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Abstract

The search for signatures of quantum gravity effects in candidate theories of quantum gravity
often focuses on symmetry reduced models such as cosmology and black holes. The main ob-
ject of investigation of this thesis follows another approach and considers the effective influence
of linearised quantum gravity effects on quantised matter systems formulated as open quantum
systems, in particular the resulting decoherence induced in these with a focus on neutrino os-
cillations. To model these effects, we derive master equations for two different open quantum
systems with linearised gravity as environment.

The first system consists of a scalar field coupled to linearised gravity formulated in Ashtekar
variables and is meant to serve as a first step for the construction of decoherence models inspired
by loop quantum gravity, which allows a mathematically rigorous canonical quantisation of full
general relativity (GR). Due to the fact that GR is a gauge theory, it is essential to identify the
physical degrees of freedom in order to assure a model’s predictability. While field theoretical
decoherence models that include gravity have so far worked with specific gauge fixings for lin-
earised GR formulated in ADM variables, we follow in this thesis a different approach based on
the relational formalism. For this, we show how suitable geometric clocks can be constructed that
enable the construction of Dirac observables for the physical degrees of freedom. The advantage
of this procedure is two-fold: on the one hand, it permits the formulation of the decoherence
model independently of a specific gauge fixing but can be easily linked to different choices of
such a gauge fixing, hence providing a method to compare different choices. On the other hand,
it delivers a way to assign physical meaning to the time and space coordinates in the model,
which originally are purely gauge in GR. The introduction and application of a dual version of
the observable map originating from the relational formalism enables us to perform a canonical
transformation to decompose the classical phase space into a physical and a gauge sector, where
the Poisson algebras of the respective elementary phase space variables commute. Due to this,
the reduced physical system, whose elementary phase space variables are the Dirac observables,
can be quantised canonically, where in this work a Fock quantisation is used to facilitate the com-
parison with the literature. The methods derived in this thesis for the treatment of decoherence
models involving linearised gravity in Ashtekar variables can also be applied to similar models
with different matter fields such as for instance photons where these methods need to be slightly
extended to take the U(1) gauge symmetry into account.

Starting from a quantised model, there exist several different ways to obtain a master equation
that describes the effective dynamics of the matter field under the influence of the gravitational
environment. These techniques are usually employed in other areas of physics such as for instance
in quantum optics or condensed matter physics. When gravity is considered as the environment,
there are still many open questions regarding the applicability and validity of these methods and
their interplay with a possible renormalisation. In the present thesis, we try to give some answers
to these questions for specific physical systems and show some possible ways how these can be
used in other systems. For this, we start from a time-convolutionless master equation for the
scalar field which we derived with the projection operator technique assuming that the linearised
gravitational environment is weakly coupled to the scalar field and obeys a stationary Gibbs state,
which corresponds to thermal gravitational waves. Such a time-convolutionless master equation
is in general not completely positive, which can lead to unphysical negative probabilities. To



2 Abstract

circumvent this, for the description of decoherence models usually further approximations such
as the Markov and the rotating wave approximations are applied to cast this equation into a
completely positive Lindblad form. As mentioned above, the detailed influence of these approxi-
mations is however rather unexplored for gravity as environment and also their validity for this
class of models is not yet clear. To investigate these open points and to facilitate the extraction
of physical predictions from the field theoretical master equation, we project this equation onto
the space of a single scalar particle. We then show how the resulting one-particle master equa-
tion can be connected to the underlying effective quantum field theory (QFT), which permits a
clear physical interpretation of the involved contributions and scattering processes encoded in the
master equation. Such a link has not been worked out before for gravity as environment in this
class of decoherence models. Based on this, we can deliver a physical interpretation for different
versions of the one-particle projection of the master equation applied in the literature and for the
divergent terms in this master equation. It turns out that the latter correspond to vacuum bub-
bles and to the self-energy of the scalar particle. To remove them, we perform a renormalisation
of the underlying effective QFT and obtain a master equation with only finite contributions. The
renormalisation of the one-particle master equation for gravitationally induced decoherence at
this stage is new in the literature and enables us to discuss the effects of the applications towards
a Lindblad form from a physical point of view. In this work, we analyse the two most often in-
voked approximations for this purpose which are the Markov and rotating wave approximations.
Additionally, conditions for the validity of the Markov approximation for the specific application
to ultra-relativistic particles, in particular as a toy application for neutrinos, are given, which has
not been discussed yet in the works on this class of gravitationally induced decoherence models
in the literature.

Neutrinos represent potential candidates to exhibit features of gravitationally induced decoher-
ence by modifications of their oscillation behaviour. Therefore, there is increasing interest in both
the neutrino physics and gravitational decoherence communities to investigate this effect and its
possible signatures in experimental data. Most of these analyses are based on phenomenological
models that start from a Lindblad equation for a neutrino where the effective influence of gravity
is represented by the Lindblad operators. As these models are not based on a microscopic theory,
the Lindblad operators are unknown and therefore parametrised by free decoherence parame-
ters. Bounds for these are then determined from experimental data by testing different possible
dependencies of these decoherence parameters on the energy of the neutrino, however thereby
not yielding an intuition which energy ranges and hence which detectors are favoured in the
search of signatures of this decoherence effect. From a theoretical point of view it is thus of high
interest to construct microscopic models that allow to resolve the structure of the dissipator in
the phenomenological Lindblad equation and to give a physical interpretation of the unknown
decoherence parameters. The construction of a model that provides some answers to these ques-
tions is a main part of this thesis. As a first step, we use the Lindblad form of the one-particle
projection of the field theoretical master equation for a scalar field and apply it by asserting
typical neutrino energies to the scalar particle, which delivers a precise form for the solution of
the Lindblad equation for linearised gravity as environment, in which all appearing quantities
have a clear physical interpretation due to the underlying field theoretical model.

As however a scalar particle might not be able to reproduce all the characteristics of a neutrino
and in particular their oscillations appropriately, we consider as second model a quantum mechan-
ical, microscopic toy model which couples a neutrino to a thermal bath of harmonic oscillators.



Such quantum mechanical models are usually constructed by hand with the implication that the
form and the strength of the coupling of system and environment is a free, unknown parame-
ter. In this thesis, we can provide a possible solution for this by using the results of the field
theoretical model above. Another challenge is that when deriving master equations for quantum
mechanical models, the environment with only finitely many degrees of freedom would lead to
unphysical Poincaré recurrences after finite time intervals which correspond to recoherences. In
realistic physical systems, these are usually expected to happen only after extremely long time
intervals that lie far beyond the scope of measurable timescales. To cure this, a continuum limit
is employed on the modes in the environment. By comparison to the field theoretical master
equation discussed above, we can motivate a specific form for this limit which is often used in
other contexts as for instance in quantum optics. As a next step, we also prove for the quantum
mechanical model that the validity of the Markov approximation is given when applied to the
specific case of ultra-relativistic neutrinos. To deduce physical implications from the final Lind-
blad equation, we again emphasise the relevance of a proper renormalisation, which is not always
taken into account in the literature.

This Lindblad equation, arising from the microscopic model motivated by the field theoretical
one, now enables the comparison of the resulting time evolution to the one obtained from phe-
nomenological models and its general solution is very similar to the one of the field theoretical
model applied to a single scalar particle. An advantage of the microscopic model in comparison
to the phenomenological ones is that the parametrisation used in the latter can now be resolved
which yields a physical interpretation for the decoherence parameters. We end up with two free
parameters corresponding to the coupling strength, for which we discuss a possible value coming
from the field theoretical model, and a temperature parameter that characterises the thermal
environment. It turns out that the usual parametrisation in the phenomenological models for
the considered class of models for gravitationally induced decoherence cannot be matched with
the microscopic model for neutrino oscillations in matter. The reason for this is that the phe-
nomenological models mostly assume constant Lindblad operators independently of the matter
density, whereas the microscopic quantum mechanical model suggests that they are equal to the
neutrino Hamiltonian which changes when the matter density does. This point of view would also
be featured by GR, where the Lindblad operators would be derived from the energy-momentum
tensor of the neutrino that contains the matter contribution as well.




4 Zusammenfassung

Zusammenfassung

Der Titel der Arbeit {ibertrdgt sich ins Deutsche als "Gravitativ induzierte Dekohérenz: Von
theoretischen Modellen zu Signaturen in Neutrinooszillationen".

Die Suche nach Signaturen von Quantengravitationseffekten in moéglichen Kandidaten fiir Quan-
tengravitationstheorien ist haufig fokussiert auf symmetriereduzierte Modelle wie die Kosmologie
oder Schwarze Locher. In dieser Arbeit wird ein anderer Ansatz verfolgt, in dem der effektive
Einfluss von linearisierten Quantengravitationseffekten auf quantisierte Materiesysteme, die als
offene Quantensysteme formuliert sind, analysiert wird und insbesondere die daraus resultierende
Dekohérenz, die in diesen Systemen induziert wird, mit einem Fokus auf Neutrinooszillationen
untersucht wird. Um diese Effekte zu modellieren, werden Mastergleichungen fiir zwei verschie-
dene offene Quantensysteme mit linearisierter Gravitation als Umgebung hergeleitet.

Das erste System besteht aus einem Skalarfeld, das an linearisierte Gravitation, formuliert in
Ashtekar-Variablen, gekoppelt ist, und soll als erster Schritt fir die Konstruktion von Deko-
harenzmodellen inspiriert durch die Schleifenquantengravitation dienen, die eine mathematisch
rigorose kanonische Quantisierung der vollen Allgemeinen Relativitéitstheorie (ART) ermdoglicht.
Da es sich bei der ART um eine Eichtheorie handelt, ist es essentiell fiir die Ableitung physikali-
scher Vorhersagen aus einem Modell die physikalischen Freiheitsgrade zu identifizieren. Wahrend
feldtheoretische Dekohédrenzmodelle die die Gravitation mit einbeziehen bisher spezifische Eich-
fixierungen fiir die linearisierte ART formuliert in ADM Variablen benutzt haben, wird in dieser
Arbeit ein anderer Ansatz verfolgt, der auf dem Relationalen Formalismus basiert. Fiir diesen
wird gezeigt, wie geeignete geometrische Uhren gefunden werden koénnen, die die Konstruktion
von Dirac-Observablen fiir die physikalischen Freiheitsgrade ermoglichen. Dieses Verfahren bie-
tet zwei Vorteile: Zum einen erlaubt es die Formulierung des Dekohédrenzmodells unabhangig
von einer bestimmten Eichfixierung, kann aber leicht mit verschiedenen Wahlen fiir eine solche
Eichfixierung verkniipft werden und bietet somit eine Methode zum Vergleich verschiedener Fixie-
rungen. Andererseits bietet es eine Moglichkeit, den Zeit- und Raumkoordinaten des Modells eine
physikalische Bedeutung zuzuweisen, bei denen es sich in der ART um reine Eichparameter han-
delt. Die Einfithrung und Anwendung einer dualen Version der aus dem relationalen Formalismus
stammenden Observablen-Abbildung ermdglicht es, eine kanonische Transformation durchzufiih-
ren, um den klassischen Phasenraum in einen physikalischen und einen Eichteil aufzuspalten,
wobei die Poisson-Algebren der entsprechenden elementaren Phasenraumvariablen kommutieren.
Dadurch kann das reduzierte physikalische System, dessen elementare Phasenraumvariablen die
physikalischen Dirac-Observablen sind, kanonisch quantisiert werden, wobei in dieser Arbeit eine
Fock-Quantisierung verwendet wird, um den Vergleich mit der Literatur zu erleichtern. Die in
dieser Arbeit abgeleiteten Methoden zur Behandlung von Dekohérenzmodellen mit linearisierter
Gravitation in Ashtekar-Variablen konnen ebenfalls auf dhnliche Modelle angewendet werden,
die aus anderen Materiefeldern bestehen, wie beispielsweise Photonen, wo diese Methoden etwas
erweitert werden miissen, um die zusétzliche U(1) Eichsymmetrie zu implementieren.

Ausgehend von einem quantisierten Modell gibt es verschiedene Moglichkeiten eine Masterglei-
chung herzuleiten, die die effektive Dynamik des Materiefeldes unter Einfluss der gravitativen
Umgebung beschreibt. Diese Techniken werden in der Regel in anderen Bereichen der Physik
angewandt, zum Beispiel in der Quantenoptik oder der Festkorperphysik. Wenn Gravitation als



Umgebung betrachtet wird, gibt es jedoch noch viele offene Fragen beziiglich der Anwendbarkeit
und Giiltigkeit dieser Methoden und ihres Zusammenwirkens mit einer méglicherweise notwendi-
gen Renormierung. In der vorliegenden Arbeit wird versucht, einige Antworten auf diese Fragen
fiir bestimmte physikalische Systeme zu geben und Mdoglichkeiten aufzuzeigen, wie diese in ande-
ren Systemen verwendet werden kénnen. Dazu wird mit einer zeitfaltungslosen Mastergleichung
fiir das Skalarfeld begonnen, die mithilfe der Projektionsoperatortechnik abgeleitet wurde unter
der Annahme, dass die linearisierte Gravitationsumgebung schwach an das Skalarfeld koppelt
und einem stationdren Gibbs-Zustand folgt, welcher thermischen Gravitationswellen entspricht.
Eine solche zeitfaltungslose Mastergleichung ist im Allgemeinen nicht vollstdndig positiv, was zu
unphysikalischen negativen Wahrscheinlichkeiten fithren kann. Daher werden zur Beschreibung
von Dekohdrenzmodellen iiblicherweise weitere Naherungen wie die Markov- und die Rotating
Wave-Naherung angewendet, um diese Gleichung in eine vollsténdig positive Lindblad-Form zu
bringen. Wie bereits erwédhnt, ist der detaillierte Einfluss dieser Ndherungen fiir Gravitation als
Umgebung noch nicht weit erforscht und auch ihre Giiltigkeit fiir diese Klasse von Modellen
ist noch nicht klar. Um diese offenen Punkte zu untersuchen und um die Extraktion physikali-
scher Vorhersagen aus der feldtheoretischen Mastergleichung zu erleichtern, wird diese Gleichung
auf den Raum eines einzelnen skalaren Teilchens projiziert. Anschlieflend wird gezeigt, wie die
sich daraus ergebende Ein-Teilchen-Mastergleichung mit der zugrundeliegenden effektiven Quan-
tenfeldtheorie (QFT) verbunden werden kann, was eine physikalische Interpretation der in der
Mastergleichung vorkommenden Beitrdge und Streuprozesse ermdoglicht. Eine solche Verbindung
wurde bisher noch nicht ausgearbeitet fiir Gravitation als Umgebung in dieser Klasse von De-
kohérenzmodellen. Darauf aufbauend kann eine physikalische Interpretation fiir verschiedene in
der Literatur verwendete Versionen der Ein-Teilchen-Projektion der Mastergleichung und fiir die
divergenten Terme in ihr geliefert werden. Es stellt sich heraus, dass diese Divergenzen Vakuum-
blasen und der Selbstenergie des skalaren Teilchens entsprechen. Um sie zu entfernen wird eine
Renormierung der zugrunde liegenden effektiven QFT durchgefiithrt, was eine Mastergleichung
mit nur endlichen Beitragen liefert. Die Renormierung der Ein-Teilchen-Mastergleichung fiir gra-
vitativ induzierte Dekohédrenz an dieser Stelle vor der Anwendung weiterer Naherungen ist neu in
der Literatur und ermdglicht es, die Auswirkungen der Ndherungen, die auf eine Lindblad-Form
fithren, aus physikalischer Sicht zu diskutieren. In dieser Arbeit werden die beiden dafiir am
haufigsten verwendeten Ndherungen analysiert, die Markov- und die Rotating Wave-Naherung.
Zusétzlich werden Bedingungen fiir die Giiltigkeit der Markov-Naherung fiir die Anwendung auf
ultra-relativistische Teilchen, insbesondere als einfaches Modell fiir Neutrinos, gegeben, was bis-
her noch nicht in den Arbeiten zu dieser Klasse von gravitativ induzierten Dekohdrenzmodellen
in der Literatur besprochen wurde.

Neutrinos stellen potenzielle Kandidaten dar, die Signaturen von gravitativ induzierten Dekohé-
renzeffekte zeigen kénnten, die zu einer Verdnderung ihres Oszillationsverhaltens fithren kénnten.
Daher gibt es sowohl in der Neutrinophysik als auch in der Forschung zu gravitativ induzierter
Dekohérenz ein wachsendes Interesse an der Untersuchung dieses Effekts und seiner méglichen
Signaturen in experimentellen Daten. Die meisten dieser Analysen basieren auf phédnomenologi-
schen Modellen, die von einer Lindblad-Gleichung fiir ein Neutrino ausgehen, wobei der effektive
Einfluss der Gravitation in den Lindblad-Operatoren kodiert wird. Da diese Modelle nicht auf
einer mikroskopischen Theorie beruhen, sind die Lindblad-Operatoren unbekannt und werden in
unbekannten Dekohérenzparametern ausgedriickt. Grenzen fiir deren Grofle werden dann durch
experimentelle Daten bestimmt, indem verschiedene mogliche Modelle ausgewertet werden, die
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unterschiedliche Abhéngigkeiten der Dekohérenzparameter von der Energie des Neutrinos ent-
halten, ohne dadurch jedoch eine Intuition zu erhalten, welche Energiebereiche und damit welche
Detektoren bei der Suche nach Signaturen dieses Dekohérenzeffekts besser geeignet sind. Aus
theoretischer Sicht ist es daher von groflem Interesse, Modelle zu konstruieren, die es ermog-
lichen, die Struktur des Dissipators in der phdnomenologischen Lindblad-Gleichung aufzulésen
und eine physikalische Interpretation der unbekannten Dekohdrenzparameter zu geben. Die Kon-
struktion eines Modells, das einige Antworten auf diese Fragen liefert, ist ein Hauptbestandteil
dieser Arbeit. In einem ersten Schritt wird die Lindblad-Form der Ein-Teilchen-Projektion der
feldtheoretischen Mastergleichung fiir ein skalares Feld verwendet und angewendet, indem dem
skalaren Teilchen typische Neutrinoenergien zugeschrieben werden, was eine spezifische Losung
der Lindblad-Gleichung liefert, in der alle auftretenden Gréfien aufgrund des zugrundeliegenden
feldtheoretischen Modells eine klare physikalische Interpretation besitzen.

Da jedoch ein skalares Teilchen méglicherweise nicht alle Eigenschaften eines Neutrinos, insbe-
sondere seine Oszillationen, angemessen wiedergeben kann, wird als zweites Modell ein quan-
tenmechanisches, mikroskopisches Spielzeugmodell betrachtet, in welchem ein Neutrino an ein
thermisches Bad aus harmonischen Oszillatoren gekoppelt wird. Derartige quantenmechanische
Modelle werden in der Regel kiinstlich von Hand konstruiert, was bedeutet, dass die Form und
die Stérke der Kopplung zwischen System und Umgebung kiinstlich eingefiigt werden muss. In
dieser Arbeit wird hierfiir eine mogliche Losung geliefert durch die Verwendung der Ergebnisse
des oben diskutierten feldtheoretischen Modells. Ein weiterer problematischer Punkt liegt darin,
dass sich bei der Ableitung von Mastergleichungen fiir quantenmechanische Modelle mit endlich-
dimensionaler Umgebung nach bestimmen Zeitintervallen unphysikalische Poincaré-Rekurrenzen
ergeben wiirden, die Rekohérenzen entsprechen. In realistischen physikalischen Systemen sind
diese in der Regel erst nach extrem langen Zeitintervallen zu erwarten, die weit fernab der mess-
baren Zeitskalen liegen. Um das zu beheben, wird ein Kontinuumslimes fiir die Moden in der
Umgebung verwendet. Durch den Vergleich mit der oben diskutierten feldtheoretischen Master-
gleichung kann eine spezifische Form fiir diesen motiviert werden, die in anderen Bereichen, z.
B. in der Quantenoptik, haufig verwendet wird. In einem néachsten Schritt wird auch fiir das
quantenmechanische Modell bewiesen, dass die Giiltigkeit der Markov-Approximation gegeben
ist, wenn sie auf ultra-relativistische Neutrinos angewendet wird. Um aus der finalen Lindblad-
Gleichung physikalische Folgerungen ableiten zu kénnen, wird erneut auf die Bedeutung einer
korrekten Renormierung, die in der Literatur nicht immer beriicksichtigt wird, eingegangen.
Die Lindblad-Gleichung, die sich aus dem mikroskopischen Modell ergibt, welches durch das feld-
theoretische Modell motiviert ist, ermoglicht nun den Vergleich der sich ergebenden Dynamik
mit der aus phdnomenologischen Modellen erhaltenen und ihre allgemeine Losung weist eine sehr
ahnliche Struktur auf wie die des feldtheoretischen Modells, das auf ein einzelnes skalares Teilchen
angewendet wird. Ein Vorteil des mikroskopischen Modells gegeniiber den phdnomenologischen
Modellen besteht darin, dass nun die in letzteren verwendete Parametrisierung aufgelost und
eine physikalische Interpretation fiir die Dekohdrenzparameter gefunden werden kann. Am Ende
ergeben sich zwei freie Parameter: die Kopplungsstérke, fiir die ein moglicher Wert basierend auf
dem feldtheoretischen Modell diskutiert wird, und ein Temperaturparameter, der die thermische
Gravitationsumgebung charakterisiert. Es stellt sich heraus, dass die iibliche Parametrisierung in
den phinomenologischen Modellen fiir die betrachtete Klasse an Modellen fiir gravitativ indu-
zierte Dekohérenz nicht vollstdndig auf das mikroskopische Modell fiir Neutrino-Oszillationen in
Materie angepasst werden kann. Der Grund hierfiir ist, dass phdnomenologische Modelle meist
von konstanten Lindblad-Operatoren unabhéngig der Materiedichte ausgehen, wéhrend das mi-



kroskopische quantenmechanische Modell ergibt, dass diese Operatoren dem Hamilton-Operator
des Neutrinos entsprechen, der sich &ndert sobald sich die Materiedichte dndert. Dieses Ergebnis
aus dem mikroskopischen Modell wére in Einklang mit der ART, da die Lindblad-Operatoren
aus dem Energie-Impuls-Tensor des Neutrinos hergeleitet werden wiirden, der auch den Materie-
beitrag enthalt.




8 Introduction

1. Introduction

1.1. Stories from our universe

Mankind has always been looking into the sky and wondered, what was out there. The incredible
beauty of nature with its enormous amount of fascinating phenomena has led to the development
of a vast number of scientific branches to construct theories that try to explain how specific parts
of nature work and to perform observations to listen to the stories that come from our universe
and to thereby test these theories. To understand better what is going on in the sky and beyond,
physics plays an important role. While in the beginning all observable phenomena that could be
viewed from our point of view on the surface of the Earth were attributed to unknown forces,
their interplay and their moods, over many centuries more fundamental theories were developed
that explained the observations with underlying mathematical laws.

1.1.1. Quantum and gravity

“From things that differ comes the most beautiful harmony.”
— Heraclitus of Ephesus, Fragments B §

For thousands of years, all observations were limited to visible phenomena and the theories were
constructed around them. This has changed and we can also perceive information from other
sources, for instance from gravitational waves, and measure particles like neutrinos that can prop-
agate through regions light cannot pass. Today, the modern physical understanding of the world
is mainly based on two fundamental theories: general relativity and the standard model of parti-
cle physics based on quantum field theory. The technical revolution of the last century, which was
fuelled by the development of these two theories, gave rise to a plethora of new detection methods
that allowed access to new phenomena as for instance the discovery of gravitational waves or new
elementary particles. The theory of general relativity (GR) was published in 1915, approximately
110 years ago. Quantum mechanics (QM), from which quantum field theory (QFT) emerged in
the subsequent years, was also mainly developed one hundred years ago and the standard model
(SM) was finalised in its present formulation more than 50 years ago. Various experiments have
shown since then that GR, QM/QFT and the SM seem to describe nature at a high level of
accuracy in their respective regimes, that is GR for gravity and on large scales, QFT/SM for the
other three fundamental forces and on small scales. Nevertheless, some issues have arisen that
are not solved fully satisfying within these theories when applied to their respective regimes, for
instance the singularities that GR predicts for black holes or at the Big Bang, the lack of having a
rigorous, mathematically well-defined QFT for interactions, the different kinds of divergences like
UV divergences arising due to having infinitesimal small lengths in QFT and the SM predicting
massless neutrinos which seems to be in contrast to experimental measurements. Therefore it
is clear that GR and the SM are not the end of the road of theories describing physics at the
fundamental level, but only another intermediate step. However, both taught us completely new
concepts that contradict our experiences from everyday life. For instance from GR we understood
that time is not absolute and that spacetime is curved, while from QM we learned that the world
seems to be intrinsically probabilistic.

An additional important aspect that extends the list of open issues in each of the individual
theories is the lack of a commonly accepted theory that describes the interplay of gravity with



the other three forces in all regimes, that is a technique to combine both of these theories. The
search for such a theory of quantum gravity (QG) is almost as old as the individual theories
of GR and QM themselves. The expectation which is tied to its development is that it also
resolves issues that are present in GR and QFT when considered individually. For instance, the
singularity in GR at the Big Bang might only arise due to the negligence of quantum forces
that might prevent such a singularity and lead to a Big Bounce or similar processes. And the
UV divergences in QFT might be resolved by a quantised, minimal length. Today, there are
developed several theories of QG which pursue different aims, from creating a new, grand unified
theory to the attempt of quantising gravity and expressing it in a form similar to the other three
fundamental forces in the SM. These theories deviate on whether they start from GR or QFT (or
a completely different ansatz) and on which additional assumptions they add, if any. Two of the
most prominent approaches to develop a theory of QG are String Theory [7-9] and loop quantum
gravity [10-12]. String Theory attempts to create a novel grand unified theory starting from new
assumptions like the world having more than four dimensions and all particles consisting of little
strings. It assumes the QFT point of view where the entire universe is described with respect
to a background spacetime. In contrast, the objective of loop quantum gravity is to quantise
gravity in a manner compatible with the basic laws of GR. It starts from GR and uses methods
to keep the theory background independent without imposing additional assumptions apart from
the one that gravity is inherently quantum, which is the core assumption in any QG theory. In
the past decades, there has been considerable progress in the development of QG theories and
several physical phenomena were predicted, like the existence of a minimal length and a Big
Bounce from loop quantum gravity and its derivatives (see for instance [11, 13, 14]), as well as
the existence of new particles from String Theory (see for instance [15]) or String Cosmology (see
for instance [16]).

1.1.2. Experimental signatures of quantum gravity phenomena

“Whatever concerns seeing, hearing, and learning, I particularly honor.”
— Heraclitus of Ephesus, Fragment 13

With the advancing development of QG theories, it becomes increasingly more important to
identify experimentally accessible physical scenarios where there is a possibility to measure sig-
natures of QG theories in order to be able to test these different theories. Two important areas of
physics for this are cosmology and Black Hole physics. In cosmology, different scenarios are being
investigated on how our universe could have started, whether it was a Big Bang, a Big Bounce
or something else. Based on that, the physical implications of these scenarios are analysed and
signatures in experimental measurements are investigated, for instance in the cosmic microwave
background or the distribution of stars and matter in our universe. As mentioned above, GR
yields a singularity in this regime and thus predicts its own failure, so a more advanced theory
is required to describe the beginning of our universe. Loop quantum cosmology (LQC) [13, 14,
17-19] is one attempt to construct such a theory and to give answers to these questions. This
theory arises from the quantisation of a homogeneous spacetime with methods of loop quantum
gravity. Due to the form of the quantisation inspired by loop quantum gravity, LQC predicts
discrete geometry at the Planck level and it culminates in GR in the limit of small curvature.
One conclusion from this theory is that the Big Bang can be replaced by a Big Bounce [20,
21]. The detailed measurement of the power spectrum of the cosmic microwave background by
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WMAP [22] and PLANCK [23] gave rise to the question if an imprint of quantised perturbations
in the early universe can be extracted from this data as another hint for processes that are not
describable with GR alone, which is analysed using (loop) quantised cosmological perturbation
theory [24-27]. Apart from this, also black holes represent a singularity in spacetime according
to GR. Also here quantum effects could play a major role to resolve this issue and to tell us what
a Black Hole looks like in its interior. The treatment of black holes in loop quantum gravity
can lead indeed to a resolution of the singularity [28-31] and, motivated partly by the bounce
scenario in LQC, new processes like the transition of a Black into a White Hole were proposed
[32-34].

With the increasing accuracy of the new generation of detectors, also another physical process
gains attention to provide potential experimental access to signatures of quantum gravity effects.
This is the process of (quantum) decoherence induced by gravity. While cosmology and Black
Hole physics are usually approached from the theoretical side by the application of a symmetry
reduction of the full QG theory, gravitationally induced decoherence can also be investigated by
using a linearised version of a QG theory in physical systems where the coupling of gravity to
matter is weak, therefore working with gravitational waves.

Decoherence is a process that arises whenever two quantum mechanical systems can exchange
information, but only one of them is measured in the end. This possibility to exchange informa-
tion can lead to a flow of information from the system, that is measured later, into the other. In
realistic quantum systems, such decoherence processes are always present, because a real system
can never be shielded completely from every external influence, in particular not from gravity.
So any system investigated is influenced by its surroundings and can exchange information with
them. Two of the interesting points here are on the one hand the size of this decoherence effect in
a given physical system and on the other hand its effect on this system under consideration. The
size depends on many different factors like the other interactions present in the system or the
coupling strength between the two systems. This makes it hard to generalise here, one rather has
to investigate the effect of decoherence for a specific given physical setup. Also the second point,
the way decoherence manifests in the system under consideration, depends among other things
on the structure of the coupling of the two systems and on the basis in which physical predictions
are made. By definition, the loss of information from the point of view of the measured system
can lead to a classicalisation of the system under consideration, that is to the disappearance of
the off-diagonal elements of the density matrix in a specific basis after certain time. The implica-
tions of this in our everyday life are still not completely understood. There exist discussions on
whether decoherence might help to understand how measurements work in quantum mechanics
from a fundamental level. The issue here is that an isolated quantum system obeys unitary time
evolution according to the Schrodinger equation (or a Schrodinger-like equation in the field the-
oretical case). Whenever a measurement is performed in QM, this evolution has to be stopped
and then one has to change by hand the state of the system to the eigenstate corresponding
to the eigenvalue measured of the operator representing the measurement, before the unitary
Schrodinger(-like) evolution continues, which is usually denotes as the measurement problem,
see for instance [35-37]. Albeit this aspect is not the topic of this thesis, decoherence might
yield a possible resolution of this rather phenomenological procedure, see for instance [38-40].
Furthermore, decoherence is considered to be a potential explanation of the quantum-to-classical
transition which would solve the question why the world in our everyday experience appears to
be classical, see for instance [41-44].
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To describe physical systems that exhibit decoherence, the formalism of Open Quantum Sys-
tems is frequently used, an introduction can be found for instance in [45-47]. The idea of this
technique is to consider the system one is interested in and to couple it to an environment. The
detailed dynamics of the environment are not of interest, only its effective influence on the system
under consideration. While the total system composed of system of interest and environment
is isolated and therefore follows unitary dynamics governed by the Schrédinger equation (or a
Schrodinger-like equation in the field theoretical case), the same does not hold any more when
considering only the dynamics of the system of interest. Its evolution equation in density matrix
formulation is called master equation and contains apart from the standard evolution, that arises
when considering the system under investigation to be isolated, also additional terms resembling
the influence of the environment. These additional terms lead to new effects that are not present
in isolated systems: shifts in the energy levels, as it is for instance known from particles in
external electromagnetic fields, energy loss into the environment and information loss into the
environment, which precisely is decoherence. As any physical system interacts with an environ-
ment, this formalism has spread and is applied in many different areas of physics from quantum
optics, quantum information and condensed matter physics [48-52] to cosmology [53-59] and
gravitational decoherence [1, 6, 60-63]. While in cosmology or for gravitational decoherence the
formalism is usually applied to analyse a desired influence of the environment on the system of
interest and the aim is to have this effect as strong as possible, in quantum computing often the
contrary is the case, because here the objective is to minimise external influences to make qubit
states decohere as slow as possible as this decoherence destroys information saved in states and
hence reduces the computational power, as discussed for instance in [64-66].

Decoherence induced by gravity has been investigated in several different approaches in the
past, see [67-69] for an overview. We will name a selection of them classified similarly as in [68].
Some of these theories consider gravity to be classical, for instance the Moller-Rosenfeld theory
[70, 71] or the Diosi-Penrose theory [72-75]. However, they seem to be not compatible with GR
and QFT alone, but require modifications of them, as is discussed in [68, 76, 77]. Other theories
consider special processes at Planck scale that lead to decoherence, for instance [78, 79]. As
discussed in [68], one would expect that some effective influence of these processes is contained
in GR and the deviations thereof are much smaller than effects based on GR. Another class of
theories considers the point of view of treating a matter system under investigation as an open
quantum system coupled to a gravitational environment which causes the matter system to de-
cohere. In these theories GR is frequently analysed for weak gravitational interactions leading
to linearised GR where the gravitational field is determined by the perturbations of the metric.
In the works in [80-82], these perturbations are then modeled to follow a stochastic process,
which however does one not allow to identify the physical degrees of freedom. A similar approach
which assumes these linearised metric perturbations to obey the Einstein equations is used in
the models in [60—63]. They are hence based on GR and QFT without the necessity to modify
either of the two theories, only that linearised GR is quantised in a Fock quantisation similar to
the electromagnetic field in Quantum Electrodynamics. These works discuss master equations
for different matter fields, for instance a scalar field in [60, 61] or a photon field in [63], based on
the ADM formulation of gravity [83], and use several different formulations of a master equation.
As a mathematically rigorous quantisation of GR in ADM variables is not possible, this does
however restrict the applicability of the model. Some of these works also predict the size and
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form of specific decoherence effects in scalar particles and photons, such as [60, 62, 63]. For
this, it is nonetheless necessary to work carefully, as the resulting effects of the master equations
might change or vanish after a renormalisation. A general discussion of such a renormalisation
for linearised gravity as the environment on an open quantum system independent of specific
(non-)relativistic limits has not yet been discussed in these works.

1.1.3. Signatures of gravitationally induced decoherence in neutrino oscillations

“Nature loves to conceal herself.”
— Heraclitus of Ephesus, Fragment 10

In order to gain experimental access to signatures of gravitationally induced decoherence ef-
fects, one possibility is to use tabletop experiments, see [67] for an overview and [84]. Another
possibility is given by the detection and analysis of astroparticles. For these to be a suitable
candidate, the gravitational influence must not be dominated by other interactions that make
it non-observable. Hence for example it will be very hard to measure a gravitational decoher-
ence effect for electromagnetically charged particles. It is at this point where neutrinos come
into play: these could carry a high potential to serve as witnesses for signatures of gravitational
decoherence. They are electromagnetically neutral, thus they represent optimal candidates to
investigate the effect of decoherence due to gravity. In the last decades, they have lead to new
discoveries that violate the standard model of particle physics in its present form: while the
latter predicts neutrinos to be massless, experiments show that they are changing their flavour
when propagating, so they need to have non-vanishing mass differences. These neutrino flavour
oscillations give a good access point to look for signatures of decoherence effects, to analyse their
size and also to compare the experimental data to different theories of quantum gravity for this
decoherence effect. In the literature, there already exist several works that discuss this effect
[85—-106], where most of them use the phenomenological approach to start from a specific form
of a master equation, usually a Lindblad equation, in which the unknown operators that repre-
sent the influence of the environment are parameterised in a specific way. This phenomenological
master equation then predicts a change of the oscillation behaviour of the neutrinos, in particular
in most works a damping of the oscillations and hence a classicalisation of the flavour neutrinos.
In a next step, measured or simulated experimental data is analysed to find out whether there is
yet a discrepancy to the standard oscillations or not for a specific detector. Analyses have been
done for instance for long baseline neutrino detectors [88] like MINOS+T2K [89] or DUNE [90],
or for neutrino telescopes such as IceCube [92, 105] or KM3NeT [93]. So far, no deviation from
the standard oscillations have been found, so upper bounds on the magnitude of the decoherence
effects could be derived. This procedure does however not give the possibility to understand
in detail where these free parameters come from and what their detailed structure is. Also the
question of their expected order of magnitude and in particular their dependence on the energy of
the neutrinos remains unanswered by these approaches, so it is not really clear from them, which
specific experiments are well-suited to look for signatures of gravitationally induced decoherence
in neutrino oscillations and which are not. To better understand this process of gravitationally
induced decoherence in neutrino oscillations and other astroparticles does not only give an access
point to this specific quantum gravity effect as an application for candidate theories of quantum
gravity, as discussed above, but would also help us to better understand the information and
data carried by astroparticles coming from our universe, and thereby the stories they tell us.
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1.2. Motivation and goal of this thesis

With the new effects predicted by a theory of quantum gravity being mostly out of range of
experiments today, a guiding principle for the development of such a theory can be mathematical
rigour and the correct limits yielding GR in the classical regime and QFT on curved spacetimes
when the quantum features of gravity can be neglected. In this thesis, we are therefore interested
in the approaches to gravitationally induced decoherence based on (quantised) GR and QFT. As
discussed in section 1.1.2, there exist various ways to approach the theoretical description of this
physical process, where only few [60-63] are based on (quantised) GR and QFT. In this section,
we present a status of this approach to gravitationally induced decoherence and discuss some of
its open questions. Then, we sketch the goal of this thesis and how it can provide some answers
to these questions.

The four models [60-63] all formulate gravity in linearised ADM variables [83] and quantise them
in a Fock quantisation. As a rigorous mathematical formulation of a quantisation of GR in ADM
variables is not possible, an extension of this treatment and their techniques to open quantum
systems where the gravitational environment cannot be formulated in a linearised manner yields
several problems, see for instance the discussions on the Wheeler-DeWitt equation [107, 108] and
the issue to define a Hilbert space [109, 110]. Additionally, the models in [60-63] use a gauge fix-
ing for the gravitational degrees of freedom, which limits the result to this specific choice having
as an effect that on the one hand a comparison to other gauge fixings is hard and on the other
hand that the predictions made are problematic as they are based on the use of the unphysi-
cal time and space coordinates from GR. Due to these aspects the question arises whether one
can formulate a decoherence model with gravity as the environment that enables an extension to
other sectors than the linearised one and that provides a more general formulation of the physical
degrees of freedom in terms of physical time and position coordinates.

The master equations in the field theoretical formulation for decoherence models with gravity
as environment are often brought into Lindblad form [60, 61, 63], which has the advantage of
yielding positive probabilities. In the course of this derivation, several approximations like the
Markov and rotating wave approximations have to be invoked that are usually taken from other
disciplines of physics like quantum optics or condensed matter systems [45, 47]. So far, a detailed
analysis of the effect of these approximations for gravity as the environment is however missing.
In particular, it is not clear which information is lost when applying them and which processes
are suppressed. Furthermore it is not clear, if and for which classes of systems the applied ap-
proximations are a good choice for gravity as environment.

When one starts with a quantum mechanical model to study gravitationally induced decoher-
ence, as for instance in [97, 103, 111, 112], these models are not directly based on an underlying
fundamental theory, so key quantities like the form of the interaction Hamiltonian or the cou-
pling strength between system and gravitational environment, that have a strong influence on
the final decoherence, have to be put by hand into the model. This leads to the question whether
it is possible to connect to such quantum mechanical models coming from a field theoretical
formulation of a decoherence model, where the way GR couples to matter fixes naturally these
open points in the quantum mechanical models. In [60, 62, 63], the obtained field theoretical
models are projected in a specific way onto a master equation for a single particle. The relation
of this projection to the different scattering processes of the underlying effective QFT is however
not clear, as it is established for instance in [113] for a scalar field as system of interest and a
second scalar field as environment. In particular, some terms that would arise from processes
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in the underlying effective QFT are dropped by the projection chosen in [60, 62, 63] without
analysing their effect. In addition, when it comes to making predictions from a decoherence
model, the necessity to discuss a renormalisation that removes unphysical effects and regularises
potentially divergent integrations arises. While for a QFT there exists a standard procedure to
remove divergences, in [60, 62, 63] this is not applied. In [60, 63] the divergent terms are absorbed
into redefinitions of fundamental parameters of the system in the final Lindblad equation, which
however does not make clear how this can be connected to the standard procedure and hence
how it can be generalised to other matter fields. In [62], no renormalisation is performed, but
a final physical effect based on vacuum fluctuations is discussed which would be absent after a
renormalisation. This hence leads to the question how a renormalisation based on the standard
procedure of QFT for a master equation including gravity as the environment can be carried
out and which implications this has on the final one-particle master equation as well as on the
renormalisation in the quantum mechanical model.

From the experimental side, in particular focusing on neutrino oscillations, phenomenological
models that are based on a master equation in Lindblad form with unknown parameters are
often used to analyse gravitationally induced decoherence, for instance in [90, 96-98, 103]. These
parameters are then constrained by experimental data. At this point the question arises how
these parameters can be interpreted and from which underlying physical properties of the system
they arise. Additionally, it would be very helpful to resolve their dependence on the neutrino’s
energy to be able to deduce in which energy ranges there is the highest potential that signatures
of gravitationally induced decoherence are exhibited and, as an implication from that, which
classes of detectors are best-suited for the search of gravitationally induced decoherence in neu-
trino oscillations.

The present thesis is intended to provide some answers to these questions. To achieve this,
the thesis is divided into four parts. After a general introduction to master equations in the first
part, in the second part, a derivation of a time-convolutionless field theoretical master equation
for a scalar field coupled to linearised gravity based on GR formulated in Ashtekar variables
[114, 115] is presented. As Ashtekar variables provide the classical variables of loop quantum
gravity, this linearised formulation enables a generalisation to the full gravitational field and a
mathematically rigorous quantisation of full GR along the lines of loop quantum gravity. To be
able to compare our results with the ones in the literature, we still follow a Fock quantisation
in this thesis. Furthermore, we circumvent the process of gauge fixing by the construction of
suitable Dirac observables using the relational formalism [116-121]. This provides us with the
possibility to compare different gauge fixings and to define physical time and position coordinates
as the values of the reference fields the Dirac observables are constructed from.

In the third part of the thesis, we project this master equation onto the space of a single scalar
particle and thereby discuss two different ways to perform this projection, where one is the one
applied in [60, 62, 63], where some contributions from scattering processes allowed by the un-
derlying effective QFT are dropped, and the other one contains all possible processes compatible
with QFT similar to [113]. The effect of the choice of either projection is then analysed through-
out the following steps of the derivation. Then, we apply the Markov and the rotating wave
approximations one after another to cast the one-particle master equation into Lindblad form.
This gives us the opportunity to discuss on the one hand conditions for their applicability, where
we are not able to comment on the general case but focus on ultra-relativistic particles to connect
later to neutrino oscillations, and on the other hand the opportunity to analyse the terms that
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the individual approximations drop as well as their effect in detail. In this part, we also show
how a renormalisation of the one-particle master equation based on the underlying effective QFT
can be carried out following [113], identifying the divergent contribution as the self-energy of the
scalar particle. This renormalisation removes the parts arising from vacuum fluctuations and
permits us to discuss its interplay with the different approximations taken afterwards.

In the last part of the thesis, a time-convolutionless master equation is derived for a microscopic
quantum mechanical model, where the model in [112] is extended to include a neutrino as sys-
tem of interest that is coupled to a bath of harmonic oscillators that mimics an environment
of gravitational waves. Here, we can indeed use the field theoretical model from the previous
parts to motivate the form of the coupling in the interaction Hamiltonian as well as the coupling
strength and the way to perform the continuum limit for the oscillators in the environment and
can therefore provide a motivation for some of the steps that have to be put into such quan-
tum mechanical models by hand. After the application of the Markov approximation and the
discussion of its validity for the specific model, a connection to phenomenological models as for
instance in [90, 96-98, 103] is established yielding a resolution of their free parameters and a
physical interpretation for them. In particular, we can also show for which energy dependen-
cies the decoherence effect arising from gravity is expected to be strong in neutrino oscillations
according to the considered quantum mechanical model.

1.3. Structure and content of this thesis

In this thesis, the question is approached how gravity can be used as an environment in open
quantum systems to obtain predictions for gravitationally induced decoherence effects with a
particular focus on neutrino oscillations. The thesis consists of four parts that discuss after an
introduction to the employed formalism two different models. The first one is based on field theory
where a scalar field is coupled to linearised gravity which is later projected on the space of a single
scalar particle and renormalised. The second model is a quantum mechanical toy model tailored
to neutrino oscillations, where a neutrino is coupled to an environment of harmonic oscillators that
mimic a gravitational waves background. While the first model gives answers to open questions
in the quantum mechanical toy model like the detailed form of the coupling or its strength, the
latter facilitates the connection to experiments and the application of approximations such as for
instance the Markov approximation, therefore both models complement each other. The detailed
structure of the thesis is as follows:

Part |

In part I of the thesis, we give an introduction to basic concepts of open quantum systems and
master equations that will be employed in the following parts. We start with a discussion of the
general formulation of open quantum systems and decoherence effects in section 2. After that,
in section 3 the Lindblad equation [122, 123] as a completely positive, specific form of a master
equation is discussed and it is derived for rather strong assumptions on the underlying microscopic
system that permit to treat the time evolution of the system of interest as a quantum dynamical
semigroup. As for most physical systems these assumptions are not fulfilled, we present in section
4 the projection operator formalism [124-127] which enables a microscopic derivation of a time-
convolutionless master equation. Based on this, different simplifications of this master equation
are discussed and the requirements for their applications to physical system are sketched. Finally,
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this part of the thesis is concluded with section 5, where a simple quantum mechanical model is
discussed to present some of the techniques introduced in this part of the thesis.

Part Il

This part of the thesis corresponds to the work published in [1]. This subsection was partially
inspired by the introduction in that work.

For the first decoherence model, which we consider in this thesis in parts II and III, we start at
the classical level of the action in section 6 and couple a scalar field to linearised gravity, similar
to [60-62]. However, while these work with ADM variables, we express the gravitational part
of our system in Ashtekar variables [114, 115] that are the canonical variables of loop quantum
gravity. This does in principle give us the opportunity to use a loop quantisation, as it is done
for instance in [128, 129] for linearised gravity, and additionally provides a direct possibility to
couple fermions for a future model. To facilitate the comparison of our results with the one
obtained in [60-63], we later however apply a Fock quantisation to the matter system as well
as to the linearised gravitational system. Before that, we discuss a way how to perturb the
gravitational degrees of freedom of the entire system and include the matter degrees of freedom
consistently into the perturbed formulation by means of a post-Minkowski approximation [130]
in section 6.3, which generalises the treatment in [60-63]. In the classical linearised formulation,
the gravitational part of the system contains gauge degrees of freedom, in Ashtekar variables
even more than in ADM variables due to the presence of a gravitational Gaufl constraint. While
the models in the literature on gravitationally induced decoherence work with gauge fixings here,
we employ the relational formalism in section 7 to construct suitable Dirac observables [116-121]
that encode the physical degrees of freedom by deriving geometrical clocks from gravitational
gauge degrees of freedom. In this context, we introduce a dual version of the observable map,
where the role of the clocks and constraints is swapped. This facilitates the construction of
commuting observables and clocks. The advantage of this approach is that it is independent
from a specific choice of gauge fixing, can however be easily related to different gauge fixings by
assigning suitable values to the geometric clocks, as we show in section 7.9. This formulation
of the classical theory in terms of Dirac observables gives us then the opportunity to separate
the phase space into a physical one, consisting of the observables for gravity and matter, and
a gauge part. The sub-algebra of the physical phase space decouples from the remaining gauge
degrees of freedom, so we can apply a reduced Fock quantisation only to the subspace of physical
observables for linearised gravity and matter.

In section 8 we present this Fock quantisation of the reduced system. For this, we choose to
normal order all appearing contributions which is different to the orderings in [60, 62, 63]. We
will analyse the implications of the different orderings in part I1I when considering the decoherence
of a single scalar particle. With this, we can apply in a next step one of the techniques to derive
a first master equation from the quantised Hamiltonian of matter system and environment. We
choose to work with the projection operator technique [124-127] to obtain a time-convolutionless
(TCL) master equation in section 9 expressed in terms of thermal Wightman functions, where
the gravitons in the environment are distributed according to a Gibbs state. Finally, we present
three different forms of the master equation and compare them to the ones in [60, 62, 63]. In
contrast to [60, 63], our master equation is not yet of Lindblad form. It can be directly cast into
this specific form by the application of the Markov and the rotating wave approximation. As it
is not yet clear, if they are justified for this specific physical system, in particular with gravity



17

being involved, this step will be analysed in detail in part III of this thesis for the master equation
from this part being projected to the space of a single scalar particle.

Part Il

This part of the thesis corresponds to the work published in [2].

In order to further analyse the model from part II and to draw physical conclusions from it, we
discuss in this part of the thesis the one-particle projection of the final TCL master equation
from the previous part. We start in section 10 with the projection of the master equation onto
the space of a single scalar particle. For this, we consider two different projections used in the
literature, which we call non-extended [60, 62, 63] and extended [113] projection. While the
latter takes into account also contributions that correspond to the creation and annihilation of
two scalar particles as intermediate steps which preserves the one-particle space, these terms are
ignored in the non-extended projection. They lead to UV-divergent terms that can be inter-
preted as vacuum bubbles, for which we show a possible renormalisation, and to the violation of
probability conservation in the subsystem of the scalar particle. Using either projection, there
appear additional divergent terms in the one-particle master equation, which is also the case in
similar models for gravitationally induced decoherence of matter fields [60, 63]. While these are
treated there after the application of a Markov and rotating wave approximation in specific non-
or ultra-relativistic limits, in this thesis we renormalise the one-particle master equation before
performing these further steps. For this, we follow the strategy of [113], where a scalar field as
system of interest is coupled to another scalar field as environment, and connect the one-particle
TCL master equation in section 11 to the underlying effective quantum field theory using a set of
non-covariant Feynman diagrams arising from the action of part II. Such non-covariant Feynman
diagrams also arise in QED when quantised in non-covariant gauges as for instance in Coulomb
gauge (see [131, 132]). This provides us with the opportunity to identify the diverging terms with
the vacuum part of the scalar particle’s self-energy in sections 11.1 and 11.2. After the discussion
of a covariant set of Feynman diagrams in section 11.3, we perform an on-shell renormalisation
of the underlying quantum field theory in 11.4 which permits us to include a suitable counter
term for the divergent terms in the master equation and to obtain a renormalised version of
the TCL one-particle master equation in section 11.5. In order to derive a completely positive
Lindblad equation, we discuss in section 12 the application of the Markov (section 12.1) and ro-
tating wave approximation (section 12.2). New compared to the literature is in this section that
we already use the renormalised one-particle master equation, hence we can discuss the terms
removed by the applications at a physical level. Albeit we cannot give general conditions on the
applicability of the two approximations for gravity as environment, we deliver a condition for the
applicability of the Markov approximation to ultra-relativistic scalar particles in section 12.1.1.
To conclude this part of the thesis, several applications of the resulting renormalised one-particle
Lindblad equation are discussed in section 13. A first aspect is the analysis of the populations of
the density matrix predicted by the master equation, which we compare in section 13.1 for the
different intermediate steps before and after renormalisation and before and after the application
of the Markov approximation, while the rotating wave approximation does not modify them.
It turns out that the vacuum effect discussed in [62] for the populations of the density matrix
for a photon vanishes after the renormalisation. Additional applications that are considered are
the non-relativistic (section 13.2) and ultra-relativistic (section 13.3) limit of the renormalised
one-particle Lindblad equation which yields results similar to [60, 63]. The investigation of the
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ultra-relativistic form of the master equation is later in part IV taken as the starting point to
discuss gravitationally induced decoherence in neutrino oscillations based on the field theoretical
model.

Part IV

Pieces of this part of the thesis correspond to the work published in [3] and [2]. This subsection
was partially inspired by the introduction in [3].

In this part, we focus on an application of the formalism of open quantum systems to neutrino
oscillations. In section 14 we give a brief introduction to neutrinos and neutrino oscillations in
vacuum, discussing them in the context of Gaussian wave packets and plane waves. After that,
we explain how these oscillations change when neutrinos propagate through matter. The question
on how these oscillations are modified due to the presence of a gravitational environment has
achieved increasing attention in the past years and was investigated by several works [85-106].
Most of these works follow a phenomenological approach based on a Lindblad equation. We
introduce this class of models in section 15. One main aspect of these models is that they use
a specific form of the dissipator which is parameterised with a number of unknown parameters.
Their amount is then further reduced by several physical assumptions, such as energy conservation
in the neutrino subsystem. We discuss some of these assumptions and their implications on a
phenomenologically parameterised dissipator also in section 15. Moreover, from such a general
parametrisation the dependence of the dissipator on the energy of the system of interest is not
clear. Due to this, in such models several different dependencies are postulated in terms of
power laws and their implication on the decoherence effect are investigated. Depending on this
choice, the decoherence effect is enhanced at completely different neutrino energies and therefore
from such a treatment it is not clear, from which sources neutrinos are best suited to show
gravitationally induced decoherence. From the derivations in the previous parts of the thesis, it
is visible that an underlying microscopic model enables to resolve the detailed structure of such
a dissipator and therefore is able to answer most of the open questions in the phenomenological
approach. Therefore we introduce in section 16 a quantum mechanical model based on [112] and
extended to include neutrinos, where we couple as system under consideration a neutrino to a
bath of harmonic oscillators that is supposed to represent an environment of gravitational waves.
A key quantity in such a quantum mechanical model is the way the interaction Hamiltonian is
specified. Here we follow the model in [112] and pick a coupling motivated by GR. We then derive
the TCL master equation for this model, where we apply the continuum limit to the oscillators
in the environment by introducing a spectral density in section 16.3 and assume that they are in
a thermal state. In similar quantum mechanical models, like for instance the Caldeira-Leggett
model [45, 133] or spin-boson models [45, 46, 134-136], different forms of spectral densities are
used motivated by typical behaviours of the physical environments in these models. In our case,
for gravity such a behaviour has not yet been studied, therefore we use the results from the
previous parts of the thesis to show which form of a spectral density is a good choice for the
considered model and we discuss different high-frequency cutoffs. In a next step, we apply in
section 16.4 the Markov approximation which then yields a Lindblad equation. After analysing
the validity of this approximation for the model under consideration, we give a proof that for one
choice of the high-frequency cutoff in the spectral density the application as it is usually done in
the literature, where the order of different limits is switched, is justified for the present model,
and that other choices yield an equivalent result.
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The Lindblad equation we obtain has a similar form as the one in the phenomenological models
mentioned above. A point where they differ is that in our equation there is still a Lamb-shift term
present which modifies the unitary evolution and therefore shifts the eigenenergies of the neutrino
system due to the presence of the gravitational environment. In the field theoretical models such
a Lamb-shift term is also present, but it requires a renormalisation, as it can be seen in part
IIT of this thesis. Indeed, also in the quantum mechanical model it is problematic, as the shift
it induces on the energies of the system depends linearly on the high-frequency cutoff from the
spectral density and diverges when the latter is sent to infinity. Therefore it cannot be physical
and in section 16.5 we include a counter term to renormalise it, similarly to the treatment in the
Caldeira-Leggett model [45, 133]. So far the system under consideration has not been specified,
apart from its contribution to the interaction Hamiltonian, as all the discussions and derivations
made focused on the gravitational environment. In section 16.6 we apply this master equation to
neutrino oscillations in matter, solve the resulting evolution equation and then discuss the results
in section 17. First, we compare the resulting modifications on the oscillations to the predictions
made by phenomenological models in section 17.1. This permits us to give a detailed expression
for the generically parameterised dissipator in the phenomenological models as well as its energy
dependence. The only two free parameters in the microscopic model are then the coupling
strength between system and environment, as well as a temperature parameter characterising
the oscillators in the environment. The analysis shows that in matter the parameters of the
dissipator should depend on the matter density according to our model, which is not included
in most of the phenomenological models. Hence the results and sensitivity analyses obtained
on their basis deviate from the ones one would obtain when using the microscopic quantum
mechanical model when considering neutrinos propagating through matter. We also discuss the
implications of the renormalisation of the Lamb shift on neutrino oscillations in section 17.2,
in particular by comparing two predictions for models with and without a renormalisation, and
give in section 17.3 an estimate for the order of magnitude of the coupling parameter inspired
by the field theoretical model in the previous parts of the thesis. Finally, in section 17.4 we
apply the ultra-relativistic form of the one-particle projection of the master equation from part
IIT to a neutrino, which yields the same form for the dissipator as the quantum mechanical toy
model. Based on this, we compare several aspects of these two models enclosing the coupling
strength, the requirement to introduce a spectral density in the quantum mechanical model and
the applicability of the Markov approximation for ultra-relativistic particles in both models.
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Open quantum systems and master
equations
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In this part of the thesis, we give an introduction to open quantum systems and master equations,
which will be used throughout the thesis to describe decoherence processes occurring due to the
interaction of matter fields or particles with the gravitational field. After a general introduction
to open quantum systems in section 2, we discuss in section 3 a very specific example of a master
equation, the so-called Lindblad equation, which has the advantage of complete positivity, but also
very restrictive conditions under which it holds. As these are in general not fulfilled considering
gravity as an environment in the open quantum system and also in other situations where gravity
does not play any role, we present in section 4 with the projection operator formalism a different
method that leads to a master equation. This master equation is time-convolutionless, but in
general not completely positive. In part II and IV of the thesis, we will use this procedure to
obtain master equations and discuss the approximations that would cast it into a Lindblad form
in part III and IV. To conclude this part of the thesis, a simple quantum mechanical decoherence
model is discussed in section 5 and some of the previously introduced techniques are applied to
it.

2. Open quantum systems and decoherence

In standard quantum mechanics, one is interested in the eigenvalues and dynamics of an isolated

quantum system. Its unitary time evolution is then dictated by the Schrodinger equation

which reads for a state [1)g(t)) describing the quantum system and the corresponding Hamilto-
.|

nian* Hg:

2 ls(t) = 1 Hs s (1) )

The solution of this equation predicts the dynamics of the probability amplitude of the state
|1s(t)) by expanding it in the eigenstates |E;) of H with eigenvalues F; and then propagating the
individual eigenstates in time ¢ with the phase factors e #¥i*. This yields different interferences
at different times, but the probability of the system to be in one of the energy eigenstates
when measured will always be one, assuming proper normalisation of all involved states. The
Hamiltonian Hg hence determines the energy levels of the system and the total probability is
conserved.

As soon as it comes to the treatment of more particles, solving the Schrédinger equation becomes
more and more challenging and for a macroscopic number of particles it is unrealistic as well as
unimportant to know, store and process all the data of each individual quantum particle. In this
case, one is usually only interested in averaged quantities of the system. This leads to statistical
physics, where a system is described in terms of a density matrix pg(¢) that encodes on the one
hand the intrinsic quantum mechanical superposition principle, like a quantum state ¥g(t) does,
and on the other hand as a new feature also the classical lack of knowledge of all the details of the
state, that could be known without contradiction from quantum mechanics. The time evolution
of a state is then determined by the Liouville-von Neumann equation

0 i

—ps(t) =—=H t 2.2

o-0s(t) = [Hs, ps() (22)
with the commutator [.,.]. The solution to this equation is given, similarly as above, by the

multiplication of the density matrix in energy basis |E;) (E;| with exponential phase factors

'In what follows, we assume Hyg to be time-independent to put the focus on the concepts introduced in this section.
All equations can readily be generalised to a time-dependent Hamiltonian using time-ordering operators.
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e~ wBi—Ejt  The populations, that are the diagonal entries of pg(t), give the probabilities to
measure the system in the state described by the corresponding diagonal element of the density
matrix and the off-diagonal elements, called coherences, are a measure for interference probabili-
ties of the corresponding states. The total probability to measure the system in one of the states
is given by the sum over the populations and is constant due to the structure of the Liouville-von
Neumann equation, as the cyclicity of the trace together with the commutator lead to a vanishing
right hand side of equation (2.2). Therefore, the energy levels of the system are still determined
by Hg and the probability is conserved.

All of these descriptions consider the quantum system to be isolated or closed and not in any con-
tact with its surroundings. This, however, is not how our world works: there are influences from
an enormous amount of sources that affect physical systems, in particular very small quantum
particles. While the system can be shielded from some of these influences like electromagnetic
interactions, from others this is not possible. One important contribution here is gravity, which
is omnipresent and inevitable. In order to take these new class of influences into account, which
we call from now on the environment, one can work with the formalism of open quantum sys-
tems: This formalism considers a system of interest not any more as a perfectly isolated physical
system, but as being in contact with an environment through some specific coupling, see figure 1.

System
Isolated @ of Interest

Quantum System

Environment

Figure 1: Transition from an isolated (closed) quantum system to an open quantum system con-
sisting of a system of interest coupled to an environment.

While it is evident that the total system consisting of the system of interest and the environment
is still isolated with evolution equation being the Liouville-von Neumann equation (2.2), one
is usually only interested in the detailed dynamics of the system under investigation and in a
dynamical equation for its state with the effective influence of the environment. The detailed
dynamics of the environment are not of interest. Oftentimes, the environment is assumed to be
very large compared to the system of interest and in a stationary state that is not influenced by
the back-reaction of the system under consideration onto the environment. Then, the evolution
equation that describes the system of interest’s state pg(t) under the additional influence of the
environment is given by a so-called master equation

0 i

5773 (t) = = [Hs + Hada, ps(t)] + Dlps (t)] (2.3)

In comparison to the Liouville-von Neumann equation (2.2), there is an additional term in the
commutator that contributes to the unitary evolution of the system under investigation, and
there is another contribution in terms of a so-called dissipator D which is a super-operator acting
on the density matrix of the system of interest. This dissipator can contain in general terms
that contribute to the unitary evolution of pg(t), but also terms that lead to additional, new
effects. From this it is evident that the energy levels of the considered system are not any more
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only determined by Hg, but also influenced by the environment present through H,4q and D.
This results in a shift of energy levels of the system of interest compared to the isolated case,
and possibly also in a required renormalisation of the energy levels. From a physical point of
view this result is not surprising, as for instance charged particles in an electromagnetic field also
experience a similar shift of energy levels. Having said this, let us further discuss new features
that arise from the master equation (2.3). Given that D[pg(t)] can in general not be written in
the form —%[HD, ps(t)] with a suitable self-adjoint operator Hp but also contains real contri-
butions to the evolution equation, quantities like energy and probability are not conserved any
more within the system under investigation. As the entire system including the environment is
isolated, energy or probability loss in the system of interest therefore corresponds to a flow of
energy or probability into the environment. As the latter is not directly represented in (2.3), it
seems that the prior conserved quantities are lost, while they are only not conserved any more
in the specific considered system that represents a subsystem of the entire, isolated system. The
flow of energy from this system of interest to the environment is called dissipation. Due to the
constant interaction between system and environment, there is furthermore a flow of information
that manifests in a decrease of the coherences of pg(t) with time in a certain basis. This process
is called decoherence and leads to a classicalisation of the system under investigation in that
specific basis, as the interference probabilities also decrease and vanish after a certain amount of
time. The basis in which this effects happens depends among other things on the way the system
of interest and the environment are coupled in the interaction Hamiltonian.
There exist different ways to obtain a master equation of the form (2.3). One method which is
typically used when directly connecting to physical quantities and experiments is the phenomeno-
logical way to start from equation (2.3) with Hg known and to parameterise H,4q and D in a
suitable way with free parameters that have to be determined by the size of the new effects in
experiments. Mostly, the parametrisation is based on a Lindblad form of the master equation
which we will discuss in section 3. We comment on the phenomenological models more in detail
in section 15 and discuss their application to gravitationally induced decoherence in neutrino
oscillations in section 17.1. Another approach which we will use in part II of this thesis consists
in starting from the Liouville-von Neumann equation for the total closed system pr(t) embracing
the system under consideration and the environment with total Hamiltonian Hrp:

0 o

= pr(t) = —1Hr, pr(1)]. (2.4)

To obtain the dynamics of the reduced system of interest, one then can trace out the environ-
ment &£:

o ps(t) =~ tre {[Hr, pr(t)]} (25)

where we defined
ps(t) :==tre {pr(t)} . (2.6)

While the evolution of pr(t) is encoded in a unitary operator U(t,?y) such that

pr(t) = U(t,to) pr(to) U'(t, to) (2.7)

and as such reversible, the evolution of the reduced system is given in terms of a super-operator
V(t,t0) such that

ps(t) = V(t o) ps(to) (2.8)
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and is in general not unitary and hence not reversible, leading to phenomena like dissipation and
decoherence. In section 4, we will start from the total, closed system that lives on a total Hilbert
space Hr

Hr =Hg ® He (2.9)

composed by the Hilbert spaces of the system under investigation Hg and the environment He.
From this total system, we derive different kinds of master equations tracing out the environment.
For this, we assume that the total Hamiltonian can be decomposed into three different parts:

Hr=Hs®1eg+1s® He +aHj. (2.10)

In this decomposition, Hg is the Hamiltonian describing the uncoupled dynamics of the system
of interest, He the Hamiltonian of the uncoupled environment, H; the interaction Hamiltonian
of system of interest and environment with the coupling strength determined by «.
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3. The Lindblad equation

One specific form of a master equation is the Lindblad equation. In this chapter, we briefly
outline how it can be derived under certain assumptions as the most general form of a quantum
dynamical semigroup which is defined below in (3.7). For this, we follow the presentation in [45].
As mentioned in the previous section, the total system pr(t), consisting of system of interest
and environment, evolves unitarily in time according to equation (2.7), while the reduced system
under consideration pg(t) can be evolved by the application of a super operator V(t,t), see
equation (2.8). Under the assumption of factorising initial conditions

pr(to) = ps(to) ® pe(to) , (3.1)

the super operator V(t,tg) has the following form which can be obtained by combining equation
(2.8) with (2.7), (3.1) and (2.6):

ps(t) = Vit to)ps(to) = tre {U(tto)[ps(to) ® pe(to)]UT (¢ 0) | - (32)

For fixed initial and final times as well as for a fixed initial environmental state pg, this super
operators is a completely positive, trace-preserving dynamical map. The property of complete
positivity is a very important one for master equations, therefore we want to explain this property
a bit more. Positivity of a super operator means that it maps positive operators to positive
operators. In our case, the super operator encodes time evolution and the operators it is applied
to are density matrices of the total/reduced system. This positivity ensures that all populations of
the density matrix, that represent the probabilities of measuring the system in the corresponding
state, remain non-negative under time evolution. The state of the system of interest however only
represents one part of the entire system and therefore does the dynamical map only act on this
part of the composite system. In order to maintain positive probabilities, it is therefore required
that not only V(t,t9)ps(to) is a positive operator, but also the combined map V(¢,ty) ® 1 acting
on operators of the total system. The representation theorem of quantum operations then shows
(see for instance [45, 137]) that a dynamical map like V(t,tp) is completely positive if it can be
written in the following way:

V(t,to)ps(to) = > Wanl(t,to) ps(to) Whp(t o) (3.3)
A,B

with a countable set Wap(t,to) that fulfills

S Wit to)Wap(t,to) = 1. (3.4)
AB
and is defined as
Wag(t to) = VA (®a| U(t, to) [¥B) (3.5)
where the A4 and [1)4) come from the spectral decomposition of pg(to):
pe(to) =D Aalta) (Wal - (3.6)
A

If we now consider the collection of all dynamical maps V(t, to) for a fixed initial time ¢¢ and times
t > top, we obtain a one-parameter family of dynamical maps {V(t,%o)|t > to}. If the correlation
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functions in the environment decay much faster than the system of interest evolves, then one can
neglect memory effects in the evolution of the system under consideration. This is the so-called
Markov approximation which will be discussed and applied at various stages throughout this
thesis. Given this approximation holds, the one-parameter family of dynamical maps even forms
a quantum dynamical semigroup

V(tg, tl)V(tl, to) = V(tg, to) fOT tl, t2 Z to . (37)

The crucial point here is that the evolution is local in time, which means it only depends on the
present state and not any more on its entire history: To evolve the state from pg(tg) to ps(t2),
we can first evolve it to pg(¢1) and then, without knowledge of the original initial state pg(to),
evolve the state via V(t2,t1) from pg(t1) to ps(te).

