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Abstract: In this work, the Darboux associated curves of a null curve on pseudo-Riemannian space
forms, i.e., de-Sitter space, hyperbolic space and a light-like cone in Minkowski 3-space are defined.
The relationships of such partner curves are revealed including the relationship of their Frenet
frames and the curvatures. Furthermore, the Darboux associated curves of k-type null helices are
characterized and the conclusion that a null curve and its self-associated curve share the same
Darboux associated curve is obtained.
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1. Introduction

The geometry in Minkowski space is very important and interesting in both mathematics and
physics. It is well-known that there exist three kinds of curves, i.e., space-like curve, time-like curve and
light-like (null) curve in Minkowski space. Many topics in classical differential geometry of Riemannian
manifolds can be extended into those of Lorentz–Minkowski manifolds. However, the geometry of
null curves has no Riemannian analogs because one can not define the arc length parameter of null
curves in a natural way due to the norm of the light-like vector vanishing everywhere.

Bejancu [1] studied the properties of general null curves in Minkowski space. In 1998,
Nersessian and Romos [2,3] have shown the importance of null curves in physics and mathematics by
showing that there exists a geometric particle model associated with null curves in Minkowski space.
Inoguchi and Lee [4] proved the existence of a canonical representation of null curves in Minkowski
3-space. All these works proved that it is possible to study the null curves if the appropriate method
can be applied. Wang and Pei [5] defined the Darboux (rotation) vector of a null curve which describes
the direction of rotation axis of a Cartan frame in Minkowski 3-space. Nesovic et al. [6] defined a
k-type null Cartan slant helices lying on a time-like surface according to their Darboux frame. One
of the authors and Kim [7] defined the structure function of null curves and studied the directional
associated curves of a null curve in Minkowski 3-space. Making use of the structure function of null
curves, most of works about null curves have been pushed forward greatly, such as the generalized
null scrolls that are characterized via the structure function of null curves [8].

In this paper, the Darboux associated curves of a null curve on three pseudo-Riemannian space
forms are defined and studied. In Section 2, some fundamental facts of null curves, space forms
and the Darboux vector of a null curve are reviewed. In Section 3, the relationships between a null
curve and its Darboux associated curve on three pseudo-Riemannian space forms, i.e., de-Sitter space,
hyperbolic space and light-like cone are discussed respectively. Particularly, the Darboux associated
curves of k-type null helices are characterized and some typical examples are given. Last but not least,
the relationship of two null curves which share the same Darboux associated curves is found.
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Throughout this paper, all geometric objects under consideration are smooth and regular unless
otherwise stated.

2. Preliminaries

Let E3
1 be the Minkowski 3-space with natural Lorentzian metric

〈·, ·〉 = dx2
1 + dx2

2 − dx2
3

in terms of the natural coordinate system (x1, x2, x3). A vector v in E3
1 is said to be space-like, time-like

and light-like (null) if 〈v, v〉 > 0 or v = 0, 〈v, v〉 < 0 and 〈v, v〉 = 0 (v 6= 0), respectively. The norm of a
vector v is defined by ‖v‖ =

√
|〈v, v〉|.

An arbitrary curve r in E3
1 is space-like, time-like or light-like (null) if its tangent vector r′ is

space-like, time-like or light-like (null), correspondingly. For null curves, we have

Proposition 1. [7] Let r(s) be a null curve parameterized by the null arc length s (i.e., ‖r′′(s)‖ = 1) in E3
1.

Then there exists a unique Cartan frame {r′(s) = T(s), N(s), B(s)} such that
T′(s) = N(s),
N′(s) = κ(s)T(s)− B(s),
B′(s) = −κ(s)N(s),

(1)

where 〈T(s), T(s)〉 = 〈B(s), B(s)〉 = 〈T(s), N(s)〉 = 〈B(s), N(s)〉 = 0, 〈T(s), B(s)〉 = 〈N(s), N(s)〉 = 1.

In the sequel, T(s), N(s) and B(s) is called the tangent, principal normal and binormal vector field
of r(s), respectively. From Equation (1), it is easy to know that κ(s) = − 1

2 〈r′′′(s), r′′′(s)〉. The function
κ(s) is called the null curvature of r(s) which is an invariant under Lorentzian transformations [4].
Hence, a null curve is only determined by its null curvature.

