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Scientific abstract

In the first part of the Thesis, we investigate some background material which is utilized
in the second part, where the original research is presented. We present the proof of how
the supercovariant derivative acting on a spinor is Spin-gauge covariant. We introduce the
spinorial geometry techniques used to analyze the Killing spinor equations (KSEs), and
give an example in the case of the gaugino KSE of certain warped product solutions of
D = 10 heterotic supergravity. We describe the isometries of de Sitter space and we give
the ansatz for warped product dS, solutions. Then, we briefly prove some classical no-go
theorems for warped product de Sitter solutions.

In the second part of the Thesis, the necessary and sufficient conditions for warped
product dS, solutions in D = 11 supergravity to preserve the minimal N = 8 supersym-
metry are determined. We find, on integrating the KSE along the dS, directions, that the
necessary and sufficient conditions for supersymmetry are encoded in a single gravitino-
type equation, which is satisfied by a spinor ¥, whose components depend only on the
co-ordinates of the internal space. The spinor 1, is associated with two possible stabilizer
groups, SU(3) or G,. We derive explicitly the Spin(7) gauge transformations which are
used to write 1, in simple canonical forms with stabilizer subgroups SU(3) or G,. We
then solve the linear system obtained from the KSEs. In particular, we show that the linear
system implies there are no solutions for which the stabilizer of 9, is G,. For the case of
SU(3) stabilizer subgroup, the KSEs determine all components of the 4-form flux in terms
of the geometry of the internal manifold, and we present the geometric conditions and the

components of the flux, written in a SU(3) covariant fashion.
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CHAPTER 1

INTRODUCTION

1.1. String Theory and Supersymmetry

Exact solutions of Einstein gravity coupled to matter, (M, g, T), consist of an n-dimensional
spacetime M equipped with a metric g and an energy-momentum tensor T of some spe-
cified form of matter, which may be required to satisfy some appropriate energy condition,
as well as requirements relating to the absence of closed timelike curves. This set of data

Is required to satisfy the Einstein field equations
1
RAB — ERQAB + /\gAB = 87TTAB , (11)

where Rag, R and A are the Ricci tensor, Ricci scalar and the cosmological constant,
respectively. Due to the nonlinearity of the PDEs encoded in (1.1) it is difficult to find
exact solutions, apart from cases in which the geometry is assumed to have a high degree
of symmetry. There are many different possible choices for energy momentum tensor; for
empty space one takes Tag = 0, other possibilities correspond to the energy momentum
tensors of perfect fluids, or of electromagnetic fields. One aim of this thesis is to explore,
using supersymmetry, techniques for constructing solutions to the Einstein field equations
of D = 11 supergravity, in the particular context of geometries associated to the region
near to the horizon of supersymmetric black holes. We will discuss in further detail the
formalism of D = 11 supergravity, supersymmetry, and near horizon geometries, in later

chapters.



2 1.1. String Theory and Supersymmetry

One particularly desired goal in physics is that of the construction of grand unified
theories, which enable the relationship between (apparently) distinct fundamental laws of
nature to be more fully understood, by unifying them into a single theory valid at higher
energy scales. This also provides insight into the the so-called hierarchy problem. A
hierarchy problem occurs when fundamental energy scales in nature are vastly different,
such as the electroweak scale mgw ~ 102 GeV and the Planck scale Mp; ~ 108 GeV. The
understanding of the hierarchy problem has been one of the greatest driving forces behind
the construction of theories beyond the Standard Model. The vast difference between
the weak and the Planck scales could itself be explained by some spontaneous symmetry
breaking. On the other hand, the physics responsible for making a sensible quantum theory
of gravity is revealed only at the Planck scale. One might therefore expect that there
could be a hypothetical unified theory, which would fully describe the four interactions
existing In nature: the gravitational, weak nuclear, strong nuclear, and electromagnetic
forces. However, the mechanism by which such a unified theory gives rise to such a huge

difference in energy scales is still undetermined.

By the early 1970s, it was shown that the Standard Model is a promising theory to
describe the weak nuclear, the strong nuclear, and electromagnetic forces using a quantum
field theory framework, although omitting gravity. The gravitational interaction is explained
by Einstein’s theory of General Relativity. In spite of considerable efforts, the unification
of gravity with the standard model has yet to be fully realised. There are a number of
significant obstacles to such a unification. Firstly, the union of gravity with quantum theory
produces a non-renormalizable quantum field theory due to the General Relativity power-
counting failure. In addition, at the classical level of General Relativity, the theory breaks
down when certain types of singularities occur, such as in black holes. One might hope
that a quantum theory of gravity, appropriately unified with the Standard Model, would

produce some mechanism for dealing with such singularities - currently this is unclear.

A number of potential candidates for such a quantum theory of gravity have been
postulated. In this thesis, we shall be concerned with aspects of String Theory. This has
been particularly successful in the sense that String Theory produces the Einstein equations
via the vanishing of a certain beta function which is associated with a quantum field theory
defined on the string worldsheet. Moreover, String Theory has provided significant insights

and new techniques for understanding the microscopic origin of black hole entropy in terms
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of branes. Notably, Strominger and Vafa [1] examined the extreme Reisser-Nordstrém
D = 5 black hole solution from the perspective of the microstates associated with the
D-branes. Such extended objects arise in String Theory, and can be used to construct
black hole geometries. The black hole entropy was counted in terms of D-brane states,
and it was found that this result agreed with the classic entropy obtained from the black
hole horizon area in the limit of large charges and spins. Physically, this limit corresponds
to taking a sufficiently large collection of such D-branes, which then form the black hole.

Other significant developments are the construction of gauge-gravity dualities, origin-
ating in the AdS/CFT correspondence which established a duality between String Theory
on AdSs x S° and a conformal field theory (N = 4 super-Yang-Mills) defined on the bound-
ary [2]. In addition, some more spacetime attempts have been made to find gravitational
duals of quantum field theories of relevance to condensed matter physics; although these
are rather more speculative in nature. Other mathematical constructions, such as mirror
symmetry, have been motivated by String Theory. As such String Theory is understood
to remain the most promising candidate for a unified theory capable of combining the
standard model with gravity.

There are, however, a number of problems with the consistent formulation of String
Theory, when attempting to describe our 4-dimensional universe. The primary issue is that
such a formulation requires that spacetime must be more than 4-dimensional. This neces-
sitates embedding our 4-dimensional universe into a 10-dimensional spacetime, with the
additional dimensions being compact. Typically, it is assumed that the extra dimensions
are appropriately “small”, and one obtains an effective 4-dimensional theory via dimen-
sional reduction (the Kaluza-Klein mechanism [3]) . A secondary, though not insignificant
problem which is associated with this is the choice of the compact internal space. In the
absence of fluxes, this is required to be a 6-dimensional Calabi-Yau manifold, which is both
Ricci-flat and Kahler. These conditions are quite restrictive, and it was originally hoped
that the number of such manifolds might be relatively small, enabling some mechanism to
be constructed which would produce a “natural” choice of Calabi-Yau manifold. However,
it iIs now known that the family of Calabi-Yau manifolds is very large indeed, which sig-

nificantly complicates our attempts to understand how a particular Calabi-Yau manifold,

LOther approaches do however exist in which the extra dimensions are “large”: in this case it is necessary
to construct a mechanism, typically involving appropriately chosen configurations of branes, whereby gravity
is effectively restricted to act in four dimensions in a manner which is consistent with observations.
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whose geometry gives rise to the Standard Model on dimensional reduction, can be found.
Moreover, the question of how such a Calabi-Yau manifold is effectively “selected” out of

the multitude of other possibilities is also unresolved.

There are five a-priori different types of supersymmetric String Theories: Type IIA,
Type IIB, type Type |, and Heterotic (with gauge group Eg x Eg, or SO(32)) [4]. Initially,
this was also understood to be problematic, as it was unclear which of these theories
should be considered to be the candidate unified theory of quantum gravity. However, it
Is now appreciated that there is an extensive web of dualities relating these theories. It
is further proposed that all such perturbative D=10 string theories arise as limits from a
strongly coupled non-perturbative theory, “M-theory”, whose low energy limit is D = 11
supergravity. At the level of supergravity, there are mechanisms, via dimensional reduction

and T-duality, for obtaining D = 10 supergravity theories from D = 11 supergravity.

Supersymmetry is a key ingredient in the construction of String Theory; it resolves a
number of divergences in a consistent fashion and also imposes conditions on the dimen-
sionality of spacetime. The transformations associated with supersymmetry relate fields
of different spins and statistics. Supersymmetry is a spacetime symmetry mapping bosons
into fermions, and vice versa. Bosons follow Bose-Einstein statistics and have integer-
valued spin, whereas fermions follow Fermi-Dirac statistics and have half-integer-valued
spin. In a theory in which supersymmetry is realized, each particle has an associated su-
perpartner particle. Generically, supersymmetry is required in String Theory in order to
ensure no physical tachyons appear at vacuum level. Moreover, for solutions in theories
which preserve some residual supersymmetry, there is some control in the size of quantum

corrections, with implications for the hierarchy problem.

In order to understand supersymmetry, it is necessary to consider spinors whose com-
ponents depend on the spacetime co-ordinates of the manifold. Locally, in a specific chart,
such spinors can be defined with respect to the associated local co-ordinate system. How-
ever, there are nontrivial topological requirements for a manifold to consistently globally
admit spinors. To see how this arises, we note that spinors lie within a vector space A,
which corresponds to a Spin representation. Explicitly, A. corresponds to a vector space of
complexified poly-forms, which is introduced explicitly in the context of spinorial geometry

techniques in Chapters 2 and 5.

There is a close link between the Lorentz group SO(n—1,1) and Spin(n—1,1). In

4
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particular, there exists a 2:1 homomorphism ¢ : Spin(n —1,1) — SO(n — 1, 1) given by

©(N) = N\ where
ATITMA = AM TN (1.2)

where M, N are local frame indices, and [y, are gamma matrices which satisfy
er/\/ + er_I\/I = 2’)’]/\/]/\/ id . (13)

The detailed relationship between A and 7\, in terms of generators, is calculated in Chapter
2.1. It is however, straightforward to see that the map ¢ is 2:1, as (M) = p(—A).

Given a manifold M, we can cover M with co-ordinate patches O(4) such that locally,
on each Oy, there exists an orthonormal frame {eé‘i) M = 1,...,n} with respect to

which the metric is

ds® = Nunell)elh) - (1.4)

Moreover, on each O,), we can define a spinor Y € Ac. We wish to consistently
“patch together” such locally defined spinors on the overlap regions Og) = O(q) N O,
analogously to how the components of vector fields are related by appropriate Jacobian
transformations on co-ordinate patch overlaps. We begin, however, by considering the
relationship between {eé‘;’)} and {e?g)} on Owp). This naturally leads to a relationship
between (o) and Y(g), on using the 2:1 correspondence ¢ between Spin(n —1,1) and
SO(n—1,1). Firstly, in order to preserve the orthonormality of the frame, there must

exist Aqz) € SO(n —1,1) such that
Eé\g) = /\(QQ)MI\/E%) . (15)

In turn, this implies that an identity relation of the A(4g) on the triple overlap regions must
be satisfied. Indeed, in the triple intersection regions Owgy)y = Oa) N Oy N O(y), one

obtains
Neag)NpmNyey = 1d. (1.6)

There is also a corresponding identity for the associated Spin(n — 1, 1) transformations

7\(a5). To see this, note that on O(,g) the spinors ¥ ) and 9 are related by

V) = Napy Vi) . (1.7)

b}
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where (p(/N\(am) = A@p)- Once more, this condition implies that in the triple intersection

regions O(qapy).
Napg) N Nyey = 1d. (1.8)

However, as the correspondence ¢ is 2:1, one may freely replace /N\(aﬁ) in the above ex-
pression with —/N\(ag). There is therefore, a priori, a sign ambiguity in (1.8). If it is the case
that one can choose consistently the A such that (1.8) holds for all triple intersections,
then M is said to admit a spin structure, and M is a spin manifold. Most manifolds are not
spin manifolds, so the requirement of spin structure is an important topological restric-
tion when we consider supersymmetric supergravity solutions from a global perspective.
However, we remark that in terms of the class of de-Sitter supergravity solutions which
we analyse in Chapter 3 onwards, such solutions are typically not globally well defined,
as a consequence of certain no-go theorems described in Chapter 3.4. Hence, for these
types of solutions, we do not necessarily have a globally well-defined spin structure, and
the analysis of supersymmetry is considered locally.

String Theory is not only a theory of strings, but contains extended objects, D-branes,
which as we have mentioned, as having provided key insight into black hole entropy. Geo-
metrically, D-branes correspond to hypersurfaces on which strings may end. In terms
of M-theory, it is known that D = 11 supergravity contains solitonic membranes, M2-
branes [5], and M5-branes [6], which play an important role in the dynamics of the theory
and provide a large family of supersymmetric solutions. Both of these solitons preserve 1/2
of the supersymmetry and are known as 1/2-BPS solutions. It is important to understand
the spectrum of BPS solutions in M-theory associated with intersecting M-branes, because
these can be used to obtain black holes in D = 4 and D = 5 via appropriate dimensional
reduction. More general black objects, such as D = 5 black rings, can also be obtained in
a similar fashion. Harmonic superpositions of M-branes describe classes of supersymmetric
configurations of 2 or 3 orthogonally intersecting M2-branes and M5-branes of D = 11
supergravity [7, 8].

The main feature of supersymmetric p-brane solutions of supergravity theories is that
they are expressed in terms of harmonic functions depending only on the transverse spatial
coordinates. There exist some universal rules to obtain stable supersymmetric solutions

via brane intersections:
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(i) a configuration of k orthogonally intersecting branes preserve at least 1/2" of the

maximal amount of supersymmetry,
(ii) p-branes of the same type can intersect only over a (p — 2)-brane,
(iii) a M2-brane can intersect a M5-brane over a string.

(iv) A fundamental string may end on a D-brane.

These rules, when applied to intersecting M-branes in D = 11, are consistent with the
corresponding rules in D = 10, on making appropriate dimensional reductions. The metric
of the corresponding intersecting brane configurations is diagonal, and the components
depend on various powers of the harmonic functions associated to each type of brane.
The harmonic functions depend only on those directions which are transverse to all of the
branes in the configuration *.

