any change. Thus the Feynman amplitude in the 
present case corresponding to Fig. 2 and Eq. (2.14) is 

“ma <-i>“fd‘x e‘iq‘x Hog) mpg) Mhm u<pa>u<pb> 
' L I r-l-L (413a pl) (4?8 pa) 

X 

L: (r-l-L)! 

n+1-r- (4pé-pa)m (4pé-nh) m 
X o 

m! (n+1-r-m)! 

(2.25) 

The extra (-l)n factor in Eq. (2 .25 )  arises because the 
vector meson propagator figs a negative sign relative to 
the scalar propagator. as before represents the hard 
interaction occurring at the r-th position along 2_line. 
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From Eq. (2 .25)  we find that the scattering amplitude for 
the sum over all diagrams of the type Fig. 2 is 

-i - —- - I M = fd‘x e ‘1 x u<p1;)u<pa> Mh(x) u<pa)u(pb) 
e1x(X)_1 , 

" fi n  x)'— (2. 26a) 

if the hard interaction corresponds to the soft exchange, 
i.e., 

Mh(kt) = 32 iv“ guv Yv 
kg-u2+ie 
r 

0n the other hand, the sum is 

'1 ' — — l i M =fd‘x e q " u<p§>u<pa) M‘Rx) u(pa)u(pb> e X“), 
( 2 . 2 6 b )  

if the hard interaction is different from the soft ex- 
change. The function x(x) in (2.26a,b) is given by 

— - O _ O I _ I I _ I .  ’ x(X) - 4pa p1 4pa p bUa 4pa pa 4P8 pbm, 

(2.27) 

where the U's are as defined in section 2(a) earlier. 

Radiative corrections to all orders for the present 
case can now be easily determined from the corresponding 
result for the spin-zero case. Namely, the effect of 
taking into account all radiative corrections (both vertex 
and self-energy types) will be to modify the amplitude 
(2.26a) to 
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M = 55" f an: e'i‘I'x mpg) mpg) Mh(x)u<pa)u(pb) 
eix(X)_1 

ix(X) 
? (2.288) 

and (2.26b) to 

M = e-géA fdfix e-iq-X E(p];)E(p;) Mh(x)u(Pa)u(Pb)  eix(x)’ 

(2.28b) 
where 

-%A--i[4%.pévl+4q;péVé+2g§pasl+2p;-p'aSa+2q5pa+2pépésmJ. 

(2.29) 

It is worthwhile to note the following implication 
of Eq. (2.28b) in quantum electrodynamics. Since H3 d 0 
in QED the integrals V1,31,Sa etc. become infrared diver- 
gent. To examine this divergence let us introduce a cut- 
off A, and drop k? terms compared to pa.k and pfi.k in the 
denominators of the above integrals. Then 

I l I -1[4pa paV1+2pa pas1 + Zpa-paSa] 

A 4 
1g2 d k  ‘ P a  Pal T ‘, 

4 _=—. 2(211) k +16 1):: ‘13:? 

(2.30) 
so that when pi e pa the right-hand side vanishes. This 
means that the infrared divergence due to vertex correc- 
tions and Self-energy corrections cancel exactly for 
forward scattering. In QED this indeed should happen be- 
cause of Ward identity. 
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Let us at this point consider a possible approxima— 
tion of Eq. (2.28b). Suppose the hard interaction is 
such that only very small values of x are important for 
the factor e1X(X). We may then put x=0 in the argument 
of x and obtain 

M = e'%A+iX(°) E<pg)E<p;_> Mh<q>u<pa)u<pb). (2.31) 

The above approximation is equivalent to saying that 
Mh(kr)=Mh(q). In this approximation the contribution of 
all soft vector meson exchanges becomes a known exponen- 
tial factor that multiplies the unknown hard interaction. 
This is precisely the result obtained in the infrared di- 
vergence analysis of QED.10 There the approximation 
of replacing x(x) by x(0) can of course be independently 
justified because the photon mass goes to zero (u n 0). 
The soft meson factor exp [-%A + ix(0)] in Eq. (2.31) can 
provide a rapid fall-off for high energy fixed angle 
scattering (s,t, u allgoing to infinity). This has been 
suggested by Fried and Gaisserl‘ to explain large angle 
pp scattering. 

Let us now try to see how our relativistic analysis 
is connected with the conventional eikonal representation 
of the scattering amplitude.“’1 For this purpose we 
first take the scalar case with the hard interaction same 
as the soft. Then 

_- . ix(x)_ 
M =fd‘x e 1‘1 X Mh(x) 3W]; , (2.183.) 

and 
a . d4keik~x ‘— 7 g . 1 a 1 ' 

X“) (“v—2.51 kz-uz + i6 L 'P—JpaTk—sl-‘i? +. F—fi—+Zpa-k+i€] 

x[ 1 1 ]. 
P+2pb-k+1€ + k" -2pé-k+i€ 

(2.32) 

We express the external 4-momenta in terms of the average 
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4-momenta p-3g(pa + p5) and p ’-&(pb + pg). Then in the 
stem p = -§’ , po=po'= a0 For x 9‘ 0 we take the 

limit 8TB impod H, drop the k and q k terms in the denomi- 
nator compared to p-k and p -,k and obtain 

(1‘),“ «1‘1: eik [ 1 _ 1 
x 'F-u’uex Emu-1:6 2p-k+1e 

x [ 2p ”-lkTi—e ' 2—p’}k-—i€ ] 
2 

g ' d4k 6”"x I- _ ‘ 6 . I- —:—15" wfi—k -u +16 (P k) 5(P k) 

= g 1 d; k ;  - e 1 5 ] .  . E J_ '3—9'2 “'3— W 

K0 (uh). (|§l|=b) 
(2.33) 

K0 (2) is the modified Bessel function of the second kind. 
Inserting (2 .33 )  in (2.18a) and noting that the momentum 
transfer vector q is normal to the z-axis (taken along 3) , 
we obtain 

eix (b) _1 
M = [daxLei'S-BEJ. dxoaMh(X) [ W ]  ’ 

(2 .34)  

where g , iii are vectors lying in the xy plane and x(b) = 

25:; Ko(ub) . Now 

2' 
fimdxaMh(x) =/;1xodxa— (2n ——)-4. 4fd‘ke ik-x a '5 = 

‘1: ~51 +16 
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-ik -x 
e ~l. ~_|_ 

2 8 f a 
3 W211 - (1 k1. Tkl + “a 

Ko (Lib) - (2-35) 

From (2.34) and (2.35) We get 

M -21s f (113xi eifl‘fil [eiX(b)-1:| 

-411 is fmbdb Jo (blgl) [eix(b)_1] , (2.36) 
O 

which is precisely the conventional eikonal form for the 
scatter ng amplitude. We notice further that for s~¢, 
x(b) ~ s” so that (2 .36)  becomes 

Ma- 4118 [ b  db Jo(blg|) x(b) 
a 0 

8 

32 +u2 

8 
, (2.37) 

q? .443 

which is the Born amplitude. 

What happens when we have nucleon-nucleon scattering 
via vector meson exchange? In this case x(x)  is given by 
Eq. ( 2 . 2 7 ) .  Now, 

4palpb = 2(pa+pb)2 - 4n? 3 Zs for s H w. 



122 M. M. ISLAM 

Similarly, 413a p b = 4p;- P =4Pa P b =  23- 
Thus x(x)ve tor = -2s x(x scalar- Eq. (2. 33) then leads 
to the result that for vector meson exchange 

8 
8 

X(X) = - — Ko(ub)- (2-38) 
2n 

Therefore the scattering amplitude (2.26a) becomes 

= - I — I M u(pb) Yuu(pb) u(pa) Yul-1(Pa) 
flc' X 13(0)) 

4. -iQ° x __1_ gae 4. e -1 

= -i mpg) vuu(pb) E(1>;,)Yul1(Pa) 

xfdzx; eig'fii [eiX(b)-1] . 
(2.39) 

3 

where x(b) = - g- Ko(ub) . Let us now use the following 
helicity fl representation of the spinors:"H5 

u(Ka,pa) °‘ @‘jé: Jena“4 xxa , 5(:;,P;) 

=- (g-jx xxa e——i,(1 -21a',) (2.40a) 

u()‘bspb) 3‘ W_\%<2:>eieUa/4 x_>\b: 6(x-éapl;) 

= (§:S¢ xfxé e 12° 4 ( 1 ,  -21b); (2.40b) 

here X3013) and Aéflfi) are the initial and final helicities 
of particle g (1;); 6 is the c m .  scattering angle; 
xii; =(1), x_% {0) and w = (pal). From (2.39) and (2.40) we 

then obtain for 5 -° °° and t fixed 
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_ . --s 2 iq-§ ix(b)_ M— -i g};- éxékaéxéxbfd xle ~ .L [e l]. (2.41) 

A number of features of Eq. (2.41) are worth noticing. 
(1) It shows that the high-energy momentum-transfer ampli- 
tude for Spin -% scattering via neutral soft vector meson 
exchanges is a helicity conserving amplitude. (2) Since 
Im M(t=0) “ s Utot: Eq. (2.41) predicts a constant asymp- 
totic total cross section. (3) As the eikonal x(b) is 
completely real, the inelastic cross section vanishes at 
high energy. This of course represents aqaunrealistic 
feature of the model. (4) Since x(b)= - EL. K3(ub) is 
energy independent, diagrams of all 2" orders in 
coupling constant contribute to the high energy behavior 
of the full amplitude. This may reflect an important 
feature of strong interactions where perturbative calcula- 
tions are not very meaningful. 

3. Regge-Eikonal Model 

The Regge-eikonal model corresponds to taking the 
"Born amplitude" or the single scattering amplitude as 
that due to the exchange of a single Regge pole, and then 
generating the full amplitude by means of the eikonal re- 
presentation. Let us now explore the consequences of 
such a model.26 The full elastic amplitudez7 has the 
eikonal representation1 

T(s,t) = ikW [b db Jo(bA) [1 — eiX(s’b)], (t=-A2) 
0 (3.1) 

where the eikonal X(S,b) is related to the single scatter- 
ing amplitude T1(s,t) by 

X(S,b) .. klw IAdA Jo(bA) T1(s,t), (3.2) 

If T1(s,t) corresponds to a single Regge pole exchange 
amplitude, then for 3 large it has the form 



124 M. M. ISLAM 

T1<s,t> = b(t) cm (gym ; (3.3) 

C(t) is the signature factor and b(t) is proportional to 
the Regge residue. We assume for simplicity an even sig- 
natured pole throughout, so that 

e-ina(t) e-i glam 1 + _ 
' C(t) = sin 11:10:) _ esi‘n m 

The n-th term in Eq. (3.1) obtained by expanding the ex- 
ponential is 

Tn(s,t) = - (1)1“?- k" [ b  db Jo(bA) x n(s, b), 
o (3.4)  

which we refer to as the n-th multiple scattering term. 
Notice that the full amplitude is simply a sum over all 
the multiple scattering terms: 

T(s,t) = Tn(s,t). (3.5) 

i
v

;
 

a 

When the single scattering term is given by ( 3 . 3 ) ,  the 
n-th multiple scattering term becomes, using Eq. ( 3 . 2 ) ,  

Tn(s,t) = -;§(1)n+1fi—f b db J. (1313);}.— 

n O 

x I"! f dtiJ° (bAi)b(ti)g(ti) <§°>a(ti) " 

1-1 
' (3 .6)  

_ _ 2  where ti — A1. 
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Let us write 

” n 
T(n)(t;t1,ta,...,tn) :/ b db Jo(bA) ff Jo(bAi). 

1‘1 (3.7) 
Then, 

n-l ‘ 
Tn(s,t) - 353W— ‘dtldtg...dtn 4“) (1:;1:1 ,t3,...,tn) 

S X _\ §a(ti)-n+1 n b<t ) c0: )- 

S°j BI; 1 1 (3.8) 

Eq. ( 3 . 8 )  can be written in the form 

rn<s,t> = [d1 (3;? co) pn(t;j), (3.9) 

where 

- "j 
w) fin—@3- 

and 

pn(t;:l) - Kéfl—r sin 31 [duldtaudtn T(“’<t;t1,...,tn> 
n b(ti) 

x 5(j{Za(ti) + n-l) 3] —-—-;——-- 
1 i=1 ““5““? 

(3.10) 

pn(t;j) given above can be expressed as integrals over 
two dimensional vectors: 
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.1 - 11- 2 _ ml" m1 s1n 23 d'gldgz...dgn6 (A 12194) pn (t;j) = ‘— 
n. '80 

n b ( - A ? )  
' _/ l X W“ - We ”-1) L! —n‘—:~ i = 1  sin §a(-Ai) 

(3.11) 

This result is easily obtained by using the representation 

2n , 
Jo(bA)= —1fi-f d§ eflETE. 

O 

in (3. 7). The upper limit of j- integration in (3.9) is de- 
termined by the maximum value of Z = a(t ) because of the 
6- function in (3 1 0 ) .  .n HOWever, the integrand p (t; j) 
vanishes unless 1&1 Ai 2 A. This follows from.nnhe fact _ 
that T(n) given by ( 3 . 7 )  vanishes for A >121Ai(n22)33 
Therefore, to determine the upper limit of 
integration in (3. 9) we have to maximize Za(t1) subject to 
the condition that (2 Ai - A) is positive} 

Let us define 

1'1 n 
. » ; ; 

E A. - A = - . 2 - - 2. 3.12 xn 1211 121(3) (t) ( > 

We want to maximize Eld(t. ) keeping Xn fixed at some posi- 
tive value, i= —1 say c. The problem is equiva- 
lent to maximizing the function 

n 

@n = 1;; d(ti) - Axn 

where k is an undetermined Lagrange multiplier. This 
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gives 

da(ti) - ‘ ‘axn 

dti .ati 

1 
a - o 

2(_t1)% (3.13) 

We notice that the same equation is satisfied for all 
values of i (i - 1,2, ...,n). Therefore, if to is the so- 
lution of Eq. (3.13), then ti —to for all i. From (3.12) 
we then obtain 

xn = 9 = n<-t.)% - (-t)% 
or 

t, = - 32:11:. (3.14) 

Therefore, for Xn = c, 

[ Z a(ti)] - n a(t,) = na (- 32:31:) . (3.15) 
max 

Now, the smallest value of Xn is c = 0. Since a(t) is 
considered to be a monotonically increasing function of 
t, the value given by (3.15) increases as c decreases. 
Hence the maximum possible value of the left-hand side of 
(3.15) is given by 

[ E a(ti)] - na (- %;§. (3.16) 
1 max ’ 

This in turn gives the upper limit of integration in (3.9) 
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to be 

jmax(t) = nnfifia) - n + 1. (3.17) 

Let us at this point try to determine the asymptotic 
contribution to the amplitude T(s,t) due to a branch cut 
in the complex angular mOmentum plane. To this end we 
first write T(s,t) as a countour integral (Watson-Sommer- 
feld transform) in the j-plane: 

P <-z )+P < )1 
T(s,t) = - $1 dj<2j+1> Mann); 

sin nj 

c (3.18) 

a(j,t) is the analytically continued even signatured par- 
tial wave amplitude.29 (For simplicity we have kept only 
the even partial waves). The contour C encloses all the 
poles at even integers on the real axis (Fig. 6). Next 
we distort the contour C to a line parallel to the imagi- 
nary axis and passing through j = -%. We thus pick up 
the contributions due to the Regge poles. If now there 
is a branch point in the j-plane with the branch cut go- 
ing left as in Fig. 6, the contribution due to this cut 
to T(s,t) will be of the form 

’ac(t) -inj 1+e . Tcut(s’t) = $5 ‘13 1w] \EQj MN): 
(3.19) 

where Afj(t) is proportional to the discontinuity of 
a(j,t) across this branch out, and ac(t) is the po- 
sition of the branch point. For t negative ac(t) is real 
and the branch out extends along the negative real axis.3° 
That cuts in the angular momentum plane should occur when 
two or more Regge poles are exchanged was first argued by 
Amati, Fubini and Stanghellini.31 However, it was Mandel- 
stam32 who showed from Feynman diagram models with third 
double spectral functions that such cuts contribute in an 
important way to the asymptotic behavior of the scattering 
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amplitude. This was further confirmed by Polkinghorne.as 
The positions of these cuts are given by 

ac(t) = nm< fig-> — n+1 , (3.20) 

when n Regge poles each with trajectory a are exchanged 
in the t-channel. If we now compare the above expression 
for the cut contribution with the expression for Tn(s,t) 
given in Eq. (3.9% we find that they are of the same 
form. Also, ac(t) given by (3 .20)  is identical to the 
upper limit of integration in ( 3 . 9 )  as given by Eq. ( 3 . 1 7 ) .  
We may therefore consider Tn(s,t) as a Regge cut contri- 
bution arising from the exchange of n Regge poles, pro- 
vided there are reasons to believe that pn(t;j) in ( 3 . 9 )  
can be equa.ted with Afj (t) in (3.19). Now, the form of 
the pa rtia.l wave discontinuity across n- Reggeon exchange 
cut has been investigated by Gribov, Pomeranchuk and Ter- 
Martirosyana‘ using multiparticle unitarity conditions 
analytically continued in the j-plane, and by Gribov35 
using Reggeon diagrams. For t < 0, their result is 

Afj ( t ) =  (- l)n -n-:1- Sia- jfdkldka. ..d5n(2fi)25(A-¥ k.) 
NIL 

x 6<j - Ea ( -k2)  + n- l) N:(- k2) ...u(-k3) 

;? sin %a(— k2) 
1-1 1 

(3.21) 

where N a(_ k?) ' a ( _  - k 2 )  is the n-Reggeon product1on ampli- 
tude. Compa.ring (3n 21) with (3.11) we notice that 
pn(t;j) can indeed be equated with Afj(t) if ( - l )  “N3 
can be obtained from the product of n Regge residues. fie 
conclude that the n-th multiple scattering term in the 
Regge-eikonal model can be interpreted as a Regge-cut con- 
tribution with a definite prescription for the discontinu- 
ity across the cut. 

Let us now investigate some of the consequences of 
the above interpretation. First we examine the j-plane 
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structure of the partial wave amplitude when the discon- 
tinuity is given by the multiple scattering term. For 
this purpose consider only the double scattering term 
(n = 2). Eq. (3.11) gives in this case 

1 
Afj(t) = FE: Singj 4&1 5\j'a('2§)'a('(éfiéi)2) + if 

x Mas?) bee-gm) 

SEEM-A?) sin%a(-(A-£1)3) 

(3.22) 

Therefore, t 
2a(z)-l 

fj (t) = 1 dj ’ Afjl(t) 

T:- ; j ’ - j  i 11- I sin fj s n ZJ 

1 b(:g§) b(-(g-gl)2) 
= _ T .  . ‘ .  d3]. 

" 8‘ j-a(:g§) - a<-(g-gl)9)+1 

x 1 l . 

sin % OLGA?) sin %a(_(£_£1)a) (3.23) 

This is in agreement with Reggeon diagram and Feynman dia- 
gram models. “’53 It is worth mentioning that strictly 
speaking f (t) above is not the partial wave amplitude, 
but essentially the Mellin transform of the scattering amr 
plitude T(s,t). Notice that if the cut contribution is 
given by Eq. (3 .19 ) ,  then T(s,t) is related to fj(t) by 

T(s,t) = - 2% Id: w) (-333 fjm, (3.24) 
C 
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where C is the contour given in Fig. 6. For t < 0, if 
all the j-plane singularities of f-(t) are to the left of 
j = 0, then (3 .24)  can be written as a Mellin transform: 

O+i¢ 

T<s.t) = 1+ fa: c0) C—j fj (t), (3.25) 
(7.10: 

where 6 is determined by the right-most singularity of 
f-(t). J 

Let us now examine the asymptotic behavior of the 
n-th multiple scattering term when the exchanged Regge 
pole is the Pomeranchon pole (a(0) = l). The reason for 
special interest in this case is that all the branch 
points lie on the right of the pole in the physical 
scattering region (t < 0) and, therefore, the cut contribu- 
tions should be quite important in determining the high- 
energy behavior of the full scattering amplitude. Notice 
that if the Pomeranchuk trajectory is linear, 

_ I ;_d_u.l 0L(t)-1+a.t ~.°“d—tlt—o>°3’ 

and 

jn(t) = no ffi§)- n + l 

t = 1 + a’ E , (3.26) 

so that the branch points are on the right of the pole 
(t < 0) and for t = 0 or n e w they accumulate at the 
point j = l. 

The n-th multiple scattering term for the linear 
Pomeranchuk trajectory is given by Eq. (3 .6 )  to be 

n-l i2n rs n——_'1 K?- A1 dAl AadAa . . . AndAn 

O 

T n ( 5 , t )  =' ‘ 
n !  s 

, on n‘ x fbdb Jo(bA) n Jo(bAi) x 
1-1 

0 
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n 
-a’z AiLnCE e-i%> n_ b(-A:) 

x e i=1 so H i=1 . (3.27) n‘ 2 sinEOK-Ai) 

The" dominant contribution in Eq. (3.27) for s - °° occurs 
when '23 A3 is minimum and g A =,A that is, from values 

i=1 1 i? =1 1 
of A1 = 9— . (We can also arrive at this result by exam- 
ining Eqn (3. 9) which shows that the dominant contribu- 
tion to the integral comes from the upper limit j = jn(t) 
and, therefore, from values of t i =  n3) . We can now 
approximate (3.27)  by 

lac-s A” 
3:! s_n'Tkst) [sin-a<-A )1“ Tn(s,t) = - 

°° n '3 I 3 {E '13) 

x l bdb J°(bA) n” I AidAi Jo(bA. ) e  '°‘ A1%”s 2 . 
i=1 0 

(3.28) 

The integrals can be easily done and the result is 
A2 

l-aI-fr b( --;-) n 
-1 

Tn(s,t)=<%oe 3 gn—lnln Sn- -1 °[51M(—_%;—)] ' 

(3. 29) 

Using ( 3 .26 )  we can rewrite (3 .29 )  in the form 

(13) EJ (t) n 
'1'n (s, ”(80511 e [555804) pn-l .Ln1)n- -1[m::n (A3; ”-371 

J 

(3.30) 
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The reason for extracting a (- -l)n factor is that for 
sma 11 A2 b(A2) should be negative. This follows from the 
following argument. The single Pomeranchon term gives us 

T1(s,t=0) = -1(§-) b(0). (3.31) 

Therefore, when s a w,37 

Im T (s,0) = Im 13 ( 5 , 0 )  

e - (g?) b(0). (3.32) 

But Im T(s, 0)= kW is a positive definite quantity. 
Hence b(0) is n23 ative. So if b(- Aa) varies say exponen- 
tia.lly with A3 (b(- -A3)=b(0)e‘aA3 ), it has to be negative. 
This equation then exhibits the following properties of 
the Regge cut terms: 

1) Asymptotically the n-Reggeon cut term behaves as 

§_ jn(t) 1 , _ (so) W 
t 

80 

Thus the cut contribution is similar to the pole contri- 
bution except for the logarithmic factor that depends on 
n. For t < 0 the cut dominates the pole, and asymptotic- 
ally the phase of the cut is given by e'igjn(t)' 

ii) The contributiomafrom different cuts arising 
from Pomeranchon exchanges alternate in sign due to the 
factor (-1)n and, therefore, will tend to cancel each 
other.as 

The first result implies that the pgrtial wave dis- 
continuity should va.nish like (j- “in (t»n' near the branch 
point (n > 2)39 The proof is simple. Suppose pn(t;j) 
has no zero at the branch point. Then from Eq. ( 3 . 9 )  
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t in (t )j / 

Tn(s,t) = C§o>jn( ) I n  {if j nu) C(3)Pn (t;J') 

a s jn(t) . ,. 1 (go) gun) on(t,3n) 7.11:0— , (3.33) 

when s a a. But this will contradict our explicit calcu- 
lation of Tn(s, t) in Eq. (3. 30) as far as £ns behavior is 
concerned. If now pn(t;j) ha.s a zero ofP the order p at 
the branch point, i. e. , pn (t;j)= (j— —jn)P pn(fi when jfijn, 
than ins-tead of (3. 33) we nobtain 

\' (t) . ~ -1.P- l Tn(s,t) = (Eofn C(Jn) Pm“) # 1  ' (3.34) 
50 

Comparing the powers of logarithm in Eqs. (330) and (3.34), 
we get p + 1 = n - l or p = n - 2, which proves our asser— 
tion about the vanishing of the partial wave discontinuity. 
This result again agrees with that of Gribov et al.34 
Furthermore, on the basis of the Reggeon unitarity condi- 
tion Ansel'm and Dyatlov40 have concluded that successive 
Regge cut terms alternate in sign -— a result we have al- 
ready obtained. 

Summarizing, we can say that if the single scattering 
term in the eikonal description is taken to be a Regge 
pole amplitude, then the n-th multiple scattering term 
can be regarded as a Regge cut. It leads to the same 
branch point, the same functional form for the discontin- 
uity and the same high-energy behavior as expected for the 
Regge cut arising from n-Reggeon exchange. However, the 
question whether the n-th multiple scattering term provides 
the full contribution due to the n-Reggeon exchange cut 
remains open. In this context we should note that a num- 
ber of authors have found the Regge-eikonal model to 
yield correctly in léa theory the full amplitude obtained 
by exchanging ladders in all possible ways between two 
high-epfrgy particles, when the coupling constant is 
small. 



EIKONAL DESCRIPTION OF SCATTERING 135 

4. Optical Potential in S-Matrix Theory 

We shall now try to see how a phenomenological com- 
plex energy-dependent optical potential may be interpre- 
ted in the language of S-matrix theory. Why are we in— 
terested in this question? To answer that let us consider 
high energy elastic hadron-hadron scattering, in particu- 
lar pp scattering. Two descriptions have been often used 
to discuss this scattering. In one, the optical model des- 
cription, hadrons are pictured as extended objects having 
certain matter distributions which interact in acme way 
during collision, the strength of the interaction being 
in general energy—deependent."a In the other, the S-matrix 
description, one draws a Feynman-like diagram indicating 
how the fundamental process occurs, and one asymptotically 
evaluates the diagram to determine what type of singular- 
ity it represents in the j -p1ane. In both cases the basic 
process is iterated to obtain the full amplitude. In 
the optical model the iteration is done using the eikonal 
description. This leads to the multiple scattering terms. 
We have realized that if the iteration is also done in the 
'S-matrix approach by using the eikonal representation, say 
with the single Regge pole amplitude as input, then the 
multiple scattering terms are Regge cuts. However, notice 
that the basic ingredient, i.e., the single scattering 
term in one description is different from that of the 
other. So one does not see any dynamical interrelation 
between them. Mbdels which are in between the two, the 
hybrid models,“ combine bodily one part of the optical 
model with another part of the S-matrix. We are thus 
faced with the following problem. Is it possible to see 
how the basic mechanism in one description, say the opti- 
cal model, can be understood in the language of the other, 
the S-matrix theory?‘ 5 We shall now study a model in 
which the basic process can indeed be discussed using both 
the optical model and the S-matrix descriptions.B ”‘ The 
model further shows wherein lies the advantage of one des- 
cription over the other and how they fit in together. We 
hope study of this model will provide valuable insight in- 
to other hadron scattering models - Where one description 
is used to the exclusion of the other. 

The model I have in mind is a model of high-energy 
pp elastic scattering which has been studied over a period 
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of years.‘8 Originally the model was formulated as an 
optical model,‘9 and so I shall begin by presenting it 
as such. What was assumed is that the two protons have 
finite hadronic matter distributions and that they in- 
teract by exchanging a meson. The strength of the in- 
teraction was taken to be complex and energy dependent. 
In other words, we are assuming that the basic inter— 
action between the protons is an optical potential of 
the form V(t,r) ~ g(t)u(r), where the radial dependence 
is connected with the hadronic distributions of the pro- 
tons and g(t) is a phenomenological complex energy-de- 
pendent coupling constant (we use t as the square of the 
c.m. energy in this chapter, and s as the negative square 
of the momentum transfer.) In terms of the optical Born 
amplitude, we are assuming it to be 

A1(t,s) = — 8530:) $9- . (4.1) 
m - s  

We may now try to picture this phenomenological amplitude 
in terms of the diagram in Fig. 7. The two blobs repre- 
sent the fact that the two protons have finite hadronic 
matter distributions corresponding to F3(s) in (4 .1) .  
However, we immediately realize that Fig. 7 is not a Feyn- 
man diagram, since if it were the coupling constant g(t) 
should be real. So we are faced with the problem of un- 
derstanding (4 .1)  in the S-matrix language. 

I shall first give away the answer and then present 
the technical arguments showing how one arrives at it. 
The answer is that a Born term like (4.1) corresponds to 
a Mandestam diagram of the type shown in Fig. 8. 7 The 
solid lines represent nucleons, the short dashed lines 
fl mesons, the long dashed lines a vector meson, say w, 
and the wiggly line represents a Regge trajectory, say 
P ' . 5 °  The blobs represent N + w n n + N amplitudes. To 
see what is happening physically, let us replace each 
blob with a nucleon line, and then look at the diagram as 
in Fig. 9. A high energy nucleon comes in and breaks up 
into a "core nucleon" and a "cloud pion”. The core nu- 
cleon interacts with the core nucleon of the other incom- 
ing nucleon via the vector meson w, while the pion inter- 
acts with the other pion by exchanging the Regge 
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trajectory P'. Finally, the nucleons absorb resPective 
cloud pions and emerge as outgoing nucleons. Obviously, 
Fig. 8 is a generalization of Fig. 9. The form factor 
that Fig. 8 implies is the wNN form factor given by the 
diagram in Fig. 10. 

Let us now come to the technical part of showing how. 
a Feynman-like diagram such as Fig. 9 can provide a Born 
term like (4.1). We shall start following a paper by 
Rothe.51 We consider all particles to be equal mass and 
spinless, and try to evaluate the Mandelstam cut diagram 
with a Regge pole and a single particle exchange (Fig. 
11). That diagrams of this type must occur in nature 
even when all particles lie on Regge trajectories has 
been noted by a number of authors.52 The Feynman ampli— 
tude correSponding to this diagram (Fig. 11) is 

6 
g 1 

A(s,t) ' ' 1(2“)ia I d} g1 d‘kl d‘n; 
n3 - m? + 16 
1 

4. x n 1 1 
_ 5? -m3+1e k? -m2+i€ 

i-l 1 1 

x R(n§ .U;%§,§2,k§ .kf) ; (4-2) 

R is the Regge pole amplitude and U = (§a+ka)2. Let us 
introduce the Lorentz invariant variables s = (pl-q1)9, 
8’ = n2, S” = n‘f. at - (pl-#1302, t'=(p1+n1)2 and 
t" = (pg-n1)3. We now express the integration over d‘n1 
in terms of the variables s’,s”,t’,t‘: 

d‘n. ” 1&7 T(s,s’,s”) ds' ds” dt' dt”, (4,3) 

for t a 9:53 T(s,s’,s”) is given by 

T(s,s',s") = §  lbdb Jo(bA) J°(bA') Jo(bA”) .. 
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e(-sa-s'a-s”a+2ssl +285” +2s’s”) . . (4.4 
[-sa-s’a-s”9+ZSs’+2ss”+25's”lg ) 

(s =-A" ,s ’=-A ’3 ,s”=-A”9) 

Eq. (4.2) now becomes 

“3’” a '% GEE-QB % Ids'ds” 4...." s _6 .a”) 
t _, 0° Sil'mz + 16 

I G 

x Idt' I dt” F(s’,s”,t',t” ; 5,12), (4-5) 
-B —m 

where 

I , a a a a 
F(S’,S”,t’.t”;8.t) =Id‘61d‘k1 ,R: U: 3""-—’——'k: k2) - 

n [gt-m +16] [ki-m +16] 
i=1 

(4.6) 

To carry out the integrals over F, we have to examine its 
singularities in 5’ and t”. To this end, we first exam- 
ine the function F obtained from F by taking out the 
Regge pole amplitude: 

F(as’,s”,t',t”;S)=-i I‘ld‘gi -n d‘k‘ 
(211)3 “a; —m"‘ +16) “(Pi-mafia) 

i=1 i=1 

= Ac(s,t';s',s”) Ac(s,t”;s;s”) . (4.7) 

The "crossed"amplitude Ac(s,t’;s',s”) is given by the dia- 
gram in Fig. 12. Since this is a fourth order box diagram 
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it obeys the Mandelstam representation; namely, 

,. II II II II 
Ac(s,t';s',S”)= %a-jj dt éu 9(t ’u ) : 

(t”-t -i€)(u”-u'—iE) 

(4.8) 

where u‘ - 2m3 + s" + s” -t’ -s. Notice that p(t”,u'”) is 
the third double spectral function with respect to the 
variable 8. Since 3 is fixed, (4.8) shows that the cuts 
of Ac in t' plane are those given in Fig. 13. The inte- 
gration contour in t’—plane runs between the two cuts, so 
that no matter how we try to distort this contour we al— 
ways pick up a cut contribution. Therefore, we expect a 
nonvanishing result when t’ integration is carried out in 
(4.5). If we did not have the crosses, then the integra- 
tion contours intl and t” planes w0uld not have been 
trapped, and the amplitude A(s,t) given by (4.5) could 
have vanished. 

To evaluate A(s,t) we now make two assumptions. (1) 
The dominant contributions to the t' and t” integrations 
in (4.5) come from theshold singularities. (2) The four— 
momentum n; carried by the Regge pole is very nearly 
zero.“ Since at t' = t' - m Landau analysis gives 
§a= -§., ka=-k.,‘5 we obtain U - £5 Furthermore at these 
values of t' and t”, 52 - n?, k? = m?, so that the second 
.assumption implies §§, kg are close to their mass shell 
values. We can then approximate R(s',U;§§,§fék§,kf) in 
(4 .6)  by the mass shell Regge amplitude R(s’,n). This 
leads to 

1 1 l '1' 818’ 8' I t a I C a A ,t =- —— — d d”—-§-1i—+—zn ,— dt A ,t’;s,s” 
(S ) g38(2n)‘ tj‘ s s 3 -m (S ) E  ( S  )1. 

(4.9) 

The integral over Ac(s,t’;s’,s”) can be converted into an 
integral over its absorptive part: 

jdt’A°(s,t’;s,'s") = 21] dt’ At(t’,u',s). (4.10) 
-cc 2 

4m 
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We approximgte this integral by replacing A9(t’,u’,s) by 
a function At(t’) which is equal to At(t’,u ,s) at thres- 
hold and asymptotically (t’ ~ a0.56 It can be shown that 

I ll 2 

Zt(t’) = -2g —e—4,—)-ImF: s m , (4.11) 

where ImF(t’,s”,nF) is the imaginary part of the vertex 
diagram in Fig. 14. Thus the left-hand side of (4.10) 
becomes 

a , m  - I ”I 3‘ 

.[dt’ Ac(s,t';S’,S”) °‘ -4ig I dt’ 4 w  t 5 m 
.00 ' a t _m 

4m 

—4n 1 g F(m?,s”,nfi) 

-4n 1 g F(s”). (4.12) 

From ( 4 . 9 )  we now obtain 

a, i l I II T 1 8 3 ,  8' I E  2 II A(s,t) -8—"g-tfdsds—La-,—I?—ls_.. R(s,4)F(s). 

(4.13) 

Since i.» m, the Regge amplitude can be written as 

-i1'ron(s’)i 1 t a(s’) 
Razz?) = e<s'> W 9 9  . (4.14) 

I 

Because of the factor (t)a(s ), the dominant contribution 
1n0h.l3) comes from the neighborhood of s' = 0. ‘The tri- 
angle function then gives s”~s. Therefore, (4.13) can be 
approximated by 

. -1rm(°) . , 
“3’0” 8:; :égla(o)eainna(0§l %Ids'ds"T(s’s:s”)(%)a(s )‘ 



EIKONAL DESCRIPTION OF SCATTERING 141 

~im1(0)fl _ e s Z)a(0)- l l 

_ 32" 8 ( 0 ) [ _  sin na(0)]% a'(0)£n(£9 - 

(4.15) 
a(0)-1 

The asymptotic behavior -z~E——— shows that A(s,t) is a 
fixed cut with a branch po t at j - a(0) - 1. Comparing 
(4.15) with our Born term 

A1<t,s) = - 135w) T??- A. (4.1) 
we notice that they are essentially identical. In both 
cases, we have (i) a particle propagator, (ii) each pro— 
pagator accompanied by form factors at the two vertices, 
(iii) separation between the energy dependence and the 
momentum transfer dependence. We infer that the Born 
amplitude (4.1) can be identified with a fixed Regge-cut 
amplitude like (4 .15 ) .  In other words, the phenomeno- 
logical optical potential (4.1) corresponds in the S-ma— 
trix language to a Mandelstam cut diagram with a Regge 
pole and a single particle exchange. 

Well, what have we learned about the interrelation 
between the optical model and the S-matrix descriptions? 
we have actually learned a great deal. We have realized 
that the phenomenological optical potential does corres- 
pond to a Feynman-like diagram which provides the detailed 
mechanism of the process, and that the complex energy de- 
pendence of the optical potential comes about via the 
Regge pole exchange. Does this mean we can now do away 
with the optical model? The answer is no as soon as we 
recognize that the general form factor diagram involves 
a hadronic blob (Fig. 10), and therefore cannot be cal- 
culated in the S-matrix theory. 0n the other hand, the 
radial dependence of the optical potential provides us 
the knowledge about the form factor. We see that the 
Ssmatrix and the optical model descriptions are comple- 
menting each other. Another way of putting the above re- 
sult is that the diagram in S—matrix theory provides us 
the branch point in the j-plane and tells us that the 
discontinuity across it is proportional to the square of 
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the form factor. But the actual information about the 
form factor comes from the intuitive picture of spatial 
extension implicit in the optical model. 

We conclude that the optical model and the S-matrix 
descriptions together give us a more complete picture of 
hadron interactions than they separately do. It will be 
stimulating to see whether such interplay between these 
two descriptions can be established in the realm of dif- 
fraction scattering. 
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Figure Captions 

A generalized ladder diagram. 

A generalized ladder diagram with an unsPecified 
hard interaction. 

Absorption of so f t  mesons of 4-momenta q 1 , q a , . . . ,  
k , . . . , q -  by  the pb l ine. The cross represents 
the onset o f  the hard interaction. 

A generalized ladder diagram with radiative 
corrections and a hard interact ion.  

Emission o f  s o f t  mesons b y  the pa l ine together 
with a single self-energy insertion. 

The integration contour for Watson-Sommerfeld 
transform together with singularities in the 
j -p lane .  aR(t)  represents the position of a 
Regge po le ,  while a c ( t )  that of  a branch point. 

Born amplitude in the optical  model. 

Mandelstam diagram with a Regge pole ( P ' )  and a 
vector meson (w) exchange. Sol id lines represent 
nucleons, short-dashed lines the pions. =The 
blobs represent N + w ~ n + N amplitudes. 

Same a s  F i g .  8 with each blob replaced by a 
nucleon l ine.  

wNN form factor diagram. 

Mandelstam cut diagram with a Regge pole (wavy 
line) and a single particle exchange. A l l  
part ic les  ( so l id  l ines) are o f  equal mass .  

Box diagram for the amplitude A c ( s , t ' ; s ’ , s ” ) .  

Branch cut of the amplitude A ° ( s , t ' ; s ' , s ” )  in 
the t'-plane. 
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Fig .  14. Diagram representing the vertex function 
F(t',s” ,mz) . 
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Figure 1 

Figure 3 
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Figure 12 
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Dual resonance models are the natural outcome of the 
concept of duality, which I want to review briefly here. 
In a nutshell, a dual amplitude is an analytic and cross- 
ing symmetric amplitude that has Regge asymptotic behavior. 
Historically, hOWever, various constraints naturally satis- 
fied by dual amplitudes, the so-called superconvergence 
relations1 and finite energy sum rules3:3 (F.EoS.R.) were 
studied first, and so I will start with them. Consider 
the equal mass scalar two particle scattering amplitude 
of Fig. 1;, and define the usual variables s=(k1+kaf , 
t'(ks+ka)2, u=(k1+ka)2, (m is the mass). Odd and 
even parts of the scatterin EEZmplitude A are defined by 
Ai(v, t)=%[A(v, t)iA(-v, t)]. If A completely reggeizes for 
large v, one can write, 

£(t) 1(fl 
A(i) (Wt) “£51090” ginézmfi a (11)) (t) (1.1) 

where «'5 are the trajectories, and 8's are the residues° 
The summation includes both the leading trajectory and the 
non-leading trajectories; cuts, fixed singularities etc. 
are assumed to be absent. If A is analytic in v except 
on the real axis for fixed real t, then it satisfies a 
dispersion relation In addition, suppose that the lead- 
ing regge trajectory a satisfies Re(a(t)<-n for some t, 
where n is an integer. Then v 4A(v, t) satisfies an yg_gh- 
525953;“ dispersion relation for integer L satisfying 
0< L _  n. This immediately leads to a series of super con- 
vergence relations: 

157 
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fdv(v)”‘11m{A(v,t)} = o, (1.2) 
where l i & : n. 

If the leading regge trajectory does not satisfy the 
condition a < -n, then we define an auxiliary amplitude K, 

11+e'1“°‘1(i)(%t)1(*) (t) —-(1) = (1) ' ,(i) A (v,t)—A (ma-2181 (t)51n(mi(?‘7(t3 
(1.3) 

where the sum over i includes all Regge trajectories that 
satisfy Re(ai ) > -n, where n is an arbitrary positive in- 
teger. (For1 simplicity, we assume there is no a with 
Re(a)=-n ) K, so defined, satisfies the superconvergence 
relations given by equation ( 1 . 2 ) .  As in reference 2, one 
then chooses a cutoff energy N, and uses the form given by 

. ( l .  3) for the imaginary part of A for lv l s N  . For 
v > N, we set, 

(i). ~irra _(i) 
A( i)(\)) *JZBj (i) W VOLJ , (1.4) 

where the sum over j now includes only those trajectories 
that satisfy Re(a -n. This set is complimentary to 
the set of trajectories of eq. (1.3). After performing 
some trivial integrations, and combining terms, we get, 
N 

(i) 
Jdv (v) l[A( i)(v, t)] = 2‘8 1(i)Nai +L+l 

i a“) +L+l 
, (1.5) 

where N is an arbitrary cutoff point, L is even for (+) 
amplitude and odd for (-) amplitude, and the sum on the 
right hand side goes over all the trajectories that con- 
tribute to A. The set of equations given by (1.5) can be 
taken to be the definition of duality; they imply complete 
regge asymptotic behaviour and crossing. HOWever, if one 
does not specify Ln(A) any further, the equations lack 
content. We supplement them by postulating that ImfiA} is 
entirely built out of narrow (to be precise, zero width) 
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resonances. Since these resonances also lie on their 
regge trajectories, we then have a set of bootstrap equa- 
tions for the regge trajectories. In the preceding dis- 
cussion, the contribution of the pomeranchon and the non- 
resonant part of Im{A} have been neglected. At this 
point, it is customary to lump these contributions to- 
gether and throw them both away, invoking the Harari- 
Freund hypothesis“. This treatment may ultimately prove 
unsatisfactory, but at this stage of the development of 
dual resonance models, nothing better seems to be avail- 
able. 

Let us now restate duality in a weaker form: A two 
particle scattering amplitude is dual if it satisfies the 
following condition, 

i”. (a) .- °°- ( ) 
A(s,t) - Z  (t) + 2  911:9. (1.5) 

n=0 S‘sn n=0 u-un 

=5. C (t)(s) + i; EEEEZSEL 
n=o t-tn n=0 u-un 

Here the C's are polynomials of degree n in their 
arguments, n being the maximum allowable angular momentum 
of the resonance at s = sn. The existence of such an up- 
per limit is the same as the absence of the so-called an- 
cestors. Equation (1.5) follows from analyticity, regge 
asymptotics, and narrow resonance approximations. It 
does not, however, conversely imply regge aSymptotics; 
cuts and fixed singularities in the angular momentum may 
be compatible with (1.5). 

II. Quark gigggggg and Planar Duality 

So far we have not attached any isospin and SU(3) in- 
dices to our amplitude. Let il,ig,ia and 14 be internal 
Symmetry indices of particles 1,2,3 and 4 of Fig. 1. 

The amplitude can be expressed as follows: 

A11 1331314 (8,11) = 21%;;iiaié A)‘(S) (8,12) 

X 
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+ E: I%u§fiai4 Ax(u)(s,t). (2'1) 
X 

where the 1's are appropriate numerical coefficients, 
labeled by the SU(3) (or isospin) quantum numbers l in 
the s and u channels respectively, and the Ax's satisfy 
an equation similar to (1.5), 

A (s)= 2 011(8)“). = V w (2 2) l _- _ L t - t " ' n s an n 

and a similar equation for A x ( u ) .  Note that the s and u 
channels have to be treated separately, since they have 
different SU(3) properties. 

The statement of duality given by eq. (1 .1)  is usu- 
ally supplemented by the further assumption of the absence 
of exotic resonances. Any meson resonance whose quantum 
numbers are given by a quark-antiquark system, or baryons 
composed of three quarks are non-exotic, everything else 
is exotic. This imposes rather stringent conditions on 
the Ax's; they must be so chosen that no exotic resonances 
appear in ( 2 . 1 ) .  The solution to this problem is given by 
Harari and by Rosners, and is graphically expressed by the 
well-known quark diagrams of Fig. 2. The external mesons 
are taken to belong to l and 8 representations of SU(3), 
therefore they can be represented, in the SU(3) space, by 
a pair of quark-antiquark indices. The quark lines repre- 
sent Kroenecker delta's in the quark indices, so that Fig. 
2 corresponds to an SU(3) factor of the following form: 

I ~ 5aa' 638’ 5YY’ 6nn' ' 
The index i; of eq. ( 2 . 1 )  is now the pair of indices 

n and Y, etc. These rules can easily be generalized to 
meson-baryon scattering, as in Fig. 3, but extension to 
baryon-antibaryon scattering is impossible without the in- 
troduction of exotics, as is well known by now. From the 
quark content of the s and t channels in Fig. 2, and from 
the Symmetry of the diagram with respect to the two chan- 
nels, it is clear that it provides a solution to the prob- 
lem at hand. The question is, is it the only solution? 
For the simpler case of pion-pion scattering, we shall 
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show that this is indeed the case. In this case, x can 
be taken to run over three values, A = 0,1,2, and to 
label the total isospin in the s-channel. The t-channel 
isospin wave functions are then given by the crossing ma- 
trix: 

_ 1 
{CM’} '3 
, t 

-% 

through the relation, 

1(t),x = Z CM’ I(s),)\’. (2'3) 
X ,  

The matrix C has three eigenvectors, one with eigen- 
values - l, the other two with eigenvalues + 1. (There 
can only be two kinds of eigenvalues, i 1, Since G2 = l.) 
The s and t channels are identical in this problem; so 
the eigenvector with the negative eigenvalue, which in- 
volves a sign change between s and t channels, cannot be 
present. The eigenvectors with + l eigenvalue are the 
following: 

X 1 = < § > , X 2 = < § > .  

Clearly, xlis the quark solution, since the exotic 
I=2 component is absent in this solution. This demonstra- 
tes the uniqueness of the solution for the simple example. 
The more general case of SU(3) multiplets can be treated 
similarly using SU(3) crossing matricess. 

A large number of experimental predictions follow 
from eq. (2.1) combined with the Harari-Rosner quark hy- 
pothesis, and they are in general well satisfied, espe- 
cially in the case of mesons. The main result is exchange 
degeneracy; p,w,f and A3 trajectories all turn out to be 
exchange degenerate, and so do m and f', and KK and Kxx 
trajectories. Assuming only isospin invariance, one can 
also get some information about SU(3) breaking; for ex- 
ample, the w-w mixing angle turns out to satisfy tgae=%. 
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We postpone at this point, however, any detailed discus- 
sion of the various applications, and instead turn to the 
extension of the quark diagrams to many particle processes. 
This extension turns out to be very simple. One first 
labels the N particle amplitude of Fig. 4 in a definite 
(and for time being, arbitrary) order. This defines a set 
cyclic planar channels, namely, the channels made of par- 
ticles labeled by successive integers. (Here We naturally 
use a system modular N; N+l is identified with l, N+2 with 
2, etc.) Next comes the definition of overlapping and 
non-overlapping channels. Two planar channels are over- 
lapping if they share a proper set of legs (particles); 
they are non-overlapping ifone includes the other or if 
they are totally disjoint. For an N point function, one 
can always choose a maximal set of non-overlapping chan- 
nels; for example, the channels (1,2), (l,3),...,(1,N-3), 
where we label the channel that couples to the external 
legs i,i+l,....,; by simply (i,j). There are clearly 
various different ways of choosing a maximal set of non- 
overlapping channels, but the number of such channels is 
always equal to N-3. The generalization of eq. (2.2) is 
then the following: The dual amplitude A can be written 
as a sum over the poles in any maximal set of non-over- 
lapping planar channels, 

A =: _n.L__ (2.4) 
nij ’ sij-anij 

where sij = (Pi,+ p1+1 + --+pj)2, sni' is the square of. 
the mass of a given resonance, and the pair of 1nd1ceS 1 
and j run over a maximal Set of non-overlapping planar 
channels. (The equation should hold for all possible 
choices of such a set.) The C's are polynomials in vari- 
ous momentum transfer variables. 

The dual "skeleton" amplitude of eq. (2.4) is then 
multiplied by the appropriate SU(3) factors derived from 
the quark diagrams of Fig. 4. The resulting amplitude is 
then symmetrized between identical bosons and antiSymme- 
trized betWeen identical fermions. For identical particles 
it does not therefore matter how one initially chooses the 
set planar channels; the final symmetrization eliminates 
the arbitrariness of the initial choice. When all the 
particles are not identical, however, there is an 
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ambiguity in the choice of the planar channels. This am- 
biquity is usually resolved by requiring absence of exotic 
channels, signature requirements, etc. Finally, a compact 
form of SU(3)  quark factor for mesons due to the Chan and 
Paton? can easily be written down. If the external mesons 
are SU(3) octets, we have; 

12' Tr {x11 wig-HAW}, (2.5) 

where X's are uSualy SU(3) matrices, indices il,ig,"iN 
label the respective external mesons. For singlet mesons, 
the corresponding X is replaced by the unit matrix. 
Clearly, eq. (2.5) is a restatement of the Harari-Rosner 
quark rules. 

III. The Véngziang Fogggggagd Some.A221i§atians 

An explicit solution to eq. ( 2 . 2 )  is provided by 
Veneziano's celebrated ansatze: 

A(s,t) B[-a(s), -a(t)] = “ 

1 
5 Id}; x-a(s)-1 (l-X)-a(t)_1 , (3-1) 

where a(s) = a + bs, the trajectory function, has to be 
a linear function of s, in order to avoid non-polynomial 
residues at the poles. (Absence of ancestors). For sim- 
plicity, we take the s and t channels to be identical. 
The properties of the Veneziano formula can be investi- 
gated either by considering it as a ratio of gamma func- 
tions, or from the integral representation. I prefer the 
latter approach at this point, since it generali es readi- 
ly to the N point amplitudes. Expanding (l-x)‘0L t ) '1  
term in the integral representation of eq. (3.1) in power 
series in x, and integrating term by term, we get: 

w 7a +1“u +2, a t ’ 13.[-on(s),-°L(t)1 = 2  W 1  (3-2) n=0 n 
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Of course, a similar expression with s and t inter- 
changed is a180 valid. This verifies the duality of the 
amplitude and the absence of ancestors for linear trajec- 
tories explicitly. Actually, the amplitude satisfies a 
stronger duality condition; it reggeizes in both channels. 
It is easy to prove this statement in the unphysical limit 
Isl ~ W, with Re[a(s)] < 0. Changing variables by 
x = exp {'E%§T}s we have, 

“ _ - ( )-1 
— - 3%;7 s e z {1 - exp (}§25¥>} a t W

 I 
l
l
?
 

[-on(s) 1““) fdz e'z z'°‘(t)'1 (3.3) 

- [-a(s)]“(t> PE-a(t)]. 

