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Scientific abstract

In the first part of the Thesis, we investigate some background material which is utilized

in the second part, where the original research is presented. We present the proof of how

the supercovariant derivative acting on a spinor is Spin-gauge covariant. We introduce the

spinorial geometry techniques used to analyze the Killing spinor equations (KSEs), and

give an example in the case of the gaugino KSE of certain warped product solutions of

D “ 10 heterotic supergravity. We describe the isometries of de Sitter space and we give

the ansatz for warped product dS4 solutions. Then, we briefly prove some classical no-go

theorems for warped product de Sitter solutions.

In the second part of the Thesis, the necessary and sufficient conditions for warped

product dS4 solutions in D “ 11 supergravity to preserve the minimal N “ 8 supersym-

metry are determined. We find, on integrating the KSE along the dS4 directions, that the

necessary and sufficient conditions for supersymmetry are encoded in a single gravitino-

type equation, which is satisfied by a spinor ψ` whose components depend only on the

co-ordinates of the internal space. The spinor ψ` is associated with two possible stabilizer

groups, SUp3q or G2. We derive explicitly the Spinp7q gauge transformations which are

used to write ψ` in simple canonical forms with stabilizer subgroups SUp3q or G2. We

then solve the linear system obtained from the KSEs. In particular, we show that the linear

system implies there are no solutions for which the stabilizer of ψ` is G2. For the case of

SUp3q stabilizer subgroup, the KSEs determine all components of the 4-form flux in terms

of the geometry of the internal manifold, and we present the geometric conditions and the

components of the flux, written in a SUp3q covariant fashion.
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CHAPTER 1

INTRODUCTION

1.1. String Theory and Supersymmetry

Exact solutions of Einstein gravity coupled to matter, pM, g, T q, consist of an n-dimensional

spacetime M equipped with a metric g and an energy-momentum tensor T of some spe-

cified form of matter, which may be required to satisfy some appropriate energy condition,

as well as requirements relating to the absence of closed timelike curves. This set of data

is required to satisfy the Einstein field equations

RAB ´
1

2
RgAB ` ΛgAB “ 8πTAB , (1.1)

where RAB, R and Λ are the Ricci tensor, Ricci scalar and the cosmological constant,

respectively. Due to the nonlinearity of the PDEs encoded in (1.1) it is difficult to find

exact solutions, apart from cases in which the geometry is assumed to have a high degree

of symmetry. There are many different possible choices for energy momentum tensor; for

empty space one takes TAB “ 0, other possibilities correspond to the energy momentum

tensors of perfect fluids, or of electromagnetic fields. One aim of this thesis is to explore,

using supersymmetry, techniques for constructing solutions to the Einstein field equations

of D “ 11 supergravity, in the particular context of geometries associated to the region

near to the horizon of supersymmetric black holes. We will discuss in further detail the

formalism of D “ 11 supergravity, supersymmetry, and near horizon geometries, in later

chapters.
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2 1.1. String Theory and Supersymmetry

One particularly desired goal in physics is that of the construction of grand unified

theories, which enable the relationship between (apparently) distinct fundamental laws of

nature to be more fully understood, by unifying them into a single theory valid at higher

energy scales. This also provides insight into the the so-called hierarchy problem. A

hierarchy problem occurs when fundamental energy scales in nature are vastly different,

such as the electroweak scale mEW ∼ 103 GeV and the Planck scale MPl ∼ 1018 GeV. The
understanding of the hierarchy problem has been one of the greatest driving forces behind

the construction of theories beyond the Standard Model. The vast difference between

the weak and the Planck scales could itself be explained by some spontaneous symmetry

breaking. On the other hand, the physics responsible for making a sensible quantum theory

of gravity is revealed only at the Planck scale. One might therefore expect that there

could be a hypothetical unified theory, which would fully describe the four interactions

existing in nature: the gravitational, weak nuclear, strong nuclear, and electromagnetic

forces. However, the mechanism by which such a unified theory gives rise to such a huge

difference in energy scales is still undetermined.

By the early 1970s, it was shown that the Standard Model is a promising theory to

describe the weak nuclear, the strong nuclear, and electromagnetic forces using a quantum

field theory framework, although omitting gravity. The gravitational interaction is explained

by Einstein’s theory of General Relativity. In spite of considerable efforts, the unification

of gravity with the standard model has yet to be fully realised. There are a number of

significant obstacles to such a unification. Firstly, the union of gravity with quantum theory

produces a non-renormalizable quantum field theory due to the General Relativity power-

counting failure. In addition, at the classical level of General Relativity, the theory breaks

down when certain types of singularities occur, such as in black holes. One might hope

that a quantum theory of gravity, appropriately unified with the Standard Model, would

produce some mechanism for dealing with such singularities - currently this is unclear.

A number of potential candidates for such a quantum theory of gravity have been

postulated. In this thesis, we shall be concerned with aspects of String Theory. This has

been particularly successful in the sense that String Theory produces the Einstein equations

via the vanishing of a certain beta function which is associated with a quantum field theory

defined on the string worldsheet. Moreover, String Theory has provided significant insights

and new techniques for understanding the microscopic origin of black hole entropy in terms

2



1.1. String Theory and Supersymmetry 3

of branes. Notably, Strominger and Vafa [1] examined the extreme Reisser-Nordström

D “ 5 black hole solution from the perspective of the microstates associated with the

D-branes. Such extended objects arise in String Theory, and can be used to construct

black hole geometries. The black hole entropy was counted in terms of D-brane states,

and it was found that this result agreed with the classic entropy obtained from the black

hole horizon area in the limit of large charges and spins. Physically, this limit corresponds

to taking a sufficiently large collection of such D-branes, which then form the black hole.

Other significant developments are the construction of gauge-gravity dualities, origin-

ating in the AdS/CFT correspondence which established a duality between String Theory

on AdS5ˆS
5 and a conformal field theory (N “ 4 super-Yang-Mills) defined on the bound-

ary [2]. In addition, some more spacetime attempts have been made to find gravitational

duals of quantum field theories of relevance to condensed matter physics; although these

are rather more speculative in nature. Other mathematical constructions, such as mirror

symmetry, have been motivated by String Theory. As such String Theory is understood

to remain the most promising candidate for a unified theory capable of combining the

standard model with gravity.

There are, however, a number of problems with the consistent formulation of String

Theory, when attempting to describe our 4-dimensional universe. The primary issue is that

such a formulation requires that spacetime must be more than 4-dimensional. This neces-

sitates embedding our 4-dimensional universe into a 10-dimensional spacetime, with the

additional dimensions being compact. Typically, it is assumed that the extra dimensions

are appropriately “small”, and one obtains an effective 4-dimensional theory via dimen-

sional reduction (the Kaluza-Klein mechanism [3]) 1. A secondary, though not insignificant

problem which is associated with this is the choice of the compact internal space. In the

absence of fluxes, this is required to be a 6-dimensional Calabi-Yau manifold, which is both

Ricci-flat and Kähler. These conditions are quite restrictive, and it was originally hoped

that the number of such manifolds might be relatively small, enabling some mechanism to

be constructed which would produce a “natural” choice of Calabi-Yau manifold. However,

it is now known that the family of Calabi-Yau manifolds is very large indeed, which sig-

nificantly complicates our attempts to understand how a particular Calabi-Yau manifold,

1Other approaches do however exist in which the extra dimensions are “large”; in this case it is necessary

to construct a mechanism, typically involving appropriately chosen configurations of branes, whereby gravity

is effectively restricted to act in four dimensions in a manner which is consistent with observations.

3



4 1.1. String Theory and Supersymmetry

whose geometry gives rise to the Standard Model on dimensional reduction, can be found.

Moreover, the question of how such a Calabi-Yau manifold is effectively “selected” out of

the multitude of other possibilities is also unresolved.

There are five a-priori different types of supersymmetric String Theories: Type IIA,

Type IIB, type Type I, and Heterotic (with gauge group E8ˆE8, or SOp32q) [4]. Initially,

this was also understood to be problematic, as it was unclear which of these theories

should be considered to be the candidate unified theory of quantum gravity. However, it

is now appreciated that there is an extensive web of dualities relating these theories. It

is further proposed that all such perturbative D=10 string theories arise as limits from a

strongly coupled non-perturbative theory, “M-theory”, whose low energy limit is D “ 11

supergravity. At the level of supergravity, there are mechanisms, via dimensional reduction

and T -duality, for obtaining D “ 10 supergravity theories from D “ 11 supergravity.

Supersymmetry is a key ingredient in the construction of String Theory; it resolves a

number of divergences in a consistent fashion and also imposes conditions on the dimen-

sionality of spacetime. The transformations associated with supersymmetry relate fields

of different spins and statistics. Supersymmetry is a spacetime symmetry mapping bosons

into fermions, and vice versa. Bosons follow Bose-Einstein statistics and have integer-

valued spin, whereas fermions follow Fermi-Dirac statistics and have half-integer-valued

spin. In a theory in which supersymmetry is realized, each particle has an associated su-

perpartner particle. Generically, supersymmetry is required in String Theory in order to

ensure no physical tachyons appear at vacuum level. Moreover, for solutions in theories

which preserve some residual supersymmetry, there is some control in the size of quantum

corrections, with implications for the hierarchy problem.

In order to understand supersymmetry, it is necessary to consider spinors whose com-

ponents depend on the spacetime co-ordinates of the manifold. Locally, in a specific chart,

such spinors can be defined with respect to the associated local co-ordinate system. How-

ever, there are nontrivial topological requirements for a manifold to consistently globally

admit spinors. To see how this arises, we note that spinors lie within a vector space ∆c ,

which corresponds to a Spin representation. Explicitly, ∆c corresponds to a vector space of

complexified poly-forms, which is introduced explicitly in the context of spinorial geometry

techniques in Chapters 2 and 5.

There is a close link between the Lorentz group SOpn ´ 1, 1q and Spinpn ´ 1, 1q. In

4



1.1. String Theory and Supersymmetry 5

particular, there exists a 2:1 homomorphism ϕ : Spinpn ´ 1, 1q Ñ SOpn ´ 1, 1q given by

ϕpΛ̃q “ Λ where

Λ̃´1ΓMΛ̃ “ ΛMNΓ
N , (1.2)

where M,N are local frame indices, and ΓM are gamma matrices which satisfy

ΓMΓN ` ΓNΓM “ 2ηMN id . (1.3)

The detailed relationship between Λ and Λ̃, in terms of generators, is calculated in Chapter

2.1. It is however, straightforward to see that the map ϕ is 2:1, as ϕpΛ̃q “ ϕp´Λ̃q.

Given a manifold M, we can cover M with co-ordinate patches Opαq such that locally,

on each Opαq, there exists an orthonormal frame teM
pαq
: M “ 1, ..., nu with respect to

which the metric is

ds2 “ ηMNe
M
pαqe

N
pαq . (1.4)

Moreover, on each Opαq, we can define a spinor ψpαq P ∆c . We wish to consistently

“patch together” such locally defined spinors on the overlap regions Opαβq “ Opαq XOpβq,

analogously to how the components of vector fields are related by appropriate Jacobian

transformations on co-ordinate patch overlaps. We begin, however, by considering the

relationship between teM
pαq

u and teM
pβq

u on Opαβq. This naturally leads to a relationship

between ψpαq and ψpβq, on using the 2:1 correspondence ϕ between Spinpn ´ 1, 1q and

SOpn ´ 1, 1q. Firstly, in order to preserve the orthonormality of the frame, there must

exist Λpαβq P SOpn ´ 1, 1q such that

eMpαq “ Λpαβq
M
Ne
N
pβq . (1.5)

In turn, this implies that an identity relation of the Λpαβq on the triple overlap regions must

be satisfied. Indeed, in the triple intersection regions Opαβγq “ Opαq X Opβq X Opγq, one

obtains

ΛpαβqΛpβγqΛpγαq “ id . (1.6)

There is also a corresponding identity for the associated Spinpn ´ 1, 1q transformations

Λ̃pαβq. To see this, note that on Opαβq the spinors ψpαq and ψpβq are related by

ψpαq “ Λ̃pαβqψpβq , (1.7)

5



6 1.1. String Theory and Supersymmetry

where ϕpΛ̃pαβqq “ Λpαβq. Once more, this condition implies that in the triple intersection

regions Opαβγq,

Λ̃pαβqΛ̃pβγqΛ̃pγαq “ id . (1.8)

However, as the correspondence ϕ is 2:1, one may freely replace Λ̃pαβq in the above ex-

pression with ´Λ̃pαβq. There is therefore, a priori, a sign ambiguity in (1.8). If it is the case

that one can choose consistently the Λ̃ such that (1.8) holds for all triple intersections,

then M is said to admit a spin structure, and M is a spin manifold. Most manifolds are not

spin manifolds, so the requirement of spin structure is an important topological restric-

tion when we consider supersymmetric supergravity solutions from a global perspective.

However, we remark that in terms of the class of de-Sitter supergravity solutions which

we analyse in Chapter 3 onwards, such solutions are typically not globally well defined,

as a consequence of certain no-go theorems described in Chapter 3.4. Hence, for these

types of solutions, we do not necessarily have a globally well-defined spin structure, and

the analysis of supersymmetry is considered locally.

String Theory is not only a theory of strings, but contains extended objects, D-branes,

which as we have mentioned, as having provided key insight into black hole entropy. Geo-

metrically, D-branes correspond to hypersurfaces on which strings may end. In terms

of M-theory, it is known that D “ 11 supergravity contains solitonic membranes, M2-

branes [5], and M5-branes [6], which play an important role in the dynamics of the theory

and provide a large family of supersymmetric solutions. Both of these solitons preserve 1/2

of the supersymmetry and are known as 1/2-BPS solutions. It is important to understand

the spectrum of BPS solutions in M-theory associated with intersectingM-branes, because

these can be used to obtain black holes in D “ 4 and D “ 5 via appropriate dimensional

reduction. More general black objects, such as D “ 5 black rings, can also be obtained in

a similar fashion. Harmonic superpositions of M-branes describe classes of supersymmetric

configurations of 2 or 3 orthogonally intersecting M2-branes and M5-branes of D “ 11

supergravity [7, 8].

The main feature of supersymmetric p-brane solutions of supergravity theories is that

they are expressed in terms of harmonic functions depending only on the transverse spatial

coordinates. There exist some universal rules to obtain stable supersymmetric solutions

via brane intersections:

6



1.1. String Theory and Supersymmetry 7

(i) a configuration of k orthogonally intersecting branes preserve at least 1{2k of the

maximal amount of supersymmetry,

(ii) p-branes of the same type can intersect only over a pp ´ 2q-brane,

(iii) a M2-brane can intersect a M5-brane over a string.

(iv) A fundamental string may end on a D-brane.

These rules, when applied to intersecting M-branes in D “ 11, are consistent with the

corresponding rules in D “ 10, on making appropriate dimensional reductions. The metric

of the corresponding intersecting brane configurations is diagonal, and the components

depend on various powers of the harmonic functions associated to each type of brane.

The harmonic functions depend only on those directions which are transverse to all of the

branes in the configuration 1.

The possible supersymmetric M-brane configurations that preserve 1{4 of supersym-

metry are M2 K M2, M5 K M5, and M5 K M2. To illustrate the M2 K M2 intersection

schematically in terms of worldvolume “X” and transverse “´” directions, we can consider

the following:

Direction 0 1 2 3 4 5 6 7 8 9 7

M2 X X X - - - - - - - -

M2 X - - X X - - - - - -

The first M2-brane has worldvolume directions 0, 1, 2 and transverse directions 3, 4,

5, 6, 7, 8, 9, 7; the secondM2-brane has worldvolume directions 0, 3, 4 and transverse dir-

ections 1, 2, 6, 7, 8, 9, 7. The configuration preserves 8 supersymmetries. Corresponding

diagrams for the M5 K M5 and the M2 K M5 intersections are as follows:

Direction 0 1 2 3 4 5 6 7 8 9 7

M5 X X X X X X - - - - -

M5 X X X X - - X X - - -

1For partially smeared brane configurations, or for branes intersecting at angles, these rules for the

formulation of the metric are modified in such a way that the harmonic functions depend on more of the

co-ordinates, in a more complicated fashion; see e.g. [9].