In [7], the authors introduced the structure function and the representation formula of a null
curve. Namely,

Proposition 2. [7] Let r = r(s) : I → E3
1 be a null curve. Then r can be written as

r(s) =
∫ f

2 f ′
( f − f−1, 2, f + f−1)ds, ( f ′ =

d f
ds

), (2)

where f is called the structure function of r. And the null curvature of r can be expressed by

κ(s) =
1
2
[(log f ′)′]2 − (log f ′)′′. (3)

For a null curve r(s) with Frenet frame {T(s), N(s), B(s)} and null curvature κ(s), the Darboux
(rotation) vector field D(s) along r(s) is defined as D(s) = κ(s)T(s) + B(s) (see details in [5]).

Definition 1. [9] Let p be a fixed point in E3
1 and r > 0 be a constant. Then the pseudo-Riemannian space

forms, i.e., the de-Sitter space S2
1(p, r), the hyperbolic space H2

0(p, r) and the light-like cone Q2
1(p) are defined as

M2(ε0) = {x ∈ E3
1 : 〈x− p, x− p〉 = ε0r2} =


S2

1(p, r) | ε0 = 1;

H2
0(p, r) | ε0 = −1;

Q2
1(p) | ε0 = 0.

The point p is called the center of S2
1(p, r), H2

0(p, r) and Q2
1(p). When p is the origin and r = 1, we simply

denote them by S2
1, H2 and Q2

1.
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Proposition 3. [9] Let r = r(s) : I → S2
1 be a curve with Frenet frame {α, β, r = γ}. Then
α′(s) = κ(s)β(s),
β′(s) = κ(s)α(s)− εγ(s),
γ′(s) = β(s),

(4)

where 〈γ, γ〉 = 1, 〈β, β〉 = −〈α, α〉 = ε = ±1.

Proposition 4. [9] Let r = r(s) : I → H2 be a curve with Frenet frame {α, β, r = γ}. Then
α′(s) = κ(s)β(s),
β′(s) = −κ(s)α(s) + γ(s),
γ′(s) = β(s),

(5)

where 〈γ, γ〉 = −1, 〈β, β〉 = 〈α, α〉 = 1.

Proposition 5. [9] Let r = r(s) : I → Q2
1 be a curve with Frenet frame {α, β, r = γ}. Then
α′(s) = −κ(s)β(s),
β′(s) = κ(s)γ(s)− α(s),
γ′(s) = β(s),

(6)

where 〈γ, γ〉 = 0, 〈β, β〉 = 〈α, γ〉 = 1.

Definition 2. Let r = r(s) : I → E3
1 be a null curve with Darboux (rotation) vector field D(s). Then the curve

r̄(s) : I →M2(ε0) ⊂ E3
1 defined as

r̄(s) =
D(s)
‖D(s)‖ =

κ(s)T(s) + B(s)√
|2κ|

is called the Darboux associated curve of r(s) on M2(ε0).

Remark 1. Obviously, D(s) = D is space-like (respectively time-like or light-like) if and only if κ > 0
(respectively κ < 0 or κ = 0) because 〈D, D〉 = 2κ. If D is space-like (respectively time-like), then r̄(s) ∈
S2

1 (respectivel H2). If D is light-like, then the Darboux associated curve of r(s) degenerates as r̄(s) = B(s) ∈
Q2

1.

Remark 2. In particular, D(s) and r̄(s) is constant since D′(s) = κ′(s)T(s) = 0 when the null curvature
κ(s) is constant.

3. Main Results

In this section, we study the Darboux associated curve of a null curve on de-Sitter space S2
1,

hyperbolic space H2 and light-like cone Q2
1, respectively.

3.1. Darboux Associated Curve of a Null Curve on De-Sitter Space

Theorem 1. Let r = r(s) : I → E3
1 be a null curve with Frenet frame {T, N, B} and null curvature κ(s) > 0,

r̄(s) its Darboux associated curve on S2
1 with Frenet frame {α, β, γ} and curvature κ̄(s). Then the Frenet frames

of r(s) and r̄(s) satisfy

α = ±N, β = ±κT − B√
2κ

, γ = r̄ =
κT + B√

2κ
;
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the curvature κ̄(s) of r̄(s) can be given by

κ̄ =
±
√

2κ

(log
√

2κ)′
=

±‖D‖
(log ‖D‖)′ . (7)

