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FOREWORD

This Volume XIVA contains Lectures presented during
the first part of the Boulder Summer Institute for Theo-
retical Physics held in June, 1971.

This part of the Institute was devoted to several
active areas of the past years in Particle and High Energy
Physics. Accordingly, the Volume is divided into four
parts: eikonal approximations, dual resonance models, as
well as other related models, and to analytic approxima-
tion methods.

We have tried to present in each area a comprehensive
picture including introductory reviews as well as recent
material, and different but related viewpoints.

The Institute was sponsored by the National Science
Foundation,

I wish to thank the lecturers and the participants
for their effort for a lively Institute and to
Mrs. Charlotte Walker for her invaluable contribution to
the organization of the Institute. I would like to ex-
tend my appreciation to Mrs. Walker, assisted by
Mrs. Ruth Henard, for the typing of the manuscript.

Boulder, February 1972

A, 0. Barut

vii






TABLE OF CONTENTS

PART I: EIKONAL APPROXIMATIONS IN STRONG INTERACTIONS

EIKONAL APPROXIMATIONS IN COLLISION THEORY
Henry D. I. Abarbanel .,.......ccvivivivinrennnannns 3

THE RELATIVISTIC EIKONAL MODEL
Robert L. Sugar ....... SR PSR 1 R 55 47

EIKONAL DESCRIPTION OF HIGH-ENERGY PARTICLE SCATTERING
M. M. Islam ...... 00 AIE ol 06 oMb oo G ceeeeees.e. 101

PART II: DUAL MODELS IN STRONG INTERACTIONS

AN INTRODUCTION TO DUAL RESONANCE MODELS
K. Bardakei ........ et e et e s e e e e s TS O R e e e 157

THE PRESENT STATUS OF DUAL MODELS
E. SqQuires ....cieeeveevocacans o SEONANGEGNGNS ¥Ne SWSNANONONS 181

GROUP THEORETICAL PROPERTIES OF DUAL RESONANCE MODELS
P. Ramond ... .t evevevenoosooooonnnnssesssnnnsns 241

SELF-CONSISTENT ELECTROMAGNETIC ''DUAL' AMPLITUDES AND
THE ELECTRON-POSITRON SYSTEM
James MCENNAN ......icueiervencncscnansnnsannas 275

DUAL LOOPS AND MULTIPLY PERIODIC FUNCTIONS
Stanley Fenster ......eivvuvunnnrnnsnnssnannens 297

PART TII: NEW THEORETICAL MODELS IN STRONG INTERACTIONS

A POSSIBLE PHYSICAL BASIS FOR SOME MATHEMATICAL MODELS
OF STRONG INTERACTIONS: ATOMS WITH MAGNETIC CHARGES

A. 0. Barut ,.....00vevunn viae B EWEEREE 19 oeaee 339
PARTICLES AS NORMAL MODES OF AN UNDERLYING GAUGE FIELD

THEORY

Fred Cooper and Alan Chodos ........:vivivunnnn 349

INTRODUCTION TO THE CHARACTERISTIC INITIAL VALUE PROBLEM
IN QUANTUM FIELD THEORY

G. DOMOKOS . tivereososososccssansaoossossosnaanss 375
ix



FLUX QUANTIZATION AND PARTICLE PHYSICS
H. Jehle ...... o) 16 o el ool - o 060000 50000 0d0 o 399

PART IV: ANALYTIC APPROXIMATION AND EXTRAPOLATION

PRINCIPLES OF ANALYTIC APPROXIMATION THEORY AS APPLIED
TO ANALYSIS OF EXPERIMENTAL DATA
R, E. CutkoSKY sewiese sa somssirase eeveeeass sssipng 423

ANALYTIC EXTRAPOLATION OF SCATTERING AMPLITUDES AND
FORM FACTORS
H. Pfister ........... ols sHoNSNeNSHeNSHSNNSNSXS sessessssses U455



Part I

EIKONAL APPROXIMATIONS IN
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EIKONAL APPROXIMATIONS IN COLLISION THEORY*

Henry D, I, Abarbanel*#*
Joseph Henry Laboratories
Princeton University
Princeton, N,J. 08540

Introduction:

In this series of lectures I would like to discuss an
approximation scheme which is useful in very short wave-
length or, equivalently, very high energy scattering pro-
cesses or propagation of waves through a medium, We will
envisage the potential causing the scattering or the index
of refraction characterizing the medium to be very 'smooth”
so that the direction of propagation of a high frequency
incident beam is essentially unaltered. Smoothness of the
scattering force means, in practice, that the scale on
which changes in its shape occur is much larger than a typi-
cal wavelength from the incident beam, This has the conse-
quence that it is a good first guess to associate a modu-
lated plane wave with the scattered or deflected beam, The
modulation due to the potential can properly describe ab-
sorptive and dispersive properties of the wave propagation,
One can further describe a systematic procedure for improv-
ing upon his original wave amplitude.

The usefulness of the method we will be considering is
already apparent in non-relativistic potential scattering
where the basic approximation provides one with a vast im-
provement over the Born approximation and, yet, for appro-
priate potentials reduces to the Born term for very large
energies, The main advantage gained is a scattering ampli-
tude which satisfies unitarity, which the Born approxima-
tion manifestly fails to do, and which is a good represent-
ation of the true amplitude over a wide range of energies.

*Work supported by the U,S. Atomic Energy Commission under
Contract AT(30-1)-4159,
**A1lfred P, Sloan Foundation Research Fellow,

3



4 HENRY ABARBANEL

The technique also has its place in quantum field
theories where it enables one to sum up the high energy be-
havior of a very interesting set of Feynman graphs in a
compact and useful manner. Furthermore it justifies the
use of a Bessel-transform or eikonal representation of the
S-matrix which is familiar from non-relativistic problems.

II, Geometrical Optics

We will first discuss the basic ideas in the context
of wave propagation in a medium and then proceed to ex-
plore the properties of such an approximation scheme within
potential scattering. Finally the expression of the eikon-
al method in quantum electrodynamics will be presented,

So let us begin by considering a wave characterized
by an amplitude A(¥,t) propagating through a medium of
spatially varying index of refraction n(%),. A(Z,t) could
well represent any component of the E or B fields of an

electromatnetic dlsturbance and satisfies the wave equation
2

[ v - a atz]A(rt)—o (1)

We want to address the physical situation in which the
variation of n(¥) is very slow. More precisely if a length
L characterizes the spatial distance over which n(¥) changes
significantly (say by a factor of 2) or equally well sets
the scale for the gradient of n(¥), then we are interested
in the propagation of wave whose wavelength X is such that

A << L (2)

or whose wavenumber satisfies
kL >> 1, (3)

If we are in this situation then it 1is physically
pretty clear that the major effect of the medium will be
primarily to alter the phase of the wave by k times the
optical path, but that the direction of propagation will
be unaltered, With this in mind let us seek a solution of
the wave equation in the form

A(Z,t) = expi(K-T-wt) B(¥), ' (4)
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where the free space relation |K|c = w is taken to be

true, All of the effects of the medium or of the deviation
of n(¥) from 1 are contained in the modulation factor B(T)
which we will regard as slowly varying through space.

Since we are using as our uncorrected wave in (4) a
plane wave appropriate to free space, or n = 1 everwhere,
if we are to have B(Y) slowly varying in space then we
cannot require it to make up the difference between n = 1
and some value significantly different from that. We will
require, therefore, that the deviation of n(¥) from 1 re-
main small throughout the medium, Should the medium have
an index of refraction that varies slowly about some other
value not equal to one, then the unmodulated plane wave
should have its w, |K| relation chosen to reflect this, and
our discussion is otherwise unaltered.

From (1) we determine an equation for B(¥)
v2B(TY) + 2ik-VB(Y) + k®[n(¥)*- 1 1B(¥)= 0. (5)

Since we will treat various spatial derivatives of B(Y¥) as
small, one's inclination is to drop the VB term with re-
spect to the rest and evaluate the resulting B(Y¥), Indeed,
that is what we shall now do in a systematic manner by re-
writing the equation for B as an integral equation

B(¥) = Bo(¥) + fdar'gk(F,f') (-Vi,B(?')), (6)
where the inhomogeneous term Bo(Y) satisfies
21k VBo (E)+ k2 [n(¥)?® - 1IBo(¥) = 0 (7)

and the Green function gk(?,?') has the obvious property
{21k-vp + K In@? - 11} g (F,7") = s°(F-7"). (8)

The approximation scheme is simply the Neumann series for
the integral equation (6). Although we shall casually ig-
nore such questions when convenient, it is perhaps useful
to point out that the kernel of the integral equation con-=
tains the rather singular operator V® and that the true
series expansion is unlikely to be convergent. Neverthe-
less a few terms in the series may provide useful, compact,
and often excellent asymptotic approximation to B(Y).
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There is no proper discussion of this matter to my know-
ledge so let's close our eyes and proceed,

The first approximation to B(®) is a one dimensional
equation expressing the variation of the modulated plane
wave along its direction of propagation (k/|K|) = K.

There is no kinematical statement about the dependence on
coordinates transverse to k, and it is deeply in the nature
of the approximation we are pursuing that these transverse
degrees of freedom are decoupled from longitudinal ones,
{This is the first hint that the method may mot be entirely
unrelated to real high energy physics.} In an heuristic
manner one may Simply attribute this to inertia; namely,
fast moving things primarily keep moving forward. This
persistance of the initial directions and consequent
straight like paths is labeled the eikonal approximation,

We will solve for Bo(Y¥) by using these remarks_to
motivate the separation of space into a two vector b ortho-
gonal to K and a piece along k. Thus one writes

2 =b + Ak, (9)

and the equation for B, becomes

2ik 3 Bo(B + M&) + k? [n(b + MK - 11B_(b + WK)= 0.
X a0y
This can be immediately integrated to yield
Bo(b + AB)= exp _ik I%dwtn(ﬂ + R - 131, (11)
with the boundary cindiéion that Bo(b) = 1. The full wave

amplitude becomes
- — 'k A .
A(Z,t) = exp i{kof + = j diln@® + ) - 11 -wt), (12)
(o]

which for real n(Y¥) is the alteration of an ordinary plane
wave by a phase reflecting the properties of the medium.
For complex n we can get some insight into the properties
of (12) by writing

n~1+3ilImn, (13)
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sg that A is

A
A(T,t) ~ exp i{k-; - —%— JdT (Im n (E +1K))® -wtlx
Q
)\ —
exp - k jodT Im n(b + 7K). (14)

The last term represents the exponential damping of the in-
cident wave that one ordinarily associates with an absorp-
tive medium,

When the index of refraction varies slowly in space,
as_we have assumed all along, then the damping term in
A(T,t) is approximately

exp = kJ dT Im n(g + 1K) ~ exp - kX Im n(o), (15)
[o]
whose form is that of a standard
exp - %¥[Path length/mean free pathl]. (16)

Since the mean free path is inversely proporional to
the density of scattering centers, N, times the cross sec-
tion for interaction, ¢, we find

2k T (o)
o= g == (17)

To evaluate the next correction to the modulation
function B(r) it is necessary to exhibit the Green fimction
(r r') corresponding to the one dimensional propogatlon

o waves, It is convenient to seek this function in the
"mixed representation" where we Fourier transform away the
?' dependence, So let us define

pury

~ '—'.;' —
g (B,D= [¢°r' T g (7,11, (18)
which satisfies the differential equation
[ziﬁ.vr + k2 [n(¥)?- 1]] g (t,0) = 1T, (19)
We will seek a solution to this in the parametric form

Ek(;,aj = '1°F ijwdc e2ivkeq + Fie (o, r). (20)
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The equation (19) then requires of us that

ierdd [K? (n(F) %~ 1) + 2i KV Fy(0,7) - 2K+ q 1210k a (9, 1)
B = 1, (21)

Now integrate by parts on the Zﬁoa term
(o, 2i0K+q + F (0,T) _ _fe, ~d 2iok-q\ Fx(9,7)

1[ae HFE TR | oL DR,
o (o]

- —_ - - - (22)
_ Fr(o,1) + jmdc e210’k-q + Fr(o,r) aFgéc,rQ ,

L]

dropping the "surface term'" at ¢ = + », (One may append a
+ie to the K-q, if you wish.) Now let us choose Fy(o0,¥)=0,
then there results an equation for Fy(o,Y)

1P @@® - 1) - 28 F (0,7) + @D _ (93

aag

This has the solution which vanishes at ¢ = 0:

Fi(0,0) = -i[°d7 ¥ [n(F + 2702 - 11. (24)
[e]

The straight line or eikonal Green function is now

~ - - _-o.--. , o . — - . o -
g (5,0 =e 1" 1[7d0 exp{210 K- - 1[%k*[n(x27K)*-1)dr}
o} o}

(25)

This may be understood if we regard ¢ as a kind of path
length parameter so that g is the resultant wave gotten_ _,
by integrating over all paths of the '"free wave' exp 2ick-.q
modified by the effects of the medium contained in the in-
tegral over n® - 1, The form (25) may be cast into the
form of an integral over our first modulation function,

Bo (#), if you desire,

The next approximation to B(;) is now given by com-
bining (25) with the integral equation (6)
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B(Y) = Bo(r) + I%E%YE Idar' g#(;,q)e-iq'r'<fVilBo(r'))
(26)

= Bo(r) + 1J do exp{ I k?[n(r + 20k)3- 1]}( -v3 Bo(r+20k))
27

This is not an unexpected result being a one dimensional
path 1ntegra1 along the direction Kk of unperturbed func-
tions B, (¥).

Before proceeding onto potential scattering let's
briefly note another variation on the theme we have been
pursuing. The manner in which we found gi(%,q) is sug-
gestive of seeking the entire modulating function B(r) as
an exponential integral. So we write

B(E) = ef (F) (28)
Using the equation for B(r)We arrive directly at a differ-
ential equation for F(¥)
VPF () +VF (¥) - F(F) + 2ik-7F(r) + k®(n(x)? - 1) = 0. (29)

We will again treat the derivatives as small and formally
write

2ik.v F(r,n) + k®@>(x) - 1)
= -0 [F(E, ) + FE,n F(E,n ], (30)
in which n is a derivative labeling parameter which we

will set equal to one at the end of time. Then we seek a
power series solution for F(r )

Ft,m = Z ™ Fn(z). (31)

The equation for FQ(;3 ig familiar and has the solution

Fb(g + AK) = —i% jde [n(g + 1K)? - 1] (32)
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which reproduces the result (11) for Bo(r). The advantage
of the present method is that when we seek the next correc-
tion which satisfies

2ik. vF, (£) = -[vaf;(fb + vﬁo(Eb-vfg(E)], (33)

the solution to which is elementary, we arrive at a cor-
rected B(Y) = exp (Fo(r) + mMF1(Y)) which is in the form of
a product rather than a sum. This small improvement is
useful for numerical work with modulated waves., Further,
every order in n leads to the same equation (33) which
makes higher order iterating straightforward.

ITI. Potential Scattering

We now turn our attention to the use of eikonal or
straight line approximations in the scattering of point
particles from fixed potentials in non-relativistic quan-
tum theory. Some years ago at this very institute R,
Glauber® delivered a series of quite lucid lectures on
this subject and we shall not overlap with his present-
ation except in the results, He emphasizes the modulated
planewave approach of the previous section. We shall have
our eyes slightly more focused on the quantum field theory
to come in the next section,

The problem_is_to find an expression for the scatter-
ing amplitude f(kf, 1) for a particle of mass m to go from

initial momentum ki to _final momentum k¢ in the pre-
sence of a potential V(¥). The differential cross sec-
tion for this process is simply
do = (ke kg) [, (33)
dog
f

We will find it convenient to discuss Instead of £ the T
matrix

O 2 ® > o
T(hg,ky) = - == — £(ke,ky) (34)

which satisfies the Schrodinger integral equation
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- ~ o 1
T(Re, k) = (&g -k + [ & (zﬁ)a Vike - D mmss7 o
2m

where V (B) is the _Fourier transform of the potential at
momentum transfer A = kg - ki and ¢ > 0 guarantees out-
going waves, We will consider (35) as the matrix element
of operators T,V, and G, and write

T=V+VG T=V+TG V, (36)

where Go'(E) = E - 52/2m + ie taking E = h®k®/2m which is
the energy of the beam and P the familiar momentum operator,

The formal solution of (36) is easily constructed
18 i
T=V+ VGV = VGG = Go GV, (37)

where the full Green function

G =E-p?/2m - V + ie (38)
appears,

We want to examine an approximation scheme to T which
is based on high energy or short wave length of the initial
beam. Let us imagine that the potential has a ''range' char-
acterized by a length a, and that it is for all purposes
zero outside that distance., It will be useful to keep the
old favorite

Voa

V(@) = a7 exp - (If]/a), (39)

in mind., We want to consider the limit of geometrical op-
tics wherein the wave length associated with the incident
beam is much smaller than a; that is

ka >> 1, (40)

Further we wish to assume that the potential is both
"smooth" enough and small enough so that the wave is not
strongly distorted as it passes through. Smoothness can
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be stated by asking that the fourier compoments contained
in the potential be small for large values in Fourier
space. To make this quantitative consider |V(&)lzﬁto be
a measure of the probability of finding momentum |A| in
this distribution be small with respect to k or

RD = [an a IV(K)IB/ [fas Wy P <. @

Physically this means that the momentum which can be trans-
ferred to the beam by the potential is small relative to
the beam momentum, and, thus, most scattering will be in a
cone about the forward direction, It is clear for dimen-
sional reasons that (41) is equivalent to (40) for most
potentials,

We can guarantee that the potential is '"small enough"
by asking that its 'depth' be small compared to E, or for
the Yukawa potential in (39) simply

We now can motivate the ldea that during the scatter-
ing the expectation value of p will never appreciably dif-
fer from the incoming momentum k; and that an expansion of
G * about § = k; might be warranted. To that end we

write .
= . - —
6 =E- __p° - V+ie+ (p=-ki)® - (p =Kk )2,
2m 2m 2m
(43)
= (kz+k£; ZB'E‘i -V +i€> =i gE =] kiﬁ. (44)
m 2m

The idea is to treat the second term as small in the evalu-
ation of the T matrix via (37) and make a perturbation ex-
pansion in that small quantity. This was suggested by
Glauber® and carried out elegantly by Blankenbecler and
Sugar®.

Let us call the unperturbed Green function G; and
the perturbation F;, so
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-1 k®-2p.k. +k:? )
G = -—EEE—'likl"- V+ i (45)
and F, = (p - k;)*/2m. (46)

In the spirit of our argument we could equally well have
made an expansion about the final momentum K¢ since this
is supposed to differ only slightly from kij. We would be
led then to

-1 -1
with _1 2 _ a7 2 :
gp =E——ARckptie - Vo (48)
and . -
Fe = (p - kg)?/2m, (49)

A symmetric form of approximation to G is then suggested.
We note that

G

Gy + Gy F; G=G; +GF; G, (50)

and G

Using these together yields
G = %(G; + Gp) + %G, (F; + Fg) G + GeFeGF,G,. (52)

The contribution to the T matrix from the zeroth or-
der term in F's is equal to

and a similar expression for Tg,. We may formally recast
Tg; into the form
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Tes = ¥ (1 + V) (56)
ii k g ki) = V + ie

2 2 _ o,
5 v 6 (kP +k =28 i) (57)

So that the matrix element (Ef ITEil k. ) is

el — S_
e |TEi] Kp) = 1im (e |V G Ik, (k* - k3).  (58)
k® -k b
1

This is most easily evaluated in a mixed representation
to yield

&g |7gslKpy = 1im  faor ke & =KD ¢ (7 %

—’kz ’ i),
(59)
where the Green function Gi(;’Ei) satisfies
(k2 + k3 + 21 Kyov, - V@D ] g Gk = et K1 T, (60)

2
2m

whose resemblance to (19) is not entirely coincidental,
Having solved this equation before we will not delve into
fancier techniques to do it agaln but remind ourselves
of the answer

Gy (7,K) = i ae eXP{i(k2 e [Far v(@ - &)}
o 2m s -1nz61)

When we take the limit to go onto the energy shell, we
find

(Ef ITEiI Ei> =% Idsr V(§3 e-iA'r exp -1[ dr V(r-kl_),

(62)

and for the term in which we expand about Ef the same
operatiors yield
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R diind
=iAer

®e Itgel Kyy = %[d°r V(D) e exp - i [ar VLT,
A m

(63)

We may understand these formulae as saying that, for (62)
say, the particle begins the scattering process by enter-
ing as a plane wave exp i k;*¥ and picks up a phase due
to movement through the potential along the direction k
until it reaches the potential at vr. At this point it
scatters once, as in a Born approximation, and leaves as
a plane wave along ke,

If we decompose three space as we did previously in-
to a piece along Kj and coordinates orthogonal to K; we
may cast fEl(kf, i) into :

-ik T -1 ..I dr V(b + k; )

Tpy(ke,ky) = %fdsr & ,  (64)

in which our modulated plane wave of before is now exhit-
ited. {The boundary condition on it is now taken at =-=,}
Indeed, recall the general form for the full T-matrix

T(Rg,K;) = [a°r o iRET g wki(’“) @, (65)

where (+)(;) is the solution to the Schrodinger equa-
tlon havxng as boundary conditions incoming plane waves

lkl 3 and outgoing spherical waves. Our method here
has been Ereclsely to make a modulated wave approximation
for ) (F).

If we introduce the shorthand for the phases associ=-
ated with the eikonal approximation

xi (O = [Tdr V(F - Kyr/m), (66)

[=2]

j dr VE + K. 1/m), (67)

and Xg (]-.:)

the full first eikonal approximation reads
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Tp(kf,k;) = Tgy(ke,ky) + Tpelke, ki)

- _‘_’.—‘ -t . = - = (68)
B %Idar V(r) e RO [e 1x4 (r) + e 1Xf(r)1

Consider now the limit in which the energy is very
large and neglect the difference between kj and k¢ in the
phases %. When we write

£ =b+ Ak
and note that r.l ~ g-Z, Tp may be expressed af

— - m — ~
Tp(k®,8) = [a%b j a V(b + i) e 18P IE Law + i

(69)
m A e
=[a®pb e -il+b ik I » d SIE ide v(b + Tk) (70)
i mo.%  d)
=(ik/p) szb (e'lX(b’k) '1> e (71)
where
- +°° - "
x(B,k) =R [ dr v + o). (72)

In these expressions 4 is to be interpreted as a two vec-
tor whose magnitude is the momentum transferred by the
potential

A% = 2k® (1 - cos 8), (73)

cos g = kf'kj., The form (71) of the eikonal approximation
as a two d1mens1ona1 integral over the space impact para-
meters b is probably most familiar.

We can cast the whole eikonal expression into a two
dimensional form by introducing the Fourier transform of
the potential V(q) into (72)
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+w 2 oh ._. .
x@,0 =B [ ar [ S8, Al Glarb + 140k gq g1
d® i geb o
=% lame ¢ Y7 W, (74)

where g is the two vector 3 - ﬁ(a-k). The eikonal T-ma-
trix Tp is thus revealed to be dependent in its dynamical
content, namely its dependence on V, only through those
coordinates transverse to the high speed initial beam,

The longitudinal dependences have become essentially a
kinematic structure appearing through the magnitude of kj
or kg only. This is a real virtue of eikonal approxima-
tions since in actual high energy collisions there appears
to be a decoupling between longitudinal and transverse de-
grees of freedom., More precisely stated we would note that
the eikonal form for T provides a natural framework in
which to describe the transverse dynamics with the more
trivial longitudinal properties already accounted for. .
What one must do still is to demonstrate the relevance of
the form of (72) and (74) for relativistic problems, but
we shall soon come to that.

At this point, however, it will be useful to discuss
the particular potential
oHIE

V(;) = -3 ez—-WE;r—- (75)

both for its obvious physical interest and as a particular
exercise in our formalism, First we evaluate x(B,k)

4o T 2
X(E,k) =1 j dr (-Be?) & e (76)
k Vb® + 1° ¢

- O

m&e” jmde o~H b cosh 6

or x(b,k) = =2 K

Q

- '—Zmﬁ—ez Ko (1b), (77)
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where Ko (ub) is a modified bessel function. The eikonal
Tematrix is then

-il*b [:eZimZe2 Ko (Wb) _ 1], (78)

ik
Tg(8,k) = =€ jdzb e

For large k and fixed A, the only term which survives is
the k independent term which a moment's contemplation shows
to be the Born term:

Tp(8,k) ~ V(a) + 0(1/k). (79)
k-
A fixed

This is known to be the correct limit for the potential
scattering T-matrix. Clearly, Tg has this limit for a
wide class of potentials, Further I will let the reader
verify that our Ty satisfies the optical theorem when we
approximate the angular integral involved by its wvalue
near A ~ 0, That is, we take Ty seriously only within the
forward scattering cone but argue that it constitutes so
much of the actual amplitude that we may use it over all
angular intervals,

Suppose we now examine the eikonal T for very small
values of ; namely, as we go over to the Coulomb poten-
tial. For small argument Ko(X) behaves as

o0~ (v+logH @+ X+ )
+ /4 +... , (80)
where v = 0,577,.. .
So Tg (4,k) is approximately
L. -2imZe”
g0 ~ L CHRES [, S [y )

Vi)
(81)

The - 1 term doesn't contrkbute for 2 # 0 and we will now
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agree to stay away from that point. The remaining inte-

gral is
-2imyge® -2imze®
k k
~  2mik TN X
TE(A’k) u-0 m _ET (\2/-"
1-2imze®
X rdx o)l i e (82)

or upon dropping an irrelevant phase and a tricky phase
associated with the pA term, we may write

2 ( - =] f )

T& Coulomp (45K) == =53 T(1 + iZe*m/k)

This function has a set of poles at the points

- 2
1 lzﬁ M _ _ g, n=0,1,2, (84)
h2K? -%°Ry
9k En = 2m T (ot+l)= (85)
me"‘
where Ry = Tt 13,5 eV, (86)

There are familiar poles, and it is rather a pleasant
surprise to find them in a T-matrix whose realm of valid-
ity we suspected to be for E - », not for E below the
threshold in the bound state region, What explanation can
we find for this? Perhaps the following heuristic argu-
ment will appeal to the reader (perhaps not): Binding by
a potential is a non-perturbative process involving an in-
finite number of interactions with that potential, Con-
sider a particle which has just interacted with a poten-
tial ., If It received a large momentum kick from that
interaction it will have a very small overlap with the
bound state wave function it is trying to generate, One
might well expect that, therefore, the primary contribu-
tion to binding comes from the low momentum components
of the potential, i,e, those governing the long wavelength
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behavior of V. Since these are what we have summed up in
the eikonal approximation we are not so surprised the bind-
ing energies are reasonable., What one should, I think, be
surprised at is the fact that the exact answer emerges.
This is not the only surprise the Coulomb potential has
ever produced. A more significant test of Ty would come

in examining the binding energies for the Yukawa poten-
tial with p¥0; this has not yet been done.

Now instead of evaluating the corrections to the
first eikonal approximation which are contained in our
expression (52) for G, let us mention a technique of ap-
proximation which is similar to that we employed for the
modulating function in the previous section, As we now
know the problem we are interested in is essentially that
of constructing G. When we have G then we can find

— -

2 2 _— . - - =
Gelrligy = (30 5 [ K77 fasee™ T v(2) 6, Ky
i 2m
87)
and we know G(;,Ei) satisfies the differential equation
2 -, — -~ '—'--—'
E+r - v@®] e,k = T, (88)
2m
so that H(r,k;) = i G(F,ky) will obey |
™ T 2 -, - =
B+ P ID° _y@ ] wEEp - 1. (89)
2m
Now we seek a solution of this in the form®*
L @ =i(kP-ki® -ie)M+ F(r,ky, 1)
H(r, ki) =i dxe ~Zm Lo (90)
s}
which has the virtue that when V = 0, F = 0 and
= = 2 2 -
H(r,ki) = E—zﬁlfi—-—- - ie) ! which is expected., In the

now familiar manner we will find the differential equation
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for F to be

riE_.v . a - — - =
; T+ Vr2/2m+1§i>F(r,kiX) - V(r)+VrF(¥,Ei,h).er(r,EiX)

= 0, (91)

There are two routes to take now: (1) treat the V°F and
() +(VF) terms perturbatively as we have done above or
(2) expand F in powers of the potential by giving it a

scale factor g and writing °

—

;’ki, M. (92)

=]
~

F(£,k5,0 = ) & F

For variety we will pursue the latter path, The lowest

order term F, (r,k;,)\) satisfies

g Ry vr® oo

Gr%e + 7 4 i 2m (FF
2m

N = V(D), (93)

1?

and has the solution which vanishes at A = 0:

—_

)\_ - - -
= = . d 3 ey L iqer-ikieq -iTq®/2
nEE, Y - mjan [Hle §@ Ui,
o

which differs from our previous form by the q°/2m term.
This can be regarded as a form of curvature correction to
the straight line approximation of our other examples.
The T~matrix which results from this method is from (87)

T(Qf,ﬁi) 5 Idar Y v (r) eF(r’ki’m) : (95)

this is a general result. Inserting (94) gives this ver-
sion of the eikonal approximation, Again the major virtue
of this technique is to provide a final expression for the
T-matrix which is a single integral rather than a sum of
terms,

The potentials we have treated to this point are r
dependent potentials only., It is of some interest to ex~-
plore the eikonal T-matrices for certain energy dependent
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potentials also. The first one we shall explore is an old
friend, the spin orbit potential,

= Vi(r) + oL Valr) (96)
where we take V., and V; to be central and the o operator

could refer tg any spin, but we '11 be happy with spin %,
The operator T is, of course,  x p.

The Green function we wish is

-

CE® =E-E - ) - G x D) +ie (97)

We will approximate this by expanding about kK. as usual
and treating the remainder as a perturbation, The Green
function for the basic eikonal path will be
-1 - - - - —
G; (BE)= 1<*’+1<2i-2p-ki - Vi = (oxr)-k;V, + ie. (98)
2m
The T-matrix which results is easily read off from (71)
and (72). We have

0 A -0
x(b,k) =} [ vi® +riyar + mo- (5 k)J Vo (b+Tk)dr,

(99)
=Ex (b) +m - (bxk)xz (b), (100)
and .
Spin orbit _ivm ~impx (b,k) .
T (k, A) = 1k @ e g k {cos mbxe (B) -
-1 3+ (B/p x K) sin mb ¥ (B) }. (101)

There are two basic differences between this result and
(71). First, of course, there is the additional spin de-
pendent term, More significant, however, is the limit as
k—» for fixed momentum transfer A, Whereas the ordinary
central potential yielded a constant in k which we recog-
nized to be the Born approximation, for this potential we
see that in this limit the xlterm is irrelevant and we are
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left with
Spin orbit
Tg (k,d) ~ ik F(d), (102)
ko
AMfixed

Now this is an intriguing result for we know that in actu-
al high energy scattering experiments the elastic scatter-
ing amplitude does not retreat to the Born approximation
but becomes very close to being purely imaginary and grows
with the center of mass energy W as W°, Here we have a
clue as to how this might transpire, We have yet to dis-
cuss relativistic scattering, but we are encouraged to seek
the equivalent of a spin-orbit potential and must discover
how k goes over into WZ,

Next consider the potential
V=12V, e -“r/r (103)

where Vo is a constant, This is not a terribly realistic

form for V, but it will illustrate an interesting point,

As usual We expand the full Green function about p = ki or
kf and via (71) and (72) construct Tg. The eikonal phase

is

x(b,k) = 2 (X¥°b®) Vo Ko (ub), (104)

and

Tg(k,0) = 55 @%b e

-'—b.—' _9a1 2
1% [e 2imkb?VoKo (ub) _1] (105)

Now for fixed A and large k we encounter a rather different
situation from our previous examples, 1In this case the
phase in the exponential oscillates wildly and we must seek
the point of stationary phase; that is, we must search for
a minimum of

The small b region does not contribute much to the limit
we are taking., However, if we note the large b behavior
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of Ko(ub), namely

~ N5 -wb e ]
Y CONNS 2Hb> e [1 50+ ome by (107)

we see that we may achieve a stationary phase in the re=-
gion of b space where

b ~ log 2‘“—“15‘1“ , (108)

and that the leading behavior of the eikonal amplitude is

Tg (k, 1) k5w i k(log k)?, (109)
A fixed

dropping some uninteresting constants.

Two comments are in order about this result., First,
the same leading behavior would occur if higher powers of
energy dependence were allowed to enter the model poten-
tial (103), so that (109) is in some sense a maximum high
energy behavior, Second, were we to replace k by W? to
pretend we were relativistic, we would recognize this be-
havior as exactly the Froissart bound., Since that bound
is deeply ingrained in our beliefs of what is consistent
with unitarity, it is pleasant indeed to have an approxi-
mation scheme which respects it.

This ends what I have to say about the use of eikonal
methods in potential scattering. There are a number of
real uses of these methods in nuclear physics where poten-
tial theory appears to be important, I refer you again to
Glauber's lectures and subsequent work by many physicists
for discussion of these interesting topics. As for us, we
will proceed on to field theory.

IV. Field Theory

Since relativistic field theory is much richer in its
physical content than potential scattering, it will take
a bit more cleverness to extract from it the equivalent of
our eikonal approximations, The approach we will take is
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to effectively reduce field theory to a problem in poten-
tial scattering and then begin approximating. The basic
observation necessary for this task was made by Feynman
and Schwinger so long ago that we have ceased teaching it
in our schools, Namely, particle emission, absorption,
and exchange which we think are the basic processes in

the description of forces among relativistic quantum ob-
jects are all contained in the knowledge of the response
of a particle to external potentials (or as some would put
it more forcefully these days, external c-number sources,)
More precisely, if we know the amplitude T(A) for motion
in an external potential A(x) we can extract from it the
amplitude for emission and absorption of the quanta asso-
ciated with the quantum numbers of A(x) by varying T(A)
with respect to A(x). Since A(x) is a function, we will
need to take functional derivatives, but we'll proceed

as if they were ordinary derivatives and leave any problems
to the squeamish,

We will deal in these lectures exclusively with quan-
tum electrodynamics of (usually) massive photons. So the
object of interest to us is the amplitude for some process
occurring in an external c-number potential Aa(x), This
potential satisfies

(% + %) Ayx) = J (), (110)

where J,(x) is the conserved external current giving rise
to A_(x) and U is the mass associated with the quantized
Ay field. We establish our notation a bit more by remind-
ing ourselves that the solution to (110) involving causal
propagation is

Ay = [d* y Dp(x - y) Ja(y), (111)
with
d*q e TIX (112)
D+(X) = (2“)4 uz_qa_ie

If we are given T(A), the transition matrix element for the
processes in A (x) and wish instead the amplitude for the
same process to occur accompanied with the emission of a
photon (of mass p) with wave function Gz(X), then we ask
how T(A) varies as we alter A (x), thenreplace at x Ay(x)
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by Ga(X) and integrate over all x. Thus we arrive at

[ax ::a ‘“{x) 0% (x) | (113)

as the amplitude for T plus the emission of a photon G_.

. . . d Q
If we are interested in the final process in the absence
of the external field, we simply set A - 0 at the end of
all operations,

An example of this may be useful. Suppose we have an
electron described by the Dirac equation

(P-eh-mVv=0 (114)

in an external potential Ay (x).”* The amplitude for the
electron to go from momentum p, and spin A1 to pp and X,
to second order in the action of Ay(x) is as usual

T(p1—-pPz;A) = Jd4zd4y u(pz, A2) e TP2% oy.iA(z) X
X S(z - y) ev-A(y) etPr-Y u(p1, M), (115)

with S(z-y) the electron causal propagator. From this we
may find the amplitude for the electron to scatter to first
order in the potential Ay(x) and also emit a photon of wave
function Gy(x) = eé eld;.X, Using (113) there are two
terms

e?¢ /Y% G(pz,Xg)fd4zd4y{e-l(q2+p8).z Yo, S(z--y)\(-A(y)elp"'y

toiP2ez v-A(2)S (z-3) YOLei(Pl-qp,)'Y } alps, M), (116)

These are just the well known Feynman graphs which include
emission of the photon of momentum g, before and after the
action of the potential A,.

Also contained in (115) is the amplitude for the ab-
sorption of a photon of momentum q; and then the emission
of q; while the electron goes from p; to pz. We arrive at
this piece of the Compton effect by applying (113) to our
last result
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T(pl,)\l + q1,¢ ™ Pz,)\z + qg,e') =
e® ¢ /a% ¢B u(ps,rz) jd4zd4y {

o~i(p1tdz) -z i(p1+q1)-y+e-i(pa-q1)-zYBS(z

YoS (z-y) Yge =¥) Yo X

xel(P1 -qz) ~y} ulpr, M), (117)

again a well known result for the Born approximation to
the Compton effect,

Finally there is another piece of information in (115),
namely the amplitude for p; to go to p; including radiation
corrections to order e®, That is, the first order in e®
corrections to the electron propagator S(x-y). To exhibit
this we need consider the possibility that the eleectron
emits a photon of momentum q and then reabsorbs it, the
initial emission acting as a source for the subsequent ab-
sorption. To emit the photon we take one derivative of
T(A) and to absorb it another. Since it is the same photon
which is emitted and absorbed we must supply a D (x-y) to
take it from ome act to the other. The resultant amplitude
for p1 - pz to our order in e® is

P o) o
%Jd4Xd4Y EK;(X) 8agD4 (x-¥) Ezg(y) T(p1~p=34), (118)

the factor of % arising because we integrate over all pos-
sible positions of photon creation and annihilatiom,

We are prepared now to construct a framework in which
to describe interaction, Essentially we shall ask that we
know how a particle, call it number 1, moves in an external
potential A ,, while, independently, number 2 moves in Azq.
Next we ask of 1 that it emit a photon via 8T; (A )/6A (%),
then allow the photon to go to y by Dy(y-x) and be absor-
bed by 2 there via 8Tz (Az)/6A24(y). The propagation func-
tion D, (z) acts as the potential or mediator of the reac-
tion. If our experimence with potential theory is rele-
vant (and it is) we shall expect to find that the two par-
ticle scattering amplitude is at very large energies of
an eikonal form with the eikonal phase given by an
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appropriate integral over D4 (x).

Before we launch into more formalism it will be use-
ful to see what this "appropriate integral'' must be. Re-
call that in potential theory one spatial direction k was
singled out and that the eikonal phase was a path integral
over the potential along this direction, In relativistic
scattering two "directions' are singled out by the parti-
cles coming along + K, Take the spatial direction to be
the z-axis, then for very large momenta the trajectories
of colliding particles are near the light cones z = % t,
We may anticipate that the eikonal phase will be propor-
tional to

[Fdzdt ppx,y,2,0), (119)

which is J‘d“"q gtids-b

2m v + !qla = Ko (ub) (120)

with b = (x,7). Furthermore, since in electrodynamics we
are dealing with the relativistic analog of the spin or-
bit force, (96), we can expect that no energy dependence

will appear in the eikonal phase,

To demonstrate that these expectations are fulfilled
we need to construct an equation for the Green function of
an electron moving in an external field A (x). Were there
no self-interaction, we know from the Dirac equation that
the Green function §,(x,y) would satisfy

(1 7 - m = e 4(x)] Gu(x,y) = 8*(x-y), (121)

with appropriate boundary conditions., With self action the
Green function must be altered to reflect the possibility
of the electron providing its own potential A%qp1¢ (%).
This self potential can be found by asking how the electron
responds to an external source J, and (121) is altered to
read

. ey =0 - 5% (%=
[\:1 VX -=m = e(A((x) -1YB GJB(X))] GA(x’y) 6 (X Y)(izz)

and at the same time the potential Ay(x) must satisfy
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(W +2%) Ay(x) = Jo(@) + 358 tr vy 6 (x,x).  (123)

The derivation of these equations is given by Schwin-
ger®* and by Fradkin®*, We pass over that but pause to in-
terpret them. The appearance of 8/9 Jg in (122) is exactly
what one would expect since it is the response to an exter=
nal source that provides a potential, The self potential
of an electron is thus provided by its own response to an
outside source, In (123) the "extra" term on the right is
just the source term of photons due to the electron cur-
rent {(x) y,¥(x). It gives rise to vacuum polarization
effects in photon propagation and is the origin of most of
the interesting non-linear aspects of field theory.

Our first approximation is to either ignore this po-
larization term or to replace it by some appropriately
path averaged equivalent. That is we begin our discussion
of motion in an external potential by ignoring the ability
of photons to create pairs or by replacing the photon pro-
pogator Dy(x-y) as given above by an effective D reflecting
some knowledge of the off shell behavior of D, This is
tantamount to discarding in graphical language all those
diagrams in which an electron pair lying on a photon line
connects to anything else, With this approximation we may
eliminate §/8J in favor of 6/8A in the equation for G,
yielding

(it m -eld - 1y 'z Do) iy D GGy =6 Geoy)
(124)

The advantage of this result is immediate since a formal
solution to (124) is

’ & &
Ga(x,y) = exp L—%Jd“z d*w Tho(z) D+(zW) m)>%(x,y),
(125)

where G satisfies (121)., This states that if we know how
to construct the Green function (4 for motion in the absence
of vacuum polarization and self action, then we will, by
differentiation, be able to extract the full Green function
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Gp for electron motion in an external potential without
vacuum polarization effects.

Constructing G, of course, is no easy task in gener-
al. It is, however, exactly the relativistic equivalent
of evaluating the Green function in a potential V that we
spent the last sections learning about, To proceed let's
introduce an operator notation whereby QA(x,y) is regarded
as a matrix element of an operator QA in an appropriate

space
Gax,y) = x|Gly). (124)

The operator P is i YV, as usual and the operator X has the
commutation relation with it

[Xu’Pv] =-ig,. (125)
The Green function equation reads

[F-m-efl(X)] G =1 (126)
in this notation,

Now suppose we are interested in a process where a
very fast electron of momentum p, scatters from our exter=-
nal potential into a state of momentum p: ‘. If we evaluate
(p1 “1Ga [p1), then the transition matrix (py) |T(A) |p1) fol-
lows in the usual manner

(. 1T(A) |p1) = e(p{ 14 Gy 6™ lpa), (127)
where Go = Ga—g = (P - m) .

As in the non-relativistic case it is useful to ex-
pand P about the fast momentum p: which is a c-number. We
write

Gp = 1/(¥ - m - e 4) (128)
= 1 (m + $1), (129)
(m + ¢1) (? - m = ed)
= 1
2p1 - (2 +p: %) —e (g YA+ (P-Bo) Gapgoy @ + B2)»,  (130)
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and begin expanding about p; by treating the term (¥-#;)x
X(m-g1) as a perturbation, That is, write

2p1-P ~ (m®+ p1®) - e(m + )4 = G (A), (131)
and Gy = arf%zgy—:—fa (m + g1), (132)

with F1 = =(PF - g.)(m - $.).
The first eikonal approximation to QA becomes
6, (A) @+ $). (133)
The next approximation would be
G(A) Fu G (A) (m + ¢1), (134)

and so fo;th. If one wished to expand about the final mo-
mentum, p1 , then the appropriate object to construct would

be
G'(A) = 2pi-P - (w+pi?) - e A(mtdy), (135)
and the first eikonal Green function is
(m + p) G'(A). (136)

Let's consider in some detail the eikonal T-matrix
arising from the approximate Gy in (133), The on mass-
shell T matrix will be given by

UE(Pl*Pf;A)= lim e(ﬁl|A(X)Q1(A)|p1)(p12-m2) (137)
p12~m2

= ln e dph[aty e Y K() (3]G @) Ipy) (prm).

p,”-m" (138)

Now look at (y|Gi(A)|p1) near p,® = m®. We first exponen-

tiate the denominator in G, (A)
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Gy (A) = -ijde o1 T[2p;y + P=(m®+p1 ?) -e(m+¢1)A(X)]. (139)

[¢]

Next we use the following identity for operators A and B

A -At

E t
AT _ (e ! dce "B e )_ A (140)

where <->- means anti ordering according to the parameter

t. {This identity is proved by exactly the same procedure
as one uses to establish the time ordered form for the U-

matrix in scattering theory.} Identifying the operators

A =2p;.P -(m® +p1®) and B = - e(m + $,)4(X) we find di-

rectly from (139) and (140)

.
(v 16 Q) |py) = -ijde ot e(m+¢1)Jdt A(y-2p1t)

X e"i 'r(mz-plz) ei Pr°y U(Pl) (141)

yielding a T matrix

Tr(pi-piA) = [d'y PPN 551y eky) x

xexp [-ie[ dt (m + $1) A(y -2p2t) Julpr). (142)

Upon noting that for any vector V the quantity exp [(m+g)V]
u(p) simplifies by use of the Dirac equation (m-g)u(p) = 0
to exp [2p-V] u(p), we may cast (142) into

sp(pi-pis8) = [aty PPV Gohy o g(y) ulpy)
x exp (<21 e [ dt py-A(y - 2pst) ) (143)

our result for the eikonal T matrix expanded about p;.

If we wanted the full eikonal T-matrix including
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radiative corrections along the electron line (but, of
course, without vacuum polarization effects), our instruc-
tions are to operate on Iy with

e ‘14 2 =Bl - 5
Tp(A) = exp (-}|d*w d*z () D, (w-z) TS @),
(144)

which action inserts photons at all points z propagates
them to w and then absorbs them, Even without computation,
we can see that something is terribly amiss in our formula,
Note that the spin structure of the amplitude SE@Q is such
that only the convective part of the electron current

u(p)y, u(p) enters, the possible magnetic piece

u(p)o . (p'-p°u(p) is absent, The photon insertion opera-
tor w%ﬁl not change this fact, yet we well know that even
the lowest order radiative correction to the Born approxi=-
mation (neglecting the modulation factor in (143))yields

a magnetic moment term with the famous o/2m as its strength
at zero momentum transferred to the potential. You may see
where we have lost this contribution by examining the appro-
priate lowest order Feynman graphs and making on them the
high energy approximation we have been discussing. What
you will discover is that you have not only thrown away the
magnetic moment term but also have arranged that the con-
vective term is no longer renomalizable by the standard
(physically acceptable) procedure of stbtracting the value
of the graph at zero momentum transfer,

The reason we have encountered this difficulty is
that we took very seriously the external potential formal-
ism as providing a generating functional for photon loop
insertions connecting electron lines not moving rapidly
with respect to one another. That is, until we asked that
(143) generate T, we were in no trouble, The proper manner
in which to hand%e radiative corrections to the scattering
of a fast electron in an external potential has been given
by Bjorken, et al® who treat photon insertions into elec-
tron lines and photon propagations exactly while using the
eikonal on the interaction with an external potential, As
they point out, one finds in this way the correct anoma-
lous moment and charge form factors arising from photonic
vertex corrections, and one also exhibits the unfortunate-
ly very complex structure of the radiative corrections to
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the rather simple (physically intuitive) form for Tp(A)
given above. Our lesson in this is to use Jy(A)

as a generating functional only for connecting the exter-
nal potential to our fast electron or for connecting an-
other electron to the first, Be very wary of photons con=
nected to the same electron line in the eikonal approxima-
tion, We will resurrect this warning when we discuss the
form factor in eikonal electrodynamics.

With this caveat we may now examine the eikonal ap-
proximation to the scattering of two electrons. We can
evaluate this in the absence of vacuum polarization cor-
rections by letting each electron move in its own exter-
nal potential and then picking up all the connections be-
tween the individual electrons, So let electron number
one go from momentum p:, helicity X\ to pl,X1 in the poten-
tial A:; while number two goes from ps, Az—pas, Mz in Ao The
scattering matrix for this with no self-action or lnterac-
tion is

JAlAz(Phxl+Pz,Xs*Pi,X;+P;,X;) = 3(P1,11*P£,AQ;A1) .

I(pa,ha = p2,rs3Az). (145)

We now need an operation to insert photons at all external
potentials and connect these insertions by photon propaga-
tions, That operator is, of course,

b &

il e« - 08 . M
exp = 5 |4V Az Z) T Cheald)

K 6 6 -~
D, (w-z) '\f—-mla(z) * e Ji (146)

We have received our instructions to discard the self ac-
tion terms in (146) or treat the self photons more exactly
so we take only the A;,A; cross terms and find for the full
T-matrix without vacuum polarization and self action

T (Pl,hl + p2’>‘2 - pl,’>\1' + pB’))‘IE) =

s [qte, 44 & _ b N
expl~i |d*w d*z o0+ W, @) S (147)
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T(p1 M—pi M A1) 3(Pa,la*pé,Xé;Aa% (147)
A1=Ag=0.

We have built an eikonal approximation to J by ex-
panding P about a convenient fast momentum, Before we
took the indident or final momentum as the point of ex-
pansion; now let us choose the average of the two for sym-
metry and ease, So we expand J(A,;) about Q, = (p1+p{)/2
and 3(A;) about Qs (pet+ p;)/2. If we further note that

Qo 4 (148)

u(pll-’)‘;.) YG u(plg)‘l) & )\11’)\1
m

to leading order in large momenta, we may write for the
eikonal approximation to J(A;)

Sp(p1, M = pi,M3A) =

By . -“ie; [dt2QrA (y-2Qit)
A X =-p') 1
—Ei—i Id4y el(pl P) Y e12Q1 A1 (y)e i '

(149)

8 . ‘ _3 o . .
_ Mg Jd4Yl el(Pl'Pl)yll d_ (g 1elédt12QlA1(y1 2Q1tﬂ>
2m i dO'l 1 “o=0

(150)

where we have let the charge on electron one be e;,

To evaluate T, we observe that the connecting opera-
tor in (147) is just a displacement operator which we ap-
ply twice to yield
6 i 6 7
)‘1‘/\-1 XEXE X

bm® (151)
} . ", . _
xId4y1d4y2 el(Pl Pl) Y1+1(P2 Pz) -Yz 1 _d._ d X

Tp(p1M+Pada = prM+pshs) =

i? do,; dos
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X(\/exp(-i) *heyesUn -QerdtlldtzD+(Y1 ~y2=2Q1 £, +2Q; tz)). (151)
% 2
01=02= 0

Since we have turned off the extermal potential we expect
to find in (150) a delta function of energy momentum con-
servation, To exhibit this, change variables to

W=(yi+yz) /2, w~(y1—y2)and do the d*W integration. This
yields a 1(2ﬂ) 8* (p1+p2-pi-p2) which we remove from T
without taking the trouble to define a new symbol at this
point, This leaves us with the on-shell T-matrix

+is b, © it
M M Ak rgen Ji(P1- -p)wd_d_ [
/ d*w == (exp~i|dt; |dt, X
4m® ‘[ doy dcz\ ll ig
beresQi °QeDy(w - 2Qity + 2Q2ta)w . (152)

c1=95,=0

We will evaluate this in the center of momentum frame in
which the spatial parts of Qi and Q; are equal and oppo-
site

Q. + Qs = 0. (153)

Decompose the integration variable w into a two vector b
orthogonal to Qi and Q; and pieces along the Q's

= b+ 1Q + T2Qa. (154)
The Jacobian involved in this change is

(Quo +Qz0) Q:1, (155)
so the T-matrix reads

— F) += e I Ae
1(Quo+Qz0) 1T | A2, BN, jdrrljdrrzjdzb tilR
4m® - =%

d d N (156)
XdoldGECéxp—iele2Ql'szdel jdsz Dy (h-B2Qut8, Qz)\

=1 +20, To+205 0'1 =05=0
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. - {Ab .
=i (Ql O+Q2 O) |Q1 | 6 llr l}_ 8 )\2/ )\2 J"dzbel“-’ N[exp<-1e1 eBQl -Q2 X
m%
- o
rdBl Idﬁz Di(b - pmQ + BzQe)/ = il ]. (157)

-CD

The component of the momentum transfer pi-p: along the
direction b has been denoted by A, The integrals over B:
and g, may “also be performed u81ng the representation of
D+(x) in (112):

+oo +oo

ldHl JdU Di(b = Qi + M2Q3) =

-CXJ

+- +co
Jhm @% G;O e~ 3 (brtaQui+ieQa) (158)
-q faie
= [d%q 5(q°Qy) 5(q:Q) e 1R (159)
(2m)? MP-q°-iec
d3q_ LR (160)

1
IGI'(Q10+Q30) (2m)® H2+|g|2

= i Ko (Wb) (161)
2“]61|(Q10+an)

which, by now, should be no surprise,

We may simplify this a bit more by introducing the
invariants

= (pa+pz)® and t = (pi-pi)°. (162)

To 1ead1ng order in s for t finite the eikonal T-matrix
reads®

is

m® Oa Oang (163)

TE(s,t)
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2 ié'k - i [SHY=P) ~ - N
x [a%b e [exp C S22 Ko (b)) 1], (163)

where t = = IA|2.

The characteristic and significant features of this
result are (1) no spin flip on the electron lines occurs
to this order in the eikonal expansion; (2) the T-matrix
is of the form i s F(t) which is standard for the spin
orbit form of interaction involved in electrodynamics
and which leads to constant total cross sections. (3)
This form cannot be correct for a very, large range of t
since it violates t-chamnnel unitarity.’

It is very meaningful to inquire as to what set of
Feynman graphs is summed by the eikonal T-matrix (163).
The answer is not terribly difficult to come by since in
arriving at that answer we explicitly eliminated wvacuum
polarization graphs, that is graphs where an electron po-
sition pair forms a closed loop which connects to the out-
side world by photons only and we discarded radiative cor-
rections to electron lines, That leaves us with the gen-
eralized ladder graphs shown in Figure 1, It is amusing
to note by the way that the asymptotic behavior of the
first graph is se“Fz(t) for large s and fixed t. For the
second graph it is (s log s)e"F.(t) which seems inconsis~
tent with the expansion of Ty in powers of e. However,
for the third graph the asymptotic behavior is
(-s log(-s))e*Fa(t) with the same Fq(t) as before, These
fourth order graphs then combine to yield - i s me*Fa(t).
So there is a neat cancellation which occurs. In order
to demonstrate the equivalence of the expansion of Tg
term by term with the Feynman graphs it is still necessary
to show that the correct functions of t appear. This can
be done® with a certain amount of labor, That it must
work is physically pretty clear.

Having made this connection with Feynman graphs one
is immediately led to ask whether one can find other
graphs, neglected by our procedure, which have an asymp-
totic behavior which dominates over i s F(t). There are
such graphs. They correspond to 'towers' of exchanges in
the t-channel. Figure 2 is the prototype of such graphs
in which photons shaken off the electron lines interact
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via a photon-photon scattering loop. Such a diagram b-
haves for large s, fixed t as s (logs) f£(t) a contribu-
tion which is not cancelled by other graphs of the same
order in e®.** Adding more loops gives more logarithms
-~ one extra per loop., In a manner familiar from the
discussion of the generation of Regge behavior in field
theories, the sum of these leading logarithms builds up
to a power.

Again from our experience with Reggeology we can
forsee the disaster that is approaching from the power
behavior due to the sum. When one adds up the contribu-
tions of graphs like Fig. 2 at t=0, the positive definite
contributions of these various contributions to what is
effectively the unitarity relation for elastic scattering
will take the original power s', the "l1" of which we were
so proud before, and push the power to 1 + ¢, ¢ > 0, For
the particular set of graphs in Fig., 2, ¢ = llan/32; a
number with no dramatic significance in itself, What is
significant is that the power is greater than one, and
this set of graphs considered leads to a T-matrix which
violates the unitarity bound.'® One may consider curing
this by iterating these "towers' down the s-channel argu-
ing that they eikonalize and, following closely the argu-
ment given from Eqs, (104) = (109), expect the resultant
amplitude to saturate the unitarity bound s(logs)®. This
is what appears to occur, but I will leave it for Profes-
sor Sugar to defend the point in detail,

The final eikonalistic topic T would like to treat
by the methods we have been discussing is that of the
electromagnetic form factor or vertex function. Actually
this is such an ancient topic'® ome, perhaps, ought to be
embarrassed to raise the issue at this date. Others'?
having overcome this reluctance of late it seems more or
less appropriate to include the ma tter here.

We are interested in the amplitude for an electron
to go from momentum p; to pz emitting a photon of moment-
um q, Were there no self action the answer to the quest-
ion would be

ro(q) = - [a* Y 5 (palG, " Ipa)
B I 5AP (3) S N T
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[aty eL(ProPem®) ey o 5(p2) Yg ulp1) (165)

1(2m* 8* (pr-pa=q) e u (p2) v, ulp,). (166)
We are, of course, interested in the coefficient of the

delta function which will give us a measure of the dyna-
mical response to an extermal source T,.

When we include self action, but as is our procedure
here leave aside vacuum polarization terms, the vertex
function becomes

: -1
L@ = - %7 (pz 16, lpl)}A=0 (167)
|

The general form for Ps(q) is well known to be
Tg(@) = i(2m*8* (pa+q-p,) u(pa) (¥ F2(qa®)

+0gr 4" F2(q%)} ulp) (168)

and we are interested in an eikonal approximation to the
F.(q%).
1

To proceed we write (167) in matrix notation

5G, * |
T =~ A | (169)
B AF |A =0
and using Gy ‘G, = 1 note that
= 5C & |
T, =G, * 4 g *
R AP A l A=0 (170)
- -1 5GA -1
= 6, x( 333) Ga l A=0 ° (171)

where K is the operator exponential of functional deriva-
tives which as in (125) converts Gy to Gp.

Now observe that
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% () am

= 'i_—m‘}? e'YF! _—-_?—m}eﬁ " (173)

What we wish to do is to expand the right hand G in

(173) about the incoming momentum p; and the left hand

QA about pz. For this purpose we employ our eikonal
Green function as recorded in (141) and its counterpart
for po. The resulting vertex function before the connect-
ing operator is applied is given by

= ® s 2_.2Y _az . PN
-[aty [am [ar, eETe P IRty Gipyey oIV
o] [e]

' Ta AT
xexp{-iejdtgd(y+2p3tg)(m+§2) -ieJ dtl(m+¢1)d(y-2p1t1)}

(o]
. . ) 2. 2
x etP1°Y ¢ i (m®-pa )U(Pl)- (174)
The application of the functional operator to insert pho-
tons in all possible ways is aided by the elementary re-

sult

exp[fd4w d*z EEETEJD+(Z'W)_EK§TE)] GXPJd4an(x)Bq(X)

= exp Jd4an(x) expjd4w d*z B%(w) Dy (w-z) By(z), (175)
for any vector function By(x). If we use this, employ
the Gy *'s to go to the mass shell and finally turn off

the potential Ay, we may extract from (174) the eikonal
vertex function

P = 12m*6* (pata-pr) Glpe)evpu(p)Fat(@®),  (176)

where

E, 2y _ _ia rd'k Pa)__ Ped &
Fa7(q) = exp{ SHHJME-kz-ie lprek pz-k ]} (177)

and, as noted,
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F,0(q?) = 0. (178)

The question one must ask about this result is, of
course, where we might expect it to be valid. It is
clearly not correct for all q° since we know quite well
that in electrodynamics Fs is not zero but at q°=0, say,
is the famous o/2m + 0(a®/m®) terms. Since we have no F»
form factor the only way we may reasonably interpret
(177) and (178) is that in some limit we are finding F;
negligible with respect to F;. Since the only variable
around is q°, the only limit around is large q°. The
asymptotic behavior of F1%(q®) is exp - (log®q®); an an-
swer which is not inconsistent with the experimental re-
sults for large spacelike momentum transfers in elastic
electron scattering.

Even in the large q° region one must worry seriously
about the interpretation I have suggested, First, it is
unusual, even for physicists to compare the magnitude of
coefficients of distinct tensor characters., Yet there is
no instruction in the calculation to indicate how else to
interpret (178). Second, to my knowledge no one has in-
vestigated contributions like those in Figure 2 to elas-
tic scattering to demonstrate that, at least order by or-
der in e®, they are not (or are) important, Their pre-
dominance in elastic scattering should make them of some
concern. Even then, since those contributions alone vio-
late unitarity in scattering processes, their real signi-
ficance for the form factor has yet to be found, It can-
not be said that the eikonal approximation to the vertex
function is beyond all reproach., There are interesting
questions yet to ask.
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Figure 1.

The set of generalized Fenyman graphs summed by the
eikonal T-matrix,

Figure 2.

The lowest order diagrams which contribute a large s,

fixed t behavior which dominates the basic eikonal graphs

of Figure 1. The whole set of these contributions leads
to a behavior s**°, e>0, which violates unitarity.
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THE RELATIVISTIC EIKONAL MODEL¥*

Robert L. Sugar
Department of Physics, University of California
Santa Barbara, California 93106

I. Introduction

In his lectures Professor Abarbanel has shown us how
the eikonal approximation can be used to discuss a wide
range of scattering processes, I shall focus my attention
on its application to the scattering of relativistic par-
ticles. The goal is to construct a simple model of ultra=-
high energy hadron interactions,

In non-relativistic potential scattering and in clas-
sical electrodynamics one can prove that the eikonal ap-
proximation is valid at high energies for a wide class of
potentials or indicies of refraction, There is, of course,
no such proof in quantum field theory, In fact the simple
eikonal picture of high energy particles propagating
through the interaction region in a straight line can not
be the entire story in field theory, since it neglects the
possibility of the high energy particles fragmenting. The
best that one has been able to do so far is to study the
high energy behavior of classes of Feynman diagrams to see
when the eikonal approximation can be expected to hold,
and, at least as important, when and why it breaks down.

I shall start by considering the scattering of two
high energy particles which interact via the exchange of
elementary quanta, These diagrams have already been dis-
cussed by Professor Abarbanel, I shall use them to orient
our discussion and to introduce the moment space techniques
which we shall need when we move on to more complicated
diagrams. The elementary particle exchange diagrams are

%
Work supported in part by the National Science Foundation.
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not a satisfactory starting point for constructing a
model of high energy hadron interactions since they pre=-
dict that scattering becomes pure elastic at high ener=-
gies, In order to introduce inelasticity into the model
we shall be led to consider the exchange of compound ob-
jects such a Ay® ladders and quantum electrodynamic
(Q.E,D,) towers, These diagrams do lead to interesting
models whose predictions I shall discuss in some detail,
Finally I shall use the intuition we have gained from our
study of Feynman graphs to construct a simple model of
production amplitudes, These amplitudes will be used to
build a model of the Pomerachuk singularity.

II. ELEMENTARY PARTICLE EXCHANGE

Let us start by considering the elastic scattering
of two high energy particles which interact via the ex-
change of elementary quanta.'>?>® In addition to the
ladder graph shown in figure la we must take into account
all of the graphs that can be obtained from it by cross-
ing the lines of the exchanged particles. A typical ex-
ample is shown in figure 1b. There are n! distinct dia-
grams associated with the exchange of n quanta,

We are interested in scattering at very high energy
for fixed, small values of the momentum transfer, It is
convenient to work in the center of mass and to take the
z axis along the incident direction of particle 1, We
can then write (see figure 1)

P~ (5300, 7%
Ps = ( \/-% ; 0,0,- ‘/_2-) (L

A = (O;Ax,Ay,O) = (0;4.0),

where /s is the center of mass energy and t = A® is the
invariant momentum transfer. In writing Eq. (1) we have
dropped terms of order m®//s and t//s. 1t will be con-
venient to write a general four-vector, q, in terms of the
variables
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q, = 9o * 1,
(2)
q = (qx:qy).
2+m2
In particular P4 = P. = /s and Py, =~ pl_=,m57g___a_.