7



8 1.1. String Theory and Supersymmetry

and

Direction 0 1 2 3 4 5 6 7 8 9 7

M5 X X X X X X - - - - -

M2 X X - - - - X - - - -

The possible supersymmetric configurations that preserve 1{8 of supersymmetry are

M2 K M2 K M2, M5 K M2 K M2, M5 K M5 K M2, and M5 K M5 K M5. Moreover,

there are 1{16 supersymmetric configurations with four intersecting M-branes, i.e. M2 K

M2 K M2 K M2, M2 K M2 K M2 K M5, M5 K M5 K M2 K M2, and M5 K

M5 K M5 K M2. These four-intersecting configurations are not asymptotically flat

because the dimension of the overall transverse space is d ă 3, with the exception of

M5 K M5 K M2 K M2 for which d “ 3, as can be seen from the following diagram:

Direction 0 1 2 3 4 5 6 7 8 9 7

M5 X X X X X X - - - - -

M5 X X X X - - X X - - -

M2 X - - - X - X - - - -

M2 X - - - - X - X - - -

This solution can be dimensionally reduced along the 1, 2, 3, 4, 5, 6, 7 directions to

produce a dyonic D “ 4 black hole solution (associated with the directions 0, 8, 9, 7) as

described in [10]. Another physically interesting intersecting brane configuration in terms

of black holes is the 3-charge D “ 5 black hole solution [11] can be obtained from the

dimensional reduction of the M2 K M2 K M2 geometry:

Direction 0 1 2 3 4 5 6 7 8 9 7

M2 X X X - - - - - - - -

M2 X - - X X - - - - - -

M2 X - - - - X X - - - -

The D “ 11 solution is reduced along the 1, 2, 3, 4, 5, 6 directions. The resulting

electrically charged black hole geometry corresponds to the resulting metric along the

0, 7, 8, 9, 7 directions, and is a solution of N “ 2, D “ 5 supergravity coupled to

8



1.1. String Theory and Supersymmetry 9

vector multiplets, which preserves 4 supersymmetries. This can be further generalized by

intersections with additional M5-branes [12,13] as illustrated in the table:

Direction 0 1 2 3 4 5 6 7 8 9 7

M2 X X X - - - - - - - -

M2 X - - X X - - - - - -

M2 X - - - - X X - - - -

M5 X - - X X X X X - - -

M5 X X X - - X X X - - -

M5 X X X X X - - X - - -

Although the M2-M2 brane, and M5-M5 brane intersections are consistent with the

rules described above, the M2-M5 brane intersections are not. This configuration therefore

constitutes a special modification of the types of M-brane intersections described previ-

ously. It can also be verified that the addition of the M5-branes with such orientations

does not break any more of the supersymmetry - the solution preserves the same amount

of supersymmetry as the M2 K M2 K M2 geometry. The M2-branes carry conserved

electric charges, whereas the M5-brane magnetic charges are not conserved - instead they

generate a non-zero magnetic dipole moment. Moreover, the metric associated with this

solution is not diagonal, and the components are not given in terms of harmonic functions

as for the other cases. When reduced along the 1, 2, 3, 4, 5, 6 directions the resulting

D “ 5 solution corresponds to a 3-charge supersymmetric black ring, whose event horizon

has topology S1ˆS2. This is in contrast to the S3 event horizon topology obtained from

the dimensional reduction of the M2 K M2 K M2 geometry. The existence of such black

rings implies that there is no black hole uniqueness in 5 dimensions, as the asymptotic

charges do not uniquely specify the solution.

More generally, there has been consistent progress made in constructing systematic

classifications of supersymmetric solutions in supergravity theories. Such classifications

have played a crucial role in the construction of novel black hole solutions [14, 15] and

supersymmetric black ring solutions [16]. The classifications have also been used to find

more exotic composite black objects such as “black Saturn” solutions [17,18] which con-

sist of a black hole with S3 horizon topology, surrounded by an arbitrary number of black

rings, each of which has S1 ˆ S2 horizon topology. The first systematic investigation of

9



10 1.1. String Theory and Supersymmetry

the classification of supersymmetric solutions was undertaken by Tod in [19] in which he

analyzed all possible forms of the metric which admit a supercovariantly constant spinor in

the minimal ungauged N “ 2 D “ 4 supergravity. The necessary and sufficient conditions

for a geometry to be supersymmetric were determined. This classification was then gener-

alized to other D “ 4 supergravity theories including dilaton and axion scalar fields in [20].

However, the analysis was performed using two component spinor notation and as such

was specific to D “ 4 theories. Following on from this, the first systematic classification

of supersymmetric solutions in D “ 5 minimal ungauged supergravity was constructed

in [21]. The method initially used to construct such D ą 4 classifications used via spinor

bilinears [21–23]. This was utilized to fully classify all supersymmetric solutions in minimal

N “ 2, D “ 5 supergravity, and was later applied to obtain the necessary and sufficient

conditions for supersymmetric solutions in D “ 11 supergravity to preserve the minimal

(N “ 1) supersymmetry. This method is based on the insight that a pair of spinors can be

associated to various k-form spinor bilinears. Fierz identities impose algebraic conditions

on the form bilinears, and the Killing spinor equations (KSE) also impose conditions on the

covariant derivatives of the spinor form bilinears. Such algebraic and differential conditions

are then used to find conditions on the geometry and the fluxes of the theory.

The main limitation of using the spinor bilinears method for classifying supersymmetric

solutions is that it is difficult to classify supersymmetric solutions which preserve more than

the minimal amount of supersymmetry in any given theory, especially in higher dimensional

D “ 10 and D “ 11 supergravities, for which solutions may preserve as many as 32 super-

symmetries. A key reason for this is that applying the Fierz identities to obtain meaningful

algebraic conditions on the multitude of possible spinor form bilinears is computationally

prohibitive. In order to address this limitation, the spinorial geometry approach to classify-

ing supersymmetric solutions was developed. This was first proposed by Gillard, Gran and

Papadopoulos [24]. The spinorial geometry method consists of expressing spinors in a par-

ticular representation in terms of multi-differential forms. These can then be appropriately

explicitly simplified into certain canonical forms, utilizing Spin-gauge transformations. On

computing spinor bilinears explicitly, using such canonical forms, the algebraic conditions

on the bilinears can be obtained directly without the need for extensive use of Fierz iden-

tities. Moreover, the different components of the Killing spinor equations can be explicitly

determined. This produces a linear system of equations which can be solved to provide

10



1.2. de Sitter Space and String Theory 11

conditions on the spacetime geometry, as well as determining certain components of the

supergravity fluxes in terms of the geometry. Further details of the spinorial geometry

method, including some simple examples of its application, will be presented in the fol-

lowing chapters. It will later be utilized to determine a classification of supersymmetric

warped product dS4 geometries in D “ 11 supergravity.

1.2. de Sitter Space and String Theory

De Sitter geometry is of particular interest in terms of string cosmology and also in the

context of the holographic principle. De Sitter spacetime plays a central role in the un-

derstanding of our present universe. From the work of [25–27] it has been observed that

our universe is asymptotically dS4, corresponding to a very small positive cosmological

constant. However, the observed value of the cosmological constant differs by many

orders of magnitude from the vacuum energy density value predicted by quantum field

theory [28, 29]. Moreover, in the context of string cosmology there are also difficulties

in obtaining de Sitter space via compactification from higher dimensions. In particular,

there are no go-theorems proving that smooth warped de Sitter solutions with compact,

without boundary, internal manifold cannot be found in ten- and eleven-dimensional su-

pergravity [30, 31, 2]. Issues relating to quantum gravity in de Sitter space have been

investigated in [32].

In terms of holography, the AdS{CFT correspondence relates string theory in Anti-de

Sitter (AdS) space to conformal field theories (CFT) defined on an appropriate bound-

ary [33]. This has been particularly useful in developing a deeper understanding of the

microscopic nature of the entropy-area law [34, 35]. In spite of the considerable insights

produced via the holographic principle, there are still many open issues in this area. Build-

ing from the AdS3{CFT2 correspondence proposed by Brown and Henneaux in [36], the

relation between quantum gravity on de Sitter space and conformal field theory on a

sphere, the so-called dS/CFT correspondence, was considered in [37–39]. However, our

understanding of the conjectured dS/CFT correspondence is less complete than for the

case of AdS/CFT for a number of reasons. Firstly, in contrast to AdS, there is a lack of

de Sitter space solutions in string theory (or in any quantum gravity theory) in which the

conjecture can be tested. Also, there are subtle issues with defining the dual CFT on the

past and future spheres I˘, relating to the causal structure of dS space. Nevertheless, the

11
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macroscopic entropy-area law applies to a very wide class of black holes, including asymp-

totically flat, asymptotically AdS, and also asymptotically dS cases. The universality of

this law provides strong motivation for understanding de Sitter holography.

Motivated by this, it is of particular interest to systematically understand the different

types of de Sitter solutions which are possible in D “ 10 and D “ 11 supergravity. Such a

classification may provide interesting new applications of the dS/CFT correspondence. As

it is possible to embed dSn inside both R1,n and AdSn`1 as a warped product geometry [40],

it follows that the maximally supersymmetric AdS7 ˆ S4 solution, as well as R1,10, can
both be regarded as examples of warped product dS4 geometries. However, as we shall

establish here, there is a much larger class of supersymmetric warped product dS4 solutions

in D “ 11 supergravity than these two very special solutions, and this is also somewhat in

contrast to the results of recent analysis of supersymmetric warped product dSn geometries

for 5 ď n ď 10.

In terms of D “ 11 supergravity, there has been recent progress in the classification of

supersymmetric warped product dSn geometries for 5 ď n ď 10 [41]. There are a number

of different possibilities:

• For 7 ď n ď 10, the geometry is the maximally supersymmetic R1,10 solution with
vanishing 4-form flux.

• For warped product dS6 solutions, the solution is either the maximally supersymmetric

AdS7 ˆ S4 solution, or R1,6 ˆ N where N is a hyper-Kähler 4-manifold.

• The warped product dS5 solutions are all examples of generalized M5-brane solutions

for which the transverse space is Rˆ N, where N is a hyper-Kähler 4-manifold.

It is clear from this list that the possible warped product dSn geometries for 5 ď n ď

10 is very highly constrained. In addition, a similar recent analysis of warped product

dSn solutions in heterotic supergravity [42], including first order α
1 corrections, has also

produced a rather restricted class of such solutions. In this case, for n ě 3, the geometry

is R1,n ˆM9´n, where M9´n is a p9 ´ nq-dimensional manifold. The dilaton depends only

on the co-ordinates of M9´n, and all p-form fields have components only along the M9´n

directions. The heterotic warped product dS2 solutions are the direct product AdS3 ˆM7

solutions which have been classified in [43]. Compared to these types of solutions, the

12
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conditions on supersymmetric warped product dS4 solutions in D “ 11 supergravity are

rather weaker.

Motivated by these results, in this thesis we obtain the necessary and sufficient con-

ditions for warped product dS4 solutions in D “ 11 supergravity to preserve the minimal

N “ 8 supersymmetry. We find, on integrating the Killing spinor equations along the

dS4 directions, that all of the necessary and sufficient conditions for supersymmetry are

encoded in a single gravitino-type equation, which is satisfied by a spinor ψ` whose com-

ponents depend only on the co-ordinates of the internal space. We analyse the solutions of

this equation using spinorial geometry techniques. This technique was introduced in [24]

and consists of writing the Killing spinors in terms of multi-differential forms and, utiliz-

ing the gauge-covariance of the KSE, gauge transformations are then used to write the

spinors in one of several simple canonical forms. The main outcome of this approach is

a linear system which imposes conditions on the spin connection and the fluxes of the

theory. This in turn can be used to obtain conditions on the geometry which are necessary

and sufficient for supersymmetry. These techniques have been applied to classify a wide

variety of supergravity solutions [44].

In the case of warped product dS4 solutions, we state explicitly the Spinp7q gauge

transformations which are used to write the spinor ψ` in canonical forms with stabilizer

subgroups SUp3q and G2. We then solve the linear system obtained from the Killing

spinor equations. In particular, we show that the linear system implies that there are

no Killing spinors for which the stabilizer of ψ` is G2. For the case of SUp3q stabilizer

subgroup, the Killing spinor equations determine all components of the 4-form flux in terms

of the geometry of the internal manifold, and we present the geometric conditions and

the components of the flux, written in a SUp3q covariant fashion. On considering these

conditions, we note that the warped product dS4 geometries are manifestly less restricted

in terms of the geometric structure and the 4-form flux in comparison to the warped

product dSn solutions for 5 ď n ď 10. Our analysis does not utilize the global techniques

developed for the investigation of supersymmetric black holes [45]; we consider only local

properties of the Killing spinor equations. This avoids the no-go theorems which exclude

warped product dSn solutions when the warp factor and 4-form flux are smooth, and the

internal manifold is smooth and compact without boundary.

13
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1.3. Plan of the Thesis

The plan for the remainder of the Thesis is as follows:

(1) In chapter 2 we present the proof of how the supercovariant derivatives acting on a

spinor transforms in a covariant fashion when a Spin-gauge transformation acts on

the spinor. Then, we briefly give an introduction to the spinorial geometry techniques

used to analyze the Killing spinor equations.

(2) In chapter 3 we outline in some details properties of de Sitter geometries. In the

first part, we investigate the isometries of de Sitter space, and prove that the only

differential forms on de Sitter space for which the Lie derivatives with respect to

all of the isometries vanish are constant functions, and constant multiples of the

volume form. In the second part, we summarize the bosonic field equations, Bianchi

identities, and Killing spinor equations of D = 11 supergravity. In the third part

we describe the ansatz for the warped product dS4 solutions. Finally in the fourth

part, we briefly describe some classical no-go theorems which forbid the existence

of warped product de Sitter solutions for which the internal manifold is smooth, and

compact without boundary, and the warp factor is smooth.

(3) In chapter 4 we derive several integrability conditions from the Killing spinor equa-

tions, and we demonstrate how some of these integrability conditions can be de-

rived from others. We also explicitly integrate up the Killing spinor equations along

the dS4 directions, and show how the Killing spinor equations reduce to a single

gravitino-type equation for a spinor ψ` which depends only on the internal manifold

co-ordinates. We also prove that the supersymmetric dS4 warped product solutions

preserve N “ 8n supersymmetries for n “ 1, 2, 3, 4.

(4) In chapter 5 we utilize spinorial geometry techniques, and prove that the spinor ψ`

can be written in one of several particularly simple canonical forms, on applying

appropriate Spin(7) gauge transformations. Furthermore, depending on the type of

canonical form, we prove that such a spinor has stabilizer subgroup which is either

SU(3) or G2; in the SU(3) case we also consider several possible special sub-cases.

(5) In chapter 6 we present the SU(3) covariant conditions on the flux and geometry,

obtained from the gravitino-type equation in the case for which the spinor ψ` has

14



1.3. Plan of the Thesis 15

stabilizer subgroup SU(3). We also prove that there are no supersymmetric warped

product dS4 solutions for which the stabilizer subgroup of ψ` is G2.

(6) In chapter 7 we present our conclusions and discuss some possible future work on the

classification of warped product dS4 solutions in D “ 11 supergravity with enhanced

supersymmetry.

The Thesis also contains a number of Appendices, which provide supporting material

to the above chapters:

(a) Appendix A contains some general conventions.

(b) Appendix B summarizes some key details of spinorial geometry. The description of

the Clifford algebra representation utilized in the spinorial geometry techniques is

given. This representation is used in the analysis of the Killing spinor equations in

chapters 5 and 6.

(c) Appendix C consists of a number of gamma matrix identities that are utilized in the

analysis of the integrability conditions in chapter 4.

(d) Appendix D consists of a detailed description of the derivation of the values of the

constants appearing in equation (4.23) in chapter 4.

(e) Appendix E states the linear system of equations in the spin connection and the gauge

field strength components which are obtained from the gravitino type equation (4.37)

in the case when the stabilizer group of the spinor is SUp3q.

(f) Appendix F contains some relations which are used to covariantize the solutions of

the gravitino type equation (4.37) in terms of various SUp3q covariant forms.

The original research in this Thesis, corresponding to [46], consists of chapter 3.3, and

all of chapters 4, 5, 6, 7; together with Appendices C, D, E, and F.
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CHAPTER 2

PROPERTIES OF KILLING SPINORS

In this chapter we shall summarize some properties of the Killing spinor equation which will

later be utilized to solve the Killing spinor equations of D “ 11 supergravity for warped

product dS4 solutions. In particular, we begin in the first part of this chapter by considering

the Levi-Civita term in the KSE. Such a term is present in all supercovariant derivatives

which appear in supergravity theories. We shall illustrate how the Levi-Civita connection

acting on a spinor ϵ transforms in a covariant fashion when a Spin-gauge transformation

acts on the spinor. In addition to the Levi-Civita connection term, there is also a theory

dependent flux term in the supercovariant derivative; the nature of this term depends on the

type of supergravity theory under consideration. However, in all cases it is straightforward

to prove that this algebraic term transforms covariantly. We shall therefore concentrate

on the properties of the Levi-Civita term in the supercovariant derivative.

Having described the transformation properties of the supercovariant derivative, we

shall briefly introduce the spinorial geometry technique which will be used to analyse the

KSE. This utilizes an explicit representation of the Clifford algebra, which acts on spinors

which are certain types of multi-differential forms defined on an auxiliary space. We shall

illustrate this method with an explicit example from D “ 6 gauge theory, to demonstrate

the key aspects of this approach for solving the KSE.