In order to write down a master equation that corresponds to this quantum dynamical semigroup,
one has to define a suitable generator 7 of this group such that

V(t, tg) = e (t=t0) (3.8)

Such a generator exists if the semigroup is (weakly) continuous and it then defines a Markovian
quantum master equation in the following manner:

2 ps(t) = Tpstt). (3.9)

Similar to [45], we specialise now on the case of a finite-dimensional underlying Hilbert space
for the system of interest with dimension N. We then can expand any operator acting on this
Hilbert space in a complete, orthonormal basis {F;};—; _n2 with inner product defined via the
trace:

(F, Fy) :=trs {FIF;} = 6,5 (3.10)
Choosing Fy2 proportional to the identity and expanding the operators W4p in terms of the
basis {F;};—1,. n2, one can cast the master equation (3.9) into the so-called first standard form:

0 1 1
5Pst) = =7 [Hr, ps(t)] + Z az]< ios(H)F) — Q{FJTFi,Ps(t)}) ; (3.11)

t,j=1

With a positive coefficient matrix A with components a;; where i € {1,...,N?—1},j € {1,..., N?}
defined as

1 .
aij o= lim = > (Fi, Wap(e)) (Fj, Wap(e))™ (3.12)
A,B
and
1 1 N2-1 ;
Hy = g ; (afyeF) — aina ) - (3.13)

More details on the derivation can be found in [45]. Due to the positivity of the coefficient matrix
A, it can be diagonalised yielding the so-called diagonal form

0 i = oLy
5Pst) = — 3 [Hr, ps(t)] + Z %( ips(t _Q{LiLiaPS(t)}) (3.14)
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with the non-negative eigenvalues 7; of A and the so-called Lindblad operators L; defined from

the relation
N2-1

Fi = Z UjiLj, (3.15)
Jj=1

where the u;; are components of a matrix U that diagonalises the matrix A via UAU f. Equation
(3.14) is often called the GKSL or Lindblad equation after Gorini, Kossakowski and Sudarshan,
who proved in [123] the first standard form to be the most general form for the generator for a
finite dimensional Hilbert space, and Lindblad, who showed in [122] that the diagonal form (3.14)
is the most general form for a bounded generator if the underlying Hilbert space is separable and
the sum runs over a countable set.

To summarise, while this approach is very elegant and one can directly write down a completely
positive, trace preserving master equation for a given open quantum system, there is a list of
conditions that need to hold in order for this master equation to be a good representation of the
system’s dynamics:

(1) The total state is separable at the initial time as stated in (3.1).

(2) The back-reaction of the system of interest on the environment is negligible and the envi-
ronment remains approximately stationary.

(3) The timescales on which the correlations of the environment decay is much smaller than
the timescale on which the system of interest evolves (Markov property) in order to obtain
memorylessness which leads to a quantum dynamical semigroup.

(4) Either the underlying Hilbert space is finite-dimensional, or it is separable and the generator
is bounded.

The first bullet point can be assumed to hold in several physical systems, the second one is usually
in particular satisfied if one considers a large stationary environment like a thermal state which
is only weakly coupled to the considered system. The third assumption has to be investigated
for a specific physical system and can be seen as an approximation. The fourth point however is
very problematic: For many physical systems this requirement is not fulfilled, for instance when
considering harmonic oscillators or quantum fields. In order to see how these conditions enter the
derivation of the Lindblad equation in detail and which intermediate master equations there are
if not all of these four requirements are satisfied, we discuss in the following section 4 a different
way to derive a master equation starting from the microscopic total system Hamiltonian and the
Liouville-von Neumann equation (2.4). This will facilitate the possible analysis of errors made
when taking the above assumptions and provide us with tools to deal with physical systems that
do not fulfill all of these four requirements.
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4. Projection operator formalism

This section was written independently from similar introductions in [5] and [1]. As it is based
on the same references and has the same content, it might however show some similarities.

As discussed in the previous section, the Lindblad equation which is derived based on a quantum
dynamical semigroup is subject to a set of requirements that limit its applicability to very few
realistic physical systems. In order to be able to use similar master equations and their benefits to
describe a larger class of systems, there exist different methods to derive such equations starting
from an underlying Hamiltonian of the total system. In this section, we present the projection
operator technique which leads to a more general form of a master equation that can be turned
into a Lindblad equation when invoking several approximations. For the presentation, we closely
follow [45]. A different method is for instance the influence functional approach based on work
by Feynman and Vernon (see [138]). The first part 4.1 of this section will introduce the so-called
Nakajima-Zwanzig projection operator technique which yields an integro-differential equation for
the system of interest, that however still involves a time integration over its entire history. With
the so-called time-convolutionless projection operator method that is discussed in subsection 4.2,
one can then obtain a first-order differential equation that is time-local. In 4.3 we further discuss
how from that equation a Redfield and a Born-Markov master equation can be obtained. To
conclude, we sketch in 4.4 a general form for the environmental correlation functions which are
two-point correlation functions of the environment appearing in the master equation.

4.1. Nakajima-Zwanzig projection operator method

This subsection was written independently from similar introductions in [5] and [1]. As it is based
on the same references, it might however show some similarities.
In this subsection we discuss, following [45], the Nakajima-Zwanzig projection operator method,
a route towards a master equation which is based on the works in [124], [125] and [139]. The
starting point is a Hamiltonian describing the total system of the form (2.10). With this, the
Liouville-von Neumann equation for the time evolution of the total system reads, see equation
(2.4):

0 i

5P (1) = = [Hr, pr(t)]. (4.1)
For the projection operator technique it is convenient to switch to the interaction picture, denoted
by a tilde, where one then obtains

£ r(0) = —2allly (1), pr(e) (4.2)

with the coupling parameter o that describes the coupling strength between system and envi-
ronment. The evolution of the uncoupled system is now encoded in the operators while the
remaining part leads to a change of the state of the system. For a general operator A we have:

A — A(t) i= eh(Hs®Le+1s@He)t 4o (Hs@Le+1s@He)t (4.3
pr(t) — pr(t) := er (Hs®le+1s@He)t 6—%HTtpT(O)6%HTt o7 (Hs®@le+1s®He)t (4.4)
=pr(t)

At this point it is customary to introduce three "superoperators" called like that due to the fact
that they act on other operators, in particular on elements of B(Hr), where Hp denotes the
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total Hilbert space of the system and B(#Hr) the set of bounded linear operators on Hp with the
density matrix pp(t) being one specific element thereof. These three operators are the Liouvillian
and two projection operators:

Liouvillian £(¢) : pr(t) — L(t)pr(t) == —%[f[[(t), pr(t)] (4.5)
Projector R on relevant part : pr(t) = Rpr(t) :=tre{pr(t)} ®p¢ (4.6)
%v,_/
=:ps(t)
Projector Z on irrelevant part : pr(t) — Zpr(t) := pr(t) — Rpr(t). (4.7)

Here, we introduced an arbitrary, time-independent and normalised environmental reference state
pe that will be specified later. The two projectors indeed fulfill the mathematical requirements
for projectors, in particular R?> = R,Z? =Z,R + I = 11 and RZ = TR = 0, which we will use
in the derivation of the master equation. These projectors are now applied to the Liouville-von
Neumann equation in (4.2) and yield:

O Rir(t) = a R L(1) (R+T) pr(t), (4.8)
O Tpr(t) = aZL(1) (R+T) (). (4.9)

In order to obtain a time evolution equation for? pg(t) = tre{Rpr(t)}, the strategy is now to
solve equation (4.9) for the irrelevant part of the density matrix Zpr(t) and then to insert the
result into equation (4.8) for the relevant part of the density matrix. Introducing the propagator
Pz(t,to) of the irrelevant part of the density matrix
' dsTL

Pr(t,to) = To el @ TE). (4.10)
where 7. denotes chronological time ordering, the solution of the evolution equation of the
irrelevant part of the density matrix (4.9) reads

Thr(t) = Pr(t, o) Tpr(to) +a [ ds Prlt, s)T £(s) Rin(s) . (4.11)

to

Using this in (4.8) yields:

aatR,bVT(t) =aRL()Rpr(t)+aR L(L) Pr(t, to) I pr(t)
+ o? tt ds R L(t) Pz(t,s)Z L(s) R pr(s). (4.12)

This equation is called Nakajima-Zwanzig master equation [124, 125, 139] and does not yet
contain any assumptions or approximations, thus it is still an exact master equation resembling
the true dynamics of the system of interest. It however is hard to treat analytically, as it contains
in the propagator as well as in the last term integrations over the entire history of the system
from the initial time ty to the present time ¢. In the next subsection, we will discuss a method
on how to proceed from this stage in order to remove this integration over the entire system’s
history.

*We assume the density matrix for the environment to be normalised, i.e. tre{pe} = 1.
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4.2. Time-convolutionless projection operator method

This subsection was written independently from similar introductions in [5] and [1]. As it is based
on the same references, it might however show some similarities.

Given the highly complex form of the Nakajima-Zwanzig master equation (4.12), in particular the
inclusion of the entire history of the system, we discuss here a method to cast this master equation
into a time-local form, introduced in [126, 127, 140]. For the presentation of this method, we
follow [45]. The starting points are again the evolution equations for the relevant and irrelevant
part of the density matrix in (4.8) and (4.9). The solution for the irrelevant part is now modified
by the introduction of another propagator Pg(t,ty) which propagates the total system back in

time:

Pa(t,to) = Tve © Jig s £62 ; (4.13)

where 7_, denotes anti-chronological time ordering. This does not cause any problem, as the
total system is closed and hence follows revertible, unitary dynamics. With this, the manifest
time-convolution can be removed from the density matrix in the solution of the irrelevant part
of the density matrix in (4.11):

Tpr(t) = Pt to) Tir(te) + S(t, to) pr(t) (4.14)

with the former time convolution now being part of a new super-operator
¢
X(t,to) ==« | dsPr(t,s)I L(s)RPas(t,s). (4.15)

to

Inserting a factor of 17 = R + 7 in front of the last density matrix in (4.14) permits us to solve
this equation for the irrelevant part of the density matrix:

Ipr(t) = [1 = 2(t,t0)) " B(t,to) Rpr(t) + [1 — (¢, t0)] ! Pr(t, to) Ipr(to) , (4.16)

where the propagator Pz(t,tg) was defined in equation (4.10). To derive this equation, we
assumed that [1 — (¢, to)] is invertible, at least for some interval [to, t]. Such an interval exists as
Y (to,to) = 0 and X(¢,tp) is continuous in ¢, more details on that can be found in [1] in Appendix
C. The size of this interval [to,¢] depends on the coupling parameter «. This solution for the
irrelevant part of the density matrix can then be inserted into the equation for the relevant part
(4.8) and one obtains

O Rpr(t) —a R L) [1+ [1 = S(t.t0)] " (k. to)] Rr(t)
+aRL(E)[1—(t, to)] ! Pr(t, to) Ipr(to) . (4.17)
Upon introduction of the TCL generator
G(t,to) 1= a R L() [1+[1 = Xt 10)] 7 B(t,t0)| R (4.18)

and the inhomogeneity

N(t to) == aRL(E) [1 —X(t, to)] L Pr(t,t0) T, (4.19)
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this can be brought into the following convenient form:

& Rir(t) = Gt 10) Riw (1) + N (t,to) T (o). (1.20)
This master equation is still exact and now also local in time as it does not depend any more on
the system’s past history, only on the initial and present state. In order to simplify the treatment
of this master equation, we now assume that the system of interest is weakly coupled to the
environment, i.e. that the coupling constant « is small. This motivates us to expand the TCL
generator and the inhomogeneity in a perturbation series in ae. We start with the TCL generator:

G(t, ty) = Za Gn(t, to) . (4.21)

Given the definitions of the propagators in (4.10) and (4.13) and the application of the geometric
sum that yields on the interval [to, ] where the inverse of [1 — X(¢, t()] exists

o0

[1=S(tt0)] 7! = Y _[E(t,t0)]", (4.22)

n=0

the individual G, (t,t9) can be determined from

G(t,to) = Za Gn(t,to) = a R L(t)

1+ i S(t, to)] ] (4.23)

n=0
and for the first orders it follows that, using Z = 17 — R:
Go(t,to) =0 (4.24)
Gi(t,to) =R L(H) R (4.25)
t t
Gal(t, to) = / ds RL(t) L(s)R— [ ds RL(E)RL(s)R. (4.26)
to to

Throughout this thesis, we will focus on TCL master equations truncated after second order, so
for us this expansion is only of interest until order Ga(¢,%p). In order to derive higher orders, it
is helpful to make use of the so-called cumulant expansion developed by van Kampen in [141]
and [142], which is a technique that allows one to directly write down G, (t,to) for any n. As
here we only need n = {0, 1,2}, it is sufficient to calculate them directly, as done above. For the
inhomogeneities one obtains in a similar fashion:

No(t, to) =0 (4.27)
Ni(t, to) =R L(L) T (4.28)
Na(t,to) = /t ds R L(t) L(s)T — t ds RL(E)RL(s)T. (4.29)

With this expansion, the second order truncated TCL master equation [126, 127, 140] (also called
TCLy master equation) reads

gtRpT( t) =a R L(t) Rpr(t) + o tt ds R L(t) L(s) Rpr(t) — o? tt ds R L(t) R L(s) Rpr(t)

+aR L() Ipr(ty) + o tt ds R L(t) L(s) Ipr(ty) — o tt ds R L(t) R L(s) Zpr(to) .
(4.30)
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Up to this stage, we have not directly used any of the assumptions made in section 3. The
only requirement so far is that the coupling between system and environment is weak, while
similar microscopic derivations of a master equation also are possible for strong coupling if the
Hamiltonian can be expanded in the inverse of the coupling constant, see [45]. The projection
operator formalism yielded under the assumption of weak coupling the second order truncated
master equation (4.30) which has a rather simple form and is valid for any kind of detailed
coupling in the interaction Hamiltonian, any environment and also for an arbitrarily entangled
initial state pp(tg). This is an outstanding point which makes the projection operator technique
extremely powerful compared to similar derivations of master equations that often directly aim
at the derivation of a Lindblad equation and due to that loosing track of the special features
and the general picture of a given system under consideration. Examples for this are the direct
microscopic derivation of the Lindblad equation for instance in [45] or [143] that are usually based
on the Redfield or Born-Markov master equation that applies only to specific classes of systems.
In the next subsection, we discuss in which way and under which assumptions these equations
can be obtained from the TCLgy master equation (4.30).

4.3. Redfield and Born-Markov master equations from the TCL, master equation

In this section we discuss, which additional assumptions and steps are necessary in order to cast
the TCLg master equation (4.30) into a Redfield form and further into a Born-Markov master
equation. These two types of master equations are often used in the literature, sometimes as an
intermediate step towards a Lindblad equation. To cast the TCLo master equation into Redfield
form, there are two assumptions that have to be taken, whose fulfillment depend on the specific
physical scenario that is considered.

(a) The initial state of the total system is a product state, i.e. pp(to) = ps(to) ® ps(to). Picking
then the environmental reference state in the projection operator formalism to be equal to
pe(to), the projection onto the irrelevant part of the density matrix at initial time to will
vanish, i.e. Zpr(tp) = 0. This implies that all inhomogeneities in the TCLy master equation
(4.30), that is all terms in the second line, vanish. This assumption precisely is requirement
(1) in section 3. While it is physically not always clear whether this assumption holds, it is
often assumed in order to simplify calculations. The projection operator formalism however
shows how non-vanishing inhomogeneities can be treated structurally.

(b) The second assumption is that R L(t) R = 0, which removes the first and third term from
the first line of the TCLy master equation in (4.30), as well as the last term in the second
line. This condition is equivalent to

—trs ({1 (1), ps(0) @ pel} = 0. (431)

One condition for this to hold is that trg {f[ 1(t) pg} = 0. This is in particular given if
the environmental reference state, in particular therefore also the state of the environment
at the initial time ¢y, see assumption (a) above, is taken to be a stationary Gibbs state
and the interaction Hamiltonian to be linear in the creation and annihilation operators
of the environment. This will be the situation we will find throughout this thesis. This is
however not in general fulfilled, one counter example would be if one considers a polymerised
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environment as for instance in [144]. This assumption is related to requirement (2) in
section 3.

Under these assumptions the TCLy master equation (4.30) obtains the following form:

0. - t ~

aRpT(lt) =a? | ds R L(t) L(s) Rpr(t), (4.32)
to

which we can rewrite due to the factorising initial conditions in (a), and taking the trace with

respect to the environment, as

0 a? [t ~ ~ B
5750 = =z [ dstre {UF0) 1975 (0) e} (4.33)

where we used the definition pg(t) := tre {pr(t)} from equation (4.6). In Schrédinger picture,
this master equation reads

0 7 a? gt o~
g5t = = 4 lHsps(®)] = 35 | dstre {[Hr, [Hi(s =), ps(t) @ pell} (4.34)
and defining 7 := ¢t — s this becomes
0 i o? [t=to ~
5s(t) = = 2 [Hs. ps(D)] = 75 /0 dr tre {[H, [Hi(~7), ps(t) @ pel} - (4.35)

This is the so-called Redfield master equation. To arrive at this form, one can alternatively
also start from the trace of the Liouville-von Neumann equation and apply the assumptions
used here, where assumption (a) is implemented by the Born approximation which assumes
pr(t) = ps(t) @ ps to hold inside the double commutator, and assumption (b) is plugged in by
hand. This approach is for instance discussed in [5] or [45]. Deriving a Redfield master equa-
tion in that way does however not give any technique or intuition on how to deal with different
environments or non-separable initial states and therefore non-vanishing inhomogeneities. While
the Redfield equation is in general not completely positive in contrast to the Lindblad equation
discussed in section 3, it does in principle approximate the dynamics of a system under consid-
eration with higher accuracy as a Lindblad equation due to the fewer amount of approximations
invoked. Its use is however limited, as from a certain time ¢ on it might predict negative proba-
bilities. Therefore its predictions have to be treated with caution and its domain of validity has
to be analysed in detail given a specific physical system. Additionally, one can test, under which
circumstances the Redfield equation can be cast into a Lindblad equation and which error is
committed when doing so. One major part of this thesis deals with Redfield master equations for
different physical systems involving gravity as the environment, and the analysis of the required
approximations to cast it into a Lindblad form.
Under the additional assumption of short memory in the environment, that is that the environ-
mental correlation functions, that will be discussed in more details in the next subsection, are
strongly peaked in 7 and decay rapidly, one can apply the Markov approximation to the Redfield
equation. This approximation consists in shifting the initial time from ty to —oo and assumes
that the error made by this shift is negligible. This yields then the Born-Markov master equation

0 ) a? [ ~

Sies0) = = $lHs.ps(0] = 55 [ drtre {{HL (i (=) s @ pell} . (436)
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This approximation precisely is condition (3) in section 3 and the resulting master equation now
is completely local in time, as it does not any more depend on the initial state at tg as the Redfield
equation did before. The Markov approximation however is a rather strong assumption and it
is a priori not clear whether it is a good approximation for a given physical system. Therefore
we will work throughout this thesis with the Redfield equation (4.35) and test in the different
models considered in detail, whether the Markov approximation is justified or not. Apart from
this route towards a Redfield master equation, there also exists the influence functional approach
based on [138] which is used in the literature, e.g. in [62]. An introduction to this technique can
be found for instance in [5], [1] or [45]. As is discussed in [1], for the TCLy master equation it
yields an equivalent result as the time-convolutionless projection operator method applied in this
thesis.

4.4. Environmental correlation functions

In this subsection, we introduce environmental correlation functions into the Redfield master
equation (4.33) in order to set the stage for the next parts of this thesis where we will make use
of these two-point correlation functions. For this, we first split the interaction Hamiltonian into
a very general form:

Hi(t) = / NS Sa(n ) @ BAN 1), (4.37)
A

where the operators S A\, t) act on the Hilbert space of the system of interest and the operators
E‘A(A, t) act on the Hilbert space of the environment. Both operators are linked by an intrinsic,
continuous parameter A and a discrete parameter A, which can be understood as multi-index and
which is summed over a finite set. Using Einstein’s sum convention, we drop the explicit sum
over A. Applying this in the Redfield equation (4.33) we obtain

Ct2 t - - ~ ~
%ﬁS(t) = _ﬁ /0 ds / dA / d>\/< (SA(/\> t) SB()‘lv 5) ﬁS(t) - SB()‘/> 5) ﬁS(t) SA(Aa t))

LGP N L 5)
+ (=840, 1) ps(t) SN, 5) + ps () S(N, 5) Sa(A 1))

LGBV, s)> ,
(4.38)
where we defined the thermal Wightman correlation functions in the same manner as in [145]:
G ON 1, 8) = trg {EAON ) EP (N, 5) pe } (4.39)
GO N ) 1= tre { BP (N, 5) BAON ) pe - (4.40)

Depending on the system under consideration and in particular on the time dependence of the
S 'A(A,t) and on the parameter A, the investigation of these functions alone might (see part IV,
section 16.4, where a quantum mechanical model in which a neutrino is coupled to harmonic
oscillators is investigated) or might not (see part III, section 12.1.1, where the one-particle pro-
jection of a scalar field coupled to an environment of gravitational waves is discussed) be enough



36 Projection operator formalism

to test for the applicability of the Markov approximation. With further approximations, in par-
ticular the Markov and, depending on the specific system, also the rotating wave approximation,
the master equation in (4.38) can be cast into Lindblad form. As these approximations cannot
straight forwardly be applied in general, we will discuss this for the systems under consideration
in this thesis individually.

In figure 2 the different master equations, the approximations required to derive them and their
dependence on each other are sketched.
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route and approximations required for their derivations.



38 A simple quantum mechanical decoherence model

5. A simple quantum mechanical decoherence model

To demonstrate the path towards a master equation and some of the standard techniques dis-
cussed in the previous section of this part of the thesis, we sketch in this section a simple quantum
mechanical system for which a corresponding master equation is derived. The simple model is
a so-called spin-boson model that consists of a two-level system which is coupled to an environ-
ment of harmonic oscillators. This model was investigated to discuss decoherence in qubits in
[134-136]. Here, we partly follow the presentation in [45, 46]. We have chosen this specific model,
as it is still very well treatable analytically and is similar to the one investigated in part IV of
this thesis, where we couple a neutrino described as a three-level system and hence by a different
system Hamiltonian to an environment of harmonic oscillators. For the model discussed in this
section, we start from the total Hamiltonian of the underlying microscopic system that has the
form specified in (2.10):

Hr=Hs®1g+1s® He+ Hy. (5.1)
where we absorbed the coupling constant « into Hy, and with
Hg := %03 (5.2)
He =Y w;blb; (5.3)
i
Hp:=03® bl 4 gib;) (5.4)
=03 9i; T G; 0i
i

In these definitions, o3 = diag(1l,—1) denotes the third Pauli matrix, wy the energy difference
M

7

the Ladder operators for the ith oscillator
in the environment that fulfill [b;, b;] = d;j, w; their frequencies and gi(*) the coupling constants
that can in principle be different for each oscillator . If g; is purely real, then the interaction

Hamiltonian can be rewritten as

between the two levels of the system of interest, b

H < Hg® Y gig;, (5.5)
(2

where ¢; is the position operator of oscillator 7. This is the interaction Hamiltonian for the model
discussed in part IV starting in section 16, which is based on [112] and couples a three-level
system to an environment of harmonic oscillators, serving as a toy model for gravitationally
induced decoherence in neutrino oscillations. For now, we continue with the general case where
gi is a complex number. To derive a master equation that encodes the effective influence of the
environment on the two-level system, we first switch into interaction picture (denoted by a tilde),
in which the interaction Hamiltonian has the following form:

Hy(t) = e (Hs®letls@He)t o~ (Hs®le+1s@ He)t
=03 Z (gi e%Hgtbje_%Hgt +g;s e%Hgtbie_%H5t> ‘ (5.6)
i —_— —
' =: b;f(t) =:b;(t)

To obtain the time evolution of the Ladder operators we use:

iwitbib, —iwitbib, > Zwltm
10 (1) = istoln o) ittt — 3 Bty o) 5.7)
m=0 :
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where we introduced the iterated or nested commutator [A, B](,,) which is defined recursively in
the following way:

[A7 B](m+1) = [Aa [Aa B](m)] ) [Av B](O) =B. (58)
In the present case this yields:
(b1t bilmy = (= 1)y [blbi bl = b, (5.9)
which implies
bi(t) = e it b, bl (t) = ™t b (5.10)

and thus the interaction Hamiltonian in interaction picture reads
ﬁ[(t) =03® Z (gieiwit bzT + g;‘e_i“’"t bi) ) (5.11)
i

With this, the Liouville-von Neumann equation in interaction picture (4.2) can be constructed:

0 (e ~
5T () = = [H1(t), pr(t)] (5.12)

with _ _
ﬁT(t) = e%(Hs@I[g—‘y—]ls@Hg)t PT(t) e—%(Hs@ﬂg—i—Ils@Hg)t. (513)

To show a bit the variety of the formalism of open quantum systems, in this model we will apply
the time evolution of the entire system and then trace out the environment, while in the similar
but slightly more complex model in part IV of the thesis, we will first trace out the environment.
In the present model, we can use that the time evolution operator U (t) for the Liouville-von
Neumann equation in interaction picture can be simplified in the following way:

[Nf(t) _ 7:_6_% f; dr ﬁ[(T) _ eup(t)e—%fot dr ﬁ[(‘r) ’ (514)

where 7. denotes chronological time ordering and ¢(t) is a phase factor

Lt t ~ -
olt) == L/ dr/ dr' O(r — ') [Hy(r), Hi()] . (5.15)
2h2 Jo 0
The reason for the applicability of this simplification is the fact that the commutator
[y (7), Hy(7)] o 1, (5.16)

hence instead of applying the time ordering it is sufficient to use the standard exponential series
and multiply it with the correction arising from the commutations which is the phase (). A
proof of this equality can be found for instance in [45, 46]. The time evolution operator can thus
be written as

o N§=10)
T (t) = 0 FOT () bl—e;0b:) ., i0),759 2 o) , (5.17)
where
et) = 291" and  D; <CZ(t)> - (ci(t) b — () i) (5.18)
1 =20 hwz 7 ) — 9 1 1 1 1] - .
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To apply this evolution, we have to fix the initial state of the total system. As discussed in the
previous section, an initially uncorrelated state simplifies the analysis, so we assume this to hold
here:

pr(0) = pr(0) = ps(0) ® pe(0). (5.19)

The assumption which will be made throughout this thesis for the physical systems considered is
always that the environment is very large compared to the system under consideration and is in
thermal equilibrium, that is in a stationary Gibbs state. Due to the large size of the environment,
the back-reaction which the system causes on the environment is neglected. From this follows

1 _
pe(t) = pe = - pie (5.20)

with the partition sum of the environment Zg := trg{e #¢} that normalises the trace of the
density matrix to trg{ps} = 1, where trg denotes the trace over the environmental part of the
Hilbert space and § := ICB% with the Boltzmann constant kp and a temperature parameter ©
that characterises the Gibbs state.
The time evolution of the density matrix for the system of interest is then obtained in energy
eigenbasis {[i), |j)} as N N

Psas(t) = (il tre {0 () pr(0) TT (O} 15) - (5.21)

As the interaction Hamiltonian commutes with the system Hamiltonian, the state of the system
itself is apart from a possible sign flip not changed by the application of the time evolution
operator. When considering the diagonal elements (populations) of the density matrix, this

sign cancels. For the environmental part of the time evolution operator we have Dg (CZT(t)> =

—D; (Ciét)>, which also cancels for the populations. Thus the populations of the system’s density
matrix remain constant in time:

ps,ii(t) = ps,ii(0) (5.22)

and the model is a pure dephasing model. Indeed, the fact that H; and Hg commute implies
that the interaction of the system with the environment cannot change the system’s energy. For
the off-diagonal elements (coherences) we find:

psij(t) = psaj(0)e (5.23)

with a decoherence function I'(¢) that is real and non-negative for ¢ > 0. This function can be
computed using the techniques introduced below in section 16. As the calculation is very similar
to the one there, we just state the result from [45], equation (4.49) here:

() = Z Aol coth (ﬁwi) (1 — cos(wjt)), (5.24)

, hzwg 2
1

which, as expected, is non-negative and real for w; > 0. To determine this quantity more in
detail, one needs the knowledge of all the individual coupling constants g; and frequencies w; of
the oscillators in the environment. As this is not practical, at this stage usually a continuum
limit is applied that replaces the individual oscillators by a continuum of oscillators that are
characterised by a spectral density J(w). This choice of such a spectral density has to be imposed
by hand and is discussed in more detail in section 16.3. When starting in the beginning with a
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microscopic model that is based on a (quantum) field theory, then the choice of a spectral density
is not necessary. With such a spectral density, the decoherence function can be expressed as

() = /0 ” d 22((‘53 coth (i‘") (1 — cos(wt)). (5.25)

We can split this function into a vacuum contribution that represents decoherence due to vacuum

fluctuations:
J(w)
h

2,2

Tyae(t) = /0 T 29 (1 cos(wt) (5.26)

and a thermal one that encodes the influence of the thermal environment on the system of interest:

Cin(t) = /OOO dw ;2(:2 [coth (%) — 1] (1 — cos(wt)) . (5.27)

From the fact that I'(¢) > 0 for ¢ > 0 combined with equation (5.23) it follows that the influence
of the environment leads to a damping of the off-diagonal elements of the density matrix in
the energy eigenbasis. To analyse this effect in detail, first a spectral density has to be picked
and then often also approximations regarding the temperature parameter are invoked. As this
both depends on the physical system that is being studied, we stop at this point and refer for
further analysis of this model to the literature, for instance to [45, 46] and also to part IV of the
thesis, where a spectral density is chosen and discussed for gravitationally induced decoherence
in neutrino oscillations which is motivated by the field theoretical approach in parts II and III of
this thesis.
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As the main application of this thesis, we discuss in this part the derivation of a master equation
for a scalar field in a linearised gravitational environment. For this, we make extensive use of the
techniques introduced in part I. Most of the content and results of this part were published in
[1]. Some parts are based on the results from the master’s thesis [5], to which we refer the reader
for more details on the basic model.

6. The basic model: linearised gravity coupled to a scalar matter field

The content of this section was already published in [1] and is partially based on results of the
Master’s thesis [5]. It is included in this PhD thesis as it forms the basis of the PhD project and
is presented here with slight modifications compared to [1] to adapt it to the flow of the thesis.
Following the approach for gravitationally induced decoherence models presented in part I of
this thesis, we introduce in this section a field theoretical model that consists of a scalar field as
system under consideration and linearised gravity as environment. We discuss the corresponding
action, which arises from the full theory of general relativity in first place, and necessary boundary
contributions in terms of Ashtekar variables for gravity in subsection 6.1. For better analytic
treatment and to adopt to physical scenarios of weak coupling, we focus on linearised gravity
only. For this purpose we consider the linearisation of vacuum gravity in Ashtekar variables in
subsection 6.2 use the framework of a Post-Minkowski approximation to couple the scalar field,
which is discussed in subsection 6.3.

6.1. The gravity-matter system formulated in Ashtekar variables

The content of this subsection was already published in [1] and is partially based on results of the
Master’s thesis [5]. It is included in this PhD thesis as it forms the basis of the PhD project and
is presented here with slight modifications compared to [1] to adapt it to the flow of the thesis.
As the starting point for deriving the decoherence model in this part of the thesis, we choose the
following action involving gravity coupled to a Klein-Gordon scalar field in the ADM decompo-
sition [83] expressed in terms of Ashtekar variables [114, 115, 146, 147]:

5= /]R dt /a d?’x(ligAai(f, £) B%(Z,8) + (7, ) 7(Z, 1)

— [N(@ ) Gil@,t) + N(3,1) Cu(@, 1) + N(@, ) C(&1)] ), (6.1)
where 3 is the Barbero-Immirzi parameter, k = 8”0# with Newton’s gravitational constant G,

c denotes the speed of light and we work with the mostly-plus signature of the metric. From here
on, we will set ¢ = h = 1. The gravitational degrees of freedom are encoded in the Ashtekar vari-
ables consisting of an SU(2)-connection A4, (#,t) and the canonically conjugate densitised triads
E® (Z,t). The matter sector includes the scalar field ¢(Z,t) as well as its canonically conjugate
momentum 7(Z, t), an overdot denotes a derivative with respect to the temporal coordinate. That
general relativity is a fully constrained theory is reflected by the fact that apart from the sym-
plectic potential in the action, there appears a sum of constraints G;(Z,t), Cy(Z,t) and C(Z,t)
only multiplied by different Lagrange multipliers A*(Z,t), N%(#,t) and N(Z,t), where the latter
two are usually referred to as the shift vector and the lapse function, respectively. In Ashtekar
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variables the spatial diffeomorphism constraint reads

1
%Fab
where F,,/(%,t) := 0, 4,(Z,t) — Op A, (T, t) + eijkAaj(f, t) A,¥(Z,t) denotes the curvature related
to the connection variable A. The Gaufl constraint, which is absent if working in ADM variables,
is given by

C,(7,t) = UE,t) BY(2,1) + 7 (Z, 1) 0,0(F, 1), (6.2)

Gi(@t) = 5= (0, B (F,t) + €, A (7,1) B(3,1)) (6.3)

2/@8

with the completely antisymmetric tensor €. Finally, the Hamiltonian constraint takes the form

2
C(F,t) = (Fab%f, - %ﬁleﬂmmal@ ) — TA(E ) (A", 1) - Ty (7, t)))

' €Ik B (Z,t) EY (L)1)

det(E<,)
72 (Z,t) 1 e e . B )
2/det(B,) 2\/det(Ecn)5 B (%,1) Y (%, 1) (0,6(7,1))(0,6(7, 1))
+ thQ(EC") m2e?(Z,1). (6.4)

Here, m denotes the mass of the scalar field and ',/ is the spin connection, considered a functional
of the densitised triads, i.e.

. 1 .. - - cdet (E9) » det (E<)
a 26 k < a b b,a+ Ja b+ a det(ECl) b 2det(Ecl) ) ( )

where we abbreviated partial derivatives with a comma, that is E b= =0, E,7, and suppressed
the spatial and temporal arguments of the involved field variables. The elementary phase space
variables satisfy the following Poisson algebra on the classical phase space:

{Eai(f> t)aEb (37 )} {A (‘Tat)’Abj(ga t)} = 0> {Aai(f’t)vaj (ga t)} = B’{525553(f_ 37) s
{0(@,1), (g, 1)} = {n(Z, 1), 7 (g, 1)} =0, {o(@,0), 77,0} =P(@ 7). (6.6)

where all the remaining ones vanish. As the decoherence model presented in this part of the thesis
requires to linearise the above action around a flat Minkowski background in the course of the
upcoming section, we choose asymptotically flat boundary conditions [148] also addressed in [149,
150] for the case of real Ashtekar variables. With the fall-off behaviour of the Ashtekar variables
discussed in section 6.2 and the linearisation of the Lagrange multipliers chosen such that both
are consistent with an asymptotically flat universe, it turns out that the Gaufl constraint and the
gravitational part of the spatial diffeomorphism constraint do not cause any issues and need no
further modification in accordance with [151]. However, the gravitational part of the Hamiltonian
constraint as well as its variation is not well-defined in the asymptotically flat limit and contains
divergences. To circumvent these, we introduce a suitable boundary term given by
" ik Ea Eb
- i
T[N] 2 - dS,NA, m (6.7)
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to the smeared Hamiltonian constraint, which makes it well-defined and functionally differen-
tiable. Note that on the constraint hypersurface where the Gaufl constraint vanishes T'[1] is the
so-called ADM-energy [152]. Further we assume, as is usually done, that the initial data of the
matter variables have compact support, yielding matter contributions that are well-defined in
the asymptotically flat case. Given this, the canonical Hamiltonian that we will work with in the
following and that is consistent with our chosen boundary conditions reads

Hean = C(N) + C(N) + G(A) 4 T[N]
1

1

. ) 1 .
- / d3x L 5 NF,E% + N1V, + —— N0, E% + —— N A EY
g

2k 2k
; 1 1
- Nﬁjkl\/ﬁEakEblmﬁjmn (AamAbn + (,82 + 1)Famrbn - 2PamAbn>

1 1 . A 2 N
+ m(— EijlEakEblAbjaaN —|—]\[7 + 2EazEbl(8a¢)(8b¢))

+NY dgtE mQﬂ , (6.8)
where
C(N) = / &x C(7,)N(7, 1) (6.9)
C(N) = [ d*z Co(Z,t)N(Z, t) (6.10)
G(A) = | &z Gi(Z, t)N (). (6.11)

In the following two subsections we will consider a linearisation of the gravity-matter system. For
this purpose we first briefly review the linearisation of the vacuum case and afterwards discuss
how the scalar field can be coupled to linearised gravity in the framework of a Post-Minkowski
approximation scheme.

6.2. Brief review of linearised gravity in Ashtekar variables

The content of this subsection was already published in [1] and is partially based on results of the
Master’s thesis [5]. It is included in this PhD thesis as it forms the basis of the PhD project and
is presented here with slight modifications compared to [1] to adapt it to the flow of the thesis.

A quantisation of the full theory of general relativity is a highly complex task. In this thesis, we
are mainly interested in scenarios that involve weak couplings between the matter system and the
gravitational field, such as for instance the gravitational influence on neutrinos. Therefore, we will
consider a linearisation of general relativity around a Minkowski spacetime and then work with
a perturbation for the gravitational degrees of freedom using x as an expansion parameter. Here
we will focus on vacuum gravity using Ashtekar variables, analogous to the work in for instance
[128] or [153]. We denote the linear perturbations with a prefix §. The Ashtekar variables as well
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as the Lagrange multipliers then become

E% =E; + k0B = 6! + k6EY §E : O(r~ 1) even (6.12)
A=A + KA =0+ KA, §A: O(r2) odd (6.13)
N=N+#xdN=1+k6N SN :O(r™ Y (6.14)
N*=N"+ k6N =0+ rIN® SN :O(r 1) (6.15)
A =R + kSN =0+ KA SA : O(r™2) even, (6.16)

where the fall-off behaviour in the limit of spatial infinity of the first order perturbations has
been chosen in accordance with the asymptotically flat boundary condition [148]. The split into
background and perturbed quantities was made in a way such that the background corresponds
to a Minkowski spacetime that remains unchanged by the action of the canonical Hamiltonian of
the system, i.e.

{EapHcan} =0 (6.17)
{Aai, Hen} =0, (6.18)

where the overline stands for evaluation with respect to the background Minkowski spacetime. In
the case of vacuum gravity (after computation of the Poisson brackets) this amounts to E; = 6%,
ZZ =0, N =1and N* = 0. As one can easily compute, the spin connection vanishes in the
background:

I, = T.+kéT, ~0+kdT,
= =56 (<0510, (SE) + 610}0, (5B) — 0,y (6E°;) + 61010, (SEY)| - (6.19)

The Poisson algebra of the linearised gravitational variables can be inherited from (6.6):

B

KR

{5Eai (57 t)v 5Eb] (ga t)} = {6"4(17; (fv t)a 6Ab] (g7 t)} =0 ’ {5Aai (fa t)a 5Ebj (g‘v t)} 526;63 (‘f—g) .
(6.20)
In the next subsection we will address how the matter contributions can be included consistently

in the linearised framework.

6.3. Post-Minkowski approximation scheme

The content of this subsection was already published in [1] and is partially based on results of the
Master’s thesis [5]. It is included in this PhD thesis as it forms the basis of the PhD project and
is presented here with slight modifications compared to [1] to adapt it to the flow of the thesis.

In the context of general relativistic perturbation theory, one usually chooses a background solu-
tion and then considers perturbations of the gravitational and matter sector around it assuming
that the perturbations are small compared to the chosen background quantities. In this work
we linearise around a flat Minkowski spacetime, which is a vacuum solution of general relativity.
Hence, any considered perturbation in the matter sector will not be small compared to vanishing
matter degrees of freedom in the vacuum case. However, we can formulate a model that involves
the coupling between matter and linearised gravity in a Post-Minkowski approximation scheme.
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For the model presented in this part of the thesis we will need to consider the zeroth and first
order in the Post-Minkowski formalism only and this will be the underlying guiding principle of
how the matter sector will be included into the Hamiltonian formulation and in particular into
the constraints. We will briefly sketch the main steps that lead to the linearised action that we
take as our starting point. The Post-Minkowski formalism is based on the Landau-Lifshitz for-
mulation of general relativity, see for instance the book [130] for an introduction to the subject.
One starts by introducing the so-called gothic metric defined as

g = —det(gpg)g””, (6.21)
by means of which we can introduce the following tensor density
HIPT = ghtg”? — gh7g"P, (6.22)

where H*P? carries the same symmetries as the Riemann tensor. Following the presentation in
[130] one can use (6.22) to rewrite Einstein’s equations G, = T}, in the following form:

0,0, HMP? = 2k(— det(g)) [T + t57] . (6.23)

Here, T"# denotes the energy-momentum tensor of the matter degrees of freedom and ¢/ is the
so-called Landau-Lifshitz pseudotensor which consists of a sum of (contractions of) terms dg dg
and does not transform as a tensor under coordinate transformations. This quantity corresponds
to the distribution of energy of the gravitational field in spacetime. If one aims at formulating the
corresponding linearised theory, as a first step, one applies a partial gauge fixing on the gothic
metric by the harmonic coordinate condition

09" =0. (6.24)

For later convenience it is useful to introduce the following quantity also known as the metric
potentials h#*¥ that have the following relation to the gothic metric gH”:

g =" — . (6.25)

The harmonic coordinate condition then carries over to 9,h*” = 0. In this gauge, Einstein’s
equations in (6.23) have the form, see e.g. equation (6.51) and (6.52) in [130]:

Oh = —2k(— det(g)) [T [®, g] + t" [b] + ¢4 [0]] (6.26)

with the d’Alembertian O in flat spacetime and

1
th[h] i= ————— (9,b"7 I,H"P — b7 0,0,H") . 6.27
H [h] 2/{(—det(g)) ( ph O‘b h P O’b ) ( )
Among the individual contributions in (6.26) the energy-momentum tensor T*” depends on the
matter variables here denoted by ® and on the metric g, while the other two contributions depend
on the modified gothic metric h only®. The idea of the Post-Minkowski approximation scheme is

to construct an iterative solution to (6.26). For this purpose one chooses that in lowest order the

3Later we consider a Klein-Gordon scalar field for the matter sector but here ® is understood symbolically for all
possible matter choices that one would like to couple in a given model
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gothic metric agrees with the Minkowski metric and for higher orders considers an expansion of
h*" in terms of powers of x according to

g ="+ 2—:1 K" By (6.28)

As in this part of the thesis we linearise our entire system around a flat Minkowski background
and are therefore only interested in weak gravity, for the model under consideration here we can
consider truncations of this perturbative expansion?.

An iterative solution of Einstein’s equations is constructed by the following procedure. Let us
assume one has a solution for the potentials b of order xF. Then one is able to compute the
contributions of the quantities on the right hand side of (6.26) with it. Due to the prefactor x,
the right hand side will then be of order xK*T!, so the entire equation will yield a solution for
B(k+1)- As can be seen from (6.28), the perturbative ansatz in the Post-Minkowski approximation
scheme is constructed in a way that in the zeroth order where h = 0 one has g = 7, from which
one directly obtains g = . With this, one can construct the right hand side of (6.26) using this
zeroth order solution. As try and ty both contain § in each summand, they vanish for h = 0
and the only non-trivial contribution comes from the energy-momentum tensor 7#” on the right
hand side. As in zeroth order g = 7, it simplifies to the energy momentum tensor 74" on a flat
Minkowski spacetime. Given the right hand side of (6.26), the left hand side amounts to the first
order modified gothic metric, that is

/{Dhﬁl’) = —2xTH[®, 7] . (6.29)

Finally, one needs to relate hé‘ly) to the (inverse) metric perturbations dh*”. Since in this work we

are interested in the linearised theory only, we can use g"¥ = n*¥ — k6h** + O(x?) and obtain

174 1 17
bt‘l'/) = ohH — 577” NpsOhP7 . (6.30)
The last equation allows us to rewrite the linearised equations in a first order Minkowski approx-

imation as

— 5 (D) = S D 377) ) = T ). (6.31)

From (6.31) we can directly read off how the interaction term in the action needs to look like,
namely

Sp="2 / d*a 5h, T (B, 7). (6.32)

2/m
The overall factor § takes into account that we start with an overall factor of i and then
consider linear perturbations of the metric g,, = nu, + kdh,, yielding a factor x? for second-
order perturbations in the vacuum case. Note that, as expected, the same interaction contribution
to the action can be obtained by minimally coupling matter to gravity and then linearising the
metric degrees of freedom around a Minkowski spacetime [60-62, 154]. Let us denote the matter

4Note also the formal role of the expansion parameter & that is further explained in box 6.4 in [130]: Depending
on the chosen system of units, x could also be equal to one.
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Lagrangian density by Lg, then we have

/M d*z \/Tt(g)ﬁé ~ /M d'z Lo|g=y + /M d'w (~wh) (5(Wﬁé)> ‘9:"

=Sy 5 [ d T, [, (6.33)
M

where S denotes the matter action on flat spacetime. For the model discussed in this part of
the thesis, we choose the matter Lagrangian of a Klein-Gordon scalar field

1 " m? 9
Eqs = —59 Dung,,gb - 745 s (6-34)

where D), denotes the torsion-free, covariant metric-compatible derivative with respect to g.
Performing an ADM decomposition as we did for the vacuum case we end up with

Sy = / dt / &z (ém — [N°CP + NCo)) (6.35)
with
C? .= 1V,0, (6.36)

2 2

™ Vdetq ., m° 5

Cc? .= + (T ,0) (V) + +/det ¢ — 2, 6.37
NG 54" (Vad) (Vi) ¢ 59 (6.37)

where 7 denotes the canonically conjugate momentum associated to ¢. If we linearise the model

including the scalar field as discussed above and take into account all contributions up to first

order in k, we obtain the following constraints in the linearised theory:

3Gi = 55 (005" + 407 541) (6.38)

5C, = g(sg (0.004,7) = 0,(5A,7)) + 70,9 . (6.39)
=:pa(¢,m)

3C = reM8787 0, (5 A7) + w % 72+ 0,000 + m?¢?| . (6.40)
=:e(é.)

These constraints are also consistent with the 00 and Oa components of the linearised Ein-
stein’s equations that one obtains in the Post-Minkowski approximation scheme. Now these
include gravitational- as well as matter contributions, where we introduced the momentum den-
sity pq(¢,7) and the energy density €(¢,m) of the scalar field. Note that these constraints are
abelian up to first order in k. The corresponding background constraints of the zeroth order
Post-Minkowski approximation scheme all vanish trivially, since C = C*° = 0,C, = éieo =0
and G; = 0. The action of the linearised theory is given by

Siin = / dt( / &z [gaAaiaEai +m;5]

— / d3x [e((ﬁ, 7) + ONSC + SN C, + SASG; + 0H + i(s?cgw] ) (6.41)

:5Hcan
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with the interaction part 0H; := §dhaT' @b where dhyp is understood as a function of the densi-
tised triads, and the second order of the geometrical Hamiltonian constraint 62C9¢°. Note that
the overall % in front of the geometrical term has partly been cancelled by the k involved in
the linearised quantities for N, N* and A*, while the constraints and the interaction term are
still linear in k. In the above form of the linearised action we have already made use of the fact
that in the linearised framework with asymptotically flat boundary conditions the boundary term
precisely cancels the first order of the (geometrical) Hamiltonian constraint in accordance with
[151], i.e. T = —N§C9° = —§C9°° where we used that N = 1. Hence, neither the linearised
Hamiltonian constraint with background lapse nor the boundary term do appear in the action
and canonical Hamiltonian anymore.

The linearised total canonical Hamiltonian, which follows from (6.8), is given by:

Heqn = / >z [e(qﬁ, T) + KON 0yp + KON €(¢, ) + K (8, 0) (8°¢) GE, 5%
K a i K a i K a j j
+ 5m?9? OB 8, — OB 8e(g,m) + SON" 8] (0,(64,7) — 8,(54,7))

- %Mi 0,(6E%) + %(w e O 0ALY — ke 52 6) A7 9,(ON)
~ Dkl e b (64,54, + (8% + 1)oT, ™61, — 20T, "5 4,") ] (6.42)
2 62 Jjmn a a a
Let us briefly comment on the individual contributions in different orders of k. The x%-order
encodes the equations of motion for the uncoupled system and environment. In our case these
are the Klein-Gordon equation and the equations of motion for the background connection and
densitised triad variables. Since the connection vanishes in the background and the triad is
just given by F(Z = 67 the corresponding equations of motion trivially vanish and this is again
consistent with the vanishing of the background constraints that generate this trivial dynamics
for the gravitational degrees of freedom. Note that the energy density of the scalar field e(¢, ) in
xP-order is not part of the background constraints but just contributes to the non-vanishing part
of the Hamiltonian in this order. Without the boundary term a further term that contributes to
the x° is the linearised Hamiltonian given by N6C8®° = N(6C — ke). On the linearised phase
space this term generates the background equations. If we compute the Poisson brackets of
§A, OB with N§C® they both vanish for N = 1 demonstrating again that the background
equations are trivially fulfilled. In linear order in s in the covariant case we obtain a part that is
quadratic in the perturbations of all metric components. Here, this corresponds to the terms that
are either quadratic in the linearised Ashtekar variables or involve them linearly together with
the linearised lapse and shift variables. These terms together in dHc,, will generate the left hand
side of all linearised Einstein’s equations including the 00 and O0a component. The right hand
side of the linearised Einstein’s equations will be obtained from all contributions that involve
gravitational as well as matter variables in the x!-order. These will be dH together with the
parts where the matter variables occur in combination with the linearised lapse and shift.
As can easily be seen, most of the twenty phase space variables of the linearised theory,

(¢, 7) (6A,,6E"), (6.43)

are not observable, as they transform non-trivially under the linearised constraints. In the next
section 7 we use the relational formalism to construct a set of independent gauge invariant
quantities.
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7. Construction of Dirac observables in the linearised model using
geometrical clocks

The content of this section was already published in [1]. Here, it is presented with some modifi-
cations compared to [1] to adapt it to the flow of the thesis.

At this stage, we are working with a gauge theory which is to be quantised later. Then, the
environmental degrees of freedom are traced out to obtain an effective reduced model for the
scalar field system. Due to this, we need to take care of the gauge freedom involved in the theory.
For this, one can either consider a specific gauge fixing or work at the gauge invariant level by
formulating the model in terms of gauge invariant variables also known as Dirac observables in
the context of general relativity. In this part of the thesis, we choose the latter strategy. Once the
dynamics of the model is written by means of Dirac observables, the advantage is that it provides
us with a way to split the total physical Hamiltonian, that generates the dynamics of the Dirac
observables, into a system and environmental part, which we will take then as our starting point
for the quantisation in section 8.

7.1. The relational formalism and the (dual) observable map

The content of this subsection was already published in [1]. Here, it is presented with some
modifications compared to [1] to adapt it to the flow of the thesis.

As mentioned above, in a gauge theory we can either apply a specific gauge fixing or formulate
the model in terms of gauge invariant quantities. In case we work at the level of perturbation
theory, as done here, one often takes the approach that gauge invariance is guaranteed up to
possible corrections that are of higher order in perturbation theory than one is truncating at.
We will follow the same strategy here. To construct gauge invariant variables on the linearised
phase space we consider the relational formalism [116-118] together with an observable map
that maps the elementary variables of the linearised phase space to their corresponding gauge
invariant quantities [119-121, 155]. The formalism is based on a choice of reference fields, one
for each constraint in the system, and then the observable map returns for a given tensor field
of certain rank on phase space its corresponding gauge invariant extension. Explicitly, it can be
written as a power series in the reference fields weighted by contributions that involve nested
Poisson brackets of the tensor fields and the constraints. The physical interpretation of these
gauge invariant quantities, also known as Dirac observables in the framework of general relativity,
is that they give the value of the tensor field at those values where the reference fields take specific
values. For general relativity and its spatial diffeomorphism and Hamiltonian constraints this
particularly means that we can formulate the dynamics of a given tensor field on phase space
with respect to the reference fields and these provide a notion of physical spatial and temporal
coordinates. The observable map introduced in [119-121] has the property that when applied to
the chosen reference fields it maps them to phase space independent quantities and thus such a
map can describe neither a canonical transformation on the full phase space one starts with nor a
transformation that preserves the number of elementary phase space variables. For this reason we
will slightly modify the map from [119-121] in two aspects. First we modify its action on reference
fields and second we further introduce also the kind of dual version of this map to treat the choice
of the reference fields and the constraints more on an equal footing, allowing to use the modified
map to construct a canonical transformation for the variables (¢, 7), (54,7, 6Ebj ). For the purpose
of this work we can restrict our discussion to the linearised phase space. The transformation
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that we aim at constructing will map the set of elementary variables (¢, ), (5Aai,5Ebj) to a
new set of canonical variables containing the Dirac observables associated with (¢, 7), seven
chosen reference fields that are canonically conjugate to the seven linearised constraints as well
as two canonical pairs of further Dirac observables in the gravitational sector. Using this kind of
canonical transformation for the elementary phase space variables, the physical phase space can
be more easily accessed because the constraints as well as the reference fields are among the new
canonical variables.

As we will discuss below for a modification of the observable maps in [119-121, 155] in our
work here, we add a so called dual observable map and the combination of both allows us
to construct the canonical transformation on the full phase space. Let us briefly introduce the
observable map from [119-121, 155] as well as the dual one and then apply them to the model. We
consider a system with a set of first class constraints {C7} and elementary phase space variables
(¢*,pa). Then we choose a set of reference variables {T} that satisfy det({T!,Cs}) # 0 where
we abbreviate {T,C;} ;== M%,. We can define an equivalent set of constraints given by

Cr=>Y (Mhoy. (7.1)
J

Then by construction we have that the constraints C are weakly canonically conjugate to the
T"’s. Given this, one further chooses a set of functions {7/} that can depend on the spatial and
temporal coordinates by means of which one can construct an observable map which maps a
function f on the phase space to its corresponding observable denoted by Oy (7}

Opny(™) = |exp(e{Cr, 1) - /]

= f @ =) Cn Sy (T =)@ = OO Y+

(7.2)

el=TI 71

where the label {T'} refers to the chosen set of reference variables. The observable Oy ¢ (77)
returns the value of f at those values where the reference variables T/ take the values 7/. As can
be shown [119, 121] we have {C7,Ofr} ~ 0 where ~ denotes weak equivalence, that is on the
constraint hypersurface defined by the C;’s and thus the Oy (r} are weak Dirac observables. In
case the constraints C are already canonically conjugate to the T7’s then the Oy (1) are even
strong Dirac observables and weak equalities are replaced by equality signs. Let us introduce
G! .= TT — 71 that we can also understand as a choice of coordinate gauge fixing condition if
we require G! ~ 0. Then (7.2) can be understood as a power series in the G1’s with nested
Poisson brackets involving the constraints C7 that are in this case equal to the C}’s. In case
we have {TI ,Cr} = 6%, because the 77 do not depend on phase space variables, we also obtain
{Gg',c;} = 5§. Thus, the gauge fixing conditions and the constraints build canonically conjugate
pairs. If this is the case, we can construct a dual version of the observable map in (7.2) where
the role of the gauge fixing conditions and constraints are interchanged given by

ofidy = |exp(=&{d", }) - f] er=C

= [ CHG Y+ G CICAG {£.G

(7.3)

where the label {C'} denotes that we have interchanged the role of gauge fixing conditions and
the constraints for the dual map. This is also the reason for the additional factor of (—1)" com-
pared to the observable map in (7.2). Note that this dual map does not depend on any functions
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7! since the constraint hypersurface is defined by C; ~ 0. Similar to Oy i1y (1), which can be

understood as a family of gauge invariant extensions of f parameterised by 7! for G/ # 0, the

quantity O%aé} is an extension from the C; &~ 0 constraint hypersurface with the property that

it commutes with all the G! by construction.

Our strategy is to construct a canonical transformation to a new set of elementary variables. For
this purpose, we apply a combination of the two observable maps yielding quantities that com-
mute by construction with all constraints C; and all G;’s. Hence, we can choose the set (G!, Cy)
as new canonical variables together with the number of independent Dirac observables obtained
from the observable and its dual map associated with the set (¢’,p;). How many independent
such Dirac observables exist depends on the number of constraints.

Note that the introduction of the equivalent set of constraints in (7.1) is also called weak Abelian-
isation [119] and ensures that the corresponding Hamiltonian vector fields of the Cj’s weakly
commute. As a consequence, the order in which we apply the constraints C in the nested
Poisson bracket is irrelevant. Now the situation relevant for us is that the constraints satisfy
(T, 0y} = 6§ and thus the C’s can be expressed linearly in the momenta conjugate to the 77’s.
Using that the set {Cr} is first class, this is sufficient to show that the constraints are abelian
and hence their corresponding Hamiltonian vector fields commute and the order how we apply
the C7 also does not matter in our case. However, if we consider the entire set (G!,C;) then the
G! and C; do not commute, not even weakly and neither is the entire set first class and in general
also the subset of the G! is not abelian. This has the effect that the final observable that we
obtain by applying the observable map in combination with its dual in general depends on the
order in which we apply the two maps as well as the order in which the G/ occur in the nested
Poisson brackets. This causes no problem for the model considered in this part of the thesis,
it just means that there exist different choices of possible coordinate transformations on phase
space, but important for us is rather that we can choose one among those.

7.2. The observable map in perturbation theory

The content of this subsection was already published in [1]. Here, it is presented with some mod-
ifications compared to [1] to adapt it to the flow of the thesis.

In the following we will generalise the observable map to the field theoretical setup and pertur-
bation theory which can easily be done. In the context of perturbation theory it is sufficient to
require gauge invariance or some specific form of the Poisson algebra up to corrections that are
higher than the order that is considered in perturbation theory. This means we can truncate
the power series for the map and its dual at some order in accordance with the desired order in
perturbation theory that we consider for the linearised model. For instance if we want to compute
Poisson brackets of observables up to linear order then we need to perturb both observables up
to second order and collect all terms that contribute up to linear order to the final result. Such a
perturbative approach for constructing observables has for instance also been used in [151, 156,
157]. Alternatively, if available, we can also take the result of the corresponding Poisson bracket
in full general relativity and perturb it up to linear order. But since many quantities we work
with will be known at the perturbative level only the latter option is often not possible.

The first step in the relational formalism consists of choosing suitable reference fields for the
given set of constraints. In our case these will be the Hamiltonian, spatial diffeomorphism and
Gaufl constraint. If we are interested in results up to corrections of second order in the perturba-
tions inside the Poisson brackets, we need to consider perturbations up to second order of these
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constraints. The properties our chosen reference fields should have are:

(i) Each chosen reference field consists of linear perturbations of the elementary gravitational
variables and its derivatives only. These are also known as linearised geometrical clocks.

(ii) Each chosen reference field is in lowest order canonically conjugated to one of the con-
straints.

(iii) Each reference field commutes in lowest order with all constraints except the one that it is
in lowest order canonically conjugated to.

(iv) All reference fields mutually commute.

Let us introduce the notation
6Cr(Z,t) := (6C(Z,1),0C.(Z,1),0Gi(Z, 1)), 02Cr(Z,t) := (62C(&,1),6%Co(Z, 1), 62Gyi(Z, 1))

for the set of linearised constraints 6C;(Z,t) and §2Cy(Z,t) for the set of second-order pertur-
bations. For each of the individual constraints we have to choose one reference field and we
introduce the following notation G'(,t) for this set with

G'(#,t) := (6G(Z,1), 59“(5 t),6G7 (%, 1))
8G(T,t) = 0T (Z,t) — 01 (T, 1), O6GUT,t) := 0T(Z,t) — 60°(Z, 1),
8GI(Z,t) 1= 0= (T, t) — 669 (T, 1). (7.4)

where 6T, 0T%, §Z7 are the individual reference fields for the Hamiltonian, spatial diffeomorphism
and Gauf} constraint respectively. We denote background quantities with a bar and assume that
in the background the gauge fixing conditions as well as the constraints are satisfied, that is

With the assumptions (i)-(iv) above we know that 6°G’ = 0 and we further have

{G'(2),Cs()} == {G"(x),6C;(y)} +{0G" (2),8°Cs(y)} + O(6*, )
= p050%(T =) +{6G" (2),8°Cs(y)} + O(6%, K7, (7.5)

where O(62, k%) means that we neglect all terms that are second-order in the perturbations and/or
of order k2 and the factor % has been chosen because it is also involved in the Poisson bracket of
the elementary gravitational variables. This means there could be terms being of order k™ with
n < 1 that do not contribute because they involve second or higher orders of 4. That those terms
can be present is caused by an asymmetry in § and x due to the fact that we only perturb the
gravitational degrees of freedom but not the matter ones and further that the individual terms
in the action involve different powers of x from the beginning. We realise that the linearised
constraints 6C; are canonically conjugated to the reference fields G! but in general there can be
a non-vanishing contribution in linear order coming from the Poisson bracket {6G!(z),5%C;(y)}.
To ensure that we have a vanishing contribution in linear order we will use the dual observable
map as discussed below. For this purpose we need to adapt the observable map and its dual to



56 Construction of Dirac observables in the linearised model using geometrical clocks

field theory and perturbation theory and for both maps we need the observable map up to second
order. Taking this into account the observable formula up to second order reads

Op 1y (67.00°,867) = 6 + 6 + [ dy 66" (){6C1(y). 01}
i [ dy 826" W)10Ci ), 81} + [ dy 66" () ({9°C(w). 65} + (6C1 (0). 0°1})

%2
' [ @y 86" w) [ 42 667 (2) (15620, 45C (0. 61} + 0Cs (). {3C1 (). 61}
+0(83, x%), (7.6)

where we used that G = G* = G = 0 and allowed possible non-vanishing second-order per-
turbations of G' that might be present if one wants to relax the assumptions (i)-(iv) from
above. Because we consider perturbations around flat spacetime, in the background it holds
that 6 =0,C, = 0 as well as G; = 0, all trivially vanish and hence we also have G = 0,G" = 0
and G’ = 0. Therefore, for the background there is no gauge freedom we have to deal with and
thus no corresponding observables to construct. Note that if we construct the observables for
elementary phase space variables then §%f = 0 and the observable formula above simplifies. This
construction of observables order by order in x also plays a role when we consider the linearised
Hamiltonian 6Hc,, which, as can be seen from (6.42), has contributions in x° and linear order
in k. The transformation behaviour under the linearised constraints of the matter variables can
be found in the next section 7.4 in (7.14) and (7.18) and the results are an expression linear
in k. This again demonstrates that in the limit where x is sent to zero, which corresponds to
the situation that we consider a scalar field on Minkowski only with no coupling to linearised
gravity, the elementary variables ¢, 7 are suitable observables. Once we consider the coupling
with linearised gravity perturbations, this is no longer the case and we need the gauge invariant
version of these variables. For ¢H,,, this means that in the k0 term we can still work with the
original ¢, ™ whereas for the linear order in x we also need to construct Dirac observables for the
matter sector, see for instance also the discussion in [154] in the context of the covariant theory.
Note that as before, the linearised phase space in the Post-Minkowski approximation scheme
involves the linear perturbations of the gravitational degrees of freedom as well as the variables

(¢, ) for the matter sector. In a similar way we obtain the linearised dual observable map given
by

OF6y = 0f +0°f - "ﬂ/dgy 8Cr(y){6G" (y),01}
_n/d?’y 52Cr(y){6G  (y), 01} — ﬁ/d3y 5Ci(y) ({0°G" (v), 3£} + {06 (), 6*})

2
o [y deity) [ dz a0s(2) ({667 (2). (86 (), 671} + {967 (2), (86 (). %1 1))

+0(83,K3). (7.7)

The alternating signs compared to the observable map in (7.2) are needed since the order of how
the constraints and the reference fields enter into the Poisson bracket is switched. Note that if
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we choose for instance G! such that §2G! = 0 and not the non-linear C; but only the linearised
parts as clocks, then we drop all terms that involve §2G’, §2C; in the dual observable map (7.7)
and this will be exactly the application we need later.