The results that we will obtain are essentially in-
dependent of the spins of the incident particles, so, for
simplicity, I will take them both to be-'spinless. On the
other hand the spins of the exchanged particles are cru-
cial., Let us start with spin zero quanta, The amplitude
for single particle exchange is given by

)\2

Mo =R (3)

where u is the mass of the exchanged particle, The two
particle exchange diagrams are shown in figure 2, They
give

Mg = -iM* I?;:)é[qz-uz + ieJ-l [(q-A)a -p® + ie]-l (4)

[(®oma)?-ma?+ic |0 {[ (Batq) ?oma®+ic | 14 (By4amq) 2 omy +ie 7}

The basic idea of the eikonal approximation is that
the incident particles propagate through the interaction
region in a straight line retaining their large momentum
even in the intermediate states. Let us start by assuming
that this picture is correct. We shall discuss its valid-
ity at the end., Under this assumption the main contribu-
tion to the integral in Eq. (4) comes when the components
of q are small compared to P,y and Pz-, so we can write

[(Pi+q)® = m12+ie]-l + [(Py+2-¢)® -my* + ie]-l

[a42P1+ q#iel™ + [(a=q)® + 2B,+ (a-q) + 1e1°1 )

~ /s qu +Hel ™t + [-/8 qu + ie17} = —2mi6 (/sqL).

Notice that this is the same result that one would have
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obtained by replacing the propagator [(P1+q)2-m12+ie]-1
bx its mass shell delta function, since

§T(P1+q)® - my2] =~ 8(/s5q.).

Figure 2b is obtained from 2a by interchanging the
order in which the exchanged quanta are absorbed by par-
ticle 1, If in each of these diagrams we interchange the
order in which the quanta are emitted by particle 2, we
obtain the diagrams of figure 3 which are, of course,
identical to the original ones, Thus we can replace the
propagator [(Pz=q)® = ms® + iel 1 in Eq. (4) by the quan-
tity

(E1-9)? -m® +ic]™ + [(Pomttq)? - me? + ia]'l}
(6)
(-2mi) 8(/s qp).

Again, aside from the factor of %, this is equivalent to
replacing the propagator [(P5;=q)® = mp® +ie]"Ll in figure
2a by its mass shell delta function,

(4) now becomes
5 dz
O Tl - S R CRN ()
° @2m?® *+u® (-1 P

where we have used the fact that d*q = % dq,dq_d?q. Ob-
serve that the momenta carried by the exchanged quanta is
space~like, lying in the x=y plane. It should also be no=-
ticed that an important cancellation has occurred between
the two Feynman diagrams of figure 2, It is well knowm
that the box graph of 2a has the asymptotic form*

Map = £(t) 4n(-s)/s (8)
whereas the crossed box graph of 2b has the form
Mzp = £(t) 4n (-u) /u. (9)

Since for large s and fixed t, u - =-s Eq. (7) is recovered
and the functional form of f£f(t) can be read off,
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The rather trivial calculation which we have just
done contains most of the ideas which we will need for
the rest of our work. We must now extend it to the n
particle exchange graphs illustrated in figure 1. Again
if the incident particles retain their large momenta,
their propagators can be linearized by dropping quadratic
terms in the loop momenta relative to terms of the form
pi°d. For example, in the diagram of figure la the propa-
gators of particle 1 become

f(ql'-qn_l)n= 1 s 1 e 1
2Py oqytie 2Py o (qitdz)tie ZRo(qatqat..q () Hie
~gmmD)/2 1, L. .. 1
q1—+is ql_-l-q2—+i€ q1-+- noqn_1_+i€

(10)

There are n, distinct terms correspanding to the
different orders in which particle 1 can absorb the ex-
changed quanta, After summing over all these terms we
can obtain a result analogous to Eq. (5). To see this it
is convenient to treat all the exchanged particles on an
equal footing so we introduce the dummy variable | by
writing n
T qun_ 5(§ q;)

and define

n
- 1 1
F(Qi...q,) = Qi-tie” " "qiot...q__; Hie (X a;) (1n
so that
£(deeod_ ;) = [da__ Flai...q). (12)

For a diagram in which particle 1 absorbs the exchang-
ed quanta in the order vi,Vz,...v_, F(ql..oqn) is replaced
in Eqs. (11) and (12) by F(qy, ... Vh)'

We now prove the rather remarkable identity
n

Moo8(q,) (20Dt (13)

Z F(qvluooqvn) = i=
P
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where I indicates the sum over all permutations of vi...v .
P : ; A n
The fourier transform of F is given by

o

n .
i i¥r.q. _
F('rvl,...'rvn) J‘J‘.I=Il dq,_e " i'i F(qvlo.oqV ).

i
n
(14)
Writing
kl = V1=
kg =k +q (15)
i-
and using Eq, (11) we find
n-1 dk.
—_ ___.1'.. ikl(T T )
F(rg seeety ) = .[ 18 Ke © ViV,
n i
. eikz(TVa- 'rVa) elkn-l(TVn_l- 'rvn) (16)
= (=2mD)™ e(r - T )...8(r =T ).
V.n Vn_]_ Va2 V1
So
2R(r, .om, ) = C2n)" (17)

P

and Eq, (15) is obtained immediately by taking the inverse
fourier transform, Thus after summing over all orderings
of absorption, the propagators of particle 1 can all be re-
placed by their mass shell delta functions, i.e. by the
quantity

n-1
(-zﬁi)n-l igl 6(\/5 qi_) ° (18)

Homework problem 1l: Obtain Eq. (18) directly in momentum
space., Hint: It is convenient to first prove the identity
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Z 1 1] l L ] 1
+i + +i T +i
P(vl ® 0 -Vn_ ].) qvl le qV1 qva = qV]_ qvn"l bl
n-1 1
s 0 +ie °
i=1 9

Homework problem 2: In approximating the propagators it
is sometimes convenlent to drop terms of the form qj- qj
but retain the qi° terms., i.e. we write

1 = 1
4 L L '
2_ 3, 2 R ]

Show that in this approximation the propagators of parti=-
cle 1 can be replaced by

1
H [ z+2P1°q +ie & qi3-2P10q1+ie]

which of course reduces to Eq. (18) if we drop the qiz
terms,

A result similar to Eq. (18) clearly holds for the
propagatars of particle 2, However, if we sum over all
orderings of emission of the exchanged quanta, we count
each Feynman diagram n! times, so we must divide by this
factor,

The eikonal approximation thus predicts that the to-
tal amplitude for the exchange of n quanta is

- - 2 2
bGP Gt [ e} e
N, s i=1 (2m) 1=1 g§+p (Zﬂi- é) e
Defining 1 4@ ~iq+b Az
60 (b) =5 I (ZT'T) a e ~o~ ._3._?, (20)
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Eq. (19) becomes

=-2is iA°b R
u = s [a%p ™22 i, (p) T° (21)
or
_® . [asy ibeb. 16, (D)
M(s,d) = g Mn = 2is Id b e~ ~(l-e ) (22)

which is the familiar eikonal result.

The above calculation can easily be repeated for the
case of the massive photon exchange. The vertex shown in
figure 4, which contributes a factor A for the case of sca-
lar exchange, takes the form A(2P, +q ) for vector ex-
change, Since we are assuming that tﬁé components of the
loop momenta are small compared to those of P; we can drop
the q, term, Then all vertices along the world line of
particle 1 become X2P,,, Similarly all those along the
world line of particle 2 become A2Pp,,, The only other
change is that each propagator of an exchanged particle
is now multiplied by gyy. Thus the calculation goes
through unchanged and we again obtain Eq. (22) with 6, re-
placed by

5 (b) = 4Py.Pa8, = 256, (b), (23)

Again the eikonal phase is given by the two dimensional
fourier transform of the Born approximation divided by 2s.

Homework problem 3: Consider the scattering of two spin
% particles which exchange massive photons. Take the in=
teraction to be A AUWiYuwi' Show that the eikonal ampli-
tude is given by

_ § _ [a2p(q_.18(b)y ileb
M=1i 6A1X1' Glala/ — jd b(l-e Ye
where d? . S
5(b) = -xj . o12°b (@ + )t
- (2m?

and A{ and \; s stand for the initial and final helicities
of the spin % particles,
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Hint: It is helpful to define vy, = vo % Y5 and to notice
that

[Y+/Y_]+ e 40

Eq. (22) was obtained under the assumption that the
eikonal approximation is wvalid, It has been shown by Tik-
topoulos and Treiman that it is for the case of massive
photon exchange.® 1In fact the correction terms are down
from the leading ones by a full power of 1/s. However,
the same authors have also shown that the eikonal approxi=
mation does not hold for the exchange of four or more sca-
lar quanta.® The reason is not difficult to see. There
is a well defined prescription for reading off the high
energy behavior of Feynman diagrams made up solely of sca-
lar particles.® The easiest terms to consider are those
arising from so called end point contributions. One mere-
ly searches for the shortest path by which either incident
particle can traverse the diagram, The number of distinct
paths of minimum length determines the power of 4ns. Thus
if the minimum path has length 4 and can be achieved in m
distinct ways, the asymptotic behavior of the diagram aris=-
ing from end point contributions is (1/S)L(&ns)m' . For
example, for the diagram of figure la we obtain tns /st 1,
For diagrams involving the exchange of n quanta the eikon-
al paths are of length n=l, Unfortunately for n = 4 there
are always diagrams of the type illustrated in figure 5
which have paths of li?%th three. All such graphs have
asymptotic behavior (§)°, so the eikonal paths do not give
rise to the leading asymptotic behavior of these graphs,
The numerator factors in the diagrams for spin 1 exchange
prevent this catastrophe from happening there.

The fact that the eikonal approximation breaks down
for scalar exchange is not terribly serious since the
scattering amplitude just goes to the Born approximation
for large s in any event, Eq. (22) even gives the scatter=
ing amplitude correctly to order( % since there are no
short circuit paths for the two and three particle exchange
graphs, However, we are advised to be careful. Although
the eikonal approximation is intuitively appealing, it is
not always correct, It would appear to be necessary to
check its wvalidity carefully in each application,
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Even though the eikonal approximation is correct for
the case of spin 1 exchange, these diagrams are not a use-
ful starting point for constructing a model of high energy
hadron scattering since they predict that the scattering
is pure elastic at high energies, i.e. that there is no
particle production., Recall that after all the cancella-
tions have taken place the propagators of the incident
particles can all be replaced by mass shell delta func-
tions, Furthermore, since the plus and minus components
of all loop momenta vanish, the momenta of the exchanged
particles is entirely space-like and lies in the x~y plane.
Thus these particles are never near the mass shell, so
there are no contributions from multi-particle interme-
diate states.

We can also see this point directly. In our normal-
ization, the scattering amplitude, M, is related to the
S-matrix by

(2 * 8% (P, 4P ~P; ‘=P, 'YM(P1 P2 :PiPd )
[2P102P202Py02P2, 1%

(P, ‘P, "|S|P1P2y = 1 +
(24)
so the contribution of the two=-particle intermediate

states to the imaginary part of the forward scattering am-
plitude is

4p tadp /
m M) (2P, P, P,) = xem*| d(PldaPa IM(P, P; ;P/P5) |2
2m)

+
°5+(sz-m12)5 (Pé-m29)64(P1+P2-P{ - Pé)

= % Toyr [d*a (28 TR A P omy 167 (P =) P ]
d?q
1
~ s I T MG, I (25)

In the last step we have made our usual high energy approx-
imations. Denoting the eikonal amplitude given in Eq. (22)
by Mg(s,) we see that

Im M (s,0) = 2s Idzg[1=cosa(b)] (26)
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and

45 j(zﬂ)a |Mt(S ‘-I)|a = sjdab(l-e )y (1~ e ). (27)

So if 8 is real as it always is for elementary particle
exchange, the eikonal amplitude satisfies two-particle
unitarity exactly, Since the contribution to Im M(s,0)
from each type of intermediate state is positive definite,
all production amplitudes must be identically zero if 6

is real,

ITI. LADDER EXCHANGE

We have seen that if the eikonal picture is correct,
the incident particles will propagate through the inter-
action region in a straight line, staying on the mass-
shell at all times. The quanta that are emitted and ab-
sorbed will have space-like momenta and therefore will
never be near the mass shell, Thus, if we wish to intro-
duce inelasticity into the model, it seems necessary to
consider the exchange of compound objects. Since we are
considering strong interactions, a natural choice is Regge
pole exchange., If the '"Born term'" is taken to be the ex-
change of a single Reggeon, one would guess on the basis
of our previous work that the full amplitude is given by

Mo (s,8) = 21s [ @b eI2R (1 - 1R, (28)
where
d?q —ta. -
R(b) ZS I-(—z?;? e lg; 12, Y('S,S) sa( S ) (29)

a(t) is the trajectory function and v(t) is the residue
function multiplied by the signature factor. Equations
(28) and (29) are usually referred to as the Regge-Eikonal
Model (REM), This model was proposed several years ago on
the basis of analogy with non-relativistic potential scat-
tering, and it has been used rather successfully in fitting
high energy scattering data.,® If one expands the right-
hand side of Eq. (28) in powers of SR’/ the first order term
just gives the simple Regge pole amplitude. The higher or-
der terms give rise to cuts in the angular momentum plane
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associated with the exchange of two or more Reggeons,

The REM provides a particularly appealing model of cuts
since no new parameters enter once the trajectory and res=-
idue functions of the pole are known,

We are now in a position to investigate the extent
to which the REM can be justified in field theory. It is
clearly not sufficient to return to the diagrams of fig-
ures 1 and 2 and reinterpret the wavy lines as Reggeons,
For example, it is well known that the diagrams of figure
2, which are essentially planar, do not give rise to
Regge cuts.® Their asymptotic behavior is much weaker
than that of the diagrams which do. In order to proceed
it is necessary to have a specific model of the Regge
poles, A simple one can be obtained by considering the
ladder and crossed ladder graphs in M\® theory,”»® These
diagrams are shown in figure 6. The asymptotic behavior
of the sum of these graphs has the well known form

s(t) (1 + o ima(e)y a(e) (30)

where t = A® = =A%, The eikoral model suggests that we
nowconsider the ‘exchange of an arbitrary number of ladders
summing over all possible ways in which the legs of the
ladders are attached to the world lines of the incident
particles. Typical examples are shown in figures 7 and 8,
Some of these diagrams do give rise to Regge cuts, Our
task is to evaluate their high energy behavior and either
verify Eqs, (28) and (29) or see where it breaks down,

H

Before embarking on this program I should mention
that there is a second model based on the ideas we have
been discussing which has attracted considerable interest,
That is the model of Cheng and Wu,® In their stupendous
study of high energy behavior in quantum electrodynamics,
they were led to consider the Q.E.D. analogue of ladder
graphs which they call towers, Examples are shown in fig-
ure 9., The heavy lines represent electrons and the wavy
lines photons, Topologically the only difference between
the towers and the \¢® ladders is that in Q.E.D, it is
necessary to include crossed electron boxes (shown in fig-
ure 9b) in order to maintain gauge invariance., The asymp-
totic behavior of the sum of single tower graphs is found
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to be
i 11 2
16, .. 6. ., F(t) (Ins)™® sit32™ (31)
MM e M

where o is the fine structure constant. This amplitude
corresponds to a fixed cut in the angular momentum plane
in contrast to the ladder exchange amplitude which gives
rise to a moving pole. Notice that the tower exchange am-
plitude by itself violates the Froissart bound since it
goes to infinity faster than a single power of s. A simi-
lar difficulty would arise for the A¢® ladders if the
coupling constant were large enough so that a(t)>1l for
t<0, If, as expected, the scattering amplitude takes the
form of Eq. (28) after multi-ladder or multi-tower ex-
changes are included, then there will be no violation of
the Froissart bound, I will return to this point and to
the very interesting predictions of the Cheng-Wu model
after discussing the A¢® ladder graphs.

I have no intention of reproducing the rather lengthy
calculations necessary to obtain the high enegy behavior
of the multi-ladder exchange diagrams; however, I would
like to briefly review the results of this work.

For the simple ladder and crossed ladder graphs Eq,
(30) is valid for all values of the coupling constant,'®
The correction terms are down by at least a fractional
power of s, Unfortunately the multi-ladder graphs are so
complicated that it is extremely difficult to do more
than calculate the leading behavior in {ins at each order
in the coupling constant. It is important to keep in mind
the consequences of restricting ourselves to a leading log
calculation, For ladder graphs the Regge trajectory and
residue functions have the perturbation expansions

alt) = =1 + A2 az(t) + A* az(t) + ...

(32)
B(E) = 2 + A* ba(t) + ...
SO we can write
g(t) Sa(t) = [A\* 4+ A*b, + ] 1 e&ns[X2a3+x4a4+...]
o s (33)

n
- L

n
= [2® + A*b,+., ] % n":)fo ﬂ;—?—l— [A\Paz+\*as+
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Thus, if at each order in A® we retain only the leading
power in 4ns, then in effect we are working to order )»° in
the perturbation expansion of the residue and trajectory
functions,

NowGribov has shown on rather general grounds that
the amplitude arising from an n-Reggeon cut will have
the asymptotic form'

1 I % dagi

- a(-q%)
yTyv clg v(-q3)s " A7 £ (9950009, )
(2s) i=1 (2m)? i n ARART 0 T 2n

=}

8C T g.-8). (34)
i=1

Substituting Eq. (33) into Eq. (34) we see that in the
case of Regge cuts, the leading log approximation is equi=-
valent to working to lowest order in \° for the trajectory
and residue functions and for the function £,., It is f_,
of course, which we wish to calculate. Eq. (28) predicts
fn(q1,0..9n) = 51, but we can at best verify this to lead-
ing order in * A\® if we are only able to do a leading
log calculation,

Let us start by considering the two ladder exchange
diagrams illustrated in figures 7 and 8., The situation
here is completely different from the case of elementary
particle exchange., 1In the latter case the two second or-
der graphs had the same asymptotic behavior and a delicate
cancellation occurred between them, The two-ladder graphs
on the other hand have a wide variety of asymptotic behav-
iors, For example, the planar diagram shown in figure 7a
has only the end point contributions which we have previ-
ously discussed, Its asymptotic behavior is 4ns/s® indepen-
dent of the number of rungs in the ladders, This type of
diagram does not give rise to Regge cuts and is negligible
compared to those that do, The diagram of figure 7b does
give rise to a cut, but it too can be neglected in the weak
coupling limit, In fact the only diagrams that contribute
in the leading log calcultion are the four shown in figure
8 and the twelve that can be obtained from them by replac=-
ing one or both of the ladders by a crossed ladder,'?»'?
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The four diagrams of figure 8 can be redrawn in the
more familiar Mandelstam form shown in figure 10, We no-
tice at once that if we blindly follow the eikonal preserip-
tion we will over count each of the leading graphs by a
factor of four, No such difficulty arises in Q.E.D,

Originally there was an even more alarming problem:
the first calculation of the Mandelstam diagram (figure
10), which was widely quoted in the literature,* was in
disagreement with the eikonal model. Fortunately, this
calculation was incorrect. The asymptotic behavior of
the Mandelstam graph plus the associated graphs with
crossed ladders just gives the second order term in the
expansion of Eq, (28),'25>'® Thus, the eikonal model does
check to second order, at least in the weak coupling
limit,

The eikonal picture can also be restored. There are
four contributions to the asymptotic behavior of the Man-
delstam graph, The large momentum P; can follow either
the path ABCD or AEFD, Similarly P, can follow either
A'B'C'D’ or A'/E'F'D’, Returning to figure 8 we see that
if we retain all four diagrams, but keep only the contri-
butions arising when the large momenta stay on the eikonal
paths (the straight lines in figure 8), then all over
counting problems are eliminated and we recover the cor-
rect result for the Mandelstam graph. Furthermore, the
asymptotic behavior of the non-leading diagrams also comes
when the large momenta stay on the eikonal paths so these
graphs could be added in for free. Thus a blind applica-
tion of the eikonal identity would indeed give the correct
result.

The calculation becomes much more complicated when
more than two ladders are exchanged.'® From Eq. (32) we
see that the leading Regge pole goes to £ = =1 in the weak
coupling limit., Eq., (34) then tells us that the cut aris-
ing from exchanging this pole n times has its branch point
at £ = =(2n-1) in this limit., Thus terms contributing to
this cut will have large s behavior of the form s=(2n=1)

x powers of 4ns,

In figure 1lla we have drawn a typical three ladder
exchange diagram, If the large momenta follow the eikonal
paths AEFGHD and A'E‘F‘G'H'D’ we do indeed get
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contributions which go like s ° as expected for the 3-Reg-

geon cut, However, there are "'short circuit' paths ABCD
and A'B'C'D’ which give contributions to the asymptotic
behavior of order s~°, These terms do not contribute to
the 3-Reggeon cut, but they may well contribute to the
two Reggeon cut, In figure 11b we have redrawn the dia-
gram in the Mandelstam forwm., Notice that when the large
momenta follow the paths ABC and A'B’C’, the diagram cor-
responds to the exchange of a ladder (BCB'C’) and a rather
complicated object (EHE'H’)., As the number of rungs in
either ladder making up EHE ‘H’ is increased, there is no
corresponding increase in powers of 4ns, So in the weak
coupling limit, and only in the weak coupling limit, the
contribution of the short circuit path can be neglected
compared to the s~ ° contribution of the two ladder graphs.

It is not difficult to see that all short circuit
paths correspond to the exchange of at least one object
more complicated than a ladder. Since at each order in
the coupling constant, the leading power of {ns comes
from the exchange of a pure ladder, the contributions
from the short circuit paths can be dropped in the weak
coupling limit. On the other hand, the contributions
from the eikonal paths of the n=-ladder exchange graphs
just give the n-th order term in the expansion of Eq, (28).
It must be emphasized that we are not computing the leading
asymptotic behavior of the n-ladder graphs. That comes
from the short circuit paths and is of order s~® for
nz 2, What we are doing is to compute the leading contri-
bution in the weak coupling limit to the cut which arises
from exchanging the leading Regge pole n times., This con-
tribution comes from the eikonal paths of the n ladder
graphs,

The situation in Q,E.D, is much cleaner., There the
contributions from the short circuit paths are smaller
than those from the eikonal paths., The enhancement of
the eikonal paths comes about because of the numerator
factors associated with the spin of the photon, Further-
more, Since the amplitude for n tower exchange has the
asymptotic form sl+n;; q LIt makes much more sense to
keep this term in the weak coupling limit, than the corres-
ponding term arising from n ladder exchange.
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One can use the momentum space techniques which we
have developed to extract the contribution to the n=-lad-
der graphs arising when the incident momenta follow the
eikonal paths., However, it is mnecessary to show that the
leading asymptotic behavior of the ladder and crossed lad-
der graphs of figure 6 actually does arise when the inci-
dent particles retain their large momenta, This calcula=-
tion is quite instructive because it shows explicitly why
the simple eikonal model must break down away from the
weak coupling limit.

Let us start by considering the ladder graph of fige-
ure 6a, The amplitude is given by

i, = VST Ly afigtete] Lo e

-1 -1
[(P =ki)®=m®+i I nn [(k -k, ,.)? ~m°+i ]
. 1 1 eJ j j+l €

j=1 (35)

.[(Pz+kn)2 s m2+ie]-1

We first perform all the kj. integrations, We adopt the
convention of closing all the ki. contours in the upper
half plane when kj4 > 0 and in the lower half plane when
ki+ < 0, Since Ay = 0, we never pick up poles from propa-
gators making up the sides of the ladders., It will be ob-
vious in a minute that the pole arising from the deonomina-
tor [@.+kp)® -m®+ie] does not contribute to the leading be-
havior in 4ns, so we have Kk
n 4%k, JT dkit+ T dkas

a

X2 i
~ w)S LA —ie,
Mn(s"é) . liﬂ':rl J.H )‘ \fS“‘kl-}- J‘ k}_+“k;3+

=1 (@2m
i=1 0 0
E dl . -1 _1
-l e © M [K2-mPHie]T  [(k;+0)®-mPHic)
oo | Rk i=1
0

1
’ [(Pz+kn)2 -m?® + iel (36)



64 ROBERT SUGAR

It is now convenient to make the change of variables

ki+ . \/.S Y1...yi i=1,.a.n. (37)
Notice that
ms m2+k1?
ki- = E = ~
/8 (Ll-y1) (38)
2 - 3
o=k - KRy
/S ya oayi_l(l-yi)
so that
ki- <0 (39)
and
k., i 0
i+ i- **—-3
Yi*
Also

2 n
(P3+-kn)2 -m® = (/s + kn-)<$; + /s f yi> -k; - m®
= [sl'[yi - m?] (40)

m? is a positive definite quantity whose weak dependence
on the k. and y. can be neglected for our purposes. Eq.
(36) now becomes

s A2 e 2. o=t
Mn(S,EQ ==X [Z;] ) P_ dy, £(y1,...5,) [smy, =M®+ie]
0 i=1
(41)
where
J‘ = dak 1 1
£(yi1y0..5.) = 1 ~1 2_ 2. 7 3__2 N
? n i=1 (2TT)8 [ki m +1€] [(ki"'A) m +ie] °

(42)
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Having isolated all of the s dependence of M, in a
single denominator it is an easy matter to study the asymp-
totic behavior of M,(s,A) by means of the Mellin transfomm,
We define -

B (2,0 = [ (-s)"D (5,0 ds (43)
n ~ 0 n ~
1 n . L+l e = (4+1)
A° .n 1 dx x
~ y2ril i ax x =
)\ [4,”] EI)‘ izl dyi f(ylovoyn) ( m9> 6r [XTl'yi + 1]
1l n
; 4+1 L
=~ )\9[ ]n /;]; [ .0 dy, v.” f(yreeey) . m .
4 2. 0 i=1 i7i n’ T (D)

Notice that the integral defining ﬁn(L,QQ only exists for
-1 <Re 4 <0, Thus the inverse transform is given by

ctHi»

1 L o~
M (s,8) =57 c_fiw de(=s)" M (¢,0) (44)

with -1 < ¢ <0,

It is convenient to expand f(ylo.gy ) in a Taylor

series about the point v = 0,
af (0,...0)
f(ylo--yn) f(o,"oo) + Z:1 Yi ayi + L (45)
so
32 n 1 ctio
= 31— —_ R |
Mh(s,é) A [4n] 2ni coim mz sinm(4+1) (46)

n

[£,...0 (/c+1> ) 2£ (0, .“0) CH]) .

For large s the leading behavior of M,(s,4) clearly comes
from the pole at 4 = =1, We have

n
-
M (s,8) = xs[ﬁln & [to,...0 m_(”"g) +
.
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n=-1
‘2 a0, WG s %7)
3ys (n=1)! -

From Eqs. (39) and (42) we see that

(0, ...0) = [I o ),[(k 24m® 7 [(k+A)2+m3 1:]

=TT, (48)

so that the leading log approximation

M(s, 8) = zl M (s,8)= \° (1> z [Z— () tn(- s)]

3)\2 (_S)Q(A) (49)
with

)\.2
a(s) = -1+ ;= I(4)

in agreement with Eq, (32).

Notice that the leading log term comes entirely from
the region of phase space in which all the y;{ are infini-
tesimal. In particular we have

kiy = /8 y1 << Pyy = /s, (50)

Furthermore, it is clear from Eq. (41) that the leading be-

havior comes from the region n . so0
14y vy =W/,
n-1
= -k )2 3 . o~
|k __| [k, 1"k )° +m°1/Vs 1T y,(1 vy )1 =y,

i=1
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<<P2+ = ‘/-Su (51)

Thus for this term the incident particles do retain their
large momenta in the intermediate states,

Homework Problem &:

Consider the n-ladder exchange diagrams in the weak
coupling limit. Use the eikonal identity in the form sug-
gested in problem 2 to extract the contribution arising
when the large momenta stay on the eikonal paths. Show
explicitly that your answer agrees with the n-th term in
the expansion of Eq, (28).

Let us now consider the second leading log terms in
Eq, (47). Here the incident particles do not necessarily
retain their large momenta. For example, the term propor=-
tional to 3f arises when y; is finite so it corresponds
to the d9y:, fragmentation of the incident particle in=
to two virtual ones which share the large incident momen-
tum, This term makes a contribution of order A* to the
Regge residue function., Clearly terms corresponding to
the fragmentation of the incident particles into large num-
bers of fast virtual particles give rise to lower logarithms
and to higher order corrections to the residue function.

It is now clear that the simple eikonal picture can
only be correct in the weak coupling limit because it ig-
nores the possibility of fragmentation of the incident
particles, The best that a dedicated eikonalist can hope
for is that after fragmentation, each of the fast virtual
particles moving in one direction will only exchange soft
objects (ladders, towers, etc,) with those moving in the
opposite direction, In this picture there would be one
term in the scattering amplitude for each type of fragmen-
tation. For example, a term in which particle 1 did not
fragment, but particle 2 went into two fast virtual partic=
les would be expected to have the form

. 1
M(s,A) = 2is [d®b eléohjd2£ Idx|¢(£,x)|2
0

(1 - s rmsen) + s(g—%g;(l-x)s)b (52)
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where {(r,x) is the probability amplitude for particle 2
to fragment into two virtuals with x-y separation r, x is
the fraction of the large incident momentum retained by
the incident particle.

This picture is based primarily on analogy with the
Glauber formula for the high energy scattering of bound
systems. To my knowledge there has been no attempt to de-
rive an expression like Eq. (52) from field theory due to
the difficulty in calculating non-~leading log terms for the
multi-ladder exchange diagrams.,

IV, PREDICTIONS OF THE MODEL

Hd

Let us put aside questions concerning the fragmenta=-
tion of the incident particles and ask what the eikonal
model in its simplest form predicts. We shall be interest-
ed primarily in the enagy dependence of the scattering am-
plitude which is determined by the energy dependence of the
eikonal phase, As a result, most of our results will not
be changed qualitatively by the addition of terms of the
type illustrated in Eq. (52).

We begin with the Regge-~eikonal model defined by Eq.
(28) and (29). If the trajectory function is analytic at
t=0 and if residue function does not vary too rapidly
there, then at very high energies we can write

1 d? .
qle,D) =35 [ T2 -igeh v(-g)s

a(-q?)

=
_y(@ a@ YL -ig.b -q%a’(0)tns (53)
) J s e S c~e A

- —x(0)  a(0)-1 _-b*/4a’(0)ins.
8o ' (0) 4ns e

Since

v(t) = '6(t) [e-ina(t) + 11/sin‘n<1(t), (54)

Im 8(s,b) >0 (55)

as required by unitarity.
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For an ordinary Regge trajectory a(0) < 1, so we can
expand the right hand side of Eq. (28) in a power series
in 6.

R

M3(s,0) = -2is [ d®b e"&°R(4s (s,b) /!

-~ —iy(0) (a(0)-1
~2is 8o’ (0)&ns]n s 2

. - 2 I
"lT I dgbelA b) o nb® /40 ' (0) Ins (56)

(0) 1v(0) n-1 Sna(O)-n+1 e-Aaa'(O)&ns/n
~ on! [Sﬂa'(O)éns]
[_M))__']n_l Sna
nn! [8ma '(0)4ns .

M.R (s, A) is, of course, just the amplltude for the
exchange of a 81ng1e Regge pole, while MR (s,8, n> 2, cor-
responds to a cut in the angular momentum plane arising
from the n-fold exchange of the Regge pole., The leading
t~-plane singularity of MR™ is most easily studied by means
of the Mellin transform discussed in the last section. Re-
call that the Sommerfield-Watson representation of the scat-
tering amplitude takes the form

i I di(24+1)

M(s,t) = 2m H sinnd

where the contour ¢ runs from -i« to +i« staying to the
right of all singularities of M,(t). Now z =1+ _s

2
so 2Pt
=imd )
s _L de(24+1) (e + 1) -8 N\
M(S’t) § » o 2mi I sinnd M, (t) Pti
. T(2441) /272 (£+1) (58)

1 '
ey g di s f&(t)
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Thus the right most singularity of f£;(t) and therefore of
M;(t) can be found by taking the Mellin transform of M(s,t)

f£(t) = T ds s-(&+1)
50

M(s,t) . (59)

Since the leading singularity in f;(t) depends only on the
asymptotic behavior in s of M(s,t), the value of s, is ir-
relevant for our purposes, Returning to Eq, (56) we can
write

£ = K gods s~ (D) An(d) /e pneyn=1 (60)
where
~y(0) T iy(0) -1
K = . (61)
jn} nn, [811'(1 r(o) :In
and
A_() = na(=42/n®) - (a-1). (62)

Making the change of variables s = et gives

o«

-x(4=A -
f£F(£9 = Kh g dx e x( n) x™n (63)
(o]

SO
Yo

£,5(0) = PTes) (64)

£,0(0) = kn(&-An)“'2 t(4-A) +R (1,5, (65

where n = 2, Rp(%,4) contains terms which either vanish

more rapidly than n-2 as or which
pldly (L-A,) in(4-A_) L - Ay

are analytic there. The position of the branch points

given in Eq. (62) and the behavior of the amplitude at the

branch point given in Eq. (65) are in agreement with the

general results of Gribov and his co-workers ,**°1*
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As T mentioned before the eikonal model of cuts has
been used to fit the experimental data with reasonable
success., Rather than discuss these fits I would like to
move on to the rather exotic situation which arises when
a(0) becomes larger than one., For a(0) < 1, in the
L-plane there is a pole and an infinite sequence of branch
points. Notice that An(O) > A,-1(0) in this case, As
a(0) increases to 1 the pole and cuts all collide at 4=1
t=0, The {-plane structure of the amplitude changes dra-
matically if o(0) is increased further., For a(0) > 1 it
is convenient to rewrite Eq. (53) in the form

b (5,b)= _J_)_e&ns[a(O) -1-b/40.'(0) (4ns)®1  (66)

(0) ins

Now if b® < 45&(0)-1)&'(0), g (s,b) grows like a power of
, while if b® > 4(a(0)-1)a’(0), 5R(S b)goes to zero like
a power of s, Combining this informatlon with Eq. (55) we

see that

M (s,b)

2is (1~eTOR(S:D)y o 5i00(ho-b) (67)

i

where

(R, ins)?® . (68)

bo?® = 4(a(0)=1)a’(0) (4ns)?

Eq. (67) tell us that in impact parameter space all the
scattering takes place inside a disc whose radius increases
like 4ns, Since MR(s b) is pure imaginary, the disc is per-
fectly absorbing, i,e, it is black, Eq. (67) should be
contrasted with the amplltude for the exchange of a single
Regge pole with a(0) £ 1. 1In our present approximation we
have

—(0) -b"’/4 (0) 4
MRegge(S"i) 8ma ' (0) ins © * . (69)

so virtually all of the scattering takes place inside a
disc whose radius grows like /4ns, The disc is obviously
not black in this case.

The first model involving a black disc with a logari-
thmically increasing radius was that of Cheng and Wu, In
their case the eikonal phase is given by
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(5D = 555 E(b) (70)

with f(k) - e-le for large b. As a result their scatter-
ing amplitude in impact parameter space has the same form
as Eq. (67) with b, again proportional to 4ns., Therefore,
virtually all of the predictions of the Regge-eikonal
model with «(0) > 1 are identical to those of Cheng and
Wu, However, in the Cheng-Wu model the quantity analogous
to a(0), (1 + g5 ma), is predicted to be greater than one!

All of the predictions of the model can be read off
from Eq. (67). The forward scattering amplitude is given
by

M (s,4 = 0) = [ @®b Mp(s,b) = 2misbo? (71)
The optical theorem tells us that
— ImMR(S’A =0 _ 2mbo? = 2m(Ro4ns)?, (72)
s

so the Froissart bound is saturated.

The elastic cross-section is given by
o, = okt [d*Pp, ‘d*P, ‘&* (P, +P,~P, '-P ')6+(P'2-m2)6+(P'3-m2)
e& (211,) 1 2 1 1 2 1 3

p'pMh |2
lMR(Plpa :PI.PE) | . 1 (73)
2P, ,2P;, 2P, /P1o

JﬂdA

:.a-———-—.

48°

CR
lMR(S A)l 4s? J‘dab|MR(S’R) |2

= n(Rofns)?.

The inelastic cross-section is equal to the elastic cross=-
section since

= 2
Uin qtot el (R ns)”. (74)
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Notice that in the REM R, depends on a(0) and a’(0), but
not on the Regge residue function y. As a result, Eq. (72)
predicts that all total cross=-sections become equal at in-
finite energies. Similarly according to Egqs, (73) and (74)
all elastic and inelastic cross-sections should become
equal at infinite emergies. These predictions are of
course not in agreement with present experiments, nor is
there any evidence that total cross-sections increase with
energy, However, one can always argue that we have not
yet reached asymptotic energies and that R, is small,
Furthermore, if one includes effects associated with the
fragmentation of the incident particles, the cross-sections
for different processes will almost certainly become un=
equal, even though the energy dependence is likely to re-
main the same, The above remarks apply equally to the
Cheng-Wu model,

Away from the forward direction the scattering ampli-
tude is given by

10h

Mo(s,8) = 2is [d®b e 8(bo=b)

(2is) (2m) [ bdb Jo (bA) 6 (bo=b) (75)
0

2mis (Ro ins)? [J1 (RoAns /-t) /3R, Lnsf-t]

where A = IAI = /=t., For large values of s the t depend-
ent term in the square bracket is sharply peaked at t = O,
The width of the forward peak is given by

-to = ¢/(Ro4ins)? (76)

where ¢ is a constant depending on the properties of J; .
The 1/(4ns)® shrinkage of the width of the diffraction peak
should be contrasted with the 1/ins shrinkage predicted by
simple Regge pole exchange. There is no evidence for the
more rapid shrinkage in the Serpukhov data on proton-proton
elastic scattering, and the preliminary ISR results indi-
cate even a slower shrinkage than 1/i¢ns. In my opinion the
models that we are discussing are quite likely to founder
on this point,

The {-plane structure of the amplitude given in Eq.
(75) can be studied by use of the Mellin transform,
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-]

= (4+1)
f&(t) = go s

M, (s, ©)

N } dx e-(&-l)x

Xo

x J (Ro x/~t ) [lmi Ro //=t :l
o n
= f dx e_(L-l)xx JL (R, x /-t ) [4ni Ro //-t ]
0
+ C(4,t)

4mi Ro®
[(£=-1)2-Ro°t 1%/%

+ C(4,t) .

C(L,t) is clearly an entire function of 4. The pole and
infinite sequence of cuts present in the {-plane for o(0)
% 1, have coalesced into a single cut with branch points
at

L =1 % iRo/~t. (78)

At t = 0 this cut collapses into a third order pole at
4 =1, as is necessary if the total cross section is to
grow like (4ns)Z.

As a final example of the exotic predictions made by
the REM with a(0) > 1, consider a process such as p-n
charge exchange scattering where quantum numbers are ex-
changed, We expect the amplitude to be dominated by the
exchange of a single p meson, a,(0) < 1, However, it is
also necessary to exchange our feading trajectory an arbi-
trary number of times, By now the counting should be
straightforward. Neglecting the spin of the incident par-
ticles we find
M, o (s,8)= 2is [ d®b elé(s’h)['iép(s:l’)] SR (79)

°

In the forward direction the answer is extremely simple,



RELATIVISTIC EIKONAL MODEL 75

¥,(0) $%0(0) [d®b e—b/4u5(0)4nse(b_bo)

M., (8:0) =4na;(0)£EE
=y, (0) s[®p(O) Ro™ /e (0) 1. (80)

Clearly if our model is correct and if R, is appreciably
different from zero, the enmgy dependence of n-p charge
exchange amplitude near the forward direction will be
quite different from what one would predict by looking at
the Chew-Frautschi plot,

V., PRODUCTION AMPLITUDES

It has long been assumed that in order to have a
real understanding of high energy hadron interactions ome
will have to have a satsifactory model of production am-
plitudes, Let us see whether the insight that we have
gained from studying the eikonal model of elastic scatter-
ing can help us with this problem,*®

At present the most popular model of production am=-
plitudes is the multiperipheral model, Let us consider a
world with only one type of particle which has spin zero,
The multiperipheral amplitude for the production of n-1
particles is shown schematically in figure 12, The varia-
bles have been chosen to be the same as in our discussion
of the ladder graph, and as there the independent varia-
bles will be taken to be the k; and y;, i = 1,...n, The
high energy behavior of the ladder graph came when all
the produced particles except the one carrying momentum
Pp+k, were on the mass shell., In the present case, this
particle is also on the mass shell and we see from Eq.
(40) that this imposes the constraint

n
s I y, =n?, (81)
i=1 *t
The physical significance of the y; can be seen by notic~-
ing that the sub-energy between any two adjacent particles
is given by

1 = (k1= kip)® =
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2 1\ 2 2
ki ~i+1) +m (k. ki) + m

+
8y1..¥; (1=y;,4) /hylg ¥q.1(1-ys)

=/8 y1.0¥3.1(17y;5;49)

" Uyq7k”s i=1,..n  (82)

with ko = P, and k = P, For small values of the y
n+l i
we have

=~ [(k;=k, ) + w1y, =m 2y, (83)

For large values of the sub-energies Eq. (81l) can be re-
written in the form

n
I s, =sA (84)

In the simplest version of the multiperipheral model
one assumes that only nearest neighbor interactions along
the chain are important, One then writes the amplitude
shown in figure 12 in the form

n . n-1
Tan = 0 M(s,,k,?) 1 g(k,, k. ,.) (85)
P LT ga TR

where M is the two-body scattering amplitude., For simpli-
city I shall approximate the vertex functions, g, by con~
stants, although this is by no means crucial,

It is well known that one of the major problems asso-
ciated with the multiperipheral model is that it leads to
a violation of the Froissart bound if the leading {-plane
singularity of the elastic scattering amplitude reaches
1.'® We shall see this explicitly in a few minutes. This
difficulty can of course be avoided by assuming that the
Pomeranchuk pole has a t = 0 intercept slightly less than
one, Let us take an alternative approach and try to con-
struct a model of production amplitudes whose form guaran-
tees that unitarity will be satisfied independent of the
structure of the two-body amplitude.
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I will only consider the region of phase space in
which all sub~energies are large, The amplitude will be
taken to be zero elsewhere, The region of small sub-en~
ergies is of course far from negligible, but the question
that I would like to ask is whether it is possible to tame
the high sub~energies tail of the amplitude which leads to
the violation of the Froissart bound in the multiperipher-
al model.

If M(s,t) - s? for large s, then we see from Egs,
(84) and (85) that Tzn — s@ when all the sub-energies are
large. Our experience with the eikonal model tells us
that for a ~ 1, it will be necessary to consider the ex-
change of more than one chain., Consider the two chain
diagrams shown in figure 13, If the incident particles
retain a large fraction of their momenta, then we expect
to be able to replace their propagators by their mass
shell delta functions, Thus the constraint of Eq, (84)
holds for the sub-energies along each chain

n,
1

Is,, = 8A, i=1,2 (86)
=1 ij i ?

where sj; is the jth sub-energy on the ith chain, We can
use the éelta functions to do the integrals over the plus
and minus components of the loop momenta, ¢, picking up a
factor of X. as usual, The amplitude will thus have an s
dependence?S of the form s°2~!, so it will be just as im-
portant as the single chain diagram for a ~ 1. Clearly
it will be necessary to consider the exchange of an arbi-~
trary number of chains,

Another lesson we learned from the eikonal model is
that scattering amplitudes are sometimes simpler in impact
parameter space. From Eq. (39) we see that for large sub-
energies the momentum transfer variables k;i®--k. 9, i.e,
they can be expressed in terms of two-dlmensional variables
in the x~-y plane, It is therefore convenient to take two=
dimensional fourier transforms with respect to the k and
write Eq, (85) in the form

n-1
g

=)

Tzn (Si’ E’i) =

=

M(s,, b,) . 87
g | o
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For the two-chain diagrams of figure 13 the integrations
over the loop momenta g just introduce a delta function
which sets the total 1mpact parameter of chain 1 equal to
that of chain 2, i,e,

3 Ng
z Rli = I Eﬁi . (88)
i=1 i=1

This is exactly analogous to the result of Eq. (21).

The above ideas can be put together to write down a
concrete model for the production amplitude. We assume
that only interactions between nearest neighbors are
important. This is a popular, but probably bad assumption.
My only excuse for it is that it makes the model simple
enough to solve., Before any particles are produced the
incident particles are nearest meighbors so I will include
interactions between them, I assume that the basic inter-
action comes from the exchange of a simple object such as
a ladder or tower, A typical diagram is shown in figure
14, The wavy lines are of course to be crossed in all
possible ways, Notice that unlike the case of elastic
scattering there are diagrams in which the incident par-
ticles interact directly zero times. Their interaction
introduces a factor

S(s,b) = % [id(s,b) Pnl=l+ 7= M(s,b).  (89)
n=0 '

The amplitude for the exchange of N chains with n;-1 par-
ticles produced from the first chain, no-1 from the second,
etc,, is given by

Mainicoony (8,b5 8,45 byy) (90)

Ll

N opeap M
=s(s,p) (V1 @MY T MGy, b
i=1 =

with the constraints

n, n, (91)
I s, =sA;, I b =D
j=1 j=
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In the process of crossing the lines of all exchanged ob-
jects we interchange all the chains, So to avoid over-
counting we take n3 =z nz...=2 .

Having constructed a model of production amplitudes
we can calculate directly the imaginary part of the elas-
tic amplitude using the unitarity equation, Let us first
recall how the calculation goes in the multiperipheral
model. We call Im TR(s, A) the contribution to the imagi-
nary part of the elastlc “amplitude arising from intermedi-
ate states of n+l particles, In our normalization

n 4
Im s, 0= 7 [ 1 TN STRk)? - )
(2m)®
poL g atE o B P
« I 6 [(k.-k.+1) -m?] 6 [(Pytk )® = m®]
j=1 J ] n
(92)
g Tgn(s k. ) T,,\n (s k. +A)
_ n 2 1 n n
=~ f; (%-)“ : [ u s [ & dy, o(n y.~M?/s)
i=1 (2m*® 0 i=1 1

n
2 k2
j_i[]_ M(mi /yi"lsi) M (mi/yiaki"-,é)
In Eq. (92) we have performed all the k;_. integrations by
means of the delta functions, and have made the same
change of variables as in Eq, (37). Since we are setting
the production amplitude equal to zero when any of the sub-
energies are not large, we have made approximations appro-
priate for small values of the y;. Taking the two-dimen-
sional fourier transform with reSpect to A gives

1 n n
Tm T(s, b)= n d®b, [ 1 dy,8(ly,-n?/s)
4J 1543=1 + 1'%
n n
2 2 52 -
o I M@ Py b)) |7 7 - Eby) (93)
i=1 i=]1
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We now return to the production amplitudes defined
by Eqs. (90) and (91). When we square the amplitude for
the production of n particles we find two types of terms:
diagonal ones in which chains of equal length come to-
gether and off diagonal ones in which three or more chains
are joined together, The latter clearly correspond to
non-nearest neighbor interactions and must be discarded
to be consistent with our earlier neglect of such inter-
actions, The contribution to the imaginary part of the
elastic amplitude arising from the production amplitude
with N chains of length ni,ns,...ny is easily seen to be

Im M ™N(s,b) = |S(s,p) 1% 12N 10 1 G, b), (94)
i=1

where Im T" (s, b) is defined by Eq. (93). The total con-
tribution to Im M(s, b) coming from the N chain diagrams
is given by

Im MN(S,R) = 12 Im M2 ** "N (g, b)
ni=ngz=2,,.2n
N
- 1%1'- 2 Im Mnl""nN(S,R) (95)
* n,=1
1
= Ises,p 12 1 s,y
where
C(s,b) = ¢ Im Tn(s b)
L n=1 L (96)

is the multiperipheral model's prediction for the imagi-
nary part of the elastic scattering amplitude. In our
model the total imaginary part of the elastic amplitude
is given by

Im M(s,b) = 7= [M(s,b) |° + = Inm M'(s,b)
n=1

C(s,b) /s

= 75 MG,p) 12 + 1s(s,p) |2 s(e . (9D
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We have consistently written M(s,b) in the form
)
M(s,b) = 2is(1-el2(®:R)y, (98)

However we are presently interested in diffraction scatter-
ing so we expect M to be pure imaginary which means the 6
is also pure imaginary. It is therefore convenient to
write

6(s,b) = ia(s,b),

(99)
Eq. (97) then becomes
-a ~a, 5 -3a, C/s
2s(l=e 7) =s(l=e )% +e “(e''7-1), (100)
so unitarity is satisfied exactly provided
a(s,b) = C(s,b)/2s. (101)

Eq. (101) is a bootstrap equation for the elastic scatter-
ing amplitude. One guesses an input form for a(s,b) or
equivalently for M(s,b) and uses Eqs. (93) and (96) to com-
pute C(s,b). If the output value of a(s,b) obtained from
Eq. (101) “matches the input a we have a self consistent
model in which the elastic amplitude satisfies unitarity
exactly.

As a first example let us take the input amplitude to
be dominated by a single Regge pole with intercept «(0)=1,
In this case it turns out to be simplest to work in moment
rather than impact parameter space, We write

M (5,8 = v(s®® (102)

Substituting into Eq. (92) and taking the Mellin transform
gives

Int™(4,8) = [ ds g~ (H+1)
So

InT" (s, 8) =
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2 . n 3
&% @&yn-l g Ok ds, v(k;)v(; + B (103)
bm i=1 (2m*

o, ) * ol + -t

In the last line of Eq. (103) we have made the change of
variables s; = my”/y;. We must cut off the lower end of
the sj integrations at some large number, call it 5o,
since we have consistently assumed that Tap vanishes if
any of the sj are not large. Defining

I(4,8) = I%Z—I;‘)z v(k) v(kt+s) [ ds 5o Fulltl) =4-2
So
2 = yal(k)ta(kt+s)~4-1
o, W) Go oK Y (104)
=0 (E) - on(l'i+'[‘s') +1
we see that for 14 ~ 2a(}Y)-1
102, =~ Y3 nfe-2a(50) -1 (105)
S 8ma ' (0)
SO
c(2,8) = £  InI"(4,0)
n=1
~1 1, 1-E et (106)
4mr

Since a(0) = 1, €(4,0) must have a pole in the {-plane
for-l1 < 4 < 2,

In the multiperipheral model where C is the imaginary
part of the elastic scattering amplitude this pole leads
directly to a violation of the Froissart bound, In the
present model there is no such violation provided we take
agye = C; however, it is clear that Eq. (102) does not
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lead to a self consistent solution to the model.
The fact that an input Regge pole with a(0) =
leads to a function C(s,b) which grows with s suggests
that we try an input ampTitude of the form
Min(s,k) = 2is 6(bo=b) (107)
with

bo e Ro &nSo

Substituting into Eq. (93) and again taking the Mellin
transform yields

n ~1g®n-1 T4
ImT (4,b) G [ 121 d®b, ds, 9(b io i)
n
5(b = = b,)
~ oy ™ (108)

Lo g2l od%q o -igeb o T g ig-b

% G TG e gl OB de e cia

+ 457 8o = by)

where bjo = Ro 4nsj. The integrals over the b; and sy
can be done as in %qs (75) and (77). Retaining only the
leading 4-plane singularlities we find

n-1 12

n ~1 &y "L
I (4,b) ~ 3 €)o7 ({q dq Jo(gqb)

.[SnRo"’/[(&-l)2 + Roaqala/ajn . (109)

The 1nverse Mellin transform of Eq. (109) is surprisingly
simple,*”
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InT" (s,b) = % (%ﬁ)“'l %; ] a4 dq Jo(qb)
0

fn-% T(%)Js 1 (Roins q)
2411 2n==
HERTT sl vy R

N (zgg /Ro)n-l[(boa‘ba )%]311'2

(110)
8 (bo=b)
(bo?=b?)%  (3n=2)!

For virtgally the entire internal 0 < b < by, the quantity
(bo?-b?)% is large, so the series can be summed to give

(2]

C(s,b) = £ ImI"(s,b)
L (111)
1 s ea(b°2-b2?2
= 3 a(bo2-b?) % 8(bo-b)
where
o = (2g2/R.o)é .
Writing
8 ut- C(s,k)/Zs (112)

we see that a,,, grows like a power of s for b < b, so

= L] . -aout = 1 - =
Mout(s,E) 2is(l=e ) 2is 6(bo = b) Min(s,h).

(113)

We therefore have a self consistent two=-particle scatter=-
ing amplitude which satisfies unitarity exactly.

The above calculation does not constitute too strong



RELATIVISTIC EIKONAL MODEL 85

an argument in favor of the black disc model of diffrac-
tion scattering, Even within the context of the model
there is no good reason for ignoring interactions between
non-nearest neighbors, Such interactions would clearly
introduce more factors of the S-matrix into the production
amplitude, This final state could therefore lead to a
self-consistent elastic amplitude for which the total
cross=section does not increase with energy, In my opin-
ion the main lesson of this calculation is that when the
leading 4{~plane singularity of the elastic amplitude ap-
proaches one, it is probably necessary to consider produc-
tion from more than one multiperipheral chain. How this
idea can be used to construct a realistic model of dif-
fraction scattering remains a challenging problem,
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Figure 4
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Figure 7
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Figure 12
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Figure 13
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Figure 14
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EIKONAL DESCRIPTION OF HIGH-ENERGY PARTICLE SCATTERING
M. M. Islam
Department of Physics, University of Connecticut

Storrs, Comnecticut 06268

1., Introduction

A few years ago at this institute I gave a set of
lectures on the same subject.! My primary motivation at
that time was to generate interest in this field by point-
ing out that the eikonal description provides not only a
useful but probably a powerful tool to explore hadron in-
teractions. An added motivation was that new accelerators
were being built, and we needed a suitable theoretical
framework to discuss experimental results in an energy re-
gion where the partial wave expansion is hopelessly imprac-
tical. It is with some satisfaction that one can look
back, and notice that considerable work has been done in
this area during the last couple of years. Various field
theory models have been studied - a number of which have
indeed led to the eikonal description of high energy scat-
tering. Phenomenologically the eikonal description has
been used to obtain full scattering amplitudes after assum-
ing suitable input amplitudes, and then compared with the
ever increasing volume of experimental data. To these
efforts we can now add the fact that Serpukhov and CERN
ISR have begun producing experimental results, and NAL
will have results in the near future. It is therefore an
appropriate time to try to understand in a simple physical
way some of the important aspects of the eikonal descrip-
tion of high energy scattering, and in these lectures we
shall be mainly concerned with the following aspects:

1) How does a field theory model lead to an eikonal
description?

2) What does it mean to take the input amplitude in

101
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the eikonal representation as a Regge pole ampli-
tude?

3) How can a phenomenological complex energy-depend-
ent optical potential be interpreted in the lan-
guage of the S-matrix theory?

2, Eikonal Amplitude from Field Theory

By summing the generalized ladder diagrams of field
theory (Fig. 1), the eikonal description of high-energy
elastic scattering has been obtained by many authors,
Apart from elaborate and rigorous mathematical methods?
various approximate methods such as (i) functional tech-
niques with soft-meson approximation,®:* (ii) infinite
momentum technique,® (iii) modification of the Feynman
propagators'e have been used., We shall adopt the last
method for our discussion. Even though mathematically not
very rigorous, this method provides a straightforward
graphical way of obtaining the desired result, and also
lends itself easily to the description of large momentum
transfer scattering and to the investigation of radiative
corrections,® An added feature of the method is that it
is very similar to the graphical analysis of infrared di-
vergence in quantum electrodynamics (QED),'° and we shall
have occasions to go over to QED to check with results
known there, We shall also be interested in discussing
radiative corrections to the eikonal amplitude, mainly for
two reasons: (1) a number of authors have already investi-
gated the question of radiative corrections to all orders
to the eikonal amplitude in QED;'»>'2512 (2) gsuch correct-
ions have been proposed as an explanation for the precipi-
touf4fa11 of high-energy large-angle pp elastic scatterx-
ing.

2(a). Summing an Infinite Set of Diagrams

We began with the diagram in Fig. 2 which is somewhat
more general than the generalized ladder diagram in Fig., 1.
The shaded blob in this diagram represents some unspecified
interaction; we consider this interaction as not known to
us at the beginning. The wavy lines represent mesons which
are being exchanged between two particles a and b. The ini-
tial 4-momenta of the particles are py and pp, and their
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final 4-momenta are p, and pj. For simplicity we shall
first consider the particles a and b as spinless and the
mesons as scalar mesons, Let k;,ks,...,k 41 are the 4-mo-
menta emitted along the a line, and k;,ka,...K 4. are the
4=-momenta absorbed along the b line, The unknown inter-
action carries off 4-momentum k. from the a line, and will
be represented by a Feynman amplitude M*(k,).'® The Feyn-
man amplitude®® for the process in Fig. 2 is now

. +1
. 2 .n(ntl d*k, nr.
M= |28 f e d%*k Mh(k)aq- k,
L(zn)4] iﬂi k;-u3+16 T b <, & 1>
(#r)
X 1 1 SR 1
(p, k1) “om®+i€ (p,~k1-ka) Tom®+i€ IS 2emP+ic
X 1 1 PR | i
(Pb+r(1 ) 2 -m2+i € (Pb+121 -FEB) 3-m3+i € (pb-kn+1) B-mqi €
(2.1)

where q = pa=p,. We use the standard notation: s=(py+pp)?
t=(p,~pPa)’, u=?pa*9£)8- The 6 = function in (2,1) is eli-
minated by integrating over k., and the following approxi~
mation is then made. For propagators along a line before
kr

1 1

NS o Sz - = ° =,
(pa K) m>+i€ E (ki 2p, ki)+ i€

(2.2)

where K = % ky; this means we drop the kijk.(i # j) terms

in the denominator. This is our basic aparoximation« The
reasoning behind is that we are interested in the limit
where the external 4-momentum Pa has components (pao and
Paz) going to infinity, so that the part of the 4-momentum
k; that can contribute significantly is in the neighborhood
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of ki = 0, The reason for keeping, however, the kj® terms
is that no unknown cut-off is needed, as will be seen la-
ter, for integrals over d*k;. Mesons whose 4-momenta are
such that (2.,2) is justifiable will be referred to by us
as soft mesons. In the above approximation we have for
propagators after ky

1 1
7 z _ 8 : = E T x :
(pa + K) m® + i€ % (ki + 2pa ki) + i€

(2.3)

similar approximations are made along the b line before

and after absorption of k.. From now on, we shall refer

to Mh(kr) as the hard interaction. From (2.2) and (2.3)

it is seen that the hard interaction as defined here speci-
fies the propagator approximations along a and b lines,

and need not correspond to large values of the momentum
transfer k..

Eq, (2.1) with the propagator approximation becomes

n+l d*k e n+1 ’ )
(#r) “ ()
where

Fa Tii-2p kn kEHKE-2p,r (o Ha) " ril(k?-zp k,)
1 a 1

i=1
(2.5)
p.= 1 1 1
1. 2.0,
+2pa ntl k 1+k +2p «(k 41+k ) i (k2+2p K. )

i=r+1

[}

(2.6)
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P, and P’ b are similar products of propagators along py
line and p b line.*” Each propagator has a +i€ term
which is no longer explicitly written.

Let us now assume that out of the 4-momenta k;,ks...
kr-1 emitted by the p_, line, % momenta denoted by

kl,kg, ..... ki are absorged by the p, line and the rest
r=1-4 momenm‘k%+l,kt+2,.... ,ky-1 by the p b line.
Similarly, we assume that out of the 4-momenta kyyq,ky 42,
.u...,kn+1 emitted by the p line, m momenta denoted by
ki kS e eome ,kn are absorbed by the py, line, and the rest
n+l-r-m momenta km+1 Ki42 5+ «ee+,Kn4l -y by the p’p line,
Obviously, the K;'s introduced earlier are a particular
labeling of the K''s , k”'s, and k.. We now want to sum
over all dlagrams obtained by all possible ways of attach-
ing the k’'s and k”'s. This summation is easily carried
out because of the following identity:

n T m
s s N il
a ag...+a +a =1 {41 21 +a3+,.,+a &l al-f-a,a+...+ai+a
n
1
" . (2o7)
iﬂ; a1+a3+..,+ai

To see explicitly the remarkable simplification resulting
from this identity, let us suppose thata set of 4-momenta
are attached to the p; line as shown in Fig. 3. Let us
take the product of all propagators and sum over all pos-
sible ways of attaching the 4-momentum k., Then because of
(2.7) the sum is

1 1 1 p—— 1 .
ka+29b*k qf*ﬂpb'ql q§+qg+2Pb'(q1+QB) i :
(qi+2py +q,)
i=1

This means that in the sum the term due to k factorizes
out and the rest remains unchanged., Therefore, the scat-
tering amplitude obtained from Eq, (2.4) by summing over
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all possible ways of attaching k’'s and k“'s to the Pp
and p'y lines is

n n+1
o= 5 T] T & Tk el
o 141
1 1 r-1 1
* T w7sp o K/7-2p k.
i b i b 7]
i=1 j=t+1
m 1 n+l-r 1
. S el
M k[ +2p, k7 1] K2p) k]
i=1 T jemtl 3 (2.8)

Now the 4 momenta ki ,ks,....,k{ is a subset of the set of
momenta kl,k ,....,kr_l. Let us call this subset s’', The
m momenta ki-k4,....,k” are also a subset of the set of
momenta kr+1, 425 +++5,Kq41, and let us call this subset
s”, Eq. (2. 8) then corresponds to a particular choice of
the subsets s’ and s” To include all possible topologi-
cally different Feynman diagrams where 4 momenta from

the p, line and m momenta from the Pa line are absorbed by
the pp line, we have to sum over all such subsets.

At this point we observe that if the sum over all
possible permutations of kj,kz,....,k,._.q7 and of kyyq,k.yo,
""’kn+1 are considered in Eq. (2 8), then the products
of propagators along the p, and P, 11nes factorize. This
is because of the identlty

y 1 1 ... 1 1 1...1
1 S B 8j178y0F- ooty 41 a2 T
(2.9)

where il, i2,...,ij is a permutation of 1, 2, .,.,j and
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z.represents sum over all permutations, Using this
P result we can now write the desired scattering ampli-

tude as
n+1

4
n+1 d k
- B ]f e e 2 ky)
(#r) (#r)
r-1 n+l
) (rji)' ﬂ. k?-Z; -k, (n+i-r)' ﬂ k24+2p <k
=1+ @t j=rs1 3 2 3
4
r-1
E 1 o
? {1;1 ki +2pb k. jué+1 2pb }
m n+l-r
* [ 1 - 1
AT ] T
X ;, { ! k'.'al-Zpb~k, ' k.a-Zpb.kf’ }
i=1 1 L =il 3

(2.10)

The division by (r-1)! and (n+l-r)! above is to compen-
sate for the overcounting introduced by summing over all
possible permutations. Introducing the Fourier transform

£ Mb(k,)

Mh(kr) - f d*x o e F P (x), (2.11)

(2.10) can be written in the form

Moo D /d4x LT PN Tr_}T T Wt T

s

" _(-nTi:r)_' ) (W)” W)™ (2.12)
8
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where the U's are defined by

Uy = U(x;p,,p,) , Uz = U(x;p,,7Py)
Us = U(x;-p,,p,) , Ue = U(x3-p,,-P,)
ik.x
- d*k e 1 1 "
UCx;p,p ") '(")'/ “® Hi€ Kk%-2p.k+i€ Kk°42p -k+ic

(2.13)

We note that the sums over s ‘and s” introduce the follow-
ing factors:

ZI _ <F2F> ’ Z (F+1-f> ,

"
S

so that Eq. (2,12) becomes

MTnll’r & 0 fd“x e11x My @t @yttt

Ll (r-1-4)!

m n+l=r-m
% Us) (Us) . (2.14)

m. (a+l=-t-m) !