17
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2.1. Gauge Covariance of Killing Spinor Equation

A key ingredient of the spinorial geometry method is the SpinpD ´ 1, 1q gauge covariance

of the Killing Spinor equations (KSEs). The KSEs are the vanishing conditions of the

supersymmetry variations of the fields. These are evaluated in the background where all

fermions vanish, which in turn implies that the supersymmetry variations of the bosons are

trivially satisfied. The KSE associated to the gravitino is the vanishing of the supercovari-

ant derivative, whereas the KSEs associated to the remaining fermions are all algebraical

equations.

In order to analyse the gauge covariance of KSE, capital latin letters such as A,B denote

D-dimensional frame indices and ΩA,BC denotes the spin-connection. A supercovariant

derivative is defined as

DA “ ∇A ` σApe, F q

∇A ” BA `
1

4
ΩA,CDΓ

CD where (2.1)

∇A denotes the Levi-Civita connection, and σApe, F q is a Clifford algebra element which

depends on the spacetime coframe e and the fluxes F . The expression of σApe, F q in

terms of the fields is theory dependent. In this section we present the proof of the gauge

covariance of the Levi-Civita part of the supercovariant derivative.

Let M be a spacetime of dimension D and let ϵ be a spinor satisfying a gravitino KSE

of some theory. Under SpinpD ´ 1, 1q, ϵ transforms as

ϵ1
“ eXϵ

X ”fABΓ
AB fAB “ ´fBA . (2.2)

Here X is an arbitrary real linear combination of generators of SpinpD ´ 1, 1q. The

parameter fAB is real antisymmetric factor and depends on the spacetime co-ordinates,

fAB “ fABpxq and ΓAB ” 1
2
rΓA,ΓBs, where ΓA is a gamma matrix. By using Eq. (2.2), we

can rewrite the Levi-Civita covariant derivative as follows

∇Aϵ “ pBA `
1

4
ΩA,BCΓ

BC
qϵ

“ e´X
pBA ` eXBAe

´X
`
1

4
ΩA,BCΓ̃

BC
qϵ1 , (2.3)

where Γ̃AB ” eXΓABe´X . In particular, Γ̃AB and ΓAB correspond to two equivalent rep-

resentations of the Clifford algebra. We shall show that Γ̃A and ΓA are connected by local

18



2.1. Gauge Covariance of Killing Spinor Equation 19

Lorentz SOpD ´ 1, 1q transformation. To do this, we define an auxiliary function Θpτq

depending on an arbitrary parameter τ as follows

ΘCpτq ” eτXΓCe´τX . (2.4)

On differentiating this expression with respect to τ and by exploiting the commutation

relation
“

ΓA,ΓBC
‰

“ 4ηArBΓCs , (2.5)

it follows that

dΘC

dτ
“ ´4f C AΘ

A . (2.6)

Moreover, ΘCp0q “ ΓC. It follows that

ΘCpτq “
`

e´4τf
˘C

AΓ
A (2.7)

and therefore

Γ̃C “ ΘCp1q “
`

e´4f
˘C

AΓ
A (2.8)

Now, we shall show that
`

e´4f
˘M

A P SOpD ´ 1, 1q.

To do so, we define another auxiliary function U depending on parameter λ as follows

UCBpλq ”
`

e´4λf
˘A
C ηAD

`

e´4λf
˘D

B . (2.9)

By taking the derivative of UCBpλq with respect to λ, we find

dUCB
dλ

“ ´4f AN
`

e´4λf
˘N

CηAD
`

e´4λf
˘D

B ´ 4
`

e´4λf
˘A
CηAD

`

e´4λf
˘N

Bf
D
N

“ ´4
`

e´4λf
˘N

C

`

fDN ` fND
˘ `

e´4λf
˘D

B

“ 0 , (2.10)

where we have made use of the fact that

`

e´4f λ
˘A
Cf
C
B “ f A C

`

e´4f λ
˘C

B . (2.11)

Hence UCB is constant, therefore

UCBpλq “ UCBp0q “ ηCB . (2.12)

19
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By setting λ “ 1 in (2.9) and comparing with (2.12), we find that

`

e´4f δ
˘A
C ηAD

`

e´4f δ
˘D

B “ ηCB , (2.13)

and hence
`

e´4f
˘M

A P SOpD ´ 1, 1q.

We can rewrite Eq. (2.3) by using Eq.(2.8) as follows

∇Aϵ “ e´X

ˆ

BA ` eXBAe
´X

`
1

4
ΩA,BC

`

e´4f τ
˘B

D

`

e´4f τ
˘C

E Γ
DE

˙

ϵ1 . (2.14)

The last step of the KSE covariance proof is to perform a local Lorentz SOpD ´ 1, 1q

transformation of the type

B̂A “
`

e´4f
˘B

A BB

êA “
`

e4f
˘A
B e
B . (2.15)

With this frame choice, we find that Eq.(2.14) can be rewritten as

∇Aϵ “ e´X
`

e4f
˘B

A

ˆ

B̂B `
1

4
Ω̂B,CDΓ

CD

˙

ϵ1 , (2.16)

that is gauge covariant with respect to the SpinpD ´ 1, 1q, up to a Local Lorentz trans-

formation. Having established the covariance of the Levi-Civita part of the supercovariant

derivative with respect to SpinpD ´ 1, 1q gauge transformations, we can then utilize such

transformations to make the process of solving the Killing spinor equations more straight-

forward. This will involve using spinorial geometry techniques.

2.2. Spinorial Geometry Techniques

Spinorial geometry techniques were first introduced in [24] in the context of D “ 11

supergravity. These methods have also been used to classify supersymmetric techniques in

numerous supergravity theories [44, 47, 48]. There are a number of key steps in applying

the spinorial geometry method for the analysis of KSEs.

(i) The spinors of the theory in question are certain types of multi-differential forms,

defined on an appropriate auxiliary space. The multi-form components depend on

the spacetime co-ordinates.

(ii) A representation for the Clifford algebra is chosen for which the gamma matrices

typically act as creation or annihilation operators acting on the space of spinors.
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2.2. Spinorial Geometry Techniques 21

(iii) For the analysis of solutions preserving the minimal proportion of supersymmetry,

a Spin-gauge transformation is utilized in order to choose a gauge in which the

spinor takes one of several particularly simple canonical forms. The nature of these

canonical forms depends on the theory in question.

(iv) The KSE are then evaluated explicitly, working in the gauge for which the spinor is

in one of the simple canonical forms. This produces a linear system involving the

spin connection, and various components of fluxes.

(v) This linear system is then solved explicitly to obtain conditions on some (though not

necessarily all) of the flux components, as well as conditions on the spin connection

(i.e. conditions on the geometry).

(vi) These conditions are then rewritten in a manifestly gauge-invariant fashion in terms

of various gauge-invariant spacetime spinor form bilinears

We remark that by utilizing an optimal choice of gauge, as described in (iii), the com-

ponents of the gauge-invariant spacetime spinor form bilinears can be computed explicitly

in the gauge for which the spinor is in a simple canonical form. Consequently, the com-

ponents of the spacetime spinor form bilinears are particularly simple as well, and it is also

straightforward to directly see the different types of algebraic conditions which the space-

time spinor form bilinears satisfy. This obviates the need to make use of Fierz identities,

which simplifies the analysis significantly. In addition, the spinorial geometry approach has

also been used to analyse supersymmetric solutions which preserve more than the minimal

amount of supersymmetry [49–52]; such calculations are prohibitively difficult to undertake

using other methods.

Having described general aspects of the spinorial geometry method, it will be useful to

consider a simple explicit application, in the context of a gaugino type equation on a 6-

dimensional manifold. This is an algebraic condition, and such a condition can be obtained

in the context of certain warped product solutions of D “ 10 heterotic supergravity, in the

case for which the internal space M6 is 6-dimensional [44, 53, 54]. The reduced gaugino

KSE on M6 is

FABΓ
ABϵ “ 0 A,B “ 1, . . . , 6 , (2.17)

where FAB represents the non-abelian flux of the theory (e.g. heterotic supergravity) and

ΓAB ” 1
2
rΓA,ΓBs.
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In Appendix B, we explain how the Dirac spinor representation can be constructed in

terms of differential forms, following [55,56]. In this representation, the Dirac spinors in 6

dimensions consist of the complex span of differential forms on R3, i.e, an arbitrary Dirac
spinor can be written as a complex linear combination of

t1, e1, e2, e3, e12, e13, e23, e123u (2.18)

where te1, e2, e3u are a basis of 1-forms on R3, and e12 “ e1 ^ e2, e123 “ e1 ^ e2 ^ e3.

In even dimensions, the Dirac representation is reducible into Weyl chiral ∆`
4 and Weyl

anti-chiral ∆´
4 representations, ∆8 “ ∆`

4 ‘∆´
4 . These are determined by the corresponding

projections

P˘ “
1

2
pI¯ iΓ123456q (2.19)

which also commute with FABΓ
AB. Hence, without loss of generality, we may assume that

the spinor ϵ appearing in (2.17) is chiral. Such a Weyl chiral spinor can be written as an

even-degree multi-form ϵ P ΛevenpC3q:

ϵ “ α1` β1e12 ` β2e13 ` β3e23 , (2.20)

where α, βi with i “ 1, 2, 3 are complex functions which in general depend on the co-

ordinates of M6. Now, we write the Clifford algebra in oscillator basis as follows

Γα “
?
2 eα ^ Γᾱ “

?
2 ieα , (2.21)

where α “ 1, 2, 3 and ᾱ “ 1̄, 2̄, 3̄. We remark that the matrices (2.21) satisfy the Clifford

algebra in complex basis for R6.
To proceed further, we shall now simplify further the spinor ϵ given in (2.20). In

particular, we shall apply certain Spinp6q gauge transformations as follows:

(a) We can set β1 “ 0 by a SU(2) gauge trasformation generated by

1

2
pΓ12 ` Γ1̄2̄q,

i

2
pΓ12 ´ Γ1̄2̄q,

i

2
pΓ11̄ ` Γ22̄q (2.22)

which acts transitively on spanCt1, e12u, leaving invariant spanCte23, e13u.

(b) We can set β2 “ 0 by a SU(2) gauge trasformation generated by

1

2
pΓ13 ` Γ1̄3̄q,

i

2
pΓ13 ´ Γ1̄3̄q,

i

2
pΓ11̄ ` Γ33̄q (2.23)

which acts transitively on spanCt1, e13u, leaving invariant spanCte23, e12u.
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(c) We can set β3 “ 0 by a SU(2) gauge transformation generated by

1

2
pΓ23 ` Γ2̄3̄q,

i

2
pΓ23 ´ Γ2̄3̄q,

i

2
pΓ22̄ ` Γ33̄q (2.24)

which acts transitively on spanCt1, e23u, leaving invariant spanCte13, e12u.

After applying these gauge transformations, the spinor ϵ can be taken to be ϵ “ f 1

where f is a real function. The gaugino KSE (2.17) in this canonical gauge becomes

pFᾱβ̄Γ
ᾱβ̄

` 2Fαβ̄δ
αβ̄

q1 “ 0 , (2.25)

or equivalently,

p2F αβeαβ ` 2Fαβ̄δ
αβ̄

q1 “ 0 . (2.26)

Considering the linear independence the spinor basis elements, Eq. (2.25) implies

Fᾱβ̄ “ 0 Fα
α

“ 0 . (2.27)

Hence, in the language of (almost) complex geometry, F is (1,1) traceless real 2-form.

Finally, we wish to covariantize these results by defining a 2-form bilinear ω as follows

ω ”
i

2
x1,ΓMN1y e

M
^ eN “ ´iδαβ̄ e

α
^ eβ̄ . (2.28)

where x, y is the Hermitian inner product defined in (B.3), eM, M “ 1, . . . , 6, denotes

a real frame on M6, and e
ᾱ “ peαq˚ for α “ 1, 2, 3. We remark that ω is an almost

hermitian form on M6, which is associated with an almost complex structure I, given by

ωAB “ δACI
C
B. Then, the results of (2.17) can be rewritten as

FAB “ FCDI
C
AI
D
B , F ABI

B
A “ 0 . (2.29)

This example illustrates the key principles relating to spinorial geometry, and applica-

tions to solving Killing spinor equations. An alternative approach would be to utilize Fierz

identities; in lower dimensions such an approach is tractable. However, when solving the

KSE associated with warped product de Sitter solutions in D=11 supergravity, extracting

algebraic conditions on the spinor bilinears via Fierz identities is significantly more com-

plicated when compared to using spinorial geometry techniques. Hence, to undertake the

D “ 11 analysis described in this thesis, we shall utilize spinorial geometry.
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CHAPTER 3

PROPERTIES OF dS GEOMETRIES

In this chapter, we shall consider in some detail properties of de Sitter geometries. We shall

begin by investigating the isometries of de Sitter space, which is the maximally symmetric

Lorentzian manifold, whose Riemann curvature satisfies

RABCD “
R

npn ´ 1q
pgACgBD ´ gADgBCq (3.1)

with R ą 0. Any metric whose curvature satisfies such an identity must be locally isometric

to de Sitter space. In the first part of this section, we shall present the proof that for dSn,

the only differential forms for which the Lie derivative with respect to all dSn isometries

vanishes are constant functions, and constant multiples of the volume form of dSn. Such

properties of isometries of dSn will be utilized in the rest of this chapter, in the context

of considering warped-product dS4 solutions in D “ 11 supergravity. To do this, in the

second part of this section, we summarize some key properties of D “ 11 supergravity,

including the bosonic field equations, and the D “ 11 supercovariant derivative. Then, in

the third part of this section, we describe in further detail the properties of warped-product

dS4 solutions in D “ 11 supergravity, focusing on the reduction of the Einstein and gauge

field equations, and the Bianchi identities, to the 7-dimensional internal manifold. These

equations are obtained by assuming that the Lie derivative of the 4-form F with respect

to all of the isometries of dS4 vanishes. Finally, in the fourth part of this chapter, we

shall briefly describe some classical no-go theorems which forbid the existence of warped

product de Sitter solutions for which the internal manifold is smooth, and compact without
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boundary, and the warp factor is smooth.

3.1. Isometries of de Sitter Space

In this section we shall show that, on dSn, the only differential forms whose Lie derivatives

with respect to all of the isometries of dSn vanish are constant functions, and constant

multiples of the volume form of dSn. Hence, for the case of dS4 solutions, it follows that

the 4-form flux F must be the sum of a constant multiple of the volume form of dS4 and

a 4-form on the internal space M7.

In order to demonstrate this, we first must determine the isometries of dSn. It will be

convenient to adopt the following choice of co-ordinates for dSn

ds2 “
1

R2ηµνdx
µdxν , R “ 1`

1

4
Kxαηαβx

β α, β “ 1, . . . , n (3.2)

In the case of dSn, K is taken to be a positive constant, which is proportional to the

scalar curvature. Anti-de-Sitter space and flat space correspond to taking K ă 0 and

K “ 0 respectively. We shall consider the case of de Sitter space, with K ą 0, henceforth;

however the analysis of isometries in this section also holds for K ă 0 and K “ 0 as well.

Let V be a vector field

V “ V µ
B

Bxµ
. (3.3)

V is an isometry of the metric of dSn if and only if V satisfies the Killing equation:

LV gµν “ 0 ñ ∇pµVνq “ 0 (3.4)

where

LV gµν “ V ρBρgµν ` gρνBµV
ρ

` gµρBνV
ρ . (3.5)

In terms of the co-ordinates we have chosen for dSn, this condition is equivalent to

ηανBµV
α

` ηαµBνV
α

´
K

Rηµνx
αηαβV

β
“ 0 (3.6)

It is straightforward to show that the following vector fields are Killing vectors:

Uσ “ x α̃ησβ̃ ´ x β̃ησα̃ , (3.7)

and

W σ
“

ˆ

1´
K

4
xαηαβx

β

˙

ησλ̃ `
K

2
xσx λ̃ , (3.8)
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3.1. Isometries of de Sitter Space 27

where α̃, β̃, λ̃ are fixed indices. There are 1
2
npn´1q linearly independent Uσ Killing vectors,

and there are n linearly independent W σ Killing vectors. Consequently, this set of vector

fields contains 1
2
npn`1q linearly independent Killing vectors, which is the maximum possible

number of Killing vectors for a n-dimensional manifold. Hence, this set of Killing vectors

is a basis for the set of Killing vectors of dSn.