The possible supersymmetric M-brane configurations that preserve 1/4 of supersym-
metry are M2 1 M2, M5 1. M5, and M5 | M2. To illustrate the M2 1 M2 intersection

schematically in terms of worldvolume “X" and transverse “—" directions, we can consider

the following:

Direction 0 1 2 3 4 5 6 7 8 9 f{

M2 X X X - - - oo
M2 X - - X X - - - - o -

The first M2-brane has worldvolume directions 0, 1, 2 and transverse directions 3, 4,
5,6,7,8,9, t; the second M2-brane has worldvolume directions 0, 3, 4 and transverse dir-
ections 1, 2, 6, 7, 8, 9, §. The configuration preserves 8 supersymmetries. Corresponding
diagrams for the M5 1L M5 and the M2 L M5 intersections are as follows:

Direction 0 1 2 3 4 5 6 7 8 9 ¢

M5 X X X X X X - - - - -
M5 XX X X - - X X - - -

YFor partially smeared brane configurations, or for branes intersecting at angles, these rules for the
formulation of the metric are modified in such a way that the harmonic functions depend on more of the
co-ordinates, in a more complicated fashion; see e.g. [9].

7



38 1.1. String Theory and Supersymmetry

and

Directon 0 1 2 3 4 5 6 7 8 9 t

M5 X X X X X X - - - - -
M2 X X - - - - X - - - -

The possible supersymmetric configurations that preserve 1/8 of supersymmetry are
M2 1L M21 M2, M5 1L M2 1L M2, M5 L M5 1. M2, and M5 1. M5 1. M5. Moreover,
there are 1/16 supersymmetric configurations with four intersecting M-branes, i.e. M2 L
M2 1 M2 1L M2, M2 L M2 1 M2 1L M5 M5 L M5 1L M2 1 M2, and M5 L
M5 L M5 1 M2. These four-intersecting configurations are not asymptotically flat
because the dimension of the overall transverse space is d < 3, with the exception of
M5 1L M5 1L M2 1 M2 for which d = 3, as can be seen from the following diagram:

Direction 0 1 2 3 4 5 6 7 8 9 ¢
M5 X X X X X X - - - - -
M5 X X X X - - X X - - -
M2 X - - - X - X - - - -
M2 X - - - - X - X - - -

This solution can be dimensionally reduced along the 1, 2, 3, 4, 5, 6, 7 directions to
produce a dyonic D = 4 black hole solution (associated with the directions 0, 8, 9, #) as
described in [10]. Another physically interesting intersecting brane configuration in terms
of black holes is the 3-charge D = 5 black hole solution [11] can be obtained from the
dimensional reduction of the M2 1. M2 1 M2 geometry:

Direction 0 1 2 3 4 5 6 7 8 9 4
M2 X X X - - - - o oo
M2 X - - X X - - - - - -
M2 X - - - - X X - - - -

The D = 11 solution is reduced along the 1, 2, 3, 4, 5, 6 directions. The resulting
electrically charged black hole geometry corresponds to the resulting metric along the

0, 7, 8, 9, t directions, and is a solution of N = 2, D = 5 supergravity coupled to

8



1.1. String Theory and Supersymmetry 9

vector multiplets, which preserves 4 supersymmetries. This can be further generalized by
intersections with additional M5-branes [12, 13] as illustrated in the table:

Direction 0 1 2 3 4 5 6 7 8 9 ¢
M2 X X X - - - - - - - -
M2 X X X - - - - - -
M2 X - - - - X X - - - -
M5 X - - X X X X X - - -
M5 X X X - - X X X - - -
M5 X X X X X - - X - - -

Although the M2-M2 brane, and M5-M5 brane intersections are consistent with the
rules described above, the M2-M5 brane intersections are not. This configuration therefore
constitutes a special modification of the types of M-brane intersections described previ-
ously. It can also be verified that the addition of the M5-branes with such orientations
does not break any more of the supersymmetry - the solution preserves the same amount
of supersymmetry as the M2 1L M2 1 M2 geometry. The M2-branes carry conserved
electric charges, whereas the M5-brane magnetic charges are not conserved - instead they
generate a non-zero magnetic dipole moment. Moreover, the metric associated with this
solution is not diagonal, and the components are not given in terms of harmonic functions
as for the other cases. When reduced along the 1, 2, 3, 4, 5, 6 directions the resulting
D = 5 solution corresponds to a 3-charge supersymmetric black ring, whose event horizon
has topology S* x S2. This is in contrast to the S3 event horizon topology obtained from
the dimensional reduction of the M2 1. M2 1 M2 geometry. The existence of such black
rings implies that there is no black hole uniqueness in 5 dimensions, as the asymptotic
charges do not uniquely specify the solution.

More generally, there has been consistent progress made in constructing systematic
classifications of supersymmetric solutions in supergravity theories. Such classifications
have played a crucial role in the construction of novel black hole solutions [14, 15] and
supersymmetric black ring solutions [16]. The classifications have also been used to find
more exotic composite black objects such as “black Saturn™ solutions [17, 18] which con-
sist of a black hole with S® horizon topology, surrounded by an arbitrary number of black

rings, each of which has S! x S2 horizon topology. The first systematic investigation of

9



10 1.1. String Theory and Supersymmetry

the classification of supersymmetric solutions was undertaken by Tod in [19] in which he
analyzed all possible forms of the metric which admit a supercovariantly constant spinor in
the minimal ungauged N = 2 D = 4 supergravity. The necessary and sufficient conditions
for a geometry to be supersymmetric were determined. This classification was then gener-
alized to other D = 4 supergravity theories including dilaton and axion scalar fields in [20].
However, the analysis was performed using two component spinor notation and as such
was specific to D = 4 theories. Following on from this, the first systematic classification
of supersymmetric solutions in D = 5 minimal ungauged supergravity was constructed
in [21]. The method initially used to construct such D > 4 classifications used via spinor
bilinears [21-23]. This was utilized to fully classify all supersymmetric solutions in minimal
N = 2, D = 5 supergravity, and was later applied to obtain the necessary and sufficient
conditions for supersymmetric solutions in D = 11 supergravity to preserve the minimal
(N = 1) supersymmetry. This method is based on the insight that a pair of spinors can be
associated to various k-form spinor bilinears. Fierz identities impose algebraic conditions
on the form bilinears, and the Killing spinor equations (KSE) also impose conditions on the
covariant derivatives of the spinor form bilinears. Such algebraic and differential conditions

are then used to find conditions on the geometry and the fluxes of the theory.

The main limitation of using the spinor bilinears method for classifying supersymmetric
solutions is that it is difficult to classify supersymmetric solutions which preserve more than
the minimal amount of supersymmetry in any given theory, especially in higher dimensional
D = 10 and D = 11 supergravities, for which solutions may preserve as many as 32 super-
symmetries. A key reason for this is that applying the Fierz identities to obtain meaningful
algebraic conditions on the multitude of possible spinor form bilinears is computationally
prohibitive. In order to address this limitation, the spinorial geometry approach to classify-
ing supersymmetric solutions was developed. This was first proposed by Gillard, Gran and
Papadopoulos [24]. The spinorial geometry method consists of expressing spinors in a par-
ticular representation in terms of multi-differential forms. These can then be appropriately
explicitly simplified into certain canonical forms, utilizing Spin-gauge transformations. On
computing spinor bilinears explicitly, using such canonical forms, the algebraic conditions
on the bilinears can be obtained directly without the need for extensive use of Fierz iden-
tities. Moreover, the different components of the Killing spinor equations can be explicitly

determined. This produces a linear system of equations which can be solved to provide

10



1.2. de Sitter Space and String Theory 11

conditions on the spacetime geometry, as well as determining certain components of the
supergravity fluxes in terms of the geometry. Further details of the spinorial geometry
method, including some simple examples of its application, will be presented in the fol-
lowing chapters. It will later be utilized to determine a classification of supersymmetric

warped product dS; geometries in D = 11 supergravity.

1.2. de Sitter Space and String Theory

De Sitter geometry is of particular interest in terms of string cosmology and also in the
context of the holographic principle. De Sitter spacetime plays a central role in the un-
derstanding of our present universe. From the work of [25—27] it has been observed that
our universe is asymptotically dS4, corresponding to a very small positive cosmological
constant. However, the observed value of the cosmological constant differs by many
orders of magnitude from the vacuum energy density value predicted by quantum field
theory [28,29]. Moreover, in the context of string cosmology there are also difficulties
in obtaining de Sitter space via compactification from higher dimensions. In particular,
there are no go-theorems proving that smooth warped de Sitter solutions with compact,
without boundary, internal manifold cannot be found in ten- and eleven-dimensional su-
pergravity [30, 31, 2]. Issues relating to quantum gravity in de Sitter space have been
investigated in [32].

In terms of holography, the AdS/CFT correspondence relates string theory in Anti-de
Sitter (AdS) space to conformal field theories (CFT) defined on an appropriate bound-
ary [33]. This has been particularly useful in developing a deeper understanding of the
microscopic nature of the entropy-area law [34,35]. In spite of the considerable insights
produced via the holographic principle, there are still many open issues in this area. Build-
ing from the AdS3;/CFT, correspondence proposed by Brown and Henneaux in [36], the
relation between quantum gravity on de Sitter space and conformal field theory on a
sphere, the so-called dS/CFT correspondence, was considered in [37—39]. However, our
understanding of the conjectured dS/CFT correspondence is less complete than for the
case of AdS/CFT for a number of reasons. Firstly, in contrast to AdS, there is a lack of
de Sitter space solutions in string theory (or in any quantum gravity theory) in which the
conjecture can be tested. Also, there are subtle issues with defining the dual CFT on the

past and future spheres Z%, relating to the causal structure of dS space. Nevertheless, the

11



12 1.2. de Sitter Space and String Theory

macroscopic entropy-area law applies to a very wide class of black holes, including asymp-
totically flat, asymptotically AdS, and also asymptotically dS cases. The universality of
this law provides strong motivation for understanding de Sitter holography.

Motivated by this, it is of particular interest to systematically understand the different
types of de Sitter solutions which are possible in D = 10 and D = 11 supergravity. Such a
classification may provide interesting new applications of the dS/CFT correspondence. As
it is possible to embed dS,, inside both R and AdS,,,; as a warped product geometry [40],
it follows that the maximally supersymmetric AdS; x S* solution, as well as R%1°, can
both be regarded as examples of warped product dS; geometries. However, as we shall
establish here, there is a much larger class of supersymmetric warped product dS4 solutions
in D = 11 supergravity than these two very special solutions, and this is also somewhat in
contrast to the results of recent analysis of supersymmetric warped product dS,, geometries
for 5 < n < 10.

In terms of D = 11 supergravity, there has been recent progress in the classification of
supersymmetric warped product dS, geometries for 5 < n < 10 [41]. There are a number

of different possibilities:

e For 7 < n < 10, the geometry is the maximally supersymmetic R'19 solution with

vanishing 4-form flux.

e For warped product dSg solutions, the solution is either the maximally supersymmetric
AdS; x S* solution, or R*® x N where N is a hyper-Kahler 4-manifold.

e The warped product dSs solutions are all examples of generalized M5-brane solutions

for which the transverse space is R x N, where N is a hyper-Kahler 4-manifold.

It is clear from this list that the possible warped product dS, geometries for 5 < n <
10 is very highly constrained. In addition, a similar recent analysis of warped product
dS, solutions in heterotic supergravity [42], including first order a’ corrections, has also
produced a rather restricted class of such solutions. In this case, for n > 3, the geometry
is RM™ x My_,,, where My_,, is a (9 — n)-dimensional manifold. The dilaton depends only
on the co-ordinates of My_,, and all p-form fields have components only along the My_,
directions. The heterotic warped product dS, solutions are the direct product AdSs x My

solutions which have been classified in [43]. Compared to these types of solutions, the

12



1.2. de Sitter Space and String Theory 13

conditions on supersymmetric warped product dS4 solutions in D = 11 supergravity are

rather weaker.

Motivated by these results, in this thesis we obtain the necessary and sufficient con-
ditions for warped product dS4 solutions in D = 11 supergravity to preserve the minimal
N = 8 supersymmetry. We find, on integrating the Killing spinor equations along the
dS, directions, that all of the necessary and sufficient conditions for supersymmetry are
encoded in a single gravitino-type equation, which is satisfied by a spinor ¢, whose com-
ponents depend only on the co-ordinates of the internal space. We analyse the solutions of
this equation using spinorial geometry techniques. This technique was introduced in [24]
and consists of writing the Killing spinors in terms of multi-differential forms and, utiliz-
ing the gauge-covariance of the KSE, gauge transformations are then used to write the
spinors in one of several simple canonical forms. The main outcome of this approach is
a linear system which imposes conditions on the spin connection and the fluxes of the
theory. This in turn can be used to obtain conditions on the geometry which are necessary
and sufficient for supersymmetry. These techniques have been applied to classify a wide

variety of supergravity solutions [44].

In the case of warped product dS, solutions, we state explicitly the Spin(7) gauge
transformations which are used to write the spinor ¢, in canonical forms with stabilizer
subgroups SU(3) and G,. We then solve the linear system obtained from the Killing
spinor equations. In particular, we show that the linear system implies that there are
no Killing spinors for which the stabilizer of 1, is G,. For the case of SU(3) stabilizer
subgroup, the Killing spinor equations determine all components of the 4-form flux in terms
of the geometry of the internal manifold, and we present the geometric conditions and
the components of the flux, written in a SU(3) covariant fashion. On considering these
conditions, we note that the warped product dS; geometries are manifestly less restricted
in terms of the geometric structure and the 4-form flux in comparison to the warped
product dS,, solutions for 5 < n < 10. Our analysis does not utilize the global techniques
developed for the investigation of supersymmetric black holes [45]; we consider only local
properties of the Killing spinor equations. This avoids the no-go theorems which exclude
warped product dS,, solutions when the warp factor and 4-form flux are smooth, and the

internal manifold is smooth and compact without boundary.

13



14

1.3. Plan of the Thesis

1.3.

Plan of the Thesis

The plan for the remainder of the Thesis is as follows:

(1)

(5)

In chapter 2 we present the proof of how the supercovariant derivatives acting on a
spinor transforms in a covariant fashion when a Spin-gauge transformation acts on
the spinor. Then, we briefly give an introduction to the spinorial geometry techniques

used to analyze the Killing spinor equations.