The superscripts and the subscripts for the amplitude are
put in to indicate (i) that it corresponds to the exchange
of n soft mesons and one hard interaction, (ii) that the
hard interaction occurs after r-1 soft mesons have been
emitted by the p, line, (iii) that % mesons emitted from
the py line and m mesons from the p, line are absorbed by
the pp line. We now sum over all the possible values of

4 and m for fixed n and r. This leads to the amplitude
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r-1 n+l-r
Mn+1,r - Z‘ E: Mr£+1,r
1=0 n=0 1

n+l-r

P ~ r-1
) inf atx e 0o BN
(2.15)

In Eq, (2.15) the hard interaction has been taken to
occur at the r-th position. To obtain the scattering
amplitude for n soft exchange and one hard interaction
we want to sum (2,15) over all values of r. However,

at this point we have to distinguish between two cases:
(i) the hard interaction is the same process as the soft
exchange; (ii) the hard interaction is different from

the soft exchange. In the first case, the sum over r has
to be divided by n+l, since all diagrams with different
values of r are topologically the same Feynman diagram.!®
In the second case, diagrams with different wvalues of r
are different, and so no division by n+l is required. We
thus obtain

Mm-1 =[d4x e-iq'X Mh(x) M

(n+1)! for case (i),
(2.16a)
= fd4x oA Mh(x) ﬂn); for case (ii),
(2.16b)
where
X =X(X) =10 + U +Us + U (2.17)

This leads to two different results for the total scatter-
ing amplitude:

_ T Mp+1 _ ak -iq-x Mh eix-l
M= ZO = X e ® x>

n=
(case i) (2.18a)
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=./'d4x e-iq'X Mh(x) eix. (case ii) (2.18b)

Eq. (2.18a) is the formula derived by Lévy and Sucher®
which holds if the hard interaction is the same as the
soft interaction, while Eq. (2.18b) is the formula that
corresponds to Schiff s large-angle result'® and holds
when the hard interaction is different from the soft
interaction.®°

We should notice that Eq. (2.18a) is exact in
fourth order (i.e., exchange of two mesons) since the
approximation of dropping kjk. (i # j) terms do not come
in till we go to sixth order.” On the other hand, if Eq.
(2.18b) is used in the same order the amplitude will be
larger by a factor of 2. This result has been noted by
Lévy and Sucher in the asymptotic limit s—=, |t| fixed3!’??
Another point worth commenting on is that, contrary to
popular belief, the eikonal description can be used for
large momentum transfer scattering. Suppose we know
about a mechanism that can carry off large momentum trans-
fer. Now, notice that in the derivation of Eq. (2.18b)
no restriction was made on the magnitude of k., the re-
quirement was that the ki's are small (i # r). There-
fore, (2.18b) retains its validity for large q. This in-
dicates that the analysis of large-momentum transfer
scattering in terms of Fig. 2 and Eq. (2.18b) will pro-
vide insight into interactions at small distances. 1In
this context we should note that Eq. (2.18b) essentially
corresponds to the distorted wave Born approximation or
absorptive correction formula, if ¥ (x) becomes a function
of the impact parameter only.

2(b). Radiative Corrections

We shall investigate radiative corrections to all
orders due to soft mesons. These corrections are of two
types: (1) vertex type where a soft meson emitted from
an external line is absorbed by it after the hard inter-
action; (ii) self-energy type where the soft-meson emit-
ted by an external line is absorbed by it before the hard
interaction. A typical diagram to be considered is
shown in Fig., 4. For simplicity we shall first discuss



EIKONAL DESCRIPTION OF SCATTERING 111

vertex type radiative corrections and ignore self-energy
corrections.

Let us begin with Fig. 2 and make a vertex type in-
sertion connecting p, line and p, line by a meson line.
Let ¢, be the 4-momentum of this meson line, Thenapart
from the obvious modification of the propagator products
P, and P_, the Feynman amplitude will be multiplied by
the factor

i 2 d* qu
———
zm* & | FF ¥ e

We now sum over all possible ways of attaching ¢, to p’
line and then sum over all possible ways of attaching e
to p, line. Because of the factorization of the q; pro-
pagator part arising from the identity (2.7), the net re-
sult is multiplying the original Feynman amplitude of Tig.
2 by the factor

i af dqy 1 1
(2m) £ qi - +i€ qf—Zpa-q1+iG qf—Zp;-q1+iE ’

This is the radiative correction due to a single vertex
type insertion. Notice that this factor does not depend
on X since q, does not enter into the equation for k.

Next consider two vertex insertions, and let ¢, and
gz be the 4-momenta of the meson lines connecting p, and
p.! lines. Keeping the initial positions and q, and qa
fixed, we first sum over all possible ways of attaching
them to the p/ line. Then we sum over their initial po-
sitions along the p, line. The result is to multiply the
original Feynman amplitude by the factor

1 g d*q, 1 1
@m” qi-uHE  qr-2p q+ic 9y -2p,_-qu +i€

X —3——1 g? d*qs 1 1
(2m) q3 -n*+i€ 42-2p, 4z +i€  qE-2p,-qs i€
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This factor however does not represent correctly the ef-
fect of two vertex type insertions since contributions
from all diagrams with q, and q; interchanged have been
counted, while topologically they represent the same Feyn-
man diagram. To compensate for this we have to divide the
above factor by 2!. Thus the radiative correction due to
two vertex insertions connecting p, and pé lines is to
multiply the Feynman amplitude of Fig. 2 by the factor

2.(1V1 , where

1 1
2ﬂ) k? - +1E k®-2p_-k+i€ k°- -2p, “oktHi€ (2.19)

The generalization of thjs result when there are n lines
connecting p, and pg is 51(iVy )", Therefore, if we sum
over all these vertex typé radiative corrections the re-
sult will be multiplying the original Feynman amplitude
by the factor elV, ., Similarly, the ,sum over all vertex
type insertions connecting py and p b will be e Vz, where
Vz is obtained from V, by replacing p, by p}, and pa by pb

We now want to find how the scattering amplitude is
modified due to self-energy insertions. To this end let
us consider the external line p, and make a self-energy
insertion (Fig. 53). The propagator product along p, line
will be modified in the usual way and the scattering amp-
litude will be multiplied by the factor

e [
q? -pP+ie
We now regard both ends of the radiative correction as
corresponding to emission of 4-momenta, q, and q;, so
that qf = -q1. Keeping the q; end fixed, we sum over all
possible ways in which ¢ can be attached to the p, line.
Then we sum over all possible ways in which g, can be at-

tached to the p, line. The net result will be multiplying
the original Feynman amplitude by the factor

1 1 .
(2ﬂ) fql WHLE q7-2p cdr+E qi-2p, -q HiE
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The radiative correction due to one self-energy insertion
is then the above multiplicative factor divided by 2.

The division by 2 is necessary, since the same Feynman
diagram has been considered twice while summing over both
ends.

Next we consider the case where two self-energy in-
sertions are made to the p, line. As before both ends of
each self-energy insertions are taken as corresponding to
emission of 4-momenta, so that we have ¢q/=-q,, q4=-qz.

We sum over all possible positions of qs end and then
over qz end. The same thing is repeated for q’; and q,
ends. The result is that the sum over all radiative cor-
rections due to two self-energy insertions to the p, line
is the multiplicative factor

11 g d*q, : L
202 @m* ) G-CHE EH2p, q+i€ G -2p, qHi€

= 1 ig? ‘/” __E:ﬂi__ 1 1 y
2 (2m* Q5 -pP+ie G+2p_ qa+ti€ q3-2p,"qo+i€

The factor 1/2! included above is to take into account

the fact that diagrams with q; and qp interchanged corres-
pond to the same Feynman diagram. Generalization of the
above result is now straightforward. 1If there are n, num-
ber of self-energy insertions to the p, line, then the
Feynman amplitude is to be multiplied gy

n

1 & = a
naf (7131) ’
where
a
s, =_8 d*k 1 1

@n° J-FHE K -Zp,-kHE KA2p KHE
(2.20)
If self-energy corrections to all orders are taken into

account, then this means multiplying the scattering am-
plitude by the factor exp(}¥ iS;).
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The above arguments can be equally applied for the
self-energy corrections to the other external lines.
Hence the net effect of including self-energy and vertex
type radiative corrections to all orders is to modify the
amplitude (2.18a) to

M= ei<z Vi+%z Si) fd"x galgex Mh(x) eX-1 s
i=1 =1

ix
(2.21a)
and the amplitude (2.18b) to
2 4 X
M= eiCizlvi+%£;18i> J/;fx A Mh(X) 1% ;
(2.21b)

82,83 ,54, in the above equations are obtained from S; by
replacing p, by p., p, and p, respectively. It is worth-
a b . b, 2

while to note that the radiative corrections do not de-
pend on x and therefore factor out without any new approx-
imations. This factorization has also been obtained by
Barbashov et al.'® using functional integration technique.

2(c). Nucleon-Nucleon Scattering via Vector Meson

Exchange

We now consider particles a and b as spin % nucleons,
and the meson they exchange to be a massive neutral vector
meson. Physically this case is more realistic than the
scalar case discussed earlier in section 2(a). The reason
is in the scalar case when s - « the Born amplitude domi-
nates,®® so that our summing of an infinite set of diagrams
is of no practical value. On the other hand, in the present
case the eikonal amplitude for s - « does retain contribu-
tions from all higher order diagrams, and shows that the
eikonal description provides in a compact form the sum of
an infinite set of diagrams,

Let us first define the soft~meson approximation in
the present case. We shall assume the vector meson to be
coupled to a conserved source, so that in the propagator
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of the vector meson the k kv/m term can be dropped. Ex-
amining Fig. 2 we note that because of the fermion nature
of the particles and the vector nature of the meson, the
propagator part of the Py line will now be of the form

lﬁa”kl -Kz+m lﬁ -¥, +m
'Ykla (Pa"kl -kz)* -m®+i€ Yua (p -k )® -m"+i€ u u(p )

The denominators are exactly the same as we encountered
in the scalar case, and the same approximation, namely,
dropping kik (i#j) terms will be made for them. As for
the numerators we approximate them by neglecting meson
4-momenta compared to the 4-momenta of the external par-
ticles. The rationale like before is that at high energy
the 4-momentum of an external particle is very large,
while the dominating contribution to the scattering ampli-
tude comes from small values of the meson 4-momenta. The
above approximation has the following consequences:

Ié =¥, +m ﬁa-i-m
u(p) 2 Y, u(p,.)
Viia (p, ~ka) TP HE iz K -2p, K Hi€ ‘wPa

2
(2p),,,
= Yy, v(Pg) I§-2p -k HE *  (2.22)

ﬁa_ul ‘Kz"“m ﬁa'k]_ +m
'Yua (Pa'kl ks )®-m°+i€ sz (pa_kl y? e Fic€ YH1 U(Pa)

(2p,) (2p,),,

u"'Yu u(pa) e
s KEHE-2p,  (ly+ha)+i€  Kf-2p_'la + 1€

(2.23)

Similar results are obtained for the outgoing particles.
Thus for the p, line
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» ¢
=N ¢a +'1€n+l+m ll‘&-'-'lé1'1+1“’-1£n+m
u(Pa) YHn+l (p/+k_, ,)%-n° Y“h (p/+k_, ,+k_)?-m® Y“n-l.‘.
Py n+l Pa ™1 ™0
. n+1 n = ¥
k> . +2p’ -k K® +k2+2p /e (k_ L +k ) 4y Y“n-l
n+1" “Pa n+1l ntl n' “Pa n+l m

(2.24)

Eqs. (2.23) and (2.24) show that all the y 's along any
external line can be replaced by the corregponding compo-
nents of the external 4-momentum vector. This leads to
the result that if a meson is attached to two external
lines, say p, and pp, then we have a factor 4p, -p; in the
amplitude. As seen above the denominators along the ex-
ternal lines are precisely the same as those in the case
of scalar particles (sec. 2(a)). Therefore, the results
obtained there regarding sum over all final positions and
average over all initial permutations, can be used here
without any change. Thus the Feynman amplitude in the
present case corresponding to Fig, 2 and Eq. (2.14) is

n+l: N -iq. jpd ’ b ’
M'{',m o ("l)n/d4x o IR u(pb) u(pa) Mh(x) u(pa)u(pb)
. 2 ’ r-1-4
(4p, P lh) (4p, P U2)
X 77
' (r-1-2)!
! ’ ’ +1l-r-
(4p)-p Us)" (bp.-plu)" T
X
m! (n+l-r-m)!

(2.25)

The extra (-1)n factor in Eq. (2.25) arises because the
vector meson propagator Egs a negative sign relative to
the scalar propagator. as before represents the hard
interaction occurring at the r-th position along a line.
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From Eq. (2.25) we find that the scattering amplitude for
the sum over all diagrams of the type Fig. 2 is

M = / dx e MUF TN Er.) M) ulp,)ulp,)

X (X) ¢

T (2.26a)

if the hard interaction corresponds to the soft exchange,
S €lms

Mh(kr) =g Yu8uw Yy
ki-u2+ie

On the other hand, the sum is

M= fatx e Se)EE) W ue e X,
(2.26b)
if the hard interaction is different from the soft ex-
change. The function ¥(x) in (2.26a,b) is given by
X(x) = -4p_p U - 4p_p' U - 4p_-p Us -4p. D Us,
(2.27)
where the U's are as defined in section 2(a) earlier.
Radiative corrections to all orders for the present
case can now be easily determined from the corresponding
result for the spin-zero case. Namely, the effect of
taking into account all radiative corrections (both vertex

and self-energy types) will be to modify the amplitude
(2.26a) to
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-k ~iQeR =, =,
M=e f ¢x VTGN W) M) ulp,)ulp,)

ix (x)
g Sl 4 (2.28a)

ix (x)

and (2.26b) to

M= B fa ST 0TE) e ue,)u,) o

(2.28b)
where
g s o2 5420 2R 2 |
(2.29)
It is worthwhile to note the following implicagion
of Eq. (2.28b) in quantum electrodynamics. Since u° = 0
in QED the integrals V, ,S ,82 etc. become infrared diver-
gent. To examine this divergence let us introduce a cut-

off A, and drop kK’ terms compared to py.k and pa.k in the
denominators of the above integrals. Then

/ 4 /
-i[4pa-paV1+2pa paS1 + 2pa-pasa]

A

- d"k ’ a
=.ig__ Pa - p
Z(Zm* = [ - ﬁak] ’
Pa a’

(2.30)

so that when p; - p, the right-hand side vanishes. This
means that the infrared divergence due to vertex correc-
tions and self-energy corrections cancel exactly for
forward scattering. In QED this indeed should happen be-
cause of Ward identity.
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Let us at this point consider a possible approxima-
tion of Eq. (2.28b). Suppose the hard interaction is
such that only very small values of x are important for
the factor eiX(X),” we may then put x=0 in the argument
of x and obtain

e-%A+ix(0)

M = Wp)ulp)) M Qulpulp). (2,31

The above approximation is equivalent to saying that
Mh(kr)th(q). In this approximation the contribution of
all soft vector meson exchanges becomes a known exponen-
tial factor that multiplies the unknown hard interaction.
This is precisely the result obtained in the infrared di-
vergence analysis of QED.'° There the approximation
of replacing x(x) by %x(0) can of course be independently
justified because the photon mass goes to zero (4 - 0).
The soft meson factor exp [-%A + ix(0)] in Eq. (2.31) can
provide a rapid fall-off for high energy fixed angle
scattering (s,t, u all going to infinity). This has been
suggested by Fried and Gaisser'® to explain large angle
pp scattering.

Let us now try to see how our relativistic analysis
is connected with the conventional eikonal representation
of the scattering amplitude.®®>! For this purpose we
first take the scalar case with the hard interaction same
as the soft. Then

4 -iqg-* iX(x)_l
M =fd X e rqrx Mh(X) i?ﬂ;()_ s (2.18a)
and

Pl | 1 1

@Y iP-12 + i€ ° W& Zp -WHE - Pl WHE

X [ 1 4 1 ] '

< e W d_ L& .
k™ +2p, - kti€ K 2pb kt+ic

x(x) =

(2.32)

We express the external 4-momenta in terms of the average
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4-momenta p=%(py + pa) and p ‘=% (pp + pb) Then in the
c.m. system p = -B’, po= go+ For x # 0 we take the
limit |B[=po~ ®, drop the k and q-k terms in the denomi-
nator compared to p+k and p'.-k, and obtain

4 ikx
¥ (x) = = d k e l: 1 - 1 . ]
(2m ) ~p®+i€ 2p.k-i€  2p-kti€

X [ 2p'%k+i€ ' 2§7%k-i€ ]

2
& d4k eik.x ’
T T J(.k‘-uf+ie el 8(p"+K)

= = 1 Pk, -ik cx,
32n*  ps KHP

2

g
= Ko (ub). (Ix, [=b)

]

(2.33)

Ko (z) is the modified Bessel function of the second kind.
Inserting (2.33) in (2.18a) and noting that the momentum

transfer vector q is normal to the z-axis (taken along P),
we obtain

M = fdleeig‘}j_l_‘[dxodxaMh(x) ['e_ix(ﬁ'] ’

(2.34)

where g , x are vectors lying in the xy plane and x(b) =
P> &

hﬁ_s K, (1b). Now

. R a 2
ﬁ}{odxaMh(X) =/;1xo dxa-(;—n)-fa.fd"k elk b g =
B_ =2
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jr -1k X
- ~L ~l
(2 l k2 + u®

= Ko (ub) .

From (2.34) and (2.35) we get

M = -2is f d®x A9°X, [eiX(b)-1]
1

(o]

-4n is Jf(ldb Jo (blgl) [eiX(b)-1] ,
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(2.35)

(2.36)

which is precisely the conventional eikonal form for the
scatterjng amplitude. We notice further that for s—=,

x(b) ~ 5, so that (2.36) becomes

M= 4ns Jf b db J (blgl) x(b)

g

32 'HJ'Z

2

g

q2 _“z

which is the Born amplitude.

(2.37)

What happens when we have nucleon-nucleon scattering
via vector meson exchange? 1In this case x(x) is given by

Eq. (2.27). Now,

4p,-py = 2(pa+pb)2 - 4m® = 2s for s -~ =,
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Slmilarly, 4pa pb 4pa pb 4p‘,; pb’ = 2s.
Thus X (%) yector = -28 X(X)gcalar. E4. (2.33) then leads
to the result that for vector meson exchange

2

g
x(x) = - — K (ub). (2.38)

217

Therefore the scattering amplitude (2.26a) becomes

M= ulpg) v ulpy) ulpy) ¥ u(pa)

i . o 1x(B)
= 4 -1
X/d"x f i +l€ L 1}( (b) :]

= -1 u(py) v ulp,) ulp)v ulp,)

xfdsz_ eiS‘f.L [eiX(b)-I] )
(2.39)

2
where x(b) = - %; K, (ub) . Let us now use the following
helicity ' representation of the spinors:®®

. ﬂ_ 3 1 1602/4 - ’ +
u(i,,p,) Qz“j(zx >e X, a(r,p)
a
1
~C2—”r;)f X 222 (1,-2))),  (2.40a)
a

i8ag /4 = ’ ’
aCr,p) = (TF (1P 4 L ao,e)
b*Pb - a Y Ph
wNs Lt i0 ’
~ (&) Xy @ 2% (1,-24));  (2.40b)

here A3(Ap) and X;(Ap) are the initial and final helicities
of particle a (b); 6 is the c.m. scattering angle;

x% =(1), x_% _{ )and w = (paD From (2.39) and (2.40) we
b

o}

then obtain for s - =~ and t fixed
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s

S 2 iq-x ix (b)
M= -1 g7 S faa fOEES \:e '1]' (2.41)
aa bb

A number of features of Eq. (2.41) are worth noticing.

(1) It shows that the high-energy momentum-transfer ampli-
tude for spin -% scattering via neutral soft vector meson
exchanges is a helicity conserving amplitude. (2) Since
Im M(t=0) = s Tr,¢> Eq. (2.41) predicts a constant asymp-
totic total cross section. (3) As the eikonal x(b) is
completely real, the inelastic cross section vanishes at
high energy. This of course represents an unrealistic
feature of the model. (4) Since X(b)= - & K, (ub) is
energy independent, diagrams of all 2m orders in
coupling constant contribute to the high energy behavior
of the full amplitude. This may reflect an important
feature of strong interactions where perturbative calcula-
tions are not very meaningful,.

3. Regge-Eikonal Model

The Regge-eikonal model corresponds to taking the
"Born amplitude'" or the single scattering amplitude as
that due to the exchange of a single Regge pole, and then
generating the full amplitude by means of the eikonal re-
presentation. Let us now explore the consequences of
such a model.®® The full elastic amplitude®’ has the
eikonal representation'

T(s,t) = ik [b db Jo (b)) [1 - eX(5P)T] 0 (emp?)
° (3.1)

where the eikonal 3 (s,b) is related to the single scatter-
ing amplitude T, (s,t) by

X(s,b) = i [ 84 Jo (b8) Ty (s,6). B

[¢]

If T, (s,t) corresponds to a single Regge pole exchange
amplitude, then for s large it has the form
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T (s,8) = b(r) (o) (E)HY (3.3)

¢(t) is the signature factor and b(t) is proportional to
the Regge residue. We assume for simplicity an even sig-
natured pole throughout, so that

- -i I
1 4+ o lma(t) o1 To(t)

sin mo(t) - Tsin La(t)

C(t) =

The n-th term in Eq. (3.1) obtained by expanding the ex-
ponential is

+1 k
T (s,8) = - (D™ fb db Jo (b8) x"(s,b),
s (3.4)
which we refer to as the n-th multiple scattering term.

Notice that the full amplitude is simply a sum over all
the multiple scattering terms:

T(s,t) = Tn(s,t). (3.5)

Ak

When the single scattering term is given by (3.3), the
n-th multiple scattering term becomes, using Eq. (3.2),

T_(s,t) = -%(i)n-’-l-ﬁ-?—f b db Jo (bA)ET]{—

o

n
b (3.6)

where t, = -A%,
i i
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Let us write

g=]

Jo (bAi) .

‘T(n) (t;tl ,ta,...,tn) E/ b db JO (bA) ‘;-_.
. (3.7)

) i

Then,
n 1

T (s,t) = ——g—-I— dty dts . . .dt_ T(n)(t;tl,tg,...,tn)

) <s~\§a(t )-nl f%’ b(t,) C(t)).

e (3.8)

Eq. (3.8) can be written in the form
T (s,t) = [dj '\Sg)J €3 o (t33), (3.9

where
« Tl s
=1z

¢¢3) = Er——;—“
sin '.Tj

and

1 . n ,
pn(t;j) = EIT.'_S;UTY sin g'_'] /dtldtz...dtn ‘T( )(t;t]_,...,tn)

Do ob(t,)
x 8(j-ralt,) +n-1) ] ——
(3-)ale;) +n-1) ] e

1 i=1
(3.10)

pn(t;J) given above can be expressed as integrals over
two dimensional vectors:
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P (N . M. 2 _
(t3) = =g sin P dbdb...dp @2(a - ) 4)
N.Se 17 i=}
, n b(-4%)
X 6(3 = E@(t.) + n-1) F’ ————
. i i . m 2
i =1 sin Ea(-Ai)

(3.11)

This result is easily obtained by using the representation

2m .
Jo (bd) = —lﬁ—f ds oiibh

[o]

in (3.7). The upper limit of j-integration in (3.9) is de-
termined by the maximum value of ¥ = a(t;) because of the
§-function in (3,10).pn However, * the integrand on(t,j)
vanishes unless igl.A' 2 A, This follows from the fact
that () given by (3.7) vanishes for A > &;(nEZ)aE
Therefore, to determine the upper limit of

1ntegrat10n in (3.9) we have to maximize Fa(t. ) subject to
the condition that (Z A; = B) 1is positive®

Let us define

n n
' : kN %
- A, = A= -t.)% - (=t) 32, 3.12
% i; * iz‘l et - 0O -1

We want to maximize Y o(t,) keeping X, fixed at some posi~
tive value, i= l say c¢. The problem is equiva-
lent to maximizing the function

n

8 = iZ& a(ti) - Xxn

where A is an undetermined Lagrange multiplier. This
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gives
da(ti) - axn
dti ati
A
_ - ; .
2(-ti)2 (3.13)

We notice that the same equation is satisfied for all
values of 1 (i = 1,2,...,n). Therefore, if t, is the so-
lution of Eq. (3.13), then tj; = t, for all i. From (3.12)
we then obtain

n(-t.)% - (-t)?

>
[]
(o]
1]

or

I (=) (3.14)

Therefore, for x, = c,

[Z “(t-)] = n oa(t,) = na ( SC—ZQ-Z) . (3.15)
1

1
max

Now, the smallest value of Xy is ¢ = 0. Since a(t) is
con51dered to be a monotonlcally increasing function of
t, the value given by (3.15) increases as c decreases.
Hence the maximum possible value of the left-hand side of
(3.15) is given by

[ ; a(t)] = o (- -A-;) (3.16)

max

This in turn gives the upper limit of integration in (3.9)
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to be

Spag(t) = no{zz) - n + 1, (3.17)

Let us at this point try to determine the asymptotic
contribution to the amplitude T(s,t) due to a branch cut
in the complex angular momentum plane. To this end we
first write T(s,t) as a countour integral (Watson-Sommer-
feld transform) in the j-plane:

[Pj ('zt)+Pj (zt)}

a(j,t);

1 3T
T(s,t) = - r‘/‘ dj(2j+1)
sin mj
C

(3.18)

a(j,t) is the analytically continued even signatured par-
tial wave amplitude.®? (For simplicity we have kept only
the even partial waves). The contour C encloses all the
poles at even integers on the real axis (Fig. 6). Next
we distort the contour C to a line parallel to the imagi-
nary axis and passing through j = -%. We thus pick up
the contributions due to the Regge poles. If now there
is a branch point in the j-plane with the branch cut go-
ing left as in Fig. 6, the contribution due to this cut
to T(s,t) will be of the form

>ac(t) 1 -imj .
. +e S N\J
=L i g -
Tcut(s’t) B j;J sinmj ] \s;> Afj(t)’

(3.19)

where Af;(t) is proportional to the discontinuity of
a(j,t) across this branch cut, and a.(t) is the po-
sition of the branch point. For t negative a,(t) is real
and the branch cut extends along the negative real axis.®°
That cuts in the angular momentum plane should occur when
two or more Regge poles are exchanged was first argued by
Amati, Fubini and Stanghellini.®!' However, it was Mandel-
stam®® who showed from Feymman diagram models with third
double spectral functions that such cuts contribute in an
important way to the asymptotic behavior of the scattering
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amplitude. This was further confirmed by Polkinghorne.®®
The positions of these cuts are given by

a () = no( Eg-> - n+l (3.20)

when n Regge poles each with trajectory o are exchanged
in the t-channel. If we now compare the above expression
for the cut contribution with the expression for T,(s,t)
given in Eq. (3.9), we find that they are of the same
form. Also, ao(t) given by (3.20) is identical to the
upper limit of integration in (3.9) as given by Eq. (3.17).
We may therefore consider T,(s,t) as a Regge cut contri-
bution arising from the exchange of n Regge poles, pro-
vided there are reasons to believe that ph(t;j) in (3.9)
can be equated with Afj(t) in (3.19). Now, the form of
the partial wave dlSCOntanlty across n-Reggeon exchange
cut has been investigated by Gribov, Pomeranchuk and Ter-
Martirosyan®* using multiparticle unitarity conditions
analytically continued in the j-plane, and by Gribov®®
using Reggeon diagrams. For t < 0, their result is

Afj (t) = (- 1) —n—j_- Sln /dkldkg .dgn(ZTr)zﬁ(’é-?_ k.)

C

x (3 - Ja(-k3) + n-1) N§<-5;>...a<-5;>
1

=5

.. T 2
sin Ea(jki)

|

i=1
(3.21)

where Nq(-kf) e ka) is the n-Reggeon production ampli-

tude. CoﬁEaring (3 21) with (3.11) we notice that
pn(t;i) can indeed be equated with Af, (t) if (-1)"N§

can be obtained from the product of n”Regge resldues '%e
conclude that the n-th multiple scattering term in the
Regge-eikonal model can be interpreted as a Regge-cut con-
tribution with a definite prescription for the discontinu-
ity across the cut.

Let us now investigate some of the consequences of
the above interpretation. First we examine the j-plane
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structure of the
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partial wave amplitude when the discon-
by the multiple scattering term. For
ider only the double scattering term

(n =2). Eq. (3.11) gives in this case
1 . .
Afj(t) N e Sin%ﬂ dh, 5\J-a(‘ﬁf)-@('(éjé1)2) + ij
. b(-47) b(-(4-8)7)
singa(-A7)  singa(-(a-1)°)
(3.22)
Therefore, £
Za(z)-l
el i
ICT B N TIC)
sin 31 " I sin 23
1 b(-22) b(-(a-8,))
o W
: J-a(=82) - a(-(a-,)7)+1
y 1 1
sin % CI,(—A?) sin % G’(_(A-Al)a) (3.23)

This is in agreement with Reggeon diagram and Feynman dia-
gram models,®®»*® It is worth mentioning that strictly
apeaking f:(t) above is not the partial wave amplitude,
but essentlally the Mellin transform of the scattering am-
plitude T(s,t). Notice that if the cut contribution is
given by Eq. (3.19), then T(s,t) is related to fj(t) by

1

1,0 = -7 | e (L) f©, G

c
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where C is the contour given in Fig. 6. For t < 0, if
all the j-plane singularities of £:;(t) are to the left of
j = 0, then (3.24) can be written &8s a Mellin transform:

o+i= "
T(s,t) = - 4—1—/ TRIORCD RN IR
T-im

where § is determined by the right-most singularity of
£i(t).
J

Let us now examine the asymptotic behavior of the
n-th multiple scattering term when the exchanged Regge
pole is the Pomeranchon pole (a(0) = 1). The reason for
special interest in this case is that all the branch
points lie on the right of the pole in the physical
scattering region (t < 0) and, therefore, the cut contribu-
tions should be quite important in determining the high-
energy behavior of the full scattering amplitude. Notice
that if the Pomeranchuk trajectory is linear,

_ ‘ I_d_CL
a(t) =1 +a't o= dtlt=0 >0 \,

and
. a £
Jn(t) = n ;g) n+1

t
= ¢ L
=l+a' -, (3.26)

so that the branch points are on the right of the pole
(t < 0) and for t = 0 or n - ® they accumulate at the
point j = 1.

The n-th multiple scattering term for the linear
Pomeranchuk trajectory is given by Eq. (3.6) to be

T _(s,t) =- _]:_2.21_. (52 fa, da, A.da A dA
n' ¢ n=1l <8 e e e n " n
n! s o

. 0 n
X fbdb Jo (b8) [| Jo(bd) ¥
i=1 =

(o}
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- 8 iTT
? 2 S -1y . 2
-qéglaiangsoe 2) n b(-t)

i I

(3.27)

. T '
51n§a(-Ai)

The dominant contribution in Eq. (3.27) for s — = occurs

when T . is minimum and @ that is, from values
b X I
i=1l i i=1 i

of A; = = (We can also arrive at this result by exam-

lning Eq (3.9) which shows that the dominant contrlbu—
tion to the integral comes from the upper limit j = jn(t)
and, therefore, from values of t; = 2) We can now

approximate (3.27) by
Aa
M-F) a
i

Ta(s:8) = - o sn"I \s > [si _mi ]
e no ~a’02n(S e” if
x z[ bdb Jo (b8) || [ a8, Jo(ba) e HTRG,
i=1 o
(3.28)

The integrals can be easily done and the result is

2 QE
T (5,002 e “)1 e L [ ks, ]n.
n? 5o §n—1n!n s?_l sin%a(—%;a
- (3.29)
RN I
¢ =a &n(soe 7))
Using (3.26) we can rewrite (3.29) in the form
‘&E
'b("EED n

ZJ (t) (-1)°
T (s, t){ 5 {n<s> n}'\n-l n'n Sgl-ll:sm%a(_%:_)

(3.30)

1.
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The reason for extracting a (-1)" factor is that for
small A® b(A®) should be negative. This follows from the
following argument. The single Pomeranchon term gives us

T, (s,t=0) = -1@) b(0). (3.31)

Therefore, when s - =,

Im T (s,0) Im . (s,0)

" @Q b(0). (3.32)

But Im T(s,0)= o L, is a positive definite quantity.

Hence b(0) is néBative. So if b( A®) varies say exponen-
tially with A® (b(-42)=b(0)e~32%), it has to be negative.
This equation then exhibits the following properties of
the Regge cut terms:

i) Asymptotically the n-Reggeon cut term behaves as

8 N\J (B) e
(so> [LﬂQEO)Jnnl

Thus the cut contribution is similar to the pole contri-
bution except for the logarithmic factor that depends on
n. For t < 0 the cut dominates the pole, and asymptotic-
ally the phase of the cut is given by e_lzﬂn(t)

ii) The contributioms from different cuts arising
from Pomeranchon exchanges alternate in sign due to the
factor (-1)"' and, therefore, will tend to cancel each
other.>®

The first result implies that the partial wave dis-
continuity should vanish like (j-j,(t)?"“ near the branch
point (n > 2)2° The proof is simple. Suppose Pn(ts3)
has no zero at the branch point. Then from Eq. (3.9)
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t) J,(t ) p
T (s,t) = <§0>jn( ) [ S>J 3, (6) C(3)p (t33)

~ s ~Jdn(t)

GEY™ cGye (ki) =

o S, (3.33)

when s - «, But this will contradict our explicit calcu-
lation of T,(s,t) in Eq. (3.30) as far as ins behavior is
concerned. If now p,(t;j) has a zero of the order p at
the branch point, i.e., pj (t;3) = (G- Jn) pn(ﬁ when j-j,,
then instead of (3.33) we “obtain

~Jp, (B) .y B -1)Pp.
T (s,t) = <§O)Jn €3 m(E) éﬁ1 . (3.34)
50

Comparing the powers of logarithm in Eqs. (330) and (3.34),
we get p+1=mn-10r p=n - 2, which proves our asser-
tion about the vanishing of the partial wave discontinuity,
This result again agrees with that of Gribov et al.®*
Furthermore, on the basis of the Reggeon unitarity condi-
tion Ansel'm and Dyatlov*® have concluded that successive
Regge cut terms alternate in sign — a result we have al-
ready obtained.

Summarizing, we can say that if the single scattering
term in the eikonal description is taken to be a Regge
pole amplitude, then the n-th multiple scattering term
can be regarded as a Regge cut. It leads to the same
branch point, the same functional form for the discontin-
uity and the same high-energy behavior as expected for the
Regge cut arising from n-Reggeon exchange. However, the
question whether the n-th multiple scattering term provides
the full contribution due to the n-Reggeon exchange cut
remains open. In this context we should note that a num-
ber of authors have found the Regge-eikonal model to
yield correctly in A%® theory the full amplitude obtained
by exchanging ladders in all possible ways between two
high-eyfrgy particles, when the coupling constant is
small,
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4, Optical Potential in S-Matrix Theory

We shall now try to see how a phenomenological com-
plex energy-dependent optical potential may be interpre-
ted in the language of S-matrix theory. Why are we in-
terested in this question? To answer that let us consider
high energy elastic hadron-hadron scattering, in particu-
lar pp scattering. Two descriptions have been often used
to discuss this scattering. In one, the optical model des-
cription, hadrons are pictured as extended objects having
certain matter distributions which interact in some way
during collision, the strength of the interaction being
in general energy-dependent.*® 1In the other, the S-matrix
description, one draws a Feynman-like diagram indicating
how the fundamental process occurs, and one asymptotically
evaluates the diagram to determine what type of singular-
ity it represents in the j-plane, 1In both cases the basic
process is iterated to obtain the full amplitude.* In
the optical model the iteration is done using the eikonal
description. This leads to the multiple scattering terms.
We have realized that if the iteration is also done in the
S-matrix approach by using the eikonal representation, say
with the single Regge pole amplitude as input, then the
multiple scattering terms are Regge cuts, However, notice
that the basic ingredient, i.e., the single scattering
term in one description is different from that of the
other. So one does not see any dynamical interrelation
between them. Models which are in between the two, the
hybrid models,** combine bodily one part of the optical
model with another part of the S-matrix. We are thus
faced with the following problem. 1Is it possible to see
how the basic mechanism in one description, say the opti-
cal model, can be understood in the language of the other,
the S-matrix theory?*® We shall now study a model in
which the basic process can indeed be discussed using both
the optical model and the S-matrix descriptions:i®»*” The
model further shows wherein lies the advantage of one des-
cription over the other and how they fit in together. We
hope study of this model will provide valuable insight in-
to other hadron scattering models - where one description
is used to the exclusion of the other.

The model I have in mind is a model of high-energy
pp elastic scattering which has been studied over a period
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of years.*® Originally the model was formulated as an
optical model,*® and so I shall begin by presenting it
as such., What was assumed is that the two protons have
finite hadronic matter distributions and that they in-
teract by exchanging a meson. The strength of the in-
teraction was taken to be complex and energy dependent.
In other words, we are assuming that the basic inter-
action between the protons is an optical potential of
the form V(t,r) ~ g(t)u(r), where the radial dependence
is connected with the hadronic distributions of the pro-
tons and g(t) is a phenomenological complex energy-de-
pendent coupling constant (we use t as the square of the
c.m. energy in this chapter, and s as the negative square
of the momentum transfer.) 1In terms of the optical Borm
amplitude, we are assuming it to be

A (£,8) = - t£7g(t) F—Ziﬁ)- : (4.1)

m -S

We may now try to picture this phenomenological amplitude
in terms of the diagram in Fig. 7. The two blobs repre-
sent the fact that the two protons have finite hadronic
matter distributions corresponding to F°?(s) in (4.1).
However, we immediately realize that Fig. 7 is not a Feyn-
man diagram, since if it were the coupling constant g(t)
should be real. So we are faced with the problem of un-
derstanding (4.1) in the S-matrix language.

I shall first give away the answer and then present
the technical arguments showing how one arrives at it.
The answer is that a Born term like (4.1) corresponds to
a Mandestam diagram of the type shown in Fig. 8.*” The
solid lines represent nucleons, the short dashed lines
1 mesons, the long dashed lines a vector meson, say w,
and the wiggly line represents a Regge trajectory, say
P'.°° The blobs represent N+ w = 7 + N amplitudes. To
see what is happening physically, let us replace each
blob with a nucleon line, and then look at the diagram as
in Fig. 9. A high energy nucleon comes in and breaks up
into a ''core nucleon" and a "cloud pion'. The core nu-
cleon interacts with the core nucleon of the other incom-
ing nucleon via the vector meson w, while the pion inter-
acts with the other pion by exchanging the Regge



EIKONAL DESCRIPTION OF SCATTERING 137

trajectory P’'. Finally, the nucleons absorb respective
cloud pions and emerge as outgoing nucleons. Obviously,
Fig. 8 is a generalization of Fig. 9. The form factor
that Fig. 8 implies is the wNN form factor given by the
diagram in Fig. 10.

Let us now come to the technical part of showing how
a Feynman-like diagram such as Fig. 9 can provide a Born
term like (4.1). We shall start following a paper by
Rothe.”* We consider all particles to be equal mass and
spinless, and try to evaluate the Mandelstam cut diagram
with a Regge pole and a single particle exchange (Fig.
11). That diagrams of this type must occur in nature
even when all particles lie on Regge trajectories has
been noted by a number of authors.®? The Feynman ampli-
tude corresponding to this diagram (Fig. 11) is

<]

g 1
AGs,t) = - G [ a* e ati, b,
n? - o® + ic€
1
4
Ny 77 . 1 1
. g% _mP+i€ k®-m®+i€
i=1 i i
x R(M3,U;%%3,83,k3,k&) ; (4.2)

R is the Regge pole amplitude and U = (8a+ks)®. Let us
introduce the Lorentz invariant variables s = (p,-q.)?,
5’ = Tlg: S” = nf: t = (p1+p3)2: t’ = (pl""nl);3 and
t” = (pa-m)®. We now express the integration over d*n,
in terms of the variables s’,s”,t’,t":

an, =-% T(s,s’,s") ds’ ds’ dt’ dt’, (4.3)

for t -~ =;5% 1(s,s',s8”) is given by
;-]

T(s,s’,8") = % i bdb J, (bA) Jo (bA’) J, (bA") =
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8(-s°-8'?-8"?+2s5’ +28s” +2s’s”)

[-s®-58'?-5"%4285'+258"+2s8 s ”]% (4.4)
(s =-A%,8'=-0"%,8"=-0"?3)
Eq. (4.2) now becomes
RE =5 % <§FE>6 %’ J ds'ds” Tfs’:!:sﬂ)
t =~ s"-m® + i€
I dt’ j dt” F(s’',s”,t't" ; s,t), (4.5)

where

’ B3 2 2 2
F(s',s",t",t";s,t) = [ d*8,d*k, R(s',0;85,84,ks ke )

ﬁ' [gi-m’aH_E] [k?_-m3+i€].
i=1

(4.6)

To carry out the 1ntegrals over F, we have to examine its
singularities in t’ and t’. To th1s end, we first exam-
ine the function F obtained from F by taklng out the
Regge pole amplitude:

-~ 8 % 4
F(S’,S”,t,,t”;S)=-g j}d 51 = d kl
(2m)® ”(%3i -m® +i€) I (k;-m8 +i€)
i=1 i=1
= AC(S,t';s ,s") AS (s,t”;s)8") . 4.7

The "ecrossed"amplitude Ac(s,t';s',s”) is given by the dia-
gram in Fig. 12. Since this is a fourth order box diagram
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it obeys the Mandelstam representation; namely,

o ” 4 u u
A%(s,t';s',8")= %E‘JJ de ?u pCE ou)
(tll_t _ie) (u”-ul-iE)

(4.8)

where u’ = 2m® + s’ + s” -t’ -s. Notice that p(t’,u”) is
the third double spectral function with respect to the
variable s. Since s is fixed, (4.8) shows that the cuts
of A® in t' plane are those given in Fig., 13. The inte-
gration contour in t’-plane runs between the two cuts, so
that no matter how we try to distort this contour we al-
ways pick up a cut contribution. Therefore, we expect a
nonvanishing result when t’ integration is carried out in
(4.5). 1If we did not have the crosses, then the integra-
tion contours in t’ and t” planes would not have been
trapped, and the amplitude A(s,t) given by (4.5) could
have vanished.

To evaluate A(s,t) we now make two assumptions. (1)
The dominant contributions to the t’ and t” integrations
in (4.5) come from theshold singularities. (2) The four-
momentum Tz carried by the Regge pole is very nearly
zero.®* Since at t’ = t’ = 4m° Landau analysis gives
Ea= ~E4, ky=-kq¢ ,®® we obtain U = L. Furthermore at these
values of t’ and t”, € = m°, ki = n®, so that the second
assumption implies &2, k3 are close to their mass shell
values. We can then approximate R(s’,U;53,87,k3,k¥) in
(4.6) by the mass shell Regge amplitude R(s',E). This
leads to

o ' # = 2
A(s, )~ ———— %jds 'ds”i‘_(:_,;_fa,gs_lg(s',f)[jdt ‘AS(s, tsd, s”)].
g” 8(2m) -
(4.9)

The integral over Ac(s,t';s’,s”) can be converted into an
integral over its absorptive part:

| at'a®(s,t7;s08") = 21 [ ar’ A (t',u,8). (4.10)

-0
4m®
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We approximate this integral by replacing Ag(t’,u',s) by
a function Ag(t’) which is equal to A (t’,u’,s) at thres-
hold and asymptotically (t’ ~ =).®°° It can be shown that

~ I F t’, //’ 2
K () = -2g HECELs.0) (4.11)

where ImF(t’,s”,m°) is the imaginary part of the vertex
diagram in Fig. 14. Thus the left-hand side of (4.10)
becomes

ImF(t'as”énF)
t’-m

J dt’ AS(s,t’;s’,s") = -4ig I dt’

4m®

41 1 g F(w®,s” ,m?)

“4n i g F(8"). (4.12)

From (4.9) we now obtain
SO rqn_T(s,8",8") ¢ B e pan
A(s,t) T T jds ds = e R(s ,4) F°(s").
(4.13)
Since ﬁ-ﬂ . the Regge amplitude can be written as

. 7 ¢
e-1na(s )i it a(s?’)

! -t- = d 7
R(s ’4) B(s") sin ma(s®) 4 (FedS)
ta(s’) 3 N
Because of the factor (+) , the dominant contribution

in(4 .13) comes from the neighborhood of s’ = 0. The tri-
angle function then gives s”~s, Therefore, (4.13) can be
approximated by

i 7 @) g 10 L, vy Ey0(s
A(s, )57 _J.zlﬂs_ms -<°)_""—_'_esima(o) £[ds’das’7(s,s]s )(Z)O‘(S )
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-ima(0)

i e +11 F?(s) ,t,a(0)-1 1
=-35= 8(0)| — = () e ;
32m [ sin ma(0) ) s-m 4 a'(O)&n(%
(4.15)
. a(0)-1
The asymptotic behavior —ypzgz—— shows that A(s,t) is a

fixed cut with a branch point at j = «(0) - 1. Comparing
(4.15) with our Born term

b (e,s) = - t¥g(r) 8L 4.1)

we notice that they are essentially identic¢al. In both
cases, we have (i) a particle propagator, (ii) each pro-
pagator accompanied by form factors at the two vertices,
(iii) separation between the energy dependence and the
momentum transfer dependence. We infer that the Born
amplitude (4.1) can be identified with a fixed Regge-cut
amplitude like (4.15). 1In other words, the phenomeno-
logical optical potential (4.1) corresponds in the S-ma-
trix language to a Mandelstam cut diagram with a Regge
pole and a single particle exchange.

Well, what have we learned about the interrelation
between the optical model and the S-matrix descriptions?
We have actually learned a great deal. We have realized
that the phenomenological optical potential does corres-
pond to a Feynman-like diagram which provides the detailed
mechanism of the process, and that the complex energy de-
pendence of the optical potential comes about via the
Regge pole exchange. Does this mean we can now do away
with the optical model? The answer is no as soon as we
recognize that the general form factor diagram involves
a hadronic blob (Fig. 10), and therefore cannot be cal-
culated in the S-matrix theory. On the other hand, the
radial dependence of the optical potential provides us
the knowledge about the form factor. We see that the
S-matrix and the optical model descriptions are comple-
menting each other. Another way of putting the above re-
sult is that the diagram in S-matrix theory provides us
the branch point in the j-plane and tells us that the
discontinuity across it is proportional to the square of
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the form factor. But the actual information about the
form factor comes from the intuitive picture of spatial
extension implicit in the optical model,

We conclude that the optical model and the S-matrix
descriptions together give us a more complete picture of
hadron interactions than they separately do., It will be
stimulating to see whether such interplay between these
two descriptions can be established in the realm of dif-
fraction scattering.



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

10.

11.

12,

13.

ETIKONAL DESCRIPTION OF SCATTERING 143

Figure Captions

A generalized ladder diagram.

A generalized ladder diagram with an unspecified
hard interaction.

Absorption of soft mesons of 4-momenta q; ,da,...,
k,...,q; by the p, line. The cross represents
the onset of the hard interaction.

A generalized ladder diagram with radiative
corrections and a hard interaction.

Emission of soft mesons by the p, line together
with a single self-energy insertion.

The integration contour for Watson-Sommerfeld
transform together with singularities in the
j-plane. ap(t) represents the position of a
Regge pole, while ap(t) that of a branch point.

Born amplitude in the optical model.

Mandelstam diagram with a Regge pole (P') and a
vector meson (w) exchange. Solid lines represent
nucleons, short-dashed lines the pions. :The
blobs represent N + w - w + N amplitudes.

Same as Fig. 8 with each blob replaced by a
nucleon line,

wNN form factor diagram.

Mandelstam cut diagram with a Regge pole (wavy
line) and a single particle exchange. All
particles (solid lines) are of equal mass.

Box diagram for the amplitude A®(s,t’;s’,s”).

Branch cut of the amplitude A®(s,t’;s’,s”) in
the t'-plane,
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Fig. 14. Diagram representing the vertex function
F(t',s" ,m°).
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Figure 7

Figure 9
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Figure 10 N

Figure 12
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Thus 1f the unknown corresponds to the exchange of
2

a scalar meson, then - . .
Mh(kr) e

k® -m™ 1€
r

For the scattering of spin-zero particles, the Feyn-
man amplitude is related to the S-matrix in the fol-
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Sfi=6fi+i(2")46(pa+pb-p;-pé) p Il T M.
(16 P,0P40PHOPBHO)
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by do _ MEE where W is the c.m. energy.

da  (8rW)* W)
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AN INTRODUCTION TO DUAL RESONANCE MODELS

K. Bardakci
Department of Physics
University of California
Berkeley, California 94720

I. Elementary Duality and Consequences

Dual resonance models are the natural outcome of the
concept of duality, which I want to review briefly here.
In a nutshell, a dual amplitude is an analytic and cross-
ing symmetric amplitude that has Regge asymptotic behavior.
Historically, however, various constraints naturally satis=-
fied by dual amplitudes, the so-called superconvergence
relations' and finite energy sum rules®>® (F.E.S.R.) were
studied first, and so I will start with them, Consider
the equal mass scalar two particle scattering amplitude
of Fig., 1,, and define the usual variables s=(ky+ks) ,
t=(kz+ks)®, u=(ky+ks)?, v= £=%. (m is the mass), Odd and
even parts of the scattering amplitude A are defined by
AF(v,t)=5[A(v,t) A(-v,t) ], If A completely reggeizes for
large v, one can write,

(D . () tlte
A (v, t) Z By (£) Sin(may (#) (t))

_inai(i)(t) ai(ﬂg(t) .
v , (1.

where a's are the trajectories, and g's are the residues,
The summation includes both the leading trajectory and the
non-leading trajectories; cuts, fixed singularities etc.
are assumed to be absent, If A is analytic in v except

on the real axis for fixed real t, then it satisfies a
dlsper51on relation, In addition, suppose that the lead-
ing regge trajectory a satlsfles Re(a(t)<-n for some t,
where n is an integer. Then v A(v t) satisfies an unsub-
tracted dispersion relation for integer 4 satisfying

0< ¢ £ n, This immediately leads to a series of super con-
vergence relations:

157
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[ avewy “mfaey, 01 = o, (1.2)
where 1 = 1 : n,

If the leading regge trajectory does not satisfy the
condition a < ~n, then we define an auxiliary amplitude A,

i ~ima; (9 ()
Sin(moy () ()

( 5 (v

\J

Z(i)(\),t)EA(i)(v,t)-; 61 P (v)
(1.3)

where the sum over i includes all Regge trajectories that

satisfy Re(o;) > -n, where n is an arbitrary positive in-

teger, (For 31mp11c1ty, we assume there is no a with

Re(a)=-n,) A&, so defined, satisfies the superconvergence

relations given by equation (1.2), As in reference 2, one

then chooses a cutoff energy N, and uses the form glven by
. (1,3) for the imaginary part of A for l\)ls . For

v > N, we set,

()
L ~imos ©)
A(i) (V)"JZ‘Bj(i) +]-+e ﬂald:)) o3 , (1.4)

Si a,
in(rr 1

where the sum over J now includes only those trajectories
that satisfy Re(a. -n, This set is complimentary to
the set of traJec%orles of eq, (1.3). After performing
some trivial integrations, and combining terms, we get,

N

fdv (V)le[A(i) (v,t) ] =

L Bi(*)N“i(i)‘f“l ; (1.5)

1

a(i'5_+£,+1

where N is an arbitrary cutoff point, 4 is even for (+)
amplitude and odd for (-) amplitude, and the sum on the
right hand side goes over all the trajectories that con-
tribute to A, The set of equations given by (1.5) can be
taken to be the definition of duality; they imply complete
regge asymptotic behaviour and crossing. However, if one
does not specify Im(A) any further, the equations lack
content, We supplement them by postulating that Imf{A} is
entirely built out of narrow (to be precise, zero width)
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resonances., Since these resonances also lie on their
regge trajectories, we then have a set of bootstrap equa-
tions for the regge trajectories, In the preceding dis-
cussion, the contribution of the pomeranchon and the non-
resonant part of Im{A} have been neglected. At this
point, it is customary to lump these contributions to=-
gether and throw them both away, invoking the Harari-
Freund hypothesis®, This treatment may ultimately prove
unsatisfactory, but at this stage of the development of
dual resonance models, nothing better seems to be avail-
able.

Let us now restate duality in a weaker form: A two
particle scattering amplitude is dual if it satisfies the
following condition,

(s) (v)
AGs,t) =L E‘__S_ﬁ 4 2 () (1.5)
n=0 -5, n=0 u-u,
5 e ®e LY e
S n=0 u-u

Here the C's are polynomials of degree n in their
arguments, n being the maximum allowable angular momentum
of the resonance at s = s,,. The existence of such an up-
per limit is the same as the absence of the so-called an-
cestors. Equation (1.5) follows from analyticity, regge
asymptotics, and narrow resonance approximations. It
does not, however, conversely imply regge asymptotics;
cuts and fixed singularities in the angular momentum may
be compatible with (1,5).

II. Quark Diagrams and Planar Duality

So far we have not attached any isospin and SU(3) in-
dices to our amplitude, Let i;,iz,is and i. be internal
symmetry indices of particles 1,2,3 and 4 of Fig. 1.

The amplitude can be expressed as follows:

A11lzlal4 (S t) = Z IJ(-;;.ilallk A)\(S) (S,t)
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L1 Tl 49w, (2.1)
A

where the I's are appropriate numerical coefficients,
labeled by the SU(3) (or isospin) quantum numbers X in
the s and u channels respectively, and the A)'s satisfy
an equation similar to (1.,5),

A, w®w v P (2.2)
n S-S, - t -ty

and a similar equation for Ax(u). Note that the s and u
channels have to be treated separately, since they have
different SU(3) properties.

The statement of duality given by eq. (1.1) is usu-
ally supplemented by the further assumption of the absence
of exotic resonances., Any meson resonance whose quantum
numbers are given by a quark-antiquark system, or baryons
composed of three quarks are non-exotic, everything else
is exotic. This imposes rather stringent conditions on
the A,'s; they must be so chosen that no exotic resonances
appear in (2.1). The solution to this problem is given by
Harari and by Rosner®, and is graphically expressed by the
well-known quark diagrams of Fig. 2, The external mesons
are taken to belong to 1 and 8 representations of SU(3),
therefore they can be represented, in the SU(3) space, by
a pair of quark-antiquark indices, The quark lines repre-
sent Kroenecker delta's in the quark indices, so that Fig,
2 corresponds to an SU(3) factor of the following form:

ao’ %887 Oyy’ Omn’
The index iy of eq. (2.1) is now the pair of indices

N and v, etc. These rules can easily be generalized to
meson~-baryon scattering, as in Fig. 3, but extension to
baryon-antibaryon scattering is impossible without the in-
troduction of exotics, as is well known by now, From the
quark content of the s and t channels in Fig. 2, and from
the symmetry of the diagram with respect to the two chan-
nels, it is clear that it provides a solution to the prob-
lem at hand., The question is, is it the only solution?
For the simpler case of pion-pion scattering, we shall
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show that this is indeed the case. In this case, X can
be taken to run over three values, A = 0,1,2, and to
label the total isospin in the s-channel, The t-channel
isospin wave functions are then given by the crossing ma-

trix: s
5
lwt= N ' e
s % =5 /e
1/3 '16 1/6 f

through the relation,

\ (2.3)

bl

Tey,2 = ). Cpy Lie)
x/

The matrix C has three eigenvectors, one with eigen-
values - 1, the other two with eigenvalues + 1. (There
can only be two kinds of eigenvalues, * 1, since C® =1,)
The s and t channels are identical in this problem; so
the eigenvector with the negative eigenvalue, which in-
volves a sign change between s and t channels, cannot be
present. The eigenvectors with + 1 eigenvalue are the
following:

X1=<§>,X2=<§>a

Clearly, xi1is the quark solution, since the exotic
I=2 component is absent in this solution. This demonstra-
tes the uniqueness of the solution for the simple example.
The more general case of SU(3) multiplets can be treated
similarly using SU(3) crossing matrices®,

A large number of experimental predictions follow
from eq. (2.1) combined with the Harari-Rosner quark hy-
pothesis, and they are in general well satisfied, espe-
cially in the case of mesons., The main result is exchange
degeneracy; p,w,f and A; trajectories all turn out to be
exchange degenerate, and so do ¢ and f£’, and KX and K*¥
trajectories. Assuming only isospin invariance, one can
also get some information about SU(3) breaking; for ex-
ample, the w-¢ mixing angle turns out to satisfy tg®6=%,
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We postpone at this point, however, any detailed discus-
sion of the various applications, and instead turn to the
extension of the quark diagrams to many particle processes,
This extension turns out to be very simple. One first
labels the N particle amplitude of Fig. 4 in a definite
(and for time being, arbitrary) order. This defines a set
cyclic planar chamnels, namely, the channels made of par-
ticles labeled by successive integers. (Here we naturally
use a system modular Nj; N+1 is identified with 1, N+2 with
2, etc.) Next comes the definition of overlapping and
non-overlapping channels. Two planar channels are over-
lapping if they share a proper set of legs (particles);
they are non-overlapping if one includes the other or if
they are totally disjoint. For an N point function, one
can always choose a maximal set of non-overlapping ehan-
nels; for example, the chammels (1,2), (1,3),...,(1,N-3),
where we label the channel that couples to the external
legs i,itl,....,; by simply (i,j). There are clearly
various different ways of choosing a maximal set of non-
overlapping channels, but the number of such channels is
always equal to N-3, The generalization of eq. (2.2) is
then the following: The dual amplitude A can be written

as a sum over the poles in any maximal set of non-over-
lapping planar channels,

T C.. .
A = Z in nj 5 - , (2.4)

nij Sij-nnij
where i3 = (pi.+ Pi+1 T --+pj)2, Snid is_the square of.
the mass~of a given resonance; and the pair of indices i

and j run over a maximal set of non-overlapping planar
channels, (The equation should hold for all possible
choices of such a set.) The C's are polynomials in vari-
ous momentum transfer variables,

The dual "skeleton' amplitude of eq. (2.4) is then
multiplied by the appropriate SU(3) factors derived from
the quark diagrams of Fig, 4, The resulting amplitude is
then symmetrized between identical bosons and antisymme-
trized between identical fermions. For identical particles
it does not therefore matter how one initially chooses the
set planar channels; the final symmetrization eliminates
the arbitrariness of the initial choice. When all the
particles are not identical, however, there is an
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ambiguity in the choice of the planar channels, This am-

biquity is usually resolved by requiring absence of exotic
channels, signature requirements, etc, Finally, a compact
form of SU(3) quark factor for mesons due to the Chan and

Paton’ can easily be written down, If the external mesons
are SU(3) octets, we have;

Ie Tr {xil xiz---xiN}, (2.5)

where A's are usualy SU(3) matrices, indices iy,1ia,=-iy
label the respective external mesons. For singlet mesons,
the corresponding X is replaced by the unit matrix,
Clearly, eq. (2.5) is a restatement of the Harari-Rosner
quark rules,

ITI., The Veneziano Formula and Some Applications

An explicit solution to eq. (2.2) is provided by
Veneziano's celebrated ansatz®:

Pl=0(s) ] Pl=alt) ]
Tl=a(s) =a(t) ]

A(s,t) = B[-a(s), -a(t)] =

(3.1)

1
- Idx X-a(s)-l (1_x)-a(t)-1

where a(s) = a + bs, the trajectory function, has to be

a linear function of s, in order to avoid non-polynomial
residues at the poles. (Absence of ancestors). For sim-
plicity, we take the s and t channels to be identical.
The properties of the Veneziano formula can be investi-=-
gated either by considering it as a ratio of gamma func-
tions, or from the integral representation. I prefer the
latter approach at this point, since it generalizes readi-
ly to the N point amplitudes, Expanding (1-x)~% t)-1
term in the integral representation of eq., (3.1) in power
series in x, and integrating term by term, we get:

$ [e®+1[a(0)+2], .. Ta(®)4n],

Bl-a(s),-a(t) ] =né'0 n! (n - a(s)] (3.2)
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Of course, a similar expression with s and t inter-
changed is also valid, This verifies the duality of the
amplitude and the absence of ancestors for linear trajec-
tories explicitly, Actually, the amplitude satisfies a
stronger duality condition; it reggeizes in both channels,
It is easy to prove this statement in the unphysical limit

s| - », with Re[a(s)] < 0, Changing variables by

X = exp {-E%gT}, we have,
~. —a(t)-1

B =~ a%s) sz e 2 {1 - exp <}§zs)/

o]

e

[-a(s)]a(t) jdz e z-OL(t)-1 (3.3

[~a(s) 18 Trea(e) 1.

The second step follows by treating Z/a(s) as a small
quantity for |s| - »  expanding the exponential in powers
of Z2/a(s) and keeping only the lowest non-vanishing term.
Since z ranges between 0 and ~, one has to show that only
those values of z small compared to a(s) contribute to the
asymptotic limit. This can be established by a more care-
ful analysis,

The integral representation of eq. (3.1) does not
exist for Rela(s)] > 0, so that it is not possible to
demonstrate reggeization in the right half plane directly,
One can, however, transform the original integral repre-
sentation into a form® that exists for Rela(s) 1> 0. This
is done by first converting the path of integration in
(3.1) into a closed curve around the real interval from 0
to 1, and then wrapping this closed curve around the real
axis from 1 to », The details are given by Mandelstam in
his Brandeis notes and will not be repeated here. The end
result is the following alternative integral representa
tion: -

Sin[nﬂu(s)-m(t)i:l]J
SinLn[a(s)+l]J (3.4)

X Idx x-OL(S)-1 (x - 1)-(1(1:)-1 .

B[-a(s), -a(t)] =
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This representation is well-defined for Rel[a(s) 1>0,
and reggeization can be proved by the same method that
led up to eq, (3.3).

At this point, a few general comments are in order:

a) The requirement of duality is not sufficient to
fix the amplitude uniquely. One can always add satel-

lite terms of the form Z_Cnt[-a(s)-n,—a(t)-m]

n,m
to the leading beta function formula.

b) The regge trajectories in s and t channels need
not be the same. In particular, they can have differ-
ent slopes and intercepts. Of course, we have nothing
against different intercepts. Different slopes in
the s and t channels, however, give rise to amplitudes
that blow up exponentially for fixed angle and large
energy.’ To avoid this unphysical behavior, all the
slopes have to be taken equal, In what follows, we
set this universal slope equal to one for simplicity.

Now, some applications:

a) The process m+ m - m+ w, This is the process
that led up to the discovery of the Veneziano formula’°’®
The simplest ansatz for the amplitude is the following:

~ diigis My Mo Ma
&M €
A Up bp Mgkl K1 K2 ks
(3.5)

x et B[-a(s)+1, -ap¢)+1], + Perm.

required by Bose symmetry, where i,,i: and is are the
isospin indices of the pions, the k's are the momenta,
€ is the polarization vector of the w, and a, is the ¢
trajectory., The isospin and the spin factors that mul-
tiply the B function are in this case uniquely determined
by isospin and parity conservation, However, one still
has the freedom of adding satellite terms, and only some
vague requirements of simplicity prohibit us from doing
so, The spin factor and the arguments of the B function
are so arranged that the first particle appears at a =1
with spin one, and the "ghost" at a,=0 is eliminated.
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bB) m+ ™ m+ m., This is one of the earliest inter-
esting applications of the Veneziano formula,'?®

A = 'I‘r('rll fz ds 14) [a (s)+a (t) -1]
(3.6)

X B[ap(s)+l, -ap(t)+1].

The i's are the pion isospin labels, and the T's are
the usual Pauli matrices, As usual, it is understood
that the expression for A is to be symmetrized with re-
spect to the extermal lines,

Eq. (3.6) has several nice and at the same time puz-
zling features, The isospin factor is precisely the
Harari-Rosner quark recipe. The kinematical factor
kills the scalar ghost on the p trajectory and at the
same time satisfies the Adler P,C.A.C., condition if
ay(0)=%. The p-f exchange degeneracy is a by product,
as promised earlier.

The pomeranchuk trajectory is absent from (3.6), in
accordance with the Harari-Freund philosophy. One then
perhaps considers (3.6) as a solution to a bootstrap
equation involving the normal trajectories, rather
than as a phenomenological description of the m - © am-
plitude. Finally, the lack of uniqueness is again ob-
vious,

The ansatz of (3.6) can be extended to the scatterlng
amplitudes for the whole pseudoscalar octet*?, The T's
in the trace are then replaced by A's, and the p trajec-
tory is then replaced by K*¥ or 3 traJectorles depending
on the quantum numbers, For example, k + m - k + u am-
plitude is given by,

Armaas = a €2 x Tap(s) +oe(t) 1] (3.7)

X B[-ap(s)+l, -akx(t)+1] + Terms required by symmetry.