Proof of Theorem 1. When κ > 0, i.e., r̄(s) ∈ S2
1 for all s, we have

γ = r̄ =
D
‖D‖ =

κT + B√
2κ

. (8)

Differentiating Equation (8) by using Equations (4) and (1), it gives

β
ds̄
ds

=
κ′

2
√

2κ
T − κ′

2κ
√

2κ
B, (9)

where s̄ is the arc length of r̄.
Taking scalar product on both sides of Equation (9), we obtain

ε(
ds̄
ds

)2 = −( κ′

2κ
)2. (10)

Equation (10) implies ε = −1, i.e., 〈β, β〉 = −〈α, α〉 = −1 and ( ds̄
ds )

2 = ( κ′
2κ )

2. Hence, Equation (9)
can be rewritten by

β = ±κT − B√
2κ

. (11)

Differentiating Equation (11), we get

κ̄α + γ =
κT + B√

2κ
+

2κ
√

2κ

κ′
N

= γ +
2κ
√

2κ

κ′
N.

(12)

From Equation (12), we can find easily

κ̄α =
2κ
√

2κ

κ′
N. (13)

Taking scalar product on both sides of Equation (13), we obtain α = ±N and

κ̄2 =
8κ3

κ′2
.

Thus, the curvature κ̄(s) of r̄(s) is given by Equation (7).

3.2. Darboux Associated Curve of a Null Curve on Hyperbolic Space

Theorem 2. Let r = r(s) : I → E3
1 be a null curve with Frenet frame {T, N, B} and null curvature κ(s) < 0,

r̄(s) its Darboux associated curve on H2 with Frenet frame {α, β, γ} and curvature κ̄(s). Then the Frenet
frames of r(s) and r̄(s) satisfy

α = ±N, β = ±κT − B√
−2κ

, γ =
κT + B√
−2κ
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the curvature κ̄(s) of r̄(s) can be given by

κ̄ =
±
√
−2κ

(log
√
−2κ)′

=
±‖D‖

(log ‖D‖)′ .

Proof of Theorem 2. When κ < 0, i.e., r̄(s) ∈ H2 for all s, by similar calculations in Theorem 1, we can
find the conclusions easily.

3.3. Darboux Associated Curve of a Null Curve on Light-like Cone

Theorem 3. The Darboux associated curve of a null curve on light-like cone degenerates as a point on Q2
1.

Proof of Theorem 3. When κ = 0, i.e., r̄(s) = B(s) ∈ Q2
1 for all s. From Remark 2, the conclusion is

straightforward.

4. Darboux Associated Curves of K-Type Null Helices on Pseudo-Riemannian Space Forms

First of all, let us review the definition of k-type null helix in E3
1 and the relevant results.

Definition 3. [10] Let r(s) : I → E3
1 be a null curve with Frenet frame {T, N, B}. If there exists a nonzero

constant vector field V such that 〈T, V〉 6= 0 (respectively 〈N, V〉 6= 0, 〈B, V〉 6= 0) is a constant for all s ∈ I,
then r(s) is said to be a k-type (k=1,2,3) null helix and V is called the axis of r(s).

Remark 3. If the vector T, N or B in the Frenet frame of r(s) is constant, then every fixed direction V satisfies
the above definition. Throughout this paper, we assume this situation never happens.

Theorem 4. [11] Let r = r(s) : I → E3
1 be a null curve. Then

1. r(s) is a 1-type null helix or 3-type null helix if and only if its null curvature κ(s) is a constant;
2. r(s) is a 2-type null helix if and only if its null curvature κ(s) = a

2(s+b)2 , (a ∈ R− {0}, b ∈ R).

Remark 4. From Theorem 4, a 1-type or 3-type null helix has constant null curvature, so their Darboux
associated curves are not considered here by Remark 2.