In chapter 3 we outline in some details properties of de Sitter geometries. In the
first part, we investigate the isometries of de Sitter space, and prove that the only
differential forms on de Sitter space for which the Lie derivatives with respect to
all of the isometries vanish are constant functions, and constant multiples of the
volume form. In the second part, we summarize the bosonic field equations, Bianchi
identities, and Killing spinor equations of D = 11 supergravity. In the third part
we describe the ansatz for the warped product dS, solutions. Finally in the fourth
part, we briefly describe some classical no-go theorems which forbid the existence
of warped product de Sitter solutions for which the internal manifold is smooth, and

compact without boundary, and the warp factor is smooth.

In chapter 4 we derive several integrability conditions from the Killing spinor equa-
tions, and we demonstrate how some of these integrability conditions can be de-
rived from others. We also explicitly integrate up the Killing spinor equations along
the dS4 directions, and show how the Killing spinor equations reduce to a single
gravitino-type equation for a spinor ¢, which depends only on the internal manifold
co-ordinates. We also prove that the supersymmetric dS; warped product solutions

preserve N = 8n supersymmetries for n=1, 2, 3, 4.

In chapter 5 we utilize spinorial geometry techniques, and prove that the spinor
can be written in one of several particularly simple canonical forms, on applying
appropriate Spin(7) gauge transformations. Furthermore, depending on the type of
canonical form, we prove that such a spinor has stabilizer subgroup which is either

SU(3) or Gy; in the SU(3) case we also consider several possible special sub-cases.

In chapter 6 we present the SU(3) covariant conditions on the flux and geometry,

obtained from the gravitino-type equation in the case for which the spinor ¥, has

14



1.3. Plan of the Thesis 15

(6)

stabilizer subgroup SU(3). We also prove that there are no supersymmetric warped

product dSy4 solutions for which the stabilizer subgroup of ¥, is Go.

In chapter 7 we present our conclusions and discuss some possible future work on the
classification of warped product dS,4 solutions in D = 11 supergravity with enhanced

supersymmetry.

The Thesis also contains a number of Appendices, which provide supporting material

to the above chapters:

(a)
(b)

(c)

(d)

(f)

Appendix A contains some general conventions.

Appendix B summarizes some key details of spinorial geometry. The description of
the Clifford algebra representation utilized in the spinorial geometry techniques is
given. This representation is used in the analysis of the Killing spinor equations in

chapters 5 and 6.

Appendix C consists of a number of gamma matrix identities that are utilized in the

analysis of the integrability conditions in chapter 4.

Appendix D consists of a detailed description of the derivation of the values of the

constants appearing in equation (4.23) in chapter 4.

Appendix E states the linear system of equations in the spin connection and the gauge
field strength components which are obtained from the gravitino type equation (4.37)

in the case when the stabilizer group of the spinor is SU(3).

Appendix F contains some relations which are used to covariantize the solutions of

the gravitino type equation (4.37) in terms of various SU(3) covariant forms.

The original research in this Thesis, corresponding to [46], consists of chapter 3.3, and

all of chapters 4, 5, 6, 7; together with Appendices C, D, E, and F.

15






CHAPTER 2

PROPERTIES OF KILLING SPINORS

In this chapter we shall summarize some properties of the Killing spinor equation which will
later be utilized to solve the Killing spinor equations of D = 11 supergravity for warped
product dSy4 solutions. In particular, we begin in the first part of this chapter by considering
the Levi-Civita term in the KSE. Such a term is present in all supercovariant derivatives
which appear in supergravity theories. We shall illustrate how the Levi-Civita connection
acting on a spinor € transforms in a covariant fashion when a Spin-gauge transformation
acts on the spinor. In addition to the Levi-Civita connection term, there is also a theory
dependent flux term in the supercovariant derivative; the nature of this term depends on the
type of supergravity theory under consideration. However, in all cases it Is straightforward
to prove that this algebraic term transforms covariantly. We shall therefore concentrate

on the properties of the Levi-Civita term in the supercovariant derivative.

Having described the transformation properties of the supercovariant derivative, we
shall briefly introduce the spinorial geometry technique which will be used to analyse the
KSE. This utilizes an explicit representation of the Clifford algebra, which acts on spinors
which are certain types of multi-differential forms defined on an auxiliary space. We shall
illustrate this method with an explicit example from D = 6 gauge theory, to demonstrate

the key aspects of this approach for solving the KSE.

17
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2.1. Gauge Covariance of Killing Spinor Equation

A key ingredient of the spinorial geometry method is the Spin(D — 1, 1) gauge covariance
of the Killing Spinor equations (KSEs). The KSEs are the vanishing conditions of the
supersymmetry variations of the fields. These are evaluated in the background where all
fermions vanish, which in turn implies that the supersymmetry variations of the bosons are
trivially satisfied. The KSE associated to the gravitino is the vanishing of the supercovari-
ant derivative, whereas the KSEs associated to the remaining fermions are all algebraical
equations.

In order to analyse the gauge covariance of KSE, capital latin letters such as A, B denote
D-dimensional frame indices and 24 gc denotes the spin-connection. A supercovariant

derivative is defined as
Dp=V,+ O'A(e, F)

1
Va= 04+ ZQA,CDFCD where (21)

V a denotes the Levi-Civita connection, and oa(e, F) is a Clifford algebra element which
depends on the spacetime coframe e and the fluxes F. The expression of oa(e, F) in
terms of the fields is theory dependent. In this section we present the proof of the gauge
covariance of the Levi-Civita part of the supercovariant derivative.

Let M be a spacetime of dimension D and let € be a spinor satisfying a gravitino KSE

of some theory. Under Spin(D — 1, 1), € transforms as

X =B fag = —fga . (2.2)

Here X is an arbitrary real linear combination of generators of Spin(D — 1,1). The
parameter fag is real antisymmetric factor and depends on the spacetime co-ordinates,
fag = fag(x) and g = %[FA, ], where "4 is a gamma matrix. By using Eq. (2.2), we

can rewrite the Levi-Civita covariant derivative as follows

1
VA€ = (&A + ZQAYBCFBC)E

1 ~
= e‘X((?A + exéAe_X + ZQA,BCI'BC)e’ , (23)

where T8 = eX[4Be=X _ |n particular, (8 and 8 correspond to two equivalent rep-

resentations of the Clifford algebra. We shall show that [ and I are connected by local

18



2.1. Gauge Covariance of Killing Spinor Equation 19

Lorentz SO(D — 1, 1) transformation. To do this, we define an auxiliary function ©(T)

depending on an arbitrary parameter 7 as follows
O (T)=e™TCe™™ | (2.4)

On differentiating this expression with respect to 7 and by exploiting the commutation

relation

[4, 78¢] = an?lBrel, (2.5)
it follows that

dec

o = AfCaet. (2.6)

Moreover, ©€(0) = I'“. It follows that
O%(1) = (e74")" Al (2.7)
and therefore
FC=e%(1) = (e*) A (2.8)

Now, we shall show that (e‘”)M A€SO(D—1,1).

To do so, we define another auxiliary function U depending on parameter X\ as follows
_ (oA —4xf\D
UCB(A) = (6 ) c NaD (E‘ ) B - (29)

By taking the derivative of Ucg(\) with respect to X, we find

dUceg

dXx = _4fAN (6_4>\f)N cNAD (e_4>\f)D B — 4 (€_4>\f>A cNAD (e_4>\f>N BfDN

= —4 (e*“‘f)N C(fDN + f/\/D) (e*“‘f)D B

-0, (2.10)

where we have made use of the fact that
—4fAN\A  C A —4f2\ €
(e7*™) " cfCg=rF"c(e*™) 5. (2.11)
Hence Ucg is constant, therefore

UCB(A) = UCB(O) = MNce . (212)

19



20 2.2. Spinorial Geometry Techniques

By setting A = 1 in (2.9) and comparing with (2.12), we find that
(674“)%\ c MaD (674f6)D B ="cB . (2.13)

and hence (e‘“)M A€SO(D—1,1).
We can rewrite Eq. (2.3) by using Eq.(2.8) as follows

1
V€ = e X <6A + exéAe_X + ZQA'BC (€_4fT)B D (€_4fT>C E FDE) e . (214)
The last step of the KSE covariance proof is to perform a local Lorentz SO(D — 1,1)
transformation of the type

(A’)A = (674'()8 A0B

et = (") gef . (2.15)

With this frame choice, we find that Eq.(2.14) can be rewritten as
a 1.
V€ = e X (e4f)B A <(?B + ZQB,CDFCD) e (2.16)

that is gauge covariant with respect to the Spin(D — 1,1), up to a Local Lorentz trans-
formation. Having established the covariance of the Levi-Civita part of the supercovariant
derivative with respect to Spin(D — 1, 1) gauge transformations, we can then utilize such
transformations to make the process of solving the Killing spinor equations more straight-

forward. This will involve using spinorial geometry techniques.

2.2. Spinorial Geometry Techniques

Spinorial geometry techniques were first introduced in [24] in the context of D = 11
supergravity. These methods have also been used to classify supersymmetric techniques in
numerous supergravity theories [44,47,48]. There are a number of key steps in applying

the spinorial geometry method for the analysis of KSEs.

(i) The spinors of the theory in question are certain types of multi-differential forms,
defined on an appropriate auxiliary space. The multi-form components depend on

the spacetime co-ordinates.

(i) A representation for the Clifford algebra is chosen for which the gamma matrices

typically act as creation or annihilation operators acting on the space of spinors.

20



2.2. Spinorial Geometry Techniques 21

(iii) For the analysis of solutions preserving the minimal proportion of supersymmetry,
a Spin-gauge transformation is utilized in order to choose a gauge in which the
spinor takes one of several particularly simple canonical forms. The nature of these

canonical forms depends on the theory in question.

(iv) The KSE are then evaluated explicitly, working in the gauge for which the spinor is
in one of the simple canonical forms. This produces a linear system involving the

spin connection, and various components of fluxes.

(v) This linear system is then solved explicitly to obtain conditions on some (though not
necessarily all) of the flux components, as well as conditions on the spin connection

(i.e. conditions on the geometry).

(vi) These conditions are then rewritten in a manifestly gauge-invariant fashion in terms

of various gauge-invariant spacetime spinor form bilinears

We remark that by utilizing an optimal choice of gauge, as described in (iii), the com-
ponents of the gauge-invariant spacetime spinor form bilinears can be computed explicitly
in the gauge for which the spinor is in a simple canonical form. Consequently, the com-
ponents of the spacetime spinor form bilinears are particularly simple as well, and it is also
straightforward to directly see the different types of algebraic conditions which the space-
time spinor form bilinears satisfy. This obviates the need to make use of Fierz identities,
which simplifies the analysis significantly. In addition, the spinorial geometry approach has
also been used to analyse supersymmetric solutions which preserve more than the minimal
amount of supersymmetry [49-52]; such calculations are prohibitively difficult to undertake
using other methods.

Having described general aspects of the spinorial geometry method, it will be useful to
consider a simple explicit application, in the context of a gaugino type equation on a 6-
dimensional manifold. This is an algebraic condition, and such a condition can be obtained
in the context of certain warped product solutions of D = 10 heterotic supergravity, in the
case for which the internal space Mg is 6-dimensional [44,53,54]. The reduced gaugino
KSE on Mg is

FasT?e=0 AB=1,....6 |, (2.17)

where Fpg represents the non-abelian flux of the theory (e.g. heterotic supergravity) and
FAB = %[FA, FB]

21



22 2.2. Spinorial Geometry Techniques

In Appendix B, we explain how the Dirac spinor representation can be constructed in
terms of differential forms, following [55,56]. In this representation, the Dirac spinors in 6
dimensions consist of the complex span of differential forms on R3, i.e, an arbitrary Dirac

spinor can be written as a complex linear combination of

{1, e1, e, €3, €12, €13, €23, €123} (2.18)

where {e1, e, e3} are a basis of 1-forms on R3, and e;p = €1 A €, €103 = € A & A €3.
In even dimensions, the Dirac representation is reducible into Weyl chiral A and Weyl
anti-chiral A} representations, Ag = Af @A, . These are determined by the corresponding

projections

1 .
Pi = E(H T+ l|_123456> (219)

which also commute with FagM 8. Hence, without loss of generality, we may assume that
the spinor € appearing in (2.17) is chiral. Such a Weyl chiral spinor can be written as an

even-degree multi-form € € Agyen(C3):

€e=oal + 61612 —|—,82€13 + ,63623 , (2.20)

where a, B; with 1 = 1,2,3 are complex functions which in general depend on the co-

ordinates of Mg. Now, we write the Clifford algebra in oscillator basis as follows
Mo =V2e4 A Ms = V20, (2.21)

where o = 1,2,3 and & = 1, 2, 3. We remark that the matrices (2.21) satisfy the Clifford
algebra in complex basis for R°.
To proceed further, we shall now simplify further the spinor € given in (2.20). In

particular, we shall apply certain Spin(6) gauge transformations as follows:

(a) We can set B; = 0 by a SU(2) gauge trasformation generated by

1 I /
—(M2+T13), §(r12 —I13), E(rli + ) (2.22)

2
which acts transitively on spanc{1, e1»}, leaving invariant spanc{eos, e13}.

(b) We can set B3, = 0 by a SU(2) gauge trasformation generated by

1 / /
§(r13 +13), §(r13 —I13), E(rli + I33) (2.23)

which acts transitively on spanc{1, e13}, leaving invariant spanc{es, €10}.
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(c) We can set B33 = 0 by a SU(2) gauge transformation generated by

1 / /
§(r23 + I33), §(|_23 —I33), §(|‘2§ + I33) (2.24)

which acts transitively on spanc{1, e>3}, leaving invariant spanc{e;s, e1»}.

After applying these gauge transformations, the spinor € can be taken to be € = f1

where f is a real function. The gaugino KSE (2.17) in this canonical gauge becomes
(Fagl® +2F,56°°)1 =0 (2.25)

or equivalently,
(2FPeup + 2F,50%)1 =0 (2.26)

Considering the linear independence the spinor basis elements, Eq. (2.25) implies
Fs =0 Fo®*=0 . (2.27)

Hence, in the language of (almost) complex geometry, F is (1,1) traceless real 2-form.