The second step follows by treating z/0L(s) as a small 
quantity for Isl * ”, expanding the exponential in powers 
of z/on(s) and keeping only the lowest non-vanishing term. 
Since 2 ranges between 0 and m, one has to show that only 
those values of 2 small compared to c(s) contribute to the 
asymptotic limit. This can be established by a more care- 
ful analysis. 

The integral representation of eq. (3.1) does not 
exist for Re[a(s)] > 0, so that it is not possible to 
demonstrate reggeization in the right half plane directly. 
One can, however, transform the original integral repre- 
sentation into a form9 that exists for Re[a(s)]> 0. This 
is done by first converting the path of integration in 
(3.1) into a closed curve around the real interval from 0 
to 1, and then wrapping this closed curve around the real 
axis from 1 to a. The details are given by Mandelstam in 
his Brandeis notes and will not be repeated here. The end 
result is the following alternative integral representa 
tion: 

3 [ a s-+a t 1 J B[;a(s) , W m ]  W (3.4) 
x Idx x'“(s)'1 (x - 1)'°‘(t)'1 . 

1 
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This representation is well-defined for Re[a(s)]>0, 
and reggeization can be proved by the same method that 
led up to eq° ( 3 . 3 ) .  

At this point, a few general comments are in order: 

a) The requirement of duality is not sufficient to 
fix the amplitude uniquely. One can always add satel- 
lite terms of the form E_Cn[-a(s)-n,-a(t)-m] 

n,m 
to the leading beta function formula. 

b) The regge trajectories in s and t channels need 
not be the same° In particular, they can have differ- 
ent slopes and intercepts. Of course, we have nothing 
against different intercepts. Different slopes in 
the s and t channels, however, give rise to amplitudes 
that blow up exponentially for fixed angle and large 
energy.9 To avoid this unphysical behavior, all the 
slopes have to be taken equal. In what follows, we 
set this universal slope equal to one for simplicity. 

Now, some applications: 

a) The process n + n a n + W. This is the process 
that led up to the discovery of the Veneziano formulalo’a 
The simplest ansatz for the amplitude is the following: 

N ilizia H1 H2 Me = e e 
A pluguam k1 k2 kg 

(3.5) 
x EH4 B[-a(s)+l, -ap&)+l], + Perm. 

required by Bose symmetry, where i1,i2 and is are the 
isospin indices of the pions, the k's are the momenta, 
E is the polarization vector of the w, and a is the p 
trajectory. The isospin and the spin factors that mul- 
tiply the B function are in this case uniquely determined 
by isospin and parity conservation. However, one still 
has the freedom of adding satellite terms, and only some 
vague requirements of simplicity prohibit us from doing 
so. The spin factor and the arguments of the B function 
are so arranged that the first particle appears at a =1 
with spin one, and the "ghost” at ap=0 is eliminated. 
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b) n + n a n + n. This is one of the earliest inter- 
esting applications of the Veneziano formula.11 

A ; Tr(TilTiaTisTi4) [a (s)+a (t)-l] 
p p (3.6) 

x BEap(s)+l, -ap(t)+l]. 

The i's are the pion isospin labels, and the T's are 
the usual Pauli matrices. As usual, it is understood 
that the expression for A is to be symmetrized with re- 
spect to the external lines. 

Eq. (3.6) has several nice and at the same time puz- 
zling features. The isospin factor is precisely the 
Harari-Rosner quark recipe. The kinematical factor 
kills the scalar ghost on the p trajectory and at the 
same time satisfies the Adler P.C.A.C. condition if 
a p(o) =%. The p-f exchange degeneracy is a by product, 
as promised earlier. 

The pomeranchuk trajectory is absent from (3.6), 1n 
accordance with the Harari-Freund philosophy. One then 
perhaps considers (3 .6)  as a solution to a bootstrap 
equation involving the normal trajectories, rather 
than as a phenomenological description of the n - n am- 
plitude. Finally, the lack of uniqueness is again ob- 
vious. 

The ansatz of (3. 6) can be extended to the 1scattering 
amplitudes for the whole pseudoscalar octet1 . The T' s 
in the trace are then replaced by X's , and the p trajec- 
tory is then replaced by K3 or i trajectories depending 
on the quantum numbers. For example, k + n y k + u am- 
plitude is given by, 

2’ + 12 i s  _ 
Ak+l.-1'*k+;l " X1 (r T ) X a  [ap(s)+a’kX(t) 1 ]  ( 3 . 7 )  

X BE-ap(s)+l, -akx(t)+1] + Terms required by symmetry. 

x; and x3 are the isospin wave functions of the kaons, 
and the corresponding quark picture is given by Fig. 5. 
The horizontal lines carry n or p type quarks; vertical 
lines carry A type quarks. 
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c) Pseudoscalar-vector scattering. As an example, 
let us consider n + p ~ n + p. The isospin factor is 
still given by the quark factors. It then remains to 
determine the spin factor. The trajectories that can 
couple to the p n channel are n, m, A1 and A2, whereas 
the n n channel has only 9 and f trajectories. Fur- 
thermore, since this is an elastic process, the residues 
at the poles corresponding to particle exchanges must 
be positive, since these residues are squares of various 
(real) coupling constants. A negative residue would im- 
ply negative metric objects (ghosts). After a few 
tries, the amateur spinologist can easily convince him- 
self (if not others) no simple factor anakgpus to the 
one in eq. (3.6) will do. The basic reason is the con- 
spiracy theory which in general requires parity doub- 
lets and among other things, forces w and A1 to be de- 
generate. It is possible to avoid some of these prob- 
lems, but only at the cost of introducing a large nnmr 
bar of satellite terms and forfeiting the general fact- 
orization properties of the amplitude.13 

d) Meson-Nucleon scattering. This is a process which 
provides a good example for parity doubling. In the 
baryon channel, we have the McDOWell Symmetry betWeen 
the positive p rity partial wave fL and negative parity 
partial wave f ‘ , 

ff“) (fs) = - f£;)1(-fs). (3.8) 
So except in the case of vanishing residue, a pole 

in fi+91mplies a pole in f£;)1, leading to parity doub- 
ling. Another way to see this is to note that one needs 
the Dirac projection operator A = p + mJ to project out 
the negative parity states, where p is the momentum in 
the given channel and m is the mass of the state with 
angular momentum J. If m is taken to be independent of 
J, only one parity doublet at most is eliminated and 
all the others survive. This explains why most dual 
resonance models with baryon trajectories are plagued 
with parity doublets. The only way of eliminating the 
parity doublet trajectory we know of so far14 intro- 
duces a cut in the complex J plane by taking mJ=v3- . 
However, dual models with cuts in angular momentum 
plane are much more complicated than the ordinary kind 
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and they do not seem to factorize. The interested 
reader should consult a review by Berger and Fox.15 

Finallyé I would like to mention a model due to Man- 
delstam , which introdUCes the spin factors in a way 
analogous to the isospin factors. One simply extends 
the quark rules of Harari and Rosner to include spin. 
The spectrum of the model so obtained is a parity 
doubled SU(6) ® 0 ( 3 ) .  In addition, the parity doub- 
lets turn out to be ghosts. This simple model high- 
lights the difficulties that lie in the path of a fu- 
ture satisfactory model. 

4- Maax Eaztisls Aaalisadsa_ 

An explicit N point function which satisfies the 
conditions of generalized duality stated in section II 
and in particular eq. (2.4) can be explicitly constructed 
in the form of an integral representation. Following the 
notation of section II and Fig. 4, we ansatz the following 
expression: 

1 
EN = jau1,2---du1,u-a n (ui j) “ii-1 , (4.1) 

o W 12:] , 
where W is a suitable volume measure and the pair of in- 
dices i and j run over all planar channels. The poles in 
various channels come about when the corresponding u van- 
ishes. Since overlapping channels cannot develop simulta- 
neous poles, the corresponding u's cannot vanish simultan- 
eously. One simple way of ensuring this is to impose the 
following conditions: 

ui,j = 1 - m,ncCij (um,n)’ (4.2) 

where m and n range over the set Ci of all channels that 
overlap with the channel (ij). The eq's given by (4.2) 
can be used to determine all the u's in terms of a complete 
non-overlapping set; we have, 

- (1 ' u4,_,1r---u,{,,j_1) (1 " uL,i-1---u'{’9j). ( 4 - 3 )  “1 
j (1 - u4,i---uL,j) (1 - u&,1-1---uL,j_1) 
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where the conventions u -  i = 0 ,  ui  - +  N5 u i , -  etc. are  
understood, and L IS arbi t rary.  b example, taking 
L+l, i=2,  j=3,4--- ,N-l ,  a l l  other u ' s  are  expressed in 
terms of the complete non-overlapping se t  u 1 , 2 , . . . ,  
u 1 , N _ 3 .  That (4 .3 )  sa t i s f ies  ( 4 . 2 )  can be verif ied by 
direct subst i tut ion.  Eq.  (4 .3 )  can a l so  be  used t o  show 
the invariance of (4.1) under a cyclic transformation of 
var iables;  in f a c t ,  ( 4 . 3 )  i tself  defines such a transfor- 
mation. The second factor  on the right hand s ide of e q .  
(4.1) is cyclic Symmetric as i t  s tands.  The volume ele- 
ment a l so  turns out t o  be invariant under cyclic change 
of variables i f  W is  chosen as fol lows:  

_ H j - i - l  W — i< j  ( u i , j )  , ( 4 .4 )  

where in the product i ranges over values 2 , 3 , . . . , N - 2 ,  
and j ranges over 3 , - - - ,  N - l ,  subject  t o  the condition 
1 < j .  With the definition of completed, i t  is possi- 
ble to  verify the duality condition of eq .  ( 2 . 4 ) ,  by ex- 
panding the integrand of (4.1) in Taylor series in a lin- 
early independent s e t  of u ' s  and integrating term by term. 
Before plunging into a dicussion of the propert ies  of Bu, 
i t  w i l l  prove use fu l  t o  reexpress i t  in tw0 equivalent 
but formally dis t inct  ways.  By repeatedly using the 
equation aia+(pi+---+pj)2=-(i—j) a+fizn3n'Pn’ eq. (4.1) 
can be recast into the following form,’  

' C t l g - l  ' G 1 , N _ 2 ' 1  EN = IdU1 , 2"‘du1 ,N'Z (111 : 3 )  - - - ( u 1  , N - Z )  

(l-u.,a>'°‘“'1---(1 - u1,N_2)'°‘N-1,N-1 (4.5) 

x H 
-—i>1 (1 - ul:i""'u1,j-1) 
j > i  

- 2  k i - k j  

This expression f o r  is  use fu l  in factorizing the 
amplitude. An alternative fo rm,  which is very elegant 
and of importance f o r  some of the deeper aspects  of the 
theory, is due to  Koba and Nie l sen la .  Although i t  is not 
needed in what fo l lows,  I cannot res is t  describing i t  
br ief ly .  Consider general projective transformations in 
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the complex plane, 

2 /  = A _ _ +  32 (4.6) 

0 +  Dz 

where A,B,C and D are constants. Given four distinct 
points 21,2 ,23, and Z4, the cross ratio is an invariant 
under the projective mapping, 

(Zi‘za) (23-24) _ S z ; ' - z a ' l  Sza'-zg'1 (4.7) 
(21-24) (22-23) _ (Z1 ’-Z4 ) (22 '23 ) 

One of the standard results from projective geome- 
try implies that cross ratios satisfy an identity of the 
form eq. (4.2). We can therefore make the following 
identification: 

uij a (2i ' Zj) (zit-1 ‘ Zj+ 1 )  ’ (4.8) 

(zi - zj+1) (zi_1 - zj) 

where u's are restricted to the interval between 0 and 1 
if the 2's are real and ordered on the index 1 they carry. 
One can verify the identity (4.2) directly from (4.8), 
and everything works more easily and elegantly in terms 
of the new set of variables. Because of projective in- 
variance, it is possible to set 21 = 0, zN_ = 1, z =M, 
since any three points can be mapped into t e points 0,1 
and e by a suitable projective transformation. With this 
choice, the relation between the u's and the 2's is 
simple: 

111 a = "Z‘, 111,3 _ a , m", U1,N_2 = ZN_2 . (4.9) 

zN-1 

It then follows that in the integral representation, 
one fixes three adjacent z's, multiplies the integrand 
by a Suitable weight factor and integrates over all the 
2's that are not fixed. The range of the integration is 
any projective image of the real axis, with the ordering 
of 2's preserved. The reader is referred to the original 
article of Kobe and Nielsen for more details. 
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I Would like now to illustrate various prOperties 
of BN for the simple (but non-trivial) case of N - 5. 
Choosing 111,; and u; ,5 as independent variables, we have, 

1 - u a l - U1 3 112,3 = ____11__ “3.4 = ’ 
1 ‘ u1,3u1,3 1 ' ui,au1,a 

113,4 = 1 - u 1 , 3 u 1 , 3  W = ug,‘ (4 10) 

and 

Be =]l]|du1,a dubs (u1,3
)-a1,a'1 (111,3)-a1’3'1 

O O 
‘ .. 'Gg,3‘l ( 1  _ 11 faa,4"1 , ._.__La—L—. 
1 - fla,sui,a) 1 ' “liaul’;> 

’ -o 4-2 
X (1 ' U1,a U1,s> 2’ 

Suppose we wish to show that this integral represen- 
tation looks the same with another choice of independent 
variables; for example, u1,5 and u3,5. The following 
change of variables accomplishes this end, 

u1,5 = 1 ' ui,aui,a 

u3,5 = 1 - Una (4.11) 
1 ‘ ui,eu1,s 

B u u n . I H: a 

8(u1,5u3,5 1 ' “1,2u1,a 

Similarly, various other properties of BN can be ex- 
plicitly verified in this Special case. 

I would now like to examine the multiregge limit of 
the five point function. As an interesting byproduct, we 
shall also obtain an expression for the coupling of an 
external scalar particle into tWo reggeons. The multi- 
ragga limit we shall consider is given by: 

132,31” ” 191,5|* m, 53:352L1 = K = constant. 
‘,1,5 
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8 1 , 2  = c o n s t .  8 4 , 5  = cons t .  

In  (4.10),  make the following change of variables: 

111,5 = eXP ( fl a g  113,4 = exp (in), 

which gives, (4.12) 

Bs = J d dy a;¥;a:::;§ exp-(%t§f§a§::h 

1-a13- l  

x exp<-y> {1 - a r 
. ‘ J o 

1 - ex 
. a , 4  a 2 , a ¢ a , 4 v  

In the limit Iaa,a|—' m, laa,4|-' “3 
we expand everything in inverse powers of a 3 , a ,  a3 ,4  and 
keep the leading terms only as usual.  

This gives us the following leading asymptotic behav- 
ior, 

BE ~ ( ' a e , 3 ) a l ’ 2  ( ' a 3 , 4 ) a 4 , 5  (4.13) 

dx dy exp{-x-y + SKI} x-al’a-ly-a‘fi-l '  XI 

O
L

—
a

s
 

Of course, a l l  the following manipulations are valid 
only in the unphysical region Re(a2 , a )  < 0 ,  Re(a3,4)  < 0 ,  
Re(K) < 0 .  The double integral On.the right hand side of 
(4.13) can, however, be continued analytically to the phy- 
sical region in K, and surprisingly, one finds a cut on 
the positive real  axis starting a t  ze ro .  This c u t ,  origi- 
nally discovered by summing suitable s e t s  of Feynman 
graphs, seems, therefore,  to  be a universal fea tu re  of the 
double reggeon-scalar vertex. How does this cut  e f f e c t  
factor izat ion,  and the definit ion of signature fo r  regge 
poles? For this and some other related quest ions ,  I r e f e r  
the interested reader t o  a recent preprint by J .  Weis .  9 
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5. 7a 'ri t 

Consider the multiperipheral graph of Feg. 6, which 
is to be factorized into two clusters; one cluster con- 
sisting of particles numbered from 1 to L, and the other 
cluster including all the rest. Expanding the integrand 
of eq. (4.5) in powers of the variable u1,&, we obtain 
the following: 

BN 3 J'dU1,3"‘du1 , N - z  ILeft(k1,--k{’j u 1 , 3 - - , u 1 & _ 1 )  

O 

-q1-1 a-l 
X Iright (kHl’--’kNJ L11 L+1--’u1N-2) x111, L (1'111 , i) 

L L 
r Y' -‘ k -k n x exp 12 1&2 jZ;+1 '2; _1;_1_ (u1,i...u1,j-1) }. (5.1) 

The factors Ileft and Irightcon51st of those factors 

in the integrand which depend only on the momenta and in- 
ternal variables of the left cluster or the right cluster 
respectively. The factors which depend on both clusters 
are written as the exponential of a logarithm, and the 
logarithm is expanded in a power series in the variable 
111,1,- 

The next step is to split the last factor in eq. (5.1) 
into subfactors that depend only on the two clusters sepa- 
rately. To this end, we introduce an infinite set of har- 
monic oscillator operatorsz°, a: and 3;”, where the vector 
index u takes on the values 0,1,2,3 and n ranges from 1 to 
w. The commutation relations are the following: 

+ u [85. am” = g” 6mm. (5.2) 
In effecting the factorization, the following two 

identities are crucial, 

-R R n -R + R + 
u a: u = u ax, u ank1 u = u-n an“, (5.3a) 

where R = Z!“ agu an H 
’ 

1 
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<0] exp (P.an) exp {Q.a: } I0> = exp (P.Q) (5.3b) 

for any two four vectors P and Q, with a vacuum that sat- 
isfies an |0>=o. 

The two identities can be combined to yield the 
following: 

exp{2 f. N§J E: kikj (U1 i...U1 1)n} i=‘2 na-I-l n= n ’ ’5' 
= <0| exp { :— VIE? Péleft)-an} u§,L 

11: 

exp {21 g laggsht) .8; }|o>, (5.4) 
m =  

where 

Péiift) E -2; ki(u1,i’u1,i+l"'ulsL-1)n 

(right) = Nil 
11 

(n) __1-H1 kj(u1w+l-"u1:j-l) ‘ 

Substituting eq. (5 .4)  into eq. (5.1), and carrying 
out the integration over ulL’ we obtain, 

1 

EN = Idu1.3"du1.L-1 d“luz,+1"d“1.1\I-2 X Ileft x Iright 

x<01exp£ Efifi§t).an} B(R-oc1 ya) 
1 ’ 

exp {:Epggght) .ag} lo>. (5.5) 

The two exponentials are the vertices that go with 
the two clusters, and B(R-a1 L,a) serves as the propagator. 
In the special case of unit intercept, a - l, the 
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propagator simplifies to §:%-- . From eq. (5.5), it is 
easy to see that there ' 1" is a great deal of degen- 
eracy at each level. In the simple case of unit intercept, 
the particle degeneracy for can is the same as the number 
f st t s f th f + + + w'th o a e o e orm anrl an:2"' :k|o>’ 1 

n1+n2+...+ nk = n. (Here I am ignoring the complications 
due to spurious states.) The problem, therefore, reduces 
to a problem partitioning n into integers, and no simple 
analytic solution can be given. However, an asymptotic 
solution exists2°, and shows that the degeneracy goes like 
exp{ 5% 4h} for large n. 

Another property of the spectrum is the existence of 
ghosts. The lack positive definite metric can be traced 
to the indefinite sign on the right hand side of the com- 
mutation relations (5.2). It can immediately be verified 
that states that contain an odd number of time like ex- 
citation have negative norm and are,therefore, ghosts. 
The hope, so far, is that these states may be spurious 
and decouple from physical states. But this is an exten- 
sive and complicated topic into which I shall not enter. 

Finally, it is possible to establish multiple fact- 
orization for an arbitrary number of clusters. Split the 
left hand cluster of Fig. 6 into two new clusters as in 
Fig. 7. The identity that corresponds to this split is 
the following: 

sir) a Thus-4111,04 I(l,2,--,L-l) 

X <01" exp { fi g  Pan-an} 1r> (5.6) 

1 

= Jdu1:3"du1,L'-l duwz+1 ~ ”him-1 x I<1=2"""'1) 
O 

XI(£'+l,--,L'1)<0|8XP{ EJr_;S;(ki'an)(u1:i--u1’LI-1)n} 

i - .  
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L ’+1 

xB(R-a1 Lz,a) exp{ E J F Z E  5:4 (kj-a;) (u1,j---u1,&,+1)m} 

R 
(“1:L’+l -u1,4_1) (5.6 continued) 

an: m 
In the above equation, I ( 1 , 2 , - , L - 1 )  is the integrand 

~of the beta function of the firit & - l variables1e ggd 
'similarly for the other I' s. is the same as P e  
eq. (5. 4), and lr> is an arbitrary state. The equation 
is derived by factorizing through the use of identities 
(5.3) and carrying out the integration over the variable 
'u;,41. This process can be repeated until each cluster 
consists of only one leg. This gives us a completely 
factorized expression for EN, 

EN = <0| venom,» V(ks)"'A(0«1N_2)V(kN_1)It»: (5.7) 

(k -a)<u1 --u1 4- )P Ir>. 
h=L’+1 h P ’h ’ 1 } 

where 

Ma) E B( -a,a). 

V(k) = exp{ 45 k' §ZEEL_}exp{ ME k' i _E$; } . 
1 n 1 m 

Eq. (5.7) is the starting point for the investigation 
of many of the deeper properties of dual resonance models. 
To the interested reader, who wants to pursue any one of 
the topics barely touched upon here, I recommend various 
more complete review articles; among them Mandelstam's 
lectures at the Brandeis summer school in 1970, lectures 
by Jacob in the same summer school and the review article 
by Sivers and Yellin to appear in Reviews of Modern Physics. 
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k2 k3 
Figure 1 

Two Particle Scattering Amplitude 

Figure 2 

Quark Diagram for 
Meson-Meson Scattering 

Figure 3 

Quark Diagram for 
Meson-Baryon Scattering 

Figure 4 
Quark Diagram for 

the N-Point Amplitude 
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Figure 5 

KHT<K+n Amplitude 

t+l 

Figure 6 

Factorization into Two Clusters 

Figure 7 

Multiple Factorization 
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THE PRESENT STATUS OF DUAL MODELS 

E° Squires 
University of Durham 

Durham, England 

Linusm 

It is the purpose of these lectures to discuss how 
far the ideas of duality, particularly as expressed 
through dual models, are supported by experiment and also 
to what extent the ideas can be formulated in an inter- 
nally consistent way. 

In the next chapter we discuss the concept of duality, 
and see how far the various ingredients of duality are ex- 
perimentally supported. Dual models are discribed briefly 
in the third chapter where in particular some of the diffi- 
culties of extending dual models to realistic particles 
are discussed. The fourth chapter contains the confronta- 
tion of the predictions of dual models with an experiment. 
We endeavor to see how far the constraints inherent in 
dual models are supported by the data. Finally, in the 
last chapter, we treat some particular topics in the 
application of duality ideas to'inclusive reactions' - a 
topic which is new and offers exciting prospects. 

In these lectures we do not discuss the problem of 
dual models as a starting point for a complete theory- thus 
dual loops and twisted loops etc. will only be mentioned 
briefly in the last chapter as a model for the Pomeron. 
These topics are treated elsewhere in the volume by several 
authors. Our approach to dual models is rather that of re- 
garding them as a simple approximation to physical ampli- 
tudes - an approximation that, in contrast to most models, 
is 'global', i.e. expected to apply, at least qualitatively, 
over the whole range of the variables. 

181 
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II. The ;gg3§gi§g§§ _£ Duality 

We consider the process a+b m c+d depicted as: 

This is deScribed by the amplitude A(s,t) normalized so 
that 

d_o _ 1 l q W8 t) l"3 
d0 _ (8n)2 s “—2; , 2.1 

qab 

where q and qab are the momenta in the ab and cd cen- 
ter-of- ss systems respectively. ”Duality” is a 
set of assumptions about A(s,t), which We now discuss. 

First lgggggiggg: "Resggange-saturation" 

We assume, in the s-channel physical region, 

ImA= ImARes + 1mm“, 2»2 

where the two forms on the r.h.s. have the following prop- 
erties: 

(1) Im APom = 0 unless the additive quantum numbers of a 
are equal to the additive quantum numbers of c. (Note 
that we are here considering the "forward peak" corres- 
ponding to It] < Qul; if we wanted to consider the back- 
ward region then the roles of c and d would be 
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interchanged). Also we require 

Im APom * constant 2.3 
s 

s a w  

In fact this statement has no experimental significance 
and, in application, is interpreted as 

Im APom 3 constant, s2 few (GeV)3o 2.4 
s 

(ii) EARL? .. 0 
5 

(iii) Im ARes =21“. [ W ]  (n+1) 110;) 2.5 
poles i i 1 

where we have written this expression for the case where 
the external particles are spinless. Note that the parti- 
cular form for the pole makes T. the "width" in the conven- 
tional sense; provided the T. 1 are small the precise form 
of the pole is not too important. 

This expression of course has no content unless We 
say something about the values of si and Ti since any 

function ImARes can be respresented by a Sum of poles 
to arbitrary accuracy! We can try to give it content by 
adding 

(iv) The poles really exist. This however is a statement 
without significance since we cannot do experiments off the 
real s-axis and We have no theory to tell us where the 
poles are (see our second ingredient however). Of more use 
is 

(v) The resonances have narrow widths (T 5 100 rev), are 
well separated for each J(Is. - s + ll << Fafor poles of 
the same J), and there are no "anéestors", 1.e. in a plot 
of J against s all poles lie below a line J - a s + b; 
see fig. 2.1. 
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Before we consider the experimental tests of eq. 2.1 
We note that the equation is only assumed to be approxi- 
mate. We know it cannot be exact since if it were exact 
we could use a dispersion relation to compute ReA and we 
would then know A completely. It would not satisfy unit- 
arity even in this elastic region, still less in the re- 
gion of s for which a + b n x + x would be possible where 
for x the reader can choose any macroscopic object which 
takes his fancy. (If we abandoned the possibility of 
writing a dispersion relation then maybe we could take 
eq. 2.1 as an exact equation). 

It is rather unsatisfactory to have to begin with an 
equation which is approximate since we cannot be sure how 
good the approximation should be and experimental tests 
are hard to interpret° In the absence of any theory un- 
derlying eq° 2.1, we do not know of any "limit" in which 
the equation should be exact, and of course have no idea 
how to construct higher order corrections. 

Turning to the tests, there are essentially only three. 
(a) All cross-sections where the quantum numbers of a are 
not equal to the quantum numbeniof b should lead to zero. 
This of course only tests (i) and (ii) above. It is true 
in all cases. 
(b) The only quantitative test is due to Harari and 
Zarmi (1969) who considered nN elastic scattering and, 
using partial wave analyses of the data, plotted the Argand 
diagrams for I 0 and 1, where I is the t-channel iso- 
topic spin. tTheir results are shown in Pfig. 2 2. We 
see that for I = 1  (for which there is no AP om contribu- 
tion) the part1a1-waves behave very much like a series of 
circles which close on themselves (this is the behavior 
expected for a set of narrow, well spread resonances), 
whereas for I 0 this is not the case, thus showing the 
presence of tfie= A Pom background In a later paper (Harari 
and Zarmi (1970)) they combined the It = 0 partial-waves 
into forms for which the s-channel nucleon helicity is 
changed and those for which it is unchanged: 

J Fi+ = a;[ £0 _ 39+ 1 £0445» ] . (2.6) 
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The new Argand plots are shown in fig° 2.3 and we see 
that Im APom appears to be absent also in the helicity 
flip term° This has some support from other processes 
although this is disputed, 

(c) Provided the resonances are narrow, well sepa- 
rated and not too small in comparison to Im APom, then 
each particular resonance will dominate the appropriate 
partial wave in the neighborhood of SRSi. Then, by uni- 
tarity for elastic processes We will deduce Ri>0. Thus, 
using the optical theoran: 

oTot _V 1 Im A(s,o), (2.7) 
ab/s 

all total cross-sections should approach their high-s 
limit from above. This is true for the Wnajor" effects 
(there is evidence that at Serpukov energies the K p total 
cross-section rises by about 1 mb - we regard this as a 
"minor” effect!) 

In conclusion on the first ingredient of duality we 
note two points. First, there are really no direct 
tests (i.e. not employing the other ingredients) for in- 
elastic processes. Secondly, it is not surprising that 
one only makes this assumption for the imaginary parts 
because the imaginary part of a pole contribution falls 
off much faster, as one moves away from the pole, than the 
real part, so the latter will in general have significant 
contribtuions from u-channel poles. 

Second gaggggigg;:flg "egogigg." 

An exotic particle is one that cannot be made of either 
(qq) or (qqq), where the quarks have the usual quantum num- 
bers° There are three tests. 

(a) No particles or resonances with exotic quantum 
numbers have been observed. In particular exotic channels 
are free from significant peaks in their mass distribu- 
tions. Clearly the deuteron and all objects with B > 1 are 
counter examples° Their existance means that we should 
qualify this ingredient by asserting that all exotic par- 
ticles are "low-lying" and therefore, hopefully, 
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unimportanto 

If we combine ingredients 1 and 2 then We obtain 
two other predictions which can be tested° 

(b) If we have a process for which the s-channel 
is exotic, Im A Res = 0, and if the t-channel is such that 
Im APOm = 0, then Im A =  0. Such a precess is K°p 
for which we have the result [Firestone et a1. (1971)]: 

_Im A§t=02 < 4 % 
Re A (t=o) 

This is a remarkable result which seems better than 
we could have expected! 

(c) If we consider elastic processes for which the 
8- channel is exotic then,by the optical theorem, they 
should have constant total cross-sections. The behaviors 
of known total cross-sections is given in Figo 2.4 and is 
in accordance with this prediction. 

T____hird Ingredient: __gg§Asm2totig Estates: _f_o_g ARes 
We shall not discuss this in detail here (see 

Squires (1970) and Collins (1971) for recent reviews) 
but some points are worth emphasizing. 

The simple predictions of Regge theory are very well 
confirmed, namely, those that depend on the existence of 
linear, approximately parallel, trajectories correspond- 
ing to the known particles. In particular, where the t- 
channel is exotic, peaks are either absent or are very 
small (consistent with low lying exotic particles.) Also 
the shrinkage expected from linear trajectories is evir 
dent even out to large Itl. This is illustrated by the 
analysis of Daum, Michael and Schmid (1970) (and further 
unpublished work by the same authors discussed by Schmid 
(1971)) on Kip scattering (see fig. 2.5), by the work of 
Barger and Phillips (1971) on the p trajectories in 
n p a n° n (fig. 2. 6) and by the data of Brabson et a1. 
(1970) on the "effective a for n* scattering out at 
least to It! ~ 3(GeV)2 (fig. 2. 7).) 

There are several places where the known poles, 
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without gansgiracz and with factorisation (i.e. assuming 
the poles are simple) fail b a d l y ,  in particular, n'pHHOn 
polarisation, n contribution in forward direction of 
np * pn and Yp H win and cross-over zeros. 

3. If one breaks factorisation by including "cuts" 
we can trivially solve these problems. However, if we 
use the conventional model of cuts, namely the absorptive 
model, one fails to fit the data without introducing free 
parameters (which, in the opinion of the author, make the 
model equivalent to the data.) Particular failures are 
that the absorptive model cannot reproduce the large 
shrinkage shown in figs. 2.5, 2.6, and 2.7 (cc t(t) has 
a much Smaller slope than opole(t)l it cannot explain the 
new up H W°n polarisation data (see Coleman JohnSOn (1971» 
and it cannot fit the n contribution to Yp ~n n without 
having to boost the absorption to an unreasonable level. 

4. Experiment requires certain Regge contributions 
to cancel. This leads to ”exchange degeneracy." For ex- 
ample, the reality of Kop fl t noted above requires that 
the p and A2 have the same trajectories and residues in 
the process. Similarly the experimental observation that 
exotic total cross-sections are constant requires cancel- 
lation among the contributing Regge trajectories. Using 
the first two ingredients of duality we can also make 
predictions without recourse to experiments. For example, 
in fl+fi+ * n+n+, since the s-channel is exotic, there must 
be no Regge contribution to Im AReS, hence the p and f 
must exactly cancel and therefore be exchange degenerate 
in trajectory and residue. All these exchange degeneracy 
requirements are compatible with the masses of the known 
particles in the trajectories. 

The relation between s-channel resonances and t-chan- 
nel Regge poles which comes from combining ingredients 1 
and 3 is linear - in contrast to bootstrap type theories. 
It can be depicted diagramatically as: 

:>——<.:I 
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Clearly this can in principle run into difficulties with 
factorisation unless there are constraints on the trajecto- 
IKE (hence the exchange degeneracy predictions). If we 
restrict ourselves to Meson-Meson and Meson-Baryan scat- 
tering then the conventional SU(3) l + g mesons and 
l + g + lg baryon forms a compatible "solution," with a 
well defined F/D ration However, if we include Baryon- 
Baryon scattering, we cannot have a figlution without ex- 
otics (in BE scattering we have lg, lg and‘gz which are 
exotic and the cross-channel trajectories should cancel 
these three states - there are not enough parameters to 
make this possible). 

Even in the M-B case there are problemso For ex- 
ample consider KM v KM. Since this is exotic we predict 
exchange degeneracy in the cross-channels, in particular 
for the Y* baryons in KM fl KM. However these same Y* bar- 
yons will occur in, for example, WA A VA for which 
neither cross-channel is exotic and for which we therefore 
should not have exchange degeneracy, Schmid (1970) has 
shown how this problem is solved in an approximate way, 
It appeafiithat there Y* which are strongly coupled to the 
KN system are exchange degenerate, and that in addition 
there are further Y* particles yhich are coupled to NA 
but have only weak coupling to KNO 

Although some of the consequences of exchange de- 
generacy, eogo reality of K9p 4t mentioned above, are 
experimentally confirmed, there are others that fail° 
For example, exchange degeneracy of trajectories (regard- 
less of residues) is sufficient to ensure the equality of 
K‘n d n’A and n-p » K°A, Whereas in fact the cross-section 
for the former is about twice that of the latter. Other 
"line-reversed" reactions show the same difficulty, 

Absorptive cuts are of no help here since they have 
the opposite effect to that requiredg It is worth noting 
that, as with many of the problems of Regge theory 
[Squires,(l97l)], this difficulty is caused by factorisa- 
tion; in those cases Where one channel is exotic, so that 
exchange degeneracy follows directly from duality the line 
reversal predictions are well satisfied by the data, 
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We have not so far discussed Regge-Regge cuts, i.e. 
cuts caused by the exchange of two Reggeon. Harari 
(1971) has discussed evidence for these and given reasons 
for believing they are important. The experimental evi- 
dence for shrinkage at large Itl suggests that their 
effective a must be not too different from the single 
Regge pole, at least at present energies. They should 
show up Where the t-channel is exotic, but in some cases 
there may be problems. For example (A° martin, private 
communicatiodfi because of exchange degeneracy one would 
expect the exotic line-reversed reactions K'p n n+2' and 
fl'p ~ K+2' to have equal cross-sections if they are due to 
Regge-Regge cuts - the data however suggests a factor 10 
between them. 

So far we have not explicitly used this. If we com- 
bine it with Regge behaviour we obtain finite-energy-sum- 
rules (FESR)° To obtain these we subtract from an ampli- 
tude with no A om, the Regge pole contributions with 
ai(t)>-l, so that the resulting function goes to zero with 
s faster than s'l, i.e. 

A(s,t) - E;.1 Bi (t) (s-so)ai(t) = 0(s'1-e), e>o 
ac ; 
1 (2.8) 

It follows that this expression satisfies a superconver- 
gence relation: 

Ids Im [A(s,t) - 2) 81 (t) (s-so)a'i(t)] = o (2.9) 
(Li '1 

The integral is over the cut in the s-plane, which 
in general includes the right-hand, physical, s-cut, a 
left-hand cut, due to the u=channe1, and bound-state 
poles. We consider for simplicity just the right=hand 
cut (the other is similarly treated), and we separate 
this into a cut from threshold so to some value s1 and a 
remainder, where s; is chosen so that 

M”) =2 ei<t><s-so>°‘i(t). s>s1 (2.10) 
1 
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where we include a selected number of the leading Regge- 
pole terms (how many are required will depend upon 81 of 
course)u Then eq. ( 2 . 9 )  becomes 

j‘sl Im [A -°“1;'1 Bi(c)°‘i(t)] ds + 
$0 

$2: Im Z 31(t) (s-so)°‘i(t) ds =0 (2.11) 
1 ai<-l 

The integrals over the Regge terms can be evaluated and we 
obtain finally 

fsl Im A(s, t) ds m mi: 510:) {s-an)“1(t) +1 (2.12) 
3° 0.10:) +1 

This calculation could have been paformed equally well 
with A replaced by (s-so)n A(s,t), for n=0,1,2 -- This 
leads to moment sum rules 

f3: (s-so)n Im A(s, t) ds m Im Z 51(t) (s-so )OLi +n+1 
i ai+n+l 

(2.13) 

Finally, if we add the first ingredient we obtain 

f2: (s-s )n In. ARes (s, t>ds~1m 2 am) (sl-so) 1”” 
i ai+n+l 

(2.14) 

Great care is required in using these relations. If they 
were interpreted as equalities (rather than approximate re- 
lations), then the fact that they hold for all n would im- 
ply equality of the Regge term and the resonance term at 
all s. This is known as #1993; duality" - in its extreme 
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form i t  is c lear ly  f a l s e ,  and some averaging i s  necessaryo 
I f  one averages u p  t o  some value 3 1 ,  where Regge behavior 
is  good, and takes  the lowest non-trivial value of n ( 0  or 
1) then one obtains what is normally referred to as " lo- 
bal  dua l i ty ,"  

Since equations of the form of e q .  (2°14) relate 
s-channel poles to  t-channel poles they clearly can be 
used to  form a "bootstrap" theory - a linear bootstrap in 
contrast t o  the conventional one using uni tar i ty .  In 
using these relations i t  has been usual t o  begin by a s -  
suming a ( t )  t o  be linear and B ( t )  t o  contain a kinematic 
f a c t o r  but t o  b e  otherwise cons t an to  A particular inter- 
esting case is  the finenw System which has been studied 
extensively by Ademollo et  al .(1967) (and further refer-  
ences s t a t ed  in this paper . )  By putt ing in  the p t r a j ec -  
tory they obtained a sa t i s fac to ry  se l f -cons is ten t  solution 
over a small range of l t l °  To go further  they needed other 
t ra jector ies  ( "daugh te r s” ) .  

The question arises in "bootstraps" of this sor t  as 
t o  how f a r  the "solutions" are  unique“ The anSWer was 
given by Veneziano (1968) who showed that the FESR have a 
c lass  of solutions which can be  wri t ten in c losed form and 
which have an inf in i te  number of f r e e  parameters ,  This 
led t o  ''dual models". 

111‘, m1 m em  01 Modelg 

The solution t o  the TT1T"T|W FESR was given by Veneziano 
(1968) as 

A + T ( 1 - a s ) _ T ( l - a t )  + ( t , u )  + ( s , u )  ( 3 u l )  
T(l-aS-at) 

where 
a = a + bs ( 3 n 2 )  

This has the correct  Regge behavior and i t  has poles a t  
as = l (spins 0 and l ) ,  as = 2 (spins 0 ,  l ,  and 2 ) ,  as = 3 
(spins O, l ,  2 ,  and 3 ) ,  e t c .  Thus i t  has a linear trajec= 
tory with parallel ,  integer spaced daughters.  Clearly 
however i t  i s  not  unique and can be replaced by the general 
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form A _ :1 C T(n - as) T(n - at) 

nm n,m T(n + m - as - at) 

+ (t,u) + (s,u) (3.3) 

The terms with n,m i l are called 'satellites'. A satel- 
lite contributes only to poles with a 2 n, and only to 
those trajectories below the (m - 2)‘:fi daughter level. 
It is clear that this non-uniqueness means that the resi- 
dues of all poles are independent, i.e. given a set of re- 
sidues one can choose a unique set of Cnm's to fit them. 
Thus without some extra restrictions the duality con- 
straints on residues are non-existent. 

Under certain conditions, in particular meromorphy, 
crossing and a suitable bound for large values of the 
variables, the general form given in eq. 3.3 is unique, 
i.e. the arbitrary set of parameters Cnm gives the maxi- 
mum ambiguity (Tiketopolous 1970).  

At this stage we generalize the dual model to a 
general N-point function. To do this We consider not the 
amplitudes in eq. 3.1 but the B-function: 

r( -as) T(-at) B4 (as,at) - (3.4) 
F(- “s - at) 

a f: u'“8‘1 (1 - u)'“t'1 du (3.5) 

a I: du I: dv u-ms-l v-cnt-1 S(u+r-l) (3'6) 

We label the external lines of our N-point function 
i = 1,2, -- N1 corresponding to a particular ordering, and 
define 

sij = (P1 + Pj)B (3.7) 

Gij = a + b Sij (3.8) 
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Then the generalisation of eq. 3.6 is 

- - = 1 . "Ii '1 BN (Q12,  ) , J; :31 [dulj uij j 1 

pairs 

X Ti S(u + H u - 1) 
k4, k" (A11Inn 

(a set of pairs ( 3 ' 9 )  
non-dual dual 
pairs) to k&) 

Variables are dual if it is not possible to have poles 
simultaneously in both. Thus at a pole in one variable 
the dual variables correspond to momentum transfers and 
the requirement of no simultaneous poles is necessary in 
order to inSure that the residue of a pole is a polynom- 
ial in the momentum transfer (i.e. there are no ancestors). 

In the particular case of N=5 we have 

-a -1 -a -1 =c -1 
B 5  = f : d u 1 2  (1114.5 U 1 3  1 2  L145 4 5  (1 " 1112) 2 3  

(l - u45)-aa4-1 (1 - U12 u45)-a15+a33+a31+1 (3.10) 

Here we have chosen one particular two non-dual pairs, 
i.e. (12) and ( 4 5 ) ,  so that eq. 3.10 appears to be non- 
cyclic. However,one obtains exactly the same result 
whichever set one chooses so that B5 and in general 
are cyclically invariant. Of course, to obtain the am- 
plitude it is necessary to add BN'S with other non-cyclic 
orderings of the external lines (cf. eq. ( 3 . 1 ) ) 0  

We now discuss some of the important properties of 
BN, considering in particular Ba. To do this We first ex- 
pand 

(l-u13 u45)-a15+a33+a31+1 in equation 3.10 by 
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by the binomial theorem: 

. . - B E  '1‘; ( - 1 ) k  ( a15+ali3+a34+l> B40112 - k ,  a g e )  

, b 

34 (“es-k, “34) (3-11) 

Near c13= n We have the pole of the T function in B4. This 
gives: 

n 

a: (-1)“. ' 1-(11 +0.3 3+a34+1 ‘ag 3']. 

B5 ‘ 2 K 5 k > C n-k > 
n - an k-o 

34 (IQ-045, (134) (3.12) 

It is eaSy to see that this has exactly the same structure 
of poles as B4, namely that Shown in fig. 3.1. 

Further, the residue of a pole factonsas shown in fig. 
3.2, the amplitude for the intermediate state at a13=n in- 
teracting with particles 3,4 and 5 being a B4 function. 
This property ("bootstrap consistency") is of course vital 
for the self-consistency of the theory since we wish to 
identify the intermediate states with the external particles. 
However We note that, except for particles on the leading 
trajectory (where only k=o contributes) one obtains 8 Sum 
of B4 terms, i.e. satellites are essential. Further, if we 
considered not B5 but BN, the residue of a given state 
would not factorise but would contain a finite sum of fact- 
ored terms. Thus the daughters correspond not to single 
particles but are degenerate - the degree of degeneracy in- 
creases as we go down the daughter sequence, but is always 
finite (independent of the number of external lines!). 

As with B4, BN has the correct Regge behavior in all 
the possible Regge limits. For example, in the limit 334, 
s45 large with $13 = const. X 334 545 we have (see fig. 3.3) 

B a  ” s a é a a s  s 4 5 a 1 5  ( 3 ° 1 3 )  
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In making use of these dual models to compare with 
data there are some troubles. 

(i) The satellite ambiguity. As we noted above we 
can add arbitrary satellites - this is true for BN as well 
as for B4. It is clearly not possible to demand that We 
have no satellites for any external particles because as we 
have seen no-satellites for BB produces satellites for B4. 
However we can hope to postulate that there will be no 
satellite when external particles lie on the leading tra- 
jectory. Even this turns out to be not completely possible 
and it is replaced by the nOtion of "maximal duality", which 
We define below° 

(ii) The amplitude is not unitary. This shows itself 
in the fact that it has real axis poles, whereas in reality 
the poles should be on the second sheet. Also some of the 
particles in elastic amplitudes turn out to have negative 
residues (i.e. are ”ghosts"). A possible cure is to re- 
place a(s) by a function having a right hand cut. Since the 
residue of a t-pole is a polynomial in d(s), it will not 
then be a polynomial in s, i.e. we will have "ancestors”. 
This is not usually considered acceptable. 

A more sophisticated cure is to regard the Veneziano 
amplitude as the "Born term" of a pertubation series. This 
topic is treated elsewhere in this book and we will not dis- 
cuss it further except to note that this programme has not 
yet been successful and it is not clear whether it is possi- 
ble Without destroying the successes of the "Born term". 

(iii) We do not know how to include spin % particles. 
One trouble here is that any model of a Fermion linear tra- 
jectory naturally gives parity doublets. Since some of 
these do not exist it is necessary to add satellites to 
arrange that their residues are zero. 

(iv) For many trajectories, a(o) > 0. Now B4 given 
in eq. 3.4 has a pole at a(s) = O, which, if a(o) > 0, will 
have an imaginary mass (5 < o), i.e. be a ”tachyon." These 
do not exist and must be removed. For the four point func- 
tion we did this already in the an a nw case in eq. 3.1. 
However, the functions in eq. 3.1 are no; B4 functions 
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34 (as - l, at - 1) = F(2 _ as _ a , so it is not clear 

how to generalise this. 

To see what is required we consider first the 5 point 
(nnnno) amplitude. If we call the 0 particle 1 then the 
simplest choice for the amplitude would be 

B5 (c 13, a993, d954, d045, a 15) ,  but this would give 
tachyons at a = 0. There is however a simple solution 
(Waltz 1970), namely, the function 

“[334 X 350111-12, ap33_1, ap34, ap45_1, “1115)- 

The tachyons in (23) and (45) are removed by the replace- 
ment of a by cup-l in these variables; that in (34) is re- 
moved by ghe factor a 34. In addition this amplitude still 
has the leading trajectory in all variables. Although we 
'have apparentl lowered the p trajectory by one unit in ( 2 3 ) ,  
the factor a 3 outside provides the extra one power in the 
.momentum transfer to restore it. Similarly in (45). Note 
however that since the o is a daughter we would expect to 
have to add satellites in general. 

As a second example we consider the 6n amplitude. 
Here we can have either abnormal parity (11) states, normal 
parity states (w,A3) in the 3n channels. To obtain the 
latter we need a negative purity factor outside. A possible 
solution proposed by Dorren et al (1970) is 

x 
euvpoeafiyopiupavpappédpsflpev 

36(Q12'laaaa‘laaa4'2,Chis-1,ase'lgaei'2,aiss'1,0tes4'2,0£345'2). 

The factor "Elgae4is" behaves as a 1' particle in the 123 
channel and a 2 ' , 2  combination in the 234, 354 channels. 
Hence each of the three terms in eq. 3.14 is leading in all 
variables. To verify this for the high energy behavior re- 
quires care; it is necessary to utilise the fact that the 9 
variables explicitly shown in eq. 3.16 are not independent - 
becauSe of the Gram determinant conditions there are only 
8 independent variables for the 6 point function [see Dorren 
et a1 (1970)]. 
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Note that it is necessary to use a factor outside 
which is not cyclically symmetric, so it is essential to add 
the cyclically rotated terms as in eq. 3.14. The non-cyclic 
permutations(different orderings of the external lines 
must of course also be added). 

Unfortunately, as noted by Dorren et al (1970) eq. 
3.16 will not do since it has parity doublets along the 
leading (A3,w) trajectory, e.g. the first term has parity 
doublets in the 234 and 345 channels. We can remove 
these, from the leading trajectogx only by replacing 
dzs4-2 and d345-2 by a234'3 and d345-3 respectively in the 
first term of eq. 2.14, and similarly in the other terms. 
This means that the individual terms are not leading in 
all variables, and duality now holds in the sense that the 
leading direct channel resonances are dual to non-leading 
Regge-pole contributions. As far as the leading trajecto- 
ries are concerned our model is thus more like an "inter- 
ference-model" where we add direct channel poles and cross- 
channel Regge poles. 

A feature that we might look for in models of this 
type is possible non-factorisation of the leading traject- 
ory (Rittenberg and Rubinstein (1970)) leading perhaps to 
a split Ag. For example in eq. 3.14 it is not obvious 
that the (w,A2) trajectory is the (123) channel of the 
first term, and that in the (234) and (345) channels are 
the same. The need to remove the leading trajectory as 
noted above eliminates this possibility, however, for the 
6n amplitude. 

Further work on the NH amplitude (e.g. Dorren et a1. 
(1971)) has uncovered many additional problems. In par- 
ticular it does not appear possible to maintain finite 
factorisation of the daughters,i.e. the degree of degen- 
eracy increases without limit as the number of external 
particles is increased. From the formal point of view 
this is a serious problem, but we shall not discuss it fur- 
ther but shall continue with an attempt to compare the 
simple predictions with experiment. 
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1v. M m  w_ith W 

Dual models, in constrast to many phenomenological 
models are very ambitious in that they apply to  the whole 
range of the var iables .  Thus they contain many experi- 
mental predictions and comparisons with experiment should 
be eaSy and might be expected to  lead unambiguously t o  
their acceptance or rejection. 

However, in practice,it  is not so  simple because 

( i )  The model in i t s  simple form clearly predicts 
Regge behavior - with a l l  the troubles that brings 

( i i)  The model contains real axis poles, which must 
be moved into the complex plane before comparison with 
experiment i s  made. This introduces some f r e e  parameters. 

( i i i )  Al l  experiments involve nucleons, with spin %, 
and we do not know how to  include spin  % particles in the 
model. 

(iv) We have only a model f o r  ARes (in eq.  2 . 1 ) ,  so  
to  f i t  data We need to  add APom. We do not know the pre- 
cise form of this. 

The f i r s t  two problems a r e  related t o  the lack of 
uni tar i ty  in dual models and various prescriptions t o  
incorporate unitarity lead t o  absorptive corrections 
(which as we have noted do not help much) and to poles 
off  the real ax is .  

I t  is convenient t o  group the predictions of dual 
models into the following categories:  

B ( t ) , t > o  
A .  Relations between couplings< 

parent I daughter 

B. Relations between 'crossed' processes 

C, Regge-residues: B ( t ) ,  t<o 

D.  Daughter structure. 
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We consider tests of these predictions in turn, 

A. First we consider this far “H H H“ for which the 
amplitude has the form: 

I =2 
A s = V(t,u) (4 .1)  

AIS=1 = V(s,t) - V(s,u) 
AR” = § w e ¢ ) + w n - s w a m  

w'th , . 
1 V(s,t) = B r (1-33) T (l-at) , (4.2) 

I ‘ ( 1 - a s ' a t )  

a being the p trajectory. If We use SU(3) then we can ex- 
tend this to include all members of the meson octets. It 
is possible to read off coupling constants of the various 
mesons directly from this expression. However, one ob- 
tains corrected values if one first "unitarises" the for— 
mula. Lovelace (1969a) does this by projecting out the 
partial-waves, V (s), from eq. (4.1) and then writing for 
the unitarised partial-wave amplitudes: 

A,(s) - v, (s) [1 + p(s) v,(s) 1'1 (4.3) 

This is a matrix equation if one includes KK, nn states 
in addition to fin states. Impais determined from unitar- 
ity. Lovelace also gives p a left-hand-out determined to 
give A&(s) the correct threshold behavior and then obtains 
Resafrom a dispersion relation. The predictions, and com- 
parison with experiment, are shown in Table 4.1. Perhaps 
the main problem is that there is no evidence for the p 
(the spin 1 daughter of the A2). 