7.3. Overview of the strategy to construct Dirac observables

The content of this subsection was already published in [1]. Here, it is presented with some mod-
ifications compared to [1] to adapt it to the flow of the thesis.

After the introduction to the formalism used in this section for the construction of Dirac observ-
ables that encode the physical degrees of freedom, let us briefly sketch the strategy we follow
in the next subsections, which can also be applied to a different choice of reference fields. We
outline this directly for the case relevant here, namely perturbation theory up to linear order.

e First choose a set of linearised reference fields, that is ~52gI = 0, such that they form
canonical pairs with the linearised constraints, that is {3G'(z),dC;(y)} = 6560 (x,y).

o In case not all reference fields and hence §G! () mutually commute, apply the dual observ-
able map with the linearised constraints as clocks up to second order® to those that do not
to obtain GL.

e Next apply the dual observable map up to second order neglecting the linear order to all
constraints Cy to get the constraints C; that are abelian and canonically conjugate to the
reference fields G/ up to corrections of second order.

o Define the observable map by means of the constraints C; using as reference fields Gl

« Choose next to (6G7, dC}) further independent phase space variables on the linearised phase
space denoted by (d¢”, dpr).

« Apply the observable map to (d¢’,épr) to obtain the physical gauge invariant degrees of
freedom.

« Compute the algebra of the Dirac observables of (6, pr), for which relation (7.69) dis-
cussed below is helpful.

o If we further apply the dual observable map to these Dirac observables and they still satisfy
the same Poisson algebra as their gauge variant counterparts, we can also say that given
the set of variables (6G7, aCy, 8q’, 0pr) then applying the observable map and its dual to the
entire set with the modification that we exclude the linear order in the observable map and
its dual for the set (6G7, dC7) defines a canonical transformation on the entire phase space.

In our case the final application of the dual observable map on the variables (d¢’,dp;) corre-
sponding to ¢G1, 7GI, SAL 6EY acts trivially since the original gauge variant quantities already
commute with our chosen geometrical clocks. We expect that one can extend this strategy with-
out any problems to higher orders in perturbation theory and for the aspect of constructing
abelian constraints this has be done in [151]. How and if also the further steps can be generalised
to higher order goes beyond the scope of this work and will be discussed more in detail elsewhere.

5Note that for this choice of clocks, since we apply it to the linearised clocks only, the linear terms in the power
series will contribute.
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7.4. Construction of reference fields

The content of this subsection was already published in [1]. Here, it is presented with some
modifications compared to [1] to adapt it to the flow of the thesis.

As we will work with so-called geometrical clocks, in a first step we will choose the set of reference
fields among the linearised elementary gravitational degrees of freedom. As a consequence, we
will work with geometrical clocks for which G’ = 0 and hence they satisfy assumption (i) from
section 7.2. To also fulfil (ii) we further choose G! such that

{06"(2),6Cs (1)} = -6 (2, ),

where the factor % is chosen because it is also involved in Poisson bracket of the elementary
geometrical variables. These requirements still allow several choices for suitable G/ and the
specific choice for G taken here is motivated by the fact that we can relate the set of gauge
invariant variables to a gauge fixing often chosen in the context of linearised gravity, as will be
discussed in subsection 7.9. In order to construct suitable reference fields for the three sets of
constraints involved in the system, we first analyse the gauge transformation they induce on the
phase space variables and use them as building blocks for the construction of the reference fields.
Defining the smeared linearised Gaufl, Hamiltonian and spatial diffeomorphism constraints as

/ &y SN (T, 1) 6Gy(7, 1) (7.8)
SCI5N] (¢ / &z 6N (7, 1) 5C(, 1) (7.9)
5CIN)(1) / &z SN (7,1) 6Ca (7, 1) (7.10)

one can evaluate the gauge transformations they infer on the phase space variables. As the
GauB} constraint (6.38) does not contain matter degrees of freedom, it leaves the matter fields
unchanged and just modifies the geometrical degrees of freedom:

{6(2,1), G[5A](£)} = {n(Z,1), 6G[SA] ()} = 0 (7.11)
(6B (Z,1), 6G[5A|(t)} = leiﬂfmj(f, t) 68 (7.12)
{0A,/(Z,1),6G[5A](1)} = =59, (6A'(Z,1)) . (7.13)

For the Hamiltonian constraint (6.40) we find the following gauge transformations:

{o(,1),6C[6N](t)} = KON (Z,t) 7 (Z, 1) (7.14)
{7(Z,t),6C[6N](t)} = Ky [EN(Z, 1) 0°}(Z, t)] — KON (Z,t) m? ¢(&, t) (7.15)
{0E“(Z,1),0C[6N](t)} = —B €% 52 67 0, (SN (Z, 1)) (7.16)
{6A,1(Z,1),6C[6N](t)} = 0. (7.17)
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Finally, the gauge transformations induced by the spatial diffeomorphism constraint (6.39) are

(6(,1), 6CNI()} = KEN(Z, 1) Dudh(Z, 1) (7.18)
(7(Z,1), 6C[ON]()} = KOLJSNUE, 1) 7 (T, 1)] (7.19)
{5E%(Z,1),6CN|(1)} = — (8 8, (SN(Z. 1)) — 67 0,(AN"(Z. 1)) (7.20)
(6A,1(Z,1),6C[ON]()} = 0. (7.21)

Using these, we now construct suitable reference fields for the system under consideration. Note
that in [151] also geometrical clocks were used based on the ADM clocks introduced in [158] and
[159]. This set of clocks is not equivalent to ours and when requiring that all clocks vanish this
corresponds to a different gauge fixing, as is discussed in section 7.9.3.

7.4.1. Choice of the reference field for the linearised GauBB constraint

The content of this subsection was already published in [1]. Here, it is presented with some
modifications compared to [1] to adapt it to the flow of the thesis.

As the choice of reference fields can be understood as gauge fixing constraints in a corresponding
gauge fixed theory, we choose a reference field for the Gaufl constraint that implements a Lorentz-
like gauge condition analogous to [128] for the connection perturbation, i.e.

D*(6A, (T, 1) =0. (7.22)

Evaluation of the Poisson bracket between this condition and the Gauf constraint (6.38) using
the linearised Poisson bracket (6.20) yields

o . 1 L
{0°(0A,(Z,1)),0G;(y,t)} = _§5jAf(53($ -7, (7.23)

where Az denotes the Laplacian with respect to #. We will drop the subscript if only one
coordinate is involved. In order to have the commutation relation

—i = - L S
we define the reference fields for the Gaufl constraint as
—i( =2 2 a i A = 2 3 a A= —) i( =
=(#,) = —0° (54,1 G2) (7,1) = E/d y O2GA(F — ) 6A,1 () (7.25)
with 0% := 8%&. The abbreviation G2 (& — i) denotes the Green’s function of the Laplacian,
GA(@ - ) = / k1 kg (7.26)
(2m)° | k||

Due to the fact that the connection remains invariant under the Hamiltonian and spatial diffeo-
morphism constraint, this reference field also remains invariant under transformations induced
by these two constraints.
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7.4.2. Choice of the reference field for the linearised Hamiltonian constraint

The content of this subsection was already published in [1]. Here, it is presented with some
modifications compared to [1] to adapt it to the flow of the thesis.

The Hamiltonian constraint leaves the connection invariant and only transforms a specific part
of the densitised triad:

{e, 000 B (T, 1), 6C(§,1)} = 28067 (F — §) . (7.27)

This suggests to define a reference field

OT(&,1) = — 5,010, (3B = G2 (&,1). (7.28)

1
28k
However, in this form the reference field is not invariant under gauge transformations induced by
the Gauf} constraint:

(6T (,0),66,(5.1)} = —55-0305G> (@ = 7). (7.29)
where 92 denotes the partial derivative with respect to z¢. To cure this, we seek to subtract
some combination of geometrical phase space variables that transforms precisely the same way
as 6T under the GauB constraint and remains invariant under the Hamiltonian constraint. The
latter is true for any combination of the connection variables, and it turns out that the trace of
the connection solves the problem. Hence a good choice for a reference field corresponding to the
Hamiltonian constraint is

11 . .
STt = [2%0*’5;&, (0B« G2) (&.1) + 67 (54,1« G) (&, t)] . (7.30)

which also commutes with the spatial diffeomorphism constraint. Additionally, it commutes with
the reference field for the Gaufl constraint:

{6T(Z,1),E'(7,1)} = 0. (7.31)

7.4.3. Choice of the reference field for the linearised spatial diffeomorphism constraint

The content of this subsection was already published in [1]. Here, it is presented with some
modifications compared to [1] to adapt it to the flow of the thesis.

In a last step we have to find a suitable reference field for the spatial diffeomorphism constraint.
To fulfill the list of requirements in section 7.2, we construct it in several steps. In the end, the
final reference field §7%(Z,t) should

e consists of linearised elementary gravitational degrees of freedom only
o fulfill {6T%(%,t),0Cy(y,t)} = %5{,163(:13'— ¥),
e commute with the remaining linearised constraints and

e commute with the remaining reference fields.
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For the first step it is helpful to realise from (7.20) that only the trace and one of the longitudinal
parts of the densitised triad are modified by this constraint in the following manner:

{5:0°6 B (Z,1), 6Cy (i, 1)} = (950] — 65 Az)8° (T — ) (7.32)
{6L0E"(Z,1),0Cy (7, 1)} = 2050°(& — 7). (7.33)

A suitable combination for a reference field that is canonically conjugated to the linearised spatial
diffeomorphism constraint is therefore

5T (7, 1) =+ (535@86 - ;5;;3‘1) (6% « G2) (3,1). (7.34)
K

Unfortunately, this combination is not invariant under the linearised Gaufl constraint:

:a - — 1 asc = —
{6T*(%,t),0G;(y,t)} = "9 feb 53'8%GA(95 =) (7.35)
To cure this, we can add a suitable form of
0, 0E% (%), (7.36)

which is just a scalar density and therefore invariant under the linearised spatial diffeomorphism
constraint. It turns out that

5T (3, 1) = % (5;;53;80 _ %553@ + 5%5@@) (0B + G*) (@,1) (7.37)

is invariant under the linearised Gaufl constraint and still canonically conjugated to the linearised
spatial diffeomorphism constraint. A quick calculation also shows that it is invariant under
the gauge transformations generated by the linearised Hamiltonian constraint. Although the
reference fields (5T“(f, t) mutually commute, they do not have vanishing Poisson brackets with
all the remaining reference fields and violate assumption (iv). To obtain reference fields for the
spatial diffeomorphism constraint we can employ the dual observables map for 6T @(Z,t) yielding
a quantity that by construction commutes with 0G, 6G%, 5G7 and hence with all reference fields.
As clock for the dual observable map we choose the geometric part of the linearised Hamiltonian
constraint, that is 6C — ke, because we want the final clock to depend on the geometrical degrees
of freedom only, as well as the linearised Gaufl constraint. Note that dC — ke % 0 and as a
consequence 5T & 6T but this causes no problems because two different choices of sets of clocks
need not necessarily be weakly equivalent. Such that the observable formula can be applied we
just need {6T,6C;} = {6G*,8C;} = &% which is satisfied also if we use the geometric contribution
of C only. For 6T @(#,t) the part corresponding to the spatial diffeomorphism constraint will
not contribute in the dual observable map. Since we use the linearised constraint as the clock
and not Cr, we can drop all terms involving 6°C;. Using this together with 6°G! = 0 the dual
observable map in (7.3) simplifies in this case to

Ol = 0T = 6T - /d3 (6C — re)(y){6T(y), 5T} /d3y 5G4 (y){0Z7 (y), 577
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The explicit result we obtain has the form

ST (&, 1) = (5;;53;60 - %5@6@ + 5“5@%) (6E% + G2) (&,1)

+25[ 500" (8G, + GA2) (3,1) — 675} (3G = G2 (it)}

a AA| (=
+ wa (50 = ke) + G2 (7,1), (7.38)
where G2 denotes the Green’s function of the squared Laplacian, that is

Bk 1 e
AA (= = — ik(Z—7y) _ A - A
G=2(Z —7) /(2#)3 —HEWG /d 2GH(X-2)G (Y- 2). (7.39)

This reference field is defined on the entire phase space. On the constraint hypersurface, the
additional constraint terms drop and we are left again with 5Ta(f, t), which still commutes with
the constraints in the desired way. This concludes the construction of the reference fields for the
model under consideration.

7.5. An equivalent set of constraints

The content of this subsection was already published in [1]. Here, it is presented with some
modifications compared to [1] to adapt it to the flow of the thesis.

Now we are in the situation, that the seven linearised constraints as well as the seven reference
fields form in lowest order two abelian sub-algebras and further obey the following Poisson algebra:

(OT(E,0),60(,0) = 6 ~§) (6T, 6CuF0} =0 {IT(F,1),06:(7,1)) =0
(7.40)

{5Ta(‘f? t),(SC(gj, t)} =0 {5Ta(‘fa t)75cb(377 t)} = %526(5_ ?7) {5Ta(‘f? t)v(SGi(gv t)} =0
(7.41)

(621(Z,1),6C[HN} =0  {0Z(F,1),0C,H 1)} =0  {0ZH(F,1),0G;(ij,t)} = 751 5(z — 7).
(7.42)

Since 6G,0G¢, 6G7 differ from 6T, 0T, 6=/ by some phase space independent quantity only, we
can replace the reference fields by the corresponding §G's and the Poisson algebra above will not
change. We have defined the Poisson algebra with a factor % because the gravitational degrees
of freedom involve a similar factor. The reference fields have been defined such that the algebra
of them and the linearised constraints no longer involves the Barbero-Immirzi parameter on the
right hand side for the reason that x is the parameter labelling the order of perturbations. Going
back to the Poisson algebra of G and C; in (7.5), so far we have chosen reference fields that satisfy
this algebra. However, the in general non-vanishing contribution in linear order will prevent us
from choosing G and C; as new canonical coordinates. To achieve this we will apply the dual
observable map to C; and obtain an equivalent set of constraints C} satisfying

167@), €5 (0)} = (06 (2), 6C) () + 5°C (1)} = - 836 (z,) + O(, %), (7.43)
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With this algebra, we can then choose dG! as new configuration variables and dC; as new mo-
mentum variables. Because in lowest order we already have the correct algebra relations, we only
need a modification in the linear order. To accomplish this we apply the dual observable map
to all C; and drop the linear order terms. The latter would just abelianise the lowest order and
cancel the C; contribution in the observable which is something we do not want. The second
order that we keep will then modify the linear order in a way that we obtain the algebra shown
in (7.43). Since we want an equivalent set of constraints here we are forced to choose as clocks
the linearised constraints §C; involving also the matter contributions in 6C and 6C,. Taking all
this into account the equivalent constraints C; are given by

Cr =08 ey = 0C1 + 81 — . [ d*y 3C1 (106" (), 5°C1)
K2 3 3 2 3 .3

where we used again that 602G = 0 in our case. Up to linear order we have (5C} = §Cy showing that
as expected we have modified the constraint only in second order. This modifications become
not relevant when we work with the constraints directly in the linearised theory since they are of
second order but need to be considered when we compute Poisson brackets and want to consider
the result up to linear order. For a set of mutually commuting reference fields, that we consider
here, in a more general context it was proven in [151] that the constraints C; are abelian up to
corrections of second order and applying this result here we have

{Cl(2),Ch(y)} = {0C] (2) + 6°C](2), 8C (y) + 6°C)(y)} = 0 + O(8%, %)

and thus in the order of perturbation theory we consider here, we can treat them as abelian
constraints. Because we can just consider higher orders in the dual observable map we can always
ensure that the constraints are abelian up to a chosen order in perturbation theory and if the
entire sum of the dual observable map converges even in the full unperturbed theory. Note that a
similar result has already been discussed in [151] in the context of applying weak Abelianisation
order by order in perturbation theory and afterwards modifying the constraints by terms that
involve higher order powers of the linearised constraints. Here we can rediscover that case in the
framework of the dual observable map which seems to us to be slightly more general because it
cannot only be applied to the constraints as this corresponds to the case discussed in [151], but
to any phase space function as we did for instance for the clock of the spatial diffeomorphism
constraint before. Further, the strategy discussed in [151] separates weak Abelianisation and the
addition of terms of higher order in the linearised constraints where this happens all at once here
using the dual observable map from second order on.

7.6. Construction of the Dirac observables for the system under consideration

The content of this subsection was already published in [1]. Here, it is presented with some mod-
ifications compared to [1] to adapt it to the flow of the thesis.

Given the abelian constraints C;(z) discussed in the previous subsection, we can now use them
in the observable map in (7.2) and construct gauge invariant quantities that commute by con-
struction with the constraints C;(z) up to O(4?, k?) corrections. We want to apply the observable
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map to the elementary phase space variables of the matter and gravitational degrees of freedom
and use G’ as our clocks. Therefore, we can drop all terms involving 62f and 62G’ and the
observable map reduces to

(0)71(67,00°,0¢") = Osp sy (67, 00", 6¢) (7.45)
= O] 57y(67,00%,66) + O 5 (97,60, 6€7) + O(8°, K?),

where the label GI means gauge invariant with

O 1y (57.00°,58%) =0 f + & / &y 56T (y){Ch(y), 51}
O 2y (07,00, 08) s=r [ €y 56" ()15°C} ). 6}

:‘Q2
+ 5 [ dyogi) [ @ 607 (2)({9C)(2) (%Chw).001}) . (T.40)

where Og})’ T and (9((;?’ (o7} denote all contributions to the observable in linear and second order
respectively. Since in this work we perturb the geometrical degrees of freedom only, for the matter
sector we just replace d f by f = ¢, 7 in the formula above. That this works so easily in the matter
sector might not be obvious in the first place for the following reason: If we consider in (’)g})’ (67}
the second term, then for §f chosen from geometric degrees of freedom this will be of zeroth
order and hence trivially commute with the linearised or higher order constraints. In contrast,
for the matter variables the corresponding term still involves the matter variables linearly and
hence does not commute with the linearised constraints or higher order ones and thus yields an
additional contribution compared to the geometric case. However, since the Poisson brackets of
the gravitational degrees of freedom involve a factor %, whereas the Poisson brackets of the matter
variables do not, these additional contributions come with an extra factor of k. In the linearised
theory we require for Dirac observables to commute with the constraints up to order ¢ and
and hence these kind of contributions will only occur in higher orders in x. A similar argument
applies to these kind of additional contributions in (9((5?7 s and therefore we can indeed apply
the observable formula also to the matter variables. To obtain the explicit form of these Dirac
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observables, we apply the observable map in (7.46) to (¢, 7,64, §E%) and obtain

¢G1(5GC,5T,55])—¢(* t) — k(0T (&, 1) — o7 (%, 1))7(Z, 1) (7.47)
K2 (8T(Z,t) — 80°(T,1))0c0(Z, 1)

+ O 57, (67,007, 667) + O(8°, %),

G (50°,67,880) = m(&,t) — K20a[ (6T (Z, 1) — 67(%,))0"¢(&, 1)) (7.48)

— K2O[(0T(Z, 1) — 60°(Z, t))m(Z, )] + &*(OT(Z, 1) — 67(Z, 1)) m*(Z, 1)
+ O 57, (67,007, 667) + O(8%, %),

(6E%)C1 (509, 67,0¢7) = EY (T, 1) — K(680, — 62600y) (6T°(Z, t) — 60°(Z, 1)) (7.49)
+ 1Be, 30T (3, ) — 07(.1)) — Sei P OO (7,1) — 080 (&)
+ O?E’a_,{mwﬂ 50", 66) + O(6%, ),

(6A) T (507, 67,860) = 6A,H(F,1) + gaa(aai(f, t) — 6€1(&, 1)) (7.50)
+ ogai’ 157y (07,007, 8€7) + O(8%, 17,

where we displayed only the linear order in explicit form and (67(%,t), §0°(Z,t), 8¢/ (Z,t)) denote
the spacetime functions corresponding to the reference fields (67, 07¢,0Z7), see 6G,6G¢ and G/
n (7.4). The so constructed observables are Dirac observables for all values of the functions
(07(Z,t),00°(Z,t),6¢7(Z,t)) and thus each can be understood as a family of Dirac observables
parameterised by 07 (Z, 1), 00¢(&, t) and §¢7(Z, t) respectively. Now let us choose specific spacetime
functions for d7(&,t), §o°(Z,t) and 6&7(Z,t). A specific choice for 07(&,t), do¢(Z,t) and §& (T, t)
can be obtained as follows: For the Gauf constraint we choose vanishing parameters 67 (&, t).
The remaining parameters we associate with the temporal and spatial coordinates respectively.
Taking into account that the full non-linear parameters 7 and o with 7 = 7 + kd7 + O(k?) and
0¢ = T° + kdo® + O(k?) should be set to t and x¢ respectively and that the clocks vanish in the
background as well as for higher orders than the linear one, we only need to choose the linearised
parameters 07 and dc¢ yielding

C
ST(Z 1) = —, 80°(&,t) = -2, S¢I(F,t) =0, (7.51)
K
with z¢ being the unique solution where §7°(%,t) = 10° with 0 = const. We reinsert these
choices into G, §G¢ and §G7, respectively, in (7.4). Then we can understand the Dirac observables
as functions of (Zy,1).

7.6.1. Derivation of the linear order

The content of this subsection was already published in [1]. Here, it is presented with some mod-
ifications compared to [1] to adapt it to the flow of the thesis.
In what follows, we derive the first order of the gravitational observables (7.49) and (7.50) explic-
itly. In order to do so, it turns out to be helpful to work in Fourier space. For these calculations
we choose a certain complex basis in Fourier space, which is the same as in [128] consisting of

~ k N -

kK = HEH m®(k) me(k), (7.52)
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where k is the momentum and we understand the plane perpendicular to it as a complex plane

- -,

spanned by the two unit vectors m®(k) and m“(k), where the bar denotes complex conjugation.
This basis is orthonormal in the following manner:

kka = m(k)iia (k) = m® (k)ma(k) = 1 (7.53)
kma(k) = kTa(k) = m®(k)ma(k) = m®(k)a (k) = 0. (7.54)
The expansion of the metric in this basis is
Gan(k) = Kok +ma (B) (k) + ma (k) my (F) , (7.55)
the soldering form reads
55 (R) = hak? -+ ma(F) 0 () + 104 () m () (7.56)

and we fix the orientation of the basis vectors in the complex plane relative to each other by
imposing
€ape k¢ mP (k) me(k) = —i. (7.57)

We additionally impose (see [5] section 5.3):
m®(—k) = m®(k). (7.58)

We expand the Fourier transform of the gravitational fields in this basis, following the notation
in [128]:

(
+ 6 A (EYmg (RYym' (k) + 6 A% (Ymiq (k)m' (k) . (7.60)

From this expansion it is evident that §A* and 6 ET encode the transverse traceless degrees of

~— ~—

freedom with corresponding projectors
P2y (k) = (R ymi (k)m? (I )ym (k) + m (ke )ym (k) (kyms (k) (7.61)
for 0F and gaijb(lg) = (5a05il5jm5bd501md(l;) for 0A. Their position space version is given below
in (7.67) and involves highly-nonlocal terms. Hence we set
0E%(k) = SE* (kym® (kymi(k) + 6 E~ (kym* (k)mi(k) (7.62)
SA, (k) := SAT (k)ymqa(k)ym' (k) + 6 A~ (k)ma(k)m' (k) . (7.63)



67

The Dirac observables constructed in (7.49) and (7.50) can be expressed in terms of this basis
up to linear order and read, where we drop the k£ dependency for better readability and already

set 667 = 0:
<5E1 - 15A1> — mai@-é(w
111 |[E[| =

ak m({xﬁl2 + ]fak' (5 3 — mamzm(sv 4 + mamlmd\/ 5
+ik (5;%6 — 828ky ) 60° — ifre POCky0T + O(62, k) (7.64)

(5ani)G’I :(Svgai‘i‘]%ami <5§1+|£5A1> +

| —

(6AN =6A,7 + 0 A%ma k' + A* Mok’ + 6 A mam’ + 6APTam’ + O(6%, k) . (7.65)
We have that (¢@7,7GT) are already the independent Dirac observables in the matter sector.
However, the 18 observables (0A4,7)%T, (§E%)C are not all independent, but only four of them
are in total. From the explicit forms of (§4,")%! and (§E%)%! in Fourier space in (7.64) and
(7.65) we realise that 7 and do¢ enter explicitly into these formulae. However, for the choice
discussed here where 07 is linear in ¢t and do° is constant the contributions both vanish because
they come with spatial derivatives acting on dt and do€. In case we choose dc€ linear in z¢
then (§E%)%! has an additional term involving a Kronecker delta that also survives when we
express (6E“Z-)GI in terms of the independent gauge invariant degrees of freedom similar to what
was observed in [158]. As a consequence, considering (§E%)%! as an isolated quantity its fall-
off behaviour gets modified and does no longer satisfy the requirement in (6.12). This however
causes no issue because we need this quantity as an intermediate step only to reinsert it into
the physical Hamiltonian. The final result of the physical Hamiltonian has a suitable fall-off
behaviour because these critical terms are combined with scalar field contributions for which we
assumed, as usually done, that the initial data has compact support, see also our discussion above
(6.8). The four independent degrees of freedom in the gravitational sector are encoded in the
symmetricS transverse-traceless part of the the variables (§A,)%, (0E%)%!T and therefore the 4
independent Dirac observables in the gravitational sector are given by

0 A, (T, t) = P, P (6 A D) (Z,, 1) 8E% (Zy,t) := P*Y, (0E")(%,,1), (7.66)

where Paijb and Pai Jb denote the projector on the transverse-traceless part in position space. Its
explicit form is given by

1 . A A .
P,i X (7,,1) = 2{ (600" + 3505 — 010%] X (T, 1) + 0a0'0;0" (X % GA2) (7, 1)

+ [000°0" + 67 0,0; + 6200; + 60,0 — 5,0;0" — 810, | (X G (@, t)}

(7.67)

where 0; := 6{0,, ot = 5@80, 0qj i= 5ac5j~, and
P, X (7, 1) = 0007 8pg P, X (75, 1) (7.68)
SIf one considers the soldered version of the quantities, i.e. 6A,, := 0.A4,°050. and analogously for €% =

55, 516,
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As expected, these projectors are non-local in position space but local in momentum space, as
can be seen in (7.61). A comparison between the local projector in position space also often used
in the literature in the context of the transverse-traceless gauge has been analysed in [160].
From now on we will drop the label ¢ at Z, and by an abuse of notation denote it by ¥ again
and always keep in mind that these % coordinates are related to values that the reference field
T® takes. By construction the Dirac observables Poisson commute with all constraints C}. Since
the set C; is weakly equivalent to the set C; the Dirac observables are weak Dirac observables
with respect to C; where the weak equivalence refers to the constraint hypersurface defined by
the linearised constraints dC; that, as discussed above, agree with 6C”.

7.6.2. Algebra of the Dirac observables

The content of this subsection was already published in [1]. Here, it is presented with some
modifications compared to [1] to adapt it to the flow of the thesis.

What still remains to be discussed is the algebra of the independent Dirac observables. For this
purpose we will consider the relation between the algebra of Dirac observables and the observable
associated to the corresponding Dirac bracket. As proven in theorem 2.2 in [155], see also [119]
for an alternative proof, in general we have

{05,411, Og 111} = Oy g9y (1}

where { f, g}* denotes the Dirac bracket associated with the total set (G!,C;), that, when requiring
G! to be gauge fixing conditions, is a second class system of constraints for which a Dirac bracket
can be constructed. If we have such a relation also at the perturbative level then it provides an
efficient way to compute the observable algebra because if we are interested in the algebra up to
linear order then we can just expand the observable on the right hand side up to linear order
whereas we need to consider the observables up to second order on the left hand side. In the
following we will not consider the most general case here but just discuss the necessary result we
need for the model derived in this work.

As proven in Appendix A under the assumption that we have linearised clocks, that is GI = 6G!
with 6*GT = 0 for all k£ > 2 and we consider observables of quantities f = §f for which §*f = 0
with k > 2, one can show that

0 ) 1) @\ _ BN
{08 o1y + 05t my - Obgpgary + Osgory § = (01:00Y" + Oy sy oy + O 1%, (7.69)

where the Dirac bracket {df,dg}* corresponds to the set (GI = 6G',C} = C}(l) + C}(Q)). Again as
above, because we do not perturb the matter degrees of freedom, we can apply the same result here
if we replace 0 f by f again with f = ¢, 7. As discussed in Appendix A, the case interesting for us
is when f, g are the elementary phase space variables of the linearised theory. Given this and using
that for the reference fields we have G = §G' as well as {G!(z),C(y)} = 2616®) (z,y) +O0(6%, £?)
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the explicit form of the Dirac bracket up to linear order reads

{8f(x),0g(y)}" :={5f(x),dg(y)} ~ ﬂ/d32{5f(af),502(2)}51?4{591‘4(2)759(11)}
— k[ d{61(2),8°C} ()} {0G™ (2), 89 (w))
+ 1 [ d{og(@), 6, ()}65 {66 (). 6 ()}
[ d2(89(0). 8C(FIGY (2),6£ ()} + O RD).  (7.70)

Now for §f and g, that have the property that they commute with all 6G’, the Dirac bracket
reduces to the ordinary Poisson bracket. If §f and dg are further elementary phase space vari-
ables that satisfy standard canonical Poisson brackets, then their Poisson bracket is phase space
independent and as a consequence, the Dirac observable of the Dirac bracket has only a zeroth
order contributions that agrees with the original Poisson bracket. In the case considered here, the
variables (¢,7), (64,7, 6€%) all commute with the clocks 677 which is equivalent to them com-
muting with all 6G. This can be seen in the following way: First, we note that the clocks being
geometrical ones do not contain any matter variables and also the additional contributions from
the dual observable map involved in the diffeomorphism clock contains the geometric degrees of
freedom only. Hence, all clocks trivially commute with the matter fields (¢, 7). To see that they
also commute with the variables (Paijb((SAb]), P ((5Ebj)), it is convenient to express them in
Fourier space. This can be found in section 7.7 and one can see that all clocks are independent
of 5511[ and 5in. As the latter are the transverse-traceless degrees of freedom and these are ele-

mentary phase space variables, they have vanishing Poisson brackets with all remaining degrees
of freedom and therefore also commute with all clocks.

Thus, for this set of variables the Dirac bracket agrees with the original Poisson bracket. Conse-
quently, we can immediately conclude that the non-vanishing Poisson brackets of the set of Dirac
observables ¢!, ¢! 5 A 7, 6E ¢ read

{6972, 1), 71 (G, 1)} = o(F - i)+ O0(5% k), (7.71)
{0A,'(Z,1),06% (5, )} = gpaij b5(2 — ) + O(6%, k). (7.72)

All remaining ones vanish up to corrections of order O(62, x2). The matter variables satisfy the
same Poisson algebra as their gauge variant counter parts and for the geometric gauge invariant
degrees of freedom the Poisson bracket also involves on the right hand side the expected projector
on the transverse and traceless part.

7.7. Canonical transformation

The content of this subsection was already published in [1]. Here, it is presented with some
modifications compared to [1] to adapt it to the flow of the thesis.
Considering the algebra of the Dirac observables in (7.71) and (7.72) together with the Poisson
algebra of the G and C} in (7.43), one can perform a canonical transformation from the set of
variables

(¢7 7r)7 (5Aaiv 6Eai)
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to the new set of variables
(6G,C"), (6G°,Ch), (6G7,GY), (91, 7CT),  (5A,7,0€%)

with
0G =6T —t, 0G*=0T"— x5, 8GI = 6=, (7.73)

As discussed in the seminal work in [158], one can reformulate the corresponding forms of the
geometric clocks so that they no longer explicitly involve the coordinates. This is possible here
because the way the geometric clocks are defined is non-local due to the Green’s function involved
in the position space representation. The equivalent local conditions are obtained by applying
the Laplacian, which has the consequence that neither ¢ nor £ are explicitly involved any more.
It are also these local quantities that are involved in the perturbed quantities, and therefore
the use of such geometric clocks does not contradict the requirement that the perturbations be
small. The reason is that these coordinate conditions only set certain components of the metric
perturbations and their conjugate momenta to zero, see also the more detailed discussion in [158]
and references therein.

Because the definition of C} involves second-order contributions, as can be seen from (7.44), in
order to implement this canonical transformation on the linearised phase space we restrict C; to
its linear part and, using that in our case 6C; = dCr, the new set of canonical variables on the
linearised phase space is given by

(6G,6C), (6G*,6C,), (3G7,6G;), (o1, 7CT), (6A,10E%). (7.74)

To derive the explicit form of the canonical transformation, we first transform the clocks and
constraints into momentum space using the basis introduced above in section 7.6.1 and end up
with the following expressions:

1 1
6G = —(0E® — 0F*) — ——=—(0A3 + A% + 64°) — o7 (7.75)
= 2Bw[lkll - = BwKIPP - o0~
C = k||k||(JA* — 0A°) + K e (7.76)
a i 1 2 25 [ a
me0G" = ——(0E" +0E7) — ——m'0G; — mgdo (7.77)
= wlkl] 7 KR -
R a /L 1 2 25 —q —_— a
medG* = ——(0E" + dE*) — —m'0G; — Mg00 (7.78)
11 1 -
7 a i 3 4 5 36 7.0 1 7 a
f:a0G® = — (36 B3 — §B* — 0E°) — ———FisG; _(=6C — € ) — kqbo® (7.79)
= 2kl - 7 T REE T 2a[R[P R -
m*0C, = _mng 5:4§ +rmp, (7.80)
m*sC, = mg’“ ! 5A% + kMg (7.81)
h6C, = “‘g’“” (644 +6.4%) + sk p, (7.82)
m'6G; = %(Hzﬂ SET — 6AT + 54%) (7.83)
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MG = %(Héu@l —6A% + 641 (7.84)
KoG; = ﬁ(y|/%’|y(sE3 —6A° 1 5A%) (7.85)
midGi = —~ _§AT — mzéfl (7.86)
- ﬁ\lkH -
0G = —— 5 AL — m;0¢ (7.87)
- %Ilkll - -
j6G = 21643 — ko¢t . (7.88)
- H\IkH - -

In total, these are 14 equations that can be solved uniquely for the 14 old variables. The solution
then is

k
) 1

542 = 0 (5(1@ - pa) (7.91)
L A

2 ZB a (160 )

_ 26C, - pa (7.92)
= Ik ==
oAt = — B (150a - pa> ! ( 6C — e) (7.94)
- 2k AR = 2|k \r =
3~ 1 1 1

5 B ja <5Ca _ pa> - — (5(1 - e> (7.95)

- 2kl A\~ 2|[k[] N
216 i (1 ik

sE' = - 20 s B g (wa - pa) 4 o {591- + 6@} (7.96)
- Ikl = (kI e = 2= -

- 2B i 1 i
587 =~ 26— e (23— pa) - S [ag: + b (7.97)
- 101 I T = = 2

. ; , . i 1
0E? = —inl K| [5g“ + 50“] ~ [w + 55’} - 2, (50“ - p“) (7.98)
~ - = S e 11 = =
0E? = —in||K||mq |0G° + (Sg] + %m [5gi + 65’} + H?ﬂgma (idg - p“) (7.99)
1 /1

5% = — 20 jis L - (50— e) (7.100)
T TR TRV

5B =~ [5g 4 53} +in ||| {5% + 53} - ‘El (150 - e> + g [5@ 4 55}

ZB 1
e (Kaga _ £a> (7.101)
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SE® = kp||k]| {w + 55} + ir| || [5% + (Sg] - “%,1”2 (iag - 5) - %k [59,» + 55’}

_ b e (15(3@— pa) . (7.102)

1 AN

All the appearing matter degrees of freedom must be substituted by their gauge invariant exten-
sions plus the corresponding correction terms, what can be read off from (7.47) and (7.48), from
which we obtain up to first order in «:

¢(f7 t) = ¢GI(5GCa 67—7 55]) + %2(5T(fv t) - 57—(3?7 t))ﬂ-(i:> t) + HQ((STC(fv t) - 50_0(3_7” t))acd)(f7 t)
(7.103)

7(Z,t) = 7 (60¢, 67,067) + K20,[(6T(Z,t) — 07(&,1))0%(T, 1))

+ K20,[(0T°(Z,t) — 00°(Z,t))m(Z,t)] — K2(6T(Z,t) — 67(Z, 1)) m2p(Z, 1) .
(7.104)

Note that when considering terms where any of the gravitational variables § A or  E appear with

a prefactor , then we can drop all the correction terms of order x in (7.103) and (7.104) as they
would then lead to terms of order 2.

An advantage of this new set of elementary phase space variables (7.74) is that it allows to clearly
separate the physical degrees of freedom from the remaining gauge degrees of freedom at the level
of the full phase space. The physical phase space corresponds to the subspace involving the sub-
algebra of all Dirac observables (¢, 7¢7), (64,7, §€% ) including the expected six physical degrees
of freedom. The price to pay in this context is that, as far as the position space is considered,
we need to work with highly non-local clocks that become local in momentum space. This is not
unexpected here considering the fact that the projector to the transverse-traceless part of the

gravitational perturbations is local in momentum but non-local in position space’.

7.8. Dynamics of the Dirac observables

The content of this subsection was already published in [1]. Here, it is presented with some
modifications compared to [1] to adapt it to the flow of the thesis.

In this subsection, we discuss the dynamics of our constructed Dirac observables. This is the
last ingredient missing in order to take the gauge invariant formulation as the starting point
for the quantisation in section 8. As we know from full general relativity, the dynamics of
Dirac observables cannot be generated by the canonical Hamiltonian because by construction,
all Dirac observables commute with the constraints and Hc,, is just a linear combination of
the smeared constraints. The generator of the dynamics of the Dirac observables is the so-
called physical Hamiltonian [155]. If we rewrite the Hamiltonian constraint linearly in the clock
momentum of the temporal reference field, that is C = Pr 4 h, then the physical Hamiltonian
corresponds to the Dirac observable associated with the phase space function h. Here we need
to adapt this to the framework of perturbation theory and consider the fact that in addition
we have an interaction Hamiltonian as well as a non-vanishing Hamiltonian in x" order. The
perturbed Hamiltonian constraint up to second order is given by C' = 6C + §2C8®° 4 O(62, k?).
The reference field §7 is canonically conjugate to the linearised Hamiltonian constraint 6C and

“In [160] it is discussed that there are situations particularly in the case of sources where a replacement of the
non-local projector in position space by the also widely used local projector can yield different physical effects.
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thus we can identify 0C with the momentum variable conjugate to 47 that we denote by d Pr,
then we have® C = JPr + §2C8° + O(§2,k?). The Dirac observable associated with §2(#°
corresponds to that part of the physical Hamiltonian that is generating the dynamics of the
purely gravitational physical degrees of freedom. The Dirac observable corresponding to the
interaction Hamiltonian H; = %5habT“b with dhg, = —5};5%5]5’01- — 6L0pe0 ES; + 04p0L6 B, encodes
the interaction between the matter and gravitational physical degrees of freedom. As we will
see below when expressed in terms of the independent Dirac observables it decomposes into a
term where the physical triad variables 6£¢; couple to the physical matter variables as well as a
self-interaction term that involves a coupling between the physical matter variables only. Finally,
in x%-order the physical Hamiltonian involves the matter Hamiltonian for the scalar field on
Minkowski spacetime. Summarising the above discussion and denoting the physical Hamiltonian
of the model considered in this work by éH, it takes the following form:

(5H == 7‘[¢ + Ongo,{T} + OH[,{T} Wlth H¢ = /de 6([1?7 t), ngo = /d3x 520geo<$) .

(7.105)
As can be seen below in (7.113), it can be written entirely in terms of the Dirac observables
(oG, 74T, (6.A,%, 66%) and therefore is by construction gauge invariant up to corrections of or-
der O(6%, k2). Here, as discussed above, we insert the Dirac observables in all terms being linearly
in x but keep ¢, 7 in the x” contribution because at zeroth order ¢, 7 are suitable observables.
Because in second-order perturbation theory the constraints C; are only weakly equivalent to
the original constraints C; and the observable of the interaction Hamiltonian H; is linear in the
perturbations, we need to consider the Dirac observable of §E? up to second order in H; when
computing Poisson brackets with the constraints. Hence, as far as the set of original constraints
Cr is considered, 0H is a weak Dirac observable.
In the following, we explicitly derive the physical Hamiltonian §H. Using the canonical trans-
formation derived in the previous subsection, it is possible to express the canonical Hamiltonian
0Hc,p in (6.42) in terms of the new phase space variables consisting of the physical gauge invari-
ant degrees of freedom, the constraints and the clocks. In a first step we rewrite the Hamiltonian
in the following way:

THoan = / &z {e(gi), ) + 6N®5Cy + SN 6C + 5A 66,4
+ 1(0,0) (0°9) OB, 8} + Sm?¢? 6", &, — SO G e, m)+

- %eﬂfl%n 0 07 (JA,mOA," + (B2 + 1)0T,"0T," — 26T, "3 A," ) } (7.106)
where in the first line there is the background matter Hamiltonian and the constraints, in the
second line the interaction part and in the last line the second order of the Hamilton constraint.
The first line contains the background Hamiltonian of the scalar field, which does not need to be
transformed as there are no background constraints and hence it is already gauge invariant, see
discussion above. In order to obtain the physical Hamiltonian as described in (7.105) in terms
of the new variables, one first has to determine the observables (7.64) and (7.65) in terms of the

8Note that the boundary term T'[N] in § Hcan cancels exactly the contribution ‘N6C = 6C in 6 Heapn but since the
clock momentum dPr = §C is anyway not part of the physical Hamiltonian this causes no problems.



Construction of Dirac observables in the linearised model using geometrical clocks

74
new variables, where we already set 6¢/ = 0 as explained above in (7.51):
28 - B 1
(6E%)CT =5€%, — —-k%G; + —5—€", {50,) — /{pb] — ——=—0%0C — ke
- = skl T s[RI I 1 [V V]
— k| [F||30” (05 — 67y ) — wl[K||BOTikee + O(6%, 1) (7.107)
(AN =5 A1+ — D (k500 — Bboe — Fik, ) [5cb . pb}
- - 26K -
— ————i, kY [6C — ke | + 003, KY). 7.108
ol [6C — ke| +0(8% 1?) (7.108)

The interaction part in (7.105), Oy, 7}, then assumes the following form:

(grem )]

O, 41y =H / &’k o} 68,04 + & / d*kikydo'"® [gog —_
35} (59’ - ﬁs’)
)5;} ) + O 2 (7.109)

a3k W 3 o
<_ [va+2m K—2

1%
+ 2iBk* G [@25;; + (2m

with
“(z,1)),
(7.110)

Note that an underbow denotes the spatial Fourier transform of the corresponding quantity, i.e.
La . 1 Jxe
11|

1 -
Az eflkxf(f, t),

(k,t) = (271)% o

~—

We used here a shortened notation to improve readability where no argument means dependency
on (k,t) and a prime after a quantity means dependency on (—k,t). The last line in (7.106)
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yields O’ngo,{T}:

Oty 1) =523 e / Pk Y [SATSA" 4 ||F|P(8 + 1)0ETSE + 2r R0 BT 5 A" ]
re{+}

A3k 1 1 1~ -
o _ Y w— Da - Y ab _ ~71.a71.b
“/HW{ (7800 = pa) (R0 = 21s) (= ek

2
3 g+l
—n [ d oG |

NI ) ~. /1
Wi oG+ 2 j (50’ - a)
= [l -

24 ~. (1
— ——=—€abik” (50’17 - p'b)]
K| 1K R =
- K/dgk {MHEH&'@Z’ (150’1, — p/bﬂ
— K = Z

+0(8%, k). (7.111)

As discussed above in (7.105), the physical Hamiltonian ¢H consists in zeroth order of the Hamil-
tonian of the scalar field on Minkowski spacetime plus the Dirac observable associated with §2C&¢°
as well as the Dirac observable corresponding to the interaction Hamiltonian ;. In the following
equations these contributions are marked in blue:

0Hcan :/ 3z e(f,t)
R3

+r Z (6A7 (K, 1) 0AT (=K, ) + 2r ||Rl|0E" (F, t) 6 A7 (~F, 1)
76{:t}

(8% + DIFPSE" (k, 1) SE" (~F. 1))
+n/3 &k 5ot (8, 1) 669 (=K, 1)
R \ —

+ﬁ/d3kikzbm§g’a [ng & P +m2V— eﬂ +/€/d3 [mHkHéTk:bp b}

A3k - - 1. - - - 1
—/ﬁl/ ——| = p(k,t) py(—k,t) [(5Cd — kckd] + e(k,t) e(—k,t) [ + 3}
ST i

. 1 ~ . 201 an.
+ /d3k 5vGi (@/Z — 2Bk — {8’26}, + 3 (mQV’ — e’) 53] - 7+ kK 5G’j

[

Al 21 A 1
- Zé k (5(3” — e') + Tzebiaka <5C/b - p/b> )
kK| \K— |l kK= =

1 /1 1o -
+/d3k §5C, | IN"* + — ( 5C", — 2 ) §ob — Zfagb
- (v T \R s 22 ) (07 = gD
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1 ~ 1 1
+/d3k SC| 6N — — [golg—i— §mQV/— 36/:| - — (50/—26/>
AT RP LT 2 22 AR AR

_ /i/d?’k [il[Fforkbcs]
+0(83, k7). (7.112)

Dropping terms of order O(6%, x2) and higher the physical Hamiltonian reads:

SH= | dze(@t)
R3
1 - - - - -
3 r T(_ T r(_
[ Ak g g{i:} (6A7(Fk,t) AT (~F,t) + 2r || KI[0E" (R, £) SA ()

+ (82 + 1)||K|PSE" (k,t) 0E" (-, 1))
+ 5/3 &k 810 (R, 1) 6%, (—F, 1)
A ® )
+ K,/d3k‘ ikyrdo’® [(pz -5 (gog +m?V — eﬂ + Ii/d3k‘ [MHEHCST]%bp,b}

d3k: o o 1~ A - 1 3
- — | = p(k,t —k,t) |60 — ZkCk? k,t) e(—k,t [ ]
/i/R?)’k‘P( gc( ) )gd( ) )[ 4 +£( ) )E/( ’ ) 4+2

- ng V(k,t) €(—k,t) — 2k, t) € (—F, t)) . (7.113)
As expected, the physical Hamiltonian differs from dHc,, only by terms that involve the lin-
earised constraints at least linearly and 0H agrees exactly with the expression for the physical
Hamiltonian shown in (7.105). As can be seen from the explicit form of the physical Hamiltonian
in (7.113) for our choice of 07 and do€ in (7.51), d7 being linear in ¢ does not contribute to the
physical Hamiltonian and do€ is also absent if we chose it to be constant and enters via Kronecker
delta in case we choose it to be linearly in z¢ in exact agreement to what was found in [158] for
the ADM variables. This additional Kronecker delta contribution for the second choice combines
with terms including the scalar field and its derivatives respectively and has thus a suitable fall-off
behaviour.

The different contributions to the Hamiltonian in the individual lines can be interpreted as fol-
lows: The first line corresponds to the Hamiltonian of a scalar field on a Minkowski background.
The next two lines encode the Hamiltonian of a gravitational field in vacuum, the third integral
denotes the interaction between the gravitational degrees of freedom and the matter field and
finally the remaining contributions encode the gravitational self-interaction of the scalar field.
Even though the latter does not contain any gravitational degrees of freedom, it only appears
due to the coupling between matter and gravity and results from the coupling of the gauge
degrees of freedom in the gravitational sector to the scalar field. Once these gauge degrees of
freedom are expressed in terms of the independent physical degrees of freedom, we end up with
this result. The latter contribution was neglected in [151] by using the argument that only the
transverse-traceless components need to be considered. While in the vacuum case one can use a
gauge fixing that sets all but the transverse-traceless gravitational degrees of freedom to zero, this
is no longer a valid choice for a gauge-fixing if we couple the scalar field, because the constraints
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involve additional contributions from the scalar field and suitable gauge fixing will result in such
a contribution of gravitational self-interaction of the scalar field. Hence, to our understanding,
it is not justified to neglect this contributions in the order of perturbation theory considered in
[151].

This finalises the discussion on the classical model that will be the starting point for the Fock
quantisation in section 8. Having identified the physical degrees of freedom in the model, now
we are in the situation to separate the total system into a system and an environmental part, as
usually done in the framework of decoherence models. We choose the following separation:

7TGI

system: ¢, environment: §.A4,°, 6%

and hence the gauge invariant matter sector becomes the system and the physical degrees freedom
in the gravitational sector provide the environment.

7.9. Comparison to other observables and to approaches using a gauge fixing

The content of this subsection was already published in [1]. Here, it is presented with some
modifications compared to [1] to adapt it to the flow of the thesis.

Apart from the strategy followed here by using the relational formalism and the observable map
as well as its dual to construct suitable Dirac observables that allow the splitting of the phase
space into the physical and gauge part, there exist different methods in the literature to identify
the physical subspace of the theory. In this section, we want to comment on three different
ways and compare them with the method applied in this thesis. In subsection 7.9.1 we start
with another ansatz to construct observables for the ADM formalism pursued in [60] and then
discuss two ways to gauge fix the theory instead that are implied by the clocks introduced in this
work, which is discussed in subsection 7.9.2, and another one often used for the ADM variables
introduced in [158], which we discuss in subsection 7.9.3. As discussed for instance in [161], for
certain choices of the G! one can relate a model formulated in terms of fully gauge invariant
quantities to a corresponding gauge-fixed model. The observables constructed in this work also
fall into this class of models, which means that the gauge-fixed Hamiltonian and the gauge
invariant physical Hamiltonian formally agree if we replace all gauge invariant quantities by their
gauge-fixed counter parts. Practically, this can be achieved by setting G = G* = G/ = 0, that is
strongly equal to zero and then we can formally identify the Dirac observables with the gauge-
fixed quantities involved in the gauge fixing discussed in subsection 7.9.2. For this specific gauge
fixing, the constructed observables have a standard interpretation. The Hamiltonian of the gauge
fixed theory can be obtained by inserting all constraints, gauge fixing conditions as well as the
Lagrange multipliers that ensure the stability of the gauge fixing into dHc,,. As can be seen from
the explicit form of dHc,y, in (7.112), the Hamiltonian of the gauge fixed theory agrees formally
with 0H under the identification of the Dirac observables with their corresponding gauge-fixed
quantities. In order to compare our results with the existing literature, we discuss in subsection
7.9.3 the geometrical clocks used in [151] that are denoted as ADM clocks there because they were
introduced in the seminal paper [158]. Also this set of geometrical clocks encodes the physical
gravitational degrees of freedom in the symmetric transverse-traceless linearised connection and
triad variables. The main difference we see among the two sets of geometrical clocks is how the
reference field associated with the linearised Gaufl constraint is chosen. In our work we choose
a Lorentz-like condition if we set the corresponding gauge fixing condition G/ = 0, whereas in
[151] the resulting dG/ = 0 is only equivalent to a Lorentz-like condition in the vacuum case
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but not if we couple a scalar field. Then the resulting reference fields for the linearised spatial
diffeomorphism and Hamiltonian constraint also differ because for both sets of clocks we require
that all geometrical clocks commute mutually.

7.9.1. Comparison to the observables used in [60]

The content of this subsection was already published in [1]. Here, it is presented with some
modifications compared to [1] to adapt it to the flow of the thesis.

The model in [60] also considers gauge invariant quantities for the matter variables in the ADM
framework and we would like to compare their quantities to the constructed Dirac observables in
this work. There, an extension of the basic gauge variant matter variables ¢ and 7 is proposed
that is required to commute with the linearised constraints. These observables take the form

G(T,t) = (T — Gt —7) T(Zt) = (T — ¢t —7) — Oaq”,

where ¢ and 7, similarly to the geometrical clocks used in our work, consist of purely geometrical
quantities in ADM variables. For these, as well as the matter fields in [60], the following trans-
formation behaviour under the Hamiltonian and spatial diffeomorphism constraint respectively
is used?:

5H0 6HO

Under the Hamilton constraint : =P+ A\— T— T — A—
om e

q—q T—=T+A
Under the spatial diffeomorphism constraint : = P+ KN Oy T — T+ KOy (AT)
¢ =g+ N T =T,

where Hy = [ d3x e(%,t). Starting with the transformations under the Hamiltonian constraint,
which is just €(Z,t) in the matter part, we obtain

(6@, [ @y 2@ | = xam(@) = 30 52 @)

which hence indeed confirms their proposed transformation of the matter field. Its momentum
transforms differently reflecting the fact that it is a scalar density of weight one:

0Hy
00
where we assumed that the scalar field obeys a Klein-Gordon equation and that the energy den-
sity possesses an arbitrary potential V' (¢). The transformation behaviour used in [60] under the
Hamiltonian constraint only agrees with the above expression if A is constant, which in general
cannot be assumed and hence the second term coming from the Poisson bracket needs to be
included in the transformation of 7(Z), which to our understanding has been omitted in [60].

Given the correct general transformation behaviours, we want to check whether the Dirac observ-
ables ¢ and 7 used in [60] are indeed gauge invariant. First it is worth noticing that due to the
fact that we are working in a linearised theory, to our understanding the quantity gﬁg(f, t) has to

{7(@), [ 573D} = 0@0"6() - NOV'(6() = 2D G20 + (0uM(@) 0°0(a),

9Note that in [60] the transformation for 7 is given by m — m — )\% where we expect the == to be a typo and

om
corrected this accordingly.
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be understood as a Taylor expansion in the modifications truncated after linear order. In general
this way of constructing observables looks like the canonical version of the strategy followed in
[154]. To show this, we will add an additional x in front of the modifications and also include it
into the constraints. In [60] this was done for the spatial diffecomorphism constraint only, as its
action on the matter fields indeed yields a correction term of order x. As shown in the discussion
on the Post-Minkowski approximation scheme in section 6.3, for consistency such a factor is also
required in the Hamiltonian constraint. Therefore, we obtain

)) = (;S(CE, t) - ﬂqa(f,t)8a¢(f,t) - ”T(f’ )@Z)(f’ t)
) — 0aq®(Z,t) = w(Z,t) — Kq Oy (X, t) — kTT (T, 1) — Daq®(Z,1).

Now under the Hamilton constraint & transforms as:

t) = ¢(Z — kq(Z,t),t — k7 (
(2, t) = (X — kq(Z, 1), t — K7(

7t
7t

)

O(T,1) = $(T,t) + K(AT)(&, ) — K(AD)(E, 1) = BT, 1) ,

where we neglected terms of higher order in x and see that indeed gz~$ remains invariant under the
transformations induced by the Hamilton constraint. For 7 one obtains:

F(T,t) = 7@, 1) + k()T t) — k(M) (F, 1) = 7(T, 1) .

Thus, working with the correct transformation behaviour of 7 under the Hamiltonian constraint,
also 7 remains invariant. For the spatial diffeomorphism constraint a quick calculation shows
that its action on the matter fields is indeed given by the terms stated above and in [60]. Under
its action we obtain:

b = G+ KAy — KAy = &
T — T — KA O — O A #£ T

which demonstrates that the 7 proposed in [60] is no (linearised) Dirac observable with respect
to the spatial diffeomorphism constraint. Thus, actual linearised observables for ¢(Z,t), m(Z,t)
in [60] would be given by

O(T, ¢ t
T(Z,t) = w(Z,t) — Kq"Ou(qm) (%, t) — k77 (Z, 1),

where it is crucial that the partial derivative in the second term in 7 acts on both ¢*(Z,t) and
7(Z,t). Compared to our framework, the basic idea is similar to extend the matter fields with
geometrical variables to obtain gauge invariant observables. Hence, the quantities ¢® and 7 play
the role of geometrical clocks in our setup. In our approach we in addition require that ¢® and 7
mutually commute which yields to the requirement to use an explicit choice of geometrical clocks
that satisfies this additional property.

7.9.2. Gauge fixing following from the clocks introduced in section 7.4

The content of this subsection was already published in [1]. Here, it is presented with some
modifications compared to [1] to adapt it to the flow of the thesis. The gauge fizing used here is
similar to the one applied in the Master’s thesis [5], where no Dirac observables were constructed.
The section s included here in order to have a comparison between the case when working with
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Dirac observables and the case where a gauge fizing is employed, as the latter method is frequently
used in the literature.

In this section we present a possible gauge fixing that naturally arises from the choice of the
clocks introduced in section 7.4 in the context of constructing Dirac observables. The induced
gauge fixing is obtained by setting the gauge fixing conditions G/ shown in (7.73) equal to zero.
Evaluating the constraints in momentum space using the basis introduced in section 7.6.1 yields
the following seven relations among the elementary phase space variables at every point (E, t):

|E[[6E" = 5AT — 5. A% il|F]](54" + 64°) = —pkp, (7.114)
|E|I0E" = 6A% — A" i[9 A% = Bm® (k) p, (7.115)
[E|6E® = 0A% — 5A* il|F154% = pm°(R)p, (7.116)
|1E]|(5A* = 64°%) = —¢ , (7.117)

where € and p, denote the three-dimensional Fourier transforms of the energy and momentum

density of the scalar field. The gauge fixing conditions, obtained by requiring G! to vanish and
in addition choosing 7(t,Z) = t,0% = % = const and & = 0, hence §7 = %, b0 = %" = const,

give seven additional conditions in momentum space for every k and ¢:

JA* =0 JE? = —0E" (7.118)
JA' =0 0E? = —0E" (7.119)
T 1
SAY =0 30E% —0E* —0F° = —S—¢ (7.120)
- e | S
SES — §E* = (5A3 + AT +64%) . (7.121)

Note that é7 and do were chosen to be constant in position and hence vanish in all appearing
combinations in the gauge fixing conditions. Substituting these results into (7.59) and (7.60)
yields an expression for § E and 6 A in terms of the physical degrees of freedom:

€
SE%; =0ETmm; + SE-m"m; + —— 6

IR,
Bi ca N e N e o
+ p.|m° (km; — mk; ) —m° (k%m; — m%k; ) — k° (m%m; — m%my)
B ( ) ) |
+ SE~ - ) b (7.122)
=0E"m%m; + mim; + —=—0; — ——p €Y )
- - ||&1[2 ||&]12~

6:/4@1 :(5:,/4+maml + (5\4_m(lm’l ”BH pc |:m makﬂ/ +m m k,l _ §kc (m m +mam ):|

€
+ —= (mamZ — maml>
2|[k||
. . Z 6 A
=§ATm,m' + A" m,m" — H || =, {W — fkcéz — fkck k@} ||_»H€ba igb (7.123)
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Note that one can also obtain this by setting the constraints equal to zero in the expressions
shown in (7.107) and (7.108). The independent physical degrees of freedom are encoded in the
matter fields (¢, ) as well as the symmetric transverse-traceless parts of the connection and
densitised triads

) + 0A™ (k. t)ma (k) (k) = P, P (k)6 A (k,t)  (7.124)

~—

!

SA, (k,t) = GAT (k1)

(s\(?ai(lat) = 6E+(k>t)

~—

!
~—

(
(

(

+ 6B (k,t)m® (k) m; (k) = P*7\(k)SE®;(k,t)  (7.125)

~

mq(k) m
m*(k) m;

!
—~

!
~—

)

with the projectors Baij b(lg) and P aijb(l_f') onto the symmetric transverse-traceless parts that were

defined in (7.61). As expected, with the components of §.A,°, 55%(12, t) we end up with the six
physical degrees of freedom given by

5@*,5@*,@*,@*,@«. (7.126)

Without the matter fields, one gets the well-known four phase space field degrees of freedom of
gravitational waves in vacuum, corresponding to two field degrees of freedom in the Lagrangian
framework, and the real scalar matter field leads to two additional phase space field degrees of
freedom. Reinserting (7.122) and (7.123) into the Hamiltonian (6.42) yields the total Hamiltonian
of the linearised theory on the reduced phase space, (7.113), where we used the transverse-traceless
projectors

[PE(E))2 = ma(£k) mb (k) , (7.127)
such that
[P (k)]50} 0B, = 0E* (7.128)
[P (k)] 026 A," = §A* (7.129)
Pt y(k) = G{Zi}[P%E)mP-T(E)H; . (7.130)

However, working at the gauge invariant level and not choosing one specific gauge fixing allows
us also to choose a different gauge fixing than the one discussed in this section and then the
observables and their dynamics discussed in this work are still valid because everything was
formulated in a gauge invariant manner. The only difference for other gauge fixing choices is that
the interpretation of the gauge invariant Dirac observables and their relation to the gauge-fixed
quantities is modified because then the gauge fixing does not necessarily correspond to setting
all g1 equal to zero. Hence in this sense, if we consider a class of models where a relation to one
gauge fixing is possible, then there is always a convenient choice for the reference fields in order
to make such a relation as simple as possible. This was exactly our motivation for choosing the
reference fields for this model the way we did, apart from the additional requirements (i) to (iii)
listed in section 7.2.

7.9.3. A further gauge fixing often used for ADM variables introduced in [158]

The content of this subsection was already published in [1]. Here, it is presented with some
modifications compared to [1] to adapt it to the flow of the thesis.
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At this point, we would like to make a short comparison to the clocks introduced in [151] based
on seminal work in [158] and [159]. Likewise to [151] we denote this set of clocks as ADM
clocks. These clocks, similarly to the ones we use in this work, also do not contain the symmetric
transverse-traceless gravitational degrees of freedom § A* and 6 E*. Hence, these four phase space
degrees of freedom are again identified as the physical degrees of freedom in the gravitational
sector, as in our case. However, the gauge fixing used in [151] which is induced by setting the
corresponding gauge fixing conditions 6G! = 67! — 7! to zero is different from the one used in
section 7.4 in this thesis, hence this set of clocks is not equivalent to the one discussed in section
7.4. This can be easily seen by considering the clock “T* associated with the Gauf constraint
from [151] in momentum space. Requiring that the components mZ(E)Gzl(E) and ml(E)GIZ(E)

vanish yields 0E! = SE' =0. In contrast, the gauge fixing obtained by setting the constraints

as well as gauge fixing conditions §G! used in section 7.4 equal to zero, we can read off from the

transformation introduced in section 7.7 that 5VEI = _II;ﬁPm Pq and 5E1 = ”ZkﬂQm Pq. This

gauge fixing condition would be equivalent to the Lorenz-like condition for the Gaufl constraint
chosen in this work in (7.22) only for the vacuum case, as can be seen in [128]10. Setting the
gauge fixing conditions gi pyy induced by the ADM clocks used in [151] equal to zero imposes
the following set of conditions on the phase space variables:

B! = §E' = §E* = §E? = 20A° + §A" + §A° = 0E° — §E* = 6E° — 0E* — §E° =0, (7.131)

which implies on the constraint hypersurface that
€

OB, = 6E% + —=— (0% + k%%;) (7.132)
T T 2RI
o A e
6A, =0A," — B (kléb + ko6 — kb(sg - kak’kb> + —=—kbey,t. (7.133)
- e TR 2][K||
In this particular gauge, the physical Hamiltonian becomes
0H = / B e(d t)
n /i/ &k 262 S° (BAT(R.t) 6AT(~F. 1)+ 2r ||RI0E" (R, 1) 6A" (K. 1)

re{t}
+ (82 -+ 1)||K|POE" (K, t) OE" (K, 1))

—

+ ﬁ;/ &k 8800 (R, 1) 66°. (=K, 1)
R3 N —

—,4-,/ LN (. (—Et)[éCd—Bl%Cl%d}+e(Et)e(—Et)[1+1]
R3HE||2 gc ) pd 9 4 9 RS ) 4

— —

~ - - 1 1~ 4
- m2 V(k’t) 5(_k7t) - @Z(k’t) 5(_k7t) {2521 + Qkakb:| >

~—

0Here, only the vacuum case of linearised gravity is considered and the gauge fixing employed is not equivalent

to the one used in this work and discussed in section 7.9.2. In [128] one condition is that 0E? is traceless,

that is 6 £ 0, = 0, which is not satisfied for the gauge fixing discussed above in section 7.9.2 where we have
3e

0E%i00 = 1
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+0(8%, K?). (7.134)

As can be readily seen, it differs from the Hamiltonian constructed from the observables used in
this work in (7.113) only in the term encoding the self-interaction of the scalar field. The reason
is that by choosing the clocks, different choices for physical temporal and spatial coordinates were
established and these are determined by the choice of different sets of clocks that on the gauge
fixed surface are equal to 67 and do® respectively. As discussed in equation (7.51), by an abuse
of notation we understand the ¥ and t arguments of the fields to be the associated values of the
diffeomorphism and Hamiltonian clock, 7 and do? respectively. By inspection of the clocks, it
turns out that the ADM clocks used in that work, corresponding to the parameters x%p,, and
tapn, are related to the parameters used in this thesis, ¢t and =%, by

1

tapu = 5t (7.135)
1

Thpy = " + 50% (e x GARY, (7.136)

where we neglected factors of k and 3, as the notation regarding these factors in [151] partly
differs from the one used in this work. We realise that in the case of vacuum gravity the choices
for physical temporal and spatial coordinates agree but differ for non-vanishing momentum and
energy density of the scalar field.