X1 and Xz are the isospin wave functions of the kaons,
and the corresponding quark picture is given by Fig. 5.
The horizontal lines carry n or p type quarks; vertical
lines carry M\ type quarks,
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c) Pseudoscalar-vector scattering. As an example,

let us consider m+ p - mw+ p, The isospin factor is
still given by the quark factors. It then remains to
determine the spin factor. The trajectories that can
couple to the p w chamnel are 7, ¢, A1 and A, whereas
the m m channel has only p and £ trajectories, Fur-
thermore, since this is an elastic process, the residues
at the poles corresponding to particle exchanges must
be positive, since these residues are squares of various
(real) coupling constants, A negative residue would im-
ply negative metric objects (ghosts). After a few
tries, the amateur spinologist can easily convince him~
self (if not others) no simple factor analogous to the
one in eq, (3.6) will do, The basic reason is the con-
spiracy theory which in general requires parity doub=-
lets and among other things, forces w and A; to be de-
generate, It is possible to avoid some of these prob-
lems, but only at the cost of introducing a large num-
ber of satellite terms and forfeiting the general fact-
orization properties of the amplitude.*®

d) Meson-Nucleon scattering., This is a process which
provides a good example for parity doubling, In the
baryon channel, we have the McDowell symmetry between
the positive pgrity partial wave f and negative parity
partial wave £,7/ ,

£ ) = - £ (~ve). (3.8)

So except in the case of vanishing residue, a pole

in fgf)implies a pole in fg;)l, leading to parity doub-

ling. Another way to see this is to note that one needs
the Dirac projection operator A = p + m; to project out
the negative parity states, where p is the momentum in
the given channel and m, is the mass of the state with
angular momentum J. If m is taken to be independent of
J, only one parity doublet at most is eliminated and
all the others survive, This explains why most dual
resonance models with baryon trajectories are plagued
with parity doublets. The only way of eliminating the
parity doublet trajectory we know of so far'® intro-
duces a cut in the complex J plane by taking mJ=J3-a.
However, dual models with cuts in angular momentum
plane are much more complicated than the ordinary kind
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and they do not seem to factorize. The interested
reader should consult a review by Berger and Fox,'®

Finallzré I would like to mention a model due to Man-
delstam'”®, which introduces the spin factors in a way
analogous to the isospin factors, One simply extends
the quark rules of Harari and Rosner to include spin,
The spectrum of the model so obtained is a parity
doubled SU(6) ® 0(3), In addition, the parity doub-
lets turn out to be ghosts., This simple model high-
lights the difficulties that lie in the path of a fu-
ture satisfactory model,

4, Many Particle Amplitudes

An explicit N point function which satisfies the
conditions of generalized duality stated in section II
and in particular eq. (2.4) can be explicitly constructed
in the form of an integral representation. Following the
notation of section II and Fig. 4, we ansatz the following
expression:

(4.1)

L
By = jdul,z---dU1,N-z N P ij-1,
w i,j )J

where W is a suitable volume measure and the pair of in-
dices i and j run over all plamar channels, The poles in
various channels come about when the corresponding u van-
ishes. Since overlapping chamnels cannot develop simulta-
neous poles, the corresponding u's cannot vanish simultan-
eously. One simple way of ensuring this is to impose the
following conditions:

ui’j =l S m,nC‘.‘ ij

(u

m,n

), (4.2)

where m and n range over the set Cij of all channels that
overlap with the channel (ij). The eq's given by (4.2)
can be used to determine all the u's in terms of a complete

non-overlapping set; we have,
1 - u& 1"'11,{, - 1) GOy qu, i-1"""4e, J) (4.3)

uij
(T=uy ===ut,3) (L - ug,i-1-=-ug ;1)
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where the conventions u. 0, uy uj i etc, are
understood, and 4 is ar%itrary. Fb% example taking
41, i=2, j=3,4~--- N-1, all other u's are expressed in
terms of the complete non-overlapping Set Ui,2,5.00,
ui,N-3. That (4.3) satisfies (4.2) can be verified by
direct substitution, Eq, (4.3) can also be used to show
the invariance of (4.1) under a cyclic transformation of
variables; in fact, (4.3) itself defines such a transfor-
mation., The second factor on the right hand side of eq.
(4.1) is cyclic symmetric ds it stands., The volume ele-
ment also turns out to be invariant under cyclic change
of variables if W is chosen as follows:

_ 1 j-i-1

W = 1< (ui,j) ’ (4.4)
where in the product i ranges over values 2,3,.,.,N-2,
and j ranges over 3,---, N-1, subject to the condition
i < j. With the definition of completed, it is possi-
ble to verify the duality condition of eq. (2.4), by ex-
panding the integrand of (4.1) in Taylor series in a lin-
early independent set of u's and integrating term by term.
Before plunging into a dicussion of the properties of By,
it will prove useful to reexpress it in two equivalent
but formally distinct ways . By repeatedly using the
equation alJ—a+(pl+---+pJ) ==(i-3) a+%§ Pn°Pn, 4. (4.1)
can be recast into the following form,

=012 -1 '0.1,N-2'1

BN = J‘dU1 ,2==~dui ,N-2 (ua ’2) ---(u1 ,N-Z)

(Lmuy ,) 795 e (1 = w ) TN-1, 8- (4.5)

Il -2 k.-k,
B .{;]_. 1-u ,]'_'""ul’j—]_) 1]

j>i

This expression for is useful in factorizing the
amplitude. An alternative form, which is very elegant
and of importance for some of the deeper aspects of the
theory, is due to Koba and Nielsen*®, Although it is not
needed in what follows, I cannot resist describing it
briefly, Consider general projective transformations in
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the complex plane,

;A + Bz (4.6)
Z T C+0bDz

where A,B,C and D are constants, Given four distinct
points z;,z_,zs, and z., the cross ratio is an invariant
under the projective mapping,

(z1-23) (2p-24)  (z,' =23 'Y (25 '~24 ) 4.7
(z1~24) (z2-z3) (Zl =24 ) (Zzl'za )

One of the standard results from projective geome-
try implies that cross ratios satisfy an identity of the
form eq. (4.2). We can therefore make the following
identification:

u,. = (Zi = zj) (Zi_l = Zj+ 1)

13 (z; - zj+1) (z5.1 - zj) ’

(4.8)

where u's are restricted to the interval between 0 and 1
if the z's are real and ordered on the index i they carry.
One can verify the identity (4.2) directly from (4.8),
and everything works more easily and elegantly in terms
of the new set of variables, Because of projective in-
variance, it is possible to set zy = 0, zy_; =1, zy==,
since any three points can be mapped into the points 0,1
and @ by a suitable projective transformation, With this
choice, the relation between the u's and the z's is
simple:

Z
= :: s ==, U1 N-2 = N-2 4.9)

“N-1

- Z2
Uy =2 = Ui, s
s Z3’ ’

It then follows that in the integral representation,
one fixes three adjacent z's, multiplies the integrand
by a suitable weight factor and integrates over all the
z's that are not fixed, The range of the integration is
any projective image of the real axis, with the ordering
of z's preserved, The reader is referred to the original
article of Koba and Nielsen for more details,
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I would like now to illustrate wvarious properties
of By for the simple (but non~-trivial) case of N = 5,
Choosing u,,2 and ui,s as independent variables, we have,

1 =-u,: 1 = u,n
u2,3 = k u3,4: = 2
1 - u,sui,s 1 - uy,zu1,s
Uz,e = 1 = ur,z2u1,s W = Uz,s (4.10)
and

Bs = T Idul,a duy,s (ul,g)-al’z'l (ul’a)'al,s-l
o o

-(12 s 3'1

1 - u,a ) 1 - ui.s )
1 = Up,2U1,s 1 = Ui1,2U1,3

>-a2,4-2

=Qa,a=1

X (} - ui,3 Ui,s

Suppose we wish to show that this integral represen-
tation looks the same with another choice of independent
variables; for example, u;,s and uz,z. The following
change of variables accomplishes this end,

Ui, = 1 = ug,ou1,as
Us,s = 1 = ui,a (4.11)

1l -~ ui,2u1,s

a(u4.9.u1._q) - Uy . a
8(u1,5u3,5 1l - uy,a2ui,s

Similarly, various other properties of By can be ex-
plicitly verified in this special case.

I would now like to examine the multiregge limit of
the five point fimction. As an interesting byproduct, we
shall also obtain an expression for the coupling of an
external scalar particle into two reggeons, The multi-
regge limit we shall consider is given by:

lsz,sl" = |sy,e|~ =, 222388:% = k = constant,

sl,E-
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81,z = const, Sa,s = const,

In (4.10), make the following change of variables:

Ui, = €Xp & 0.3,3—30-3,4,.J’ Us,s = e€xXp (\(1 >
which gives, (4.12)
. ? i e (S1.5X ¥V -
BE J Id-x dy a2,3(13,4)2 exp '\- 0.2,3(13,4>

[ole]
(112'1
ety (17 )

1 - expi Xy
3,4 Ga aaa,

In the limit laz,a|* 28 |a3,4|* =,

we expand everything in inverse powers of 0z,s, az,4 and
keep the leading terms only as usual,

This gives us the following leading asymptotic behav-
ior,

By ~ (=02,0) 1?2 (-0g,4) 2" (4.13)

_a4,5_1

x
oe—s8
o8

dx dy exp{fx-y + 5%} x-al’z_ly

.

Of course, all the following manipulations are valid
only in the unphysical region Re(a,,s) < 0, Re(as,s) <O,
Re(X) < 0, The double integral on the right hand side of
(4.13) can, however, be continued analytically to the phy-
sical region in K, and surprisingly, one finds a cut on
the positive real axis starting at zero, This cut, origi-
nally discovered by summing suitable sets of Feynman
graphs, seems, therefore, to be a universal feature of the
double reggeon=-scalar vertex. How does this cut effect
factorization, and the definition of signature for regge
poles? For this and some other related questions, I refer
the interested reader to a recent preprint by J. WelS



DUAL RESONANCE MODELS 173

5. Factorization

Consider the multiperipheral graph of Feg. 6, which
is to be factorized into two clusters; one cluster con-
sisting of particles numbered from 1 to 4, and the other
cluster including all the rest. Expanding the integrand
of eq. (4.5) in powers of the variable ui, , we obtain
the fo}lowing:

BN i Idul ,2===duj sN~2 I'{aeft(kl’--k'{j u; ,2",111&_1)
0

-oayl a-1
X Iright (k{/+]_’--’kNJ Uy L+l--’ulN-2) Xul’ 4 (1-uy s L)

4 L S
f, T k, k. n
X exp {2 $‘ i ™ (u1,5...u1,43=1)
{ ié jZJHl n=1 n o+ & } (.1
The factors I and I consist of those factors

left right
in the integrand which depend only on the momenta and in-

ternal variables of the left cluster or the right cluster
respectively. The factors which depend on both clusters
are written as the exponential of a logarithm, and the
logarithm is expanded in a power series in the variable

U1i,4.

The next step is to split the last factor in eq. (5.1)
into subfactors that depend only on the two clusters sepa-
rately. To this end, we introduce an infinite set of har-
monic oscillator operators®®, M and aﬁ“, where the vector
index W takes on the values 0,1,2,3 and n ranges from 1 to
o, The commutation relations are the following:

YR (O I VIV
[an, an :l =8 6n’m- (5-2)

In effecting the factorization, the following two
identities are crucial,

-R R n -R_+u R -n _+
u ag us = ual, u anu us = u ™ a®, (5.3a)
, +u
R = a .
where Z‘n an &, y



174 K., BARDAKCI
<0] exp (P.ap) exp {Q.af }10> = exp (.Q)  (5.3b)

for any two four vectors P and Q, with a vacuum that sat-
isfies a [0>=0,

The two identities can be combined to yield the

following:
L N=1 ©
5 T ke k.,
exp{z ) 21 1™ (u2 i-.-u1’j_1)n}
) §5241 n= n ?

R
= <0| exp { 21 J ; P§1Eft)-an} Uy, 4
n=

wr (§, E H99 Le

where

p(lef ¢
e t) Y

(n) ki(ul,i.ul’i+1...u1’L_l)

h N=
P(r1g t) Yl

n
( —Hl kj (ul ’ {’+1---u1 ,j-l) .

Substituting eq. (5.4) intc eq. (5.1), and carrying
out the integration over u,, we obtain,

By = Tdul a=mdua p oy dua pgmmdm 0 X There X Trighe

x<0|exp{z Vr—_szft) n} B(R-a1 L,a)
exp { E}Vf—rP(rlght) -a$ } |0>. (5.5)

The two exponentials are the vertices that go with
the two clusters, and B(R-a3 &,a) serves as the propagator.
In the special case of unit intercept, a = 1, the
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propagator simplifies to . From eq, (5.5), it is
easy to see that there is a great deal of degen=
eracy at each level., In the simple case of unit intercept,
the particle degeneracy for o=n is the same as the number
of states of the form a:ul +“2---a;£k|0>’ with

R-a1 s L

1 an2

ny+nz+...+ np = n, (Here I am ignoring the complications
due to spurious states.) The problem, therefore, reduces
to a problem partitioning n into integers, and no simple
analytic solution can be given. However, an asymptotic
solution exists®®, and shows that the degeneracy goes like

exp{ %% Vh} for large n,

Another property of the spectrum is the existence of
ghosts. The lack positive definite metric can be traced
to the indefinite sign on the right hand side of the com-
mutation relations (5.2). It can immediately be verified
that states that contain an odd number of time like ex-~
citation have negative norm and are, therefore, ghosts,
The hope, so far, is that these states may be spurious
and decouple from physical states, But this is an exten-
sive and complicated topic into which I shall not enter,

Finally, it is possible to establish multiple fact-
orization for an arbitrary number of clusters. Split the
left hand cluster of Fig. 6 into two new clusters as in
Fig. 7. The identity that corresponds to this split is
the following:

1
r) _
Bi) = [dur a--duw,, . 1(1,2,--,4-1)
o]

x <0| exp { E;V[E:P:£)-an} 1r> (5.6)

1

= J‘dul,z--dul"&’_l du1’£+1 ~ 'dul’&_l X I(1,2,--,{¢'-1)
o]

I
xI (£ +1,",L'1)<0|exp{ § / ?-(ki-an)(U1’i--U1,L/_1)n}
1 i=2
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3 ’+1

XB(R=0a L/,a) exp{ /TZ Ly (kJ am) (u 1] ---u1,£,+1)m}

R
(ulsL’+1 ul,&-l) (5.6 continued)

exp{ Z /—— E; (kh.ap)(ul,h"ui’L_l)p}lr>.

P h=t‘+1

In the above equation, I(1,2,-,4-1) is the integrand
of the beta function of the first 4 - 1 variables ﬂnd
similarly for the other 1I's, P" is the same as P*®
eq. (5.4), and |r> is an arbitrary state, The equation
is derived by factorizing through the use of identities
(5.3) and carrying out the integration over the variable
uy, . This process can be repeated until each cluster
consists of only one leg. This gives us a completely
factorized expression for By,

By = <0[ V(ka)8(as,2) V(ka)=-=8(ay_,)V(ky 1) 10>, (5.7)
where
A(a) = B( -a,a),

V(k) = exp{ 2 ke i:iﬁ_ }exp{ N2 ke ?}_EE_ } )
1 0 m
1

Eq. (5.7) is the starting point for the investigation
of many of the deeper properties of dual resonance models.
To the interested reader, who wants to pursue any one of
the topics barely touched upon here, I recommend various
more complete review articles; among them Mandelstam's
lectures at the Brandeis summer school in 1970, lectures
by Jacob in the same summer school and the review article
by Sivers and Yellin to appear in Reviews of Modern Physics.
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Figure 1
Two Particle Scattering Amplitude
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Figure 2

Quark Diagram for
Meson-Meson Scattering

Figure 3

Quark Diagram for
Meson-Baryon Scattering
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Figure 4

Quark Diagram for
the N-Point Amplitude
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Factorization into Two Clusters
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Multiple Factorization
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THE PRESENT STATUS OF DUAL MODELS

E. Squires
University of Durham
Durham, England

I. Introduction

It is the purpose of these lectures to discuss how
far the ideas of duality, particularly as expressed
through dual models, are supported by experiment and also
to what extent the ideas can be formulated in an inter-
nally consistent way,

In the next chapter we discuss the concept of duality,
and see how far the various ingredients of duality are ex-
perimentally supported., Dual models are discribed briefly
in the third chapter where in particular some of the diffi-
culties of extending dual models to realistic particles
are discussed, The fourth chapter contains the confronta-
tion of the predictions of dual models with an experiment,
We endeavor to see how far the constraints inherent in
dual models are supported by the data., Finally, in the
last chapter, we treat some particular topics in the
application of duality ideas to'inclusive reactions' - a
topic which is new and offers exciting prospects.

In these lectures we do not discuss the problem of
dual models as a starting point for a complete theory- thus
dual loops and twisted loops etc, will only be mentioned
briefly in the last chapter as a model for the Pomeron,
These topics are treated elsewhere in the volume by several
authors. Our approach to dual models is rather that of re-
garding them as a simple approximation to physical ampli-
tudes = an approximation that, in contrast to most models,
is 'global', i.e. expected to apply, at least qualitatively,
over the whole range of the variables,

181
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II, The Ingredients of Duality

We consider the process a+tb - c+d depicted as:

This is described by the amplitude A(s,t) normalized so
that

do _ 1

g la(s,t) |?
daqQ (8m?=

© |=

ch
9ab
where q , and 9,y are the momenta in the ab and cd cen-

ter-of~-mass systems respectively. ''Duality" is a
set of assumptions about A(s,t), which we now discuss.

First Ingredient: ''Resonance-saturation'

We assume, in the s-channel physical region,

ImA~ 1ImaReS 4+ gpafom 2.2

’

where the two forms on the r,h,s, have the following prop-
erties:

(1) Im APom = 0 unless the additive quantum numbers of a
are equal to the additive quantum numbers of ¢, (Note
that we are here considering the ''forward peak' corres-
ponding to |t| < {u|; if we wanted to consider the back-
ward region then the roles of ¢ and d would be
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interchanged). Also we require

Im APom - constant 2.3
S S—)Ot)

In fact this statement has no experimental significance
and, in application, is interpreted as

AL constant, s few (GeV)Z, 2.4
s

(11) Im A% o

.
i) ma =) m [ o T3] 4D By(e) 2.5
poles t 'S

where we have written this expression for the case where
the external particles are spinless. Note that the parti-
cular form for the pole makes I', the "width'" in the conven-
tional sense; provided the T, L are small the precise form
of the pole is not too important,

This expression of course has no content unless we
say something about the values of s and Pi since any

] R
function ImA C° can be respresented by a sum of poles
to arbitrary accuracy! We can try to give it content by
adding

(iv) The poles really exist. This however is a statement
without significance since we cannot do experiments off the
real s-axis and we have no theory to tell us where the
poles are (see our second ingredient however). Of more use
is

(v) The resonances have narrow widths (T = 100 rev), are
well separated for each J(|s, - s, + 1| << I'2for poles of
the same J), and there are nd "ancestors", i.e. in a plot
of J against s all poles lie below a line J = a s + b}
see fig. 2.1,
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Before we consider the experimental tests of eq. 2.1
we note that the equation is only assumed to be approxi-
mate. We know it cannot be exact since if it were exact
we could use a dispersion relation to compute ReA and we
would then know A completely., It would not satisfy unit-
arity even in this elastic region, still less in the re=-
gion of s for which a + b - x + % would be possible where
for x the reader can choose any macroscopic object which
takes his fancy. (If we abandoned the possibility of
writing a dispersion relation then maybe we could take
eq. 2.1 as an exact equation).

It is rather unsatisfactory to have to begin with an
equation which is approximate since we cannot be sure how
good the approximation should be and experimental tests
are hard to interpret. In the absence of any theory un-
derlying eq, 2.1, we do not know of any 'limit" in which
the equation should be exact, and of course have no idea
how to construct higher order corrections,

Turning to the tests, there are essentially only three.
(a) All cross-sections where the quantum numbers of a are
not equal to the quantum numbers of b should lead to zero,
This of course only tests (i) and (ii) above., It is true
in all cases.
(b) The only quantitative test is due to Harari and
Zarmi (1969) who considered ™ elastic scattering and,
using partial wave analyses of the data, plotted the Argand

diagrams for I_ = 0 and 1, where I_ is the t-channel iso-
topic spin, Their results are shown in fig, 2,2, We
see that for I, = 1 (for which there is no APom contribu-

tion) the partlal-waves behave very much like a series of
circles which close on themselves (this is the behavior
expected for a set of narrow, well spread resonances),
whereas for I_ = 0 this is not the case, thus showing the
presence of tﬁe APom background., In a later paper (Harari
and Zarmi (1970)) they combined the It = 0 partial-waves
into forms for which the s-channel nucleon helicity is
changed and those for which it is unchanged:

3
Foy =3 Fa-mn+ * faow- IE (2.6)
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The new Argand plots are shown in fig., 2.3 and we see
that Im APom appears to be absent also in the helicity
flip term, This has some support from other processes
although this is disputed.

(¢) Provided the resonances are narrow, well sepa-
rated and not too small in comparison to Im A om_  then
each particular resonance will dominate the approprlate
partial wave in the neighborhood of sas{. Then, by uni-
tarity for elastic processes we will deduce Rij>0. Thus,
using the optical theorem:

JTot _ 1 Im A(s,0), (2.7)
2qab/b

all total cross=-sections should approach their high-s
limit from above, This is true for the '"major'" effects
(there is evidence that at Serpukov energies the K+p total
cross~section rises by about 1 mb - we regard this as a
"minor" effect!)

In conclusion on the first ingredient of duality we
note two points, First, there are really no direct
tests (i.e. not employing the other ingredients) for in-
elastic processes. Secondly, it is not surprising that
one only makes this assumption for the imaginary parts
because the imaginary part of a pole contribution falls
off much faster, as one moves away from the pole, than the
real part, so the latter will in general have significant
contribtuions from u-channel poles,

Second Ingredient:No "exotics."

An exotic particle is one that cannot be made of either
(qq) or (qqq), where the quarks have the usual quantum num-
bers. There are three tests,

(a) No particles or resonances with exotic quantum
numbers have been observed. In particular exotic channels
are free from significant peaks in their mass distribu-
tions, Clearly the deuteron and all objects with B > 1 are
counter examples, Their existance means that we should
qualify this ingredient by asserting that all exotic par-
ticles are "low-lying'" and therefore, hopefully,
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unimportant,

If we combine ingredients 1 and 2 then we obtain
two other predictions which can be tested.

(b) If we have a process for which the s-channel
is exotic, Im AR€S = o  and if the t-channel is such that
Im APOm =0, then Im A = 0. Such a process is K°p - K¥n
for which we have the result [Firestone et al, (1971) ]:

_Im A(t=0) < 4 %
Re A(t=0)

This is a remarkable result which seems better than
we could have expected!

(c) 1If we consider elastic processes for which the
s= channel is exotic then, by the optical theorem, they
should have constant total cross-sections, The behaviors
of known total cross-sections is given in Fig. 2,4 and is
in accordance with this prediction,

Third Ingredient: Regee Asymptotic Behaviour for ARes

We shall not discuss this in detail here (see
Squires (1970) and Collins (1971) for recent reviews)
but some points are worth emphasizing.

The simple predictions of Regge theory are very well
confirmed, namely, those that depend on the existence of
linear, approximately parallel, trajectories correspond-
ing to the known particles. In particular, where the t-
channel is exotic, peaks are either absent or are very
small (consistent with low lying exotic particles.) Also
the shrinkage expected from linear trajectories is evi-
dent even out to large |t|. This is illustrated by the
analysis of Daum, Michael and Schmid (1970) (and further
unpublished work by the same authors discussed by Schmid
(1971)) on K*p scattering (see fig. 2.5), by the work of
Barger and Phillips (1971) on the p trajectories in
m p - m°n (fig. 2.6) and by the data of Brabson et al,
(1970) on the "effective ao'' for n* scattering out at
least to |t| ~ 3(CeV)? (fig. 2.7).)

There are several places where the known poles,
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without conspiracy and with factorisation (i.e. assuming
the poles are simple) fail badly, in particular, = p-m’n
polarisation, ™ contribution in forward direction of

np - pn and yp - nf and cross-over zeros.

3. If one breaks factorisation by including "cuts"
we can trivially solve these problems. However, if we
use the conventional model of cuts, namely the absorptive
model, one fails to fit the data without introducing free
parameters (which, in the opinion of the author, make the
model equivalent to the data.) Particular failures are
that the absorptive model canmot reproduce the large
shrinkage shown in figs. 2.5, 2.6, and 2.7 (o (t) has

cut
a much smaller slope than o© O1e(t)) it cannot explain the
new 1p - T°'n polarisation data (see Coleman Johnson (1971))
and it cannot fit the m contribution to yp ~-m'n without
having to boost the absorption to an unreasonable level,

4. Experiment requires certain Regge contributions
to cancel. This leads to exchange degeneracy." For ex-
ample, the reality of K°p - K™ noted above requires that
the p and A; have the same trajectories and residues in
the process. Similarly the experimental observation that
exotic total cross-sections are constant requires cancel-
lation among the contributing Regge trajectories. Using
the first two ingredients of duality we can also make
predictions without recourse to experiments. For example,
in mhrt - ntrt, since the s-chammel is exotic, there must
be no Regge contribution to Im AReS  hence the p and £
must exactly cancel and therefore be exchange degenerate
in trajectory and residue. All these exchange degeneracy
requirements are compatible with the masses of the known
particles in the trajectories,

The relation between s=channel resonances and t=chan-
nel Regge poles which comes from combining ingredients 1
and 3 is linear - in contrast to bootstrap type theories,
It can be depicted diagramatically as:

z>—<=zI
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Clearly this can in principle run into difficulties with
factorisation unless there are constraints on the trajecto-
ries (hence the exchange degeneracy predictions). 1If we
restrict ourselves to Meson-Meson and Meson-Baryan scat=
tering then the conventional SU(3) 1 + 8 mesons and

1+ 8 + 10 baryon forms a compatible "solution,” with a
well defined F/D ratio, However, if we include Baryon-
Baryon scattering, we cannot have a solution without ex-
otics (in BB scattering we have 10, 10 and 27 which are
exotic and the cross-channel traJectorles should cancel
these three states - there are not enough parameters to
make this possible).

Even in the M=-B case there are problems, For ex-
ample consider KM - KM. Since this is exotic we predict
exchange degeneracy in the cross=-channels, in particular
for the Y* baryons in KM - KM, However these same Y* bar-
yons will occur in, for example, mA - mA for which
neither cross-chamnel is exotic and for which we therefore
should not have exchange degeneracy. Schmid (1970) has
shown how this problem is solved in an approximate way,

It appeats that there Y* which are strongly coupled to the
KN system are exchange degenerate, and that in addition
there are further Y* particles which are coupled to mA
but have only weak coupling to KN,

Although some of the consequences of exchange de-
generacy, e.g, reality of K°p -K™n mentioned above, are
experimentally confirmed, there are others that fall
For example, exchange degeneracy of trajectories (regard-
less of re91dues) is sufficient to ensure the equality of
Kn = A and m™p - K°A, whereas in fact the cross-section
for the former is about twice that of the latter. Other
"line-reversed'" reactions show the same difficulty,

Absorptive cuts are of no help here since they have
the opposite effect to that required, It is worth noting
that, as with many of the problems of Regge theory
[Squires, (1971) ], this difficulty is caused by factorisa-
tion; in those cases where one channel is exotic, so that
exchange degeneracy follows directly from duality, the line
reversal predictions are well satisfied by the data,
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We have not so far discussed Regge-Regge cuts, i,e.
cuts caused by the exchange of two Reggeon, Harari
(1971) has discussed evidence for these and given reasons
for believing they are important. The experimental evi-
dence for shrinkage at large |t] suggests that their
effective a must be not too different from the single
Regge pole, at least at present energies, They should
show wup where the t-channel is exotic, but in some cases
there may be problems. For example (A, Martin, private
communication), because of exchange degeneracy one would
expect the exotic line-reversed reactions K™p - nti™ and
mp = K¥Z™ to have equal cross-sections if they are due to
Regge-Regge cuts = the data however suggests a factor 10
between them,

Fourth Ingredient : Analyticity

So far we have not explicitly used this. If we com-
bine it with Regge behaviour we obtain finite-energy-sum-
rules (FESR). _To obtain these we subtract from an ampli-
tude with no APom’ the Regge pole contributions with
ai(t)>~1, so that the resulting function goes to zero with

3
s faster than s™%, i,e,

A, D) =) 8y () (smso) L(®) = 0(sT17%), oo
ai >=1
(2.8)

It follows that this expression satisfies a superconver-
gence relation:

[ds In [AGs,©) = ) 85 () (s=s0)®1(V 120 (2.9)
(Ii>"1

The integral is over the cut in the s-plane, which
in general includes the right-hand, physical, s=-cut, a
left-hand cut, due to the u=channel, and bound-state
poles. We consider for simplicity just the right<hand
cut (the other is similarly treated), and we separate
this into a cut from threshold s, to some value s, and a
remainder, where s, is chosen so that

A, ) =) 31 (£) (s-80) "1 (%) | s>, (2.10)
i
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where we include a selected number of the leading Regge-
pole terms (how many are required will depend upon s; of
course), Then eq, (2.9) becomes

e I e

[2m Y pi(e) (sms0)(® as ~ 0 (2.11)
* ai?-l

The integrals over the Regge terms can be evaluated and we
obtain finally

[5 In A5, ) ds ~ Imz B; (6) (s=8)% (8 1 (5 19y

o4 (t) +1

This calculation could have been peformed equally well
with A replaced by (s=-so)® A(s t), for n=0,1,2 =~ This
leads to moment sum rules

fsl(s-so) Im A(s, t) ds = Im Z B; (t) (s=s¢ )a et
i

a4+n+l
(2.13)

Finally, if we add the first ingredient we obtain

Isl (s=s, ) Im ARes (s, t)ds~Im Z B (t) (Sl'Sdﬁl+n+l
i 054 +n+l
(2.14)

Great care is required in using these relations, If they
were interpreted as equalities (rather than approximate re-
lations), then the fact that they hold for all n would im-
Ply equality of the Regge term and the resonance term at
all s, This is known as '"local duality'" - in its extreme
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form it is clearly false, and some averaging is necessary,
If one averages up to some value s;, where Regge behavior
is good, and takes the lowest non~-trivial value of n (o or
1) then one obtains what is normally referred to as ''glo-

bal duality.”

Since equations of the form of eq. (2.14) relate
s=-channel poles to t-channel poles they clearly can be
used to form a "bootstrap' theory - a linear bootstrap in
contrast to the conventional one using umitarity. In
using these relations it has been usual to begin by as-
suming o(t) to be linear and g(t) to contain a kinematic
factor but to be otherwise constant, A particular inter-
esting case is the mn—mw system which has been studied
extensively by Ademollo et al,(1967) (and further refer-
ences stated in this paper,) By putting in the p trajec-
tory they obtained a satisfactory self-consistent solution
over a small range of |, To go further they needed other
trajectories ('daughters').

The question arises in "bootstraps" of this sort as
to how far the "solutions' are unique., The answer was
given by Veneziano (1968) who showed that the FESR have a
class of solutions which can be written in closed form and
which have an infinite number of free parameters, This
led to "dual models",

III., Dual (Veneziano) Models

The solution to the mm—+mw FESR was given by Veneziano
(1968) as

A + T(l-og) T(l-ap) + (t,u) + (s,u) (3.1)
F(l-ag=-o¢)
where
o =a + bs (3.2)

This has the correct Regge behavior and it has poles at

ag = 1 (spins 0 and 1), ag = 2 (spins 0, 1, and 2), og = 3
(spins 0, 1, 2, and 3), etc. Thus it has a linear trajec-
tory with parallel, integer spaced daughters, Clearly
however it is not unique and can bz replaced by the general
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f
il R Zl . I'(n - ag) T'(n - o)
nm

n,m Tn+m - ag - o)
+ (t,u) + (s,u) (3.3)
The terms with n,m + 1 are called 'satellites'. A satel-

lite contributes only to poles with 0g = n, and only to
those trajectories below the (m - 2)tﬁ daughter level.

It is clear that this non-uniqueness means that the resi-
dues of all poles are independent, i.e. given a set of re-
sidues one can choose a unique set of Cnm's to fit them.
Thus without some extra restrictions the duality con-
straints on residues are non-existent.

Under certain conditions, in particular meromorphy,
crossing and a suitable bound for large values of the
variables, the general form given in eq. 3.3 is unique,
i.e. the arbitrary set of parameters Cnm gives the maxi-
mum ambiguity (Tiketopolous 1970).

At this stage we generalize the dual model to a

general N-point function. To do this we consider not the
amplitudes in eq., 3.1 but the B-function:

T( =ag) T(-at)

Be (ag,ay) = (3.4)
r(- ag = at)
= [P usTh @ gy (3.5)
. fl du Il i u-as-l V-at-l S(u+r-1) (3.6)
o} o}

We label the external lines of our N-point function

i=1,2, -- N1 corresponding to a particular ordering, and
define

Sij = (Pi + Pj)z (3.7)

0:s =a + b s;. (3.8)
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Then the generalisation of eq., 3.6 is

- = [* .. -aji-1
By (ars, ) = [* o [augy vy 7]
pairs
X T! S(u,, + T u_-1)
ki ka1 ™
(a set of pairs (3.9)
non-dual dual
pairs) to ki)

Variables are dual if it is not possible to have poles
simultaneously in both, Thus at a pole in one variable
the dual variables correspond to momentum transfers and
the requirement of no simultaneous poles is necessary in
order to insure that the residue of a pole is a polynom-
ial in the momentum transfer (i.e. there are no ancestors),

In the particular case of N=5 we have

=03 2=1 ~0zg=1
12 u 4 B

=0ga3-1
By = f; du;, dusg Uz 45 (1 - wse) ®°

-0,34'1 -0y 5+a42 3+(131+1

(1 - use) (1 - u12 we) (3.10)

Here we have chosen one particular two non-dual pairs,
i.e. (12) and (45), so that eq, 3.10 appears to be non-
cyclic, However, one obtains exactly the same result
whichever set one chooses so that By and in general B
are cyclically invariant, Of course, to obtain the am-
plitude it is necessary to add By's with other non-cyclic
orderings of the external lines (cf. eq. (3.1)).

We now discuss some of the important properties of

BN, considering in particular Bg, To do this we first ex-
pand

(1-u1z u45)'Q15+Q23+G31+1 in equation 3.10 by
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by the binomial theorem:

(_1)k ( -(115+(.123+C(.34+1> B4((112 - k, aaa)

Bg = k

k=

I~s

B. (045-1{, 0L34) (3.11)

Near ¢;:= n we have the pole of the I function in By, This
gives:

n
- (“l)n © /=01 pH0z gt e+l ~aza-1
B = ——— Z K PG )
n = tig k—o
B4(k'(!45, a34) (3.12)

It is easy to see that this has exactly the same structure
of poles as Bs, namely that shown in fig, 3.1.

Further, the residue of a pole factor as shown in fig,
3.2, the amplitude for the intermediate state at aiz=n in-
teracting with particles 3,4 and 5 being a Bs function.
This property (''bootstrap consistency') is of course vital
for the self-consistency of the theory since we wish to
identify the intermediate states with the external particles,
However we note that, except for particles on the leading
trajectory (where only k=o contributes) one obtains a sum
of B, terms, i.e. satellites are essential, Further, if we
considered not Bs but By, the residue of a given state
would not factorise but would contain a finite sum of fact-
ored terms, Thus the daughters correspond not to single
particles but are degenerate - the degree of degeneracy in-
creases as we go down the daughter sequence, but is always
finite (independent of the number of external lines!).

As with B,, BN has the correct Regge behavior in all
the possible Regge limits. For example, in the limit sgaa,
s45 large with si1z = const. X sgz sag We have (see fig, 3,3)

By ~8g54°2% s, %25 (3.13)
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In making use of these dual models to compare with
data there are some troubles,

(i) The satellite ambiguity. As we noted above we
can add arbitrary satellites - this is true for By as well
as for By. It is clearly not possible to demand that we
have no satellites for any external particles because as we
have seen no-satellites for Bg produces satellites for B,,
However we can hope to postulate that there will be no
satellite when external particles lie on the leading tra-
jectory, Even this turns out to be not completely possible
and it is replaced by the notion of '"maximal duality", which
we define below,

(ii) The amplitude is not unitary. This shows itself
in the fact that it has real axis poles, whereas in reality
the poles should be on the second sheet. Also some of the
particles in elastic amplitudes turn out to have negative
residues (i.e. are 'ghosts'"). A possible cure is to re-
place a(s) by a function having a right hand cut. Since the
residue of a t-pole is a polynomial in a(s), it will not
then be a polynomial in s, i.e. we will have '"ancestors'.
This is not usually considered acceptable,

A more sophisticated cure is to regard the Veneziano
amplitude as the '"Born term'" of a pertubation series, This
topic is treated elsewhere in this book and we will not dis-
cuss it further except to note that this programme has not
yet been successful and it is not clear whether it is possi-
ble without destroying the successes of the "Born term".

(iii) We do not know how to include spin % particles,
One trouble here is that any model of a Fermion linear tra-
jectory naturally gives parity  doublets. Since some of
these do not exist it is necessary to add satellites to
arrange that their residues are zero,

(iv) For many trajectories, a(o) > 0. Now B, given
in eq. 3.4 has a pole at a(s) = 0, which, if a(o) > 0, will
have an imaginary mass (s < o), i.e. be a "tachyon." These
do not exist and must be removed. For the four point func-
tion we did this already in the mm - ™w case in eq, 3,1.
However, the functions in eq. 3.1 are not B, functions
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_ 1) = DQ-ag) T-ap)

so it is not clear
T(2 - =
2 -« a, )p

Bs (CI.S b 1, G.t

how to generalise this,

To see what is required we consider first the 5 point
(rmmmmo) amplitude., If we call the o particle 1 then the
simplest choice for the amplitude would be

B (a_*?, apzs, ap34, ap45, a *®), but this would give
tachyons at a, _ 0., There is however a simple solution

(Waltz 1970),gn5me1y, the function

, apes_l’ ap34’ OLp4s_1’ aﬂls).
The tachyons in (23) and (45) are removed by the replace-
ment of a; by ap-1 in these variables; that in (34) is re-
moved by the factor «,°*, In addition this amplitude still
has the leading trajectory in all variables. Although we
have apparentlz lowered the p trajectory by one unit in (23),
the factor apa outside provides the extra one power in the
momentum transfer to restore it., Similarly in (45). Note
however that since the ¢ is a daughter we would expect to
have to add satellites in general.

34 12
a X Bg(a
’ s (a

As a second example we consider the 61 amplitude,
Here we can have either abnormal parity (m) states, normal
parity states (w,A;) in the 3m channels. To obtain the
latter we need a negative purity factor outside. A possible
solution proposed by Dorren et al (1970) is

X
euvpceasyoplupzvpapp4ap58psv

Be(alz‘l,aza‘l,aa4'2,@45'1,ass'l,asl‘z,alas'l,aza4'2,a345‘2).

The factor "€;,3€156" behaves as a 1~ particle in the 123
channel and a 27,27 combination in the 234, 354 channels.
Hence each of the three terms in eq. 3.14 is leading in all
variables, To verify this for the high energy behavior re-
quires care; it is necessary to utilise the fact that the 9
variables explicitly shown in eq, 3.16 are not independent -
because of the Gram  determinant conditions there are only
8 independent variables for the 6 point function [see Dorren
et al (1970) 1.
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Note that it is mnecessary to use a factor outside
which is not cyclically symmetric, so it is essential to add
the cyclically rotated terms as in eq, 3,14, The non-cyclic
permutations (different orderings of the external lines
must of course also be added).

Unfortunately, as noted by Dorren et al (1970) eq.
3.16 will not do since it has parity doublets along the
leading (A;,w) trajectory, e.g. the first term has parity
doublets in the 234 and 345 channels. We can remove
these, from the leading trajectory only by replacing
0z34-2 and 0z4g-2 by 0z34-3 and azag-3 respectively in the
first term of eq. 2.14, and similarly in the other terms.
This means that the individual terms are not leading in
all variables, and duality now holds in the sense that the
leading direct channel resonances are dual to non-leading
Regge-pole contributions. As far as the leading trajecto-
ries are concerned our model is thus more like an "inter-
ference-model" where we add direct channel poles and cross-
channel Regge poles.

A feature that we might look for in models of this
type is possible non-factorisation of the leading traject-
ory (Rittenberg and Rubinstein (1970)) leading perhaps to
a split A;, For example in eq. 3.14 it is not obvious
that the (w,A;) trajectory is the (123) channel of the
first term, and that in the (234) and (345) channels are
the same, The need to remove the leading trajectory as
noted above eliminates this possibility, however, for the
61 amplitude,

Further work on the Nm amplitude (e.g. Dorren et al,
(1971)) has uncovered many additional problems, In par-
ticular it does not appear possible to maintain finite
factorisation of the daughters,i.,e, the degree of degen-
eracy increases without limit as the number of external
particles is increased. From the formal point of view
this is a serious problem, but we shall not discuss it fur-
ther but shall continue with an attempt to compare the
simple predictions with experiment.
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IV, Comparison with Experiment,

Dual models, in constrast to many phenomenological
models are very ambitious in that they apply to the whole
range of the variables, Thus they contain many experi-
mental predictions and comparisons with experiment should
be easy and might be expected to lead unambiguously to
their acceptance or rejection,

However, in practice,it is not so simple because

(i) The model in its simple form clearly predicts
Regge behavior = with all the troubles that brings

(ii) The model contains real axis poles, which must
be moved into the complex plane before comparison with
experiment is made, This introduces some free parameters,

(iii) All experiments involve nucleons, with spin %,
and we do not know how to include spin % particles in the
model,

(iv) We have only a model for N (in eq. 2.1), so
to fit data we need to add APOm We do not know the pre-
cise form of this,

The first two problems are related to the lack of
unitarity in dual models and various prescriptiomns to
incorporate unitarity lead to absorptive corrections
(which as we have noted do not help much) and to poles
off the real axis,

It is convenient to group the predictions of dual
models into the following categories:
B(t),t>o
A, Relations between couplings
parent | daughter
B. Relations between ‘'crossed' processes

C. Regge-residues: g(t), t<o

D, Daughter structure.
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We consider tests of these predictions in turn,

A, First we consider this for mm - mm for which the
amplitude has the form:

als™ = (e, “.1)
als=l o V(s,t) = V(s,u)
Ats™ = 2 [v(s,t) + V(s,u)] - & V(t,u)
with
: V(s,t) =5 . (17%) T (-ag) (4.2)

(L =-o0g =~ ap)

o being the p trajectory. If we use SU(3) then we can ex~-
tend this to include all members of the meson octets, It
is possible to read off coupling constants of the various
mesons directly from this expression, However, one ob-
tains corrected values if one first "unitarises'" the for-
mula, Lovelace (1969a) does this by projecting out the
partial-waves, V,(s), from eq. (4.1) and then writing for
the unitarised partial-wave amplitudes:

A (s) =V, (s) [1+ p(s) Vy(s) 17 (4.3)

This is a matrix equation if one includes KK, nn states
in addition to mm states, Imp is determined from unitar-
ity., Lovelace also gives p a left~hand-out detemmined to
give A,(s) the correct threshold behavior and then obtains
Re p from a dispersion relation. The predictions, and com-
parison with experiment, are shown in Table 4.1, Perhaps
the main problem is that there is no evidence for the p’
(the spin 1 daughter of the Az).

This formula also gives sattering lengths and phase-
shifts in accordance with the accepted values, In addition
it has the correct Adler condition and, with a suitable pre-
scription agrees with off-mass shell extrapolation to the
n=pole in production experiments (see Lovelace (1969a) for
further details,)

For the meson-baryon case the situation is more
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complex, As a particular example we quote the expressions
given by Lovelace (1969b) for the KN amplitudes:

T(%/s = ag) T(1 = &) _ 35 TCrag) T(1-ap)

qo o 102
(92) I‘(a/z'as'mt) 1-‘(3/2'0(3'0{)
3
go = 203 [(ag) T(l-ap) 29 T(®/2-ag) T(2-a)
(215) I\(a/z'a«s'@t) (-19) 1'\(B/z'“s'@t)
i -27 r(3/3'@8) T(l-ag) + 17 1"(3/3'@3) F(1l-o¢)
(-31) T(°/2-ag-og) (% /2-ag-ag)
s =65 T(®/2-0g) T(l-o¢) _ 11 T(a/z-as) T(2-at)
B = (-13) TT(F/e-0g-ap) (-19)" T(/e-ug-ar)
(4.4)
with
a. = 0482 + 0.9t
a; = =0,62 + 0.9s (for the I~ 0 amplitudes)
al = -0,22+ 0.9s (for the L= 1 amplitudes) (4.5)

These are chosen to remove unwanted parity doublets
and to fit the known resonances. The predictive power of
the model is poor since few resonance widths are known.
This model has many ghosts among its daughters. The num-
bers in brackets in eq, 4.4 refer to the best values for
fitting high energy scattering, It will be seen that the
extrapolation from the positive s to the negative s region
works quite well in this case. In view of other known
failures (eq. the A in backward N scattering) this should
perhaps be viewed with caution,

B, The most interesting examples that have been dis-
cussed here involve 5-point functions, _Ai”gn_example
(Chan et al, (1970)) we consider the (ppK K°w ) amplitude.
TRis deipribes the following experimegtal_processes:
K'p-K°r'p; K'p=K°n"p; w p-K°K'p; m p~K°K'p; pp-KKnt,
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There are three possible orderings of the external lines
for which we can have dual expressions (i.e, for which the
channels are not exotic) ., These are shown in fig. 4,1
together with the trajectories used (these were chosen to
obtain agreement with experiment). Note that this process
is a good one to consider since no P exchange is possible.
We ignore spin and then, because of signature it turns out
that the three terms must be combined in a fixed ratio so
that there is only one remaining parameter (the overall
magnitude), Some results are shown in figs. 4.2, 4.3 and
4.4,

The general agreement is good but the model gives in-
correct crossing. This is shown in fig. 4.2 where we see
that crossing from mp to Kp channels is not successful.
The result is even worse if we cross to the Pp channel but
this is probably due to the neglect of spin,

Another recent example is due to Schreiner et al.
(1971) who discuss Ktp~-AK™K~ and the related processes,
Again crossing fails,

C. When we use the Veneziano amplitude at high s
to test the form of the Regge residue, it is necessary to
smooth out the s-poles on the real axis., The smoothing
which one obtains by introducing a reasonable imaginary
part into a(s) is not enough - the predicted form has
rapid oscillations well beyond where they are seen experi-
mentally., These are due to the daughters and it may be
that this indicates that narrow daughters are not in fact
present, On the other hand, it is possible that the peaks
in A(s,t) are in practice smoothed out by the fact that the
degeneracy of levels with different spin is broken - a
realistic treatment of unitarity would almost certainly
give rise to such a breaking of degeneracy. However, the
presence of these oscillations means that one should use
the high energy limit of the Veneziano amplitudes, rather
than the amplitude itself in fitting the data.

The model predicts nonsense-wrong-signature-zeros in
the residue, If absorptive cuts are introduced then it
essentially becomes the 'weak-cut' or 'Argonne' model.

As such it has difficulties as we have already noted, How=-
ever the general features of the t dependence seem to be
correct, This is seen for example in fig, 4.2 for the
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production process, For K7p elastic scattering fig, 4,5
shows the fit of Lovelace (1969b) (the model here has a
fixed pole Pomeron and absorptive cuts so it is not clear
how much of the t-dependence is really testing the Vene=-
ziano residue).

The correlation between the residue for negative t
and positive t is good in some cases (e.g. for RN scatter-
ing as shown in eq, 4.4), but there is one serious failure
- namely the 4 is backward m - N scattering. The discre=-
pancy here is not removed by absorptive cuts,

Gunion and Roberts (1971) give detailed fits to 12
meson-baryon inelastic processes using Veneziano residues
and absorptive cuts (calculated according to a rather more
sophisticated prescription than usual,)

In conclusion we can say that the asymptotic Veneziano
model has all the troubles of the weak-cut Regge theory,
but no more! Thus the specifically 'dual' aspects appear
satisfactory in so far as they are being tested.

D. In order to look at the daughter structure we re-
quire to look in the region of large mass and low spin,
The obxious place in BB anihilation, In particular
pn-n 1 7 at threshold has been extensively studied., The
data is due to Annino et al. (1968). Its principle fea-
ture is a very deep hole in the middle of the Dalitz plot
corresponding to agao.~ 1.5 (see figures 4.6 and 4.7). We
should first note that the existence of the hole or zero is
not too surprising and might be expected regardless of dual-
ity. To see this we assume that resonance poles occur at
equally spaced intervals in s and t (see fig, 4.8)., Now in
order that the residue of an s-pole, for example, should be
a polynomial in t it is necessary that the double poles,
where these lines cross, should be removed, Thus lines of
zeros must cross each intersection., An obvious pattern
for such lines is that indicated in fig. 4.8. (Note that
it is not the only possible pattern and there is no reason
why the lines should be straight). Odorico (1970) has
pointed out that there is remarkable evidence for approxi-
mate linearity of the lines of zeros, and that these zeros
do seem to show up outside the nest of poles, i.e., away
from the s,t> 0 quadrant, For example, in w™p - n’n the &
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pole in the s and the p pole in the u-channel give rise to

a zero at
a,(s) + onp(u) =1

as t = =0,6. This agrees with the position of the famil-
iar dip., In constrast in ™ p - mn the A is absent in the
s=channel (which is purely I=%), so this dip is not ex~
pected, in agreement with experiment.

It is interesting to compare this explanation of the
dips with the Regge pole one in terms of Nwsz of p trajec-
tories, First we note that the Regge pole model by itself
does not give an immediate explanation of the difference
between the m°n and mn final state., Secondly, the dip in
the former case comes from the I' factor in the denominator
of the (s,t) and (u,t) Veneziano terms (i.e, the ones which
contribute to the Regge behavior). Now it is apparently
an accident that this dip occurs at exactly the same value
of t as the dip in the (s,u) term due to the Odorico
mechanism, In particular the coincidence of these dips
does not follow from duality in its most general form since
the Veneziano model, which is dual, only has this property
because of the particular relation between the masses of
the N, A, and p, This result would however follow from
"local duality', so it appears that in this case at least
the experimental situation is consistent with a stronger
form of duality than that implied simply by the existance
of a Veneziano representation for the amplitude,.

To return to pn — 3m, Lovelace suggested that, since
at threshold only the 0™ (pn) state can contribute, one
should fit this with the n - 3m, i.,e, 41 Veneziano func-
tion, In fact this gives too much p resonance, so he
tried instead of eq. 4.2, the satellite term
T(l-a,) T(l-a.) / T(2-ag-a.). This immediately gives
the dip around og=ay=1,5, since at the point the I' func-
tion in the denominator is infinite. However, the detailed
fit to the data is poor, Following Altarelli and Rubinstein
(1969) we can fit the data well with a sum of Veneziano
like terms (cf. eq, 3.3). The best fit (L. Nicholas, pri-
vate communication)is
C10=1 (fixed), C11= 2;95: 005’ C20= 2.1:!: 1.0, C21= 7:’:2,
Cso==3 =1, Czz= -0,1 £ 0,4, This does not agree with Al-
tarelli and Rubinstein's fit - but this is presumably be-
cause these authors only fitted projections of the Dalitz
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plot. Adding further terms to the series does not sig-
nificantly improve the agreement,

It is not surprising that several terms are needed,
and indeed a fit with one term would have suggested that
something serious is wrong with the model. This is be-
cause at J=0", s=4MyN°, we are (on a linear m trajectory)
very close to the 07 particle on the third daughter tra-
jection of the n, Thus, as we saw in section 3 we expect
several satellites, Clearly there now arises what ought
to be the most exciting test of the Veneziano model,
namely, does Bg applied to pn — n™n*m~ give the above
values for the Cyp. Alas we meet again the spin problem
and we do not know which Bg to use.

Rubinstein, Chaichian and Squires (1969) took the
following expression:

B bl B
A= Glzp Bs(qlzp, Gzap'l, Oae '%, Qs , Qas -2/2)

TT_;)

B B m
+ c(0as =%) Bs(alzp-l, stp‘l, Qne ‘%, Qag =1, a5 ~3%

(4.6)

where particles 4 and 5 are nucleons and 1,2, and 3 are
pions., The first term in eq, 4.6 is leading in all varia-
bles. It does not however have a pole at a;s=%, and it is
to restore this that the second term is added, For further
justification of this term we refer to the original article,
By a suitable choice of the free parameter a good agreement
with the Altarelli-Rubinstein fit was obtained, However it
is not possible to fit the parameters given above (in parti-
cular eq, 4.6 given C21=-Czz) and in fact eq. 4.6 does not
give a good fit to the experimental data,

The overall magnitude of the amplitude can be obtained
from the NN and pmT coupllngs - see fig. 4.9. It is then
possible td evaluate the pn - 37w decay rate at threshold
and compare with experiment . Agreement is obtained pro-
vided the decay width of the third 07 daughter of the pion
(i.e, the intermediate state in Pn —m n'f~ at threshold)
is not larger than about 100 MeV (see Rubinstein, Chaichian
and Squires (1970).
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The conclusion at present is that Bs is not well sup-
ported by the data but that the test is unreliable since we
do not know how to write down unambiguously the Pn - 3m du-
al model.

At higher energy data on this process is also avail-
able (Bettini et al 1970), and is given in fig. 4.10,
There is the suggestion in this data that the deep holes
appear only in alternate squares of the mesh of resonances.
This led Oderico (1971) to suggest alternate models in
which the pattern of zeros had the form shown in fig. 4.11.
However, in order to prevent ancestors from occurring due
to the zeros at fixed (s-t) crossing the pole lines, it is
necessary to have additional poles at fixed (s+t). These
correspond to poles at fixed u whose mass varies with the
external masses - a feature which is hardly acceptable,

Attempts to understand fig. 4.10 in terms of dual
models for Pn — 31 are in progress but, due to the fact
that there are now many amplitudes, there are many prob-
lems,

V. Duality and Inclusive Reactions

1. Generalised "optical theorems'

An inclusive cross-section is one which is summed
over a set of unobserved particles, Clearly inclusive pro=-
cesses are natural things to measure experimentally, The
simplest example is a total cross=-section

Tot _ Y 2
Gab 24 lAab—*.Xl 5.1
X
where the sum is over all sets of stable particles (X).
Kinematic factors will be ignored. The next most simple

example is where one final particle is observed, a+b-cHX
for which we write

Tot '
= 5
“ab-c Z; |Aab-*cX|2 -2

Unitarity makes these processes theoretically simple.
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. T g
Thus for the total cross=-section Uagt we have the "optical

theorem':

Tot - 2
ab “; LY

I (unitarity)

- Aab—'ab

s\ =1 - -
(21) [Aabﬂab(s+) Aab--'ab(s )]
(hermitian analyticity)

5.3

We ignore the (2i)~* factor in the pictorial form of the
equation,

Mueller (1970) showed that this idea could usefully
be extended to other inclusive processes. There are in
fact several ways of doing this, which we shall discuss,
All the relevant expressions were obtained in the formal
development of S-matrix theory and are given, for example,
in Eden et al, (1966) Chapter IV, First we write

o o) T A —
X

]
<~
A
Yy
e i
A A

i
e g
A

— E—

where in the last equation the notation is that * refers
to the sign of the (i¢) in the left sub-energies, the to-
tal energy and the right sub-energies respectively.
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We try using simple physical unitarity:

=== = O=

— g — ) =
5.5

Combining this with eq. 5.4 we find
Tor _ B =
Tabc - ™ Aapz-abe { ;

5.6

This is not useful because of the partially disconnected
pieces in the bracket,

We can remove the disconnected pieces if we take only
the discontinuity across the cut in sgpz (which is not of
course equal to the imaginary part). Using Eden et al,
(1966), eq. 5.7.8, we have

= A= =)=
5.7

The r.h.s. of this equation is not quite the same as the
r.h.s, of eq, 5.4 so one obtains an additional term:

Tot _
G g —— —=

X

5.8
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This equation is given in Ellis et al, (1971); the correc-
tion term spoils its usefulness. A much simpler form can
however be obtained if we start with 5.7 and continue
around the cut in the left sub-energies, thus obtaining

5.9
from which we obtain
Tot Y
Gab - = (V) EE
5.10

Thus expressing the total inclusive cross-section as the
discontinuity across the three particle (s, ;=) cut of a
particular 3 - 3 amplitude in the forward direction.
This equation is given in Stapp (1971).

2, Duality and Exotic abc

As a first application of eq. 5.10 we consider the
case (Chan et al, (1971)) whose abZ& is an exotic channel,
In this case there are no dual diagrams with ab@ adjacent,
i.e, no poles in Sapas 89, in the meromorphic approximation,
the r.,h,s., of eq, 5.10 is zero and © gﬂc is zero because
there are Pomeranchon-exchange COﬂtIibﬁtiOﬂS which are not
included in dual models, Chan et al, (1971) deduced that
if ab€ is exotic then GggEC should be independent of energy
(i.e.) of sgp) in the high energy limit; objections to this
were raised by Ellis et al, (1971). This question cannot
be settled simply on the basis of dual models since these,
by their definition, do not include Pomeron contributions.
What is needed is a generalisation of eq. 1,1 to 3 - 3 re-
actions. In order to obtain such a plausible generalisation
we consider the model in which the Pomeron arises from dual
twisted 1loops.
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To explain this we discuss first a + b = ¢ + d where
we suppose ab is exotic., Then we cannot draw dual diagrams
with a and b adjacent, so dual diagrams must have the form
shown in fig, 5.1, where X; and X; are sets of stable par-
ticles. We combine this with a similar diagram for ¢ + d
to make the twisted loop shown in fig, 5.2a and fig, 5.2b,
The quark-duality diagram corresponding to this is shown in
fig, 5.3, and we see from this that only vacuum quantum
numbers can be exchanged in the cross~channel, i.e. "a'" =
"¢" and "b" = '"d". Thus we can regard this diagram as
giving a model for the Pomeron (for calculation of these
diagrams we refer to articles by Alessandrini et al. (1970),
Lovelace (1970), Alessandrini (1970), etc.; they do not
give the correct intercept for the Pomeron but give the
reasonable slope of %).

The corresponding twisted loop for abc elastic scat-
tering is shown in fig., 5.4, [Veneziano (1971), Chan and
Hoyer (1971)1., However, there are several possible label-
lings of this diagram, Suppose 'a' is the central ome,
then this means that 'a' is coupled to the other particles
only through the Pomeron, i.e. we have fig, 5.5 where the
bC scattering includes Regge exchange. This diagram behaves
as (sgp)* and so §ives a contribution to the inclusive
cross~section sgo which is constant with energy (s,).
Note that in the fragmentation region of particle b, with
spg negative and fixed s,z is proportional to sgp. This
is the origin of the claim made by Chan et al. (1971) that
includes cross-sections which are independent of energy if
the ab¢ chammel is exotic.,

However, other orderings of the particles of fig, 5.4
are possible, For example, exchanging a and c we have the
diagram of fig. 5.6 which is not constant in sg;. The cru-
cial question now is the magnitude of this term, which is
governed by the magnitude of the Pomeron contribution to
bc - bé at spz small and negative! The physical idea of
Pomeron contribution as a manifestation of direct channel
unitarity (i.e. giving the shadow of all the inelastic
terms) is clearly inappropriate here. In general loop
diagrams should be smaller than the 'Born terms' (i.e. the
Veneziano amplitudes) so we expect diagrams like this to
be small corrections, except in the conditions where the
energy dependence of the Pomeron term makes it dominate
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over non-Pomeron terms, This is clearly the case in fig,
5.5 (we are considering s, large) but not in fig, 5.6.
Thus the prediction is that the energy dependence of
Uggﬂc should be small if abZé is exotic.

Since this prediction involves both the duality as-
sumption and the nature of the P contribution it will be
interesting to see how well it turns out experimentally,
There are many consequences (e.g. Chan et al, (1971))
but few good experimental tests, Chan and Hoyer (1971)
compare the following processes:

(i) K+p - 1= [ab& exotic, ab also exoticl,
(ii) XKp -1

(iii) n+p - n~ [abc exoticl,

(iv) wp-1m.

They define Rg4, Rg- , Ry, Ry, by

Tot
0K+p~n'

Rg+ = 5.11

etc.
The Pomeron contribution to the R's are all equal,

e.g. R§+ = YP(pr™) (pr™)

"Ppp

5.12

(see fig. 5.7). Experimentally it turns out that RK+ RK'
RK+
Rgt = R~ are both of the order of unity, whereas Rt Rt

Ry R+

18 consistent with zero, This suggest that R 4 and R4 are
Pomeron dominated in accordance with the fact that in both
cases abc is exotic, Note that in one of them (K'), ab is
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also exotic, so the equality of the R's suggests that this
particular condition is irrelevant.

As with 2 - 2 processes, the factorisation assumption
strengthens the predictions of duality. Thus (Ellis et al.
(1971) if one accepts that abé exotic implies only a Pome-
ron contribution and uses factorisation one can show for
example that there is never any Regge contribution to the
p - K~ fragmentation, Hence, for example, GTOtﬂK- is con-
stant in energy even though in this case abc is not
exotic.

3. Triple Regge Limits

As another example of duality applied to inclusive
processes we consider the triple Regge limit (DeTar et al,
(1971). Here one is interested in the region t = spg
fixed, M® = s, = large and (s/M%), s = sa},, also large,
Then, for the cross-section, we write

= 8(t,M?) <}§§> 20, (t) lYéé) ® |2 .

B
for large ( M®./), Here o1 is the leading trajectory with
the quantum numbers of bE. In general of course one should
sum 5.13 over several such Regge pole contributions,

We evaluate B(t,M?) by unitarity:

5.14
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on applying two-particle unitarity to the elastic scatter-
ing of particle a and the Regge-pole a1, The energy here
is M® so if M® is large we can then use Regge theory to
write eq. 5.14 as

s(e, 1) = a2)% 0 D) 4o 5.15

where o® is the leading trajectory in (1,a) elastic scat-
tering = including of course the Pomeron,

Thus we finally obtain

d%c , -

2 =T 0P O g @17 )= @ ey ©
t

5.16
(see fig., 5.8)

An interesting application of this formula is to
study the triple~Pomeron coupling (certain versions of the
multiperipheral bootstrap would like this to be zero).
Consider a process for which bé permits the Pomeron. Then
eq. 5,15 is a P elastic scattering which contains resonances
dual to Regge-pole terms and also a non-resonant background
dual to Pomeron exchange, The latter is proportional to
Y%P(O), i.e, the required triple Pomeron coupling. If this
is zero then there should be no background when we take the
Pomeron for ai, i.e. the background should tend to zero with
s, whereas resonances should remain constant with s (for
small t). The expected behaviour for no triple P coupling
is illustrated in fig. 5.9 a and b.

With the available data there are conflicting reports
in the literature, Wang and Wang (1971) study pw - n™X
(b=c=1") and pp » pX (b = c = p), and claim that the
data is consistent with very little PPP coupling. On the
other hand in a more detailed study, using additional data,
Edelstein et al, (1971) claim that appreciable PPP coupling
is required at least for |t| = 0.264 (Gev/c)?.