This formula also givesenattering lengths and phase- 
shifts in accordance with the accepted values. In addition 
it has the correct Adler condition and, with a suitable pre- 
scription agrees with off-mass shell extrapolation to the 
n-pole in production experiments (see Lovelace (1969a) for 
further details.) 

For the meson-baryon case the situation is more 
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complex. As a particular example we quote the expressions 
given by Lovelace (1969b) for the KN amplitudes: 

_ 102 rm. - as) m - at) _ 36 T(%-0ts) ru-at) 
A° ' <92) mamas-at) r'<a/;-as-at) 

o 203 1"(35-as) 1"(1-ont) 29 Nah-as) T(2-at) 
B = (215) r(5/3Las-&:T' ‘ (-19) ' T(5/2-as-at) 

A1 = -27 Nah-as) T(1-at) + 17 Nah-Eat) ”1'09 
(-31) T(3/2-as-at) T(5/2-as-at) 

1 -65 T(5/a-as) F(1-at) _ 11 T(a/a-as) T(2-at) 

B = <-13> "r<'57a-‘as-at)' ‘ (-19>"'r<5/s-as-‘at—> _ 
(4.4) 

with 

at = 0482 + 0.9t 
a; = -0.62 + 0.95 (for the Is= O amplitudes) 

a; = -0.22+ 0.98 (for the IS= l amplitudes) (4.5) 

These are chosen to remove unwanted parity doublets 
and to fit the known resonances. The predictive powar of 
the model is poor since few resonance widths are known. 
This model has many ghosts among its daughters. The num- 
bers in brackets in eq. 4.4 refer to the best values for 
fitting high energy scattering. It will be seen that the 
extrapolation from the positive 3 to the negative 3 region 
works quite Well in this case. In view of other known 
failures (eq. the A in backward nN scattering) this should 
perhaps be viewed with caution. 

B. The most interesting examplesthat have been dis- 
cussed here involve 5-point functions. _A§”gn_examp1e 
(Chan et a1. (1970)) We consider the (ppK KPH ) amplitude. 
This describes the following experimental_processes: 
K p-'K°1Tp; K'p"K°n'p; fi'p~K°K'p; rr P'*K°K+P3 pt'J-‘K'WN‘L. 
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There are three possible orderings of the external lines 
for which we can have dual expressions (i.e. for which the 
channels are not exotic). TheSe are shown in fig. 4.1 
together with the trajectories used (these were chosen to 
obtain agreement with experiment). Note that this process 
is a good one to consider since no 3 exchange is possible. 
We ignore spin and then, becauSe of signature it turns out 
that the three terms must be combined in a fixed ratio so 
that there is only one remaining parameter (the overall 
magnitude). Some results are shown in figs. 4.2, 4.3 and 
4.4. 

The general agreement is good but the model gives in- 
correct crossing. This is shown in fig. 4.2 where we see 
that crossing from up to Kp channels is not successful. 
The result is even worse if we cross to the pp channel but 
this is probably due to the neglect of spin. 

Another recent examp e is due to Schreiner et al. 
(1971) who discuss K+p~AK ' and the related processes. 
Again crossing fails. 

C. When we use the Veneziano amplitude at high s 
to test the form of the Regge residue, it is necessary to 
smooth out the s-poles on the real axis. The Smoothing 
which one obtains by introducing a reasonable imaginary 
part into a(s) is not enough - the predicted form has 
rapid oscillations well beyond where they are seen experi- 
mentally. These are due to the daughters and it may be 
that this indicates that narrow daughters are not in fact 
present. On the other hand, it is possible that the peaks 
in A(s,t) are in practice smoothed out by the fact that the 
degeneracy of levels with different spin is broken - a 
realistic treatment of unitarity would almost certainly 
give rise to such a breaking of degeneracy. However, the 
presence of these oscillations means that one should use 
the high energy limit of the Veneziano amplitudes, rather 
than the amplitude itself in fitting the data. 

The model predicts nonsense-wrong-signature-zeros in 
the residue. If absorptive cuts are introduced then it 
essentially becomes the 'weak-cut' or 'Argonne' model. 
As such it has difficulties as we have already noted. How- 
ever the general features of the t dependence seem to be 
correct. This is seen for example in fig. 4.2 for the 
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production process. For K'p elastic scattering fig. 4.5 
shows the fit of Lovelace (1969b) (the model here has a 
fixed pole Pomeron and absorptive cuts so it is not clear 
how much of the t-dependence is really testing the Vene- 
ziano residue). 

The correlation between the residue for negative t 
and positive t is good in some cases (e.g. for KN scatter- 
ing as shown in eq. 4.4), but there is one serious failure 
- namely the A is backward n - N scattering. The discre- 
pancy here is not removed by absorptive cuts. 

Gunion and Roberts (1971) give detailed fits to 12 
meson-baryon inelastic processes using Veneziano residues 
and absorptive cuts (calculated according to a rather more 
sophisticated presaription than usual.) 

In conclusion we can say that the asymptofic Veneziano 
model has all the troubles of the weak-cut Regge theory, 
but no more: Thus the specifically 'dual' aspects appear 
satisfactory in so far as they are being tested. 

D. In order to look at the daughter structure we re- 
quire to look in the region of large mass and low spin. 
The obxious place in BB anihilation. In particular 
§n~n'fl n“ at threshold has been extensively studied. The 
data is due to Annino et a1. (1968). Its principle fea- 
ture is a very deep hole in the middle of the Dalitz plot 
corresponding to “ska m 1.5 (see figures 4.6 and 4.7). We 
shouldfirst note that the existence of the hole or zero is 
not too surprising and might be expected regardless of dual- 
ity. To see this we assume that resonance poles occur at 
equally spaced intervals in s and t (see fig. 4.8). Now in 
order that the residue of an s-pole, for example, should be 
a polynomial in t it is necessary that the double poles, 
where these lines cross, should be removed. Thus lines of 
zeros must cross each intersection. An obvious pattern 
for such lines is that indicated in fig. 4.8. (Note that 
it is not the only possible pattern and there is no reason 
why the lines should be straight). Odorico (1970) has 
pointed out that there is remarkable evidence for approxi- 
mate linearity of the lines of zeros, and that these zeros 
do seem to show up outside the nest of poles, i.e. away 
from the s,t> 0 quadrant. For example, in n‘p n n°n the A 
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pole in the s and the p pole in the u-channel give rise to 
a zero at 

aA(s) + ap(u) = 1 

as t = -o.6. This agrees with the position of the famil- 
iar dip. In constrast in fi'p 4 nn the A is absent in the 
s-channel (which is purely I=%). so this dip is not ex- 
pected, in agreement with experiment. 

It is interesting to compare this explanation of the 
dips with the Regge pole one in terms of Nwsz of p trajec- 
tories. First we note that the Regge pole model by itself 
does not give an immediate explanation of the difference 
between the n°n and nn final state. Secondly, the dip in 
the former case comes from the F factor in the denominator 
of the (s,t) and (u,t) Veneziano terms (i.e. the ones Which 
contribute to the Regge behavior). Now it is apparently 
an accident that this dip occurs at exactly the same value 
of t as the dip in the (s,u) term due to the Odorico 
mechanism. In particular the coincidence of these dips 
does not follow from duality in its most general form since 
the Veneziano model, which is dual, only has this property 
because of the particular relation between the masses of 
the N, A, and p. This reSult would however follow from 
"local duality”, so it appears that in this case at least 
the experimental situation is consistent with a stronger 
form of duality than that implied simply by the existance 
of a Veneziano representation for the amplitude. 

To return to fin d 3n Lovelace suggested that, since 
at threshold only the 0'(pn) state can contribute, one 
should fit this with the n 4 3n, i.e. 4n Veneziano func- 
tion. In fact this gives too much 9 resonance, so he 
tried instead of eq. 4.2, the satellite term 
P(l-a ) T(l-a ) / P(2-aS-at). This immediately gives 
the dip aroun as=at=l.5, since at the point the T func— 
tion in the denominator is infinite. However, the detailed 
fit to the data is poor. Following Altarelli and Rubinstein 
(1969) we can fit the data well with a sum of Veneziano 
like terms (cf. eq° 3.3). The best fit (L° Nicholas, pri- 
vate communication)is 
010:1 (fixed), C11= 2a9i 0.5, C 2 0 =  2.1i 1.0, C21“  7&2,  
Cao=-3 i 1, n = -O.l i 0.4. This does not agree with Al- 
tarelli and Rubinstein's fit - but this is presumably be- 
cause these authors only fitted projections of the Dalitz 
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plot° Adding further terms to the series does not sig- 
nificantly improve the agreement. 

It is not Surprising that several terms are needed, 
and indeed a fit with one term would have suggested that 
something serious is wrong with the model. This is be- 
cause at J=0-, s=4MN3, we are (on a linear n trajectory) 
very close to the 0' particle on the third daughter tra- 
jection of the n. Thus, as we saw in section 3 we expect 
several satellites. Clearly there now arises what ought 
to be the most exciting test of the Veneziano model, 
namely, does BB applied to fin n n'n+n' give the above 
values for the Cmn- Alas we meet again the spin problem 
and we do not know which BE to use. 

Rubinstein, Chaichian and Squires (1969) took the 
following expression: 

B n B 
A= (lisp 3 5 ( a 1 2 p ,  Gsap'l, 0454 "12", (145 , 0-15 '8/3) 

+ c(ma4B-%) 35(alap-l, asap-1, a343'%, a4sfi-1, alsn'%) 

(4.6) 

where particles 4 and 5 are nucleons and 1,2, and 3 are 
pions. The first term in eq. 4.6 is leading in all varia- 
bles. It does not however have a pole at a15-%, and it is 
to restore this that the second term is added. For further 
justification of this term we refer to the original article. 
By a suitable choice of the free parameter a good agreement 
with the Altarelli-Rnbinstein fit was obtained. Howaver it 
is not possible to fit the parametensgiven above (in parti- 
cular eq. 4.6 given Ca1=‘caz) and in fact eq. 4.6 does not 
give a good fit to the experimental data. 

The overall magnitude of the amplitude can be obtained 
from the MN" and pfin couplings - see fig. 4. 9. It is then 
possible to evaluate the fin ~ 3n decay rate at threshold 
and compare with experiment . Agreement is obtained pro- 
vided the decay width of the third 0' daughter of the pion 
(i.e. the intermediate state in pn an fi+fl‘ at threshold) 
is not larger than about 100 Mev (see Rubinstein, Chaichian 
and Squires (1970). 
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The conclusion at present is that B5 is not well sup- 
ported by the data but that the test is unreliable since we 
do not know how to write down unambiguously the pn H 3n du- 
al model. 

At higher energy data on this process is also avail- 
‘able (Bettini et a1 1970), and is given in fig. 4.10. 
There is the suggestion in this data that the deep holes 
appear only in alternate squares of the mesh of resonances. 
This led Odericc (1971) to suggest alternate models in 
which the pattern of zeros had the form shown in fig. 4.11. 
However, in order to prevent ancestors from.occurring due 
to the zeros at fixed (s—t) crossing the pole lines, it is 
necessary to have additional poles at fixed (s+t). These 
correspond to poles at fixed u whose mass varies with the 
external masses - a feature which is hardly acceptable. 

Attempts to understand fig. 4.10 in terms of dual 
models for fin 4 3n are in progress but, due to the fact 
that there are now many amplitudes, there are many prob- 
lems. 

V. Duality and Inclusige Beeetisee 

1- W M "  ti'a gnaw: 

An inclusive cross-section is one which is summed 
over a set of unobserved particles. Clearly inclusive pro- 
cesses are natural things to measure experimentally. The 
simplest example is a total cross-section 

Tot ' 
cab B 2. IAab-iXIa 5'1 

X 

where the sum is over all sets of stable particles ( X ) .  
Kinematic factors will be ignored. The next most simple 
example is where one final particle is observed, a+buc+X 
for which we write 

oTot = ' 5 ab-'c Z IAab—ocxl2 '2 

Unitarity makes these processes theoretically simple. 
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Thus for the total cross-section Gist we have the "optical 
theorem": 

Tot = s 
c’ab ; IAabdx l 

- Im Aabflab (unitarity) 

' (21)-1[Aab~ab(s+) - Aabdab(s-)] 
(hermitian analyticity) 

5.3 

We ignore the (Zi)'1 factor in the pictorial form of the 
equation. 

Mueller (1970) showed that this idea could usefully 
be extended to other inclusive processes. There are in 
fact several ways of doing this, which we shall discuss. 
All the relevant expressions were obtained in the formal 
development of S-matrix theory and are given, for example, 
in Eden et a1. (1966) Chapter IV. First we write 

°§§t=;::O:_——:O:: 

@3301: : 0 3 :  

-;E’:EO—«— —~O‘=‘E 

Where in the last equation the notation is that i refers 
to the sign of the (is) in the left Sub-energies, the to- 
tal energy and the right sub-energies respectively. 
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We try using simple physical unitarity: 

I"T’ I“\ n ‘ U J -O———OE 
——L,: 

5.5 

Combining this with eq. 5.4 we find 

5.6 

This is not useful because of the partially disconnected 
pieces in the bracket. 

We can remove the disconnected pieces if we take only 
the discontinuity across the cut in sab' (which is not of 
course equal to the imaginary part). Using Eden et a1. 
(1966) ,  eq. 5 . 7 . 8 ,  We have 

— — k / — - — — - \ J — ' — — — k J \ J — —  
5.7 

The r.h.s. of this equation is not quite the same as the 
r.h.s. of eq. 5.4 so one obtains an additional term: 

§§1= EOE EOE 

+;_=_O— —C,E ——OE 
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This equation is given in Ellis et al. (1971); the correc- 
tion term spoils its usefulness. A much simpler form can 
however be obtained if we start with 5.7 and continue 
around the cut in the left sub-energies, thus obtaining 

iii"? 73‘? ‘_"TT~\. ("C—"_ 
”1"! 1;.377 _4 I, x .L:;___ 

5.9 
from which we obtain 

UTot "T . Jr‘74* - I 
ab “.c j v l  “ \ f —  

5.10 

Thus expressing the total inclusive cross-section as the 
discontinuity across the three particle (Saba) cut of a 
particular 3 a 3 amplitude in the forward direction. 
This equation is given in Stapp (1971). 

2. Duality and Exotig §b§ 

As a first application of eq. 5.10 we consider the 
'case (Chan et a1. (1971)) whose abe is an exotic channel. 
In this case there are no dual diagrams with abE adjacent, 
i.e. no poles in Saba, so, in the meromorphic approximation, 
the r.h.s. of eq. 5.10 is zero and a ggc is zero because 
there are Pomeranchon-exchange contributions which are not 
included in dual models. Chan et a1. (1971) deduced that 
if abE is exotic then cggfic should be independent of energy 
(i.e.) of sab) in the high energy limit; objections to this 
were raised by Ellis et a1. (1971). This question cannot 
be settled simply on the basis of dual models since these, 
by their definition, do not include Pomeron contributions. 
What is needed is a generalisation of eq. 1.1 to 3 ~ 3 re- 
actions. In order to obtain Such a plausible generalisation 
we consider the model in which the Pomeron arises from dual 
twisted loops. 
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To explain this we discuss first a + b v c + d where 
we Suppose ab is exotico Then we cannot draw dual diagrams 
with a and b adjacent, so dual diagrams must have the form 
shown in fig. 5 . 1 ,  where X; and X3 are sets of stable par- 
ticles. We combine this with a similar diagram for c + d 
to make the twisted loop shown in fig. 5.2a and fig. 5.2b. 
The quark-duality diagram corresponding to this is shown in 
fig. 5.3, and we see from this that only vacuum quantum 
numbers can be exchanged in the cross-channel, i.e. "a" = 
”c" and "b" = "d". Thus we can regard this diagram as 
giving a model for the Pomeron (for calculation of these 
diagrams we refer to articles by Alessandrini et a1. (1970L 
Lovelace (1970), Alessandrini (1970), etc.; they do not 
give the correct intercept for the Pomeron but give the 
reasonable slope of %). 

The correSponding twisted loop for abc elastic scat- 
tering is shown in fig. 5.4. [Veneziano (1971), Chan and 
Hoyer (1971)].  However, there are several possible label- 
lings of this diagram. Suppose 'a' is the central one, 
then this means that 'a' is coupled to the other particles 
only through the Pomeron, i.e. we have fig. 5.5 where the 
be scattering includes Regge exchange. This diagram behaves 
as (S1,)1 and so T g i v  ves a contribution to the inclusive) 
cross-section a To which is constant with energy (3a) 
Note that in theb fragmentation region of particle b, with 
sbc negative and fixed sabc is proportional to sab- This 
is the origin of the claim made by Chan et a1. (1971) that 
includes cross-sections which are independent of energy if 
the abc channel is exotic. 

However, other orderings of the particles of fig. 5.4 
are possible. For example, exchanging a and c we have the 
diagram of fig. 5.6 which is not constant in sab. The cru- 
cial question now is the magnitude of this term, which is 
governed by the magnitude of the Pomeron contribution to 
b5 4 b5 at Bbé Small and negative! The physical idea of 
Pomeron contribution as a manifestation of direct channel 
unitarity (i.e. giving the shadow of all the inelastic 
terms) is clearly inappropriate here. In general loop 
diagrams should be Smaller than the 'Born terms' (i.e. the 
Veneziano amplitudes) so We expect diagrams like this to 
be small corrections, except in the conditions where the 
energy dependence of the Pomeron term makes it dominate 
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ever non~Pomeron terms. This is clearly the case in fig, 
5.5 (we are considering Bab large) but not in fig. 5. 6. 

the prediction is that the energy dependence of 
TEQEC should be small if she is exotic. 

Since this prediction involves both the duality as- 
sumption and the nature of the P contribution it will be 
interesting to see how well it turns out experhnentally, 
There are many consequences (e.g. Chan et a1. (1971)) 
but few good experimental tests. Chan and Boyer (1971) 
compare the following processes: 

(1) Kfp ~7n' [abé exotic, ab also exotic]. 
(ii) K-p # fi- 

(iii) n+p 4 n' [abE exotic]. 

(iv) n’p a n'. 

They define RK+= RK' , Rn+ , Rn-a by 

Tot OK+p4n' 
RK+ = 5.11 

etc. 

The Pomeron contribution to the R's are all equal, 

e.g., 1113+ = Y1’(;gn")(lm“) 
5.12 YPpp 

(see fig. 5 . 7 ) .  Experimentally it turns out that RK+ - RK' 
RK+ 

RK+ - Rn“ are both of the order of unity, whereas RK+ -Rfi* 
RK+ RK+ 

is consistent with zero. This suggest that RK+ and Rn+ are 
Pomeron dominated in accordance with the fact that in both 
cases abE is exotic. Note that in one of them (Rd), ab is 
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also exotic, so the equality of the R's suggests that this 
particular condition is irrelevant. 

‘As with 2 d 2 processes, the factorisation assumptian 
strengthens the predictions of duality. Thus (Ellis et a1. 
(1971) if one accepts that abE exotic implies only a Pome- 
ron contribution and uses factorisation one can show for 
example that there is never any Regge contribution to the 
p 4 K" fragmentation. Hence, for example, OTOtfiK- is con- 
stant in energy even though in this case abE is not 
exotic. 

3. Triple 333g Limits 

As another example of duality applied to inclusive 
processes We consider the triple Regge limit (DeTar et a1. 
(1971). Here one is interested in the region t = Sbc 
fixed, M2 = s - large and (s/Ma), s = Saba also large. 
Then, for the cross-section, we write 

= e(t,M2) (387:) 2‘11“) Hg? (t) I3 5 13 
for large (.Mfi). Here oi is the leading trajectory with 
the quantum numbers of bE. In general of course one should 
sum 5.13 over several such Regge pole contributions. 

We evaluate B(t,M2) by unitarity: 

5.14 
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on applying two-particle unitarity to the elastic scatter- 
ing of particle a and the Regge-pole Q1. The energy here 
is M2 so if M2 is large We can then use Regge theory to 
write eq. 5.14 as 

some) =- <M2)°‘a‘°’ vii) <0) vff>(o) 5.15 
where a2 is the leading trajectory in (1,a) elastic Scat- 
tering - including of course the Pomeron. 

Thus we finally obtain 
da'o 

Dab-c S-a Y(2) (2) (1) a 2 0L2 (0) a @103) a = (om. (0)| (t)| (M) ( M )  
fit GM” Yb- 8 

5.16 

(see fig. 5 .8 )  

An interesting application of this formula is to 
study the triple-Pomeron coupling (certain versions of the 
multiperipheral bootstrap would like this to be zero). 
Consider a process for which b5 permits the Pomeron. Then 
eq. 5.15 is a P elastic scattering which contains resonances 
dual to Regge-pole terms and also a non-resonant background 
dual to Pomeron ekchange. The latter is proportional to 

P ( 0 ) ,  i .e. the required triple Pomeron coupling. If this 
iaP zero then there should be no background when we take the 
Pomeron for a1, 1. e. the background should tend to zero with 
s, whereas resonances should remain constant with s (for 
small t). The expected behaviour for no triple P coupling 
is illustrated in fig. 5.9 a and b. 

With the available data there are conflicting reports 
in the literature. Wang and Wang (1971) study pfi d n'X 
(b = c = r) and pp -» pX (b = c = p), and claim that the 
data is consistent with very little PPP coupling. On the 
other hand in a more detailed study, using additional data, 
Edelstein et al. (1971) claim that appreciable PPP coupling 
is required at least for It] 2 0. 264 (Gev/c)3. 

A case where bc does not permit the P is considered by 
Chliapnikov et a1. (1971), namely pK+ a K°. They find 
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that the s-dependence is approximately independent of M3, 
i.ea "background" and"resonances" vary in approximately 
the same way with s. According to duality this means 
that P a; a; and R a4 a1 couplings are appreciable. 

Much further work remains to be done, and is being 
done, on these topics. The ideas can of course be ex- 
tended to inclusive processes where two or‘more are ob- 
served. A start on this has been made by Chian-Li et a1. 
(1971). 



214 E .  SQUIRES 

\s 
(PERWHERAL)  

J x V§ 
(CONSTANT 

RANGE) 

4// 41, 

£35.15; 
Plot of spin against (Mass)3 = s f o r  resonances. 
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Argand plots of s-channel n-N amplitudes 

from Harari and Zarmi. 
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Argand plots of It = O “N amplitudes 

for helicity non-flip and helicity flip. 
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Qualitative behaviour of total cross-sections. 
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1113.2.nFFECTIVE REGGE TRAJECTORY 
- _, o __ FOR 1r p 1r n (PLABSSGeV/c) 

_6. I I L I I 
- 5 .  - 4 .  - 3 .  - 2 .  - | .  O 

t (GeV/c)’ 
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m o m  

Showing the structure of resonance-poles 

in the Veneziano model. 
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Showing the factorisation propercy of B5 

at a pole of $12 

l 5 

345 
4 

3:2 

334 

2 3 

Fig. 1,; 

Multi-Regge limit for $ 4 5 ,  334 l a rge .  
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_g._Fi _4_9.l 

The possible Veneziano diagrams for (pEK+I<—°n_) amplitude. 
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Eig- éifi 

A simple pattern of zeros (dashed lines) 
which removes ancestors at the poles (full lines). 

Fig. Q‘Q 

Showing how the normalisation of the En * 3n 
amplitude is obtained from the NNTr and Pfifi couplings. 
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Alternative pattern of zeros 

suggested by Odorico (1971). 
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' . 5.2; Two ways of depicting the twisted"loop 
which is  suggested as the mechanism which produces 

the Pomeron contributions t o  two-body 
processas .  
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hm {L 
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The quark diagram 
corresponding to fig. 4 . 2 .  

Lia-LA 

Twisted loops for the 3 H 3 process.  
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Fig, 5, : The triple Regge limit. 
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Illustrating the expected behaviour of an inclusive cross- 
section in the triple Regge limit if the PPP coupling is 

zero. 

: . M 2  



STATUS OF DUAL MODELS 237 

W 

M. Ademollo, H.R. Rubinstein, G. Veneziano and M.A. Vira- 
soro (1967), Phys. Rev. Letters 19 1402. 9 — ,  

V. Alessandrini, D. Amati, M. Le Bellac and D. Olive (1970), 
CERN Th. 1160, to be published in Physics Reports. 

V. Alessandrini (1970) ,  CERN th. 1215, to be published in 
Nuovo Cimento. 

G.A. Altarelli and H.R. Rubinstein (1969), Phys. Rev., 
lfié, 1469. 

P. Annino, et a1. (1968), Phys. Rev. Letters, 29, 402. 

V. Barger and R.J.N. Phillips (1971), Wisconsin preprint, 
"Deductions from new n'p 4 n°n data at large momentum 
transfers", to be published in Nuc. Phys. Q. 

A. Bettini, et a1. (1970), Padova preprint INFN-PD 70/2. 

B.B. Brabson, et a1. (1970), Phys. Rev. Letters, 2;, 553. 
H.M. Chan, C.S.Hsue, C.Quigg and J.M.Wang (1971), Phys. 

Rev. Letters 26 672. I — ’  

H.M. Chan and P. Hoyer, CERN Th. 1339, to be published in 
Physics Letters 2. 

P. Chliapnikov, O. Czyzewski, J. Finkelstein and M. Jacob 
(1971), CERN Th. 1336, to be published in Physics 
Letters Q. 

J.W. Coleman and R.C.Johnson, (1971), Durham preprint, to 
be published in Nuc. Phys. B. 

C. Daum, C. Michael and C.Schmid (1970), Phys. Letters 31;, 
222. 

C.E. DeTar, C.E. Jones, F.E. Low, J.H. Weiss and J.E.Young, 
(1971), Phys. Rev. Letters 26, 675. 

J.D. Dorren, V. Rittenberg, H.R. Rubinstein, M. Chaichian 
and E.J.Squires (1970), Nuovo Cimento Lg, 149. 

J.D° Dorren, V. Rittenberg and H.R. Rubinstein (1970), 
CERN Th. 1191. 

R.M, Edelstein, V. Rittenberg and H.R. Rubinstein (1971), 
Weizmann preprint (WIS-7l/19/Ph). 



238 E. SQUIRES 

R.J .  Eden, P.V.  Landshoff, D . I .  Olive and J . C .  Polking- 
horne (1966), "The Analytic S-Matrix" (Cambridge). 

J .  Ellis,  J .  Finkelstein, P.H.  Frampton and M. Jacob 
(1971), CERN Th. 1316. 

A .  Firestone et  a1. (1971), Phys. Rev. Letters 2;, 958. 
J .F .  Gunson and R.G.  Roberts (1971), Nuc. Phys. §;§, 210. 

H. Harari (1971), Phys. Rev. Letters 26, 1079. 
H .  Harari and Y. Zarmi (1969), Phys. Rev. 181, 2230. 
H. Harari and Y. Zarmi (1970), Phys. Letters ggg, 291. 
C . L .  Jen et a1. (1971), preprint NYC-226 2TA. 
C .  Lovelace (1970), Physics Letters 32;, 703. 
C .  Lovelace (1969a), CERN Th. 1041 (Argonne conference 

report) .  

. Lovelace (1969b), CERN Th. 1047. 

. Odorico (1970), Nuovo Cimento Letters 3, 61. 

. Odorico (1970), Physics Letters gap, 489. 

. Rittenberg and H.R. Rubinstein (1970), Phys. Rev. 
Letters 25, 191. 

H.R.  Rubinstein, M.Chaichian and E.J.Squires (1969), 
Physics Letters ggg, 189. 

H.R.  Rubinstein, M. Chaichian and E.J.Squires (1970), Nuc. 
Phys. ;2_1, 283. 

C .  Schmid (1970), Nuovo Cimento Letters 1, 165. 
C .  Schmid (1971), CERN preprint Th. 1343 "Phenomenology 

a t  Intermediate Energies". 
P.A. Schreiner et a1. (1971), Nuc. Phys. £28, 85. 

E . J .  Squires (1971), "Regge-Pole Phenomenology" Lectures 
a t  the 1970 Heidelberg Summer School, published in 
Springer Tracts in Nuclear Physics Vol. 57 .  

. Stapp (1971), UCRL 20623. 

. Tiktopolous (1970), Phys. Letters 313, 138. 

. Veneziano (1968), Nuovo Cimento 51;, 190. 

. Veneziano (1971), Nuovo Cimento Letters 1 

<
W

W
O

 
@

0
0

1
1

:
 

681. 



STATUS OF DUAL MODELS 239 

R.E.  Waltz (1970), Nuc. PhyS. filfi, 61. 
J.M.  Wang and L.L. Wang (1971), Phys. Rev. Letters gg, 

1287. 





GROUP THEORETICAL PROPERTIES 

OF DUAL RESONANCE MODELS 

P. Ramond 
National Accelerator Laboratory 

Batavia, Illinois 

I. INTRODUCTION 

One of the remarkable things about duality is that it 
leads to the formulation of very esthetic theoretical ideas 
although it has its roots in the structure of strong-inter- 
action data. Surely this marriage of conceptual beauty 
with experimental observation is no accident. The first 
steps towards the construction of amplitudes that were 
"dual” h ve been excellently described in several review 
articles ; in these lectures we would rather like to show 
the emergence of a very fundamental group theoretical struc- 
ture that seems to underlie all dual resonance models (DRPD 
built to date. Since no DRM duplicates the data closely 
enough, we would like to understand how to add the missing 
ingredients without affecting the properties we like about 
the more primitive models (like factorization, crossing, 
Regge behavior, etc.). 

As we are only at the beginning of our understanding 
of duality, we can only talk at the moment about mesons and 
ask the more pragmatic reader to bear with us while we try 
to unravel this very mysterious concept. 

The other purpose of these notes is to familiarize the 
reader with the mathematical techniques used in deriving 
DRM's. Hence the character of what follows will be rather 
technical as it must be at this stage of the art. 

II. MATHEMATICAL PRELIMINARIES 

The work of Koba and Nielsen2 has shown the relevance 
of projective transformations in dual resonance models 

241 
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(DRM). These transfbrmations are generated in the complex 
plane by real Mbbius transformations which are locally iso- 
morphic to the more familiar SU(l,1) group, the non-compact 
partner of S U ( 2 ) .  we concentrate from now on in the study 
of SU(1 1) so as to understand its role in DRMs in greater 
detail.3 

If h is an element of SU(1,1)  it is in one-to—one cor- 
respondence with the pseudounitary unimodular 2x2 matrix 

on B h a * * lane-1513 = 1, <1) 
8 a 

where a and B are complex numbers and the star denotes com- 
plex conjugation. Its Lie algebra is generated by the 
operators L0,L+, and L_ which obey 

[Lo’ Li] = ”e; [14' 11] = ‘Lo (2) 
and has a Casimir operator 

2 = _ a L L+L_+ L_L+ L0 . (3) 

In the complex z-plane, h corresPonds to 

z a (hz) E z' - -%3i%- . (4) 
a +5 2 

In particular it maps any point on the unit circle onto the 
unit circle. In order to construct the representations of 
the SU(1,1)  algebra, we choose a certain representation for 
the generators 

d. __1i1 9.- L0 2 3;, Li— J2 z (2 dz J) (5) 

for which 

L2 = -J(J+1) (6) 

is automatically a c-number. It can be shown that there 
exists basically two types of unitary representations of the 
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algebra: those for which the Spectrum of L is unbounded 
and those for which it is bounded. For reasons that will 
become clear later we concentrate on the latter ones. 
There we again have two subdivisions since L can be bound- 
ed either from above or below. These unitary irreducible 
representations (UIR) of the algebra are 

1. D§+), where J is a real negative number, as re- 

quifEH‘by unitarity, and the Spectrum of eigenvalues 
of L0 is bounded below 

L = -J, -J+l, -J+2, . . . ,  0 

and it is Spanned by the state 

IJ,m)+ = (3917-23); ' 2“” (7) 
in- 

Note that 

L_|J,0)+ = o, (8) 
i“ 

and the states are generated by successive application 
of L+ on \ J , 0 ) + .  

2. D§_), where again J is real and negative and the 
spectrum of L0 is bounded above 

L = J, J-l, J - 2 , . . .  . 0 

It is spanned by the basis 

1J,m> _ = (La—Mi“ ’j‘z’m“ <9) 
and 

L+|J.0)_ = 0 (10) 
so that the states are generated by the successive ap- 
plication of L_ on ‘ J ,0 )_ .  

The connection of these representations to the DRM's is 
achieved in the following way. Introduce the operator 
functions 
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Fp(z) -}: ap(m)lJ,m)+ any") (11a) 
m=0 

spa) ,2 a.p<m>+lJ,m)_ eDJ(-) (uh) 
m=0 

where the coefficien s of the basis vectors are harmonic 
oscillator operators obeying 

Hm): aén’] ' [£1n 89*] - 0 
[a§u°, aén)f] = g n,m = 0 , 1 , . . .  (12a) pa n,m 

we use the metric go = -g i - -1 so that we immediately see 
that the a(n will introduce negative norm states in the 
theory. ( is disease plagues all relativistic theories.) 
The vacuum state |0> is defined by 

sin) lo > - o n=0,1,... (12b) 

Furthermore consideg the case n = 0 to be describing a 
translational mode, that is, let J - - 6/2 where e is a 
positive infinitesimal. Then, when written in terms of the 
canonical coordinates, 

qp = 7% [5150” + 2150)] (13a) 

pp - % [850”. - aim] (13b) 

F (z) and g (z) are separately singular as e n 0; however, 
t is singularity is absorbed by taking their sum 



GROUP PROPERTIES OF DUAL MODELS 245 

(29(2) = Fp(z) + ?p(z) (14) 
- . 3 1 (n)? -n (n) n 

qp+1ppln z +-Zl 3; [ap z +ap z ], (15) 
n :  

which can be loosely interpreted as the dual generalization 
of a coordinate. Another quantity of interest is the "gen- 
eralized momentum" 

. d 
Pp“) = 12 E Qp(z> (16) 

= pp + inzl Jn [ap(n)1‘z-n -ap(n)z+n]. (17) 

The relevant representation of the SU(1,1) operators is now 
obtained by taking the matrix elements of the operators 
Eq. (5) between the states Eq. (11a) or equivalently 
Eq. (11b): 

Q 

L0 = (FILolF) = 2 (m + E) 8(m0f -a(m) (188) 
m=0 

L+ = (F|L+|F) 'i(%'<m+€)(m+1;a(m+l)f-a(m) (18b) 
muo % 

L_ = (F|L_1F) =2 (%(m+e)(m+1) (m)*-a(m+1)- (18c) 
Another more elegant way of obtaining the representation of 
the SU(l,1) operators is to consider the Fourier coeffi- 
cients of the square of the "generalized momentum"7 

+rr 
L_m= 2—; L" 2—2 {“5 Pu(z)r“(z)= (19) 

where z is on the unit circle and the normal ordering ap- 
plies to the periodic modes only. Specializing expression 
(19) to m = 0, i1, we obtain the usual representation of 
the SU(1,1)  generators, namely 



246 P. RAMOND 

L0 = 2 {% p2 + i  m am”. a(m)} (20a) 
m=l 

L+1 = 2 {11mmf 4-}: .AEGE¥17 a<m+1)*ca(m)} (20b) 
m=l 

L_1 = 2 {-1p-a(1) +-i ”REESE? a(“°-a(m+1)*} (20c) 
m=l 

Here, unlike the previous representation we have already 
taken 3 to zero. However, for calculational purposes we 
prefer to use Eqs8 (18) and let 6 a 0 only at the end of 
all calculations. 

For general integer m, Eq. (19) yields 
° -1 

Lm - 2 {m P-a(m)++z m)a<n+m>+,a<n>_%mz m)a(m-n)f 
“=1 n=1 

1- 

'a(n) } (21) 

These operators were first found by Virasoro9 in conjunction 
with the ghost compensation mechanism that occurs in the 
DRM's. 1Shay form among themselves the so-called Virasoro 
algebra 

L ,L = _ 4 3_ m n 2(n m)Ln+m + §n(n l>6n,-m . (22) 

The generators 1/2n Li and l/n L0+(nF-1)/3n form, for a 
given n, an SU(1,1) algebra and generate finite transforma- 
tions of the form 

l/n 
z_, z. = ”n+3 ' 
n a*+a*z“ n = 1 , 2 , . . .  (23) 

At the present moment, however, the relevance of this alge- 
bra to duality has not been clarified although it is sus- 
pected to be very deep., All we can say is that it acts as 
a gauge group for dual models. Mbre will be said on this 
in the course of these lectures 
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The major part of the mathematical equipment needed in 
dual "modelry" has now been presented, and we turn our at- 
tention to the problem of the construction of dual factoriz- 
able tree amplitudes. 

III. GROUP THEORETICAL RULES FOR THE CONSTRUCTION OF DUAL 
AMPLITUDES 

We wish tolfmphasize that the rules we will enunciate 
in this section are not the product of very deep insight 
but rather of a detailed analysis of the N-point generali- 
zation of the Veneziano amplitude. In addition, we believe 
them to be necessary but not sufficient. 

1. Associate with the absorption of a particle of mo- 
mentum k , with various quantum numbers collectively 
labelleduby {I}, a vertex operator V(ku,{l};z), where 
z = e' T. 

2. In order to preserve the correct selection rules at 
each vertex, we require that V transforms under the 
groups which generate {X} as the field of the absorbed 
particle. 

3. At this stage,-the dynamical assumption of duality 
is expressed in terms of an additional transformation 
requirement. Namely we demand that 

[L0, V(k,{x};z)] = -z d—g V(k,{)~};z) (24) 
5:1 

[Ly V(k,{>~};2)] = {72— (zd—giJs)V(k.{H;Z), 
(25) 

where J in this case is a scalar function depending on 
the various quantum numbers of the particle 

J, = Js(uf,j,cm); (26) 
here j is the spin and c{X} represents the Casimir 
operators of the groups which generate {I}. This means 
that the additional feature of dual vertices is that 
they are labelled by the Casimir operator of SU(1,1). 



248 P. RAMOND 

If T is a finite unitary transformation of 
SU(1,1), it follows that 

T * * 2J3 
T V(k,{x};z)T = la +5 zl V(k,{x};z') (27) 

with 

- + z' =TBTF (28> 
a +8 Z 

4. An arbitrary number of particles can interact in a 
dual manner only if their dual vertices have the same 
SU(l,l) spin, i.e., 

J S ( m 1 2 ’  j ( l ) , - - - )  = Js(m22sj(2)"")s ( 2 9 )  

which implies, as we shall see later, relations be- 
tween the various quantum numbers of the particles. 
The origin of this requirement becomes clear when one 
tries to build amplitudes out of these dual vertices. 

5. The factorizable dual amplitude for the scattering 
of an arbitrary number of particles in a given order 
is just given in the tree approximation by the vacuum 
expectation value of the product of their dual ver- 
tices taken so as to make an SU(l,l) invariant.12 The 
amplitude corresponding to Fig. l is then given by 

_ (4) N AN(k1,...,kN)—j...jdxl...dzNKN(zl,...,zN)6 2 k1 
1 

<0lv(k1,{x}1;zl)V(k2,[x}2;zz)...V(kN,{x}N;zN)|o>. 

(30) 

The requirement that A be SU(1,l) invariant imposes 
severe restrictions on the kernel function ( { X } ) .  In 
fact, given the transformation properties (2 ) of the 
dual vertices, we have been able to find such a kernel 
only when all the external particles had the same 
SU(l,l) spin J , which explains the previous require- 
ment. We now show how to build KN up to any SU(l,l) 
-1nmariant function. 
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It is easy to see by using the projective invariance 
of the vacuum and inserting T T between the vacuum and 
V(k1{K}1,zl) a.nd pushing T to the right by means of 
Eq. (27)1that any such kernel must obey (i) 

dz1 .dzNKN({l}) 1H1 la*+B*21|2JS a 

- dzi...dzfiKN({z'}), (31) 

where 
az.+B 

zi = —;$—;—— i-1,2,...,N. (32) 
a +3 zi 

From the last equation, it is straightforward to see that 

' 

:71 _ :21. *+1* 2 , (33) 
i i la 5 zil 

as well as 

2' -z' 1+1 1 = 1 34 
z -z * * * * ° ( ) 
1+1 1 (a +6 zi+1) (on +3 21) 

We find a solution to Eq. (31) when all Js(i) are equal, say 

Js(1) a JS i = 1,...N, (35) 
namely 

il-Js-l 

KN(zl"“’zN = z . 'IT' z1+1 , (36> 
where we have defined ZN+IEZ1 We point out that this solu- 
tion is not unique as it can be multiplied by any SU(1,1) 
scalar function of the 21's. In particular, we can put an 
ordering condition on the arguments of the z '5 according to 
the order in which the vertices appear. As we shall show 
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by example, this condition is  necessary fo r  the factor iza-  
tion of the amplitude. Hence one factorizable amplitude is  
given by 

N dz  _ - 1 -J-l 
AN(kl" ’ ' ’kN) ‘ UllTilziH'zil 9(arg  zi+1—arg 21) 

N N 

<olu v<k,,tx}i;z,)lo>s(“) Zki- <37) 
i=1 1 

Since the integrand is invariant under a three parameter 
group, i t  is really a function of N-3 variables. So far we 
have not said how duality comes about.  The fact  is that 
a l l  the vertices we shall consider give rise t o  cyclic in- 
variant amplitudes. Al l  we can say is that the covariance 
under SU(1,1) does not seem to be sufficient to  insure cy- 
clic invariance. It  may be that covariance of the ygrtices 
under the Virasoro algebra is  a requirement f o r  i t .  How- 
ever,  in the following we shall not concern ourselves with 
such highbrow considerations; rather we aim to  show in de -  
t a i l  how the various ideas discussed above come into being 
when one considers specific vertices which obey our cri-  
teria. 

IV. CONSTRUCTION OF THE N-POINT VENEZIANO FUNCTION 

In order to  give content t o  the preceding section, we 
give in great  de ta i l  the derivation of the N-point function 
fo r  external scalar part icles using as a s tart ing point the 
dual vertex f o r  the absorption of  a scalar pa r t i c l e .  We 
f i r s t  observe that 

[L0, r pm]  = -z 8—:- 179(2) (38a) 

1 
[Ly Fp(z)] = $2:— (zd—‘z1 5% e) Fp(z) (38b) 

where we have used representation (18) f o r  the generators 
and the commutation relations (12) .  This means that F (2) 
transforms with an SU(1,l) spin JS = - e / 2 .  The same hglds 
for F p ( z ) .  This is  a very important point, and it  will be 
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used for functions for which Js is not infinitesimal when 
we want to add extra quantum numbers to the model. 

Intigduce the vertex for the absorption of a scalar 
particle 

2 
@6— ik"§(z) ik'F(z) 

V(ku,{0};z)EVo(k,z)=e e e (39) 

where the factorNappearing in front cancels the infinity 
that appears in Fpand Fp. In fact we can rewrite it as 

V0(kH;Z) = :eik'Q<z): (40) 

where the normal ordering :: only applies to the periodic 
modes. In order to see if this is a suitable dual vertex, 
we must check its commutation relations with the SU(1,1) 
generators. 

Since we now approach the realm of detailed calcula- 
tions, it is good to quote a well-known and probably for- 
gotten identity: if A and B are any two operators, then 

eABe_A=B + [A,B] + é— [A,[A,BJ] + (41) 
where the other terms are left to the imagination of the 
reader. Then, it is easy to check that 

[L0, V0(k,z):| = -233 v0(k;z) (42a) 

:l:1 
[1}, Vo(kaz)] = " 3 7  (Za%i%k2> V0(k,Z) (42b) 

where we have used the mathematically ambiguous15 form 

6‘0 

6 _| _ l 
lim 6 Z Sy—irlL = 1. (43) 

m=0 . 

Nevertheless, the end result is the same whether or not 
one chooses to calculate using a representation where e is 



252 P. RAMDND 

not yet equal to zero. The use of Eq. (43) yields consist- 
ent results and we shall keep with the use of the repre- 
sentation (18) for the generators. 

This means that for a scalar particle JS=-%k2. Intro- 
duce the trajectory function 

_ l a(x) — a0 + 2 X (44) 

which means that Js=-a , the intercept of the mother tra- 
jectory. Now that we gave a respectable vertex we can try 
to calculate an amplitude for the absorption of any number 
of scalar. 

Consider the vacuum expectation value of N scalar ver- 
tices, the computation of which isade easy by realizing t 
that the commutator between F and F is a c-number, namely 

~ _ 1 l . [ F p ( z j ) ,  Fo(zl)] — gpc ( E ' -  lnlzj-zll -§ 1n¢j1) (45) 

where 

+1 arg zj>arg z1 

(46) - < l arg zj arg zl. 

Needless to say the last equation is obtained by using 
Eq. (11) and noting that 

2 - 2  '1 _ . _ 
. 1 2 3  - ' 1 ¢ 1 j l z l  z j l  ( 4 7 )  

where z is a point on the unit circle, as well as the ex- 
pansion for the logarithm 

xn 

n— . (48) 
1 

ln(l-x) = - 

5
1

M
B

 

We can then use the identity 
A B B A [A,B] 

e 9 e e = e e  (49)— 
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which holds only when [A,B] is a c-number. It then follows 
from Eqs. (45) and (46)  that 

N 
47; kiz '7 [kj'F(zj) ’k1'F(21)] 

, i=1 j<1 
(0' {T v0(ki’zi) l°>=e e (50a) 

1 N 2 1 ~ .I 1-”- —I . 

'2e,_J k1 ?.i'kl+_2.zkj kl¢l k..k1 
_ =1 J<1 J<1 II Iz.-z l J —e j<1 J 1' (50b) 

By noting that 

, _ l 2 A? 2 iii kj — 2(k1 +...+kN) -2 a ki , (51) 
i<j '=1 

we get rid of the infinite factor by using in addition con- 
servation of momentum. The phase factor can be absorbed 
only if ¢.1 does not change sign, which shows the need for 
the ordering condition on the angles. As stated before We 
can form an amplitude only when all the SU(1,1) spin are 
equal, i.e. in this case only when all the scalar particles 
have the same mass. In this case the amplitude is given by 

dz a -l i o -, k.-k 
T‘zi+1'zi| 6(“8 zi+1) H|z.-zll J 1 Asks-”wan“ 

i=1 
(52) 

which is, up to a factor, the Kobe-Nielsen2 form. Note the 
disappearance of the kernel when a =1. We have stated above 
that, due to the invariance of the integrand under a three 
parameter group, three integration variables are superfluous. 
So as to give meaning to this statement, we now proceed to 
show how the above reduces to the well-known B-function in 
the case N=4 (see Fig. 2). 

Introduce the anharmonic ratio 

= ( 2 1 - 2 2 )  ( z 3 ' z 4 )  

ZzI-zBSs-z4) (53) 
X 
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which is real when all the 2's are on the unit circle. 
Then 

(2 -z )(z -z ) 

(1-K) = zsérzéyzzgrzéy - (54) ' l 3 "  2 4“ 

Together with the use of the kinematical relations 

kl-k2 = k3°k4 = -a(s) - a0 

kl'k4 = kz'k3 = -a(t) - a0 

k1°k3 = kz'k4 = a(s) + a(t) 

we obtain 
, k.°k1 

Tl ‘lzj'zllj 
J<1 (56) 

—d 
=x'“(s) (1-x)'°‘(t) ( Izl-zzl Iz3-z4l lzz-z3l Izl-z4 l) 0 

The last factor is cancelled by the measure, leaving us with 

I dzldz3dz4 
, _ _ _ 6(arg z -arg z ) 9(arg z -arg z ) (zl zBSZz3 24$(z4 zl) l 3 3 4 

1 (57) 
X 9(arg z4-arg 21)} dx x'l'“(s)(1_x)-l-a(t).

 

0 

Hence all the kinematics are contained in one integrand 
while a three-fold integration separates. Furthermore it 
can be checked that the range of integration of x is from 
0 to 1 only because of the 6—functions. Thus we have 

1 
A4(k1,...,k4) = [an ~[ax 2614“” (—x)'1'°‘(t). (58) 

o 
The differential dH is known as the Haar measure.16 
an infinite constant and should be divided out of the 

It is 
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amplitude. Calculations performed for an arbitrary num- 
ber of legs show it to be independent of the number of 
external particles. It acquires a certain physical sig- 
nificance when one realizes that it is equal to the three- 
point function between scalar particles and could thus be 
interpreted as a bare coupling constant. This interpre- 
tation, however, is not consistent with factorization of 
an amplitude with many external particles. 

We should emphasize that the ordering condition is 
necessary for factorization in the sense that it allows 
for the correct range of x. The amplitude (58) factorizes 
and corresponds to Fig. 2. We should, in order to obtain 
the full amplitude, add all the inequivalent penetrations 
of the external legs, as shown in Fig. 3. 

When a =1, however, the amplitude we calculate by 
Jomitting the ordering conditions is automatically equal 
to the sum of all the inequivalent penetrations. This re- 
markable property is true independent of the number of 
legs. 

We went through this calculational section to ac- 
quaint the reader with the mathematical techniques used 
in dual resonance models. Although the calculations were 
performed using the scalar vertex, much of the "meat” is 
the same when considering amplitudes (or equivalently ver- 
tices) with more complicated external particles. We feel 
that it is always good to give meaning to the abstruse 
concepts of the previous section by showing explicitely 
how they lead to familiar results. 

>V. GAUGE CONDITIONS 

In constructing the scalar vertrices, it seems that 
we got more than we bargained for. Indeed, using the rep- 
resentation (19) for the Virasoro operators (of which the 
SU(l,l) generators foig a subset), we find the following 
commutation relations 

2 
[Lin,Vo(k;z)] = -7% zin (zgzin%—)Vo(k;z) (59) 

which means that the scalar vertices are covariant under 
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a much more general algebra. The physical meaning of this 
peculiar equation becomes clear in the case ao=k2/2=1. 
We can then rewrite the commutator as 

ao=1 [Lin.vo° (1”)1‘75 212% “1° M w» 
remembering that z is  on the unit c i rc le ,  this means that 
the commutator is  a perfect  d i f ferent ia l .  In the case 
a0=1, the amplitude can be  written as  

N (4) E AN(k1...,kN) - ( 0 |  “’U(ki)I0)6 éF1. (51) 
1-1 - . 

where 

2" dzi a0=l 
U(ki) =0} 5;- V0 (ki.zi). (62) 

Then, using the per iodic i ty  condit ion,  we obtain 

[Lin’ “(k)] = o. (63) 
Since L_nI0>=0 ,  i t  is clear that the above means that 

there are subsidary conditions between the states appear- 
ing in the factorization of the model. A quick look back 
a t  the explicit representation of the I n l E q .  (21) shows 
that in the rest (f§ame, they relate the "ghost-like" mode 
introduced by a0 (n ( n = 1 , . . . . )  which gives rise to  negative 
norm states to  other states in the theory. In f a c t  ex- 
plicit  calculat ions show that they act  as ”ghost compensa- 
tors”  in such a way that  there does not seem t o  be any 
negative norm s t a t e  when a0=1 although there 1513 tachyon 
a t  the nonsense point o f  the mother t r a jec to ry .  
note that  such a tachyon wi l l  appear whenever the mother 
trajectory has positive intercept as i t  does in the real 
world for the p !  We wish to s t ress  that although this 
condition for  ghost elimination so  far holds only when the 
mother trajectory has unit intercept, the DRM's are the 
only model to  have such a mechanism. Indeed it  may be 
argued that a similar mechanism will always be needed for 
relativistic theories of strong interactions where an 



GROUP PROPERTIES OF DUAL MODELS 257 

infinite number of negative norm states will be intro- 
duced by the nature of the Lorentz metric. 

At this stage of our understanding of the dual reso- 
nance model, it is well to review what we have. First of 
all, the model we have considered has no internal quantum 
numbers so that we are really dealing (at best) with what 
is hopefully the skeleton of a strong interaction theory. 
The nature of the commutation relations (12a) introduces 
negative norm states which are compensated only when the 
mother trajectory has unit intercept, thereby introducing 
a tachyon (which we would have had in any case in any 
channel involving the p trajectory). The model has an ad- 
ditional difficulty because the J of the dual vertices 
depends on the mass of the particle; since they have to 
be the same to obtain SU(l,l) invariance, 8t is not clear 
how to go off mass shell and keep SU(l,1)2 This problem 
is, of course, acutely felt when one wants to introduce 
electromagnetic interactions. 