Finally, we wish to covariantize these results by defining a 2-form bilinear w as follows

w é<1, FunlyeM neV = —igze* ne . (2.28)

where (,) is the Hermitian inner product defined in (B.3), eM, M =1,..., 6, denotes
a real frame on Mg, and e* = (e*)* for a = 1,2,3. We remark that w is an almost
hermitian form on Mg, which is associated with an almost complex structure /, given by

was = 0acl€ 5. Then, the results of (2.17) can be rewritten as
Fas = Fepl€alPs . FAgl1B4a=0 . (2.29)

This example illustrates the key principles relating to spinorial geometry, and applica-
tions to solving Killing spinor equations. An alternative approach would be to utilize Fierz
identities; in lower dimensions such an approach is tractable. However, when solving the
KSE associated with warped product de Sitter solutions in D=11 supergravity, extracting
algebraic conditions on the spinor bilinears via Fierz identities is significantly more com-
plicated when compared to using spinorial geometry techniques. Hence, to undertake the

D = 11 analysis described in this thesis, we shall utilize spinorial geometry.
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CHAPTER 3

PROPERTIES OF dS GEOMETRIES

In this chapter, we shall consider in some detail properties of de Sitter geometries. We shall
begin by investigating the isometries of de Sitter space, which is the maximally symmetric

Lorentzian manifold, whose Riemann curvature satisfies

R
Rascp = m(gACgBD — 9ap9ec) (3.1)

with R > 0. Any metric whose curvature satisfies such an identity must be locally isometric
to de Sitter space. In the first part of this section, we shall present the proof that for dS,,
the only differential forms for which the Lie derivative with respect to all dS,, isometries
vanishes are constant functions, and constant multiples of the volume form of dS,. Such
properties of isometries of dS, will be utilized in the rest of this chapter, in the context
of considering warped-product dS; solutions in D = 11 supergravity. To do this, in the
second part of this section, we summarize some key properties of D = 11 supergravity,
including the bosonic field equations, and the D = 11 supercovariant derivative. Then, in
the third part of this section, we describe in further detail the properties of warped-product
dS4 solutions in D = 11 supergravity, focusing on the reduction of the Einstein and gauge
field equations, and the Bianchi identities, to the 7-dimensional internal manifold. These
equations are obtained by assuming that the Lie derivative of the 4-form F with respect
to all of the isometries of dS,; vanishes. Finally, in the fourth part of this chapter, we
shall briefly describe some classical no-go theorems which forbid the existence of warped

product de Sitter solutions for which the internal manifold is smooth, and compact without

25



26 3.1. Isometries of de Sitter Space

boundary, and the warp factor is smooth.

3.1. Isometries of de Sitter Space

In this section we shall show that, on dS,,, the only differential forms whose Lie derivatives
with respect to all of the isometries of dS, vanish are constant functions, and constant
multiples of the volume form of dS,. Hence, for the case of dS4 solutions, it follows that
the 4-form flux F must be the sum of a constant multiple of the volume form of dS,; and
a 4-form on the internal space M.

In order to demonstrate this, we first must determine the isometries of dS,,. It will be

convenient to adopt the following choice of co-ordinates for dS,
ds? — —p dxtdx” R=1 L s px® B=1 (3.2)
st = RQWU XTax ) = +4 X" NapX a,Bt=1,..., n )

In the case of dS,, K is taken to be a positive constant, which is proportional to the
scalar curvature. Anti-de-Sitter space and flat space correspond to taking K < 0 and
K = 0 respectively. We shall consider the case of de Sitter space, with K > 0, henceforth;
however the analysis of isometries in this section also holds for K < 0 and K = 0 as well.
Let V be a vector field

V = V“i : (3.3)

OXH

V is an isometry of the metric of dS,, if and only if V' satisfies the Killing equation:
*Cvgu,u =0 = V(u,vu) =0 (34)
where

In terms of the co-ordinates we have chosen for dS,,, this condition is equivalent to

K
nauaﬂ\/a + na“&,VO‘ — ﬁ'f)u,/Xa’f)aﬁ\/ﬁ =0 (36)

It is straightforward to show that the following vector fields are Killing vectors:

U7 = x3n%P — xPpos (3.7)

and

K s K 5
We = (1 - Zx“na5x5> n°* + Ex"xA , (3.8)
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3.1. Isometries of de Sitter Space 27

where 64,5, X are fixed indices. There are %n(n— 1) linearly independent U? Killing vectors,
and there are n linearly independent W? Killing vectors. Consequently, this set of vector
fields contains %n(m— 1) linearly independent Killing vectors, which is the maximum possible
number of Killing vectors for a n-dimensional manifold. Hence, this set of Killing vectors
is a basis for the set of Killing vectors of dS,,.

Now we shall consider a p-form w such that Lyw = Lyyw = 0 for all possible U and W
Killing vectors. We first take the case of p =0, and w = f for a function f. In this case,

Lyw = Lyw = 0 implies that
X*Pf —xPo*f =0 (3.9)
and
(1- ;|X|2)8Af + gx"xxﬁgf =0 (3.10)

where 0*f = n*“0,f and |x|*> = 7,.x“x". In particular, (3.10) implies (3.9), and so it

suffices to consider (3.10). On contracting (3.10) with xy, where x, = mx,x*?, one finds
XP0,f =0 (3.11)

and on substituting this condition into (3.10) one then obtains d,f = 0, so f must be
constant. Next, consider the case for which w is a p-form for 1 < p < n. The condition

Lyw = 0 implies that
x*Puw,, . p — xPow,, v, + PO}, Ulw Voo ] péﬁlw“%__up] =0 (3.12)
and the condition Lyyw = 0 implies that

K K K
(1 - Z‘X‘z)akwul...up + _ngxaawul...up - pr[ulwxuz..up]

2

K K
+5 pPx Wy, L, + px(,éA Wy, =0 (3.13)

Utilizing (3.12), we eliminate pé[*ulw",,z__up] from the final term in (3.13) to obtain

K K
(1+ 7 XP)Pws oy = =5 P w0, (3.14)

On substituting this expression for d*w,, ,,. for A = a, B into (3.12) we then find

p5a w va..Wp] pé[ﬁulwaL/2...up] =0 (315)
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On contracting this expression over a;, 1 one then finds
(n=p)wPy, v, =0 (3.16)

Hence, if p # n, then w = 0. If p = n, then we write

h

—— €, v 3.17
(T R (317

wlll...l/n =

for a function h, where €,,._,, is the alternating symbol in n dimensions. Substituting this
expression back into (3.14) one finds that dyh = 0, so h is constant. It follows in this case
that w must be a constant multiple of the volume form on dS,,.

Hence, we have shown that the only differential forms whose Lie derivatives with respect
to all of the isometries of dS,, vanish are constant functions, and constant multiples of the
volume form of dS,. In the case of warped product dS4 solutions in D = 11 supergravity,

this result will enable a particular simple decomposition of the 4-form field strength F.

3.2. D=11 Supergravity

In this section, we describe some key properties of D = 11 supergravity, and state the
conditions which supersymmetric bosonic solutions of this theory must satisfy. Such solu-
tions are called supersymmetric solutions. This theory was first constructed in [57]. The
bosonic fields of D = 11 supergravity consist of a metric g, and 3-form gauge potential
A, with 4-form field strength F = dA. In addition, there is a fermionic Majorana gravitino

field, 9. The action, including fermionic terms, is given by

5 = 5 | (R-ggFamcor™>e®
— YAl Dg (%(Q + Q)) Ye + é";ErABCDEFQ/}F<FABCD + F_ABCD) +
+ %Jcr/*%(ag i Fas CD)) dvoli; + Scs (3.18)
where
SCS:12I{2JF/\F/\A , (3.19)

is a Chern-Simons term, A, B, C... are D = 11 frame indices, and

e x2 is proportional to the gravitational constant;
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dvoly; is the D = 11 volume form

Fasco = 40aAsco) — 29al 6c¥iy

Q is the the spin-connection, Quag = Q%yas + Kmas, where QF, .5 is the spin-

connection with vanishing torsion and Ky ag is the cotorsion term;
o Kuag = —%(%EMFMDA — Pal s + Vsl a¥u) + %";NFNL maBYL;
o Qyag = Q%AB - %(@MFBQPA — YAl s + 1/_/3|_A¢M);
o Dy (3(Q2+)) is the covariant derivative with connection given by (2 + €);

The supersymmetric variations of the bosonic and fermionic fields are

1
(6e%)5 = S s (3.20)
3_
(6A) mnp = ZEF[M/\/QIJP] (3.21)
(6'(/})A = DA(Q)E — ﬁ (I'MNPQ A — 8|_NPQ6/,4\\/I) IfMNPQE (322)

where e is the vielbein, and € is a Majorana spinor.
Bosonic supersymmetric solutions of D = 11 supergravity are those for which the
fermions, and the variation of the gravitino, vanish. Requiring that the gravitino variation

should vanish imposes the Killing spinor equations (KSE) of D = 11 supergravity:
Dpe =0, (3.23)

where the supercovariant derivative D, is defined as

1
Dy =Vu— 52 (T AAeAsAe — BT AR P apinany - (3.24)

On setting the fermionic fields to zero in the action (3.18), one also obtains the bosonic

field equations. The Einstein equation is

1 1 1
Ras — =Rgas — —F, Fg 51828  — gagF? = 2
AB ~ 5 9as 1o ABi1B2Bs B + 969AB 0 (3.25)
and the gauge field equation is

1
d+F—3FAF=0. (3.26)
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The 4-form F is also required to satisfy the Bianchi identity
dF =0 (3.27)

Having introduced the conditions which supersymmetric solutions of D = 11 supergrav-
ity must satisfy, we shall next consider the particular case of warped product dS,4 solutions
in D = 11 supergravity. We shall state how the metric and 4-form F decompose for such
solutions, assuming that the Lie derivative of F with respect to all of the dS, isometries
vanishes; we will also reduce all of the bosonic field equations and Bianchi identities to

field equations on the 7-dimensional internal manifold.

3.3. Warped Product dS; in D = 11 Supergravity

In order to analyse supersymmetric warped product dS, solutions, we shall split the D = 11
spacetime in a 447 fashion ds® = dS, x,, M7, where x,, denotes a warped product of dS,
with an internal manifold M;. In terms of the D = 11 frame, capital latin letters such as
A,B denote D = 11 frame indices. These D=11 frame indices are split in a 4+7 fashion as
follows: we use greek letters for dS4 frame directions, and latin letters from the middle of
the alphabet and onwards for M,. Latin letters from the beginning of the alphabet denote
M; spacetime indices. M5 is equipped with local co-ordinates y?, whereas dS; is equipped
with local co-ordinates x*. For further details about the conventions used are set out in
Appendix A.
The warped dS4 product metric g is

ds® = A’dsgs, + dsp, = muete’ + 6 e'e (3.28)

where the vielbein frame is defined as

et = Adx#
| ® (3.29)
e = edyf
with
1
R(x) = (1 + ZK)@X”) , X, = X Nay . (3.30)

The conformal factor A and the vielbein €/ depend only on y? co-ordinates. The scalar K

is constant and greater than zero.
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3.3. Warped Product dS,4 in D = 11 Supergravity 31

We require that the Lie derivative of F with respect to all of the isometries of dS,
must vanish. Under such an assumption, from the analysis of the previous section, F must

decompose as follows:
F = cdvol(dSs) + X, (3.31)

where c is a constant due to the Bianchi identity and X is a closed 4-form on M; depending

only on y? co-ordinates. The gauge field equation (3.26) is equivalent to
d(A*x; X) = cX . (3.32)

It will be convenient to state the non-vanishing components of the spin-connection,

and curvature components. The non-vanishing spin-connection components are

K
Quup = Zx[unp]u
VA
Q,u.,/l/ = _Tnuu
Qi = Qijx(Mz) , (3.33)

where on the LHS Greek indices are frame indices on dS,;, and on the RHS they are
co-ordinate indices on dS4. V; denotes the Levi-Civita connection on M.

The non-vanishing Riemann tensor components are

K V,AV'A
Ruuaﬁ = (nuanﬁu - nuanﬁu) ﬁ - T
1
Riajs = _ZV/VJA Nag
Rijkl = RijkI(M7) (334)

where on the LHS Greek indices are frame indices on dS4, and on the RHS they are

co-ordinate indices on dS4. The Ricci curvature tensor components are
Ru = Muw (3A7K — ATV, V'A—3A7°V,AV'A)
Ry = 0
R; = —4A7'V,V;A+ R;(M) (3.35)

where on the LHS Greek indices are frame indices on dS4, and on the RHS they are

co-ordinate indices on dS;.
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32 3.4. No-Go Theorem for Regular de Sitter solutions

The (uv)-component of the Einstein equations of motion (3.25), imply that

. 1 A
BKA™ = ViVIA-3ATIWWAV A+ AT + X =0 (3.36)

From the (/j)-component of the Einstein equation of motion (3.25) and the third equation
in (3.35), one finds

1 1
Ri/(M;) = 4A7'V, VA + 15 Ximanas X; 7% + 6c2A—85,-j -

1

mx%,-j . (3.37)

On taking the trace of (3.37), and using (3.32) and (3.36), we obtain

. . 1 1
R(M7) — 8A™'V,V'A — 12A2V,AV'A + 12A72K + —c?A™® —

- 2:
. X =0. (338)

3.4. No-Go Theorem for Regular de Sitter solutions

Having performed this reduction, we briefly revisit the topic of global properties of warped
product dSy4 solutions. There are some particularly important AdS geometries which arise
in the context of maximally supersymmetric solutions in D = 11 supergravity [58]. It is
known that such solutions correspond to flat space R'%! a maximally supersymmetric

plane wave solution, and two direct product AdS geometries:

e AdS;(—7R) x S*(8R) and F = +/6Rdvol(S*), where AdS;(—7R) is 7-dimensional
AdS spacetime with scalar curvature —7R, S*(8R) is 4-dimensional sphere with
scalar curvature 8R, and R > 0 is the constant scalar curvature of the overall

D = 11 geometry.

e AdS4(8R) x ST(—=7R) and F = y/—6Rdvol(AdS,), where AdS,(8R) is 4-dimensional
AdS spacetime with scalar curvature 8R, S’(—7R) is 7-dimensional sphere with scalar
curvature 8R, and R < 0 is the constant scalar curvature of the overall D = 11

geometry.

Those two solutions can be interpreted as the near-horizon limits of the M5 and M2 brane
solutions respectively [6]. As we shall be interested later on in the classification of warped
product dS, geometries in D = 11 supergravity, we note that the case of AdS; x S*
provides an explicit, and moreover maximally supersymmetric, example of such a solution.