A case where bc does not permit the P is considered by
Chliapnikov et al. (1971), namely pKT — K°. They find
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that the s-dependence is approximately independent of M?,
i.e. "background" and'resonances'" vary in approximately
the same way with s, According to duality this means
that P a; o and R o3 a; couplings are appreciable,

Much further work remains to be done, and is being
done, on these topics. The ideas can of course be ex-
tended to inclusive processes where two or more are ob-
served, A start on this has been made by Chian-Li et al,
(1971).
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Plot of spin against (Mass)® = s for resonances.
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rig. 2.6:EFFECTIVE REGGE TRAJECTORY
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Fig, 3.1

Showing the structure of resonance-poles

in the Veneziano model.



222

E. SQUIRES

Showing the factorisztion properxy of By

at a pole of S;»
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Fig. 3.3

Multi-Regge limit for S4y, Sazs4 large.
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The possible Veneziano diagrams for (pEk+ﬁBﬂ—) amplitude.
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Cross-sections for K'P - KO(EO)ﬁiP and m P ~ K°K P,
from Chan et al.
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Fig. 5.1

A dual diagram for ab ~ X; + X;
with a,b non-adjacent,

(a)

Fig. 5.2: Two ways of depicting the twisted-loop
which is suggested as the mechanism whici: produces
the Pomeron contributions to two-body
nrocesses,
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Fig. 3.3

The quark diagram
corresponding to fig. 4.2.

Fig. 5.4

Twisted loops for the 3 - 3 process.
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Fig. 5.5

A contribution to abc - aba,
which behaves as (sab)l for large s, .

ol
ol

Fig. 5.6

A contribution to abe - abE,
which does not behave as (sab)1 but which is
probably small in the kinematic limit considered.
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Showing the Pomeron contribution
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to (a) Kpn - Kprm and (b) Kp - K p.
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Fig, 5,8: The triple Regge limit.
LOW S
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Fig. 3.9 = M2

Illustrating the expected behaviour of an inclusive cross-
section in the triple Regge limit if the PPP coupling is
Zero.
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GROUP THEORETICAL PROPERTIES
OF DUAL RESONANCE MODELS

P. Ramond
National Accelerator Laboratory
Batavia, Illinois

I. INTRODUCTION

One of the remarkable things about duality is that it
leads to the formulation of very esthetic theoretical ideas
although it has its roots in the structure of strong-inter-
action data. Surely this marriage of conceptual beauty
with experimental observation is no accident. The first
steps towards the construction of amplitudes that were
"dual" hive been excellently described in several review
articles™; in these lectures we would rather like to show
the emergence of a very fundamental group theoretical struc-
ture that seems to underlie all dual resonance models (DRM)
built to date. Since no DRM duplicates the data closely
enough, we would like to understand how to add the missing
ingredients without affecting the properties we 1like about
the more primitive models (like factorization, crossing,
Regge behavior, etec.).

As we are only at the beginning of our understanding
of duality, we can only talk at the moment about mesons and
ask the more pragmatic reader to bear with us while we try
to unravel this very mysterious concept.

The other purpose of these notes is to familiarize the
reader with the mathematical techniques used in deriving
DRM's. Hence the character of what follows will be rather
technical as it must be at this stage of the art.

II. MATHEMATICAL PRELIMINARIES

The work of Koba and Nielsen? has shown the relevance
of projective transformations in dual resonance models

241
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(DRM). These transformations are generated in the complex
plane by real Mobius transformations which are locally iso-
morphic to the more familiar SU(l,l1) group, the non-compact
partner of SU(2). We concentrate from now on in the study
of SU(1,1) so as to understand its role in DRMs in greater
detail,d

If h is an element of SU(l,1) it is in one-to-one cor-
respondence with the pseudounitary unimodular 2x2 matrix

h - lal?-181% = 1, (1)

where o and B are complex numbers and the star denotes com-
plex conjugation. 1Its Lie algebra is generated by the
operators Lg,L_, and L_ which obey

[Lgs L] = L, [y 2] = 1 (2)
and has a Casimir operator

2 - = 2
I° =LL+LL - L. (3)

In the complex z-plane, h corresponds to

z - (hz) = z' = —%Ei%— A (4)
o +B z

In particular it maps any point on the unit circle onto the
unit circle. In order to construct the representations of
the SU(1,1) algebra, we choose a certain representation for
the generators

o, _ L, a

Ly = 2 353 Li— 7 z (z P -J) (5
for which

1 = -J(J+1) (6)

is automatically a c-number., It can be shown that there
exists basically two types of unitary representations of the
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algebra:

and those for which it is bounded.

those for which the spectrum of L

243

is unbounded
For reasons that will

become clear later we concentrate on the latter ones.
There we again have two subdivisions since L  can be bound-

ed either from above or below.

These unitary irreducible

representations (UIR) of the algebra are

1, D§+), where J is a real negative number, as re-

quired by unitarity, and the spectrum of eigenvalues

of L0 is bounded below

Lo

= -J, -J+1, -J42,...,

and it is spanned by the statei'

|3,m), = (Sm—lﬁl—) 247 Q)

m.

Note that

L 13,00,

=0, (8)

£

and the states are generated by successive application

of L+ on |J,O)+.

2; Dg-), where again J is real and negative and the

spectrum of L0

Lo

It is spanned by the basis

N
(tm-:l-l-ZJ! .)Z'HH‘J (9)

IJsm)_

and

L+lJ,O)_ =

is bounded above

=J, J-1, J-2,...

(10)

achieved zn the following way.

so that the states are generated by the successive ap-
plication of L_ on |J,0)_.

The connection of these representations to the DRM's is
Introduce the operator

functions
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F () =Y ap(m)lJ,m)+ eD§+) (11a)
m=0

’i-'p (z) = z ap(m)f lJ:m)_ SDJ(-) (11b)
m=0

where the coefficients of the basis vectors are harmonic
oscillator operators- obeying

(o, 0]« [ 4

(m) (n) t =
[ap ] Boln,m oM = 051, (12a)
we use the m§¥ric g = -1 so that we immediately see
that the a(n will gntro&uce negative norm states in the

theory. (ghls disease plagues all relativistic theories,)
The vacuum state |[0> is defined by

aén)lo > =0 n=0,1,... (12b)

Furthermore consideg the case n = 0 to be describing a
translational mode,® that is, let J = - ¢/2 where ¢ 1is a
positive infinitesimal, Then, when written in terms of the
canonical coordinates,

__1 1.0t (D)
a4, =75 (2, +a ] (13a)
p, = e (207 . aéo)] (13b)

F (z) and F (z) are separately singular as ¢ - 0; however,
this singularity is absorbed by taking their sum
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Q,(2) = F (2) + ?p(z) (14)

il

. o 1 (n)t -n,_ (n).n
qp+1ppln z +-Zl % [ap z +ap z }, (15)
n=

which can be loosely interpreted as the dual generalization

of a coordinate. Another quantity of interest is the ''gen-
eralized momentum"

. d
Pp(z) RT3 Qp(z) (16)

pp + i il Jn [ (n)fz-n -ap(n)z+n]. a7
n=

a
p

The relevant representation of the SU(l,l) operators is now
obtained by taking the matrix elements of the operators

Eq. (5) between the states Eq. (lla) or equivalently

Eq. (11b):

-}

Ly = FlILylD) =) @+3) a@t. o (18a)
=
L, = FlL,lm =) (%<mﬂ)(m+1§£a(‘“+l)*-a(m) (18b)
m=0
5
L= FlL_|F) =Y (%(mn)(mﬂ))a(m)*-a(m”)- (18¢c)

Another more elegant way of obtaining the representation of
the SU(l,l) operators is to consider the Fourier cgeffi-
cients of the square of the ''generalized momentum'

1 Tl dz -m H
Wl T B @) (19)

where z is on the unit circle and the normal ordering ap-
plies to the periodic modes only., Specializing expression
(19) tom = 0, £1, we obtain the usual representation of
the SU(l,l) generators, namely
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Ly = 2 {%-pz + i: ma(™t, a(m)} (20a)
m=1
L, ~ 2 {1p-aD? +Y Ja@rD (DT (m) (20b)
m=1
L= 2 {-ip'a(l) + 2 Jm(m+l a(m)-a(m+1)f} (20c)
m=1

Here, unlike the previous representation we have already
taken ¢ to zero. However, for calculational purposes we
prefer to use Eqs8 (18) and let ¢ - 0 only at the end of
all calculations.,

For general integer m, Eq. (19) yields

it -1
L, = 2 {wA p-a™™y @ a o™ _%“‘z Sty et
n=1

n=1

.f-
o } (21)

These operators were first found by Virasoro9 in conjunction
with the ghost compensation mechanism that occurs in the
DRM's. 1Shey form among themselves the so-called Virasoro
algebra

B gl |l _ 4 . 2_1vs

m nJ 2(n “01h+m + §n(n 1) R (22)
The generators 1/2n L, and 1/n L0+(n2-1)/3n form, for a

given n, an SU(l,1) algebra and generate finite transforma-
tions of the form

1/n
z~ z' = D;___zn'l'B
n R n=1,2,... (23)

At the present moment, however, the relevance of this alge-
bra to duality has not been clarified although it is sus-
pected to be very deep., All we can say is that it acts as
a gauge group for dual models. More will be said on this
in the course of these lectures
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The major part of the mathematical equipment needed in
dual 'modelry" has now been presented, and we turn our at-
tention to the problem of the construction of dual factoriz-
able tree amplitudes.

III. GROUP THEORETICAL RULES FOR THE CONSTRUCTION OF DUAL
AMPLITUDES

We wish tolfmphasize that the rules we will enunciate
in this section™ " are not the product of very deep insight
but rather of a detailed analysis of the N-point generali-
zation of the Veneziano amplitude. 1In addition, we believe
them to be necessary but not sufficient.

1, Associate with the absorption of a particle of mo-
mentum k , with various quantum numbers collectively
labelled"by {\}, a vertex operator V(ku,{k};z), where
z = e”1T,

2., In order to preserve the correct selection rules at
each vertex, we require that V transforms under the
groups which generate {\A} as the field of the absorbed
particle.

3. At this stage, the dynamical assumption of duality
is expressed in terms of an additional transformation
requirement. Namely we demand that

[Lys V(k,{2}32)] = -z =S V(k,[\};2) (24)
£1
(L, V(k,(M52)] = -5 (zg;—l*Js)V(k,{H;z),
(25)

where J_ in this case is a scalar function depending on
the various quantum numbers of the particle

5, = 3@ ,3,eM (26)

s
here j is the spin and c{X} represents the Casimir
operators of the groups which generate {A}. This means
that the additional feature of dual vertices is that
they are labelled by the Casimir operator of SU(1,1l).
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If T is a finite unitary transformation of
SU(1,1), it follows that

t * % 2
T V(k,{A};2)T = |a +8 z| °v(k,{r};2") (27)
with
2t = (28)
o +8 2

4, An arbitrary number of particles can interact in a
dual manner only if their dual vertices have the same
su(1,1) spin, i.e.,

Js(mlzy j(l),---) = Js(mzzsj(z)’-'-)s (29)

which implies, as we shall see later, relations be-
tween the various quantum numbers of the particles,
The origin of this requirement becomes clear when one
tries to build amplitudes out of these dual vertices.

5. The factorizable dual amplitude for the scattering
of an arbitrary number of particles in a given order
is just given in the tree approximation by the vacuum
expectation value of the product of their dual ver-
tices taken so as to make an SU(L,1) invariant.12 The
amplitude corresponding to Fig. 1 is then given by

_ YA
AN(kl,...,kN)-j...jdxl...dzNKN(zl,...,zN)s z K,
1

<olv(kl,{x}l;zl)V(kz,{x}z;zz)...V(kN,{x}N;zN)|o>.
(30)

The requirement that A_ be SU(1l,l) invariant imposes
severe restrictions on the kernel function . In
fact, given the transformation properties (27) of the
dual vertices, we have been able to find such a kernel
only when all the external particles had the same
SU(l,1) spin J_, which explains the previous require-
ment. We now Show how to build KN up to any SU(L,1)
invariant function.
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It is easy to see by using the projective invariance
of the vacuum and inserting T'T between the vacuum and
V(kl,[k}l,zl) and pushing T to the right by means of

Eq. (27) that any such kernel must obey (1)

N; * % ZJS
dzl...dzNKN({l})iulla +8 zil =
= ] ]
= dzi...dzNKN({z H, (31)
where
oz,+8
2] = - i=1,2,...,N. (32)
o +8 Zi

From the last equation, it is straightforward to see that

dzi dzi 1
T % ’ (33)
2y %y lo*8%2, |2
i
as well as
7! -z!
i+17%1 1 34)
Z: 1724 B * % . (
i+l i (o +8 zi+1)(a +6 Zi)

We find a solution to Eq. (31) when all Js(l) are equal, say

Js(l) = J i=1,...N, (35)
namely
e
(21500052 = ——— | Z., "2, (36)
KN 1’ "N ZyeeeZy Jll i+l i 2

where we have defined Zy41= 21" We point out that this solu-

tion is not unique as it can be multiplied by any SU(1,1)
scalar function of the z;'s. In particular, we can put an
ordering condition on the arguments of the z,'s according to
the order in which the vertices appear. As we shall show
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by example, this condition is necessary for the factoriza-
tion of the amplitude. Hence one factorizable amplitude is
given by

N dz
N dzy S5
Aglkyseeesky) = Jéiszz‘zi+1-zil 8 (arg z; ,-arg z,)
N 4) N
<Ol.7"|'1 (k0520 1008 | Y kL (37)
i= i

Since the integrand is invariant under a three parameter
group, it is really a function of N-3 variables. So far we
have not said how duality comes about. The fact is that
all the vertices we shall consider give rise to cyclic in-
variant amplitudes. All we can say is that the covariance
under SU(l,l) does not seem to be sufficient to insure cy-
clic invariance. It may be that covariance of the Ygrtices
under the Virasoro algebra is a requirement for it. How-
ever, in the following we shall not concern ourselves with
such highbrow considerations; rather we aim to show in de-
tail how the various ideas discussed above come into being
when one considers specific vertices which obey our cri-
teria.

IV. CONSTRUCTION OF THE N-POINT VENEZIANO FUNCTION

In order to give content to the preceding section, we
give in great detail the derivation of the N-point function
for external scalar particles using as a starting point the
dual vertex for the absorption of a scalar particle. We
first observe that

[1g F (@] = - Eg F,(2) (38a)
1
[, F, )] = -§;- (?Eg i%-e) P (2) (38b)

where we have used representation (18) for the generators

and the commutation relations (12). This means that F_(z)
transforms with an SU(1,1) spin J_ = -¢/2. The same hB1ds
for fp(z). This is a very important point, and it will be
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used for functions for which Jg is not infinitesimal when
we want to add extra quantum numbers to the model,

Intizduce the vertex for the absorption of a scalar

particle
K2 .~
"-2—(_:— ik-F(z) ik'F(z)
V(ku,{O};z)EVo(k,z)=e e e (39)

where the factor appearing in front cancels the infinity
that appears in Fpand Fy. In fact we can rewrite it as

Volk,32) = 17", (40)

where the normal ordering :: only applies to the periodic
modes. In order to see if this is a suitable dual vertex,
we must check its commutation relations with the SU(1,1)
generators,

Since we now approach the realm of detailed calcula-

tions, it is good to quote a well-known and probably for-
gotten identity: if A and B are any two operators, then

e®Be™ =B + [4,B] + 27 [A,14,8]] + ..., 1)

where the other terms are left to the imagination of the
reader. Then, it is easy to check that

[Lys Vok,2) ]| = -za% vy (k;2) (422)
1
I:Li’ Vo(k’z)] Call 37 <Za%i%k2> Vo(k,z) (42b)

where we have used the mathematically ambiguous15 form

e~0

® s
Lim ¢ ) ii*—fn,—lL = i, (43)
m=0 )

Nevertheless, the end result is the same whether or not
one chooses to calculate using a representation where ¢ is
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not yet equal to zero. The use of Eq. (43) yields consist-
ent results and we shall keep with the use of the repre-
sentation (18) for the generators.

This means that for a scalar particle JS=-%k2. Intro-
duce the trajectory function

1
0+§X (44)
which means that JS=-a , the intercept of the mother tra-
jectory. Now that“we gave a respectable vertex we can try
to calculate an amplitude for the absorption of any number
of scalar.

a(x) = a

Consider the vacuum expectation value of N scalar ver-
tices, the computation of which is made easy by realizing t
that the commutator between F and F is a c-number, namely

~ _ 1 1.
[Fp(zj), Fc(zl)] = gpc (E'_ 1n|zj-z1| -5 1n¢j1) (45)

where

+1 arg zj>arg 2

Boq =
Sl -1 arg zj<arg Zy- ()

Needless to say the last equation is obtained by using
Eq. (1l1) and noting that

Zl-Zl a
Z

1]

where z is a point on the unit circle, as well as the ex-
pansion for the logarithm

‘i¢1j lzl-zj | (47)

xn
=. (48)
1

In(l-x) = -

e

We can then use the identity

eBeB - BALA,B] %9) -
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which holds only when [A,B] is a c-number. It then follows
from Eqs. (45) and (46) that

N
'%E‘Z kiz -E:[kj-F(zj),k F(zy) |

7 _ i=1 i<1
<O[ ] Vo lle;,2,) [0>=e = (50a)
19 . 21 i
1 k 1 .l l-n' - .
7 ), Ko )k gty Ekj k941 k,.k
i=1 3<1 j<1 Il lz,-z, ] 371
=e j<1 3 1 (50b)
By noting that
=] 2 l.? 2
E?i ky o= g+t "7 ) K, (51)
i<j i=1

we get rid of the infinite factor by using in addition con-
servation of momentum. The phase factor can be absorbed
only if ¢.q does not change sign, which shows the need for
the ordering condition on the angles. As stated before we
can form an amplitude only when all the SU(l,l) spin are
equal, i.e. in this case only when all the scalar particles
have the same mass, In this case the amplitude is given by

- 92y %t - k, -k

Aglpsen )= [ —2lzy g2y | © 0(are 25, ﬂlz.—zll i
i=1 1 j<1

(52)

which is, up to a factor, the K.oba-Nielsen2 form. Note the
disappearance of the kernel when a,.=l. We have stated above
that, due to the invariance of the integrand under a three
parameter group, three integration variables are superfluous.
So as to give meaning to this statement, we now proceed to
show how the above reduces to the well-kmnown B-function in
the case N=4 (see Fig. 2).

Introduce the anharmonic ratio
_ (717%)) (23-2,)
(2)-23) (25-2,)

X

(53)
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which is real when all the z's are on the unit circle.
Then

(1-x) = - - (54)
(2y-23) (25-2,)
Together with the use of the kinematical relations
k1°k2 = k3°k4 = -a(s) - @
k1 k4 = k2 k3 = -a(t) - g
kl k3 = kz'k4 = a(s) + a(t)
we obtain
k.°kl
T[lzj'zllJ
<1 (56)
%0

=x‘“(s) (1-x) -a(t) ( |z1-z2 l |Z3-Z4l 122-23 | |zl-z4 l)-

The last factor is cancelled by the measure, leaving us with

f dzldz3dz4

(29-25) (23-2,) (2,-2,)

8 (arg z,-arg z3) 8 (arg z4-arg z4)

(57)
-1-a(s)(1_x)-1-a(t).

1

X 8 (arg z,-arg Zl)J dx x
0

Hence all the kinematics are contained in one integrand
while a three-fold integration separates., Furthermore it
can be checked that the range of integration of x is from
0 to 1 only because of the 8-functions., Thus we have

1
Ay Gegsenky) = Jan [ ax =170 (710 () (sg
0

The differential dH is known as the Haar measure.16
an infinite constant and should be divided out of the

It is
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amplitude, Calculations performed for an arbitrary num-
ber of legs show it to be independent of the number of
external particles. It acquires a certain physical sig-
nificance when one realizes that it is equal to the three-
point function between scalar particles and could thus be
interpreted as a bare coupling constant. This interpre-
tation, however, is not consistent with factorization of
an amplitude with many external particles,

We should emphasize that the ordering condition is
necessary for factorization in the sense that it allows
for the correct range of x. The amplitude (58) factorizes
and corresponds to Fig. 2., We should, in order to obtain
the full amplitude, add all the inequivalent penetrations
of the external legs, as shown in Fig. 3.

When a,=1, however, the amplitude we calculate by
.omitting the ordering conditions is automatically equal
to the sum of all the inequivalent penetrations. This re-
markable property is true independent of the number of
legs.

We went through this calculational section to ac-
quaint the reader with the mathematical techniques used
in dual resonance models, Although the calculations were
performed using the scalar vertex, much of the '"meat" is
the same when considering amplitudes (or equivalently ver-
tices) with more complicated external particles. We feel
that it is always good to give meaning to the abstruse
concepts of the previous section by showing explicitely
how they lead to familiar results.

V. GAUGE CONDITIONS

In constructing the scalar vertrices, it seems that
we got more than we bargained for. 1Indeed, using the rep-
resentation (19) for the Virasoro operators (of which the

SU(1l,1) generators foig a subset), we find the following
commutation relations

2
[Lin’vo(k;z)] = -7% z51 (z%;in%—)vo(k;z) (59)

which means that the scalar vertices are covariant under



256 P. RAMOND

a much more general algebra. The physical meaning of this
peculiar equation becomes clear in the case a0=k2/2=1.
We can then rewrite the commutator as

- m1
s vomO 1(k,z)] - -7% : %E[zinVOGO (s2)]  (60)

remembering that z is on the unit circle, this means that
the commutator is a perfect differential. 1In the case
ag=1l, the amplitude can be written as

N, %) N
AN(kl...,kN) = (O|;ﬂlh(ki)|0)5 %ki (61)
1=

where

e o =1

vk, = [ ETi A 4 (kys2,) - (62)
O 1

Then, using the periodicity condition, we obtain

[Lype W] _ g, (63)

Since L_n|0>=0, it is clear that the above means that
there are subsidary conditions between the states appear-
ing in the factorization of the model., A quick look back
at the explicit representation of the L Eq. (21) shows
that in the rest frame, they relate the ''ghost-like'" mode
introduced by ao(n (n=1,....) which gives rise to negative
norm states to other states in the theory., In fact ex-
plicit calculations show that they act as ''ghost compensa-
tors'" in such a way that there does not seem to be any
negative norm state when ap=1 although there isla tachyon
at the nonsense point of the mother trajectory. We
note that such a tachyon will appear whenever the mother
trajectory has positive intercept as it does in the real
world for the p. We wish to stress that although this
condition for ghost elimination so far holds only when the
mother trajectory has unit intercept, the DRM's are the
only model to have such a mechanism. Indeed it may be
argued that a similar mechanism will always be needed for
relativistic theories of strong interactions where an
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infinite number of negative norm states will be intro-
duced by the nature of the Lorentz metric.

At this stage of our understanding of the dual reso-
nance model, it is well to review what we have, First of
all, the model we have considered has no internal quantum
numbers so that we are really dealing (at best) with what
is hopefully the skeleton of a strong interaction theory.
The nature of the commutation relations (12a) introduces
negative norm states which are compensated only when the
mother trajectory has unit intercept, thereby introducing
a tachyon (which we would have had in any case in any
channel involving the p trajectory). The model has an ad-
ditional difficulty because the J_ of the dual vertices
depends on the mass of the particie; since they have to
be the same to obtain SU(l,1) invariance, 8t is not clear
how to go off mass shell and keep SU(l,l)2 This problem
is, of course, acutely felt when one wants to introduce
electromagnetic interactions,

Although the above remarks make it clear that the
model must be improved, we have found a surprising group
theoretical structure which seems to be at the origin of
all the esthetic properties of the model. 1In addition we
have found the existence of a gauge-like algebra, which
seems to eliminate unwanted negative norm states, It is
clear then that at least one of these features must be
kept in devising more physical dual models,

In order to gain more familiarity with the SU(1l,1)
aspect of the bare model, we will try to build dual ver-
tices for the excited states of the theory. Then we will
try to add quantum numbers to the bare theory and will ex-
amine several models that were recently proposed.

VI. DUAL VERTICES FOR EXCITED STATES

We now try to construct dual vertices for the excited
particles that appear in the bare dual model. We start by
constructing the vertex for the emission of a vector parti-
cle. Recall that {“ is like a generalized momentum, which
suggests the form!

Vu(k, j=1;z) = eik}F(z)Pu(z) eik'F(z) (64)
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which is written in a normal ordered form and where we

2
disregard the factor ek /2¢ from now on. Using the rep-
resentation (18) for the generators we find that

[Lo,v (k, 3=152)] = & v, G, 152) (65a)
+1 2
(L., VG, 152)] = o [z%z— : 1+1;— ]
i1 (65b)

z
X Vp(k,l,z) + 777 k.uVO(k,z)o

There are two important things to notice about the last
equation. First, as written V (k,1;z) is not covariant
under SU(1,1) because of the second term appearing in

Eq. (65b) and that this extra term is along ku and appears
with the same sign for both L, and L_. The only way to
get rid of this term is to put a spin 1 projection opera-
tor! Thus the requirement of covariance under SU(1,1)
forces the addition of the projection operator. The dual
vertex for a vector meson is then

k k

V“(k,z) = (guv' %) eik"ﬁ(z)Pv(Z) eik-F(z). (66)

The second thing to notice is that the Jg of this vector

dual vertex is
2

k2 Mv
Js=- 1+-2"—=’-(1-—'2'—' (67)

Using our criterion (4), this vector meson will interact
in a dual way with scalars only if
2 2

My M@

_2_=-1+T (68)
where Mg and M& are the masses of the scalar and the vec-
tor particles, respectively., This means that our vector
meson lies on the first recurrence of the mother trajectory.
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Similarly, we can find the dual vertex for a particle of
spin two.

Introduce the notation

N kpkv
PU-(Z) = (guv - -;—2—)PV(Z). (69)
The obvious choice is
ik'F(z) . ik-F(z)

Vuv(k’ j=23z)=e : Pu(z)Pv(z): e . (70)
Explicit calculation shows that as it stands this vertex
transforms covariantly under SU(1l,1l) with a dual spin

2
3@ _ (z+12‘—). (71)

S

However, before interpreting it as the dual vertex for a
spin two particle, we must subtract the traces. It turns
out that this procedure is enforced by requiring covari-
ance under Ly,... Hence, as hinted at in the previous
section, the Virasoro operators play the role of project-
ing the vertices into definite spin states. The relation
(71) shows that the spin 2 particle we are talking about
lies on the second recurrence of the mother trajectory.
It is rather straightforward to generalize our procedure
to take into account all the states on the mother trajec-

tory. (See Fig. 4)

It turns out that dual vertices can be written for
some of the daughter states that appear in the theory, as
has been shown by Fubini and collaborators. 2 This con-
struction is relevant only where the propagator is diago-
nal, i.e. a5 = 1, We quote the result for the spin 1
daughter which has a dual vertex
VuD(k,Z)=eik F(z):(%%;‘+ iik'P) Pu+kh {....}: g Tl

(72)

This vertex has JSD=-(2+k2/2) so that it lies under the
spin 2 state on the mother trajectory. We note, however,
that it has a component along so that in this case co-
variance under SU(l,1) is not sufficient to eliminate this
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troublesome component. Indeed we need covariance under
L,y to handle it satisfactorily. However, the problem is
technically very complicated and as of this writing not
entirely solved, i.e. although one finds all the possible
daughter vertices covariant under SU(1l,1) it is very hard
to separate the correct linear continuation which are also
covariant under L;j, although considerable effort in this
direction has been spent.

We wish to point out, however, that the spin 1 part
of this daughter vertex can be rewritten as a perfect dif-
ferential when ag=1, so that the first daughter decouples
according to the mechanism outlined in the previous sec-
tion. Actually this phenomenon occurs all along the first
daughter trajectory when a,=1 so that it decouples entire-
ly from the problem. This was first pointed out by
Di Vecchia and Del Giudicel? by a close analysis of the
spectrum,

The main conclusion of this section is that the dual
daughter vertices for definite spin states have not all
been constructed 35 they must be covariant under the
Virasoro algebra. This problem seems hopelessly compli-
cated at the moment, and we have nothing to add to it;
rather we turn our attention to the inclusion of internal
quantum numbers in the bare model.

VII. DUAL MODELS WITH ADDITIONAL QUANTUM NUMBERS

As stated earlier, another direction of research is
to incorporate additional degrees of freedom into the bare
model without upsetting the group theoretical properties
under at least SU(l,l). 1In this section we describe three
such models in their chronological appearance in the
literature., These are_the models proposed by Bardakei
Halpern24(I), ClavelliZS(II), and Neveu and Schwar226(III).
Their common feature is that they start by introducing
new operators as coefficients of the basis functions of
the bounded representation of SU(1l,1). They all have a
G-parity operator and display a spectrum which, although
not yet the physical one, shows great improvement over
that of the bare model. The last model (III) has a new
feature which is responsible for decoupling the tachyon
appearing on the mother trajectory although another
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appears in the model. These statements will be clarified
by considering the models in detail.

A. Bardakci-Halpern Model

The new degrees of freedom are introduced
through the quark-like operator function

Vg @1 (mt;_ 1 _

‘l’(r) Ebr "' Z’m)++dr |' zﬁm)_ r 132,3’ (73)
m=0

where the notation for the states is that of Section

IT and the coefficient obeys the following anticom-
mutation relations

( N _ [y mt . (@) _
{br m)’ds(n } _ ibr m ’ds n } -0 .

b ™ M o5 s ={a ®.a ™+ s103
r s rs nm r s mon=0.1....

The point of this construction is that one can de-
fine new SU(l,l) and Virasoro operators

2m
‘el rdz om d, .
L-m - _lmt[ z 2 7 [w(r)’z dzw(r)J° (73)
such that the quark-1like functions transform

i
under these new operators with a SU({,E) spin -1/2.
It follows that, if we define the new SU(1l,1l) opera-
tors as the sum of those appearing in Section II and
the operators defined by Eq. (75)

L =L _ +L' , (76)

then the %olloying vertices transform covariantly
under L L0 g

(a) a vertex without internal quantum number
"Pomeron' vertex which is just the scalar vertex
of the bare theory

+m °

2
VE(k,2) = V,(k,2) with J_° = - 57 (77a)
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(b) a vertex representing a quark-like state

2
V(r)Q(k,z)=¢(r)(z)VO(k,z)with 3% -1 -5
(77b)
(¢) a meson-like vertex
2
vaM(k,z)=:¢*(z)xa¢(z):vo(k,z>w1th gMe1- &
(77¢)

here the Xq are the SU(3) matrices.

As implied by the definition (75), the operators
L., satisfy among themselves a Virasoro algebra, 1In
addition, since the above quoted vertices are also
covariant under the Virasoro operators, there is a
decoupling scheme at work where J =-1 which conven-
iently vields a mass zero meson. In this case, the
spectrum is showm in Fig. 5. The model suffers from
certain diseases, namely the lack of half integer
spaced trajectories, existence of tachyons and exotic
"quark' states.

B. Clavelli Model

In this case the new degrees of freedom ?£§ in-
an
J

tr?dyced by a sialar function belonging to D d
_V @ 1 mt, 1
H(Z) - Z b " 4sm)_+ d l' 4’m)+ (78)
m=0
where

b @ @) | [p@ @1
{p™,a"™} = {p™ 4" =0 )

BN L (194 s o,

The new SU(1,1) generators are introduced by sand-
wiching the representation (5) of the generators be-
tween the states H in the same way as was done
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earlier for the bare model., However, it does not
seem to be possible to build the Virasoro operators.

As should be obvious by now, the H(z) transform
covariantly under these new SU(l,l) operators with

JS=- %. The dual vertex for a pseudo-scalar meson is
1-
Vik,2) = : H (2)H(z):Vy(k,2), (80)
which has
1 1.2
JS=-§-7k' (81)

There is a G-parity operator

¢=e")y CART L L LN LN (82)
m=0
M The obvious choice is to take the dual vertex
V'(k,z) to represent the pion. Then one fixes J_ so

that its mass vanishes through Eq. (8l). The spgc-
trum of states one obtains this way is shown in
Fig. 6. It has the virtue of having a p trajectory
with the correct intercept, i.e., half integer
spacing between meson trajectories. Although many
particles have their correct mass value, (T,p,A;),
the model has no room for abnormal parity coupling
(w, Ay,...). 1In addition, negative norm states ap-
pear on the fifth trajectory. Another model was
considered by the same author to include SU(3)
breaking by introducing the quark-like function

Hipy @ =) b Pl m 4 @ o m, r1,2,3  (83)

m=0

where the n, act as the breaking parameters. How-
ever, the model leads to m°n degeneracy.

C. Neveu-Schwarz Model

The authors consider the function
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B =) ¢, @M gm e, @ fm, (84)

m=0

where ¢, (™ and ¢ (n)f are four-vector operators o-
beying the anticommutation relations

(M . @N_ ,
{CH 2%p } 6nm Mp (85)
from which one can build the Virasoro operators
2m
c 1 dz _-m d
Lo JO Tz 2 iH(2) =g HE): (86)

which obey the usual algebra.

The new operators are the sum, as in the pre-
vious models

L Ty @y (@ (87)
- em -m -m

It is no wonder that under these operators, (2)
transforms covariantly with J_=-1/2. At this point,
a new feature of this particuiar model emerges.

Since H, is a four wvector, it can be cougled to B,
which leads us to consider the operators 7
1 a4 1.3
= 7 ] —zzm]-[u(z)P”(z) met 3% F,...  (88)
which satisfy
T =] 2
[Lm ’Gn]_ (2 ) Crm (89)
’ _ T
{Gn,cm}— 2L . (90)

As we shall see later these new operators act as ad-
ditional decouplers when a0=1. The dual pion vertex
is 2

k

VW(k,z)=k-H(z)V0(k,z)which has JS=-% 5= (91
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which can be rewritten as

3
Vi(,2) = - 2 (e, v (ko) ] (92)
then it follows that
{G%,Vﬂ(k,z)} =-/2 z’%[Ll,vo(k,z)} (93a)
2
-2 z%(ég-+-§j)vo(k,z). (93b)

Since a0=1, k2/2=1/2 so that in fact we have
K d E
{G%,V (k,2)} =2 2 & [zzvo(k,z)]. (94)

We have a perfect differential on the right-hand side
of Eq. (94). Such a perfect differential .eliminates
an integration variables in the amplitude and this
eliminates a propagator, thus giving zero for the
amplitude., These are the new gauges introduced by
Neveu and Schwarz, and they serve to decouple the
tachyon lying on the mother trajectory. More de-
tail is to be found in Ref. 26.

The virtues of this model are quite remarkable
since it allows for abnormal parity couplings, the
first dual factorizable model to do so. Also since
there are two decoupling schemes at work, it is not
likely that negative norm states will appear in the
model.

Although the discovery of these new gauges al-
lows for the construction of a more ''real life' model
(see Fig. 7), it is clear that one still has a long
way Eg go. It should be noted that by adding a fifth
mode to thggNeveu Schwarz model, one can eliminate
the tachyon,“” but the price is the loss of half in-
teger spacing between meson trajectories and an in-
crease in the w-p mass difference.
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VII. CONCLUSION

These lectures have been delivered with the aim of
familiarizing the reader with what seems to many to be an
exotic field of physics; we hope they have been successful
in this respect. For the sake of completeness, however,
we should point out the existence of more fundamental ap-
proaches 50 dual theories thgi have been sparked by
Y. Nambgg and H. B. Nielsen”" as well as many other
people. The most exciting aspect of these works is the
understanding of the Virasoro algebra as a gauge group,
not unlike that found in general relativity. There 1is
little doubt that i1if guality has anything to do with
strong intera.ctions,3 these can be considered as the
strong gauges, pretty much on the same footing as the
electromagnetic gauge for electromagnetic interactions,

In summary we can say that we are at the beginning
of an understanding of duvuality in terms of strong inter-
actions and that the theories we discussed are necessarily
very elementary, but there are group theoretical concepts
that seem to transcend any given dual model--when we un-
derstand their origin we shall undoubtedly be able to
build more satisfactory (in the sense that they reproduce
the observed spectrum) dual models.
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FIGURE CAPTIONS

Dual N-point factorizable amplitude.
Four point amplitude.
Total dual amplitude for four external scalars
Particle spectrum in the ap=1 case of the bare
dual model. The dotted line means that the parti-
cles lying on it are decoupled from the rest.
Particle spectrum in the Barkakci-Halpern model.

Particle spectrum in the Clavelli model,

Particle spectrum in the Neveu-Schwarz model.
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SELF-CONSISTENT ELECTROMAGNETIC ''DUAL"

AMPLITUDES AND THE ELECTRON-POSITRON SYSTEM
James McEnnan®
University of Florida
Gainesville, Florida 32601

I. INTRODUCTION

Quantum electrodynamics is almost the only part of ele-
mentary particle physics in which there is no doubt about
how to procede to a definite answer to any problem which
lies within its scope. It is also fair to say that funda-
mentally QED is no better understood than any other ele-
mentary particle theory. It is merely the case that in QED
the simplest algorithms seem to work. However, no one seems
to know exactly why they work. 1In fact, one can almost im-
mediately generate several reasonable arguments why they
should not work., This applies in particular to perturbation
theory, which has become so identified with the relativistic
quantum mechanics of electromagnetically interacting parti-
cles that virtually no distinction is made. Since there is
no ''real" theory of electromagnetic interactions, just as
there is no strong or weak interaction theory, only a set of
rules which, in the case of QED, give reasonable answers, it
is of some interest to see if the pure electromagnetic inter-
actions of elementary particles can be treated without refer-
ence to the usual formulations, For this reason, I have
made some attempts to do the classic QED calculations in a
manner which is independent of perturbation theory. This
has led me to an analytic S-matrix approach. There, how-
ever, one runs into problems almost immediately. Consider,
for example, the calculation of the electron anomalous mag-
netic moment. We would like to calculate the (unitarity)
diagram of fig. (1). In the helicity reEresentation, the
vertex can be written in the form a)\eDie (9',96'), where the
#Present address: University of Pittsburgh, Pittsburgh,

Pennsylvania 15213

275



276 JAMES McENNAN

a8y, are linear combinations of the electron form factors.
The electron-positron amplitude can also be expanded in a
Jacob-Wick expansion, so that

S
Hy, (5., =Z(2J+1)hwnm(e",¢") . (1)
With this, we find

o Ty I=1
ImaXe_ZHp_qu aue, (2)

so that only the J=1 angular momentum state of the electron-
positron amplitude contributes to the electron form factors.
Everyone knows this. However, the J=1 phase shifts are not
known. The perturbation amplitude is useless since it

does not have a finite Jacob-Wick expansion. Actually, it
is less than useless since one can prove that the perturba-
tion expansion does not converge to the correct amplitude
when the process has bound states. 8So, what do we do?
Well, we read the gospels according to Chew and company and
note that elementary particle physics should be self-con-
sistent and this is good. Of course, since we are interest-
ed in electromagnetic interactions we have to introduce a
minor heresy--that self-consistency also applies (in a cer-
tain way) to QED. (Note that I mean by self-consistency
the same sort of thing one attempts in the bootstrap pro-
gram in strong interaction physics.) This brings us to the
subject of my lectures-~-the construction and properties of
self-consistent dispersion-theoretic electromagnetic scat-
tering amplitudes. (Actually, for the benefit of the
purists, I should point out that what results is only a
semi-boostrap. The electron pole and residue are inserted
a priori, but the amplitude is self-consistent only if it
has positronium poles at the position determined by the
usual Coulomb bound state formulas.) I got into this be-
cause I needed usable amplitudes for dispersion calcula-
tions in electrodynamics. It has turned out, however, that
the means have become more interesting that the ends.

II. THEORETICAL CONSIDERATIONS

The procedure for constructing self-consistent electro-
magnetic scattering amplitudes is actually very simple:
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L. Unitarity, which gives a singular, inhomogene-
ous, non-linear integral equation for the ampli-
tude is used to evaluate the double spectral
functions (dsf) directly. Essentially, only the
diagrams of fig. (2) contribute through second
order in the fine structure constant, a.

a. To evaluate the inhomogeneous terms we
employ the usual pole approximations to the
amplitudes which appear.

b. To evaluate the elastic unitarity we use
an initial trial amplitude which is based on
the Coulomb amplitude.

2, We use the calculated dsf to construct a new
trial amplitude which is then reinserted into the
elastic unitarity to obtain a new estimate of the
dsf.

3. The process is iterated until self-consistency
is achieved and the calculated dsf remain un-
changed, to the desired order, when the new am-
plitude is reinserted.

Because of our particular choice for the ini-
tial trial amplitude, our second order amplitude
does not require iteration. The self-consistent
electromagnetic scattering amplitude which re-
sults from our procedure will be cutoff independ-
ent, analytic and will satisfy the requirements
of crossing, It will have the correct dsf and
will reduce to the usual Born approximation in
lowest order. (Actually, the requirement that
the amplitude reduce to the Born approximation is
useful in determining its form.,) Self-consistency
requires the correct Regge asymptotic behavior and
the Coulomb bound state poles. Also, the ampli-
tude must have a Jacob-Wick expansion,

We should point out why we emphasize the role
of the double spectral functions. Actually, there
are two reasons:
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1. Simplicity

2, The dsf have no poles, so that an expan-
sion in a power series in a may actually be
possible,

To elucidate the second point, let us consider

the Schrodinger equation with a Coulomb potential,
The scattering amplitude can be obtained in closed
form using parabolic coordinates. For a particle
of mass m and momentum p in an attractive poten-
tial, we find

: ~1+in
_am I'(l-in) /-t '\ 1
A(E,2)= 557 T(Trin) <4p2/ = SRS

(3
where n=am/p, t=-2p® (1-z), E=p®/2m and z=cosH.
8(x) is the Dirac delta-function. (Note that the
delta-function 1s necessary to satisfy unitarity.
For the Coulomb potential, the S-matrix is the
connected part--not the scattering amplitude.)

We see that A(E,z) has Regge asymptotic behavior
with only the leading trajectory contributing and,
due to the gamma-function, the correct Coulomb
bound state poles. The partial wave projections
of the amplitude(3) have the form
1 1%
a (B)= = e "sind,, )

where 6£=argr(b+l-in), so that A(E,z) satisfies
elastic unitarity for all E>O0.

If we now consider the perturbation expan-
sion of the Coulomb amplitude, we can write

A(E,z)*A(l)(E,z)+A(2)(E,z)+..., (5)

where the Born term is given by A(l)(E,z)=-2ma/t
and

)= (2ma)? 147z+er (6)

A2y (Bs2)= “7f J k—p -1e7_1“ T2- 7K

In the integral, K=(y*-z)%-(y®-1)?, vy=(k®+p°)/2kp,
and the angular integrations for the second Born



ELECTROMAGNETIC ''DUAL'' AMPLITUDES 279

term have been carried out. We note the folow-
ing: (1) The first Born term is identical to the
lowest order term in the expansion of the exact
Coulomb amplitude. (2) The integral (6) for the
second Born term is infinite. However, if we
consider A (E,z) for a Yukawa potential,
reHT/r, in %he limit u~0, then the integral
has a branch cut in z for real z>1, The discon-
tinuity across this cut is given by

anA(Z)(E’z) (Zma)zj K* - dEle JFE' M

This integral (7) exists and has a branch cut for
real E>0. The discontinuity across this cut is
just

ImEImZA(Z)(E,z)=pé?i(E,z)=nn(2ma/t)G(E)e(z-l).(8)

This expression (8) is identical to the second
order term iIn the expansion of the exact dsf ob-
tained from (3). Thus, although the perturbation
series does not converge to the correct amplitude,
the dsf which can be extracted from the perturba-
tion series does correspond to the exact dsf, at
least_through second order in a. Since it can be
shown™ that each term in the perturbation expan-
sion for a superposition of Yukawa potentials has
the correct cut structure, it seems reasonable to
assume that even though the perturbation series
may not converge, the dsf obtained from a pertur-
bation expansion may be correct to all orders. At
least, we will make that assumption in what fol-
lows.

ITII. SPIN-0--SPIN-O ELECTROMAGNETIC SCATTERING

We would now like to illustrate our procedure for the
construction of self-consistent electromagnetic scattering
amplitudes by a relatively simple example. We will consider
the elastic scattering of two fictitious spinless particles
which only interact electromagnetically. The kinematics are
as in fig. (3). Particles 1 and 3 have mass m, particles 2
and 4 have mass u. For spinless scattering there is a



280 JAMES McENNAN

single Lorentz covariant amplitude, A(s,t,u), where
s=(ky+k,)?, t=(k;+ks)® and u=(k;+k,)? are the usual Mandel-
stam variables, s+t+u=2m’+2u°, so that only two are inde-
pendent. Through terms of second order in a, unitarity is
saturated by the five diagrams of fig. (4)--(5). Of these,
the only diagrams which contribute to the dsf are the two
photon intermediate state (4d) in the t-channel and the u-
channel elastic unitarity (5). We will consider these dia-
grams in some detail shortly., The remaining diagrams are
relatively simple. Diagram (4a) represents the one-photon
intermediate state and is just the Born term. It can be
written

A(S ’t’u)Born=%(s-u) (ll-ﬁd,/t) ’ (9)

where the factor %(s-u) is due to the spin of the exchanged
photon. Diagrams (4b) and (4c) represent vacuum polariza-
tion and vertex corrections to the Born term. They are es-
sentially equivalent to the Feynman diagrams of fig. (6)
plus renormalization., Although the Feynman integrals are
infrared divergent, the unitarity diagrams can be evaluated
without the introduction of a cutoff if the photon pole
terms are replaced by the appropriate generalizations of

the Coulomb amplitude (3). This substitution, which will
be discussed in detail when we evaluate the elastic unitari-
ty contribution to the dsf, results in the following correc-
tion to the imaginary part of the amplitude in the t-chan-
nel:

ImtA(s,t,u)=%(s-u)Imt{(4ﬂd/t)[T(t)'1]}, (10)

where T(t)=1 + y(t,m®) + y(t,u?), and

v(eaf)= £ 7 Sy ) (11)

e x(x-t)

The imaginary part of the form factor can be written
Tmy (t,M ) =(o/qW, ) [5(2M - t)¢(2)- 3 4y/t1s (12)
1/2 _ /i . .
where q =%(t-4M°) » W.=2E =Vt and }(z) is the digamma

function. Note that since we are only dealing with the
second order terms here, this result is consistent with the
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conjecture that the radiative corrections to the leading
term of the amplitude, excluding vacuum polarization, can
be obEained by multiplying by the appropriate form fac-
tors. However, only the leading term factors in this man-
ner. We see finally, that the net result of the addition
of diagrams (4b) and (4c) to (4a) is that the Born term is
multiplied by the vertex function, T (t).

A, Double Spectral Functions

The first non-vanishing contribution to the dsf
that we will consider is due to the two photon inter-
mediate state in the t-channel. We have

1-
=1 ‘R(K" '
ImA(s,t,u0), =50, ) [dVREKMDR (KD,  (13)
spins

where Py is the two photon phase space factor, the

sum is over the polarizatioms of the intermediate state
photons and R(K) is the two photon annihilation ampli-
tude in pole approximation. With kinematics as in

fig. (7),

R(K")=M(s"') (ky-€5) (ks *ce)+M(u') (ky +¢s) (ks *es)+2ma (€5 *€6 ),
(14)

where M(s')=tna/(s'-m®)=4na/(-2k; *ks), M(u')=4ma/(u'-m®)
=4a/(~2k; *ks). [R(K") can be obtained from R(K') by
the substitutions, 1«4, 3-2.] This amplitude (14) is
gauge invariant and satisfies the requirements of Bose
statistics., Using the explicit form of R(K) in the
unitarity integral (13), we can do the spin sums and
the angular integration. We find

ImtA(S st’u) 2Y=e (t) { %(u"mz 'U-a )2 Io (S st;u)'l_é-(t'zmg ) I, (t)
(15)
g (E-20) I, (£)+4Ts (1) J+{ s} ,
where 06(z) is the Heaviside function. The only term in
(15) which contributes to the dsf is that proportional

to I, (s,t,u), which is essentially the Mandelstam inte-
gral; i.e.,
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2
2 m® Hl u+2quwu

_ hra
IO (S)t’u)_ t(zquwu) 1nm3+1..12 _u_zquwu’ (16)
where
i 2 2q11/2
unWu—{[u-(m+u) Jlu-(m-p)?]11} . 17

The cut in u of I, (s,t,u) extends from (mHi)® to in-
finity along the real u-axis, and the discontinuity is
that of the logarithm. We find, then, that the two
photon contribution to the dsf can be written

ptu(s ,t,u) 2Y'=pts(u’t’s) 2y

82 (18)

=% (u-nf -u®)? Eziazﬁipe(t)e[uf(m+u)2].

Equation (18) represents the inhomogeneous part of the
dsf.

u-channel elastic unitarity [diagram (5)] accounts
for the remainder of the second order dsf. We have

Im A(s, t,u) =kp, (u) [d0'A(s,t,0)A%(s,t,u),  (19)

elastic
where p, (u) i1s the two body phase space factor. If we
were to proceed in the usual manner of perturbation
theory, we would insert the Born term into the right-
hand side of (19) and use it to determine the second
order contribution to Im A(s,t,u). However, the re-
sult would be infra-red givergent and a cutoff would

be necessary. In order to circumvent this particular
difficulty we will, instead, use an initial trial ampli-
tude, A, (s,t,u), which is derived from the Born term

(9) by the substitution

AL £ (s,t,u)=

_lmo, T(L-in(w)) (-t )'“i” (w)
4q; T (1+in(u)) \4q

b(~t/4q?)
ZqUWun(u) 2ripg (u) °

o+ (20)
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£ (s,t,u) has essentially the same form as the Coulomb
amplitude (3), with the substitution of the correct
relativistic two body kinematical factors. The tra-
jectory function, n(u), is arbitrary in (20); it will
be determined by self-consistency. We note here that
the amplitude, A, (s,t,u), which finally results can al-
so be derived from a consideration of the infinite
dimensional unitary representations of 0(4,2)° and, in
addition, a similar fozm can be extracted from the
eikonal approximation. Thus, the use of this ampli-
tude as a basis for iteration is consistent with other,
more familiar, treatments of electromagnetic scattering
processes., Inserting the amplitude, A, (s,t,u) defined
above, into the unitarity integral (19), we find

ImuA(s’t’u)elastic

=sCu- (wa)* B(oenf ) (4 (3,6,0)  (21)

q." ’n(U))

+%(u'nﬁ'u2)f1(S’t’u)+%fz(sﬁt’u)},
where

£1 (s, t,u)=4ma (u-nf 7)™ [T (1-1n) I[P, (-2 )-11,
(22)
£, (s,t,u)=4maq’ (u-uf -u?)=* [T (1-in) [*[inP, (27

P, (z) is a Legendre function of the first kind and
z -1+t/2qu We note the following: (1) If

n(u)=a (u-n -y )/2q W 0’ the original trial amplltude is
reproduced in (21) (2) For that value of n(u), t
fi(s,t,u) in (22) are of order a® and do not have any
spurious poles. The elastic unitarity contribution to
the dsf can be obtained relatively simply from (21) and
(22) if we remember that P_(z) is analytic in the z-
plane cut along the negative real axis from -« to -1,
The discontinuity across the cut is -2isinmvP,(-2), We
find that to second order

put(sst,u) (S’t’u)zY’

elastic=ptu



284 JAMES McENNAN

0 s (55859 0. (23)

elastic

The result (23) is independent of the actual value of
n(u) since the discontinuity in t of ImuA(s,t,u) in-
troduces an additional multiple of n(u) which is can-
celled by the leading factor of (21). Adding (18) and
(23), the complete second order dsf associated with
the unitarity diagrams (4d)--(5) can be written

where ptu(s,t,u)2Y is defined by (18).
B. Self-Consistent Scattering Amplitude

Using the information presented above [particu-
larly eqs. (21), (23) and (24)], it is possible to
construct an amplitude which has the dsf terms indi-
cated in (24) and which also has the appropriate
vacuum polarization and vertex corrections. We will
present the amplitude as an ansatz; it is then trivial
to verify that it has the requisite properties. We
write

A(s,t,u)=2F(s,t,u)+—F(u,t,s), (25)
where

F(S’t’u)=Fo (s,t,u)+%(u-m2 'uz)fl (S,t’u)+;4f2 (S’t:u) ’
(26)

and
F (s,t,u)=%(s-0)T(t) & (s,t,0)=T ()4 (s,t,u). (27)

By construction, A(s,t,u) defined bg (25) is cutoff in-
dependent. One can show explicitly” that the delta-
function terms in (25) conspire to produce exactly the
matrix elements, for each channel, of -iI, where I is
the identity operator. Thus, the S-matrix corresponding
to this transition amplitude is analytic. We note that
(25) exhibits the proper dsf terms required by (24).

If we set
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n(w)=a (u-n -u*) /2q W , (28)

then (25) will be self-consistent. Proof: For this
value of n(u), A, (s,t,u) reproduces itself in the
elastic unitarity integral (21). Since the additional
terms in (25) are all of order a®, their introduction
into the unitarity can have no effect on the second
order dsf. Thus, the reintroduction of (25) into the
elastic unitarity integral will produce no additional
second order contributions to the dsf. (We note that
(25) has a well defined partial wave expansion so that
it will admit a process of iteration.) We also note
that A(s,t,u) displays Regge asymptotic behavior and
the correct Coulomb bound state Regge poles. The spec-
trum generated by the trajectory function (28) is
given by

2 4
By = -3 S Gy (as1,2,3...)  (29)
(1 is now the reduced mass). The second term repre-
sents the recoil corrections to the spectrum and was
first calculated by Breit and Brown.® As an additional
check on the correctness of our ansatz, we note that
(25) reduces to the usual Born term in lowest order,

As a matter of fact, since (u-m®-u®)/2W _ is equal to
the reduced mass at threshold, (25) actually reproduces
the non-relativistic Coulomb amplitude at low energy.
Finally, we point out that, in addition to the unitari-
ty cuts which we have examined, A(s,t,u) exhibits a
left-hand cut which is required by self-consistency.
This cut is due to the factor Wy=/u which appears in
the trajectory function and which originates in the

two body phase space factor. It is probably an ines-
capable feature of relativistic scattering. We note
that both the Klein-Gordon and Dirac Coulomb scattering
amplitudes have a cut structure of this type. We con-
clude that (25) represents a satisfactory electromag-
netic scattering amplitude for two, spinless, non-
identical particles, and that it should be accurate
through second order in a.

IV. ELECTRON-POSITRON SCATTERING

A self-consistent electron-positron scattering ampli-
tude can be constructed using essentially the same procedure
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as that outlined above. The complications introduced by
spin are merely algebraic (but exceedingly tedious).
Accordingly, we will only indicate the final result and
then discuss some of its properties. The amplitude for the
process described by fig. (8) can be written

T(ke ks 3k ko)) Ay (5, 8,0, (ke sk 5k sko )
i
A (5,t,W)Y, (ke ) Kkp5ka,ka) (30)

where A, (s t u)—-Al(s u,t) (we set m —1, so that s+t-tu=4)

and Yl(K) is obtained from Yl(K) by the exchange ky= -k;.

The Y, (K) (i=V,S,P,A,T) are essentially the five_spinor
basislfunctions used in the N-N problem by GeMW.7 We have
(in the t-channel)

YV5V=a(k4 ) YHV(kz)‘;(ka )Yuu(kl ) ’
YSES=G-(k4)V(k2);7(kG ) u(kl) s
YPEP=a(k4)Y5V(kg)G(ka)Ysu(kl)s (31)
Ya=A=t (ke ) vs Y v (k) V (ks Yysy u(ka),

Y ET=a(k4)io“vv(kz)e(ka)iouvu(kl),

T

where the spinor normalization is that of Bjorken and Drell.8
The invariant amplitudes can be written

A (8,E,0)=2F (s,t,0)+(-1) 'F, (u,t,8) (32)
where
. -1, i=V,T
(-1) "= (33)
+1, 1=5,P,A
and
Fy(s,t,u0)=F (s,t,0)+ X'P (s,6,0) £, (s,t,0) (34)
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In eq. (34), the P;(s,t,u) are simply ratios of polynomials;
their exact form is given in ref. (5). The fj(s,t,u) are
linear combinations of Legendre functions., We find

£1 (s, ,0) =-4ma (6-2) 7 [T (1-1n) [*[Py (-2 ) -1,

£, (s,t,u) =Ama (4q7) (u-2) 1T (1-1n) |?{ (1+i'q)[Pin(-zu)
(35)
+P1+in(-zu)] -5(1-z )},

£ (5,£,0)=-4ma (4 (u-2) ™ [P (1-1n) [? 1Py, (-2.)

where z =1+t/2q°.. The F,(s,t,u) are the invariant ampli-
tudes of our original lowest order approximation to the
electron-positron amplitude, T, (K), with the appropriate
vacuum polarization and vertex corrections. Our trial scat-
tering amplitude, which we inserted into the elastic uni-
tarity to generate the higher order corrections, is obtained
from the usual Born term by the substitution

(4na/t) - £, (s,t,u), (36)

where £, (s,t,u) is defined in (20). For electron-positron
scattering, the trajectory function which is required by
self-consistency is given by

n(u)=a(u—2)/2quwu, (37)

which gives the correct positronium bound state spectrum,
including reduced mass and recoil corrections, and the appro-
priate Regge asymptotic behavior. By construction, the
amplitude (30) exhibits the correct second order dsf and re-
duces to the Born term in lowest order. Moreover, it is cut-
off independent, analytic and has a well defined Jacob-Wick
expansion. We also note that T,(K) has been applied to cal-
culations of the Lamb shif% in hydrogen” and the electron
anomalous magnetic moment, 0 so that the second order ampli-
tude (30) should prove to be of considerable theoretical
utility. However, its relation to the actual physical prob-
lem can only be resolved by a confrontation with experiment.
So far, the perturbation calculation of the electron-posi-
tron elastic cross section has been able to account for the
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experimental situation,ll although the tests have not been
exhaustive. Since there are significant differences be-
tween our self-consistent amplitude and the one obtained
from perturbation theory, further experiments would seem
appropriate,

V. "DUALITY" AND ELECTROMAGNETIC SCATTERING

I should point out immediately that the 'duality"
which appears in the title of this lecture is not necessari-
ly identical to that which appears in any of the other lec-
tures presented this summer. However, our self-consistent
electron-positron scattering amplitude does appear to ex-
hibit a symmetry which is as close to the usual form of
duality as may be possible outside the field of hadron
physics. At first, there does not seem to be room for du-
ality of any kind. The electron-positron amplitude de-
scribes fermion-antifermion scattering. The t- and u-chan-
nels are identical so that interchanging t and u only intro-
duces a minus sign. This is the Pauli principle and has
nothing to do with duality. The s-channel describes elec-
tron elastic scattering and thus is ''exotic''; there are no
bound states of the two electron system. However, the elec-
tron-electron scattering amplitude does exhibit poles at the
positions associated with the usual Coulomb bound states.
This circumstance is analogous to that which obtains in the
Schrodinger amplitude for a repulsive 1l/r potential., 1In
that case, the amplitude has the form

A -1-im
_om T(1+in) (-t 1 B
A(E,Z) z—pg T(l—iﬂ) (4—[)2) ip 6(1 Z). (38)

We see that this amplitude differs from (3) by the fact that
the trajectory is replaced by its complex conjugate, Thus,
for a repulsive potential, the poles are on the second sheet.
In our electron-positron amplitude, these second sheet poles
appear explicitly due to the permutation of the Mandelstam
variables in (32). 1If F(s,t,u) has poles in u, then F(u,t,s)
will have the corresponding poles in s. We find, then, that
the amplitude (30) has poles in t and u which are due to the
positronium bound states, and poles in s which correspond to
the second sheet poles of the electron-electron scattering
amplitude. The '"dual' nature of the amplitude arises from
the following consideration. If we use the fact that the
trajectory function, n(x), is symmetric about x=2 (it is
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necessary to pay attention to phases), then it 1s possible
to show that

F(u,t,s)=e " F(s,t,u)+B(s,t,u), (39)

where B(s,t,u) is a possible background term and F(s,t,u)

is given by (34). We note the following: B(s,t,u) has no
poles--only the branch cut singularities of the amplitude--
and is at most 0(a) with respect to F(s,t,u). (Actually,

it is possible to argue another way and show that ¢=B=0 for
our second order amplitude.) The point we wish to make is
that eq. (39) represents a limited permutation symmetry of
the electron-positron amplitude., Using this property, it

is possible to write the amplitude as a function which has
only the physical positronium poles (and corresponding as-
ymptotic behavior), or as a function which exhibits only

the second sheet electron-electron poles, and without sacri-
ficing any of the other properties which we require of the
amplitude. It is this behavior which we call ''duality" in
the case of electromagnetic scattering amplitudes. (We al-
so find that the amplitude for spinless non-identical parti-
cles possess a similar symmetry.) The actual significance
of this result for the strong interactions is probably nil.
Nevertheless, the fact that unphysical sheet Regge poles
seem to be of an importance in electromagnetic scattering
which equals that of the physical sheet singularities is in-
teresting. Also, the existence of a symmetry in electro-
magnetic scattering which is not simply a result of crossing
may be of some value, At least, the problems raised here
may prove amusing to contemplate.

VI. CONCLUDING REMARKS

Using virtually the same procedure as that which was
outlined in the original hadron bootstrap programs, we have
constructed self-consistent electromagnetic scattering am-
plitudes having most of the properties one assumes would be
found in a result of a '"'future correct theory.'" Moreover,
the procedure is simple enough that it may supplant pertur-
bation theory for certain purposes--particularly the con-
struction of electromagnetic scattering amplitudes for pro-
cesses in which there are bound states and, possibly, the
calculation of radiative corrections to bound state energy
levels. The question naturally arises--of what relevance
are our results to hadron physics? One simple possibility
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is that a solution to the Schrodinger equation with a
Yukawa potential may be found. 1In that case, one could
attempt to do nucleon-nucleon elastic scattering in essen-
tially the same manner as electron-positron scattering;
hopefully, the results would be equally agreeable. Failing
a breakthrough in potential theory, one could certainly use
the eikonal approximations to the Yukawa amplitude as a
basis for iteration. The problem of convergence would un-
doubtedly be more difficult, but it is certainly worth in-
vestigating., 1In any case, we feel that the procedure out-~
lined above will prove to be of some value within the realm
of electromagnetic interactions. It remains to be seen if
this work can be extended into a larger domain.
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FIGURE CAPTIONS

Electron-positron intermediate state contribution
to the electron form factors.

Unitarity diagrams which contribute to electro-
magnetic scattering amplitudes through second
order in a. Diagrams (a) and (b) (and all higher
order diagrams) constitute the inhomogeneous con-
tributions to the amplitude. Diagram (c) is the
elastic unitarity contribution.

Diagram of the scattering process. Unbroken line
indicates mass, m, dashed line, mass, u.

t-channel unitarity through second order intro-
duces the following contributions to the imagi-
nary part of the scattering amplitude: (a) one
photon exchange (b) two boson exchange (mass m)
(¢) two boson exchange (mass u) (d) two photon
exchange.

u-channel elastic unitarity.

Feynman diagrams which contribute to the spin-0
electromagnetic form factor. Diagrams (a) and
(¢) represent vacuum polarization contributions,
diagrams (b) and (d) are vertex corrections.

Two photon annihilation amplitude (t-channel).