In comparison to the work in [60], where for the ADM constraints the same gauge fixing as
in this section was used, their gauge fixed Hamiltonian appears with different prefactors in the
self-interaction part compared to the one in (7.134). A reason might be that we were not able
to reproduce the expression for V' in their equation (6) in [60] which consists of the second order
terms of the expansion of /g G)R, where g, denotes the spatial ADM metric and )R the
three-dimensional Ricci scalar. However, in contrast the structure of the result for this expansion
given by partially the same authors in [63] could be reproduced by our computations.

In the next section, we proceed to quantise the physical degrees of freedom of the model en-
coded in the Dirac observables that were constructed in this section of the thesis.
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8. Fock quantisation of the model

The content of this section was already published in [1] and is partially based on results of the
Master’s thesis [5], where however the gravitational degrees of freedom were quantised in a dif-
ferent manner!!. It is included in this PhD thesis as it forms a core constituent of the basis of
the PhD project and is presented here with slight modifications compared to [1] to adapt it to the
flow of the thesis.

In this section we present the results of a Fock quantisation of the model under consideration
in this part of the thesis. We work with units where 7 = ¢ = 1. For convenience, we choose to
quantise the following scalar and tensor fields:

o1 (Z 1) 79T t)  0E%(Zt) OC,(F1), (8.1)
where the latter is the Fourier transform of

3C, (k. t) = 6CT (k, tymq(k)m' (k) + 6C (k. t)m, (k)ym' (k) (8.2)

~—

with 5vCi(/;, t) = —% (5¢4i(l;, t) £ ||&|| (5in(/¥, t)); see section 7.6.1 for the definition of the basis

(ka,ma(k),Mq(K)) in Fourier space. The reason for this choice is that by using 6C instead of
d0A the terms in the linearised Hamiltonian containing only gravitational degrees of freedom in
(7.113) can be rewritten in the following way:

K d3 [5‘”’5”66 (:c,t)dC 7 (1) + 040" (D,0€"(7,1)) (066 (#,1)) |

— / &z [5cr( £)6CT (7, ) + (0 E" (1)) (0" E"(7,1))] , (8.3)

7"6{4‘7

which has the same form as the energy density of two massless scalar fields 0 E*(Z, t) since
1 1
{8B=(&,1),0C%(5,0)} = — 3 {0E5(2,),64%(§,0)} = _6*(F ). (8.4)

A mode expansion of the fields and the Fock quantisation yield the following operator-valued
distributions for the physical degrees of freedom:

¢Gl(f,t) _ / dgk‘g 1 [ak e_iwkt'i'“;f + aL eiwkt—i/;f} (85)
RS (2m)2 V2Wk
291 (&, 1) = d3k3 (i) Wi [ak o~ ikt HikE _ az eiwktfil}‘f} (8.6)
R? (27)2 2
a (= d*k 1 a 7‘ el 1kT TTN1G (BT iQpt—iki
st = [ Sy [ S (1P QR [P (E))e ()t @R (8.7)
R (271')2 k re{t+}
A3k o . o
56(;(5", t) :/ Z [ b:t —szt—Hk‘x o [Pr(k)]z (bl:!::)T eszt—zka:} ’
R? (27T) re{i}

(8.8)

"Here, we quantise the observables §€%; and §C,", which consist of 6.4,° and 6£%;, as a whole, while in [5] the two
physical degrees of freedom §E* and 6C* were quantised individually.
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where the a,(j) denote annihilation (creation) operator-valued distributions for scalar particles,
while the (b,f)m denote annihilation (creation) operator-valued distributions for gravitons with

polarisation label +. We have also introduced wy := 1/ k2 +m2 and Q := VK2 as well as the
transverse-traceless projectors [P (k)]4 defined in (7.127), which play the role of the polarisation

=3

tensors of the quantised fields. From their definitions follows that [P"(k)]¢ = [P"(—k)]* and hence
6E%,(Z, 1)1 = 6€%,(Z,t) and 6C,' (%, t)T = 6C, (¥, t). Note that in contrast to [60] the polarisation
tensors are different for the positive and negative frequency modes. The creation and annihilation
operator-valued distributions satisfy the following commutation relations:

[ar, af] = 63(k — 1) la, i) = laf,,a]] =0 (8.9)
b, (65)D) = 83(k — 1) b, bit) = (65D, (655)D) =0, (8.10)

here we omit the vector arrow on the mode labels in all index positions in order to keep our
notation more compact. The total Fock space consists of a tensor product of three individual
bosonic Fock spaces, one for the scalar particles, one for the + polarised gravitons and one for
the — polarised ones. As usual, the annihilation and creation operators for different fields or
polarisations mutually commute. The Hamiltonian operator corresponding to (7.113) can then
be implemented in the Schrodinger picture as

H:/R3 3k {wka,tak—i-ﬁk [(bﬁ)TbZJr(bf?)Tbﬂ}

+\/§ / d3k\/§T > [br AR + @)t ()]

k re{+}
+rU @ 1¢, (8.11)

where we have introduced some kind of normal-ordered current operator for the scalar field
that couples to the gravitational environment and which is quadratic in the scalar field and its
derivatives:

To(B) = G 0) [P ()

d3p 1 s
= / (2 )% QW {papb[P (k)]b} <2a;,ak+p +a—pak‘+p —+ a;aipik) . (8.12)
™ D P

Furthermore, U denotes a self-interaction operator that is present only due to the coupling of
the scalar field to linearised gravity, as its contribution to the Hamiltonian operator will vanish if
the coupling constant k is set to zero. It involves fourth powers of the annihilation and creation
operators of the scalar field and its momentum. Its contributions can be understood as additional
self-interaction vertices of the scalar field that are not present in the corresponding free theory.
We chose to implement this operator in a completely normal ordered form, that is : U :, where
: - : denotes normal ordering. This is in contrast to the quantisation procedure of similar systems
in [60, 62, 63], where either no specific ordering is mentioned [62], or the individual operators
corresponding to the operators ¢, p,, 17, ¢ and J,, introduced above and in (7.110), are normal
ordered [60, 63], but no normal ordering is applied to the entire self-interaction operator U. The
normal ordering will be an important point when we consider the one-particle projection of the
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master equation in part III, because the self-interaction term then vanishes completely. For the
normal ordered self-interaction operator we obtain

U i= [ dk"wdo? (<F,0) | oh(F.0) = & 9i(R.0) + m2V (E,0) - e (F.0) )

~ [ @k [2in 13 (-F. 08 pyE.0)

3 - - 1..- e 7 1
- o Tt 2RO paCF 0y o7 Gk e R 0) e (F0): [+ ]
wREL =TS ! S

3 2 - - -
5m2 :V(k,0) &(—k,0) : —: ¢3(k,0) &(—F,0) : } (8.13)

~

We realise that the parameters §7 and do° enter into the self-interaction operator U of the scalar
field only. For our choice of §7 in (7.51), where d7 is linear in ¢, the term including 67 drops out
completely. The same happens for all contributions involving do¢ if we choose it to be constant. In
case we choose it to be linear in z¢, we have 60, = ¢ and hence the corresponding contributions
in Fourier space will not vanish, but z¢ will also not enter explicitly into the self-interaction
operator U.

Here we introduced several new operators involved in the physical Hamiltonian operator of the
model based on the definitions in (7.110). First of all a (normal-ordered) operator corresponding
to the scalar field’s momentum density:

- 1 d3q [wp_ . i _
ga(k’t) = 5/]R3 (27r)%qa wqq |:aqak—q€ it(wg+wr—gq) + aT—qakz—qe it(wp—q—wq)

a;_kaqe"t(‘”’“*q—wﬂ —al aT_keit(w‘fH‘JkQ)} . (8.14)

a“q
Additionally, an operator corresponding to the scalar field’s energy density:

1 d3q
4 Jes (2m)3

E(k t) = { — m[aqakqe—zt(wtﬁ-wkq) _ aiqak,qe_lt(wk*q_w‘ﬂ

T it(wp_g—wq) TooT it(wgtwr_q)
aqfkaqe q q +a7qaq—k‘e q q

a a 2
_ Qa(k\/L)_ |:a/qak._q€—it(wq+UJk—q) + a”r_qak_qe—it(wk_q_wq)
WqWk—q

+ az_kaqeit(wk*q_wq) + aiqa(g_keit(wq—i_wqu } .
(8.15)

Finally, two more operators that correspond to certain different terms of the scalar field’s energy
momentum tensor that appear in the classical Hamiltonian, namely to ¢? and d,¢ 0°¢:

A o 1 d3 1
V (k1) = 9
2 Jre (27)3 \/OgWh g

—it(wg+wk_ T —it(wp_g—w
aqak—qe (wq k q) +a—qak—q€ (wk q )

+ ag_kaqeit(“”“—q_WQ) + aiqa;_keit(“’ﬁ“’“—q) (8.16)
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ab 7 1 d®q qu(k —q)° » p -
fg(k,t) = —5 /1\%3 (2ﬂ—>% aEUqu_)(] aqak,qe ’Lt(wq‘HAJk:fq) + a-l-_qak-fqe zt(wk,q wq)
+ a;_kaqeit(wk—q_wq) + atqaz_keit(wq+Wk—q):| . (817)

Note that all these constituents are symmetric in the sense that e f(—k,t) = ¢ (k,t), which implies

€l (#,t) = e(#,t), and hence also UT = U. In the interaction picture, which we denote by a tilde,
the Hamiltonian operator that involves the gravity-matter interaction is given by

A(t) =/r \}5 / d3k\/}Tsz: (B e T, )+ ) ™ T (R D () @1 (8.18)

=:Hrp(t)

with an appropriate current operator obtained directly from the one in the Schrédinger picture
by using the time-dependent constituents,

d3p 1 b - , :
— WP [P (k)] CLTCL ezt(wp—wk+p)+a7 a e—zt(wp+wk+p)
/(%)mm [par [P (R)E] (afanss Py
(8.19)
and the total normal-ordered self-interaction operator
N ik . . . - .
0t i= [ h"5Pso (~F,t) | b ) - 8 (el ) + mPV(E D) - e(Fet)) |
= [ @k |23 (-E R po(E. 1)
A3k ~ - 1a - ~ ~ 1 3
— —d — puk,t) pa(—k,t) {50d—k%d}+: e(k,t) é(—k,t): [+}
/RSHkHQ{ Dol t) pal—F.1) : e e |1 +5
3 2 - - -
- §m2 1 V(k,t) E(=k,t) s —: gk, t) E(—k,1) } . (8.20)

With this, the classical model has been carried over to the quantum field theoretical framework.
In the next section, we will derive the master equation that governs the effective time evolution
of the matter system without the need of tracking all the details of the gravitational degrees of

freedom.
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9. Field theoretical TCL master equation and analysis

The content of this section was already published in [1] and is partially based on results of the
Master’s thesis [5], where however no thermal Wightman functions or propagators where used
and also no split of the full dissipator into Lamb-shift Hamiltonian and new dissipator. It is
presented here with slight modifications compared to [1] to adapt it to the flow of the thesis.

In this section, we apply the projection operator method reviewed in subsection 4 to the model
discussed in this part of the thesis. Assuming factorising initial conditions and a Gibbs state for
the environment, we can take the TCL master equation (4.33) to second order in the coupling
strength o = \/k and evaluate it for the model under consideration described by the interaction
Hamiltonian operator shown in (8.18):

gtﬁg(t) = —in [U(t), ps(t)] — & /0 s tre {[Hri), [Hri(s), st @ pe] [} (91)

To obtain the final master equations, we have to evaluate the trace over the environmental degrees
of freedom in this expression and thus to obtain the correlation functions. As a first step, we
take into account that the second term on the right hand side of equation (9.1) can be written in
terms of thermal Wightman functions, using the expression of .FNITI(t) in position space given by

Hry(t) = Vi [ d'n 6} Gh(a0) 6% (3.0). 92)
R

where 0 (&,t) denotes the three dimensional Fourier transforms of gpg(E, t) which was defined in

(8.17). Following the procedure outlined in [145], where in our case the environmental part of
the interaction is linear in the environmental fields and we use a Gibbs state for the environment,
hence all one-point correlation functions vanish, we can define the thermal Wightman functions:

G0 (T — gt — s) = (0E%(T,t) 6€°;(F, 5)). = P%Y G™ (F — .t — ) (9.3)
Gl (T — it — s) = (6E°,(, 5) 6E“(Z, t). = PihGN(E -Gt —5) =G (T —F s —1),
(9.4)

where ( - >6 denotes the expectation value with respect to a thermal Gibbs state and P“Z-bj is the
transverse-traceless projector given in (7.67). We will prove these equalities in a moment below.
Before we can evaluate this explicitly, we have to discuss an important point regarding the Gibbs
state for the environment on the Fock space: Since this is not well defined, we would need to
work with KMS states [162, 163] or alternatively regularise the system within a finite volume.
Here, we follow the latter technique. For this purpose, we put the system into a box of volume
V = L3 allowing us to explicitly evaluate the thermal two-point functions and further identities
that we will encounter during the derivation of the master equation. This kind of regularisation
leads to the discreteness of modes that belong to the set IK now and to a replacement of the
operator-valued distributions by operators:

d®k 1 v
= B —s b .
/]R k (27_[_)3 k> (9 5)
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where a rescaling of the operators was introduced in order to keep the exponential e #¢ dimen-
sionless in the regularised model:

e~ FHe :exp{ B> Y| Tb?‘}} (9.6)

re{+,—} keKk

The Gibbs state for the environment is then of the form
pe = Zg e PHe (9.7)

with the partition sum given by

2
Zg = trg {efﬁH‘f} = [H 1—69,;]} ) (9.8)

jeNl—e

where the j € N label the Ej € K. Moreover, for the calculation we had to assume k=0 ¢ K,
which corresponds to 2 = 0 and is the usual infrared divergence. More details on computing this
partition sum can be found in Appendix B. After performing calculation in this regularisation,
we remove the regulator by taking the limit L — oo.

With this regularisation, the thermal Wightman functions (9.3) and (9.4) can be computed
explicitly:

GZo (T = Gt — ) = (O€°,(F,1)0E"(F, 5)), = tre {6E(&, 1)OE”, (7, 5)pe }
d3kd3
-~ [smr e & PTERPTG,
2 QkQ rue{i}
.trg{[bze—mkt—i-ikf_i_ (br_k)femktﬂkf} [bge—iﬂps+iﬁgj+ (b'zip)feiﬁps—&-iﬁﬂ} pg} :
(9.9)

where [P_T(E)]? = [P_T(E)]géi?. Using the explicit expression given above for the Gibbs state
and the trace in the occupation number basis from Appendix B, we obtain the following results:

tre {Objpe b =0 (9.10)

tre {0(6",) pe } = 6™6(k + Ptre {br(0F) pe } = 67™0(k + Ptre {[nf + Ups}  (9.11)

tre { (71 bype } = 070( + pytre { (bF)Tbhpe | = 670K + p)tre {nf.pe} (9.12)

tre {(b)F (0", Tpe} = 0. (9.13)

Reinserting this back into the Wightman functions in (9.9) they simplify to

@@ gt -9 = [ gt S (PP R,
2(2m) Qk e{i}
: [(trs {nhpe} + 1)e I WE=TRED) 4 g (F 5oy eI (= 0FiRE- f)} ,
(9.14)
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where we can use (B.8):

1 coth (6—52)’“) 1

This result is independent of the polarisation, hence we can evaluate the sum over the polarisations
separately and obtain the transverse-traceless projector

> PTREPT (R = PO (k) (9.16)

re{t}

From this follows the last equality above in the Wightman function (9.3):

Gt (T — gt —s) = Py G7(F—§,t —s) (9.17)
with
S d*k —iQp (t—s) ik (F—) i (5—t) ik ()
G (x—y,t_s):/ig[(z\r(gk)ﬂ)e : D 4 N(Q) e 7]
2(271’)§Qk
d*k 0 0 —ikO (t—s)+ik(Z—7)
_ / N () + 18k — ) + N ()3 + )] e 7
2 271' QQk

= / N (k) + 1] [0(° = Q) + 6k + )| e #CHHRED - (9.18)
2 2’/’(’ 2 Qk
where we used that N(—Q) = —[N () + 1]. Defining

7 (. IF) = [+ NGO and ok D) = 5 06 — ) — 6080 + 2]

we can write down the Wightman function in its spectral decomposition:

d*k o ‘ o
G (= Gt =) = [ 7 (O, IRl ¢, (9.19)
(2m)3
For G<(Z — ¢,t — s), defined as
Gl (F— gt —s) = PYY G (F -t —s), (9.20)
a similar derivation yields
d*k - ; (it
G (F—git—s) = / 0 (KO, ||| )=t (9.21)
(2m)3

with
p< (KO (1K) = N(E)p(k", [[E]]) -
From this spectral decomposition of the Wightman functions it is immediately possible to see the

additional effect caused by the finite temperature in the environment, evident by the presence of
the Bose-Einstein distribution N (k"), which vanishes for zero temperature parameter © = 37! =
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0 of the Gibbs state. As usual, the two thermal Wightman functions can be combined to build
the thermal Feynman propagator:

G(Fab.

v

(% — gt — s) =(T— 6E°(Z,1) 6E°(7, 5)),
a b = — a b = —
=P%°%G7 (T —g,t — 5)0(t —s) + PG G(Z — g, t — 5)0(s — 1)

ab Pk oy (t—s)+iRE—)
=P G(t—s)/iée
2(27T) 2 Qk

3 .
+O(s — t)/cuze—iﬂk(s—t)-&-ik(g—f)
2(27T)5Qk

)]

<y

o [k .
+ it | oy, VO sl — ) K -

F)ab /= =
:G(@:)(] ibj(fC —y,t—s)

. &k o
+P ibj / MN(Q;C) cos[(Qx(t — s) — k(X —¥)], (9:22)

where 0(t) denotes the Heaviside step function which is one for non-negative arguments and
zero otherwise. The first part is the ordinary Feynman propagator one obtains at a vanishing
temperature parameter O, that is when the Gibbs state merges into a vacuum state, and the
second part is the thermal contribution that obviously vanishes for © = 0. In case of vanishing
temperature parameter © = 0, we obtain N () = 0 and find the Green’s function of the zero
temperature case that takes the following form:
F S S
Gga:)oaibj(x —y,t—s)
d3k . I d3k . o
— POL’Lbj 9(t . S) / 7§671§lk(t78)+1k(as*y) + 9(8 - t) / 7§671Qk(87t)+1k(y7‘r)
2(27T)2Qk 2(271')2Qk
_ pab / d'k i o~ ikO (1) +ik(T—7)
v Jra (QW)% k2 + e

1 d*k 1 L0 B2
— pac Pb.e 5d15fm Seed SefOte — Seqde 7/ —ikO(t—s)+ik(Z—7) ) 9
il jm [ df + 0cf0d d f] 2 Jpa (271_)% L2 —|—i€e (9 3)

Thus, the results is just given by the transverse-traceless projection of the spatial part of the
graviton propagator in harmonic gauge, see for instance [164] for the explicit form of the graviton
propagator. Note that we chose the integration contour in the second step such that we obtain
the Feynman propagator. After a four dimensional Fourier transformation of the entire thermal
Green’s function and again choosing the Feynman prescription we obtain:

GMebip) = P, @{ + 2wN<ﬂp>6<p“pu>} : (9-24)

PHpy + i€

which indeed has the expected form, see for instance [165]. We will use this propagator in part III
of the thesis, where we connect the one-particle projected master equation to Feynman diagrams.
Note that the aspect that we obtain a decomposition into the ordinary Feynman propagator and
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a thermal correction is caused by the fact that we use a mode expansion that involves a splitting
into positive and negative frequency modes. As a consequence, normal ordered expectation values
with respect to thermal states are in general non-vanishing as for instance <b;r€bk>€ = N(Q) # 0.
Vanishing expectation values of normal ordered products are usually an important property in the
proof of Wick’s theorem. Given that we are working with a Gaussian state for the environment
and an interaction Hamiltonian being linear in the environmental fields, we can calculate the
relevant expectation values in the model we consider directly without the use of Wick’s theorem.
However, for different and more complicated models the application of Wick’s theorem might
be advantageous and for this purpose it is often convenient to consider a different splitting than
in the zero temperature case such that the expectation values of normal ordered products with
respect to thermal states also vanish. A detailed discussion on possible splittings in this context
as well as the relation between different choices of splittings is presented in [166].

Now we can write down the second term on the right side of in the master equation (9.1) in terms
of the thermal Wightman functions:

ﬁ/ot ds trg { [E[Tl(t), [ﬁTI(S),ﬁs(t) ® 'OSH} _

t
= —K ds/ dSm/ d3
/0 R3 R3 Y Z

{ [Jr(fv t)a Jr(?ja S)ﬁs(tﬂ G~ (f - H? t— S)
re{+}

+ [ﬁS(t)JT(?Z S),Jr(f,t)] G<(f_?77t_s)} : (925)

To continue, we define the quantities D(E, t—s) and Dl(E, t — s), the three-dimensional Fourier
transforms of the dissipation and noise kernels D(Z,t —s) and D;(Z,t— s), related to the commu-
tator’s and anticommutator’s correlation functions and also to the thermal Wightman functions
G~ (Z—y,t —s) and G<(Z — ¢,t — s) in the following manner:

[66°,(%,1),66",(7,5)| = P4 [G7 (& — .t = ) = G (&~ Gt — 9)]

a b Pk i)
— Pt / AR Dkt —s) (9.26)
R3 (27)2
tre ({06°(7,1),08",(7,5)}) = P44 [G7 (@ — Gt — 5) + G=(7 = gt — 5))
3 o — —
— po, / Tk Dy (Rt - s), (9.27)
R3 (27‘(‘)2

where we used that for the model considered here the commutator in the first equation is propor-
tional to the identity operator and thus can be pulled out of the trace. The direct computation
then yields

Dt —s) = —Sm@’;z(:s)) (9.28)

cos(Qx(t — 9)) '

Dy(k,t —s) := 2N(Q) + 1] o

(9.29)
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Using these definitions, we obtain in Schrédinger picture the following TCL master equation for
the system density operator pg(t):

%ps(t) = —i[Hs + U, ps(t)]

_ g Ot dSZ:/]R3 >k {iD(E,t ) [JT(E), {JT(—E, s— t),pg(t)H

-

+ Du(Rot = ) [Jo (B), [Jn(=F,s = ), ps ()] } (9.30)
with the matter system’s Hamiltonian operator
Hg := /3 d3k wy, a,t ay, (9.31)
R

as well as the operator U for the gravitational self-interaction of the scalar field that was defined
in (8.13), the operator-valued distribution J,.(k, t) defined in (8.19) and J,(k) = J,.(k,0).

To facilitate the comparison of our results with those already existing in the literature like for
instance the ones in [60, 62, 63], it is of advantage to rewrite the master equation in (9.30) in
two equivalent ways. The first alternative and equivalent form is given by

%ps(t) = —i[Hs + r U, ps(1)]

CO &
+ g /d?’k:z {thﬂ(k?) [ (B), |ps(®), T (k,1)]| + hc.

* g;k r(R), {ps(®), T (R, t)}] + h.c.} : (9.32)

with .
TR ) = / ds e =9 I (B s — ¢) (9.33)
0

and where h.c. denotes the Hermitian conjugate. This form of the master equation is similar to
the master equations derived in [60] and [63]. While the first reference investigates also a model
where a scalar field is coupled to linearised gravity, the second one replaces the scalar field by
a photon field. Let us briefly discuss the similarities and difference of these models and the one
considered here: At the classical level, one of the main difference is that we formulate the model
in terms of Ashtekar variables whereas the models in [60, 63] are based on ADM variables. Thus,
we have to deal with an additional Gaufl constraint in the model that also needs to be taken into
account when gauge invariance is considered. While we presented a way to work with a gauge
invariant formulation of the classical theory by means of constructing suitable Dirac observables
and also showed that one can construct a canonical transformation on the original phase space
that provides a natural separation of the physical and gauge sector of the phase space by the
transformation in section 7.7, in the papers [60, 63] a specific gauge fixing and another attempt
to construct observables is used to eliminate the gauge degrees of freedom, see the discussion in
section 7.9.1. Furthermore, we consider a standard boundary term [148] that ensures that the
action in terms of Ashtekar variables as well as its variation are well defined and we expect that
the corresponding ADM boundary term should be included in the formulation of the models in
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[60, 63] as well. Note that in our case the boundary terms cancel the term in dHc,, that is
linear in the linearised geometric contribution to the Hamiltonian constraint and the remaining
matter part combines with the % in front of the action to the energy density of the scalar field
in k0 order. In contrast, in [60, 63] no perturbations of linear order have been considered in the
canonical Hamiltonian but the x° order is present. Therefore, effects of the missing boundary
term cannot be seen in the final master equation when comparing the two results.

For the quantised model let us comment on the work in [63] and [60] separately, starting with
the latter. One difference in the Hamiltonian operator in our result and the one in [60] is the
form of the self-interaction part because we choose a different normal ordering compared to [60].
We chose to normal order the entire self—interactiop part of the Hamiltonian operator, whereas

in [60] only the individual contributions p,, ¢, V and ¢§ were normal ordered. Albeit the

current operator valued distribution J, defined in (8.12) is the same as in [60], it appears in their
Hamiltonian (8.11) with a different factor of v/2 compared to our coupling. This difference has
no physical effect because it is absorbed at the level of the master equation for the following
reason: The different factor of /2 arises because the Hamiltonian for the pure gravitational part
contains an additional factor of % when expressed in Ashtekar variables and working with 6€ and
dC compared to the one in ADM variables in [60]. This leads to an additional factor % in our
Fock quantised gravitational variables compared to the ADM variables. In addition, in terms
of ADM variables the interaction term in the Hamiltonian density reads —%5h:{bT T while in
Ashtekar variables it is given by +k3£%6% T,. This difference can be explained by the relation
between ADM and Ashtekar variables. In the case of ADM variables, the gravitational physical
degrees of freedom are given by the transverse-traceless components (5h = (5h «d and the
interaction reads 5h T which is then quantised in [60] and the couphng of the gravitational
gauge degrees of freedom to the energy momentum tensor is contained in the self-interaction
part. In our case however, writing dhyp in terms of the perturbed co-triad, that is dhg,(E) =
—525a05ECZ» — 6L 0pe0 ES, + 045050 B¢, and then using the symmetry of the energy-momentum tensor,
we obtain dh.p(E)T® — [—26L6pe + 04p0L]0 B¢, T, where the gravitational physical degrees of
freedom only enter in the first term and we obtain in the linearised theory just —26€%6iT0.
This difference already present in the classical Hamiltonian has no effect on the final equations of
motion because with our convention the Poisson bracket between 6.4,°, 6€% involves an additional
factor of % compared to the Poisson brackets used in [60, 63], cancelling the additional factor of
2. The minus sign is also cancelled because in our case the momentum variables couple to the
energy momentum tensor whereas in [60, 63] the coupling is via configuration variables. This
kind of cancellation carries of course over to the commutator at the quantum level.

A further difference is that the final master equation presented in [60] is of Lindblad form (3.14).
This is a significant difference because, as we will show in the following, the master equation in
(9.30) we obtain is not yet of Lindblad type (see section 3), but it requires further assumptions
and approximations respectively to be of this form. For the purpose of discussing this, we rewrite
the master equation in (9.30) in another equivalent form:

%ps(t) = —i[Hs + & U, ps(t)]

- ~

Z R3 QQk JT (k), J’”(E’ t)ps(t)] +N(Qk)[ﬂ(E) [JT(Eu t), ps(t)]] —i—h.c.}.
(9.34)
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In this form, one can clearly separate the dissipator into a part associated with zero temperature
(terms without N(€y)) and a second part corresponding to finite temperature (terms including
N(Q)). All three forms of the master equation derived in this part of the thesis are time-
convolutionless. However, they cannot (yet) be brought into Lindblad form, as there are still
time-dependent quantities apart from the reduced density operator itself present in the dissipator.
Nevertheless, we can bring the master equation into a form which is similar to the first standard
form introduced in (3.11) and which admits the splitting of the dissipator into a Lamb-shift
Hamiltonian and a remaining contribution. To this extent, we start from the formulation in
(9.34). First, we note that the J,-operators can be split in the following way into pairs of
creation and/or annihilation operator-valued distributions:

“(E,ﬁ) (9.35)

(2
i(l%‘,w:—/ v Zyr 5) F(Q + wa(F, ;1) (9.36)

(27 2 a=1
with
3R, B) = afr Wm [P’ [PT ()] wi(k,7) = wp = Wy (9-37)
Ji(k,5) = al,_a W P’ (PR wnlReD) = ey — (0.38)
JHR,B) = apaispg———— m[ P[P (k)] wy(k, ) 1= —wp —wiap  (9:39)
3k, 5) = ajal o W_W[ P[P (k)] wr(k, B) = wp + Wrap (9.40)
and

t ) ] )
t) = / ds e~ w(t=s) = i(e_“"t —1). (9.41)
0 w

Using this expansion in (9.34), the dissipator can be rewritten as

Z/ d3k d3pd31{Aab( l—»]—{f )|: (k‘ l)ﬂS() g(Ejmq +hc} (942)

ria,b
with

L 1
Aab(p7l;k7t) ::Qik

t . B
=2 / ds G (k,t — s)e (=) (9.43)
0

(V) + 1) f( + R, D) + N () f(= e+ wn(E, 15 1)
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where G” (k,t — s) denotes the three dimensional Fourier transform of the Wightman function
G~ (Z — y,t — s). Combining the new coefficient functions in the following form
1

Sa(P TR, 1) 1= o (Aw(P.EE, 1) — Aj(LRiE, 1))

1 e*’i(Qkerb(’;l )t -1 ei(Qk‘i’wa(E’m)t —1
20, Qi + wp(k, 1 Q. + wa(k, P)

67:(Qk_wb(lzvl )t —1 e_i(Qk_wa(Evﬁ))t —1
— N(Q) — + = (9.44)
Qr — wy(k, 1) Qk — wa(k,p)
Rap(. 1 K, 1) = Doy (7,15 5, 1) + A (L5, 1)
: —i(Qtwp (D)t _ | i(Qtwa (5 _ 1
i e e
[ sty
Q. + wp(k, 1) Qe + wa (K, P)
i(Qkfwb(Evl_‘ )t —1 7i(Qk7Wa(E7m)t —1
- N(ﬂw{ - 2 ) H . (9.45)
Qk —Wb(k,l) Qk _wa(kvﬁ)
we can split the dissipator into two parts:
Dlps| = —ir[HLs, ps(t)] + Drurst[ps] (9.46)
with the Lamb-shift Hamiltonian operator
a3k d3 d3l TE o oo
= / S° Su@ LE 1) jok5) () (9.47)

r;a,b

and a new dissipator term being in a form similar to the first standard form:

d3k‘d3 d3l = = = a7
Dﬁrst[PS] 2/ p Z Rab l k ( (k,l)PS(t)]T(kivﬁ)T

r;a,b
_ % {jg(é,mfjf(/%lf),ps(t>}> o (948)

where the label ’first’ refers to the dissipator in first standard form. The difference to the first
standard form shown in (3.11) is that the coeflicient function Ry, is still time-dependent and
thus the corresponding master equation is not of Lindblad type. Often, a Lindblad form can be
obtained for a given master equation by applying the second Markov approximation, that is by
formally sending the upper limit of the integral involved in (9.43) or directly ¢ in (9.44) and (9.45)
to infinity leading to time-independent coefficients. Applying the second Markov approximation'?
for the model considered here is less trivial than in for instance some of the standard decoherence

12 An example of a model where the second Markov approximation cannot be applied can be found in [167]. The
reason here is that the chosen environmental operators are non-dynamical, yielding correlation functions with
no dependence on the temporal coordinate. In the model in [167] this results in a set of effective system
operators in the final master equation that depend linearly on the temporal coordinate preventing them from
applying the second Markov approximation.
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models in quantum mechanics discussed for instance in [45], because in the limit in which we
send the upper limit of the temporal integral to infinity, we can no longer work with ordinary
functions but need to consider distributions along the lines of [168]. Combined with the fact that
the result obtained from the remaining integration over all modes might not have the properties
ordinary test functions have, it requires a careful analysis how this limit can be taken in general.
Therefore, we will analyse this approximation together with the remaining integration over the
modes in detail for a single scalar particle in part III of this thesis.

If we ignore such subtleties for the moment and simply send ¢ formally to infinity, then the master
equation from [60] coincides structurally with the one in (9.32) apart from the explicit form of
their last term, which is is given by {J;., [ps, Ji|} + h.c.. In contrast in our derivation we actually
end up with [J,, {ps, J}] 4 h.c., which yields different terms and from our calculation we do
not see a way how their result can be reproduced. In [60] no detailed derivation of this result is
presented but the authors cite [45], where however also such terms are not involved in the master
equations.

As already mentioned, the master equation in [63] involves a photon field instead of a scalar field
and thus the projectors involved are those that project on the physical degrees of freedom of the
photon field. Most of the differences have already been pointed out above because the procedure
in [63] is quite similar to the one followed in [60]. Compared to [60], more details on the derivation
of the Lindblad equation are presented in [63] and it is derived by means of a Born-Markov and
a (weak) rotating wave approximation, which will be discussed in more detail in part III. The
form of their master equation after the Born-Markov approximation is structurally the same as
the one in (9.32), also the commutator-anticommutator structure agrees.

Note that the master equation in (9.34) looks, apart from the expected differences due to their
usage of ADM variables, similar to the one derived in [62], where a Dirac quantisation was carried
out and the physical degrees of freedom were identified by imposing the gauge conditions in the
quantum theory and specialising to the transverse-traceless degrees of freedom. In a second step,
they then derived a master equation using the influence functional approach (see e.g. [45] for an
introduction) for a general bosonic field. Their final master equation is a TCL master equation
that, similar to the result derived in this paper, does also not exhibit Lindblad form.

The physical investigation of the final master equation is complex, as the equation is in general not
completely positive, in contrast to an equation of Lindblad type. Apart from applying a second
Markov approximation in order to arrive at second standard form, it is required to diagonalise
the coefficient functions with respect to the labels (a, p) and (b, l_j In this context, an application
of a rotating wave approximation is beneficial, as it has for instance been used in [63]. For
the model considered in our work this needs a further detailed analysis because applying the
above-proposed additional approximations to cast it into a completely positive form, one looses
in general some features of the dynamics of the system. This will be analysed in detail when
performing the one-particle projection of the master equation in part III.







Part IlI.
Gravitationally induced decoherence on
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to quantum mechanics
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The time-convolutionless master equation for a scalar field with an environment of linearised
gravity, which was derived in the previous section, still makes it complicated to extract physical
predictions from it. This originates in several points: firstly, its field theoretical structure makes
a connection to physical systems that are considered in experiments rather hard. Secondly, it is
not yet in a completely positive form, hence it might lead to unphysical negative probabilities.
Thirdly, its underlying classical model was quantised in a Fock quantisation, hence the corre-
sponding quantum field theory contains in general divergent terms when computing scattering
amplitudes which have to be renormalised before one can draw physical conclusions from it and
this issue is inherited to the master equation. In this part of the thesis, we tackle these problems
by considering a one-particle projection of the TCL master equation.

10. Projection of the field theoretical master equation on the
one-particle space

The content of this section was already published in [2]. Here, it is presented with some modifi-
cations compared to [2] to adapt it to the flow of the thesis.
In this section, we discuss how such a master equation for a single scalar particle can be obtained
starting with the final field theoretical master equation from the previous part with the dissipator
given in (9.46):

0

5;75(t) = —ilHs + £ U + & His, ps(8)] + Drirst[p5 (1)] (10.1)

where pg(t) denotes the density matrix of the scalar field and k = 8”0# the coupling constant
between gravity and matter in general relativity with Newton’s gravitational constant Gy and the
speed of light ¢. Furthermore, there is the self-interaction U of the scalar field due to the presence
of the gravitational field defined in (8.13), the Lamb-shift Hamiltonian Hpg defined in (9.47) and
the dissipator Dg,et[ps(t)], defined in (9.48), which is in a form similar to the first standard form
(3.11) but still with time-dependent coefficients. When working with field theoretical master
equations, such a one-particle projection is commonly applied to investigate some features of the
master equation, see for instance the works in [60, 62, 63, 113]. There exist however different
methods on how to perform this projection in detail. In [60, 62, 63] the procedure is carried
out such that the final one-particle master equation is probability conserving, which requires to
neglect some terms that would otherwise be present in a direct projection. In contrast, in [113]
a different strategy based on Thermo Field Dynamics (TFD), which is a formulation of quantum
field theory at finite temperature (see [169, 170] and for an introduction [171]), is employed,
in which these terms still contribute to the one-particle master equation. Here we follow the
method used in [60, 62, 63], but keep all possible terms and investigate their influence on the
one-particle master equation. It will turn out that after applying an on-shell renormalisation
and Markov approximation, they will not play any role for decoherence, but will remove the
remaining contribution of the Lamb-shift-like term to the unitary evolution after the rotating
wave approximation has been applied.

To obtain the one-particle projection of the master equation in (10.1), we replace the density
matrix with the corresponding density matrix for a single particle in momentum representation

pi(t) = / & / & (i, 5,1) al, 10) (0] a (10.2)
R3 R3
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in the master equation and neglect all contributions that project out of the single particle space.
In this formulation, p(@,,t) is the (quantum mechanical) density matrix of a single particle in
momentum representation.

In the following we will analyse the corresponding individual contributions in (10.1) separately
and further discuss the assumptions used in the model considered here as well as compare them
to the existing literature.

The first term of the master equation, representing the evolution of a free scalar particle, can be
computed immediately to yield

—i[Hg, p1(t)] = —i/ dBu [ dPv (wy — wy)p(T, T,t) al, 0) (0] a, . (10.3)
R3 R3

The contribution of the second term depends on the structure of the form of the operator U.

The detailed expression is given in part II in equation (8.13), for the analysis here it is however

enough to use that U consists of different combinations of always four creation and/or annihilation

operators for the scalar field, i.e.

U= / d*ky / d*ky / d’ks / ks |C1 gy Opy Opyap, + Co af, g, apya,
+ (3 aklaLQaksam +..+qNv aZIaLQaL’a};J , (10.4)

with the coefficient distributions (; = Ci(El, Eg, Eg, E4) that contain delta distributions that relate
some of the momenta. When applying normal ordering to this operator, as it is done in part 11
of this thesis, then it will not contribute after the one-particle projection: in the summands of U,
where the number of creation operators is not equal to the number of annihilation operators, the
resulting terms would project out of the one-particle space. In the other summands, there are
exactly two creation and two annihilation operators which, when normal ordered, annihilate any
one-particle state. In [60, 63] the normal ordering of U is applied differently: in their work the four
annihilation and/or creation operators are normal ordered pairwise!®. In that case contributions
of the form : allakg s algam : preserve the one-particle space and thus still contribute after
the one-particle projection. To distinguish these two types of operator orderings, we denote the
first one, where U is normal ordered, total normal ordering, and the second one partial normal
ordering. Here, we continue to consider a totally normal ordered Hamiltonian.

The third term, the Lamb-shift-like Hamiltonian, as well as the fourth contribution, the dissipator,
both contain the same building blocks. To evaluate them, it is sufficient to consider the following
three combinations:

GA kD) Bk Dpi(t)  and  pi(t) jA (kDTGP and P (kD) pi(t) 52 (R, D),
) (1) (I11)

(10.5)
where the j;fl(lg, p) denote individual and different normal-ordered current operators labeled by
A € {1,2,3,4} that carry a polarisation label r» € {£} and two momentum arguments. These
current operators were defined in detail starting in equation (9.37).

At this point arises the question whether we want to enforce trace preservation in the one-particle
master equation, which corresponds to probability conservation. In [60, 62, 63] this is done, which

13The reasoning for this is that U arises as combinations of two operators that each contain two creation and/or
annihilation operators, as can be seen from its definition in (8.13).
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results in the exclusion of specific terms from the one-particle master equation. These terms can
be identified from the general form of the master equation in (10.1) as we will discuss now: it is
evident that when applying the trace the commutator vanishes and one is left with

& tr {os(t)} = tr {Dlps (1)} (10.6)

Inserting the definition of the dissipator given in equation (9.48) then yields

0 (13]<:(13 d3l - -
—tr{ps 2/ Z Z Rap(p, L k1)
re{+} A,B=1
VS I S
{2 Dos @i E5) - 5 {7 Fp P E D ps(0)}}

(10.7)

where the Rap are time-dependent coefficients. When the current operators j2 are individually
projected onto the one-particle space, due to the cyclicity of the trace all terms in the difference
of the two traces are exactly canceled and one obtains a preserved trace of the density matrix,
hence probability conservation. This is the approach used for instance in [60, 62, 63]. Another
option is to apply the one-particle projection in such a way that each entire term in the master
equation has to preserve the one-particle space. This is for instance done in [113], where two
scalar fields are considered, one as the system and the other one as the environment. In this case
there will remain terms in the one-particle projection of the product of two current operators
in the last term of (10.7) that have no counterpart in the first term of (10.7) and thus will not
cancel in the difference of the two traces.

To keep our analysis as generic as possible, we will include these terms in this work and investi-
gate their effect in the one-particle master equation and denote this one-particle projection the
extended one-particle projection. To take them into account in our further calculations, we will
introduce a factor dp in these contributions to be able to switch between the extended one-particle
projection (dp = 1) and the non-extended one (dp = 0).

It remains to work out the one-particle projection for the Lamb-shift Hamiltonian (9.47) and
the dissipator (9.48) of the master equation in (10.1). As just discussed, they contain the same
structures of operators (I)-(III) from equation (10.5). Hence, we start with the evaluation of
these three kinds of terms and consider all possible combinations (a,b) that give a one-particle
state after application. To keep track of all different combination in the three cases, we do this
using a table. Considering only the creation and annihilation operator valued distributions a,(j)

in the j-operators, we find:
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D ekt Rk 1) al[0) (Olay
(L)  af, apafarral, [0) (0] ay = (T + k — 1) a,Lﬂ)aPG} 10) (0] @,

= 85+ k — @) (5 — 1) af,0) (0] ay
(12)  af,,apay_yaia}0) (0], = 8*(+ @) 8* (5 + I+ k) al, 0) (0],
1) al ey rajapal, [0) (O ay = 63(k + T @) 6°(5 + I + k) af, 0) (0] a,
(2,2) a'ja_pkal, pa_al|0) (0] ay = 3T+ a) 83— 1) al 0) (0] ay
(4,4) op a,k,papa;raik_lal |0) (0| ay = dp (a) see below
(I1)  a},[0) (0] ay jg (k. p)" 32 (F, 1)
(L) a}|0) (0] aval, apajarir = 63 (F+ k — ) 8° (5 — 1) af, [0) (0] s
(1,2)  af,10) (0| aval, japa’;_ja—y = 8 (k + 57— ) 63 (5 + [+ k) af, |0) (0] ay
(2,1)  al0) (0| aval ja_p_rajar = 3+ ) 3 (F+ [+ E) al 0) (0] ay
(2.2)  al,|0) (0] aval ya_pga', ya—y = *(F+ ) 635 1) al, |0) (0] a,
(4,4)  6pal, |0) (0] ava_k_papajaikfl =dp (b) see below

(IIL)  j4(E, 1) af, 10) (0] av jg (K, )’
(L1)  ajarral, 10) (O] aval,, jap = (T + k — @) 6 (k +p — 0) al,_;,0) (0] @y,
(

(1,2) aTl pa—al, 10) (0] avaj a, = 63(k + p— ¥) 6 (i@ + ) az_k
(2,1)  ajagnal |0) (0 aval ya_p_i, = (5 +7) ([ + & ~a al . 10) (0] ay_¢
22) al\_ya_ia] [0) (0]aval yap i = 835+ 6@ +Dal,y [0) (0] aue

The expressions for (a) and (b) are calculated separately because, as will be discussed below,
they include vacuum bubbles that require a renormalisation. By applying the commutators and
commuting all annihilation operators towards the vacuum state one obtains:

(a) = a—p—payaja’,_,a}[0) (0] a,
=[P F+E+ DG+ F+ 1) + 85— DOEE— 1) + 87+ k + Do* @+ k + p)
+ 035 — 1) (i + k + p) + 83— @)8*(F— 1) + 8° (5 — @)8° (k + p+ 1] al, 0) (0] av,

(b) =al,0) (0] ava_ypapafa’
=[BFEHE+DEG+E+ 1)+ 03 F—DoEE— 1) + 0 (F+k+ D@+ k +1)
+ 8@ -DET+E+D)+ @0 F— 1)+ 6@ — 1)k + 5+ D] al [0) (0] ay. (10.9)

Note that under the map (@,7,1) < (7,1, ) we can get from (a) to (b) and vice versa. These
additional terms that are present in the extended one-particle projection correspond to physical
situations in QFT in which in the intermediate steps two particles are created and annihilated
afterwards. This also includes the case where the original particle is left invariant and a vacuum
bubble is created. These vacuum bubbles are encoded in the first two terms in both expressions,
which contain the square of a Dirac delta distribution. This is a problematic term since, as can
be shown, the corresponding integral over this expression still diverges when for the individual
delta distributions the regularised version is considered and the regulator is removed after the
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integration is performed. We will deal with this issue further below in this section where we
renormalise the density matrix to handle the divergent contributions involved. For now, we re-
place one of the two delta distributions by a function including a regulator 63(k) — 55’(12), where
the regulator is sent to zero after performing the corresponding integrations.

In a next step, we evaluate the entire expressions appearing in the Lamb-shift Hamiltonian
and the dissipator. For each term, where the delta distributions resolve two integrals, that is for
all terms but the diverging ones, we choose to resolve the integrals over the range of the variables
P and I respectively. Then we are left with the integration over the variables E, 4 and v as well

as with the sum over the polarisation labels r. Considering for V,; which is either R, or Sgp,
that were defined above in (9.45) and (9.44), the three expressions

: X [ dp [ a1V EE) g2 32l 0) 0] a, (10.10)
an: 3 [ dp [ a1 VB, ol 10) (0] ey 53,5 2CE. D (10.11)
Ay Y [ @ [ @1V EE 0 2G5 6l 10) 0] 2T (10.12)

that appear in the Lamb-shift Hamiltonian (9.47) and the dissipator (9.48), we obtain:

() %, [ ) VR ERD 27 Dab ]0) 0,
(1,1) Vn(u—k,d—k;k,t) p(u,v) 4wuwu —P, (k) al, 10) (0] ay
(12) Vsl — F, it F, 1) p(d, 7)ot Pu(E) a}[0) (0]
@1) Va(—iiii— BE.0) o7.7) s Pu(B) ] 10) 0,
(22)  Vao(—ii, —ii; k, t) plil, B) g Pu(k) af, 10) (0] @y
(4,4) op (a) (see below)

(D) ¥, [d®p [ d*l V(5.1 k. t) o, [0) (0] a, jo (k. p) 52 (K, D)

(L) Vi@ = k0 KE,0) pld, ) gy Po(R) af[0) (0]

(1,2)  Via(T — k, =Tk, t) p(i, 0) g Po(k) af,|0) (0] ay

(21)  Var(=0,7 — k; ki, ) p(id, §) oo Po(E) af [0) (0] a,

(22) Voo, = k, 1) p(ii, ¥) g5t Po (k) @, |0) (0] ay

(4,4) op (b) (see below)

(D) 5, [ d® [ &3l Va (5,15 . ) 2k, 9)1 al, [0) (0] ao 32 (K, 1)

(1.1) vnw—aa—&awmmw@ﬁﬁ%ﬁffux> al, 1 10) (0] ay s
(1,2)  Via(T—k, —; k, t) p(@, T TP () al au . 10) (0] @y
(2,1) V(=74 — k;k,t) p(jﬁ)wﬁ (k) al,_y 10) (0] ay—g
(2,2)  Vao(—0,—1; k, t) P(U»ﬁwﬁ o(k) @l 10) (0] @y,
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where we defined
Pu(k) =Y _[a@ - m(—rk)]?[@ - m(rk)]? = 2[@ - m(—k))[@ - m(k))* = PPk uqupucug (10.13)

Y UqUpVeVg - (10.14)
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This contains the symmetric transverse-traceless projector which is given as

.1 - . - - . -
pabed (k) = i[P“C(k’)Pbd(kz) + P(k) P (k) — P (k) P(k)). (10.15)
with the transverse projector
k*kb
-
Next, we evaluate in more detail the coefficient functions S and R which were defined in (9.44)
and (9.45). Firstly excluding all terms from the extended projection, i.e. the ones arising from

the combination (4,4), it turns out that the coefficients appearing in (I) — (I1I) are equal to
each other in each group:

P (k) = 67 (10.16)

(cos [(Q + wy— — wu)t] — 1)

1 Nk +1
Q| Qe Fwyg — wy
N (k)

— Q. — wy— w)t] — 1
oo (o8 [ — v+ i) >}

= 5@,k 1), (10.17)

— - — —

Rll(ﬁ_ E)E_ Ea E7 t) = Rl?(ﬁ_ Ev _’L_[; k7t) = RQI(_{[)U_ k; 7t) = R22(_ﬁ) _ﬁak7t)
B 2{ N(k)+1 N (k)
T

sin [(Qx + Wy—p — wu)t] + sin [(Qp — wy—p + w1 }

Qp + Wy — Wy D — wWy—k +wy
= 2R ) (i1, K, t) (10.18)
and

Rll(g_ E, U — E; E, t) = ng(l_f— E, —’LT; E, t) = Rzl(—l_f, ’LT — E; E, t) = RQQ(-’E, —’LT; ki, t)
(ei(ﬂk+wukwu)t -1 ei(ﬂk#»wv,kfwv)t _ 1)

O + Wy — Wy D + Wy — Wy

(e —wy— g Fwu )t _ 1 —i(Q—wWy—gFwe)t _ 1

Qp — Wy + Wy Qp — Wy—p + wy

= 2R (i1, 5, %, 1) . (10.19)
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With these expressions, we can rewrite the equations for the Lamb-shift Hamiltonian and the
dissipator that contain the contributions of (a,b) € {1, 2}:

; 3 3 3 .
12} _ ik [d’kdud’y N Pyk) o), =
Y (0] = = [ G et ) ] 10) 0]y L S )

=

BPkdPudv | Po(k) o), >
5 Wp(u,v,t) aL |0) (0] @y T Sy p (U, k,t) (10.20)
as well as
Bk d3 d3 P,(k Y=
D2 (¢ / Y (@, 7, t) al |0) (0] ay (k) R\ (it k., t)
2 Wy —kWy
K d3l~c d%d% Py(k) (),
_ B fARaudY s sy o v (=)~

5 | gy @50 al10) Ola. ST R @R

PkdPudv Py (K) @) - >
“/ Wp(uavvt) a,_; 10) (0 ay—g e Ryp(U,,k,t).

(10.21)

It remains to deal with the (4,4)-terms that arise when using the extended projection. The four
summands from (a) and (b) without the terms containing the {-regulator yield
3k dPu dv t

Y 1K oo P, £ =~ Lo
_z[His },pl(t)] =-3 Wp(u,v,t) a), |0) (0| ay wu_écju S§Jlg)(u,k,t) op

it [ d3kdPudv P,(F) = -
= SR (i, t) af . (@ 10.22
+5 [ T e @ a0 al o) Oa, ST SP@E RN (102)

= | %t wnrg @ (cos [(Q + wWyqk +wu)t] — 1)

B N (k)
Qk — Wytk — Wy

(cos [(Q — wusrk — wu)t] — 1) }
= Sk t). (10.23)

After a substitution & — —k in the integration we find:

: 37, 73, 73 7
44} _ ik [dkdud’v Pu(k) (), 7
Z[I—ILS ?pl(t)] - 9 (271')3 p(u,v,t) au ‘0> <0‘ Ay W kWa SlP (u7k7t) 5
Bk dPudPv P, (k) .
- - v diivd T v (+) —
5 E p(u,v,t) al, |0) (0] ay o Sip (U,k,t)d (10.24)

where
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The same substitution and the definition

. 1 N(k)+1
R (@ kt) = — O + Wu i + W)t
1P(u7 7) Qk{Qk+wu—k+wu 11’1[( k_'_w k+w)]
N(k
o w( z ——sin (% — wk — @) } (10.26)
lead to:
k[ BkdPudde P, (k) L
D{4v4}[,o1] == / Wp(u,v,t) aL |0) (0] a, wU_(kwu Rﬁ;)(u,k:,t) 0
d3kd3 d3 Py (k -
2/ Y i, v,t) al, 0) (0] ay » (k) R\ (@,E,t) 6p. (10.27)
Defining additionally
Sk t) == S5 (@, k1) + ST (it k. t) 6p (10.28)
R, k,t) .= R (i, k. t) + R\ (i@, k. t) 6p (10.29)
gives us the opportunity to rewrite
i [ d3kdPudv P.k) 1), -
—ilH __ e e v o i , [y
i[HLs, p1(t)] 5 2n)? p(i,v,t) a;, |0) (0] " Sip(t, k1)
Bkdudv Py(k) o), =
5 Wp(u,v,t) al |0) (0] a, P Sk, 1) (10.30)
v— v
as well as
k[ d3kdudv P, (k) -
_ - u (1)~
Dlpn) =~ 5 [ S (.50l 0) Olay L R E
d3kd3ud3 o Py(k) Ly, >
-5 [ e o) Ola, U R
d%d%d% s P (k) @) =
R/Wp(u,v,t) a4 10) 00 =10 R TR (1031)

This can be summarised as

—i[HLs,p1(t)] + Dlp1] =
K / &k du d®v Py (k)
2 (27T)3 P Wy —kWy

/ d®k d3u d3
2

P, (k)

d3kd3 d3 ,
H/$ f R (i,5,k.t). (10.32)

(2m)?
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Finally, the terms in the extended projection that contain the £-regulator, that is the expressions
arising from the first two terms in (10.8) and (10.9), are analysed. These terms are equal for (a)
and (b) and read:

d3p d31 d3k d3u d3 - Pk

op lim [ =L dud’ 410y (0] ay Vaa(p, i, ) —— 2t F)
§-0 (2m)2 4.\ fp Wk p Wk
APE+E+ DG+ K+ D) + 87— o5 — 1))

p(t, ,t)

52(0) pa(t), (10.33)

where we used that V(P p; k, t) = Vau(p, —k = pk, t). Due to the equality of these terms for (a)
and (b), they drop out of the Lamb-shift Hamiltonian and are only left in the dissipator term:

: Bk dPp L Pyk) 4~
piv —6p2 1im / : 7. k1) —2 53 t) = Z(t)pi(t). 10.34
[p1] = py lim . Ry (p, pi K, )2wpwk+p £(0) p1(t) (t)p1(t) (10.34)

Written in this form, it becomes evident that they do act as a multiplicative constant and do not
modify the state p;. Therefore they are nothing but vacuum bubbles expressed in QFT language.
With the definition of Z(t) above, the entire master equation for the single particle is given by

(1) = ilHs + Hys, pr(1)) + Dlpr] + Z(W)pa (1) (10.35)

where from now on the terms absorbed in Z(t) are dropped from the definition of D[p;]. We can
see that the diverging term Z(t) can be absorbed by a renormalisation of the density matrix,
likewise to a renormalisation of the wave function known from QFT:

¢
() = P (1) = exp ( /0 dt Z(t’)) n(t). (10.36)
In terms of the renormalised density matrix, the one-particle master equation then reads:

%pY”‘) (t)=—i / d*ud®o pU" (i@, 7, ) i) (7] (wu —wy)

k[ dPkd3uddo P, (k)
_ 2B (ren) 2 2 Ao S u\)
>/ oy P 1) [i) (8]

/ d®k d3u d3
2

[R(@, k) +iS R (T, E, 1))

Py (F)

K/ A3k d3u d3v
(2m)3

To simplify the notation, we drop the label (ren) from the density matrix from this point on.
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The complex combinations R + S can be evaluated further and one finds
R, k1) + i8S (i, k1) =

:I:i{ N(k)+1 ( Fi( QA weu—p—wu)t N(k) +i(Qp— t
o Tl Wy— e —wWu )t 1) . (6 Qg —wy—pFwu)t _ 1)
Qp — Wy—k + wy

B Qik Qk“‘wu—k_wu
5P [N(k:) + 1] (e:Fi(Qk—‘rwu,k—l-wu)t _ 1) _ 6P N(k) (eii(Qk—wu,k—wu)t _ 1)
Qg + Wy +wy Qp — Wyt — Wy
td , .
= /0 Qi];{[]\f(]{;) + 1] T twur—wi)T L N (k) P wurtwn)T
+ 3p[N (k) + 1] eF (bt 4 g N (k) e —wumrmwr ] (10.38)

For R we have:

N . — i (Qptwy—p—wu)t _ 1 (U Fwy—g—wo)t __ 1
@ (i1, 7,k t) =——d [N (k) + 1] [ £ -
RlP(“’? v, R, ) QQk [ ( ) + ] Qk + Wy ks — Wy Qk + Wk — Wy
i(Qk—wu_k-‘rwu)t -1 —i(Qk—wv_k-l—wv)t -1
B N(k) & . €
Qp — Wy +wy Qp — Wy—k +wy
t g . .
:/ —T{[N(k:) + 1] et L N () /O @umrtwu)T
0 2€y
+ [N (k) + 1] el tevsmen)m . N () 7i(@wmtenrd = (10.39)
Defining then
N =t dr —i(Q _ (O —
C(i, k1) = / SN (k) + 1] e @i 4 N (k) o/ @wumiton)(10.40)
o S
. t—to . .
Cp (i, k,t) = / Ql{[N(k) 1] e Btwnmtenn 4 N () M Bmwmiwdnh - (10.41)
0 k

where we have restored the initial time!? ¢, that was set to 0 in part II, the one-particle master
equation in momentum representation has the form

A
o’

U, 0,t) = —ip(t, U, t) (wy — wy)

2 27)3 | Oyt kWt kW

d®k P, (k L L o
+“/( w(k) {C@+k¢¢w%ﬁ@+hho}mu+hv+ho_
0

M QOriginally, the integration is of the form ftto dre®* =7 The version given here can be achieved by substituting

t—7—T.
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The presence of the symmetric transverse-traceless projector PU(E) and P l”(E) is a consequence
of the chosen Dirac observables in section 7, and thus the physical degrees of freedom of the
linearised gravitational field. The term in the first line of the master equation in (10.42) represents
the standard unitary evolution of the free scalar particle. The remaining terms describe the
influence of the environment and encode in general different physical processes like energy shifts,
dissipation and decoherence. While the expressions in lines two and three only depend on the
state p(u, U, t) considered at time ¢, the last line links this state to other states p(u + k, T+ k, t)
at time ¢. This master equation however still has some problematic contributions that possess
UV-divergences and hence needs to be UV-renormalised, as will be discussed in the next section.
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11. Renormalisation of the TCL one-particle master equation

The content of this section was already published in [2]. Here, it is presented with some modifi-
cations compared to [2] to adapt it to the flow of the thesis.

Upon investigation of the individual contributions in (10.42) it becomes evident that some terms
exhibit divergences as will be discussed in detail below. This raises the question of at what stage
of the derivation of the master equation a renormalisation procedure should be carried out. In
the literature, there are different strategies how to deal with these divergent contributions. For
gravitationally induced decoherence, they have often not been computed in detail due to the rea-
son that they are expected to not modify decoherence but only influence the unitary evolution,
see for instance the discussion in [61, 62]. In [60, 63] the renormalisation of these contributions
has been performed in the end after a Markov and rotating wave approximation have already
been applied.

In this work, we choose the strategy to renormalise the master equation first before applying
further approximations or deriving physical implications. It will turn out that effects predicted
with a non-renormalised master equation might get modified or even vanish when working with
the renormalised version instead. An example of this kind is also discussed later in part IV, where
a quantum mechanical toy model for gravitationally induced decoherence based on the model in
[112] is applied in the context of neutrino oscillations. In that case the necessary renormalisation
is very trivial compared to the model considered in this part. There, the renormalisation causes
the contributions of the Lamb-shift Hamiltonian to cancel exactly. Consequently, all physical
implications involving contributions of the Lamb-shift Hamiltonian, as discussed for example in
[85], would be absent when working with the renormalised model presented in part IV in sec-
tions 16 and 17.

In order to carry out the renormalisation, we will first identify the diverging terms. As we
will discuss below in more detail, these are in particular the terms in the second and third line of
the master equation (10.42) that will also be present in the case where the temperature parameter
vanishes, that is for © = 0, in which the thermal state merges into a vacuum state. They are
of the form [ d%ﬁ and thus yield a logarithmic UV-divergence. Once these contributions are
identified, we express them in the form of Feynman diagrams of the underlying effective QFT.
For this purpose, we follow the strategy in [113], where a master equation for a scalar field with
an environment consisting of another scalar field is presented. Here the treatment is extended
so that the linearised gravitational field can be included as an environment. We will proceed
in five steps: first in subsection 11.1 we will identify the divergent contributions in the master
equation and then present the corresponding Feynman rules following from the underlying effec-
tive QFT based on the non-covariant formulation in subsection 11.2. Afterwards in subsection
11.3 we provide a set of equivalent, covariant Feynman rules in terms of which we perform the
renormalisation of the divergent contributions in subsection 11.4. Finally we discuss the resulting
renormalised one-particle master equation in subsection 11.5.
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11.1. Identification of the involved UV divergences in the one-particle master
equation

The content of this subsection was already published in [2]. Here, it is presented with some
modifications compared to [2] to adapt it to the flow of the thesis.

Starting from the master equation in (10.42), we want to investigate which terms on the right-
hand side are UV-divergent with respect to the [ps d®k integration. As the projector Pijln(l;) is
independent of the absolute value of /2, it does not influence the UV behaviour. Then, one can
identify four different types of contributions in the integrands after performing the 7-integration
and introducing the following sign factors o,01,09 € {£1}:

(a) - }kﬂk o iﬁwu: for large |k|, i.e. for |k| >> |@|,m this term becomes ﬁ and thus

leads to a logarithmic UV-divergence under the integral.

(b) - }kﬂk P iﬁown p(d+ k,5+k, t): assuming that p(Z, 7, t) is a proper, normalisable den-
sity matrix in position space for which the Fourier transform exists leads to the requirement

that p(w, ¥, t) has to decrease rapidly for large @, ¥. Therefore this expression is UV-finite.

(c) N(k)—2 L : a series expansion of the denominator of N (k) yields N (k) =

Wy—k Qs QpF+01Wy—p+0o2wy
. - . . n
Hence, this term tends to zero for large |k| and also the combination _f—

1
BlIEI+O(K?) o S )
decreases rapidly for x — oo, thus this kind of contribution is UV-finite.

(d) N(k)5 _lek O oo 1_k+02wup(ﬁ+ k,T+k,t): this contribution is a combination of cases (b)

and (c) and also UV-finite.

From this analysis follows that the expressions involving N (k), that would be absent in the
vacuum case and are thus denoted as thermal contributions in the following, are all UV-finite.
Some of the vacuum contributions, these are the ones that do not involve N(k), lead to UV-
divergences which we want to cure by a renormalisation. To achieve this, in the next section we
show in a first step that these terms correspond exactly to the self-energy diagrams for the scalar
particle in the form of Feynman diagrams.

11.2. Non-covariant Feynman rules and self-energy

The content of this subsection was already published in [2]. Here, it is presented with some
modifications compared to [2] to adapt it to the flow of the thesis.

In this section we present the Feynman rules in non-covariant form corresponding to the effective
quantum field theory from part II of this thesis containing a scalar field coupled to linearised
gravity, where the latter is considered as the environment, which is the basis for the master
equation in (10.42). Then, we rewrite these rules in the next section in a covariant form to be
able to follow the strategy of [113], where a suitable renormalisation for a master equation for a
scalar fields with a second scalar field as the environment is discussed. Here, we slightly extend
these methods in order to apply them to the case where the linearised gravitational field is treated
as the environment. The Feynman rules can be constructed from section 8:

e The scalar field has the standard propagator, which follows from its quantised mode
expansion in (8.5) and (8.6), which we denote by a solid line and which reads in the mostly
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plus signature convention: '
—1
R (11.1)
Here, k2 = — (k:o)2 + k2.