Theorem 5. [8] Let r = r(s) : I → E3
1 be a 2-type null helix with null curvature κ(s) = a

2(s+b)2 , (a ∈
R− {0}, b ∈ R). Then r(s) and its structure function f (s) can be represented as

1. when a = c2 − 1 and c 6= 0,±1, we have
f (s) = sc or f (s) = s−c,

r(s) = 1
2c (

sc+2

c+2 −
s2−c

2−c , s2, sc+2

c+2 + s2−c

2−c );

2. when a = −1 and c 6= 0, we have
f (s) = c

log s or f (s) = log s
c ,

r(s) = s2

4 (c−
log2 s

c +
log s

c −
1
2c , 2 log s− 1, c + log2 s

c − log s
c + 1

2c );
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3. when a = −c2 − 1 and c 6= 0, we have

f (s) = 2
c tan( c

2 log s) or f (s) = − 2
c tan−1( c

2 log s),

r(s) =(
s2

8c2 (4− c2 − 2c sin(c log s)− 4 cos(c log s)),
s2

4 + c2 (
2
c

sin(c log s)− cos(c log s)),

s2

8c2 (4 + c2 − 2c(4− c2)

4 + c2 sin(c log s)− 4(4− c2)

4 + c2 cos(c log s))).

Theorem 6. Let r = r(s) : I → E3
1 be a 2-type null helix with null curvature κ(s) = a

2(s+b)2 , (a ∈
R− {0}, b ∈ R). Then the Darboux vector field D(s) of r(s) can be written as

1. when a = c2 − 1 and c 6= 0,±1, we have

D(s) =
1
2c

((−1− c)sc−1 + (1− c)s−c−1,
2(c2 − 1)

s
, (−1− c)sc−1 − (1− c)s−c−1).

2. when a = −1 and c 6= 0, we have

D(s) = (− c
2s

+
log2 s

2cs
+

1 + log s
cs

,
−1− log s

s
,− c

2s
− log2 s

2cs
− 1 + log s

cs
).

3. when a = −c2 − 1 and c 6= 0, we have

D(s) =
1

2cs
(
(c2 + 4)[cos(c log s)− c sin(c log s)] + (c2 + 1)(c2 − 4)

2c
,

− 2 sin(c log s)− 2c cos(c log s),
(4− c2)[cos(c log s)− c sin(c log s)]− (c2 + 1)(c2 + 4)

2c
).

Proof of Theorem 6. From Proposition 1 and Theorem 5, through direct calculations, the Frenet frame
of r(s) can be expressed as follows:

1. when a = c2 − 1 and c 6= 0,±1, we have

T = s
2c (s

c − s−c, 2, sc + s−c),

N = 1
2c ((c + 1)sc + (c− 1)s−c, 2, (c + 1)sc − (c− 1)s−c),

B = 1
4c (−(c + 1)2sc−1 + (c− 1)2s−c−1, 2(c2−1)

s ,−(c + 1)2sc−1 − (c− 1)2s−c−1).

Therefore, the Darboux vector D(s) = κ(s)T(s) + B(s) of r(s) can be written by

D(s) =
1
2c

((−1− c)sc−1 + (1− c)s−c−1,
2(c2 − 1)

s
, (−1− c)sc−1 − (1− c)s−c−1).

2. when a = −1 and c 6= 0, we have

T =
s log s

2 ( c
log s −

log s
c , 2, c

log s +
log s

c ),

N = 1
2 (c−

log2 s
c − 2 log s

c , 2 log s + 2, c + log2 s
c +

2 log s
c ),

B = (
log2 s

4cs +
1+log s

cs − c
4s ,− 2+log s

2s ,− log2 s
4cs −

1+log s
cs − c

4s ).
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Therefore, the Darboux vector D(s) = κ(s)T(s) + B(s) of r(s) can be written by

D(s) = (− c
2s

+
log2 s

2cs
+

1 + log s
cs

,
−1− log s

s
,− c

2s
− log2 s

2cs
− 1 + log s

cs
).

3. when a = −c2 − 1 and c 6= 0, we have

T = s
c (

4−c2

4c −
4+c2

4c cos(c log s), sin(c log s), 4+c2

4c −
4−c2

4c cos(c log s)),

N =(
4− c2

4c2 − 4 + c2

4c2 (cos(c log s)− c sin(c log s)),
sin(c log s) + c cos(c log s)

c
,

4 + c2

4c2 − 4− c2

4c2 (cos(c log s)− c sin(c log s))),

B =(
(c2 + 4)[(1− c2) cos(c log s)− 2c sin(c log s)] + (c2 + 1)(c2 − 4)

8c2s
,

(c2 − 1) sin(c log s)− 2c cos(c log s)
2cs

,

(4− c2)[(1− c2) cos(c log s)− 2c sin(c log s)]− (c2 + 1)(c2 + 4)
8c2s

).