Although the above remarks make it clear that the 
model must be improved, we have found a surprising group 
theoretical structure which seems to be at the origin of 
all the esthetic properties of the model. In addition we 
have found the existence of a gauge-like algebra, which 
seems to eliminate unwanted negative norm states. It is 
clear then that at least one of these features must be 
kept in devising more physical dual models. 

In order to gain more familiarity with the SU(l,l) 
aspect of the bare model, we will try to build dual ver- 
tices for the excited states of the theory. Then we will 
try to add quantum numbers to the bare theory and will ex- 
amine several models that were recently proposed. 

VI. DUAL VERTICES FOR EXCITED STATES 

We now try to construct dual vertices for the excited 
particles that appear in the bare dual model. We start by 
constructing the vertex for the emission of a vector parti- 
cle. Recall that T“ is like a generalized momentum, which 
suggests the form1 

vu(k, j=1;z) = eik'F(z)PH(z) eik'F(z) (64) 
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which is written in a noEmal ordered form and where we 

disregard the factor e'k [2% from now on. Using the rep- 
resentation (18) for the generatorsd we find that 

[L0,VH (k, j- =1 ,-'-'z)] —vH (k, 1- ,z) (65a) 

11 2 
[Ly Vu(k,1;z)] = $2— [2%- 1 1+1;— ] 

11 (65b) 
Z 

X Vu(k,1,z) + m k u V 0 ( k , z ) .  

There are two important things to notice about the last 
equation. First, as written Vu (k, 1 ,z) is not covariant 
under SU(1, 1) because of the second term appearing in 
Eq. (65b) and that this extra term is along RH and appears 
with the same sign for both L+ and L_ The only way to 
get rid of this term is to put a Spin 1 projection opera- 
tor. Thus the requirement of covariance under SU(1, 1) 
forces the addition of the projection operator. The dual 
vertex for a vector meson is then 

vpl (k, z) = ( _ k_2:k\’) eik'F(Z)Pv(z) eik'F(Z). (66) 

The second thing to notice is that the Js of this vector 
dual vertex is p 

1 2 1 2‘ - ' 
Js= - (1 + g-)- - (1 - 1}) (67) 

Using our criterion ( 4 ) ,  this vector meson will interact 
in a dual way with scalars only if 

M32 Mvz 
T='1+T <68) 

where Ms and M are the masses of the scalar and the vec- 
tor particles, respectively. This means that our vector 
meson lies on the first recurrence of the mother trajectory. 
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Similarly, we can find the dual vertex for a particle of 
spin two. 

Introduce the notation 
. kpkv 
P H ( Z )  E (gHV - 1.2—)PV(Z). ( 6 9 )  

The obvious choice is 

1k-F(z) . ik°F(z) Vuv(k’ j=2;z)=e . P u ( z ) P v ( z ) :  e . (70) 

Explicit calculation shows that as it stands this vertex 
transforms covariantly under SU(l,l) with a dual spin 

2 
J ( 2 ) = -  (2+1?) (71) 

S 

However, before interpreting it as the dual vertex for a 
spin two particle, we must subtract the traces. It turns 
out that this procedure is enforced by requiring covari- 
ance under Lizll. Hence, as hinted at in the previous 
section, the Virasoro operators play the role of project- 
ing the vertices into definite spin states. The relation 
(71) shows that the Spin 2 particle we are talking about 
lies on the second recurrence of the mother trajectory. 
It is rather straightforward to generalize our procedure 
to take into account all the states on the mother trajec- 
tory. (See Fig. 4) 

It turns out that dual vertices can be written for 
some of the daughter states that appear in the theory, as 
has been shown by Fubini and collaborators. 2 This con- 
struction is relevant only where the propagator is diago- 
nal, i.e. a = 1. We quote the result for the spin 1 
daughter which has a dual vertex 

VHD(k,Z)=e1k F(z):(%%;'+ iik P) Pu+ku { . . . . } :  e1k F ( z ) .  

(72) 
This vertex has JSD=-(2+k2/2) so that it lies under the 
spin 2 state on the mother trajectory. We note, however, 
that it has a component along so that in this case co- 
variance under SU(l,l) is not sufficient to eliminate this 
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troublesome component. Indeed we need covariance under 
Liz to handle it satisfactorily. However, the problem is 
technically very complicated and as of this writing not 
entirely solved, i.e. although one finds all the possible 
daughter vertices covariant under SU(l,l) it is very hard 
to separate the correct linear continuation which are also 
covariant under Liz, although considerable effort in this 
direction has been spent. 

We wish to point out, however, that the spin 1 part 
of this daughter vertex can be rewritten as a perfect dif— 
ferential when a0=1, so that the first daughter decouples 
according to the mechanism outlined in the previous sec— 
tion. Actually this phenomenon occurs all along the first 
daughter trajectory when a =1 so that it decouples entire- 
ly from the problem. This was first pointed out by 
Di Vecchia and Del Giudice19 by a close analysis of the 
spectrum. 

The main conclusion of this section is that the dual 
daughter vertices for definite Spin states have not all 
been constructed 33 they must be covariant under the 
Virasoro algebra. This problem seems hopelessly compli- 
cated at the moment, and we have nothing to add to it; 
rather we turn our attention to the inclusion of internal 
quantum numbers in the bare model. 

VII. DUAL MDDELS WITH ADDITIONAL QUANTUM NUMBERS 

As stated earlier, another direction of research is 
to incorporate additional degrees of freedom into the bare 
model without upsetting the group theoretical properties 
under at least SU(l,l). In this section we describe three 
such models in their chronological appearance in the 
literature. These are the models proposed by BardakCi 
Halpern24(I), Clavelli25(II), and Neveu and Schwar226(III). 
Their common feature is that they start by introducing 
new operators as coefficients of the basis functions of 
the bounded representation of SU(l,l). They all have a 
G-parity operator and disPlay a spectrum which, although 
not yet the physical one, shows great improvement over 
that of the bare model. The last model (III) has a new 
feature which is responsible for decoupling the tachyon 
appearing on the mother trajectory although another 
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appears in the model. These statements will be clarified 
by considering the models in detail. 

A. Bardakci-Halpern Model 

The new degrees of freedom are introduced 
through the quark-like operator function 

‘1‘(r)= E 1are“) I‘ %’m)++dr(m)+|- %,m)_ r=1,2,3, (73) 
m=0 

where the notation for the states is that of Section 
II and the coefficient obeys the following anticom- 
mutation relations 

{br(no’ds(n)} = {br(nof’ds(n)} = 0 (74) 
1- T {br(n)’bs(m) } = arson!“ = {(11:01) ,,ds(m) } :,::3€,3 

The point of this construction is that one can de- 
fine new SU(1,1) and Virasoro operators 

a 2n ' i dz -m d ‘ 
L-m .'4_1T[[ 7 2  {MM 5%)]- (75> 

such that the quark-like functions W transform 

under these new operators with a SU(lfl) Spin -1 /2 .  
It follows that, if we define the new SU(l,l) opera- 
tors as the sum of those appearing in Section II and 
the operators defined by Eq. (75) 

L T = L + L' , (76) 
-m -m -m 

then the follo¥ing vertices transform covariantly 
under Li L0 : 

(a) a vertex without internal quantum number 
”Pomeron” vertex which is just the scalar vertex 
of the bare theory 

In 3 

2 
VP(k,z) = Vo(k,z) with JSP a — 55 (77a) 
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(b) a vertex representing a quark-like state 

2 
V(r)Q(k,z)=¢(r)(z)V0(k,z)with JSQ= - % — g— 

(77b) 

(c) a meson—like vertex 
2 

VaM(k,z)=:¢+(z)la¢(z):V0(k,z)with J8“; -1, §— 

(77c) 
here the la are the SU(3) matrices. 

As implied by the definition ( 7 5 ) ,  the operators 
L_m satisfy among themselves a Virasoro algebra. In 
addition, since the above quoted vertices are also 
covariant under the Virasoro operators, there is a 
decoupling scheme at work where JS=-l which conven— 
iently yields a mass zero meson. In this case, the 
spectrum is shown in Fig. 5. The model suffers from 
certain diseases, namely the lack of half integer 
spaced trajectories, existence of tachyons and exotic 
"quark" states. 

B. Clavelli Model 

In this case the new degrees of freedom are in- 
an J 

trodgced by a Sialar function belonging to D d 

_ °° (m) i <m>+ i 
H ( Z )  _ E b " 4am)_+ d l' 4am)+ ( 7 8 )  

m=0 

where 

13010 (n) = (m), (rm = { ,d } {b d } o (79) 

{b<m>,b<n>*} = {d<m>,d<n>*} = an m 
The new SU(l,l) generators are introduced by sand— 
wiching the representation (5) of the generators be- 
tween the states H in the same way as was done 
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earlier for the bare model. However, it does not 
seem to be possible to build the Virasoro operators. 

As should be obvious by now, the H(z) transform 
covariantly under these new SU(1,1) operators with 
JS=- %. The dual vertex for a pseudo-scalar meson is 

VM(k,z) - : H+(z)H(z):V0(k,z), (80) 
which has 

Js=-%-%k2. (81) 
There is a G-parity operator 

9 = e1": (b‘m)*-d(m)+ d(m)*.b(‘“)). (82) 
mFO 

M The obvious choice is to take the dual vertex 
V (k,z) to represent the picn. Then one fixes J so 
that its mass vanishes through Eq. (81 ) .  The spec- 
trum of states one obtains this way is shown in 
Fig. 6. It has the virtue of having a p trajectory 
with the correct intercept, i.e., half integer 
spacing between meson trajectories. Although many 
particles have their correct mass value, (n,p,A ), 
the model has no room for abnormal parity coupl ng 
(w, A2,...). In addition, negative norm states ap- 
pear on the fifth trajectory. Another model was 
considered by the same author to include SU(3) 
breaking by introducing the quark-like function 

Hm“) =Zobr(“°Inr,rrl)_+c1r(“°Infra)+ r=1,2.3 <83) 
m :  

where the nr act as the breaking parameters. How- 
ever, the model leads to n°n degeneracy. 

C. Neveu—Schwarz Model 

The authors consider the function 
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Hue) =2 cu(‘“’*|- %,m)_+cu‘“‘) I- im (84) 
m=0 

where c (n) and c (n)? are four-vector operators 0- 
beying the anticommutation relations 

{cum ,cp<m)*}= 5 5 (85) 
nm HP 

from which one can build the Virasoro operators 

2n c 1 dz -m d L_m( )= 4—11J‘0 —z z =H<Z> z 35 3(2); <86) 
which obey the usual algebra. 

The new operators are the sum, as in the pre- 
vious models 

.L_mT = L_m(a)+ L_m(°). (87) 

It is no wonder that under these Operators, (z) 
transforms covariantly with J = -1 /2 .  At this point, 
a new feature of this particular model emerges. 
Since. is a four vector, it can be couBled to P“, 
which leads us to consider the operators 7 

2n 
G-m" AZ2111' I0 (1—: z+mHH(Z)PH(Z) m=i is %,... (88) 

which satisfy 

[LmT’Gn]= (L;- —n) Gn+m (89) 

{Gn’Gm}= -2Ln+mT. (90) 
As we shall see later these new operators act as ad— 
ditional decouplers when a0=l. The dual pion vertex 
is 2 

V"(k,z)=k-H(z)Vo(k,z)which has Js=-% 33—, (91) 
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which can be rewritten as 

v"(k,z) = - fig? [G%,Vo(k,z)] (92) 

then it follows that 

{G%,Vn(k,z)} =-¢2 z-%[L1,V0(k,z)] (93a) 

--J2 z%(é§-+ %:>Vo(k,z). (93b) 

Since ao=l, k2/2-1/2 so that in fact we have 
a d 

{G%,V"(k,z)} =-¢2 z a; [z%vo(k,z)]. (94) 
We have a perfect differential on the right—hand side 
of Eq. (94). Such a perfect differentia1.eliminates 
an integration variables in the amplitude and this 
eliminates a propagator, thus giving zero for the 
amplitude. These are the new gauges introduced by 
Neveu and Schwarz, and they serve to decouple the 
tachyon lying on the mother trajectory. Mbre de- 
tail is to be found in Ref. 26. 

The virtues of this model are quite remarkable 
since it allows for abnormal parity couplings, the 
first dual factorizable model to do so. Also since 
there are two decoupling schemes at work, it is not 
likely that negative norm states will appear in the 
model. 

Although the discovery of these new gauges al- 
lows for the construction of a more "real life" model 
(see Fig. 7), it is clear that one still has a long 
way 5g go. It should be noted that by adding a fifth 
mode to thfigNeveu Schwarz model, one can eliminate 
the tachyon, but the price is the loss of half in- 
teger spacing between meson trajectories and an in- 
crease in the w-p mass difference. 



266 P. RAMDND 

VII. CONCLUSION 

These lectures have been delivered with the aim of 
familiarizing the reader with what seems to many to be an 
exotic field of physics; we hope they have been successful 
in this respect. For the sake of completeness, however, 
we should point out the existence of more fundamental ap- 
proaches 50 dual theories thgi have been sparked by 
Y. Nambgg and H. B. Nielsen as well as many other 
people. The most exciting aspect of these works is the 
understanding of the Virasoro algebra as a gauge group, 
not unlike that found in general relativity. There is 
little doubt that if guality has anything to do with 
strong interactions,3 these can be considered as the 
strong gauges, pretty much on the same footing as the 
electromagnetic gauge for electromagnetic interactions. 

In summary we can say that we are at the beginning 
of an understanding of duality in terms of strong inter- 
actions and that the theories we discussed are necessarily 
very elementary, but there are group theoretical concepts 
that seem to transcend any given dual model--when we un- 
derstand their origin we shall undoubtedly be able to 
-build more satisfactory (in the sense that they reproduce 
the observed Spectrum) dual models. 
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FIGURE CAPTIONS 

Dual N-point factorizable amplitude. 

Four point amplitude. 

Total dual amplitude for four external scalars 

Particle spectrum in the a =1 case of the bare 
dual model. The dotted line means that the parti- 
cles lying on it are decoupled from the rest. 

Particle spectrum in the Barkakci-Halpern model. 

Particle spectrum in the Clavelli model. 

Particle spectrum in the Neveu-Schwarz model. 
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SELF-CONSISTENT ELECTROMAGNETIC "DUAL" 

AMPLITUDES AND THE ELECTRON-POSITRON SYSTEM 
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I. INTRODUCTION 

Quantum electrodynamics is almost the only part of ele- 
mentary particle physics in which there is no doubt about 
how to precede to a definite answer to any problem which 
lies within its scope. It is also fair to say that funda- 
mentally QED is no better understood than any other ele- 
mentary particle theory. It is merely the case that in QED 
the simplest algorithms seem to work. However, no one seems 
to know exactly why they work. In fact, one can almost im- 
mediately generate several reasonable arguments why they 
should not Work. This applies in particular to perturbation 
theory, which has become so identified with the relativistic 
quantum mechanics of electromagnetically interacting parti- 
cles that virtually no distinction is made. Since there is 
no "real" theory of electromagnetic interactions, just as 
there is no strong or weak interaction theory, only a set of 
rules which, in the case of QED, give reasonable answers, it 
is of some interest to see if the pure electromagnetic inter- 
actions of elementary particles can be treated without refer- 
ence to the usual formulations. For this reason, I have 
made some attempts to do the classic QED calculations in a 
manner which is independent of perturbation theory. This 
has led me to an analytic S-matrix approach. There, how- 
ever, one runs into problems almost immediately. Consider, 
for example, the calculation of the electron anomalous mag- 
netic moment. we would like to calculate the (unitarity) 
diagram of fig. (1). In the helicity representation, the 

vertex can be written in the form ax€D£61(e',¢'), where the 

*Present address: University of Pittsburgh, Pittsburgh, 
Pennsylvania 15213 
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axe are linear combinations of the electron form factors. 
The electron-positron amplitude can also be expanded in a 
Jacob-Wick expansion, so that 

J . Hm“;,t,u)=Z(2J+1)hmu(e' ,¢"). (1) 

With this, we find 

J=l 
Imaleaznpnhlu aue’ (2) 

so that only the J-1 angular momentum state of the electron- 
positron amplitude contributes to the electron form factors. 
Everyone knows this. However, the J=l phase shifts are not 
known. The perturbation amplitude is useless since it 
does not have a finite Jacob-Wick expansion. Actually, it 
is less than useless since one can prove that the perturba- 
tion expansion does not converge to the correct amplitude 
when the process has bound states. So, what do we do? 
well, We read the gospels according to Chew and company and 
note that elementary particle physics should be self-con- 
sistent and this is good. of course, since we are interest- 
ed in electromagnetic interactions we have to introduce a 
minor heresy--that self-consistency also applies (in a cer- 
tain way) to QED. (Note that I mean by self-consistency 
the same sort of thing one attempts in the bootstrap pro- 
gram in strong interaction physics.) This brings us to the 
subject of my lectures--the construction and properties of 
self-consistent diapersion—theoretic electromagnetic scat- 
tering amplitudes. (Actually, for the benefit of the 
purists, I should point out that what results is only a 
semi-boostrap. The electron pole and residue are inserted 
g_priori, but the amplitude is self-consistent only if it 
has positronium poles at the position determined by the 
usual Coulomb bound state formulas.) I got into this be- 
cause I needed usable amplitudes for dispersion calcula- 
tions in electrodynamics. It has turned out, however, that 
the means have become more interesting that the ends. 

II. THEORETICAL CONSIDERATIONS 

The procedure for constructing self-consistent electro- 
magnetic scattering amplitudes is actually very simple: 
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l. Unitarity, which gives a singular, inhomogene- 
ous, non-linear integral equation for the ampli- 
tude is used to evaluate the double spectral 
functions (dsf) directly. Essentially, only the 
diagrams of fig. (2) contribute through second 
order in the fine structure constant, a. 

a. To evaluate the inhomogeneous terms we 
employ the usual pole approximations to the 
amplitudes which appear. 

b. To evaluate the elastic unitarity we use 
an initial trial amplitude which is based on 
the Coulomb amplitude. 

2. We use the calculated dsf to construct a new 
trial amplitude which is then reinserted into the 
elastic unitarity to obtain a new estimate of the 
dsf. 

3. The process is iterated until self-consistency 
is achieved and the calculated dsf remain un- 
changed, to the desired order, when the new am- 
plitude is reinserted. 

, Because of our particular choice for the ini- 
tial trial amplitude, our second order amplitude 
does not require iteration. The self-consistent 
electromagnetic scattering amplitude which re- 
sults from our procedure will be cutoff independ- 
ent, analytic and will satisfy the requirements 
of crossing. It will have the correct dsf and 
will reduce to the usual Born approximation in 
lowest order. (Actually, the requirement that 
the amplitude reduce to the Born approximation is 
useful in determining its form.) Self-consistency 
requires the correct Regge asymptotic behavior and 
the Coulomb bound state poles. Also, the ampli- 
tude must have a Jacob-Wick expansion. 

We should point out why we emphasize the role 
of the double spectral functions. Actually, there 
are two reasons: 
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l. Simplicity 
2. The dsf have no poles, so that an expan- 
sion in a power series in a may actually be 
possible. 

To elucidate the second point, let us consider 
the Schrodinger equation with a Coulomb potential. 
The scattering amplitude can be obtained in closed 
form using parabolic coordinates. For a particle 
of mass m and momentum p in an attractive poten— 
tial, we find 

am 111-132 (a; 51““ 
“W" 2? I‘(1+in) I? - 1P 6 ( 1 - 2 )  a 

(3) 
where n=am/p, t=-2p3(1—z), E=p2/2m and z=cose. 
5 ( x )  is the Dirac delta-function. (Note that the 
delta—function is necessary to satisfy unitarity. 
For the Coulomb potential, the S-matrix is the 
connected part--not the scattering amplitude.) 
we see that A(E,z )  has Regge asymptotic behavior 
with Only the leading trajectory contributing and, 
due to the gamma-function, the correct Coulomb 
bound state poles. The partial wave projections 
of the amplitude(3) have the form 

6 
aL(E)= é-e LsinfiL, (4) 

where 6L=argP(L+l-in), so that A ( E , z )  satisfies 
elastic unitarity for all E>0. 

If we now consider the perturbation expan- 
sion of the Coulomb amplitude, we can write 

A ( E , z ) ” A ( l ) ( E , z ) + A ( 2 ) ( E , z ) + . . . ,  (5) 

where the Born term is given by A(l)(E,z)=-2ma/t 
and 

2m 2 .. dis 1 ,f-wK. 

In the integral, K-(Yz-z)3-(Y3-1)3,  v=(k?+pF)/2kp, 
and the angular integrations for the second Born 
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term have been carried out. We note the folow- 
ing: (1) The first Born term is identical to the 
lowest order term in the expansion of the exact 
Coulomb amplitude. (2) The integral (6) for the 
second Born term is infinite. However, if we 
consider A( (E,z) for a Yukawa potential, 
le'“r/r, in the limit ueo, then the integral 
has a branch cut in z for real z>1.  The discon- 
tinuity across this cut is given by 

2 2 ” dk 1 ImzA(2) (E:Z>= %”?LIO m m  <7) 

This integral (7) exists and has a branch cut for 
real E>0. The discontinuity across this cut is 
just 

InlEIInzA(2) (E,z)=péf;(E,z)=Tm(2m/t) e (E) 9 (2-1) . (8) 

This expression (8) is identical to the second 
order term in the expansion of the exact dsf ob- 
tained from (3). Thus, although the perturbation 
series does not converge to the correct amplitude, 
the dsf which can be extracted from the perturba- 
tion series does correspond to the exact dsf, at 
least through second order in a. Since it can be 
shown that each term in the perturbation expan- 
sion for a superposition of Yukawa potentials has 
the correct cut structure, it seems reasonable to 
assume that even though the perturbation series 
may not converge, the dsf obtained from a pertur- 
bation expansion may be correct to all orders. At 
least, we will make that assumption in what fol- 
lows. 

III. SPIN-0--SPIN-0 ELECTROMAGNETIC SCATTERING 

we would now like to illustrate our procedure for the 
construction of self-consistent electromagnetic scattering 
amplitudes by a relatively simple example. We will consider 
the elastic scattering of two fictitious Spinless particles 
which only interact electromagnetically. The kinematics are 
as in fig. ( 3 ) .  Particles l and 3 have mass m, particles 2 
and 4 have mass u. For Spinless scattering there is a 
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single Lorentz covariant amplitude, A(s,t,u), where 
s=(k1+k2)2, t=(k1+k3)2 and u=(k1+k4)2 are the usual Mandel- 
stam variables. s+t+u=2nF+2u2, so that only two are inde- 
pendent. Through terms of second order in a, unitarity is 
saturated by the five diagrams of fig. (4)--(5). Of these, 
the only diagrams which contribute to the dsf are the two 
photon intermediate state (4d) in the t-channel and the u- 
channel elastic unitarity ( 5 ) .  We will consider these dia— 
grams in some detail shortly. The remaining diagrams are 
relatively simple. Diagram (4a) represents the one-photon 
intermediate state and is just the Born term. It can be 
written 

A(5 ’t’u)Born=%(S-u) (MTG/t) : (9) 

where the factor %(s-u) is due to the spin of the exchanged 
photon. Diagrams (4b) and (4c) represent vacuum polariza— 
tion and vertex corrections to the Born term. They are es- 
sentially equivalent to the Feynman diagrams of fig. (6) 
plus renormalization. Although the Feynman integrals are 
infrared divergent, the unitarity diagrams can be evaluated 
without the introduction of a cutoff if the photon pole 
terms are replaced by the appropriate generalizations of 
the Coulomb amplitude (3). This substitution, which will 
be discussed in detail when we evaluate the elastic unitari- 
ty contribution to the dsf, results in the following correc- 
tion to the imaginary part of the amplitude in the téchan- 
nel: 

ImtA(s,t,u)=%(s-u)Imt{(4"G/t)[r(t)'1]}a (10) 

where r(t)=1 + v(t,m2) + Y(t,u2), and 

v<t,Ma>=T,Ej°° d" Imv<x,.Ma> (11) 4W X__(X- t) 

The imaginary part of the form factor can be written 

Im¥(t PF)= (a/qMW t)[%(2PF- -t)¢(2)-% qE/t], (12) 

_ 1/2 _ f . . where q —%(t—4Ma) , Wt—ZE = t and ¢(z) IS the digamma 
function. Note that since we are only dealing with the 
second order terms here, this result is consistent with the 
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conjecture that the radiative corrections to the leading 
term of the amplitude, excluding vacuum polarization, can 
be obEained by multiplying by the appropriate form fac- 
tors. However, only the leading term factors in this man- 
ner. We see finally, that the net result of the addition 
of diagrams (4b) and (4c) to (4a) is that the Born term is 
multiplied by the vertex function, F(t). 

A. Double Spectral Functions 

The first non-vanishing contribution to the dsf 
that we will consider is due to the two photon inter- 
mediate state in the t-channel. We have 

1- 

:; ' " ' ImtA(s,t,u)2Y .pzy 2 Ida R(K )R (K ), (13) 
spins 

where 92 is the two photon phase space factor, the 

sum is over the polarizations of the intermediate state 
photons and R ( K )  is the two photon annihilation ampli- 
tude in pole approximation. With kinematics as in 
fig. (7), 

R(K')=M(S')(k1-65)(k3~es)+M(u')(k1-ee)(k3'65)+2na(65vee), 

(14) 
where M(s')=4na/(s'-nF)=4na/(-2k1'ks), M(u')=4na/(u'-HF) 
=4na/(-2k1'ke). [ R ( K ” )  can be obtained from R ( K ' )  by 
the substitutions, 1H4, 3H2.] This amplitude (14) is 
gauge invariant and satisfies the requirements of Bose 
statistics. Using the explicit form of R(K) in the 
unitarity integral (13), we can do the spin sums and 
the angular integration. We find 

ImtA(S stau) 2Y=e  (t) { $403a ‘U-a )2 10 (S at;u)'l_;(t'2m2)11(t) 

(15) 
+§<t—2u2>I.<t)+%Ia(t>}+{s~u}, 

where 6 ( z )  is the Heaviside function. The only term in- 
(15) which contributes to the dsf is that proportional 
to Ib(s,t,u), which is essentially the Mandelstam inte- 
gral; i.e., 
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nP+ua-u+2 W _ Ana? qu u 
10‘s,“)— t(2.quWfi 1 W  (16) 

where 

l 2 
uWu={[u-(m+u)3JEu—(m-u)2]} / . (17) 

The cut in u of Io(s,t,u) extends from (m—HJ)a to in- 
finity along the real u-axis, and the discontinuity is 
that of the logarithm. We find, then, that the two 
photon contribution to the dsf can be written 

ptu(s ,t,L1) 2Y'=pts(u,t’s) ZY 

Ewan.a (18) 
=%(u-HF-Hg)2 Efiazfi:)9(t)9[uf(m+u)23- 

Equation (18) represents the inhomogeneous part of the 
dsf. 

u-channel elastic unitarity [diagram ( 5 ) ]  accounts 
for the remainder of the second order dsf. We have 

ImuA(s,t,u) =%p2(u)fdn'A(s,t,u)A*(s,t,u), (19) elastic 

where 02(u) is the two body phase space factor. If we 
were to proceed in the usual manner of perturbation 
theory, We would insert the Born term into the right- 
hand side of (19) and use it to determine the second 
order contribution to Im A(s,t,u). However, the re— 
sult would be infra-red divergent and a cutoff would 
be necessary. In order to circumvent this particular 
difficulty we will, instead, use an initial trial ampli- 
tude, Ao(s,t,u), which is derived from the Born term 
(9) by the substitution 

4na a f (s t u)= -4na T 1-1‘ u‘ -t -l+in(u) 
t ° ” 731'?a u” Zq; 

a 6(-t/4q:p 

- +l2quwu'n(u) Ema 0'1) ' (20) 
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fi,(s,t,u) has essentially the same form as the Coulomb 
amplitude (3), with the substitution of the correct 
relativistic two body kinematical factors. The tra- 
jectory function, n(u), is arbitrary in ( 2 0 ) ;  it will 
be determined by self-consistency. We note here that 
the amplitude, Ao(s,t,u), which finally results can al- 
so be derived from a consideration of the inf'nite 
dimensional unitary representations of 0(4,2) and, in 
addition, a similar foam can be extracted from the 
eikonal approximation. Thus, the use of this ampli- 
tude as a basis for iteration is consistent with other, 
more familiar, treatments of electromagnetic scattering 
processes. Inserting the amplitude, Ao(s,t,u) defined 
above, into the unitarity integral (19), we find 

ImuA(S’t’u)elastic 

=eEu-(mw)21 a<u-nF-u2>(qT°fi1(-Ey)1mumo(s,t,u) (21) 
u. U. 

+%(u'nfi'u2)f1(32t,u)+%f2(s:t:u)}a 

where 

f1(s,t,u)=41'r0L(u—m2 -n2)'1 II‘(l-in) l2[Pin(-zu)-1] , 
(22) 

f2 (8 t U)=4Tr°tqf1(u-m‘°‘ -u )'1|1“(l- in)12[1nPn(-zu)], 

Pv (z) is a Legendre function of the first kind and 
z u=l+t/2qu. We note the following: (1) If 
n(u)=a(u- m2 -u 3 ) / 2 q u  W u, the original tria.l amplitudeh is 
reproduced in (21)u u(2) For tha.t value of n(u),t 
f l(s, t ,u) in (22) are of order a2 and do not have any 
spurious poles. The elastic unitarity contribution to 
the dsf can be obtained relatively simply from (21) and 
( 2 2 )  if we remember that P (z) is analytic in the 2- 
plane out along the negative real axis from -E to -l. 
The discontinuity across the cut is -ZiSinfiVPV(-Z). We 
find that to second order 

put(sat,u) (Satsu)2Ys elastic=ptu 
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pus(s’t’u)e1astic=o' (23) 

The result (23) is independent of the actual value of 
n(u) since-the discontinuity in t of ImuA(s,t,u) in- 
troduces an additional multiple of n(u) which is cane 
celled by the leading factor of (21).  Adding (18) and 
(23) ,  the complete second order dsf associated with 
the unitarity diagrams (4d)-—(5) can be written 

ptu(s,t,u>=2pts(u,t.s)=2ptu(s,t,u>2Y, (24) 
where ptu(s,t,u)2Y is defined by ( 1 8 ) .  

B. Self-Consistent Scattering Amplitude 

Using the information presented above [particu- 
larly eqs. (21) ,  (23) and ( 2 4 ) ] ,  it is possible to 
construct an amplitude which has the dsf terms indi— 
cated in (24) and which also has the appropriate 
vacuum polarization and vertex corrections. We will 
present the amplitude as an ansatz; it is then trivial 
to verify that it has the requisite properties. We 
write 

A(S,t,U)=2F(s,t,u)+F(u,t,S), (25) 

where 

F(s,t,u) 'Fo (s,t,u)+%(u-ma 'Uz)f1(sst9u)+%f2 (s,t,u) : 
(7-6) 

and 

F0 (s,t,U)=%(S-U)T(t)fo (s,t,U)=1‘(t)Ao (s,t,U). (27) 

By construction, A(s,t,u) defined by (25) is cutoff in— 
dependent. One can show explicitly that the delta- 
function terms in (25)  conspire to produce exactly the 
matrix elements, for each channel, of -iI, where I is 
the identity operator. Thus, the S-matrix corresponding 
to this transition amplitude is analytic. we note that 
(25) exhibits the proper dsf terms required by ( 2 4 ) .  
If we set 
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n (u)=a (u-ma 119 ) / uWu, (28) 
then (25) will be self-consistent. Proof: For this 
value of n(u), Ao(s,t,u) reproduces itself in the 
elastic unitarity integral ( 2 1 ) .  Since the additional 
terms in (25) are all of order us, their introduction 
into the unitarity can have no effect on the second 
order dsf. Thus, the reintroduction of (25) into the 
elastic unitarity integral will produce no additional 
second order contributions to the dsf. (we note that 
(25) has a well defined partial wave expansion so that 
it will admit a process of iteration.) we also note 
that A(s,t,u) diSplays Regge asymptotic behavior and 
the correct Coulomb bound state Regge poles. The spec- 
trum generated by the trajectory function (28) is 
given by 

2 1]. 4 
EB = -}2’ figfi +33% 4- ..o ( n = 1 : 2 3 3 ' - - )  ( 2 9 )  

(u is now the reduced mass). The second term repre- 
sents the recoil corrections to the spectrum and was 
first calculated by Breit and Brown.6 As an additional 
check on the correctness of our ansatz, we note that 
(25) reduces to the usual Born term in lowest order. 
As a matter of fact, since (u—nF-u2)/2Wu is equal to 
the reduced mass at threshold, (25) actually reproduces 
the non-relativistic Coulomb amplitude at low energy. 
Finally, we point out that, in addition to the unitari- 
ty cuts which we have examined, A(s,t,u) exhibits a 
left-hand cut which is required by self-consistency. 
This cut is due to the factor wu=/u which appears in 
the trajectory function and which originates in the 
two body phase space factor. It is probably an ines- 
capable feature of relativistic scattering. We note 
that both the Klein-Gordon and Dirac Coulomb scattering 
amplitudes have a cut structure of this type. We con- 
clude that (25) represents a satisfactory electromag- 
netic scattering amplitude for two, Spinless, non- 
identical particles, and that it should be accurate 
through second order in a. 

IV. ELECTRON-POSITRON SCATTERING 

A self-consistent electron-positron scattering ampli- 
tude can be constructed using essentially the same procedure 
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as that outlined above. The complications introduced by 
spin are merely algebraic (but exceedingly tedious). 
Accordingly, we will only indicate the final result and 
then discuss some of its properties. The amplitude for the 
process described by fig. (8) can be written 

T<k4,k2;k1,ka)¥7Ai(s,t.u>Yi<k4,k2;k1,ka> 
i 

¥K.(s,t,u)Y.(k4,ke;k1,ka), (30) 

where A. 1(s, t ,u)=-Ai(s, u ,t) (we set m e=l, so that s+t+u=4) 

and Y. (K) is obta.ined from Yi(K)  by the exchange k4~ -ka. 
The Yi(K)  (i= V, S, P, A ,T) are essentially the five spinor 
ba.sis 1functions used in the N- N problem by GGMW. 7 We have 
(in the t- -channel) 

YVEV=fi(k4 ) YHV(kz)‘-7(ka )Yuu(k1) , 

Y S E S = a ( k 4 ) V ( k 2 ) ; 7 ( k G  ) u ( k 1 )  : 

Y P E P = a ( k 4 ) Y 5 V ( k g ) § ( k a ) Y 5 u ( k 1 ) :  (31) 

YAEA=1-1(k4,)YsYuv(kg)y(ka)YsYuu(k1) , 

Y 2T=u(k4)iouvv(k2)y(k3)iouvu(k1), T 

where the spinor normalization is that of Bjorken and Drell.8 
The invariant amplitudes can be written 

Ai(s,t,u)=2Fi(s,t,u)+(-l)iFi(u,t,s), (32) 
where 

. -1, i=V,T 
<-1>1= (33) 

+1, i=S,P,A 
and 

F. (s, t ,u)=F; (s, t ,u)+ f Pji (s, t ,u)fj (s, t ,u). (34) 
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In eq. (34), the P;(s,t,u) are simply ratios of polynomials; 
their exact form is given in ref. (5). The fj(s,t,u) are 
linear combinations of Legendre functions. We find 

f1(s,t,u)--4na(u—2)'1lF(1-in)l3[Pin(-zu)-l], 

) f. (s,t,u)=4na(4q:) (u-2>'1 |1“(1-1n)l3{(1+in)[P1n('zu 
(35) 

+P1+in(-zu)]-%(1-zu)], 

fa (5,'=,t1)=-4"0L (4Q?) (11-2) ‘1 ”(l-in) I2 inPin('zu) , 

where z =1+t/2q3. The F:(s,t,u) are the invariant ampli- 
tudes 0 our orEginal lowest order approximation to the 
electron-positron amplitude, T0(K), with the appropriate 
vacuum polarization and vertex corrections. Our trial scat- 
tering amplitude, which we inserted into the elastic uni- 
tarity to generate the higher order corrections, is obtained 
from the usual Born term by the substitution 

(4Tfa/t)  " f°(S,'t,l1), ( 3 6 )  

where fo(s,t,u) is defined in (20). For electron-positron 
scattering, the trajectory function which is required by 
self-consistency is given by 

n(u)=a(u-2)/2quWu, (37) 

which gives the correct positronium bound state spectrum, 
including reduced mass and recoil corrections, and the appro- 
priate Regge asymptotic behavior. By construction, the 
amplitude (30) exhibits the correct second order dsf and re- 
duces to the Born term in lowest order. Moreover, it is cut- 
off independent, analytic and has a well defined Jacob-Wick 
expansion. We also note that 13(K) has been applied to cal- 
culations of the Lamb shift in hydrogen9 and the electron 
anomalous magnetic moment, 0 so that the second order ampli- 
tude (30) should prove to be of considerable theoretical 
utility. HOWever, its relation to the actual physical prob- 
lem can only be resolved by a confrontation with experiment. 
So far, the perturbation calculation of the electron-posi- 
tron elastic cross section has been able to account for the 
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experimental situation,11 although the tests have not been 
exhaustive. Since there are significant differences be- 
tween our self-consistent amplitude and the one obtained 
from perturbation theory, further experiments would seem 
appropriate. 

V. "DUALITY" AND ELECTROMAGNETIC SCATTERING 

I should point out immediately that the ”duality” 
which appears in the title of this lecture is not necessari- 
ly identical to that which appears in any of the other lec- 
tures presented this summer. However, our self-consistent 
electron-positron scattering amplitude does appear to ex- 
hibit a symmetry which is as close to the usual form of 
duality as may be possible outside the field of hadron 
physics. At first, there does not seem to be room for du- 
ality of any kind. The electron-positron amplitude de- 
scribes fermion-antifermion scattering. The t- and u-chan- 
nels are identical so that interchanging t and u only intro- 
duces a minus sign. This is the Pauli principle and has 
nothing to do with duality. The s-channel describes elec- 
tron elastic scattering and thus is "exotic”; there are no 
bound states of the two electron system. However, the elec- 
tron—electron scattering amplitude does exhibit poles at the 
positions associated with the usual Coulomb bound states. 
This circumstance is analogous to that which obtains in the 
Schrodinger amplitude for a re ulsive l/r potential. In 
that case, the amplitude has tEe form 

-l-in =-0Lm r 1+1n -t _, .1 _ A(E,z) z—Pg- w (W) ip 5(1 2). (38) 

We see that this amplitude differs from (3) by the fact that 
the trajectory is replaced by its complex conjugate. Thus, 
for a repulsive potential, the poles are on the second sheet. 
In our electron—positron amplitude, these second sheet poles 
appear explicitly due to the permutation of the Mandelstam 
variables in (32). If F(s,t,u) has poles in u, then F(u,t,s) 
will have the corresponding poles in s. We find, then, that 
the amplitude (30)  has poles in t and u which are due to the 
positronium bound states, and poles in s which correspond to 
the second sheet poles of the electron-electron scattering 
amplitude. The "dual" nature of the amplitude arises from 
the following consideration. If we use the fact that the 
trajectory function, n(x), is symmetric about x-Z (it is 
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necessary to pay attention to p h a s e s ) ,  then it is possible 
to show that 

F(u,t,s>=ei¢F(s,t,u)+B<s,t,u>, (39) 
where B(s,t,u) is a possible background term and F(s,t,u) 
is given by (34). ,we note the following: B(s,t,u) has no 
poles--only the branch cut singularities of the amplitude-- 
and is at most 0(a) with respect to F(s,t,u). (Actually, 
it is possible  to argue another way and show that ¢=B=0 for 
our second order amplitude.) The point we wish to make is 
that eq. (39) represents a limited permutation symmetry of 
the electron-positron amplitude. Using this property, it 
is possible to write the amplitude as a function which has 
only the physical positronium poles (and corresponding as- 
ymptotic behavior), or as a function which exhibits only 
the second sheet electron-electron poles, and without sacri- 
ficing any of the other properties which we require of the 
amplitude. It is this behavior which we call "duality" in 
the case of electromagnetic scattering amplitudes. (We al- 
so find that the amplitude for spinless non-identical parti- 
cles possess  a similar symmetry.) The actual significance 
of this result for the strong interactions is probably nil. 
Nevertheless, the fact that unphysical sheet Regge poles 
seem to be of an importance in electromagnetic scattering 
which equals that of the physical sheet singularities is in- 
teresting. Also, the existence of a symmetry in electro- 
magnetic scattering which is not simply a result of crossing 
may be of some value. At least, the problems raised here 
may prove amusing to contemplate. 

VI. CONCLUDING REMARKS 

Using virtually the same procedure as that which was 
outlined in the original hadron bootstrap programs, we have 
constructed self-consistent electromagnetic scattering am- 
plitudes having most of the properties one assumes would be 
found in a result of a "future correct theory." Moreover, 
the procedure is simple enough that it may supplant pertur- 
bation theory for certain purposes--particu1arly the con- 
struction of electromagnetic scattering amplitudes for pro- 
cesses in which there are bound states and, possibly, the 
calculation of radiative corrections to bound state energy 
levels. The question naturally arises--of what relevance 
are our results to hadron physics? One simple possibility 
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is that a solution to the Schrodinger equation with a 
Yukawa potential may be found. In that case, one could 
attempt to do nucleon-nucleon elastic scattering in essen- 
tially the same manner as electron-positron scattering; 
hopefully, the results would be equally agreeable. Failing 
a breakthrough in potential theory, one could certainly use 
the eikonal approximations to the Yukawa amplitude as a 
basis for iteration. The problem of convergence would un- 
doubtedly be more difficult, but it is certainly worth in- 
vestigating. In any case, we feel that the procedure out- 
lined above will prove to be of some value within the realm 
of electromagnetic interactions. It remains to be seen if 
this work can be extended into a larger domain. 
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FIGURE CAPTIONS 

Electron-positron intermediate s tate  contribution 
to  the electron form fac tors .  
Unitarity diagrams which contribute to  e lectro-  
magnetic scattering amplitudes through second 
order in a .  Diagrams ( a )  and (b)  (and a l l  higher 
order diagrams) const i tute  the inhomogeneous con- 
tributions to  the amplitude. Diagram ( c )  is  the 
e las t i c  unitarity contribution. 

Diagram o f  the scattering p r o c e s s .  Unbroken line 
indicates mass ,  m, dashed l ine,  m a s s ,  u .  

t-channel unitarity through second order intro— 
duces the following contributions t o  the imagi- 
nary part  of  the scattering amplitude: ( a )  one 
photon exchange (b)  two boson exchange (mass m) 
( c )  two boson exchange (mass u )  (d) two photon 
exchange. 

u—channel e la s t i c  unitarity.  

Feynman diagrams which contribute to  the spin-O 
electromagnetic form factor .  Diagrams ( a )  and 
( c )  represent vacuum polarization contributions, 
diagrams (b) and (d)  are vertex corrections.  

Two photon annihilation amplitude ( t -channel ) .  

Diagram for electron-positron sca t ter ing .  The 
s-channel i s  appropriate for  electron-electron 
scat ter ing .  
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Figure  7 

Figure 8 
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DUAL LOOPS AND MULTIPLY PERIODIC FUNCTIONS 

Stanley Fens ter  
Argonne National Laboratory 

Argonne, I l l inois  60439 

The implementation of unitari ty in the factor ized 
dual resonance model requires the addit ion of dual  loops 
to  dual t r e e s o  The expression f o r  a single dual loop con- 
tains a doubly periodic funct ion and the general theory of 
M loops brings in mult iply-periodic funct ions  of a complex 
var iable .  These funct ions a r e  connected with automorphic 
functions f o r  Schottky and Fuchsian groups.  The mathemat- 
ical  development goes back t o  Riemann and involved a l l  the 
great  names in mathematics of the last  half of the nine- 
teenth century. The related physics problem is the calcu- 
lation of the e lectrostat ic  potential in a two-dimensional 
surface with any number of conductors embedded. The mathe- 
matics teaches us how t o  generalize the method of images 
which works f o r  the case of one conductor t o  the case of 
many conductors.  The analogue model of Nielsen makes the 
connection wi th  the dual  resonance model .  

The way automorphic functions ar ise  in the dual reso- 
nance model has been explained in several  papers .  These 
lectures consti tute a supplementation, taking more time on 
certain topics ,  such as Abelian integrals ,  than would have 
been appropr ia te  in these papers .  

We study domains of the complex plane z=x+iy and har- 
monic functions u ( x , y )  defined on them° In general these 
domains D have boundaries which may be simply visualized 
as circles whose insides are  exterior t o  D. A crosscut 
of a domain is an are which, apar t  f rom i t s  endpoints, 
lies entirely in the domain; the end points of the cross-  
cut  coincide with boundary points of the domain. A simply- 
gonnecged domain D is defined by the property that a l l  
points in the interior of any closed curve (which doesn ' t  

297 
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cross itself) which consists of points of D are also 
points of D. A crosscut connecting two different bound- 
ary points of a simply-connected domain D divides D into 
two simply-connected domains without common points. If 
there exist closed curves which consist entirely of 
points of D and in whose interior there are points not be- 
longing to D, then D is multiply-connected. D is said to 
be of connectivity n if there exist no more than n-l such 
curves whose interiors have no points in common and which 
contain in their interiors points not belonging to D. 
The circular ring l< x? + y2 < 4 is of connectivity Egg 
(doubly connected . A bounded domain of connectivity n 
13 a bounde domain with n - 1 "holes”. By n - l appro— 
priately chosen crosscuts, a domain of connectivity n 
can be transformed into a. simply- -connected domain. For 
example, the crosscut l < x < 2, y = 0 transforms the 
circular ring 1 < x3 + ya < 4 into a simply- -connected do— 
main. The restriction to bounded domains is removed by 
introducing the point at infinity in the usual way. 

Harmonic functions u(x,y) may be “ ins a a domain 
D. They satisfy the Laplace equation‘ x + 3;3‘u(x,y)=0. 

There are two significant formulae that hold for more gen- 
eral functions u and v; these formulae become particularly 
simple and useful when u and v are harmonic. They are 
called Green's first and second formula: 

(I) £J uAv dx dy + I} E%-% + 2 ;  gy>dxdy = I u 3% ds 

1" 

(II). if (uAv - vAu) dx dy = j (u 3%. - v gg) ds. 

D T 

The curve T is the boundary of D; it may consist of sever- 
al separate closed curves. The derivative au/an is the 
usual normal derivatiVe. If u and v are harmonic, the 
formulas simplify because Au = 0, Av = 0. These theorems 
enable one to solve boundary value problems of the first 
and second kind and suggest the introduction of Green's 
function and Neumann's fanction. Let w(x,y) be harmonic 
in D and let r uvk-E): + (y-n)‘; then log r is harmonic 
in D + P except at (E, n) and the same is true of the 
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function h(x,y) = - log r + w ( x , y ) .  The first result 
is deriVed from the application of formula (II) to such a 
function. we find that if Au = 0 in D and has no singular 
behavior, thenl 

(III) u(§,n)=321—njr (113—: -h—)ds. 

The function h suggests that we define the Green's func— 
tion g ( x , y ;  §,n) of a domain D as 

g(x,y;§,n) = - log /Yx-§55"13(y-n)9 + g1(x,y;§,n). 

where g1 is harmonic in D; if (x ,y )  tends to anz Boint of 
the boundarz'r of D, g tends to zero. Then 

u(§, n) = --—— ”I u i  an ds. 

TWO important preperties of g are that it is positive in 
D and symmetric under the interchange (x ,y)  - (5,”) of 
its arguments. As an example, one may choose D to be the 
circle CR of radius R with center at the origin. If r, 8 
are polar coordinates in the (x ,y )  plane and p,o the polar 
coordinates of a point c inside CR (9 < R), then 

g (z,C)=1og——p Eb , 
r? = r2 — 2pr cos(e - m) + p2 

2 2  a 
2 = _ _ _  _ . '  _ 3 rs (RP) 2<Rp>rcos (e c p ) + r .  

Green's third formula (III) contains a symmetry between u 
and Bu/Bn on T. Consequently one is led to define the 
Neumann function of D with resPect to C as 

N(Z.C) = - 10% r + N1(z,C) 
with the condition g = 0 on P replaced by 

EH = const, zE F 
n 0

1
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and with normalization 

e(z,g) dsz = 0. 
Then, if IF N(z) ds = 0, we can show that 

1 a u(€) = E; e ( z , C )  3% ds. 

For the domain CR we find 

I 3 

N ( Z , § )  = 103 p a r l r z -  

The distinctive properties of multiply-connected do- 
mains is not evidenced in the foregoing material. At this 
point we introduce the conjugate harmonic function as a 
step toward those properties. If the function u(x,y) is 
harmonic in D, we can associate with it another function 
v(x,y) by means of the Cauchy-Riemann equations 

a Bu 91 _ au 
bx 8y , By — ax . 

Then Av = 0 and v is called the hggmgnig_gggjgg§§§ of u. 
If a curve C connects two points (x,y) and (xo,yo) we can 
show that 

a a v(x,y) - v<xo,yo> = Ia (- g dx + 3% dy). 

This line integral is independent of the curve C; its value 
depends only on the terminals (x,y) and (Xo,Yo). It is im- 
portant to note that the conjugate harmonic function is 
only determined up to an arbitrary additive constant which 
plays the part of an integration constant and was expressed 
as the value V(xo,Yo). 

In the results concerning harmonic functions so far, 
no reference was made to the gggngggigigl of the domains 
D involved. There are certain properties of harmonic con- 
jugates, however, which are decisively influenced by the 
connectivity of D. Consider the simply-connected case. 
The line integral formula for v then shows that v is a 
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single-galggd function in D,  that is ,  it has a uniquely 
defined value at each point of D (provided v(xo,Yo)  is 
held f ixed).  This follows from the independence from G .  
Since in a shmply-connected.domain 921 two curVes connect- 
ing the same two points can be deformed into each other, 
all curves C are included and v is unique. Suppose now 
We do not require Au = 0 everywhere in D.  Let C; and Ca 
be tWO curves giving the values v; and v3 to the line in- 
tegral .  We can prove that 

v; - v3 = If Au dx dy ,  
B 

Where B is enclosed by C; and 02.  If D is multiply-cen- 
neeted it  has a t  least one hole. By preperly choosing C1 
and Ca to  go from (x°,y°)  to (x,y)  along different shores 
of the hole one can be assured that Au ¥ 0 inside B, name- 
ly inside the hole. Then v1 # v3 and v is mgltiple-galggd. 
This property depends on the fact  that 0; cannot be con- 
tinuously deformed into C3 s o  that a l l  the intermediate 
curves lie completely in Do (The interior of the hole is 
considered to be outside of D) .  Green's formula shows 
that 

v; - Va = If Au dxdy = I 3% ds E p ,  
B b 

where b is a closed curve surrounding the hole and p # 0 .  
We now a s k :  what a r e  the poss ible  d i f fe ren t  values v can 
take a t  the same point? Since the only way to  change v is 
to  integrate an extra time completely around the ho le ,  we 
find 

V1 = V a  + m P ,  m = 0 ,  i 1 !  i 2 ,  " '9' 

The various values which the harmonic conjugate v of a 
singleevalued harmonic function u .can  take at one point 
differ by integral multiples of a number p ,  the moguly§_gfi 
pgriodigx of v .  For example, consider the _conjugate of 
u = log r ,  r “ Jka + y a ;  it is v = 9 = tan (39. Both 
functions are harmonic in the ring 1 < x2 + y2 < 4, Since 
the only singularity is at (x,y) - (0, 0 ) .  Now 9 is not 
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single-valued in the ring; indeed, the angle is only de- 
termined up to an integral multiple of Zn, and a closed 
positive circuit about the origin adds 2n to e. The 
function v = 0 thus has p - 2n. 