In this case, the metric can be written as a warped product dS4 x,, M-.
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3.4. No-Go Theorem for Regular de Sitter solutions 33

To demonstrate this, we take the M5-brane solution in eleven-dimensional supergrav-
ity [6],

ds? = U3 (—dt? + ) | (dxn)?) + U2 ) (dyn)? (3.39)

n=1 n=1

where Q is a positive constant corresponding to the M5-brane charge,

(3.40)

After taking the near-horizon limit and applying an appropriate change of co-ordinates,

the near-horizon limit of Eq. (3.39) becomes:

6 6 6
ds? = A% ds?(dS,) + —do7 + 7 cosh 6,°do3 + 7 cosh 0,° cosh 6,°d63

L
dep's,dey
¢0,d¢ S (3.41)
(1 + %¢k5k/¢’)
where u =0,1,2,3, /1 =1,2,3,4, L = 3Q /3, the warp factor is
A = cosh 6, cosh 6, sinh 03 , (3.42)
and the metric
dx#n,,dx"
d52(dS,) = — 2 MuweX (3.43)

(1+ 2L—4X°‘naﬁxf’)2
is the metric of dS4. The first line in (3.41) corresponds to the metric of AdS; with
curvature R = —7L, and the portion of the metric on the second line is the metric on S*
with curvature R = 8L. The metric on the internal space M; is obtained from the metric
in (3.41) by excluding the contribution from the dS; metric.

It is useful to consider the global properties of this warped product geometry, in terms
of the internal space M5 and the warp factor A found for this solution. If the co-ordinate 6,
is periodically identified, then the metric components, and the warp factor, are not smooth
functions of 8; on making a complete revolution in ;. Alternatively, if 8; is not bounded,
then the warp factor A is also unbounded on M;. Hence, although the AdS; x S* geometry
is smooth, when decomposed as a warped product dS; geometry with an internal manifold
M5, one cannot construct such a decomposition for which the M7 is smooth and compact

without boundary, and the warp factor A is a smooth function on M;.
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34 3.4. No-Go Theorem for Regular de Sitter solutions

Having considered the specific case of AdS; x S*, written as a warped product dS,
solution, we shall now consider investigate a more general type of no-go theorem for warped
product dS solutions [30,59,60]. In particular, suppose (for a contradiction) one assumes
that the internal manifold M7 is smooth and compact without boundary, and moreover
that the warp factor A is smooth. We first establish that A cannot have any zeroes on M;
unless ¢ = 0. We shall do this also by an argument via contradiction; let us suppose that

there is a zero for A on M,. If ¢ # 0, then (3.36) implies

1 : : A2
§C2A_6 = 3K + AV,V'A + 3V,AV'A — m)@ . (3.44)

If there is a zero for A on M, then there exists a sequence of points on M approaching
this zero for which the LHS becomes unbounded. However, the RHS of this equation is a
smooth function on M, and hence must be bounded. Hence, there is a contradiction, and
therefore one must have ¢ = 0.

Consider then (3.36) ; if A has any zeroes on My then ¢ = 0, and (3.36) is equivalent

to

1_ . At
ZV,V'(A“) = 3KA? + m><2 (3.45)

However, on integrating this equation over M; one obtains a contradiction, as the contribu-
tion from the LHS is zero, whereas the contribution from the RHS is positive. Alternatively,
if A does not admit any zeroes on My then ¢ need not vanish, and (3.36) is equivalent to

1 ; A* 1
SV, VI(AY = 3KA%2 + — X2+ Zc2A 4 4
1 (A") =3 + 122 + 3C (3.46)

All of the terms on the RHS of this expression are smooth, and so we may integrate all
terms in the above equation over M;. Once more, there is a contradiction, because the
contribution from the LHS is zero, whereas the contribution from the RHS is positive.
This no-go theorem implies that in our investigation of warped product dS; geomet-
ries we cannot utilize the same type of global analysis, such as establishing Lichnerowicz
type theorems which were used to obtain quite strong conditions on warped product AdS
solutions [61], as well as proving the non-existence of warped product AdSg solutions in
D = 11 supergravity [62]. Instead, our analysis of the KSEs of the warped product dS,

geometries will be purely local in nature.
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CHAPTER 4

INTEGRATING THE KSE FOR dS,4

In this chapter, we shall begin the analysis of the KSE for warped product dS, solutions
in D = 11 supergravity. The content of this chapter, as well as in chapters 5, 6, 7 (and
supporting Appendices) constitutes original research presented in [46]. We proceed by
computing the integrability conditions associated with the existence of a non-zero Killing
spinor € which is covariantly constant with respect to the supercovariant derivative of

D = 11 supergravity,
Dpe =0, (4.1)

where capital latin letters such as A, B denote D = 11 frame indices. These results will
be particularly useful when we explicitly integrate up the KSE along the dS, directions in
the next section. We remark that the D = 11 frame indices are split in a 447 fashion as
follows: we use greek letters for dS, frame directions, and latin letters from the middle of

the alphabet and onwards for M, frame directions.

4.1. Integrability Conditions from the KSE

From the equation Dye = 0, where

1
DI\/I - vl\/l N @ (r A1A2A3AL 86/,3]1 rA2A3A4) FA1A2A3A4 , (42)
we find
o 1/ 1 . } o s
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36 4.1. Integrability Conditions from the KSE

and
0 (1 C 4 wmy 1 1 im
ayae = eé <@% + EA rJr - %XJ - ZQJ,ImI_ €, (44)
where
M=rorrr . (4.5)
In the chosen notation, Appendix A,
XC = XCAl_'_A3rA1"'A3 , and J»(C = rCAll'_A4XA1"'A4 . (46)
We remark that (4.4) is equivalent to
1 C , 4 wmy 1
Vie= (288% + 12A M — 36X,-) €, (4.7)

where V,; denotes the Levi-Civita connection on M5.
We use these expressions to derive several integrability conditions. First, from the
integrability condition on dS,; spacetime

(a o 0 a)e:O, (45)

Oxt Ox¥  OxY Ox#

we get

Cpo A X? 4 2cA VAN — L aviax ) e = 0 (4.9)
9 (144)2 3 : 18" S '

(yVA|2 K-

On the other hand, from the integrability condition with one direction on dS; and the

<a ¢ a)e:O (4.10)

OxH Oya  Qya OxH

other on Mz, i.e.

we get

1 A 5 A o
< - EV,-VkAl_k + T%V,‘X + 6288 (r[//1/2 2l 5],32 5ﬁ]lejzjsj4 X’1’2’3’4>
5 A

(o) ~
6@ (r[iX/112l3l4] X11/2/3/4> + @Ai?)(loxl o [—,X> [—4
A

. . c _ 1
+ mrh J3Ja X; hji2 lejzf3j4 + §Afﬁlvl_A 4 + inAr,l,z,y- X/1/2/3k

_ i —4 k 14 i mny .k _
SATVIATE T4 VAT X, )e_o. (4.11)
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4.1. Integrability Conditions from the KSE 37

The integrability conditions (4.9) and (4.11) are, however, not independent; (4.9) is
implied by (4.11). To see this, contract (4.11) with ", and using equation of motion (3.36)
and the Bianchi Identity dF = 0, we are able to derive the integrability condition (4.9).

So far, we have analyzed the integrability conditions involving the dS; part of the

covariant derivative (4.3). The integrability condition on M; given by

[Vi.Vj]e= %Rijmnrmne : (4.12)
is
%Rumnr’””e = Tés (Vi(EX)) — V(X)) — %A*5 (VA — V,AM) T
- i(v-x—v»«) 2882(%% — IXEX))
+ 362(XX XiX;) + @12 X - TEXG) T
+ %%A (FEX; — Mr)ru%%(ﬂx ~XEX)
" 2é836(x% — XX + ; ATy
+432 XS EX)T 3 X =X T

(4.13)

In fact, (4.11) is implied by (4.13). To see this, contract (4.13) with 17 and use the
Einstein equation (3.37), the Bianchi identity, Ritijky = 0, and the condition dX = 0, as

well as the gauge field equations (3.32). In particular:

e The condition dX = 0 is used to derive:
4T128N Xy o as = ViX (4.14)
e The gauge field equation (3.32) in components is
16V/AX; + 4AV' X, + cAT3XT* =0 . (4.15)
e We obtain two equations by multiplying (4.15) by I'; on the left and on the right,
BATNV X + cAMX T4 + 16V,AM X =0, (4.16)
AAV XT; + cA3X T + 16V,AX T =0 . (4.17)
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38 4.2. Integration of KSE

e Subtracting (4.16) and (4.17) implies that

BACV X —V.XT) + cA3(MX — XT) T + 16V,AMX — XM =0,
(4.18)

it follows that
AT a2y Vi X K25 = —c A3 X — AV AT 0 X K099 (4.19)
where the terms in the brackets in (4.18) have been listed in (C.1) and (C.14).
e Adding (4.16) and (4.17) implies that

AAMV X + V. XT) + cA3(MX + XT) P+ 16V,AMX + XM =0,

(4.20)
and from this condition, it follows that
1 ~ 1 -
Arabkak,‘ab = —ECA73F,'XF4 + §CA73X,'[_4 — 4VkAraka,'ab , (421)

where the terms in the brackets in (4.20) have been listed in (C.6) and (C.9).

Hence, it follows that the integrability conditions (4.9) and (4.11) are both implied by
(4.13), which is derived from the integrability condition of (4.7).

4.2. Integration of KSE

In this section, we will explicitly integrate the KSE along the dS4 directions. In this analysis,
we shall show that the KSE reduce to a single gravitino-type KSE acting on a spinor
which is independent of the dS,; co-ordinates. To begin, we shall define a spinor ®, as

follows:

_ A

1 "
= 288X6 - 5varke +acA3Me (4.22)

where a is a constant to be fixed. We have chosen the relative coefficients between X
and dA in (4.22) motivated by the first two terms in (4.11). We shall show that one can
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4.2. Integration of KSE 39

choose the constant a, as well as other constants ki, k>, g1, G2, @3, Qa4, g5 such that

Vi + ki[Eq. (4.11)] + koA 'T'[Eq. (4.9)]
+Q1J»(,’CD + QQX,'qD + Q3CA_4|_,'|:4CD + Q4A_1var,'|_kCD + q5A_1V,-ACD =0.

(4.23)
Details of this calculation are presented in Appendix D. One finds that
1 1 1 1
ki =—1 = —— = — = —— =—— k=qg=q¢g=0. (424
1 a 6 01 5883 (%) 36 as 12 2=0qs=0s =10 ( )
Given this choice of constants, the spinor ¢ is
® = [ oX — ZV ATk — Sa-3F 4.2
(55 — 5sAT — 47T e (4.25)
which satisfies the following equations
icb: Oy v Al‘k+—X+ A ) | o (4.26)
Oxt R| 4 o Tk g 288 '
d = e D(+— AT T + 1X Lo ) o (4.27)
dy? 2\ 288 36 4-Im ' '

These equations are similar, but not identical, to the original Killing spinor equations for
€ (4.3)-(4.4). The differences are in terms of certain signs appearing in (4.26)-(4.27),
which are flipped with respect to (4.3)-(4.4) - in (4.26) the second and the fourth term
with respect to (4.3) and in (4.27) the first and the third term with respect to (4.4).

Equations (4.26) and (4.27), will be particularly useful in the process of integrating up
the KSE along the dS, directions. By using (4.9), (4.26) becomes

0 K K
MCD = —ﬁX r CD — ﬁrue . (428)
By using the definition of ® (4.25), one can rewrite 076 as
0 1 1, .
ae = 7 (4 Tae e o) (29

Applying a second derivative 52 to (4.29), using (4.28) and finally exploiting (4.29) to

cancel R, ® terms, one gets a second order differential equation for €, namely

o 0 K< 0 - K2
oxi xS T AR Ve g € T X ) T TeR2

K
—n,e=0. (4.30)

X, X, € +
VR AR
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40 4.2. Integration of KSE

On defining m by
e=TRz2n, (4.31)

it is straightforward to see that (4.30) is equivalent to
0 0

OxH OxV

n=20, (4.32)
and hence this equation can be integrated to find
n=1v+x 7, (4.33)

where 7, T, with A = 0,1,2,3 are Majorana spinors which do not depend on the x,
co-ordinates.

Given this expression for ¢, i.e.
e=R2(Y+x1) (4.34)

we substitute it into the KSEs (4.3) and (4.4). As the spinors 9, Ty are independent of
the dS4 co-ordinates, on expanding (4.3) and (4.4) order-by-order in x,, we find various
conditions.

In particular, from the KSE along the dS, directions (4.3), the vanishing of x—independent

terms imply that the Majorana spinors 7, are given in terms of 1, as follows:

A 1 -
TIL = ru (%x — Evark — %A_3r4) 'l./} . (435)

The vanishing of the terms that are linear in x, in (4.3) imply
C2 A2 2 2 o~ 1 i
AP —K - —A° - SCATVAMTY — AV AX ) ¢ = 4.
(|V | 5 (144)2X +3C \Y 13 ViAX )9 =0, (4.36)

and we remark that this condition is equivalent to the integrability condition (4.9), but
with € replaced with 1. The terms in (4.3) which are quadratic in x, vanish identically;
this then exhausts the content of (4.3).

Next we consider the KSE along the seven-dimensional internal directions, (4.4). Again,
we substitute in (4.34) and expand order-by-order in dS4 co-ordinates. The vanishing of
x—independent terms gives

e (Lo s Cparra Ly
V,w—(288%,+12A rr 36X’>'¢" (4.37)
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4.3. Counting the supersymmetries 41

The above equation (4.37) implies that 9 satisfies a gravitino KSE along the internal
directions, which is identical to the condition (4.37) but with € replaced with .

From the terms in (4.4) which are linear in x, we obtain

. hkhy J1J2J3a
rJ1J213 X Uah b X

A 1 A A
L UX - IVVATK X2
[288V X =G ViViAT + 75 TiX + e

A A
— 35! @K X = =T,
L L AT X 2 AT T X PO
864 / 432 ' 144  b7rimpa

1 L 1 5
+ inAI_,MkaJUM + Evar bX,' k ab

hbky J1J2J3)4
XJ3J4/1/2X

€ ke Fa L L acao aral
SATVIATHT T + A V,Ar]w_o (4.38)

which is identical to the integrability condition (4.11), with € replaced by 1. This then
exhausts the content of (4.4).

Hence, we have shown that the spinor € is given by

€= R’%('(/J + X)) (4.39)
where
B A 1 kK Ca-3ra
T = r)\ (@X — EV,(AF — EA [ ) 'lﬂ . (440)

The Majorana spinor 1 is independent of the dS, co-ordinates, and satisfies (4.37). Fur-
thermore, 1 must also satisfy the algebraic conditions (4.38) and (4.36). However, as we
have shown in the previous section, the integrability conditions of (4.37), together with the
bosonic field equations and Bianchi identities, imply that (4.38) holds. Furthermore, we
have shown that (4.38) also implies (4.36). Hence, the necessary and sufficient conditions

for supersymmetry are encoded in (4.37).