Therefore, the Darboux vector D(s) = κ(s)T(s) + B(s) of r(s) can be written by

D(s) =
1

2cs
(
(c2 + 4)[cos(c log s)− c sin(c log s)] + (c2 + 1)(c2 − 4)

2c
,

− 2 sin(c log s)− 2c cos(c log s),
(4− c2)[cos(c log s)− c sin(c log s)]− (c2 + 1)(c2 + 4)

2c
).

Theorem 7. Let r = r(s) : I → E3
1 be a 2-type null helix with null curvature κ(s) = a

2(s+b)2 , (a ∈
R− {0}, b ∈ R). Then the Darboux associated curve r̄(s) of r(s) can be expressed as

1. when a = c2 − 1 and c 6= 0,±1, we have

r̄(s) =
1

2c
√

c2 − 1
((−1− c)sc + (1− c)s−c, 2(c2 − 1), (−1− c)sc − (1− c)s−c).

2. when a = −1 and c 6= 0, we have

r̄(s) = (− c
2
+

log2 s
2c

+
1 + log s

c
,−1− log s,− c

2
− log2 s

2c
− 1 + log s

c
).

3. when a = −c2 − 1 and c 6= 0, we have

r̄(s) =
1

2c
√

c2 + 1
(
(c2 + 4)[cos(c log s)− c sin(c log s)] + (c2 + 1)(c2 − 4)

2c
,

− 2 sin(c log s)− 2c cos(c log s),
(4− c2)[cos(c log s)− c sin(c log s)]− (c2 + 1)(c2 + 4)

2c
).

Proof of Theorem 7. By Definition 2 and Theorem 6, the Darboux associated curve r̄(s) of r(s) can be
obtained easily.

From Theorem 1, Theorem 2 and Theorem 4, we have the following result.
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Corollary 1. Let r = r(s) : I → E3
1 be a null curve. Then r(s) is a 2-type null helix if and only if its Darboux

associated curve r̄(s) has nonzero constant curvature.

Proof of Corollary 1. Let r(s) be a 2-type null helix in E3
1. From Theorem 4, the null curvature is

κ(s) = a
2(s+b)2 , (a ∈ R− {0}, b ∈ R). By Theorems 1 and 2, the curvature κ̄ of its Darboux associated

curve r̄(s) is given by

κ̄ = ±
√
|a|.

Thus r̄(s) has nonzero constant curvature. Conversely, if κ̄ = c is a nonzero constant then, from
Theorems 1 and 2, we know

±
√
|2κ|

(log
√
|2κ|)′

= c.

Solving the above differential equation, we get

κ(s) =
a

2s2 , (a = ±c2).

By Theorem 4, r(s) is a 2-type null helix.

Example 1. Let r : I → E3
1 be a 2-type null helix with κ(s) = 4s−2. By Theorem 5, r(s) can be expressed by

r(s) =
1
6
(

1
5

s5 + s−1, s2,
1
5

s5 − s−1).

From Theorem 7, the Darboux associated curve r̄(s) can be obtained as

r̄(s) = − 1
6
√

2
(2s3 + s−3,−8, 2s3 − s−3),

which satisfies 〈r̄, r̄〉 = 1, i.e., r̄(s) ∈ S2
1.(see Figure 1 and 2)

Figure 1. The positions of r (red) and r̄ (green).
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Figure 2. r (red) and r̄ (green) on S2
1.

Example 2. Let r : I → E3
1 be a 2-type null helix with κ(s) = − 1

2 s−2. By Theorem 5, r(s) can be expressed by

r(s) =
1
4

s2(log2 s− log s− 1
2

, 2 log s− 1,− log2 s + log s− 3
2
).

From Theorem 7, the Darboux associated curve r̄(s) can be obtained as

r̄(s) = −(1
2

log2 s + log s +
1
2

, log s + 1,−1
2

log2 s− log s− 3
2
),

which satisfies 〈r̄, r̄〉 = −1, i.e., r̄(s) ∈ H2.(see Figure 3 and 4)

Figure 3. The positions of r (red) and r̄ (green).