Turning now to a domain D of connectivity n, we see 
that the different values of v defined by 

S ' a 
V(X,y) = V ( X 0 , Y o )  + I fi d S  

so 

depend on the number of times each of the n-l holes is 
surrounded by the integration path, There will therefore 
be n-l independent moduli of v, corresponding to a com- 
plete circuit about each of these holes. Attaching to 
these holes the subscripts l,2,...,n-1, we thus have the 
independent moduli p1,pa,...,p _1, where the word "indepen- 
dent" means that none of thesenmoduli is, in general, ex- 
pressible as the sum of integral multiples of the other 
moduli. If bv is a curve which surrounds the hole of sub- 
script v but does not contain in its interior points of 
any other hole, we have 

PV = Ibv 3; ('16, V = 1 , 2 , 0 0 0 3 n - 1 ~  

Since, apart from continuous deformations inside D, the 
various integration paths connecting two points of D differ 
only by the number of times they surround the various 
holes, we thus obtain the result that the various values 
of v(x,y) are of the form n-l 

v(x,y) = v(xo,yo) + z mvpv“ 

v = l 

where the m» are arbitrary integers and v(xo,yo) is any 
one of the values of v(x,y)o If all moduli pv vanish, v 
will be single-valued in D. As a final point, one may 
call the outer boundary of D the nth circle. Then a modu- 
lus pn is defined, and Green's formula gives 

n 
21 pV = 0. 

V —  

An important function defined on the domain D with n 
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holes is the harmonic measure. Let the n bounding holes 
be denoted by TV, v = 1 ,2 ,  ...,n. The harmonic measure 
Wv (z) is harmonic in D and has the boundary values unity 
on 1"” and zero on PM? ll 9‘ v. This function is given by 

ag‘g.§! wv(C) = - % Irv 3112 dsz 

and is equal to - 2%.; times the modulus E, of the Green's 
function g ( z , C ) .  Since the Green's function has a singu- 
larity at the point z=C we do not find the sum of the mod- 
uli to be zero,nbut rather 

V; wv(z) = 1 

for all values of z in D. 

We may take a further step and find the moduli of 
the set of Wv(z). They are given by 

aw p =1. V (13 

W I‘ n B u 

and, as can be shown with Green's formula, are symmetric. 
Furthermore the same method shows that the Symmetric quad- 
ratic form n-1 n-1 

E' x l 
H= v21 PVH V H 

always positive-definiteo Therefore the set of linear 
equations n_ 1 

nil PV” in I K“ 

always has a non-trivial solution. As an example, one may 
show that the harmonic measures associated with the outer 
and inner boundaries of the ring a3 < x‘a-l-ya < b3 are 

19:8,“) 
W1(Z) = 10 b/a ’ 
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W2 (2) " i:g(: a)! 

r =  \fx2 +372“ 

Another resu l t ,  relevant for the calculation of asymp- 
totic forms of loop integrals, is the Hadamard formula for 
the variation of the Green's function with a small varia- 
tion in boundary. Suppose T is the boundary of D, and T* 
is a new boundary obtained with a normal variation 6n(s). 
Let g* be the new Green's function; then 

s*(z,c>-g(z,g) = 31;; éagg—zl . eggs 5n(S)ds,n. 
n n 

Similarly, 

1_ 8w . a (n z) 6wv(z)-21T if ?‘im f5:— 6n(s) dsn 

61> ” ‘ I  awnm) 6mm) 5 n ( s ) d s  
VH T an” an” n 

As a step toward finding harmonic measures let us ex- 
amine harmonic conjugate functions in D and note a suggest- 
ive property. Let D contain two circles Cl and Ca. Join 
61 and C3 with a curve L° Consider a harmonic conjugate 
function v evaluated at P (Figure 1). This value is not 
unique but suppose we choose one definite admissible value 
v(P1). If we follow v as it varies along a curve T1 sur- 
rounding 01 we find that it varies continuously up to the 
point P2 Where it has the value V(Pg) with 

v(Pa) = v(P1) + I gfi-ds 

= V(P1) + BL . 

Here P3 is infinitesimally distant from P1, for we have 
split the line L into L1 and L3 which play the role of 
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the upper and lower lips of a branch cut. Now v(Q) * v(P) 
but the foregoing arguments showed that v(Q2)=v(Q1)+ p so 
that the difference 6vL = vl-va is constant along E. Let 
us for the moment ignore the closeness of La to la and make 
a topological deformation of the closed curve ClLlca so 
that la and L3 form circlesand 01 and Ca are close and par- 
allel lines. (Fig. 3). It is a remarkable fact that a 
class of harmonic conjugates v exists with the property 
that points such as R4,Ra may be found which are identi- 
fied, in the sense that 6vc=v(Ra)-v(R1)=pc=v(Sa)—v(sli, 
where pc is a modulus associated with traverses about Ia. 
Furthermore, there exists a 6v which has both the proper- 
ties of GVL and 6vc. All harmonic conjugates in D have 
the (L) property; but very few have the (C) property as 
well; those with both properties are similar to the har- 
monic measures w. Proof of their existence is a major 
mathematical achievement and carries the names of Riemann, 
Schwarz and Neumann. One approach depends on the know- 
ledge that harmonic functions are electrostatic potentials 
_and that the infinite plane may be visualized as the sur- 
face of a sphere (we have gone to three-dimensional space). 
The Sphere has two holes C; and C; out out. The topologi- 
cal deformation joining C; to C; is equivalent to pushing 
out the rims of the holes and joining rim to rim to form a 
torus. Then 01 is identified with Cs and pairs of points 
(R1,R2) and (81,33) fuse to form R and S on the torus sur- 
face. The curves L and C are then closed curves on the 
surface which intersect each other once. If the torus is 
visualized as a rubber tire lying on the ground, then L 
runs around the top and C 100ps through the tire. Now it 
is known that a potential without sources can exist on a 
torus — the potential lines follow L and the field lines 
follow C. Knowing this we may reverse the process and cut 
the tire open along C and expect to find harmonic conju- 
gates 6v described above to exist. 

Our task then, is to find real harmonic functions 
which identify the points on 01 in a one-to-one manner 
with the points on C2 and have the property that the dif- 
ference vl-vb is a constant (the same for Pl and QlQa) 
around the circles. These functions will contain parame- 
ters which depend on the coordinates of the centers of the 
circles and their radii. Since the torus generalizes to a 
sphere with n handles it can be proved that 2n circles 
(n=l,2,...) may be cut out without losing the possibility 
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of a solution. The circles will be identified in pairs 
by the harmonic function. The curves L and C are called 
crosscuts on the surface and are denoted by Ka“_1 and K5“, 
u = l,2,...,n. 

Since the values of a harmonic function inside a 
closed curve are determined by its values on the boundary, 
we expect that the harmonic function for D will be deter- 
mined by the Zn real moduli p for the Zn crosscuts K. There 
are two solutions on the torus, (n-Z), the L—type poten- 
tials and the C-type, having orthogonal equipotential line 
families. The question arises as to whether there are any 
more, and a theorem states that there are 2n and no more 
that are linearly independent of each other. Every other 
such function can be expressed, up to an additive constant, 
as a linear combination of multiples of these functions 
with constant coefficients. Note that up to now the poten- 
tials considered have no singularities; they are called 
functions of the first kind, and their only discontinuities 
are the jumps across the crosscuts. In the future we will 
assume that each crosscut has two lips and that all func- 
tions considered have jump discontinuities across these 
cuts which are constant as one moves along the cut. Note 
that the cut surface is simply—connected. 

‘Having proved the existence of real functions u of 
the first kind we may form complex functions w - u + iv 
out of two of them. The complex functions w will be 
analytic functions if u and v satisfy a pair of Cauchy- 
Riemann equations. Some theorems can be proved about the 
moduli of w. We will perform integrations over a two- 
dimensional surface embedded in three -dimensional space 
using crosscuts K. we can always recover the complex 
plane with holes by cutting, since we are not dealing with 
.arbitrary harmonic funcfiions, but only with functions of 
the first kind. The pt pair of crosscuts has an odd mem- 
'ber Kin-1 which we denote by er and an even member br' 
Their crossing is indicated '- in Fig. 4. as the "' 
crossing of two strips. The curves er and b1. are closed 
ends portion of the surface not shown. According to 
Green's formula we have 
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where F is the boundary of D considered to be composed of 
a single curve, composed of both edges of each of the 
cross-cuts; the positive directions of integration are 
shown. The positive side of ar is FD and the negative 
side is CE, etc. Each crosscut ar or hr has associated 
With it a constant modulus Ag or 3% with respect to 
u(x,y) and-Ag or B: with respect to v(x,y). Then we have, 

ll 

uc “E “D"F Br 

-v = v -v - 3v vc E D F r 

"F'uE = uD-uc = A: 
= - E u VFVE VDVC Ar. 

Consider the integral I u dv taken along the twa edges of 
the cross-cut a : let u: and u+ denote the functions along 
the negative and the positive edges so that u+ - u- = A3. 
The value of the integral for the two edges is 

D E D 
j% u+ dv + $6 u- dv = IF (u+-u_)dv 

=A“ f d = A “ ( v -  )=A“3" r F r D F r r ' 

Similarly, when the value of the integral for the two edges 
of the crosscut br is taken, we have 

C F C 
ID u+ dv + IE u_ dv = ID (u+-u_) dv 

C u 
= B I = u _ = _ u v r D dv Br (vb VD) BrAr . 

Summing for the whole boundary of the resolved surface, we 
have 
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I u d v =  2 CA? 'A: 3:) 

Z < =ff[<§1‘D+Q—V)9]dxdy~ 

The double integral is always positive so the Sum is al- 
ways positive. Racall that w=ufiiv so that the complex 
moduli of w are given b y %  +iAE and B“ + iBV. We see 
that an analytic function w(z) the first kind cannot 
have its moduli of periodicy for all ar equal to zero° 
Second, the function w cannot have its moduli for br all 
zero; it cannot have its moduli all purely real, or all 
purely imaginary. Any function of the first kind has the 
form n n 

w+zmr <A§+iAD+ ZnICBE+iBD 
1 1 

where mr and nr are integers and w is a value, at any 
point on the surface, of a function of the first kind 
with the same moduli. 

It has been mentioned that there are n_linearly inde- 
pendent functions ws of the first kind, s = 1,2,...,n. 
Their moduli are 

u . v u . 
As: +1Asr and Bsr + lBsr' 

We can form a 2n X 2n matrix 
u A 

M — C Bu 

out of them. Using the fact that a function of the first 
kind with all zero real periods is a constant we may show 
that the determinant of M is non-zero. Another determi- 
nant which cannot vanish is IAu + iAVI. Unlike M it is 
composed of complex numbers and does not contain the B 
moduli. The non-singular property of these matrices al- 
lows a choice of ngzmgl forms for the who Starting with 

V 
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any linearly independent set we form linear combinatio s 
such that - 0  and Av = inér These functions ws 
are called normal funct1ons of the first kind. The quan- 
tities B are then not completely independent of each other. 
To show this we return to the integral 

J ‘ J ‘ d d —  3W1 3W2 _ 3W3 5W1 D :  IT W1 dWs 

x 3y ax By 

Z ‘A 
1 ( A  1'1 Bra Ara Brit): 

which is valid for all complex w1(z),wa(z) which are analy- 
tic with singularities on the surfaceo If w1(z) and W2 (z) 
are first kind functions they have no singularlities and 
everywhere in D we have 

awl owl awa aw; 
i S;— = 3;- and i 3;_ = 3;- ; 

n 
therefore E. ArlBrz- ArgBr1) = 0. For the WS(N) we find 

1 
then Brs = Bsro Furthermore the demonstrated positivity 
of n 

u v v u 
(Ar Br - Ar Br ) 

for each ws = us + ivs implies the positivity of the ma- 
trix Brs' 

We now introduce singularities which-are lagarithmic 
and define functions of the third kind. (We omit the 
second kind, which have poles and are obtainable by differ- 
entiation of functions of the third kind.) Green's func- 
tions and Neumann functions are of this type. Let the 
logarithmic singularities be at P5 and P2 with coefficients 
chosen unity. This process introduces very little that is 
new, for suppose we draw tiny circles Gland C2 about P1 and 
Pa and join them by a crosscut (branch out); the modulus 
of periodicy for this crosscut is just Zui. If the other 
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moduli are chosen exactly as they were for the wS(N), we 
have 0(E), an elementary function of the third kind. We 
ma add linear combinations of the wS(N) to 0 ( E )  to form 
0( ), the normal function of the third kind, which has 
zero A-moduli. This is the so-called complex normaliza- 
tion. An alternative normalization is possible, the real 
normalization, in which the Au and Bu are all zero, i.e. 
all moduli are pure imaginary. Note that in both of these 
normalizations there remain 2n real free constants; they 
are distributed over Au,Bu,AV and Bv in different ways in 
the two cases. For the complex normalization we can prove 
the "Vertauschung" theorem or the law of interchange of 
argument and parameter. It involves two normal functions 
of the third kind which differ in the location of their 
logarithmic singularities. Let OP and 0Q have their singu- 
larities respectively at P1 and P2 and Q1 and Q2; then in- 
tegration of IQPdQQ shows that 

QP(Q2) ' QP(Q1) = 0Q(P1) ' QQ(P2)- 

The simplest example of a third kind function is the one 
relevant to the sphere with no handles or the Sphere or 
the complex plane with no holes. We find 

= 1—91. QC1Ca(Z) log 2 _ g2 + constn 

So far we have dealt with harmonic functions on sur- 
faces with n handles and no boundaries. Starting with such 
a surface, we can, with one fell swoop sever it so as to 
create two surfaces, each with no handles and n holes. 
Each of these surfaces may then be flattened out to resem- 
ble the complex plane with the point at infinity included 
(Figs. 5,6,7). If we started with a simple sphere (no 
handles) the slice would give only C1 on the lower hemis- 

phere and C3 on the upper hemiSphere as boundaries respec- 
tively of surfaces B1 and Ba, where the original Sphere is 

D = 31 + B3. Knowing the third kind functions 0 on D, we 
can construct Green's and Neumann functions on Bl. In the 
zero handle case we imagine-Ef—Eipped conformally on to 
the real axis, Bl into the upper half plane and Be into 
the lower half plane. The Green's function of 31 is de- 
fined to be the single valued harmonic function on 31 which 

vanishes on the boundary of Bl(Cl+Ca+C5+C7) and which has a 

logarithmic pole at the point C such that the difference 
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g(z,C) - log TEE—CI- 

remains regular at C. Let £=€1 and C2=E (complex conju- 
gate) .  Then 

= o 15:31 . <5 -3 g ( Z , C )  % 1 g (Z ‘C)  w 

= % 1°g (:::)' % 1°g (5:2) 

g<2,c> = % [ngg<z) - egg (5)] 

is equal to zero on the real axis z = 2, has only one log- 
arithmic singularity C in El, the upper half plane, and is 
expressed as a difference of two third kind functions. We 
may reexpress g as 

g(z,C) =3§10g(:—:§‘)+%1og\§%\ 

% LngZ(z) + 553(2)]‘ 

= Re gZ:(z) 

Therefore Im [Q€E(z) - QCE(E)] is identically zero. 

To generalize this result to the case of more circles 
we consider the symmetrical case in which C2 is obtained 
by reflection in the real axis of Can—1. We call the real 
axis Co. The Green's function is required for the domain 
31 consisting of the upper half plane bounded by Co,Cl,Ca, 
-°-:CZn-l- The insides of the circles are considered to 
be exterior to 3;. The domain D consists of the whole 
complex plane with the interiors of all circles C removed. 
The Green's function of B1 and the third kind functions of 
D depend on the positions of the centers of the Cgu_1,  and 
on their radii” Therefore our task becomes one of writing 
down a real harmonic function which is zero on Co and 
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ggggggn; at all the circles Cau_1, ca in terms of para- 
meters locating these circles and defining their radii. 
The question as to the best way to parametrize the cir- 
cles has a deep answer which leads to the theory of dis- 
continuous groups of Mbbius transformations. Recall 
that a Mabius transformation T given by the correspondence 

w<z>- 33-13% 
maps circles in the samplex z- plane into circles in the 
complex w-plane° Here a,b,c,d are censtants independent 
of z, and a straight line is considered to be a circle 
with center located at the point at infinity. Therefore 
one can find a set (ar,br,cr,dr) such that 

w(z) = arz + br 

c r z + d r  

maps Go into Or. The n Mébius transformations which 
carry out these mappings are called ggnggggggg. It will be 
shown that the specification of the domain B; by the set 
of wr(z) is the propitious choice. Before proceeding with 
the construction of Green' 8 function, we must explain sev- 
eral salient geometric properties of Mbbius (projective) 
transformations in general. We will henceforth assume 
ad-bc u l. The inversa transformation T‘ is giVen by 

='_da_u 
cz - a ' 

A 2x2 unimodular matrix (2 d) may be associated with T; 
then the inverSe matrix is associated with T'1 . The con- 
formal mapping accomplished by T maps any given three 
points a,b,c into three variable points a,B,Y. Introduce 
the g;g§§:;g§ig symbol (z; z; 23 Z4),  where 

, _ g21 -  z§2(za- a4) . 
(21 23 23 2" (zl- Z4) (22' Za> ' 

then 

(w 1 0 u°) = (z a b c) 
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reads 

" “ (2:12) (51:13) ('a-=b>z + ‘c (b -a‘> ’ 
and has the form of a Mobius transformationo The mapping 
(a,b,c)~ (a,s,y) is given by 

(w a B y) a (z a b c)” 

Its inverse transformation comes out to be 

(w a b c) = (z a B Y). 

Since three points determine a circle and the mapping is 
conformal, We see that circles are always mapped into cir- 
cles or lineso A Mobius transformation _az+b has two 
fixed points £1,£3, which satisfy the W czfi quadratic 
equation 

f = §£_¢;h; 
of + d 

az + b . 
When we have found f1 and f2 we can write w = 52-m—a 1n 
the equivalent form 

W " f1 = K Z‘fl 

W - f 2  Z'fg 

f - 
or (W °° f1 f2) = (Z fl f 1  f 3 )  

which Show immediately that f1~f1 and fan £2. The constant 
K is called the multiplig; ; a Mobius transformation is de- 
termined by giving its tw0 fixed points and multiplierg 
The inverse transformation has the same fixed points f1 and 
f2. 

In an analytic transformation w = f(z), a lineal ele- 
ment dz = za-zl connecting two points in the infinitesimal 
neighborhood of a point z is transformed into the lineal 
element dw in the neighborhood of w. We have dw = f (z)dz; 
hence, the length of the element is multiplied by If (z)l° 
Infinitesimal lengths in the neighborhood of a point z are 
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are multiplied by lcz+d"3, since 

=2:fl é'27-: ’ =—1— 
W cz+d ’ dz f (z) (cz+d)3 ’ 

The circle I, 

I: lcz+dl = 1 

which is the complete locus of points in the neighborhood 
of which lengths and areas are unaltered in magnitude by 
the transformation, is called the isgmetric circle of T, 
It is easy to see that lengths and areas within the iso- 
metric circle are increased in magnitude, and lengths and 
areas without the isometric circle are decreased in magni- 
tud by the transformationu For, if z is within I, 
|z+§ <.l , or Icz+d| < l, and lf'(z)l > 10 A length or 
area [c] within I is thus magnified in all its partso 
Similarly, if z is without I, lf'(z)l<l; and a length or 
an area is diminished in all its parts. 

The inverse transformation 

w = 'Q&;tll_ 
cz - a 

has the isometric circle I', where 

I’: Icz - al = 1D 

The center of I is at - g and its radius isT%T; while the 
center of I’ is at a with the radius of I’ being the 
same as the radius of I. It is a theorem that a transfor- 
mation carries its isometric circle into the isometric 
circle of the inverse transformation. For T carries I in- 
to a circle Io without alteration of lengths in the neigh- 
borhood of any point, hence T'1 carries 10 back to I with- 
out alteration. But I' is the complete locus of points 
in the neighborhood of which T effects no change of length; 
hence Io coincides with I’. We can show this algebraically 
by computing lcw(z) - a} when lcz+dl= 1 and w az+b. We 

cz+d 
find (-cw+a)(cz+d) =Vl or 
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lcw-al = 1 
I c z  + d l  

Therefore ,  i f  I cz+dl  = 1 then also l c w - a l  * 1 .  Further-  
more,  f rom I c w - a l l c z + d | =  1 We can see  that the outside 
I c z + d l >  l of I maps into the ins d I c w - a | <  1 of I '  and 

has a l l  lengths shrunk in order t o  f i t  i no  

I f  the multiplier K is a real  number, the transforma- 
tion is  called hgpgghglign There a r e  fou r  geometric f ac t s  
which can be proved about hyperbolic t ransformations:  

( i )  any c i rc le  through the f ixed points f b f z  is  t rans- 
formed into i t s e l f ,  each of the two a rcs  into which the 
c ircle  is separated by the f ixed  points beingtransformed 
into i t s e l f ;  

( i i )  the interior of a c ircle  through the f ixed points 
is t ransformed into i t s e l f ;  

( i i i )  any  c i rc le  orthogonal t o  the c i rc les  through 
the f ixed  points is carried into some other such c i rc le ;  

(iv) the f ixed points a re  gaggggg with respect to  
each c i rc le  of ( i i i ) 9  This point has an obvious electro- 
s t a t i c  interpretationo 

Mobius transformations,whose singularit ies a re  poles 
may seem qui te  d i f fe ren t  f r o m  Green ' s  funct ions,  whose sin- 
gularities a re  logarithmso Actually Green ' s  functions a re  
obtained f rom infini te sums of Mobius transformations by 
indefiniteixfiegration on z ;  the integral  contains the loga- 
r i thms. These integrals a re  called Abeligg Integrals of 
the Third Kind, and represent third kind functions discussed 
aboveo The d i f ferent ia l  under the s ign of integration has 
poles ,  and is called an Angliag d i f fe rent ia l  of the second 
kind. The infini te sums a r e  sums over image points when 
given a potent ia l - theoret ic  in terpre ta t iono 

a 
The matrix representation (f 3) of a Mobius transform- 

at ion T makes i t  evident that  compound transformations can 
be  e f f ec t ed  and that  a group s t ruc ture  Wi l l  emerge.  The 
groups appearing in dual tree theory are  SU( l , l )  and 
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SU(1,1)XSU(1,1). They are Lie groups, containing infini- 
tesimal transformations in which the constans independent 
of z are infinitesimally different from zero (or unity)o 
But there is another way to generate groups starting with 
Mbbius transformations; and that is to specify say n trans- 
formations TbTa...,Tn, where Tr has a definite form 

_ arz + br 

°r2+dr ’- 
w r=1,2,...,n 

with constants (a ,b ,cr,dr) quite different from those re- 
quired to make w infinitesimally close to 2. These ggggn 
tors are given onceand for all, and the infinity of elements 
of the group are obtained by gggggggging’Mfihius transforma- 
tions discretely out of them. Thus, for n=1, the group 
elements are obtained by taking all possible EOWers of T1: 

W'f1 z-f T : — = — L  
1 W'fa K Z'fg ’ 

(T1)3: 22:; = K9 z'fl 
W'fa Z'fa ’ 

. W'f1 
V .  I—-—— = V E-—f]:_ — ( T 1 )  0 W'fa K z—fz , V_0,i l, +2,c 

The compounding is dane in the usual sense of a function of 
a function; (T1)a(z)= T1(T1(z), etc. It is eaSy to show 
that (T)VETV, the vth power of T1 is in fact given by the 
above formula. (It is this fact that makes the fixed-point 
representation convenient; every power of T is a transform- 
ation with £hg_§§mglf;§gg,gg;g£§, and a multiplier which is 
the K of the generator raised to the corresponding power.) 
This set of transformations constitutes an Abelian group 
with an infinite number of commuting elements and one gene; 
gate; T. This group is called a disgontignpgg group since, 
although it contains the identity (vBO), it caontians no 
elements in an infinitesimal neighborhood of the identity, 
as does a Lie group such as SU(l,l)° We have already 
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discussed the geometry of T and T'1 in terms of their fixed 
points and isometric circles; we now go on to the geometry 
of the multiply-infinite set of M6bius transformations gen- 
erated by taking all possible powers and products of povers 
of the Tr, r=l,2,...,n such as (T1)3(Ta)'5(Ta)3(T1)°(T8)'5, 
Because the T1- do not commute with one another a given Tr 
may appear as often as we like in the product (which con- 
tains always a finite number of factors). Once the Tr are 
specified, a set of n pairs of isometric circles 13 -1, 
I2 are defined which divide up the complex 2- plane into 
(i) gggggmgnggllgggigg R0 outside all the circles and (ii) 
the gggglgggg; of the fundamental region consisting of the 
Sum of the insidesof the isometric circles. A transforma- 
tion of the group carries the points of the fundamental re- 
gion R0 out of the fundamental region into another region 
R; this region R is quite equivalent to R0 and R may be 
called a fundamental region for the group. Two configura- 
tions (points, curves, regions) are said to be gggggggng 
with reapect to a group if there is a transformation of 
the group which carries one configuration into the other° 

A major theorem is contained in the statement: If no 
two points of a region are congruent, the transforms of 
the region by two distinct transformations of the group g2 
22; overlag. A corollary is that the transforms of a fun- 
damental region by two distinct transformations of the 
group do not overlap. Each group element has its own iso- 
metric circle. By considering the isometric circle of an 
element which is the Eggggg; of two given ones (two succes- 
sively performed MBbius transformations) we find that the 
radii of the isometric circles are bounded; the number of 
isometric circles with radii exceeding a given positive 
quantity is finite; and given any infinite sequence of 
distinct isometric circles Il,Ig,Ia,..., of transformations 
of the group, the radii being r1,rg,ra,...., then 
lfigfi rnEO. In studying the arrangement of isometric cir- 
cl 8? the following theorem is significant. Let I;,Ia,I{ 
and T31! T3T1 where T; operates first. If I{ and I; are 
exterior to one another, then 131 is contained inside 11. 
The proof is simple. Let 2 be a point outside 11. Then 
zl= T1(z) is inside I{ and therefore, by hypothesis, out- 
side Ia. Regions around 2 are shrunk by T1. Next apply 
Ta, mapping z; into 221. Regions around 21 are shrunk in- 
to regions around 221. Now T31 maps z into 231 and produ- 
ces the shrinking of T1 plus the shrinking of T2, so T31 
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shrinks regions around z into regions around Z21 .  There- 
fore z is external to 131 and every point 2 external to I; 
is also external to 131. Therefore, 131 is contained in 
11. 

In the dual resonance model the fixed points of all 
the generating transformations TQM-1’ T2“, p=1,2,...,n lie 
on the Koba-Nielsen unit circle, which by Mfibius invari- 
ance can be taken to be the real or imaginary axes, If 
the fixed points of the generators be on the real axis 
the group is called a Fuchsian group, and the fixed points 
of all the transformations of the group will also lie on 
the real axis. Then the real axis is called the 23$E£$Efll 
circle for the group and it contains, in addition to the 
fixed points, also the centers of the isometric circles. 
The isometric circles of a pair T3“-1, T2“ of generators 
have their centers on the real axis, have equal radii and 
are congruent. The fundamental region R is the whole com- 
plex plane minus the insides of the Tr We designate by 
R0 the part of R lying within the principal circle (or R0 
is the upper half plane). Ro is carried by all the trans- 
formations of the group into a region in the interior of 
the principal circleo A theorem states that any closed 
region lying entirely within the principal circle is cover- 
ed by a finite number of transforms of R0. These regions 
fit together without lacunae. Also, the transforms of Ro 
fill up, without lacunae, the whole interior of the prin- 
cipal circle. They cluster in infinite number about the 
limit points of the group (which lie on the principal axis 
and inside the isometric circles of the generators or out- 
side R0.) Groups of this type are called simultaneously 
Schottky groups and Fuchsian groups of the second kindo 

We are now ready to introduce automorphic functions 
with respect to a discontinuous group. Automorphic func- 
tions are the generalization of the circular, hyperbolic 
and elliptic functions of ordinary analysis. A circular 
function, such as sin 2, has the property that it remains 
unchanged in value if z is replaced by z+2mn, where m is 
any integer; that is the function is unaltered in value 
if 2 be subjected to a transformation of the group 
w = z + a. A hyperbolic function, such as sinh z, is 
unchanged in value if 2 be subjected to a transformation 
of the group w = z + 2nim, An elliptic function, such as 
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the Weierstraussian Function $(z), retains its value under 
transformations of the group w = z + mw + m'w’. 

The automorphic function is an extension of this con- 
cept to the more general discontinuous group° Roughly 
speaking, a function is automorphic with respect to such 
a group if it has the same value at congruent points. If 
T (2) is any transformation of the group, then f(z) is an 
automorphic function with respect to the group if f(z) is 
a single-valued analytic function inside the principal cir- 
cle and f[Ti(z)] = f(z) there. A theorem states that each 
limit-point of the group is an essential singularity of the 
function. For in the neighborhood of a point at which a 
function is analytic or has a pole, the function can take 
on any value only a finite number of times. In the neigh- 
borhood of a limit point, there is an infinite number of 
congruent points at which the function takes on the same 
value. Hence, the limit point is an essential singularity. 
We shall now actually set up an automorphic function by 
means of a seriesn 

Let the transformations of the group be 

a.z+b. = _ 1  
z1 Ti(z) a c.z+d. ’ 1 1 

a.d.-b.c. = 1 1 1 1 1 

i = o,1,2,... 

the identical transformation being zo=To(z) = z.' For sim- 
plicity, we write zij = Ti(Zj) = TiT.(z). Suppose, first, 
that the group is finiteo Let the gfoup contain m trans- 
formations (i=0,l,...,m-l). Let H(z)  be any gagiggal func- 
tion of z and form the function 

¢(Z) = H(Z) + H(zl) + H(za) + °-~ + H(zm_1)° 

This function has no singularities other than poles. If 
We apply a transformation Tk of the group to z, we have 

Cp(Zk) = H ( Z k )  + H(zlk) + o n e  + H ( Z m _ 1 ’ k ) u  
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Now, zkszlk!'-'9zm-1 k are the set of transforms of z and, 
since ' is congruent to 2, this set coincides with 2,21,", 
2m,1. e terms of the sum are the same as before, their 
order being merely interchanged; hence n(zn)-¢(z). The 
function is thus automorphic. It has no other singulari- 
ties than poles. If the group contains an infinite number 
of transformations and we extend the sum to an infinite 
number of terms and add convergence factors (ciz+di)'a, we 
get the Poincaré theta series 

' 3 “  ‘3 6 ( 2 )  E (ciz + di) H(Zi) 

which is not quite an automorphic function, but rather 
satisfies 

6 ( z j )  = (cjz + dj)3 6 ( 2 ) .  

It is easy to form an automorphic function from two theta 
series with different H1(z)  and H 3 ( z ) .  The ratio 
6 1 ( z ) / 6 3 ( z )  is, in fact, automorphic. We now show how 
Abelian differentials with poles (second kind) may be form- 
ed with the Poincare theta series for a Fuchsian Schottky 
group. 

We take 

1 
z-a 

H(z) fl 

and define 9(z,a) by 

— 1 . _1__ 6(z,a) — Z! -—-T(Yiz+5i) o W 1 ( Z )  _ a , 

aiz + R1 
w.(z) . _ ' . _ _ _  
1 . + 6 ' 

Y:Lz i 

We define Ri as the region which R0 is mapped into by T.. 
The totality of R1 fill the plane inside the principal 
circle. The function 9(z,a) has two simple infinities 



DUAL LOOPS 321 

inside any one of the regions Ri, namely the homologues 
of a and 3 that lie inside Ri The same statement is 
true of 6(z, w (a)). It follows that constant multiples 
of the twa functions can be chosen such that their differ- 
ence shall be independent of a. We can show, using the 
fact that the product of two matrices 

[$1 21] [33' 251 

gives another matrix which defines an element of the 
group and a term in the series, that 

6: 
9(z,wj(a)) - 6(z,a) = 6(z, - VT ) , 

J 

which is independent of a. Recall that --41 is the cen- 
ter Jj of the isometric circle for Tj. Yj The function 

6 
.i. 6(z,- Yj ) 

has no poles, its only singular points being the singular 
points of the group. The points - 6j and aj are the 

Yj Yj 

homologues of infinity, and there are clearly an infinite 
number of functions 6(z‘Ji). However, only n of them are 
linearly independent, Since we can show that 

6(z,JP) - 6(z,Jq) = - e(z, Jp-1q) 

where J -1 is the center of the isometric circle for the 
transformagion Tp'q, which is given by 

5 a - B  Y 
Jp-zq= fi fi .  - 

P q P q 
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The same process of direct substitution giving this re- 
sult also can show that 

9(zaJP) = - e ( s P _ 1 ) o  

Hence, if T and T are two of the fundamental substitu- 
tions (generators), and J the homologue of infinity form- 
ed by any combination of these two, then 9 ( z , J )  can be 
expressed in the form m6(z,J ) + n9(z,J ), where m and n 
are positive integers. It f llows from this at once that 
if T1,Ta...Tn are the n fundamental substitutions, then, 
whatever homologue of infinity J may be, 6(z, J) can al- 
ways be expressed in the form 

n 
E mi 6(z,Ji). 

We now carry out integrals of edz of the form 

2 w (z) - J 
I e(z,J)dz = 2 log QTTEES-j-fi, 
Z0 1 

, 

when the integral path is at first confined to the gene- 
rating polygon (fundamental region). The generating poly- 
gon consists of the space outside n pairs of circles 61 
and 0;, Ca and Cg,...,Cn and Cu, each external to all the 
others. The substitution T transforms the circle C in~ 
to the circle C ,and the space outside the circleC 
into the space side the circle 0?, so that the poigt J 
is inside C and the point Jp-1 is inside Cp An elemenE 
»of the integral of 6(z,JP) may be expressedP as follows: 

6(z,Jp)dz = 2d. 10g (wi(z) - J P) 
6 .. 

(z _ 1 JD PBi > 
a1 -Yi J + ai 

= 2d log 1 P  

Y i  ( 2 + 1 Y  > 
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«1 (z - Ji'lp) 

Yi (Z ‘ Ji-l) a 

When Ti is the identical substitution w = z, the corres- 
ponding term on the right hand side is of a slightly dif- 
ferent form, namely d log(z-Jp); hence 

dict ~ 31*! ) 
___________E_ 6 ( z , J  )dz = d' log(z - J ) + E dolog 

p P Vi (2 ‘11- I) 

where now the identical substitution is not included un- 
der the Sign of summation° Now, as before stated, JP is 
inside Cp, and it is eaSy to see from the theorem on the 
location of isometric circles that J _1 and Ji‘l are 
either both inside or both outside GP; hence 

I 6 ( z , J  ) dz = Zni, 
C P 
P 

where the integral is taken in the positive direction 
around a closed curve within the generating polygon sur- 
rounding CP once, and surrounding no other circle. 

Again, JP is outside 06, and Ji-l and Ji_1 are 
either both inside or both outside C', except w en i = p, 
and then Ji'l is inside and Ji-lp is outside, hence 

Jc’ 9 ( z , J p )  dz = -2ni, 

P 

where the integral is taken positively around C'. For 
any other circle C or C', J is outside and Ji-l and 
Ji-lp are always either both inside or both outside° 
Hence 

lcqe(z’Jp)dz = fa; e(Z’Jp)dz = 0° 
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These results prove incidentally that the n functions 
6 ( z , J 1 ) ,  6 ( z , J g ) , . . . , 9 ( z , J n )  are linearly independent of 
each other, and that they are not mere constants. 

If AP, AP are two corresponding points on GP and C 
an d 131,, BE; any other pair of corresponding points on the 
same two circles, and if A P’ ’BPBE; are joined by paths 
tAL; ’BENB which do not enclose any of the circles, 

I3 3) dz around AgzlA'BEfl Pvanishes, since the 111* 
t‘eg-rend is finite and c gamma:pAP at all points within the 
contour. Therefore 

GAMAP- [BNB' +IA'[;B _pP‘[AB>e(ZJ)dZ=0 0- 
p p 9 pp 

Now, if z l , z 2  are the corresponding points on the circu- 
h r a m s  B , A B  

P P  P P 

a 21 + 3 
‘ z + B ; VP: p 

2 2 :  

therefore 

9 ( Z 2 2 J ) =  ( Y  l +6 P)2 9 ( Z 1 , J ) ,  

and 

d = ( s l + 5 P ) - a  dzi; 

therefore . 

9 ( Z 3 , J )  n I 6 ( Z 1 , J )  dZ1o 

It follows that 

[A B 9 ( Z , J )  dZ = JA’B’ 6 ( Z 3 J )  dz, 
P P P P 
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the integrals being taken along the circular arcs, and 
therefore 

P 

33 NB’ “2 ”dz = IA pMA’ 9(Z’J)dz' 
P P P 

Hence the integral 

W (A') 
[A ’P p 6 ( z , J q )  dz, 

where "AI; is any Point on the circle C , and q is equal or 
unequalp to p, is independent of the particular posit.ion of 

' the path varying continuously without passing outside 
tfie fundamental polygon. 

Now let the points A1A{,A2Ag, etc. be joined by lines of 
any form, which neither cut themselves nor each other, 
and which do not leave the generating polygons; and re- 
gard these lines (crosscuts), as well as the circles, as 
part of the boundary of the polygon. In the figure so 
formed, the integral of 6 ( z , J ) ,  when the lower limit has 
an assigned value, is a one-valued finite continuous func- 
tion. Let 

I 6(z J ) dz = a 
A'A ’ P p q qP 

J‘A [A 6 ( Z , J p )  dz = a ,, 

p 9 Pp 

so that the quantities 3P are the constant values 
of the integrals just discusseg. When the variable paths 
between the corresponding points are chosen so as to be 
reconcilable with the barriers A1A1,A2A2,uo. ,  it can be 
shown that 

a = a . 
Pq QP 



326 STANLEY FENSTER 

By now it should be dawning that 6 ( z , J  )dz are first 
Abelian differentials for the domain with the circles ex- 
cised. The first Abelian integrals are given by 

Z ép = f 6(z,JP) dz, 

when J is the center of a generator circle; there are n 
linearEy independent §P(z)° The constants aqp are just 
ithe moduli of periodicy previously discussed. The normal- 
ization here is such that 

n 
§P0w1(z)) - §P(z)  = Zmpni + En. a p=l,2,...,n. 

1 pi’ 

2 - The real part of 2 AR app + ZZZAPKq apq is essentially po 
s1t1ve for all real p- 

The Abelian integrals of the second and third kinds 
are now easily found. In place of Ha(z) = 2%; we put 

_ 838(2) _ . 
be (2-4!)3 

to obtain the series 

' E ————lh———— ‘ ——-——l————— ’ 
(Yiz + 51): (wi(z) - a)9 

aiz + Bi 

w.(z) = ----—‘ , 1 viz + 6i 

which has a double infinity at the point 2 and its homo- 
logues; while the homologues of z = w are not infinities 
of the function. Its integral will therefore be a single- 
valued function, finite and continuous everywhere except 
at the point a and its homologues; at these points it will 
have a simple infinity. This function will be denoted by 
¢a(z)  , so that 

¢a<z> = Ei'wi—ém' W 3 
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where 20 represents the origin of the integration, which 
can be chosen at convenience. We can show by manipulation 
that 

1113(2) =6(a,zo) - 9(a,2), 

and that 

$8 (WP(Z)) - 1118(2) = - 9(8,JP) 

is a constant. Thus, these functions have one infinity 
inside each homologue R1 and R0, are single valued (i.e., 
they do not change when the variable describes a closed 
path which cuts the barriers), and, when one of the trans- 
formations of the group is performed on the variable, they 
increase by integral multiples of definite constants. 

Again the function 

1 1. ,. L '5 
Z (yiz+éi)5 (:wi(z)-a wi(z)-b D 

is .finite everywhere ekcept at a and b and their homo- 
logues, which points are simple poles. If the integral 
from an arbitrary origin 20 is written.§£b(z), then 

(Wi(Z)-a) (Wi(zo)'b ) 

flab“) = E 1°g (wi<z>-b>(wi<zo)-a) 

is an Abelian integral of the third kind, where the 
branch of the logarithm is that which makes 

n a b ( z 0 )  = 0 -  

It is easy to show that 

Qab(zz) - Qab(zl) = n2321(8) - nzazl(b). 

Green's functions can now be explicitly constructed, 
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and we will choose a particularly propitious arrangement 
of generator circles. A given pair of circles cp,c’ , 
will lie symmetrically with respect to the real axis, and 
an extra circle Co will coincide with the real axis. (00 
may be imagined as two circles Co and OJ pasted together 
and mapped conformally on to the real axis.) The genera— 
ting transformations all have the form 

W - a z - a P _ ‘K P 
P W ‘ a fi  z - aé 

where K is real, and ap,a I are conjugate imaginaries; 
and it Eherefore follows tfiat the substitutions of the 
group may be taken in pairs 

or..z + B. Ufa-+13" 
__1__1 a 1 

W1 viz + 6i and W1 a W 

such that a.,Bi,y.,éi and a{,e{,yi,6{ are respectively 
complex coniugate . 

If z , z ’  and a,a' are complex conjugates, so also are 

'2 l I 5 !  '3 
(viz + 51) and (Yiz + 1) 
wi(z) -a wi(z:) -aI 

and therefore also 6(z,a) and e(z’,a’). Now J and J -1 
are in this case complex conjugates, and it ha? been shown 
'that in any case 

6 ( z , J P _ 1 )  = - 9 ( z , J p ) ,  

whence it follows that 

6(z,JP) and -e(z ' ,Jp) 

are complex conjugates. Hence, when 2 is real, B(z , Jp )  
is pure imaginary. 
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Now suppose that z' is any point on C4, so that z 
is the corresponding point on Cq; then 

dz = dr-eifi, dz' = dr e-ié; 

but 
aqz' + ”q 

z = W q ( z l ) ‘  ’ + 6 Yq z q 

and therefore 

q q 

and 

(Yqz' + 6q)3 = e-Zi§ - 

Also,  in consequence of the relation between 2 and 
z '2 

3 ( z , J )  = (Y z l +  5 )2 9 ( Z I , J )  = e-Zi§9(zi,J ), 
P q q P P 

or 

arg e(z,Jp) = -2§ + arg 6 ( 2 ' , J p ) ;  

but, since 9 ( z , J  ) and - 6 ( z ' , J  ) are complex conjugates, 
arg 6(z ,JP)  - n-Parg 9(2’,Jp);P therefore 

arg 6 ( z , J p )  = g - Q. 

The ratio of any two of the functions 6 ( z , J )  is therefore 
real at each of the circles C1,C{,...,Cn,Cé as Well as at 
C 0 -  

The barriers (crosscuts) in this case may be taken 
as straight lines perpendicular to the x-axis; and since 
it was shown that, when 2 and z’ are complex conjugates, 
so also are B(z,JP) and -9(z ’ ,JP) ,  it follows at once that 
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JAq/ Mm <=a~pq> 
is real,  where apq is any one of the n(n- l )  constants. 

Final ly,  since fo r  points on any one of the bounding 
circles, including A0 ,  

n arg  6 ( z , J P )  = 2 - Q 

and 
a r g  d z  = Q, 

the variable part of j 6 ( z , J  ) d z ,  or of  ép,  is a pure ima- 
ginary a t  a l l  the c i rc les .  

Sticking t o  the symmetrical case ,  le t  us f ind  a 
series which will represent ,  in the space external to  
n + l c i rc les ,  each of which i s  external to a l l  the 
o thers ,  a function with a single pole a t  a ,  and whose 
imaginary part  has the Green ' s  function property of having 
constant values a t  the c i rc les .  Consider the function 
Awa(z) + A’war (z ) ,  where A,Al and a , a ' a r e  conjugate imagi- 
naries.  Regarded as  a function of z ,  this expression has 
entirely real  coeff ic ients ,  and therefore wi l l  take com- 
plex conjugate values when z does .  Now le t  A be any 
point on the c i rc le  C s o  that Ap is  the corgesponding 
point on CP. Then, if 

Awa(AP) + A'waAAP) = P + iQ 
A¢a(AP) +A wa,(AI;) = P - iQ; 

but 
«AH-g3. 

AP 3 A +5 * v, p ‘p 
and therefore 

Mae?) +A'¢,(AP) - [M’a(A1;) + A’wamAIQJ = 



DUAL LOOPS 331 

= Ae(a,JP) + A’6(a,’Jp) , 

o r  

1Q = JEAMét) + % A'9(8.'JP). 

I t  fol lowsthat ,  a t  each separate circular bounding curve 
of the generating polygon (fundamental region) ,  the imagi- 
nary part of A¢a(z) + A'llla 1(2) has constant values. 
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FIGURE CAPTIONS 

Region of definition of multiple-valued harmonic con- 
jugate functions; the interiors of C and C are out- 

1 2 
side of D. 

The line L is split into L and L2 where values of v 
differ by a line integral. 1 

Another topological form of the curve of Fig. 2; L1 
and L2 are looped. 

Intersection of crosscuts. 

D is a two-dimensional surface in three-dimensional 
space. This example contains three handles. 

The surface D is severed into B1 and 32' 

B is a sphere with four holes (windows) cut out; its 
3 erographic projection on the complex plane is shown. 
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NEW THEORETICAL MODELS IN 

STRONG INTERACT IONS 





A POSSIBLE PHYSICAL BASIS FOR SOME MATHEMATICAL MODELS 
OF STRONG INTERACTIONS: ATOMS WITH MAGNETIC CHARGES 

A .  0 .  Barut 
Institute for Theoretical Physics 

University of  Colorado 
Boulder, Colorado 80302 

I .  INTRODUCTION 

A physical picture of  strong interaction phenomena 
based on established fundamental entities and their laws 
of interaction, a s  in the case of  atomic and molecular 
physics ,  would be very important and useful ,  because the 
phenomenological or mathematical models of strong inter- 
action-amplitudes have too much freedom in them, and do 
not in general enhance our knowledge very much. There ,  
are in principle no arbitrary parameters in atomic phy- 
s i c s ,  for  example,  whereas abstract theories either con- 
tain enough parameters, or can always be modified to f i t  
new experimental situations. Thus in models based on 
singularities in the angular momentum variable,  or in 
models with symmetry breaking of  abstract symmetry or 
dynamical groups, there are always additional terms that 
one can add, thereby modifying the values of the previous- 
ly established parameters. The phenomenological models 
are undoubtedly not without foundation, for  they contain 
some general features in agreement with experiment. It 
would be therefore of great value i f  these features 
could be derived or understood from a physical  model .  
One should then a l so  obtain necessarily a unifying basis 
of the seemingly very different concepts underlying the 
different abstract models such as quarks, partons, Regge 
poles ,  hadronic matter, e t c .  

339 
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Models for Scattering versus Models for Internal Structure 

It is appropriate to emphasize the difference between 
the two types of modelmaking for strong interactions: 

(A) One postulates models for scattering amplitudes 
(e.g. Ragga-pole models, dual models, additive quark mod- 
els,) and then deduces, eventually, from the systematics 
of all scattering processes the structure of hadrons and 
why they interact the way they do. 

(B) One postulates models for single hadrons and 
their constitutions and then calculates or deduces the 
scattering amplitudes. 

These two approaches should be complementary, be- 
cause one asks in general different types of questions, 
and obtains different types of answers in each case. 

Clearly, in atomic and molecular physics the method 
(B) was, and is, employed. Had we tried to deddce com- 
plicated atomic structures from scattering experiments 
we would have had a difficult task. In hadron physics, 
the quark model and the parton model maybe, at first, 
thought to be of type (B), but this is not quite so, 
becauSe, although one makes a model of the internal con- 
stitution, the interaction between these entities is un- 
known and arbitrary. Consequently, one does not know 
Whether these quarks or partons are really new objects, 
or simply mathematical "excitations" which appear in a 
simple additive form. 

Contrary to some beliefs that one cannot make models 
of hadrons as one makes models of atoms and nuclei, there 
is, we believe, a definite physical picture leading to ex- 
plicit models and where one knows precisely the inter- 
action. Certain fundamental results derived from this 
model and not obtainable at present with any other ap- 
proach, compels one to study further consequences of this 
physical picture. In this lecture I shall point out to 
relations of hadron models with magnetic charges with, 
other approaches discussed at this year's Institute. 
What makes the model even more attractive is the intuitive 
possibility that not only electromagnetic and strong 
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interactions are unified, but also weak interactions can 
also be accomodated into the conceptual framework of the 
theory. 

II. Review of Previous Results 

Several aspects of the model has been discussed in 
detail elsewhere.1 We consider magnetically neutral 
bound states made up of positive and negative magnetic 
charges. Thus total magnetic charge is zero. The two- 
body systems of two spinless particles with electric and 
magnetic charges (e1,g1) and (e3,g3) are characterized by 
two invariants 

‘1 " 3138 + 8182 

H = 5182-3281 = o,*%,* 1, i 3/s,.... 

(1) 

The quantum number p turns out to represent the Spin of 
the ground state. We now summarize the consequences of 
the model. ' 

(1) Spin, charge and Baryon Number 

The first result can be stated as follows: 

(-1)3i - (-1)Q = <-1)B, (2) 

where j and Q are spin and charge of the states of the 
system. Thus, for u = 0 (5min' 0), charge Q must be zero, 
for u = % (jmin= %), charge Q must be different from zero. 
This is a striking simple explanation of the fact that 
the lowest mesonic state n°is spinless and chargless, and 
the lowest baryonic state, j = %, is charged. 

we emphasize the rather unusual fact that, when mag- 
netic charges are present, a Spin % state (e.g. proton) 
can be explicitely constructed out of two spin zero par- 
ticles. 
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(ii) Stability 

We have also the result that n° must be a particle- 
anti particle system hence annihilates into 2y, whereas 
proton must be stable. The quantum number u also plays 
the role of the baryon number. 

(iii) Form factors 

A third simple striking result is that a Spin 
%+-particle made out of £32 magnetic charges (proton) 
has a magnetic form factor of the dipole form as now 
verified up to momentum transfers of 25 (GeV/c)3. 

(iv) Principal quantum number 

The next result is the appearance of a new quantum 
number n to distinguish states with the same spin and 
parity, such as nucleon and N* (1470), both %+. The quan- 
tum number n is the standard principal quantum number of 
the two-body problem. 

(v) Mass §pectrum and Upper Limit for Resonances 

A further result is the explanation of the empirical 
hydrogen-like spectrum of the excited states of the pro- 
ton and the prediction that there are no nucleon resonan- 
ces with masses beyond about 5 GeV. 

(vi) Limitigfi Diffraction Peak for Elastic 
Scattering 

Another result, on the basis of a vector coupling of 
two protons, is the explanation of the sharp diffraction 
peak in the p-p scattering, and the prediction of a uni- 
versal elastic differential cross-section do/dt at s a m 
with a slope at t = 0 of 10.90 (GeV/c)'3 (except at the 
very forward point t m 0, because of optical theoreno. 

(vii) The Constants in the Theory. Further 
Estimates. 

The value of the magnetic charge g is fixed by Eq. 
(1). Consequently, the only parameters in the theory are 
e2 - (137)'1 and the masses of the constituent magnetic 
charges. The invariant a in Eq. (1), is the new and, in 
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principle,  the only coupling constant fo r  the two-body 
problem. Because i t s  value is  now la rge ,  a = ( l 3 7 / 2 ) 3 ,  
the dynamical two-body problem cannot be solved by any 
of the standard methods. The form factor  and mass spec— 
trum calculations c i ted above have been made on the bas is  
o f  global infinite-component wave equations and re lat ivis-  
t ic  dynamical groups in which the s trongly bound two—par-  
t i c le  system is  treated as  a single par t ic le  with internal 
degrees of freedom. Therefore,  the masses of  the magnetic 
charges  a re  no t  known. HOWever, assuming t ha t  the i r  
masses i s  pure ly  electromagnetic,  i . e .  m = g z l e z  me m 
2 . 4  BeV, one can make a number o f  reasonagle e s t ima te s :  
( a )  saturation point o f  resonances = 2mg w 4 . 8  BeV, 
(b) magnetic moment of  the proton N 3 nuclear magneton. 
One has  a l s o  a qualitative understanding of  n° mass and 
l i fe t ime.  