The propagator of the triad field was derived in equation (9.24) and is denoted in terms

of a curved line: 1
AN = 7Pab6d ];:
K (k) k2 — e

—1

+ 27N (k)o(k?)| , (11.2)

where the first summand is the vacuum and the second one the thermal part. The existing
tensor structure manifests in the form of the tensor structure of the STT-projector defined
above in (10.15). When contracted with a quantity that is symmetric in (ab) as well as
in (cd), like it is the case for the interaction vertex introduced below, the STT-projector
reduces to

- 1 1 1 1 1
Pade(k}) :5a65bd**6ab56d+Tkakﬁbk‘ckd* - 25ackjbkd776abkckdiiécdkakb ]
2 2k4 k2 2 2
(11.3)

The coupling between the scalar field and linearised gravity is encoded in the interaction
part of the total action in part II that is given as a reformulation of equation (8.18) by:

Sint = — / dt / A3 Hins(F,1)

3
- o o 1 - -
— _/dt/dEf K{iﬂ 6Eap(k,t) TO(—k,t) — 5 Too(k, ) T5 (=k, 1)

1 - N N . Legb
— zToo(/{:, t)Too(—k, t) + Toa(/{:, t)T0b<—/€, t) <5ab - — ) } ,

where TH (E, t) denotes the Fourier transform of the scalar field’s energy momentum ten-
sor'®. The interaction vertex between the scalar and the triad field can then be read off
and is related to T,,. Due to the fact that T,;, depends on derivatives of the scalar field,
the expression for the triad-scalar-field vertex is different depending on the direction of the
momenta involved in the diagrams. Considering the Fourier transform of T,,(%,t), where
the the scalar fields can be factorised, we find the expression fab(p, q)o(p)p(q) with

1 o 1
Ta(p,q) := §5ab[—poqo +p-q—m?*] - §[paqb + Dbga) - (11.5)

'5In position space, its components are given by

T = Too = 5 [ + (0.6) (9°9) + m*¢*] = e(6,m),

TOa — TaO — 7(5abT0b _ *5[11771'817@3: 75abpb(¢’ﬂ_)’
ab

T = 5 5 T = O [ (00) (0°9) — m*6] + (9°6) (8%).
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Hence, the triad-scalar-field-vertex is given by

N v
>vwv~ = MA< = Z.K‘Tab(appa JQQ) )
/4 o

where o0, is + if particle p is incoming and — if it is outgoing.

o The remaining terms in the interaction part of the action (11.4) give rise to an additional
second order vertex which cannot be split into first order vertices due to the lack of a
suitable intermediate particle in this effective field theory. They have the form

7I{/d3 /dg 1700(&) Too (§) + Toa (%) Top(§)0* — § (Too (&) Tg (7) + T (F)Too (7))
Ar||Z — 7|

_H/ﬁ /ﬁ /ﬁ 108T0a(7) 05T (9) (11.6)

(4m)?|Z = 21y = 211

The corresponding symmetrised Feynman rule reads:

N

_I%;NI(Z% q,u, U)

,,l;,
RN
with
1 ~ i . w KR
NI(p7 q,u, ’U) == ZTOO(p7 Q)TOO(—U, _U) + TOa(pa Q)TOb(_u7 —’U) 0% — 4];2

—*Too(pa Q)T (—u, —v) — %Tg(p, ) Too(—u, —U)] , (11.7)

with & defined using momentum conservation as k= P+ ¢ =1+ v. Note that a similar
vertex does also appear in QED when quantised in Coulomb gauge and there it represents
the Coulomb interaction, see for instance [131, 132].

o As external lines we only have the scalar field in the cases we are interested in here. This
follows the standard case for a quantised scalar field, the detailed expressions are however
not required for the following discussions.

Equipped with these Feynman rules, we will now show in the subsequent section that the divergent
contributions in the one-particle master equation can be identified exactly with the contribution
of the self-energy diagram constructed with the above Feynman rules. In the model considered
here this corresponds to the following Feynman diagram:

u—k (11.8)
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With the Feynman rules introduced above, the amplitude represented by this diagram and de-
noted by II(u?) has the form

() = /R 4 (;l:;ipabcd(z%') [ kQ__iiE + 27TN(1<;)5(1€2)] [inTon(, —(u — k)]

—i

C(u—k)2+m? —ic
- / A patea { S N(k:)&(kﬂ
=KUg UpUcUg i ) [y T

[imfed(u —k, fu)}

1
(u— k)% 4+ m? —ie

A3k - (U + wy—k)
r3 2(27)3 Qpewy— k(e + wy— g + 10 — i) (U + wy—g — u® — ie)
~N() !
M Q10 = Qp, + wyg — i€) (U0 — QU — wy_g, + i€)
N 1
Qp(u® + Qe + wyp — i€) (U0 + Qg — wy_k + i€)
=TT0c(u?) + g (u?) (11.9)

In the first step the definition of Ty in (11.5) was used and in the second step the k%-integration
was performed, where for the vacuum part the residue theorem was applied. In the last step, we
have defined the vacuum and thermal contribution to the self-energy as

A3k = (e + wy—k)
Hyae(u?) := / — P,k Y 11.10
() = r3 2(27)3 ( ){kau_k(ﬁk + Wy +ud —i€)(Q + wy—g — ud — ie) ( )

d3k

Mo(u?) =~ [ 5o s PuFIN (%) [ 1

Qe (u® — Qp, + wy— g — i€) (U0 — Qi — Wy + d€)

1
Qe (u® + U, + wy—g — i€) (U0 + Qi — Wy + d€) } '
(11.11)

+

If we now want to identify contributions in the one-particle master equation with the self-energy,
the following subtlety results: a key difference between the master equation in (10.42) and stan-
dard quantum field theory is that the latter is constructed for the limit tg — —oo, t — oo when
evaluating scattering amplitudes. To take this into account, we apply the method presented in
[113] for situations where there is a finite temporal interval. In this way, we can transform the
self-energy diagram into the second line of the right-hand side of the master equation in (10.42):

E(wy, U, t, t) := /t; dT/Rduo I (u?) cos[(u® —wy,)(t—7)] = /Ot_to dT/RduO (u?) cos[(u” —w,)7] .

(11.12)
The standard QFT-limit can be recovered, in which ¢ — co and t9 — —oo, and using this the
integral over the temporal interval can be rewritten as a d-distribution as [5° dr cos[(u® —wy)7] =

ol o dre= =0T — 7540 — ), that will set the external momentum u on-shell.
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After evaluating the u° integration we obtain for finite times ¢ and to:

K A3k - T - o
E(wu, U, o, t) = 5 Py(k i, k.t —t i, k,t —to)| , 11.1
Gttt =5 [ GpPg [0@E )+ Co@Re-w] . (113

which indeed, multiplied by a factor W%ju’ can be identified with the first term on the right hand
side of the second line of the one-particle master equation in (10.42) in the extended one-particle
projection. Given this results, it is now also easy to discuss the case of the non-extended one-
particle projection: the master equation for this case, i.e. for dp = 0, can just be obtained by
replacing the cosine in (11.12) by %e‘i(uo_“’“)T. We find that in the QFT-limit the difference
between the extended and non-extended one-particle projection manifests itself in a factor of 2.

To obtain the second term in the second line of (10.42), we can follow the same steps and just

have to replace ¥ by ¢ and take the complex conjugate.

With the results in this subsection we have shown that the UV-divergent terms in the one-
particle master equation correspond to the self-energies of the scalar particle. What remains
is to discuss the renormalisation of this self-energy. In order to be able to apply the standard
procedure for renormalisation in this case, however, we first derive the corresponding covariant
Feynman rules of the model considered here.

11.3. Covariant Feynman rules

The content of this subsection was already published in [2]. Here, it is presented with some mod-
ifications compared to [2] to adapt it to the flow of the thesis.

To be able to employ the standard renormalisation technique for the loop associated with the
scalar particle’s self-energy, we introduce in this section the covariant Feynman rules correspond-
ing to the effective QFT under consideration here. For this, we follow [131, 132], where the
procedure is outlined for QED.

In a first step we will demonstrate that specific sums of non-covariant Feynman diagrams add
up to the corresponding covariant Feynman diagram. For this purpose, we consider the sum of
the second order vertex in (11.6) with a second order combination of the non-covariant scalar
field-triad vertex, shown below (11.5). As will be derived below, the second order vertex in (11.6)
is precisely that term which restores covariance if we work with a fully covariant triad propagator
and a covariant vertex.

We will restrict our discussions mainly to a Coulomb-scattering type of diagram here which is
sufficient for our later applications. At the end of this section we will also briefly discuss the
diagram associated with the scalar particle’s self-energy. In the case of the Coulomb-scattering
type diagram, the above mentioned equivalence in terms of Feynman diagrams reads

N N N
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where the curly line corresponds to the covariant triad propagator. Next, we will present the co-
variant Feynman rules, then specialise them to the case of the Coulomb-scattering type diagram
to show the above equivalence. The corresponding covariant Feynman rules for the propagators
and vertices discussed in the last subsection are as follows:

e The scalar propagator remains unchanged

—1

=\ 11.14
k2 +m? —ie ( )
e The covariant triad propagator becomes
1 —i
= ;mpuupa (1115)
with 1
PNVPU = 7[77up771/0 + NuoMvp — nuunpo] . (11-16)

2
In the context of a linearised gravitational environment there is no multi-triad vertex and
therefore in the effective QFT considered in this work the triad propagator always couples
only to the scalar field-triad-vertex, see also below. The latter is symmetric in (uv) as well
as in (po). This allows us to slightly simplify the projector P,,,, whenever it occurs in
combination with scalar field-triad-vertices and express it as

1
P,prcr = NupMve — inpynpo . (1117)

e The covariant vertex is given by
N PA
= = ’Ti”(—2TW(app, 04q) + Uuyfz(appv 049)) 5
7 AN
where

~ 1 1
" (p,q) = 50" (Pog” —m?) - S+ ") (11.18)

Whenever this is combined with a triad propagator, the second term of the vertex contri-
bution vanishes because we have

N TS Muplve + Muolvp — Nuwtpe] = 20peTy — 21pe Ty =0, (11.19)

where we used that 7, = 4. Hence, for processes like Coulomb scattering we can replace
the expression for the vertex with

ikT" (0P, 04q) - (11.20)
e Since the second order vertex was used to obtain a covariant propagator and vertex, there
is no analogue of the second order vertex in the covariant case.

e The external lines for the scalar field remain unmodified and the ones for the triad field
are not important for this work.
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These covariant Feynman rules are in accordance with the ones'¢ presented in [172, 173], where
also a scalar field is coupled to a linearised gravitational field, except for the usual differences
caused by the choice of different signatures for the metric, as they use the mostly minus signature.
Using momentum conservation, i.e. k =p+ ¢ = u + v, yields

_ _ _ 1 y .
kFT0(p, q) = k'Too(p, @) + k“Tuo(p, q) = 5[610(193 —p* —=m?) +po(gg — @& —m?)] =0, (11.21)

- - - 1 y y
kM (D, q) = k2Toa(p, @) + K Tha(p, q) = 5[%(293 — 2 —m?) 4+ pa(@g — @ —m?)]=0. (11.22)

If the scalar field is on-shell, which we assume for a moment for the Coulomb-scattering diagram,
then the right hand side of both expressions vanishes. With this, one can directly show the
equivalence of using the covariant set of Feynman rules for the Coulomb scattering diagrams
discussed above of this: the left hand side of the equality for the Coulomb-scattering diagrams
at the beginning of this subsection is expressed in terms of the non-covariant Feynman rules and
the first diagram, which we label A, reads

—7 1
K k2

ik 4 - e KRN ((ga KR\ 1[0 kRPN [ Kk
—wTab(MQ)Tcd(—U,—U)[(fS _E?> <5 T2 ) 2 0% — 2 0% — P2

k|1~ ~ 1~ ~ 1 ~ ~
[Tab(pv q>Tab(_u7 —U) - iTaa(pa q>Tl§)(_u7 _U> + @kakbkcdeab(pv q)TCd(_ua _U)

1 ] T T abed (7
A 25(—Z/€)2Tab(p, q)Tea(—u, —v) Pabed (k)

T k2|2

L~ a br.c 1~ YRS agb
= = Toop T2 (-, —0)° = Ty, )T (s, —0)kR

1~ ~
- ET(;I(Z% Q)Tcd(_ua _U)kckd}‘| ;

(11.23)

where the overall factor of % arises due to the fact that it is a diagram of second order in the
expansion of the Dyson series. Next, we can make use of energy-momentum conservation (11.21)
and (11.22), as we assumed the scalar particles to be on-shell, and find

KK T (p, q) = —k°K*Ton(p. q) = (K°)*Tho(p, @) (11.24)

K Tan(p, ) = —k"To (p, ) (11.25)

K Toa(p, q) = —k"Too(p, ) (11.26)

which leads to
k|1~ ~ 1~ ~ K04 -
A= [2Tab<p, DT (-, 1) = 1720, )T =) + T ) To( - —0)
(k0)2 T Ta 1~ T 1 Ta T
- ];2 {T(IO(pu q>TO (_u7 _U) - ZTOO(pa q)Tc <—U, —’U) - ZTa (p7 q)T()O(—U, —’U)} .
(11.27)

6Their vertex has one incoming and one outgoing scalar particle, hence is equivalent to ifﬁf‘“’(p, —q) in the
notation used here.
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Combining this with the expression for the second term in the above Feynman diagram for
Coulomb-like scattering, which we call B and which reads

ik| 1 . . . I
B=- ) [ — zToo(P, q)Too(—u, —v) + Toa(p, ¢)Top(—u, —v) (5 T >
1~ . U
- ZTOO(p7 Q)Ta (_u7 —’U) - ZTa (p7 Q)TOO(_U) —U)]
1K k2 - ~ k2 . - k2(k%)2 - _
=12 [ — @Too(p, ¢)Too(—u, —v) + ETOa(pa Q)15 (—u, —v) — i Too(p, ¢)Too(—u, —v)

K - _ K - _
- @TOO(I% Q)Ta (—U, _U) - @Ta (p7 q)T()()(—U, _'U)‘| )
(11.28)

one can obtain

[<(k0)4 + kQEQ + k2(k0)2

A+B=2 :
474

k:2

) Too(pv Q)Too(—% —v) — <(k0)2+k2> } }

P Toa(p; 9)15 (—u, —v)
14 Tab 1 Ta b
+ §Tab(p7 Q)T (—u, —v) — 1la (p, Q)T (—u, —v)

0\2 2\ _ _ 0)2 2\ _ ~
# (W) i 0+ (S0 T2 i)

k|1~ ~ - - 1~ -
=12 LTOO(]?, ¢)Too(—u, —v) — Toa(p, @) To (—u, —v) + §Tab(p7 Q)T (—u, —v)

1~ ~ 1~ ~ 1~ ~
- ZTg(pv Q)Té)(_ua —U) =+ ETOO(}% CI)TCC(—% —U) + ZT:(pv Q)TOO(_ua —U)] .

(11.29)

On the other hand, we get with the covariant Feynman rules for the right side of the Coulomb-like
scattering diagram above!'”, which we name C:

1ik ~ ~ 1
C = 5zl )T (—u, —v) (n“pn” - 277“”77”)
|5 Ty L T
= 513 Ty (p, @) TH (—u, —v) — §Tu (p, )T5 (—u, —v)
I oF 7700 I Tab 7 =0a
= @ [2T00(p, q)T (—U, _U) + 2Tab(pa q)T (—U, _U) + 4T0a(pa Q)T (—U, _U)

— 13 (p, ) T3 (—u, —v) = Tg (p, ) T (—u, —v) = T (p, @) Tg (—u, —v) — T (p, )Ty (—u, —v)

"Note that this diagram is again of second order in the expansion of the Dyson series, hence we obtain a factor
of 1.
2
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- - - 1~ -
k2 Too(l% q)Too(—u, —v)Toa(p, ) T (—u, —v)+§Tab(p,q)T“b(—u, —v)—

“T2(p,q)Too(—u, —v)| . (11.30)

- 1~ -
- 7Ta( )Tlg)<_u7 —1)) + ZTOO(pa Q)ch(_uﬂ —U) + 4

4 a
Note that we use the mostly plus signature of the metric, hence pulling a temporal index results
in a sign change. By comparing (11.29) and (11.30) we can see that they are identical, therefore
we indeed have that the non-covariant and the covariant Feynman rules produce the same result
for Coulomb-like scattering.

As a next step we would like to show a similar equivalence between the non-covariant and co-
variant Feynman rules for the self-energy diagram, namely the following equivalence in terms of
Feynman diagrams:

M n et _ 935&&%
The diverging term in the one-particle master equation actually only contains the first of the two
Feynman diagrams on the left hand side. However, the second term is the self-energy contribution
which vanishes in the one-particle projection of the master equation, so we can add this diagram
as in the one-particle master equation its contribution vanishes for normal ordering.
The equivalence for the Feynman diagrams on both sides of this equation is however much more
difficult to prove compared to the Coulomb scattering diagram, which is also the case in QED,
since the momentum inside the loop is not on-shell, which prevents a similar calculations as done
for the Coulomb scattering tree level graph as there will remain correction terms to the relations
n (11.24) - (11.26). Given that, to prove this equivalence goes beyond the scope of this work here
and we refer here to the fact that the covariant set of Feynman rules can also be derived from the
same underlying action using a different approach and gauge, which are then used for instance
n [172, 173]. Hence, independently of the derivation, we expect that they describe the same
physics. Based on this, it is now possible to specify the expression corresponding to the scalar
particle self-energy diagram in covariant form and renormalise it, which will be discussed in detail
in the next subsection. As mentioned at the beginning of this subsection, such a replacement
of non-covariant by covariant Feynman rules along the lines presented here is also employed in
QED when quantising in Coulomb gauge, as for instance in [131, 132].

11.4. UV-renormalisation of the self-energy of the scalar particle

The content of this subsection was already published in [2]. Here, it is presented with some
modifications compared to [2] to adapt it to the flow of the thesis.
In terms of the Feynman rules introduced in the previous section, the self-energy diagram for the
vacuum propagator, which was defined in (11.10), can be expressed as
d*k - ~ 1 —i
2\ - v -
Maae(u?) = [ oz [T (o, (o )] 677 0 )]
1 —1i
'35 [NupTve + MuoTvp — M Mpo] ST
/d4 u?k? + 2m2uk — 2m*
(k +u)? —i€|[k? + m2 — ie]

(11.31)
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As the thermal part Ilg(u?) defined in (11.11) is not divergent, as it has been discussed in
subsection 11.1, we only consider the vacuum part here. For the renormalisation we follow the
strategy in [174]. Using dimensional regularisation with d = 4 — €, the STT-projector is slightly
modified in d dimensions and reads (see e.g. [173]):

2
= o). (11.32)

1
Puvpo = 5[77up77va + NuoMvp — 9

Due to this, the expression for the self-energy diagram slightly changes and becomes (for € < 1):

Iyac (u2) =

2k + 2mPuk — 2m* (1
K /dd u?k? + 2m?u m ( + )7 (11.33)

Pla [(k +w)? — ie][k? + m? — ie]
which coincides with the expression derived in [173]. Here, we rescaled k — ku¢ to keep the
dimension of x for any value of d. As later we will encounter also IR-divergences, we introduce
a small artificial triad mass A in the triad propagator that becomes

1 —1

T P,ng (11.34)

With this, the self-energy diagram reads

H'UCLC

u?k? + 2m2uk — 2m* (14 €
—u /dd + 2mPuk — 2m? (1 4 §) (11.35)

(k4 u)? 4+ A2 —ie][k2 + m? — ie]

which will be evaluated in what follows.

11.4.1. Computation of the loop integral

The content of this subsection was already published in [2]. Here, it is presented with some
modifications compared to [2] to adapt it to the flow of the thesis.
In a first step we use the identity

= / dz (@) (11.36)
0

T — 1€

in order to rewrite equation (11.35) as

Hvac(UQ) = —gﬂe/ddk‘ {u2k2 + 2m%uk — 2m* (1 + i)}

/ le/ dza o121 (K2 +m?—i€) —iza((k+u)?+2—ie)

[ o ()

zZou
z1+z9

2

2 ZQ’M
) [ (21422)+iX220+im2 21 +iu? 20— /Lzl+22i|

(11.37)

—i(z1+22) (kJr
- €
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Substituting ¥ — k — -*2“- then yields

z1t+z2

2,4

K o0 °° zouk Z5U
I H=_=2 / d / d /ddk 212 — 22 2
vac(u) ol A 21 ; 29 [u u PO, + Gt 2

2
+ 2mPuk — QmQﬂ —om? <1 + 6) }
21+ 29 4

2.2
_ e—i(z1+zz)k2— {6(21+22)+i()\2+u2)22+im221 —i Z?;;J

(11.38)

Due to symmetry, all terms linear in k£ vanish and only terms of two different kinds remain for
which the k-integrations can be performed directly:

—d
/ Al i1 tz2)k? _ Zl—j:lz - (11.39)
—d+2
/ i 2 it 4 / dif ittt _ 4] T : (11.40)
d(z1 + 22) 21\ 21+ 22

Employing these, one can rewrite the self-energy as:

2

Z2U2
Mooe(u?) = 5 "y [z ]
2" Jo 0
—1r1 I 224 29U €
: 2 2—2m2 —2m? (1—1—)
21+ 22 (2’1 + 22) 21 + 29 4
d+2
21\l 21 + 2o '
(11.41)
To continue, we use'®
> d
1 = lim 55<1— Z“LZQ) . (11.42)
¢&-0Je B B
By substituting z; — 218 and zo — 29 we then obtain
Hvac(u2) =
2,2
00 00 0o —Ble(z1429)+i(AN24+u2) 20 +im2 _ P
= —EME/ dzl/ dzo lim/ dB (1 — (21 +22))Be B{ (z122) FiX HuS) zatim e ZZ1+22}
0 0 §—=0J¢

(21 + 22)2 21+ 22

d
_ 2,4 2
. m U — 2m2722u —om? (1 + 6)
B(z1 + 22) 4

18This equality can be shown by using that §(f(x)) = Zl %, where z; are the points for which f(x;) = 0,

J'(z;) # 0 holds. That carries here over to f;o dg %5@ — (21 + 22)), where we used that z1 + 22 > 0 which
allowed us to drop the absolute value.
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d+2
2T 5(2’1 + 22)

— _Eu€ /1 dz lim /oo dﬁ /8 e—ﬂ[€+i()\2+u2)z+im2(l—z)—i22u2]
2 0 £—0 Jg¢
-d 24 ~d+2
{ % [z2u4—2m22u2—2m4 (1—1—2)} —1—1;7 % }
=Sy /1 dz lim /OO df e~ Blie+ (¥ +u)ztm? (1—2)—2*u’]
2 0 £—0J¢

. { — 71-2%2\/ —ir {22114 —2m2zu? — 2m* (1 + fl)]

4 — —e
+ im? 26u2 —4T BQ};

32
(11.43)
where in the last step we used d = 4 — €. Next, we perform the S-integration, that is
o0 G
li df e~Pe T 11.44
5%/5 ’B € ﬁn ’ ( )

where we already set ¢ = 0 in the exponential, with a = (A2 + u?)z + m?(1 — 2) — 2%u? and
n € {1,2}. To obtain the result, we apply the residue theorem. For a > 0 the contour can be
closed by a quarter circle from oo to —ico 4+ € and a line from —ico + & to £&. With this, the pole
at 8 = 0 can be avoided. The integral then becomes

co : 2 oo € € €
%irr(l)/ dp e~ e g; = —%in% dt e ! (t +ifa)2 " (—i)2 " Hgma Tl (11.45)
—0.J¢ —0.Jo

where we substituted ¢ = Sa. Expanding the term (¢ + zfa)%_” for small ¢ yields

(t+ifa)2™" =127 +ifa (; - n) 27 L O(€2). (11.46)

With the definition of the Gamma function
I(z) = / dt t*"let (11.47)
0

it then follows that

rolm

N Y. LI
1 /d iBa — n
SV

[P <§ —n+ 1> + lim O(g)} = (ia)"" 75T (; —n+ 1) .
(11.48)
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For a < 0, the contour is closed by a quarter circle from oo to io0c + £ and a line from 200 + & to
&. The result turns out to be the same as for the case a > 0. This thus yields

yac (U2) =

! - €
= —g,ue/o dz { — 2/ —ir {22u4 —2m?zu® — 2m* <1 + Z)] 172

O+ w?)z +mP(1 - 2) - 20 ET (6>

+ im? (2 - ;) uv=ir TI(A2 + )z 4+ mP(1 — z) — 222 eT <€ - 1) } :

Next, we expand all terms in € and then perform the z-integration which results in

25

Moo (u?) = — — [27712(7712 +u?) + )\2u2}
n ;ffﬂ{u?[am?(mZ ) 2) + X2 — 1) — )]

N

+m?(m? + 2u® + )\2)\/(m2 +u?)2 = 202(m?2 — u?) + \*

arctanh m’ +u? — N
\/(mQ T ) —222(m? — u?) + 2\

L m2 — u? — \2
— t
arctan VmZ + u)Z —2X2(m2 — u2) + A

+ In(7)[u* A2 + 2m2u?(m? + v?)] + In (:);) [m® — 3m2u?\? — m?\4]

+ In(A) [3u?m* + 2ut(m? 4+ A?)] + In(m)[u®m?(2u® + m?)]
— In(p?)[2u*m?(m? + u?) + )\2u4]}

+O(e) (11.50)

Given this, it becomes evident that the pole in € arises from the term —%“ [2m2 (m? 4+ u?) + )\2u2] ,

which yields in the limit of vanishing graviton mass —# [Qm2 (m? + u2)] Hence the divergent
part can be isolated such that one obtains

212 km?
Myae(u?) = — " (m2 + u?) + I (42) (11.51)

vac
€
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with the finite, regularised part TI) (u?) given as

2
) -
u

vac

{u2[2m2(m2 +u®)(ve — 2) + N (u’ (v — 1) = m?)]

+m?(m? 4 2u® + )\2)\/(m2 +u?)? — 2X2(m? — u?) + M\

arctanh m® + u? — A7
V(M2 +u2)2 = 2X2(m2 —u?) + M

. m2 — 2 — )2
— t
arctan V(M2 +u2)2 = 2X2(m2 —u?) + M

A
+ In(m)[u?A? + 2m2u?(m? 4+ )] + In () [mS — 3m2u?\? — m2\Y]
m

+ In(A) [Bu*m* + 2ut(m? 4+ A?)] + In(m)[u®m?(2u® + m?)]
— In(p?)[2u®m?(m? + u?) + )\2u4]} .
(11.52)

The infinite part then has to be renormalised by introducing a suitable counter term. As the
finite part of this counter term can in principle be chosen arbitrarily, TI!% (u?) can still change. In
our case, we choose the finite part of the counter term according to the on-shell renormalisation

procedure. This then yields for the final renormalised loop I, (u?):

TR (u2) =TI () — T (—m2) — (u2 + m?) 2 I8 (—m2) (11.53)

vac vac vac o 2 “tvac
U

This specific form is determined by the on-shell renormalisation scheme that sets the pole of the
scalar propagator to m? and also fixes its residue according to the following two conditions:

IR (2 = —m?) =0 (11.54)
)
gz Woaclu® = —m?) 0. (11.55)

It can readily be seen that the definition in (11.53) satisfies these two conditions. Note that in
[173], they apply a similar procedure without fixing the residue of the pole and therefore also not
including an artificial triad mass, because for their purposes it is sufficient to fix the pole of the
propagator.

Applied to (11.50), one obtains for the additional terms in equation (11.53):

ITie% (—m?) =

_ _ﬂ)\ (m? — A?)V/A2 — 4m? |arctanh X - arctanh ()\)
o AN — I A2 dm?

een(25)] ) o

+ A% 1n (T) +m2\




126 Renormalisation of the TCL one-particle master equation

as well as
0 1Ives 2
Ou2 vac( m )

2k [ 5mAN 4+ 2m2A3 — )5 A2 — 2m? A
= 5 arctanh | ————— ] — arctanh | ———
2m VA2 — 4m? M2 —4m? VAZ —4m?

+ (298 — 3)m* + m?X2 (v — 2+ In(m)) + (m* — A In (T)

+2m2 X 2 In(\) + 2m* In(ma ) — m?(2m? + A?) In (u2> } . (11.57)

If we had not introduced the small triad mass A, then this last expression would be divergent,
see for instance [173, 174]. Hence we continue to work now with IT% (u?).
These considerations suggest that we have to include the following counter term:
22 km? o)
STI(u?) = == (m? + %) — ILE(=m?) = (u® + m?) 5 T0E (—m?) (11.58)
such that
(u?) 4 0T1(u?) = ITE (u?) + Mg (u?), (11.59)

where Il (u?) denotes the finite thermal contribution to the loop defined in (11.11). From (11.56)
we have for A — 0:

IS (—m?) = 0, (11.60)
thus ,
2m4Km 0
2\ re, 2 2 2
Oll(u®) = . — Wﬂvagc(—m )| (m* +u®), (11.61)

where the expression in the square brackets only depends on m?. In order to implement a suitable
counter term, we introduce a renormalised mass mp by m? = m% + m%dm, where m denotes the
bare mass we have used so far and §,, a mass counter-term, as well as a renormalised wave function
PR = \/%cp. Then the renormalised scalar field propagator (a Greens function containing twice
) reads up to the one-loop contribution:

1 —1 —1 —1 —1
G(l) 2y _ & _ o 25 2 5 5m I 2 19) 2
O0) = s = g g R 00T 5 O(67),
(11.62)
where we expanded Zs = 1 + d5. From this follows that
—i(u265 + mA(62 + Om)) = 6TI(u2) (11.63)

and it becomes evident that only the wave function has to be renormalised in the following
manner:

) 27r2l<cm%% 0

re 2
S =0 by =i [ S5 ()| (11.64)
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Due to the counter-term, We have to replace in the old set of Feynman rules m by mpg and obtain
the following additional Feynman rule of order :

@ = —ido(u® +m%). (11.65)

To simplify notation, we continue to use m, in particular as we have seen that mr = m. The
result is therefore an additional counter-term in the Lagrangian which leads in renormalised
perturbation theory to an additional interaction of order x that we have to include when evalu-
ating the loop. Then the former diverging term II(u?) becomes finite and only IT% .(u?) is left.
This yields a modification of the right hand side of the master equation which is derived in the
following subsection.

11.4.2. Contribution to the master equation

The content of this subsection was already published in [2]. Here, it is presented with some
modifications compared to [2] to adapt it to the flow of the thesis.

In order to see the effect of the renormalisation on the master equation, one has to evaluate the
following expression, as discussed at the end of subsection 11.2:

= p (W, i, o, )_/to dT/ du® TIR, (u?) cos(u® — wy)(t — 7)]. (11.66)

Substituting t — 7 — 7 yields

t—to
Er(wu, U, to, t) :/ dT/ du® TIR (u?) cos[(u® — wy)T] (11.67)
and due to symmetry it holds that

du® TIR (u?) cos[(u® — wy)71] = [ dul TIE (7% — u?) [cos(u®T) cos(wyT) + sin(u’T) sin(w,T)]
R R

= cos(wyT / du® TI? (@* — u?) cos(u'7). (11.68)

To solve the integrations, we first consider all terms that depend on u° in the form (u? + m?) =
(w2 — u3) with w, = V% + m?2.

To evaluate this, we would like to use the distributional integration [p du® cos(u’r) = 76(7).
However, in order for this to be true, we would need to have a Schwartz function paired with the
distribution under the 7 integration and its integration domain should be R. To have this, we
modify the cosine slightly and we will see when evaluating the integration that this modification
does not affect the final value. We introduce the Schwartz function S.(w,7) which coincides on

the interval [, t—to —¢€] with cos(w,7), where e < 1. On the interval [—e, €] it is a smooth function

constructed in such a way that S.(0) = 1 cos(0) = %, p &g, (WuT)|r=0 = ;ddﬂ cos(wyT)|r=0 = —%

and S¢(w,7) =0 for 7 < €. For [t —ty —€,t — to + €] it is also constructed as a smooth function
from S¢(wy(t —to —€)) = cos(t — to — €) to 0 for S¢(w,T) for 7 >t — ty + €. The construction is
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in such a way, that S.(w,7) is a Schwartz function on R. Then we have:

t—to
/ dr cos(qu)/ du® (w? — ud) cos(u’r)
0

—/dTS wu)[wé )wi —i——/du cosur}

d
_ /]R dr So(war) [775(7') w2 —|—7rd7_25(7')]
2

d
:/RdT [W(S( )w Se(wyt) + (T )d 25(0@7’)]

2 2
wu wu
=7 |-t =0, 11.69

Using this'®, what remains is

7'('2/1 t—to 0 0 4 4 m2 -+ U2 A
= /. dr cos(qu)/Rdu cos(u"7) q (m* — A )T In (m)
om? + 2u? 4 N2
m —2\/(m2 +u?)? = 2X2(m? — u?) + \*

u

2
- | arctanh motu A
V(m? +u2)2 —2X2(m2 —u?) + M

L m2 —u? — \2
— t
arctan V(m2 +u?)2 —202(m?2 — u?) + M\

+ A(m? = NV A2Z — 4m?2

2m? — \2
arctanh
' (A\/)\Q 4m2>

+ arctanh (ﬁﬁ i 4m2) ] } )
(11.70)

which is independent of p. Before explicitly evaluating the integrations, we simplify the integrands
by taking the limit A — 0 where possible, as A was only introduced as artificial small graviton mass
to be able to fix the residuum of the pole in the propagator. As arctanh(i0) and arctanh(ico) are
finite, the last two lines vanish. Also, limy_,0 A*1n(\) = 0 and, when expanding the square root in
the second line, we find that limy_,o Aarctanh(1+\) = 0 as arctanh(z) = 1 In(1+z) — % In(1—=z).

19 And once also using that hence In(m)u?*m? — —In(m)m*
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This leaves us with

2. rt—to 2,2 A
TR dr cos(qu)/ du® cos(u’r) {m4m—guln ()
R u m

2 Jo
m? + 2u?
2T(m2 —|—u2)-
- | arctanh m? + u — A"
V(m2 +u?)2 —202(m?2 — u?) + M\
2 .92
— arctanh (H) ] } . (11.71)

From the above named relation arctanh(z) = 1 In(1 + ) — 3 In(1 — z) follows that

arctanh (:E) = }ln (x + y) . (11.72)
y 2 \y—=
This yields for the last line:
m? — u? 1 m?
arctanh <7M = 5 In ? . (1173)

For the line before, we expand the argument in second order for small A and obtain

m? +u? — \? 222>
arctanh <\/(m2 FaE by vl e ~ arctanh | 1 — e ) (11.74)

Higher orders will not contribute in the final limit A\ — 0. Expressing the arctanh again in terms

of logarithms, we obtain

et [ 1 2)\%u? 1 (2 2270’ L 2)\%u?
rctan ———s | = |2 ———5 | - zIn| ———
area (m? + u?)? (m? 4 u?)? 2 (m? + u?)?

2)\2 2
“) , (11.75)
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where we neglected terms of order A? and higher. With these simplifications one then finds that

ER(WQM ﬂ:a tO) t) =

ik [tto 0 0 am? 4 u? A
=5 dr cos(qu)/Rdu cos(u"T)qm Tln <m)
2,2 2
+2
2 )
1 20242 41 mi2
" (m? 4+ u?)? T 22
2 t—to 2 2 A
= Th dr cos(qu)/ du® cos(u’r) {m4mtuln <)
2 Jo R u m

2,2 2
mem* +2u* 9
T e A

2m2
‘In <(m;\—|—u2)2> } (11.76)

The next step is to solve the following two integrations:

A 2 _ .2
(A)  m'hn <m) /Rdu0 cos(u’7) ;12‘ — Zg (11.77)
m2 m2 + 2,&"2 . 2’LL2 )\sz
We start with (A):
2 2 9 2
/]R U COS(U 7') 2 — u% ® u- e (uo — |m)(u0 + |,L—L»’) ( 79)

Applying the residue theorem by closing the contour with a semi-circle in the upper half plane
leaves us with the contributions of the poles that lie on the contour, hence contribute +% their
residua, yielding

2 2 2 2 2
| aud eiUOT wﬁ — Up = [eﬂﬁhna _ €—i|ﬁ|TWZ] _ mvj sin(\ﬁ]r). (11.80)
/R (u? — ] (u® + [a]) 2|4 2[d ||
Therefor we have 6
™m A
A) = in(|é|7)In{ — ) . 11.81
(a) = T sinlifr)n () (11.8)

We proceed with (B):

2 922 2 2,2
m* + 2u” — 2u A*m
du® 0 002 — u2)1
/[R u’ cos(u’T) 7 - (Wi —ug) In 2 a2

2 —9 2 2 2

; + 2u* — 2u A“m

= — | du® T m — 9, (wi - u2) In () . (11.82)
/R (w0 — [a]) (u® + |a]) 0 ( 5)?
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We apply the residue theorem once again. The integrand has singularities at u® = =4|i|. Working
with the principal value logarithm, i.e. the complex logarithm with branch cut at the negative
real axis, the logarithm here does not have any branch cuts given that w, > 0, hence the equation

% L _awithac R, > 0 does not have any solution for u’ € C. Due to the prefactor

(wu*’u‘o)

w2 —ud), there is no singularity in u? = 4w,. We pick a closed integration contour from —oo to
U 0

—|i| — €, then go in a semi-circle clockwise around the pole to —|i| + €, continue to |@| — €, again
go around the singularity in a semi-circle clockwise to |@| + €, continue to +oo and close it with a
semicircle in the upper half-plane. The closed contour does not contain any singularities, hence its
contribution vanishes. Due to the exponential eiu’T , also the semi-circle at infinite radius in the
upper half-plane vanishes. Hence only the contrlbutlons of the singularities at u’ = +|i| remain.
As we went for the closed contour around them clockwise, the singularity contributions have to
be evaluated counter-clockwise and added to the closed contour. We start by investigating the
one at u® = +|i| and replace u® = |i| + ee'®:

. 2 Alilee™® — 220210 , ‘
. hm/ do ieezqﬁem’ee b ir|a| T i¢’u|6f ZZ € (m2 o 2"1]:‘662¢ _ 62621¢>)
e—0.Jo €e’?(2|u] + ee'?)
AZm?
-In —— .
(m?2 — 2|i]ee’® — e2¢2i9)2
x Com2 — Alileei® — 92210 A '
= —ilim [ d¢ ¥ m ]ulee 3 €e (m? — 2|d]ee’® — 22?)
0 Jo 2|u| + ee

A2m?
-1 . .
. (m? — 2|u]ee’® — 2e2i)2

™ . 1 )\2m2
= —¢lim dé ™ lm?2 _—_m2n : .
0 Jo ¢ 2|4 (m? — 2|u]eei® — e2e2i¢)2

_ z7'|u|
VI lim / do 1n< >

4 by

= T il () : (11.83)
|l m

where in the first step we expanded e™¢"*+i7ldl = ¢i7lil(1 1 O(€)) and neglected all but the zeroth

order due to the limit, in the second step we expanded m = ﬁ (1 2|u| ¢+ 0(e )) and

applied the limit to the terms depending on € where possible. In the third step, we expanded

A2m? A2 4\u|
1 . A =In e+ 0(e?). 11.84
n ((mQ ~2fdd]eci® — 6262@)2) (mz Te sl T (€%) ( )
For the other singularity at u® = —|i| we find analogously for u® = —|i| + ee’?:
T L a2 TP 2 2 ,2i¢p ) .
T . i ireet—ir|a| T + 4’“"66 ee 2 =i 2 20
ll_r)r(l)/o d¢ iee'®e (2] T ec®) (m* + 2|t]ee €“e”?)

AZm?
-1 - .
. ((m2 + 2|t|eet® — 6262“15)2)

1 AZm?
e 2] : :
=+l 0 de 2[ _,‘m . (m?2 + 2i]ee’® — e2¢2i9)2
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4 2
— i =il iy / dé In A

2|u| e—0

7Tm4

= B el (A> : (11.85)
u m

Combining these two yields

mS A
(B) = — | - sin(( ) n <m) _ _(A). (11.86)
From this follows that we have
ER(wu,ﬁ,to,t) =0. (11.87)

Hence we have that the contribution of the renormalised vacuum loop terms to the master
equation vanishes:

= p (W, i, o, )_/t dr/du T2 _(u?) cos|(u® — wy)(t — 7)] = 0, (11.88)
= r(wo, B, to, £) /th/dv TR (6) cos[(v? — wy)(t —7)] = 0. (11.89)

Due to the way the renormalised quantities entered in the master equation, the result is now
independent of the scale p as well as of the artificial graviton mass A, whose limit to zero can
therefore be taken without problems. Therefore neither the dimensional constant w, nor the
artificial triad mass A play a role in the physical predictions made with the master equation.

11.5. Renormalised one-particle master equation

The content of this subsection was already published in [2]. Here, it is presented with some
modifications compared to [2] to adapt it to the flow of the thesis.

With the renormalisation carried out in the previous subsections, a first renormalised version of
the one-particle master equation (10.42), where only the former diverging terms are modified,
reads:

g; (U, v,t) = —ip(u,v,t) (wy — wy)
K d*k u(E) R/~ T R~ 1
2/(2 )3{%_M (R (it,E,1) + 5pCR (. R )]
P, (k) Ri= 7 )" Rz 7 o o
m |:(C (U7k7t)) +5P (CP(kaat)) } }p(uavat)
K d3k Pijln(lz) wudvlom I o Lo
+3 / or) o {C(u +k k,t)+ C*(V+ k, k, t)} p(d + k, v+ k,t)
(11.90)
with
R t—to .
CE(d, k,t) =2 ?TTN(k:) cos[Qyr]e " (Wumnmwa)T (11.91)
0 k
. t—to .
CE(d, k,t) =2 d—TN(k:) cos[Qyr)e " (@umntwa)T (11.92)
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and

- t—to dT —i(Q _ () —

C(i, k,t) = / Q—{[N(k:) 1] etk o N (k) (B mwumstuar (11.93)
0 k

At the level of the operator equation, the renormalisation removed the ©-independent terms from

the terms in the second and third line of (11.90), hence leaving us with the following dissipator:

35 13, 13 o ) .
s 3y [ L G Dos 032 ) Skl e

7’6{+ —}ab=1 k

+N (k) [Ge0, 5, [5G T), ps(B)]] F( + wy(F, 1) + h} :
(11.94)

If working with the non-extended projection §p = 0, then there was probability conservation
before the renormalisation, i.e. fd3u%p('[[, u,t) = 0. Now, due to the vacuum term in (11.93)
this probability conservation is destroyed. As the renormalisation is a purely technical procedure
that should not change the physics, in particular not basic principles as probability conservation,
we also replace C(#, k,t) by CR(i, k,t) in the last line of the master equation. Another reason
for this is that the term in the last line of the master equation is based on the same QFT as the
terms in the second and third line, hence they should be renormalised in the same way?’. The
final renormalised one-particle master equation is thus

D p(i,5.0) = = ipli,7.1) (w — )
-5 e 2 (o + nCa )
m [(CR@ k0) +0p (CB@ 1) ] }p(ﬁ, 7,t)

ko[ Ak Py (k) uiwivlon ¢ o RN
+2/(277)3\/um {CR+E k) + (CRE+ K1) }

and the dissipator at operator level

d3k d3p d31 N (k)
Z Z / 27T Qk

r€{+ —}ab=1

~ { ) 2R D, ps ()] | £+ wn(R D) + h} .
(11.96)

20Tf one keeps these terms, they will drop from the dissipator part in the Markov approximation and from the
Lamb-shift Hamiltonian after the rotating wave approximation, hence not form part of a Lindblad equation
derived using these two approximations.
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Compared to the expression before renormalisation given in equation (9.34), one can see that the
effect of the renormalisation is hence that the vacuum contribution in the entire dissipator (and
therefore also in the Lamb-shift Hamiltonian) vanishes.

In part IV of this thesis, we analyse a quantum mechanical model based on the model in [112],
where a system is coupled to an environment of harmonic oscillators. The bath of harmonic
oscillators mimics the thermal gravitational waves and the model serves as toy model for grav-
itationally induced decoherence. We find there, that a renormalisation in that model is also
necessary, which will remove the Lamb-shift Hamiltonian after the Markov approximation as it
depends on an unphysical high-frequency cutoff for the oscillators in the environment. In section
16.5 we analyse this renormalisation and compare it with the one performed here for the one-
particle master equation and also the one used in QED in [45].

This concludes the discussion on the renormalisation of the one-particle master equation. In
the next section, we discuss how one can apply specific physical approximations to draw physical
implications from the renormalised one-article master equation.
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12. Application of the Markov and rotating wave approximations to
transform the TCL one-particle master equation into Lindblad
form

The content of this section was already published in [2]. Here, it is presented with some modifi-
cations compared to [2] to adapt it to the flow of the thesis.

The renormalised TCL one-particle master equation (11.95) describes the evolution of a sin-
gle scalar particle in an environment filled with thermal gravitational waves. Since this master
equation is not in Lindblad form, we cannot directly conclude that it is completely positive and
provides physically meaningful implications based on positive probabilities for all chosen time
intervals. For such models, one usually has to investigate case by case whether further assump-
tions such as the Markov and rotating wave approximation are justified that are usually used to
obtain a master equation in Lindblad form. It is often possible to understand from the involved
time scales in the system and environment of the open quantum model in which scenarios these
approximations are a good choice, see for example [45] for a discussion in quantum optics. For
models with finitely many degrees of freedom, there are also results that suggest time scales which
allow to judge when the Markov approximation can be applied that are completely determined
by the properties of the environment, such as its spectral density as well as the coupling constant,
which encodes the strength of the coupling to the system in the interaction Hamiltonian [175].
The derivation of master equations in the context of field theoretical models with gravity as an
environment is less well explored in the literature in comparison and has been presented in the
context of gravitationally induced decoherence recently for instance in [6, 60-63]. While the works
in [6, 61, 62] focus on the derivation of a TCL master equation, in [60, 63| a Lindblad equation
is used, for which further approximations are employed, among these the Markov approximation
and the rotating wave approximation.

Compared to the above-mentioned open quantum mechanical models for gravitationally induced
decoherence, a detailed analysis of the applicability of such approximations is much more chal-
lenging and beyond the scope of this article. An important difference to the present work is that
in [60, 63] the approximations are applied on the non-renormalised one-particle master equation.
Given the results of the last section, we can instead perform the Markov and rotating wave ap-
proximations for the renormalised one-particle master equation and investigate whether applying
these approximations before or after renormalisation leads to differences in the final one-particle
master equation, considering both the extended and non-extended one-particle projection.

In this section we consider both approximations separately, in subsection 12.1 we discuss the
Markov approximation and in subsection 12.2 the rotating wave approximation. In addition, for
the case of an ultra-relativistic limit, we also specify some conditions when the Markov approxi-
mation can be used for the model considered here.

12.1. Markov approximation

The content of this subsection was already published in [2]. Here, it is presented with some mod-
ifications compared to [2] to adapt it to the flow of the thesis.

The Markov approximation consists in the assumption that the correlation functions of the envi-
ronment are strongly peaked around the initial time and decay rapidly. If this is given, the integral
f(f 1 dr over these environmental correlation functions has the main contribution from around
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their peak. Thus the error obtained when shifting the initial time t{y — —oo and therefore the
upper integration limit ¢t —ty — oo is negligibly small. As a consequence, the parameters involved
in the dissipator of the final Lindblad equation will no longer depend on the temporal coordinate.

As discussed above for a field theoretical model, even in the single particle sector, to develop
generic criteria for which the Markov approximation can be applied that can easily be checked
for a given model, is difficult. For instance the methods developed in [175] strongly rely on the
fact that the model is formulated in a quantum mechanical context. Motivated by the physical
applications in section 17.4 to ultra-relativistic particles, in particular neutrinos and their oscil-
lations, as a first step, we investigate this special case more in detail in this context and present
in the next subsection a condition under which the Markov approximation can be applied for the
model under consideration.

12.1.1. Applicability of the Markov approximation for ultra-relativistic particles

The content of this subsection was already published in [2]. Here, it is presented with some
modifications compared to [2] to adapt it to the flow of the thesis.

In general, the Markov approximation can be applied if the timescales 75 on which the correlation
functions decay are much smaller than the timescales 7g on which the state of the system varies
(see [45]). The identification of these timescales is however hard without solving the one-particle
master equation before the application of the approximation. As the Markov approximation
corresponds to sending tgp — —oo and hence fg_to dr — [y° dr, we will analyse the error one
makes when extending the integration domain from ¢ — ¢y to oco. If the integrand is strongly
peaked around 7 = 0, which is usually assumed when deriving Markovian master equations, then
the error of the additional contribution should be negligible. For this, we analyse the different
parts of the renormalised one-particle master equation in (11.95):

o .
ap(uvvat) — Zp(u,v,t) (wu wv)
k[ Pk [ Puk) [, > o
- 5/ (2@3{W (CT(i0, R, ) + 6pCR (. )]
PD(E) R e R L7 * N
+ m [(C (U7k,t)> +5P (Cp(’(),k‘,t)) } }P(U,U,t)
ko[ Pk Pyn(k) v ¢ op o B 77
+2/<2w>3¢m {Cf@+ ko + (CRE+EED) |
p(ii + k, ¥ + k, 1)
(12.1)
with
o t—t '
OR(ﬁ’ k,t) =2 0 glN(k) COS[QkT]eﬂ(wu*k*wu)T (12.2)
0 k
- t—t '
C}I?'(U, k;yt) =2 0 d—TN(k) COS[QkT]efl(w“*ker“)T, (12'3)
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We start with the real part of C* in the second line, which will later lead to decoherence. The
term we have to take into account is

k[ dk Pyk) [t dr
B 5 (27T)3 Wy — KWy, /() Qk
- 7/ dk/ dp S ©) kN w)
2(2 2 Wy—kWy
‘ {sm((k + Wy — wy)(t —tg)) N sin((k — wy—k + wy)(t — to))
k4 wy g — wy k—wy g + wy

TN (k) [oos((X + i — wa)7) + c08((Q — Wy + @) 7))

)

(12.4)

where in the second line we went to spherical coordinates with EZHﬁ and performed the 7-
integration. The main contribution from the integrand will come from small k, because for
k = 0 the denominator tends to zero and N (k) decreases rapidly for large k. For the Markov
approximation however the behaviour depending on (¢ — tp) is important. To extract this, we
first substitute

W= Wy = \/w% + k2 — 2uk cos(0) (12.5)
and assume, already adapting the scenario of section 17.4 where we will apply the one-particle
master equation to ultra-relativistic particles, that w, ~ u, where u := ||, which then yields

1
0)=|k— =k df = dpy——— 12.6
(0) = [k~ u(m) = k+u pe (120)
as well as (? ) 22

200y ut+ k7 —p

sin“(f) =1 — 22 (12.7)
Using this and defining At :=t — ¢, equation (12.4) reads

W2k o0 k+u (u + k2 — p2)?2 2
- dk N (k dp |1 —
4(27)? /0 ( )/|ku| a [ 4u?k?
. [sin((kz + 1 — wy)At) n sin((k — p + wy)At) (12.8)
k+p—wy k— 4+ wy

Now we make some assumptions on the involved quantities motivated by the application to
ultra-relativistic neutrinos to simplify the integration. In order to continue, we assume that

1
u > @ ,
where u := |i| and ¢ denotes the speed of light. The reason why /5 and thus the temperature
parameter © are involved here is because we use a Gibbs state to trace out the environmental
and thus gravitational degrees of freedom. To resolve the absolute value in the u-integration, we
split the k-integration into two regions, one with k < u and another one with k£ > w:

/Ou dk N (k) /L:Z/:o dk N (k) /]::k . (12.10)

(12.9)
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I(At) in %

. . : At [s
1078 10°° 1074 [s]

L
-10
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Figure 3: Decay of the integral I(At) in (12.12) for different values of v and 3 (see main text) in
percent normalised such that 1(107!s) = 1. This plot was originally published in [2].

The second integral is now negligible compared to the first one, as on the one hand side the
dominant contribution of the integrand is around k = 0 where the root of the denominator lies,
and on the other hand due to condition (12.9) for k& > u > é also N (k) will strongly damp the
integrand in that region. Hence we only continue with the first integral:

’U,QI{ u k+u
" | dk Nk d
gL |k N [ d

- (u? + k2 _Mz)Qr

4u2k2
| [sm((k tu—w)A) | sin((k - pt@)AD] g
k4 p—wy k=t wy

The p-integration can be solved and one obtains
B u?k /“ dk N (k)
42m)2 Jo  kAH(AE)But

: [161@At(45 + (A% (—6k% + (=27 4+ 4> (AD)H)u? + (At) %))

+ 4kAt(135 + 2(At)2(—3k* + (=36 + K2(At)*)u? + (At)?u?)) cos(2kAt)
— 6(105 + 2(At)*(—15k + (=30 + Tk*(At)?)u? + (At)?u?)) sin[2kAt] | .
(12.12)

This can be integrated numerically. For?! the three different values of v = 2.4 - 1022%,u =
2.4 - 1024%,11 =24- 1026% and for the two values of 5 = 10"!!s, 3 = 10~!3s one obtains that the
result vanishes rapidly for increasing times At, see figure 3.

It hence is visible that the error made when not only considering time until ¢ — ¢y but until oo
is negligible, given that its value drops rapidly when increasing ¢t — tg. In section 17.4 typical

21We restored units in the following way: 8 = hﬁ, u = 3, where u has dimension of energy (Joule) and E has

dimension of inverse energy (one over Joule). The above values then correspond to u = 0.1GeV,u = 10GeV,u =
1TeV and temperatures 7'~ 5K, T ~ 500K.
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propagation times of neutrinos through the Earth are used, which are of the order ¢t —ty ~ 107 2s.

In the general case, in which we do not specify to ultra-relativistic neutrinos, the integra-
tion boundaries for the p-integration in (12.8) would be u(0) = /m? + (k —u)? as well as
w(r) = /m?+ (k+u)?. As the temperature parameter © characterising the environment is

finite, one can always find a parameter k£ such that k> % and hence the k-integration can be

approximated [7° dk ~ f(f dk, since N (k) damps the result strongly on the remaining interval.
The general integration of this quantity goes beyond the scope of this work. To facilitate its
computation, one can use the specific properties of the considered model similarly to the way it
is applied to ultra-relativistic neutrinos in this work.

Next, we consider the real terms arising from the extended projection in line two of equation
(12.1). The same steps for the ultra-relativistic conditions as above yield

- (u? + k? _Mz)Qr

ulk u k+u
- dk N(k d
4(2m)? /o ( )/u—k a

4u2k2
. [sin((k +ptwl)At) | sin((k = p— wa)At) (12.13)
kot p+ k= p—wy

Note that in contrast to the previous case, now the denominator is never zero, hence the contri-
bution of this term is less dominant than the one of the previous terms. Solving the p-integration
and plotting the term with the same parameters as above again shows that the result vanishes
rapidly for increasing values of ¢t —ty. The absolute value of the integral is however several orders
of magnitude below the contribution in (12.12), hence it is negligible compared to the above term.
For the imaginary terms in the second line of (12.1), one can perform the same analysis and also
obtains a strong decay in t — ¢ for the terms. The analogous arguments (if v > % with v := |¢])
hold for the terms in the third line of (12.1). For the last line, also the wave function p depends
on E, but as the structure of the involved terms is very similar and the same main arguments
can be carried over (roots of the denominator, same main quantities u, v, # and damping due to
N(k)), also the behaviour of this term depending on t — t¢ is similar as above. Hence the Markov
approximation is justified here under the above named assumptions of ultra-relativistic particles
that fulfil

1
u,v > B (12.14)
If another than the ultra-relativistic case is considered, this condition could be violated, and
therefore a more comprehensive analysis is needed to understand when and under what conditions
the Markov approximation can be applied, which we envisage for future work.

12.1.2. Evaluation of the Markov approximation

The content of this subsection was already published in [2]. Here, it is presented with some
modifications compared to [2] to adapt it to the flow of the thesis.

Before applying the Markov approximation to the renormalised one-particle master equation, we
briefly discuss the main steps that are involved. The first step is to replace the upper limit of
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the 7-integration with co and to then perform the integration using the identity
t—to . o0 . o0 . S8 .
/ dr e 7 — / dr e = / dr O(1)e ™" = 27r/ dz ©(z)e ?mwe
0 0 —0o0 —00
= 1d(w) — PV (Z> : (12.15)
w

where PV denotes the Cauchy principal value, and secondly the evaluation of the E—integration
which simplifies due to the first step. With this, the affected terms in the master equation can then
be split into two classes: one class that consists of contributions involving the delta distribution
that will yield a real contribution to the master equation and hence lead to decoherence. We
evaluate these terms in subsection 12.1.2.1. Another class that contains terms including the
principal value, which result in an imaginary contribution that affects the unitary evolution, is
evaluated in subsection 12.1.2.2.

12.1.2.1. Evaluation of the delta terms

The content of this subsection was already published in [2]. Here, it is presented with some mod-
ifications compared to [2] to adapt it to the flow of the thesis.

In this subsection, we investigate the terms containing the delta distribution. The delta distri-
bution parts of the terms in lines two and three of (12.1) become

K [ d%k { P,(k) N(k)

2 (2m)3 | wy—pwy Qi

lé(Qk — Wy—k + wWy) + (D + Wu—k — Wu)
+ 5p5(9k — Wy—k — wu) + 5p5(9k + Wy—k + wu)]

Py(k) N(k)
Wy—kwy

[5(Qk — Wy—k t+ Wv) =+ 5(Qk + Wy — Wu)

+0p0(Q — wy—k — wy) +6P5(Qk+wv—k+wy)‘| } . (12.16)

To evaluate the delta distributions, we first have to determine the zeroes of the arguments. As
the part for v is exactly the same as the one for u, we focus on the latter one. The four equations
to solve then read, expressing the E—integration in spherical coordinates (k, 6, ¢) and picking them
such that @||k.:

+k = \/wg + k2 — 2uk cos(6) — wy (12.17)

+k = \/wg + k2 — 2uk cos(0) + wy (12.18)

where u := |i|. With the limits set by the spherical coordinates, i.e. k € {0,00} and cos(f) €
{—=1,1} it is evident that the right hand side of the equation in the second line is always positive,
hence §(Q + wy—k + wy) = 0. For the positive sign in the second line we find

(k —wy) = \/wg + k2 — 2uk cos(0)
< kw, = ukcos(f), (12.19)
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which is solved for k& = 0. There is no other solution, as the remaining equation w, = vVm?2 + u2 =
ucos(#) is never fulfilled for m > 0. Note however that & = 0 is here only a solution of the squared
equation and not of the original one?? in (12.18), hence we also have §(—Q + wy_j + wy) = 0.
This means that here all additional terms arising from the extended projection vanish. For the
two equations in the first line we have

(£k +wy) = \/wi + k2 — 2uk cos(0)
<= Fkw, = ukcos(h). (12.20)

This is solved by k = 0, which is also a solution to both non-squared equations. Apart from that,
there is no other solution as again | F wy| = | F vVm? + u?| > u while |ucos(f)| < u. From this
we obtain

___ (k) = O(k) of (12.21)
’:tl + u cos( )’ 1 4 wcos

Wy Wy

(£ — wy— + wy)

Applying this to the original expression in spherical coordinates, we find

_ml/ooo dk;/oﬂ do ksin(ﬁ){Pu(E) N (k)

2 (2m)? Wy — Wy

(k) §(k) ]

1 4 weos(0) g _ wucos(9)

Wy Wy

P, (k) o (k) o (k)

+ R N(k) 0] + [ veos@ | [ (12.22)
where in the second line we picked different spherical coordinates with ]|k, and defined v := |7].
Evaluation of the delta yields, using

2

1]y (ukcos(9)*]T  wt a2 ut g
Pu(k,0,6) = 3 [u | =5 [1-cos(0)] = 5 sin!(0) = Pu(0,9)  (12.23)
and with I’Hospital’s limit
lim & N (k) = lim —"—— = Jim —_ = © (12.24)
ko0 TS0 ePE — 1 kS0 BePF T B '

221f ¢ = 2, is a solution to the equation f(z) = g(x), then it is also to the squared version f(x)? = g(z)?, but not
necessarily vice versa.
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the following result??, where we get an additional factor of % as the point £ = 0, where the delta
distribution does not vanish, lies at the edge of the integration area:
1+ ucos(@) + 1— ucos(H)‘| + ng

u
- d6 sin’(8
86 (2m)2 / sin’” ){

7k 1 /7r .5 { u? 02 }
= —— df sin’(0 +
48 (2m)* Jo ) cos?(0) — jj—é cos?(0) — wy

02

4 4

1 v

1 1
1+ v cos(0) + 1— v cos(6)

Wy Wy

k1 10 2 w 2 w
= 16 @n? [ - g(u2 +0?) 4+ 2(w2 + w?) — wuum4 arccoth (J) — wwm‘l arccoth (J) ] .

(12.25)

Next, we compute the last line of equation (12.1). The terms containing the delta distributions
read

U 3k () uludvto™ N(k)
2 (2m)3 Pijtn VOt kW Wyt Wy

: {6(916 + Wy — Wu+k) + 5(Qk —wy + Wu—}—k)

1

+ 0(Q + wy — wWytk) + (R — wo + Wv+k)} p(il+k,0+Fk,t). (12.26)

Proceeding the same way as above it follows that

(k) _ wud(k)
u cos(au k)

5(ﬂ:Qk + Wy — qurk) = (12.27)

Wy Fucos(ayg)

E

where «, is the angle between @ and k. Due to the presence of the two directions @ and ¥ in
the prefactor, it is not possible to pick k, parallel to both @ and ¥, as in general || does not
hold. Given that Pjj,(k) = Pijin(6, ¢), the delta distribution can be applied and one obtains?*

vl
2(2m 35/ do d¢s1n( ) Pijin (0, ¢)m
2 2
w2 w? L
. t).
{w% — u? cos? (k) * w2 — v2 cos? () } P, 0, 1)

(12.28)

ZNote that here the terms that were renormalised would have dropped out as they have 1 instead of N (k) and
hence one would have gotten limg_ k- 1 = 0. This is consistent with the literature, e.g. with [60, 63], where
the renormalisation after application of the Markov approximation in the one-particle master equation does
not affect the decoherence part which comes from the delta terms.

24Note that a factor % arises due to the fact that the point k = 0 where the delta distribution is not equal to zero
is at the edge of the integration interval.
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Now we choose in the first term the spherical coordinates such that EHEZ and in the second one

7|k and obtain

ulud ot w2 w?
a0 [ a iin (0 ° - i, U, ).
27r 2(27)38 / ¢ sin(6) Piin (6, ¢) Wy Wy {w% — u? cos?(0) * w? — v2 cos?(6) } P, 3,1)

- a2 -
, L. (u-k)(U-k 1 i - k)? 7-k)?
szln(e ¢)uzu3 lL,n _ [u 7 — (u %gv )] o 2[ 2 (u]z2) ] [ 2 (UEQ) ]
= [" ¥ — wcos(9)(V l?)} 1 {uQ u? 0082(9)} {’UQ — (v 2)2}
2
= (- 0)? + u® cos®(0) (7 l:c’)2 — 2u cos(0)(u - V) (U l?)
%uQ sin?(6) [02 _ (17-/2’)2] . (12.30)
where the unit vector k is defined as
. sin(#) cos(¢)
k= | sin(0)sin(¢) | . (12.31)
cos(0)

From this follows that

21 L
d¢o Pijln(ﬁ,qﬁ)uzu]vlv"

=27 (il - ¥)% + u? cos? ()27 cos? (A)v? + 7w sin?(0) (v2 + UZ)] — dmuw, cos®(0) (i - ¥)

2
- % sin?(0)[2v% — 203 cos?(#) — sin?(0) (v + v3)]

= [2(6 )% — U—Q(UZ + vf)} + mcos?() [uQ(v2 + v2) — duv, (i - 17)}

2
2
+ 7 cos?(0) [%(31}3 - 02)}
u? u?

= — 71— (v? = 3v%) + 7 cos?(0)u? (v? — 3v?) — 7rcos4(9)?(v2 — 30?)

_ T a9 o o[, 2 2

= — ut(v’ = 3u2) [1— cos(0)]

= gu%? — 3v%)sin(6) (12.32)

where we used in the second step that we chose the coordinate system such that @ = ué,, hence
U - U = uv,. The #-integration then has the form

2
Wy,

w2 — u? cos?(0)

;T u?(v? — 30?) / df sin®(9)
5) wd o omt U

_ 2 2\| Y _ Htu

= —mwy (v — 3v3) [3wu 2 + B arctanh (wu> } . (12.33)
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Due to symmetry, we get the same result for the other term just with the replacement u < v,
as for the corresponding terms we can analogously choose ¥ = vé,. The contribution of the last
line of equation (12.1) is therefore?S:

ko fwy [ o (@- )%\ |5 m? m? ( u >
Wu (42 3 S (14 ™)+ ™ arctanh (&
167rﬁ{wv <U u2 3 + u2 + wuu3arc an Wy,
S 2 2 4
. 5
L U S Cal O + P arctanh ()] 1 (12.34)
Wy v2 3 v2 Wy 3 Wy

Collecting all contributions from the delta terms yields

K 10 2 U 2 v
167rﬁ{ - g(u2 4 0?) 4 2(w? + w?) — w—uum4 arctanh <Wu> - wvvm4 arctanh <wv)

= A\2 2 2 4
—wu<v2—3(u ;}) ) f—m—2—|— m3arctanh<u>
Wy U 3 u Wy U Wy
Wy [ o (@-0)2\ |2 mz  m? ( v )
- — -3 - — — tanh [ — . 12.35
o (u 2 5 2 + e arctan o ( )

This is the final form of the real part of the dissipator that causes decoherence. The rotating
wave approximation which is carried out as a next step leaves this part of the master equation
invariant.