Diagram for electron-positron scattering. The
s-channel is appropriate for electron-electron
scattering.
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DUAL LOOPS AND MULTIPLY PERIODIC FUNCTIONS

Stanley Fenster
Argonne National Laboratory
Argonne, Illinois 60439

The implementation of unitarity in the factorized
dual resonance model requires the addition of dual loops
to dual trees, The expression for a single dual loop con-
tains a doubly periodic function and the general theory of
M loops brings in multiply-periodic functions of a complex
variable. These functions are connected with automorphic
functions for Schottky and Fuchsian groups, The mathemat-
ical development goes back to Riemann and involved all the
great names in mathematics of the last half of the nine-
teenth century, The related physics problem is the calcu-
lation of the electrostatic potential in a two-dimensional
surface with any number of conductors embedded, The mathe-
matics teaches us how to generalize the method of images
which works for the case of one conductor to the case of
many conductors, The analogue model of Nielsen makes the
connection with the dual resonance model,

The way automorphic functions arise in the dual reso-
nance model has been explained in several papers, These
lectures constitute a supplementation, taking more time on
certain topics, such as Abelian integrals, than would have
been appropriate in these papers,

We study domains of the complex plane z=x+iy and har-
monic functions u(x,y) defined on them. In general these
domains D have boundaries which may be simply visualized
as circles whose insides are exterior to D. A crosscut
of a domain is an arc which, apart from its endpoints,
lies entirely in the domain; the end points of the cross=
cut coincide with boundary points of the domain, A gipply-
connected domain D is defined by the property that all
points in the interior of any closed curve (which doesn't

297
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cross itself) which consists of points of D are also
points of D. A crosscut connecting two different bound-
ary points of a simply-connected domain D divides D into
two simply-connected domains without common points. TIf
there exist closed curves which consist entirely of
points of D and in whose interior there are points not be-
longing to D, then D is multiply-comnected. D is said to
be of connectivity n if there exist no more than n-1 such
curves whose interiors have no points in common and which
contain in their interiors points not belonging to D.

The circular ring 1< x° + y° < 4 is of connectivity two
(doubly connected). A bounded domain of connectivity n
is a bounded domain with n - 1 "holes'. By n - 1 appro-
priately chosen crosscuts, a domain of connectivity n

can be transformed into a simply-connected domain. For
example, the crosscut 1 < x <2,y =0 transforms the
circular ring 1 < x® +y® < 4 into a simply-connected do-
main. The restriction to bounded domains is removed by
introducing the point at infinity in the usual way.

Harmonic functions u(x,y) may be de;inegaon a domain
D. They satisfy the Laplace equation + 37" u(x,y)=0.

There are two significant formulae that hold for more gen-
eral functions u and v; these formulae become particularly
simple and useful when u and v are harmonic. They are
called Green's first and second formula:

(1) II uAv dx dy + Ij €§§"%§ au S )dxdy J u %% ds
D D

r

(11). ij (uAv - vAu) dx dy = j (u %ﬁ— -v %ﬁ) ds.
D r

The curve I' is the boundary of D; it may consist of sever-
al separate closed curves. The derivative du/3n is the
usual normal derivative. If u and v are harmonic, the
formulas simplify because Au = 0, Av = 0. These theorems
enable one to solve boundary value problems of the first
and second kind and suggest the introduction of Green's
function and Neumann's ﬁggg;ign ~ Let w(x,y) be harmonic
in D and let r = /(x-6)% + (y-m)?; then log r is harmonic
in D + T except at (§,n) and the same is true of the
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function h(x,y) = - log r + w (x,y). The first result
is derived from the application of formula (II) to such a
function. We find that if Au = 0 in D and has no singular
behavior, then

(IID) u(s,n) = lzl?fr (02 -n) ds.

The function h suggests that we define the Green's func-
tion g(x,y; €,n) of a domain D as

g(x,y3:8,m) = - log /(x-8)® + (y-m)% + g (x,¥;8,M),

where g, is harmonic in D; if (x,y) tends to any point of
the boundary I' of D, g tends to zero. Then

1 d
u(g,m) = -5 JP u 5% ds.

Two important properties of g are that it is positive in
D and symmetric under the interchange (x,y) ~— (8,n) of
its arguments. As an example, one may choose D to be the
circle Cp of radius R with center at the origin. If r,6
are polar coordinates in the (x,y) plane and p,% the polar
coordinates of a point { inside Cy (p < R), then
- p:rs
g (z,0) = log R’

r} =1r® - 20or cos(d - w) + p°

2.2 2
2=____ N P A 2
2 CZ) 2<Rp>rcos (0 ®) + r°.

Green's third formula (III) contains a symmetry between u
and d3u/on on I'. Consequently one is led to define the
Neumann function of D with respect to { as

N(Z,C) = - ].Og r+ N (Z’C)
with the condition g = 0 on I' replaced by

Sl s const, zc T
on
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and with normalization
ITN(Z,C) dsz =0,

Then, if fr N(z) ds = 0, we can show that

u(Q) = éL‘ IFN(Z,Q) %ﬁ ds.

Ll

For the domain CR we find

N(z,() = log

2

2 .
[CAS S -]

The distinctive properties of multiply-connected do-
mains is not evidenced in the foregoing material, At this
point we introduce the conjugate harmonic function as a
step toward those properties., If the function u(x,y) is
harmonic in D, we can associate with it another function
v(x,y) by means of the Cauchy-Riemann equations

Then Av = 0 and v is called the harmonic conjugate of u.
If a curve C connects two points (x,y) and (x0,y0) We can
show that

2 2
v(x,y) = v(%0,¥0) = [o (- ﬁ ax + 22 ay),

This line integral is independent of the curve C; its value
depends only on the terminals (x,y) and (%X0,y0). It is im-
portant to note that the conjugate harmonic function is
only determined up to an arbitrary additive constant which
plays the part of an integration constant and was expressed
as the value v(Xo,¥o) .

In the results concerning harmonic functions so far,
no reference was made to the comnectivity of the domains
D involved. There are certain properties of harmonic con-
jugates, however, which are decisively influenced by the
connectivity of D, Consider the simply-connected case.
The line integral formula for v then shows that v is a
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single-valued function in D, that is, it has a uniquely
defined value at each point of D (provided v(xo,y,) is
held fixed), This follows from the independence from C,
Since in a simply-connected domain any two curves connect=
ing the same two points can be deformed into each other,
all curves C are included and v is unique, Suppose now
we do not require Au = 0 everywhere in D, Let C; and Cj
be two curves giving the values v; and vy to the line in-
tegral, We can prove that

Vi = Vg = ff Au dx dy,
B

where B is enclosed by Cy and Gz, If D is multiply-con-
nected it has at least one hole, By properly choosing C,
and Cz to go from (%o,ye) to (x,y) along different shores
of the hole one can be assured that Au # 0 inside B, name-
ly inside the hole, Then v; # vy and v is multiple=-valued,
This property depends on the fact that C; cannot be con-
tinuously deformed into C; so that all the intermediate
curves lie completely in D, (The interior of the hole is
considered to be outside of D)., Green's formula shows

that

vy = Vg = If Au dxdy = f %ﬁ ds = p,
B b

where b is a closed curve surrounding the hole and p # 0,
We now ask: what are the possible different values v can
take at the same point? Since the only way to change v is
to integrate an extra time completely around the hole, we
find

vy = vz + mp, m=0, 1, +2, ...

The various values which the harmonic conjugate v of a
single~valued harmonic function u can take at one point
differ by integral multiples of a number p, the modulus of
periodicy of v, For example, consider the_conjugate of
u=1logr, r=vVx°+y®°; it is v = 8 = tan 1(;). Both
functions are harmonic in the ring 1 < x* + y® < 4, since
the only singularity is at (x,y) = (0,0), Now & is not
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single-valued in the ring; indeed, the angle is only de-
termined up to an integral multiple of 2Zm, and a closed
positive circuit about the origin adds 2m to 6. The
function v = 6 thus has p = 2m,

Turning now to a domain D of connectivity n, we see
that the different values of v defined by

) s
3
v(x,y) = v(xo,¥0) + [ ﬁ ds
S50

depend on the number of times each of the n-1 holes is
surrounded by the integration path, There will therefore
be n-1 independent moduli of v, corresponding to a com-
plete circuit about each of these holes. Attaching to
these holes the subscripts 1,2,...,n-1, we thus have the
independent moduli pl,pg,..o,p , where the word "indepen-
dent" means that none of these"moduli is, in general, ex-
pressible as the sum of integral multlples of the other
moduli, If b, is a curve which surrounds the hole of sub=-
script v but does not contain in its interior points of
any other hole, we have

)
P, T ‘rb\) = ds, v =1,2,...,n"1.

Since, apart from continuous deformations inside D, the
various integration paths connecting two points of D differ
only by the number of times they surround the various
holes, we thus obtain the result that the various values

of v(x,y) are of the form -1

v(x,y) = v(%0,y0) + § m P,
v =1

where the are arbitrary integers and v(xo,yo) 18 any
one of the values of v(x,y). If all moduli p, vanish, v
will be single~valued in D, As a final point, one may
call the outer boundary of D the nth circle. Then a modu-

lus p, is defined, and Green's formula gives
n

Zi pv =0,
\)—

An important function defined on the domain D with n
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holes is the harmonic measure., Let the n bounding holes
be denoted by I,, v = 1,2,,..,n.

The harmonic measure
w, (z) is harmonic in D and has the boundary values unity
on I and zero on T, W #v.

This function is given by

e - L 22,0
W\)(g) = 2n Irv an dSZ

and is equal to - 2% times the modulus p, of the Green's
function g(z,{). Since the Green's function has a singu-

larity at the point z=( we do not find the sum of the mod-
uli to be zero, but rather
n

\,21 w (z) =1

for all values of z in D,

We may take a further step and find the moduli of
the set of wy(z). They are given by

ds

oW
pw=‘r AY
T oan
vl
and, as can be shown with Green's formula, are symmetric.
Furthermore the same method shows that the symmetric quad-

ratic form n-1 n-1
' Zp A A
“ZI V=1 VU VO

always positive-definite, Therefore the set of linear
equations n-1

always has a non-trivial solution,

As an example, one may
show that the harmonic measures associated with the outer
and inner bounda

ries of_the ring a® < x®+y® < b® are
1 r/,)
Wy (z) = =
. log( b/g) 2
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_ log(r/a
v2(2) = Tog(a/b)’

r= /x° +y°,

Another result, relevant for the calculation of asymp-
totic forms of loop integrals, is the Hadamard formula for
the variation of the Green's function with a small varia-
tion in boundary, Suppose T is the boundary of D, and T*
is a new boundary obtained with a pnormal variation on(s).
Let g* be the new Green's function; then

g*(z,0)-g(z,0) = ﬁlj: gggf-‘ﬂ o Qg-a%-g- én(s)dsn.
n n

Similarly,

o, (2) = 5= ] Bl 28LE) (s as

SN=pE f aw, () dwy(m) sn(s) ds
vu r ’n, on, n

As a step toward finding harmonic measures let us ex-
amine harmonic conjugate functions in D and note a suggest-
ive property. Let D contain two circles C; and C;. Join
C, and C; with a curve L. Consider a harmonic conjugate
function v evaluated at P (Figure 1). This value is not
unique but suppose we choose one definite admissible value
v(P1). If we follow v as it varies along a curve I'; sur-
rounding C; we find that it varies continuously up to the
point P; where it has the value v(Bg) with

v(Pp) = v(R,) + j‘g—g ds
= v(P) + B -

Here P; is infinitesimally distant from P, for we have
split the line L into L; and L; which play the role of
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the upper and lower lips of a branch cut. Now v(Q) # v(P)
but the foregoing arguments showed that v(Qz)=v(Qi)+ p so
that the difference dv; = v,-vz is constant along L. Let
us for the moment ignore the closeness of I to Lz and make
a topological deformation of the closed curve C;1;Cz:Lz so
that 1, and L; form circlesand C; and C; are close and par-
allel lines. (Fig. 3). It is a remarkable fact that a
class of harmonic conjugates v exists with the property
that points such as R; ,Rs may be found which are identi-
fied, in the sense that 8v.=v(Ra)-v(Ry)= pc—v(Sg)—v(Sl),
where Pe is a modulus associated with traverses about I, .
Furthermore, there exists a 8v which has both the proper-
ties of 6VL and 8vi. All harmonic conjugates in D have
the (L) property; but very few have the (C) property as
well; those with both properties are similar to the har-
monic measures w, Proof of their existence is a major
mathematical achievement and carries the names of Riemann,
Schwarz and Neumann. One approach depends on the know-
ledge that harmonic functions are electrostatic potentials
and that the infinite plane may be visualized as the sur-
face of a sphere (we have gone to three-dimensional space).
The sphere has two holes C; and C; cut out. The topologi-
cal deformation joining C; to Cz is equivalent to pushing
out the rims of the holes and joining rim to rim to form a
torus. Then C, is identified with C; and pairs of points
(R; ,Rz) and (S;,Sz) fuse to form R and S on the torus sur-
face. The curves L and C are then closed curves on the
surface which intersect each other once. If the torus is
visualized as a rubber tire lying on the ground, then L
runs around the top and C loops through the tire. Now it
is known that a potential without sources can exist on a
torus - the potential lines follow L and the field lines
follow C. Knowing this we may reverse the process and cut
the tire open along C and expect to find harmonic conju-
gates 08v described above to exist.

Our task then, is to find real harmonic functions
which identify the points on C, in a one-to-one manner
with the points on C; and have the property that the dif-
ference v, -v; is a constant (the same for P;P: and Q;Qz)
around the circles. These functions will contain parame-
ters which depend on the coordinates of the centers of the
circles and their radii. Since the torus generalizes to a
sphere with n handles it can be proved that 2n circles
(n=1,2,...) may be cut out without losing the possibility
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of a solution. The circles will be identified in pairs
by the harmonic function. The curves L and C are called
crosscuts on the surface and are denoted by Ky, and Koy,
H=1,2,...,n,

Since the values of a harmonic function inside a
closed curve are determined by its values on the boundary,
we expect that the harmonic function for D will be deter-
mined by the 2n real moduli p for the 2n crosscuts K, There
are two solutions on the torus, (n=2), the L-type poten-
tials and the C-type, having orthogonal equipotential line
families. The question arises as to whether there are any
more, and a theorem states that there are 2n and no more
that are linearly independent of each other. Every other
such function can be expressed, up to an additive constant,
as a linear combination of multiples of these functions
with constant coefficients. Note that up to now the poten-
tials considered have no singularities; they are called
functions of the first kind, and their only discontinuities
are the jumps across the crosscuts, In the future we will
assume that each crosscut has two lips and that all func-
tions considered have jump discontinuities across these
cuts which are constant as one moves along the cut. Note
that the cut surface is simply-connected.

Having proved the existence of real functions u of
the first kind we may form complex functions w = u + iv
out of two of them. The complex functions w will be
analytic functions if u and v satisfy a pair of Cauchy-
Riemann equations, Some theorems can be proved about the
moduli of w. We will perform integrations over a two-
dimensional surface embedded in three - dimensional space
using crosscuts K. We can always recover the complex
plane with holes by cutting, since we are not dealing with
arbitrary harmonic functions, but only with functions of
the first kind. The ut pair of crosscuts has an odd mem-
ber Kasy.. which we denote by a,. and an even member b...
Their crossing is indicated -— in Fig. 4. as the -
crossing of two strips. The curves a, and b, are closed
on a portion of the surface not shown. According to
Green's formula we have

“‘dxdy -a—::g—; . g—zg—;) = j;_)f[(a-a—;ga-}(:—;-’)z_i dxdy = gu dv
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where T is the boundary of D considered to be composed of
a single curve, composed of both edges of each of the
cross=cuts; the positive directions of integration are
shown, The positive side of a, is FD and the negative
side is CE, etc. Each crosscut ay or by has associated
with it a constant modulus AY¥ or B} with respect to
u(x,y) and AY or BY with respect to v(x,y). Then we have

.U = u.eu, = BY
c™UE D UF r
= - = v
Ve™VE = Vp~Vp = Bp
— - = u
up=up = uptue = Al
R
VpTVE = Vp Ve T AL |

Consider the integral I u dv taken along the two edges of
the cross=cut a_: let u_, and u; denote the functions along
the negative and the positive edges so that uy = u. = AE.
The value of the integral for the two edges is

D E D
fF u, dv + IC u. dv = IF (ug-ul)dv

D
u _ U - L v
A, [pdv=Al (vpmvp) =AB] .

Similarly, when the value of the integral for the two edges
of the crosscut b, is taken, we have

c F C

ID uy dv + fE u_ dv = ID (u+-u_) dv

C
u
B f u _ = pWaV
r Y dv = Br (VC vD) BrAr

Summing for the whole boundary of the resolved surface, we
have
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udv Z (A - )

and therefore
n
Vo AT = [ (& ¢ (] ey,
1

The double integral is always positive so the sum is al-
ways positive. Recall that w=utiv so that the complex
moduli of w are given by Al + iAY and BY + iBY., We see
that an analytic function w(z) of the first kind cannot
have its moduli of periodicy for all a, equal to zero,
Second, the function w cannot have its moduli for b, all
zero; it canmmot have its moduli all purely real, or all
purely imaginary. Any function of the first kind has the

form n n
w4+ ) m (A: +1AY) + an<BE +187)
T 1

where mr and n, are integers and w is a value, at any
point on the surface, of a function of the first kind
with the same moduli.

It has been mentioned that there are n linearly inde~
pendent functions wg of the first kind, s = 1,2,.,.,n
Their moduli are
\

AY 4+ iAY  and BY + iBY .
ST ST ST sY

We can form a 2n X 2n matrix

u v

A A
—<Bu B )

out of them, Using the fact that a function of the first
kind with all zero real periods is a constant we may show
that the determinant of M is non-zero, Another determi-
nant which cannot vanish is |AY + iAV|. Unlike M it is
composed of complex numbers and does not contain the B

moduli, The non~singular property of these matrices al-
lows a choice of normal forms for the wg. Starting with
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any 11near1y 1ndependent set we form linear comblnatlo?s
such that AU, = 0 and A7 = imb, These functions wg

are called normal functions of tﬁe first kind. The quan-
tities B are then not completely independent of each other.
To show this we return to the integral

j dxdy \ZWl oWz _ Wy oW, ) - Ir T
p:4 X 3y

e

Qﬁ B --A B
r, Trs Yz I

F‘D‘45

which is valid for all complex w; (z),w;(z) which are analy-
tic with singularities on the surface. If w;(z) and W, (z)
are first kind functions they have no singularlities and
everywhere in D we have

oW, oW, OWy oWy
Loer s e o JERd s

X (" a N ) .
therefore } (A B ArgBr1> = 0, For the W we find

. 1 Yz
1

then B,g = Bgy. Furthermore the demonstrated positivity
of n

(AIUBI‘V - ArvBru>

for each wg = ug + ivg implies the positivity of the ma-
trix B.g.

We now introduce singularities which are logarithmic
and define functions of the third kind. (We omit the
second kind, which have poles and are obtainable by differ-
entiation of functions of the third kind.) Green's func-
tions and Neumann functions are of this type. Let the
logarithmic singularities be at P, and P; with coefficients
chosen unity. This process intreduces very little that is
new, for suppose we draw tiny circles C;and C; about P; and
Pz and join them by a crosscut (branch cut); the modulus
of periodicy for this crosscut is just 2pni. If the other
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moduli are chosen exactly as they were for the wS(N), we
have q(E , an elementary function of the third kind. We
may add linear combinations of the WS(N) to a(E) to form
a( ), the normal function of the third kind, which has
zero A-moduli. This is the so-called complex mnormaliza-
tion. An alternative normalization is possible, the real
normalization, in which the AY and BY are all zero, i.e.
all moduli are pure imaginary. Note that in both of these
normalizations there remain 2n real free constants; they
are distributed over AY,BU,AV and BV in different ways in
the two cases. For the complex normalization we can prove
the '"Vertauschung' theorem or the law of interchange of
argument and parameter. It involves two normal functions
of the third kind which differ in the location of their
logarithmic singularities. Let Qp and QQ have their singu-
larities respectively at P, and P> and Q" and Qz; then in-
tegration of IQPan shows that

QP(QZ) = QP(Ql) = QQ(Pl) - QQ(Pz)-

The simplest example of a third kind function is the one
relevant to the sphere with no handles or the sphere or
the complex plane with no holes. We find

= z-$
lega(z) log PR + const.

So far we have dealt with harmonic functions on sur-
faces with n handles and no boundaries. Starting with such
a surface, we can, with one fell swoop sever it so as to
create two surfaces, each with no handles and n holes.

Each of these surfaces may then be flattened out to resem-
ble the complex plane with the point at infinity included
(Figs. 5,6,7). If we started with a simple sphere (no
handles) the slice would give only C; on the lower hemis-
phere and C; on the upper hemisphere as boundaries respec-
tively of surfaces B, and B, where the original sphere is
D =B, +B;. Knowing the third kind functions Q on D, we
can construct Green's ‘and Neumann functions on B, . In the
zero handle case we imagine C; mapped conformally on to

the real axis, B, into the upper half plane and B: into

the lower half plane. The Green's function of By is de-
fined to be the single valued harmonic function on B; which
vanishes on the boundary of B; (C,+Cs+Cs+C») and which has a
logarithmic pole at the point { such that the difference
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g(z,0) - log T-=T

remains regular at {, Let (=(; and g2=Z (complex conju-
gate)., Then

-1 10p S22, E D)
82,0 =5 18 Ty G0

g(z,0 = % [02(2) - 07 @ ]

is equal to zero on the real axis z = z, has only one log-
arithmic singularity ¢ in B,, the upper half plane, and is
expressed as a difference of two third kind functions. We
may reexpress g as

g(z,0) = % log <%—£ ) + % log \-—-S N

¥ 0@ o+ 8@ ]

QC-Q(z)
Therefore Im [ng(z) - QCE(Z)] is identically zero,

To generalize this result to the case of more circles
we consider the symmetrical case in which Cz, is obtained
by reflection in the real axis of Cpy-1. We call the real
axis C,. The Green's function is required for the domain
B: consisting of the upper half plane boumnded by C,,C.,Cs,
e0+3C2n_1. The insides of the circles are considered to
be exterior to By. The domain D consists of the whole
complex plane with the interiors of all circles C removed,
The Green's fumction of B:; and the third kind functions of
D depend on the positions of the centers of the Czy-1, and
on their radii. Therefore our task becomes one of writing
down a real harmonic function which is zero on C, and
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constant at all the circles Cz.y, Cz, in terms of para-
meters locating these circles and defining their radii.
The question as to the best way to parametrize the cir-
cles has a deep answer which leads to the theory of dis=
continuous groups of Mobius transformations. Recall

that a Mobius transformation T given by the correspondence

maps circles in the complex z= plane into circles in the
complex w-plane, Here a,b,c,d are constants independent
of z, and a straight line is considered to be a circle
with center located at the point at infinity., Therefore
one can find a set (ar,br,cr, d,) such that

maps Co into Cro The n Mobius transformations which
carry out these mappings are called generators, It will be
shown that the specification of the domain B, by the set
of wy(z) is the propitious choice, Before proceeding with
the construction of Green's function, we must explain sev=-
eral salient geometric properties of Mobius (projective)
transformatlons in general., We will henceforth assume
ad-be = 1, The inverse transformatlon T=* is given by

. -dz + b

cz = a

a b
A 2x2 unimodular matrix <; d> may be assoc1ated with T;
then the inverse matrix is associated with T~". The con-
formal mapping accomplished by T maps any given three
points a,b,c into three variable points o,B,v. Introduce
the cross=ratio symbol (z1 z; zs 24), where

(21~ 23) (za~ za)

(z1= 24) (22~ zs)

(2, z2 23 Zé) =
then

(wl0=») =(zabc)
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reads

_ {z-b)(a=c) _ fa-c)z + b(c-a)
¥ = (z=c) (a=b) ~ (a=b)z + c(b-a) °’

and has the form of a Mobius transformation, The mapping
(a,b,c)~ (a,B,y) is given by

(wagy)=(zabe),
Its inverse transformation comes out to be
(wabe)=(zasy.

Since three points determine a circle and the mapping is
conformal, we see that circles are always mapped into cir-
cles or lines, A Mobius transformation W_az+~b has two
fixed points f,,fs, which satisfy the cz+d quadratic
equation

£ = af +b
cf +4°
. az + b .
When we have found f, and f; we can write w = gz~ in
the equivalent form
W - f]_ =K z-fl
w - fa Z'fg

or (W ® fl fg) = (Z }E_B_:E_f_l_ f]_ fg) s

1 - K
which show immediately that f£,-f, and f:- f,. The constant
K is called the multiplier ; a Mobius transformation is de=
termined by giving its two fixed points and multiplier.
The inverse transformation has the same fixed points f; and
fo.

In an analytic transformation w = £(z), a lineal ele-
ment dz = zy=z; connecting two points in the infinitesimal
neighborhood of a point z is transformed into the lineal
element dw in the neighborhood of w. We have dw = f'(z)dz;
hence, the length of the element is multiplied by |f’(z)|.
Infinitesimal lengths in the neighborhood of a point z are



314 STANLEY FENSTER

are multiplied by |cz+d|™®, since

E

=m Qw—: f,(z) =1_
cztd ? dz (czHd)? °
The circle I,

I:  Jeztd] =1

which is the complete locus of points in the neighborhood
of which lengths and areas are unaltered in magnitude by
the transformation, is called the isometric circle of T,
It is easy to see that lengths and areas within the iso-
metric circle are increased in magnitude, and lengths and
areas without the isometric circle are decreased in magni-
tudg by _the transformation. For, if z is within I,
[244] <1 or lcztd| <1, and |£'(z)| > 1. A length or
ares |°|” within T 1s thus magnified in all its parts,
Similarly, if z is without T, |£/ (z) |<1; and a length or
an area is diminished in all its parts.

The inverse transformation

-dz + b
W= R E—
cz - a

has the isometric circle I’, where
It ez - al = 1.

The center of I is at - % and its radius isT%T; while the
center of I’ is at & with the radius of 1’ being the
same as the radius of I, It is a theorem that a transfor-
mation carries its isometric circle into the isometric
circle of the inverse transformation. For T carries I in-
to a circle I, without alteration of lengths in the neigh-
borhood of any point, hence T~ carries I, back to I with-
out alteration, But I’ is the complete locus of points
in the neighborhood of which T effects no change of length;
hence I, coincides with I‘., We can show this algebraically
by computing |cw(z) - a| when |cz+d|= 1 and o 2zib, We

' cz+d
find (=cwta) (czHd) =1 or



DUAL LOOPS 315

1
|cw-a | = ———t———

\cz + d]

Therefore, if |cz+d| = 1 then also Icw-al = 1, Further-
more, from |cw-a|lcz+d|= 1 we can see that the gutside
|cz+d|> 1 of I maps into the inside |gw-a|< 1 of I’ and
has all lengths shrunk in order to fit in,

If the multiplier K is a real number, the transforma=-
tion is called hyperbolic. There are four geometric facts
which can be proved about hyperbolic transformations:

(i) any circle through the fixed points ff, is trans-
formed into itself, each of the two arcs into which the
circle is separated by the fixed points being transformed
into itself;

(ii) the interior of a circle through the fixed points
is transformed into itself;

(iii) any circle orthogonal to the circles through
the fixed points is carried into some other such circle;

(iv) the fixed points are inverse with respect to
each circle of (iii). This point has an obvious electro-
static interpretation,

MGbius transformations, whose singularities are poles
may seem quite different from Green's functions, whose sin-
gularities are logarithms., Actually Green's functions are
obtained from infinite sums of M&bius transformations by
indefinite integration on z; the integral contains the loga-
rithms, These integrals are called Abelian Integrals of
the Third Kind, and represent third kind functions discussed
above, The differential under the sign of integration has
poles, and is called an Abelian differential of the second
kind. The infinite sums are sums over image points when
given a potential-theoretic interpretation.

a
The matrix representation <9 8) of a M6bius transform-
ation T makes it evident that compound transformations can
be effected and that a group structure will emerge, The
groups appearing in dual tree theory are SU(1,1) and
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SU(1,1)xSU(1,1) ., They are Lie groups, containing infini-
tesimal transformations in which the constants independent
of z are infinitesimally different from zero (or unity).
But there is another way to generate groups starting with
Mébius transformations; and that is to specify say n trans-
formations TyTs...,Tp, where T, has a definite form

T.: w = g% + by

e i r=1,2,...,n
3
Cypz + dy

with constants (a,.,b.,c,,d,) quite different from those re-
quired to make w infinitesimally close to z., These genera-
tors are given once and for all, and the infinity of elements
of the group are obtained by compounding MSbius transforma-
tions discretely out of them. Thus, for n=l, the group
elements are obtained by taking all possible powers of T;:

w=f, z=f
T, : =| =1
1 g, T KoE @

a

-f z=f
T,)%:; I - ks , 2L
( 1) W'fg Z‘fg .

L]

W‘fl v
= E-—fl'_ V=
w=f, K z=fo ] _OSi 1’ izsuu-

(T)V:

The compounding is done in the usual sense of a function of
a function; (T1)?(z)= T,(T.(z), etc. It is easy to show
that (T) V=TV, the yth power of T, is in fact given by the
above formula, (It is this fact that makes the fixed-point
representation convenient; every power of T is a transform-
ation with the same fixed points, and a multiplier which is
the K of the generator raised to the corresponding power.)
This set of transformations constitutes an Abelian group
with an infinite number of commuting elements and one gene-=
rator T, This group is called a discontinuous group since,
although it contains the identity (v=0), it caontians no
elements in an infinitesimal neighborhood of the identity,
as does a Lie group such as SU(1,1). We have already
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discussed the geometry of T and T™! in terms of their fixed
points and isometric circles; we now go on to the geometry
of the multiply=-infinite set of Mdbius transformations gen-
erated by taking all possible powers and products of powers
of the T,, r=1,2,.,.,n such as (T1) 2 (T2)=%(T4)3(T,)°(Ts) "5,
Because the T, do not commute with one another a given T,
may appear as often as we like in the product (which con-
tains always a finite number of factors). Once the T, are
specified, a set of n pairs of isometric circles Ia .1,

Iz, are defined which divide up the complex z= plane into
(i) fundamental region Ry outside all the circles and (ii)
the complement of the fundamental region consisting of the
sum of the insides of the isometric circles, A transforma=-
tion of the group carries the points of the fundamental re-
gion Ry, out of the fundamental region into another region
R; this region R is quite equivalent to R, and R may be
called a fundamental region for the group. Two configura-
tions (points, curves, regions) are said to be congruent
with respect to a group if there is a transformation of

the group which carries one configuration into the other,

A major theorem is contained in the statement: If no
two points of a region are congruent, the transforms of
the region by two distinct transformations of the group do
not overlap. A corollary is that the transforms of a fun-
damental region by two distinct transformations of the
group do not overlap, Each group element has its own iso-
metric circle, By considering the isometric circle of an
element which is the product of two given ones (two succes=
sively performed M8bius transformations) we find that the
radii of the isometric circles are bounded; the number of
isometric circles with radii exceeding a given positive
quantity is finite; and given any infinite sequence of
distinct isometric circles I,,I;,I3,..., Of transformations
of the group, the radii being ri,rs,rs,...., then
lim rp=0. In studying the arrangement of isometric cir-
cl%s? the following theorem is significant, Let I;,I,,I,
and Ty,= ToT, where T, operates first, If I, and I, are
exterior to one another, then Izi1 is contained inside I,.
The proof is simple. Let z be a point outside I,. Then
z,= T, (z) is inside I, and therefore, by hypothesis, out-
side I,. Regions around z are shrunk by T,. Next apply
T;, mapping z; into zz:. Regions around z; are shrunk in-
to regions around zz1. Now Ty, maps z into z: and produ-
ces the shrinking of T; plus the shrinking of Tz, so Tj:
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shrinks regions around z into regions around zz;,. There~
fore z is external to I;; and every point z external to I,
is also external to I3;. Therefore, I;y is contained in
I,.

In the dual resonance model the fixed points of all
the generating transformations Tap-15 Tap, H=1,2,...,n lie
on the Koba-Nielsen unit circle, which by Mobius invari-
ance can be taken to be the real or imaginary axes, If
the fixed points of the generators be on the real axis
the group is called a Fuchsian group, and the fixed points
of all the transformations of the group will also lie on
the real axis. Then the real axis is called the principal
circle for the group and it contains, in addition to the
fixed points, also the centers of the isometric circles.
The isometric circles of a pair Tgu-l, T2y, of generators
have their centers on the real axis, have equal radii and
are congruent, The fundamental reglon R is the whole com-
plex plane minus the insides of the 18 We designate by
Ro the part of R lying within the pr1nc1pa1 circle (or R,
is the upper half plane). R, is carried by all the trans-
formations of the group into a region in the interior of
the principal circle. A theorem states that any closed
region lying entirely within the principal circle is cover-
ed by a finite number of transforms of R,. These regions
fit together without lacunae. Also, the transforms of R,
£ill up, without lacunae, the whole interior of the prin-
cipal circle, They cluster in infinite number about the
limit points of the group (which lie on the principal axis
and inside the isometric circles of the generators or out-
side Ro.) Groups of this type are called simultaneously
Schottky groups and Fuchsian groups of the second kind.

We are now ready to introduce automorphic functions
with respect to a discontinuous group, Automorphic func-
tions are the generalization of the circular, hyperbolic
and elliptic functions of ordinary analysis. A circular
function, such as sin z, has the property that it remains
unchanged in value if z is replaced by z+2mm, where m is
any integer; that is the function is unaltered in value
if z be subjected to a transformation of the group
w =12z + 2m. A hyperbolic function, such as sinh z, is
unchanged in value if z be subjected to a transformation
of the group w = z + 2mim. An elliptic function, such as
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the Weierstraussian Function B(z), retains its value under
transformations of the group W =z +mw +m'w’,

The automorphic function is an extension of this con-
cept to the more general discontinuous group, Roughly
speaking, a function is automorphic with respect to such
a group if it has the same value at congruent points, If
T.(z) is any transformation of the group, then £(z) is an
atitomorphic function with respect to the group if £(z) is
a single-valued analytic function inside the principal cir-
cle and £[T;(z)] = £(z) there, A theorem states that each
limit-point of the group is an essential singularity of the
function, For in the neighborhood of a point at which a
function is analytic or has a pole, the function can take
on any value only a finite number of times. In the neigh-
borhood of a limit point, there is an infinite number of
congruent points at which the function takes on the same
value, Hence, the limit point is an essential singularity,
We shall now actually set up an automorphic function by
means of a series.

Let the transformations of the group be
a.ztb.,
l —

zg =Ty(2) = T35 > 2397hyey =1

i=0,1,2,...

the identical transformation being z,=T,(z) = z. For sim=-

plicity, we write zij = Ti(Zj) = T;T:(z). Suppose, first,

that the group is finite. Let the g%oup contain m trans=-

formations (i=0,1,...,m-1). Let H(z) be any rational func-
tion of z and form the function

9(z) = H(z) + H(z1) + H(zz) + -0 + H(z ),

This function has no singularities other than poles. If
we apply a transformation Tk of the group to z, we have

m(zk) = H(zk) + H(zlk) + oao + H(zm-l,k)'
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Now, 21 ;Z1ks«+«>Zm-1,k are the set of transforms of z and,
since Zy is congruent to z, this set coincides with =z zh”,,
Zp-1- The terms of the sum are the same as before, their
order being merely interchanged; hence w(z,)=¢(z). The
function is thus automorphic. It has no other singulari-
ties than poles. If the group contains an infinite number
of transformations and we extend the sum to an infinite
number of terms and add convergence factors (c;z+d; )‘2 we
get the Poincaré theta series

6 (2) =:§ (esz +d,) ™ H(zy)

which is not quite an automorphic function, but rather
satisfies

G(Zj) = (cjz + dj)2 8 (2).

It is easy to form an automorphic function from two theta
series with different H; (z) and Hy;(z). The ratio

01 (z) /62(z) is, in fact, automorphic, We now show how
Abelian dlfferentlals w1th poles (second kind) may be form-
ed with the Poincaré theta series for a Fuchsian Schottky
group.

We take

H(z)

z=a

and define 6(z,a) by

1
e ey I ———— o e ———
(Z,a) (Yiz-i-éi)a Wi(z) -3’
alz + Ri
Yy (z) Y z + 6 *

We define R, as the region which R, is mapped into by T..
The totality of Rj fill the plane inside the principal
circle. The function 6(z,a) has two simple infinities
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inside any one of the regions Rj, namely the homologues

of a and » that lie inside R;. The same statement is

true of 6(z, W (a)). It follows that constant multiples

of the two functlons can be chosen such that their differ-
ence shall be independent of a. We can show, using the
fact that the product of two matrices

[al B}] [J 53-1

gives another matrix which defines an element of the
group and a term in the series, that

8,
J
G(Z,Wj(a)) ol O(z,a) . e(z’ = $_ ) 3
J
which is independent of a. Recall that - —L is the cen-
ter Jj of the isometric circle for Tj. Yj The function
6,
P
e(z’ Yj )

has no poles, its only singular points being the singular
points of the group. The points - éj and ay are the

'Yj Yj
homologues of infinity, and there are clearly an infinite
number of functions 6(z J;). However, only n of them are
linearly independent, since we can show that

e(Z,Jp) - S(Z:Jq) Sl e(z, Jp-lq)

where J. -1 1is the center of the isometric circle for the
transformalion Tp q’ which is given by

3 _ 6, &, - 8o
“lq T Tya +a .
P q Yp q p Yq
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The same process of direct substitution giving this re-
sult also can show that

e(Z,Jp) = -6(z,JP_1)-

Hence, if T, and T, are two of the fundamental substitu-
tions (generators), and J the homologue of infinity form-
ed by any combination of these two, then 6(z,J) can be
expressed in the form m6(z,J_ ) + n6(z,Jy), where m and n
are positive integers. It follows from this at once that
if T;,Tz...T, are the n fundamental substitutions, then,
whatever homologue of infinity J may be, 6(z,J) can al-
ways be expressed in the form

n

? m, G(Z,Ji).

We now carry out integrals of 6dz of the form

z Wi(z) -J
I 8(z,J)dz = ¥ log w. (za) =1
Zo i S

b

when the integral path is at first confined to the gene-
rating polygon (fundamental region). The generating poly-
gon consists of the space outside n pairs of circles C;
and G, Cz and Cs,...,C, and Cy, each external to all the
others. The substitution T, transforms the circle Cp in-
to the circle G5, and the space outside the circle C

into the space En31de the circle C so that the pOlBt Jp
is inside C, and the point Jp-, is inside Cp. An element
of the integral of B(Z,Jp) may be expressed as follows:

e(z,Jp)dz = ¥d. log (wi(z) - JP)
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aj (z - Ji'lp)
= xd . log

Y (z - J;-1) :
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When T; is the identical substitution w = z, the corres-

ponding term on the right hand side is of a slightly dif-
ferent form, namely d log(z-Jp); hence

&i(z = Ji‘l )
e(z,Jp)dz =d* log(z -~ Jp) + £ d-log P

Yi(z = Ji—l)

where now the identical substitution is not included un-

der the sign of summation., Now, as before stated, J, is
. T P

inside CP’ and it is easy to see from the theorem on the

location of isometric circles that J;., and Jj-)

either both inside or both ourside Cp; hence

are

j 0(z,J ) dz = 2ni,
C P
P

where the integral is taken in the positive direction
around a closed curve within the generating polygon sur-
rounding CP once, and surrounding no other circle,

Again, Jp, is outside Cﬁ, and Jj-1 and Jj-1, are
either both inside or both outside Cp, except w

gen i=rp,
and then Jj-1 is inside and Jj..p is outside, hence

j 6(z,J ) dz = -2mi,
c? P
P

where the integral is taken positively around Cq.
any other circle Cq or Cq, J, is outside and Jj.; and

Ji-1p are always either both inside or both outside.
Hence

For

fcqe(z’Jp)dz - f04 o(z,3,)dz = 0.
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These results prove incidentally that the n functions
6(z, 1), 8(z,J3),...,9(z,J,) are linearly independent of
each other, and that they are not mere constants,

If Ap,Ap are two corresponding points on C, and C,,
and Bp,B, any other pair of corresponding points on the
same two circles, and if A ’,BPB' are joined by paths
AgMAé,B NB;, which do not enclose any of the circles,
then IBEZ,E)dz around A MA'B'NBPAP vanishes, since the in-
tegrand is finite and continuous at all points within the
contour, Therefore

QA MA ' T IB NB' +-[A'B' ;‘[A B) 6(z,J) dz = 0.
P P PP PP PP

Now, if z;,z; are the corresponding points on the circu-
lar arcs A'B’, A B

pp’ pp’
oz + A
Zp = .
v Zy + b 2
Yp 1 P
therefore
e(Zng) = (szl+6p)2 e(zlJ)’
and
dz; = (YpZ1+5P)-B dz, ;
therefore

e(Zg,J) de - 6(zl,J) dZ1.

It follows that

JA B 8(z,J) dz = JA'B' 8(z,J) dz,
PP PP
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the integrals being taken along the circular arcs, and
therefore

ri
jpwps 0CzDaz = [, AN 5(z, D) dz.
P P p
Hence the integral
W (A")

jA/p P G(Z,Jq) dz,

where Ap is any point on the circle C., and q is equal or
unequal to p, is independent of the particular position of
A5, the path varying continuously without passing outside
tge fundamental polygon,

Now let the points A,A;,A A, etc. be joined by lines of
any form, which neither cut themselves nor each other,

and which do not leave the generating polygons; and re-
gard these lines (crosscuts), as well as the circles, as
part of the boundary of the polygon. In the figure so
formed, the integral of 6(z,J), when the lower limit has
an assigned value, is a one-valued finite continuous func-
tion., Let

I 8(z,J ) dz = a
A’A 2
PP q qp

IA [A Q(Z,Jp) dz = a

b
PP PP
so that the quantities ap are the constant values
of the integrals just d1scusseg When the variable paths

between the corresponding points are chosen so as to be
reconcilable with the barriers A;Ay,A;A7,«c., it can be
shown that

a =a__.

Pd ap



326 STANLEY FENSTER

By now it should be dawning that 6(z,J,)dz are first
Abelian differentials for the domain with the circles ex-
cised. The first Abelian integrals are given by

. VA
8 - j 0(z,3) dz,

when J, is the center of a generator circle; there are n
1inearRy independent ép(z)o The constants a,, are just
the moduli of periodicy previously discussed, The normal-
ization here is such that

n

@p(wi(z)) - ép(z) = 2mpn1 + Eni a p=1,2,...,n,

pi’

2 1 1 -
Tbe'real part of & kK app + 2zzxpxq apq 1is essentially po
sitive for all real Ap,

The Abelian integrals of the second and third kinds

are now easily found. In place of Ha(z) = - we put

o aHa(z) . 1

da (z~a)*
to obtain the series
- Z l B ]_
& 2 - a
(vjz + 8) (w; (z) - a)
aiz + Bi

wi(z) - v.z + &, ?
i i

which has a double infinity at the point a and its homo-
logues; while the homologues of z = » are not infinities
of the function, Its integral will therefore be a single-
valued function, finite and continuous everywhere except
at the point a and its homologues; at these points it will
have a simple infinity., This function will be denoted by
1<pa(z), so that

v 1 1
‘ba(z) - Z\wi(z)—-a- wi(zo)—aD’
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where z, represents the origin of the integration, which
can be chosen at convenience. We can show by manipulation
that

1l’a(z) =e(a,zo) = e(a,Z),
and that

A (WP(Z)) - (z) = - e(<'=‘,JP)

is a constant. Thus, these functions have one infinity
inside each homologue Rj and R,, are single valued (i.e.,
they do not change when the variable describes a closed
path which cuts the barriers), and, when one of the trans-
formations of the group is performed on the variable, they
increase by integral multiples of definite constants.

Again the function

1 1 1
E (yiz+5i)E ( Wi(z)—a - Wi(z)-b )

is finite everywhere except at g and b and their homo-
logues, which points are simple poles. If the integral
from an arbitrary origin z, is written.(%b(z), then

(w,; (z)=a) (w; (z0)~b )
Wb =718 G (v, (o) -2

is an Abelian integral of the third kind, where the
branch of the logarithm is that which makes

Qab(Zo) b O.
It is easy to show that
Qab(zz) - Qab(zl) n ngzl(a) - ngzl(b).

Green's functions can now be explicitly constructed,
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and we will choose a particularly propitious arrangement
of generator circles. A given pair of circles Cp,Cp
will lie symmetrically with respect to the real axis, and
an extra circle Co, will coincide with the real axis, (C,
may be imagined as two circles C, and C, pasted together
and mapped conformally on to the real axis,) The genera-
ting transformations all have the form

w-ap_ z = ap
—_—= ——— 3
w-aﬁ pz-a[s

where K, is real, and ap,a, ’/ are conjugate imaginaries;
and it Eherefore follows tﬁat the substitutions of the
group may be taken in pairs

w, = Eif—i-gi and w, = o Ll bi
i y.z + 6, i vy/z + 8
1 1 1 1
’ 14 ’ 7 .
such that a.,B.,Yi,éi and ai,ei,yi,éi are respectively

i
complex con}ugates.

If z,z’ and a,a’ are complex conjugates, so also are

5,) 2 ‘2 4+ 8/)"2
(vyz + 8,) and  YqZ T 89)
-7~ TN
wi(z) a wi(z ) -a

and therefore also 6(z,a) and 6(z’,a’). Now J_and J__;
are in this case complex conjugates, and it hal been Shown
‘that in any case

e(z,Jp_].) = ‘9(z,JP) ,

whence it follows that
e(z,Jp) and -9(z',Jp)

are complex conjugates. Hence, when z is real, e(z,Jp)
is pure imaginary.
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Now suppose that z’ is any point on Cé, so that z
is the corresponding point on Cq; then

dz = dr-elé, dz’ = dr e-lé;
but
z' + 8
2 =vg(z0= fq—u,—aq
Yqz q
and therefore
dz '
dz = ——Fr—<%
+6 ’
(Yqz q)
and
"4+ 85 )® = -21d .
(¥q2 q) e
Also, in consequence of the relation between z and
z’,
8(z,3) = (v.z'+ 62 68(z',J3) = e 21% (2,3,
P q q P P
or

arg e(z,Jp) = =2% + arg e(z',Jp);

but, since 8(z,J ) and -0(z’,J ) are complex conjugates,
arg e(z,Jp) = n-parg e(z',Jp);p therefore

arg e(z,Jp) = g -3,

The ratio of any two of the functions 6(z,J) is therefore
real at each of the circles C,Cy,...,C ,C, as well as at
CO-

The barriers (crosscuts) in this case may be taken
as straight lines perpendicular to the x-axis; and since
it was shown that, when z and z’ are complex conjugates,
so also are 6(z,J,) and -6(z’,Jp), it follows at once that
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fypy 238 o

is real, where apg is any one of the n(n-1) constants.

Finally, since for points on any one of the bounding
circles, including Ao,

arg G(z,Jp) = g -~ §

and
arg dz = &,

the variable part of fe(z,J )dz, or of ?
ginary at all the circles.

ps is a pure ima-

Sticking to the symmetrical case, let us find a
series which will represent, in the space external to
n + 1 circles, each of which is external to all the
others, a function with a single pole at a, and whose
imaginary part has the Green's function property of having
constant values at the circles., Consider the fumction
Ayy(z) + A'y,/(2), where A,A’ and a,a’are conjugate imagi-
naries. Regarded as a function of z, this expression has
entirely real coefficients, and therefore will take com-
plex conjugate values when z does. Now let A_ be any
point on the circle Cy, so that Aé is the corgesponding
point on Cp. Then, iF

’ m .
Aty (a) + A%, /(M) = P +1Q
? I 7 . - 3 .
Ap (A0 + A"V, (A)) = P - 1Q;
but
S
A =
P v A +b ?
PP P

and therefore

AV A +A', @) - (A +a%y ,AD] =
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= Ae(a,Jp) + A’'6(a ,’Jp) ,

or

iQ = %Ae(a,Jp) + % A'e(apr).

It followsthat, at each separate circular bounding curve
of the generating polygon (fundamental region), the imagi-
nary part of A{ (z) +A '¢a +(z) has constant values,
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FIGURE CAPTIONS

Region of definition of multiple-valued harmonic con-

jugate functions; the interiors of C, and C, are out-
1 2

gide of D,

The line L is split into L, and L, where values of v
differ by a line integral.

Another topological form of the curve of Fig. 2; L1
and L2 are looped.

Intersection of crosscuts,

D is a two-dimensional surface in three-dimensional
space. This example contains three handles,

The surface D is severed into B1 and B2.

B, is a sphere with four holes (windows) cut out; its
s%erographic projection on the complex plane is shown.
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A POSSIBLE PHYSICAL BASIS FOR SOME MATHEMATICAL MODELS
OF STRONG INTERACTIONS: ATOMS WITH MAGNETIC CHARGES

A. 0. Barut
Institute for Theoretical Physics
University of Colorado
Boulder, Colorado 80302

I. INTRODUCTION

A physical picture of strong interaction phenomena
based on established fundamental entities and their laws
of interaction, as in the case of atomic and molecular
physics, would be very important and useful, because the
phenomenological or mathematical models of strong inter-
action-amplitudes have too much freedom in them, and do
not in general enhance our knowledge very much. There .
are in principle no arbitrary parameters in atomic phy-
sics, for example, whereas abstract theories either con-
tain enough parameters, or can always be modified to fit
new experimental situations, Thus in models based on
singularities in the angular momentum variable, or in
models with symmetry breaking of abstract symmetry or
dynamical groups, there are always additional terms that
one can add, thereby modifying the values of the previous-
ly established parameters. The phenomenological models
are undoubtedly not without foundation, for they contain
some general features in agreement with experiment. It
would be therefore of great value if these features
could be derived or understood from a physical model.
One should then also obtain necessarily a unifying basis
of the seemingly very different concepts underlying the
different abstract models such as quarks, partons, Regge
poles, hadronic matter, etc.

339



340 A, O, BARUT

Models for Scattering versus Models for Internal Structure

It is appropriate to emphasize the difference between
the two types of modelmaking for strong interactions:

(A) One postulates models for scattering amplitudes
(e.g. Regge-pole models, dual models, additive quark mod-
els,) and then deduces, eventually, from the systematics
of all scattering processes the structure of hadrons and
why they interact the way they do.

(B) One postulates models for single hadrons and
their constitutions and then calculates or deduces the
scattering amplitudes.

These two approaches should be complementary, be-
cause one asks in general different types of questions,
and obtains different types of answers in each case,

Clearly, in atomic and molecular physics the method
(B) was, and is, employed, Had we tried to deduce com-
plicated atomic structures from scattering experiments
we would have had a difficult task. In hadron physics,
the quark model and the parton model maybe, at first,
thought to be of type (B), but this is not quite so,
because, although one makes a model of the intermal con-
stitution, the interaction between these entities is un-
known and arbitrary. Consequently, one does not know
whether these quarks or partons are really new objects,
or simply mathematical "excitations'" which appear in a
simple additive form.

Contrary to some beliefs that one cannot make models
of hadrons as one makes models of atoms and nuclei, there
is, we believe, a definite physical picture leading to ex-
plicit models and where one knows precisely the inter-
action. Certain fundamental results derived from this
model and not obtainable at present with any other ap-
proach, compels one to study further consequences of this
physical picture. In this lecture I shall point out to
relations of hadron models with magnetic charges with,
other approaches discussed at this year's Institute.

What makes the model even more attractive is the intuitive
possibility that not only electromagnetic and strong
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interactions are unified, but also weak interactions can
also be accomodated into the conceptual framework of the
theory.

II. Review of Previous Results

Several aspects of the model has been discussed in
detail elsewhere.® We consider magnetically neutral
bound states made up of positive and negative magnetic
charges. Thus total magnetic charge is zero., The two-
body systems of two spinless particles with electric and
magnetic charges (e; ,g1) and (ez,gs) are characterized by
two invariants

Q
[

= e e + g8
= e ga-eag = 0,+%,+ 1, +%/a,....
(1)

The quantum number U turns out to represent the spin of
the ground state. We now summarize the consequences of
the model.

1S
|

(i) Spin, charge and Baryon Number

The first result can be stated as follows:

(-?3 = D= (-5, 2

where j and Q are spin and charge of the states of the
system. Thus, for u = 0 (jyhip= 0), charge Q must be zero,
for uw = % (Jpin= %), charge Q must be different from zero.
This is a striking simple explanation of the fact that

the lowest mesonic state n°is spinless and chargless, and
the lowest baryonic state, j = %, is charged.

We emphasize the rather unusual fact that, when mag-
netic charges are present, a spin % state (e.g. proton)
can be explicitely constructed out of two spin zero par-
ticles,
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(ii) Stability

We have also the result that «° must be a particle-
anti particle system hence annihilates into 2y, whereas
proton must be stable. The quantum number y also plays
the role of the baryon number,

(iii) Form factors

A third simple striking result is that a spin
%+-particle made out of two magnetic charges (proton)
has a magnetic form factor of the dipole form as now
verified up to momentum transfers of 25 (GeV/c)?.

{(iv) Principal quantum number

The next result is the appearance of a new quantum
number n to distinguish states with the same spin and
parity, such as nucleon and N¥* (1470), both %¥*. The quan-
tum number n is the standard principal quantum number of
the two-body problem.

(v) Mass Spectrum and Upper Limit for Resonances

A further result is the explanatilion of the empirical
hydrogen-like spectrum of the excited states of the pro-
ton and the prediction that there are no nucleon resonan-
ces with masses beyond about 5 GeV.

(vi) Limiting Diffraction Peak for Elastic
Scattering

Another result, on the basis of a vector coupling of
two protons, is the explanation of the sharp diffraction
peak in the p-p scattering, and the prediction of a uni-
versal elastic differential cross-section do/dt at s - @
with a slope at t = 0 of 10.90 (GeV/c)™® (except at the
very forward point t ~ 0, because of optical theorem).

(vii) The Constants in the Theory. Further
Estimates,

The value of the magnetic charge g is fixed by Eq.
(1). Consequently, the only parameters in the theory are
e® = (137)~! and the masses of the constituent magnetic

charges. The invariant o in Eq. (1), is the new and, in
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principle, the only coupling constant for the two-body
problem. Because its value is now large, a = (137/2)%,
the dynamical two-body problem cannot be solved by any

of the standard methods. The form factor and mass spec-
trum calculations cited above have been made on the basis
of global infinite-component wave equations and relativis-
tic dynamical groups in which the strongly bound two-par-
ticle system is treated as a single particle with internal
degrees of freedom. Therefore, the masses of the magnetic
charges are not known. However, assuming that their
masses is purely electromagnetic, i.e. m, = g°/e® m, ~
2.4 BeV, one can make a number of reasonagle estimates:
(a) saturation point of resonances = ng ~ 4.8 BeV,

(b) magnetic moment of the proton ~ 3 nuclear magneton.
One has also a qualitative understanding of n° mass and
lifetime,

(viii) Model for Neutron and charged Pions; (n-p)
mass difference

Sofar we have discussed the lowest possible states
n° and proton. Neutron and charged pions cannot be built
as a simple two-body systems, because they have the weak
decays into their ground state (proton or n°, respective-
ly) with the emission of a lepton-neutrino pair. Thus
weak interactions may also be viewed as a consequence of
the internal structure of hadrons similar to a-decay.
Hence one can try to consider models of neutrons and
as bound states of the previous basic proton and n°-struc-
tures, withia purely electrically charged borons B* decay-
ing into (£ v)-pair. The model accounts qualitatively
for the properties of neutron and charged pions. The
electrically charged particle B can be tightly bound to
a magnetic moment at distances of the order of 107**C¢M,
radius of the magnetic charge. Note that in this model
the n-p mass difference (or m' -n° mass difference) is not
purely of electromagnetic origin.

Eguation

Finally, we mention the mathematical result that
the two-body system characterized by p, (dyonium) has as
it dynamical group the group 0(4,2) in its unitary
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representation which is also characterized by . The
states in this class of representations are labeled by
Iu;njm >, Note the new quantum number p in addition to
the usual quantum numbers. In this space of states
|unjm > one constructs a conserved current operator j

to describe the electromagnetic properties of the model,
as well as mass spectrum (see subsection (iii) and (v),
and Sect.III). The conserved current ju is equivalent
to an infinite component wave equation.

(x) Matter with Magnetic Charges

Table I shows schematically a parallel picture of
the structure of matter based on electric charges alone
(ordinary matter), on the left, and on the right, based
on both electric and magnetic charges, (new matter),
which we identify with the hadronic and nuclear matter.
We remark that the magnetic field on the surface of the
magnetic charge in our model is about 10'® Gauss, the
same as estimated on the surface of the neutron star.

III. Implications for Scattering Processes

The model discussed above gives us now a method to
visualize hadron scattering processes., We discuss some
examples,

(i) Pion Production

As we have seen pions (and hadrons in general) are,
in the present model, pairs of magnetic charges with to-
tal magnetic charge zero. Thus pion production will be
viewed as pair-production. The subsequent pair, because
gtot = 0, can escape the production region. On this basis
it is possible to account for the energy dependence of
the average multiplicity and total production cross-sec-
tion by multiperipheral-pair production calculations.?
Because pair production is more favored than the "ioniza-
tion'" of the proton, almost all the energy will go into
pions.

(ii) Deep Inelastic Electron-Nucleon Scattering

In the inelastic electron-nucleon scattering
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experiments®

e + p » e + anything,
one measures the scattered electron only (so-called in-
clusive reaction). To lowest order in electromagnetic
interactions, one has thus an excitation of the structure
of the proton into its excited states, and into possible
particle production. The cross-section for this process
gives us information on the structure of the proton in
the following way: we have seen in previous Section that
a conserved current operator j,, describes the form-factor
as well as the excited states of the proton in our model.
Because j,, is known we can evaluate its matrix elements.
In the inelastic scattering, the cross-section is related
to the products of the matrix elements of the current.
Although this process has not been explicitly calculated
in the model, it seems on the basis of simple-infinite-
component wave equations, that a satisfactory explanation
of the experiments is to be expected.®

(iii) '"Dual" Properties®of the Scattering Amplitudes

Consider first e e -scattering. The complete ampli-
tude can be expressed as a sum of photon exchange diagrams
in the t-channel (ete”). The resultant amplitude has in-
finitely many poles in the s-channel, and the amplitude
can also be expressed as a sum of infinitely many poles
in the s-channel. But we do not sum t-channel exchanges
and s-channel poles simultaneously; one can take one or
the other. This is a type of duality.

Next consider positronium -positronium scattering.
Now in both s- and t-channels we can have positronium in-
termediate states, as well as photon lines. Thus, we can
take, for examples, photon lines in both channels, and ob-
tain poles in both channel or vice versa., Or photon
lines in one-channel and poles in the other, This is a
quite rich and interesting model to visualize dual ampli-
tudes.® 1In the magnetic charge model of the hadrons we
have actually a situation close to positronium case ;
the forces are again of Coulomb-type, but with two differ-
ences: superstrong coupling constant for the 1/r-potential,
and, in addition, the magnetic vector potential which be-
comes very strong at short distances.
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TABLE I
Electrodynamics with Electric
and Magnetic Charges
Magnetically Neutral Matter
Ordinary (Electric) Matter Magnetic Matter
(u=0, a=1/137) (u#0, a=137/4)
Matter with pure Matter with electric and
electric charges agnetic charges and gt0t=0

Dyonium
H-Atom (proton)
H, -Molecule Dyonium Molecules
Chemical Bond Nuclear Bond
Positronium e

+ .
m , Neutron-Isospin
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PARTICLES AS NORMAL MODES OF AN UNDERLYING
GAUGE FIELD THEORY*
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I. Introduction

We would like to suggest that the physical properties
of the existing bosons and fermions are well approximated
by considering the particles as normal modes of an under=-
lying field theory possessing gauge invariance of the sec-
ond kind, We envision that at each point in space-time
there exists an infinite number of irreducible tensorial
fields ¢"'*°°Mk and Rarita-Schwinger fields y,M °°*Mk with
bilinear interactions between fields which are nearest
neighbors in the Lorentz index space k.' The gauge invar-

iance requirements generate these bilinear interactions

in a natural way, and the fact that the physical parti-
cles are normal modes allows them to have intrinsic struc-
ture. In the spirit of the narrow resonance approxima-
tion to scattering, we conceive of scattering in a manner
analogous to the ''rubber band' interpretation of the Vene-
ziano Model.® That is, a particle starts out in a given
normal mode and absorbs and emits external quanta with
corresponding excitation and de-excitation of the under-
lying field theory. The vertices are obtained by postu-
lating that the external quanta couple to appropriate
currents inherent in the Lagrangian; that is, the o
couples to the vector current, the m to the divergence of

*Work supported in part by the National Science Foundation.
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the axial vector current, and the nucleon to the baryonic
current, In this way we can give rules for constructing

N-point functions in the narrow resonance approximation.

For a system consisting of only the m and p trajectories,
we show it is possible to construct currents obeying the

chiral SU2 @ SU2 algebra,

IT, Gauge Invariance of the Second Kind as a Generator
of Infinite Component Field Theories with Bilinear

Interactions,
Consider the massless spin zero Lagrangian
A %Bucpaucp. (1)

We notice that L is invariant under the transformation
o(x)=p(x)+a, with o constant, This is gauge invariance
of the first kind. Associated with this transformation,
there is a conserved current

(o)
3" = %‘g—a(—g = 2%, BMJ =0 (2)

whose integrated fourth component is the generator of the
transformation,

Suppose we ask that L is invariant under the trans-
formation o(x) - o(x) + a(x) (gauge transformation of the

second kind). Since s1.(°) =3 goMa(x), we see we need to
introduce a new field o", with b111near interaction

Lint. - m(aum)m“ (3)
such that |
@ - '@ - & M),
v = o+ alx) (4)
leaving the quantity

Gu = a“w + m¢P (5)

invariant,
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Thus L( °)' o YoMy tmeM)® is gauge 1nvar1ant We
notice L(°)’ contains a mass term for @ , SO We must add
a kinetic energy term. If we add an automatically gauge
invariant kinetic energy term

A -2MyY - 3 w“)(aumv - aku) (6)
the simple replacement
mA" = me™ + aMy (7)

reduces this theory to an ordinary spin one field theory
for a particle of mass m,® Also in terms of AM the gauge
invariance disappears. If we want to maintain gauge in-
variance, we instead introduce the symmetric kinetic ener-
gy term

50" + 279N (3 o, + 2 0) ®)

or, so that we have an irreducible representation of the
Lorentz group, '

]
v v v A )

LG o yeMeY + 0V - 3™ 6N = —(82Me)? (9)

where & is the symmetric traceless projection operator,

Under
o) - ) - & M), (10)
G)Y' _ 2 M Ve

SL == @3P s ,] 3,0 0(x) (11)

which requires the introduction of a new field muv such
that

bV MY + mag (12)

G = 63
is gauge invariant,

Using induction, we generate a Lagrangian with an in-
finite number of fields 1M = o<

— 44 VieooeVg H...Hk
W Jd x[kzankc \6 A T VI T +ak¢v1,..v;>
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_;’ \)oo-\) _‘
A (13)

Here ﬂk=(-1)k, and 651"°$k is the unit matrix of the
ll..k

(k/2, k/2) representation of the Lorentz group. L is in-
variant under

AY V
@ e 8 ke Ll ACx)
Myeeobie  THoeoobye KM Lo TV Vi

if v * g1V = 0.

This Lagrangian leads to the field equations

-k k+1
PR +(HD) ol = S 83(a k) - (kHD) oy 37
o oL (14)
where 1 A
83, = 5[ 20, + 3.9, - kg 2,0 ], etc.
and i - M
o 9, ) w“v, etc,

We notice that (k+1)of is the "bare' mass of the fiekg qk
1

and that the source of o is the field 3¢S * and d-qN't,
Thus gauge invariance produces Lagrangians with an infi-
nite number of fields with nearest neighbor interactions
in Lorentz index space.