(viii)  Model f o r  Neutron and charged Pions; (n—p) 
mass  d i f fe rence  

Sofar  we have discussed the lowest possible s t a t e s  
n° and p ro ton .  Neutron and charged pions cannot be  b u i l t  
as a simple two-body systems,  because they have the weak 
decays into their ground s t a t e  (proton or n ° ,  resPective- 
1y) with the emission o f  a lepton-neutrino pai r .  Thus 
weak interactions may a l so  be viewed as  a consequence of 
the internal structure of hadrons similar to a-decay. 
Hence one can try to consider models of neutrons and n 
as bound states of the previous basic proton and 11° -struc- 
tures, with is purely electrically charged barons B decay- 
ing into (-5 v )  -pair. The model accounts qualitatively 
for  the propert ies of neutron and charged pions.  The 
e lectr ical ly  charged par t ic le  B can  be t ightly bound t o  
a magnetic moment a t  distances of  the order of  lO ' l acm,  
radius o f  the magnetic charge. Note that in this model 
the n—p ma§;difference (or  n+-n° mass difference) is  not 
purely of  electromagnetic or ig in .  

( ix)  Dynamical Group and Infinite Component Wave 
' Eguat ion ' 

Finally, we mention the mathematical resul t  that  
the two-body sys tem characterized by u ,  (dyonium) has as 
i t  dynamical group the group 0 ( 4 , 2 )  in i t s  unitary 
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representation which is also characterized by H. The 
states in this class of representations are labeled by 
lu;njm >. Note the new quantum number p in addition to 
the usual quantum numbers. In this space of states 
Iunjm > one constructs a conserved current Operator j 
to describe the electromagnetic properties of the model, 
as well as mass Spectrum (see subsection (iii) and (v), 
and Sect.III). The conserved current ju is equivalent 
to an infinite component wave equation. 

(x) Matter with Magnetic Charges 

Table I shows schematically a parallel picture of 
the structure of matter based on electric charges alone 
(ordinary matter), on the left, and on the right, based 
on both electric and magnetic charges, (new matter), 
which we identify with the hadronic and nuclear matter. 
We remark that the magnetic field on the surface of the 
magnetic charge in our model is about 1012 Gauss, the 
same as estimated on the surface of the neutron star. 

III. Implications for Scattering Processes 

The model discussed above gives us now a method to 
visualize hadron scattering processes. We discuss some 
examples. 

(i) Pion Production 

As we have seen pions (and hadrons in general) are, 
in the present model, pairs of magnetic charges with to- 
tal magnetic charge zero. Thus pion production will be 
Viewed as pair-production. The subsequent pair, because 
gtot = 0,can escape the production region. On this basis 
it is possible to account for the energy dependence of 
the average multiplicity and total production cross-sec- 
tion by multiperipheral-pair production calculations.2 
Because pair production is more favored than the ”ioniza- 
tion" of the proton, almost all the energy will go into 
pions. 

(ii) Deep Inelastic Electron-Nucleon Scattering 

In the inelastic electron-nucleon scattering 
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experimentsa 
e + p 4 e + anything, 

one measures the scattered electron only (so-called in- 
clusive reaction). To lowest order in electromagnetic 
interactions, one has thus an excitation of the structure 
of the proton into its excited states, and into possible 
particle production. The cross-section for this process 
gives us information on the structure of the proton in 
the following way: we have seen in previous Section that 
a conserved current operator j describes the form-factor 
as well as the excited states of the proton in our model. 
Because j is known we can evaluate its matrix elements. 
In the inelastic scattering, the cross-section is related 
to the products of the matrix elements of the current. 
Although this process has not been explicitly calculated 
in the model, it seems on the basis of simple-infinite- 
component wave equations, that a satisfactory explanation 
of the experiments is to be expected.‘ 

(iii) "Dual" Propertiesfigf the Scattering Amplitudes 

Consider first e'e'-scattering. The complete ampli- 
tude can be expressed as a sum of photon exchange diagrams 
in the t-channel (e+e'). The resultant amplitude has in- 
finitely many poles in the s—channel, and the amplitude 
can also be expressed as a sum of infinitely many poles 
in the s-channel. But we do not sum t-channel exchanges 
and s-channel poles simultaneously; one can take one or 
the other. This is a type of duality. 

Next consider positronium -positronium scattering. 
NOW in both 3- and t-channels we can have positronium in- 
termediate states, as well as photon lines. Thus, we can 
take, for examples, photon lines in both channels, and ob- 
tain poles in both channel or vice versa. 0r photon 
lines in one-channel and poles in the other. This is a 
quite rich and interesting model to visualize dual ampli- 
tudes.6 In the magnetic charge model of the hadrons we 
have actually a situation close to positronium case ; 
the forces are again of Coulomb-type, but with two differ- 
ences: superstrong coupling constant for the l/r-potential, 
and, in addition, the magnetic vector potential which be- 
comes very strong at short distances. 
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TABLE I 
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Electrodynamics with Electric 

and Magnetic Charges 

Magnetically Neutral Matter 

/ 
(u=0, 

IOrdinary (Electric) Matter 
a=l/137) 

\ 
Magnetic Matter 

(u#0, a=137/4) 

Matter with pure 
electric charges 

H-Atom 

Hg-Molecule 
Chemical Bond 

\ 

Positronium 

agnetic charges and gtot 
LfMtter with electric and 

Dyonium 
(proton) 

Dyonium Mblecules 
Nuclear Bond 

4 

i n , Neutron~IsosPin 
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I. Igggodggtion 

We would like to suggest that the physical properties 
of the existing bosons and fermions are well approximated 
by considering the particles as normal modes of an under- 
lying field theory possessing gauge invariance of the sec- 
ond kind° We envision that at each point in space-time 
there exists an infinite number of irreducible tensorial 
fields ¢”1‘°°“k and Rarita-Schwinger fields yam“ '“k with 
bilinear interactions between fields which are nearest 
neighbors in the Lorentz index space R.1 The gauge invar- 

iance requirements generate these bilinear interactions 
in a natural way, and the fact that the physical parti- 
cles are normal modes allows them to have intrinsic struc- 
ture. In the spirit of the narrow resonance approxima- 
tion to scattering, we conceive of scattering in a manner 
analogous to the "rubber band" interpretation of the Vene- 
ziano Model.2 That is, a particle starts out in a given 
normal mode and absorbs and emits external quanta with 
corresponding excitation and de-excitation of the under- 
lying field theory. The vertices are obtained by postu- 
lating that the external quanta couple to appropriate 
currents inherent in the Lagrangian; that is, the p 
couples to the vector current, the n to the divergence of 

*Work supported in part by the National Science Foundation. 
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the axial vector current ,  and the nucleon to the baryonic 
current. In this way we can give rules for constructing 
N-point functions in the narrow resonance approximation. 
For a system consisting of only the n and p trajectories, 
we show it is possible to construct currents obeying the 
chiral SU2 ® SU2 algebra. 

II¢ ngg Invariance gf the Second Kind as a Generator 
9 i e C on t Field Theories with Bilinear 
Interactiggs . 

Consider the massless spin zero Lagrangian 

L(°)= ;2’Bucp8ucp. (1) 

We notice that L is invariant under the transformation 
m(x)~¢(x)+a, with a constant. This is gauge invariance 
of the first kind. Associated with this transformation, 
there is a conserved current 

() 
j“=§u;“)=flnad” =0 (D 

whose integrated fourth component is the generator of the 
transformation. 

Suppose we ask that L is invariant under the trans- 
formation w(x) « ¢(x) + a(x) (gauge transformation of the 
second kind). ‘Since 5L(° )=au¢a” d(x), We see we need to 
introduce a new field m”, with bilinear interaction 

Lint. = m(5u¢)¢u (3) 

such that 

$e>awm)-%Wum, 
cp -' up + «(20 (4) 

leaving the quantity 

GM E cp + mcpLl (5) 

invariant. 
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Thus L(°>= %(a“m +mcp”)2 is gauge invariant. We 
notice L(°) contains a mass term for w“ , so we must add 
a kinetic energy term. If we add an automatically gauge 
invariant kinetic energy term 

( ) = _ u v _ _ L %(B up 6 wuflauc‘vv Even“) (6) 

the simple replacement 

mAu = mm“ + Bum (7) 

reduces this theory to an ordinary spin one field theory 
for a particle of mass m.3 Also in terms of A“ the gauge 
invariance disappears. If we want to maintain gauge in- 
variance, we instead introduce the symmetric kinetic ener- 
gy term 

-%(B”¢ + a w“)(6 Wm +av¢u> (8) 
or, so that we have an irreducible representation of the 
Lorentz group,‘ 

L‘1)'= -%(6“mv + avw“ - ag“valm*>2 a -<6a“¢v>2 (9) 
where 6 is the symmetric traceless projection operator. 

under 

w“(X) ~ w“(x) - $ 5  “a<x>, <10) 
6L(1)I = - % #85:: Bxaacflx) (11) 

which requires the introduction of a new field muv such 
that 

c‘” a 55“c + mm” (12) 

is gauge invariant. 

Using induction, We generate a Lagrangian with an in- 
finite number of fields m“1"'“k E : 

W=jd4x[k:onkGtvk \Gui.“ vufiaukc‘) u .. .pk_1+akc"v1...vk> 
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_ ;  V o o - V  _‘ 

2nk G 1 k l...,k. (13) 

Here nk=(-l)k, and 651"“5k is the unit matrix of the 
l I I I k  

( k / 2 ,  k / Z )  representation of the Lorentz group. L is in- 
variant under 

V V -—9 + 6 1 . . .  k 0 .6 A 

wul...uk wul...uk Yk HI...uk5v1 ' vk (X) 
if Yk + qk+1Yk+1 = 0' 

This Lagrangian leads to the field equations 

-k2 k+l DWRHMDfi$= kfl wh-(MDfiflww 

"1k 56 cpk- 1 (14) 

Where 5a = %[ a + a m - 8 ml] etc cpl 2 “.c V H 2g LIV x a ' 

and , = u a mv B wuv, etco 

We notice that (k+l)afi is the "bare" mass of the field ck 
and that the source of ck is the field as ‘1 and Bow +1. 
Thus gauge invariance produces Lagrangians with an infi- 
nite number of fields with nearest neighbor interactions 
in Lorentz index space. 

For fermions we want a gauge invariant Lagrangian of 
first order which is to be the analog of Eq. (13). To 
find the appropriate Lagrangian we first replace m by $5, 
(the Rarita-Schwinger field ¢:1"°uk) and consider the 
quantity 

G (15) 
kua _ 6auwka + 0”k 11Jkpoc' 

'(The notation wkua means a field with the spinor index a, 
and with k + l Lorentz indices, k of which are understood 
and the (k + 1)St equal to H.) Since for fermions yU as 
well as a“ is a vector we notice that Gkud is invariant 
not only under 
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wkanwka+lk5auloo.aukua (16a) 

but also under 

wka‘lka+*k5Yulau2---3ukua (16b) 

if k 2 1. Now the quantity 

5V E 5Hf"uk+1 yvk+1¢v1"'vk (17) 
k V 1 ° ‘ ° V k + 1  

is automatically invariant under the second type of gauge 
transformation of the Second kind (Eq .  16b) Since 
6yyA = 0 (y Y has no symmetric traceless piece). There- 
fore the apfirgpriate first order gauge invariant fermion 
Lagrangian is 

L =k21 nkEkvu iaauwk+3k wk“ ) + h.c. (18) 

which leads to the field equations 

i<voéawk + a-avwk)+ 3£Y°Wk+1 

+ nk—n: Ek_1 “wk-1 = o. (19) 

For the boson Lagrangian, the gauge invariance tells 
us that 

5”[6H¢ + almuj - 0. ' (20) 

This implies that the theory contains no spin-zero par- 
ticles. Thus the gauge invariant Lagrangian, while able 
to describe the p trajectory, cannot be used to describe 
the n trajectory. By only requiring that L is invariant 
under restricted gauge transformation (A(x)  must obey 
(E? + m8)A(x) = 0) we can generalize our Lagrangian to 
describe the fi trajectory. Specifically, we consider 
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fl k " , _ k 

L 120 {“LJG Léamk-lflwkflka mk+1>1 g’mkG Gk} (21) 
which is invariant under 

cpk -. cpk + Y1“: 6a(k'j)vj (x) 

if (ma + m3) Vj(x) = o, awj = o (22) 
and a - . j + j + j = o 

(k+l) 

For fermions, we can construct a similar generaliza- 
tion: 

L 121 nkTv‘ky“(1sau¢k+ Ek‘l'kf ifikaxwkw) + h.c. (23) 

“L
 

which is invariant under the transformation 

e j (k-j-l) wk ¢k+lkéYa uj(x) 

if (1Y°3 - m )uj = 0, y.u, = a-u = 0 (24) J J j 
and 2(k+2) (Hi: + Elfin-1+1) - 1m; Ekkifl _(_1.‘ H -1(k)+ggz-)+g) (Mg-+31%. 

The boson Lagrangian leads to the field equations 

k+l _ k-l _ "k k a.G + (”k 1) >3k_laac — ) aka 
1 nk+1 nk+ (25) 

Gk = k-l + akcpk + Bk3°¢k+1 . 

The fermion Lagrangian leads to the field equations 

1Y053Wk + 13°5k  + O-kY°'l’k+1+ i°a°W¥k+2 
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nk-l '- nk-Z - * - = 
+ ”k -l 6Wk-l + 1 nk Bk-Z 66W‘k-2 0' (26) 

III. Mass Spectrum 

In order to determine the mass spectrum We assume 
the existence of a set of normal mode free fields g-j of 

_ N 
mass mN, (Egg for fermions), and Spins j (j+%). These 
fields obey 

(E? + mzNj) Ekj = 0 ; B°¢Nj = 0, 
(27) 

(iY°a - m-Nj) WNJ = 0 ; 6 ' : i  WNj = 0 -  

The underlying fields have the following decomposition in 
terms of the normal modes 

2 {—(Nj)5a(k- j)~aj + b(Nj)6ya(k-j-1) Tan 3' } 
NJ 

The afiNj) are related to the wave functions; 

gamer: <1lN 5‘) obey second order inhomogeneous differ- 
afice equations, Whereas (Nj) and 5(Nj) obey second or- 

.order homogeneous equations. The allgwed wave function 
must be normalizeable, and this leads to the eigenvalue 
equation of the masses mN of the normal modes. The homo- 
geneous equations are j 

2 . g fl 2 - 1  213(N) , N N 
' % NJ (131:1; +1 k+i nk+1 "'nk-15k-1b(-j)+“k°kb( j) 
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mgNj (k'1)(kfl+2)(k+2)E£Nj) ( 2 9 )  

2 (kfi1)3 

+1ak-lakNJ)<njkrfii-C%z>ek 2k 5(Nj) = 0- 
We notice that although the fermion wave 2equation is 

first order,  the mass enters the eigenvalue equation as 
me. Thus the gauge invariant Lagrangian automatically 
leads to Fermion Regge trajectories which are a function 
of m2 and not m, in agreement with experiment. 

By a rescaling of Z and b We can convert both equa- 
tions to almost identicd.difference equations. Letting 

(NJ') _ Bj ~(Nj), “k 519%): Aj (NJ') 
“kbk k bk k Yk+1 

(30) 

- .55, _ E " L1 A _  _ E 
Wlth Bk-l 1 " 2  ’ Bk-2 +2 kAz " 2 ’  

Bk+1 k 
we obtain 

9. ( W  ~J' _1_<.2~j ~J' ' mNJ (k+1)3 bk+1 ‘ 2 bk-l mkbk (31a) 
2 

2 . -NN. (3.12%.). (NJ) =_ (NJ) + (NJ) 
_2‘1 (It-5'1): Yk+l 2 a‘Yk- l kk (31b) 

2 

Where -12‘— “k“k-l in (31a) 
mkmk-l E Mk = l ' Rk-l 

k—fl “k_-1°k-2 in (31b) 
ZFk-2 

In reference 4 Chodos and Haymaker have shown that the 
choice Mk ~ k3 as k_.00 leads to asymptotically linearly 
rising Regge trajectories° 

The boundary conditions on the difference equation 
which lead to the eigenvalue condition are that 
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béNj) - 0 for k < j (origin condition) 

and that the wave function is normalizable, which re- 
stricts the behavior of b NJ as k H w. Specifically, 
using the electric charge matrix element as the norm We 
have for the boson field theory 

<1)c IQ ljc> = 2poaa(p-p ’) (32) 
which implies 

k+3+1LLL 
1:25 2 - (2j+1)!t(k+l)§]3(k 3+1)' 

(N ) (N') b(N ) (N ) a k- (b bk+i Gk J + Bkb J +J1> m ( j) 

For this series to converge, one must take the faster 
dying of the two possible asymptotic behaviors (large k) 
of eqso (31a,b)° If one chooses 

- 1  
I M v 

“30 (n+j°+a) (n+j°+a- 1) (um-0+1) (33) 

for a particular value j of the spin, then the difference 
equations (31a,b) become°analogous to the Laguerre polyno- 
mial differential equation, and one obtains the eigenvalue 
condition 

.|
.\

 

m2 — (N+j° +a) 
N 3 0 :  Y (34) 

'Thus awe find that the Spin jo satellites are evenly Spaced 
in m2 a The mass spectrum depends only on t o  which is a 
function only of the ratio akak- 1 . 

Bk-l 
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IV. Form Factors 

When we write the normal mode fields in terms of the 
gauge fields, we find the expression contains terms having 
an infinite number of derivatives acting on the field of 
spin j H we Thus the normal mode fields are not localizeda 
This is most easily seen by calculating the matrix element 
of the electromagnetic current betWeen two physical par- 
ticle states and showing it is an infinite power series in 
qg. For simplicity we restrict ourselves to the boson 
field theory. Letting m become complex so it describes 
charged mesons, we have: 

L = lie Tlk [Gk+(53‘9k-1+akmk+51<a°mk+1) + h'“' 
- tick]. (35) 

To construct a conserved vector current we consider the 
phase transformations 

-ia -ia 

wk " e CF)k Gk " e Gk 
+ A id + + d iaG+ (36) 

“Pk e q‘k Gk e k ' 
The Gell-Mann-Levy equations are 

. _ 6L , .u _ 33L _ 
' Jp, — Gal-1a .’ BHJ _ 5a — 0 

with m 
.u =;3' +ku +ku _ + ku_ + ku 
3 (X) 2;n (pk—Hgkw Gk mkG Bk‘P } (37) 

Sandwiching ju(x) betWeen the j = 0 physical particle 
state IN j=0 p> and using the decompositions of Eq. ( 2 8 ) ,  
We obtain: 

. s . . 1 ‘ 1  ' L o 

<N J=0 p |J”(x) IN J=0 p> =(E;)—3(pwp u) e1(p p) x 
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”:0 3;; 1) [(k+1)Pk+l(Y) + Pk+1(v)(1- -v)] 
k 

N N (file (“’+ has]: 13 ’ 
where I k+ '8 v = “;LIEB— = coshe, Pkm = V(k+1)‘sinhe (38) 
and 

(N=o) =QEEf> r(k+a) <:= fiOCgi nii (i=oei> 

= . -1 
bIEN 0) = <2k W )  6.30%). 

we notice that F(q=) is a power series in q H-Zm -2p p 
whose coefficients depend on a; as well as BL and not in 
the ratio “k “k-; which determined the mass spectra. Thus 

we can choosg the form factor independently of the mass 
spectra and hopefully there is a simple choice of “k and 
Bk which leads to a dipole form factor as Well as a line- 
arly rising Regge trajectory. The expressions for the 
transition form factors are found in the second of refer- 
ence ( 3 ) .  

V. W W  

We treat electromagnetic interactions by considering 
the photon as an external field which merely causes trans- 
itions from one state (normal mode) of the underlying 
field to another, in the process exciting and de-exciting 
all the normal modes. This excitation gives an infinite 
number of narrow resonance poles in the s and u channels, 
and leads to the narrow resonance approximation to Compton 
scattering (elastic or quaielastic, on or off shell). We 
assume that the external electromagnetic field couples to 
the usual current generated by the minimal coupling hypo- 
thesis. 
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+Fir t e boson Lagragian letting mHe-ia(x)¢, and 
W”¢ e (x we find 

u +kp . j (x)= a; nk(G cpk+6kcp +kq) (39) 
+h.c. + Seagull terms 

-ia For fermions, letting w d e w, W * Eel“ yields 

0 
. -k - kl J”(x) = 21 nk [601! v“) Wk+8k¢kvfl “] + h.c. . (40) 

k: 

.Using as the effective Hamiltonian 

HI = ejnj Ll(x) A“ ext dax (41) 

we find that the expression for Compton scattering to or- 
der e2 is 

<a(k',X’)N'j’s’p’;outlv(k,x>sp;in> = 6fi 
-i(k'x-k'°y) a . 

+ if e3 €u(k,l) €v*(k’,l')jd4xd‘ye 

X <N’j’s’p’lTCju(x) Jv(y))lNJSP>. (42) 
Using the decompositions of Equation (28) we find that 
there are an infinite number of "narrow resonances" in the 
s and u channel corresponding to figure 1. 

e/‘(M ey(k) 
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Since we know the diagonal and off-diagonal ju(x) for all 
qa, we can also calculate W v (and therefore the structure 
functions W1 and vWfi using he fermion current of equation 
(40): 

wuv= églgl<splju(o)lN'j's'pN.> < N'j's’lljv(o)Isp> 

X(2w)a 5‘ (P+q-pN:). (43) 

Since it is likely that we can choose “k and Bk so that 
F(q3) ~ ' and the mass spectrum is linearly rising, we 
should be able to reproduce the successes of Domokos and 
SchoenbergE in obtaining scaling; however here we have a 
real Lagrangian field theory giving this result. 

VI. Strong luggggggign Dynamigs. 

We handle strong interactions similarly to electro- 
magnetic interactions, in that we use external quanta to 
excite the underlying field, with the external quanta cou- 
pling to the various currents inherent in the Lagrangian. 
The prescription for scattering is to treat any one par- 
ticle as the underlying field in a normal mode, absorb 
and emit external quanta consistent with the scattering 
process, with the underlying field being excited and de- 
excited, finally returning to a normal mode state° To ob- 
tain crossing symmetry, we sum over the various ways of 
choosing each particle as the underlying field in a normal 
mode. We postulate that the external quanta couples to a 
current generated from the Lagrangian. For example an ex- 
ternal 0 couples to the isospin current, an external n to 
the divergence of the axial current, an external nucleon 
to the baryonic current. In order to insure that the whole 
trajectory is exchanged, these currents must be bilinear 
in the infinite component fields. To get an idea of the 
structure of these currents, we look at the trilinear cou- 
plings of ordinary field theory, treat each particle as the 
external particle and try to generalize the resulting bi- 
linear object to the infinite component case, In particu- 
lar cases, such as the vector and axial vector currents, 
algebraic constraints (such as chiral SU2 ® SUZ) tell us 
what transformations to make on the Lagrangian to obtain 
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the appropriate infinite component generalizations of 
these bilinear currents. 

Let us first turn to a simple system to illustrate 
these ideas. Consider a world where there are only the n 
and p trajectories; n+p' scattering in that world is ap- 
proximated by p trajectory exchange in the t channel and 
the n trajectory in the a channel. In an ordinary field 
theory, the a channel pole term requires knowledge of the 
Pfin vertex, which is given by 

be u gmea p acpbauwc <44) 
Saying that the external p couples to the isospin current 
implies that 

H =pextjua 1 ”a 4“ .: Eabccpboucpc. (45) § J 

Saying the external n couples to the divergence of the 
axial current is equivalent to 

ext Auc ; Auc=_€abc u H =-auoe p a¢b° (46) I 

To obtain an expression for n+9- scattering in the narrow 
resonance approximation we first have to write down a Lay 
grangian which will yield a set of normal modes with quan- 
tum numbers, masees and form factors appropriate to the 
particles on the n and p trajectories. Then we will have 
to generate currents which are the appropriate general- 
izations of the V“1 and Aui of the equations (45~6). Fi- 
nally, to calculate the scattering amplitude, we must 
treat each particle in n+p' 4 "*0" as the underlying field 
in the appropriate normal mode and absorb and emit exter- 
nal n' s and p' s ”with the effective interactions given by 
H1- -aum383t A“a and H1=p§eXt Vfi. This produces the gen- 
eralized Feynman graphs of Figure 2. 

To describe the family of pa icles on the n and p 
trajectories, we use the fields ,where a is the iso- 
‘epin of the trajectory (a- 1, 2 ,3) aand'n W 3 1) is the nor- 
mality of the trajectory (parity - (- l)w and is zero 
for the p trajectory and l for the n trajectory. The 
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ensuing Lagrangian that describes both the H and p trajec- 
tories is 

_ m k an n an n . an 
L ‘kZo “kc an [Gamk-lwkmk + Rk3 “’k+ 

Ag GE” ]. (47) 
We probably want to choose Bn=0 = 0 to descibe the p tra- 
jectory. We construct currents in the usual way. For 
the vector current we let 

cPa " (pa + Eabcl‘bwc (48) 

p. = _.5L =_°° k—lu k 
Va Mesa A3 2t) “k (G x Cp191%kx 9° u) ' (49) u k— a 

Similarly letting - 

cPa ‘ cPa + 

0 1 
with eflfil = (l 0 exchanging n and p fields we find 

u = _°° k-lu n 11 kn 
Aa k; “k {G e x ‘Pk-l + Bk Gk em. X “’n‘h. (51) 

eabcAbecpc 

To demonstrate that these currents satisfy the chiral 

SU2 ® SU2 slgebra, one merely notices that 

v? = nk x ‘ (52a) Z( M 
A: = Z (nke x ‘91:) (52b) 

a 

where nk is the momentum canonical to ¢k° 

Thus [vim , v‘3<y)]xe=y° = ieab°vo°65<x-y) (53") 
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b - 

[V§(X) , Ao(Y)Jxo=y° = ieab°A§53(x-y) (53b) 

[A§(X) , A2(y)]x°=y° - iéab°V§63(x-y). (53C) 

Using our rules for scattering, if we want to do 

+ - + - n (P1) + 0 (Pa) * fl (pa) + 9 (94) 
we first let the underlying field start in the n+(p1) 
state and draw all possible diagrams. We get the four 
diagrams of Figure 2A. Figure 2.2 for example is given 
by 

A“ g (231 4 4 'i(Pa°X'Pa'Y) 
(2n) 499202930 Id Xd y e 

x<p‘<p.), n=0,j=1,>~|T(Vf1') (x) ,aVAV“) (y) In+<p1>,n=1,j=0>. 
(54) 

The matrix elements of VH and Au are generalizations of 
equation (38) and are to be found in reference 3b. Choos- 
ing the other particles as the underlying field in a nor- 
mal mode, we get four more diagrams - Fig. 2.5 to 2.8 .  
We notice there are four s-channel and four t-channel dia- 
grams. If at the 8-point function level we impose factor- 
ization, this will probably tell us that not all diagrams 
are independent, and a careful counting scheme will be 
needed. It is not difficult to see that all the graphs 
except for the triple Regge vertex can be generated for 
the N-point function. 

In this framework, unlike the Veneziano model, the 
problem of quantum numbers preSents little or no diffi- 
culty. Thus it is just as easy to calculate n~P elastic 
scattering (at n+P e p+P etc.) as it was to do n‘o+ 
scattering. 

For simplicity let us restrict ourselves to a world 
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Where there are only the n, p and Nucleon trajectories. 
A Lagrangian describing the particles in that system is 
given by 

_ “9 m‘ — u i ‘ i L — L 1; uki (iaauwk + akwku 

i=l,2 

+ 1 8  
A . 

ka him“ h.c. (55) 

where i = 1,2 corresponds to the isosPin index of the 
nucleon a a is given by equation (47). The Lagrangian, 
Eq. (55) determines the masses and electromagnetic form 
factors of the particles; it also contains the currents 
which are the generalization of the pole term currents. 
Once we have the currents, we can calculate N point func- 
tions from our Set of rules. 

The field theory pole terms are the neutron pole in 
the 3 channel and the p°pole in the t channel. We inter- 
pret these pole terms two ways and generalize: 

fiy Y 3; we“; = Ku-a $ (56a) 
H s 2 U- 

_ .uon 
or (NYHDaJml (56b) 

— p‘ -3 0-4 A “  -) N . N Y  % PM = V 9“ (57a) 

- .ua or (MunTT=0 (57b) 
a“ X 4 0 6  —p —D o—ou 

(9 cp) “up = 9Ll V (58a) 

or au$~X“ (58b) 

To obtain the infinite component generalization of 
the nucleon contribution to the vector and axial vector 
currents we consider the transformations 

line 
'16: ° ?/3¢ _ _ eia°:r./2 

sw-wl! 
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and a e-ia-T/ays ;‘W *IE e-ia-T/gys (59) W 
and find 

_ a — —  v: =2 k [5(wkv“) :— wk + Bk‘l'kyki; ¢k1”]+ h.c. 
2 

a _ _ a 
A: = 2 2i [5(ku) YELZ' ‘kk ”JUNE—T3 “0“] + h-co 

(60) 
These are the simple generalizations of the usual vector 
and axial vector currents, and obey the chiral 

To obtain a simple generalization of 

= T I 5m 31(sp)aaum+go (z [9&9H (61) 

We consider the set of transformations 

Rx)» i<x>+f<xn Tim) + “Rum Tim) “’11 “’n 717' 117 _ 
(¢}(x) is hermitean). 

i . _, + - T '1! (X) MK) 1 lei—2.15 (X) cpi n 
_ _ - i 

-O - T MK) M1!) 1 £00 1117mm (62) 

here f(x) is a spinor in isospin and Lorentz Space and kn 

is a.Dirac matrix defined to be {3°I If n = 0 
gzvs if n = 1. 

These transformations lead to the following expression 
for the baryonic current: 

1: =5au§:(x) =z nk{ak-1u'<§inwk-l>a+fikah'nnwku>a 
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“PKG Anf’wul’kylx + E’16" k“ (2% Mullah}. (63) 

This is a natural generalization of Eqs .  (56b, 57b).  

Now that we have the appropriate vector, axial vector 
and baryonic currents, we can calculate n-p ~ "5p scatter- 
ing in the narrow resonance approximation in the world 
where there is only the nucleon trajectory in the s chan- 
nel and the p trajectory in the t-channel. Specifically 
we get the diagrams of Figure 3 .  (Dashed line is exter- 
nal n, coupling to A““ andrsolid single line is external 
nucleon coupling to jm , the baryonic current). 

For example, Figure 3b is given by the expression 
ME. 15;“ -i(-k1x pay) 

[ (  Md‘x‘d‘ye [Zkio fpao/m 

x<n‘<k2)N=o,j=o, n=1 ITCaAAHx) .jmm |n(px) ,N=o,j=%. b. 
(64) 

We hope in the future to  f ind  out which a k , 6 k  lead to 
dipole-like form factors ,  and then evaluate these express- 
ions numerically. 
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Fig. 1. 

Fig.  2. 

Fig. 3. 

F. COOPER AND A. CHODOS 

Figure Gaggiggg 

Compton scattering with the exchange of a Regge 
trajectory. 

Diagrams Contributing to n+p' scattering. ‘TwO 
particles (dashed line for the pion, wavy line 
for the p) are considered to be external quanta, 
while the other two are projected out from the 
appropriate currents. The shaded line denotes a 
propagating sum of normal modes; the value of n 
is explicitly given for each diagramu 

Diagrams contributing to nrp elastic scattering, 
Dashed line is external w’ coupling to A“, and 
Solid single line is external proton coupling to 
the baryonic current 5““. 



369 GAUGE FIELD THEORY 
.¢

. 

A
N

V
 

“
m

a
v

m
 

<
N

 
8

8
w

:
 

fi
c

a
v

m
 

A
¢

v
 

a
n

y
 

A
N

a
v

m
 



CHODOS COOPER AND A .  F .  370 
A

m
y

 

“
m

a
v

q
.

 
“

E
v

h
/

 

A8 
m

e
n

 
3

:
1

 
I 

_ 
O

§
§

 

A
¢

a
v

m
 

m
N

 
o

u
s

w
fi

m
 

A
n

y
 

A
m

y
 



GAUGE FIELD THEORY 3 7 1  

A 
a A 

v ‘U 
V 

m 

‘9’ 
b0 

2 N N x a :2 
\ \ 

T? T: 
\ 

,- 

A A 

U 0 
V V 

N 
n. 

I — 



372 F .  COOPER AND A.  CHODOS 
“

a
v

 

A
p

v
 

I
C

E
.

 

_a A
w

.
u

a
0

0
v

 
m

 
m

a
g

m
a

;
 

a
n

y
 

.3
 



GAUGE FIELD THEORY 373 
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INTRODUCTION TO THE CHARACTERISTIC INITIAL VALUE 
PROBLEM IN QUANTUM FIELD THEORY.T 

G. Domokos 
Johns Hopkins University 

Baltimore, Maryland 21218 

Introduction: 

The purpose of these lectures is to give a brief in- 
troduction to a new approach to quantum field theory. 
The physical motivation comes from an attempt to formulate 
the intuitively appealing "parton"-models and "additive 
quark models" in a consistent way and - if possible - to 
extend them to a full dynamical scheme. The method it- 
self is known in the classical theory of partial differ- 
ential equations (e.g. the equation of the vibrating 
string is solved by specifying initial data on character- 
istic lines). In the general theory of relativity, this 
method has been widely used to study gravitational waves. 
Quantum electrodynamics has been studied in this frame- 
work by the Stanford and Syracuse groups. Last but not 
least, it should be mentioned that the precursor of this 
method has been uSed under the name of "infinite momentum 
technique" (Cf. S.L. Adler and R. Dashen, Current Algebras, 
Benjamin, New York, 1964, where also the original papers 
are reprinted and S. Weinberg, Phys. Rev. 159, 1313 
(1966).) 

These lectures are divided into the following chap- 
ters. 

1. Intuitive considerations. 
2, Elementary theory of characteristics. 
3. Kinematics, spinor technique. 

fResearch Supported in part by the U.S. Atomic Energy 
Commission under Contract No. AT (30-l)-4076. 
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4. Some elementary properties of the character- 
istic initial value problem (CIVP) in quantum 
field theory; physical interpretation. 

5. Lightlike quark model. 

1. 

Electron and neutrino scattering experiments at 
SLAC and at CERN can be interpreted "as if" the nucleon 
consisted of elementary constituents, or partons. (Cf. 
R.P. Feynman, Phys. Rev. Letters, g;, 1415 (1969) and the 
recent review: S. D. Drelland T-M. Yan, SLAC-PUB-808 
(1970). The now-standard argument is somewhat similar in 
spirit to the old Weizsacker-Williams method. Imagine 
that I view the electron scattering process from a refer- 
ence frame where the nucleon is moving very fast (ideally 
with the velocity of light, although this situation can 
never be achieved for a real physical system). L; (and 
that's a big if!...) the nucleon is composed of something 
else (Feynman's partons?) then in this frame the nucleon 
appears as a "beam" of the constituents, all of them 
moving with approximately the velocity of light in the 
same direction. (Internal motions of the constituents 
should not matter much in this frame.) Therefore, accord- 
ing to the well-known argument, the inelastic scattering 
cross section of electrons on the nucleon appears as the 
iggghgggng sum of the elastic scattering cross sections 
on the constituents. There is another (hopefully related) 
picture for haggggig reactions, the addigiyg guark model. 
(Cf. J.J.Jo Kokkedee, The Quark Model, Benjamin, New York, 
1969.) Again aSSume that hadrons consist of "elementary 
constituents" (this time cell-Mann's quarks) and that at 
high energies a "real" hadron can be represented as a 
beam of the constituents. This assumption (and a few 
more technical ones) lead to the remarkable "quark count- 
ing" relations for the total cross sections at high ener- 
gies. Typical of these is: 

‘_" 

(OnN)2 _ cm‘rUNN (E n ”L 
which (if one believes in the extrapolation of measured 
nn cross sections...) is quite well satisfied. The quali- 
tative Success of these pictures is quite remarkable. 
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However, it raises a; least two important questions. 
(These two only under the assumption that these qualita- 
tive pictures have something to do with reality. For 
example, quarks "exist" in some sense...) 

a.) Can these pictures be reformulated in a Lorentz- 
covariant way? If the pictures are realistic, 
the "infinite momentum" frame should not be 
essential. 

b.) Other models, based on the physical assumption 
that the nucleon is a strongly interacting system, 
have been at least as successful ‘as the parton 
picture. (Cf. G. Domokos, S. Kovesi-Domokos and 
E0 Schonberg, NAL preprint THY-12, 1971 and re- 
ferences quoted there.) Can these-seemingly 
contradictory-assumptions be reconciled somehow? 

We claim that the answer to both questions is in the 
affirmative. (Cf. in particular reference 11)). Presum- 
ably, hadrons can be described by fields. In order to be 
able to formulate a field theory adapted to the spirit of 
a parton picture, we have to overcome several problems. 
Any quantum field theory has to be supplemented with a 
particle interpretation of the fields (usually stated as 
an asymptotic condition, or naively - i.e. apart from the 
delicate problem of wave function renormalisation constants 
-by stwbdng the field theory in the formal limit of van- 
ishing coupling constants.) In a conventional field theo- 
ry, one identifies essentially the Fourier coefficients 
of the free fields as particle creation and annihilation 
operators. The corresponding particle states can be 
transformed to rest by a finite Lorentz transformation. 
In a spaceetime description this corresponds to specify- 
ing the initial condtions on a spacelike surface, say x° 
= const. If, however, I want to construct a field theory 
of'bartons", I have to specify free “particle" states in 
a reference frame moving with the velocity of light. 

fined cannot be transformed to rest by a finite Lorentz 
transformation even though they may carry a rest mass 
parameter. Hence they cannot even be observed as "ordi- 
nary" particles. (Refs. 6),7).) What initial conditions 
does this picture correspond to? Try to generate_the 
"lightlike" frame as the ligig of ordinary Lorentz 



378 G. DOMOKOS 

frames,  and imagine that in some frame I gave the initial 
conditions on a surface x° = const. Now "boost up” in - 
say - the 3-direction. Then the "new" time-coordinate 
will be: 

x°’ = cost° - sinta ~ g2 (x° - x3) (8 n on), 
2 

where - of course - tanhe = v. Thus as v n 1 the plane 
X°’=const. asymptotically approaches a plane with a ligggy 
like normal and we must face the problem of specifying 
initial values on Such a plane. It is immediately clear 
that one cannot prescribe initial conditions quite freely 
on Such a chaggctgrisgig Blfiflfiz since it contains a light- 
like direction (in our case, x *x3) and thus signals can 
propagate in the plan . 

We shall See that in fact there are Eggstraints 
among the initial data if we want to solve the Cauchy 
problem with the initial data specified on a characteris- 
tic surface. In the next chapter we briefly summarise 
the relevant facts from the theory of partial differential 
equations (PDE). (No attempt is made at any mathematical 
rigor.) 

2'. 

Given a PDE in l+n-dimensiona1 space, (where I shall 
call the (n+1)at dimension the time, t,), the Cauchy- 
pgghlgm is the following. I prescribe the function(s) 
and an appropriate number of their normal derivatives on 
some surface (e.g. a plane) as igitial data. Find the 
function(s) satisfying the PDE and the initial conditions 
everywhere in the l+n dimensional space. 

Does this problem always have a solution? The method 
of answering this question goes back to Cauchy. 

In order to simplify matters, take n = l and let the 
coordinates by xk (k=l,2). Consider a PDE of 2nd order, 
linear in the highest derivatives. Its general form is 

. ,_ aiku’ik = Q (‘1’ u’i’xi). (2.1) 
1,k‘l,2 ' 

where the aik are constants, and i313 some (smooth) func- 
tion of its arguments. (Also, u’i esgi, etc.) 
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Now, I prescribe u and u,i(the function and its first de- 
rivatives) on a curve, C. Try to solve the Cauchy pro- 
blem. In principle, I can find the solution as a power 
series. I have around C: 

du,1 = u 1 1 d X i  + u 1 2 n  
3 , 

du,2 = u , 2 1 d x 1  + u , g n 3  ( 2 ‘ 2 )  

The £hs of ( 2 . 2 )  is known by definition on and around C. 
Now (2.1)  and ( 2 . 2 )  gives a system of linear equations for 
u,ik (and by differentiation I find similar equations for 
the higher derivatives.) 

Clearly, eqs. (2 .1)  and ( 2 . 2 )  have a unique solution, 
if the determinant 

all 2312 age 

D = X n 0 $ 0 ( 2 . 3 )  

O dxl dXz 

If - a piece of - C is such that D = 0, the Cauchy problem 
as stated has no solution. (For example, there are re- 
strictions among the initial data.) Such a C is a ghégggr 
Egristig surface. 

Example. Wave equation in two dimensions: 

all = 1, a12 = 0, a22 = -c'2, Q = 0. 

From ( 2 . 3 )  we find the characteristic Surface: 

D = (dx1)2 4 %. (dx2)8 = o, i.e. 
dx1 = i % dxz (the two branches of the "light cone" in 
tw0 dimensional Minkowski space)o Similar procedure can 
be used for systems of partial differential equations; for 
details the reader is referred to the literature, eug. 
ref. 1) 

Exercflas, 2.1) Find the characteristic surfaces of 
a Klein - Gordon equation in an external electromagnetic 
field: 

HV _ .  . _ 2 = [g (an 1eAu) (av+leAv) m 1 Q 0 
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292) Find the characteristic Surfaces of the 
Dirac equation in an external electromagnetic field. 

2.3)  A spinless particle is coupled to an ex- 
ternal tensor field, HW° The system is described by the 
Lagrangean density: 

L = %(¢,H@’“ + mzéz + g§,ué,v HUV) 
(g is a coupling constanto) Find the characteristic sur- 
faces of the resulting equations of motiono 

In what follows, we shall be interested in character- 
istic planes (since they can play the role - in some sense 
- of a surface on which Cauchy data can be prescribed. In 
a "decent” relativistic theory these are planes which are 
tangent to the light cone° We shall not consider patho- 
logical theories (involving couplings with high deriva- 
tives, like the one in Exercise 3) above.) 

3 .  

In order to investigate the characteristic initial 
value problem (CIVP) further, it is convenient (although 

no; neggsgarx - contrary to some statements made in the 
literature) to introduce a basis in Minkowski space which 
is adapted to the surfaces chosen. Let us choose a sur- 
face x° - x3 = const. to specify the initial conditions on, 
and correspondingly, I use as coordinates: 

xt E t — %§ (x° - x3) 

xz E z = fig (x° + X3) (3 .1)  

i = {x1,x2 
Notice that in this basis the nonvanishing components of 
the metric tensor are: 

= gik - 5- i k — 1 2 glk 1k ( , , ) (3.2) 

gzt _ gtz = t tz = ’10 = g 

Thus the scalar product of two vectors, say X“ and yLl are 
written as follows. 
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x.y xk Yk + xz yz + xt yt 
(353) 

k k ' s t ' x t  

If - as usual - I want to characterise a momentum vector 

by its was; components, (3, P2 5 k. Pt E h). then. 
for example, the mass shell condition, 

pup“ + m’3 = 0, 
can be written as 

h = (3.4) 

It is also easy to check that the various volume - and 
surface elements used in Minkowski space become: 

d‘x = d2}? dz dt = dcz dt, (3.5) 

where dcz is the (vectorial) element of the Surface 
t = const. 

d‘p 9(po) 6(93 +m9) 
(3 .6 )  

= dzfi are (k) 6(h - 33...+__‘“.a ) dh 
2k 2k 

Let us now write out the generators of the Poincaré 
group in this "lightlike" basis (L-basis). 

The generators are: M (homogeneous Lorentz trans- 
formations) and P (translations). The subscripts u,» 
now run through tfie values 1,2,z,t. Introduce the nota- 
tion: 

Mik = EikM , Mzt = N 

Mzi = E1 : Mti = F1 (3-7) 
P2 = K , Pt = H 

Here 61k is the Levi-Civitd tensor in two dimensions 
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(612 = '621 = 1, 611 = 622 = 0). 

In the notation (3 7), the gggggg;§_;gg commutators 
of the Pbincaré generators read as follows: 

EM, E1] = i EijEj EM, F1] = i eij F j 
[N, E-] = -i E EN, F.] = F- 

1 i 1 1 (3.8) 
[Ei, Fj] = -i aij N + ieij M 

[Ei, Pj] = isi [Fi, Pj] = iéi 

[F i, K] = i P. [E i, H] = 1 Pi 

[N, K] = i K [N , H] = i H 

All other commutators vanish. Notice in particular that 
M Ei P. N generate the two dimensional Galilei group 
with 1dildtions° The operators H and K play the roles of 
the "Hamiltonian" and "mass operator", in this Galilean 
kinematics, resPectively.6 (There is another, "complemen- 
tary" Galilei group, generated by M,Fi,P ,Na. The rBles 
of H and K are interchanged.) Thus in tge traggversg 
space (the kinematics is’"nonrelativistic", i. e. governed 
by a Galilei group. 

The remarkable fact about an L-basis is that one can 
introduce spinor-projections corresponding to the light- 
like directions. Indeed, on introducing the standard 
Pauli-matrices in the L-basis, gig. 

a 0 - 1 ‘  Glab = (g 3) ozéb = (i o 
. / A (3.9) 

ozab = Q o o) atab = (_n /2 , 

one immediately verifies that 

u = ° uéb V 531 gb ° (3.10) 
is a null vector. (Indeed, vuv” = §é§é §b§b = 0). Hence, 
a null vector can be characterised entirely by a spinor. 
(The overall phase of the spinor is arbitrary; a spinor 
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contains "more information" than a vector, cf. in parti- 
cular ref. 5). Thus introduce two spinors, 5a, ”a. cor- 
responding to the two conjugate lightlike directions in 
the L-basis, with the phases adjusted in such a way that 

:8 fia = 1 (3.11) 
Then one verifies that the bilinears: 

Fab = 5a n" , Qab =-na 5" (3.12) 
are orthogonal projectors, i.e. 

b b b 
= Pa 2 Qab c = Qa 

Pac c = Qac Pcb = o (3.13) 
b b b Pa + Qa a 6a 

Pac Pc 

(The phases can be so chosen that Pabs Q h are Hermitean 
matrices). Analogous projectors, say PAb, can be con- 
structed by taking the complex conjugates of the spinors 
5a, na. Hence I can construct projectors for spinors of 
higher rank. In the case I want to include reflections, 
I have to "double" the spinors in a well-known way. For 
instance, the Dirac spinor, W, is the direct Sum of two 
spinors transforming according to the representations 
(%,0) and (0,%) of SL (2,0): 

ua > 
¢ = (V,. 

gggggigg. 3.1) Verify that the projectors acting on a 
Dirac spinor, which correspond to the t and 2 directions, 
are: t 

Pt = av, Y = -%Yt Yz 

Pz = %Yz Yz = -%Yz Yt 

respectively, where Y (H = l,2,z,t) are the uSual gamma- 
matrices in the L-ba31s: 

{ Y u  , Y V }  = Zguvo 
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(Hint: use the Van der Waerden representation, with Y5 
diagonal.) 

3.2) Construct all the possible projectors for 

a) a four-vector 

b) an antiSymmetric tensor. 

(Note. A concise introduction to spinor calculus can be 
found e.g. in the first chapters of D. R. Corson: "Intro- 
duction to Tensors, Spinors and Relativistic Wave Equa- 
tions", Blackie & Son, London., or in ref. 5.) 

4. 

We are now ready to discuss the CIVP in quantum field 
theory° As a warming - up exercise, consider a simple 
classical equation: 

(-El+m3) i = 0  

for a free, spinless particle. In the L-basis I have: 

-|:l -akak + zazat , 

where - of course - 5k a EQE‘, etc. This equation is of 
first order in the normal fierivative of the characteristic 
surface t = const. (Cf. Exercise 2.1). Hence, if I want 
to solve a CIVP by giving initial values on - say - t - 0, 
I may Specify “iv-,0). M29; at§(i°.Z.0); the amber. 
i m w m m m g m m m m  "or - 
nary" Cauchy problem, 

Now integrate this equation with respect to 2. Let 
g(z)  be such that 

328(2) = 5 ( 2 ) :  (4-1) 

For example, 
on 

g<z> =9 (2) -.l_ jar fl_ (4.2) 
2H1 -¢ T-io 
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or 

g<z> = %e(z) - __l__ P dT £313. (4.3) 
‘2ni -‘ T 

Then I get 

at§<£.z,t> = a<akak - m9>I:z’g<z-z'>§<2,z’,t>, (4.4) 
which can be Solved trivially (e.g. by a Laplace-Fourier 
transformation.) 

The lesson to be learned is that the solution of the 
CIVP is ggbéggggg, since I could have chosen either (4.2) 
or (4.3) in obtaining (4.4). This ambiguity is the con- 
sequence of the fact that signals can propagate in the 
Surface where I specify the initial data. Later in this 
chapter I shall show that by invoking an additional phy- 
sical requirement the choice of g(z) becomes unique; the 
correct choice is (4.3), which corresponds to a "standing 
wave" in the surface t = const. 

If we are dealing with relativistic field equations 
for a multicomponent field, there are further restrictions 
on the characteristic initial data. Such equations can 
always be written in terms of spinors. Consider the ex- 
ample of a Self-interacting field, transforming according 
to the representation (n/2,0)€£K0,n/2) of SL(2,C), and 
thus described by the pair of spinors: 

uai....an, vb14'°bn, 

where u,v are symmetric in their indices. The field 
equations can be written in the form: 

Baa: ua1,...an + F‘1 ag,...an (u,v) = 0 (4.5) 

B W]... + G. Ban-ubn (W = o. 
where F, G are (uSually algebraic) spinor functions of the 
fields u,v; the spinor differential operator 33b is given 
by: 

88b = 61(51k + 025.1) 52 + Utah at (4.6) 
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Now consider the project ions,  

(t) _ b1 
u a l o o o a n  _ P t a l  

n o  , 

bn 
t o o - P t a n  ubl b 

. 0 0 . ,  n ,  

etc. of the fields. 

Now we have the following 

Lemma. The equation for u(t) (u(z)), does not 
contain the derivative az (at), respectively. 

Proof° (trivial). Use (4.6) and notice that 

at = /2 Pt, 

CZ = /2 Pz 

(projectors in the lightlike directions, provided the 
phases of the spinors §,n are adjusted appropriately.) 
The relations 

PtPZ + Pt = 0, 
proved in the last chapter give the statement, Q.E.D. 
The significance of this lemma is that the ”z-projections' 
of the fields do not satisfy an ”equation of motion" 
(since they do not contain the "time”-derivative), hence 
they give ggnstrain s between the initial data on the 
planes t = consto 

Exercise 4.1.) Verify these statements for the free Dirac 
equation, both with two- and four-spinors. (Use the re- 
sults of Exercise 3.1.) 

Can the CIVP formulated and solved (apart from the 
ambiguity in (4.1), which I promised to resolve) for 
every field theory? The answer is NO! 

Theorem. The CIVP is undetermined for field 
theories containing gggfiigg fields of spin higher than %. 

I am not going to give a ”general proof" of this 
theoremo It can be constructed by using a spinor formal- 
ism as indicated in eqso (4.5)o At any rate, one has to 
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be careful not to construct field theories which have 
”pathological" characteristic Surfaces, see Exercise 2.3. 
This last restriction already excludes most of the high- 
spin field theories one would like to construct. Never- 
theless, the theorem is not empty, as shown by the follow- 
1ng 

Egample. Consider a free, massive field of spin one. 
(For a change, I use not spinors, but the more convention- 
al vector formaliSm.) I take the conventional Lagrangean 
density: 

= ”V 2 H L fi t  -Fu A fi ,  ( 4 J )  

FHA) = aHAV - aVAu"  

Since the field is massive, the Lorentz condition 

akAk - azAt - atAz = 0 (4.8) 

is a consequence of the field equations (in a quantised 
theory it holds as an operator equation.) 