4.3. Counting the supersymmetries

Having determined that the necessary and sufficient conditions for supersymmetry are given
by (4.37), we shall now count the number of solutions to this equation. In particular, if ¥

satisfies (4.37), then so does I',,2%. We choose a null basis for the Majorana representation
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42 4.3. Counting the supersymmetries

of Spin(10,1) and take the dS4 frame directions to correspond with the +, —, 1, 1 directions,
see Appendix B. The frame directions associated with the internal manifold M; correspond
to the 2,3, 4,2, 3,4, # directions.

With these conventions for the de Sitter and internal manifold frames, we define light-

cone projection operators as

1
Pe=5 (£, ), (4.41)
where [, = %[I}, _]. As the projection operator P, commutes with the supercovariant

derivative (4.37), we then decompose the spinor v using the lightcone projectors and we

define 11 to be

Without loss of generality, utilizing these projection operators, any supersymmetric
solution must admit a positive chirality solution ¢, to (4.37). Given such a ¥, spinor, we

can then define

”ﬁ+ = i394
Yo = T (Mi+T)9y
B o= MM T, . (4.43)

4. is an additional positive chirality solution to (4.37), and {v_, 1/3_} are two negative
chirality solutions to (4.37). {¢, Vo, P, 1/3_} are linearly independent, as by construction
they are mutually orthogonal with respect to the Dirac inner product { -, - ).

It would therefore appear, a priori, that the number of supersymmetries is 4n. However,

there are, in fact further additional spinors. To see this, note that (4.27) implies that

g A 1 C ~
P, =1 +T7) <@X — 5vark — 6A3r4) Yy, (4.44)

is also a positive chirality solution of (4.37). Furthermore, it can be shown that {4, , 9., 9}

are linearly independent. To see this, suppose that

~

v, =y, +icl 19, (4.45)

for real constants c¢;, ¢;. Acting on both sides of this condition with the operator (I'; +

1) (555X — AV ATk — £A-374), and utilizing the integrability condition (4.36) to simplify
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the LHS, we find
K 2 2
SV =(F+ S, (4.46)

where we have also used (4.45) to simplify the RHS. It is clear that this admits no solution,
as K > 0. Hence, we find that we can construct four linearly independent positive chirality
spinors which solve (4.37), corresponding to {1, ¥, ¥, .}, where 9, = il179. There

are also four corresponding negative chirality spinors given by {¢_, oD, 1[3,}, where

<

Yo =T (T + TPy, Yo =il . (4.47)

Hence we have constructed 8 linearly independent solutions to (4.37),

ST I I I I (4.48)

and it follows that the number of supersymmetries for warped product dS4 solutions is 8n,
n=1,2734.

We remark that the existence of the additional spinors 'dji, ’<Zi Is somewhat analogous
to results found in the analysis of near-horizon geometries of supersymmetric extremal
black holes [45] and also for warped product AdS solutions [61]. In these cases, given a
Killing spinor, one also finds that additional Killing spinors can be generated by the action
of certain algebraic operators constructed out of the fluxes of the theory. For the case of
near-horizon geometries, and for warped product AdS, solutions, the construction of such
operators relies on global properties of the geometries via generalized Lichnerowicz type
theorems. However, for warped product AdS,, (n = 3) solutions, one can also construct the
additional Killing spinors algebraically using purely local constructions somewhat analogous

to the de-Sitter analysis.
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CHAPTER b

SPINORIAL GEOMETRY TECHNIQUES FOR dS; KSEs

In this chapter we shall use Spin(7) gauge transformations to bring the spinor 1, to one
of several simple canonical forms. We will describe the gauge transformations used to do
this explicitly.

We consider the 32-dimensional space of Majorana spinors Az, (see Appendix B). The
most general form of a positive chirality Majorana spinor 1, € As> can be expressed by

using (B.7), i.e.

_ - . 1 -
P, = wl+ wepzg + >\1e1 + >\16234 + >\J€J' — §<*>\)/1/2/3e/1l2/3

1 _
+ Q%14 — EQqsq e
(5.1)
with [, g, m,m = 2,3,4. As the action of SU(N) on CP"~! is transitive, one can apply

a SU(3) gauge transformation in the 2,3,4 directions to set, without loss of generality,
B =0*=0,le.

_ . 1 _ _
'l/}+ =wl + We1s34 + >\1€1 + >\1€234 + Nej — a(*)\)/lbbe/l/z/3 + 9612 — Qe34 . (52)
To proceed further, we define T, 72, T2 as
1 I I
T, = §(F34 +T33) To= §(r34 —T33) T3=TiT, = §(r3§ +4) - (5.3)

1Generally, the complex value Q2 can be set to be real with the same SU(3) transformation used to
set 2% = Q% = 0. It does not happen in this specific case due to the fact that Q2 will be promoted to be
complex value in the next gauge transformation.
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46 CHAPTER 5. SPINORIAL GEOMETRY TECHNIQUES FOR dS,; KSEs

It is straightforward to verify that T/ with / = 1,2, 3, which satisfy the algebra of the

imaginary unit quaternions, preserve the span of the following basis elements

%1 (1 + e1234) Vo = i(1 — e134)

V3 = (612 — 634) Vg = /(612 + 634) (54)

and we remark that the Spin(7) gauge transformation generated by the T; is of the form
p*id + p'T; where (pt, p?, p3, p*) € S3.
Then one can carry out an SO(2) gauge transformation generated by T3 to set w € R.
So far, the spinor 1, can be written as
_ . 1 _ _
P, = W(]. + 61234> + >\1€1 + >\16234 + Nej — a(*}\)hb%ehb% + Qen — Qesy . (55)
An SU(3) gauge transformation generated by /(' — %I}g - %I’M), which leaves {1, €034}
invariant, is then used to set 2 € R, so
1

3l (+X)"5ep s + Qe1r —e34) . (5.6)

’l/}+ = W(]. + 61234) + >\1€1 + 5\16234 + >\fej —

We next exploit an SO(2) transformation generated by T3, acting on v; and v3 to put
Q = 0. Then, we make a further SU(3) gauge transformation along the 2, 3, 4 directions
toset A2 =X =0 with A2eR, ie.

’ll)+ = W(]_ + 61234) + >\1€1 + 5\16234 + >\2(62 — 6134> . (57)

In order to simplify further the spinor 4., we shall introduce additional Spin(7) generators
L1, Lo, L3 given by

L= \/%rﬁ(rz +Ts), L= \L@rﬁ(r2 S Ts), Ly=Lilo =il . (5.8)
The L; also satisfy the algebra of the imaginary unit quaternions, and commute with the 7;,
and the Spin(7) gauge transformation generated by the L; is of the form g*id + ¢/L; where
(q', 4%, ¢%, q*) € S3. We shall then consider a generic gauge transformation generated by

the T; and L; of the acting on the spinor (5.7) of the form
(p*id + p'Ty) (g*%id + ¢'Lj) ¥ . (5.9)
We set g° = ¢® = 0 and ¢! = sino, g* = coso, such that
W2 cos 20 + %sin 20(w? — (N2 — A1) = 0 (5.10)
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and

pt = €Re(AY)sino, p? = —€im(A\Y)sing,

p® = 0, p* = £(wcoso — N’ sino) (5.11)
where the constant £ is chosen such that (p!, p?, p3, p*) € S3. With this choice of para-

meters, the gauge transformation given in (5.9) can be used to set A> = 0 in (5.7), so the

simplest canonical form for the spinor 9, is given by

P, = W(l + €1234) + Xej + ;\6234 weR, NeC. (5.12)

5.1. Stabilizer Group of ¥

It is useful to consider the stabilizer subgroup of Spin(7) which leaves 1 invariant. In
particular, we must determine the generators f’fl',j, where f7 € R are antisymmetric in

i, J, and satisfy
FIlay =0 =% ada. (5.13)
The conditions obtained from (5.13) are

2wl = \2XNf#Pe; P
AP = 2w f#Pe,; %P
f = 0. (5.14)

Depending on w and A, there are two possible different stabilizer subgroups:

(a) if w? — |2 # 0 then (5.14) implies that fog = 0, fio, = 0 and f*, = 0, that is
f € su(3), hence the stabilizer is SU(3). The stabilizer subgroup is generated by I ,5
for a # 3, together with /("7 — ) and /(M7 — M33).

(b) if w2 —|X\]2 = 0, then (5.14) implies that f € go. In particular, the spinor ¥, has
a 3-form bilinear ¢ which is the canonical G, invariant 3-form given in (6.53). The
stabilizer group is generated by the eight SU(3) generators listed above, together

with the additional 6 generators

1 i . aB —i¢ . o
{20y, + 205 + \—@(e Ce,Tag + 7€, Tap),
/'

NG

2iTy, — 2iTy5 + (efCep&Br&B — e e, op)} (5.15)
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for p = 1,2, 3, and we have set A = e’“w for real (.

In the SU(3) stabilized case it is particularly useful to consider the complex SU(3)
invariant spinor bilinear scalar (1., 1%.) = 2¢/2wX. There are various different cases,

corresponding to whether this scalar vanishes, or it does not vanish:
(i) w#0, A=0,

(i) A#0, w=0,

(i) w#0,Xx#0.

In fact, it is straightforward to see that the spinors associated with cases (i) and (i/)
above are related by a Pin(7) transformation. To see this, consider the spinor from case
(i1),

Y, = e + ;\6234 . (516)

The Spin(7) gauge transformation generated by L3 produces a SO(2) which acts trans-
itively on {e; + ex34, I(€1 — €34)}, and hence without loss of generality we can set 9, =
(e + ex3q) for A € R. Next, note that

Moza(€1 + €234) = —(1 + €1234) . (5.17)

It therefore follows that the spinor 1, in case (ii) is Spin(7) gauge-equivalent to a spinor
which in turn is Pin-equivalent, with respect to x34 € Pin(7), to the spinor in case (i). The
effect of the N34 transformation is to flip holomorphic with anti-holomorphic directions

and to reflect along the # direction, namely
a — & . H > —F (5.18)

It is therefore sufficient to consider spinors 4, corresponding to the G, stabilizer case,
and the two SU(3) stabilizer cases (i), (iii). Having determined the stabilizers associated
with these three canonical types of spinors, we next proceed to obtain a linear system of
equations by substituting these expressions for ¢, into (4.37). The linear system consists
of relations between the flux and spin-connection, which when covariantized with respect
to the appropriate stabilizer group, give rise to conditions on the flux X and the geometry
of the internal manifold M. In the following sections, we shall present the covariant

solution of the linear system for each of the stabilizer subgroups.
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CHAPTER 6

SUMMARY OF SOLUTIONS OF THE LINEAR SYSTEM

In this chapter, we shall solve the linear system obtained from the Killing spinor equations.
In particular, we shall show that the linear system implies that there are no Killing spinors
for which the stabilizer of 9, is G,. For the case of a SU(3) stabilizer subgroup, the Killing
spinor equations determine all components of the 4-form flux in terms of the geometry of
the internal manifold, and we determine the geometric conditions and the components of

the flux, written in a SU(3) covariant fashion.

6.1. SU(3) Invariant Spinor

In this section, we solve the KSEs (4.37) when the stabilizer of ¢, is SU(3), corresponding

to
P, = W(1+€1234) + Xeg —1—5\6234 weR, NeC, (61)

for w? — |A|2 # 0. We begin by considering the case for which both w and X are non-
vanishing. Furthermore, we will write A\ = pe’®, where p > 0 and 6 € [0, 27| are two real
spacetime functions. The associated linear system and the components of the flux are
presented in Appendix E. The linear system is initially expressed non-covariantly in terms
of SU(3)-components of the spin-connection and the fluxes, but, it can be rewritten in
SU(3)-covariant form by using the SU(3) gauge invariant bilinears. In Appendix F we set

out the main relations which are used to write the relations in a manifestly SU(3) covariant
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50 6.1. SU(3) Invariant Spinor

fashion, in terms of the following SU(3) invariant bilinears:

. 5 1
£ =e? w=—if56* n e, X = geame"‘ AP el (6.2)

The above forms are obtained from the following SU(3)-invariant spinor bilinears:

Wi Tab)e® = —2(w? — [AP)E (6.3)

W Tl n et = 2w AP (6.4)

%@/4' (M1 4+ M) Mapcpiye® ne? net = 2iw(A = Né A w
+ 4(w? = 2N)x +4(w? - X)X
(6.5)

where a, b, c = o, &, #. There are also several Spin(7) invariant scalar bilinears, such as

(b byy = 2w+ [AP)
Wi, (M + Ty = 2V2w(h + X)
@i 1T =T = 2V2iw(=A+X) . (6.6)

When we later covariantize the conditions on the flux and the geometry, there are various
polynomials in w? and |A|? which can be rewritten in a manifestly gauge-invariant way in
terms of these gauge-invariant spinor bilinears. In terms of spinor bilinears, a complete set
of gauge invariant spinor bilinears completely encodes the algebraic properties of the spinor,
modulo appropriate gauge transformations. This was utilized in the initial classification of
supergravity solutions [19—21] prior to the development of spinorial geometry techniques.
We remark that (6.3), (6.4), (6.5) and (6.6) do not constitute a full set of spinor bilinears.

In constructing the solution to the linear system (E.2)-(E.13), it is convenient to make

use of the two Lee forms built from x, and w, which are
Z,' = (ijj‘k/))_ckl,' ) \/V, = (Vfwjk)wk,- . (67)

Furthermore, we use L£¢T to denote the Lie derivative of T along the vector field which

is dual with respect to the metric on M5 to the 1-form &.
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After some computation, the SU(3)-covariant conditions involving the warp factor A

and the geometry of M; are as follows (here /, j, k = #, a, & are frame indices on M;):

I_ 6&/ -
Ve, —m[w@wz +3AP)(dw); + (3w + 2A2)Re(AdX) |
e _ £kﬁm(>\d5\)k
\Y £qu,-j = —CcA 4 6W2VV4——|>\‘4
) ik gl < (2w + 2|\ * + 11w?|A]?)
Xijk(LeX) 6§ [>‘ (W2 + A2 (w2 — [AR)? (dA)

(Tw* + 4" + 4w?|A?)
(w2 + [AR)(w? — [A2)?
(2w? + 3|A]%)
(w2 —[A[2)2

(dX);

+

(d W)/] — 4icA™

: ik _ i[5 (O + AP
ik (dw) = 9V2¢ [Am(dW)/ W(Wz — [A]2)?