Now we shall consider a p-form ω such that LUω “ LWω “ 0 for all possible U and W

Killing vectors. We first take the case of p “ 0, and ω “ f for a function f . In this case,

LUω “ LWω “ 0 implies that

xαB
βf ´ xβB

αf “ 0 (3.9)

and

`

1´
K

4
|x |
2
˘

B
λf `

K

2
xσxλBσf “ 0 (3.10)

where Bαf “ ηανBνf and |x |2 “ ηντx
νxτ . In particular, (3.10) implies (3.9), and so it

suffices to consider (3.10). On contracting (3.10) with xλ, where xλ “ ηλρx
ρ, one finds

xρBρf “ 0 (3.11)

and on substituting this condition into (3.10) one then obtains Bµf “ 0, so f must be

constant. Next, consider the case for which ω is a p-form for 1 ď p ď n. The condition

LUω “ 0 implies that

xαB
βων1...νp ´ xβB

αων1...νp ` pδαrν1ω
β
ν2...νps ´ pδβ

rν1
ωαν2...νps “ 0 (3.12)

and the condition LWω “ 0 implies that

`

1´
K

4
|x |
2
˘

B
λων1...νp `

K

2
xσxλBσων1...νp ´

K

2
pxrν1ω

λ
ν2...νps

`
K

2
pxλων1...νp `

K

2
pxσδ

λ
rν1
ωσν2...νps “ 0 (3.13)

Utilizing (3.12), we eliminate pδλ
rν1
ωσν2...νps from the final term in (3.13) to obtain

`

1`
K

4
|x |
2
˘

B
λων1...νp “ ´

K

2
pxλων1...νp (3.14)

On substituting this expression for Bλων1...νp , for λ “ α, β into (3.12) we then find

pδαrν1ω
β
ν2...νps ´ pδβ

rν1
ωαν2...νps “ 0 (3.15)
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28 3.2. D=11 Supergravity

On contracting this expression over α, ν1 one then finds

pn ´ pqωβν2...νp “ 0 (3.16)

Hence, if p ‰ n, then ω “ 0. If p “ n, then we write

ων1...νn “
h

p1` K
4

|x |2qn
ϵν1...νn (3.17)

for a function h, where ϵν1...νn is the alternating symbol in n dimensions. Substituting this

expression back into (3.14) one finds that Bλh “ 0, so h is constant. It follows in this case

that ω must be a constant multiple of the volume form on dSn.

Hence, we have shown that the only differential forms whose Lie derivatives with respect

to all of the isometries of dSn vanish are constant functions, and constant multiples of the

volume form of dSn. In the case of warped product dS4 solutions in D “ 11 supergravity,

this result will enable a particular simple decomposition of the 4-form field strength F .

3.2. D=11 Supergravity

In this section, we describe some key properties of D “ 11 supergravity, and state the

conditions which supersymmetric bosonic solutions of this theory must satisfy. Such solu-

tions are called supersymmetric solutions. This theory was first constructed in [57]. The

bosonic fields of D “ 11 supergravity consist of a metric g, and 3-form gauge potential

A, with 4-form field strength F “ dA. In addition, there is a fermionic Majorana gravitino

field, ψ. The action, including fermionic terms, is given by

S “
1

2κ2

ż
ˆ

R ´
1

48
FABCDF

ABCD

´ ψ̄AΓ
ABCDB

ˆ

1

2
pΩ` Ω̌q

˙

ψC `
1

192
ψ̄EΓ

ABCDEFψF
`

FABCD ` F̌ABCD
˘

`

`
1

16
ψ̄CΓ

ABψD
`

FAB
CD

` F̌AB
CD

˘

˙

dvol11 ` SCS (3.18)

where

SCS “
1

12κ2

ż

F ^ F ^ A , (3.19)

is a Chern-Simons term, A,B, C... are D “ 11 frame indices, and

• κ2 is proportional to the gravitational constant;

28



3.2. D=11 Supergravity 29

• dvol11 is the D “ 11 volume form

• F̌ABCD “ 4BrAABCDs ´ 3
2
ψ̄rAΓBCψDs

• Ω is the the spin-connection, ΩMAB “ Ω0MAB ` KMAB, where Ω
0
MAB is the spin-

connection with vanishing torsion and KMAB is the cotorsion term;

• KMAB “ ´1
4
pψ̄MΓBψA ´ ψ̄AΓMψB ` ψ̄BΓAψMq ` 1

8
ψ̄NΓ

NL
MABψL;

• Ω̌MAB “ Ω0MAB ´ 1
4
pψ̄MΓBψA ´ ψ̄AΓMψB ` ψ̄BΓAψMq;

• DM
`

1
2
pΩ` Ω̌q

˘

is the covariant derivative with connection given by 1
2
pΩ` Ω̌q;

The supersymmetric variations of the bosonic and fermionic fields are

pδeAqB “
1

2
ϵ̄ΓAψB (3.20)

pδAqMNP “
3

4
ϵ̄ΓrMNψP s (3.21)

pδψqA “ DApΩ̌qϵ´
1

288

`

ΓMNPQ A ´ 8ΓNPQδMA
˘

F̌MNPQϵ (3.22)

where eA is the vielbein, and ϵ is a Majorana spinor.

Bosonic supersymmetric solutions of D “ 11 supergravity are those for which the

fermions, and the variation of the gravitino, vanish. Requiring that the gravitino variation

should vanish imposes the Killing spinor equations (KSE) of D “ 11 supergravity:

DAϵ “ 0 , (3.23)

where the supercovariant derivative DA is defined as

DM ” ∇M ´
1

288

`

ΓM
A1A2A3A4 ´ 8δA1M Γ

A2A3A4
˘

FA1A2A3A3A4 . (3.24)

On setting the fermionic fields to zero in the action (3.18), one also obtains the bosonic

field equations. The Einstein equation is

RAB ´
1

2
RgAB ´

1

12
FAB1B2B3FB

B1B2B3 `
1

96
gABF

2
“ 0 (3.25)

and the gauge field equation is

d ˚ F ´
1

2
F ^ F “ 0 . (3.26)
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30 3.3. Warped Product dS4 in D “ 11 Supergravity

The 4-form F is also required to satisfy the Bianchi identity

dF “ 0 (3.27)

Having introduced the conditions which supersymmetric solutions of D “ 11 supergrav-

ity must satisfy, we shall next consider the particular case of warped product dS4 solutions

in D “ 11 supergravity. We shall state how the metric and 4-form F decompose for such

solutions, assuming that the Lie derivative of F with respect to all of the dS4 isometries

vanishes; we will also reduce all of the bosonic field equations and Bianchi identities to

field equations on the 7-dimensional internal manifold.

3.3. Warped Product dS4 in D “ 11 Supergravity

In order to analyse supersymmetric warped product dS4 solutions, we shall split the D “ 11

spacetime in a 4+7 fashion ds2 “ dS4ˆw M7, where ˆw denotes a warped product of dS4

with an internal manifold M7. In terms of the D “ 11 frame, capital latin letters such as

A,B denote D “ 11 frame indices. These D=11 frame indices are split in a 4+7 fashion as

follows: we use greek letters for dS4 frame directions, and latin letters from the middle of

the alphabet and onwards for M7. Latin letters from the beginning of the alphabet denote

M7 spacetime indices. M7 is equipped with local co-ordinates y
a, whereas dS4 is equipped

with local co-ordinates xµ. For further details about the conventions used are set out in

Appendix A.

The warped dS4 product metric g is

ds2 “ A2ds2dS4 ` ds2M7 “ ηµνe
µeν ` δi je

iej , (3.28)

where the vielbein frame is defined as
$

&

%

eµ ” A
Rdx

µ

ei ” e ibdy
b

(3.29)

with

Rpxq “

ˆ

1`
1

4
Kxνx

ν

˙

, xν ” xαηαν . (3.30)

The conformal factor A and the vielbein e ja depend only on y
a co-ordinates. The scalar K

is constant and greater than zero.
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3.3. Warped Product dS4 in D “ 11 Supergravity 31

We require that the Lie derivative of F with respect to all of the isometries of dS4

must vanish. Under such an assumption, from the analysis of the previous section, F must

decompose as follows:

F “ cdvolpdS4q `X , (3.31)

where c is a constant due to the Bianchi identity and X is a closed 4-form onM7 depending

only on y a co-ordinates. The gauge field equation (3.26) is equivalent to

dpA4 ‹7 Xq “ cX . (3.32)

It will be convenient to state the non-vanishing components of the spin-connection,

and curvature components. The non-vanishing spin-connection components are

Ωµ,νρ “
K

A
xrνηρsµ

Ωµ,iν “ ´
∇iA
A
ηµν

Ωi jk “ Ωi jkpM7q , (3.33)

where on the LHS Greek indices are frame indices on dS4, and on the RHS they are

co-ordinate indices on dS4. ∇i denotes the Levi-Civita connection on M7.
The non-vanishing Riemann tensor components are

Rµναβ “ pηµαηβν ´ ηναηβµq

ˆ

K

A2
´
∇iA∇iA
A2

˙

Riαjβ “ ´
1

A
∇i∇jAηαβ

Ri jkl “ Ri jklpM7q (3.34)

where on the LHS Greek indices are frame indices on dS4, and on the RHS they are

co-ordinate indices on dS4. The Ricci curvature tensor components are

Rµν “ ηµν
`

3A´2K ´ A´1∇i∇iA´ 3A´2∇iA∇iA
˘

Rµi “ 0

Ri j “ ´4A´1∇i∇jA` Ri jpM7q (3.35)

where on the LHS Greek indices are frame indices on dS4, and on the RHS they are

co-ordinate indices on dS4.
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32 3.4. No-Go Theorem for Regular de Sitter solutions

The pµνq-component of the Einstein equations of motion (3.25), imply that

3KA´1
´∇i∇iA´ 3A´1∇iA∇iA`

1

3
c2A´7

`
A

144
X2 “ 0 . (3.36)

From the pi jq-component of the Einstein equation of motion (3.25) and the third equation

in (3.35), one finds

Ri jpM7q “ 4A´1∇i∇jA`
1

12
Xia1a2a3Xj

a1a2a3 `
1

6
c2A´8δi j ´

1

144
X2δi j . (3.37)

On taking the trace of (3.37), and using (3.32) and (3.36), we obtain

RpM7q ´ 8A´1∇i∇iA´ 12A´2∇iA∇iA` 12A´2K `
1

6
c2A´8

´
1

144
X2 “ 0 . (3.38)

3.4. No-Go Theorem for Regular de Sitter solutions

Having performed this reduction, we briefly revisit the topic of global properties of warped

product dS4 solutions. There are some particularly important AdS geometries which arise

in the context of maximally supersymmetric solutions in D “ 11 supergravity [58]. It is

known that such solutions correspond to flat space R10,1, a maximally supersymmetric
plane wave solution, and two direct product AdS geometries:

• AdS7p´7Rq ˆ S4p8Rq and F “
?
6RdvolpS4q, where AdS7p´7Rq is 7-dimensional

AdS spacetime with scalar curvature ´7R, S4p8Rq is 4-dimensional sphere with

scalar curvature 8R, and R ą 0 is the constant scalar curvature of the overall

D “ 11 geometry.

• AdS4p8Rq ˆS7p´7Rq and F “
?

´6RdvolpAdS4q, where AdS4p8Rq is 4-dimensional

AdS spacetime with scalar curvature 8R, S7p´7Rq is 7-dimensional sphere with scalar

curvature 8R, and R ă 0 is the constant scalar curvature of the overall D “ 11

geometry.

Those two solutions can be interpreted as the near-horizon limits of the M5 and M2 brane

solutions respectively [6]. As we shall be interested later on in the classification of warped

product dS4 geometries in D “ 11 supergravity, we note that the case of AdS7 ˆ S4

provides an explicit, and moreover maximally supersymmetric, example of such a solution.

In this case, the metric can be written as a warped product dS4 ˆw M7.
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3.4. No-Go Theorem for Regular de Sitter solutions 33

To demonstrate this, we take the M5-brane solution in eleven-dimensional supergrav-

ity [6],

ds2 “ U´1{3
p´dt2 `

5
ÿ

n“1

pdxnq
2
q ` U2{3

5
ÿ

n“1

pdynq
2 (3.39)

where Q is a positive constant corresponding to the M5-brane charge,

U ” 1`
Q

r 3
, r ”

g

f

f

e

5
ÿ

n“1

y 2n . (3.40)

After taking the near-horizon limit and applying an appropriate change of co-ordinates,

the near-horizon limit of Eq. (3.39) becomes:

ds2 “A2 ds2pdS4q `
6

L
dθ21 `

6

L
cosh θ1

2dθ22 `
6

L
cosh θ1

2 cosh θ2
2dθ23

`
dφiδi jdφ

j

`

1` L
6
φkδklφl

˘2 , (3.41)

where µ “ 0, 1, 2, 3, i “ 1, 2, 3, 4, L “ 3
2
Q´2{3, the warp factor is

A “ cosh θ1 cosh θ2 sinh θ3 , (3.42)

and the metric

ds2pdS4q “
dxµηµνdx

ν

`

1` L
24
xαηαβxβ

˘2 (3.43)

is the metric of dS4. The first line in (3.41) corresponds to the metric of AdS7 with

curvature R “ ´7L, and the portion of the metric on the second line is the metric on S4

with curvature R “ 8L. The metric on the internal space M7 is obtained from the metric

in (3.41) by excluding the contribution from the dS4 metric.

It is useful to consider the global properties of this warped product geometry, in terms

of the internal spaceM7 and the warp factor A found for this solution. If the co-ordinate θ1

is periodically identified, then the metric components, and the warp factor, are not smooth

functions of θ1 on making a complete revolution in θ1. Alternatively, if θ1 is not bounded,

then the warp factor A is also unbounded on M7. Hence, although the AdS7ˆS4 geometry

is smooth, when decomposed as a warped product dS4 geometry with an internal manifold

M7, one cannot construct such a decomposition for which the M7 is smooth and compact

without boundary, and the warp factor A is a smooth function on M7.
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34 3.4. No-Go Theorem for Regular de Sitter solutions

Having considered the specific case of AdS7 ˆ S4, written as a warped product dS4

solution, we shall now consider investigate a more general type of no-go theorem for warped

product dS solutions [30,59,60]. In particular, suppose (for a contradiction) one assumes

that the internal manifold M7 is smooth and compact without boundary, and moreover

that the warp factor A is smooth. We first establish that A cannot have any zeroes on M7

unless c “ 0. We shall do this also by an argument via contradiction; let us suppose that

there is a zero for A on M7. If c ‰ 0, then (3.36) implies

1

3
c2A´6

“ ´3K ` A∇i∇iA` 3∇iA∇iA´
A2

144
X2 . (3.44)

If there is a zero for A on M7 then there exists a sequence of points on M7 approaching

this zero for which the LHS becomes unbounded. However, the RHS of this equation is a

smooth function on M7 and hence must be bounded. Hence, there is a contradiction, and

therefore one must have c “ 0.

Consider then (3.36) ; if A has any zeroes on M7 then c “ 0, and (3.36) is equivalent

to

1

4
∇i∇ipA4q “ 3KA2 `

A4

144
X2 (3.45)

However, on integrating this equation overM7 one obtains a contradiction, as the contribu-

tion from the LHS is zero, whereas the contribution from the RHS is positive. Alternatively,

if A does not admit any zeroes on M7 then c need not vanish, and (3.36) is equivalent to

1

4
∇i∇ipA4q “ 3KA2 `

A4

144
X2 `

1

3
c2A´4 (3.46)

All of the terms on the RHS of this expression are smooth, and so we may integrate all

terms in the above equation over M7. Once more, there is a contradiction, because the

contribution from the LHS is zero, whereas the contribution from the RHS is positive.

This no-go theorem implies that in our investigation of warped product dS4 geomet-

ries we cannot utilize the same type of global analysis, such as establishing Lichnerowicz

type theorems which were used to obtain quite strong conditions on warped product AdS

solutions [61], as well as proving the non-existence of warped product AdS6 solutions in

D “ 11 supergravity [62]. Instead, our analysis of the KSEs of the warped product dS4

geometries will be purely local in nature.
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CHAPTER 4

INTEGRATING THE KSE FOR dS4

In this chapter, we shall begin the analysis of the KSE for warped product dS4 solutions

in D “ 11 supergravity. The content of this chapter, as well as in chapters 5, 6, 7 (and

supporting Appendices) constitutes original research presented in [46]. We proceed by

computing the integrability conditions associated with the existence of a non-zero Killing

spinor ϵ which is covariantly constant with respect to the supercovariant derivative of

D “ 11 supergravity,

DAϵ “ 0 , (4.1)

where capital latin letters such as A, B denote D “ 11 frame indices. These results will

be particularly useful when we explicitly integrate up the KSE along the dS4 directions in

the next section. We remark that the D “ 11 frame indices are split in a 4+7 fashion as

follows: we use greek letters for dS4 frame directions, and latin letters from the middle of

the alphabet and onwards for M7 frame directions.