For fermions we want a gauge invariant Lagrangian of
first order which is to be the analog of Eq. (13)., To
find the appropriate Lagrangian we first replace o by {3,
(the Rarita-Schwinger field ¢:1"° k) and consider the
quantity

G (15)

kupoa 6auq‘ka + oo 11jkuoc'
(The notation kg means a field with the spinor index «a,
and with k + 1 Lorentz indices, k of which are understood
and the (k + 1)5t equal to p.) Since for fermions yH as
well as 3" is a vector we notice that Gkue is invariant
not only under
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wk&—'wkdﬁ-}\kéaul c o .ap.ku(x (16a)

but also under

T LRI L (16b)

if k 2 1, Now the quantity

by, = 5uf"uk+1 Y\)k‘f'lq;vl"'vk (17)
k vlo.ovk+1

is automatically invariant under the second type of gauge
transformation of the second kind (Eq. 16b) since

8yyA = 0 (v Y. has no symmetric traceless piece). There-
fore the apﬁrgpriate first order gauge invariant fermion
Lagrangian is

L = z nkEkyu iaa“¢k+ak Ven j + h.c. (18)
k=1 -

which leads to the field equations

1(ye 824, + 3+ 0y )+ @ Y ¥

+ o=l @ ) vy, = 0. (19)
"

For the boson Lagrangian, the gauge invariance tells
us that

a“[auw + almu] - 0. (20)

This implies that the theory contains no spin-zero par-
ticles, Thus the gauge invariant Lagrangian, while able
to describe the p trajectory, cannot be used to describe
the mw trajectory., By only requiring that L is invariant
under restricted gauge transformation (A(x) must obey
(CP + m®)A(x) = 0) we can generalize our Lagrangian to
describe the m trajectory. Specifically, we consider
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_ 2 k _ kN
= ‘k;O {nle® (o rromrae ag )] GGt (o
which is invariant under
N J (k-3)
B B + Yie 83 Vj(x)

H@ ) V@ =0, 0003 =0 (22)
" . e
A em? (keiHD) (khiH2) B Ypyg t %Yt Ypo, = O.
2 (k+1)*

For fermions, we can construct a similar generaliza-
tion:

T = = '
I k;l nV YA N @ kB2, ) +hee, (23)
which is invariant under the transformation
R J (k=j=-1)
b = WP 8Yd u (%)

s (ivyed = mj)uj =0, ysu, =3.u, =0 (24)

P IR oz 7o Letl-9) (k+3) (k+Hi+3)=0,
k+2)(1>\k + akkk+1) 1m By N2 (k+2) ?

and 2(

The boson Lagrangian leads to the field equationms

5.6 4 @_1«_1) yek_laack'l = (111__) O.ka
1

+1 M+ (25)

k+1

k
2 1+akcpk+6k3°cp .

G" = 8dg
The fermion Lagrangian leads to the field equations

]’.Y°531|1k + ia°6‘Y¢k + o-kY°¢k+1+ in“a'Y"bk_*_z
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-1 = )

+ * 8y +i === _, B3YY = 0, (26)
™ O-1 °Y¥%-1 e k=2 k=2
III1 Mass Spectrum

In order to determine the mass spectrum we assume
the existence of a set of normal mode free fields arj of
N

mass my, (waN for fermions), and spins j (j+%). These
fields obey

(= + maNj) &&j =0 ; Boqu =0,

(27)
(iyed = mNJ.) Ty =03 dely; = Y-WNJ. = 0.

The underlying fields have the following decomposition in
terms of the normal modes

o = Z GIENJ)Ga(k J)mﬂl Zb(NJ)éa(k- )~C5NJ
e _) { & TN3) 5o (k= J)~0LJ + b(NJ){,Ya(k j=) qa }
N,j

The aéNJ) are related to the wave functions;
a(NJ) and Ek(NJ) obey second order inhomogeneous differ-
ence equations, whereas b (Nj) and 7(Nj) obey second or-

order homogeneous equationg. The allgwed wave function
must be normalizeable, and this leads to the eigenvalue
equation of the masses my, of the normal modes, The homo-
geneous equations are

2. . (Nj) N
n°N; (kﬂ(;_z;)l)(l: 3+ b d Mt = “Mhe1Prnt b( J)_,_nkokb(NJ)

N
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"y (k=3) (kHi+2) (k+2) (N)
2_3 D) G, (29)

+mk'1akNJ)<n7kn:}-(nk 2B = O-

We notice that although the fermion wave equation is
first order, the mass enters the eigenvalue equation as
m?, Thus the gauge invariant Lagrangian automatically
leads to Fermion Regge trajectories which are a function
of m® and not m, in agreement with experiment.

By a rescaling of a, and b, we can convert both equa-
tions to almost identical difference equations., Letting

(N3) _ gd g(N3) f EIEN:])= A LD

EbR P k "k+l
(30)
ith Bop -5, 3 kil Ay, - K
wi Bk-l-B——-— 2 Pr-2 \kr2 - 2
K+l k
we obtain
2 (k-j+l) (k+i+2) ~j _ k® o~ &3
- N (k+1) 2 biy1 =2 big mby (3la)
2
2 .
. (k=3) (k+Hj+2)  (Nj) Nj) (N3)
= = k* +
T (e)® Ykl T2 Yk 1T ™ (31b)
2
where -12‘— G %-1 in (3la)
mame_y = M = Bt
k “k 1“k 2 in (31b)

ZFk-

In reference 4 Chodos and Haymaker have shown that the
choice M ~ k® as ko~ leads to asymptotically linearly
rising Regge trajectories,

The boundary conditions on the difference equation
which lead to the eigenvalue condition are that
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béNJ) =0 for k < j (origin condition)

and that the wave function is normalizable, which re-
stricts the behavior of bﬁ i) as k - =, Spec1f1ca11y,
using the electric charge matrix element as the norm we
have for the boson field theory

(p"Njo |Q|pNjoy = 2pe8°(p-p ) (32)

which implies

k+i+1, .,
AR Gt (3232 (k+i+2). '
1£Z£ KT (2341 1T (e £ 32 734D

(5(Nj)GéNj)

p N3 (NJ)> 2 (k=3)
k+1

t Byby

For this series to converge, one must take the faster
dying of the two possible asymptotic behaviors (large k)
of eqs, (3la,b), If one chooses

-1

M . ? . (33)
o (n+jo+a)(n+jo+a-l)(n+230+1)

for a particular value j of the spin, then the difference
equations (3la,b) become’analogous to the Laguerre polyno-
mial differential equation, and one obtains the eigenvalue
condition

4
2., == (N+j +a
B Njoe Y ( Jo ) (34)
Thus e find that the spin jo satellites are evenly spaced
in m®, The mass spectrum depends only on Mpj, which is a

function only of the ratio Ay_q o

Pr-1
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IV, Form Factors

When we write the normal mode fields in terms of the
gauge fields, we find the expression contains terms having
an infinite number of derivatives acting on the field of
spin j - «, Thus the normal mode fields are not localized,
This is most easily seen by calculating the matrix element
of the electromagnetic current between two physical par-
ticle states and showing it is an infinite power series in
q®. For simplicity we restrict ourselves to the boson
field theory. Letting ¢ become complex so it describes
charged mesons, we have:

LTy [ (oot 824y + huc.
- ge*]. (35)

To construct a conserved vector current we consider the
phase transformations

-ia -ig

S G = e G
+  _ia + i iaG+ (36)
% T e K € "¢ G -
The Gell-Mann-Levy equations are
. _ oL . Mo 8L
JU- = 83 Mo, » BU-J - o, 0
with -
v I kL thp, _ + ku_ + ku
] (X)‘szO”k{G AT GRS RG] (37)

Sandwiching ju(x) between the j = 0 physical particle
state |N j=0 p> and using the decompositions of Eq, (28),
we obtain:

o A ] N 1 ? 1 L .
N 3=0 p* |;%(x) IN j=0 p> =(§;)—3(pwp My 1(P7P) °x
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@ sk
L 2 [y, () + B (D (-]

b N () N) ()]
bl Gt B %P
where ) .
v = 2B - coshe, P (¥) = ——L—l—jﬁ‘{)‘s‘ﬁhg (38)

and

(N 0 (k_ﬁ I‘(k+cx) (** 0(54)) @_
_ -1
blEN D - @ -ff-i-l;?_(kra) Cgo%)..

We notice that F(q2) is a power series in q®=2m*-2p*p
whose coefficlents depend on oy as well as g4 and not in
the ratio “g k=1 which determined the mass spectra, Thus

we can choose éhe form factor independently of the mass
spectra and hopefully there is a simple choice of o and
g8k which leads to a dipole form factor as well as a line=-
arly rising Regge trajectory. The expressions for the
transition form factors are found in the second of refer-
ence (3).

V. Electromagnetic Interactions

We treat electromagnetic interactions by considering
the photon as an external field which merely causes trans-
itions from one state (normal mode) of the underlying
field to another, in the process exciting and de~exciting
all the normal modes. This excitation gives an infinite
number of narrow resonance poles in the s and u channels,
and leads to the narrow resonance approximation to Compton
scattering (elastic or quaielastic, on or off shell), We
assume that the external electromagnetic field couples to
the usual current generated by the minimal coupling hypo-
thesis.
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~ia(x)

For .the boson Lagragian letting og—e w, and
cp+-'cpf"e1“(xgl we find ’
. i< +k +k
e = 5) m @Yyt 0 G (39)
k=0

+h.c. + seagull terms

ia - == it

For fermions, letting  ~ e ~O¢, ¥ - e yields

. T ~k —~ k)
M) = Zl he Bt v, M 4 he. (40)
k:'
Using as the effective Hamiltonian

s t
H = ejJu(x) AM Xt 4oy (41)
we find that the expression for Compton scattering to or-
der e® is
<a(k’,A)N'j's 'p’jout |v(k, )Njspsin> = gy
s 2 - - ® N ’.
+ 1_2 e2 eu(k’ )\) €\}7"(1{/’)\I)‘id4}{d4}7e 1(k x=-k y)
X P S Y | N . .
N3's p 11(3 () 3,())INgsp>. (42)

Using the decompositions of Equation (28) we find that
there are an infinite number of 'marrow resonances' in the
s and u channel corresponding to figure 1,

e H(K) eV (k')

€M (k) eV (k)
jp jv

Hath 0

]S

"in
}'s

N

Z N
Njsp N'j's'p’

NjSP N/jls;pr

Figure 1.
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Since we know the diagonal and off-diagonal j“(x) for all

q®, we can also calculate W, (and therefore the structure
functions W; and WW; using ghe fermion current of equation
(40):

Lt %Z ). N3spl3 (o) IN3's By > < N3 s By 13 (o) INysp>
N\

x(2m) ® 6% (pta-py ). (43)

Since 1t 1s likely that we can choose al and Bk so that
F(q®) ~,"*and the mass spectrum is linearly rising, we
should be able to reproduce the successes of Domokos and
Schoenberg® in obtaining scaling; however here we have a
real Lagrangian field theory giving this result,

VI. Strong Interaction Dynamics.

We handle strong interactions similarly to electro-
magnetic interactions, in that we use external quanta to
excite the underlying field, with the external quanta cou-
pling to the wvarious currents inherent in the Lagrangian,
The prescription for scattering is to treat any one par=-
ticle as the underlying field in a normal mode, absorb
and emit external quanta consistent with the scattering
process, with the underlying field being excited and de-
excited, finally returning to a normal mode state., To ob-
tain crossing symmetry, we sum over the various ways of
choosing each particle as the underlying field in a normal
mode. We postulate that the external quanta couples to a
current generated from the Lagrangian. For example an ex-
ternal p couples to the isospin current, an external m to
the divergence of the axial current, an external nucleon
to the baryonic current., In order to insure that the whole
trajectory is exchanged, these currents must be bilinear
in the infinite component fields, To get an idea of the
structure of these currents, we look at the trilinear cou-
plings of ordinary field theory, treat each particle as the
external particle and try to generalize the resulting bi-
linear object to the infimite component case., In particu-
lar cases, such as the vector and axial vector currents,
algebraic constraints (such as chiral SU2 ® SU2) tell us
what transformations to make on the Lagrangian to obtain
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the appropriate infinite component generalizations of
these bilinear currents.,

Let us first turn to a simple system to illustrate
these ideas, Consider a world where there are only the
and p trajectories; T p scattering in that world is ap-
proximated by p trajectory exchange in the t channel and
the m trajectory in the s channel. In an ordinary field
theory, the s channel pole term requires knowledge of the
prim vertex, which is given by
eabcpu

gpnﬂ awbauqé (44)

Saying that the external p couples to the isospin current
implies that

ext.pa . Ma Eabcmbauqbo (45)

Ho=p0~ "] s J 0=

I "pa

Saying the external m couples to the divergence of the
axial current is equivalent to

oy SXE jHe | Mo abe u
HI Buwc A s A € p a%° (46)

To obtain an expression for n+p- scattering in the narrow
resonance approximation we first have to write down a La-
grangian which will yield a set of normal modes with quan=-
tum numbers, masses and form factors appropriate to the
particles on the m and p trajectories, Then we will have
to generate currents which are the appropriate general=-
izations of the VML and AML of the equations (45-6), Fi-
nally, to calculate the scattering amplitude, we must
treat each particle in ntp™ = np” as the underlying field
in the appropriate normal mode and absorb and emit exter=
nal w's and p's with the effective interactions given by
Hy= -3,¢a®Xt AM2 and Hy=peXt v&  This produces the gen-
eralized Feynman graphs of Figure 2,

To describe the family of particles on the y and p
trajectories, we use the fields ¢g , Wwhere a is the iso-
spin of the trajectory (a= 1,2,3) and n(=0,1) is the nor-
mality of the trajectory (parity = (-1)J™™ and is zero
for the p trajectory and 1 for the m trajectory. The
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ensuing Lagrangian that describes both the 7 and p trajec~

tories is

L =

ﬂ . 3N
P[CTURNAERNIE Y
-x @"
s . (47)
We probably want to choose sn=0 = 0 to descibe the p tra-

jectory. We comstruct currents in the usual way. For
the vector current we let

IID—’] 8

@y = P i eabcAbwc (48)

TR A k-1p K
= 5 i _kZb e (G X B PG X @ H>a . (49)

Similarly letting

P, 4 @
a a + Eabc Ab Ecpc
01

with €mm = 0./ exchanging m and p fields we find
k=1p ki
ank{c ex“’kl““ﬁkknn“"n*}a. (51)

To demonstrate that these currents satisfy the chiral

SU2 ® SUZ slgebra, one merely notices that

v o= z:(ﬁk X (52a)

-k
= e x (52b)
2 (e x )
where nk is the momentum canonical to B o

Thus [Vg(x) , VE(y)]xo=yo _ ieabcvocéa(x-y) (53a)
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a b .
[VO(X) - Ao(Y)Jx°=y°

[, A oy, = 1€VEs Gy, (53¢)

1E@3PCAC 53 (xy) (53b)

Using our rules for scattering, if we want to do
-+ - + -
m(py) + 0 (pz) = m(pPa) + o (ps)

we first let the underlying field start in the n+(p1)
state and draw all possible diagrams. We get the four
diagrams of Figure 2A, Figure 2,2 for example is given

by

1L .
€ (pa) 4 _qa =~i(pz°x=pa-y)
(ZW)SJQPQOZPao fd e y €

x<p”(pa), 170,31, MT(V(V (0,5 4”7 () I (p2) , 11, 5205,
(54)

The matrix elements of V" and AM are generalizations of
equation (38) and are to be found in reference 3b, Choos-
ing the other particles as the underlying field in a nor=-
mal mode, we get four more diagrams = Fig, 2.5 to 2,8,

We notice there are four s-channel and four t-channel dia-
grams, If at the 8-point function level we impose factor-
ization, this will probably tell us that not all diagrams
are independent, and a careful counting scheme will be
needed, It is not difficult to see that all the graphs
except for the triple Regge vertex can be generated for
the N-point function.

=N Scattering

In this framework, unlike the Veneziano model, the
problem of quantum numbers presents little or no diffi=~
culty. Thus it is just as easy to calculate =P elastic
scattering (or m+P - pt+P etc,) as it was to do n et
scattering.

For simplicity let us restrict ourselves to a world
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where there are only the m, p and Nucleon trajectories.
A Lagrangian describing the particles in that system is
given by

T T R R TP i, - i
L =L +k; ety VIO e+ o by
i=1,2

= A
+ 18,3 e, ) + huc. (55)

where i = 1,2 corresponds to the isospin index of the
nucleon . LTP is given by equation (47). The Lagrangian,
Eq. (55) determines the masses and electromagnetic form
factors of the particles; it also contains the currents
which are the generalization of the pole term currents,
Once we have the currents, we can calculate N point func-
tions from our set of rules.

The field theory pole terms are the neutron pole in
the s channel and the p°pole in the t channel. We inter-
pret these pole terms two ways and generalize:

Ny v 1 N<oYp =AM 8 (56a)
s o H
= , MO
or <ﬁyu>a3n=l (56b)
— u =Y - —op_ e
N N .
Y _ZT_ iy = v Py (57a)
e » KO
or (NYH)JT]=0 (57b)
L ey - - =L
X Oa °
(r ®) RN \ (58a)
or au$~K” (58b)

To obtain the infinite component generalization of
the nucleon contribution to the vector and axial vector
currents we consider the transformations

V- e V3 V-Te

-ia b '—r'/g ia“?/g
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and V- e-ia'T/QYs 5 E’ ﬁ'e—ia-T/zYs (59)

-

and find
a a
Mo ST —= 2 ki
Va _Z & [6(4J YH) 2 ‘pk + Bk‘ka)\ 2 ‘L' :|+h.c.
2

Mo <k g S 2 kw
(60)

These are the simple generalizations of the usual vector
and axial vector currents, and obey the chiral

To obtain a simple generalization of
. T .
3o = 81 (¥s3P) 2 ¥tgo (2 p)d.pu (61)

we consider the set of transformations

i

o ()= S HEG A THGR) + VI TG
(wl(x) is hermitean).

OIRICORUE SHn IR

] - = i
1(x) - ¥(x) - 1 £(x) Kn%cpin (62)
here £(x) is a spinor in isospin and Lorentz space and X

is a Dirac matrix defined to be rg°I o, =10
1les if n =1,

n

These transformations lead to the following expression
for the baryonic current:

M 8L T [ak-lp T 2 Tk
1 -y - e G oD G,
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g jE Mok — okulT
+cpk'{2 Kné(v Y ))0L + B P °<2}\n6(Y)\‘bk))a}o (63)
This is a natural generalization of Egqs. (56b, 57b).

Now that we have the appropriate vector, axial vector
and baryonic currents, we can calculate m=p - m-p scatter=
ing in the narrow resonance approximation in the world
where there is only the nucleon trajectory in the s chan-
nel and the p trajectory in the t channel, Specifically
we get the diagrams of Figure 3., (Dashed line is exter-
nal 1, coupling to AM and solid single line is external
nucleon coupling to iM%, the baryonic current).

For example, Figure 3b is given by the expression

=7 . ~i(kix-pay)
ufgglxu 4 4 g
[ (2m*® ]a-(d &4y /2k10 VPao/m

x<r (iea)N=0, 3=0, r=1|7(3,8 ) , 3 () [n(e2) ,N=0, 3=k, 1>,
(64)

We hope in the future to find out which oy,B) lead to
dipole-like form factors, and then evaluate these express-
ions numerically.
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Figure Captions

Fig. 1. Compton scattering with the exchange of a Regge
trajectory.

Fig. 2. Diagrams contributing to ﬁ+p“ scattering. Two
particles (dashed line for the pion, wavy line
for the p) are considered to be external quanta,
while the other two are projected out from the
appropriate currents. The shaded line denotes a
propagating sum of normal modes; the value of n
is explicitly given for each diagram,

Fig, 3. Diagrams contributing to m p elastic scattering.
Dashed line is external 1~ coupling to AM, and
solid single line is external proton coupling to
the baryonic current jH%,
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INTRODUCTION TO THE CHARACTERISTIC INITIAL VALUE
PROBLEM IN QUANTUM FIELD THEORY, *

G. Domokos
Johns Hopkins University
Baltimore, Maryland 21218

Introduction:

The purpose of these lectures is to give a brief in-
troduction to a new approach to quantum field theory.
The physical motivation comes from an attempt to formulate
the intuitively appealing "parton''-models and ''additive
quark models" in a consistent way and - if possible - to
extend them to a full dynamical scheme., The method it-
self is known in the classical theory of partial differ-
ential equations (e.g. the equation of the vibrating
string is solved by specifying initial data on character-
istic lines). In the general theory of relativity, this
method has been widely used to study gravitational waves,
Quantum electrodynamics has been studied in this frame-
work by the Stanford and Syracuse groups., Last but not
least, it should be mentioned that the precursor of this
method has been used under the name of '"infinite momentum
technique" (Cf. S.L. Adler and R. Dashen, Current Algebras,
Benjamin, New York, 1964, where also the original papers
are reprinted and S. Weinberg, Phys. Rev, 150, 1313
(1966) .)

These lectures are divided into the following chap-
ters,
1, Intuitive considerations,
2, Elementary theory of characteristics,
3, Kinematics, spinor technique,

TResearch supported in part by the U.S, Atomic Energy
Commission under Contract No, AT (30-1)-4076.
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4, Some elementary properties of the character-
istic initial value problem (CIVP) in quantum
field theory; physical interpretation,

5. Lightlike quark model,

1-

Electron and neutrino scattering experiments at
SLAC and at CERN can be interpreted "as if'" the nucleon
consisted of elementary constituents, or partons. (Cf,
R.P. Feynman, Phys., Rev, Letters, 23, 1415 (1969) and the
recent review: S. D, Drell and T-M, Yan, SLAC-PUB-808
(1970) ., The now-standard argument is somewhat similar in
spirit to the old Weizsicker-Williams method. Imagine
that I view the electron scattering process from a refer-
ence frame where the nucleon is moving very fast (ideally
with the velocity of light, although this situation can
never be achieved for a real physical system). If (and
that's a big if!...) the nucleon is composed of something
else (Feynman's partons?) then in this frame the nucleon
appears as a 'beam'" of the constituents, all of them
moving with approximately the velocity of light in the
same direction., (Internal motions of the constituents
should not matter much in this frame.) Therefore, accord-
ing to the well-known argument, the inelastic scattering
cross section of electrons on the nucleon appears as the
incoherent sum of the elastic scattering cross sections
on the constituents, There is another (hopefully related)
picture for hadronic reactions, the additive quark model,
(Cf., J.J.J. Kokkedee, The Quark Model, Benjamin, New York,
1969,) Again assume that hadrons consist of "elementary
constituents" (this time Gell-Mann's quarks) and that at
high energies a "real" hadron can be represented as a
beam of the constituents, This assumption (and a few
more technical ones) lead to the remarkable '"quark count-
ing'" relations for the total cross sections at high ener-
gies, Typical of these is:

=1

(GnN)z = %mrnN E = =),

which (if one believes in the extrapolation of measured
T cross sections,.,) is quite well satisfied, The quali=«
tative success of these pictures is quite remarkable,
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However, it raises at least two important questioms,
(These two only under the assumption that these qualita-
tive pictures have something to do with reality. For
example, quarks '"exist' in some sense...)

a,) Can these pictures be reformulated in a Lorentz-
covariant way? If the pictures are realistic,
the "infinite momentum'" frame should not be
essential,

b.) Other models, based on the physical assumption
that the nucleon is a strongly interacting system,
have been at least as successful ‘as the parton
picture, (Cf. G. Domokos, S. Kovesi-Domokos and
E., Schonberg, NAL preprint THY-12, 1971 and re-
ferences quoted there.) Can these-seemingly
contradictory-assumptions be reconciled somehow?

We claim that the answer to both questions is in the
affirmative. (Cf., in particular reference 11)). Presum-
ably, hadrons can be described by fields. In order to be
able to formulate a field theory adapted to the spirit of
a parton picture, we have to overcome several problems.
Any quantum field theory has to be supplemented with a
particle interpretation of the fields (usually stated as
an asymptotic condition, or naively - i.e. apart from the
delicate problem of wave function renormalisation constants
-by studying the field theory in the formal limit of van-
ishing coupling constants.) In a conventional field theo-
ry, one identifies essentially the Fourier coefficients
of the free fields as particle creation and annihilation
operators. The corresponding particle states can be
transformed to rest by a finite Lorentz transformation.
In a space-time description this corresponds to specify-
ing the initial condtions on a spacelike surface, say x°
= const, If, however, I want to construct a field theory
of 'partons", I have to specify free !'particle'" states in
a reference frame moving with the velocity of 1light.

This is not a Lorentz-frame, hence the 'particles" so de-
fined cannot be transformed to rest by a finite Lorentz
transformation even though they may carry a rest mass
parameter., Hence they cannot even be observed as 'ordi-
nary” particles. (Refs. 6),7).) What initial conditions
does this picture correspond to? Try to generate the
"lightlike"” frame as the limit of ordinary Lorentz
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frames, and imagine that in some frame I gave the initial
conditions on a surface x° = const, Now "boost up" in -
say = the 3-direction, Then the '"new'" time-coordinate
will be:

x%» = coshBx® - sinh8x® ~ ef (x° - x3) (g - =),
7

where = of course - tanhg = v, Thus as v = 1 the plane
X°s=const. asymptotically approaches a plane with a light-
like normal and we must face the problem of specifying
initial values on such a plane, It is immediately clear
that one cannot prescribe initial conditions quite freely
on such a characteristic plane, since it contains a light-
like direction (in our case, x°+x®) and thus signals can
propagate in the plane,

We shall see that in fact there are constraints
among the initial data if we want to solve the Cauchy
problem with the initial data specified on a characteris-
tic surface, 1In the next chapter we briefly summarise
the relevant facts from the theory of partial differential
equations (PDE), (No attempt is made at any mathematical
rigor.)

2,

Given a PDE in l4n-dimensional space, (where I shall
call the (n+1)St dimension the time, t,), the Cauchy-
problem is the following, I prescribe the function(s)
and an appropriate number of their normal derivatives on
some surface (e.g. a plane) as initial data, Find the
function(s) satisfying the PDE and the initial conditions
everywhere in the 1+n dimensional space.

Does this problem always have a solution? The method
of answering this question goes back to Cauchy,

In order to simplify matters, take n = 1 and let the
coordinates by xk (k=1,2), Consider a PDE of 274 order,
linear in the highest derivatives,., Its general form is

. Aik9, 4 = @ (u, uyisxi)_ 2.1)
i,k71,2 ’

where the aj) are constants, and @ais some (smooth) func-
tion of its arguments., (Also, u, s ngi’ ete.)
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Now, I prescribe u and u j(the function and its first de-
rivatives) on a curve, C. Try to solve the Cauchy pro-
blem, In principle, I can find the solution as a power
series, I have around C:

du’l =u 11dXi + u 12ng
3 ’

du,2 = u z1dx; + u z2dxs (&=2)
The ths of (2.2) is known by definition on and around C.

Now (2.1) and (2,2) gives a system of linear equations for
u ik (and by differentiation I find similar equations for

the higher derivatives,)

Clearly, eqs. (2.1) and (2.2) have a unique solution,
if the determinant ‘

aii 2a;5 azz |
D =| dx, dxs o | $ 0 (2.3)
0 dX]_ dXz

If - a piece of - C is such that D = 0, the Cauchy problem
as stated has no solution. (For example, there are re-
strictions among the initial data,) Such a C is a charac-
teristic surface.

Example., Wave equation in two dimensions:
aj1 =1, ayp =0, azgz = =c"?, & =0,
From (2.3) we find the characteristic surface:

D= (dx)? - L, (@x:)® =0, f.e,
dx, = + % dx_ (the two branches of the '"light cone'" in
two dimensional Minkowski space), Similar procedure can
be used for systems of partial differential equations; for
details the reader is referred to the literature, e.g.
ref, 1)

Exerciws, 2.1) Find the characteristic surfaces of
a Klein - Gordon equation in an external electromagnetic
field:

[SAY) - p m? -
(g (au 1eAu) (av+leAv) m*] & =0



380 G. DOMOKOS

2.2) Find the characteristic surfaces of the
Dirac equation in an external electromagnetic field.

2.3) A spinless particle is coupled to an ex-
ternal tensor field, HMY, The system is described by the
Lagrangean density:

L = %(@,MQ’“ +m®e + g8, 3, HWY)
(g is a coupling constant.) Find the characteristic sur-
faces of the resulting equations of motion.

In what follows, we shall be interested in character-
istic planes (since they can play the role - in some sense
- of a surface on which Cauchy data can be prescribed. In
a 'decent" relativistic theory these are planes which are
tangent to the light cone, We shall not consider patho=
logical theories (involving couplings with high deriva-
tives, like the one in Exercise 3) above.)

30

In order to investigate the characteristic initial
value problem (CIVP) further, it is convenient (although
not necessary - contrary to some statements made in the
literature) to introduce a basis in Minkowski space which
is adapted to the surfaces chosen. Let us choose a sur-
face x° - x® = const. to specify the initial conditions on,
and correspondingly, I use as coordinates:

xt =t = %3 x° - x°)
xZ =z = %E (x° + %) (3.1)
¥ = {x',x®

Notice that in this basis the nonvanishing components of
the metric tensor are:

gik

. b ik =1,2
Bik ik (i, »2) (3.2)

8zt T Btz T th Foh g 18

=8

Thus the scalar product of two vectors, say x" and yM are
written as follows,
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Xy = X, ¥ + X, y7 + xX¢ yt

(3.3)

X Yk = Xz Y& = X Vg

If - as wusual - I want to characterise a momentum vector
by its covariant components, (P, py = k, pt = h), then,
for example, the mass shell condition,

pupu + mz = 0,

can be written as

B (3.4)

It is also easy to check that the various volume - and
surface elements used in Minkowski space become:

d*x = d®% dz dt = do? dt, (3.5)

where do% is the (vectorial) element of the surface
t = const,

d*p 8(po) 8(p® + m®)
(3.6)
32 + mB )

2k

= d°p dk @ (k) 8(h - dh
2k

Let us now write out the generators of the Poincaré
group in this "lightlike' basis (L-basis).

The generators are: M (homogeneous Lorentz trans=
formations) and P, (translations). The subscripts p,v
now run through tﬁé values 1,2,z,t. Introduce the nota-
tion:

Mik = €M , M, = N

M,; =E; , My =F (3.7)

Z1 1

n
fax

PZ=K’Pt

Here €ik is the Levi=Civitd tensor in two dimensions
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(Glz ==&z, = 1, €1 = €&z =0).

In the notation (3.7), the nonvanishing commutators
of the Poincaré generators read as follows:

M, Ej] =1 &4F; M, Fgl =1 &5 Fy

[N, Ei] = -1 E'i_ [N, Fi] =i Fi (3.8)
[Ej, Fyl = -1 855 N + i€ 5 M

[F;, K1 =1 P; [E;, Hl =1 Py

[N, K] =1iK [N, H]l=41iH

All other commutators vanish, Notice in particular that
M, E;, P., N generate the two dimensional Galilei group
with dildtions, The operators H and K play the rdles of
the "Hamiltonian" and "mass operator', in this Galilean
kinematics, respectively.® (There is another, '"complemen-
tary' Galilei group, generated by M,Fi,P:,Nis. The rdles
of H and K are interchanged.) Thus in the transverse
space (the kinematics is 'monrelativistic', i,e. governed
by a Galilei group.

The remarkable fact about an L-basis is that one can
introduce spinor-projections corresponding to the light-
like directions, Indeed, on introducing the standard
Pauli-matrices in the L-basis, viz.

s18b (9 1 2ab _ (37D

; i (3.9
- (/2 o 0o
gzab  _ ( N o> stdb  _ (.o ),
one immediately verifies that
Moo el Hab
¥= = o By @ (3.10)

is a null vector. (Indeed, vuv“ = Eéié €b€b = 0). Hence,
a null vector can be characterised entirely by a spinor,
(The overall phase of the spinor is arbitrary; a spinor
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contains 'more information" than a vector, cf, in parti-
cular ref, 5), Thus introduce two spinors, %5, 7y, cor-
responding to the two conjugate lightlike directions in
the L-basis, with the phases adjusted in such a way that
oy =1 (3.11)

Then one verifies that the bilinears:

pb =g P, QP =y &P (3.12)
are orthogonal projectors, i.e,
b b
Pa® B =B, , QgP ch = Qab
c b_ncC b _
Pa Qc” =Q° P.° =0 (3.13)
b b_ b
Pa o3 Qa = 8,

(The phases can be so chosen that P,j, Qa1 are Hermitean
matrices). Analogous projectors, say Pgp, can be con-
structed by taking the complex conjugates of the spinors
8a, Mg. Hence I can construct projectors for spinors of
higher rank. In the case I want to include reflections,
I have to '"double'" the spinors in a well-known way. For
instance, the Dirac spinor, ¥, is the direct sum of two
spinors transforming according to the representations
(%,0) and (0,%) of SL (2,C):

- (.

Exercise. 3.1) Verify that the projectors acting on a
Dirac spinor, which correspond to the t and z directions,
are:

P, = %Y. vt = “5Ye Y,
P, = %v, v% = =%y, v

respectively, where v, (H = 1,2,z,t) are the usual gamma-
matrices in the L-basis:

{Yp, ’ YV} . zgu\)o
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(Hint: use the Van der Waerden representation, with vg
diagonal,)

3.2) Construct all the possible projectors for
a) a four-vector
b) an antisymmetric tensor.
(Note. A concise introduction to spinor calculus can be
found e.g. in the first chapters of D, R. Corson: '"Intro-

duction to Tensors, Spinors and Relativistic Wave Equa-
tions", Blackie & Son, London,, or in ref, 5.)

4.

We are now ready to discuss the CIVP in quantum field
theory, As a warming - up exercise, consider a simple
classical equation:

(-0+nm®) 8=0
for a free, spinless particle, In the L-basis I have:
-0 = =3kd) + 23,3 ,
3
where - of course - 3y = 5.k , etec. This equation is of
first order in the normal §er1vat1ve of the characteristic
surface t = const. (Cf, Exercise 2,1), Hence, if I want

to solve a CIVP by giving initial values on - say - t = 0,
I may specify #(%X,z,0), but not 3.%(¥,z,0); the number

-—.——.—-——_-——.....__......——...—-

ary' Cauchy problem,

Now integrate this equation with respect to z, Let
g(z) be such that

3,8(2) = 8(2), (4.1)
For example,

gz) =@ (@) = = Jar '™ (4.2)
2my ==

T-.'.LO
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or

g(z) = 3€(z) = _1_ P arel™ (4.3)
2mi - T

Then I get

2.8(,2,t) = 33y - ) [dzrg(z-z") 8(R,27,0),  (4.4)

which can be solved trivially (e.g. by a Laplace-Fourier
transformation,)

The lesson to be learned is that the solution of the
CIVP is ambiguous, since I could have chosen either (4.2)
or (4.3) in obtaining (4.4)., This ambiguity is the con-
sequence of the fact that signals can propagate in the
surface where I specify the initial data. Later in this
chapter I shall show that by invoking an additional phy-
sical requirement the choice of g(z) becomes unique; the
correct choice is (4,3), which corresponds to a ''standing
wave' in the surface t = const.

If we are dealing with relativistic field equations
for a multicomponent field, there are further restrictions
on the characteristic initial data, Such equations can
always be written in terms of spinors, Consider the ex-
ample of a self-interacting field, transforming according
to the representation (n/2,0) ¢(0,n/2) of SL(2,C), and
thus described by the pair of spinors:

bas « +b
uala..oan, vbl'a n,

where u,v are symmetric in their indices. The field
equations can be written in the form:

2%a, Ug seeean + F* as,...a5 (u,v) =0 (4.5)

3 b

n+Ga bB,ac.,n (u’v) =0,

Bl,ooa,
aablv
where F, G are (usually algebraic) spinor functions of the
fields u,v; the spinor differential operator 33b js given
by:

23b = okdby 4 ozdb 5 4 otAb 5 (4.6)
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Now consider the projections,

(t) . b1
u a1 e oan Ptal

® o0 b

bp
ooc-Pta-n ubl b

'.ﬂl’ n’
etc, of the fields,
Now we have the following

Lemma., The equation for u(t) (u(z)), does not
contain the derivative 3, (3.), respectively,

Proof, (trivial). Use (4.6) and notice that
ot = /2 Py,
9z = /2 P,

(projectors in the lightlike directions, provided the
phases of the spinors £,M are adjusted appropriately.)
The relations

PeP, + PP, = 0,

proved in the last chapter give the statement, Q.E.D,

The significance of this lemma is that the 'z-projections’
of the fields do not satisfy an "equation of motion"
(since they do not contain the 'time'-derivative), hence
they give constraints between the initial data on the
planes t = const,

Exercise 4.1.) Verify these statements for the free Dirac
equation, both with two- and four-spinors, (Use the re-
sults of Exercise 3.1.)

Can the CIVP formulated and solved (apart from the
ambiguity in (4.1), which I promised to resolve) for
every field theory? The answer is NO!

Theorem. The CIVP is undetermined for field
theories containing massive fields of spin higher than %.

I am not going to give a ''general proof'" of this
theorem, It can be constructed by using a spinor formal-
ism as indicated in eqs., (4.5). At any rate, one has to
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be careful not to construct field theories which have
"pathological' characteristic surfaces, see Exercise 2,3,
This last restriction already excludes most of the high-
spin field theories one would like to construct., Never-
theless, the theorem is not empty, as shown by the follow-
ing

Example, Consider a free, massive field of spin one,
(For a change, I use not spinors, but the more convention-
al vector formalism.) I take the conventional Lagrangean
density:

L= 3, B+ Al 4.7)

Fhv=a&v-a$w
Since the field is massive, the Lorentz condition
dAg = AL - 3 A, =0 (4.8)

is a consequence of the field equations (in a quantised
theory it holds as an operator equation,)

In the L-basis the expression of the Lagrangean be-
comes :

L =% [0)A19,4; - 20,450 A1 - 201A,0,A,

+ 3, Aj35A, + 3 A3 AL - (atAz)2
+ 3 ALd,AL = (9A0)% + UPAKAL - 20°AA¢ | (4.9)

The component Ay does not satisfy an equation of motion
but a constraint., In fact, variation of (4.9) with respect
to A, gives:

akakAz = 370thAy = 050, Ar

+ dZAL - WA, =0

(4.10)

Using (4.8) and (4.10), (4.9) becomes:
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i
L =% |9h; 3)A; - 9l A + (A °
- 23,45 3. A, + AN ] (4.11)

+ 3 (A, 3, A

Hence, for example, the canonical Hamiltonean (with re-
spect to the planes t = const,) does not contain either
A, or A.. Therefore the dependence of these components
on t is not determined. I know, however, that for the
description of a massive spin-one particle I need 3 dy-
namical variables (say, A, and A)). The light-like for-
mulation "loses" the longitudinal component as a dynami-
cal variable, (Had I considered an interacting field
theory, I would have found that A, is expressible through
A, and with the components of the source of A“, hence
again it is not independent.)

Remarks .

a) This loss of dynamical degrees of freedom has a
clear intuitive meaning. I indicated already that the
CIVP has "something to do'" with infinite momentum frame
considerations, (The exact connection will be clarified
by the result of the next Exercise,) 1In a lightlike
frame a particle has its spin completely aligned along
the direction of motion. In the case of A this corres-
ponds to the components r

A, =_1 (A1 £1iAz).
/2
The semiclassical probability of having a zero spin pro-
jection is zero; this is reflected in the disappearance
of the longitudinal components from the Hamiltonean,.

b) There is obviously no difficulty with massless
fields of higher spin, so, for example, the CIVP for
scalar and spinor electrodynamics or for the gravitation-
al field is 0.K. However, for example a quark model with
vector gluons is in trouble.

Exercise 4.2,) (Connection with the infinite momentum
frame technique.). Show that if there is a multispinor
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field given (not necessarily irreducible), say uy ,....,a,,
the various possible projections with the projectors Pi,P,
form "eigenvectors' of the spinor representation of the
operator N, 6 In particular,

Pt ® Pz ® +or ® Ptu, (M factors)
P P ® -+« ® P u (n factors)
Z Z zZ
are the projections corresponding to the highest (lowest)
eigenvalues, and hence they are the '"surviving' field com-

ponents in an infinite momentum frame moving in the posi-
tive (negative) 3-direction.

In the remainder of this chapter I shall consider a
free Dirac field: this will be sufficient to illustrate
the procedures.

Use a Lagrangean formalism, and introduce - for the
sake of convenience - separate notation for the project-
ions of the Dirac field, {y:

Now rewrite the conventional free Dirac Lagrangean:
- &> -
Lo =% V0o ¢ +miy,
in terms of ¢ and X. Using the result of Exercise 3,1
and the fact that Yz Y are nilpotent:
v, = v® =0,

one gets:
Lo = =41 { o Ve (m+ % vy ea’k) X + XTYZ (m+l§y1:3k)cp
/2
SRR (4.12)
Variation of (4.12) with respect to X,X+ gives the con-

straints: oL,
i/2 —F = O, x + %Y, (mtyd)e =0 (4.13)
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and its Hermitean conjugate, Using (4.1), the solution
of (4.13) is found immediately, One can thus eliminate
¥ from (4.12) and obtain the action in terms of the in-
dependent field components, Omne finds:

Wo = [d*x L
= }% jd2£ dzdz’ dt {¢+(z';gtm(z) 5(z-2")
£ gtz (m + Spv) g(2'-2) (@ + vpo,) w(2) )
* 52 [axdzdzraedy (672" (m + 3y e(z'-2) Heo(2)

+ gt (2") v (2 ' ~2) (v, op) o(z) ) (4.14)

In the last equation we have suppressed the arguments
i;t in the fields ¢. We observe that the action is non-
local in the z- coordinate., It is necessary to retain
the two-dimensional divergence in (4.14), since we even-
tually will want to turn on external gauge fields in
order to generate the expressions of currents. (Clearly,
the presence of the divergence does not influence the
free equations of motion,)

The theory is quantised canonically: one defines
the canonical momentum by
oLo

= —325215————- s (4.15)

which gives the equal-t commutation relation:
(9(X,2,8), "Gz, 0= 8GR sG2")  (4.16)
In order to find a physical interpretation of the theory,

one has to construct the generators of the Poincare’ group.
In the standard way one gets:

P; = -[do®T,;
- (4.17)
Idc Tot

B
= sz
S Jdc Toz

H
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E; = -t Py + [doZT, x;

o]
e
I

= Idcz (2T,4 + x4 Tyt) (4.18)
M = -j'doz EikXiTZk

= 1= = z
N = -tH -[do% z T,,

Here T, are the components of the gsymmetric energy~ mo-
mentum tensor, The easiest way to obtain its expression
is to turn on an external gravitational field using the
"manifestly covariant form" of the Lagrangean and elimi-
nate X afterwards by means of (4.13), This is a stand-
ard exercise and I shall not do it here, After a few
standard manipulations (integration by parts, etec.), I
can write:

Pk,, e Idz!—z dz Cp+ akcp

(4,19)
1 =5
K = __i fdsx dz cp+ ach

H

; fdzgdzdz’ g(z'-z) ¢t(z") (m® =313 ) v(z)

L fa*%dzot (x5 - %221 + L vlp, (4.20)

where I introduced vy = =iviYs., The operators (4.19) can
be diagonalised by Fourier transformation. Remember that
the Fourier transform of g(z) is

where the question mark indicates some way of avoiding
the pole at k = 0, Now introducing:

-i(px + kz)

— 1 - -
v(p,k) = M % Idzx dze v(x,z,0),

I get for example:
K = [d°p fdk k ¢*(p,k) o (p,k)

H= [P 23k ¢ (5,0 o,k P—*—“‘—— (4.21)
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By performing an infinitesimal gauge transformation:
S = 1o, ST + iy , I can also obtain the expression of
the fermion number operator, F:

= [@®p[_dk vF(p, k)e(p,k) (4.22)

Clearly, I want the operators (4.17), (4.18) to generate
a unitary representation of the Poincaré ‘group of the time-
like class, This means in particular that H,K are Hermit-
ean operators with nonnegative spectrum. It follows that

i) I must choose the principal value of the
integral over k in (4.21) {Hermiticity)

ii) I must interpret
0, (P, k) (k>0)

as an annihilation gperator of a fermion of spin project-
ion "a" (a = i% cf. (4.20), and momentum components

(p,k _E_'..{'_.Bl_._)

co_a<-3, k) (k < 0)

as a creation operator of an antifermion (cf. (4.22)) of

spin-projection "a", and momentum components

=3
(p, -k, "E——i—m— Condition i) removes the ambiguity
in the defin&tion of g(z) as I promised earlier: only the
choice (4.3) is correct. 1In particular this condition
means that the correct solution contains no Bondi-Metzner
"news function'", i,e. no information is allowed to propa-
gate in the plane t = 0, cf. ref., 3).

3.

The material presented in this, last part of the
1ectures has been published in the form of a separate
article*'. Here I restrict myself to a brief qalitative
sketch of the prob1e$ and the results. The purpose of
the calculation in was to resolve the mystery of the
free quark (or parton) models, which I discussed in the
Introduction, Surprisingly, the answer is almost trivial,
Consider an interacting quark model, for example, by
adding a term:
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Lint = 555 [(ﬁ vy ©2 - stuw)sj

57 LD 000 + e oo ] 5D

to the free Lagrangean, (4.12), Here F is a coupling
constant of dimension (length)®. One proceeds as before
by solving the comnstraint equation (4.13) for X (which
now contains a contribution from the interaction) and
eliminating X from the action. The surprising result is
that after doing all this, the expression of the action
is almost of the form of a free action functional. The
only difference is that the function

g(z-z') = %€(z~2z")
in (4.14) has to be replaced by an expression:
G(E,t;z,z') = Y€(z-z") exp iF[B(Q,z,t) - B(z,z:t)]
»(5.2)
For the interaction (5.1), B(Q,z,t) is of the form:
B(X,2,t) = ¥[dz’ €(z-z") [(¢'(X,2',0)0(x,2't)
+ (F(E,2',0) volE, 2", t) v . (5.3)
One can verify that the form (5.2) is quite general; it
is the expression of B which depends on the specific form
of the interaction (or, rather, the expression in square
brackets in (5.3).

The quantity FB has a very simple physical meaning:
it is nothing but an operator generalisation of an gikonal
phase in ordinary Schrodinger theory. (Cf. the lectures
of Drs, Abarbanel, Islam and Sugar in this volume,)
Denote for a moment:

V(x,z,t) = F[(g'0) + (stve)v],

and introduce the Fourier transform:

V(z,k,t) = —%Fjd z e 1kz V(X,z,t).
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Then (5.3) can be rewritten as

dK 4Kz o2
B = Pf —iz'elkz V(x,k,t),

which makes the analogy clear, (V plays the role of a
"potentiall) The fact that the interaction appears in an
""eikonal form', has important consequences. In order to
see this, one derives the expressions of the currents in
the usual way by calculating the first order response
function to weak extermal vector and exial vector fields.
In particular, the expressions of the "longitudinal" com-
ponents of the vector and axial currents turn out to be
1
Ve = 72~ oo
- (5.4)
iz = 7o Ve
(For the sake of simplicity, I suppress internal symmetry

indices in all these formulae.)

Compare (5.3) with (5.4). On introducing the com-
posite fields:

s = ‘% [dzsE(z-2") ¢"(z") p(z")

(5.5)
P = l%_ Jdz?E(z-2") ¢ (z") vo(z'),

one can see on the one hand that (5.4) can be written as:

1
Vp = 7op 228 (5.6)
_ 1
Ay = 75 3P

On the other hand, the expression of the eikonal phase
operator, exp(iFB), becomes:

exp(iFB) = exp i/F [S + Pyl .7

Since the longitudinal components of the currents are pro-
portional to the gradients of S and P, the latter can be
interpreted as composite fields corresponding to scalar

and pseudoscalar particles, (This is the standard reason-
ing used in '"deriving'" PCAC.) After Nambu and Jona-Lasinio
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(Y. Nambu and G. Jona-Lasinio, Phys, Rev, 122, 345 (1961);
ibid, 124, 246 (1961)) many people have argued that the
physical vacuum is degenerate and thus the vacuum expect-
ation values of S and P are different from zero. (This

is a familiar situation e,g. in the theory of superconduc=-
tivity: the ground state is filled with Cooper pairs,)
Assume now that this is the case,

The first simple question omne can ask is: what are
the equations of motion satisfied by ''single particle"
observables? (Current densities are examples of single
particle observables in a quark model; they - or rather
their commutators - can be measured in the inelastic
scattering of electrons and neutrinos, and hence one can
extract dynamical information from these experiments.)

In the ordinary nonrelativistic many-body problem one
knows that if the ground state (the 'vacuum") is degener-
ate, the Hartree-Fock approximation to the equations of
motion of single particle observables works quite well,
(The Hartree-Fock approximation - a nonperturbative ap-
proximation - consists in replacing the operators corres-
ponding to pairs which £ill the ground state by their
ground state expectation values. The latter are then cal-
culated self-consistently, Qualitatively, Hartree-Fock

is expected to work well if there is a large ''condensate"
in the ground state, since then the relative quantum fluc-
tuations of the operators around their expectation values
are small,)

Let us observe that in this formulation of a relati-
vistic field theory one can borrow freely from the methods
of the nonrelativistic many-body problem., Indeed, the
action (4,14), with the modification (5.2), can be viewed
as one describing a Galilei-invariant field theory in two
dimensions with variable mass (cf. the remarks made in
Ch. 3.,) The fact that the interaction is more complicated
than in the usual models of, say, superconductivity, does
not matter here.

Now if I calculate in the Hartree-Fock approximation,
a surprising thing happens., Replace B in (5.2) by its
vacuum expectation value. No matter what that is, it is
certainly a-constant (translation invariance!)., However,
then (5.2) = and the equations of motion of ¢ and thus of
the current densities = reduce to what I would obtain if
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there were no interaction at alll

Gell-Mann and several other authors (cf. H. Fritzsch
and M, Gell-Mann, 1971 Coral Gables Conference) have con-
jectured that the current densities behave ''as if the
currents were constructed out of free quarks', We
now see that in the present version of an interacting
quark model this means nothing else but making a Hartree-
Fock approximation, In particular, all the results of
the '"maive" parton model come out in this way, This does
not mean, however, that the theory is altogether a free
one: in calculating many-body states (for example the
nucleon state vector) there will presumably appear a
strong effective interaction. (Notice in particular that
the formal expression of the action contains highly singu-
lar objects: exponentials in the fields S,P,..) One can
at least hope that the present approach to field theories
will explain some of the puzzling features of hadron
physics.

6'

Conclusion. (This is Exercise 6,0) to be worked out by the
reader for himself,)
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FLUX QUANTIZATION AND PARTICLE PHYSICS
H. Jehle
George Washington University
Washington, D. C.

Introduction

As reported in earlier papersl a consistent theory of
leptons based on quantized flux loop may be given., The
idea is that instead of trying to relate magnetic monopoles
to elementary particles, we take the more conservative ap-
proach of considering only closed magnetic flux loops.
These flux loops, to conform with the Maxwell-Lorentz equa-
tions, are assumed to have the forms of magnetic field
lines of a dipole source if an electron or a muon is con-
gidered. It is assumed that one loop corresponds to one
lepton, and that the magnetic field results from a super-
position of alternative forms which this flux loop may a-
dopt, a superposition with complex probability amplitudes.
This superposition is similar to the superposition of al-
ternative path histories by which a quantum mechanical path
is constructed in Feynman's space-time approach to quantum
mechanics.,

There is nothing special about such an assumption,
but it is interesting to note that the very same defini-
tion which introduces quantized flux (as a singular line
of the phase 0 of the | function of field particles) also
implies an electric field if that flux line moves. In
particular, if the magnetic field, represented by the flux
loop, has the dipole movement of one Bohr magneton (or one
muon magneton) and if the loop spins about the dipole axis
with angular velocity 2mgc” /h (or 2m,c®/h), the resulting
electric field is the Coulomb field of charge e. (Tq make
that statement precise, the alternativg dipole axes (
would, for a source lepton of spin in Z direction, be dis-
tributed with probability amplitudes proportional to
(l+cos({,Z2)). This theorem is not so astonishing; it is
the reverse of the theorem of the Dirac theory of the

399
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electron which derives the magnetic moment of the electron
from its charge.

A separate issue in this magnetic theory of the eéﬁc-
tron or muon is the question how that magnetic moment =—
is related to the quantized flux #,=hc/e. A single paf?%-
cle of mass m is, in the relativistic theory of the elec-
tron or muon, non local? in ordinary position, by an
amount h/mec and it has a Zitterbewegung frequency 2me® /h
which may be interpreted as a spinning frequency. This
"quasinonlocality'" h/mc, as we may call it, relates the
quantized flux to the magnetic moment. Tt was shown that
appropriate superposition, with complex probability ampli-
tudes, of the loop-form contributions results in an effec-
time magnetic moment equal to the Bohr or muon magneton if
the electromagnetic interaction constant is of the order
of 1/137, And it was shown that under the same circum-
stances and by the same superposition rules the electro-
magnetic energy turns out to be of the order mc®, and the
electromagnetic angular momentum of the order of h/2,

This is interesting in that it shows a consistent theory
of the lepton on the basis of the Maxwell-Lorentz fields
is possible. It should be noted, however, that the quan-
tum field which describes the lepton is the spinor type
probability amplitude field; the electromagnetic field
plays the role of the observable.

Neutrino

We also propose a neutrino to be a flux loop, but of
the form of a trefoil spinning through space like a coast-
ing three-blade propeller. 1In this manner, apart from
fluectuations, no net electric field seems to be produced
by the moving flux loop. A question is to be raised as to
whether or not a neutrino has a magnetic moment (in the
direction of its spin or opposite); if this is the case, a
loop of one such flux orientation is expected to occur; if
this is not the case, the proposal in l.c.l Phys. Rev.
would apply.

The topology implied in a trefoil knot is considered
to be important. It is assumed that the crossing of a
flux loop over itself (which would be necessary for a tre-
foil to transform into a circular loop) is a process which
is very rare, a weak process. There are two distinct tre-
foils (a right handed and a left-handed one). They
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correspond to neutrino and an antineutrino respectively.
Apart from the handedness of the trefoil, a neutrino and
an antineutrino are distinguished by opposite signatures
of the frequencies of their probability amplitudes.

This two-fold distinction between neutrino and anti-
neutrino is indeed to be considered as the distinction be-
tween particle and antiparticle in general.

Hadrons

To proceed to mesons and baryons, we assume the quark
picture, in particular SU(6), and consider a quark to be a
flux loop if it is interlinked with another (in the case
of a meson) or with two other loops (in the case of a bar-
yon) . Their spinning is entirely different from that of a
free loop (i.e. a lepton) and there may accordingly no
meaning be attached to the concept of a single quark,

Before we discuss the detailed structure of quarks,
we may, in connection with the neutrino, remark that the A
quark is expected to be a trefoil whose handedness indi-
cates the strangeness +1 or -1, Indeed, with such inter-
pretation we may readily understand strangeness conserva-
tion. We assume that interacting loops, ignoring other
loops of the same particles, may only reluctantly cross
over each other. Thus, two trefoils of opposite handed-
ness (S=+1 and S=-1) may readily annihilate each other,or
be pair-created, without the necessity of any loop-cros-
sing; this is not the case for strangeness non-conserving
reactions. They are, by virtue of the topological change,
not parity conserving which is interesting to notice.

Assumptions about Loops and their Linkage.

We make the following assumptions about the loops,
their forms and linkage, and illustrate them by figures.
A quark is a quantized flux loop if interlinked with an-
other loop. If, under observance of conservation laws,
a loop may get disengaged from linkage, it behaves like
a lepton. It becomes, therefore, meaningless to search
for individual quarks.
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The quarks belonging to one meson or baryon are able
to spin independently. This is possible if they are con-
fined to non-overlapping regions. Each of the meson and
baryon loops of Figs. 1 may also move independently about
their two axes: they spin about the straight (vertical)
axis and whirl about the citrcular axis. 1In Figs. 1, 1b
circular axis is defined as the equator of the spherical
core. The dots indicate the intersections of the circular
axis with the picture plane. 1In Fig. lc the core is not
indicated and the circular axis is seen edgewise as a
dash-dot-dash line. The domains in which they move are
shown separated by dashed toroidal surfaces.

Even though this scheme seems to be the scheme by
which mesons and baryons are expected to function, we
should remark that the assumptions of straight, circular
axes, as regard topology, is rather special. 1In the £fol-
lowing paragraphs we discuss as an alternative scheme the
more general case of oval shaped axes as shown in Figs.

2, 3, 5, 7. The loops of Figs. 5, 7 may spin in the re-
gions shown by Figs. 4, 6: the illustrated interfaces
between the toroidal regions may shift toward one or the
other axis. 1In order to clarify the spinning of a quark
loop, in the alternative case of Figs. 5 and 7, we have
drawn single loops in Figs. 2 and 3. One mode of '"spin-
ning'" is (cf. Fig.2) a rolling, whirling motion about the
left axis (donut) which amounts to a kind of translational
motion along the right donut. The other mode (again look-
ing at Fig.2) is a similar '"spinning'' about the right axis
(donut) which is equivalent to a kind of translational mo-
tion along the left donut.

Apart from a * signature, the spinning is considered
to occur with equal angular velocities.

A question arises as to the nature of "orbital angu-
lar momentum' of the higher lying meson and baryon states.
In the case of axes shown in Figs. 1, the higher angular
momenta are presumably of the nature of gilant quarks, i.e.
quark loops possessing spin higher than %. 1In the case
of Figs. 2-7, the axes may move with respect to each other,
which might then represent orbital angular momentum.

Because of the quasi-nonlocal nature of a single
particle, the position of a point source is smeared out
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over a region of linear extension h/mc; it extends up to

the axes of the hadron. This region, called the ''core',

is the region in which the Maxwell-Lorentz equations have
inhomogeneous terms. For the definition of localization

we refer to the earlier papers, and to Section V and Ap-

pendix I of the Phys. Rev. paper.

The "attachment'' of a loop to the core may be con-
sidered a topologically meaningful concept. It is as if
the axes by which the core is bounded, were a set of rings
with which the fluxloops are linked and held together,

The reason for this is that a loop, as shown in the fig-
ures, is only a single loopform out of a continuous mani-
fold of pairs (meson) or triplets (baryon) of linked loop-
forms which are spread over all space. They define a
fibrated space with two singular lines, namely the 'axes'.
These singularities of the fibrations provide for a topo-
logically invariant characterization of a loop by its
winding numbers. In Figs. 2 and 3 these winding numbers
are 1llustrated; for clarity of the illustration we have
represented these two axes by two donuts.

The equivalent electric charge of a quarkloop is
evidently (cf. the definition of the electric field in
the earlier papers) proportional to the number of times
a loopline skips over a point in space, per period of
spin, times the spinning frequency. This is immediately
seen to be proportional to one of the winding numbers
times its spinning frequency minus (or plus) the other
winding numbers times its spinning frequency. Assuming
the two spinning frequencies to be equal, the equivalent
electric charge becomes proportional to the difference
(oxr sum) of the winding numbers.

When it comes to establishing a model which gives ac-
count for so invariant a quantity as is the electric charge,
it is important to have a model which relates it to invari-
ant quantities such as are the winding numbers, rather
than to particular geometrical features.

We may be reminded in that context that the starting
point of this fluxquantization project was the recognition
of still another invariance property of electric charge.
It was the recognition that the electric charge of the
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electron and of the muon came out to be identically the
same by virtue of exact cancellation of the mass m in the
product (eh/2mec)-(2mc® /h), i.e. by virtue of a strict’
scale invariance.

With that invariant loop characterization by winding
numbers, we may suggest the loopforms Figs. 2 (which are
identical with those of Figs. 3) to apply to the hf, and X
quarks. If we assume a tendency of spinning to occur so
that the resulting electric field (and thus energy) is as
small as possible under the constraint of equality of abso-
lute values of spinning frequencies (angular velocities
2me® /h), we may assume that it is preferably the difference
between (rather than the sum of) the two winding numbers
which characterizes the equivalent electric charge of a
quarkloop.

-The relation between dipole magnetic moment and equiva-
lent electric charge was worked out for electron or muon in
the earlier papers—. In as far as there are now, in the
case of the quarks of mesons and baryons, deviations from a
dipole structure of magnetic moment, we may expect the mag-
netic moment to be only approximately related to electric
charge.

Let us now consider the probability amplitude distri-
butions for mesons and baryons. Conventional SU(6) models
had the immense success of explaining the ratio of magneti
moments of baryons, in particular of neutron to proton-.
This establishes the appropriateness of the choice of sym-
metric spin-isospin functions for baryons.

[¢]

But, as the quark model considers the quarks as spin
% particles, their complete wave functions should be anti-
symmetric, i.e. satisfy the Pauli Principle. It seems to
us too much a violation of basic principles of quantum
mechanics to postulate para-statistics.

The alternative way of staying within established
quantum mechanical principles and to satisfy the Pauli
Principle is to assume antisymmetric orbital wave func-
tions for baryons. As long as quarks are considered to
be SU(6) particles, such antisymmetric orbital wave func-
tions may, however, scarcely be considered to be fit for
the lowest lying baryon states.
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The quark loop-model avoids these difficulties.
Quark loops are considered as localized objects, but in
the spirit of SU(6), they should be able to exchange
places in their arrangements shown in Figs. 5 and 7. An
antisymmetric ''spacial'! wave-function of quarks (i.e. de-
scribing their distribution over the regions between the
axes) may therefore readily be formed and the Pauli Prin-
ciple is satisfied. Such antisymmetric ''spacial! wave
function also implies all permutations of arrangements of
the quark loops over the '"toroidal' regions and thus pro-
vides for equal distribution over both axes, for any quark
loop of a hadron. This again reasures the winding numbers
as correctly determining electric charge,

The question of integrity of electric charge in lep-
tons, mesons, and baryons arises. As regards to leptons,
the scale invariance, i.e. the rigorous independence of
equivalent electric charge e of mass m is the basic point.
The entire theory being based on gauge-invariant defini-
tion of the electromagnetic fields, it follows that charge
conservation is rigorously maintained, Thus, starting
with the electron's or the muon's integrity of charge, all
subsequent reaction products will have integer charges al-
so,---Why fractionality -1/3, +2/3, -1/2 of quark charge
may Re expected, has been discussed in App. II of Phys.
Rev."; here we have, through the winding numbers, given an
explanation of their exact rations F1 to +2 to Fl.

It should be noted that there may be close connection
between the present quark proposal and that based on
dipoles of positive and negative magnetic eharge.4 Fol-
lowing the idea of our quark model, it may then, however,
be appropriate to represent a meson by two dipoles and a
baryon by three dipoles. Even though we would like to
avoid the concept of magnetic monopoles entirely (and
found this to lead to a successful and conservative inter-
pretation of particle physics) we do not want to object to
monopole theories altogether, in particular not in the a-
fore mentioned dipole connection. We do not, however,
think the identification of a monopole with a quark to be
appropriate.
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Appendix T

We may make a few remarks in regard to quark loops:
AL and a A, as they have opposite handedness, may annihi-
late each other without crossing of flux loops when they
come to a mutual approach. Why, nevertheless, may they
coexist, attached to the same core of a meson? A model
(carefully built with rubber catheters) shows that, if
mounted on the same axis, their opposite handedness pre-
vents any annihilation without crossing of f£lux loops. An-
Another question has come up as regards to the absence of
spin % baryons of the type of hhh, of the PPP, and of the
AML,  In that case, there are at least one pair of neigh-
boring quarks of opposite spin present. As they are of
equal charge, their magnetic field orientation is opposite.
One might assume that they cannot coexist as nearest neigh-
bors because they repel each other.

Geometrical characterizations of independent bundles
of flux loop forms have been proposed in the earlier pa-
pers. This led to a grouping of loop forms into 207 bun-
dles, It was pointed out that this was a heuristic pro-
cedure and that a formal treatment would have to rely more
on analytic tools, Indeed, one should take use of gener-
alized spherical harmonics expansions and take account of
the invariance with respect to scaling when attempting to
define the distribution of probability amplitudes for loop
forms,
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It may finally be remarked that in the comparison of
the electron with muon, the angular group and phase ve-
locities of the terms bilinear in the amplitudes are as 1
to 207. The linear velocities of the spinning loops being
assumed to be of the order of ¢ to ¢ for the two particles
and the sizes stand in the ratios of 207 to 1, their elec-
tromagnetic energies are expected to be related as 1 to
207. The bundling of loop-forms may accordingly account
for the difference in mass electron versus muon.