2w
* S e )

ﬁli

(d€) i = WP WX(dA)k — W(dX)k]

AP A7

4
7=——|w?dlo W2iggw — ——
W2 — N2 9p -+ Wiiew — =

1 1 1 '
W= ‘§W2——|x|2lw<w2—4rx|2> (dw — £(dw),€)

+ (5w? + 4N (d log p + igew — €(d log P)Jgj)

o1

(w? + 4|A%)

| dw + ¢ <>\7(dw)j — w?(dlog p);

(6.8)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)
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11 _
+ (W? 4+ 2|\P) (&(dlog p)& — dlog p — iggw) (6.15)
2 2 2
Xm/[,'(d£>mn)_(j]n/ = %CA_ALW,‘J‘% + 2wijwél‘/ngkjm(>\d;\)k (616)

8IAP(5w? + |A2)dw + 4wdp?(w? + 5|A?) + 8wp? iggw(w? — |A[?)

—&'[BIAP(5W? + |A]P)dw + dwdp*(w? + 5|A]?) + 8wp” igew(w® — [A]?)]. =0 . (6.17)

; =

We also obtain a SU(3) invariant expression for the flux X. In general, any real 4-form

on M7 can be written as
X=e® AY+wro+Brx+Brx+X"T (6.18)
where
e 0 is a real two-form;
e (3 is a complex one-form, and (3 is its complex conjugate;
e Y is real 3-form;
e XTT is the traceless (2,2)-part of the flux.

We remark that X' T is the only part of the flux that is not fixed by the linear system.
However, a traceless (2,2) 4-form in 6 dimensions vanishes identically. To see this, note
that XTT is dual (in 6 dimensions) to a (1,1) 2-form R, R = %X ''. Furthermore, by

definition
R - = g = b1b2b3b4XTT _ lg _ [1,11.1,2171172XTT
(o7 4| 076} bibobsbs 4 af Wip2P102
i 31
_ L, o _piueyTT _ Buip2 ' TT vive _
- 4€a €3 XuluzDu?z - 4 5041/11/2 Xuluz =0 (6'19)

as the contribution from trace terms in the final term vanishes. Hence R vanishes identic-
ally, and so X7 = 0.
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6.1. SU(3) Invariant Spinor 53

It follows that the flux can be written as
X=e"AY+wroc+BAX+BAX (6.20)

where all of these terms are fixed by the Killing spinor equations. In particular, the com-

ponents of the real 2-form ¢ and of the complex 1-form 3 are given by

(WP
ojj = _(W2 R (ﬁﬁ‘ﬂ)/j
2w, : [w(w? + 2AP)(dw)e + (202 + [AP)Re(AdR)]

(W2 = AR) (w2 + |A)

(6.21)
Aw _ - 32+ IAP)
i = —3V2——7y : Wil t+ sy TN kji
B \/§(W2 — P‘P) [(E’EE): +1 ([’SE)JWJ ] + > (W2 — ’>\|2) <d£> Xkj
(w4 4w AP+ A Ko
’(Wz — IAR) (w2 + [AP) (Lew)™ Xeji - (6.22)
The real 3-form Y has components
Y,'J‘k = quy; I(d(,U)J'k]/ + ((,d A V)Uk + hXijk + f_l)_(,'jk (623)
where g and h are functions, and V is a real one-form, given by:
WP
q= 3<W2 Ve (6.24)
w2 —AP)
Vi = St (Leg); 2
(W2 + P\,Q)w (Lﬁg)J (6 5)
342 £k w3 W2 -
h = A(d ————(dX ————(d\
2wy N G i e G g
I _ii
quJk(dw)ijk : (6.26)
6.1.1. SU(3) Invariant Spinor with A =0, w # 0
Next, we consider the special case of the SU(3) invariant spinor
Yy = w(l + ernsa) weR, w=#0. (6.27)

33



54

6.1. SU(3) Invariant Spinor

The SU(3) covariant geometric conditions involving the warp factor and the geometry of

M; which are obtained from the linear system are:

(dw)®? = (dw)©®® =0
d(w*¢) = —%A“‘ww4

)_(Uk (‘Ciw)jk =0

Zi = —20(wtdw); + 20&;¢5(wtdw),

W; = 8(wtdw); — 8¢:¢X(wtdw),

Jm ()_(ijk(ﬁg)(),‘jk) — 4-CA_4 =0

V¢ = —126w (dw)

ViEfw/j = —CA_4 .
The flux X can be expressed as

X=e"AY+wno

with
0 =—w Le(ww)
and
Vi = —=3wp; ' (dw)jug + (W A V)i
where

(6.28)

(6.29)

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)

(6.35)

(6.36)

(6.37)

(6.38)

(6.39)
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6.2. G, Invariant Spinor

In this section, we shall consider the case when the stabilizer of 1, is G, corresponding

to the case
'Lp_;,_ = W(l + 61234) + >\€1 + 5\6234 welR, AeC, (640)

with w? = |\]2. We shall show that this orbit admits no solutions to the Killing spinor
equations and the bosonic field equations. To establish this result, we set A\ = e’“w, where

¢ is a real function. The geometric conditions we obtained by solving the linear system

are:
dw=d( =0 (6.41)
Q=0 (6.42)
o C a4
Qpo® = iZA (6.43)
Q#’aﬁgaﬁ'y _ \/§€/C Q#'#’Y (6.44)
Qﬂ’aﬁgaﬁw _ \/E el¢ Qﬁ,# it (6.45)
20570 — /2 ey o + /'\f?%e_iCA_%ﬁ "=0. (6.46)

Furthermore, we find that all of the components of the flux X vanish,
X=0. (6.47)
As X = 0, the integrability condition I [V;, V,] ¥, from (4.11) implies that
1 Kk, €4 4 C oaa k 4
[ — SVIVIAT 4 ZATVAT - S AVATE ]¢+ ~0. (6.48)
Multiplying (6.48) by I';, we find
1 K K C -4 =4
| - SVIVIAGE + T/ %) + S AT TAT T
—1—C2A’4V;<A(I', k,’ + 6,k|_, — 6/,‘|_k) |:4]’l/}+ =0. (649)
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We next take the inner product of (6.49) with 1., noting that the anti-hermitian terms

vanish identically as ¥, is Majorana. The hermitian part gives
1 C -4 k 4
<I¢+: [ - _V,‘V/A — —A var/ ,F ]’l/}+> = O . (650)
2 12
The symmetric part of (6.50) then gives
V,‘V/AH’I!)_,_Hz =0 = V,‘V/A =0 , (651)

and the antisymmetric part of (6.50) implies

—1—C2A*4va<¢+, e,y =0 (6.52)

The 3-form spinor bilinear in (6.52) is proportional to the Go-invariant 3-form ¢ given by

0 =e? Aw—2ivV2Im(ex) , (6.53)
Vpas = —1045 Oapy = —IV2%0p, = (0sp7)" - (6.54)

Hence (6.52) implies that
(p,,—kaA =0 (655)

which in turn implies that dA = 0, so A is constant. However, from the Einstein field
equation (3.36) we obtain
A

_ 1
BKAT = VV'A=BATIVAVIA+ 2CPAT + 72 X2 =0 (6.56)

It is clear that this equation admits no solution in the case for which A is constant and X =
0, as the LHS is strictly positive. Therefore, we conclude that there are no supersymmetric
warped product dS,4 solutions for which the spinor 9, is G, invariant.

It follows that all warped product dS; must lie within the SU(3) cases. We have
previously considered the maximally supersymmetric solution AdS; x S* as the near-horizon
Mb5-brane limit, and showed that it is a warped product dS,; solution. In fact, the half-
supersymmetric M5-brane geometry is also another example of a warped product dS,
solution. To see this, note that one can write R'* as a warped product dS, solution as

follows:

2
1
ds2(RM4) = %nwdx“dx” + dZ (6.57)
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where R is given by (3.2). It is straightforward to show that the Riemann curvature tensor
of (6.57) vanishes, so the metric is locally isometric to that on RY*. On embedding R'*
into the R*> which appears in the M5-brane metric, it follows that the half-supersymmetric
Mb5-brane also is warped product dS4 solution. Furthermore, one can also write AdSg as
a warped product R** geometry, and consequently also as a warped product dS,4 solution.
Consequently, the warped product AdSg solutions found in [61] also provide examples of
warped product dS, solutions preserving N = 16 supersymmetry. We remark that although
a non-existence theorem for warped product AdSg solutions in D = 11 supergravity was
established in [62], this theorem assumes a smooth warp factor and a smooth and compact
without boundary internal space. For warped product dS, solutions we do not assume such
global properties, as we wish to evade the no-go theorems. Hence warped product AdSe

solutions, which are also warped product dS; solutions, can arise in this context.
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CHAPTER [

CONCLUSIONS AND FUTURE WORK

We have obtained the necessary and sufficient conditions for warped product dS; x,, M7
solutions in D = 11 supergravity to preserve the minimal N = 8 supersymmetry. To do
this, we first integrated explicitly the gravitino equation along the dS, directions. This
reduces the conditions imposed by supersymmetry to a gravitino-type equation on M;
acting on a Majorana spinor 1., whose components depend only on the co-ordinates
of M;. Using spinorial geometry techniques, the spinor 1, was then simplified to two
possible canonical forms by Spin(7) gauge transformations. These two canonical forms
have stabilizer subgroups corresponding to G, and SU(3). In the G, case, we show that
there is no solution to the Killing spinor equations. For the SU(3) case we have determined
the 4-form flux in terms of SU(3) invariant geometric structures on M; (6.20)-(6.26)
(6.36)-(6.39), as well as determining all of the conditions imposed on the geometry of M;
(6.8)-(6.17) (6.28)-(6.35). In particular, the geometric conditions, a priori, appear rather
weak, though in the case of the SU(3) invariant spinor with A = 0, the conditions on the
SU(3) structure simplify somewhat, to imply for example that dw has vanishing (3, 0) and

(0,3) components.

Having obtained these conditions for the N = 8 solutions, it would be interesting to
further investigate the resulting (local) conditions on the geometry. It would be useful to
determine if they could be used, for example, to construct some useful set of co-ordinates
for M. It would also be interesting to consider the N = 16 case, as well as the N = 24 and

N = 32 cases. In particular, for the latter two cases of N = 24 and N = 32 supersymmetry,
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it is possible to find further conditions on such solutions utilizing the homogeneity theorem
analysis constructed in [63]. To proceed with this, suppose that there we have N linearly
independent solutions {¢" : r =1,..., N} for N = 24 or N = 32 to the gravitino equation
(4.37). We then consider the integrability condition (4.36), which implies

IVA? — K — Cpo A X4 2AVANT - Zavax Vur =0 (7.1)
9 (144)2 3 : 18" ' S '

This implies that

(T Tl VAP — K — Cae A X
o 9 (144)2
2 . 1 i
+§CA‘3V,-AF’F4 — 1—8AV,AX )¢5> =0 (7.2)
and hence
", Tol"PHV,A=0 . (7.3)
On defining vector fields ©7° = (3", ['o[j9°), this implies
Cﬁ@rSA =0. (74)

For N = 24 and N = 32 solutions, it follows from the homogeneity theorem analysis

of [63] that the ©" span pointwise the tangent space of M7, and hence
cdA=0. (7.5)

If ¢ # 0, then this implies that dA = 0. However, (6.56) implies that there are no solutions
for which A is constant. Hence, for N = 24 or N = 32 solutions, we must take ¢ = 0.
This determines all possible N = 32 warped product dS, solutions. From [58], where all
maximally supersymmetric solutions in D = 11 supergravity were determined, the maxim-
ally supersymmetric solutions are R0 with F = 0; AdS, x S’ with 4-form F proportional
to the volume form of AdSa, AdS; x S*, with 4-form F proportional to the volume form
of S*, and a maximally supersymmetric plane wave solution which has F # 0, but F2 = 0.
In terms of possible N = 32 warped product dS,4 solutions, the condition ¢ = 0 implies
that F2 > 0 with equality if and only if F = 0. Hence we exclude AdS, x S’ and the
maximally supersymmetric plane wave as N = 32 warped product dS, solutions, because

the AdS, x S” solution has F2 < 0, and the maximally supersymmetric plane wave solution
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CHAPTER 7. CONCLUSIONS AND FUTURE WORK 61

has F # 0, but F?2 = 0. It follows that the N = 32 warped product dS, solutions are
R0 and AdS; x S*. In particular, it is possible to explicitly write both RY* and AdS-
as warped product dS, geometries, as in (6.57) and also [40]. It would be interesting to
further understand the possible N = 16 and N = 24 warped product dS4 solutions, though

the homogeneity theorem does not apply to the N = 16 solutions.
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APPENDIX A

CONVENTIONS
We use the mostly plus sign signature n = diag(—, +, . . ., +). The gamma matrices satisfy
{Ta e} =294 . (A1)
In these conventions, we take
[01234567804 = 1 , (A.2)
and consequently the following duality relation holds
CaA, = (—1)Wﬁ€Al._Ap A”“"'A“|_A,,+1,__A11 , (A.3)
where
€0123456780% = 1 . (A.4)
The Hodge star of a p-form w is defined by
WA Ay, = %€A1__An_p Br-Bruwg, g, . (A.5)

For every k-form w, one can define a Clifford algebra element ¢ given by
90 = WA A I'Al"'Ak . (A6)
In addition, one can define

(/IC = wCAl,__AkFAl'"Ak , and %C = I—CAl_,_AkwAl"'Ak . (A?)
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APPENDIX B

SPINORS FROM FORMS

The Majorana representation of Spin(10,1) can be constructed from the Spin(9, 1) spinor
representations and then adding the tenth gamma matrix [',. This construction is derived
in an explicit representation, in terms of differential forms, in [47,48], see also [55,56]. We
take the space U of 1-forms on R®, with basis {ey, ..., es}. The space of Dirac spinors,
A = N*(U®C), is identified with the complexified space of multi-forms constructed from
this basis. A is equipped with a canonical Euclidean Hermitian inner product { -, - )

We then take the following representation for the gammma matrices:

[on = —es AN+ /65?7 [sm=es AN+ /6577
fm = eAn+ign i=1,..., 4
Fisn = i(ej An—lem) (B.1)

where m € A. and f, is the inner derivative along the direction e;. The tenth gamma matrix

can be chosen as

l_# = _r0123456789 : (82)

One can verify that Fi = I. The gamma matrices satisfy the Clifford Algebra, namely
Al g + gl 4 = 2n4agll. The Hermitian inner product, acting only on 1-forms, is defined
by

(2%, whep) = (2°)* napw” (B-3)

and is then extended to the complexified space of multi-forms, A..
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The gamma matrices are chosen such that [ is skew-hermitian and ;, i =1, ..., 9
are hermitian with respect to { -, - ). The Spin(10, 1) invariant Dirac inner product is
defined as

D(n,6) = (Ton.0) . (B.4)

In eleven dimensions a spinor can be Majorana; the reality condition is

N* = Te780M | (8-5)

where C = [4759 Is the charge conjugation matrix, and C+ commutes with the gamma

matrices, i.e. Cx[ 4 = 4Cx . The Dirac representation of Spin(10,1) admits an oscillator

basis as
M= 5(Ma—To)=vZesn Ta= b (Ta—ilars) = V2ea n
M= 5(Ms+T0)=V2i, Mo =5 (Ta +iTays) = V20, (B.6)

and Iy defined as in (B.2). In this oscillator basis, the gamma matrices satisfy the Clifford
Algebra, ['al'g + 'gl a4 = 214, with non-vanishing components are n,_ = my = 1,
Nag = Oof-

We note that (M,)T = T_ and ([,)" = Is; (T, %) act as creation operators on the
Clifford vacuum represented by the 0-degree form 1, where I = n*Bl'5. A general spinor

€ can be written as

5
1 .
e=) =5 3 a=+a. (B.7)
k=0 "

68



APPENDIX C

USEFUL RELATIONS

In this appendix, some expressions used to compute Egs. (4.9), (4.11), (4.38) are shown.