4.1. Integrability Conditions from the KSE

From the equation DMϵ “ 0, where

DM ” ∇M ´
1

288

`

ΓM
A1A2A3A4 ´ 8δA1M Γ

A2A3A4
˘

FA1A2A3A4 , (4.2)

we find

B

Bxµ
ϵ “

1

R

ˆ

´
1

4
KxαΓαµ `

1

2
∇kAΓkΓµ `

A

288
Γµ {X ´

c

6
A´3ΓµΓ̃

4

˙

ϵ (4.3)
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36 4.1. Integrability Conditions from the KSE

and

B

By a
ϵ “ e ja

ˆ

1

288
��ΓX j `

c

12
A´4Γj Γ̃

4
´
1

36
{X j ´

1

4
Ωj,lmΓ

lm

˙

ϵ , (4.4)

where

Γ̃4 ” Γ0Γ1Γ2Γ3 . (4.5)

In the chosen notation, Appendix A,

{XC ” XCA1...A3Γ
A1...A3 , and ��ΓXC ” ΓCA1...A4X

A1...A4 . (4.6)

We remark that (4.4) is equivalent to

∇iϵ “

ˆ

1

288
��ΓX i `

c

12
A´4Γi Γ̃

4
´
1

36
{X i

˙

ϵ , (4.7)

where ∇i denotes the Levi-Civita connection on M7.
We use these expressions to derive several integrability conditions. First, from the

integrability condition on dS4 spacetime

ˆ

B

Bxµ
B

Bxν
´

B

Bxν
B

Bxµ

˙

ϵ “ 0 , (4.8)

we get

ˆ

|∇A|
2

´K ´
c2

9
A´6

´
A2

p144q2
{X
2

`
2

3
cA´3∇iAΓi Γ̃4 ´

1

18
A∇iA {X

i

˙

ϵ “ 0 . (4.9)

On the other hand, from the integrability condition with one direction on dS4 and the

other on M7, i.e.
ˆ

B

Bxµ
B

By a
´

B

By a
B

Bxµ

˙

ϵ “ 0 (4.10)

we get

´

´
1

2
∇i∇kAΓk `

A

288
∇i {X `

5

6

A

288

´

Γri l1l2
j3j4 δj2l3 δ

j1
l4s
Xj1j2j3j4 X

l1l2l3l4

¯

`
5

6

A

288

`

ΓriXl1l2l3l4s X
l1l2l3l4

˘

`
c

864
A´3

p10 {X i ´ Γi {Xq Γ̃4

`
A

144
Γl1
j3j4 Xi

l1j1j2 Xj1j2j3j4 `
c

2
A´4∇iA Γ̃4 `

1

72
∇kAΓl1l2l3i X l1l2l3k

´
c

12
A´4∇kAΓk i Γ̃4 `

1

12
∇kAΓmn Ximn k

¯

ϵ “ 0 . (4.11)
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4.1. Integrability Conditions from the KSE 37

The integrability conditions (4.9) and (4.11) are, however, not independent; (4.9) is

implied by (4.11). To see this, contract (4.11) with Γi , and using equation of motion (3.36)

and the Bianchi Identity dF “ 0, we are able to derive the integrability condition (4.9).

So far, we have analyzed the integrability conditions involving the dS4 part of the

covariant derivative (4.3). The integrability condition on M7 given by

r∇i ,∇j s ϵ “
1

4
Ri jmnΓ

mnϵ , (4.12)

is

1

4
Ri jmnΓ

mnϵ “

«

1

288
p∇ip��ΓX jq ´∇jp��ΓX iqq ´

c

3
A´5 p∇iAΓj ´∇jAΓiq Γ̃4

´
1

36

`

∇i {X j ´∇j {X i
˘

`
1

2882
p��ΓX j��ΓX i ´��ΓX i��ΓX jq

`
1

362
`

{X j {X i ´ {X i {X j
˘

`
1

288

c

12
A´4 p��ΓX jΓi ´ Γi��ΓX jq Γ̃

4

`
1

288

c

12
A´4 pΓj��ΓX i ´��ΓX iΓjq Γ̃

4
`
1

288

1

36

`

��ΓX i {X j ´ {X j�
�ΓX i

˘

`
1

288

1

36

`

{X i�
�ΓX j ´��ΓX j {X i

˘

`
c2

72
A´8Γi j

`
c

432
A´4

`

{X iΓj ´ Γj {X i
˘

Γ̃4 `
c

432
A´4

`

Γi {X j ´ {X jΓi
˘

Γ̃4

ff

ϵ .

(4.13)

In fact, (4.11) is implied by (4.13). To see this, contract (4.13) with Γj and use the

Einstein equation (3.37), the Bianchi identity, Rlri jks “ 0, and the condition dX “ 0, as

well as the gauge field equations (3.32). In particular:

• The condition dX “ 0 is used to derive:

4Γla1a2a3∇lXka1a2a3 “ ∇k {X . (4.14)

• The gauge field equation (3.32) in components is

16∇iA {X i ` 4A∇i {X i ` cA´3 {XΓ̃4 “ 0 . (4.15)

• We obtain two equations by multiplying (4.15) by Γi on the left and on the right,

4AΓi∇j {X
j

` cA´3Γi {X Γ̃
4

` 16∇jAΓi {X
j

“ 0 , (4.16)

4A∇j {X
j
Γi ` cA´3 {X Γ̃4Γi ` 16∇jA {X

j
Γi “ 0 . (4.17)
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38 4.2. Integration of KSE

• Subtracting (4.16) and (4.17) implies that

4ApΓi∇j {X
j

´∇j {X
j
Γiq ` cA´3

pΓi {X ´ {XΓiq Γ̃
4

` 16∇jApΓi {X
j

´ {X
j
Γiq “ 0 ,

(4.18)

it follows that

AΓia1a2a3∇kXka1a2a3 “ ´cA´3 {X i Γ̃
4

´ 4∇kAΓia1a2a3Xka1a2a3 , (4.19)

where the terms in the brackets in (4.18) have been listed in (C.1) and (C.14).

• Adding (4.16) and (4.17) implies that

4ApΓi∇j {X
j

`∇j {X
j
Γiq ` cA´3

pΓi {X ` {XΓiq Γ̃
4

` 16∇jApΓi {X
j

` {X
j
Γiq “ 0 ,

(4.20)

and from this condition, it follows that

AΓab∇kXkiab “ ´
1

12
cA´3Γi {XΓ̃

4
`
1

3
cA´3 {X i Γ̃

4
´ 4∇kAΓabXkiab , (4.21)

where the terms in the brackets in (4.20) have been listed in (C.6) and (C.9).

Hence, it follows that the integrability conditions (4.9) and (4.11) are both implied by

(4.13), which is derived from the integrability condition of (4.7).

4.2. Integration of KSE

In this section, we will explicitly integrate the KSE along the dS4 directions. In this analysis,

we shall show that the KSE reduce to a single gravitino-type KSE acting on a spinor ψ

which is independent of the dS4 co-ordinates. To begin, we shall define a spinor Φ, as

follows:

Φ ”
A

288
{Xϵ´

1

2
∇kAΓkϵ` acA´3Γ̃4ϵ , (4.22)

where a is a constant to be fixed. We have chosen the relative coefficients between {X

and {dA in (4.22) motivated by the first two terms in (4.11). We shall show that one can
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4.2. Integration of KSE 39

choose the constant a, as well as other constants k1, k2, q1, q2, q3, q4, q5 such that

∇iΦ` k1rEq. (4.11)s ` k2A
´1Γi rEq. (4.9)s

`q1��ΓX iΦ` q2 {X iΦ` q3cA
´4Γi Γ̃

4Φ` q4A
´1∇kAΓiΓkΦ` q5A

´1∇iAΦ “ 0 .

(4.23)

Details of this calculation are presented in Appendix D. One finds that

k1 “ ´1 a “ ´
1

6
q1 “

1

288
q2 “ ´

1

36
q3 “ ´

1

12
k2 “ q4 “ q5 “ 0 . (4.24)

Given this choice of constants, the spinor Φ is

Φ “

ˆ

A

288
{X ´
1

2
∇kAΓk ´

c

6
A´3Γ̃4

˙

ϵ , (4.25)

which satisfies the following equations

B

Bxµ
Φ “

1

R

„

´
1

4
KxαΓαµ ` Γµ

ˆ

1

2
∇kAΓk `

A

288
{X `

c

6
A´3Γ̃4

˙ȷ

Φ (4.26)

B

By a
Φ “ e ja

ˆ

´
1

288
��ΓX j `

c

12
A´4Γj Γ̃

4
`
1

36
{X j ´

1

4
Ωj,lmΓ

lm

˙

Φ . (4.27)

These equations are similar, but not identical, to the original Killing spinor equations for

ϵ (4.3)-(4.4). The differences are in terms of certain signs appearing in (4.26)-(4.27),

which are flipped with respect to (4.3)-(4.4) - in (4.26) the second and the fourth term

with respect to (4.3) and in (4.27) the first and the third term with respect to (4.4).

Equations (4.26) and (4.27), will be particularly useful in the process of integrating up

the KSE along the dS4 directions. By using (4.9), (4.26) becomes

B

Bxµ
Φ “ ´

K

4Rx
αΓαµΦ´

K

4RΓµϵ . (4.28)

By using the definition of Φ (4.25), one can rewrite B

Bxµ
ϵ as

B

Bxµ
ϵ “

1

R

ˆ

´
1

4
KxαΓαµϵ` ΓµΦ

˙

. (4.29)

Applying a second derivative B

Bxν
to (4.29), using (4.28) and finally exploiting (4.29) to

cancel R´1ΓµΦ terms, one gets a second order differential equation for ϵ, namely

B

Bxµ
B

Bxν
ϵ`

K

4Rpxµ
B

Bxν
ϵ` xν

B

Bxµ
ϵq ´

K2

16R2 xµxνϵ`
K

4Rηµνϵ “ 0 . (4.30)
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40 4.2. Integration of KSE

On defining η by

ϵ “ R´ 1
2η , (4.31)

it is straightforward to see that (4.30) is equivalent to

B

Bxµ
B

Bxν
η “ 0 , (4.32)

and hence this equation can be integrated to find

η “ ψ ` xλτλ , (4.33)

where ψ, τλ with λ “ 0, 1, 2, 3 are Majorana spinors which do not depend on the xµ

co-ordinates.

Given this expression for ϵ, i.e.

ϵ “ R´ 1
2 pψ ` xλτλq , (4.34)

we substitute it into the KSEs (4.3) and (4.4). As the spinors ψ, τλ are independent of

the dS4 co-ordinates, on expanding (4.3) and (4.4) order-by-order in xα, we find various

conditions.

In particular, from the KSE along the dS4 directions (4.3), the vanishing of x´independent

terms imply that the Majorana spinors τµ are given in terms of ψ, as follows:

τµ “ Γµ

ˆ

A

288
{X ´
1

2
∇kAΓk ´

c

6
A´3Γ̃4

˙

ψ . (4.35)

The vanishing of the terms that are linear in xµ in (4.3) imply

ˆ

|∇A|
2

´K ´
c2

9
A´6

´
A2

p144q2
{X
2

`
2

3
cA´3∇iAΓi Γ̃4 ´

1

18
A∇iA {X

i

˙

ψ “ 0 , (4.36)

and we remark that this condition is equivalent to the integrability condition (4.9), but

with ϵ replaced with ψ. The terms in (4.3) which are quadratic in xµ vanish identically;

this then exhausts the content of (4.3).

Next we consider the KSE along the seven-dimensional internal directions, (4.4). Again,

we substitute in (4.34) and expand order-by-order in dS4 co-ordinates. The vanishing of

x´independent terms gives

∇iψ “

ˆ

1

288
��ΓX i `

c

12
A´4Γi Γ̃

4
´
1

36
{X i

˙

ψ . (4.37)
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4.3. Counting the supersymmetries 41

The above equation (4.37) implies that ψ satisfies a gravitino KSE along the internal

directions, which is identical to the condition (4.37) but with ϵ replaced with ψ.

From the terms in (4.4) which are linear in xµ we obtain

” A

288
∇i {X ´

1

2
∇i∇kAΓk `

A

1728
ΓiX

2
`

A

864
Γj1j2j3

l1l2Xi j4l1l2X
j1j2j3j4

´
A

432
Γj1Xi j2j3j4X

j1j2j3j4 ´
A

576
Γi j1j2

l1l2Xj3j4l1l2X
j1j2j3j4

´
1

864
cA´3Γi {XΓ̃

4
`
5

432
cA´3 {X i Γ̃

4
`

A

144
Γm abXimpqX

pqab

`
1

72
∇kAΓi j1j2j3Xkj1j2j3 `

1

12
∇kAΓabXi k ab

´
c

12
A´4∇kAΓkΓi Γ̃4 `

7

12
cA´4∇iAΓ̃4

ı

ψ “ 0 (4.38)

which is identical to the integrability condition (4.11), with ϵ replaced by ψ. This then

exhausts the content of (4.4).

Hence, we have shown that the spinor ϵ is given by

ϵ “ R´ 1
2 pψ ` xλτλq , (4.39)

where

τλ “ Γλ

ˆ

A

288
{X ´
1

2
∇kAΓk ´

c

6
A´3Γ̃4

˙

ψ . (4.40)

The Majorana spinor ψ is independent of the dS4 co-ordinates, and satisfies (4.37). Fur-

thermore, ψ must also satisfy the algebraic conditions (4.38) and (4.36). However, as we

have shown in the previous section, the integrability conditions of (4.37), together with the

bosonic field equations and Bianchi identities, imply that (4.38) holds. Furthermore, we

have shown that (4.38) also implies (4.36). Hence, the necessary and sufficient conditions

for supersymmetry are encoded in (4.37).

4.3. Counting the supersymmetries

Having determined that the necessary and sufficient conditions for supersymmetry are given

by (4.37), we shall now count the number of solutions to this equation. In particular, if ψ

satisfies (4.37), then so does Γµνψ. We choose a null basis for the Majorana representation
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42 4.3. Counting the supersymmetries

of Spin(10,1) and take the dS4 frame directions to correspond with the`,´, 1, 1̄ directions,

see Appendix B. The frame directions associated with the internal manifold M7 correspond

to the 2, 3, 4, 2̄, 3̄, 4̄,# directions.

With these conventions for the de Sitter and internal manifold frames, we define light-

cone projection operators as

P˘ ”
1

2
pI˘ Γ`´q , (4.41)

where Γ`´ “ 1
2
rΓ`,Γ´s. As the projection operator P˘ commutes with the supercovariant

derivative (4.37), we then decompose the spinor ψ using the lightcone projectors and we

define ψ˘ to be

ψ˘ ” P˘ψ ñ Γ˘ψ˘ “ 0 . (4.42)

Without loss of generality, utilizing these projection operators, any supersymmetric

solution must admit a positive chirality solution ψ` to (4.37). Given such a ψ` spinor, we

can then define

ψ̃` ” iΓ11̄ψ`

ψ´ ” Γ´pΓ1 ` Γ1̄qψ`

ψ̃´ ” iΓ´pΓ1 ´ Γ1̄qψ` . (4.43)

ψ̃` is an additional positive chirality solution to (4.37), and tψ´, ψ̃´u are two negative

chirality solutions to (4.37). tψ`, ψ̃`, ψ´, ψ̃´u are linearly independent, as by construction

they are mutually orthogonal with respect to the Dirac inner product x ¨ , ¨ y.

It would therefore appear, a priori, that the number of supersymmetries is 4n. However,

there are, in fact further additional spinors. To see this, note that (4.27) implies that

ψ̌` ” pΓ1 ` Γ1̄q

ˆ

A

288
{X ´
1

2
∇kAΓk ´

c

6
A´3Γ̃4

˙

ψ` , (4.44)

is also a positive chirality solution of (4.37). Furthermore, it can be shown that tψ`, ψ̃`, ψ̌u

are linearly independent. To see this, suppose that

ψ̌` “ c1ψ` ` ic2Γ11̄ψ` , (4.45)

for real constants c1, c2. Acting on both sides of this condition with the operator pΓ1 `

Γ1̄q
`

A
288

{X ´ 1
2
∇kAΓk ´ c

6
A´3Γ̃4

˘

, and utilizing the integrability condition (4.36) to simplify
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the LHS, we find

´
K

2
ψ “ pc21 ` c22 qψ , (4.46)

where we have also used (4.45) to simplify the RHS. It is clear that this admits no solution,

as K ą 0. Hence, we find that we can construct four linearly independent positive chirality

spinors which solve (4.37), corresponding to tψ`, ψ̃`, ψ̌`,
˜̌ψ`u, where ˜̌ψ` ” iΓ11̄ψ̌. There

are also four corresponding negative chirality spinors given by tψ´, ψ̃´, ψ̌´,
˜̌ψ´u, where

ψ̌´ “ Γ´pΓ1 ` Γ1̄qψ̌` , ˜̌ψ´ “ iΓ11̄ψ̌´ . (4.47)

Hence we have constructed 8 linearly independent solutions to (4.37),

tψ`, ψ̃`, ψ̌`,
˜̌ψ`, ψ´, ψ̃´, ψ̌´,

˜̌ψ´u (4.48)

and it follows that the number of supersymmetries for warped product dS4 solutions is 8n,

n “ 1, 2, 3, 4.