Appendix II

In our proposal to describe a lepton in terms of a
quantized flux loop we took recourse to geometrical pic-
tures to provide for a simplified model in terms of which
we could readily check on the consistency of that theory,
in terms of which also the main structure of the theory
could be decided upon, and in terms of which approximate
numerical results were obtained. It was evident from the
start that a more direct analytic, rather than geometric,
formulation was to be achieved. It was, however realized
that too many possibilities for the structure of a quantum
mechanical theory were at hand. The decision upon the ap-
propriate choices of assumptions may now be made as the
consistency of the heuristic model is recognized.

In this note a short sketch of a proposed wave equa-
tion for the probability amplitudes § of the distribution
of loop-forms is given. We may be reminded that instead
of a description of loop form distributions by functionals,
we may take advantage of the similar shape of all magnetic
point dipole loop-forms, to characterize them by 3 angle
variables (e.g. the Euler angles) and 1 size parameter o.

In the calculation of the electric field of the spin-
ning flux-loop, the mass of the electron or the muon can-
cels out rigerously. This implies the equality of the e~
lectric charge of these two leptons. The cancellation of
the mass means that there is a scale invariance. Consid-
ering this we may write

r =0/(/me) (1)

as a parameter indicating the size of a loop-form.
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In what follows we consider certain analogies between
the spinning of the manifold of loop-forms and the spin-
ning of a symmetric top. It is well known that the angu-
lar momentum operator of the spinning top may be written
as

d° d% 3% 32 10 s)
2 .2 - = —r® =
Ehas (agz 3 an® * 3p° + axg) rsr® 3r (2)
with eigen values
44 (L41), (3)

4 being half odd integer or integer; the eigen value prob-
lem posed with the operator (2) is actually an eigen value
problem on a 3 dimensional hypersurface

¥ =8 + 1 + 0% +%° (4)
The 3 ratios &:m:p:Xx are related to the Euler angles.

The point dipole loopforms are alike in respect to
the 3 angular parameters (Euler angles) and the size pa-
rameter. We may therefore associate with each loop-form
a point in the 4 dimensional space of the variables &, n,
p, X (with the use of (1) and (4)). We now make the as-
sumption that the wave equation for a point dipole source
model be given by

2 82 2
gng t5m t gxz)

R ;
G + + 07 - =0 (5)

w being the frequency of the | wave. With the eigen value
of the angular part of ¥, i.e. (3), we get for the r

dependent factor of ¥

G - a@H) +0 - OR =0 (6)

As the wave equation (5) is, in consideration of (4),
linear homogeneous of degree zero in r, the angular veloci-
of loop forms is independent of r, in accord with our as-
sumption of the Zitterbewegung frequency of 2mc® /n as giv-
ing the angular velocity of a spinning flux loop.
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We want the |{|® to represent the probability for a
loop to adopt the size r, i.e. to have its aphelion size
o=r(h/me) to fall in a unit cross section at a distance o
from the source point. Accordingly, R(r) should be pro-
portional to

R(r) = a r3/2 7
which, inserted in (6) means
2 3
-Gt (A4l) + 0 - C =3 (8)

Such a solution (7) corresponds to a point dipole
source. For the quasi-nonlocal source, the position of
the dipole source appears smeared out. Replacing, accord-
ingly, the point dipole source by an extended source (a
crude substitute for a transformation from mean position
to position by a Pryce-Tani-Foldy-Wouthuysen transforma-
tion), we get rid of that singularity., We may effect this
by inttroducing into the wave equation (5) or (6) a
"potential' U(r) which is positive in the ''core' region
0 < r <1 and goes to zero at the core surface ¥ 1 and
is zero outside, 1 < r < » which insures the r~ / behav-
ior of R(r) for large r.

Considering these, Eq. (6) may be written as

13 e}
;ﬁ r° E e U(r) =] 4*/(*14‘1) + w? - C)R =0, (9)
This equation might represent the wave equation for the
loop form of an electron or a muon. The choice C=% gives,

by (8),
w =2t + 1 (10)

the commensurabilities of w permit phase correlated motion
of loopform amplitudes in the case of the electron, to
distinguish them from random phased muon amplitudes.

The group theoretical analysis of Eq. (5), (9) is
particularly promising. The important results are ex-
pected to be already obtained by A. 0. Barut.

The wave equation is presumably to be written in a
linearized, Dirac form.
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Appendix IIT

The handedness of the flux loops (right handed screw
or left handed screw in relation to the axes) is, besides
the winding numbers, an important characteristic feature
of a loop. The assignment of handedness to the types of
quarks will still have to be decided according to a gener-
al plan. It seems, however, that as in the case of the
neutrino, the handedness is determined by the alternative:
quark-antiquarks,

From the consideration of models of flux loops, their
intrinsic handedness and their link with the axes, it be-
comes obvious that between a loop (2,3) and a loop (1,3),
both of equal handedness, a transition is simple compared
with a transition between (2,3) and a (1,2) loop. This
fact may provide for an understanding of the AS versus AQ
relationship.

We may also recall that the flux loop model explains
that strangeness nonconserving weak processes imply some
crossing of flux lines and are, because of the implied
topological change, not parity conserving.
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FIGURE CAPTIONS

Rotationally symmetric axes-system (a straight
vertical axis, and a circular, core equator
axis).

It shows an anti-neutrino, i.e. a trefoil loop.
It also shows fluxloop forms for a muon or an
electron, the extended source (sphere) charac-
terizing the quasi-nonlocality of a stationary
single particle.

This interlinkage of two loops h and ) repre-
sents a contribution to a K meson. To illus-
trate the topological (knot theoretical) rela-
tionships between the two loops, the space is
subdivided by a toroidal surface (a flexible,
sumetimes small, sometimes large toroid, having
no restrictions on its size). One of the loops
(the trefoil 1) is entirely outside the toroid;
the other (h) is entirely inside to permit in-
dependent spinning. The core reaches to the
circular axis which is the core equatorial ring.

For a baryon, the space is subdivided into three
regions by the two toroidal surfaces shown in
this figure. The three loops may thus spin in-
dependently and they may share the core. These
Figs. 1 represent the loops on the basis of a
straight central axis. There is spinning about
the straight axis and a whirling, rolling motion
about the circular axis.

It shows the alternative setting on the basis of
two interlinked axis shown in Figs. 2,3,5,7,
drawn as donuts. 1In this figure quarks are
shown in the unrealistic, unlinked state, be-
cause a quantized fluxloop is a quark only when
interlinked with other loop(s) which drastically
influences its modes of spinning. The figure
illustrated the winding numbers h: 2-1, ©: 3-1,
A: 3-2, Quarks are assumed left-handed, anti-
quarks right-handed; their charge is given by
the orientation of their magnetic moment with
respect to spin.
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Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
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The same quarkloops as in Fig. 2 are shown here
in relation to the left axis. As in Fig. 2 these
are not representing leptons.

For the alternative setting the two axes are
shown as interlinked rings with dash-dot-dash
lines. The domains to which two meson loops may
be confined to permit independent spinning, are
indicated by the surface separating the domains,.
One can easily visualize the modes of independent
spinning of two fluxloops (i.e. rolling-whirling
motions about the two axes respectively). The
two fluxloops are drawn in Fig. 5, not in this
Fig. 4. To facilitate the graphical representa-
tion, this surface is shown bound by one long-
winded line; in reality, however; the surface
reaches to infinity. One opening (connecting
upper to lower with the far left region) is hid-
den behind the surface; we see the other axis
passing through that opening. The surface sepa-
rating the two domains may move one way or the
other, closer to one or the other axis.

Loop-antiloop contribution to a meson. We have
represented in this figure, the two axes by the
two donuts because this facilitates the illustra-
tion of the two loops X (3,2) and h (2,1).

The two dash-dot-dash lines may represent the
axis in this figure of the alternative axes model.
The present donuts are drawn to represent, for a
baryon, the two toroidal surfaces which tripart
space so that the (3,2) loop of Fig. 7 is entire-
ly inside the right donut and (2,1) loops entire-
ly inside the left donut, and the simple, large
(1,0) loop, in the space between them which
stretches all the way out., This permits independ-
ent spinning to the three loops, a necessary con-
dition that quarks should satisfy.

Interlinkage of the three loops of a baryon in
the alternative model. 1In this figure, as in

Fig. 5, the axes are pictured as donuts to facili-
tate the illustration of the winding numbers,

The interlinked quarkloops are a (3,2), a (2,1)
and a (1,0) loop.
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PRINCIPLES OF ANALYTIC APPROXIMATION THEORY AS
APPLIED TO ANALYSIS OF EXPERIMENTAL DATA

R. E. Cutkosky
Carnegie-Mellon University
Pittsburgh, Pennsylvania

Outline

This series of lectures is devoted to an exposition of
some mathematical ideas which are unfamiliar to most physi-
cists, but which have an enormous potential use in High
Energy Physics as well as in other branches of science.

Section I reviews polynomial approximation theory, and
has two purposes: To try to expose something of the beauty
of the mathematical ideas contained in this subject, and to
illustrate the point that the convergence properties of a
sequence of approximating functions depend jointly on the
data used and on analyticity.

Section II is an application of the theory of Sec-
tion I, showing how to use a conformal transformation to
obtain the most rapidly convergent polynomial approximation
for representation of physical data.

Section III presents further mathematical tools which
enable one to go beyond simple polynomial approximations,
in order to obtain maximally accelerated expansions in cir-
cumstances in which the conformal transformation technique
of Section II is too complicated to use effectively, and
also to circumvent the apparent limitation in Section II to
results based on asymptotic convergence estimates. The
fundamental mathematical tool is the Hilbert space of ana-
lytic functions. In addition, the ideas of generalized in-
terpolation and of a probability measure in the function

space, which are important to physical applications, are
presented.

423
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Section IV is devoted to exposition of the applica-
tion of the mathematical theory of Section III to a re-
formation of the conventional ¥® -minimization technique
for fitting experimental data. It is shown how to con-
struct the best sequence of functions for a linear repre-
sentation of experimental data, and a convergence test
function is constructed which can be used to solve the
problem of estimating the truncation point and truncation
error of the expansion.

Discussion of the increasingly numerous practical ap-
plications of the theory discussed here is omitted because
of lack of space., The companion lectures by H. Pfister re-
fer to some of these, and also include a discussion of
several aspects of the theory that have been omitted from
these lectures.

I. Polynomial Approximation

This section is a review of the theory of polynomial
approximation, as discussed by Walsh *, chapters 3 - 5.
The entire subject, as mentioned by Walsh, can be con-
sidered as a matter of successive generalizations of the
Taylor expansion. We are concerned here with the heuris-
tics. TFor details, see Walsh.

A. Jacobi series

Consider v points z = B;,...,By,, and the poly-
nomial of degree v: p(z) = (z-B1) ...(2-By). The
Jacobi series is an expansion of a given function,

f(Z)=qo(Z)+q1(Z)P(Z)+qz(Z)p(Z)2+---+qn(Z)P(Z)n+--. (1)

where each q,(z) is a polynomial of degree v-1, The
q,(z) are determined successively by requiring £(z)

and its first n derivatives to be matched at the points
points B;. Let Sp(z) denote the partial sum of the
first n+l terms., We have two formulas (where I' lies
inside a domain of analyticity and encloses the Si):

1 +1
5 (2) = 5 Jp(t)n:_z- p(2)™"  £(t) 2
r p(t)

n+l gE
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and

f(z)_sn(z) =2L j‘ p(z)

™oL R®

n+1
£(t)
n+1 t-z de &Y

To prove these, note first that S,(z) as given by (2)
is a polynomial in z of degree n=vn+v-1l, and note
from (3) that the first n derivatives of the L.H,S.
vanish at z = Bi.

Now let I' be a lemniscate curve, i.e. the locus
|p(z)| = 4 (a constant). Then on any interior lemnis-
cate |p(z)| = Hi<u, the partial sums S_ converge
(according to (3)) as T

M +1
l£-s |<u( )™ @

We can rewrite this as follows., Let:

v(z) = % log |p(2)| == ;1- log |z-8. | (5)

Evidently v(z) is the potential of v point charges,
each of strength-1/v, and the I''s are equipotential
curves, We have also:

(/)™ = e M-D(¥-V1) (6

The Taylor expansion is, of course, the special case
v=1,

B, Possibility of approximation on general curves,
1. Equipotentials

Let C be a given curve (or arc).

Let @ (z)=v(z)+iw(z)

be the complex poten-

tial corresponding to

a unit charge on C

and the boundary con-

dition v=0 on C. Let

Q(z)=é$(z). Then de-

fine Cp to be the equi-

potential lg\=p>1,
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2. Approximation of C by a lemniscate.

The idea is to replace the actual continuous
charge distribution on C by a (large) number of
equal point charges properly distributed. By
choosing the number of points v large enough, we
can be sure that there is a lemniseate I' outside
of C but no where more distant from C than some
preassigned amount. The curve I' then lies
slightly outside Cp, but by a controlled amount
(and thus still in the domain of analyticity of
a given function f).

3. Approximation by Polynomials on C.

We know that we can approximate on I' by a
Jacobi series with the error bound

e (N is degree of polynomial) D

|£-Py| < Mo
Since C lies inside I', by the maximum-modulus
principle, the error is smaller on C. Remark:
This is an existence theorem for polynomial
approximation, not a useful constructive tech-
nique,

4. Region of uniform convergence.

Lemma: Let |Py(z)| = L for ch Py a poly-
nomial of degree N. Then PN(z)/C (z) is analytic
outside C, including *. Its max1mum modulus
therefore occurs on C, where \Ql 1, Therefore,
generally, |Py(z)|< LoN for z on C_. Now, from

4 p
(7), we find

.| < (M + oM) p'N'l

IPyg1 ~By , 2¢C (8)

Therefore, for p, < p, we have, by the lemma,
N+1

|Pgy1 Byl = p—ll\lﬁ- (M + M pl, 2eC, 9
p
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so Pp~f at any point in the interior of C, (and
also uniformly on and within C )

C. Maximal convergence

Given a function £, there is an upper bound R to
the values of p for which f is analytic on and within
C,. Either R = @, or there is a curve Cgr on which
f(z) fails to be analytic. Thus, for any p<R, there
are polynomials P, (z) for which (7) holds. However,
there can be no sequence for which (7) holds with p>R,
because this would imply uniform convergence on Cg,
and hence analyticity on Cr. Thus, R is said to be
the greatest possible rate of geometric convergence.

Also, let
so, le E, = Max,. |£(z) - P4(2)].

1/n

Then lim sup E "' "= 1/R.

D. Best approximation

1. Chebyshef approximation

The Chebyshef polynomial approximant is the
polynomial t,(z) in which the nt+l coefficients
are chosen to minimize the error bound

= g 1) - <, o)

Since we know that there are polynomials, for any
p<R, satisfying (7), the t, must a forteriori al-
so satisfy

[£(2)-t (=) [<wp ™" (11)

and hence converge maximally on C and uniformly on
and within Cp, pP<R.

2. Least squares approximation

The general case of least pth power approxi-
mation is discussed by Walsh, but the proof is a
bit lengthier. Here we define the approximants
mn(z) by minimizing the integral
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En=jCW(z) dz| [£(2) - m_(2) |2 (12)

The proof uses the following lemma: Let P_(z) be

a polynomial of degree n, such that =

JlP (z) |? |dz|<1®. Let Q(z) =P (z)g . Then on
Q|=|P|, we have (z outside P)

= Q(t)? dt
C(z) i 2n1 I C(t) z-¢° (13)

since the integrand goes to zero as 1/t® at =.
Hence

zeT

2
LA < ey x 12,

whence follows the lemma
[B(2) | < LoL'(p) x 0%, ozl (14)

Now return to 12. Since maximally converg-
ing polynomials exist, and since 7, minimizes the
integral, we have E_< M/p,*T, for p<p,<R. We as-
sume that W(z) is positive, and bounded from zero.
Then we can replace W by its minimum value in the
integrand. Furthermore, we use the inequality

la+b|® < 2]|al® + 2|b]?

with a ~ £ - m and b ~ -f + 1

to get Bl
Jclnn+1-nn|2 |dz| < Myp, 2?0 (15)
Now let p' = pi/p > 1; on C p1» By the lemma,
1M e1 ! < M (—’~)n R (16)
Pi

From this point, it is easy to show that the m_(z)
. n

converge to £ on C maximally, and hence converge

uniformly on and within Cy, p<R. It is possible
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to drastically weaken the boundedness condition
on W(z).

E. Example

Let C be the segment of the real axis -1<z<1,
Then the C, are the ellipses with foci at z = =1;
p = a+b, where a and b are the semi-axes. Consider
least squares approximation with some weight function
W. For such an approximation method, it is convenient
to construct the set of orthonormal polynomials q,(z),
and write the ntP approximant as

P(2) = % A () ¢

Examples are the Legendre polynomials, ete. In gener-
al, we have convergence inside an elliptical domain,
and from the error bound on C, we find that lim sup

]Anll}n = 1/R, where CR is the ellipse passing through
the nearest singularity.

II. Polynomial Expansion in an Optimized Variable

A. Acceleration of convergence

Let us suppose we wish to fit a Ffunction £(x) on
the curve I';y (the '"physical region'). We make a con-
formal transformation to a new variable z(x) and ap-
proximate by polynomiils }n z. The problem is to make
the best choice of z, *»*

1. Conformal Transformation

First, suppose x-z maps ['; into the segment
Cp = (-1, 1) and that it maps some curve T, within
which £ is anmalytic, but on which £ has a singu-
larity, onto a unifocal ellipse CR' The mapping
is given explicitly by

z = sinh % (x) (1)

where here & = v(x) + iw(x) and v(x) = 0 on I' and
v(x) = -V (a constant) on I';; the value of V is
defined by the requirement that the net charge on
Ty be -1. Then ((z) = eV*? corresponds to the
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function defined in Section I, and R = eV
determines the rate of maximal convergence.
Furthermore, a polynomial approximation in =z
converges in the interior of the ellipse Cp, and
hence in the (open) interior D of the curve I in
the x-plane.

2. Optimized Conformal Transformation
Suppose that the domain D enclosed by I' is

enlarged by the addition of a small piece 6 as
shown:

The boundary T'' of D' = DU6 is mapped onto a

curve C_, by a modified mapping function involving
a new cgmplex potential &' = V' + iW'. We expect
that enlarging the domain of convergence will in-
crease the rate of convergence and proceed to
prove this,

Let v(x) = V'(x) - V(x), then v(x) satisfies
the boundary conditions:

v=0onT,

Vi(x) on T', (V'(x)<0) (2)

Let G(x,x') be the Green's function satisfying the
following boundary conditions:

v

G =0 for x onT
G(x,x") = g(x') for x on T, (3)
%

%— G(x,x") |dx| =0
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The last integral, taken over both sides of T,,
says that there is no net charge on T;.

From Green's theorem

v=]  (G0,x)5Ev(x") v (x)sr6(x,x')) |dx' |
T+ N n “)

we obtain, using the boundary conditioms,
v(x)=-f v(x')—é—-G(x x') |dx'| (5)
r anl s

Since the induced charge density on I' is every-
where negative, and since v < 0 on I', we have

v(x) <0, x € D. (6)
From (6) we conclude, first:

V(T -V(T)>V(@)-V(T1)
or R' > R (7

so that the convergence rate on I'; is increased,
and second, that at an arbitrary point xp€D

V(") -V(R)=-V(z,)>-V' (2, ) =V(T") -V' (), 8)

so that the convergence rate at x_ is also in-
creased. Thus, the more of the entire domain of
analyticity of f(x) that is mapped into the uni-
focal ellipse, the faster is the convergence, both
to the data given on I'y; and at an arbitrary point
in the domain of analyticity. I call this rela-
tion between the full use of analyticity and rapid
convergence the ''convergence principle'.

Finally, we ask whether a further improve-
ment in the convergence vate can be obtained by
mapping I'; and T', not into a line segment and a
unifocal ellipse, but into a pair of simultaneous
equipotential curves for some other potential
problem. The answer is no, because the potential
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difference is a conformal invariant; Any further
mapping would leave the convergence rates un-
changed.

B. Effects of Errors in Data.
1. A Simple Model of Experimental Uncertainty.

Ciulli [3] represents the experimental func-
tion by h(x); and assumes that the true physical
function f satisfies

l£(x) - h(x)| < €, x€ly (9

In order to obtain an error estimate for the ex-
trapolated polynomial approximant, it is neces-
sary to assume more about the function £, namely,
some boundedness or smoothness property holding
also on the curve T which contains points of
singularity.

By assuming some boundedness condition, it
is also possible to sharpen some of the conver-
gence estimates given in Section I. 1In particu-
lar, if |f|sM,, we can take M independent of p
in Eq. (1.11), and also take p=R.

Under the conditions given above, Ciulli ob-
tains the error bound

(10)

where t, (x) is the Chebyshef approximant of de-
gree n %% the experimental function h. (Actually,
this formula doesn't appear in Ciulli's paper, but
it is a trivial corollary [4] of the results
given.) This formula E
shows that the extrapo- :
lation error behaves
qualitatively as shown

in the figure: It first
decreases with increasing

n, when the error bound

is dominated by the esti-

mate of truncation error. n

|£(x) -t (%) |<€p™+K(p /R) ™ =E
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If n is too large, it increases again, as a re-
sult of instability caused by noise in the ex-
perimental data.

There is evidently a best value of n to use;

approximating n as a continuous parameter, we
have

0= —2 =¢p™ 1n o + K(o/R)® 1n(o/R), (11)

which leads to

_ K In(R/p)
n = ln[ = ;n pp ] /1n R. (12)

Substituting from (11) back into (10), we have
for E = Min En:

E=k@&" 82 (13)

According to 12, n»e® when €-0, therefore E~0 for
p<R

2., Optimized Stability [4]

In the presence of experimental errors we
should use (10) as the error estimate, rather than
the corresponding expression with €=0, when we
establish optimality. 1In the variation of the
domain considered in section A2, we have now:

5E = neo™ Lop4nk (o /R) Y 8 (o /R) , (14)

where we omit the variation of n because of (11).
Using the relation between €, K, and n given by
(11) to eliminate K, one obtains after some alge-
bra the expression

The coefficient of 6(In p/ ln R) is positive.
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However, we can identify the quantity
v =1n p/In R (16)

as a potential (the harmonic measure of Nevan-
linna) satisfying the boundary conditions

0, x€r,
1, xe€r (17)

v

Now in the wvariation of the domain we keep the
potentials on the boundary fixed; then it is
clear that &v < 0 at all points interior to T,
from which our theorem follows.

With this simple model of experimental er-
rors we have been able to show explicitly that
accelerated convergence and increased stability
against noise are closely related. 1 refer to
this relation, in general, as the ''stability
principle",

I1I. Approximation by Normed Functions

A, General Remarks

There are many cogent reasons for wanting to im-
prove on the techniques which use polynomial expan-
sions. One reason is that we have made use so far of
only asymptotic convergence properties, whereas in
practice we want to use a small number of terms. This
limitation may be only apparent however - arising be-
cause we have so far used rather simple mathematical
ideas. A more important reason is that we would like
to take account more precisely of the actual distribu-
tion of experimental information at discrete points in
the physical region. Furthermore, we want to take ac-
count of experimental uncertainty in a more exact way
than is given by the model of the last section. The
treatment of experimental uncertainty is left to sec-
tion IV of these notes. However, the desire to in-
corporate Gaussian statistical errors into the formal-
ism is one of the primary motives for treating the
boundedness and smoothness limitations on the functions
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also in terms of a quadratic norm and for introducing
an a priori measure in the function space.[5

B. Hilbert Space of Analytic Functions
1. Definition and Examples

a., The function space A under consideration
consists of functions which are analytic in
some suitable open domain D and whose limit-
ing values on the boundary T of D possess a
suitable Hilbert norm.

b. The simplest example[ 6]
Let the functions be analytic within
the unit circle, and let the inner product

be:

(£,8) 5= j] F 8 laul (0

If we write the Taylor expansion of the
functions as f = Tapu®, g = Tb u", then

(£,8) = Ta,"b_ (2)

¢. Generalization to different weight func-
tions,

Let W(u) be real and positive, and sup-

pose that
1 *
(£,8) =5 [ W EW g ldu| (3)
ul|=1
Then define v(u) to be analytic in the unit
circle, such that on |u| =1
Rey(u) = -%LloW(u) (4)

Then let

p(u) = eY(u); (5)
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o(u) is uniquely determined up to a constant
phase factor. On |ul=1, |o|?=1/w. With the
definitions

f = oF, g = oG, etc. (6)

The inner product (3) is transformed into the
the form (1) for F and G.

d. To impose smoothness conditions on I.
We may replace (2) by

*
(£,8) = 5C_a "b_ (7)

Now suppose f(u) has on |ul=1 a finite num-
ber of singularities of the form

£(u) ~(u-1)Y, Ju l=1, u~ u. (8)
Then a_ ~ n~Vl for large n, and we may take
Cn . n2\)+2 (9)

for large n, because then the sum (7) is
marginally non-convergent. If p=2v+2 is a
positive integer, we may write an integral
expression such as (1) in which p deriva-
tives of f or g are taken. (A marginally
non-convergent sum is not unreasonable at
this point because we will later consider
closures of A).

2. The Reproducing Kernell 7]

a. Definition

The reproducing kernel is a function
H(x,y), such that for y€D, H(x,y) (as a func-
tion of x) lies in A, and possesses the fol-
lowing reproducing property:

H(C,y), £) = £ ) (10)

The notation introduced in (10) is that the
dot . symbolizes the dummy variable with
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respect to which the inner product is evalu-
ated. It follows from (10) that

(H(',X) ’H(':Y)) = H(X,Y)’ (11)
and hence that H is Hermitianm,
H(x,y) = H(y,%)¥, (12)

and also that H(x,y) is an analytic function
of y*.

b, Examples of reproducing kernels

For the Hilbert space (1l.b) the repro-
ducing kernel is [6,7]

H(u,v) = 7=or (13)
Proof:
| ey laul=g]  SE=Ew)
lu|=1 lul=1

(14)

Where we have used the relations holding on
|lul=1, that |du|=du/(iu) and that uu®=1,
More generally, if \lf\l3=ECn‘anﬂ2, then

%\ 01
H(u,v)=2£%i—l— (15)

c. Elliptical domain

As another example, if the domain of
analyticity is the interior of a unifocal el-
lipse Cg» as defined in section I.E, and if
the norm is defined on Cgr as the square-
integral with a weight function proportional
to |2°-1|"%, then the reproducing kernel can
be written in the form

H(z,z') = zunTn(z)Tn(z')*, (16)
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where the Tn are the conventional Chebyshef
polynomials, and

_ 4n2n,.-2n -1
H = (R7HR +26n0) 17

C. Generalized Interpolation
1. Linear Functionals and Basis Functions

Ordinarily one considers interpolation to
the values or values of derivatives of a function
at certain points: viz fk=f(xk) or £ =f'(xy) .
It is convenient to generalize this idea to the
consideration of arbitrary linear functionals of
f, for which we introduce the notation L: [5]

£ = Lf (18)

Also, we introduce an adjoint I +, acting, for
instance, on H(x,y), as follows:

B ()

Eq. (19) also defines an associated basis function
Hk(x). Also, we define:

HGx, LY = (LHC ) (19)

- - .« vyy T
Hyp = LH = LEC, DI, (20)

We have then a simple theorem:

(Hy ,H)

(-, )T, B, )T

+ —
LEC, DL, = By (21)

The (x) are thus convenient basis functions for
A, because their inner products can be calculated
immediately from the reproducing kernel, let us
call this the 'matural basis!'.
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2. Interpolating functions

Suppose that we are given the N numbers £, ,
k=1,...,N. We want to approximate the function
£. We say that a function £ (x) interpolates the
£ K? if

L = £, kL. K (22)

Such an fy(x) is obviously some sort of approxi-
mation to the original f(x). In case f(x) de-

pends linearily on the £, we say that ¥N(X) is

a linear interpolation. A particular linear in-
terpolation

Fy(®) = B H, ()8, (23)

can be constructed from the natural basis func-
tions provided the Bj are chosen appropriately:

2 y AL (24)

or, in an obvious matrix notation, with Hy re-

fering to the NxN matrix H&k’

= HpB, B = HN"f (25)

We now prove an important theorem: Of all
functions fy(x) interpolating the N values fi,
the function F (x) given by (23-25) has the
smallest norm. In general, we may write

£.(0) = Fp(x) + (%) (26)
where I&m=0, t=1,...,N. Hence
0 = I, (H(, "),0) = (H,, ® (27)

But

HEg = Eg I P+l lo 117 +2R B0 ,B)8,,
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and according to (27), we have
HeEglP=11Fe [ 1P+]lo]1?, Q.E.D. (28)
D. Convergence properties

We will now show that lim FN(X) exists. Let the

functions {Ak(x)} denote anNorthonormallzatlon of the

{H (x)} according to the Schmidt process. We can
write

F (%) —7N 8, A, (%) (29)

We have

D el = eyl s el P (30)

from which it follows that the sequence Fy(x) con-
verges in norm, It is an important consequence

of the existence of a reproducing kernel that con-
vergence in norm implies uniform convergence for
points in any closed domain d<D; we sketch the proof.

N - N i
Let AM (x) = ; anAn(x), (31)
We have

lay 12 =ZMN|ak|2 <€

provided M > M(€), by hypothesis. Using the property
(10) of the reproducing kernel, we have:

o G 17 = 1@ ,%0,8,0 2
(32)

=(H( %) 8,00 (8 HC )

Now, by the Schwartz inequality, we have
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N N N

8y G P Tay 112 BCLx)LEC ) =118, 1P H(x, %)

(33)
Hence the sequence {FN(x)} converges uniformly in any
closed domain in which H(x,x) is bounded uniformly.
This of course applies to any interior domain of D,
and it may also include the boundary of D for Hilbert
spaces which incorporate smoothness conditions on the
boundary.

E. Measure in A
1. Properties of the Wiener-measure

We define a Gaussian relative measure:(5,8)

R(E) = exp(-5|£] %) (34)

which can be interpreted as a relative probability
(for the formal construction of a Bayes' hypothe-
sis) of functions in A, relative to a standard re-
ference function which is taken here as f e 0.

In any complete orthonormal basis {En(x)} we have,
formally,

H(x,y) = Z,E_(x)E,(y) (35)

It is convenient here to specialize to the
case of real analytic functions, which includes
all important applications, and then the £ =ka
can be taken as real, and the (x) and Ea%x) can
also be real-analytic. The quantities

£, = (E,,D) (36)
which enter into the representation

f(x) = ZafaEa(x) (37)
are then also real.

In such a basis, we have

R(£) = exp(-3TE,°) (38)
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where, temporarily, we have set u=l. Using (38)
it is clear that

(£), =0
(39)
<fafb>A & 6ab
Ehus, for functions written in the form (37), we
ave

(f(x))A =1 ()
.<f(x)f(y)*>A = H(x,y)

Eq. (40) shows that H(x,y) provides a complete
description of the Hilbert space A as well as of
the measure R defined over it. It is therefore
natural to take H(x,y) as the fundamental object,
and use it to define A; it may be easier to
develop an intuition about the correlation func-
tion for boundary values than about the weighting
and smoothing that goes into the definition of the
norm.

(40)

2., Averages over constrained functions

We now consider the restricted Hilbert space
A/E of functions f which satisfy the N constraints

Lf=f k=1, ..., N

k b
where the f are supposed given. This restricted
space can b€ obtained explicitly by orthonormaliz-
ing £ to the basis H, . Furthermore, the mean
value of f£(x) over A%E with respect to the measure
(34) or (38) is easily seen to be

(E@)Y = Ty, (1)

which just expresses the fact that with a Gaussian
measure, the average values and the most likely
values are equal.
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Now let f_(X) be any function which inter-
polates the £ Nin the sense defined above, and
consider the mean square deviation of fN(x) from
the correct value £(x):

AN(x)25<|fN(x)-f(x)12>A/E=<l(fN-FN)+(FN-f)l3>A/E

(42)
Using (41) and the fact that f -FN is just a num-
ber independent of f€A/E, we obtain
2 o _ 2 . 2

8y () lfN FNI + <(FN £))

AJE (43)

Since F_(x) is a linear function of the £ , the
second Yerm in (43) is independent of the £, and
is a constant if one performs a further average
over the f; . Likewise, if f(x) 1s also a linear
interpolation, i.e. depends ?inearily on the £ ,
it is not hard to perform a further average over
the first term also. In any case, it is clear
that on the average over A, any arbitrary inter-
polation will be worse than the minimum norm in-
terpolation FN(X).

3. Completeness

It was shown in section D that the minimum
norm interpolation Fy(x) converges uniformly, but
the conditions under which this convergence is to
the correct function f(x) have not been discussed.
Let us suppose that, associated with the sequence
of linear functional operators I, there is some
sequence of interpolating functions f;(x) which
converges uniformly for x€d<D., (Here d is also a
continuum.) For example, let Iy be the kth de-
rivative operator at some point x,€D, and let
fN(x) be the sum of the first N terms of the
Taylor expansion around % . In this case,
fy(®)~£(x) for xed, where d is any circle
centered around X, contained in D. Now, if for
all feA, there is some fy such that AN(x) =
| £(x) -y (x) |-0, it follows from (43) that for
almost all fecA, also |£(x)-Fy(x)|~0 for xe€d
(and indeed, no slower). Thus, in this case,
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FN(x) - £(x) for x€d; since Fy(x) has a uniform
limit (see section D) for all x€d'D, Fy(x)-£(x)
for x€d', uniformly in every d4'<D.

Stated more s ccinetly, the {I;} are com-
plete if one can find some prescription for
always reproducing the uniquely correct £(x) from
the sequence of values {fi}. For this "test pre-
scription', it is only necessary to prove conver-
gence in some d which is a continuum and which
lies inside D.

IV. Treatment of Data With Errors

A, Maximum-Likelihood Method
1. Notation and Definitions

Let us denote the 'true physical function'
by F(x), and the "true values" of the measured
quantities by Fi. It is assumed here, that the
function F(x), which lies in the space A defined
in Section III, is measured directly. That is,
it is like a differential cross section, rather
than a scattering amplitude which is not linearily
related to the data. The experimental values are
Fk. It is assumed that

<5k>E = F (D

where ()E means the average over repeated experi-
ments, and that the errors are Gaussian with the
covariance matrix

CGF) (B F)0g = vy (2)

The classical x® is:

2 = -& -
X E(£ -F)W, , (£,-9) (3)
where f(x) is the fitted function, EQ=I f are the
fitted values, and W , = (v*)y,- In many simple

cases, W is diagonal, but it is convenient to
adopt a matrix notation.



ANALYTIC APPROXIMATION THEORY 445

Minimization of X® can also be looked upon
as maximization of the conditional probability

2¢ %)

The more general maximaum likelihood method in-
volves construction of a Bayes' hypothesis with
an a priori probability P(f); then one maximizes
P(3/£)xP(f). In the standard approach, one de-
cides on a specific parametrization of f£(x), and
implicitly assumes that the a priori probability
for these explicit parameters is uniform, and
also implicitly assumes that the a priori proba-
bility for all hidden parameters is a delta-func-
tion centered at some value, say, zero. A more
natural Bayes' hypothesis is provided by the
measure we introduced in Section III. . We then
minimize the quantity

P@E/f) = const Xe

X = -24n(P(F/£) X R(f))
=x* + 0 (5)
where ® = u||f||?. (Any constant factor in the

probability can be ignored).
2, Fixed Scale Approximation

Suppose, for illustration, that p is a known
number. In any case we can replace ||f||® by
| [Fy|1?, where Fy is the minimum-norm function
interpolating the fitted values fk' According to
(3.25), we have

HFNl |2=Zk)(,mn fk (HN)I?L H)Lm (H'N_l)mnfn

= -1
T e (i fy

It is convenient to write (6) and other equations
following in a matrix notation, where f denotes an
N-component vector, H, v, and W are NxN matrices,
etc. Then (6) becomes: ||Fy||°=f"H™ £, and

Eq. (5) takes the form

(6)
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¥ = (£F-sh)yvt (£-8) + pfTHTE (7)
Minimizing (7) with respect to £, we have
(v '+ uH?)E = vy (8)
B. Eigenvectors and Eigenvalues
1. Simultaneous Diagonalization of W and H,.

To write (8) in a more transparent form, as
well as to aid in calculating the inverse of H
(which in practical cases is nearly singular) and
as a preliminary to the further development, we
find the eigenvectors P), and eigenvalues A% of H
with respect to the weight W of the data:
a

HWP, = )P, (9)

The P, are orthogonal, and are normalized accord-

ing to
+ -
P, WPy =38 (10)
This is equivalent to constructing a set of basis
functions
- -1
P,(®) = L B ) H) Py (11)

These new basis functions are orthogonal with re-
spect to the inner product defined in A as well

as with respect to the weight of the data. They
have been normalized by W, and thus have roughly
the same size, at the data points. Their norm is

et

Let the \'s be ordered: \'=)2z...2AN, 1n
practice, the \'s decrease like a rapidly conver-
gent geometric series, so that the standard itera-
tive technique for calculating the Py, and A%
works very well.
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2. The Fixed Scale Approximation

We express the experimental data and fitted
values in the form

5 =3 PC c = plus
o4 [« 8

E=sPy v, = P:Wf : (12)

With this notation, equation (7) takes the form

X¥ =% (C_-v

2 2
2 (CymY)® + uEY* /Ay (13)

The best value for Yo is thus

Yo = Cof (/X ) =2 C /() (14)

This formula shows that the expansion of f in
terms of the P, is effectively cut off at the

point K where 2K o {. However, this cut-off is
not sharp, but is spread out over a range of
values o ~ K.

In contrast to the result obtained in Sec-
tion II.B, the cut-off point K does not depend on
the point to which one wishes to extrapolate.
This is a result of using Gaussian distributions
for the model of experimental uncertainty as well
as for the means of incorporating information on
boundary values.

C. Elimination of the Scale Factor
1. Maximum Likelihood [ 9]

In general, the scale factor u is not known.
A simple way to estimate p is by extending the
maximum likelihood principle to include y, in
which case the p-dependent terms in the normali-
zation factor of P(f) must be included. If M < N
terms in the eigenvector expansion of f£f are in-
cluded, we have
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- M VIR o M 2
P(f) TT]_ (zn)\n) exp(- 2 Zl Ya /.}‘a), (15)
so that
,Y 2
2 2 M 'n
X = -2 4nP = x* + uZl - M log u + constant
n

(16)

If we first minimize with respect to U, we obtain

b= M3y 2/, (17)

and obtain the expression
X =5 +2 (18)
where we have dropped constants, and where
= M _ =
@ =Min T v 2/ (19)
In some cases it may be simpler to first
minimize with respect to the vy, using the formu-
las given in Sections A and B, and then vary p to
find the minimum of X* as given by Eq. (16).
2, Generalized Analysis of Variance [ 5]
The method C.1 has two disadvantages: The

results depend on the value chosen for M, and the
value of & weights the coefficients y, for small

. n in the same way as for large n. We shall now

introduce a method which explicitly compares the
ratios of coefficients for large n to those for
smaller n. Let

o -k
an - Yn(xn)
= l n 2
B, 5 By (20)
- 2
rn an+1 /s
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We transform

M M da ? -E-g a®
P() L da? = EyW2y_2 21
n 2m a
1 1 n
(21)
into the following distribution:
M-1

M
P(a°) % danz = P(a1®, Ti, «.., rN_l)d312 2 dr_

o M/2 M-2 M-1 drn 1r1+r‘:1 M-;-l
=G a 1 —3 (= da,? (22)
1 rn
wa, > M-1 n+rn
- I
2 1 n

Integrating over da,® we obtain

M-1
P(r, ... rn_l) = 2 Qn(rn) (23)
where
n
Qn(r) _n® TCGn + %) (24)

1 +3
DT () () P
Thus the statistical distributions of the r_. are
independent of each other, as well as of the value
of u.

3. Convergence Test Function [5]

We wish to devise a function which measures,
collectively, whether the ratios r, are larger
than one would expect from a Gaussian distribution.
Furthermore, we wish to weight somewhat more
heavily the r, for large n. To do this we first
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construct the monotone function pn(r), where pp
has a x®-distribution with one degree of freedom.
This function satisfies the following differential
equation:

e—%pn dpn
Q (r)dr = 7 (E) 73; (25)

For small r, we have:
_ 1 r
pn/r =1+ O(n) + 0(n) (26)

and for large r:
p=ninr + 0({n 4n r) (27)
An approximate formula is thus
r
pn(r) ~ntn (1 + E) (28)

(While this formula is good for large n, it may be
wrong by as much as 50% for n = 1.) Finally, we
define the convergence test function (CTF)

¢ =Y ML, (29)

which has a x® distribution with M-1 degrees of
freedom. This can be combined with the classical
2

x° as in Eq. (18)
X¥ o=y 4+ (30)

where now X* has a ¥° distribution with N-1 de-
grees of freedom, independent of M.

The logarithmic nature of p,(r) guarantees
that if certain y, are really required to have
large values to fit the data, in the minimization
of (30) the effect of ¥® overwhelms the effect of
. On the otherhand, if the values of the vy, for
n greater than some K are all around the noise
level (|lyyl ~ 1), the minimization of X° guarantees
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that these y, are reduced to extremely small
values. The effective cut-off in n occurs at
such a value K; it is gradual, although in prac-
tice it turns out to be slightly sharper than the
cut-off obtained through the use of Eq. (14).

In contrast to the use of method C.1, when
the CTF is used the results are completely in-
sensitive to the value chosen for M, provided
only that M is somewhat larger than K. 1In either
case, however, the ambiguity is much less than in
the conventional method in which only ¥ is con-
sidered.

D. Estimation of Truncation Uncertainty

In addition to the statistical uncertainty, there
is always a truncation uncertainty to consider. This
component of the uncertainty is usually negligible at
the data points, but can become the main component of
the uncertainty when one tries to extrapolate too far
away from the data region. According to the formalism
presented here, with an a priori Gaussian distribution
of functions, these two components are combined quadra-
tically.

The "statistical uncertainty' can be calculated by
the usual rule: AX¥ = 1. This actually is a combina-
tion of true statistical uncertainty arising from the
terms n < K, and a part of the truncation uncertainty
coming from the terms K < n < M, The residual trunca-
tion uncertainty can be calculated as follows. Let us
suppose we wish to determine the truncation uncertainty
in a real quantity f, associated with the linear func-
tional operator I,. We can use the formula

M
z = - TP _*/\ : 31
where P__= IOP . The value of u to be used in (31) can
be estimated by the formula
i
o iE (32)
L. a®
1 ™n

which is insensitive to M if M > K.
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It should be emphasized that the methods presented
here have been designed to reduce to a minimum the
total uncertainty. However, since it has been custom-
ary to neglect the component arising from truncation,
the uncertainties obtained by use of these methods may
appear to be larger than values sometimes quoted.
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ANALYTIC EXTRAPOLATION OF SCATTERING AMPLITUDES
AND FORM FACTORS ¥
H. Pfister
University of Tubingen

Tubingen, Germany

1. General Considerations on Extrapolations

As long as there exists no complete elementary parti-
cle theory, the extrapolation of physical amplitudes from
experimentally known regions into regions which are not
yet accessible or cannot be reached in principle, is one
of the main tasks of elementary particle physics, compara-
ble to the task of gathering new data. Many of the ques-
tions which are in thorough discussion nowadays, are final-
ly questions of extrapolation of amplitudes. As there are:
What is a resonance? A pole in the second sheet or only a
loop in an Argand diagram? Can all amplitudes be construc-
ted out of resonances? Should an amplitude in some kine-
matical region be parametrized by resonances or by Regge-
terms or by something else?

In spite of this central role of extrapolation of am-
plitudes, the mainly mathematical problems connected with
it are by no means fully solved, and worked out in detail.
In times when the experimental material was scarce, it was
sufficient to represent for instance the proton form fac-
tor by a simple p-pole term, or a m-N partial wave by two
or three Breit-Wigner resonances. To make, however, full
use of the assembling of more and more data of higher and
higher precision, it is necessary to develop systematic
criterions, which parametrizations of these data are al-
lowed and which not, and even more important, what are the
uncertainties in conclusions drawn from those parametriza-
tions.

t Supported in part by Deutsche Forschungsgemeinschaft
and National Science Foundation.
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The main tool which enables one to get reliable con-
clusions on the extrapolation of physical amplitudes, is
the analyticity of these amplitudes in some domain D.
These analyticity properties follow in some cases from
axiomatic field theory, in less favourable cases they can
still be deduced from perturbation theory. 1In any case,
we will assume for all further discussion that the domain
of analyticity of the amplitude in question is known., Un-
fortunately, this postulate alone does not suffice to
solve the extrapolation problem for any real situation in
elementary particle physics.

If our amplitude £, analytic in D, would be known in
some, however small, continuum inside D, the theorems of
complex analysis would guarantee the exact knowledge of £
in the whole interior of D. But in practice, £ is known
experimentally only in discrete points z{, and in these
points only with finite errors ¢; . So, the extrapolation
problem is unstable, or, in the mathematicians language,
improperly posed: It is easily possible to construct for
arbitrary z,€D and arbitrary complex number K a function
£, analytic in D, which coincides in the points zj%z, with
the experimental result, and fulfills £(z,)=K. So, the
extrapolation to any point different from z; is, strictly
spoken, undetermined.

In order to avoid this (unphysical) disaster, one
usually introduces two additional postulates on the physi-
cal amplitude f£:

a) One assumes that f is known along some continuous piece
of.a curve C, within some (constant or variable) error:

|£(2) - £_(2)[<e(2) on C_CD.

This smearing of the experimental information is quite
plausible and acceptable in cases where the experimen-
tal points z; lie already quite dense and where the
relative variation of £(zj) from one point to the next
is small. In many cases, the ''point" z; is also experi-
mentally fixed only within some inaccuracy. In princi-
ple, postulate a) can be omitted, as is seen below, but
many conclusions and formulas are more evident if we re-
tain it.
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b) One assumes that f is bounded on the boundary Cp of D.
It is then reasonable that also the class of functions
fo(z), admitted for approximating £, is restricted by
this bound, so that we have:

|£(z) - £,(2) <M on Cp.

This second postulate is a quite severe limitation from
the physical point of view, and by no means plausible.
I think, nobody is able to give for any definite physi-
cal example a reliable-and not too large-number M,
which fulfills the above relation on the whole curve
Cp, including in most cases also the point infinity

(in energy or momentum transfer), where we cannot even
exclude an essential singularity of our amplitude f.
Unfortunately, postulate b) cannot be skipped without
running in the above mentioned mathematical disaster,
but we must, and we can arrange our extrapolation in a
way such that the special form of b) and the special
constant M influence our results as slightly as pos-
sible.

Let us see in short that the disaster of indefiniteness of

the extrapolation is really removed by postulates a) and

b). This is guaranteed by the Nevanlinna principle: Be

D a simply connected domain, and C, a piece of a curve in-

side it. If [£(z)-fo(2) |<¢ on Cq and {f(z) -f (z)|<M on Cp,

the boundary of D, Ehin | £(z)-£ (z)1<e M (2) gor

all zep, with w(z) being the harmonic measure of D: Aw(z)=0;
pw(z)=0; w(z)=1 on Cp, w(z)=0 on Ceo

It follows then that the extrapolation is stable inside D:
8 | £(z) - (z) |=0. The stability on Cp can be established

further assumptions on f for 1 stance f fulfills some

Hclder condition on Cp: P) (z)-f P (zo)TSC]z-zolq, or, f

has only square root singularities on Cp, or, in a still

more physical manner, by calculating only mean values of £

over finite arcs on Cp.

2, Historical Remarks on Analytic Extrapolation

The first attempt to use analyticity for a reliable
extrapolation of a scattering amplitude seems to have been
done by Ciulli and Fischer [1]. They have made a conformal
transformation of the p-p scattering amplitude £ from the
z=cos O-plane to some other plane w=(1-z°)/(a®-z°), and
have shown that an expansion of f£f in powers of w shows much
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better convergence than an expansion in z. Similar meth-
ods of conformal transformation and power series expansion
were used by Frazer [2], Lovelace [3], Atkinson [4],
Levinger and Peierls [5] and others for extrapolation of
P-P, T-p, and M-t scattering amplitudes, and nucleon form
factors. But, as stressed by Bertero and Viano [6], these
people did not care of the stability problem, and there-
fore a reliable statement about the extrapolation error
could not be made.

3. So Called Optimal Extrapolations

In 1968, independently from each other, Cutkosky,
Deo [7] and Ciulli [8] worked out methods of stable ex-
trapolation for physical amplitudes by introducing postu-
lates of the type a) and b). By further idealizing the
physical situation (assuming that ¢ is very small and M
not too big), Cutkosky and Ciulli could refer to former
mathematical work on interpolation and approximation [9],
and show that the special conformal transformation wo,
which brings the whole domain D into an ellipse, and the
curve C, of experimental points to the focal line of this
ellipse, is optimal in the sense that the series f=ja,w,",
with a_ resulting from a X’ approximation to the experi-
mental data on C,, converges faster than any other power
series approximation of £, and that this expansion also
shows the best possible stability, even on the boundary
Cp [10]. (With respect to this result, the partial wave
expansion is very bad because it converges only in a small
part of D. On the other hand, the Cutkosky-Ciulli expan-
sion is not unitary term by term, and it has to be cor-
rected for that.)

The approximation could be further optimized, if also
parts of higher Riemann sheets were transformed into the
ellipse, as is done in a way in [11], but in general there
is not much improvement because theé singularities in
higher sheets are not well known.,

In application to realistic problems, the method of
Cutkosky and Ciulli, however, has some shortcomings, as
pointed out in [11]: Even for the best known amplitudes
(N-N and m-N scattering, nucleon form factors), the error
€ 1s so big that only few terms of the series Ya_w," can be
calculated with reliability, and then the abové mentioned
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mathematical theorems, which are of an asymptotic charac-
ter, are empty. Furthermore, the error of extrapolation,
calculated by Cutkosky and Ciulli by some generalized
Nevanlinna principle, and depending on ¢ and M, is in re-
alistic cases unacceptably high., 1In an application to the
proton form factor, it has been shown explicitely in [12]
that an expansion in powers of the elliptical function w,
is not necessarily superior to other power series expan-
sions, which converge only in a part of D. I adwmit, there
are series expansions in variables w, which, in spite of
having all correct analyticity properties, converge only
much worse than the w_-expansion, and give practically no
useful information. On the other hand, there are expan-
sions quite different from w,, not even having the right
analyticity structure, which are as good in some examples
as Wy. And, to be sure, there exist physical amplitudes,
which can only very badly be approximated by a sum of
three or four elliptical functioms.

As will be discussed below, the analytical extrapo-
lation of physical amplitudes is to a large extent a prob-
lem of measure theory in a function space, and results de-
rived with some special conformal transformation depend in
a nearly uncontrollable way on this special transformation.

4. The Mean Value Property of Analytic Extrapolation

It has been pointed out first by Bowcock, Cottingham,
and Williams [13] that the analytic extrapolation produces
not values of £ on definite points of C,, but only mean
values over finite arcs on C,, provided, one does not set
severe and physically unjust?fied limitations on £ on the
boundary. Mathematically, this mean value character of
the extrapolation can be traced back to investigations on
the inversion of dispersion relations by Paley and Weiner
[14] (see also [15]). You may remember that also in the
famous duality-paper by Dolen, Horn and Schmid [16], it is
made quite clear that from the Regge asymptotics you get
only averages over the resonances at finite energy. Bow-
cock et al, got their result within a critical discussion-
under some simplifying assumptions- of Levingers extrapo-
lations procedure for the proton form factor. It was then
shown in [12] that this averaging function, connected with
a series expansion of £ in powers of a conformal variable
w, can be constructed explicitly and uniquely.
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Let us shortly present the method for an amplitude
f(z) - like the form factor -, having only one cut. (The
method can, however, be generalized to amplitudes with two
cuts.) Be f(z) measured in K points z;<0, with errors ¢;.
Then we want to approximaﬁe f(z) in the whole plane, cut

from 0 to «, by a seriesngobn(w(z))n, w(z) being some
suitable conformal transformation, having the same analytic
properties as f(z), and being real for z <0. For practical
calculations more appropriate is a representation

£(z)~1(2) =n§ anQn(W), where the Qn(w) are the orthonormal
polynomials w?th respect to the measure of experimental in-
formation:

f Q, (w;)Q (wy)
7

i=1 €

= Gn,m (n,m =0, 1, ...N),

For finite N both series are equivalent. The coefficients

a, are, as usual, calculated by minimizing
K N 2
2_ Y [£(z) - 2, 2,Q, ()17
X = 3
i=1 €,
i
£ (20 (w))
The result is: a = E: i '
i=i °i

Here is now the place to insert explicitely the analytic
properties of £(z) in form of the (unsubtracted) dispersion

relation
@®

£z =nt [ IEE) 4,

z' = z
o i

Im £(z') being the spectral function of the real physical
amplitude. (A subtracted dispersion relation would work
equally well.) 1In this way, we get an integral representa-
tion, expressing the approximate function through the com-
plete function:
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_ NOK_; Q(w(2))Q (w(z,)) Im £(z')
f(z) = I dz' Z, > 5

(z' - zi) €

-
n=0 i=1

Taking the imaginary part of both sides, we end up with:
Im £(z) = Iodz' SI(z', z) Im £(z"),

where the averaging function is
, 4N K ImQ (w(2) Q (w(z,))
5;(z'2) =m0y Y 7
n=0 i=1 (z' - z) ¢

For K= ®, ¢, » 0, we can go with N =~ @, and then SI

should approéch 8(z'-2).

The same can be done for the real part of £(z), using a
different representation, expressing the analytic proper-
ties of £, the so called airfoil equation [17]

T d7 g e @y

z' (z'-zi)

The resulting averaging function Sr(z',z) is in many appli-
cations very similar to Sy(z',2).

It can be shown that the averaging functions S are unique-
ly fixed, once the conformal variable w is given, and that
S does not depend on the special way, the analytic proper-
ties of £ are worked in. This 1s due essentially to the
fact that S does not depend on the experimental values
f(z{) but only on the errors €.

Some remarks should be made with respect to the degree
N of approximation, one should choose. It turns out, that
x® as a function of N at first falls very rapidly (typical-
ly from something like 10° at N=0 to 10° at N=3), and then
at some value No levels off into a value near K, the number
of experimental points. Pushing the approximation beyond
No would mean that you want to fit also the statistical
fluctuations-the noise-in the experimental data. With
N=K, you could even construct a polynomial F(z) which goes
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through the center of all error bars; but surely this does
not make any sense. The best (most physical) value N, can
also be found in another way: The separate terms anQn(w)
of the series f£(z), taken in the extrapolation region

(z»0 in our example) first fall off (in absolute value),
but beyond n = they rise enormously, because fitting
also the noise o% the data develops fantastic oscillations

of f in the extrapolation region. Q.(w) is in fact a
. . n—o @nn
semi-convergent series.

Let us say some more words about the averaging func-
tions S (now taken with the optimal value N,) and the de-
gree of information, they give us about the true physical
amplitude f in the extrapolation region z>0: By explicit
calculation, it can be seen that S(z',z) depends very
strongly on z, the special point in the extrapolation re-
gion, around which you want to gain information on f. More
explicitly: The region z>0, in which you can get reliable
information, is in a way the mirror-image of the region of
good experimental information, taken with respect to the
threshold-point z = 0, as has been pointed out already some
years ago [ 15, 18]. Near the threshold point and for very
large values of z, the information, you can get, is in most
cases very scarce. This correspondence between extrapola-
tion region and experimental region is hidden in procedures
as Ciulli's, which stick strongly on a unique bound of £
for all positive z,

Concerning the error, to which our approximate ampli-
tude f is subjected, it is reasonable, to take the absolute
value of the last (the minimal) term in the series,

[ay (w)[ Once you have accepted, to approximate f by a
pow r Ngeries in the special variable w, this can also be
proved by well-known x° -approximation theory, i.e. by cal-
culating the uncertainties of the coefficients a But, to
be sure, there is no strict mathematical proof o% this esti-
mate, independent of w. On the other hand, it turns out in
practical applications, that approximations £, expanded in
different (but reasonable) variables w, do not differ from
each other by more than the above estimate. 1In any case,
it is essential, that by calculating only mean values of £,
we get a resonable error estimate, which is independent of
some (unphysical) bound on f.
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Once it is clear that by analytic extrapolation one
can never get f(z) on definite points, but only average
values, it is nearby to give up completely the approxima-
tion through power series' in some conformal variable w,
and to put the averaging function itself on the top of the
extrapolation procedure. This point of view has been taken
for example by Pisut, Presnajder and Fischer [19]. For
convenience only, they first transform the physical z-plane
with its two cuts into a ring between two circles,:

Z - PLANE W- PLANE
——— T L e SRR
-Zo-1 1 Zo (-1 ' (1

Idealizing the situation a little bit, they split the ampli-
tude f into the data and the errors:

f(w) = fe(w) + e (w).

(0f course, a function ¢ (w) does not really exist.)

Then, taking a so called focusation function g(w,w'), analy-
tic in w withing the ring, real on the unit circle |w|=1,
and large only along a small arc I' of it, around w=w', the

Cauchy theorem gives:

jfe(w) g(w,w') dw + Ie(w) g(w,w') dw = Jf(w) g(w,w') dw +
R R T

+If(w) g(w,w') dw,
1-T

or If(w) g(w,w') dw =
T

= J£ ) g,w) dv + Je@) glw,w') av - [E£(w) glw,w') aw
R R 1-T
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The average of £ over the arc I' is given by an integral,

which can be calculated from the data, plus two terms, ex-
pressing the uncertainty of the extrapolation. These two
terms in a way compete with each other: T f(w) g(w,w') dw

gets negligible, the more g(w,w') is focussed around w';
but then g(w,w') is large on the R-circle, and the integral
over ¢(w) grows. In practice, one takes a special class of
focusation functions g(w,w'), say a kind of Gaussians on
the unit circle, and chooses the width in an optimal way,
so that the sum of both integrals gets minimal. This opti-
mal choice g,(w,w') between two competing terms is of
course in analogy to the dependence of |anQn(w)| on n,
showing up in the series expansion method. Again you can
see, that, due to calculating only mean values, the special
assumptions on the amplitude £, for instance to be bounded
by M, do not influence the error estimate so strongly, be-
cause only the integral Tf(w) g(w,w') dw enters into the
error estimate, In a very elegant way, Pisut et al. have
traced back this increase in stability of the extrapolation,
this slighter dependence on assumptjons on £, to the fact
that the averaged function F(w') =| f(w) g(w,w') dw has a
W=
much larger region of analyticity than the original func-
tion £(w).

Comparing the method of Pisut et al. with the power
series expansion, it appears, that the former method is
more general, in that the focusation functions g(w,w') can
be chosen arbitrary (within the analyticity constraints),
while the functions SI(z',z) depend on z' always in the

Si(z’zi)

form = ¢ On the other hand, the second method
i=1 i

makes very drastically clear that the averaging (or focusa-

tion) functions cannot really be chosen free, but are to a

far extent determined by the experimental error-distribu-

tion at disposal.

5. The Statistical Nature of Analytic Extrapolation

A shortcoming, common to all extrapolation procedures,
discussed till now, is that their results depend to some ex-
tent on the special expansion variable w or on the special
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type of focusation functions used. In this situation, it
has been emphasized by Cutkosky in a fundamental paper [20]
that the extrapolation of physical amplitudes in fact is a
problem of statistical nature., There is also a subsequent
paper along the same reasoning by Presnajder and Pisut [21].

Cutkosky suggests to manage the instability problem
not by the unflexible condition |£(z)|<M, but by intro-
ducing a probability measure for the values of f on the
boundary. I, personally, being very sceptical concerning
predictions, how an amplitude should probably look like in
a hitherto unknown region, would like to suggest another
kind of statistical concept in analytic extrapolations: Do
the extrapolation simultaneously with all physically and
mathematically admissible expansion variables w, or focusa-
tion functions g(w,w'), and then average over all results
with a suitable measure function, measuring in a way the
"probability'" of the special parametrization through the
width of its smearing function g(w,w') or S(z',z) and the
error estimate laN Qy (w) | respectively

o ‘o

| [ £y g Goow") awl + [le@ ] g ww") | ldwl
1-r R

But I will not go any deeper into this statistical
game, because I have not yet done explicit calculations in
this direction, and because Prof. Cutkosky surely can tell
you much more definite results about that.

6. Survey of Physical Applications

There are a variety of nice applications of the analy-
tic extrapolation techniques by the Cutkosky-group on K-N
and N-N scattering. One can for instance get quite relia-
ble values for the N-N and K-N coupling constants [7], and
one can represent the corresponding scattering amplitudes
even better with less parameters than in the partial-wave
method, and can therefore correlate different phase shifts
and resolve some ambiguities inherent in these [22]. Just
recently there appeared an interesting letter by Deo and
Parida [23], in which they show that the high-energy p-p
data are better and more uniformly represented by an opti-
mal conformal variable in the sense of Cutkosky and Ciulli
than by the Orear- and Krisch-fits.
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There are also some applications by other groups:
Bowcock and John [ 24] have taken the m-m p-wave as measured
with colliding ete™ beams and extracted out of it, using
crossing and analyticity, an approximation for the m-m
s-wave, showing some broad resonance (0c-meson) near the
p-mass, but giving no good resolution.

A Nordita-group [25] then has extracted a lot of in-
formation out of the_nN phase shifts, extrapolating these
to the channel mm—NN. For the amplitude T(I=J=0) they
get indeed, as above, indications for a broad o-maximum,
but the corresponding phase only very unlikely goes up to
90° as it should be for a real resonance. For T(I=J=1),
the imaginary part of the amplitude shows the p-peak, but
smeared out over something like 4 times the experimental
p-width., The real and the imaginary part turn out to be
quite small a distance above the p-mass.

This fact harmonizes excellently with a result, ex-
tracted with analytic extrapolation from a quite different
amplitude, the proton electromagnetic form factor [11]: By
extrapolating the rather extensive and accurate data on the
proton form factor G(t) in the spacelike region to the
timelike region, it turned out that Im G(t) has no pro-
nounced p-maximum at the right place, but a zero a small
distance above the p-mass. At first, this is surprising,
because, taking into account only the 21 intermediate state
as usual, we have Im G(t) ~ Fr(t)*+T(I=J=1, t), and it is
experlmentally absolutely clear that the pion form factor
Fr(t) has a pronounced p-maximum. But now, by our extra-
polation procedure, we get only an average of the above ex-
pression over a finite t-region (typically of the order of
400 - 500 (MeV)®, i.e. 4 times the p-width; the uncertainty
in (Im G(t)) & being of the order of 407 compared to 1% -3%
error in the experimental data), and therefore the peak in
Fr(t) can be killed in a way, or be pushed to much smaller
t-values by the '"zero'" in T.

Another interesting result of the proton form factor
extrapolation refers to the so called scaling law between
the electric and magnetic proton form factor: GE(t) =

G (t)/u. It turned out [12] that the small but systematic
deviations from this law in the spacelike region
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(GE>GMIM for 0.15 (GeV)®<-t<0.30 (GeV)?, GE<GM/M for

0.60 (GeV)®< -t<1.5 (GeV)?), which have been confirmed by
the last experiment [26], produce quite large deviations

from this law in the timelike region, and fortunately in

the direction as to confirm the relation GE =G, at

t = QMff, as it is suggested by theoretical arguments [27].
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