Figure 4. r (red) and r̄ (green) on H2.
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Example 3. Let r : I → E3
1 be a 2-type null helix with κ(s) = −s−2. By Theorem 5, r(s) can be expressed by

r(s) =
s2

40
(15− 10 sin(log s)− 20 cos(log s), 16 sin(log s)− 8 cos(log s),

25− 6 sin(log s)− 12 cos(log s)).

From Theorem 7, the Darboux associated curve r̄(s) can be written as

r̄(s) =
√

2
8

(−6− 5 sin(log s) + 5 cos(log s),−4 sin(log s)− 4 cos(log s),

− 10− 3 sin(log s) + 3 cos(log s)),

which satisfies 〈r̄, r̄〉 = −1, i.e., r̄(s) ∈ H2.(see Figure 5 and 6)

Figure 5. The positions of r (red) and r̄ (green).

Figure 6. r (red) and r̄ (green) on H2.

Last but not least, we study the null curves which share the same Darboux associated curves on
pseudo-Riemannian space forms.

Theorem 8. Let ri : I → E3
1 be null curves with non-constant null curvatures κi (i = 1, 2). If the Darboux

associated curves r̄i of ri satisfy r̄1 = r̄2, then the null curvatures κi of ri satisfy κ1 = κ2 or κ1 = 1
κ2

.

Proof of Theorem 8. (Case 1) Assume that κi > 0 (i = 1, 2), i.e., ri(s) ∈ S2
1 for all s. Since r̄1 = r̄2,

from Theorem 1, we have
κ1T1 + B1√

2κ1
=

κ2T2 + B2√
2κ2

. (14)
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Differentiating Equation (14), we have

κ′1(κ1T1 − B1)

κ1
√

2κ1
=

κ′2(κ2T2 − B2)

κ2
√

2κ2
. (15)

Taking scalar product on both sides of Equation (15), we obtain

(
κ′1
κ1

)2 = (
κ′2
κ2

)2. (16)

From Equation (16), we have

[(log κ1)
′]2 = [(log κ2)

′]2,

which implies
(log κ1)

′ = ±(log κ2)
′.

Then, we have κ1 = κ2 or κ1 = 1
κ2

.
(Case 2) Assume that κi < 0 (i = 1, 2), i.e., ri(s) ∈ H2 for all s. By the similar process as in (Case

1), the same result can be achieved.

In 2015, one of the authors and Kim defined the self-associated curves of a null curve as follows:

Definition 4. [7] Let r = r(s) : I → E3
1 be a null curve with Frenet frame {T, N, B}. The null curve defined

by r̃(s̃) =
∫

B(s̃)ds̃ is called the self-associated curve of r, where s̃ is the null arc length parameter of r̃.

Theorem 9. [7] Let r = r(s) : I → E3
1 be a null curve framed by {T, N, B} and r̃ its self-associated curve with

Frenet frame {T̃, Ñ, B̃}. Then

1. the Frenet frame of r̃ is related by T̃ = B, Ñ = ±N, B̃ = T;
2. the null curvature κ̃ of r̃ satisfy κ̃ = 1

κ .

Corollary 2. Let r = r(s) : I → E3
1 be a null curve and r̃ its self-associated curve. Then they share the same

Darboux associated curve on pseudo-Riemannian space forms.

Proof of Corollary 2. From Definition 2 and Theorem 9, the Darboux associated curve ¯̃r of r̃ can be
written by

¯̃r =
κ̃T̃ + B̃√
|2κ̃|

=
κT + B√
|2κ|

= r̄, (17)

where r̄ is the Darboux associated curve of r. Then the result is achieved easily.

Remark 5. Even the result in Corollary 2 shows that two null curves whose null curvature are reciprocal have
the same Darboux associated curves, but it does not mean the opposite of conclusion in Theorem 8 holds.

Example 4. Let r = r(s) : I → E3
1 be a 2-type null helix with κ(s) = 4s−2. r(s) and r̄(s) have been expressed

in Example 1. From Definition 4, through direct calculations, the self-associated curve r̃(s) of r(s) can be
expressed by

r̃(s) = (−16s
3
− 4

15s5 ,− 8
3s2 ,−16s

3
+

4
15s5 )

which shares the same Darboux associated curve r̄(s) with r(s).(see Figure 7 and 8)
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Figure 7. The positions of r (red), r̃ (blue) and r̄ (green).

Figure 8. r (red), r̃ (blue) and r̄ (green) on S2
1.
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