In the L-basis the expression of the Lagrangean be- 
comes: 

L = % [akAiakAi - zazAiatAi - 2akAzakAt 
+ zatAzazAt - akAiaiAk + azAiaiAt 
+ atAiaiAz + akAzatAk - (atAz)2 

+ akAtazAk - (azAt)a + “PAkAk - 2p?AzAt] (4.9) 

The component At does not satisfy an equation of motion 
but a constraint. In fact, variation of ( 4 . 9 )  with respect 
to At gives: 

akakAz ' azatAz "azarAr 

+ agAt - uaAz = 0 
(4.10) 

Using (4 .8 )  and (4 .10 ) ,  ( 4 . 9 )  becomes: 
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L = % LakAi akAi ' akAi aiAk + (59102 
- 252Ai atAi + uBAkAk] (4.11) 

+ ak (AZ a t  Ak) 

Hence,  f o r  example, the  canonical Hamiltonean (with r e -  
spec t  t o  the planes t = c o n s t . )  does not  contain either 
A z  or A t '  Therefore the dependence of these components 
on t is not determined. I know, hOWever, that f o r  the 
descript ion of a massive spin-one par t ic le  I need 3 dy- 
namical variables ( say ,  Ak and A Z ) .  The light-like f o r -  
mulation "loses" the longitudinal component as a dynami- 
cal  variable.  (Had I considered an interacting f i e l d  
theory, I would have found that AZ is expressible through 
Ak and with the components of the source of A“,  hence 
again i t  is not independent.) 

a )  This loss of dynamical degrees of freedom has a 
c lear  intuitive meaning. I indicated already that the 
CIVP has ”something to  do” with infinite momentum frame 
considerat ionso (The exact connection wi l l  be  c la r i f ied  
by the result  of the next Exercise .)  In a lightlike 
f rame a par t ic le  has i t s  sp in  completely aligned along 
the direction of motion. In the case of A this corres- 
ponds t o  the components H 

A3: = J (A15: 1 A 2 ) .  
/2 

The semiclassical probability of having a zero spin  pro- 
jection is z e r o ;  this is r e f l ec ted  in the disappearance 
of the longitudinal components f rom the Hamiltonean. 

b) There is obviously no d i f f i cu l t y  with gasslgsg 
f ie lds  of higher spin,  s o ,  f o r  example, the CIVP f o r  
scalar and spinor electrodynamics or f o r  the gravitation- 
a l  f i e l d  is O . K .  However, f o r  example a quark model with 
vector gluons is in t rouble.  

Eggggigg 4 . 2 . )  (Connection with the infinite momentum 
frame technique.).  Show that if there is a multispinor 
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field given (not necessarily irreducible), say ua ,....,an, 
the various possible projections with the projectors Pt,Pz 
form "eigenvectors" of the spinor representation of the 
operator N“, In particular, 

Pt ® Pz ® ... ® Ptu, (M factors) 

P 8 P 8 --- ® P u (n factors) 
Z Z Z 

are the projections corresponding to the highest (lowest) 
eigenvalues, and hence they are the "surviving" field com- 
ponents in an infinite momentum frame moving in the posi- 
tive (negative) 3-direction. 

In the remainder of this chapter I shall consider a 
free Dirac field: this will be sufficient to illustrate 
the procedures. 

Use a Lagrangean formaliSm, and introduce - for the 
sake of convenience - separate notation for the project- 
ions of the Dirac field, W: 

‘ 3 9 : t  , X = P z ¢ o  

Now rewrite the conventional free Dirac Lagrangean: 
-(a - 

Lo = % W 5 ¢ + mWW, 
in terms of o and X. Using the result of Eggggigg 3.1 
and the fact that yz, Yt are nilpotent: 

Yzz = Yts = 0 ,  

one gets: 

. + (9 .r (-5 
L0 = -:%f { ¢ Yt (m + % Yk 6k) x + X yz (m+%ykak)¢ 

‘s e» " + + + co atco + x 32x} (4.12) 

Variation of (4.12) with respect to X,X+ gives the con- 
straints: 6L 

1/2 —5x‘.r. - azx + 9§¥z (m+Yk3k)¢P = 0 (4.13) 
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and its Hermitean conjugate. Using (4 .1 ) ,  the solution 
of (4.13) is found immediately. One can thus eliminate 
X from (4.12) and obtain the action in terms of the in- 
dependent field components. One finds: 

wo Id4x L° 

Ida; dzdz’dt {w+(z';gtw(z) 5(z-z') 

w+(Z')(m + gkvk) g(2'-2) (m + Yégr)¢(2)} + 

+ 37 jdzxdzdz’dtak {w +(z') (m + arYr)g(z -z)yk¢(z) 
+ ¢+(Z ' )Ykg(z ' - z ) (m+YrBr )¢ (z )}  (4.14) 

In the last equation we haVe suppressed the arguments 
x, t in the fields @- We observe that the action is non- 
logal in the z- coordinate. It is necessary to retain 
the two-dimensional divergence in (4.14),  since we even- 
tually will want to turn on external gauge fields in 
order to generate the expressions of currents. (Clearly, 
the preSence of the divergence does not influence the 
free equations of motion.) 

The theory is quantised canonically: one defines 
the canonical momentum by 

6L0 
= _STS;E5——_- , (4.15) 

which gives the equal-t commutation relation: 

{¢(§,z,t), ¢+(§',z',t)}=:§§a(§-£')s(z-z') (4.16) 
In order to find a physical interpretation of the theory, 
one has to construct the generators of the Poincare' group. 
In the standard way one gets: 

Pi = -jdasi 
_ _ z (4.17) H — Ida t 

f4 

_ _ 2 K — Jdc Tzz 
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E1 = -t Pi + IdoZTzzxi 

Fi = Idoz (si + xi t )  (4.18) 

M = "Idoz EikxiTzk 

N = -tH -fdoz z Tzz 

Here Tau are the components of the EXEEEEELE energy- mp- 
mentum tensor. The easiest way to obtain its expression 
is to turn on an external gravitational field using the 
'hmnifestly covariant form" of the Lagrangean and elimi- 
nate X afterwards by means of (4.13). This is a stand- 
ard exercise and I shall not do it here. After a few 
standard manipulations (integration by parts, etc.), I 
can write: 

1 -' + Pk = —. Idzx dz cp Bkcp 
. 1 (4.19) 1 —a K = T Ids}: dz cp+ tp 

H = %-rd2§dzdz’ g(Z'-2) cp+(2') (ma-akak)‘9(z) 
M = +jd3£dc+ [ma2 - x281 + 351 Hop, (4.20) 

where I introduced y = -iY1Y2. The operators (4.19) can 
be diagonalised by Fourier transformation. Remember that 
the Fourier transform of g(z) is 

1 — —  
k 9 

where the question mark indicates ggnglway of avoiding 
the pole at k = 0. Now introducing: 

-1(S§£ + kz) ¢(3,k) = 72%;)72 Ida; d z e cp(§é,z,o), 

I get for example: 

K = Ida; yak k eo+<3,k> co (3,10 

H = WP trek co+(p,k>cp(p,k) L2:_m__ (4°21) 
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By performing an infinitesimal gauge transformation: 
6 ¢ =  im, 5m+ + im , I can also obtain the expression of 
the fermion number operator, F: 

F = Id331_§k w+(3, k)m(3,k) (4.22) 
Clearly,"I want the operators (4 .17) ,  (4.18) to generate 
a unitary representation of the Poincaré'group of the time- 
like class. This means in particular that H,K are Hermit- 
ean operators with nonnegative spectrum. It follows that 

i) I must choose the principal value of the 
integral over k in (4.21) (Hermiticity) 

ii) I must interpret 

«h<3,k) (k>o) 
as an gagghilggigg gpgrgtm of a fermion of spin project- 
ion "a " (a ; ik,n cf. (4. 20), and momentum components 
" :P_+_L. (Ink , 21: ).a 

n:(-3, -k) (k < 0) 
as a g£§§§i__ gpgragor of an antifermion (cf. ( 4 . 2 2 ) )  of 
spin-projection' 'a" , and momentum components 

(p,- -k, -§-i;E-) Condition i) removes the ambiguity 
in the definition of g(z) as I promised earlier: only the 
choice (4 .3 )  is correct. In particular this condition 
means that the correct solution contains no Bondi-Metzner 
"news function", i.e. no information is allowed to propa- 
gate ig the plane t = 0, cf. ref. 3 ) .  

51 

The material presented in this, last part of the 
lectures has been published in the form of a separate 
article 1 .  Here I restrict myself to a brief qalitative 
sketch of the problem and the results. The purpose of 
the calculation 1n was to resolve the mystery of the 
free quark (or parton) models, which I discussed in the 
Introduction. Surprisingly,the answer is almost trivial. 
Consider an interacting quark model, for example, by 
adding a term: 
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Lint = fi [(11 Y” '02 -(\T' YEYHWVJ 

5%mfin+wmmfiml or 
to the free Lagrangean, (4.12) .  Here F is a coupling 
constant of dimension (length)3. One proceeds as before 
by solving the constraint equation (4.13) for X (which 
now contains a contribution from the interaction) and 
eliminating x from the action. The surprising result is 
that after doing all this, the expression of the action 
is almost of the form of a free action functional. The 
only difference is that the function 

g(z-Z ' )  = %€(z-Z') 

in (4.14) has to be replaced by an expression: 

G ( ; , t ; z , z ' )  = % € ( z - z ' )  exp iF[B(§,z,t) - B ( x , z : t ) ]  

- ( 5 . 2 )  

For the interaction (5.1) ,  B(§,z,t) is of the form: 

B<£,z,t> = sfdz'e<z-z'> [(¢+<£,z',t>m<£,z't) 
+ (w+(§,2'.t)Y¢(§,z',t))v]. (5.3) 

One can verify that the form ( 5 . 2 )  is quite general; it 
is the expression of B which depends on the specific form 
of the interaction (or, rather, the expression in square 
brackets in ( 5 . 3 ) .  

The quantity FB has a very simple physical meaning: 
it is nothing but an operator generalisation of an giggggl 
phase in ordinary Schrodinger theory. (Cf. the lectures 
of Drs. Abarbanel, Islam and Sugar in this volume.) 

Denote for a moment: 

V<:?,z,t) = Ft<cp+cp) + (cm/coy], 
and introduce the Fourier transform: 

V(£,k,t) = —;‘-T;‘['d z e'ikz V(§E,z,t). 
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Then (5 .3)  can be rewritten as 
dk- ~ -  B = P} -Ir elkz V(x,k,t), 

which makes the analogy clear. (V plays the role of a 
"potentialU) The fact that the interaction appears in an 
"eikonal form", has important consequences. In order to 
see this, one derives the expressions of the currents in 
the usual way by calculating the first order response 
function to weak external vector and exial vector fields. 
In particular, the expressions of the "longitudinal" com- 
ponents of the vector and axial currents turn out to be 

Vz=/'%—q>+co 
1 + (5.4) 

Az‘xTcpY‘P 
(For the sake of simplicity, I suppress internal Symmetry 
indices in all these formulae.) 

Compare (5.3) with (5.4). On introducing the £93: 

£952£fl.§i§l§£= 

S = 1%. fds(z-Z') ¢+(Z')w(2') 
(5.5) 

= ‘ %  Idz’E(z-z') cp+(Z')YcP(z')s 

one can see on the one hand that (5.4) can be written as: 

_l__ azs (5.6) 

A2 = 75;- a zP 

On the other hand, the expression of the eikonal phase 
operator, exp(iFB), becomes: 

exp(iFB) = exp i/F [S + PY] (5.7) 

Since the longitudinal componans of the currents are pro- 
portional to the gradients of S and P, the latter can be 
interpreted as composite fields corresponding to scalar 
and pseudoscalar particles. (This is the standard reason- 
ing used in "deriving" PCAC.) After Nambu and Jona-Lasinio 
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(Y. Nambu and G. Jona-Lasinio, Phys. Rev. lgg, 345 (1961); 
ibid. ggg, 246 (1961)) many people have argued that the 
physical vacuum is degeneratg and thus the vacuum expect- 
ation values of S and P are different from zero. (This 
is a familiar situation e.g. in the theory of superconduc- 
tivity: the ground state is filled with Cooper pairs.) 
Assume now that this is the case. 

The first simple question one can ask is: what are 
the equations of motion satisfied by "single particle" 
observables? (Current densities are examples of single 
particle observables in a quark model; they - or rather 
their commutators - can be measured in the inelastic 
scattering of electrons and neutrinos, and hence one can 
extract dynamical information from these experiments.) 
In the ordinary nonrelativistic many-body problem one 
knows that if the ground state (the "vacuum") is degener- 
ate, the Hartree-Fock approximation to the equations of 
motion of single particle observables works quite well. 
(The Hartree-Fock approximation - a nonperturbagiyg 22: 
pgggigggigg - consists in replacing the operators corres- 
ponding to pairs which fill the ground state by their 
ground state expectation values. The latter are then cal- 
culated self-consistently. Qualitatively, Hartree-Fock 
is expected to work well if there is a large "condensate" 
in the ground state, since then the relative quantum fluc- 
tuations of the operators around their expectation values 
are small.) 

Let us observe that in this formulation of a relati- 
gistic field theory one can borrow freely from the methods 
of the gonrelatigistig many-body problem. Indeed, the 
action (4.14), with the modification (5.2), can be vieWed 
as one describing a Galilei-invariant field theory in two 
dimensions with variable mass (of. the remarks made in 
Ch. 3.) The fact that the interaction is more complicated 
than in the usual models of,sax superconductivity, does 
not matter here. 

Now if I calculate in the Hartree-Fock approximation, 
a surprising thing happens. Replace B in (5.2) by its 
vacuum expectation value. No matter what that is, it is 
certainly afiggnstant (translation invariancel). However, 
then (5.2) - and the equations of motion of m and thus of 
the current densities - reduce to what I would obtain if 
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there were a W at _a111 

cell-Mann and several other authors (cf. H. Fritzsch 
and M. Gell-Mann, 1971 Coral Gables Conference) have con- 
jectured that the current densities behave "as if the 
currents were constructed out of free quarks". We 
now see that in the present version of an interacting 

‘quark model this means nothing else but making a Hartree- 
Rock approximation. In particular, all the results of 
the "naive" parton model come out in this way. This does 
not mean, however, that the theory is altogether a free 
one: in calculating many-body states (for example the 
nucleon state vector) there will presumably appear a 
strong effective interaction. (Notice in particular that 
the formal expression of the action contains highly singu- 
lar objects: exponentials in the fields S,P...) One can 
at least hope that the present approach to field theories 
will explain some of the puzzling features of hadron 
physics. 

6. 

. (This is Exercise 6.0) to be Worked out by the 
reader for himself.) 



INITIAL VALUE PROBLEM IN FIELD THEORY 397 

REFERENCES 

(This is not a review article on the subject. We 
list only those papers which we personally found useful 
in preparing these lectures; hence the following list is 
necessarily biased and incomplete. We offer our apolo- 
gies to those authors whose works have been omitted from 
the list; the inclusion or omission of some work is by no 
means meant as a judgment of quality.) References are 
listed according to subjects. 

{EED} 

1 . )  (Any good text on PDE would do). The classic is: 
F. Hadamard, Lectures on Cauchy's problem (Dover, 
New York, 1952) .  
R. Courant and D. Hilbert: Methoden des Mathe- 
matischen Physik. (Springer, Berlin, 1937), Vol. 
II. For a recent review, see F. John, in Mathe- 
matics Applied to Physics, (Ed. E. Roubine) 
(Springer, Berlin, 1970).  

CIVP in gggggg; relativity. 

2.) R. Sachs, Phys. Rev. 128, 2851, (1962) .  

3 . )  R. Sachs, in Proc. Theory of Gravitation. (Gau- 
thier-Villars, Paris,and PVN, Warszawa, 1964).  

4.) R .  Sachs in Relativity, Groups and Topology (Les 
Houches, 1963) Gordon and Breach, New York. 

5.) R. Penrose, ”Analysis of Space-Time" (Birkbeck 
College rep. London, 1968).  

"Ligh: gum” kiggggigg. 
6 . )  H. Bacry and N. P .  Chang, Ann. Phys. (N.Y.) 51, 

407 (1968). 

7 . )  G. Domokos in Proc. Nobel Symposium VIII, Wiley- 
Interscience, New York (1968). 



398 G. DOMOKOS 

Quantum Elgggggggggmggg and gggggg; field theory. 

8.) F. Rohrlich: Theory of Photons and Electrons 
off Null Planes. (Syracuse U. preprint, 1970) .  
(Extensive list of references.) 

9.) J. B. Kogut and D. E. Soper, Phys. Rev. _D_l, 
2901 (1970). 

10.)  H. Leutwyler, F. R. Klauder and L. Streit, 
Nuovo Cim. 66A, 536 (1970). 

m Quark model. 

11.) G. Domokos, Johns Hopkins U. preprint, NYC-4076- 
18 (1971). 



FLUX QUANTIZATION AND PARTICLE PHYSICS 

H. Jehle 
George washington University 

washington, D. C. 

Introduction 

As reported in earlier papers1 a consistent theory of 
leptons based on quantized flux loop may be given. The 
idea is that instead of trying to relate magnetic monopoles 
to elementary particles, we take the more conservative ap- 
proach of considering only closed magnetic flux loops. 
These flux loops, to conform with the Maxwell-Lorentz equa- 
tions, are assumed to have the forms of magnetic field 
lines of a dipole source if an electron or a muon is con- 
sidered. It is assumed that one loop correSponds to one 
lepton, and that the magnetic field results from a super- 
position of alternative forms which this flux loop may a- 
dopt, a superposition with complex probability amplitudes. 
This superposition is similar to the superposition of al- 
ternative path histories by which a quantum mechanical path 
is constructed in Feynman's Space-time approach to quantum‘ 
mechanics. 

There is nothing Special about Such an assumption, 
but it is interesting to note that the very same defini— 
tion which introduces quantized flux (as a singular line 
of the phase 9 of the W function of field particles) also 
implies an electric field if that flux line moves. In 
particular, if the magnetic field, represented by the flux 
loop, has the dipole movement of one Bohr magneton (or one 
muon magneton) and if the loop spins about the dipole axis 
'with angular velocity Zmec” [h (or 2muca Ih), the resulting 
electric field is the Coulomb field of charge e. (T9 make 
that statement precise, the alternative dipole axes C 
would, for a source lepton of spin in Z direction, be dis- 
tributed with probability amplitudes proportional to 
(l+cos(£ ,Z)). This theorem is not so astonishing; it is 
the reverse of the theorem of the Dirac theory of the 

399 
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electron which derives the magnetic moment of the electron 
from its charge. 

A separate issue in this magnetic theory of the e c- 
tron or muon is the question how that magnetic moment —— 
is related to the quantized flux Q -hc/e. A single pa%¥i- 
cle of mass m is, in thg relativistic theory of the elec- 
tron or muon, non local in ordinary position, by an 
amount h/mc and it has a Zitterbewegung frequency 2mca/h 
which may be interpreted as a Spinning frequency. This 
"quasinonlocality" h/mc, as we may call it, relates the 
quantized flux to the magnetic moment. It was shown that 
appropriate superposition, with complex probability ampli- 
tudes, of the loop-form contributions results in an effec- 
time magnetic moment equal to the Bohr or muon magneton if 
the electromagnetic interaction constant is of the order 
of 1/137. And it was shown that under the same circum- 
stances and by the same superposition rules the electro- 
magnetic energy turns out to be of the order no“, and the 
electromagnetic angular momentum of the order of h/Z. 
This is interesting in that it shows a consistent theory 
of the lepton on the basis of the Maxwell-Lorentz fields 
.is possible. It should be noted, however, that the quan- 
tum field which describes the lepton is the spinor type 
probability amplitude field; the electromagnetic field 
plays the role of the observable. 

Neutrino 

We also propose a neutrino to be a flux 100p, but of 
the form of a trefoil spinning through space like a coast- 
ing three-blade propeller. In this manner, apart from 
fluctuations, no net electric field seems to be produced 
by the moving flux loop. A question is to be raised as to 
whether or not a neutrino has a magnetic moment (in the 
direction of its spin or opposite); if this is the case, a 
loop of one such flux orientation is expected to occur; if 
this is not the case, the proposal in Le.1 Phys. Rev. 
would apply. 

The topology implied in a trefoil knot is considered 
to be important. It is assumed that the crossing of a 
flux loop over itself (which would be necessary for a tre- 
foil to transform into a circular loop) is a process which 
is very rare, a weak process. There are two distinct tre- 
foils (a right handed and a left-handed one). They 
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correspond to neutrino and an antineutrino respectively. 
Apart from the handedness of the trefoil, a neutrino and 
an antineutrino are distinguished by opposite signatures 
of the frequencies of their probability amplitudes. 

This two-fold distinction between neutrino and anti— 
neutrino is indeed to be considered as the distinction be- 
tween particle and antiparticle in general. 

.Hadrons 

To proceed to mesons and baryons, we assume the quark 
picture, in particular SU(6), and consider a quark to be a 
flux loop if it is interlinked with another (in the case 
of a meson) or with two other loops (in the case of a bar- 
yon). Their spinning is entirely different from that of a 
free loop (i.e. a lepton) and there may accordingly no 
meaning be attached to the concept of a single quark. 

Before we discuss the detailed structure of quarks, 
we may, in connection with the neutrino, remark that the l 
quark is expected to be a trefoil whose handedness indi— 
cates the strangeness +1 or -1. Indeed, with such inter- 
pretation we may readily understand strangeness conserva- 
tion. We assume that interacting loops, ignoring other 
loops of the same particles, may only reluctantly cross 
over each other. Thus, two trefoils of opposite handed- 
ness (S=+l and S=-1) may readily annihilate each other,or 
be pair-created, without the necessity of any loop-cros— 
sing; this is not the case for strangeness non-conserving 
reactions. They are, by virtue of the topological change, 
not parity conserving which is interesting to notice. 

Assumptions about Loops and their Linkage. 

we make the following assumptions about the 100ps, 
their forms and linkage, and illustrate them by figures. 
A quark is a quantized flux loop if interlinked with an- 
other loop. If, under observance of conservation laws, 
a loop may get disengaged from linkage, it behaves like 
a lepton. It becomes, therefore, meaningless to search 
for individual quarks. 
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The quarks belonging t o  one meson or baryon are  able 
t o  Spin independently. This is possible if they are  con- 
fined t o  non-overlapping regions. Each of the meson and 
baryon loops of Figs .  1 may a l so  move independently about 
their two axes:  they spin about the straight (vertical) 
axis  and whirl about the circular  ax i s .  In F i g s .  1,  lb 
circular axis is defined a s  the equator of the Spherical 
core .  The dots  indicate the intersections of  the circular 
axis with the picture plane. In Fig .  1c the core is not 
indicated and the circular axis  is  seen edgewise as  a 
dash-dot-dash line. The domains in which they move a r e  
shown separated b y  dashed toroidal  sur faces .  

Even though this scheme seems t o  be the scheme by 
which mesons and baryons a re  expected to  function, we 
should remark that the assumptions of s traight,  circular 
axes ,  a s  regard tepology, is ra ther  spec ia l .  In the f o l -  
lowing paragraphs We discuss as a n  alternative scheme the 
more general c a s e  of  oval  shaped axes a s  shown in F i g s .  
2 ,  3 ,  5 ,  7 .  The loops of Figs.  5 ,  7 may spin in the re- 
gions shown by F igs .  4 ,  6 :  the i l lus t ra ted in terfaces  
between the toroidal regions may shif t  toward one or the 
other a x i s .  In order t o  c l a r i f y  the spinning of a quark 
loop, in the alternative case  of F igs .  5 and 7 ,  we have 
drawn single loops in F igs .  2 and 3 .  One mode of "Spin- 
ning" is ( c f .  F ig .2 )  a rol l ing,  whirling motion about  the 
l e f t  axis  (donut) which amounts to  a kind of translational 
motion along the right donut .  The other mode ( a g a i n  look- 
ing a t  F ig .2)  is a similar "spinning" about the right axis 
(donut) which is  equivalent t o  a kind of  t rans la t iona l  mo- 
tion along the le f t  donut. 

Apart from a i s ignature,  the spinning is  considered 
t o  occur with equal angular veloci t ies .  

A question ar ises  a s  t o  the nature of "orbital angu- 
lar  momentum” of the higher lying meson and baryon s t a t e s .  
In the case  of axes shown in Figs .  1 ,  the higher angular 
momenta a r e  presumably of the nature o f  giant  quarks ,  i . e .  
quark loops possessing spin higher than %. In the case 
of F igs .  2 - 7 ,  the axes may move with respect  t o  each other,  
which might then represent orbi ta l  angular momentum. 

Because of the quasi-nonlocal nature of a single 
particle, the position of a point source is smeared out 
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over a region of linear extension h/mc; it extends up to 
the axes of the hadron. This region, called the "core", 
is the region in which the Maxwell-Lorentz equations have 
inhomogeneous terms. For the definition of localization 
we refer to the earlier papers, and to Section V and Ap- 
pendix I of the Phys. Rev. paper. 

The "attachment" of a loop to the core may be con- 
sidered a topologically meaningful concept. It is as if 
the axes by which the core is bounded, were a set of rings 
with which the fluxloops are linked and held together. 
The reason for this is that a loop, as shown in the fig- 
ures, is only a single loopform out of a continuous mani- 
fold of pairs (meson) or triplets (baryon) of linked loop- 
forms which are Spread over all space. They define a 
fibrated Space with two singular lines, namely the "axes". 
These singularities of the fibrations provide for a topo- 
logically invariant characterization of a loop by its 
winding numbers. In Figs. 2 and 3 these winding numbers 
are illustrated; for clarity of the illustration we have 
represented these two axes by two donuts. 

The equivalent electric charge of a quark100p is 
evidently (cf. the definition of the electric field in 
the earlier papers) proportional to the number of times 
a loopline skips over a point in space, per period of 
Spin, times the spinning frequency. This is immediately 
seen to be proportional to one of the winding numbers 
times its Spinning frequency minus (or plus) the other 
winding numbers times its spinning frequency. Assuming 
the two spinning frequencies to be equal, the equivalent 
electric charge becomes proportional to the difference 
(or sum) of the winding numbers. 

When it comes to establishing a model which gives ac- 
count for so invariant a quantity as is the electric charge, 
it is important to have a model which relates it to invari- 
ant quantities such as are the winding numbers, rather 
than to particular geometrical features. 

We may be reminded in that context that the starting 
point of this fluxquantization project was the recognition 
of still another invariance property of electric charge. 
It was the recognition that the electric charge of the 
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electron and of the muon came out to be identically the 
same by virtue of exact cancellation of the mass m in the 
product (eh/2mc)-(2mc3/h), i.e. by virtue of a strict‘ 
scale invariance. 

With that invariant loop characterization by winding 
numbers, we may suggest the loopforms Figs. 2 (which are 
identical with those of Figs. 3) to apply to the hP, and x 
quarks. If we assume a tendency of spinning to occur so 
that the resulting electric field (and thus energy) is as 
small as possible under the constraint of equality of abso- 
lute values of spinning frequencies (angular velocities 
2mc3/h), we may assume that it is preferably the difference 
between (rather than the sum of) the two winding numbers 
which characterizes the equivalent electric charge of a 
quarkloop. 

-The relation between dipole magnetic moment and equiva- 
lent electric char e was worked out for electron or muon in 
the earlier papers . In as far as there are now, in the 
case of the quarks of mesons and baryons, deviations from a 
dipole structure of magnetic moment, we may expect the mag- 
netic moment to be only approximately related to electric 
charge. 

Let us now consider the probability amplitude distri- 
butions for mesons and baryons. Conventional SU(6) models 
had the immense success of explaining the ratio of magnetic 
moments of baryons, in particular of neutron to proton . 
This establishes the apprOpriateness of the choice of sym- 
metric spin-isospin functions for baryons. 

But, as the quark model considers the quarks as spin 
% particles, their complete wave functions should be anti- 
symmetric, i.e. satisfy the Pauli Principle. It seems to 
us too much a violation of basic principles of quantum 
mechanics to postulate para-statistics. 

The alternative way of staying within established 
quantum mechanical principles and to satisfy the Pauli 
Principle is to assume antisymmetric orbital wave func- 
tions for baryons. As long as quarks are considered to 
be SU(6) particles, such antisymmetric orbital wave func- 
tions may, however, scarcely be considered to be fit for 
the lowest lying baryon states. 
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The quark loop-model avoids these difficulties. 
Quark loops are considered as localized objects, but in 
the spirit of SU(6), they should be able to exchange 
places in their arrangements shown in Figs. 5 and 7. An 
antisymmetric "spacial” wave-function of quarks (i.e. de- 
scribing their distribution over the regions betWeen the 
axes) may therefore readily be formed and the Pauli Prin- 
ciple is satisfied. Such antisymmetric ”spacial" wave 
function also implies all permutations of arrangements of 
the quark loops over the "toroidal" regions and thus pro- 
vides for equal distribution over both axes, for any quark 
loop of a hadron. This again reasures the winding numbers 
as correctly determining electric charge. 

The question of integrity of electric charge in lep- 
tons, mesons, and baryons arises. As regards to leptons, 
the scale invariance, i.e. the rigorous independence of 
equivalent electric charge e of mass m is the basic point. 
The entire theory being based on gauge-invariant defini- 
tion of the electromagnetic fields, it follows that charge 
conservation is rigorously maintained. Thus, starting 
with the electron's or the muon's integrity of charge, all 
subsequent reaction products will have integer charges a1- 
so.---Why fractionality -1/3, +2/3, -l/2 of quark charge 
may he expected, has been discussed in App. II of Phys. 
Rev. ; here we have, through the winding numbers, given an 
explanation of their exact rations $1 to $2 to $1. 

It should be noted that there may be close connection 
between the present quark proposal and that based on 
dipoles of positive and negative magnetic charge.4 Fol- 
lowing the idea of our quark model, it may then, however, 
be appropriate to represent a meson by two dipoles and a 
baryon by three dipoles. Even though we would like to 
avoid the concept of magnetic monopoles entirely (and 
found this to lead to a successful and conservative inter- 
pretation of particle physics) we do not want to object to 
monopole theories altogether, in particular not in the a- 
fore mentioned dipole connection. we do not, hOWever, 
think the identification of a monopole with a quark to be 
appropriate. 
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AEEendix. .1 
We may make a few remarks in regard to quark loops: 

A l and a X, as they have opposite handedness, may annihi- 
late each other without crossing of flux loops when they 
come to a mutual approach. Why, nevertheless, may they 
coexist, attached to the same core of a meson? A model 
(carefully built with rubber catheters) shows that, if 
mounted on the same axis, their opposite handedness pre— 
vents any annihilation without crossing of flux loops. An- 
Another question has come up as regards to the absence of 
spin % baryons of the type of hhh, of the PPP, and of the 
XXX. In that case, there are at least one pair of neigh- 
boring quarks of opposite spin present. As they are of 
equal charge, their magnetic field orientation is opposite. 
One might assume that they cannot coexist as nearest neigh- 
bors because they repel each other. 

Geometrical characterizations of independent bundles 
of flux loop forms have been proposed in the earlier pa- 
pers. This led to a grouping of loop forms into 207 bun- 
dles. It was pointed out that this was a heuristic pro- 
cedure and that a formal treatment would have to rely more 
on analytic tools. Indeed, one should take use of gener- 
alized spherical harmonics expansions and take account of 
the invariance with respect to scaling when attempting to 
define the distribution of probability amplitudes for loop 
forms. 
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It may finally be remarked that in the comparison of 
the electron with muon, the angular group and phase ve- 
locities of the terms bilinear in the amplitudes are as l 
to 207. The linear velocities of the spinning loops being 
assumed to be of the order of c to c for the two particles 
and the sizes stand in the ratios of 207 to 1, their elec- 
tromagnetic energies are expected to be related as l to 
207 .  The bundling of loop-forms may accordingly account 
for the difference in mass electron versus muon. 

_Appendix II 

In our proposal to describe a lepton in terms of a 
quantized flux loop we took recourse to geometrical pic- 
tures to provide for a simplified model in terms of which 
We could readily check on the consistency of that theory, 
in terms of which also the main structure of the theory 
could be decided upon, and in terms of which approximate 
numerical results were obtained. It was evident from the 
start that a more direct analytic, rather than geometric, 
formulation was to be achieved. It was, however realized 
that too many possibilities for the structure of a quantum 
mechanical theory were at hand. The decision upon the ap— 
propriate choices of assumptions may now be made as the 
consistency of the heuristic model is recognized. 

In this note a short sketch of a proposed wave equa- 
tion for the probability amplitudes ¢ of the distribution 
of loop-forms is given. We may be reminded that instead 
of a description of loop form distributions by functionals, 
we may take advantage of the similar shape of all magnetic 
point dipole loop-forms, to characterize them by 3 angle 
variables (e.g. the Euler angles) and 1 size parameter 0. 

In the calculation of the electric field of the spin— 
ning flux-loop, the mass of the electron or the muon can— 
cels out rigerously. This implies the equality of the e- 
lectric charge of these two leptons. The cancellation of 
the mass means that there is a scale invariance. Consid- 
ering this we may write 

r = o/(h/mc) (1) 

as a parameter indicating the size of a loop-form. 
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In what follows we consider certain analogies between 
the spinning of the manifold of loop-forms and the spin- 
ning of a symmetric top. It is well known that the angu- 
lar momentum Operator of the spinning top may be written 
as 

a? a? 63 a21 l a  a 2 : 2  _ _ . . _  3 _ .c 15(55” +an5 +ap5 +338) r a: r ar (2) 

with eigen values 

-4L(L+1), (3) 

L being half odd integer or integer; the eigen value prob- 
lem posed with the operator (2) is actually an eigen value 
problem on a 3 dimensional hypersurface 

r3=§2+n3+93+xa (4) 

The 3 ratios §:n:p:x are related to the Euler angles. 

The point dipole loopforms are alike in respect to 
the 3 angular parameters (Euler angles) and the size pa- 
rameter. We may therefore associate with each loop-form 
a point in the 4 dimensional space of the variables g, n, 
p, x (with the use of (1) and ( 4 ) ) .  We now make the as- 
sumption that the wave equation for a point dipole source 
model be given by 

6 2  6 2  a ?  3 3  2 2 = r(-a—gg-+fig-+fig-+fir)+w -C)\l’0 (5) 

w being the frequency of the ¢ wave. With the eigen value 
of the angular part of ¢, i.e. ( 3 ) ,  we get for the r 
dependent factor of ¢ 

(% g—f r3 2—]: — 4&(L+l) + we - ,C)R = o (6) 

As the wave equation (5) is, in consideration of ( 4 ) ,  
linear homogeneous of degree zero in r, the angular veloci- 
of loop forms is independent of r, in accord with our as- 
sumption of the Zitterbewegung frequency of 2mca/h as giv- 
ing the angular velocity of a spinning flux loop. 
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We want the I¢!3 to represent the probability for a 
loop to adopt the size r, i.e. to have its aphelion size 
0=rGh/mc) to fall in a unit cross section at a distance a 
from the source point. Accordingly, R(r) should be pro- 
portional to 

-3/2 
R(r) = a r (7) 

which, inserted in (6) means 

-4L(L+1) + w2 - c = % (8) 

Such a solution (7) corresponds to a point dipole 
source. For the quasi-nonlocal source, the position of 
the dipole source appears smeared out. Replacing, accord- 
ingly, the point dipole source by an extended source (a 
crude substitute for a transformation from mean position 
to position by a Pryce-Tani-Foldy-Wouthuysen transforma- 
tion), we get rid of that singularity. We may effect this 
by inttroducing into the wave equation (5) or (6) a 
"potential" U(r) which is positive in the "core" region 
0 S r 5,1 and goes to zero at the core surface 5 § 1 and 
is zero outside, 1 5 r < m which insures the r‘ / behav- 
ior of R(r) for large r. 

Considering these, Eq. (6) may be written as 

1 a a E-SE-ra 3; — U(r) - 4L(&+l) + w2 - C)R = 0. (9) 

This equation might represent the wave equation for the 
loop form of an electron or a muon. The choice C=% gives, 
by (8), 

w = 2% + 1 (10) 
the commensurabilities of w permit phase correlated motion 
of loopform amplitudes in the case of the electron, to 
distinguish them from random phased muon amplitudes. 

The group theoretical analysis of Eq. (5), (9) is 
particularly promising. The important results are ex- 
pected to be already obtained by A. 0. Barut. 

The wave equation is presumably to be written in a 
linearized, Dirac form. 
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Appendix III 

The handedness of the flux leaps (right handed screw 
or left handed screw in relation to the axes) is, besides 
the winding numbers, an important characteristic feature 
of a loop. The assignment of handedness to the types of 
quarks will still have to be decided according to a gener- 
al plan. It seems, however, that as in the case of the 
neutrino, the handedness is determined by the alternative: 
quark-antiquarks. 

From the consideration of models of flux loops, their 
intrinsic handedness and their link with the axes, it be- 
cause obvious that between a loop (2,3) and a loop (1,3), 
both of equal handedness, a transition is simple compared 
with a transition between (2,3) and a (1,2) loop. This 
fact may provide for an understanding of the AS versus AQ 
relationship. 

we may also recall that the flux loop model explains 
that strangeness nonconserving weak processes imply some 
crossing of flux lines and are, because of the implied 
topological change, not parity conserving. 
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FLUX QUANTIZATION 411 

FIGURE CAPTIONS 

R o t a t i o n a l l y  symmetric a x e s - s y s t e m  ( a  s t ra ight  
v e r t i c a l  a x i s ,  and a c i rcu lar ,  core equator 
a x i s ) .  

I t  shows a n  ant i -neutr ino ,  i . e .  a t r e f o i l  loop .  
I t  a l s o  shows f luxloop forms f o r  a muon or an 
electron, the extended source (sphere) charac- 
terizing the quasi-nonlocality o f  a stationary 
single part ic le .  

This interlinkage o f  two loops W and X repre- 
sents a contribution to  a K3 meson. To illus— 
trate  the topological  (knot theoretical) r e l a -  
tionships between the two l o o p s ,  the space  i s  
subdivided by a toro idal  surface  ( a  f l e x i b l e ,  
sumetimes s m a l l ,  sometimes large toro id ,  having 
no res tr ic t ions  on i t s  s i z e ) .  One o f  the loops 
(the trefoil l )  i s  entirely outside the toroid;  
the other (h)  i s  entirely inside to  permit in- 
dependent Spinning.  The core reaches t o  the 
c ircular  a x i s  which i s  the core equator ia l  r ing .  

For a baryon, the space i s  subdivided into three 
regions by  the two toroidal surfaces shown in 
this f igure .  The three loops may thus spin in— 
dependently and they may share the c o r e .  These 
F i g s .  1 represent the loops on the b a s i s  o f  a 
s tra ight  central  a x i s .  There i s  spinning about 
the s traight  a x i s  and a whirl ing,  rol l ing motion 
about the c ircular  a x i s .  

I t  shows the a l ternat ive  se t t ing  on the b a s i s  o f  
two interlinked a x i s  shown in F i g s .  2 , 3 , 5 , 7 ,  
drawn a s  donuts .  In this  f igure quarks are  
shown in the unreal i s t ic ,  unlinked s t a t e ,  be— 
cause  a quantized f luxloop i s  a quark only when 
interlinked with other loop(s )  which dras t i ca l l y  
influences i t s  modes o f  spinning. The figure 
i l lustrated the winding numbers n :  2 - 1 ,  P :  3 - 1 ,  
X :  3 - 2 .  Quarks a r e  assumed le f t—handed ,  a n t i -  
quarks right-handed; their charge i s  given by 
the orientat ion o f  their magnetic moment with 
respect  t o  sp in .  
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Fig. 3. 

Fig .  4. 

F i g .  5. 

F i g .  6. 

Fig. 7. 
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The same quarkloops as in F i g .  2 are shown here 
in relation to the left a x i s .  As in F i g .  2 these 
are not representing leptons. 

For the alternative setting the two axes are 
shown as interlinked rings with dash-dot-dash 
lines. The domains to which two meson loops may 
be confined to permit independent spinning, are 
indicated by the surface separating the domains. 
One can easily visualize the modes of independent 
spinning of two fluxloops (i.e. rolling-whirling 
motions about the two axes respectively). The 
two fluxloops are drawn in F i g .  5, not in this 
F i g .  4. To facilitate the graphical representa- 
tion, this surface is shown bound by one long- 
winded line; in reality, however; the surface 
reaches to infinity. One opening (connecting 
upper to lower with the far left region) is hid- 
den behind the surface; we see the other axis 
passing through that opening. The surface sepa- 
rating the two domains may move one way or the 
other, closer to one or the other axis. 

Loop-antiloop contribution to a meson. We have 
represented in this figure, the two axes by the 
two donuts because this facilitates the illustra- 
tion of the two loops 1 (3,2) and h (2,1). 

The two dash-dot-dash lines may represent the 
axis in this figure of the alternative axes model. 
The present donuts are drawn to represent, for a 
baryon, the two toroidal surfaces which tripart 
space so that the (3,2) loop of F i g .  7 is entire- 
ly inside the right donut and (2,1) loops entire- 
ly inside the left donut, and the simple, large 
(1,0) loop, in the space between them which 
stretches all the way out. This permits independ- 
ent Spinning to the three loops, a necessary con- 
dition that quarks should satisfy. 

Interlinkage of the three loops of a baryon in 
the alternative model. In this figure, as in 
Fig. 5, the axes are pictured as donuts to facili- 
tate the illustration of the winding numbers. 
The interlinked quarkloops are a (3,2), a (2,1) 
and a (1,0) loop. 
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PRINCIPLES OF ANALYTIC APPROXIMATION THEORY AS 

APPLIED T0 ANALYSIS OF EXPERIMENTAL DATA 

R .  E .  Cutkosky 
Carnegie-Mel lon University 

P i t t s b u r g h ,  Pennsylvania 

O u t l i n e  

This  s e r i e s  o f  l e c tu re s  i s  devoted t o  a n  exposi t ion  o f  
some mathemat ica l  ideas  which a r e  unfami l ia r  t o  most  physi— 
c i s t s ,  b u t  which have a n  enormous p o t e n t i a l  use  in  High 
Energy Physics  a s  w e l l  a s  in o ther  branches  o f  s c i ence .  

Sec t ion  I reviews polynomia l  approximat ion  theory ,  and  
h a s  two p u r p o s e s :  To t r y  t o  expose something o f  the  b e a u t y  
o f  the  m a t h e m a t i c a l  i d e a s  con ta ined  in t h i s  S u b j e c t ,  and t o  
i l l u s t r a t e  the poin t  t h a t  the convergence proper t ies  o f  a 
sequence o f  approximat ing  funct ions  depend j o i n t l y  on the  
d a t a  used and on a n a l y t i c i t y .  

Sect ion  I I  i s  a n  a p p l i c a t i o n  of  the theory o f  Sec— 
t ion  I ,  showing how t o  u s e  a conformal  t r ans fo rma t ion  t o  
o b t a i n  the mos t  r a p i d l y  convergent polynomial  approx imat ion  
f o r  r ep re sen ta t i on  o f  p h y s i c a l  d a t a .  

Sect ion  I I I  presents  fur ther  ma themat i ca l  t oo l s  which 
enab le  one t o  go beyond s imple  polynomial  approx ima t ions ,  
in order  t o  o b t a i n  max ima l ly  a c c e l e r a t e d  expansions in c i r -  
cumstances  in which the conformal  t r a n s f o r m a t i o n  technique 
o f  Sec t ion  I I  i s  t o o  compl ica ted  t o  use  e f f e c t i v e l y ,  and 
a l s o  t o  circumvent the a p p a r e n t  l im i t a t i on  in Sect ion I I  t o  
r e s u l t s  b a s e d  on a s y m p t o t i c  convergence e s t i m a t e s .  The 
fundamenta l  m a t h e m a t i c a l  t oo l  i s  the Hi lber t  space o f  ana- 
l y t i c  funct ions .  In add i t i on ,  the ideas  o f  generalized in— 
te rpola t ion  and o f  a p robab i l i ty  measure in the function 
s p a c e ,  which a r e  impor tant  t o  physica l  a p p l i c a t i o n s ,  are 
p r e s e n t e d .  

423  
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Section IV is devoted to exposition of the applica- 
tion of the mathematical theory of Section III to a re- 
formation of the conventional xz-minimization technique 
for fitting experimental data. It is shown how to con— 
struct the best sequence of functions for a linear repre- 
sentation of experimental data, and a convergence test 
function is constructed which can be used to solve the 
problem of estimating the truncation point and truncation 
error of the expansion. 

Discussion of the increasingly numerous practical ap- 
plications of the theory discussed here is omitted because 
of lack of Space. The companion lectures by H. Pfister re- 
fer to some of these, and also include a discussion of 
several aspects of the theory that have been Omitted from 
these lectures. 

I. Polynomial Approximation 

This section is a review of the theory of polynomial 
approximation, as discussed by walsh_1, chapters 3 ' 5- 
The entire subject, as mentioned by Walsh, can be con— 
sidered as a matter of successive generalizations of the 
Taylor expansion. We are concerned here with the heuris- 
tics. For details, see Walsh. 

A. Jacobi series 

Consider v points z = B;,...,flv, and the poly- 
nomial of degree v: p(z) = (z-B1) . . . ( z - B v ) .  The 
Jacobi series is an expansion of a given function. 

f(z>=qo (z)+q1(z)p(z)+q,(z)p(z)2+. . .+qn<z>p<z>“+. . . (1) 
where each q . ( z )  is a polynomial of degree v-l. The 
qn(z)  are determined successively by requiring f(z) 
and its first n derivatives to be matched at the points 
points B . Let Sn(z) denote the partial sum of the 
first n+ terms. We have two formulas (where T lies 
inside a domain of analyticity and encloses the 81): 

1 n+1 _ 11+]- f 

Sn(z) g EFT I P(t) t-z p(Z) (t)n+l dt (2) 
1‘ p m  
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and 
n+1 f<z>-sn<z> — I W flat c» 

T 

To prove these, note first that Sn(z) a s  given by (2 )  
is a polynomial in z of degree n=vn+v-l, and note 
from (3) that the first n derivatives of the L .H.S .  
vanish  a t  z = B i  

Now le t  P be  a lemniscate  curve ,  1 .  e .  the locus 
l p ( z ) | =  u (a  constant). Then on any interior lemnis- 
ca te  I p ( z ) l =  u1<u, the pa.rtia.l sums Sn converge 
(according t o  (3))  a s  

H1 n+1 _ < —— lf snl M ( H )  . (Q 

We can  rewrite this as follows. L e t :  
1 1 v(z)  = C - l o g  | p ( z ) l  = E 3 log l Z - l  CD 

Evidently v(z)  is the potential of v point charges, 
each of s t rength- l /v ,  and the T ' s  a re  equipotential 
curves. We have a l s o :  

(“1/“)n = e ' ( N ' 1 ) ( V ' V 1 )  (9) 

The Taylor expansion i s ,  o f  course, the special case  
v=1. 

B.  Possibili ty of approximation on general curves. 

1 .  Equipotentials  

Let C be  a given curve (or  a r c ) .  
Let m(z)=v(z)+iw(z)  
be the complex poten- 
t i a l  corresponding to  
a unit charge on C 
and the boundary con- 
di t ion  v=0 on C .  Let  
g (z)=e‘P(Z) . Then de- 
f ine  Cp t o  be  the equi-  
potential |C|=P>1. 
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2. Approximation of C by a lemniscate. 

The idea is to replace the actual continuous 
charge distribution on C by a (large) number of 
equal point charges properly distributed. By 
choosing the number of points v large enough, we 
can be sure that there is a lemniseate F outside 
of C but no where more distant from C than some 
preassigned amount. The curve F then lies 
slightly outside Cp , but by a. controlled a.mount 
(and thus still in pthe domain of analyticity of 
a given function f). 

3. Approximation by Polynomials on C. 

We know that we can approximate on F by a 
Jacobi series with the error bound 

-N (N is degree of polynomial) (Z) lf-PNI < M 9 
Since C lies inside T, by the maximum-modulus 
principle, the error is smaller on C. Remark: 
This is an existence theorem for polynomial 
approximation, not a useful constructive tech- 
nique. 

4. Region of uniform convergence. 

Lemma: Let IPN (z)l S L for 260, PN a poly— 
nomial of degree N. Then PN(z)/CN (z) is analytic 
outside C, including “. Its maximum modulus 
therefore occurs on C, where I € I =  1. Therefore, 
genera.lly, lPN(z)lS LpN for z on C9 Now, from 
(7), we find 

-N-1 
l1”n+1 'PNl S (M + p”) 9 , zeC (g) 
Therefore, for p1 < p, we have, by the lemma, 

N+l 
_ F’_1_ C lPN+1 PNl S pn+1 [M + M 91’ ze o’ (2) 



ANALYTIC APPROXIMATION THEORY 427  

so Pn f a t  any point in the interior of CF) (and 
also uniformly on and within C p ) .  

C .  Maximal convergence 

Given a funct ion f ,  there i s  a n  upper bound R to  
the values of p for  which f i s  analyt ic  on and within 
69 Either R = w, or there is a curve CR on which 
f (z )  fa i l s  to be analytic. Thus, for any p<R, there 
are polynomials Pn (z )  yfor which (7)  holds. However, 
there can be no sequence for  which (7) holds with a>R, 
because this would imply uniform convergence on C 
and hence analyticity on CR. Thus, R is said to _e 
the greatest possible rate of geometric convergence. 
Ala-‘0', let En == Maxzec ”5(2) ' 13(2)" 

Then lim sup E n l / n = l  l / R .  

D .  Best approximation 

1.  Chebyshef approximation 
The Chebyshef polynomial approximant is  the 

polynomial t n ( z )  in which the n+1 coefficients  
a re  chosen to  minimize the error bound 

En = Efé l f ( z )  — t n l  (10) 

Since we know that  there a re  polynomials, for  any 
p<R, s a t i s fy ing  ( 7 ) ,  the tn must a fo r te r ior i  a1- 
so s a t i s fy  

|f(z)-tn(z) I<Mp‘“ (11) 
and hence converge maximally on C and uniformly on 
and within C p ,  p<R.  

2 .  Least squares approximation 

The general case  of leas t  p t h  power approxi- 
mation i s  d iscussed b y  Walsh ,  but the proof is  a 
b i t  lengthier .  Here we define the approximants 
n n ( z )  b y  minimizing the integral  
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En=jCW(z) ldzl If<z> - nn<z>lz (12) 

The proof uses the following lemma: Let P (2) be 
a polynomial of degree n ,  such that n 
f l ?  (z)|9ldz|<1‘.3. Let Q(z) = P 17‘(z-xz’n . Then on 

QI-IPI,  we have (2 outside P) 

C(z)a a.121'ri I 9%E§: E%%’ (13) 

since the integrand goes t o  zero a s  l / t a  a t  6 .  
Hence 

EM: 2 p < M(p) x L , zeF 
whence follows the lemma 

lP(z)| < L-L'(p) x p“, zeI‘p (14) 

Now return to  12. Since maximally converg- 
ing polynomials exis t ,  and s incerrn minimizes the 
integral, we have E < M/pzan, for p<pl<R. We a s -  
sume that W(z) i s  positive, and bounded from zero .  
Then we can replace W by i t s  minimum value in the 
integrand.  Furthermore, we use the inequality 

la+b|a s z l a l 2  + 21b]a 

with a ~ f - fin and b ~ - f  + n y 

t o  get n+1 

‘2 - 2 n  Jami-nu: ldzl < Mm 05> 
Now let p '  = 91/9 > 1; on C p , ,  by the lemma, 

'""n+1"n| < Me (filon x— (Me/on (16) 
p i n  

From this point, i t  is easy to  show that the n (z )  
converge to  f on C maximally, and hence converge 
uniformly on and within C p ,  p<R. It  is  possible 
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t o  drastically weaken the boundedness condition 
on W(z). 

E .  Example 

Let C be the segment o f  the r ea l  axis -1sl .  
Then the C are  the e l l ipses  with foc i  a t  z = i1; 
9 = a+b ,  w e r e  a and b a r e  the s emi - axes .  Cons ider  
leas t  squares approximation with some weight function 
W. For such a n  approximat ion method,  i t  i s  convenient 
to  construct the set  of orthonormal polynomials q n ( z ) ,  
and write the nth approximant a s  

Pn<z> - 5% Amqm<z> (17) 
Examples are the Legendre polynomials, etc. In gener- 
a l ,  we have convergence inside an elliptical domain, 
and iron-the error baund on C ,  we find that lim sup 

[IAn11/ n = UK, where an is the ellipse passing through 
the nearest singularity. 