12.1.2.2. Evaluation of the Cauchy principal value contributions

The content of this subsection was already published in [2]. Here, it is presented with some
modifications compared to [2] to adapt it to the flow of the thesis.

For the Markov approximation, it remains to compute the terms that contain the Cauchy principal
value in (12.1) after the approximation (12.15). The terms in line two of (12.1) read

ik [ dk usin’(au) N(k) [Pv< 1 > B PV( 1 >

2 (27m)3 2 wy_gwy Qe Qp + Wyl — Wy Qp — Wy—k + wy

1 1
opPV —0pPV
or <Qk + Wy—k +W’u> F (Qk_wu—k_wu>] ’

(12.36)

where a,}, is the angle between @ and k. It can be seen that the term inside the principal value
causes problems for £ — 0. Thus we exclude a small region of radius € around k£ = 0, perform
the integration and take the limit ¢ — 0 in the end. We then obtain in spherical coordinates?®

ZHere it is important to use the coordinate independent expressions uv, = (i - ¥) and vu, = (@ - ¥), as we picked
different coordinate systems when evaluating the two sets of terms.

26Note that the change of coordinates could have been done before applying the second Markov approximation,
hence also before introducing the principal value.
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with k.||
ikut [ W 1 1
lim ———— [ dk [ do sin®(@ kN (k —
61_I>% 4(27r)2wu /e /0 o ( )wufk ( ) Qi + Wyt — Wy Qg — Wy—k + Wy
1 1
4] -9 .
* PQk"i_wufk"i_wu PQk_wuk_wu]
(12.37)
For 6p = 1 this can be simplified to
iku 1 21 cos(0)wy—k
lim ———— dk [ do 0 k -
50 4(277)%%/E / sin’ )w wu—k (k) kw? — ku? cos?(0)
cos(0) sin”(0)
= lim dk N(k d9
~ 0 2(2m)2w, 2(27 2wu [/ ] l/ —u? 0082(0)]
=0
=lim0=0. (12.38)
e—0
Without the principal value the k-integration would diverge:
0 0 1 i 2
_ -7 _iimZ — 9B
/O dk N (k) = /0 Ak g = 5 — iy Jarctanh (1-2¢7) . (12.39)

Without prior renormalisation, some terms arising due to the additional term present in the non-
renormalised coefficients C(@, k,t) in (11.93) compared to the renormalised one would remain
here and lead to logarithmic divergences, as expected from the discussion in section 11.1.

For the non-extended projection, i.e. for p = 0, the situation is more complicated. In that case
we find, again using spherical coordinates and implementing the principal value by excluding a
sphere of radius € around the critical point k = 0

ikut o0 “ 1
lim ———— dk [ de sin®(6 kN (k
el—>0 4(2%)2(,% /6 A S ( )Wu—k ( )

w
4 oo T L

1 1
Qp +Wuk — W QU — Wy g + Wu‘|

KU W

lim———— [ dk [ df sin®(0)kN(k Lt : 12.40

61_>0 2(2%)20% /E /0 sin ( ) ( )kQ _ (Wu—k _ wu)z ( )

The 6-integration leads to a complicated result that can be simplified when considering e.g.
the ultra-relativistic limit. Then it yields, where the limit ¢ — 0 can be taken also before the

integration:

,u ud
4 N(k N(k) 35~
105 2m Qwu{ / " ( ) / * (35 2t 3k4> }

B iru’
©105(27)2w,,
4 mt B 7 o In(1— e Pv) +4Lig(e’5“) B 6Lig(e’5”) B 6Li4(e’5”)
15844~ 65202 Bu 8242 3343 Byl
In (e — 1 o N(k
3535~/ ( / k(4 ) } L (1241
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Here, Lis(z) denotes the poly-logarithm function defined by

oo
Liy(z Z ‘% (12.42)

The remaining two integrations cannot be performed analytically, but they can be solved numer-
ically given a specific temperature © and a value for u, and are finite as long as u > 0.

For the terms in line three of (12.1) we get the same results when replacing @ — ¥ and applying
complex conjugation. For the terms in line four we obtain:

-

ik uulvlo™ N (k) i+ Fot)

&k Py (k
2(27)3 wuwv/ iin )w/WqukaJrk Q

1 1
pv ( )-pv( )
Qk + Wy — Wytk Qk — Wy F Wyt k

1 1
- PV + PV < ) . 12.43
(Qk +wy — wu+k) Qp — wy + Wytk } ( )

Without further specification of p, this cannot be simplified further at this point.
In summary, after the second Markov approximation we hence have

o

p(d

o .. . L
at (U v t) == /Lp(uavvt) (wu _wv)
L5 1(2+2)+2(2+2) 4 th(u> 4 th<)
— —(u*+v W +ws) — arctanh | — | — arctanh [ —
1670 3 v v Wyl Wy Wy Wy
wy [ 5 S(@-T)2\[2 m? 4 u
— o (v 2 372 + ) 3arctanh w—u

Wy [ o (@-D)2\[2 m?  mt v .o
- uTu (u - ST 372 + 03 arctanh o p(i, 7, t)

. Gp,Jaydsm N
/dgk Pzgln(k) T (k)p(
V@utrkwotrk

1 1
pv ( )-pv( )
Qp + Wy — Wytk Qp — Wy + Wytk

1 1
PV +pv ( )
(Qk; +wy — Wv+k) O — wy + Work }

. ) ’LL4 00 ™ .5 1 Wy—k
—(1- 6P)W lg% [wu/e dk:/o df sin (H)kNUf)k2 — (@u e — )

U4 00 T 5 w(:jzk
_ w/ dk:/o a8 sin ()N (k) g _wv)Q] .
(12.44)

K

2(27r) N

The contributions in lines two to four arose from the delta distributions and are real, so they
cause decoherence in the evolution of the scalar particle. The remaining terms are imaginary
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and therefore contribute to the unitary evolution of the density matrix. When working with the
extended one-particle projection, then the expressions in the last two lines vanish. The real part
in lines two to four remains unaffected by the rotating wave approximation that will be applied
in the next subsection, hence it already possesses its final form.

In the existing literature, the master equation in the one-particle picture is usually directly spec-
ified or derived for the non-relativistic (see e.g. [60] for scalar particles) or the ultra-relativistic
case (see e.g. [63] for photons). In these cases, the dissipator has a simpler form and there are
no arctanh-terms present as it is the case here in the general master equation, where neither the
non- nor the ultra-relativistic limits have been applied yet.

To further compare with the existing literature, in section 17.4 we will consider the non- and
ultra-relativistic limit of this master equation above and show that the arctanh does not appear
in either limit. Thus, it indeed leads to the results obtained in the literature.

Another difference to similar work in [60, 63] is that the master equation in the present work has
already been renormalised, i.e. all vacuum contributions that are independent of the temperature
parameter © have been removed in these terms, which arise due to the gravitational influence
in (12.44), which in particular contains all vacuum fluctuations of the gravitational field. This
can be seen by setting the temperature parameter equal to zero, as then all terms including the
gravitational influence vanish.

12.2. Rotating wave approximation

The content of this subsection was already published in [2]. Here, it is presented with some mod-
ifications compared to [2] to adapt it to the flow of the thesis.

After having applied the Markov approximation, the rotating wave approximation is usually a
next step in order to cast the master equation into a completely positive Lindblad form. The
physical idea behind the approximation is to take into account that detectors only have a finite
resolution and cannot resolve arbitrarily fast oscillations, but only measure a coarse-grained re-
sult. In the literature, there exist different ways to apply the rotating wave approximation. One
possibility is, following the nomenclature in [176], the pre-trace RWA, where the approximation
is applied at the level of the interaction Hamiltonian by dropping counter-rotating terms. This
is often employed e.g. in quantum optics and leads to the Jaynes-Cummings model, see [177,
178], which is nowadays extensively studied for instance in quantum technology, see [179]. This
pre-trace RWA, which is also applicable in closed quantum systems, has been studied from several
angles yielding different results in the last years among other things on its higher order correc-
tions and a renormalisation of the resulting series (see [180]) as well as also on the bounds of
its applicability (see [181]). From the analysis in [176] it follows that in open quantum systems
the second version of the RWA, the post-trace rotating wave approximation which is applied
at the level of the master equation after tracing out the environment, yields dynamics which
are expected to be closer to the true system dynamics. This analysis in [176] is carried out for
quantum mechanical models and we expect that more work is required to extend it to the full
field theoretical case. Nevertheless, we take this discussion as a motivation to apply in this work
the post-trace RWA, which was also employed in similar analyses, for instance in [63]. This
post-trace RWA is implemented by considering the master equation in the interaction picture
and then dropping terms that rotate very fast compared to the other ones.

For the application of the post-trace RWA we proceed in the standard way by considering the
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master equation in interaction picture and removing all terms that oscillate fast (see e.g. [45,
63]). For this we start in the field theory and consider the full dissipator from equation (9.34):

37. 13, 13 N
Cy oy [ Skt | [P 0)] 5004 R

rE{—i— —}ab=1

-

k, &Ps(@“ F( + wp(k, 1) + h-C-} ,
(12.45)

+N (k) [, 520

where f(w;t) = fgito dr e ™7 and we assume that the Markov approximation has already
been applied, thus the former functions f(w;t) are now distributions f(w) = mé(w) — iPV (%)
independent of time. The different w, and j, were defined starting in (9.37). Taking into account

that the renormalisation removed the terms that are independent of N (k), the dissipator becomes
(see (11.96)):

Z Z / d3k d3p d®l N (k)
re{—i— —}Yab=1 {4

- { [ G Y (32 D), s ()] | (0 + (B D) + h} .
(12.46)
The basis for the RWA is the dissipator in interaction picture, which is obtained by substituting
Ja(k.B) — jo(k, et T, (12.47)

Thus we get as time-dependent frequencies that cause oscillations terms of the form
eilwa FD) (D]t (12.48)

Next we apply the RWA which means that we discard all the rapidly oscillating terms and only
keep those where w,(k, ) = wy(k, 1) holds. For a = 3 and a = 4 this means that only b = 3 and
b = 4 survive. However, from the definition of the wq(k, ) follows that wy (k, ) = wa(k, —k — ),
so also terms of the form a = 1, b = 2 and vice versa will remain. To simplify this, we introduce
JA(k, ) and w(k, ) with A € {2,3,4}, similar as in [63], such that

PRD) =2 Fp)  PED) =R = - P =wp—wiepy  (1249)
TR B) = 33 (K. p) WP, B) = wa(F, ) = —wp — wirp (12.50)
TMF.B) = A, B) WHE,B) = wa(F, B) = wp + wptp - (12.51)

Making use of the fact that j}(lz, p) = jg(l;, —k— P), we can rewrite the dissipator in terms of a
sum over capital letters A, B:

d3kd3 d3lNk:
=5 =5 o

7‘6{+ -} A,B=2

~ { AEDT TP D, ps ()] ] £+ 0P (E,T) + h}
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The RWA-requirement to keep only the terms where wA(E, p) =wB (E,f) then keeps the following
summands

A=B=2 A=B=3 A=B=4 (12.53)

completely, which were also exactly the same summands that survived the one-particle projection,
while for the remaining six summands it yields the following conditions:

A=2 B=3: wp—Wiptw +wpt =0 (12.54)
A=2 B=4: wp—Wip—w — Wit =0 (12.55)
A=3,B=4: —wp—Whip—w —wpy =0, (12.56)

and for the other three summands the same conditions with the role of p and I swapped. For
mass m > 0, which implies wy > 0, the last condition is never fulfilled. For m = 0 there is a
solution, namely k = p’=1[ = 0. The first condition reads

Witp = Wp + Wy + Wy - (12.57)

This is never fulfilled, as we show in the following (where we define p := ||7l|,1 := ||I]|, k := ||K||
and assume?” m > 0):

Whtp < \/(k‘—i—p)2—|—m2 < \/p2+m2—|—\/l2+m2+\/(k:—l)2+m2Swp+wl+wk+l. (12.58)

The inequality in the middle can be proven by considering the square of both sides (as each
summand individually is positive, the direction of the inequality remains unaffected), which
yields:

kp+kl <m?+1* + \/p2+m2\/(k—l)2+m2+ \/p2+m2\/12+m2

+ VI2+m?\/(k—1)24+m?2.

(12.59)

We can now estimate the right hand side downwards as

m? 412+ plk — 1|+ pl + 1|k — |

<m? 4 o2+ m2 (k= D2 Fm? 4 Jp? 4+ m2VE £ m? 4 VE m2\ (k- 1)+ m?,

(12.60)

which yields
kp+kl <m?+ 1+ plk =1 +pl + 1|k —1| (12.61)

to be proven. Due to the absolute value, we consider two different cases: Let’s first assume that
k > 1. Then the inequality reads

kp+kl <m?+kp+ ki, (12.62)

27 Afterwards we comment on the case m = 0.
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which is true as long as m > 0. In the second case, i.e. for | > k, we are left with
kp + kl < m? + 212 + 2pl — pk — ki, (12.63)

or equivalently
0 < m?+2[1% — ki) + 2[pl — pk] . (12.64)

However, as we are considering the case [ > k, both brackets yield non-negative results and thus
the inequality is fulfilled for m > 0. Hence (12.54) does also not have any solutions as long as
m > 0. For m = 0 we have to solve the following equality:

k+pl—p=k+1—1. (12.65)

However, we also have
E+pl—p<k<|k—l+1<[k+I-1, (12.66)

hence in order for equation (12.65) to hold, all < signs must become equalities. For the first one
this is the case if & || 7 and for the last one if k || —I. For the one in the middle, we have to
consider two cases on how to resolve |k —1[|. If k > [, then we can directly drop the absolute value
and the middle < becomes an equality. In case k <[ we find |k — | +1 =2l —k > 2k — k =k,
so there is no equality. Hence for m = 0 the following solutions exist:

Elg A k|- A k>L. (12.67)

It remains to investigate (12.55). Isolating wy, on one side and following the same argumentation

as above (squaring the inequality and estimating downwards the rights hand side) we end up
with

kp+kl <E2+m?4+ 12+ 1k —pl+|k—pllk—1]+1k—1. (12.68)

Here we have to consider four different cases:

> p and k > I: We obtain 2kp < 2k? + m?, which has no solution for m > 0 and for
=0 and k = p we get solutions, thus k > I,k =p,k || =1,k || —p.

e k>pandk < I: We obtain 0 < m? + 2I? — 2pl which has no solution for m > 0.

e k< pandk >1: We obtain 0 < m?, which has only for m = 0 a solution, thus there
k‘lek <p,k' H _lvk H _ﬁ'

« k<pandk <I: We obtain 0 < m? +2[(p — k)(I — k) + (I — k)] and thus no solution as
every bracket is positive.

Summarising, for equality (12.55) we get again no solution if m > 0 and for m = 0 we have

Ell-F A k|-l A p>k>1. (12.69)
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So in total, for a positive mass non of the non-diagonal terms survives the rotating wave approx-
imation. If the mass is zero, the following non-diagonal terms survive:

A=2B=3: Elg A k|- A k>l (12.70)
A=2B=4: K|l -9 A k|- A p>k>1 (12.71)
A=3B=4: k=l=p5=0 (12.72)
A=3,B=2: KT A l-F AN k=>p (12.73)
A=4,B=2: Ell=l A kl-p A 1>k>p (12.74)
A=4,B=3: k=l=p5=0 (12.75)

If we plug these special cases into the dissipator, which contains a projection of [ and also of I
onto the plane perpendicular to k, all extra terms containing k || +I and k || +5 vanish. Then
only the special solution k=1= P = 0 remains in all six cases (due to polar coordinates and
thus also spherical coordinates being non-unique for zero radius, in that case still all directions
are possible). However, as this is only one point regarding the radius integrations, it will vanish
under the integral. Thus all the extra correction terms vanish?® and we are left with the dissipator
after the RWA in the form

d3kd3 d3l N (k
R — o

r€{+ -} A=2

- { [T D), [TAE D, ps(t)]] F( +w™ (D) + h}

wA(k,p)=wA (k1)
(12.76)

In order to explicitly write the Hermitian conjugate, we split f(w) = fs(w) + fpy(w), as the two
parts behave differently under complex conjugation (the first part is real, the second one purely
imaginary) and compute them in the following two subsections.

12.2.1. Computation of the delta terms in the RWA

The content of this subsection was already published in [2]. Here, it is presented with some
modifications compared to [2] to adapt it to the flow of the thesis.
The delta terms remains unaffected by the complex conjugation®’, thus we get, using that the

2The same is the case for the result in [63]: There appear the L(U /\)( ,P) in the J(la /\)(_’,ﬁ) with k || 7. To
show this, one can use the definition LZLG’A) = /QpQpik(e—o(k) - e-x(P))(e—o( 4) eA(l; + p)) and that

one can express the circular polarisation in terms of two linear polarlsatlons es(k) = %[el(ﬁ) + ise?(k)] with

(k) = |S£°Wiik| with an arbitrary unit vector o that is not (anti-)parallel to k and the angle .,k between o

and k, as well as €' (k) := e (l;) x k, see also [182]. As || k, we can see that e;(k) = € (p) = es (l;—f—ﬁ) Using also
e_o(k) = €: (k) and €% (k)e: (k) = 6,5 which can be proven right away, we get that [e}(k)-€_x(k)][ex ( k)-e ( k) = 0

thus all additional terms containing J' vanish, as in our case, and only additional terms with k=p=1=
remain, which are of measure zero.

2 As fR dz f(z)0"(z) = [f]R dx f*(:r)(i(m)]* =[f*(0)]* = f(0) = fR dz f(z)d(zx) for a test function f : R+ C, from
which one can conclude that §*(z) = §(z).
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terms in the first line, which are independent of N (k

sl = 3 Z/ d3kd3pd3lf5(Qk+w (

re{+,—} A=2 L

), vanished due to the Markov approximation:
k, 1)

-{(Jf(l?,ﬁﬂpﬁ(’;af)—;{ JAR, D JA(k m*})

+<J,ﬁ4(k: Dok m*—l{p Tk, D) I (R, 3} }

wA (k.p)=w (kD)

(12.77)
Using the following equalities:
T2k, o)t = J2 (=K, k + p) w2 (=K, p+ k) = —w*(k, ) (12.78)
Tk, )t = JH(—k, —p) W (—k, —p) = —w*(k, p) (12.79)
JAk,p) = J3(—k, —p) wl(—k, —p) = =’ (k, ), (12.80)

we can simplify the §-part of the dissipator and obtain

—

. A
slosl =r Y Z/ d3kd3pdlf5(9k+w (B, 1) + f5(Q (k:,l))N(k)

re{+,—} A=2 L

-{(Jf‘(k Dpd )t = 5 {1 “5’5})}

wA(k,p)=wA (kD)
(12.81)

Additionally, all terms involving the extended projection, i.e. all terms where A = 3 or A = 4,
vanished due to the Markov approximation, hence the §-part of the dissipator simplifies even
further:

—

31 434 A3 w — w2 7
dor 3 /dkd p d®l f5(Qu + w2 (k, ));kf(s( =@ R D) g

slp
re{+,—}

{(ﬁ(k DoJ2(F. 5 — 5 Lo, 2GR 5 I2GF, n})}

w? (7;715'):‘02 (Evf)
(12.82)

As shown above, f5 o §(k), hence the RWA condition reads

W (k,p) = wp — Whtp =0 =wj — Wiy = w?(k, 1) (12.83)

and is therefore automatically fulfilled, thus it can be dropped. One can furthermore evaluate
the fs and obtains, using (12.21):

1 1 27
Lcos(6;) + 1— lcos(@l)] - 6<k) 1 12 cos?(6;) °

w; w; w12

(12.84)

-

F5(Q + w2k, D) + f5(Q — w?(k, 1)) = 78 (k)

1+
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—

where 6, denotes the angle between k and [ and [ = |I], k = |k|. This yields

Bl BpBLs(k)  2r
slps] =~ Z L @nf G 1 Pem )

"Jl

1 L
{ (FEDpIE ) = 5 (o 2E P RED}) } - (1289)
The rotating wave condition further implies

( 75)77“ (Eal_i

k" Olk|
— k + pcos(6),) _ kA [ cos(6) . (12.86)
Wk+p Wkl
We therefore can use that
2w 1 1 1
0k)————~ =210(k) ———————~5 = 27w(k
( )1 _ Zeos(0) mo( )1 _ (etlcos(61))* mo(k) 1 _ Uetleos(0))? [1 _ (k+pcos(6p))?
Wi Whtt Wiy w£+p
(12.87)
and, defining the Lindblad operators
&) = [ & = 2R, 5, (12.88)
R3 \/1 . (kJFpC;)S(ap))Q
Yk+p

we can recast the dissipator in Lindblad form:

osl = 3 | & dgk 09 02 (LB B = 3 {p LB} . (1289)

As the rotating wave approximation dropped the same terms as the single-particle projection and
led to a condition on the frequencies that is already implemented in §(k), which is present in every
term of the d-part of the dissipator after the Markov approximation, the RWA does not change
the form of the d-part of the dissipator compared to its form after the Markov approximation in
(12.35).

12.2.2. Computation of the Cauchy principal value terms in the RWA

The content of this subsection was already published in [2]. Here, it is presented with some
modifications compared to [2] to adapt it to the flow of the thesis.

The contributions involving the Cauchy principal value, denoted as the PV-part of the dissipator
(12.76) in the following reads after renormalisation, which removes the terms independent of
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4 43k d3p d31 N (k)
3 (2m)3 Qp

~{[ (k. o)t [ 7R, D), ps ()] fpv(QmeA(E,f))Jrh-C-}

WA(Evﬁj:wA(Evf)
(12.90)

As f(w) is purely imaginary, it switches sign under the Hermitian conjugation and we obtain:

d3l<: d3p 431 N (k)

4
Dpy|ps] Z Z/
r6{+, }A=2 Qk

HJ:‘(E,@T,J:‘(E, D], ps®)] fev( +w"‘(l¥,f))}

—

1

Ak, p)=wA (k1)
(12.91)
We can then rewrite this part of the dissipator as
K
Dpvlps] = ~i5 [Vis, ] (12.92)

with

d3k: d3 d3l N(k)

Vis== 2 Z/ o

re{+, }A2
1 AT A7 R
PV | —————— | [JA(k, )T, TA (K,
(o) LE o a2

WA(Evﬁ):wA(Evf)
(12.93)

Note that the rotating wave approximation hence removed the imaginary terms in the fifth to
seventh line of the Markovian master equation in (12.44), while it did not change the other
imaginary terms. These were vanishing when working with the extended projection, hence in
that case we find Vg = 0. If the non-extended projection is used, only the terms for A = 2 are
left and there the RWA condition is already implemented in the one-particle projection, as the
case (1,1) includes 6(5— 1), see table (I) and (II) at the beginning of section 10. Hence the RWA
does not change anything in the remaining PV-terms. The final one-particle master equation
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then becomes

0 S -
57 p(U, 0, t) = —ip(d,V,t) (wy — wy)
k 2, .2 2 2 ! u !
+ 167rﬁ{ - g(u +0%) + 2wy, + W) — o arctanh (%) "o arctanh (wv)

mp(iv?,t) ut L-o
—(1-46p) o) 11_I>I(1)|: / dk/ df sin (H)kN(k:)k2 —

_ 7/ dk;/ df sin® kN(k?)k l(wv::_k wv)z] :
(12.94)

It can be seen when comparing this result to (12.44) that the effect of the rotating wave ap-
proximation is to remove the remaining part of the Lamb-shift in the extended projection. In
the non-extended projection, there still survives one term of the Lamb-shift which corresponds
to the last two lines in (12.94). Apart from that, the rotating wave approximation causes no
further modifications on the master equation. This is due to the fact that all other terms that
would be removed by the approximation were already dropped when performing the one-particle
projection of the master equation. The general dissipator at the operator level can however be
written in Lindblad form after the RWA, see (12.89).

With this, we have derived the final form of the renormalised one-particle master equation after
Markov and rotating wave approximation. In the next section, we discuss some applications and
investigate some features of the master equation at different intermediate stages before, during
and after the applied approximations.
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13. Applications of the one-particle master equation

The content of this section was already published in [2]. Here, it is presented with some modifi-
cations compared to [2] to adapt it to the flow of the thesis.

In this section, we discuss some applications of the one-particle master equation derived in the
previous sections. We start with analysing the evolution of the populations of the one-particle
density matrix with a special focus on the interplay between the renormalisation and Markov
and rotating wave approximations in subsection 13.1 and compare the results to [62] where the
evolution of the populations of the non-renormalised TCL master equation is derived. Next we
discuss the non-relativistic limit of the one-particle master equation in subsection 13.2 and com-
pare the results to the ones in [60]. Furthermore, we investigate the ultra-relativistic limit in
section 13.3 and compare it to [63]. This enables us to later discuss in section 17.4 the relation to
the quantum mechanical model for gravitationally induced decoherence in neutrino oscillations
introduced in part IV of this thesis.

13.1. Evolution of the populations of the one-particle master equation

The content of this subsection was already published in [2]. Here, it is presented with some mod-
ifications compared to [2] to adapt it to the flow of the thesis.

We start by analysing the dynamics of the populations, that is the diagonal elements, in momen-
tum representation predicted by the master equation at different stages in the derivation of the
final Lindblad equation. We have chosen this application because it is an example that allows us
to discuss and compare the implications that arise depending on the stage of the calculation at
which the renormalisation procedure is performed.

To investigate the evolution of the populations, we take the different versions of the master
equation and compute it for p(l;, t) == p(E, E, t) before and after the renormalisation as well as
after the Markov approximation. As the rotating wave approximation only affects the Lamb-shift
Hamiltonian, the dynamics of the populations will not get modified after its application.

13.1.1. Before renormalisation

The content of this subsection was already published in [2]. Here, it is presented with some mod-
ifications compared to [2] to adapt it to the flow of the thesis.

The dynamics of the populations in the one-particle master equation (10.42) before renor-
malisation and further approximations can be obtained by evaluating the master equation for
p(k,t) := p(k,k,t). In this case, we have no contribution from the unitary dynamics and in the
dissipator all imaginary parts will vanish3® and one obtains a dissipator that is purely real. In
this subsection we adapt the notation to the one used in [62] in order to better facilitate the

30As all coefficients now enter in the form C + C*.
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comparison with their results:

- BK Pk — k)
(k,t) = — .
p( ’ ) H/ (271')3 Qk/_kwk/wk

{ [[N(k, b+ Sin(x(i— ) | ne— i Sin(x’(;/— to))

+opN K = 1)+ 1) 0D 5 k)l“("(;‘t“”] o(F,1)

[t = B sinta ) p(E,’t)}

(13.1)

with p'(%, t) = Otp(E, t) and x := Qs —wi; —i—wk/,qx’ = Qg +wp—wpr, 0 1= Qg +wi+wy and
77/ = Qp_p—wp—wy as well as Pk(k,—k?) = Pz'jln(k‘/—k)kikjklkn. Using that Pijln(k—k,)(k—k,)i =
0 as Pl-ﬂn(/%’ —K ) projects onto the symmetric transverse traceless part and therefore removes the
longitudinal part o k — k', which can be seen from the definition in (10.15), we can use

Pijin(k — "K' = Pyjin(k — )K" 13.2
J J

and hence rewrite

Pu(K — k) = Py (k' — E)K' K K E™. (13.3)

From equation (13.1) one can also once more see the implication of the chosen projection, i.e.
whether §p = 0 or dp = 1, on the probability conservation, which was discussed below equation
(10.7). When working with the non-extended projection dp = 0, then we have

&k p(k,t) =0 (13.4)
R3
due to symmetry and thus probability in the scalar particle’s subsystem is conserved. If working
with the extended one-particle projection ép = 1 instead, it can be seen in equation (13.1) that
the terms containing n and n’ lack a symmetric counterpart to be cancelled and hence in that case
probability conservation is not given any more, as it was also discussed below equation (10.7).

In [62] the dynamics of the population for a master equation of a photon coupled to linearised
gravity are discussed. We obtain an agreement with their result if we specialise to a massless
scalar particle and choose as the initial time {5 = 0. In addition we need to consider the non-
extended one particle projection (i.e. p = 0), in order to adapt to their chosen normal ordering
as well as choose the temperature parameter © to be zero. The latter corresponds to a vacuum
state of the gravitational waves environment. Inserting these assumptions in the evolution of the
populations this equation becomes

(k,t) = iy iy .
o) (2m)3 Qi pwprwr, X p(k,1) Y p(k', )| (13.5)

- B /dSk’ Pk(E’—IZ) sin(xt) - _sin(x’t) -

which has a very similar form as the one in [62] for a photon. The only difference arises due to
the fact that for the photons in [62] the polarisation vectors couple to the symmetric transverse
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traceless projector while here for the scalar particles, as they do not carry any polarisation, This
role is taken over by the momentum, which is the only direction-dependent quantity that scalar
particles possess.

13.1.2. After renormalisation

The content of this subsection was already published in [2]. Here, it is presented with some
modifications compared to [2] to adapt it to the flow of the thesis.

As discussed in section 11.5, the effect of the renormalisation was that the vacuum part in the
one-particle master equations, these are the contributions not involving N (E), vanishes. At the
practical level this can be implemented by replacing everywhere N (k' —k)+1 — N (k' —k). Then

the dynamics of the populations becomes

N 37, N sin - sin(x'(t —
p(kjt):_ﬂ/é:)g (Zﬁ(_k;Wki)k 'N(k/_k)'{l (x(;f< to)) N (x S/ to))
5, Sl = t0)) o sin(n’(t/— to))] o)
n n
B {sin(x’(t—to)) N sin(x(t—to))] (! t)}
X/ X b
(13.6)

We realise that now all terms depend on N (k' — k). As a consequence, the entire evolution of
the populations is trivial, that is ;')(E, t) vanishes, if we consider the specific case of a vanishing
temperature parameter © = 0 yielding directly N (k¥ — k) = 0 for all k,k’. The comparison to
the non-renormalised master equation shows that the physical properties of the two one-particle
master equations are quite different as far as the dynamics of the populations is concerned. For
this reason the discussions and physical implications drawn in [62] based on the dynamics of
the populations in the non-renormalised equation (13.5) are problematic, as the evolution of the
diagonal terms vanishes after renormalisation in the zero temperature limit.

13.1.3. After the Markov approximation

The content of this subsection was already published in [2]. Here, it is presented with some
modifications compared to [2] to adapt it to the flow of the thesis.

Due to the fact that for the diagonal elements the coefficients always enter in the form C + C*,
only real terms in the one-particle master equation after the second Markov approximation in
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(12.44) remain:

o - .
—plk,t) =p(k,t
K 20 o 9 4 4 ( k )
= - — dwij — — h{—
167TB{ 3 k* + 4wy wkkm arctan o
2 m? m k -
Ak | — — tanh | — k,t
+ [3 12 +wkk3arc an (Mc)] }p( ,t)
=0. (13.7)

This means that the Markov approximation removes the dynamics of the populations also in the
case of non-vanishing temperature and independently of the extended projection dp. It therefore
also restores probability conservation, as it removes all terms from the extended projection in
the dissipator. The rotating wave approximation only affects the imaginary parts of the master
equation, thus it does not change the evolution of the populations any more.

This result that the dynamics of the populations vanishes is also obtained in [60] for a non-
relativistic one-particle master equation that was renormalised after the application of Markov
and rotating wave approximation, and for the one of a photon after renormalisation and appli-
cation of the same two approximations in [63].

13.2. Non-relativistic limit

The content of this subsection was already published in [2]. Here, it is presented with some mod-
ifications compared to [2] to adapt it to the flow of the thesis.

In the following, we apply the renormalised one-particle master equation after Markov and rotat-
ing wave approximation (12.94) to non-relativistic particles in order to compare the decoherence
with the one derived in [60]. In the non-relativistic limit we have :7‘722 < 1 and 7%2 < 1 and due
to this the one-particle master equation simplifies. In this case we can expand the arctanh as

m 1 U 1 m | u 2 ud 8 ub ub
—om?———  arctanh | ———— | = -2’ — | — - —+ —— + 0| — .
mu /1_’_%22%(:&11 (m 1+:222) mu[m 3m3+15m5+ mb

(13.8)
Given this we find for the contribution from lines two to four in (12.94), which is the part leading
to decoherence, the following expression:

(1- 3cos2(’y)} = —W% B(u4 +vt) + u?o? (il))

~ o)
(13.9)

K 16 ut + v? 16 uZv?
1673 15 m? 15 m?

where 7y is defined as the angle between 4 and ¥, i.e. @-¥ = uwv cos(y). We work with the extended
projection dp = 1 here, as a consequence there is no Lamb-shift contribution left and the master
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equation becomes

0 1 1
ST, .0) = ip(T, 5, ) =) = 5 |+ 7) 4 3 (5 — o)) | @511
Lo o u? v’ K Loy ay 201 2 = o
= —ip(u, v, 1) <2m - 2m> " 5rBm2 [3(u + %) + av (3 — cos (”Y))] p(t, U,t),
(13.10)

where we used in the last step w, = V2 + m? = my/ ;‘722 +1lxm+ % and likewise for w,. The
master equation (60) in [60], where a Lindblad equation is used after Markov and rotating wave
approximation to also describe a scalar field coupled to a linearised gravitational field, reads in
momentum 1representzaution31

o . o u? v? 26 (1,4 4 1 5.9 9 .
oy L T.1) = —ip(id, 5.1) (QmR - sz> S (@ 7 = S (1 o) ol 7).
(13.11)

While in that work, they use the same underlying physical system, one of the differences is that
there a gauge fixing is used while in this work the elementary physical variables were identified
in section 7 by choosing geometrical clocks with respect to which suitable Dirac observables
were constructed. Additionally, the Hamiltonian used in [60] is not completely normal ordered,
while here we worked with a completely normal ordered one. A more detailed discussion of
these two points can be found in section 8. Furthermore, the renormalisation is carried out in
a different manner: in this work it is done before the Markov and rotating wave approximation
are applied. In contrast in [60] the final master equation is renormalised after the application of
these two approximations and after going into the non-relativistic limit. Their renormalisation
procedure involves the introduction of a cutoff A <« m which is later absorbed in a redefinition
of the renormalised mass m — mp, while here we found in equation (11.64) that only the wave
function needs to be renormalised, see section 11.4. In [60] compared to our result here, there
are some additional unitary terms left due to using the non-extended one-particle projection.
These contributions are proportional to the UV-cutoff A and to :T;’ which is why they are

dropped in [60] from the final master equation in the non-relativistic limit, even though in the
limit A — oo they would diverge. As our results demonstrate, using the extended projection and
a renormalisation before the application of the approximations hence removes the necessity to
drop diverging terms by hand.

Additional differences between (13.10) and (13.11) are the prefactor in front of the dissipator and
the structure inside the square brackets. In these two points the results derived here do not agree
with the results in [60]. Particularly regarding the last point, our result however agrees with a
similar derivation for photons in [63] where more intermediate steps are provided and where the
final structure in the square brackets is the same as in (13.10).

13.3. Ultra-relativistic limit

The content of this subsection was already published in [2]. Here, it is presented with some mod-
ifications compared to [2] to adapt it to the flow of the thesis.

31Tn [60] a different k4p is used that is related to the x used here by Kapg = 2x.
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In this subsection we apply the one-particle master equation to ultra-relativistic particles. Pos-
sible applications are one-particle master equations for photons as discussed in [63] as well as
gravitationally induced decoherence in neutrino oscillations as discussed in part IV of this thesis,
where a quantum mechanical toy model is used.

In the ultra-relativistic limit we have Zl—; < 1 as well as %2 < 1. Taking this into account,
we neglect all terms of order O (’Z}—;) and O (T—;) respectively and higher order contributions.

Note, that this also includes terms involving arctanh function because

m2

1 . h( 1 ) O<m2>
— ——=arctanh | ———= | = — |-
u /1+%22 /1+%22 u

This leads to the the following simplification for the decoherence term in (12.94):

16/:[',8{ - %(u2 +1)2) — g[uv —3(u- 17)2}} _ 47’:6 |:1(u s )+uv (; . COS2("}/)>:| . (13.12)

The remaining computation of the imaginary part in the dissipator can be found in (12.41).
Combining all results, the renormalised one-particle master equation in the ultra-relativistic
limit can be written in the form

o
ap(ﬁa 17) t) == Zp(ﬁv 27’ t) (U - U)
— ﬁ g(u2 +v*) + uv ( - 0082(7))] p(t, T, t)
(1-3 )mu‘1 p(d, v, t) m B 7 _In(1 - e Aw) +41112(6*5”)
P)105(27) 2w, 15544 682u2 Bu 822
gHa(e™) (L)) o0 g el (1)
3343 Biys Bu
4w / aw M) g, / ar ) }
(1-3 )ifw4 p(u,v,t) 4 m 7’ In(1— 6_5”) n 4Lig(e_5”)
Fm105(2m)2w, 15851 68202 Bv 3292
_gHs(e™™)  (Lia(e™™) L35 35111 <€5v - 1)
3343 Byt Bv

14/ e N g, / dr Y1) } (13.13)

where 7 denotes the angle between @ and ' and Lis(z) denotes the poly-logarithm function defined
n (12.42). In the extended projection, i.e. for p = 1, this becomes

gt (@,v,t) = —ip(i,v,t) (u—v) — 47/:ﬁ [1(u +0?) +uw (; —cosz(v))} p(i,v,t), (13.14)
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which can be rewritten in terms of an operator equation as

aatﬁ(t) — il p(1) + # (mﬂm _ ;(mlm) [pggf, [ﬁ(t), pg;m” , (13.15)
with Pg 1= v/Pnp"™ + &,,21. In this definition, &,,2 is a small regulator that removes the eigenvalue
zero from the spectrum of pg, as in that case the operator would not be invertible. For massive
particles, this regulator corresponds to the mass squared m? which is still present in the ultra-
relativistic limit, even though very small compared to the other summand. This is, up to a factor
of 2, the same result for decoherence as derived in [63] for gravitationally induced decoherence of
photons. This difference of a factor of 2 is already present when comparing the field theoretical
models of [63] and part II of this thesis. Note that in [63] the derivation and in particular
the application of the approximations is performed without a prior renormalisation of the one-
particle master equation, which is done in the end to get rid of the diverging Lamb-shift term.
As expected from the analysis in this work, they find a logarithmic divergence in the end. The
derivation of the master equation in [63] is very similar to the one in [60], hence we refer for a
detailed comparison to the discussion in subsection 13.2. The renormalisation in [63] is done after
performing the approximations and the ultra-relativistic limit such that the detailed procedure
depends on the cutoff frequency A and its relation to the photon frequency w,, (in our case the
scalar particle’s frequency). In the end in [63] the electric and magnetic fields as well as the
coupling constant are renormalised.

In section 17.4, we will use this ultra-relativistic form of the master equation (13.14), apply
it to neutrino oscillations and compare its results with the quantum mechanical toy model for
gravitationally induced decoherence on neutrino oscillations discussed in part IV of this thesis.
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After having derived a master equation for gravitationally induced decoherence on a scalar field
from an underlying action in full field theory based on linearised general relativity, we discuss
different approaches in this part of the thesis. As the derivation of the previous model in parts
IT and III is a complex task, in particular to get to the physical predictions which we obtained at
the end of part III, there exist different ways towards a similar master equation which we discuss
in this part of the thesis. Among these are phenomenological models, where a specific form of the
master equation is assumed as starting point, often a Lindblad form with unknown operators.
These operators are parameterised adopted to the given physical problem and then are fitted to
experimental data in order to obtain values (or at least bounds) for the unknown parameters. In
this part of the thesis, we will focus on these models for gravitationally induced decoherence on
neutrino oscillations. For this, we will first discuss the general process of neutrino oscillations and
its theoretical description in section 14 and then introduce phenomenological models that tackle
the gravitational influence in this process in section 15. After that, we present the construction of
a quantum mechanical toy model based on the Hamiltonian of a closed system where a neutrino
is coupled to a bath of harmonic oscillators that model a gravitational waves environment in
section 16. In the end, we compare the predictions made by this model to the one derived in
the previous parts from field theory and also to phenomenological models in the literature in
section 17.

14. Neutrinos and their oscillations

14.1. Neutrinos

Neutrinos are nowadays probably the most mysterious constituent of the standard model of par-
ticle physics (see e.g. [183-187] for introductory books on neutrino physics and [188-190] for
discussions of open points in neutrino oscillations). They are produced in various processes in
(at least) three different flavours as electron, muon or tauon neutrinos. Although they were the-
oretically postulated already almost 100 years ago by Wolfgang Pauli to explain the conservation
of energy and angular momentum in the beta decay, the experimental discovery of the three
different neutrino flavours took several more decades and resulted in the detection of the electron
neutrino by Reines and Cowan in 1956, the muon neutrino by Lederman and Schwartz in 1962
and the tauon neutrino by Kodama et al. at Fermilab in 2001. From the analysis of the decay
of the Z° boson in [191] follows that one expects precisely three different neutrino flavours (and
their corresponding anti-particles) that participate in the weak interaction. There could be more
neutrino flavours which would be called "sterile', because they should not interact weakly. As
neutrinos do not possess electromagnetic charge, they do not couple to the electromagnetic field,
neither do they interact via strong interactions. They however interact with the gravitational
field, as they have a non-vanishing energy-momentum tensor.

In 1956, Wu and colleagues discovered that the weak interaction violates parity maximally in
the sense that left- and right-chiral leptons do not participate in the same manner in the weak
interaction. It turned out that only left-chiral leptons interact weakly while right-chiral ones
do not. For electrically charged particles like the electron this means that right-chiral electrons
still participate in the electromagnetic interaction and can therefore also be detected. Based
on this, in 1958 Goldhaber and his group showed that only left-chiral electron neutrinos exist,
which implies that there are only right-chiral electron anti-neutrinos. If there are right-chiral
electron neutrinos, then it is very hard to detect them, because they would be sterile as they do
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only interact gravitationally. In the standard model, this is assumed to also hold for muon and
tauon neutrinos. The theoretical description of lepton families in the standard model and the
conservation of lepton number then lead to the conclusion that neutrinos have to be massless,
because of the non-existence of right-chiral neutrinos there is no possibility to include a neutrino
mass term into the Lagrangian of the standard model.

In the late 1960, Davis discovered in his famous Homestake experiment that the flavour ratio
of neutrinos coming from the sun was measured to be different than expected from the theo-
retical calculations. This started the solar neutrino puzzle, a riddle that was debated in the
neutrino community for several decades. While in the beginning the known model of the sun was
questioned, the answer to the puzzle was a new effect in neutrino physics: neutrino oscillations.
Proposed already in 1968 by Pontecorvo, the experimental evidence was found only in 1998 by
Super-Kamiokande as well as in 2001 by the Sudbury Neutrino Observatory. The key idea of
neutrino oscillations is that neutrinos are created and interact weakly as distinct flavour states,
propagate however in a different basis, the mass basis, which is related to the flavour basis by a
unitary transformation. The discovered oscillations then depend on the differences of the neu-
trino masses in mass basis, which shows that neutrinos are required to have mass, in contrast to
the standard model.

Such a mass term can be included in two ways as an extension of the standard model: As they
do not have electric charge, neutrinos could either exist as Dirac particles, where one could dis-
tinguish between a neutrino and its anti-particle, or as Majorana particles, which would mean
that neutrinos are their own anti-particles. While a Dirac mass term could be generated from the
Higgs mechanism, this is not possible for a Majorana mass term, at least not with a scalar Higgs
field that is included in the standard model. In what follows, we work with Dirac neutrinos.
We begin the discussions with neutrino oscillations in vacuum. There are three neutrino mass
eigenstates |v;) with ¢ € {1,2,3} which are the solution of the Dirac equation and hence deter-
mine the neutrino propagation in time. The flavour states of the neutrino, in which the latter
interact weakly, are described by |v,) with « € {e, u, 7} and these two sets of states are related
by a unitary transformation U, called PMNS matrix:

Vo) = Uai Vi) (14.1)

where we use Einstein’s sum convention. For Dirac neutrinos such a transformation in N dimen-
sions can in general be parameterised by w angles and W phases, which leads for
three neutrinos to three angles 019, 013, ©23 and one phase e, Using these, a parametrisation
for the PMNS matrix is

c12€13 512€13 s13e”"
_ i i
U = | —s12c23 — c12523513€"  C12¢23 — $12523513¢€" 523C13 (14.2)
i i
512823 — C12C23513€"°  —C12823 — S12C23513€"  C23C13

where s;; 1= sin(0;;) and ¢;; := cos(0;;). Due to their property of mixing the different neutrino
mass states, the three angles are usually called mixing angles. If the phase €% is not equal to 1,
then neutrino oscillations would violate the CP symmetry. For Majorana neutrinos, one would
have two additional phases in three dimensions. The most recent values obtained for the mixing
angles and the CP-violating phase are regularly published by the particle data group, see [192]
for the most recent version.
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14.2. Time evolution

In order to obtain the time evolution of a neutrino, one has to solve the corresponding Dirac
equation. Each solution will then be a product of an Lo(R?) function solving the spatial part of
the equation and a vectorial component encoding the spinorial and internal degrees of freedom.
In most of the treatments of neutrino oscillations, the calculation is simplified and the spatial
part as well as the spinor structure are neglected. Here, we neglect the spinorial structure and
first discuss the remaining parts and show in the end how one can connect to the simplified
model only using the internal degrees of freedom. We start with the vacuum case, where the
Hamiltonian is diagonal in mass basis, hence the mass states are the energy eigenstates in which
any given neutrino state has to be expanded in order to determine its time evolution. The matter
case will be discussed in section 14.2.3. In the presentation we follow in parts [188-190, 193]. For
a flavour state |v,(t,tr, 7)) created at an initial spacetime point (¢;, %) and expanded in the
mass basis one obtains

‘Va(t,t],f[» = ZUM‘ |\I/i(t,t[,f])> X ’Vz> . (14.3)

To determine the exact form of |U;(¢,¢;, %)), we start with a wave packet with momenta 7 dis-
tributed according to a distribution function w;(p'— p;) with mean momentum ;. The relativistic

energy-momentum relation E;(p) = \/c2p? + m2c* then leads to the following time evolution of
the the wave packet expressed in momentum eigenstates:

\W;(t,tr, %1)) = /d?’p w; (P’ — @)e_iﬁfle_%E"(ﬁ)(t_tI) D) (14.4)

with momentum eigenstates |p). In order to be able to make predictions for detections at a

certain spacetime point3?, we switch to position space by inserting [ d3z|Z) (¥] and find
lva(t,tr,%1)) = Z/d% UaiWi(Z, 71, ,17) |Z) @ |15) (14.5)
i
where we used (Z,p) = ( 1)3 eP® and defined the wave functions U, (&, #;,t,t;) given as
2m)2
d*p ip(ZT—F1)—iE; (D) (t—t
U, (Z,Zy,t,t7) = / 7( )3 wi(ﬁ—@-)e’p(x*“/’l)*l i(P)(t—tr) (14.6)
2m)z

In order to obtain the transition probabilities of one flavour into another (or the same one), we
assume that the idealised detector measures a flavour neutrino at spacetime point (tp,Zr) in
state |Zr) ® |vg), which leads to the oscillation probability

2
P(va = vp)(&@p, Z1,tr, tr) = |((Tp| @ Wa) [va(tr, tr, 1)) = Y UaiUs Vi@, 31, tr, tr)
5

= UaiUp;UsUs ViR, 1, tp, tr) Vi (Ep, 1, tp, tr) - (14.7)
2%

32Physically, this is impossible as there are always uncertainties regarding the exact detection time and location.
For a discussion we refer to [189], where alternative approaches that take this into account are discussed. We
comment on the implications of a realistic detector model further below. For the analyses in this thesis, however,
the idealised assumption on a specific detection time and position are sufficient.
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To proceed, we make further assumptions on the specific form of the wave packet distribution
functions w;(p'— p;). We discuss two different cases: First, we consider a more involved version
using Gaussian wave packets in section 14.2.1 and then simplify to the case of plane waves in
section 14.2.2.

14.2.1. Neutrinos as Gaussian wave packets

For a wave packet of Gaussian shape, the momentum distribution function has the following

form:
1 (55>

———e  4? (14.8)
(27‘1’0’2)%

with the mean momenta p; and width o. Assuming a small width o, we can expand the energy
E;(p) that appears in the wave function V;(Z,Zr,t,t7) in (14.6) around p = p; and obtain,
neglecting terms of higher order:

wi(p— pi) =

2 —
- P L L
E; ~ F;(p; — D). 14.9
Defining the group velocity v; of the wave packet
. OE;(p) . 2 pi
7). — N L 14.10
( l)] 8pj 1 Ez(pz) ( )
and using that
2.2 2.4
. c*p; m;c
Ei(p;) — L= —, 14.11
«(7) Ei(pi)  Ei(pi) (1411
the wave function W, (&, Z1,t,t7) in (14.6) becomes
2 4 3 L2
U, (Z, 1, t,tr) = % e tI)El(p)/dp?» ef(p4:21) e PUT—T1)—Ti(t—t1)]
(2mo?)1 (2m)2
m264 3 =2
_ 1 e_i(t_tl)Weiﬁi[(f_fl)_ﬁi(t_tl)] / d’p 67;;72+iﬂ(f*fl)*gi(t*tl)]
3 3 °
(2mo2)1 2
(14.12)
Applying the formula for a Gaussian integral in three dimensions,
o . 3 . .
/d3p o3 Aip' P +iBipt _ (thTL)e—éBTAlB (14.13)
e

with a real, symmetric positive-definite matrix A and a real vector B that are in our case
1

Aij = 5—50ij, At =20%0;  and B =[(Z— &) — Uit —tp)]; (14.14)

with A being indeed real, symmetric and positive-definite, we find that

2ol
\I/i(f,f[,t,t[) = %e i(t= tI)E (p)elpz[(x Tp)—vi(t—t)] VAZY ) 47TU —&)—7i (t—t1)]?
(2mo?)1 (27T)
3
N
= <2(7> ! ePi(T—Z1 )—Z'Ez'(1!71')('5—?51)5_02[(9?—3?17)—171'(75—1hr)}2 ) (14.15)
7'('
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From this we can determine the oscillation probabilities from equation (14.7):

3
2\ 2
P(vo — vg)(ZF, Z1,tp, t1) = <20> > UaiU;jUEiUgjei(ﬁi—ﬁj)(fF—fI)—i(Ei(ﬁz‘)—Ej(ﬁj))(tF—tI)
m —
Z?J

—o?[(Fp—a1)—0;(tr—tr))°

(14.16)

S o ﬂ 2
. 67‘72 (ZFp—%1)—0i(tr—tr)] e

The problem which arises here is that in order to compute the explicit probability, one needs to
insert the propagation length Zr — Z; and additionally the propagation time ¢tz —t;, which is not
measured in neutrino experiments. What is measured is only the particles that were created at
point Z7 and detected at Zr, so a common procedure to analyse standard oscillations is to average
over the time interval At := tp — t;. One can indeed see from the form of the probability that
the real exponentials damp the oscillations and are minimal for Zr — 1 = vj,;At, hence if the
propagation time is equal to the propagated distance times the group velocity. For times much
lower or larger, the probability will be highly suppressed, as expected. Defining the propagation
length L= Zr — Z1 we then have:

-

3
5 2 2\ 2 o
P(va — vs)(L) = (Z) S UpiU2 ;U Uyl PP
1,J
. L /Oo d(At) e—i(Ei(ﬁi)—Ej(ﬁj))AterQ [LﬁfﬁiAt]QefoQ [EfﬁjAt]Z
Nt Jo
(14.17)

with a normalisation constant Np that cannot directly be determined due to the infinite size
of the time interval. It is therefore usually determined later by requiring normalised oscillation
probabilities. As tgp > t, the integration domain is At > 0. For the integration over the time
interval we find:

/OO d(At) o~ Ei (5~ F; (7)) At 0 [E-5iAt])” —o?[E-5;A1]

0

_ 202D / * (AL) ¢ OO+ HA0[207 L (k) i B )= E (7))
0

(202 L-(#;+7;) —i(E; (5;) — B (7))

— 6—20'2[_:2 \_/Q’TT _Qe 402(61'2+612'>
204/ 7; + Uj
002L (T + T — i(E: (7)) — Esi(p:
1+erf o (U2+v]) ( Z(pl) ](p])) <1418)

i
20, /1722 + 1732
From this point on the calculations become pretty involved, also due to the Gaussian error
function. One way to circumvent this is to extend the integration domain for the time difference
At from —o0 to oo, which is often employed in the literature, e.g. in [188-190, 193, 194]. This then
leads to a final oscillation formula which encodes next to the standard oscillations also limitations
arising from the finite size of the region where the wave packet is created (or detected, when

working with a finite size detector) as well as from wave packet separations. When considering
decoherence, such an extension of the domain of the time integration is highly problematic, see
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for instance the discussion in [195], as for ¢ < t; one obtains unphysical recoherences that violate
the second law of thermodynamics. Therefore in the case we are interested in in this thesis, this
procedure is not satisfying, which is discussed more in detail at the end of section 16.6. To analyse
the model introduced in section 16, it is however sufficient to simplify the theoretical treatment in
terms of wave packets and to use plane waves instead, which will be discussed in the next section.
The treatment of decoherence in terms of wave packets is not yet fully clear in the literature due
to the above named failure of the standard procedure. The attempt to circumvent it by ignoring
the dissipator in the time average, adding it afterwards by hand and directly imposing e.g. the
equal energy condition yields contradictory results compared to the ones derived from the plane
wave ansatz, see [195], as it does not derive the time evolution predicted by the open quantum
system. This aspect will be discussed in more detail at the end of section 16.6. It is noteworthy
to mention that the plane wave ansatz is however neither directly capable of describing spreads
in the wave packet of the particle nor the creation or detection of the particle in a finite region.

14.2.2. Neutrinos as plane waves

For a plane wave with well-defined momentum p;, the momentum distribution function is a delta
distribution:

wi — i) = (2m)26° (7 — i) (14.19)

Using this in the expression for the wave function in equation (14.6) we find
U (Z, Zp,t, 1) = i (F—T1)—iEi(Pi) (t—t1) (14.20)

The oscillation probability in equation (14.7) then becomes

—

P(ve — vg)(Zp, T1, tp, 1) = Z Um.U;jUEiUﬂjei(ﬁi—ﬁj)(fF—fz)—i(Ei(Pi)—Ej(ﬁ}'))(tF—tz) . (14.21)
1]

Introducing the time interval At := tgp — t; and the propagation length L := Zr — & this yields
the well-known standard formula for neutrino oscillations:

P(va — v)(L, At = 3 UaiU;jUEiUﬁjei(ﬁi—ﬁj)E_i(Ei(ﬁi)_Ej(ﬁj))At. (14.22)
i,J

As it was already discussed in the case of a Gaussian wave packet, here both the propagation
length and the time between neutrino production and detection appear. In experiments, one
only measures the former, so we still have to get rid of the time interval At. To do so, there
exist different methods when working with plane waves that employ the fact that a plane wave
has a well-defined momentum (in contrast to a wave packet) and hence also a well-defined en-
ergy. This circumvents the procedure of an averaging in time that is problematic when including
decoherence, which was discussed in the previous section. We present here with the equal mo-
mentum and equal energy conditions two commonly used methods to replace the time interval
that both lead to the same oscillation probabilities in standard oscillations when considering
relativistic neutrinos. Additional methods such as the equal velocity conditions or the conserva-
tion of energy-momentum condition can be found for instance in [189] and also yield the same
oscillation probabilities for standard relativistic neutrino oscillations.

We assume that the propagation of the neutrinos is happening approximately in one dimension,
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ie. ;5;“[?”@, so we get pj/; L= \}5’2/]|\E| =:p;/; L. The reason for this assumption is that we are
interested in rather long baselines where the wave packet separation, which was mentioned in the
previous subsection, strongly suppresses propagation in more than one dimension. Furthermore,
we are later only interested in ultra-relativistic neutrinos where |p;| > m;c which allows us to
expand the relativistic energy-momentum relation.

« Equal energy condition: here the assumption is that F;(p;) = F;(p;) =: E. This implies
that the coefficient of At in the oscillation probability in equation (14.22) vanishes and one
can use that

m?2 — m?

pi_pj:\/EQ_m?_\/EQ—m?%%. (14.23)

¢ Equal momentum condition: in this case, one starts from the requirement that p; =
p;j =: p. Then this implies that

2 2 2 2
m; —msi  m; —m5
Ei(pi) — Ej(py) = /0 +m? — \Jp? + m? ~ e n T (14.24)
where in the last step we defined the mean energy F := Li;Ej and used
Ll E o BB o (M M g (14.25)
b= 9 i i TV i 9 E; B, ~L. .

Additionally approximating the speed of the neutrino by the speed of light (as the correction
terms will again involve the neutrino mass) permits to replace At ~ %, which then yields
the same form of the oscillation probabilities as obtained using the equal energy condition.

In both cases we obtain for the oscillation probabilities:

2

mz—m.
K3

P(vo — vg) (L, At) = Y UpgiUs;UsUgje” 25 L (14.26)
2%

In a simplified yet often used quantum mechanical description, this can be derived from the
underlying Hamiltonian defined in (16.93), see for instance [187].

14.2.3. Propagation through matter

For the model analysed in section 16, we are particularly interested in neutrinos that propagate
through the Earth. The matter of the Earth consists mostly of atoms. As neutrinos participate
in the weak interaction, they couple to the electrons in matter and interact by exchanging a
W boson (charged current, only electron neutrinos) or a Z boson (neutral current, also muon
and tauon neutrinos). As the former has a significantly higher cross section and therefore is
dominating, we drop the neutral current interaction in the simple toy model we are constructing
for use in section 16. As the interaction with matter happens in flavour basis, the contribution
to the Hamiltonian in mass basis is expected to be (see for instance [186, 187]):

1
U H,pporU with Hypat = G | 0 (14.27)
0

o O O
o O O
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and a coupling constant G,,. From the underlying standard model and from experimental mea-
surements, this coupling constant was determined to be G,, = £v/2G #Ne, where the sign discrim-
inates between neutrinos (4) and anti-neutrinos (—), Gy denotes the Fermi coupling constant
and IV, is the electron density present at the neutrino’s position. In simulations of neutrino oscil-
lations, the Earth is divided into different layers of constant density N, to predict the evolution
of the neutrino. This concludes the general introduction on neutrino oscillations. In the next
section, we discuss some phenomenological models from the literature for gravitationally induced
decoherence in neutrino oscillations that also build on the plane wave approximation and the
matter effects discussed in this section.
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15. An introduction to the phenomenological approach

The question how the standard neutrino oscillations introduced in the previous section are altered
by different physical effects, partly also new physics, is widely explored in the literature. One
particular effect which we also investigate in this part of the thesis is gravitationally induced
decoherence in neutrino oscillations. This effect is expected to change the oscillation probabilities
of the neutrino flavour oscillations and has been investigated in a large amount of works in the
literature, for instance in [85-106]. Most of these works follow a phenomenological ansatz in order
to determine the influence of gravity on the neutrino oscillations. To understand this approach,
we introduce in this section the class of phenomenological models which is mostly used in the
above cited works. In the following sections we will then present a different model which is based
on an underlying quantum mechanical toy model for the neutrino and an environment composed
of harmonic oscillators that serve as gravitational waves.
The process of gravitationally induced decoherence in neutrino oscillations has been investigated
phenomenologically for more than two decades. While earlier works mainly focused on the two
neutrino case, as for instance [96-98, 102, 103, 106], later also the three neutrino case was
investigated, e.g. in [86, 88, 95, 99]. The procedure is very similar in most of the literature:
starting from a phenomenological model which consists of a Lindblad equation for the quantum
mechanical neutrino, the dissipator is parameterised in a general form. In the next step, physical
conditions are applied to reduce the number of free parameters in the dissipator and often different
scenarios are considered such that in the end only one free parameter remains. After this,
measured or simulated experimental data is used to constrain the free parameters where the
argument is the following: So far, no deviation of the standard oscillations has been measured.
This implies that given a specific sensitivity of a detector, it is capable of yielding information in
new parameter regions and can set new upper bounds if its collected data does not show deviations
from the standard oscillations. Such analyses have been carried out for several detectors that
resolve different energy ranges and for neutrinos coming from different sources, for instance for
ANTARES [102], DUNE [90, 94, 99], IceCube/DeepCore [92, 105], JUNO [91] or Km3NeT [93].
In this section we introduce the phenomenological model and arguing to be able to compare it
to our model in the following sections. The starting point of the phenomenological models is
usually the Lindblad equation, which was discussed in detail in section 3 of this thesis. It is
taken to describe as system of interest a neutrino system consisting of two or three different
flavour /mass states in the quantum mechanical picture (see the previous section for a discussion
of the advantages and disadvantages of this approach):

d A . R

ps(t) = 5 [Hs, ps()] + Dlps ()] (15.1)

with the dissipator having Lindblad form (3.14)

N?-1 , . 1 oms
Dlps(] = 3 (Aps(®A] - 5 {AlAips(t)}) | (152)

i=1

where the coefficient 7; from equation (3.14) was absorbed in the definition of the Lindblad
operators A;. The Hilbert space of the neutrino is N-dimensional, where N is the number of
considered neutrino families, in the phenomenological models usually two or three. To proceed,
the individual components of the master equation are expanded in a certain basis which often
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consists of the generators of the SU(N), i.e. for the two neutrino model the unit matrix and
the Pauli matrices, for the three neutrino model the unit matrix and the Gell-Mann matrices.
In this section, we will discuss directly the three flavour case, as this is the one we use for the
toy model in the next sections. The two flavour case however works similarly and is discussed
in more detail for instance in [97, 103]. In three dimensions, the eight Gell-Mann matrices along
with the unit matrix are N2 basis matrices A, which read (for convenience, we have normalised
the Gell-Mann matrices with a factor 1 and the unit matrix with a factor %, similarly to [101]):

L (100 (010 (0 —i 0
=-—10 10 M= [1 00 o=3[i 0 0
V6 lo o 1 00 0 0 0 0
(10 0 {001 Lo 0 i
=3[0 —1 0 M= 1000 N=310 0 0
0 0 0 100 i 0 0
L0 00 Lf{00 0 L (1000
XN=-(00 1 AM=-l0 0 —i =——1_ 01 0], (15.3)
2\0 1 0 2\0 i o VIZ\g o -2

The numbering of the Gell-Mann matrices is not unique, sometimes the diagonal matrices, which
are here \g, A3 and Ag, are listed first. To expand the operators of the Lindblad equation in this

basis, we can use the fact that

(O M) = 50 (15.4)

where Greek indices are used for all nine matrices {Ag, A1, ..., As}, while roman ones indicate the
eight matrices {\1, ..., Ag}. In this representation, the density matrix and the system Hamiltonian
in the Lindblad equation become nine dimensional vectors with components

pu(t) == 21tr (ps(t) Au) (15.5)
b= 2tr (Hs M) - (15.6)

The factor of two was added due to the factor of % in the trace such that

ps(t) = pH(t) Ay (15.7)
Hs = h* A\, (15.8)

hold. The same is also true for the Lindblad operators A;. Here, often the entire dissipator is
transformed into Gell-Mann basis yielding an 9 x 9-dimensional matrix

Dyup” = 2tr (D[ps] \) (15.9)

which implies
D[ps] = Dy Ap” . (15.10)

This dissipator then has in general 81 unknown complex parameters and is not yet the one for
a Lindblad equation. At this stage, several different physical assumptions are imposed on the
dissipator to reduce the number of free parameters drastically. Some examples are:
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e Hermiticity: For the dissipator to be Hermitian we require

~ ! ~
Dips]’ = Dlps] (15.11)
which is equivalent to, using in equation (15.10) that )\L = A\, and ﬁg(t) = ps(t) which
implies p};(t) = pu(t),
Dy, = Dy, (15.12)
hence instead of 81 complex free parameters we end up with 81 real ones.

Probability conservation in the neutrino system: for the probability to be conserved,
we have that

0L (imo) — tr (Dlps(t)]) = Duwp”tr (W) | (15.13)

from which we can conclude that Dy, = 0, as the trace of the unit matrix does not vanish
in contrast to the traces of the individual Gell-Mann matrices. This removes 9 parame-
ters. From a physical point of view, probability conservation in the neutrino subsystem
is not necessarily required, see the discussions in part III of this thesis. Nevertheless, this
assumption is almost always taken in phenomenological models. One example where also
a dissipator that violates probability conservation is discussed is [95].

Complete positivity: This corresponds to the physical requirement to obtain positive
probabilities for predictions in the neutrino subsystem even when considered a part of a
larger system when a measurement according to an operator is performed on the entire
system that acts trivial on the other part(s) of the total system. As discussed in part III
of the thesis, the approximations required to cast a map into complete positive form might
increase the error compared to the original master equation.