We remark that the existence of the additional spinors ψ̌˘,
˜̌ψ˘ is somewhat analogous

to results found in the analysis of near-horizon geometries of supersymmetric extremal

black holes [45] and also for warped product AdS solutions [61]. In these cases, given a

Killing spinor, one also finds that additional Killing spinors can be generated by the action

of certain algebraic operators constructed out of the fluxes of the theory. For the case of

near-horizon geometries, and for warped product AdS2 solutions, the construction of such

operators relies on global properties of the geometries via generalized Lichnerowicz type

theorems. However, for warped product AdSn (n ě 3) solutions, one can also construct the

additional Killing spinors algebraically using purely local constructions somewhat analogous

to the de-Sitter analysis.
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CHAPTER 5

SPINORIAL GEOMETRY TECHNIQUES FOR dS4 KSEs

In this chapter we shall use Spinp7q gauge transformations to bring the spinor ψ` to one

of several simple canonical forms. We will describe the gauge transformations used to do

this explicitly.

We consider the 32-dimensional space of Majorana spinors ∆32 (see Appendix B). The

most general form of a positive chirality Majorana spinor ψ` P ∆32 can be expressed by

using (B.7), i.e.

ψ` “ w1` w̄e1234 ` λ1e1 ` λ̄1e234 ` λjej ´
1

3!
p˚λ̄q

l1l2l3el1l2l3

` Ωqe1q ´
1

2!
Ω̄qεq

mnemn ,

(5.1)

with l , q,m,m “ 2, 3, 4. As the action of SUpNq on CPN´1 is transitive, one can apply

a SU(3) gauge transformation in the 2,3,4 directions to set, without loss of generality,

Ω3 “ Ω4 “ 0,1 i.e.

ψ` “ w1` w̄e1234 ` λ1e1 ` λ̄1e234 ` λjej ´
1

3!
p˚λ̄q

l1l2l3el1l2l3 `Ωe12 ´ Ω̄e34 . (5.2)

To proceed further, we define T 1, T 2, T 3 as

T1 ”
1

2
pΓ34 ` Γ3̄4̄q T2 ”

i

2
pΓ34 ´ Γ3̄4̄q T3 ” T1T2 “

i

2
pΓ33̄ ` Γ44̄q . (5.3)

1Generally, the complex value Ω2 can be set to be real with the same SU(3) transformation used to

set Ω3 “ Ω4 “ 0. It does not happen in this specific case due to the fact that Ω2 will be promoted to be

complex value in the next gauge transformation.
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46 CHAPTER 5. SPINORIAL GEOMETRY TECHNIQUES FOR dS4 KSEs

It is straightforward to verify that T i with i “ 1, 2, 3, which satisfy the algebra of the

imaginary unit quaternions, preserve the span of the following basis elements

v1 ” p1` e1234q v2 ” ip1´ e1234q

v3 ” pe12 ´ e34q v4 ” ipe12 ` e34q (5.4)

and we remark that the Spin(7) gauge transformation generated by the Ti is of the form

p4id` piTi where pp1, p2, p3, p4q P S3.

Then one can carry out an SO(2) gauge transformation generated by T3 to set w P R.
So far, the spinor ψ` can be written as

ψ` “ w p1` e1234q ` λ1e1 ` λ̄1e234 ` λjej ´
1

3!
p˚λ̄q

l1l2l3el1l2l3 `Ωe12 ´ Ω̄e34 . (5.5)

An SU(3) gauge transformation generated by ipΓ22̄´ 1
2
Γ33̄´ 1

2
Γ44̄q, which leaves t1, e1234u

invariant, is then used to set Ω P R, so

ψ` “ w p1` e1234q ` λ1e1 ` λ̄1e234 ` λjej ´
1

3!
p˚λ̄q

l1l2l3el1l2l3 `Ωpe12 ´ e34q . (5.6)

We next exploit an SO(2) transformation generated by T1, acting on v1 and v3 to put

Ω “ 0. Then, we make a further SU(3) gauge transformation along the 2, 3, 4 directions

to set λ3 “ λ4 “ 0 with λ2 P R, i.e.

ψ` “ w p1` e1234q ` λ1e1 ` λ̄1e234 ` λ2pe2 ´ e134q . (5.7)

In order to simplify further the spinor ψ`, we shall introduce additional Spinp7q generators

L1, L2, L3 given by

L1 ”
1

?
2
Γ7pΓ2 ` Γ2̄q, L2 ”

i
?
2
Γ7pΓ2 ´ Γ2̄q, L3 ” L1L2 “ iΓ22̄ . (5.8)

The Lj also satisfy the algebra of the imaginary unit quaternions, and commute with the Ti ,

and the Spinp7q gauge transformation generated by the Lj is of the form q
4id`qjLj where

pq1, q2, q3, q4q P S3. We shall then consider a generic gauge transformation generated by

the Ti and Lj of the acting on the spinor (5.7) of the form

`

p4id` piTi
˘`

q4id` qjLj
˘

ψ` . (5.9)

We set q2 “ q3 “ 0 and q1 “ sinσ, q4 “ cosσ, such that

wλ2 cos 2σ `
1

2
sin 2σpω2 ´ pλ2q2 ´ |λ1|2q “ 0 (5.10)
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and

p1 “ ℓRepλ1q sinσ, p2 “ ´ℓImpλ1q sinσ,

p3 “ 0, p4 “ ℓpω cosσ ´ λ2 sinσq (5.11)

where the constant ℓ is chosen such that pp1, p2, p3, p4q P S3. With this choice of para-

meters, the gauge transformation given in (5.9) can be used to set λ2 “ 0 in (5.7), so the

simplest canonical form for the spinor ψ` is given by

ψ` “ w p1` e1234q ` λe1 ` λ̄e234 w P R, λ P C . (5.12)

5.1. Stabilizer Group of ψ`

It is useful to consider the stabilizer subgroup of Spinp7q which leaves ψ` invariant. In

particular, we must determine the generators f i jΓi j , where f
i j P R are antisymmetric in

i , j , and satisfy

f i jΓi jψ` “ 0 i , j “ #, α, ᾱ . (5.13)

The conditions obtained from (5.13) are

2wf αβ “
?
2λ̄f #ρ̄ερ̄

αβ

2λf αβ “
?
2wf #ρ̄ερ̄

αβ

f α α “ 0 . (5.14)

Depending on w and λ, there are two possible different stabilizer subgroups:

(a) if w 2 ´ |λ|2 ‰ 0 then (5.14) implies that fαβ “ 0, f7α “ 0 and f α α “ 0 , that is

f P sup3q, hence the stabilizer is SUp3q. The stabilizer subgroup is generated by Γαβ̄

for α ‰ β, together with ipΓ11̄ ´ Γ22̄q and ipΓ11̄ ´ Γ33̄q.

(b) if w 2 ´ |λ|2 “ 0, then (5.14) implies that f P g2. In particular, the spinor ψ` has

a 3-form bilinear ϕ which is the canonical G2 invariant 3-form given in (6.53). The

stabilizer group is generated by the eight SUp3q generators listed above, together

with the additional 6 generators

t2Γ7ρ ` 2Γ7ρ̄ `
1

?
2

`

e iζϵρ
ᾱβ̄Γᾱβ̄ ` e´iζϵρ̄

αβΓαβ
˘

,

2iΓ7ρ ´ 2iΓ7ρ̄ `
i

?
2

`

e iζϵρ
ᾱβ̄Γᾱβ̄ ´ e´iζϵρ̄

αβΓαβ
˘

u (5.15)

47



48 5.1. Stabilizer Group of ψ`

for ρ “ 1, 2, 3, and we have set λ “ e iζw for real ζ.

In the SUp3q stabilized case it is particularly useful to consider the complex SUp3q

invariant spinor bilinear scalar xψ`,Γ1̄ψ`y “ 2
?
2wλ. There are various different cases,

corresponding to whether this scalar vanishes, or it does not vanish:

(i) w ‰ 0, λ “ 0 ,

(ii) λ ‰ 0, w “ 0 ,

(iii) w ‰ 0 , λ ‰ 0 .

In fact, it is straightforward to see that the spinors associated with cases piq and pi iq

above are related by a P inp7q transformation. To see this, consider the spinor from case

pi iq,

ψ` “ λe1 ` λ̄e234 . (5.16)

The Spinp7q gauge transformation generated by L3 produces a SOp2q which acts trans-

itively on te1 ` e234, ipe1 ´ e234qu, and hence without loss of generality we can set ψ` “

λpe1 ` e234q for λ P R. Next, note that

Γ234pe1 ` e234q “ ´p1` e1234q . (5.17)

It therefore follows that the spinor ψ` in case (ii) is Spinp7q gauge-equivalent to a spinor

which in turn is Pin-equivalent, with respect to Γ234 P P inp7q, to the spinor in case (i). The

effect of the Γ234 transformation is to flip holomorphic with anti-holomorphic directions

and to reflect along the # direction, namely

α Ñ ᾱ , # Ñ ´# . (5.18)

It is therefore sufficient to consider spinors ψ` corresponding to the G2 stabilizer case,

and the two SUp3q stabilizer cases piq, pi i iq. Having determined the stabilizers associated

with these three canonical types of spinors, we next proceed to obtain a linear system of

equations by substituting these expressions for ψ` into (4.37). The linear system consists

of relations between the flux and spin-connection, which when covariantized with respect

to the appropriate stabilizer group, give rise to conditions on the flux X and the geometry

of the internal manifold M7. In the following sections, we shall present the covariant

solution of the linear system for each of the stabilizer subgroups.
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CHAPTER 6

SUMMARY OF SOLUTIONS OF THE LINEAR SYSTEM

In this chapter, we shall solve the linear system obtained from the Killing spinor equations.

In particular, we shall show that the linear system implies that there are no Killing spinors

for which the stabilizer of ψ` is G2. For the case of a SU(3) stabilizer subgroup, the Killing

spinor equations determine all components of the 4-form flux in terms of the geometry of

the internal manifold, and we determine the geometric conditions and the components of

the flux, written in a SU(3) covariant fashion.

6.1. SU(3) Invariant Spinor

In this section, we solve the KSEs (4.37) when the stabilizer of ψ` is SUp3q, corresponding

to

ψ` “ w p1` e1234q ` λe1 ` λ̄e234 w P R, λ P C , (6.1)

for w 2 ´ |λ|2 ‰ 0. We begin by considering the case for which both w and λ are non-

vanishing. Furthermore, we will write λ “ ρe iθ, where ρ ą 0 and θ P r0, 2πr are two real

spacetime functions. The associated linear system and the components of the flux are

presented in Appendix E. The linear system is initially expressed non-covariantly in terms

of SU(3)-components of the spin-connection and the fluxes, but, it can be rewritten in

SU(3)-covariant form by using the SUp3q gauge invariant bilinears. In Appendix F we set

out the main relations which are used to write the relations in a manifestly SUp3q covariant
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fashion, in terms of the following SUp3q invariant bilinears:

ξ ” e# , ω ” ´iδαβ̄ e
α

^ eβ̄ , χ ”
1

3!
εαβγe

α
^ eβ ^ eγ . (6.2)

The above forms are obtained from the following SUp3q-invariant spinor bilinears:

xψ`,Γaψ`yea “ ´2pw 2 ´ |λ|
2
qξ (6.3)

1

2!
xψ`,ΓabΓ̃

4ψ`yea ^ eb “ ´2pw 2 ´ |λ|
2
qω (6.4)

1

3!
xψ`, pΓ1 ` Γ1̄qΓabcψ`yea ^ eb ^ ec “ 2iw pλ̄´ λqξ ^ ω

` 4pw 2 ´ λ2qχ` 4pw 2 ´ λ̄2qχ̄

(6.5)

where a, b, c “ α, ᾱ,#. There are also several Spinp7q invariant scalar bilinears, such as

xψ`, ψ`y “ 2pw 2 ` |λ|
2
q

xψ`, pΓ1 ` Γ1̄qψ`y “ 2
?
2w pλ` λ̄q

xψ`, ipΓ1 ´ Γ1̄qψ`y “ 2
?
2iw p´λ` λ̄q . (6.6)

When we later covariantize the conditions on the flux and the geometry, there are various

polynomials in w 2 and |λ|2 which can be rewritten in a manifestly gauge-invariant way in

terms of these gauge-invariant spinor bilinears. In terms of spinor bilinears, a complete set

of gauge invariant spinor bilinears completely encodes the algebraic properties of the spinor,

modulo appropriate gauge transformations. This was utilized in the initial classification of

supergravity solutions [19–21] prior to the development of spinorial geometry techniques.

We remark that (6.3), (6.4), (6.5) and (6.6) do not constitute a full set of spinor bilinears.

In constructing the solution to the linear system (E.2)-(E.13), it is convenient to make

use of the two Lee forms built from χ, and ω, which are

Zi ” p∇jχjklqχ̄kl i , Wi ” p∇jωjkqωk i . (6.7)

Furthermore, we use LξΥ to denote the Lie derivative of Υ along the vector field which
is dual with respect to the metric on M7 to the 1-form ξ.
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After some computation, the SU(3)-covariant conditions involving the warp factor A

and the geometry of M7 are as follows (here i , j, k “ #, α, ᾱ are frame indices on M7):

∇iξi “ ´
6ξj

pw 2 ´ |λ|2q2

”

w p2w 2 ` 3|λ|
2
qpdw qj ` p3w 2 ` 2|λ|

2
qRepλdλ̄qj

ı

(6.8)

∇iξjωi j “ ´cA´4
´ 6w 2

ξkImpλdλ̄qk

w 4 ´ |λ|4
(6.9)

χi jkpLξχ̄q
i jk

“ ´6ξl
”

λ̄
p2w 4 ` 2|λ|4 ` 11w 2|λ|2q

pw 2 ` |λ|2qpw 2 ´ |λ|2q2
pdλql

` λ
p7w 4 ` 4|λ|4 ` 4w 2|λ|2q

pw 2 ` |λ|2qpw 2 ´ |λ|2q2
pdλ̄ql

` 3w
p2w 2 ` 3|λ|2q

pw 2 ´ |λ|2q2
pdw ql

ı

´ 4icA´4 (6.10)

iχi jkpdωq
i jk

“ 9
?
2ξl

”

λ̄
p9w 2 ` |λ|2q

pw 2 ´ |λ|2q2
pdw ql ` w

pw 2 ` 4|λ|2q

pw 2 ´ |λ|2q2
pdλ̄ql

` 5
λ̄2w

pw 2 ´ |λ|2q2
pdλql

ı

(6.11)

pdξqi jχi jk “

?
2

pw 2 ´ |λ|2q

„

w
λ̄

λ
pdλqk ´ w pdλ̄qk

ȷ

(6.12)

Z “
4

w 2 ´ |λ|2

„

w 2d log ρ` w 2idθw ´
|λ|2

w
dw ` ξ

ˆ

|λ|2

w
pdw qj ´ w 2pd log ρqj

˙

ξj
ȷ

(6.13)

W “ ´
1

3

1

w 2 ´ |λ|2

„

1

w
pw 2 ´ 4|λ|

2
q

`

dw ´ ξpdw qjξ
j
˘

` p5w 2 ` 4|λ|
2
q

`

d log ρ` idθw ´ ξpd log ρqjξ
j
˘

ȷ

(6.14)
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Lξξ “
1

3

„

1

w
p7w 2 ` 2|λ|

2
q

`

dw ´ ξpdw qjξ
j
˘

` pw 2 ` 2|λ|
2
q

`

ξpd log ρqjξ
j

´ d log ρ´ idθw
˘

ȷ

(6.15)

χmlripdξq
mnχ̄jsn

l
“
1

3
cA´4ωi j

pw 2 ` |λ|2q

pw 2 ´ |λ|2q
` 2ωi j

w 2

pw 4 ´ |λ|4q
ξkImpλdλ̄qk (6.16)

8|λ|
2
p5w 2 ` |λ|

2
qdw ` 4wdρ2pw 2 ` 5|λ|

2
q ` 8wρ2 idθωpw 2 ´ |λ|

2
q

´ξi
“

8|λ|
2
p5w 2 ` |λ|

2
qdw ` 4wdρ2pw 2 ` 5|λ|

2
q ` 8wρ2 idθωpw 2 ´ |λ|

2
q
‰

i
“ 0 . (6.17)

We also obtain a SUp3q invariant expression for the flux X. In general, any real 4-form

on M7 can be written as

X “ e# ^ Y ` ω ^ σ ` β ^ χ` β̄ ^ χ̄`XTT (6.18)

where

• σ is a real two-form;

• β is a complex one-form, and β̄ is its complex conjugate;

• Y is real 3-form;

• XTT is the traceless (2,2)-part of the flux.

We remark that XTT is the only part of the flux that is not fixed by the linear system.