I I .  Polynomial Expansion in an  Optimized Var iab le  

A .  Acce le ra t ion  o f  convergence 

Let us suppose we wish to f i t  a function f(x) on 
the curve F; (the "physical region"). We make a con- 
formal transformation to  a new variable z(x) and ap- 
proximate by polynomipls ‘ n  z .  The problem is to make 
the.best choice of z .  3’3 

l .  Conformal Transformation 

First,  suppose x42 maps P1 into the segment 
01 = (-1, 1) and that i t  maps some curve P ,  within 
which E is analytic, but on which f has a singu- 
larity, onto a unifocal ellipse OR. The mapping 
is given explicitly by 

z = sinh § ( x )  (1) 

where here Q = v(x) + iw(x) and v(x) = 0 on F and 
v(x) = —V ( a  constant) on P 1 ;  the value o f ' V  is 
defined by  the requirement that the net  charge on 
F1 be -1 .  Then C ( z )  - eV+0 corresponds to the 
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function defined in Section I, and R = ev 
determines the rate of maximal convergence. 
Furthermore, a polynomial approximation in z 
converges in the interior of the ellipse CR, and 
hence in the (open) interior D of the curve P in 
the x-plane. 

2. Optimized Conformal Transformation 

Suppose that the domain D enclosed by F is 
enlarged by the addition of a small piece 6 as 
shown: 

The boundary T' of D' = DU6 is mapped onto a 
curve C , by a modified mapping function involving 
a new cgmplex potential 6' = V' + iw'. We expect 
that enlarging the domain of convergence will in- 
crease the rate of convergence and proceed to 
prove this. 

Let V(x) = V'(x) - V(x), then V(x) satisfies 
the boundary conditions: 

v 0 on T1 

V'(X) on T, (V'(X)SO) (2) 
Let G(x,x') be the Green's function satisfying the 
following boundary conditions: 

V 

G = 0 for X on F 
G(x,x') = g(x') for x on T1 (3) 

5.. v = I an G(x,x )lX 0 
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The last integral ,  taken over both sides of T1, 
s a y s  that there is no net charge on T1. 

From Green's theorem 

v(x)=j (G(X,X')§%rV(X')-V(x')aaTG(X,X')) W I 
T+F1 (4) 

we obtain, using the boundary conditions, 

v<x>=-frv<x'>,-:—. G<x,x'> idx'l (5) 

Since the induced charge density on P is every- 
where negative, and since v s 0 on T, we have 

v(x) <0, x e D. (6) 

From (6) we conclude, first: 

V(I") -V(I‘1)>V(I‘) -V(1‘1 ) 

or R' > R (7) 

so that the convergence rate on T1 is increased, 
and second, that at an arbitrary point xPED 

V(1“)-V(P)=-V(ZP)>-V' (ZP')=V(T')-V' (P) , (8) 

so that the convergence rate at x is also in- 
creased. Thus, the more of the entire domain of 
analyticity of f(x) that is mapped into the uni- 
focal ellipse, the faster is the convergence, both 
to the data given on F1 and at an arbitrary point 
in the domain of analyticity. I call this rela- 
tion between the full use of analyticity and rapid 
convergence the "convergence principle”. 

Finally, we ask whether a further improve- 
ment in the convergence rate can be obtained by 
mapping T; and P, not into a line segment and a 
unifocal ellipse, but into a pair of simultaneous 
equipotential curves for some other potential 
problem. The answer is no, because the potential 
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difference is a conformal invariant; Any further 
mapping would leave the convergence rates un- 
changed. 

B. Effects of Errors in Data. 

1. A Simple Model of Experimental Uncertainty. 

Ciulli [3] represents the experimental func- 
tion by h(x); and assumes that the true physical 
function f satisfies 

|f(X) - h(X)\ < 6, xEI‘1 (9) 

In order to obtain an error estimate for the ex- 
trapolated polynomial approximant, it is neces- 
sary to assume mere about the function f, namely, 
some boundedness or smoothness property holding 
also on the curve P which contains points of 
singularity. 

By assuming some boundedness condition, it 
is also possible to sharpen some of the conver- 
gence estimates given in Section I. In particu» 
lar, if Iflsvb, we can take M independent of g 
in Eq. ( 1 . 1 1 ) ,  and also take péR. 

Under the conditions given above, Ciulli ob- 
tains the error bound 

|£(x) -thn(x) lse pn+K(p m.)n as“ (10) 

where t (x) is the Chebyshef approximant of de- 
gree n E3 the experimental function h. (Actually, 
this formula doesn't appear in Ciulli's paper, but 
it is a trivial corollary [4] of the results 
given.) This formula 
shows that the extrapo- 
lation error behaves 
qualitatively as shown 
in the figure: It first 
decreases with increasing 
n, when the error bound 
is dominated by the esti- 
mate of truncation error. 
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If n is too large, it increases again, as a re- 
sult of instability caused by noise in the ex- 
perimental d a t a .  

There is evidently a best value of n to use; 
approximating n as a continuous parameter, we 
have 

o= ——— =€pn 1n 9 + K(p/R)n 1n(p/R), (11) 

which leads to 

n = M E W ]  /ln R. e ln‘p (12) 
Substituting from (11) back into (10) ,  we have 
for E = Min En: 

E = as“ — <1» 
According to 12, new when EaO, therefore EH0 for 
P<R 

2. Optimized Stability [4] 

In the presence of experimental errors we 
should use (10) as the error estimate, rather than 
the corresponding expression with €=0,  when we 
establish optimality. In the variation of the 
domain considered in section A2, we have now: 

6E = nepn'lep+nx(p/R>n'16(o/R), (14) 
where we omit the variation of n because of ( 1 1 ) .  
Using the relation between E, K, and n given by 
(11) to eliminate K, one obtains after some alge- 
bra the expression 

— n In R" lasa 6E - nep W )  “In R (15) 

The coefficient of 6(ln p/ In R) is positive. 
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However, we can identify the quantity 

v = 1n p/ln R (15) 

as a potential (the harmonic measure of Nevan— 
linna) satisfying the boundary conditions 

v = 0 , xer, 

v = 1 , XGT (17) 

Now in the variation of the domain we keep the 
potentials on the boundary fixed; then it is 
clear that 6v < 0 at all points interior to F, 
from which our theorem follows. 

With this simple model of experimental er- 
rors we have been able to show explicitly that 
accelerated convergence and increased stability 
against noise are closely related. I refer to 
this relation, in general, as the ”stability 
principle". 

III. Approximation by Normed Functions 

A. General Remarks 

There are many cogent reasons for wanting to im- 
prove on the techniques which use polynomial expan- 
sions. One reason is that we have made use so far of 
only asymptotic convergence properties, whereas in 
practice we want to use a small number of terms. This 
limitation may be only apparent however - arising be- 
cause we have so far used rather simple mathematical 
ideas. A more important reason is that we would like 
to take account more precisely of the actual distribu- 
tion of experimental information at discrete points in 
the physical region. Furthermore, we want to take ac- 
count of experimental uncertainty in a more exact way 
than is given by the model of the last section. The 
treatment of experimental uncertainty is left to sec- 
tion IV of these notes. However, the desire to in- 
corporate Gaussian statistical errors into the formal- 
ism is one of the primary motives for treating the 
boundedness and smoothness limitations on the functions 



ANALYTIC APPROXIMATION THEORY 435 

also in terms of a quadratic norm and for in reducing 
an a priori measure in the function Space.[5 

B. Hilbert Space of Analytic Functions 

1. Definition and Examples 

8. The function space A under consideration 
consists of functions which are analytic in 
some suitable open domain D and whose limit- 
ing values on the boundary T of D possess a 
suitable Hilbert norm. 

b. The simplest example[6] 

Let the functions be analytic within 
the unit circle, and let the inner product 
be: 

(f,g>=§%-Il I £<u)*g<u)ldul (1) 
u =1 

If we write the Taylor expansion of the 
functions as f = zanun, g - Ebnun, then 

_ * 
(fag) " 2am bn . (2) 

c. Generalization to different weight func- 
tions. 

Let W(u) be real and positive, and sup- 
pose that 

ug =%jM=ymumfaomm o) 

Then define Y(u) to be analytic in the unit 
circle, such that on lul = l 

Rey(u) = -%1nW(u) (4) 

Then let 

€901) = eY(U); (5) 
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¢(u) is uniquely determined up to a constant 
phase factor. 0n |u|=1, lcp|2=1/w. With the 
definitions 

f = wF, g = mG, etc. (6) 

The inner product (3) is transformed into the 
the form (1) for F and G. 

d. To impose smoothness conditions on T. 
We may replace (2) by 

9: (he) = zonan b (7) 
Now suppose f(u) has on lul=l a finite num- 
ber of singularities of the form 

n 

f(u) ” ( u - “ 0 ) v :  |u0|=la u ”  U0. (8) 

Then an ~ 11“”1 for large n, and we may take 
an N n2v+2 (9) 

for large n, because then the sum (7) is 
marginally non-convergent. If p=2v+2 is a 
positive integer, we may write an integral 
expression such as (l) in which 9 deriva- 
tives of f or g are taken. (A marginally 
non-convergent sum is not unreasonable at 
this point because we will later cansider 
closures of A). 

2. The Reproducing Kernel[7] 

3. Definition 

The reproducing kernel is a function 
H ( x , y ) ,  such that for yen, H(x,y) (as a func- 
tion of x) lies in A, and possesses the fol- 
lowing reproducing property: 

(H(',Y), f) = f (Y) (10) 
The notation introduced in (10) is that the 
dot - symbolizes the dummy variable with 
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respect to which the inner product is evalu- 
ated. It follows from (10) that 

( H ( '  ,X) : H ( '  :Y)) = H ( x ’ Y )  9 (11) 

and hence that H is Hermitian, 

H(x,y) = H(y,x>*, <12) 
and also that H(x,y)  is an analytic function 
of y* . 

b. Examples of reproducing kernels 

For the Hilbert space (l.b) the repro- 
ducing kernel is [ 6 , 7 ]  

l H(U:V) = ifagw (13) 

Proof: 

1 f u, 1 du — 1—3-2:- * ldu |=— —f (u) =f (V) 2n iul=1 1-uv ) 2nif|u1=lu-v 

(14) 
Where we have used the rela.tions holding on 
lu|= 1, that ldu|=du/(iu) and that uu *=l. 
More generally, if IIflI3=ZCn Ian I2, then 

7k 11. 

H( u ’ v )  =E£EL.L 

n 

c .  Elliptical domain 

(15) 

As another example, if the domain of 
analyticity is the interior of a unifocal el- 
lipse CR, as defined in section I . E ,  and if 
the norm is defined on ER as the square- 
integral lwgth a weight unction pr0portional 
to '23- ll then the reproducing kernel can 
be written in the form 

H(z,z') = ZHnTn(z)Tn(z')*, (16) 
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where the Tn are the conventional Chebyshef 
polynomials, and 

2n+ -l 25 ) (17) H = (R2“+R’ 
n no 

C. Generalized Interpolation 

1. Linear Functionals and Basis Functions 

Ordinarily one considers interpolation to 
the values or values of derivatives of a functiOn 
at certain points: viz fk=f(xk) or fk=f'(xk). 
It is convenient to generalize this idea to the 
consideration of arbitrary linear functionals of 
f, for which we introduce the notatiOn 1k: [5] 

fk = k (18) 
Also, we introduce an adjoint I +, acting, for 
instance, on H(x,y), as follows: 

aka) 
Eq. (19) also defines an associated basis function 
H k ( x ) .  Also, we define: 

_ = . .. + 
HM: = ILHk If“ ’ )1k (20) 

We have then a simple theorem: 

+: H ( ' 9  ' . ) I k + )  

H(x,-)Ik+ a (Ikuc ,x))* (19) 

(PERI-11$): ( H ( ' 9  . ) I L  

.. + = —I&H(’ ”k “m. (21) 
The (x) are thus convenient basis functions for 
A, be ause their inner products can be calculated 
immediately from the reproducing kernel, let us 
call this the 'hatural basis". 
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2. Interpolating functions 

Suppose that we are given the N numbers f , 
k=l, . . . , N .  we want to approximate the function 
f. We say that a function f N(x) interpolates the 
fk, if 

I f = f k N  k, k=l,...,N. (22) 

Such an fN(x) is obviously some sort of approxi- 
mation to the original f(x). In case f (x) de- 
pends linearily on the fk, we say that ¥ N(x) is 
a linear interpolatiou. A particular linear in- 
terpolation 

FN(x) = 21“ Hk(x)Bk (23) 
can be constructed from the natural basis func- 
tions provided the Bk are chosen appropriately: 

_ NH f I FN =§ HLkB k, (24) 
k=l 

or, in an obvious matrix notation, with HN re- 
fering to the NxN matrix HLk’ 

f = HNB, a = HN"f (25) 
We now prove an important theorem: Of all 

functions fN(x) interpolating the N values fk 
the function F N(x) given by (23-  25) has the 
smallest norm. In general, we may write 

fN<x> = FN<x> + w(X) (26) 
where IL¢=0’ L = 1 , . . . , N .  Hence 

0 = 1&(H(' ,"),cp) = (Ht, 69) (27) 
But 

2 =  2 2 IlfNH llFNll +l|cpll +2Re2<cp,nk>ak, 
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and according to  ( 2 7 ) ,  we have 

l l l l3= l  lFNl la+llcpl|3, Q.E.D. (28) 
D .  Convergence properties 

We will  now show that lim F N(x) exis ts .  Let the 
functions {Ak (x )}  denote anNorthonormalization o f  the 
{Hk(x)} according to  the Schmidt process.  we can 
wri te  

F N<x> =7Nak Ak<x> (29) 

We have 

N a = 2 2 21 lakl IIFNII s Will (30) 

from which it  follows that the sequence FN(x) con- 
verges in norm. I t  is an important  consequence 
of the existence of a reproducing kernel that con- 
vergence in norm implies uniform convergence f o r  
points in any closed domain dED; we sketch the proof .  

N Let AM (x) = y N anAn(x) ; (31) 
1% 

We have 

lAMNll” =7N!akla < e 
_ M  

provided M > M ( € ) ,  by hypothesis. Using the property 
(10) of  the reproducing kernel, we have: 

lAMN<x> IS = 1(H(-,x>,AMN>Ia 
<32) 

=<H<- ,x) ,AMN> (AMN,H(- .20) 
Now, by the Schwartz inequality, we have 
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IAMN(x) 12s | lAMNl 12 <u<~ ,x> ,H<- ,x)>=l IAMNI |2u<x,x> 
(33) 

Hence the sequence {FN(x)} converges uniformly in any 
closed domain in which H(x,x) is bounded uniformly. 
This of course applies to any interior domain of D, 
and it may also include the boundary of D for Hilbert 
spaces which incorporate smoothness conditions on the 
boundary. 

E. Measure in A 

1. Properties of the Wiener-measure 

We define a Gaussian relative measure:(5,8) 

R<£> = exp(-%llflI2) (34) 
which can be interpreted as a relative probability 
(for the formal construction of a Bayes' hypothe- 
sis) of functions in K, relative to a standard re- 
ference function which is taken here as f e =0. 
In any complete orthonormal basis {En(x)} we have, 
formally, 

H(x,y> = zaEa<x)Ea<y> (35) 
It is convenient here to specialize to the 

case of real analytic functions, which includes 
all important applications, and then the f =k 
can be taken as real, and the (X) and Eakx) can 
also be real—analytic. The quantities 

fa = (Ea,f) (36) 

which enter into the representation 

f(x) = ZafaEa(x) (37 )  

are then also real. 

In such a basis, we have 

R<£> = exp<-%zfa?> (38> 
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where, temporarily, we have set u=1. Using (38) 
it is clear that 

(39) 
<fafb)A = 6ab 

Thus, for functions written in the form (37) ,  we 
have 

(f(x))A = 0 

<f(x)£(y)*>A = H(x.y) 
Eq. (40) shows that H(x,y) provides a complete 
description of the Hilbert space A as well as of 
the measure R defined over it. It is therefore 
natural to take H(x,y) as the fundamental object, 
and use it to define A; it may be easier to 
develop an intuition about the correlation func- 
tion for boundary values than about the weighting 
and smoothing that goes into the definition of the 
norm. 

(40) 

2. Averages over constrained functions 

We now consider the restricted Hilbert space 
A/E of functions f which satisfy the N constraints 

E f = f  k = 1 , ” q N  k ’ 

where the f are supposed given. This restricted 
space can be obtained explicitly by orthonormaliz- 
ing f to the basis . Furthermore, the mean 
value of f(x) over A with respect to the measure 
(34) or (38) is easily seen to be 

<f<x>>A,E = FN<x), (41) 
which just expresses the fact that with a Gaussian 
measure, the average values and the most likely 
values are equal. 
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Now let f (x) be any function which inter- 
polates the Nin the sense defined above, and 
consider the mean square deviation of fN(x)  from 
the correct value f ( x ) :  

AN(X)QE(IfN(x)—f(x)l2)A/E=(I(fN-FN)+(FN-f)I3)A/E 

(42) 
Using (41) and the f a c t  that f -F  is just a num- 
ber independent of fEA/E, we 0 tain 

2 _ 2 2 AN(x) — lfN-FNl + <(FN-f)> ME (43) 

Since F (x) is a linear function of the f k ’  the 
second germ in (43) is independent of the f and 
i s  a constant i f  one performs a fur ther  average 
over the f . Likewise, i f  f (x) i s  a l s o  a linear 
interpolation, i . e .  depends linearily on the f , 
i t  is not hard to  perform a further average over 
the f i r s t  term a l s o .  In any c a s e ,  i t  i s  clear 
t ha t  on the average  over A ,  any  a r b i t r a r y  in te r -  
polat ion wi l l  be worse than the minimum norm in- 
terpolation FN(x) .  

3 .  Completeness 

I t  was shown in section D that  the minimum 
norm interpolation FN(X) converges uniformly, but 
the condi t ions  under which th is  convergence i s  t o  
the correct  function f ( x )  have not been discussed. 
Let us suppose tha t ,  associated with the sequence 
o f  linear functional operators 1k, there is  some 
sequence o f  interpolating functions f (x)  which 
converges uniformly fo r  xédCD. (Here d i s  a l s o  a 
continuum.) For example, let Ik be the kth  de- 
rivative operator a t  some point XOED, and let 
fN(x)  be the sum of the f i r s t  N terms o f  the 
Taylor  expansion around x 0 .  In this  c a s e ,  
fN(x)~f(x)  f o r  xed,  where d is any CiICle 
centered around x0 contained in D .  Now, i f  f o r  
a l l  fEA,  there is some fN such that A (x) = 
|£(x)-£N(x)]~o, i t  follows from (43) that fo r  
almost a l l  fEA, alsa lf(x)-FN(X)I~0 for  xEd 
(and indeed, no slower). Thus, in this case,  
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FN(x) a f(x) for x6d; since F (x) has a uniform 
limit (see section D) for all xEd'CD, FN(x)~f(x) 
for XEd', uniformly in every d'CD. 

Stated.more s ccinctly, the {1k} are com- 
plete if one can find some prescription for 
always reproducing the uniquely correct f(x) from 
the sequence of values {fk}. For this "test pre- 
scription", it is only necessary to prove conver- 
gence in some d which is a continuum and which 
lies inside D. 

IV. Treatment of Data With Errors 

A. Maximum-Likelihood Method 

1. Notation and Definitions 

Let us denote the ”true physical function" 
by F(x), and the "true values" of the measured 
quantities by Fk- It is assumed here, that the 
function F(x), which lies in the space A defined 
in Section I I I ,  is measured directly. That is, 
it is like a differential cross section, rather 
than a scattering amplitude which is not linearily 
related to the data. The experimental values are 
3k. It is assumed that 

3 = ( k)E Fk (1) 
where ()E means the average over repeated experi- 
ments, and that the errors are Gaussian with the 
covariance matrix 

((gk-Fk)(3L-FL)>E = vkL (2) 
The classical x3 is: 

3 = - -3 

where f(x) is the fitted function, f I9k are the 
fitted values, and W L = (v’1)k . In m ny simple 
cases, W is diagonal, but it is convenient to 
adopt a matrix notation. 
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Minimization of X2 can also be looked upon 
as maximization of the conditional probability 

$98 (4) 
The more general maximaum likelihood method in- 
volves construction of a Bayes' hypothesis with 
an a priori probability P(f); then one maximizes 
P(E/f)xP(f). In the standard approach, one de— 
cides on a specific parametrization of f(x), and 
implicitly assumes that the a priori probability 
for these explicit parameters is uniform, and 
also implicitly assumes that the a priori proba- 
bility for all hidden parameters is a delta-func- 
tion centered at some value, say, zero. A more 
natural Bayes’ hypothesis is provided by the 
measure we introduced in Section III. . We then 
minimize the quantity 

P(3/f) = const Xe- 

X2 = -2Ln(P(a/f)>< R(f)) 

= x2 + ® (5) 

where ® = ullfllg. (Any constant factor in the 
probability can be ignored). 

2. Fixed Scale Approximation 

Suppose, for illustration, that u is a known 
number. In any case we can replace llfllz by 
IlFNllz, where FN is the minimum-norm function 
interpolating the fitted values fk' According to 
(3.25), we have 

HFNl l2=Zk£mn fk (H1911: HLm (H'N-l)mnfn 

= -1 
21a, fk (HN)k/L 3. 

It is convenient to write (6) and other equations 
following in a matrix notation, where f denotes an 
N—component vector, H, v, and W are NXN matrices, 
etc. Then (6) becomes: llFNll3=f H'lf, and 
Eq. (5) takes the form 

(6) 
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x"1 = (f+-:'3+)v'1(f-8) + uf+H'1f (7) 

Minimizing (7) with respect to f, we have 

(v'1+ uH'1)f = v'lfi (8) 

B. Eigenvectors and Eigenvalues 

l. Simultaneous Diagonalization of W and H. 

To write (8) in a more transparent form, as 
well as to aid in calculating the inverse of H 
(which in practical cases is nearly singular) and 
as a preliminary to the further development, we 
find the eigenvectors Pkg and eigenvalues l“ of H 
with respect to the weight W of the data: 

_ a HWPa — l Pa (9) 

The P0L are orthogonal, and are normalized accord- 
ing to 

+ — Pa w PB — 60m (10) 

This is equivalent to constructing a set of basis 
functions 

= -1 
Pa(x) ZkLHk(x)(H )kLPLa (11) 

These new basis functions are orthogonal with re- 
spect to the inner product defined in A as well 
as with respect to the weight of the data. They 
have been normalized by W, and thus have roughly 
the same size, at the data points. Their norm is 
Aai 

Let the X's be ordered: llzlaz...2lNu In 
practice, the X's decrease like a rapidly conver- 
gent geometric series, so that the standard itera- 
tive technique for calculating the Pka a.nd A“ 
works very well. 
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2. The Fixed Scale Approximation 

we express the experimental data and fitted 
values in the form 

a = 2 P c c -. P+wa , a a a , a a 

= = + (12) f EuPaYa , Ya P a  . 

With this notation, equation (7) takes the form 

= _ 2 a X? Ea(ca Ya) + HEY“ /xa (13) 

The best value for Ya is thus 

Ya = Ca/(lfil/ka) = nod/(ma) (14) 
This formula shows that the expansion of f in 
terms of the Pa is effectively cut off at the 

point K where XK w u. However, this cut-off is 
not sharp, but is Spread out over a range of 
values a m K. 

In contrast to the result obtained in Sec- 
tion II.B, the cut-off point K does not depend on 
the point to which one wishes to extrapolate. 
This is a result of using Gaussian distributions 
for the model of experimental uncertainty as well 
as for the means of incorporating information on 
boundary values. 

C. Elimination of the Scale Factor 

1. Maximum Likelihood [9] 

In general, the scale factor u is not known. 
A simple way to estimate u is by extending the 
maximum likelihood principle to include u, in 
which case the u-dependent terms in the normali- 
zation factor of P(f) must be included. If M S N 
terms in the eigenvector expansion of f are in- 
cluded, we have 
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= M u ; 2 '  g M a  P<f> n1 (an> exp(- 2 :1 Ya /xa), (15) 
so that 

Y 3  

2 M n  X? = -2 Ln? = x + ”21 l — M log u + constant 

“ (16) 
If we first minimize with respect to u, we obtain 

u = svaéxxa, <17) 
and obtain the expression 

X? = x3 + Q (18) 

where we have dropped constants, and where 

Q = M Ln :1“ 2 Ya />\a (19) 

In some cases it may be simpler to first 
minimize with reSpect to the Ya: using the formu- 
las given in Sections A and B, and then vary u to 
find the minimum of X? as given by Eq. (16). 

2. Generalized Analysis of Variance [5] 

The method C.1 has two disadvantages: The 
results depend on the value chosen for M, and the 
value of Q weights the coefficients Yn for small 

. n in the same way as for large n. We shall now 
introduce a method which explicitly compares the 
ratios of coefficients for large n to those for 
smaller n. Let 

_ ' ”‘5 an — Yn(Xn) 

= l n 3: 
8n n 21 an (20)  

= a 
rn an+1 lsn 
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We transform 

M M/2 M da 2 —%~% a 3 
P(a.2)11da2=(”—) H — E e  1 “  

l n 2n 1 a 

(21) 

into the following distribution: 

2 M 2 2 2 M-1 P(a ) g dan = P(a; , r1, ..., rN_1)da1 H dr 

H M/2 M_2 M-l drn n+rn M'rzl'l 
= (ifi9 31 E _—E §u+l ) dale (22 )  

H512 M-l n+rn 
_ 2 H n 1 

x e 

Integrating over dalz we obtain 

M—l 
P(r1 ... rn_1) — g Qn(rn) (23) 

where 

cum - gm 3%“ *9 7 . (24> 
1‘(%)F(%n) riicnmhfi 

Thus the statistical distributions of the r are 
independent of each other, as well as of the value 
of u. 

3. Convergence Test Function [5] 

We wish to devise a function which measures, 
collectively, whether the ratios rn are larger 
than one would expect from a Gaussian distribution. 
Furthermore, we wish to weight somewhat more 
heavily the rn for large n. To do this we first 
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construct the monotone function pn(r), where 9n 
has a x2 -distribution with one degree of freedom. 
This function satisfies the following differential 
equation: 

e—gpn d p n  

Qn<r>dr = mg) m; <25) 
For small r, we have: 

_ l E pn/r — l + 0(n) + 0(n) ( 2 6 )  

and for large r: 

p = n Ln r + 0(Ln Ln r) (27)  

An approximate formula is thus 

r pn(r) ~ n Ln (1 + E) (28) 

(While this formula is good for large n, it may be 
wrong by as much as 50% for n = 1.) Finally, we 
define the convergence test function (CTF) 

M-1 :1 =YJ 1 pm (29) 

which has a x3 distribution with M-l degrees of 
freedom. This can be combined with the classical 
x2 as in Eq. (18) 

X? = x? + 6 (30) 

where now X? has a x? distribution with N-l de- 
grees of freedom, independent of M. 

The logarithmic nature of pn(r) guarantees 
that if certain Yn are really required to have 
large values to fit the data, in the minimization 
of (30) the effect of x2 overwhelms the effect of 
@. 0n the otherhand, if the values of the Yn for 
n greater than some K are all around the noise 
level (lynl ~ 1), the minimization of X2 guarantees 
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that these Yn are reduced to extremely small 
values. The effective cut-off in n occurs at 
such a value K; it is gradual, although in prac- 
tice it turns out to be slightly sharper than the 
cut-off obtained through the use of Eq.(l4). 

In contrast to the use of method C.1, when 
the CTF is used the results are completely in- 
sensitive to the value chosen for M, provided 
only that M is somewhat larger than K. In either 
case, however, the ambiguity is much less than in 
the conventional method in which only x3 is con- 
sidered. 

D. Estimation of Truncation Uncertainty 

In addition to the statistical uncertainty, there 
is always a truncation uncertainty to consider. This 
component of the uncertainty is usually negligible at 
the data points, but can become the main component of 
the uncertainty when one tries to extrapolate too far 
away from the data region. According to the formalism 
presented here, with an a priori Gaussian distribution 
of functions, these two components are combined quadra- 
tically. 

The "statistical uncertainty” can be calculated by 
the usual rule: AX? = 1. This actually is a combina- 
tion of true statistical uncertainty arising from the 
terms n s K, and a part of the truncation uncertainty 
coming from the terms K g n S M. The residual trunca- 
tion uncertainty can be calculated as follows. Let us 
suppose we wish to determine the truncation uncertainty 
in a real quantity f0 associated with the linear func- 
tional operator Io. We can use the formula 

M 
<s)A/E(PD = (Hbo- “E 1P walk ) /H ,  (31) 

where P = I P . The value of u to be used in (31) can 
be estimated by the formula 

1 + Q 32 u ~  T2133 ( )  
21 an , 

which is insensitive to M if M > K. 
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It should be emphasized that the methods presented 
here have been designed to reduce to a minimum the 
total uncertainty. However, since it has been custom- 
ary to neglect the component arising from truncation, 
the uncertainties obtained by use of these methods may 
appear to be larger than values sometimes quoted. 
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ANALYTIC EXTRAPOLATION 0F SCATTERING AMPLITUDES 

AND FORM FACTORS f 
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Tubingen, Germany 

1. General Considerations on Extrapolations 

As long as there exists no complete elementary parti- 
cle theory, the extrapolation of physical amplitudes from 
experimentally known regions into regions which are not 
yet accessible or cannot be reached in principle, is one 
of the main tasks of elementary particle physics, compara- 
ble to the task of gathering new data. Many of the ques- 
tions which are in thorough discussion nowadays, are final- 
ly questions of extrapolation of amplitudes. As there are: 
What is a resonance? A pole in the second sheet or only a 
loop in an Argand diagram? Can all amplitudes be construc- 
ted out of resonances? Should an amplitude in some kine— 
matical region be parametrized by resonances or by Regge- 
terms or by something else? 

In Spite of this central role of extrapolation of am- 
plitudes, the mainly mathematical problems connected with 
it are by no means fully solved, and worked out in detail. 
In times when the experimental material was scarce, it was 
sufficient to represent for instance the proton form fac- 
tor by a simple p-pole term, or a n-N partial wave by two 
or three Breit-Wigner resonances. To make, however, full 
use of the assembling of more and more data of higher and 
higher precision, it is necessary to develop systematic 
criterions, which parametrizations of these data are al- 
lowed and which not, and even more important, what are the 
uncertainties in conclusions drawn from those parametriza- 
tions. 

T Supported in part by Deutsche Forschungsgemeinschaft 
and National Science Foundation. 
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The main tool which enables one to  get reliable con- 
clusions on the extrapolat ion of physical ampli tudes,  i s  
the analytici ty of these amplitudes in some domain D.  
These analyticity properties follow in some cases from 
axiomatic field theory, in less favourable cases they can 
s t i l l  be deduced from perturbation theory. In any case ,  
we wil l  assume for  a l l  fur ther  discussion tha t  the domain 
of analytici ty of the amplitude in question is  known. Un- 
fortunately,  this postulate alone does not suff ice  to  
solve the extrapolation problem for  any rea l  situation in 
elementary particle physics .  

If our amplitude f ,  analytic in D ,  would be known in 
some, hOWever smal l ,  continuum inside D ,  the theorems of 
complex analysis would guarantee the exact knowledge of f 
in the whole interior o f  D .  But in pract ice ,  f is known 
experimentally only in d iscre te  points 21, and in these 
points only with finite errors 61.  So,  the extrapolation 
problem is unstable, o r ,  in the mathematicians language, 
improperly posed: It  is easi ly possible to  construct for  
arbitrary 206D and arbitrary complex number K a function 
f ,  analytic in D, which coincides in the points zi+zo with 
the experimental result,  and fulf i l ls  f ( z o ) = K .  So,  the 
extrapolation to  any point different from 21 i s ,  s tr ict ly 
spoken, undetermined. 

In order to  avoid this (unphysical) d i s a s t e r ,  one 
usually introduces two additional postulates on the physi- 
c a l  amplitude f :  
a) One assumes that f is known along some continuous piece 

o f . a  curve Ce within some (constant or variable) error :  

|f(Z) - fe(2)|<e(Z) on cecn. 
This smearing of the experimental information is quite 
plausible and acceptable in cases where the experimen- 
t a l  points 21 lie already qui te  dense and where the 
relative variation of f ( z i )  from one point to the next 
is small. In many cases ,  the "point" 21 is also eXperi- 
mentally fixed only within some inaccuracy. In princi- 
p l e ,  postulate a)  can be omit ted,  a s  is  seen below, but 
many conclusions and formulas are more evident if we re- 
tain i t .  
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b) One assumes that f is  bounded on the boundary CD of D .  
I t  is  then reasonable that a l s o  the c lass  o f  functions 
f e ( z ) ,  admitted fo r  approximating f ,  is restricted by 
this bound, so that we have: 

If(z) - fe(z)l<M on CD. 

This second postula te  is  a qui te  severe l imitat ion from 
the physical  point o f  View, and b y  no means plausible.  
I think, nobody i s  ab le  t o  give for  any definite physi- 
cal  example a reliable-and not too large—number M, 
which fu l f i l l s  the above relation on the whole curve 
CD, including in most cases a l so  the point infinity 
(in energy or momentum t r a n s f e r ) ,  where we cannot even 
exclude a n  e ssen t ia l  s ingulari ty of our amplitude f .  
Unfortunately,  pos tu la te  b) cannot be skipped without 
running in the above mentioned mathematical d isas ter ,  
but we must ,  and we can arrange our extrapolation in a 
way such that the special form of b)  and the special 
constant M influence our results a s  slightly a s  pos- 
s ible .  

Let  us see in short that  the disaster of indefiniteness of 
the extrapolation is really removed by postulates a )  and 
b ) .  This is guaranteed by the Nevanlinna principle: Be 
D a simply connected domain, and Ce a iece of a curve in- 
side i t .  If I f ( z ) - fe (z )  |<e on ce, and if(z)—fe(z) I<M on cD, 
the boundary of D, then I f (z ) - fe (z) l<e  -w(z). FP<Z for 
all  ZED, with w ( z )  being the harmonic meaSure of D:  Aw(z) -0 ;  
Am(z)=0; w(z) - l  on CD, m(z)=0 on C . 
It  follows then that the extrapolagion is stable inside D :  
gig I f (z ) - fe (z ) l=0 .  The stability on CD can be established 

y further assumptions on f ;  for  stance f fulfi l ls  some 
Holder condition on CD: I f  P) ( z ) - f  P)(zo)1SCIz-z° I “ ,  or,  f 
has only square root singulari t ies on CD, o r ,  in a s t i l l  
more physical  manner, by calculating only mean values of f 
over finite arcs on CD. 
2 .  Historical Remarks on Analytic Extrapolation 

The f i rs t  attempt to  use analytici ty fo r  a reliable 
extrapolation of a scattering amplitude seems t o  have been 
done by Ciull i  and Fischer [1 ] .  They have made a conformal 
transformation of the p-p scattering amplitude f from the 
z=cos e-plane to some other plane w-( l -z2) / (a2-za ) ,  and 
have shown that  an expansion of f in powers of w shows much 



458 H. PFISTER 

better convergence than an expansion in 2. Similar meth- 
ods of conformal transformation and power series expansion 
were used by Frazer [2], Lovelace [3], Atkinson [4], 
Levinger and Peierls [5] and others for extrapolation of 
p-p, fi-p, and fi-n scattering amplitudes, and nucleon form 
factors. But, as stressed by Bertero and Viano [6], these 
people did not care of the stability problem, and there- 
fore a reliable statement about the extrapolation error 
could not be made. 

3. So Called Optimal Extrapolations 

In 1968, independently from each other, Cutkosky, 
Dec [7] and Ciulli [8] worked out methods of stable ex- 
trapolation for physical amplitudes by introducing postu- 
lates of the type a) and b). By further idealizing the 
physical situation (assuming that e is very small and M 
not too big), Cutkosky and Ciulli could refer to former 
mathematical work on interpolation and approximation [9], 
and show that the special conformal transformation wo, 
which brings the whole domain D into an ellipse, and the 
curve Ce of experimental points to the focal line of this 
ellipse, is optimal in the sense that the series f=§anwb“, 
w.ith an resulting from a X? approximation to the experi~ 
mental data on Ce, converges faster than any other power 
series approximation of f, and that this expansion also 
shows the best possible stability, even on the boundary 
CD [10]. (With respect to this result, the partial wave 
expansion is very bad because it converges only in a small 
part of D. On the other hand, the Cutkosky-Ciulli expan- 
sion is not unitary term by term, and it has to be cor- 
rected for that.) 

The approximation could be further optimized, if also 
parts of higher Riemann sheets were transformed into the 
ellipse, as is done in a way in [11], but in general there 
is not much improvement because the singularities in 
higher sheets are not well known. 

In application to realistic problems, the method of 
Cutkosky and Ciulli, however, has some shortcomings, as 
pointed out in [11]: Even for the best known amplitudes 
(N- N and fi-N scattering, nucleon form factors), the error 
e is so big that only few terms of the series Zanwbn can be 
calculated with reliability, and then the a.bove mentioned 
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mathematical theorems, which are of an asymptotic charac- 
ter, are empty. Furthermore, the error of extrapolation, 
calculated by Cutkosky and Ciulli by some generalized 
Nevanlinna principle, and depending on e and M, is in re- 
alistic cases unacceptably high. In an application to the 
.proton form factor, it has been shown explicitely in [12] 
that an expansion in powers of the elliptical function W0 
is not necessarily superior to other power series expan- 
sions, which converge only in a part of D. I admit, there 
are series expansions in variables w, which, in spite of 
having all correct analyticity properties, converge only 
much worse than the w -expansion, and give practically no 
useful information. on the other hand, there are expan- 
sions quite different from wo, not even having the right 
analyticity structure, which are as good in some examples 
as wo. And, to be sure, there exist physical amplitudes, 
which can only very badly be approximated by a sum of 
three or four elliptical functions. 

As will be discussed below, the analytical extrapo- 
lation of physical amplitudes is to a large extent a prob- 
lem of measure theory in a function space, and results de- 
rived with some special conformal transformation depend in 
a nearly uncontrollable way on this special transformation. 

4. The Mean Value Propertygof Analytic Extrapolation 

It has been pointed out first by Bowcock, Cottingham, 
and Williams [13] that the analytic extrapolation produces 
not values of f on definite points of , but only mean 
values over finite arcs on Ca, provided, one does not set 
severe and physically unjust fied limitations on f on the 
boundary. Mathematically, this mean value character of 
the extrapolation can be traced back to investigations on 
the inversion of dispersion relations by Paley and Weiner 
[14] (see also [15]). You may remember that also in the 
famous duality-paper by Dolen, Horn and Schmid [16], it is 
made quite clear that from the Regge asymptotics you get 
only averages over the resonances at finite energy. Bow- 
cock et a1. got their result within a critical discussion- 
under some simplifying assumptions- of Levingers extrapo- 
lations procedure for the proton form factor. It was then 
shown in [12] that this averaging function, connected with 
a series expansion of f in powers of a conformal variable 
w, can be constructed explicitly and uniquely. 
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Let us shortly present the method for an amplitude 
f(z) - like the form factor -, having only one cut. (The 
method can, however, be generalized to amplitudes with two 
cuts.) Be f(z) measured in K points z i<0,  with errors 61. 
Then we want to approximafie f(z) in the whole plane, cut 

from 0 to a, by a seriesngobn(w(z))n, w(z) being some 
suitable conformal transformation, having the same analytic 
properties as f(z), and being real for 2 <0. For practical 
calculations more appropriate is a representation 

f(zyaf(z) - a (w), where the Qn(w) are the orthonormal n: n ‘ ,,,. _ polynomials w th respect to the measure of experimental in~ 
formation: 

i Qn(Wi)Qm(Wi) __2___ 
i=1 6i 

- 511,!“ (11,!!! E 0, 1, o o o N ) o  

For finite N both series are equivalent. The coefficients 
a are, as usual, calculated by minimizing n 

K [f(z ) - g a (w )32 x2 = E 1 n=0 nQn i . 

K f(zimnwi) 
The result is: an - Z —2—— 

1=1 81 

Here is now the place to insert explicitely the analytic 
properties of f(z) in form of the (unsubtracted) dispersion 
relation 

O _ l we =11 1I W 
0 1 

Im f(z') being the spectral function of the real physical 
amplitude. (A subtracted dispersion relation would work 
equally well.) In this way, we get an integral representa- 
tion, expressing the approximate function through the com- 
plete function: 
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_1%we»%wep>mfew 
(z' - zi) Si 

E(z)= ”J‘o'dzz if" 
n=o i=1 

Taking the imaginary part of both s ides ,  we end up with: 

Im f(z) = Iodz' SI(Z', 2) 1m f(z'), 

where the averaging function is 

' _ dN K1n%WM)%wmp 
SI(z ,z) —11 Z Z 2 

n=0 i=1 (2' - 21) e1 
For K a ” , e  i a 0, we can go with N ~ ”, and then SI 
should approach 6 ( z '  - z ) .  
The same can be done for the real pa.rt of f(z), using a 
different representation, expressing the analytic proper— 
ties of f, the so called airfoil equation [17] 

f(zi) ;{;;i y dz' §£_£SEJ2__. 
Jz' (z'-zi) 

The resulting averaging function SR(z',z) is in many appli- 
cations very similar to SI(z',z). 
It can be shown that the averaging functions S are unique- 
ly fixed, once the conformal variable w is given, and that 
S does not depend on the special way, the analytic proper- 
ties of f are worked in. This is due essentially to the 
fact that S does not depend on the experimental values 
f(zi) but only on the errors 61. 

Some remarks should be made with reapect to the degree 
N of approximation, one should choose. It turns out, that 
x3 as a function of N at first falls very rapidly (typical- 
ly from something like 108 at N=0 to 103 at Nh3), and then 
at some value Nb levels off into a value near K, the number 
of experimental points. Pushing the approximation beyond 
No would mean that you want to fit also the statistical 
fluctua.tions- the noise— —in the experimental data. With 
N-K, you could even construct a polynomial f(z) which goes 
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through the center of all error bars; but surely this does 
not make any sense. The best (most physical) value No can 
also be found in another way: The sepa.rate terms %Qn(w) 
of the series f(z), taken in the extrapolation region 
(z>O in our example) first fall off (in absolute value), 
but beyond n = N they rise enormously, because fitting 
also the noise of the data develops fantastic oscillations 

of f'in the extrapolation region. (w) is in fact a n; o anQn 
semi-convergent series. 

Let us say some more words about the averaging func- 
tions S (now taken with the optimal value No) and the de- 
gree of information, they give us about the true physical 
amplitude f in the extrapolation region z>0:  By explicit 
calculation, it can be seen that S(z',z) depends very 
strongly on z, the Special point in the extrapolation re- 
gion, around which you want to gain information on f. More 
explicitly: The region z>0, in which you can get reliable 
information, is in a way the mirror-image of the region of 
good experimental information, taken with respect to the 
threshold-point z = 0, as has been pointed out already some 
years ago [15, 18]. Near the threshold point and for very 
large values of z, the information, you can get, is in most 
cases very scarce. This correspondence between extrapola- 
tion region and experimental region is hidden in procedures 
as Ciulli's, which stick strongly on a unique bound of f 
for all positive 2. 

Concerning the error, to which our approximate ampli- 
tude f is subjected, it is reasonable, to take the absolute 
value of the last (the minimal) term in the series, 
laN QN (w)l. Once you have accepted, to approximate f by a 
power Series in the Special varia.b1e w, this can also be 
proved by well- known x” -approximation theory, 1. e. by cal- 
culating the uncertainties of the coefficients a . But, to 
be sure, there is no strict mathematical proof 0% this esti— 
mate, independent of w. 0n the other hand, it turns out in 
practical applications, that approximations f, expanded in 
different (but reasonable) variables w, do not differ from 
each other by more than the above estimate. In any case, 
it is essential, that by calculating only mean values of f, 
we get a resonable error estimate, which is independent of 
some (unphysical) bound on f. 
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Once it is clear that by analytic extrapolation one 
can never get f(z)  on definite points, but only average 
values, it is nearby to give up completely the approxima- 
tion through power series' in some conformal variable w, 
and to put the averaging function itself on the top of the 
extrapolation procedure. This point of View has been taken 
for example by Pisut, Presnajder and Fischer [19] .  For 
convenience only, they first transform the physical z-piane 
with its two cuts into a ring between two circles.: 

Z - P L A N E  

exn 

- Z o — 1  1 lo 

Idealizing the situation a little bit, they Split the ampli- 
tude f into the data and the errors: 

f(w) = fe(w) + 6(w0. 

(Of course, a function €(w0 does not really exist.) 
Then, taking a so called focusation function g(w,w‘), analy- 
tic in w withing the ring, real on the unit circle lw =1, 
and large only along a small are P of it, around w=w', the 
Cauchy theorem gives: 

Ife(w0 g(w,w') dw + Ie(w0 g(w,w') dw = If(w) g(w,w') dw + 
R R F 

+If(w) g(w,w') dw. 

1-? 

or If(w0 g(w,w') dw = 
P 

= Ife(w) g(w,w') dw + IeCw) g(w,w') dw - If(w) g(w,w') dw 

R R 1-? 
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The average of f over the arc T i s  given b y  a n  in tegra l ,  
which can be ca lcula ted from the data ,  plus  two terms,  ex- 
pressing the uncertainty of the extrapol tion. These two 
terms in a way compete with each other: T f(w) g(w,w')  aw 

gets negligible, the more g(w,w')  is foéugsed around w ' ;  
but then g(w,w') is large an the R-circle, and the integral 
over e(w)  grows. In pract ice,  one takes a Special c l a s s  of 
focusation functions g ( w , w ' ) ,  s ay  a kind of Gaussians on 
the unit c i r c l e ,  and chooses the width in an optimal w a y ,  
so that the sum of both integrals gets minimal. This Opt i -  
mal choice go(w,w ' )  between two competing terms is  of  
course in analogy t o  the dependence o f  l a n Q n ( w ) l  on n ,  
showing up in the series expansion method. Again you can 
s e e ,  t h a t ,  due t o  ca lcula t ing only mean va lues ,  the special  
assumptions on the amplitude f ,  f o r  instance t o  be  bounded 
by M, do not influence t e error est imate so  s t rongly,  be-  
cause only the integral ?f(w) g ( w , w ' )  dw enters  into the 

error estimate. In a very elegant way,  Pisut et a l .  have 
traced back this increase in s tab i l i ty  o f  the extrapolat ion,  
this slighter dependence on assumpt one on f ,  t o  the fact  
that the averaged function F ( w ' )  = }f(w) g ( w , w ' )  dw has a 

w -1 
much larger region of analyticity than the original func— 
tion f ( w ) .  

Comparing the method of  Pisut  e t  a1 .  with the power 
series expansion, it appears, that the former method is 
more general, in that the focusation functions g ( w , w ' )  can 
be chosen arbitrary (within the analyticity constraints), 
while the functions S I ( z ' , z )  depend on 2 '  always in the 

V 81(2921) 
form. ‘ EP_:_EI_ . 0n the other hand, the second method 

1 
makes very drastically clear that the averaging (or focusa- 
tion) functions cannot really be chosen f ree ,  but are to  a 
far  extent determined b y  the experimental error-distribu- 
tion a t  d isposal .  

5 .  The S ta t i s t ica l  Nature o f  Analytic Extrapolation 

A shortcoming, common to al l  extrapolation procedures, 
discussed t i l l  now, is  that their results depend to  some ex- 
tent on the special expansion variable w or on the special 
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type of focusation functions used.  In this situation, it 
has been emphasized by Cutkosky in a fundamental paper [20] 
that the extrapolation of physical amplitudes in fact is a 
problem of statistical nature. There is also a subsequent 
paper along the same reasoning by Presnajder and Pisut [21]. 

Cutkosky suggests to manage the instability problem 
not by the unflexible condition lf(z)I<M, but by intro- 
ducing a probability measure for the values of f on the 
boundary. I, personally, being very sceptical concerning 
predictions, how an amplitude should probably look like in 
a hitherto unknown region, would like to suggest another 
kind of statistical concept in analytic extrapolations: Do 
the extrapolation simultaneously with all physically and 
mathematically admissible expansion variables w, or focusa- 
tion functions g(w,w'), and then average over all results 
with a suitable measure function, measuring in a way the 
"probability" of the special parametrization through the 
width of its smearing function g(w,w') or S(z',z) and the 
error estimate IaN QN (w)l respectively 

0 o 

l j f<w> go(w.w') dwl + IIe<w>l lgo(w,w')l 1d 
1-? R 

But I will not go any deeper into this statistical 
game, because I have not yet done explicit calculations in 
this direction, and because Prof. Cutkosky surely can tell 
you much more definite results about that. 

6. Survey of Physical Applications 

There are a variety of nice applications of the analy- 
tic extrapolation techniques by the Cutkosky-group on K-N 
and N-N scattering. One can for instance get quite relia- 
ble values for the N-N and K-N coupling constants [7], and 
one can represent the corresponding scattering amplitudes 
even better with less parameters than in the partial—wave 
method, and can therefore correlate different phase shifts 
and resolve some ambiguities inherent in these [22]. Just 
recently there appeared an interesting letter by Dec and 
Parida [23], in which they show that the high-energy p-p 
data are better and more uniformly represented by an opti- 
mal conformal variable in the sense of Cutkosky and Ciulli 
than by the Orear- and Krisch-fits. 
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There are also some applications by other groups: 
Bowcock and John [ 2 4 ]  have taken the n-n p-wave as measured 
with colliding e+e' beams and extracted out of it, using 
crossing and analyticity, an approximation for the n-n 
s-wave, showing some broad resonance (o-meson) near the 
p-mass, but giving no good resolution. 

A Nordita- -group [25 ]  then has extracted a lot of in- 
formation out of the _HN phase shifts, extrapolating these 
to the channel nnrvNN. For the amplitude T(I=J=O) they 
get indeed, as above, indications for a broad o-maximum, 
but the corresponding phase only very unlikely goes up to 
90° as it should be for a real resonance. For T(I=J=l), 
the imaginary part of the amplitude shows the p-peak, but 
smeared out over something like 4 times the experimental 
p-width. The real and the imaginary part turn out to be 
quite small a distance above the p-mass. 

This fact harmonizes excellently with a result, ex- 
tracted with analytic extrapolation from.a quite different 
amplitude, the proton electromagnetic form factor [11]: By 
extrapolating the rather extensive and accurate data on the 
_proton form factor G(t) in the spacelike region to the 
timelike region, it turned out that Im G(t) has no pro- 
nounced p-maximum at the right place, but a zero a small 
distance above the p-mass. At first, this is surprising, 
because, taking into account only* the Zn intermediate state 
as usual, we have Im G(t) ~ Fn(t)* -T(I=J=l, t), and it is 
experimentally absolutely clear that the pion form factor 
Fn(t) has a pronounced p-maximum. But now, by our extra- 
polation procedure, we get only an average of the above ex- 
pression over a finite t-region (typically of the order of 
400 - 500 (MeV)3, i. e. 4 times the p-width; the uncertainty 
in (1m G(t))a av being of the order of 40% compared to 1% -3% 
error in the exPerimental data), and therefore the peak in 
Fn(t) can be killed in a way, or be pushed to much smaller 
t-values by the "zero" in T. 

Another interesting result of the proton form factor 
extrapolation refers to the so called scaling law between 
the electric and magnetic proton form factor: GE(t) = 
G (t)/u. It turned out [12] that the small but systematic 
deviations from this law in the Spacelike region 
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(GE>GM/u for 0.15 (GeV)a<-t<0.30 (GeV)a , GE<GMIu for 
0 . 6 0  (GeV)a‘< -t<l.5 (GeV)3) , which have been confirmed by 
the last experiment [26] , produce quite large deviations 
from this law in the timelike region, and fortunately in 
the direction as to confirm the relation G = G-M at 
t - 4MP”, as it is suggested by theoretical arguments [27]. 
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