On the level of the dissipator complete positivity means that it can be written in Lindblad
form, see section 3. Then we can expand the dissipator in Lindblad form in the Gell-Mann

basis using that for each operator O we have O = Ap2tr (OA“) and find:

. 1 1 ) A .
D[ps(t)] = 8 (Au)\p)\g = JAaNiAp — 2)\p>\0>\u> tr (Mps(t) D tr (MA;) tr (a7 4T) .
(15.14)
At this point we can use that
M Al = i e A7 (15.15)

where the fgp are the fully antisymmetric SU(2) structure constants and the f,,, are equal
to them for all indices greater than zero and vanish otherwise. Using this identity in (15.14)
yields:
1 1
AudpAo — 5/\0/\u)‘p — iAp)\g)\u
1 1 i a 1 a
= | Ao — §>\“)\U)\p — 5)\,))\”)\0 — ifguaA Ap — §fgua/\p)\
/I; a a a a
= _5 (fapa)\u)‘ + fpua)\ Ao + fa,ua>\ )\p + foua)‘p/\ )

1
= _5 (fapa>‘,u>\a + fp,ua)\a)\o + fa,ua()\a)\p + >\p)\a)) (15.16)
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and hence

Dlps(t)] = —% (foparuA® = fupaX® Ao + foua(X A, + XA%)) pP (1) Z a (a)* . (15.17)

where we defined a' := 2 tr ()\“fli) and used that, given the hermiticity of the A7,

2tr (AAD) = 2r (W AYT) =20 (W A)T)" = (a])" . (15.18)
Now we split the last part into real and imaginary term in the following manner:
> al (a)* =t aly + i, (15.19)
with
a =) [R(af)R(a]) + (af')I(a)] = af’ (15.20)
ay” =) [S(af)R(a]) — R(af)S(a])] = —a7" (15.21)

where 1 and & denote the real and imaginary part respectively, from which it follows that

P i a a a a o . o
Dlps(t)] = =5 (JopaMuA" = fupaA" Ao + foua(A*Ap +ApA")) pP(1) (aky +iak?)
i

— 5 (O ol AT+ 0057 Fopa {7} + 80 fopa N N PP (15.2)

Also the anti-commutator of two A* matrices can be expanded as a combination of the AH:
A A%} = 1/ 2 (5,00% + 6920) + d, %A 15.23

where dy® = 0 (as well as any other d containing at least one index with value 0) and
d, = 2tr ()\c{)\“, )\b}>. Using this, we obtain
i

Dlps(t)] = =5 (al fopaldus A") 407 fopad M, A"} + 8017 foua{ A" Ap}) 07 (1)

o a o 2 a ac ac
(al;% fUPafu b)‘b + alIL (\/;A (5,u0fapa + 6p0faua) + Ac(fapad'u + fa,uadp ))) pp(t)

N~ N

(al]fzgfopa L0 Fay’ (\/g(é,uo,fo'pu + 6p0 four) + (fopad'®, + fauadpay)>> A pP(t).
(15.24)

In this form, one can read off D,, such that

Dlps(t)] = Dup\ (1) (15.25)

From this form it is evident that we have Dy, = 0 which implies probability conservation
in the neutrino subsystem, see the previous bullet point. This indeed directly follows
when applying the trace on the dissipator in Lindblad form in equation (15.2) and using
the cyclicity of the trace. Note that complete positivity and also the way how the a’;{; 7
matrices are defined also impose conditions on them. For details we refer to the literature,
e.g. to [101, 106].
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o Increasing von Neumann entropy in the neutrino system: from the work in [196] it

follows that for Hermitian Lindblad operators, the von Neumann-entropy of the neutrino
system never decreases in time. For such a choice of Hermitian Lindblad operators A = A;

we have that (a!)” = a!' which implies a¥ %7 = 0. Due to this we obtain in that case for the
dissipator in equation (15.24).
A 1 o} 14
Dlps(t)] = 50 fopafu s NP (1), (15.26)

This condition for the Lindblad operators is used for instance in [86, 101, 103].

Energy conservation in the neutrino system: This is equivalent to requiring that
[A;, Hs] =0, (15.27)

where Hg is the Hamiltonian of the neutrino system. Assuming we are in the basis where
Hg is diagonal, i.e. the effective mass basis (which is equivalent to the vacuum mass basis
for propagation in vacuum), this relation becomes in Gell-Mann representation:

atr (A1) tr (HeX) Dy M) = 40 fua® tr (AiX") tr (Hs)) = 0. (15.28)

From the specific form of the A\* at the beginning of this section it follows that for diagonal
Hyg the expression tr (ﬁ A ) is only non-zero for v € {0,3,8}. This implies that in order

for equation (15.28) to hold, we need that ¢r (AM“) =0 for p € {1,2,4,5,6,7}, so A; also
has to be a diagonal matrix, which yields that the only non-vanishing elements of a’;%'; ; are

the ones where u, v € {0,3,8}. From the explicit values of the fu., where the non-vanishing
ones are

V3
=; —, (15.29
one can conclude that for Hermitian Lindblad operators this implies that the dissipator is
diagonal in Gell-Mann basis and assumes the following form:

fi23 = 1; f1ar = fr65 = faae6 = fos7 = f345 = f376 = fass = fers =

, 1 1 1 V3 3 1 V3 3
= d1ag<0, —§a?j§’, —ia?jg, , — ga%?’ 1 a%B — ga%s, —ga%} — Ta?}’? — ga%S,
V3 45 3 1 V3 3
- galf + Falf - ot —galf + “alf - G0
(15.30)
This contains three independent parameters and can be reexpressed as
ij = diag(O, —Fl, —Fl, 0, —FQ, —FQ, —Fg, —Fg, O) (1531)
by defining
1 1
I = —a¥ =-(@)?>0 (15.32)
2 2
2
1 V3 3 113 V3,
Iy := ga?j% R a?® + ga% =5 <2a3 + 2a8> >0 (15.33)
2
1 V3 3 115 V3,
Iy := ga%)’ e aj + ga% =3 <2a3 - 2a8> >0, (15.34)
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where we used the notation from [101] and defined @* := (af,...,af). Similar expressions

can be found for instance in [106].

The dissipator in (15.31) is frequently used as starting point in the phenomenological models.
From the discussion in this section it becomes clear which assumptions enter the master equation
in order to obtain it. Using the explicit representation of the p*(t),

0 = Zelon(®) + o) +pa(®) 00 = 5(orat) + () 620) = G(pral) = p (1)
P = Slon() () 00 = o) +on()  2°0) = (oas(t) — (D)
Po(t) = %(P%(t) +pa(t) Pt = %(023@) —pa(t)  P(t) = \/11—2(/011@) + p22(t) — 2p33(t))

(15.35)

we can transform the master equation back into the original representation as 3 x 3-matrices in
the effective mass basis. For the dissipator in equation (15.31) one then obtains:

, 0 Di(pL(t) — (1)) Talp(t) — ip(2)
Dlps(t)] = [ T1(o"(t) +in?(1) 0 Da(p0(t) — ip™(1))
Da(ph(t) +ip°(t))  Ta(p5(t) +ip (1)) 0

1 0 Lip12(t) T2prs(t)
= —— F1p21(t) 0 nggg(t) . (15.36)
Tapsi(t) Tzpsa(t) 0

The master equation that corresponds to this dissipator is in the effective mass basis where
HS = diag(HlyHQa H3):

%ﬁs(t) - —% [ﬁs,f)s(t)} +D[ps(t)]
0 (—%(H1 — Hy) — %) pra(t) (=7 (H — Hs) — 2 ) pis(t)
= | (—£(Hy — H1) — ) p2u (t) 0 ~i(Ha = Hy) =35 ) p2st)
—h(Hs — ) = %) psa (1) (—(Hs — Ha) = ) pia (1) 0
(15.37)

The solution of this equation can be written down immediately in the effective mass basis as-
suming a constant system Hamiltonian:

pii(t) = pii(0) and for i # j : pij(t) = e i HiH)=Tist 0y (15.38)
where F12 = F21 = %, Flg = F31 = % and F23 = F32 = % In the phenomenological models, the

next step is then the analysis to constrain the three decoherence parameters I'y,I's and I's that
change the neutrino oscillations in flavour basis. To reduce their amount, different approximations
are considered where some of these Gamma parameters are set equal to each other or equal to
zero. Their definitions starting in (15.32) show however that these choices are problematic in
general and not necessarily justified for any system. Finally, they are in most phenomenological
models assumed to have a specific unknown dependence on the neutrino energy:

E n
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where n is assumed to be n € {—2,—1,0,1,2} and ~;; is a constant. Different dependencies on
the power of the energy lead to different detectors being more favourable to measure gravitation-
ally induced decoherence, so the sensitivity of various detectors is analysed in detail for different
values of n. An important remark here is that in almost all models ~;; and n are taken to be
constant, even when the system Hamiltonian changes because the neutrino propagates through
different layers of matter with changing density. An exception to this assumptions represents the
work in [103], where for a two flavour system a dissipator is constructed that commutes with the
system Hamiltonian in every density layer, thus also changes when the system Hamiltonian does.
In the following two sections, we derive a master equation for gravitationally induced decoherence
in neutrino oscillations based on a microscopic quantum mechanical toy model. That approach
allows to resolve the structure and energy dependence of the I' parameters based on the under-
lying action of the total system and do not need to make any of the assumptions listed in this
section to arrive at a dissipator that has a simple form: starting from the microscopic toy model,
we will naturally arrive at a dissipator whose Lindblad operators are the system Hamiltonian
H s. With the Markov approximation, whose validity is explicitly tested for the model under
consideration, this dissipator has Lindblad form and thus probabilities are conserved and it is
completely positive. As the system Hamiltonian is Hermitian and commutes with itself, also
the von Neumann-entropy of the neutrino system does not decrease with time and the energy is
conserved in the neutrino subsystem. This then yields indeed a dissipator of the form (15.36),
where the structure of the individual I' parameters is however fixed from the underlying mi-
croscopic model, up to two physical parameters that characterise on the one hand the coupling
strength between neutrino system and gravitational environment as well as on the other hand
the environmental state.
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16. Quantum mechanical model: setup and derivation of the master
equation

Parts of the content of this section were already published in [3]. Here, they are presented with
some modifications compared to [3] to adapt them to the flow of the thesis and extended with
further content and calculations.

The quantum mechanical toy model investigated in this part of the thesis is inspired from the
field theory models for gravitationally induced decoherence [1, 60-63], where the one in [1] was
discussed in the previous parts of the thesis, that all consider linearised gravity as the environ-
ment to which a given matter system is coupled. Because general relativity as well as generic
matter systems involve gauge symmetries, some work is necessary in order to get the correspond-
ing physical Hamiltonian of the total system that usually is the starting point of the decoherence
model. This has been implemented in [1, 60-63] either by gauge fixing [60-63] or by the construc-
tion of gauge invariant observables [1], see section 7, by means of choosing a suitable dynamical
reference system. The classical total Hamiltonian Hrp in all these models has the form discussed
in (2.10):

Hr=Hg®1le+1g® He + aHy, (16.1)
where Hg encodes the dynamics of the system usually chosen to be some matter, He is the
Hamiltonian for the environment, here linearised gravity, and H; describes their interaction.
Once a frame of reference has been chosen, the form of each Hamiltonian can be derived from the
underlying action, and in particular the form of the interaction Hamiltonian Hj is determined by
the way matter and (linearised) gravity are coupled, namely via the energy-momentum tensor of
the matter to the metric. Thus, on the one hand it is an advantage to know the underlying field
theory model because the microscopic Hamiltonian that enters any decoherence models can rather
be derived than needing to be chosen, which results in decoherence models with less ambiguities.
On the other hand as the results in [1, 60-63] illustrate, the final form of the master equation
which encodes the dynamics of the system’s density matrix when the environmental degrees of
freedom have been traced out, is very complicated and hence technically challenging, as is evident
from parts II and III of this thesis. To broaden the techniques to treat gravitationally induced
decoherence in matter systems, in this part of the thesis we consider the quantum mechanical
toy model for gravitationally induced decoherence introduced in the seminal work of Xu and
Blencowe in [112]. This model is strongly inspired by the field theory models and hence mimics
the usual gravitational coupling in the quantum mechanical toy model. To the knowledge of the
authors in [3], although this model exists in the literature it has only been applied to investigate
gravitationally induced decoherence in the context of neutrino oscillations in [195] where the
authors however conclude that the model will lead to no decoherence effect if they apply the
equal-energy condition, which was introduced in section 14.2.2 in this thesis, motivated in their
work from the wave packet approach. We will consider the slightly generalised model of [112] such
that we can also apply it to neutrino oscillations and present the derivation of the corresponding
master equation, which was not included in the presentation in [112] in detail to show that from
our results non-vanishing decoherence effects are possible for this model.

16.1. Basic quantum mechanical model and master equation

Parts of the content of this subsection were already published in [3]. Here, they are presented
with some modifications compared to [3] to adapt them to the flow of the thesis and extended with



182 Quantum mechanical model: setup and derivation of the master equation

further content and calculations.

In [112], a harmonic oscillator is considered as matter system and its dynamics are derived working
with coherent states for the bath. Based on this, the decoherence on an initial superposition of
coherent states is studied. Here, we want to consider the model in a more general context to be
able to apply it later to neutrino oscillations. Therefore, we will leave the choice of the system’s
Hamiltonian generic in this section and only specify to neutrinos later. The only assumption we
make for Hg is that it is time-independent. Likewise to the field theory case, the total Hamiltonian
splits into the individual contributions which are then quantised in a quantum mechanical context.
In this part we put hats on all operators and drop the tensor product with the identity to simplify
readability and to have the notation more similar to [112] and the phenomenological models. The
total Hamiltonian for the model under consideration is then

N A9 N
N N N N N N . A N .
Hy = Hs + He + Hy = B + 1 + 03" Dy pta?| - s gidi. (16.2)
g 1=1 =1
Hg

where here the specific form of He and H; are inspired from the field theory model, the cou-

pling constant g; has dimensions of inverse length and H éC) denotes a counter term of the form
A 2 A
éC) =L 2@%( éo))2. This counter term is needed as it will later remove the unphysical con-

tribution of the Lamb shift. It is included analogously to the treatment of the Caldeira-Leggett
model [133], see for instance [112], and can be understood as a tiny, due to g2, frequency de-
pendent correction to the unitary evolution of the non-renormalised and thus the bare system’s
Hamiltonian H fqo). The environment serves as a toy model for gravitational waves that interact
with the system under consideration. To resemble this, N independent harmonic oscillators with
unit mass®® ;i were chosen explaining the form of ﬁg. In later applications in section 16.6, the
system will be chosen as a neutrino. The lesson from the field theory models is that the interac-
tion Hamiltonian, which includes the energy-momentum tensor and the metric, can be modeled
by an interaction Hamiltonian operator, as shown in [112], that involves a coupling between the
system’s Hamiltonian Hg and the position operator of the environmental degrees of freedom g;.
In field theory, this is replaced by a coupling of the energy-momentum tensor of the system to
the metric, which is in the classical theory the configuration variable of the environment. The
coupling constant g;, which has dimension of inverse length, can in principle be different for each
oscillator.
Position and momentum operators of the oscillators in the environment fulfil the usual commu-
tation relations:

[(ji,ﬁj] = zhéw . (16.3)
Assuming that the interaction is small (i.e. g; is small) compared to the evolution in the absence of
coupling to the environment, a time-convolutionless (TCL) master equation truncated at second
order in the coupling g; (see equation (4.35)) provides a good approximation to the effective
dynamics of the system, which is obtained after the degrees of freedom of the environment have
been worked out. In order to use equation (4.35), we assumed, as it was discussed in section 4.3, to

have factorising initial conditions, i.e. p(tg) = ps(to) ® pe, and a Gibbs state pg = %e*ﬁﬁf for the

environment. The latter includes the partition function Z = Trg (e‘ﬂﬁf), where § = ,@% with

33Introduced to obtain correct dimensions.
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the Boltzmann constant kp and similar to [60] we denote the involved ’temperature’ parameter
of the environment by ©, which characterises the bath of the oscillators in the environment that
mimic the thermal gravitational wave background in this toy model. The master equation then
assumes a simple form, since the interaction Hamiltonian H; contains a time-independent system
Hamiltonian H g:

%ﬁs(t) =- % s, ps(t)] - % /O T T ([, [Hr(=7), ps(t) @ pe]]) - (16.4)

The density matrix of the matter system evaluated at temporal coordinate t is denoted by pg(t)
and Hj(7) is the interaction Hamiltonian operator in the interaction picture evaluated at time

T, i.e. ﬁf( ) = eh(HS+H5)TH e~ #(Hs+He)T A detailed discussion of the derivation of equation
(16.4) can be found in section 4 of this thesis. Here we continue from this form and plug in the
interaction Hamiltonian to obtain for the integrand of the last term:

N
Tre ([ Hr, [Hi(=7), ps(t) @ pe]|) = > {Cuj(—7) (HE ps(t) — Hs ps(t) Hs)
ij=1
+C5i(r) (ps(WHE — Hs ps(t) As) },  (16.5)
where we defined the dimensionless correlation functions
Cij(=7) := 9igjTre (4i 4;(—7) pe) (16.6)
and we used the cyclicity of the trace as well as the following identity:

H(Hs+He)r gje %(H5+H£)T 5.5 )

9i9;Tre (4;(—7) @i pe) = 9ig; Tre (e h i pe

= g,g;Tre <qu eg(ﬁs-Fﬁs)T@i —+(Hs+He)r e;(Hs-S-Hs) pee —%(ﬁs+ﬁs)7>
= 9i9;Tre (G5 4i(7) pe)
= Cji(T) y (16.7)

where we employed that the Gibbs state pg¢ is stationary. Hence, we only have one specific form
of the correlation function that we have to compute, namely C;;j(—7). We will do the explicit
computation in subsection 16.2. Note that due to the specific from of the interaction Hamiltonian
n (16.2), each particle in the environment is coupled to the same operator of the system, i.e.
the Hamiltonian. Therefore, the sum over the particles in the environment only appears in the
correlation functions and not in the operators of the system, which is different to the coupling
investigated so far in parts II and III, where the two parts of the interaction Hamiltonian were
tied together by a sum over the spatial (and internal) indices as well as by the same spacetime
evaluation point. This is not the case here, which simplifies the calculations. Defining two
quantities A and I', which both have the dimension of time,

At —to) == 3 /t " (Cij(=7) = Cji(T)) (16.8)
i,j= 1
N

D(t — to) i= /O T S (Ci(=7) + Ciil)), (16.9)

1,j=1
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permits us to rewrite the master equation (16.4) in the following form:

hstt) = = 3 [11s. ps(0)] + 10 (2, ps0] + T (Hspstorfis — 5 {2, pst0)})
(16.10)

As A(t —tg) and T'(t — tg) are already of second order in the coupling g;, after which the master
equation was truncated, one can replace Hg by H g)) in all but the first term, as the correction

term H éc) is also of second order in g;, which yields

Sas(t) = 1 [As,ps(0)] + 2 T(A0) oo
* F(th_?tO) <ﬁ§0)ﬁ5(7§)ﬁ§0) - % {(ﬁfqo))z »ﬁs(ﬂ}) : (16.11)

The first term of the master equation is the standard unitary evolution of the matter system itself.
The second term, usually referred to as the Lamb shift contribution, leads to a renormalisation
of the energy levels of the matter systems due to the presence of the environment, and the third
term is the dissipator present in open quantum systems. An analogous contribution to the Lamb
shift, which results here directly from the derivation of the master equation, is also present in the
field theoretical model. In addition, in the field theory model a further gravitationally induced
self-interaction term for the matter system is present, such a term is not involved in the quantum
mechanical toy model because on the one hand it is strongly related to the gauge symmetries
in general relativity and the construction of gauge invariant quantities, see part II and IIT of
this thesis, and on the other hand whether it is present in the 1-particle projection also depends
on the normal ordering chosen in the field theory model, see the discussion in part III. In the
field theoretical case, a renormalisation must normally be carried out for this contribution. We
discuss this point for the quantum mechanical toy model below after computing the correlation
functions. The dissipator resembles the remaining effective interaction of the gravitational wave
environment with the matter system. Both contributions would be absent if one treats the
neutrinos as a closed quantum system.

16.2. Computation of the correlation functions

As a next step, we want to compute the correlation functions Cj;(—7), which were defined in
equation (16.6). Evaluating the trace in occupation number basis, in which the Gibbs state is

R - e
pe = E® > e ) (ny (16.12)

=1 n;eN

with eigenenergies €, ; = hw; (m + %), we obtain:

N
9i9; - JOEN
Cij(=m) =2 T] 22 e bl Gia 4ja(=7) |ma) (16.13)
l=1n;eN
where §;; is the projection of ¢; onto the operators on the Hilbert space of particle [, which is the

identity for ¢ # [ and § for ¢ = [. Expanding the position operators in ladder operators a{? that

i
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fulfill [a;, a}] = 6;; yields

Gi = (al +ay), (16.14)

where &ET) again acts as ladder operator on the Hilbert space of particle ¢ and as identity on the

Hilbert spaces of the other particles. For the time evolution we find:
. N ~ . AT A 0 — ) - m
1) =T ala; &Z(T) QiWiT afa; _ Z M[dj&u@g)}(m), (16.15)
m=0

where the iterated commutator [A, B],, is defined recursively:
[A, B](m—H) = [4,[4, B](m)] ) [A, B](O) =B. (16.16)
For the application here we find:

[a}ay, 4] (my = (—1)™as [afa;, ) (m) = al | (16.17)

from which it follows that

Wi G al(—r) = e @ al. (16.18)

&i(_T) =e 1

Using the orthogonality of the occupation basis states and the normalisation of the Gibbs state,
we can simplify the correlation functions (16.13) now further:

9
Cij(_T) 5 ZZ Z € —Pensi <nz‘ qii CIH ) ‘nz> y (1619)
" n,eN
where Z; := Trg ; (e*m% l) with the partial trace summing only over the Hilbert space of particle

i and H, i being the Hamiltonian of oscillator 7. With the decomposition of the position operator
in ladder operators we obtain

hg? 1 _ S i At A
Cij(—7) = 6i; 2u¢:. 7. Z e i (il e (4 aii) + emﬁ(ali i) [1i)
P p,eN
hg? 1 —Beni [ —iw;iT AT A
hg? - 2
— §; i | gt —Beni | 16.20
2 pw; (e Z cos{uwir mze:Nn 6 ) ( )

To continue, we use a similar procedure as in Appendix B, in the present case we however also
have to consider the zero—point energy of the harmonic oscillator:

727% ~Ben,i — Zneﬂm’zm )

Z; n; EN Zi n; EN
— 119 Z e_/BhWi(ni'f‘%) _ il e—ﬁﬁwi(nﬁ-%)
hw; Z; 08 Z; 2 =t
1 9 1
= — Inz;, — —. 16.21
ho; 0B 1T 2 (16.21)
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Using
i — 3 Bhwi
A D G R (16.22)
n; EN
and thus
0 0 1 huw; e~ Bhwi hw; hw;
il _ - L _ o Bhw; _ ™ s N T S
557 = 55 ( 5 B 1n(1 e )) =~ T = o T
(16.23)
From this we can conclude that
1
7 D mge i = T (16.24)
¥ n;eN

and therefore we find for the correlation function (16.20) using eﬁh‘*’%—l =1 [coth (B h“’z) — 1}

Cij(—71) =6; g <ei‘”” - 2cos(wi7)1)

g QMWZ 1 — ePhw;
hy; - hw;
= J;j 25;1 <z sin(w;7) + cos(w;T) coth (52 Z)) , (16.25)

and we can see that Cj;(7) = C};(—7). From these explicit expressions, we can now also give the
specific expressions for A(t — tp) and I'(t — ¢¢) that were defined in (16.8) and (16.9):

t—to
hg;
A(t —to) :/0 dr Z S sin(w;T) (16.26)

N 2

t=to hg; Bhw;
(- t) = 2 /0 dr ; i cos(w) coth< L ) . (16.27)

In order to evaluate these further, one usually introduces a so-called spectral density that char-
acterises the strength with which different frequencies in the environment contribute to the in-
teraction with the matter system. To compute things, this spectral density is then picked as a
continuous function resembling the continuum limit of the oscillators in the environment. This
will be discussed in detail in the next subsection.

16.3. Spectral density

Parts of the content of this subsection were already published in [3]. Here, they are presented
with some modifications compared to [3] to adapt them to the flow of the thesis and extended with
further content.

Next, we introduce a spectral density

N hg?
—_— L i? :
;1 qu(iw wi) (16.28)

where 6(.) denotes the Dirac delta function and J(w) has dimension of time. With this, the two
coefficient functions A(t—tp) and I'(¢ —t() that appear in the master equation can be reexpressed
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as

A(t—t) = /0 T /0 " dw J(w) sin(wr) (16.29)
L(t—ty) = 2/0t_t0 dr /OOO dw J(w) cos(wT) coth (572W> . (16.30)

Given that not all the oscillators in the environment are neither known in detail, nor of interest,
one often approximates J(w) by a smooth function in w, see e.g. [45]. The usual requirements for
this function are that it is linear in w for small w and that it tends to zero for large w. Note that
such a spectral density is also chosen, for example, in the Caldeira-Leggett model for quantum
Brownian motion, and the linear dependence is crucial in this case to obtain the friction term
present in that model after renormalisation. These spectral densities with such a linear behavior
are usually called Ohmic spectral densities. Many models used in the existing literature [45, 47,
112] use an Ohmic spectral density and differ only by the chosen cutoff function, see for instance
also [197] for an application of the Drude regularisation. Note that a different than linear be-
haviour for small w would for the model considered here lead to IR divergences for all w™ with
m < 0, m € Z and partly also to a rather not physically reasonable scaling with the inverse tem-
perature parameter © in the decoherence term. The latter corresponds to a strong decoherence
effect when the temperature is low that becomes infinite for © = 0, that is when the Gibbs state
corresponds to a vacuum state. For m > 2 with m € N there exist no decoherence effects in
the model considered in this work. At the end of this section we show that building on the field
theoretical model from part II and III, linearity in w for small w is reasonable, while a cutoff
for larger w corresponds to the UV-divergences in field theory that also have to be renormalised
there.

Since the choice of a particular spectral density is an assumption that goes into every model, we
are interested in how the final result of the master equation depends on this choice. Therefore,
we considered a few choices in this work that also include the most prominent ones used in the
existing literature like the Lorentz-Drude and the exponential cutoff. These are shown below:

2, 02
Lorentz-Drude cutoff: J(w) = Y (16.31)
: 2 9 (20)*
Quartlc cutoff: J(W) = ;T] (JJW (1632)
2 w
Exponential cutoff: J(w) = *?72(4)677279 (16.33)
7r
2 _w?
Gaussian cutoff: J(w) = =n?we” =2 . (16.34)
T

In these functions, n? is a free parameter whose role we will discuss further below and € is a cutoff
frequency used as regulator for the otherwise divergent integrals. Evaluating the [ dw integral in
(16.29) and (16.30) yields the integrands I, (7) and Ir(7) defined as

t—to

At —to) = /0 dr Iy(7) (16.35)

T(t — to) = Q/OHO dr In(7). (16.36)
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Figure 4: Integrands I (7) (first row) and Ip(7) (second row) defined in (16.35) and (16.36) for
the different cutoff functions and with parameter values n = 1078 s, © = 0.9K and
2 = 1Hz (first column), = 100GH z (second column, first row) and Q = 10K Hz
(second column, second row). This plot was originally published in [3].

A plot of these functions is shown in figure 4.

Before we apply the Markov approximation in the next section, we want to discuss how rea-
sonable the choice of a spectral density like the ones discussed in this section is, based on the
field theoretical model presented in part II and III of this thesis. To motivate such a choice of
spectral density, in particular the linear dependence on w for small w, we compare the quantum
mechanical model with the field theoretical one in part II, where for simplicity we drop all indices
in the latter. In the field theoretical case, the role of the configuration variable is taken over by
the densitised triad 6E and the canonically conjugated momentum is 5C , which is a combination
of the connection and the densitised triad. Their quantisation is introduced in equations (8.7)
and (8.8). To obtain the same commutation relations and environmental Hamiltonian as for the

quantum mechanical model discussed in this part of the thesis, we redefine 5E = VK SE and

5C == VE (5C’ where k = SWGN is the coupling constant in general relativity, containing Newton’s
gravitational constant G and the speed of light ¢. The reason for this redefinition is the fact
that their original algebra (see equation (8.4)) contains a factor x~!. In terms of these rescaled
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variables we obtain (see also equations (8.4) and (8.3)):
= = . 1 = =
[5E, 50} — ihs Ap = / & [50@:)2 +O2E(R)? (16.37)

where the frequencies are defined as 0 := V k2 and § represents the Dirac and Kronecker deltas

relating the arguments and labels of SE and 6C which we suppress here for better readability.
In the interaction Hamiltonian (see equation (6.41) and below), one then couples the energy

momentum tensor to the metric, which corresponds to contractions of SE , hence
Hi ~ /d3 T®(5E (16.38)

where ~ means "corresponds to". From this analogue one can deduce g; ~ y/k. When computing
correlation functions and hence A and T, the terms appearing are of the form (see equations (8.7)
and (9.3)), introducing a function h(k) that contains all remaining detailed contributions:

d3k—h 16.
/ TR (16.39)

compared to the expressions appearing here in (16.29) and (16.30) using (16.28):

12 iv: ih(wi) . (16.40)

Assuming for simplicity that h(k) = h(2), we can rewrite the integration in (16.39) in spherical
coordinates:

/ Plesth(S) = / dQ 27kQR(Q) . (16.41)
k

Motivated by this analogue, we take the following continuum limit for the quantum mechanical
model:

h22

This suggests to use as spectral density J(w), which appears in integrals as [ dwJ(w)f(w), the
following smooth function:

2# h(w;) —>h2/ dw 2Tkwh(w) . (16.42)

J(w) h2§: 9 5( ) Zmnh (16.43)
w) = w — wj w, .
= 2pw; c

where we inserted additional inverse factors of A and ¢ to obtain the correct dimensions, as the
work in part II and III is in natural units. To cure UV-divergence, we have to add a suitable
cutoff, see the discussion above. From this comparison, it is not possible to read off the precise
numerical prefactors. We will do this below in section 17.4 by using the ultra-relativistic form of
the one-particle projection of the field theoretical master equation from section 13.3.
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16.4. Markov approximation

The content of the introduction of this subsection was already published in [3]. Here, it is presented
with some modifications compared to [3] to adapt it to the flow of the thesis.

Equipped with the different spectral densities, we now want to investigate if for the present model
a Markov approximation is applicable. As discussed below in Figure 8 in section 17.2, for thermal
gravitational waves a reasonable cutoff frequency is 2 = 100G H z. Hence, in the case of I5(7), the
integrand decays rapidly on timescales of 7 = 1071 which is much smaller than the timescale
on which the core system varies, that is determined for the neutrinos investigated in this part of

-1
the thesis by (% AQTEQ) , which3* is around the order of magnitude of 1s. Furthermore, the plots

for Ip(7) suggest that I'(t — t() is independent of 2 for ¢ — ¢( sufficiently large enough, as the two
axes scale inversely to each other with the same ratio. Already for Q = 10K Hz, where Ip(7) is
numerically still well computable, the timescale on which It(7) decays is much lower than the
one on which the system state varies. This means that the environment rapidly "forgets" about
the history of the system and thus the Markovian approximation for a memoryless process is
justified. Therefore, in both cases the error committed when shifting the initial time ty — —oo
and hence the upper integration limit of the 7 integration to +oo is negligible. Given that, we
perform the Markov approximation for the further analysis. In what follows, we present the
calculation of A and I in the Markov limit using two different spectral densities.

16.4.1. Markov limit using a Lorentz-Drude cutoff

With the Lorentz-Drude cutoff form of the spectral density we find in the Markov approximation

| T 0
A= tollgzlooA(t — tO) = ;77 /0 dr A dw L{}m SIH(WT) (1644)
4 o0 o0 0? hw
I':= tol_lfilool—‘(t — tO) = ;772/0 dr A dw L{}m COS(WT) coth <ﬁ2) . (1645)

We use this spectral density here as it is often used in the literature. The way in which it is
usually applied is to switch the order of the 7 and w integration because then the calculation is
simplified. Let us do this for a moment and afterwards perform the integrals again in the correct
order to show that we obtain the same results. When switching the order of the integrals, we
can use

/000 dr e = 7(w) — PV (l> , (16.46)

w
where PV denotes the Cauchy principal value. From this follows that

o 1 o0
/ dr sin(wt) = PV <w> and / dr cos(wt) = m(w) . (16.47)
0 0
With this we obtain
2 5 [ Q2
Ao 22 / — O 16.4
A dw 2 Qn (16.48)
o2 Bhw _ A 4’kp®
I'=2n [w coth (2 )L;:o “ BT h (16.49)

i Am?
34 As the dominant contribution to the neutrino evolution comes from the part e# 22 ! and the matter effects have

a similar order of magnitude.
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In the first line, we have dropped the principal value as the expression is unproblematic at w = 0.
In the second line, we have included a factor of % as the contributing point w = 0 lies at the
border of the integration area and we have used I’Hospital’s theorem to obtain the value at w =0
in the second step. We hence obtain a linear dependence of A on the cutoff {2 and a linear
dependence of I' on the temperature parameter ©.

To check this result, we now perform the same calculation without switching the order of the
integrations. We start with A:

A—22/Ood /oodcucAJQQsin(w)—n2 OOal /Oodwwﬂzei‘” (16.50)
_71'77 0 T 0 Q2 + w? T Cm 0 T — 00 02 + w? ' '

Next, we apply the residue theorem for the w integration closing the contour in a semicircle in
the upper half-plane (for 7 > 0) or the lower half-plane (for 7 < 0). The poles of the integrand
lie at w = £i$2 and thus for any 7 there will be one pole included. One then obtains

2 roo 02 . 0?2 ;
A=T dr < 2mi0(T) W giwr —2miO(—71) W giwr
i Jo w + i) i) w — 1) i)
= 77292/ dr e lsgn(r) = 772522/ dr e = Qn?, (16.51)
0 0

which coincides with the result from above. For I'; using the expansion of the hyperbolic cotangent
in terms of Matsubara frequencies:

th (Bh“> 2 g @ ith the Matsubara f i 20 (16.52)
co — == —_ wi e Matsubara frequencies v, = — )
2 hg — wituv2 4 "R’
we find the following expression:
4 0 0 0?2 hw
= ;nQ/O dr /0 dw YE o2 cos(wT) coth <52>
4 o [ o0 > 0?2 w? ,
= — d d W 16.53

To continue, we switch the order of the sum and the w-integration to apply once again the residue
theorem. This switch is not necessarily well-defined. As it is extensively used in the literature,
we perform it here as well, but will investigate it in detail when using the quartic cutoff in the
next section. Then we have

4 9 0o 00 oo QQ w? i
I'=— / dT/ dw e
Wﬁﬁn 0 o n:z—oo 02 + w2 w?+ 2
8 9 0o 00 oo Q2 w2 ‘ 4 ) ) 0o Q2 ‘
= — d d wT I / d / dw —— T
7Th,377/0 Tﬂz:l/_oo wQ2+w2w2+yﬁe +7rhﬁ?7 0 T oo wQ2+w2e

(16.54)

For the residue theorem, we again close the path in a semi-circle in the upper or lower half-
plane, depending on whether 7 is positive or negative. In the first term, there are four poles: In
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addition to the two also present in the second term, w = +i€2, we also have poles at w = +i|v,|.
Application of the residue theorem then yields for the first term

— 0z —sgn(7)v? ,
2 92/ Sgn( ) —sgn(7)Q7 n —sgn(T)|vn|T
whﬁ i dr sen(r {m(:ﬂ 02)° - Qi\z/n](QQ - y2)€
81?02 Qe~ Q|T| — |vp|e~Ill7] 80?2 |V e~ lvnlT
=B /0 dTnE_:l 02— 12 ~ B Tlféo /dT — 2
8202 | X e T e lalT
= % T]ggongl 02— I/% . (16.55)
For the second term in (16.54) we find
4 o [ 2 g A
— dr 2mi——e Ul = L 16.56
3 /0 TET0¢ 13 (16.56)
Combining both terms we have that
877292 . o0 76_QT + e—|un\T 4772
r= i3 Th—I};OnE::l 072 TG (16.57)

The second term already contains the Markov limit, for the first one we can see that, if we switch
the order of the limit and the sum (which is not necessarily justified, more on that in the following
section), this expression vanishes, so in total we get

an*  4n’kp®
h3 h
and therefor also the same result as in the case above. When working with the Markov limit, a
similar derivation using the Lorentz-Drude spectral density is often found in the literature. As it
is evident from the derivation presented here, it involves two steps which might be problematic
because they consist in the switching of two limits. To get a clean version of the application
of the Markov approximation, we present the approximation for the model under consideration
using the quartic cutoff form of the spectral density in the next section and proving with it that
the problematic steps are mathematically well-defined for it. The results we obtain are equal to
the ones obtained here with the Lorentz-Drude cutoff.

I = (16.58)

16.4.2. Markov limit using a quartic cutoff

In this section we again apply the Markov approximation to determine the two quantities A and
I' that appear in the master equation. To solve the problem of interchanging limits that arose
in the previous section when using the Lorentz-Drude cutoff, we present here proofs using the
quartic cutoff to show that for this choice of cutoff the switch of limits is justified and confirm
the results obtained in the previous section. For A we did not encounter any issues, so we follow
the same path as before and have in Markov approximation using the quartic cutoff:

32 , [ o Q4 . 16 o5 [ o o4 iy
= ?77 /0 dr /0 dw w7(4g2 e sin(wT) = E" /0 dr Lw dw w7(492 n w2)26 .
(16.59)
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Now we can apply the residue theorem. We have two poles of second order at w = +2if) and
close the contour depending on the sign of 7 with a semi-circle in the upper (7 > 0) or the lower
(7 < 0) half-plane. The pole contributions turn out to be

d w? ;
+2mi— | ——————5 ™7 =+ TQ3 T (16.60)
dw | (w £ 2i82)? ]w i
With this we find
A= 477293/0 dr |r|e” 2l = 4n2Q3/0 dr e 27 = i, (16.61)

which coincides with the expression found using the Lorentz-Drude cutoff in (16.51). This also
explains the different prefactors of {2 in the definition of the different spectral densities in equa-
tions (16.31)-(16.34): they were chosen such that all A coincide no matter which spectral density
is picked, as the cutoff €2 was introduced arbitrarily and should not have any physical relevance,
see discussion below at the end of section 16.6.

Next we continue with I' for which we have with the quartic cutoff:

—%772 /OO dr /oo dw w4§2294w2)2 cos(wT) coth (B;m>
2 4
@ 2 dT / dw 2 w;j— 2 (4922 I ol
Trhﬁn/ dT/ o ey o) —|—w2) .
7172;; i dT/ de w2_|_21,2 (492Tw2) e (16.62)

Now we can apply the residue theorem directly to the first term and obtain, using that we have
poles of second order at w = £2¢Q) and that we can close the contour with a semi-circle in the
upper half-plane for 7 > 0 and in the lower half-plane for 7 < 0:

00 Q4 d Q4 ' 0
dw ——————5€"“T = +2 T _ ™ 201 4 9qlr) . (16.63
/—oo Y a2+ w22 ™ [(w +2i0)2° ] L 16 e (1+2Q|r]). (16.63)

To solve the second term in (16.62), we would like to follow a similar procedure. For this, we
however have to switch the order of the sum over n and the integration over w. This corresponds
to switching the order of two limits. To prove that this is a well-defined operation here, we use
the theorem of Lebesgue (dominated convergence theorem). The term we have to investigate for
this is

w? Ot w?
/_Ood Zw2+y2(492+w2 —2/ dw Zcosz O T 02) (W2 AP (16.64)

Let

oo w294 w2Q4
Fw):= nz::l (W2 + 12)(w? + 402)2 Intw) = nz::l cos{wr) (W? + 2)(w? + 402)?

(16.65)
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which implies

w?Qt
Jim fy(w) Z cos(wr) (2 T2 LA (16.66)
As every summand in F'(w) is non-negative, we have that
N W24
< < F(w). 16.
|fN(w)| = nz::l (wg —i—V?%)(wQ +4QQ)2 = (w) ( 6 67)
Using the definition of the hyperbolic cotangent, we obtain
1 & w2l O
Fw)=5 > 52 22 (2 2)2
2 = (WP p2)(w?+40%)2 2(w? +402)
hp3 Bhw w 0t
= — coth — 16.
L < 2 > (@2 44072 2(? 4 A2 (16.68)
from which we find that, using the triangle inequality in the first step:
o0 ﬁhw) wQA /00 04
dw|F(w)| < — d th dw ————— . 16.
/0 wIF(w)] / v o ( 2 ) @4z Ty a2 yane)y (16.69)

For the first term we can see that due to its finite value at w = 0 and the fact that it has no
singularities on the positive real axis, the integration over a finite interval will give a finite value
w € (0,&), so we can use, picking & > \[Q such that m is decreasing for w € (&, 00):

wt
F(w <— h
/0 dw|F(w)| / dw cot ( )(w2+492)2

ﬁ/ <5hw> w? 7w
= h ek
+ 1) dw cot 2 ) (@2 14022 + o1

o) 4
<finite + hﬁ/ dw coth (Bhw) wi?
4 Je 2 (

w? +402)2
. hp BhEN [ w*
<fi L coth [ == e
<finite + 1 cot ( 2 )/g dw (@ + 40772
. hp3 BhE 04
=finite 4+ T coth < 5 ) 267 1 80 < 00 (16.70)
and hence
F(w) € LY(]0,]). (16.71)

Given that, we can apply the dominated convergence theorem and obtain

w24
2/ dw nzlcos wr) 2 T ) § A)? —2/ dw f(w _2ng100/ dw fn(w), (16.72)
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hence we can indeed switch the order of the Matsubara sum and the w integration in the term
of the last line of equation (16.62). With this we obtain

94
_ Aes 20T
whﬁn/ dr e (14 20r) +—n/ dTZ/ dww2+yg(492+w2)

OJT

(16.73)

The residue theorem is now readily applied to the second term with first-order poles at w = +i|v;,|
as well as second-order poles at w = £2iQ2. This yields for sgn(r) 2 0, closing the contour with
a semi-circle in the upper/lower half-plane:

d WQ Q4 WT
/_oo “ w2+ 2 (4Q2+w2)26
- w24 4 w24
— 497 [T + o | e
YiwA le (w:tll|l/n’)(w2 +4Q2)2]w iily ‘ 7T2dw e (w2+V2)(w:l:2’LQ)2 i)
4 2
il Pl T _sap Va (1—29|T\)+49 (1 +2Qfr]) 16.74
T ae— et (12 — 4022 (16.74)
Thus we find
%
dr Tte20m(q oy - 128 / 0 wallrl vl
ﬂw” / (1+207) ” Ze (192 — 12)?
3203 , [o° 207 2(1 72ny|)+492(1+29|71)
—_— T Vi . 16.
hg / Z (V2 — 402)? (16.75)
Using
2QIT\(492 & 20 7l _ BBl ||
=0 = __0_ hQ
n; (402 - =l ‘Z 492 2 g_:oo o A Mg
[ee] 2 2 2
(49" + v ) 1 IalC R
n/— _ Q 16.
nz:jl 107 2y sz t 5o (BhY) (16.76)
where csc(x) = %, we can simplify T’
o207 il QO
wh@’”/ dr (14 2Q7) — n/ dr Ze (02— 2)2
320° 5 —2Q|7| hB|7| 7] 1 g,
+ % 77/0 dre 700’5(6719) m—@+ g CsC (BRQY)
dn? 128 , [ v | Q4
_4n” 128 d wallr| Va8
- mg! Sy T Ze (102 — 12)?2
3208 , | hB 1 1 B2,
—_ t (BhQ2 — hQ
s [1692 cot (Bh) = T608 ~ 1o8 * 1o ¢ PR
47] 128 2 o0 ||| Vnl3E ‘Vn’Q 2 477 2 2
—— vallm 20§ 0) — — +2R8Q Q).
=78 hﬁ dr Ze (402 — 2)? + 21*Q cot(BhY) i + 2hB02n? csc? (BRN)

(16.77)
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The remaining sum yields the Hurwitz-Lerch transcendent for which the evaluation of the time
integration is difficult. To circumvent this, we apply Lebesgue’s theorem of dominated conver-
gence once again to show that we can perform the time integration before evaluating the sum.
We focus on the case 7 > 0 and we also have that v, > 0. Let

20 (16.78)

where 1) ( ) denotes the first derivative of the digamma function. It is finite as long as its
argument is not equal to a non-positive integer, in particular for Qhﬁ not being a positive integer.
As we can pick the cutoff frequency ) arbitrarily and it will drop out of physical predictions
later, we can assume this to be true. Now setting

‘Vn’Q

Ze nllrl 20127 (402 — 2)2 (16.79)
10
Ze allr] 4§‘ZZ|_V2)2 (16.80)
we have that
lim fy(r)=f(r) and  |fn(7)| < F(7). (16.81)

N—o0

Combined with

oo - Q3h3ﬁ3
/0 dr |F(71)| = 13

Pt (1 + Qhﬁ) — ) (1 — ng>' < o0 (16.82)

we can once again apply the theorem of dominated convergence to solve the remaining time
integration in (16.77):

128 2 oo —|vnllr|__ Pn]3E |I/n’Q . 128 2 / lunlr _ [Vn]id™ ’Vn|Q

hﬁ dr Ze (@02 — 12 = Z dr e” (102 — 12)2
128 5 & _ 128 2 1 QnB 2B,
— hﬂn Z 492 77 = hﬂ [ 32+ ) cot (BhQ2) + o ¢ (BhQ)

4

h% 202 cot (BRQ) — 20272H8 esc? (BHS) . (16.83)

Using this in (16.77) yields the final result for I' with the quartic cutoff and proofs of all the
intermediate steps:

4n*  4n’kp®©
s ho
which indeed coincides with the value found using the Lorentz-Drude cutoff in the previous
section.

= (16.84)
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16.5. Renormalisation and Lindblad equation

Parts of the content of this subsection were already published in [3] and [2]. Here, they are
presented with some modifications compared to [3] and [2] to adapt them to the flow of the thesis
and extended with further content and calculations.

From the discussion in the previous section we have obtained the master equation (16.11) in the
Markovian limit:

L pstt) = — - [i15,ps(0)] + 20 (#9) a5t
- %% (Hfg ‘s HY ~ % {(ﬁgo))Q ,ﬁs(t)}> . (16.85)

As expected, I' is independent of 2. When introducing any of the above named spectral densities,
the corresponding counter term is the same for all choices of the cutoff in the spectral density
and given by, using here in the intermediate step the Lorentz-Drude cutoff:

(0)2 12772/“’ 0 aone P 00
O = [Tat Py < L2 [ a0y = BLEO?, 6

which precisely cancels the Lamb-shift contribution in the second order TCL master equation in
Markovian limit yielding:

d . oyv__ Lo 4’ kp® (), © 1y 052

ostt) =3 [ ps(o)] + 522 (A ps A - S (AP ps)}) . (1680)
This master equation includes still two free parameters,  which is related to the coupling param-
eter between the system and the environment, and the environmental temperature parameter ©
that enters via g = ]CB% in the Gibbs state, where kg denotes the Boltzmann constant.

In order to compare the master equation (16.87) better to the existing phenomenological models
later, we note that (16.87) can be written in Lindblad form

: 2
os) == 1 [P ps0)] + 7522 (Los(! - 5 {E'Lps(0)}) (16.85)
with the choice of the Lindblad operator L = H éo) using that H éo) is self-adjoint, that is Lt=1
and thus LTL = L2. For instance [198] also chooses a Lindblad operator proportional to the
Hamiltonian of the system for a decoherence model inspired by discrete quantum gravity. In
many phenomenological models, the Lindblad equation is taken as the starting point, often omit-
ting the second term containing the contributions of the Lamb shift as well as a counter term.
Then the model is characterised by a selection of Lindblad operators L;, of which there can
generally be more than one, usually chosen to be either linear with the position and/or momen-
tum operators of the matter system such that they can be written linearly in annihilation and
creation operators, see for instance [45] for the standard examples or [199] for a non-perturbative
treatment of multi-time expectation values in open quantum systems for specific environments.
The advantage of starting with a microscopic model as in (16.2) is that, for example, the func-
tions A(t — tg) and I'(t — t9) can be derived and calculated directly, resulting in a model with
less ambiguities at the level of the Lindblad equation. Furthermore, the choice of the Lindblad
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operator, following the field theoretical models [1, 60-63], is directly linked to the property of
how linearised gravity couples to matter, and therefore in this sense is also determined by the
microscopic model. We discuss in the application to neutrino oscillations a comparison between
the renormalised and non-renormalised model in section 17.2. It is worth noting that for the
special case of zero temperature © = 0, in which the Gibbs state is only the vacuum state and
thus the gravitational environment is assumed to be in a vacuum state, no decoherence effects
are present, since in the model presented here the dissipator is linear in ©. Note that this is a
property of the gravitational environment and independent of the chosen system under consid-
eration and will thus also apply to the case of neutrinos in the next section.

Before we continue with this application to neutrinos, we would like to discuss and compare
the renormalisation applied for this quantum mechanical model to the one for the one-particle
projection of the field theoretical model in section 11. The quantum mechanical master equation
in the present section consists of a dissipator term and a Lamb-shift, where the latter contained
divergences and was finally removed by the renormalisation. The form of the coupling in the
quantum mechanical model in equation (16.2) implies that the coefficients A of the Lamb-shift
and I' of the dissipator in the final Lindblad equation only depend on the environment. From
their form before the Markov approximation in equations (16.29) and (16.30) it becomes evident
that the Lamb-shift term is independent of the temperature parameter ©. Thus the Lamb-
shift contribution only encodes vacuum effects, while the prefactor I' of the dissipator depends
on © and yields a non-vanishing contribution for © = 0. The counter term then removed the
Lamb-shift contribution completely, as it depends on the unphysical cutoff frequency €2, while
the prefactor of the dissipator is not altered, as here the dependency on €2 vanishes after the
Markov approximation.

Next, let us discuss to what extent it is possible to connect the renormalisation and its ef-
fects of the one-particle master equation presented above in section 11 with the renormalisation
applied in the quantum mechanical toy model. For this purpose first we discuss the two forms of
the original full field theoretical master equation derived in part II of this thesis. The first form
is given in equation (9.30):

aatpg(t) =—i[Hs+ KU, ps(t)
_ g Ot dSZT:/Ra Bk {z’D(E,t —5) [JT(E), {JT(—/%’,S —~ t),pg(t)H

+ Di(k,t = 5) [ Jo(R), [ (=K, 5~ ), ps (1) }
(16.89)

where D and D; are two coefficients defined in equation (9.28) and (9.29) that arise from combi-
nations of the environmental correlation functions similar to A and I' in the quantum mechanical
model. They read:

_sin(€(t — 5))

D(k,t —s) := o (16.90)
Di(k,t —s) := coth (@’“) COS(Q’EZ(: —9) (16.91)
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The operators J,.(k,t) and J,.(k) := J.(k,0) were defined in equation (8.19) and contain a com-
bination of two creation and/or annihilation operators of the scalar field along with their time
evolution. As a first difference to the master equation for the quantum mechanical model it turns
out that the term proportional to D in (16.89) cannot be written as a simple commutator, as it
is the case with the Lamb-shift contribution in the quantum mechanical toy model. If the system
operator J were to commute with the system Hamiltonian, then this would be possible, which
is precisely the case in the quantum mechanical toy model. Then this would imply that the
Lamb-shift is independent of the temperature parameter © and therefore a pure vacuum effect.
For the field theoretical model, a similar form where one has a Lamb-shift contribution and a
dissipator is the one given when using the dissipator in the form of equation (9.46). Here, the
coefficients of the Lamb-shift term are S,; and the prefactors of the dissipator are R,. From
their definitions in (9.44) and (9.45) one can see that in general they have a different form as A
and I' in (16.29) and (16.30) above and the Lamb-shift for the field theoretical model includes
vacuum as well as thermal contributions. A similar result is obtained in [45], where quantum
electrodynamics is discussed from the point of view of open quantum systems with the standard
interaction Hamiltonian of QED. There, the resulting Lamb-shift Hamiltonian is therefore split
into a vacuum part, denoted as Lamb-shift and a thermal part, denoted as Stark-shift.

As discussed above, we would expect that if in the field theoretical model the system operator in
the interaction Hamiltonian commutes with the system Hamiltonian, that we can then recover
the form of the quantum mechanical model. Indeed, if we had [J, Hs] = 0, then the phases

eFiwa(FE qnd eFiwn (kD coming from the time evolution of the J operators would vanish in the
definitions of Sy, and Ry in (9.44) and (9.45). This allows the remaining terms to be combined
into a form similar to A and I'. In particular the thermal contribution of the Lamb-shift would
vanish, as it is the case in the quantum mechanical toy model.

Let us now compare the renormalisations of the two models: in the quantum mechanical model,
the effect of the renormalisation is to remove the Lamb-shift Hamiltonian which only consisted of
a vacuum part. The renormalisation applied in the one-particle projection of the field theoretical
master equation in section 11 removes the vacuum parts in the Lamb-shift Hamiltonian and the
dissipator. The thermal part of the Lamb-shift Hamiltonian however remains. From the discus-
sion of the open QED model from [45], one would expect a similar result in a quantum mechanical
model where a thermal contribution in the Lamb-shift is present. The dissipator of the quantum
mechanical model is left unmodified by the renormalisation, in particular the vacuum contribu-
tion is present there. This is in contrast to the procedure for the one-particle projection, where
the renormalisation removes all vacuum terms, also the ones from the dissipator, see in particular
the discussion in section 11.5. In the quantum mechanical toy model, these contributions were
however removed at a later stage when the Markov approximation was applied and hence also
not present in the final Lindblad equation (16.88).

16.6. Solution of the master equation for neutrino oscillations

The content of this subsection was already published in [3]. Here, it is presented with some mod-
ifications compared to [3] to adapt it to the flow of the thesis.

In this section, we evaluate and solve the master equation (16.87) for neutrinos with three dif-
ferent flavors as the matter system. To adapt the model to neutrinos, we choose the following
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Hamiltonian operator for the system:
: ( ) - IA{ IA/ T.H 1: 16 92
S vac + mat®, ( . )

where the second term takes into account that the neutrinos propagates through the (different
layers of the) Earth. This Hamiltonian contains the neutrino Hamiltonian in vacuum in the mass
basis given as

A Ey 0 0 A —Am3; — Am3, 0 0
Huge = 0 By 0 | =Els+ o 0 Am3, — Am3, 0 ;
0 0 £E3 0 0 Am3, + Am3,
(16.93)
m%c‘l

where we used that F; ~ F + —— and that we can modify the Hamiltonian by a constant
matrix such that the difference (E; — F;) is not modified because in the final equation only
powers of the energy difference will contribute. Here the mass differences squared are denoted by
Am?j =m? — m?, the mean neutrino energy by F = %(El + E5 + E3) and the PMNS matrix by
U. The matter contribution, that takes into account the electron density of the FEarth, is given

as discussed in section 14.2.3 by

Hypat = £V2G4 N, (16.94)

S O =
o O O
o O O

where the sign depends on whether neutrinos (+) or antineutrinos (—) are involved, G is the

Fermi coupling constant and N, the electron density in the considered layer of the Earth.
2 4

Am=, A
Due to the different orders of magnitude of F compared to %, working with H,q. as specified
in (16.93) requires very high numerical precision and hence high computational effort. To simplify

the computation, one can proceed as follows: Splitting H éo) into two parts in the following way:

HY = E15+ HP (16.95)
the characteristic polynomial reads:
det (H§ — M) = det (A - A®)1,) =0, (16.96)

where A(®) = X\ — F are the eigenvalues of H éA). For the eigenvectors v(&) of H éA) we find:

I:IéA)U(A) = A8y — ﬁéo)v(A) — Ev®) = B — Ey®) — ﬁéo)v(A) = w®) | (16.97)
thus H éo) and H L(gA) have the same eigenvectors. Hence, one can work with H éA) and its eigen-
vectors throughout the calculation and just has to use in the final results in for instance (16.106)

that H; = AgAi) + E, where AgAi) are the eigenvalues of H éA). As the evolution of the neutrino in

the end only depends on terms of the form (fIZ —H j>, the mean neutrino energy F will always
cancel.

In the literature, often different forms of ﬁvac are used that differ from the one presented here
by the addition of a constant matrix in mass basis such that energy differences agree for all
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choices®. As it has been just discussed, such a constant shift in energy yields the same result as
long as the final solution of the master equation only depends on energy differences (E; — E;) or
powers thereof because constant terms that agree for all ¢ and j, such as for instance the mean
neutrino energy FE, are just canceled in the difference. While the equation (16.92) is formulated
in terms of the vacuum mass basis,( t)o solve the master equation it is advantageous to work in

the effective mass basis in which H SO is diagonal. This basis always changes when N, changes,
i.e. when we consider different layers of the Earth. We denote all quantities in the effective mass

basis with a tilde and the transformation matrix from flavour to effective mass basis by V. If

we define the diagonal matrix of the system in the effective mass basis Hg:=VIUA éo) U TYN/, the
master equation in terms of the effective mass basis can be written as

d ~ ifa A 4 kpO (2 o A 1 (2y o
Gpst) == 1 s, s )] + 75222 (Hshs() s — 5 { B350 }) (16.99)

As we have already seen from (16.88), the dissipator involves second powers of the system’s
Hamiltonian and it is linear in the temperature parameter © of the gravitational environment.
A consequence of the second property is that there is no decoherence effect at a temperature of
zero, e.g. when the environment is in a vacuum state.

Now we solve the master equation (16.99) in effective mass basis. To make the derivation of a
solution structurally better accessible, we rewrite the master equation in the following form:

o0 = 3 [H.p(0)] + 1 (Hp()H — 5 {12 p(0)} (16.100)

2
with the scalar prefact?r = % k%T

. For better readability, we dropped all hats and tildes and

indices, also for H := H 5. To solve this equation, we consider the three summands individually.
As all operators that appear apart from the density matrix commute and are time-independent,
we can solve the master equation for each summand individually and then combine the solutions.

e For the first summand we find:

d

o
al’ YT

D)=

H VO] = pD@) =i pM(0)ert. (16.101)

e The third summand yields:

A = 3 {2 P0) = o0 =R 16102

e For the second summand we obtain:

4
dt

POty =1-H®t)H = p(?’)(t):iMH”p@(O)H”. (16.103)

|
n—0 n:

353ee for instance [86, 87, 106] where this is used to work with a matrix in which one of the diagonal elements is

X A (00 0
Hype=— 10 Am} 0 (16.98)

2E\g 0 Am3,

Zero:
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Combining these in a suitable form, the total solution then reads:

oo n )
olt) = 3o U0 prnemtin=it )= e
n=0 n:
[o.¢] )n
=y - HFp 0)FTH", (16.104)
n=0

where we defined F := e~ #Ht=5H°t Since F and H" are diagonal in the effective mass basis, we
can evaluate the matrix product directly and obtain:

N
)" . .
pii() =" (n)'pij(())FF H]'H} = p;;(0)F;Fyel it (16.105)
n=0 ’

where a star denotes complex conjugation and we refer to the components of the diagonal matrices
as F; := F;; and H; := H;;. Reinserting the original expressions, this yields the solution:

(-2 2 ()

pij(t) = pij(0) - e~ # W) : (16.106)
where p;;(t) denotes the matrix elements of pg(t) and H; denotes the elements of the diagonal

matrix H, s. As expected from the form of the dissipator, the decoherence term is quadratic in
the difference of the energy eigenvalues (H; — H j)2. In flavour basis we explicitly obtain

~r o~ o~ o~ i (5T 2°kpO (75 7\2
pi5 () = P (OV V3t Vi Vi Vi~ (i )= =585 (i) (16.107)

where ‘7@] denote the matrix elements of V. The first term corresponds to the standard oscillation
term which is non-vanishing for Am # (0. The second terms is the additional contribution due
to coupling to the gravitational env1r0nment Note, that as discussed above due to the counter
term that we introduced in (16.86) the final solution does not involve a Lamb shift contribution
and is thus independent of the cutoff frequency.

A model that also included a Lamb shift contribution is the one in [85] where due to such a con-
tribution the model allows neutrino oscillations to be present even if the initial mass difference
vanishes. Although it is not directly obvious from the parameter in which the authors in [85]
encode the Lamb shift contribution (denoted as ws in (3.1) in [85]), to our understanding the
final value of this parameter depends on a choice of test function that needs to be introduced to
regularise an otherwise infinite integral (see (A.14) in [85]). Although the derivation in [85] starts
with a field theory setup, as far as we understand the derivation, carried over to the toy model
presented here, such a test function would correspond to the cutoff frequency because the final
value of w3 will in general depend on the chosen test function. Thus, it looks like they obtain a
shift in the neutrino energy eigenvalues that still depends on some regulator and we would expect
that similar to what happens here in the toy model and in the field theoretical models in part
IIT of this thesis as well as in [1, 60-63] a suitable renormalisation procedure needs to be applied
to obtain a cutoff independent effect. Such an effect might be potentially non-vanishing for the
model in [85] in contrast to our case since they use a different coupling to the environment but
this needs to be checked carefully. In addition, even if we consider the non-renormalised version
of the model presented in this part of the thesis, no massless neutrino oscillations will be allowed
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by the model. The reason for this is that in the model considered here the Lamb shift contribu-
tion cannot be chosen independently of the differences of the squared neutrino masses Am?j due
to the fact that the neutrino energy couples to the environment, whereas in our understanding
this is not the case in [85] demonstrating again that physical properties of the existing models
crucially depend on the coupling to the environment. To demonstrate that working with a model
where no renormalisation has been applied and the Lamb shift contribution is taken as a real
physical contribution, we refer to figure 8 in section 17.2 where the toy model with and without
a Lamb shift contribution is compared and thus is shown that if this non-physical effect is not
removed, one might draw incorrect physical conclusions.

Let us further comment on the work in [195], where the model from [112] is also considered
in a two-neutrino scenario, but the conclusion is drawn that no decoherence effects occur for this
model when they apply the equal-energy condition. In contrast, the results in the earlier work in
[200], where a similar contribution in the decoherence terms was obtained for the special case of
vacuum oscillations, as well as our results show decoherence effects where both models apply the
equal-momentum condition in the quantum mechanical context using plane waves, see section
14.2.2 for details.

The use of the equal-energy condition in the paper in [195] is to our understanding motivated
by the wave packet approach, where the derivation of the probabilities for neutrino oscillations
includes an average over the detection time, see section 14.2.1. For standard neutrino oscillations
without decoherence effects caused by some coupling to the environment, such an average over
the detection time leads to a delta function that is compatible with the application of the equal-
energy condition. Since the derivation of our master equation in this section is done using plane
waves, the model discussed in this part of the thesis does not include decoherence effects caused
by considering wave packets instead of plane waves, and we apply the equal-momentum condition
to the model. A complete generalisation of the model presented in this part of the thesis within
the wave packet approach is beyond the scope of this work. However, from the derivation with
plane waves, we can already see that the average over the detection time becomes more subtle
when decoherence effects due to coupling with an environment are present, as mentioned in sec-
tion 14.2.1. Firstly, the expression for the probability of neutrino oscillations in the presence of
decoherence effects includes an additional exponential time-dependent damping term. Therefore,
the integrand relevant to the average over the detection time changes and thus the result is no
longer simply a delta function. Since the average over the detection time is usually performed as
an integral from —oo to +oo, the exponential decay for negative values of the time coordinate
appears problematic, as also discussed in [195]. As discussed in [201], an interesting question is
whether there is a symmetry of time reversibility in open quantum systems. For the Lindblad
equation, they show in [201] that it can be extended to the negative real time axis if the absolute
value for the time coordinate in the dissipator term is taken into account. This has two effects:
First, in this case the average over the detection time can be formed, and second, the relevant
integral for the kind of models considered here and in [195] can be solved analytically, leading to a
Lorentz function instead of a delta function. Thus, if decoherence effects are present in the wave
packet approach, the argument with the delta function motivating the use of the equal-energy
condition cannot be transferred exactly from the situation in which no decoherence effects are
present to the situation in which decoherence effects are involved. Furthermore, the exact shape
of the Lorentz function depends on the particular decoherence model, and thus the final result
of the average over the detection time as well.
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17. Quantum mechanical and field theoretical model applied to
neutrino oscillations

The content of this section was already published in [3] and [2]. Here, it is presented with some
modifications compared to [3] and [2] to adapt it to the flow of the thesis.