However, a traceless p2, 2q 4-form in 6 dimensions vanishes identically. To see this, note

that XTT is dual (in 6 dimensions) to a (1,1) 2-form R, R “ ˚6X
TT. Furthermore, by

definition

Rαβ̄ “
1

4!
εαβ̄

b1b2b3b4XTTb1b2b3b4 “
1

4
εαβ̄

µ1µ2ν̄1ν̄2XTTµ1µ2ν̄1ν̄2

“
i

4
ϵα
ν̄1ν̄2εβ̄

µ1µ2XTTµ1µ2ν̄1ν̄2 “
i3!

4
δβµ1µ2αν1ν2

XTTµ1µ2
ν1ν2 “ 0 (6.19)

as the contribution from trace terms in the final term vanishes. Hence R vanishes identic-

ally, and so XTT “ 0.
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It follows that the flux can be written as

X “ e# ^ Y ` ω ^ σ ` β ^ χ` β̄ ^ χ̄ (6.20)

where all of these terms are fixed by the Killing spinor equations. In particular, the com-

ponents of the real 2-form σ and of the complex 1-form β are given by

σi j “ ´
pw 2 ´ |λ|2q

pw 2 ` |λ|2q
pLξωqi j

´ 2ωi j
ξk

pw 2 ´ |λ|2qpw 2 ` |λ|2q

“

w pw 2 ` 2|λ|
2
qpdw qk ` p2w 2 ` |λ|

2
qRepλdλ̄qk

‰

(6.21)

βi “ ´3
?
2

λw

pw 2 ´ |λ|2q

”

pLξξqi ` i pLξξqj ω
j
i

ı

`
3

2

pw 2 ` |λ|2q

pw 2 ´ |λ|2q
pdξqkj χ̄kji

` i
pw 4 ` 4w 2|λ|2 ` |λ|4q

pw 2 ´ |λ|2qpw 2 ` |λ|2q
pLξωq

kj
χ̄kji . (6.22)

The real 3-form Y has components

Yi jk “ qωri
l
pdωqjksl ` pω ^ V qi jk ` hχi jk ` h̄χ̄i jk (6.23)

where q and h are functions, and V is a real one-form, given by:

q “ ´3
pw 2 ´ |λ|2q

pw 2 ` |λ|2q
(6.24)

Vi “
pw 2 ´ |λ|2q

pw 2 ` |λ|2q
ωi
j
pLξξqj (6.25)

h “
3

?
2

2

ξk

pw 2 ´ |λ|2q

„

λpdw qk `
w 3

pw 2 ` |λ|2q
pdλqk `

wλ2

pw 2 ` |λ|2q
pdλ̄qk

ȷ

´ q
i

6
χ̄i jkpdωqi jk . (6.26)

6.1.1. SU(3) Invariant Spinor with λ “ 0, w ‰ 0

Next, we consider the special case of the SUp3q invariant spinor

ψ` “ w p1` e1234q w P R, w ‰ 0 . (6.27)
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The SUp3q covariant geometric conditions involving the warp factor and the geometry of

M7 which are obtained from the linear system are:

pdωq
p3,0q

“ pdωq
p0,3q

“ 0 (6.28)

dpw 4ξq “ ´
c

3
A´4ωw 4 (6.29)

χ̄i jk pLξωqjk “ 0 (6.30)

Zi “ ´20pw´1dw qi ` 20ξiξ
k
pw´1dw qk (6.31)

Wi “ 8pw´1dw qi ´ 8ξiξ
k
pw´1dw qk (6.32)

Im
`

χ̄i jkpLξχqi jk
˘

´ 4cA´4
“ 0 (6.33)

∇iξi “ ´12ξkw´1
pdw qk (6.34)

∇iξjωi j “ ´cA´4 . (6.35)

The flux X can be expressed as

X “ e# ^ Y ` ω ^ σ (6.36)

with

σ “ ´w´2Lξpw 2ωq (6.37)

and

Yi jk “ ´3ωri
l
pdωqjksl ` pω ^ V qi jk (6.38)

where

Vi “ ωi
j
pLξξqj . (6.39)
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6.2. G2 Invariant Spinor

In this section, we shall consider the case when the stabilizer of ψ` is G2, corresponding

to the case

ψ` “ w p1` e1234q ` λe1 ` λ̄e234 w P R, λ P C , (6.40)

with w 2 “ |λ|2. We shall show that this orbit admits no solutions to the Killing spinor

equations and the bosonic field equations. To establish this result, we set λ ” e iζw , where

ζ is a real function. The geometric conditions we obtained by solving the linear system

are:

dw “ dζ “ 0 (6.41)

Ωµ,α
α

“ 0 (6.42)

Ω#,α
α

“ i
c

6
A´4 (6.43)

Ω#,αβε
αβγ

“
?
2 e iζ Ω#,#

γ (6.44)

Ωµ̄,αβε
αβγ

“
?
2 e iζ Ωµ̄,#

γ (6.45)

2Ωµ̄
γρ

´
?
2 e´iζεγραΩµ̄,#α ` i

?
2
c

6
e´iζA´4εµ̄

γρ
“ 0 . (6.46)

Furthermore, we find that all of the components of the flux X vanish,

X “ 0 . (6.47)

As X “ 0, the integrability condition Γj r∇i ,∇j sψ` from (4.11) implies that

”

´
1

2
∇i∇kAΓk `

c

2
A´4∇iA Γ̃4 ´

c

12
A´4∇kAΓk i Γ̃4

ı

ψ` “ 0 . (6.48)

Multiplying (6.48) by Γl , we find

”

´
1

2
∇i∇kApδkl ` Γl

k
q `

c

2
A´4∇iAΓl Γ̃4

´
c

12
A´4∇kApΓl

k
i ` δkl Γi ´ δl iΓ

k
q Γ̃4

ı

ψ` “ 0 . (6.49)
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We next take the inner product of (6.49) with ψ`, noting that the anti-hermitian terms

vanish identically as ψ` is Majorana. The hermitian part gives

xψ`,
”

´
1

2
∇i∇lA´

c

12
A´4∇kAΓl k i Γ̃4

ı

ψ`y “ 0 . (6.50)

The symmetric part of (6.50) then gives

∇i∇lA||ψ`||
2

“ 0 ñ ∇i∇lA “ 0 , (6.51)

and the antisymmetric part of (6.50) implies

´
c

12
A´4∇kAxψ`,Γl

k
i Γ̃
4ψ`y “ 0 . (6.52)

The 3-form spinor bilinear in (6.52) is proportional to the G2-invariant 3-form ϕ given by

ϕ “ e# ^ ω ´ 2i
?
2 Impe iθχq , (6.53)

ϕ#αβ̄ ” ´iδαβ̄ ϕαβγ “ ´i
?
2 e iθεαβγ “ pϕᾱβ̄γ̄q

˚ . (6.54)

Hence (6.52) implies that

ϕl ik∇kA “ 0 (6.55)

which in turn implies that dA “ 0, so A is constant. However, from the Einstein field

equation (3.36) we obtain

3KA´1
´∇i∇iA´ 3A´1∇iA∇iA`

1

3
c2A´7

`
A

144
X2 “ 0 . (6.56)

It is clear that this equation admits no solution in the case for which A is constant and X “

0, as the LHS is strictly positive. Therefore, we conclude that there are no supersymmetric

warped product dS4 solutions for which the spinor ψ` is G2 invariant.

It follows that all warped product dS4 must lie within the SU(3) cases. We have

previously considered the maximally supersymmetric solution AdS7ˆS4 as the near-horizon

M5-brane limit, and showed that it is a warped product dS4 solution. In fact, the half-

supersymmetric M5-brane geometry is also another example of a warped product dS4

solution. To see this, note that one can write R1,4 as a warped product dS4 solution as
follows:

ds2pR1,4q “
z2

R2ηµνdx
µdxν `

1

K
dz2 (6.57)
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where R is given by (3.2). It is straightforward to show that the Riemann curvature tensor
of (6.57) vanishes, so the metric is locally isometric to that on R1,4. On embedding R1,4

into the R1,5 which appears in the M5-brane metric, it follows that the half-supersymmetric
M5-brane also is warped product dS4 solution. Furthermore, one can also write AdS6 as

a warped product R1,4 geometry, and consequently also as a warped product dS4 solution.
Consequently, the warped product AdS6 solutions found in [61] also provide examples of

warped product dS4 solutions preserving N “ 16 supersymmetry. We remark that although

a non-existence theorem for warped product AdS6 solutions in D “ 11 supergravity was

established in [62], this theorem assumes a smooth warp factor and a smooth and compact

without boundary internal space. For warped product dS4 solutions we do not assume such

global properties, as we wish to evade the no-go theorems. Hence warped product AdS6

solutions, which are also warped product dS4 solutions, can arise in this context.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

We have obtained the necessary and sufficient conditions for warped product dS4 ˆw M7

solutions in D “ 11 supergravity to preserve the minimal N “ 8 supersymmetry. To do

this, we first integrated explicitly the gravitino equation along the dS4 directions. This

reduces the conditions imposed by supersymmetry to a gravitino-type equation on M7

acting on a Majorana spinor ψ`, whose components depend only on the co-ordinates

of M7. Using spinorial geometry techniques, the spinor ψ` was then simplified to two

possible canonical forms by Spinp7q gauge transformations. These two canonical forms

have stabilizer subgroups corresponding to G2 and SUp3q. In the G2 case, we show that

there is no solution to the Killing spinor equations. For the SUp3q case we have determined

the 4-form flux in terms of SUp3q invariant geometric structures on M7 (6.20)-(6.26)

(6.36)-(6.39), as well as determining all of the conditions imposed on the geometry of M7

(6.8)-(6.17) (6.28)-(6.35). In particular, the geometric conditions, a priori, appear rather

weak, though in the case of the SUp3q invariant spinor with λ “ 0, the conditions on the

SUp3q structure simplify somewhat, to imply for example that dω has vanishing p3, 0q and

p0, 3q components.

Having obtained these conditions for the N “ 8 solutions, it would be interesting to

further investigate the resulting (local) conditions on the geometry. It would be useful to

determine if they could be used, for example, to construct some useful set of co-ordinates

forM7. It would also be interesting to consider the N “ 16 case, as well as the N “ 24 and

N “ 32 cases. In particular, for the latter two cases of N “ 24 and N “ 32 supersymmetry,
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it is possible to find further conditions on such solutions utilizing the homogeneity theorem

analysis constructed in [63]. To proceed with this, suppose that there we have N linearly

independent solutions tψr : r “ 1, . . . , Nu for N “ 24 or N “ 32 to the gravitino equation

(4.37). We then consider the integrability condition (4.36), which implies

ˆ

|∇A|
2

´K ´
c2

9
A´6

´
A2

p144q2
{X
2

`
2

3
cA´3∇iAΓi Γ̃4 ´

1

18
A∇iA {X

i

˙

ψs “ 0 . (7.1)

This implies that

xψr ,Γ0Γ̃
4

ˆ

|∇A|
2

´K ´
c2

9
A´6

´
A2

p144q2
{X
2

`
2

3
cA´3∇iAΓi Γ̃4 ´

1

18
A∇iA {X

i

˙

ψsy “ 0 (7.2)

and hence

cxψr ,Γ0Γ
iψsy∇iA “ 0 . (7.3)

On defining vector fields Θrsi “ xψr ,Γ0Γiψ
sy, this implies

cLΘrsA “ 0 . (7.4)

For N “ 24 and N “ 32 solutions, it follows from the homogeneity theorem analysis

of [63] that the Θrs span pointwise the tangent space of M7, and hence

cdA “ 0 . (7.5)

If c ‰ 0, then this implies that dA “ 0. However, (6.56) implies that there are no solutions

for which A is constant. Hence, for N “ 24 or N “ 32 solutions, we must take c “ 0.

This determines all possible N “ 32 warped product dS4 solutions. From [58], where all

maximally supersymmetric solutions in D “ 11 supergravity were determined, the maxim-

ally supersymmetric solutions are R1,10 with F “ 0; AdS4ˆ S7 with 4-form F proportional

to the volume form of AdS4, AdS7 ˆ S4, with 4-form F proportional to the volume form

of S4, and a maximally supersymmetric plane wave solution which has F ‰ 0, but F 2 “ 0.

In terms of possible N “ 32 warped product dS4 solutions, the condition c “ 0 implies

that F 2 ě 0 with equality if and only if F “ 0. Hence we exclude AdS4 ˆ S7 and the

maximally supersymmetric plane wave as N “ 32 warped product dS4 solutions, because

the AdS4ˆS7 solution has F 2 ă 0, and the maximally supersymmetric plane wave solution
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has F ‰ 0, but F 2 “ 0. It follows that the N “ 32 warped product dS4 solutions are

R1,10 and AdS7 ˆ S4. In particular, it is possible to explicitly write both R1,4 and AdS7
as warped product dS4 geometries, as in (6.57) and also [40]. It would be interesting to

further understand the possible N “ 16 and N “ 24 warped product dS4 solutions, though

the homogeneity theorem does not apply to the N “ 16 solutions.
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APPENDIX A

CONVENTIONS

We use the mostly plus sign signature η “ diagp´,`, . . . ,`q. The gamma matrices satisfy

tΓA,ΓBu “ 2gAB . (A.1)

In these conventions, we take

Γ0123456789# “ I , (A.2)

and consequently the following duality relation holds

ΓA1...Ap “ p´1q
pp`1qpp´2q

2
1

p11´ pq!
εA1...Ap

Ap`1...A11ΓAp`1...A11 , (A.3)

where

ε0123456789# “ `1 . (A.4)

The Hodge star of a p-form ω is defined by

˚ωA1...A11´p “
1

p!
εA1...A11´p

B1...BpωB1...Bp . (A.5)

For every k-form ω, one can define a Clifford algebra element {ω given by

{ω ” ωA1...AkΓ
A1...Ak . (A.6)

In addition, one can define

{ωC ” ωCA1...AkΓ
A1...Ak , and ��ΓωC ” ΓCA1...Akω

A1...Ak . (A.7)
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APPENDIX B

SPINORS FROM FORMS

The Majorana representation of Spin(10,1) can be constructed from the Spinp9, 1q spinor

representations and then adding the tenth gamma matrix Γ#. This construction is derived

in an explicit representation, in terms of differential forms, in [47,48], see also [55,56]. We

take the space U of 1-forms on R5, with basis te1, . . . , e5u. The space of Dirac spinors,

∆c “ Λ˚pUbCq, is identified with the complexified space of multi-forms constructed from

this basis. ∆c is equipped with a canonical Euclidean Hermitian inner product x ¨ , ¨ y

We then take the following representation for the gammma matrices:

Γ0η “ ´e5 ^ η ` ie5η Γ5η “ e5 ^ η ` ie5η

Γiη “ ei ^ η ` ieiη i “ 1, . . . , 4

Γi`5η “ ipei ^ η ´ ieiηq (B.1)

where η P ∆c and iei is the inner derivative along the direction ei . The tenth gamma matrix

can be chosen as

Γ# “ ´Γ0123456789 . (B.2)

One can verify that Γ2# “ I. The gamma matrices satisfy the Clifford Algebra, namely
ΓAΓB ` ΓBΓA “ 2ηABI. The Hermitian inner product, acting only on 1-forms, is defined
by

x zaea, w
beby “ pzaq˚ηabw

b , (B.3)

and is then extended to the complexified space of multi-forms, ∆c .
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The gamma matrices are chosen such that Γ0 is skew-hermitian and Γi , i “ 1, . . . , 9

are hermitian with respect to x ¨ , ¨ y. The Spinp10, 1q invariant Dirac inner product is

defined as

Dpη, θq “ xΓ0η, θy . (B.4)

In eleven dimensions a spinor can be Majorana; the reality condition is

η˚
“ Γ6789η , (B.5)

where C “ Γ6789 is the charge conjugation matrix, and C˚ commutes with the gamma

matrices, i.e. C ˚ΓA “ ΓAC˚ . The Dirac representation of Spin(10,1) admits an oscillator

basis as

Γ´ “ 1?
2

pΓ5 ´ Γ0q “
?
2 e5 ^ Γα “ 1?

2
pΓα ´ iΓα`5q “

?
2 eα ^

Γ` “ 1?
2

pΓ5 ` Γ0q “
?
2 ie5 Γᾱ “ 1?

2
pΓα ` iΓα`5q “

?
2 ieα (B.6)

and Γ7 defined as in (B.2). In this oscillator basis, the gamma matrices satisfy the Clifford

Algebra, ΓAΓB ` ΓBΓA “ 2ηABI, with non-vanishing components are η`´ “ η77 “ 1,

ηαβ̄ “ δαβ̄.

We note that pΓ`q: “ Γ´ and pΓαq: “ Γᾱ; pΓ`,Γᾱq act as creation operators on the

Clifford vacuum represented by the 0-degree form 1, where ΓA “ ηABΓB. A general spinor

ϵ can be written as

ϵ “

5
ÿ

k“0

1

k!
φā1...ākΓ

ā1...āk1 , ā “ `, ᾱ . (B.7)
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USEFUL RELATIONS

In this appendix, some expressions used to compute Eqs. (4.9), (4.11), (4.38) are shown.