X —Xr, = 8X;, (C.1)
XX+ XX; = —12r kXX, o, (C.2)
PX; = TiX—4X;, (C.3)
XP = —7orhkklex X4 04X2 (C.4)
XEXG + EXiX = 240 (T(iXopia XM = T " X XM722)

= ABT X2 — 1921 X jus X2 — 144 T ;) "2 Xy p XTI
+ 96T X X (C.5)
X+ XiTe = 672X, | (C.6)
CEEXG + EXGTY = 10T [y O X = 261X — 8Ty XIU25H (C.7)
XTim _pimy = 16T, [m(jﬁxjuzfm , (C.8)
XM+ X = 28X, (C.9)
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APPENDIX C. USEFUL RELATIONS

XX — EXW X, =

/D(Il—k - rk J»(l
MkX/ - XI /w(k
EX™ = TEX,
rkX/_X/rk
Xy — X Im"
XIX/( - XkX/

32" . J1J2/3Xk ’1’2’3X,, L 96r/ ’1’2]213J3Xk, i XJl L
J1J2J3 J1i1i2 J2J3J3

i1i213

hjoj3y . .. XI5 . L RBYhRBAY
144rk/ X’1/211J3X J2J3 T 96rklll2l3 X X/J11213

48Fk/X2 + 192|_/j3ijljzj3XJ‘U'2j3j3 — 576|_,1 j3Xk jlijUy'U‘Q

1920 e X2 X

= =20 ki X254,

=TT B X X R A 48T XAEBA X B
— apxtng 4 16r, I, xmlies

= 20 i X 125

— 12rlm

Xk n]ilfg .

iz
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APPENDIX D

DERIVATION OF EQUATION (4.23)

Given the spinor ® defined in (4.22), we consider (4.23). In particular we begin by ex-

amining the following terms:
Vi + k|Eq. (4.11)] , (D.1)

where ki, ko are some constants to be determined. To begin with, note that the terms

which are linear in X are:

A 1 (12a+1—4k) 1 3 ~y
1+ k)=—=V; —V,A AT XT
(14 k) gg Vik + gog ViAX + 2 EA
(bky —1—18a) , 5y =4 1, 1 P
A I — —V" Al —V A2 X
130 AKX - g VAT + eV ok
(3 + 4ky) ky o
4—8VkAFabX,-kab + inAF,ﬁij"J J2hs (D2)
In order to set to zero the term involving VX, we set k; = —1. Having done so, we then

consider imposing the condition

V,® — [Eq. (4.11)] + kATT'[Eq. (4.9)] + ¢iFX;® + g2 X;®
+qzCATHT T + ATIVATTFD + gs A1 V,AD = 0, (D.3)
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72 APPENDIX D. DERIVATION OF EQUATION (4.23)

and compute all of the terms on the LHS, choosing the constants a, k», g1, >, 93, G4, G5

so that the identity above holds. The terms involving the quadratic contribution of X are

4k, +1 — 288¢q

A [( : 1152 1) rl1 b 12 Xj3j4/1 b XLl
(288q1 — 72g, — 3) L
1728 [ i b X ifahh X

(8/(2 — 288(]1 — 72C]2 — 1)
576
(3 —288q; + 72g0)

864

(1+ 4k, —288qy) 1
12 288

rameimqupq ab — I_/')<2

C Xinii Xjuy'm} .
(D.4)

The terms involving the linear contribution of X are

(1 —288¢1 + 2q4 + 27s) (12a+ 5+ 12g5 + 3456aq;) 1
A

576 ViAK + 12 288
288q; — 24 — 1 1+ 24q, — 96
( G vharx + i VG, AT X,
(8/(2 —1- 2886]1 — 72(]2) k ab (1 + 4k2 — 288(]1)

48 VAT Xikab 72

(6 + 18a + 1728aqg; — 432¢,a)

- 13 CATIX, T . (D.5)

CA73[_,‘Xf4

VAT iy X 25

The terms involving no contribution of X are

1 ~
571 — 16k — 24aq, + 12g3) cA™*VFAM T

1 _
+ E(16k2 — 7 —36a— 12q3 + 24aq, + 12aqs)cA™"V,Al*

1 1
+ (ky — §q4)A’1|VA|2I',- — ko ATIKT; — §q5A’1VkAV,-AI'k

1
— %(351 + 4ky + 36qza) AT .
(D.6)

By requiring that all terms in the above expressions should vanish, we are able to determine

the constant values, that are

1 1 1 1

d=—¢ B=555 B=—3 B=-7;

5 = 88 36 ko =qs=¢q5s=0. (D-7)
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APPENDIX E

KSE LINEAR SYSTEM - SU(3) STABILIZER

The linear system associated to the KSEs (4.37), with the spinor given by

Yy = w(l + e13q) + Aer + Aeosa weR, XeC (E.1)
is as follows:
w 1 c V2o
a#W + EQ#Q + QWX IEA 4W — ?AX#Q:M =0 (E2)
A . 1 N V2 c
(9#)\ + EQ#'O‘ — 4 >\X [—36 + ?WX#234 — 12/4 4)\ =0 (E3)
2
WQ#’O@E:’YOLB — \6>\Q#'#’y + \/?7>\X#a Y+ gX’y s =0 (E4)
_ A
AEWQﬁQ#aﬁ — \/EWQ#’# — %X#a — §X’y 234 = 0 (E5)
1 a 1 a
@LW + EWQN'Q — ZWXM#OC =0 (E6)
1 1 3
A+ 520 + T A K = 0 (E.7)
w_ Ne
(’}“W - EQMY& - 12X#p.oz - ?Axﬂggz =0 (E8)
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74 E.1. Solution for A # 0, w # 0

Ao, 1o o V2
é’,)\ EQM’Q + E)\X#ua + ?WX;Q?Z =0 (Eg)
w w V2
W0 = V2" = S Xpap — S € Ko * + e P X pom = 0
(E.10)
\@_ o w 5\\/5 a
w8l " — A g o + £ WP[EX#ZEZ ~ g Ka s”°
2 - 2_
+/C;—§AA‘4] - %xgwaxﬁaﬁﬁ =0 (E.11)

_ A A 2
A ape™ = V2w " + T Xpap + 56" Xipoa = £W€ﬁ Y Xppza =0

6
(E.12)
2 2
>\Qn, Yo __ %W‘EwpaQn,#a + &g 'yp[\;rWXa aﬁﬁ
C\/?2 A 2
+I—£WA4 — gX#§§1:| + %Wgwpaxﬂaﬁﬁ =0. (E13)

E.1. Solution for A #0, w # 0

From the linear system (E.2)-(E.13), we find that the components of the flux are given

by the following expressions

a 3 Y Y
X#a T = —W2 — |>\|2 [\/iW)\E:’Y 69#'0@ — (W2 + |>\|2)Q## ’Y] (E14)
3 o
Xryg34 = WZ——P\P [2\/§>\WQ##W — (W2 + |>\|2)Q#'aﬁ€fy 5] (E15)
1 3 3 3 C
X = | =AW — WO — —=WAQu o * + i —=A"*Aw| (E.16
o= o e g e iz A | (16
Xao %" o 0 A0
a B W2—|>\|2[_24W0#W_24 4

12(W? + | AP)Qpa ® + 2icA (W + [A]P)] (E.17)
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E.1. Solution for A # 0, w # 0 75

A A o
Xasap = 25,05 — ﬁwﬁyaﬁ%,#’y + Opfa (29#,#61 - \ﬁwgﬁ]aaQ# ° ) (E.18)

0x

w 104

2
(3W(’}#W — WT(?#;\
X
+ AN + Qo *(BW + 2IA?) — /'%A‘4(4|>\|2 + W2)) : (E.19)

From the linear system (E.2)-(E.13), we also find the following geometric conditions:

4(w? — IN?)0uw + 2w (w? — AP)Q2a ®
— 3V2wP s, P + 3w (W2 + AP) Q. = O (E.20)

4w? — AP0 +2A(W? — AP ®
+ 3V2WA%e,0504, P — 3A(W? + AP Qupu = 0 (E.21)

4(w? — NP)ouw = 2w (w? — [A[P) Qe ®
+ V2ABW? + 4P epaps, @ — w(wW? + 17N ) Qs = O (E.22)

4w? = M)A = 20 (W? — [A[) Q0 ®

— V2w(4w? 4 5|AP)Enaps s, P + X(17TW2 + A*)Quppp = 0 (E.23)

PAWET™PQp 0 — V2(W? + AP Qp
— 22we™ 1 Qu up + V2(WP + NP)Qu T =0 (E.24)

8(IM2 + W) " — 8V2WAE* QU s
£ Ve QWA o — 2wy X — 230w +icASw| =0 (E.25)

6(AI4A — XOxA) + 6(W? + AP0 ® — icA™HW? + A7) =0 (E.26)
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76 E.2. Solution for A=0, w # 0

2w (w? — AP)Q% oy + V2A(W? — NP)Q% 4 Peqsy
— Wy (W2 + BIN2) + VAW 4 A P)EresQs @ =0 (E.27)

202w (w? — IAP)Q% e qmy — AA (W2 — AP)QY 4o — 30WAIuw
— 6WPOuN — 24X704 X — OA(W? + 2\A)Qua @ +3icAT* A =0 (E.28)

(W2 = NP2 (na — Qapn) + 0ual (BW + 2N AdxA — X))
— 2wt 3w AP+ A Q0 ® + /%A_4(2W4 + W AP +2A%] =0,
(E.29)

E.2. Solution for A =0, w # 0

We next present the components of the flux and the geometric conditions associated to

the KSEs (4.37), with the spinor given by
’(/}+ = W(]. + 61234) welkR. (E30)

We find that the components of the flux are given by the following expressions

Xauoza = Xpozs = 0 (E.31)

Xupq @' = —3Qu 4" (E.32)

Xo®P = 24w touw (E.33)

Xapap = 2Q.ap + 205104 45] (E.34)
Xawp? = (Qusww + Qopn) + 405w 0uw (E.35)

Furthermore, we find that the geometric conditions are given by the following expressions
Quap™ =0 (E.36)
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E.2. Solution for A =0, w # 0 77

Q#,#M = —4W_1(9MW (E37)
Qua®=4wto,w (E.38)
Qu,aﬁ =0 (E39)
Quup=0 (E.40)
N OgW
Q% g = — ‘37 (E.41)
o Ouw I,
.C
(Qd’#ﬁ — Qﬁy#d) — I§A 45@5 =0 (E43)
a C s
Q#,a = IEA . (E44)

77



78

E.2. Solution for A=0, w # 0
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APPENDIX F

COVARIANT RELATIONS

In this Appendix, we present the main relations used to covariantize the linear system.
These expressions relate spin connection terms to SU(3)-covariant terms involving the
SU(3) invariant 1-forms &, w and , their Lie derivatives with respect to £, and also the
Lee forms W and Z:

Vibu = (Le€)u = = pu (F.1)
Vals = —Qaup (F.2)
Vsllas = 2iQs.0p (F.3)

W = —Qp 40 — 2P o (F.4)
Wa = —Qpsa — 207 55 (F.5)

Z5 =2y 05+ 25,7 + 207 55 (F.6)
Zy =2y 40+ 20,57 + 207, (F.7)
(Lew)ap = 214,06 + 1(dE)ap (F.8)
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(Lew)ap = =212y 55 — 1(d€) 55 (F.9)

(Lew)osg = (.40 + Qo 25) (F.10)

(LeX)apy = 3y Eapin — 3.4 "€apn = (Lier ™ — D ™) eapy (F.11)
(LeX)apy = (s — 34 Merap (F.12)

Lex = (Lex)™ (F.13)

The spin-connection components are rewritten in terms of those covariant quantities as

1
Qua® = ~3 (Ll + W, + 2Z,,) (F.14)
Qg = Vb = —1Vywy, = — (L) (F.15)
I 1 .
Qpap = —5Viap = = (I(Lew)ap + (d€)ap) (F.16)
;
Qapy = _E(dw)dﬁw (F.17)
1 ..
Q46 = D) (’(Léw%ﬁ - (dg)aﬁ — &3 w(ﬁéx)w&) (F.18)
/
Qapy = 5Vallpy (F.19)
a, B 1 af
Eapy VW = §5aﬁ,,(dw) i (F.20)
Qa’#ﬁ = —Vagg = —I'de#g (F.21)
2 1 o\aBY A
Q#'p = —gé‘ag'y(/:g)() +V EA (F22)
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Qg = % ((Le€)a —Wa) (F.23)
Qe 40 = > (dg)* (F.24)
Q% 40 = =V = =iV, . (F.25)
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