Quantum decoherence in the neutrino sector has been investigated with long baseline neutrino
detectors [88], such as MINOS+T2K [89], the future DUNE [90] and reactor experiments such
as Daya Bay, RENO and the future JUNO [91], where the treatment of neutrino oscillations can
be well approximated by the vacuum amplitudes, and neutrino telescopes such as IceCube [92,
105] and KM3NeT [93], where matter effects play a relevant role. All such analyses are based
on a class of phenomenological quantum decoherence (PQD) models that can vary by the power
with which the mean neutrino energy enters into the decoherence term as well as the number of
non-vanishing decoherence parameters, see section 15. In order to interpret the PQD model in
terms of the microscopic gravitationally induced quantum decoherence model (GQD) presented
in this work, and in order to see the differences among them, we investigate their behavior in
different situations. In the following, we first present a short summary of the main results and
then discuss them in detail in sections 17.1-17.3. To connect to the field theoretical model from
part II and III of this thesis, we also apply the ultra-relativistic form of the one-particle projected
master equation from section 13.3 to a neutrino and compare the results with the quantum me-
chanical model from this part of the thesis in section 17.4.

The model considered in this part of the thesis has the property that only squared differences
of neutrino energies enter into the contribution responsible for decoherence. It will be shown
that one of the consequences is that the model considered here is only compatible with a sub-
class of phenomenological models with an energy dependence E~2, which directly follows from
gravitationally induced decoherence that suggest a specific coupling between the neutrinos and
the environment inspired by general relativity and linearised gravity respectively. That one does
not obtain an energy dependence of E™ for n > 0 is caused by the fact that for this coupling
only the squared energy differences are involved in the decoherence contribution and those scale
with £~2 in the case of neutrinos. Furthermore, the corresponding decoherence parameters in
the phenomenological models cannot be chosen independently from Am?j. The latter means
that setting some of the decoherence parameters involved to zero or equal to each other leads to
inconsistencies in the model if it is not assumed at the same time that these Am?j vanish or are
identical, respectively.

Additionally, our results show that in the vacuum case we can obtain an exact match between
the aforementioned subclass of the n = —2 PQD models and the GQD model presented here
if we choose the decoherence parameters involved in the PQD model appropriately. One might
conclude that it should be possible to already set bounds to our free parameters 7, which is
related to the coupling constant in the interaction Hamiltonian, and the temperature parameter
© of the gravitational waves, based on current upper limits of the PQD ~;; parameters. However,
all the present analyses [88, 89, 93] make some assumptions while fitting the data, such as setting
one of the v;; = 0 or two of them equal to each other, which are not compatible with the model
considered here. It follows that it is not possible to directly constrain 7 and © from current
bounds on 7;;.
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Interestingly, in the non-vacuum case such a match with the specific subclass of PQD mod-
els cannot be achieved with those phenomenological models that assume constant decoherence
parameters in each layer of the Earth, as many models do, due to the fact that in the model
presented here these parameters do vary. As a consequence, we obtain deviations in the oscil-
lation probabilities in matter that can become large enough in the GeV energy regime to be
resolved by neutrino telescopes, such as KM3NeT/ORCA [202]. There exist models that also
take matter effects in the decoherence parameters into account, see for instance [87, 94], it is
however discussed below that it is also not straight forward to match the model considered here
with those. All oscillation probability plots presented in this section are evaluated for neutrinos
propagating through the Earth, hence considering the non-negligible matter effects. Specifically,
the oscillograms have been made with the public tool OscProb [203], where a new class modelling
the GQD presented here has been developed by the authors of [3]. For the Earth density profile,
the PREM model with 425 layers has been used [204].

17.1. Comparison to existing phenomenological models

The content of this subsection was already published in [3]. Here, it is presented with some
modifications compared to [3] to adapt it to the flow of the thesis. The numerical calculations and
the plots were created by one of the coauthors of [3] other than the author of this thesis. They
are included in this thesis, as they improve the analysis of the results of the model.

In several works, such as in [96, 100, 103-105], a phenomenological model based on a Lindblad
equation is used to model decoherence in neutrino oscillations with a solution of the form

pij(t) = pi;(0) - e )t (17.1)
where I';; is usually parameterised as
Lij =i E", (17.2)

see section 15 for details. In vacuum, the model presented in this work can be related to this
class of phenomenological models by identifying
2.8

Yij = %(Am%f and n= -2, (17.3)
where kp denotes the Boltzmann constant. Hence, the quantum mechanical model considered in
this part of the thesis has the property that the v;; are related to the square of the squared mass
differences Am?j. The only two free parameters left in v;; are 7, that encodes the strength of the
coupling of the neutrinos to the gravitational environment, and ©, which is the temperature of
the environment of thermal gravitational waves. If one considers cosmological models in which
the usual inflationary epoch is preceded by a radiation-dominated era, a thermal gravitational
wave background can be produced in the early universe. In these models, it is assumed that
the thermal gravitons decouple at a temperature of the order of the Planck temperature and
exhibit a black-body spectrum [205, 206]. As the universe expands, the black-body spectrum of
the gravitons is maintained, but the temperature is strongly red-shifted. The estimates for the
temperature of the thermal gravitational wave background in the present epoch are © ~ 0.9K,
see [207], and thus below the temperature of the cosmic microwave background of © ~ 2.72K.
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Furthermore, because the energy eigenvalues always involve the combination Amfj /E, this model
suggests that the decoherence parameters depend inversely on the squared mean neutrino energy.
This dependence stems from the form of the interaction Hamiltonian which was motivated by
the way in which gravity couples to matter according to general relativity. Compared to the
phenomenological models, the approach presented here has the advantage that, if we assume
that we obtain a value of the temperature parameter of thermal gravitational waves from other
experiments, the I';; only depend on one free parameter 7. In order to constrain the free ;;
parameters, in some phenomenological models, as for instance in [88, 93, 104], additional require-
ments are included where some of the 7;; are set to zero or equal to each other. These limits
then result each in one single free parameter v. However, from (17.3) it can be seen that such
choices correspond to either setting some of the Amgj equal to zero or equal to each other, which
stands in contradiction to experiments. In addition to that, the physical interpretation of this
parameter is harder to access compared to the situation where the underlying microscopic model
is known.

In matter, those phenomenological models that assume constant decoherence parameters -;;
cannot be matched by specific choices of parameters to the model derived here. The reason for
this is that while in the phenomenological models +;; is fixed at a certain value independently of
the matter density, in the model presented in this part of the thesis, the decoherence parameter
depends on (I;TZ - H j), which are the energy values of the neutrino that depend on the matter
density and thus the different layers in the Earth. In the microscopic model, matter effects are
included directly via its coupling to the environment. This dependence is caused by the fact
that in matter the vacuum Hamiltonian is extended by the additional operator fImat which de-
pends on the electron density N, in the considered matter layer, see (16.92), and thus the final
Hamiltonian and therefore also the decoherence parameter changes in each layer. This leads to
the conclusion that the model presented here takes the effect of the different Earth layers into
account in the coupling to the environment and can thus not be formulated with a single value
for 7;; as it is done for the phenomenological models in (17.2). This is shown in Figure 5, where
a discrepancy between PQD and GQD appears when the neutrino travels through layers of in-
creasing density within the Earth. The effect becomes relevant for neutrino trajectories passing
through the Earth core. The decoherence effects considered in [87] also involve contributions from
the matter Hamiltonian of the neutrinos. However, it is not so simple to match these models
and the one considered here as the models in [87, 94] involve only the sub-leading contribution of
decoherence effects in order to be able to still work with analytical expressions for the oscillations
probabilities and this is used to perform an analysis for DUNE and T2HK in [94].

In the context of the Lindblad equation, the phenomenological models with constant decoherence
parameters 7;; in matter can be identified with a model where the Lindblad operator is chosen
to be the neutrino Hamiltonian in vacuum, whereas the model presented here chooses the full
neutrino Hamiltonian as the Lindblad operator. If we restrict to the vacuum case, both models
obviously agree but deviate in the matter case. From the point of view of the gravitational
environment it is not very clear why the thermal gravitational background should only couple to
the vacuum energy of the neutrino even if a non-vanishing matter density is present.

A further consequence of this is that bounds on decoherence effects of neutrino detectors that
have been derived using the PQD models can only constrain 7 in the vacuum case. Although there
are upper limits on the gamma parameters from neutrino experiments where matter effects are
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negligible, such as the results of the MINOS+T2K data [89], the baselines and neutrino energies
of such experiments allow a vacuum treatment of neutrino oscillations. However, in [89], they fit
the data assuming three scenarios which are not fully compatible with our choice of parameters.
Therefore, we cannot directly translate current upper limits on the gammas into upper limits for
our parameters.

For the matter case, a further sensitivity analysis is needed because the deviation in the oscillation
probabilities predicted when using the PQD model with a decoherence parameter independent
of the matter density or the one presented here (GQD) is a measurable effect as can be seen
in Figure 6, where the constants 7;; were chosen to be equal to the decoherence parameters
in the GQD model in vacuum such that the (PQD) and the (GQD) model perfectly match in
the vacuum case. From the corresponding oscillograms in Figure 7 it becomes visible that the
probabilities can deviate by up to 10% for n = 1078 s and © = 0.9K.

Figure 7 shows the difference in neutrino oscillation probabilities for the PQD and GQD models
in Earth as a function of the neutrino energy and the cosine of the zenith angle, where up-going
events have cosflz = —1. The choice of the n value matches the PQD +;; values in vacuum near
to current experimental upper bounds. As it can be seen, differences up to 10% can be observed,
highlighting the different decoherence behaviour of the two models that arise when including
matter effects. It follows that the model considered here can be independently constrained with
respect to the PQD model by neutrino telescopes optimised for the GeV energy range, such as
KM3NeT/ORCA [202].
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Figure 5: Neutrino oscillation probabilities in matter for a 4GeV neutrino as a function of the
travelled baseline in Earth. The plots compare standard oscillations without deco-
herence (Std.) with the quantum mechanical model in this part of the thesis (GQD)
and a phenomenological model with n = —2 (PQD). The GQD model parameters
are set to n = 1078s and © = 0.9K which implies for the PQD model in vacuum
Y21 = 1.00694 - 1072° ~v31 = 1.08067 - 10722 and 732 = 1.0157 - 10722, The Earth matter
effects are accounted for via the PREM model [204]. The clear discontinuity for neu-
trino trajectories passing inside of the Earth core is due to the net change in density
between mantle and core. The plots have been created with OscProb [203]. This plot
was originally published in [3] and created by one of the coauthors other than the author
of this thesis. It is included in this thesis, as it improves the analysis of the results of
the model.
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Figure 6: Neutrino oscillation probabilities in matter for a baseline of 12000km, corresponding to
€08 0zenith = —0.94, which is a trajectory passing through the Earth’s core. The plots
compare standard oscillations without decoherence (Std.) with the quantum mechanical
model in this part of the thesis (GQD) and a phenomenological model with n = —2
(PQD). For the GQD model n = 1078s and © = 0.9K are assumed which implies for
the PQD model y9; = 1.00694 - 10725 y3; = 1.08067 - 10722, and 732 = 1.0157 - 10722
in order to have these two models coinciding in vacuum. The Earth matter effects are
accounted for via the PREM model [204]. The difference between constant decoherence
parameters independent of the Earth matter density (PQD) and a parameter depending
on the Earth matter density (GQD) is evident. The plots have been made with OscProb
[203]. This plot was originally published in [3] and created by one of the coauthors other
than the author of this thesis. It is included in this thesis, as it improves the analysis
of the results of the model.
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Figure 7: Difference of neutrino oscillation probabilities in matter for the quantum mechanical
model in this part of the thesis (GQD) and a phenomenological model for n = —2
(PQD). For the GQD model n = 10785 and © = 0.9K are assumed which implies for
the PQD model v; = 1.00694 - 1072, 37 = 1.08067 - 10722, and 32 = 1.0157 - 10722
such that both models coincide in vacuum. The Earth matter effects are accounted for
via the PREM model [204]. The difference between constant decoherence parameters
independent of the Earth matter density (PQD) and a parameter depending on the
Earth matter density (GQD) is evident. The plots have been made with OscProb [203].
This plot was originally published in [3] and created by one of the coauthors other than
the author of this thesis. It is included in this thesis, as it improves the analysis of the
results of the model.
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Figure 8: Comparison of the quantum mechanical model presented in this part of the thesis
(GQD) with (blue) and without (red) renormalisation. In the latter case, the cutoff-
dependent Lamb-shift contribution is still present in the unrenormalised Hamiltonian.
The cutoff frequency has been chosen to be 2 = 100G H z corresponding to the maximal
frequency of thermal gravitational waves at temperature © = 0.9K, see for instance
[207], and n = 1073"s for which the oscillations with 2 = 100GHz do not get too
fast. The value 2 = 100G Hz was chosen because it corresponds approximately to
the maximal frequency of the black-body spectrum for © = 0.9K. Considering the
Lamb-shift as a real physical effect is problematic because its contribution still depends
on the cutoff frequency 2 and diverges when €2 is sent to infinity, which shows that
a renormalisation procedure is required. The plot has been made with OscProb [203].
This plot was originally published in [3] and created by one of the coauthors other than
the author of this thesis. It is included in this thesis, as it improves the analysis of the
results of the model.

17.2. Effect of the renormalisation

The content of this subsection was already published in [3]. Here, it is presented with some modi-
fications compared to [3] to adapt it to the flow of the thesis. The numerical calculations and the
plots were created by one of the coauthors of [3] other than the author of this thesis. They are
included in this thesis, as they improve the analysis of the results of the model.

In Figure 8 a comparison of the quantum mechanical model presented in this part of the the-
sis (GQD) with and without renormalisation is shown. As expected, in the GQD model the
contribution of the Lamb shift in the non-renormalised Hamiltonian H éo) in (16.2) leads to an
energy-dependent phase shift in the oscillations. However, as discussed in section 16.6, such a
phase shift is non-physical because it still depends on the chosen cutoff frequency 2 and diverges
in the limit Q@ — oo. After renormalising the neutrino Hamiltonian and considering the limit
value ) — oo, the contribution of the Lamb-shift is not present, as it is exactly cancelled by the
counter term introduced in (16.86). Thus, these results show on the one hand that for the model
considered in this work it is a justified procedure to not consider the Lamb-shift as well as the
counter term at the level of the Lindblad equation, which is often done but needs in general a
detailed analysis for each individual model separately. On the other hand, as already discussed
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in the context of massless neutrino oscillations in [85], it further demonstrates that any phys-
ical interpretation of effects caused by the Lamb-shift term without a detailed analysis of the
renormalised model can be problematic.

17.3. Coupling strength inspired from linearised gravity

The content of this subsection was already published in [3]. Here, it is presented with some modi-
fications compared to [3] to adapt it to the flow of the thesis. The numerical calculations and the
plots were created by one of the coauthors of [3] other than the author of this thesis. They are
included in this thesis, as they improve the analysis of the results of the model.

In the model studied in this work, 7 is a free parameter which represents the coupling strength
between the neutrinos and the gravitational environment. It cannot be specified by the micro-
scopic model in (16.2), as it depends on the g; which are in turn not specified. As discussed, the
existing constraints from experimental data in [88, 89, 93] cannot be used to further constrain n
because the assumptions used for the decoherence parameter in these analyses are not compatible
with the model considered in this work. Hence, a detailed investigation on the sensitivities of
different neutrino detectors is needed to obtain such upper bounds.

From the theoretical point of view, the estimated value of 5 is determined by the way gen-
eral relativity couples to matter. However, to the knowledge of the authors of [3] no full field
theoretical model for neutrinos has been derived so far, so there is yet no definite answer to the
size of . By comparison to full field theoretical models like [60, 63] or the one presented in part
IT and III of this thesis, it is nevertheless possible to attempt a first rather naive estimate for a
suitable order of magnitude for the coupling parameter 7. Using the model from part II, such an
estimate can be found by solving this master equation applied to the ultra-relativistic case from
section 13.3. This is done in detail in section 17.4. The resulting value for 7, obtained in equation
(17.8) to be n ~# 10~*s, is rather tiny and corresponds to a 7i; in the phenomenological models
(for n = —2) of the order ;; ~ 10_54¥. For such a tiny value of 7, using similar temperature
parameters © as above, one would not be able to detect modifications from the standard neutrino
oscillations. This can also be seen from Figure 9 where the modification in the probability for
the neutrino oscillations are shown for three different values of n.

Specifically, for n = 10775, the GQD model is already almost not distinguishable from the stan-
dard scenario. For n = 10785, the modifications start to become non-negligible and they become
large already at n = 10~7s, which corresponds, in vacuum, to values for the 7ij parameters of
the PQD models of the order v;; ~ 10_21¥.

Does this mean that, taking this estimate seriously, the effect of gravitationally induced deco-
herence will be too tiny? The answer to this question is not so simple and under debate in the
current literature. For instance in [60, 63] it is discussed that the interpretation of the tempera-
ture parameter © as the temperature of the thermal gravitational waves is too restrictive. They
also conclude that for © = 0.9K the n that follows from the QFT model is too small to cause
a detectable decoherence effect. However, they argue that © should rather be interpreted as an
effective parameter, which for © = 0 includes gravitons in a vacuum state where no decoherence
effects are present. For the choice®® of © ~ 0.9K, this corresponds to cosmic thermal gravita-

36Tn [60, 63] © = 2.7K is chosen, the temperature of the cosmic microwave background. To the knowledge of the
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Figure 9: Effect of n, the neutrino coupling parameter to the gravitational environment, on the
muon neutrino disappearance probability when propagating through the Earth. Here,
© = 0.9K is assumed. The considered baseline takes a neutrino trajectory that passes
through the Earth’s core. The plot has been made with OscProb [203]. This plot was
originally published in [3] and created by one of the coauthors other than the author of
this thesis. It is included in this thesis, as it improves the analysis of the results of the
model.

tional waves. For higher values of an effective © parameter they suggest that it can for instance
be given if one chooses a quantum state for the environment that mimics a classical stochastic
noise with an astrophysical origin such as a background caused by all rotating neutron stars
in the galaxy. Another possibility they discuss is that, assuming that classical spacetimes arise
from an underlying theory of quantum gravity at the thermodynamic level, a classical spacetime
such as flat Minkowski spacetime is a macrostate and its emergence is therefore accompanied by
classicalised thermodynamic fluctuations, which may be stronger than any quantum fluctuations
in perturbative quantum gravity.

Therefore, ®, which is understood as an effective parameter in their discussion, cannot be de-
termined by a QFT model based on linearised gravity. Other decoherence models with a similar
parameter involved can be found in [208-211], where either the parameter is not further specified
or the value of the Planck temperature is discussed which is an obvious but not very restrictive
upper bound for such an effective temperature parameter. To address this point, Figure 10 shows
the effect of the temperature of the gravitational environment for neutrino oscillation probabili-
ties in Earth as a function of the neutrino energy for a fixed value of 7. As it can be seen, a small
variation in the temperature has visible effects in oscillation probabilities which could potentially
be resolved by neutrino telescopes such as KM3NeT/ORCA.

In addition, we show in Figure 11 exemplary how the modifications of the probabilities for the
oscillations compared between the case with and without decoherence vary with the tempera-
ture for atmospheric neutrinos. As expected, for higher temperatures the parameter n can be
smaller to still obtain deviations in the oscillation probabilities. Figure 11 also shows the plot
for different neutrino energies. For smaller energies, the values of 7, from that on deviations
of the standard oscillations are seen, can be slightly smaller, which is due to the fact that the

authors of [3], the temperature of thermal gravitational waves is expected to be somewhat lower, see e.g. [207].
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Figure 10: Effect of the temperature of the gravitational environment ©, in the plot denoted as T,
on the muon neutrino disappearance probability in Earth. Here, n = 10™%s is assumed.
The plot has been made with OscProb [203]. This plot was originally published in [3]
and created by one of the coauthors other than the author of this thesis. It is included
in this thesis, as it improves the analysis of the results of the model.

mean neutrino energy enters with an inverse second power in the decoherence term. As for these
plots we investigated atmospheric neutrinos that have as the maximum propagation length the
trajectory through the Earth, the analysis of the © and 7 ranges is in this sense restricted as we
expect decoherence effects to become larger for larger propagation lengths.

An additional aspect which is related to this and becomes relevant in the case of neutrino os-
cillations is that we can also enhance the decoherence effect if we consider longer propagation
lengths of the neutrinos. In this case, where one wants to consider cosmic neutrinos, for example,
a QFT model based on linearised gravity around a flat Minkowski spacetime, as in [60, 61, 63] or
in part II and III of this thesis, might be too simple as one would have to consider more complex
models that involve gravitational waves in a FLRW spacetime as a more realistic setting, for
which the estimate is also expected to change due to the presence of a non-trivial scale factor
in cosmological spacetimes. From the point of view of quantum gravity, it therefore remains an
exciting question whether decoherence effects in neutrino oscillations are actually measured and,
if so, which theoretical models can then satisfactorily explain such measurements.
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Figure 11: Difference in atmospheric neutrino oscillation probabilities between the standard
(Std.) scenario and GQD, as a function of n and temperature © (in this plot denoted
as T, the latter starting at 0.1K and going up to the Planck temperature. Here,
upgoing neutrinos (cos@zepitn, = —1.0) with an energy of 6GeV (left) and 18GeV
(right) are considered. The assumed ratio between neutrino flavours and neutrinos
vs. antineutrinos is a simplified approximation of the atmospheric neutrino flux. Mat-
ter effects are included via the PREM model [204]. The plots have been made with
OscProb [203]. This plot was originally published in [3] and created by one of the coau-
thors other than the author of this thesis. It is included in this thesis, as it improves
the analysis of the results of the model.



216 Quantum mechanical and field theoretical model applied to neutrino oscillations

17.4. Application of the Lindblad one-particle master equation from part Ill to
neutrino oscillations and comparison with the quantum mechanical toy model

The content of this subsection was already published in [2]. Here, it is presented with some mod-
ifications compared to [2] to adapt it to the flow of the thesis.

Finally, we want to discuss the relation of the results obtained in this part of the thesis with the
one derived from the one-particle projection of the field theoretical model in part III. For this
purpose, we consider the decoherence of neutrinos predicted by the ultra-relativistic one-particle
master equation for a scalar particle derived in section 13.3.

This connection is of interest to us in several respects: first due to the quantum mechanical
nature of the the quantum mechanical toy model, the coupling parameter encoding the strength
for the coupling between system and environment cannot be determined from first principles. In-
stead a free parameter was introduced, that after introduction of a spectral density was denoted
by 7, similar to what was done also in [112]. Second, the quantum mechanical model requires
the choice of a spectral density to derive the final master equation together with an appropriate
cut-off function that regulates the integral over the frequency domain, see section 16.3. We have
considered four different commonly used cut-off functions and we have shown that the final Lind-
blad master equation cannot distinguish between the different choices. The one-particle master
equation in part III was derived from an underlying field theory model presented in part II, so
the situation is different there. As the matter, which is a scalar field in that field theoretical
model, couples to linearised gravity, the coupling constant in the interaction Hamiltonian is nat-
urally build into the model and given by the square root of kK = 8”CGN

¥ where G is Newton’s
constant, see equation (8.11). Furthermore, due to the field theoretical character of the model,
it is not necessary to introduce a spectral density by hand, since the interaction Hamiltonian
contains an integral over all modes from the beginning. As a third aspect we want to compare
the application of the Markov approximation in the quantum mechanical toy model and in the
one-particle master equation derived in part III.

Even though the equation derived in part III is, taken strictly, only applicable to scalar particles,
we still apply it to the case of neutrinos in order to discuss the relation with the results obtained
from the quantum mechanical toy model. That this can be done in this context is due to the
reason that the quantum mechanical toy model treats the neutrinos as plane waves and thus does
not take the full spinorial nature of neutrinos into account.

We assume that the two momenta # and ¢ of the scalar particles in section 13.3 are approximately
parallel to each other in order to have intersection probability and to be able to measure them
in a neutrino detector. With this, the one-particle master equation in the ultra-relativistic limit
(13.14) becomes

0 K

ot (u—v)*p(a@,7,1). (17.4)

As for ultra-relativistic particles we have H p =~ up, we indeed obtain the same form for the master
equation as in the quantum mechanical toy model in the effective mass basis given in equation
(16.99):

5yP(0) = —ilHp(e) + o (Ep() - 5 {250} ) (175)
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The master equation above can be solved in the energy eigenbasis, where we denote the energy
eigenvalues by F;. With respect to this basis we denote the individual elements of p by p;; whose

solutions read

—i(Ei—Ej)t— 1525 (Bi—Ej)*t '

pij(t) = pij(0)e (17.6)
This result agrees, up to the different prefactor of 2 in front of the decoherence term mentioned
in subsection 13.3, with the one obtained for the one-particle projection evaluated for motion in
one dimension for a photon in [63].

We will now discuss the comparison of the three aspects mentioned above. We start with the
comparison of the coupling parameter. Such a comparison can be obtained by comparing the pref-
actors of the decoherence terms in both models. For the one-particle projected master equation
we have

K . QGN]{ZB@ QGN]CB@
1208 3¢t ARETC Y
where we restored the correct units in the last step. Comparing with the decoherence rate in
the quantum mechanical model, which can be read off from equation (16.106) and is %7271%, and
introducing the Planck length ¢p, we find that

(17.7)

2
2= h?iév = % ~ 1078762, (17.8)
Similar results of the coupling strength can be found in [60, 63]. As the one-particle master
equation considers the case of a scalar field with a thermal gravitational background, more work
is needed in order to develop more sophisticated models for neutrinos or fermions in general to
derive a similar master equation for a fermionic system under consideration and for more general
environments. In addition, the model is based on linearising gravity around a flat Minkowski
background, whereas it would be interesting to also consider decoherence models for longer prop-
agation distances and consider master equations based on a model on a cosmological background
as the presence of a scale factor could modify the decoherence effect, as analysed for instance in
[212-214].

Compared to the quantum mechanical model, in the one-particle projection of the field theo-
retical model it was not necessary to introduce a spectral density, as mentioned above, which is a
kind of continuum limit for the frequencies of the oscillators in the environment that is typically
used in similar quantum mechanical models to avoid Poincare recurrences, see for instance [45].
Furthermore, the cut-off function that needed to be used in the quantum mechanical model to
regularise divergent integrals is not required for the one-particle master equation. Instead, the
divergent contributions in the one-particle master equation could be linked to Feynman diagrams
of a corresponding effective field theory in section 11.2 giving a clearer physical interpretation
than in the quantum mechanical toy model. With that given, the divergent contributions were
treated using a standard renormalisation procedure known from quantum field theory in section
11.4 that would be applied also in other situations in quantum field theory where such kind of
diagrams play a role.

Not entirely unrelated to the latter paragraph is the discussion of the application of the Markov
approximation in the field theoretical one-particle master equation and in the quantum mechan-
ical toy model. In the latter, due to its simplicity compared to the one-particle master equation
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in part III, it was explicitly shown in section 16.3 that the environmental correlation functions
are strongly peaked around the initial time and decay rapidly after the peak. Such environmental
correlation functions depend on both the chosen spectral density and the chosen cut-off function.
For the field theoretical master equation however, none of these choices are made, but the cor-
responding quantities are determined and set from the beginning when formulating the model.
In section 12.1 a condition was discussed under which the Markov approximation can be applied
for the ultra-relativistic limit to the one-particle master equation of part III. Considering here
the application to neutrinos we can discuss whether this condition is satisfied in this application
and how it relates to the application of the Markov approximation in the quantum mechanical
toy model in section 16.4. The condition applied in part III, equation (12.14), states that the
Markov approximation is justified if3”
kp®

U v > . (17.9)

In the case of ultra-relativistic neutrinos where we neglect their masses, this is equivalent to
E,, E, > kpO, (17.10)

where E, and E, denote the neutrino energies. Typical neutrino energies investigated in this
part of the thesis start at energies of 1GeV =~ 1.6 - 107'9J. Given the Boltzmann constant
kp ~ 14 - 10_23% and the temperature parameter © of the thermal gravitational waves of
around 1K used in this part of the thesis, is the condition for the applicability of the Markov
approximation in part III

1.6-107107 > 1.4-107%7 . (17.11)

Both sides of the inequality still differ by more than ten orders of magnitude, so the approxima-
tion can also be used for neutrinos with lower energies or for higher values of the temperature
parameters. Thus, we can conclude given the proof presented in section 12.1.1, the application
of the Markov approximation to the physical scenario used in this part of the thesis is not only
justified at the level of the quantum mechanical model as shown in section 16.4, but also if one
derives that model from the one-particle master equation of the QFT model.

Finally, compared to the quantum mechanical toy model, the more general one-particle mas-
ter equation derived in part III also allows to consider the generalisation to decoherence models
with wave packets, whereas for the quantum mechanical toy model plane waves were considered.
This is due to the general form of the one particle density matrix defined in (10.2) as

pi(t) = / Pu [ & p(@, ) al |0) (0] av . (17.12)
R3 R3
When choosing suitable initial conditions for p(i, ¥,0), one can model different descriptions for

neutrinos like wave packets or plane waves, where the latter just correspond to delta distributions
in this context.

3TNote that this is not an if and only if here.
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18. Conclusion

In this thesis, different ways to include quantised gravity as an environment for an open quantum
system were discussed in order to work on the search for signatures of quantum gravity effects
for instance in neutrino oscillations and to thereby provide an additional area of application
to analyse possible imprints of quantum gravity models. The results of this work extend and
generalise the formulation of theoretical models for gravitationally induced decoherence compared
to the literature and several of the open questions and problematic points that were named in
section 1.2 could be answered. Additionally, some implications for experiments that search for
these decoherence effects in neutrino oscillations were discussed.

18.1. A field theoretical model formulated in Ashtekar variables using Dirac
observables

With general relativity (GR) and quantum field theory (QFT) being the best theories to describe
nature at fundamental level today, we analysed in part II of the thesis a model in which linearised
gravity as described by GR was coupled to a scalar field using a Post Minkowski approximation.
The gravitational part of this total system was formulated in Ashtekar variables. This is different
from similar works in the literature that also consider decoherence models based on linearised
gravity and bosonic matter fields as for instance [60-63], as they use ADM variables. The formu-
lation of linearised gravity in terms of Ashtekar variables enabled us to complete the first step
towards a decoherence model inspired by loop quantum gravity, which permits a mathematically
rigorous quantisation of GR. With this, we could extend the formulation of the models in the
literature [60-63] that had been working with ADM variables before. As the formulation in
Ashtekar variables only affects the gravitational part of the system, the formalism employed in
this thesis can be readily generalised to other matter fields, for instance to a photon field, as it
was done in [6]. Due to the internal structure of the Ashtekar variables, it can directly be used
to couple fermionic fields, for which the ADM formulation would have to be reformulated first
in terms of tetrads. Further new points in our model are the inclusion of a boundary term and
the construction of Dirac observables for both matter and gravitational sector to identify the
physical degrees of freedom instead of a gauge fixing. The usage of Ashtekar variables brings in
a Gauf constraint that extends the set of ADM constraints. We have shown how suitable geo-
metrical clocks can be constructed for these constraints to derive Dirac observables that encode
the physical degrees of freedom based on the relational formalism. To construct these Dirac ob-
servables, we introduced a dual version of the observable map which facilitates the construction
of quantities that commute also with the geometric clocks. Due to this property, we were able
to map with a canonical transformation the basic phase space variables onto these observables
as well as the clocks and constraints which permits to split the phase space into a physical and
a gauge part whose algebras decouple. In decoherence models, it is important to implement the
gauge invariance and to work with the physical degrees of freedom to obtain a physically mean-
ingful interpretation of the resulting processes [215, 216]. As our geometric clocks only depend on
gravitational phase space degrees of freedom, they remain valid when different matter is coupled
and one only has to extend their set by suitable clocks for the gauge degrees of freedom in the
matter field, for instance with a clock for the electromagnetic Gaufl constraint when working with
photons [6]. Therefore, the formulation of decoherence models in terms of Dirac observables for a
linearised gravitational environment in Ashtekar variables is facilitated by the methods provided
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in this work.

To conclude the classical treatment of the system, we compared the Dirac observables to other
observables and gauge fixings in the literature in [5, 60, 151]. The difference one obtains in the
physical Hamiltonian when choosing one of these other methods lies in the self-interaction term
of the scalar field that does later not play a role in a one-particle master equation when normal
ordered in the quantisation procedure.

Due to the decoupling of the sub-algebra that contains the physical degrees of freedom from
the remaining gauge degrees of freedom, we used a reduced phase space quantisation to quan-
tise only the former in a Fock quantisation. The resulting Hamiltonian of the total system was
normal-ordered, which differs from the orderings chosen in [60, 62, 63]. This leads to a difference
in the self-interaction term of the scalar field compared to these works. In particular in the one-
particle projection of the master equation, the self-interaction term vanishes completely when
working with a normal ordered Hamiltonian, which we discussed in the next part of the thesis.
As a next step, the time-convolutionless projection operator technique was invoked to obtain
a time-convolutionless master equation for the scalar field truncated after second order in the
coupling. For this, the coupling was assumed to be weak and the environment of gravitational
waves to be determined by a Gibbs state moderated by a temperature parameter ©. This mas-
ter equation was expressed in terms of thermal Wightman functions and the thermal Feynman
propagator of the underlying effective QFT was introduced for the linearised gravitational field.
At the end of part II, the resulting master equation was compared with equations for similar
models in [60-63]. The main difference at the quantum level to the master equations in [60],
which is also formulated for a scalar field, and to [63] formulated for a photon field is that these
two are stated in Lindblad form. This requires further approximations, for instance the Markov
and rotating wave approximations, that strongly depend on the environment and its influence on
the system. As they have not yet been analysed for gravity, we refrained from casting the master
equation into Lindblad form at this stage and just briefly sketched how these approximations
can be applied. Instead, we discussed their applications and implications in the context of the
one-particle equation in the following part of the thesis.

18.2. Analysis and effects of two different versions of the one-particle projection of
the field theoretical master equation

One of the results of part II of the thesis was that it is highly complex to derive physical predictions
from the final master equation for the scalar field. Therefore in part III of the thesis this equation
was projected onto the one-particle space to obtain the evolution of a single scalar particle. For
this projection, the density matrix was replaced by the density matrix of a single particle and
only terms in the master equation that preserve the one-particle space were kept. At the level of
the one-particle master equation, we were able to show how the individual terms of this master
equation can be connected and interpreted based on the underlying effective QFT where linearised
gravity is coupled to a scalar field. For this, we extended the discussion from [113] where two scalar
fields are coupled as system of interest and environment. From this connection, it was possible
to discuss and compare the different versions of the one-particle projection of a master equation
used in [113] (which we called extended projection) on the one side and in [60, 62, 63] on the other
side (which we denoted as non-extended projection). We could conclude that the main difference
is that in the latter case terms that violate probability conservation in the TCL one-particle
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master equation are dropped, that however represent valid scattering processes in the underlying
effective QFT. These are included in the extended projection along with divergent terms that we
could trace back to vacuum bubbles in the underlying effective QF T and renormalise. The Markov
approximation repaired probability conservation in the renormalised one-particle master equation
in the extended projection, but when dropping these terms in the non-extended projection, a part
of the temperature dependent Lamb shift survived in the end, in contrast to case when using the
extended projection.

18.3. Renormalisation of the one-particle master equation and the quantum
mechanical toy model

The necessity of a renormalisation arose in both the one-particle projected field theoretical model
discussed in part III and the quantum mechanical toy model discussed in part IV. In the former,
we used the connection to the underlying effective QFT to identify the problematic diverging
contributions as the self-energy term of the scalar field’s propagator. For this, we rewrote the
Feynman rules, which were in non-covariant form due to the initial ADM split of the system in
part II, into a covariant form and then renormalised the mass and wave function to include the
UV divergent terms. To maintain IR finiteness, a small artificial graviton mass was included that
could be sent to zero in the end which allowed an extension of a similar renormalisation pro-
cedure for a linearised gravitational field in [173], where propagation in a thermal gravitational
background is analysed. Following the standard renormalisation procedure in QFT, we could
renormalise the self-energy contribution and obtain a finite one-particle master equation right
after the projection where all terms arising from vacuum fluctuations were removed by this pro-
cedure. This allows a clear interpretation of the terms and processes the master equation encodes
and permits the discussion of the physical implications of the later applied approximations. In
similar works in the literature [60, 63], a renormalisation is only carried out after application of
further approximations (Markov, rotating wave) and the specialisation of the master equation to
a non-relativistic [60] or ultra-relativistic [63] limit. This procedure does not directly clarify the
connection to the standard procedure in QFT and the possibility to give a physical interpretation
of the influence of the invoked approximations on the master equation. This particular point,
that it is highly problematic to draw physical conclusions from the master equation before a
proper renormalisation, is emphasised by the analysis of the results in [62] and [85]: the final
decoherence effect predicted in [62] on photons in vacuum without a renormalisation is absent in
our model after the renormalisation and the massless neutrino oscillations predicted in the quan-
tum mechanical model in [85] vanish in our quantum mechanical toy model when the Lamb-shift
is renormalised properly. The discussion of both the one-particle master equation based on field
theory and the microscopic quantum mechanical toy model gave us the possibility to compare the
two ways to renormalise the corresponding master equations. One key point in this comparison
was the fact that the interaction Hamiltonian in the quantum mechanical model commutes with
the Hamiltonian of the system of interest, which leads to a vanishing thermal contribution in
the Lamb-shift Hamiltonian. Due to this, the latter consists only of a vacuum part and is com-
pletely removed by the renormalisation. In the dissipator, both renormalisations differ: while
in the one-particle projection the vacuum part is also removed here, it is not modified in the
quantum mechanical model, but vanishes after the Markov approximation. As a consequence,
both dissipators have the same form in the final Lindblad equations and depend linearly on the
temperature parameter.
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18.4. Application of Markov and rotating wave approximations in the one-particle
master equation and the quantum mechanical toy model

Another result of the present thesis focuses on the application of the Markov and the rotating wave
approximations to obtain a Lindblad form for the master equation. With the renormalisation
of the one-particle master equation carried out before the application of these approximations,
which has not yet been considered in similar works that exist in the literature so far [60, 63], we
could interpret their influence and discuss, which physical processes are suppressed by them. As
it was discussed in the introduction, neutrinos potentially provide a good candidate for the search
of gravitationally induced decoherence. Therefore, for the further analysis in particular an ultra-
relativistic scalar particle was investigated. It was shown that in the one-particle master equation
for an ultra-relativistic scalar particle the Markov approximation is justified if the temperature
parameter of the environment is not too high and we provided a starting point on how to test its
validity for other physical scenarios. In the quantum mechanical model, we could also prove the
validity of the Markov approximation, in this context by just using properties of the environment.
There, we also provided a mathematically rigorous proof for the application of the approximation
with a specific choice of cutoff in the spectral density, which we called quartic cutoff, that yields
the same result as the frequently used Lorentz-Drude and exponential cutoffs. From the results
of the field theoretical decoherence model, we could motivate a spectral density which is linear
in the frequency w of the oscillators of the environment for small w when working with gravity
as environment. To conclude part III of the thesis and the analysis of the field theoretical model,
different applications were discussed. Firstly, the influence of the renormalisation and of the
two approximations on the populations of the density matrix were investigated. This led to
the insights that the Markov approximation removes their time evolution and thereby restores
probability conservation if not present before (as it is the case if working with the extended
one-particle projection). Additionally, we could show that the final effect obtained in [62] in a
one-particle TCL master equation for the populations of a photon coupled to a gravitational waves
environment in the vacuum state is not present any more after a renormalisation. Afterwards,
the non-relativistic and the ultra-relativistic limit were analysed, where the model was applied as
a toy model to neutrino oscillations which enabled us to confirm the final form of the dissipator
obtained by the quantum mechanical toy model in part IV and to give an estimate for the order
of magnitude of the coupling parameter n that appears in the spectral density of that toy model.

18.5. The microscopic quantum mechanical model and its implications on
phenomenological models

It is evident from the discussions of parts II and IIT of the thesis that a model for gravitation-
ally induced decoherence based on the field theoretical formulation is rather complicated and in
particular the route towards physical predictions is not straight forward but rather involved. To
extend the possible techniques and to make the connection to experiments and phenomenological
models more direct, we have discussed in part IV of the thesis a microscopic quantum mechanical
toy model based on [112] which was extended in this thesis to be capable of handling neutrinos
as system of interest. After an introduction to neutrinos, the treatment of their oscillations
with wave packets and plane waves as well as a presentation of phenomenological models and
their involved approximations, we defined the microscopic quantum mechanical toy model with
a neutrino as system of interest and an environment consisting of a finite collection of harmonic
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oscillators to model gravitational waves. The coupling of the model was taken from [112] and
is inspired by GR and the coupling in field theoretical models as for instance the one in part 11
of this thesis. For the derivation of the master equation a continuum limit for the oscillators in
the environment was performed, as it is usually done in similar models, by choosing a specific
spectral density. As discussed above, from a comparison to the environment of linearised gravity
in part II a spectral density linear in the oscillator frequency was favoured, as it is also the case
for instance in quantum optics. It turned out that the resulting Lamb-shift was then depending
on the unphysical high-frequency cutoff which hence required a renormalisation that we discussed
by including a suitable counter term in the original Hamiltonian. After the renormalisation, we
ended up with a Lindblad equation without Lamb-shift, which we solved for a neutrino as matter
particle. This final evolution equation contains only two free parameters, one being the coupling
strength of the neutrino to the gravitational environment and the other one the temperature
parameter that characterises the Gibbs state of this environment.

From this quantum mechanical toy model we could provide a resolution and a physical interpre-
tation of the decoherence parameters used in the phenomenological models that directly start
with a Lindblad equation which they parameterise with unknown parameters. We obtained the
detailed way how the properties of the environment enter into these parameters and furthermore
that they depend on the inverse of the squared neutrino energies. An important result is that
the usual procedure applied in phenomenological models, as for instance in [86, 95, 105], to re-
duce the number of unknown parameters by setting some of these parameters equal to zero or
to each other, corresponds to setting their masses equal to each other or zero, which contradicts
experimentally obtained results. In vacuum, the decoherence parameters in the phenomenolog-
ical model based on a Lindblad equation could be matched to our microscopic model with the
choice n = —2 and ~;; = "%;,;“33 © (Amgj)Q. This dependence on the neutrino energy gives valuable
insights on the energy ranges of neutrinos whose oscillations are most favoured to show signa-
tures of gravitationally induced decoherence according to this model and therefore also helps to
identify neutrino detectors that are well-suited to search for this effect. The match of our model
with the phenomenological ones is however not possible for matter oscillations: Here the general
parametrisation of the dissipator in the phenomenological models corresponds to still using the
vacuum part of the system Hamiltonian in the interaction Hamiltonian and therefore as Lindblad
operator, while our microscopic toy model suggests in that case to use the full system Hamilto-
nian in matter. One would also expect the latter from GR, given that gravity couples to the full
energy-momentum tensor of the particles and not only to its vacuum part. As we have discussed
using plots for oscillations of atmospheric neutrinos, this negligence of the matter part in the
Lindblad operator can lead to deviations of up to ten percent. Therefore the sensitivities ob-
tained for different neutrino detectors based on the phenomenological approach as for instance in
[86, 99, 105] have to be taken with caution, as they are often based on the analysis of oscillations
in matter working with a phenomenological model. The microscopic quantum mechanical toy
model discussed in this thesis hence provides a suggestion how the phenomenological models can
be improved to adapt them more to the physics that one would expect to follow from GR.

18.6. QOutlook

The field theoretical model investigated in this thesis consisted of a scalar field as matter content,
and we analysed its implications on a toy model for decoherence in neutrino oscillations. This
rises the question if a field theoretical model based on a fermionic field can provide one with
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some more details and improvements for the toy model, which are not encoded in the scalar field.
In the classical formulation, we constructed Dirac observables for both matter and gravity and
quantised the physical part of the phase space. The observables for the gravitational part of the
system were built independently of the matter field. This implies that the treatment presented
here can be extended to different matter fields, as it has been done for instance in [6] for photons.
In that case, an additional clock for the Gaufl constraint of the photon is constructed while for
the gravitational field the clocks from this thesis could be used. From these results along with the
discussion in [62] for a general bosonic field, we expect that for other bosonic fields a treatment
very similar to the one in the present thesis is possible. An open question is how this can be
generalised to also include fermionic fields, which would be the natural candidate to describe
neutrinos from the field theoretical point of view. The construction of such a gravitationally
induced decoherence model for a fermionic field is thus a further step, along with its connection
to quantum mechanical models as for instance the one in [82], where however a stochastic and
classical gravitational field and a classical electromagnetic field are considered as environment.
The field theoretical model discussed in this work is meant to be a first step towards the develop-
ment of a decoherence model inspired by loop quantum gravity (LQG) for the influence of gravity
on matter. A possible next step consists in replacing the Fock quantisation of the linearised grav-
itational environment by an LQG inspired quantisation. This could potentially already show
some specific features of a loop quantisation in the final master equation. The works in [128,
129] discuss a loop quantisation of linearised gravity in Ashtekar variables and show how one
can connect it to a Fock quantisation and identify gravitons. A first toy model for a decoherence
model for gravity itself formulated with LQG was used in the context of black holes in [167]. Also
an LQG inspired quantisation of the quantum mechanical model is a subsequent possible next
step. A first analysis in this direction is available in [144], where a master equation for a free
particle coupled to an environment composed of free particles via a polymerised position-position
coupling is derived and investigated.

To obtain a Lindblad equation, we have applied the Mark and the rotating wave approxima-
tion to the one-particle master equation. While we have found a condition under which the
Markov approximation is applicable to ultra-relativistic particles, the question for conditions for
its general applicability to master equations that contain (linearised) gravity as environment is
however still open, which we were able to discuss at least in the quantum mechanical toy model
in this work, where the analysis only depends on the properties of the environment and the
involved time scales. Similar conditions and analyses for the applicability of the rotating wave
approximation would also be of high interest, as there exist hints that it may lead to unphysical
processes like causality violations and superluminal signaling in relativistic regimes [217, 218].
This point rises the question whether alternative versions of the Markov approximation, that di-
rectly yield a completely positive master equation in Lindblad form, can circumvent these issues
and if they are applicable to gravity as environment. Such approximations enclose for instance
the one discussed in [219, 220], where not only the density matrix, as in the standard Markov
approximation, but also the system operators in Schrédinger picture is expanded in s — ¢t around
s = 0 in equation (4.34). Other possibilities are generalisations to the field theoretical formula-
tion of the approximations for quantum mechanical models in [221], where complete positivity
is obtained by replacing an arithmetic mean of the spectral density by a geometric one, or the
one in [175], which does not require other assumptions than the ones made to derive the Redfield
equation.

On the experimental side, as the microscopic model can yield more detailed dynamics for the
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description of gravitationally induced decoherence in neutrino oscillations in matter compared
to the phenomenological model, as we have shown in this thesis, further sensitivity analyses for
neutrino detectors are of interest. In particular, one can make use of the modification of the phe-
nomenological model with a non-constant decoherence parameter that depends on the Earth’s
density as proposed by the microscopic quantum mechanical toy model in this work due to the
relevance of the matter effects that were discussed here. In addition, one can employ that for this
quantum mechanical toy model detectors that measure lower-energetic neutrinos are favoured for
the search of signatures of decoherence due to quantum gravity in neutrino oscillations in this
class of models.
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Appendices

Appendix A Details on the computation of the algebra of the Dirac
observables

The content of this Appendiz was already published in [1]. Here, it is presented with some modi-
fications compared to [1] to adapt it to the flow of the thesis.

In this Appendix, we show some more details on the calculation of the algebra of the Dirac
observables. In section A.1 we discuss the relation between the algebra of the Dirac observables
and the Dirac observable of the Dirac bracket mentioned in the main text in section 7.6.2. In
section A.2 we then compute as a consistency check the Poisson algebra of the linearised Dirac
observables and discuss their relation to the canonical Poisson bracket.

A.1 Computing the algebra of the Dirac observables by means of using the Dirac
observable of the corresponding Dirac bracket

The content of this Appendiz was already published in [1]. Here, it is presented with some modi-
fications compared to [1] to adapt it to the flow of the thesis. It is presented in an Appendiz, as
it was mainly done by one of the co-authors in [1] other than the author of this thesis. As it is
however part of the proof for the algebra of the Dirac observables in section 7.6.2, it is included
in this thesis.

In this Appendix, we show how the algebra of the Dirac observables is related to the Dirac observ-
able of the Dirac bracket. Here we will discuss the special case and order in perturbation theory
that is relevant for the model under consideration in this part of the thesis and we refer the reader
for the proof of the general case to [120, 155]. In the application where we need this relation we
will assume that we consider linearised geometrical clocks 677 (x) with 6277 (x) = 0 that only
depend on the gravitational degrees of freedom. We then introduce 0G!(x) := §T! — 7{(z) that
mutually commute with a set of constraints C’;(z) up to corrections of order §? that is

1
Mi(2,y) = {067 (2), 6C5(y)} = 655 (2, ) + O(&?).
From the definition of M (z,y) above follows that its inverse is simply given by
(M) (@, y) = w656 (2, y) + O(6%, #%)
with
[ @2 Mo, 2) (M) = 056 ().

Note that we chose to denote the constraints with a prime here following the notation used in
the main text. This is exactly the setup needed to analyse the algebra of Dirac observables for
the model in this part of the thesis. Since we only perturb the gravitational degrees of freedom

but not the matter ones, it is convenient to discuss these two types separately. We will start with
the geometric sector and afterwards discuss in detail how the results can be carried over to the
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algebra of the matter variables. In the framework of field theory the Dirac bracket {-,-}* reads

{f(@),9(v)}" = (A1)

{f(z),9(y)}

= [ [ @), CLE M G ), o)}
[ a2 [ a2 (g, LMD G (). £ (@)

= (@)~ [ @ @).CLEEAT ). 90)
+ [ d{g(w). CLENSFATY (). S @)}

where we used the explicit form of (M 1)/ (z,y) together with the fact that inside the Poisson
bracket we can replace GM by T™ because they differ only by a phase space independent function.
Quantities involving gravitational variables are perturbed in the model in this part of the thesis.

Let us denote their linear and second-order perturbations by §f and 6% f respectively. Then we
consider the perturbation of the Dirac bracket up to linear order that is given by

{F(2),9(y)}" = {0f(x),09(y)} - H/d3z{5f(x)a502(2)}5f4{5TM(z),5g(y)} (A.2)

[ d2{09(0), 001 (2) )k (T (2), 51 ()
H{0£(2),8%()) + (8% F(2), 6g(v))
[ @25 (), 01 (2) )k (6T (), G ()}

[ {6 (), °CL(2)}K 0T (2), g (y)}
i [ A {31 (@), 6 ()oK AT (), (1)}
[ d{82(0). 6L ()05 (6T (2), 61 )}
[ d{69(0). 6%, ()05 (6T (), 61 )}
[ d2{0g(y), 6CL(ISASTY (2). 62 ()} + O(8*, )

For elementary phase space variables we have 2 f = 0 and 62¢ = 0, so the Dirac bracket simplifies
to

U@ 90) = (6/@).090)} (A3)
— [ {6 (2),0C,(2)}0f {67 (), 09(»)}

[ d2{39(p), 00} (2)}k (0T (2),8/ (@)
— [ A5 (@), 2L SKASTY (2). B9 (1)}

i / B2{5g(y), 52C, () V55 {5TM (2), 5 ()} + O(6, ).
(A.4)
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The Dirac observable associated with 0 f is up to second order given by

Ospiry = 6f—/<;/d3zdgK ){51,8C) (= —/i/d?’zdgK( V{61, 82Cl(2))
- / d*2 / 42/ 5G5 (2)6G7 () {{6£,5%C"(2)}, 6Ch; ()} + O(6%,K2)  (A.5)
= O iry + 057 7y + 016, 52), (A.6)

(1)

v&.fhere, as in the main text, we include all terms of order ¢ and 62 in O SFATY and Og)’ (7} respec-
tively.

Given this, the aim is now to show the following: For linearised quantities & f, g with 2f = 0
and 02g = 0 and for a set of constraints C} and reference fields G, that satisfy {G!(z),C(y)} =
6568 (z,y) + O(62, K?), we have

{Os1.(1y: Osg.411} = Otsp.agye. 1y + O(8°,K7), (A7)

where the crucial property for our later application is that we have a strong equality here and
not a weak one that is present in the general case [120, 155]. For the purpose of showing the
equality in (A.7) we introduce the following notation:

Ug¥ | = (80).590)} — [ @={05(@),5CHEWEASTY (), 000} (AS)
[ d{09(9), 6CL(NOHASTY (2), 54 ()

Fg¥lp = —n [ d6£(@),CH5 T (2), d9(0)}
[ d2{59(0),5°CL()OHASTY (2), 6 (2)}

where we again used that §2f = §%2g = 0 and that we can replace 6GM by §T™ inside the Poisson
brackets. Given this notation we can write Oys¢ 541+ (7} UP to linear order as

O{(;f,Sg}*,{T} = {f)g}*|50 + {f}g}*|51 - K'/dBZ(SgK(Z){{fa g}*|5175C}{(z)} + 0(627 ’Q2)
= {f)g}*|50 + {f}g}*|51
2 / 32 / d*2/5G"(2) (— S5 {0 (), 8gH{6 1, 8°Che ()}, 0CL (2)}
—oR{OTM (1), 6 £ {09, 6°Ci ()}, 6C (2)})
+0(6%, k%) (A.9)

Hence, we need to show that {Og? m O((é) (T} Og;) T ng) {T}} agrees with the right hand

side of (A.9). To confirm this, we insert the Dirac observables of 0 f and dg up to second order
in (A.5) into the Poisson bracket and collect all terms in the individual orders. In order &§° we
obtain

6% {0f(x),09(y)} — H/d32{5f(96)75TL(2)}{59(y)a5C’L(Z)} (A.10)

— / d%{aTL(z), S9(y) o (@), 61 (2)}
= {f } ‘507
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where we used the antisymmetry of the Poisson bracket and replaced 6GM by §T™ inside the
Poisson bracket. For the linear order in ¢ the result is given by

B =k [ dGM ()(6F(), (g(), °Chi(2) ) —r [ @255 (@), 6T (2) Hog(y), 0°Chs (2)}

—A, =:B;
— [ d2GR () {{6£(2),5°C()) dg(y)} —n [ & 20T (2). dg(y) HoF (2),8°Che(2))
— Ay =:B,
2 [ [ (65 (2), 0TV (20}6G™ (){{89(y), °Chy ()}, 6Ch ()
=C1
~? [ @2 [ @ (6TH(2), 69()0G ) ({04 (), 6°Chc (2)},6C1 ()} (A11)
:=C2

Now let us discuss the individual contributions separately. First we show that A; + A, = 0.
Using the Jacobi identity for A; we obtain

A = [ #2GY () {65 (), (59(0). B Ch(2)}) (A12)
= [ @26M(2) ({69(0). {0°Chr(2). 4 ()} + {0°Chs(2), 131 (), 590} )
~30
=0

- / d*2G" (2){0g(y), {0°Chy (2),6f (2)}}

— / d32GM (2){{5f (x), 82Chy(2)}, 59(y) }}
= —A,. (A.13)

Comparing By + By with {f, g}*| s1 in (A.8) and using the antisymmetry of the Poisson bracket
we realise that we have
Bi+ By ={f. g}"[5- (A.14)

Comparing C + Cy with the last two terms in (A.9) and applying a suitable relabelling of the
integration variables it turns out that these two expressions are exactly identical. Thus, collecting
all intermediate results we have shown

O{éﬂ&g}*,{T} =A1+ A+ B+ B+ Ci+Cr + 0(627 Hg) = {O5f,{T}7 O5g,{T}} + 0(527 ’%2)7

which is exactly the equality in (A.7) we wanted to prove.

Now let us discuss the case of elementary variables from the matter sector. Because we use
geometrical clocks if we consider for §f and dg both matter variables, then, since these will
commute with all geometrical clocks, we immediately have {df,dg}* = {df,dg} so that we can
work with the Poisson bracket instead of the Dirac bracket in (A.7) and, as discussed in the main
text, the observable algebra simplifies drastically. The other case is if we consider the algebra
of observables of one geometric and one matter quantity and, without loss of generality, let us
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assume that ¢ f contains geometric and dg matter variables. Then in general the Dirac bracket
can differ from the Poisson bracket by those terms where d f is involved in a Poisson bracket with
the geometric clocks. In this case the proof just presented carries over if we replace dg by g for
the following reason: The Poisson bracket {g(y),dC} (z)} for g(y) a function of elementary matter
variables is of order §° and hence also contributes in this case to the §°-order of the Dirac bracket.
The second relevant Poisson bracket {g(y), §2C; (2)} is, as before, of order 6! because in the order
of perturbation theory we consider, the contributions to this Poisson bracket come from terms
that involve the gravitational perturbations linearly and the matter variables in quadratic order,
so that the final result will still be of order §'. Therefore, we can also apply the equality shown
in (A.7) to matter variables by simply replacing 0 f by f and dg by g if we restrict f and g to
be elementary phase space variables from the set ¢(x), 7(y). Furthermore, because the Poisson
brackets of the matter variables do not involve a factor % in contrast to the gravitational variables,
additional factors of x can arise when the Dirac bracket with matter variables is considered. The
application we need in the main text is even a more special case, so we will not discuss these
terms more in detail here since they will not be needed in any further computation. The main
motivation for presenting this proof here in detail was to understand under which assumptions
regarding perturbation theory we can ensure that the Dirac bracket agrees with the Poisson
bracket and how, if this is not the case, the explicit form of the Dirac observable of the Dirac
bracket looks like in perturbation theory.

A.2 Poisson algebra of linearised Dirac observables

The content of this Appendiz was already published in [1]. Here, it is presented with some modi-
fications compared to [1] to adapt it to the flow of the thesis.

In this Appendix, we compute the Poisson algebra of the linearised Dirac observables explicitly
and show that the zeroth order contributions are given by the standard canonical Poisson brack-
ets, a result that we use in the main text of this work. In the notation of the main text for all

observables Oy (1) = O;lzT} + OS}%T} + O(6%, k®) we will neglect the contributions coming from

O;?T} + O(6%, k). This means that the explicit computations presented in this Appendix here
do only consider the zeroth order result of the corresponding Poisson algebra. This causes no
problem since we also know that this as well as the linear contribution to the Poisson algebra al-
ready form the relation to the Dirac observable of the corresponding Dirac bracket as discussed in
the main text. The computation presented here should be rather understood as double checking
our results for the explicit form of the Dirac observables that would yield incorrect results for the
algebra in zeroth order if they were not computed correctly. For the gauge invariant geometrical
degrees of freedom, one can use the following way to obtain their algebra:

(A1), 05, (7,0)) = 2o (@ — ) = (941 (F.0),08% (7)) = 2ol +7)  (A15)

and hence for r,u € {£}:
(8A7 (R, £), 6B (5, 1)} = m (s (r oy () () (64,1 (F, 2), 6B, (5, )

= gm‘l(rl;:')ml(rﬁ)ma(uﬁ)mb(uE)5(E +p)
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Analogously, one can show that {5AT( 1), 0AY(pt)} = {6E7"(l<: t),0E"(p,t)} = 0. From this

point and from the fact that O") (#,t) = O (7,1) = PO . sy (T.1) = PA(T, 1),

5A{6T) P§A, {6T}
and similarly for § F, follows that

d3kd3 P ikz+ipip ic(y m 7 _
{054,105y (520, Oy (.1} = / REHIP S (R) P ()AL (R, 1), 0B, (5, 1))

d3k zka: ic/ip\pbl e
/ D (R P ()

d3k K@) p i b(F)
2m)?
= ;Pa’jbé(*—y“)y (A.17)
where we used in the fourth line that P?! (—k) = ]jble(E) ]jl b (k), as well as
(O E 0.0 (1, .0} =0 (A.18)
{Oz(?zl‘l)“i,{éT} (@, 1), O((gclg)bf{(;T}(g? t)}=0. (A.19)

For the matter variables we obtain, dropping terms in O(62, x2) and higher:
{0 5y (1), 0515y (§,)} = —K2(8G°(%, t>>63< )+ m2(0G°(7,1))0°(F — ) =0 (A.20)
{057y (@,1), 08y (5. 1)} = K2((DY 6G (3, ) + 0% 0G(F,1))950° (7 — )
+(0G(7,1) — 6G(T, 1) A8 (T — )] (A.21)
7, 0)0%(T — )] — k% 6G (T, 1)076° (T — 7) -
(A.22)

Due to the presence of derivatives acting on the delta distributions, it is not immediately evident
that all additional terms (which are of O(k) due to the presence of a factor x~! in the reference
fields) vanish. To see this, it is convenient to consider the smeared version of the linearised
observables, then it turns out that:

{050y (@), O 5y (7,10} = 03(F — 37) — K2D[0G°(

/d3 /dgy f(@ frl?[éT}(_‘ t), OS%&T}( )} =0 (A.23)
/ dr / @y 1(# O 1y (@), O Ly (7:1)} = / Pz f(2)g(F). (A.24)
Hence we indeed end up with the desired algebra also for the matter observables:
1 1 =
{O<(¢> ‘){5T} (#,1), Ois,%gT}(y, t)}=0 (A.25)

{OS%&T} (x7 t)v Oi{%gT} (ga t)} =0
1 = — — —
{05y (@ 0), 0%}y (3,00} = 6°(F — ).
As O((;B i (5T} and O((;?a_ (o7} commute with the clocks and do not depend on the original mat-

ter fields, all Poisson brackets among the (O((SB {5T}’O((5?{6T}) vanish up to O(5?, k) and the
(Oél,?{gT}, OS’%&T}) vanish up to O(x2).
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Appendix B Evaluation of the partition sum in the box

The content of this Appendix was already published in [1]. It is taken from the Master’s thesis
[5] and only included here in the Appendix for the benefit of the reader to be able to follow the
derivations in the main text of this thesis in section 9, which makes use of the regularisation
discussed in this Appendiz. It is presented here with slight modifications compared to [1] to adapt
it to the flow of the thesis.

In this Appendix, we will discuss the computation of the partition sum, working with a regularisa-
tion established by formulating the theory in a box of finite volume introduced in equation (9.5).
Given that the two number operators nj := (bf)'b{ and nj := (b,)Tb; mutually commute, as
they live on different Hilbert spaces, the density matrix of the environment can be written in

terms of the following tensor product:

pe = pe+ @ ps—, (B.1)
where
1
pEr = exp{ —f Z Qeng, ¢, (B.2)
Zgr =
keK

with r € {+, =}, Zg, := tre, {per} and tre, denoting the partial trace over the r-part of the
environmental Hilbert space He = Hey @ He_.

At this point, we introduce an alternative notation for the summation over the discrete k-vectors.
Instead of summing over all elements of the set IK that contains the discrete, permitted E—Vectors,
we want to sum over an index running over the natural numbers. Such a bijection exists, because
each possible k consists of three components ky, ky, k., € % with L denoting the length of the
box. Thus, we can identify an element keK uniquely by providing three numbers. A bijection
between Z3 and N can be constructed therefore we can sum over j € N instead of ke K.

We use this notation and rewrite the number operator in terms of the occupation number basis
of the corresponding part of the Hilbert space:

o0 (e 9] [e.9]
n; = Z Z Z wong nfng, ong, ) (nhng, ok (B.3)

T — T — T —
n7=0n5=0 ny=1

where the individual n] € Ny on the right hand side are the eigenvalues of the occupation
number operator and |nj, n, ...,n},...) the corresponding eigenstates. Due to the orthonormality
of different Fock states |nf,nj,...) we obtain

o oo
exp —ﬁZQjTL; = Z Z ...He_ﬁnmi In, ny, ...y (n],ny,...|. (B.4)
jEN nT=0n5=0 €N

From the regularisation, where we consider the system to be in a finite box, we can express the
partial trace in terms of Fock states and find:

tre, {.} = Z Z . (nl,ny, .| .|n], ny, ...) . (B.5)

T __— [ —
ni=0n5=0
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We can use this expression to evaluate the partition sum of the Gibbs state:

Zer = tre, | exp _BZQJ'”; = Z Z He_ﬁn;Qj = Z Z H [e_ﬁﬂj}n;

jeN nf=0n;=0 jEN ni=0n5=0 jEN
00 nr 00 nr 00 nr 1
_ —BQ1| 1 . -2 | | _ —BQ; ||
=X | > e =10 e =1l —==-
nr=0 nE=0 €N \n7=0 ieN

(B.6)

In the last step we assumed that k= 0, which corresponds to 2 = 0, is not contained in the
set IK, which is the usual infrared divergence present in quantum field theory. Then e #% < 1
always holds and the expression is a geometric series.

In actual applications it is important that the partition sum is finite. This is indeed the case, a
proof can be found for instance in [5]. The final partition sum for part r of the environment in
(B.6) is independent of this label r, so we get the same result for r = + and r = — respectively.
From (B.1) one can then see that the partition sum of the total environmental Gibbs state is
thus just given by the square of (B.6):

2
1

jEN

Making use of the regularisation, we can also compute the following trace which appears in the
main text:

K
B 5%,
N(Qk) 2:t7“g{n2pg}— Z Z nla"'vnK‘nke =t ’ﬁ7{7uﬁrK>
rn—O
=0 nK—O
<n1’ aﬁK‘n&ﬂ? vnK>
K
1 00 00 —anfﬂj
= ST S g il nge T g, )
Tn’“— n%:()
K
1 1 8 - = T T _ﬂzn;‘Q] T T
= —,BZg T Z Z (nf,..,nkle =1 |, ., nl)
r =0 =0
1 0Ze 10 1 0 K 0
= = In(Zey) = ———— | = In (1 — P
“hZe, 0%~ —pan, M) = T5aa, ;“( e )
e P 1

T 1-—e % B 1

As expected, this yields the Bose-Einstein distribution.
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