Γi {X ´ {XΓi “ 8 {X i , (C.1)

{X i {X ` {X {X i “ ´72Γj
k1k2Xi

j l1l2Xl1l2k1k2 , (C.2)

��ΓX i “ Γi {X ´ 4 {X i , (C.3)

{X
2

“ ´72 Γl1l2k1k2Xl1l2j1j2X
j1j2
k1k2 ` 24X2 , (C.4)

{X��ΓX i `��ΓX i {X “ 240
`

ΓriXj1j2j3j4sX
j1j2j3j4 ´ Γri j1j2

l1l2Xj3j4sl1l2X
j1j2j3j4

˘

“ 48 ΓiX
2

´ 192 Γj1Xi j2j3j4X
j1j2j3j4 ´ 144 Γi j1j2

l1l2Xj3j4l1l2X
j1j2j3j4

` 96 Γj1j2j3
l1l2Xi j4l1l2X

j1j2j3j4 , (C.5)

Γk {X i ` {X iΓk “ 6 Γl1l2Xikl1l2 , (C.6)

Γk��ΓX i `��ΓX iΓ
k

“ 10Γrj1j2j3j4δ
k
isX
j1j2j3j4 “ 2δki {X ´ 8 Γj1j2j3iX

j1j2j3k , (C.7)

{XΓlm ´ Γlm {X “ 16 Γj1j2j3
rmδ

ls
j4
X j1j2j3j4 , (C.8)

{XΓj ` Γj {X “ 2��ΓX j , (C.9)
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70 APPENDIX C. USEFUL RELATIONS

��ΓX l��ΓXk ´��ΓXk��ΓX l “ 32Γi1i2i3
j1j2j3Xk

i1i2i3Xl j1j2j3 ´ 96Γl
i1i2j2j3j3Xkj1i1i2X

j1
j2j3j3

` 144Γkl
i1i2j2j3Xi1i2j1j3X

j1j3
j2j3 ´ 96Γki1i2i3

j2j3X i1i2i3j1Xl j1j2j3

´ 48ΓklX
2

` 192Γl
j3Xk

j1j2j3Xj1j2j3j3 ´ 576Γi1
j3Xk i1j1j2Xl j3j1j2

` 192Γki1X
i1j1j2j3Xl j1j2j3 , (C.10)

��ΓX lΓk ´ Γk ��ΓX l “ ´2Γkl i1i2i3i4X
i1i2i3i4 , (C.11)

��ΓXk {X l ´ {X l �
�ΓXk “ ´72Γk

i1i2j3Xi1i2j1j2Xl j3
j1j2 ` 48Γi1i2i3j3X

i1i2i3j1Xkl
j3
j1 , (C.12)

��ΓXkΓ
mn

´ Γmn��ΓXk “ 4��ΓXrnδ
ms

k ` 16Γk
rn
i1i2i3X

msi1i2i3 , (C.13)

Γk {X l ´ {X lΓk “ 2Γki1i2i3Xl
i1i2i3 , (C.14)

Γmn {Xk ´ {XkΓ
mn

“ 12Γrm
i1i2Xk

nsi1i2 , (C.15)

{X l {Xk ´ {Xk {X l “ 2Γi1i2i3j1j2j3Xl i1i2i3Xkj1j2j3 ´ 36Γi1
j3Xl

i1j1j2Xkj3j1j2 . (C.16)
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APPENDIX D

DERIVATION OF EQUATION (4.23)

Given the spinor Φ defined in (4.22), we consider (4.23). In particular we begin by ex-

amining the following terms:

∇iΦ` k1rEq. (4.11)s , (D.1)

where k1, k2 are some constants to be determined. To begin with, note that the terms

which are linear in X are:

p1` k1q
A

288
∇i {X `

1

576
∇iA {X `

p12a ` 1´ 4k1q

12

1

288
cA´3Γi {XΓ̃

4

`
p5k1 ´ 1´ 18aq

432
cA´3 {X i Γ̃

4
´
1

576
∇kAΓki {X `

1

48
∇kAΓkj1j2j3Xi j1j2j3

`
p3` 4k1q

48
∇kAΓabXikab `

k1
72
∇kAΓi j1j2j3Xkj1j2j3 . (D.2)

In order to set to zero the term involving ∇i {X, we set k1 “ ´1. Having done so, we then

consider imposing the condition

∇iΦ´ rEq. (4.11)s ` k2A
´1Γi rEq. (4.9)s ` q1��ΓX iΦ` q2 {X iΦ

`q3cA
´4Γi Γ̃

4Φ` q4A
´1∇kAΓiΓkΦ` q5A

´1∇iAΦ “ 0 , (D.3)
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72 APPENDIX D. DERIVATION OF EQUATION (4.23)

and compute all of the terms on the LHS, choosing the constants a, k2, q1, q2, q3, q4, q5

so that the identity above holds. The terms involving the quadratic contribution of X are

A
”

p4k2 ` 1´ 288q1q

1152
Γl1l2 i j1j2Xj3j4l1l2X

j1j2j3j4

`
p288q1 ´ 72q2 ´ 3q

1728
Γj1j2j3

l1l2Xi j4l1l2X
j1j2j3j4

`
p8k2 ´ 288q1 ´ 72q2 ´ 1q

576
ΓabmXimpqX

pq
ab ´

p1` 4k2 ´ 288q1q

12

1

288
ΓiX

2

`
p3´ 288q1 ` 72q2q

864
Γj1Xi j2j3j4X

j1j2j3j4

ı

.

(D.4)

The terms involving the linear contribution of X are

p1´ 288q1 ` 2q4 ` 2q5q

576
∇iA {X `

p12a ` 5` 12q3 ` 3456aq1q

12

1

288
cA´3Γi {XΓ̃

4

`
p288q1 ´ 2q4 ´ 1q

576
∇kAΓki {X `

p1` 24q2 ´ 96q1q

48
∇kAΓkj1j2j3Xi j1j2j3

`
p8k2 ´ 1´ 288q1 ´ 72q2q

48
∇kAΓabXikab ´

p1` 4k2 ´ 288q1q

72
∇kAΓi j1j2j3Xkj1j2j3

´
p6` 18a ` 1728aq1 ´ 432q2aq

432
cA´3 {X i Γ̃

4 . (D.5)

The terms involving no contribution of X are

1

24
p1´ 16k2 ´ 24aq4 ` 12q3qcA

´4∇kAΓkΓi Γ̃4

`
1

12
p16k2 ´ 7´ 36a ´ 12q3 ` 24aq4 ` 12aq5qcA

´4∇iAΓ̃4

` pk2 ´
1

2
q4qA

´1
|∇A|

2Γi ´ k2A
´1KΓi ´

1

2
q5A

´1∇kA∇iAΓk

´
1

36
p3a ` 4k2 ` 36q3aqc2A´7Γi .

(D.6)

By requiring that all terms in the above expressions should vanish, we are able to determine

the constant values, that are

a “ ´
1

6
q1 “

1

288
q2 “ ´

1

36
q3 “ ´

1

12
k2 “ q4 “ q5 “ 0 . (D.7)
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APPENDIX E

KSE LINEAR SYSTEM - SU(3) STABILIZER

The linear system associated to the KSEs (4.37), with the spinor given by

ψ` “ w p1` e1234q ` λe1 ` λ̄e234 w P R, λ P C (E.1)

is as follows:

B#w `
w

2
Ω#,α

α
`
1

24
wXα

α
β
β

´ i
c

12
A´4w ´

?
2

3
λ̄X#234 “ 0 (E.2)

B#λ`
λ

2
Ω#,α

α
´
1

24
λXα

α
β
β

`

?
2

3
wX#234 ´ i

c

12
A´4λ “ 0 (E.3)

wΩ#,αβε
γαβ

´
?
2λΩ#,#

γ
`

?
2

3
λX#α

αγ
`
w

3
Xγ 234 “ 0 (E.4)

λ̄εγαβΩ#αβ ´
?
2wΩ#,#

γ
´
w

?
2

3
X#α

αγ
´
λ̄

3
Xγ 234 “ 0 (E.5)

Bµw `
1

2
wΩµ,α

α
´
1

4
wXµ#α

α
“ 0 (E.6)

Bµλ`
1

2
λΩµ,α

α
`
1

4
λXµ#α

α
“ 0 (E.7)

Bµw ´
w

2
Ωµ,α

α
´
w

12
X#µα

α
´

?
2

3
λXµ2̄3̄4̄ “ 0 (E.8)
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74 E.1. Solution for λ ‰ 0, w ‰ 0

Bµλ̄´
λ̄

2
Ωµ,α

α
`
1

12
λ̄X#µα

α
`

?
2

3
wXµ2̄3̄4̄ “ 0 (E.9)

wΩµ̄,αβε
αβγ

´
?
2λΩµ̄,#

γ
´
w

2
εγαβXµ̄#αβ ´

w

3
εµ̄
γρX#ρα

α
`

?
2

6
λεµ̄

γρXρ2̄3̄4̄ “ 0

(E.10)

wΩµ̄,
γρ

´

?
2

2
λ̄εγραΩµ̄,#α ` εµ̄

γρ
”w

6
X#2̄3̄4̄ ´

λ̄
?
2

24
Xα

α
β
β

`i
c

?
2

12
λ̄A´4

ı

´

?
2

4
λ̄εγραXµ̄αβ

β
“ 0 (E.11)

λ̄Ωµ̄,αβε
αβγ

´
?
2wΩµ̄,#

γ
`
λ̄

2
εγαβXµ̄#αβ `

λ̄

3
εµ̄
γρX#ρα

α
´

?
2

6
wεµ̄

γρXρ2̄3̄4̄ “ 0

(E.12)

λΩµ̄,
γρ

´

?
2

2
wεγραΩµ̄,#α ` εµ̄

γρ
”

?
2w

24
Xα

α
β
β

`i
c

?
2

12
wA´4

´
λ

6
X#2̄3̄4̄

ı

`

?
2

4
wεγραXµ̄αβ

β
“ 0 . (E.13)

E.1. Solution for λ ‰ 0, w ‰ 0

From the linear system (E.2)-(E.13), we find that the components of the flux are given

by the following expressions

X#α
αγ

“
3

w 2 ´ |λ|2

”?
2wλ̄εγαβΩ#,αβ ´ pw 2 ` |λ|

2
qΩ#,#

γ
ı

(E.14)

Xγ̄234 “
3

w 2 ´ |λ|2

”

2
?
2λwΩ#,#

γ
´ pw 2 ` |λ|

2
qΩ#,αβε

γαβ
ı

(E.15)

X#234 “
1

w 2 ´ |λ|2

„

´
3

?
2
λB#w ´

3
?
2
wB#λ´

3
?
2
wλΩ#,α

α
` i

c

2
?
2
A´4λw

ȷ

(E.16)

Xα
α
β
β

“
1

w 2 ´ |λ|2

“

´ 24wB#w ´ 24λ̄B#λ

´ 12pw 2 ` |λ|
2
qΩ#,α

α
` 2icA´4

pw 2 ` |λ|
2
q
‰

(E.17)
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E.1. Solution for λ ‰ 0, w ‰ 0 75

Xµ̄#αβ “ 2Ωµ̄,αβ ´
?
2
λ

w
εγαβΩµ̄,#

γ
` δµ̄rα

ˆ

2Ω#,#βs ´
?
2
λ

w
εβsδσΩ#

δσ

˙

(E.18)

Xµ̄αβ
β

“
?
2
w

λ̄
εαγρΩµ̄,

γρ
´ 2Ωµ̄,#α `

δµ̄α
w 2 ´ |λ|2

ˆ

3wB#w ´
w 2

λ̄
B#λ̄

` 4λ̄B#λ`Ω#,α
α

p3w 2 ` 2|λ|
2
q ´ i

c

6
A´4

p4|λ|
2

` w 2q

˙

. (E.19)

From the linear system (E.2)-(E.13), we also find the following geometric conditions:

4pw 2 ´ |λ|
2
qBµw ` 2w pw 2 ´ |λ|

2
qΩµ,α

α

´ 3
?
2w 2λεµαβΩ#,

αβ
` 3w pw 2 ` |λ|

2
qΩ#,#µ “ 0 (E.20)

4pw 2 ´ |λ|
2
qBµλ` 2λpw 2 ´ |λ|

2
qΩµ,α

α

` 3
?
2wλ2εµαβΩ#,

αβ
´ 3λpw 2 ` |λ|

2
qΩ#,#µ “ 0 (E.21)

4pw 2 ´ |λ|
2
qBµw ´ 2w pw 2 ´ |λ|

2
qΩµ,α

α

`
?
2λp5w 2 ` 4|λ|

2
qεµαβΩ#,

αβ
´ w pw 2 ` 17|λ|

2
qΩ#,#µ “ 0 (E.22)

4pw 2 ´ |λ|
2
qBµλ̄´ 2λ̄pw 2 ´ |λ|

2
qΩµ,α

α

´
?
2w p4w 2 ` 5|λ|

2
qεµαβΩ#,

αβ
` λ̄p17w 2 ` |λ|

2
qΩ#,#µ “ 0 (E.23)

2λ̄wεγαβΩµ̄,αβ ´
?
2pw 2 ` |λ|

2
qΩµ̄,#

γ

´ 2λ̄wεγβ µ̄Ω#,#β `
?
2pw 2 ` |λ|

2
qΩ#,µ̄

γ
“ 0 (E.24)

8p|λ|
2

` w 2qΩµ̄
γρ

´ 8
?
2wλ̄εγραΩµ̄,#α

`
?
2εµ̄

γρ
”

2wλ̄Ω#,α
α

´ 2wB#λ̄´ 2λ̄B#w ` icA´4λ̄w
ı

“ 0 (E.25)

6pλ̄B#λ´ λB#λ̄q ` 6pw 2 ` |λ|
2
qΩ#,α

α
´ icA´4

pw 2 ` |λ|
2
q “ 0 (E.26)
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76 E.2. Solution for λ “ 0, w ‰ 0

2w pw 2 ´ |λ|
2
qΩα ,αγ `

?
2λpw 2 ´ |λ|

2
qΩα ,#

βεαβγ

´ wΩ#,#γpw
2

` 5|λ|
2
q `

?
2λp2w 2 ` |λ|

2
qεγαβΩ#,

αβ
“ 0 (E.27)

2
?
2w pw 2 ´ |λ|

2
qΩαβγεαβγ ´ 4λ̄pw 2 ´ |λ|

2
qΩα ,#α ´ 30wλ̄B#w

´ 6w 2B#λ̄´ 24λ̄2B#λ´ 6λ̄pw 2 ` 2|λ|
2
qΩ#,α

α
` 3icA´4λ̄w 2 “ 0 (E.28)

pw 2 ´ |λ|
2
q
2 pΩµ,#ᾱ ´Ωᾱ,#µq ` δµᾱ

“

p3w 2 ` 2|λ|
2
qpλB#λ̄´ λ̄B#λq

´ 2pw 4 ` 3w 2|λ|
2

` |λ|
4
qΩ#,α

α
` i

c

3
A´4

p2w 4 ` w 2|λ|
2

` 2|λ|
4
q
‰

“ 0 .

(E.29)

E.2. Solution for λ “ 0, w ‰ 0

We next present the components of the flux and the geometric conditions associated to

the KSEs (4.37), with the spinor given by

ψ` “ w p1` e1234q w P R . (E.30)

We find that the components of the flux are given by the following expressions

X#234 “ Xµ̄234 “ 0 (E.31)

X#α
αγ

“ ´3Ω#,#
γ (E.32)

Xα
α
β
β

“ ´24w´1
B#w (E.33)

Xµ̄#αβ “ 2Ωµ̄,αβ ` 2δµ̄rαΩ#,#βs (E.34)

Xµ̄νβ
β

“ pΩµ̄,#ν `Ων,#µ̄q ` 4δµ̄νw
´1

B#w . (E.35)

Furthermore, we find that the geometric conditions are given by the following expressions

Ω#,αβε
γαβ

“ 0 (E.36)
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E.2. Solution for λ “ 0, w ‰ 0 77

Ω#,#µ “ ´4w´1
Bµw (E.37)

Ωµ,α
α

“ 4w´1
Bµw (E.38)

Ωµ,αβ “ 0 (E.39)

Ωµ,#β “ 0 (E.40)

Ωα αβ “ ´2
Bβw

w
(E.41)

Ωα #α ´ 6
B#w

w
´
i

2
cA´4

“ 0 (E.42)

pΩᾱ,#β ´Ωβ,#ᾱq ´ i
c

3
A´4δᾱβ “ 0 (E.43)

Ω#,α
α

“ i
c

6
A´4 . (E.44)
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78 E.2. Solution for λ “ 0, w ‰ 0
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APPENDIX F

COVARIANT RELATIONS

In this Appendix, we present the main relations used to covariantize the linear system.

These expressions relate spin connection terms to SU(3)-covariant terms involving the

SUp3q invariant 1-forms ξ, ω and χ, their Lie derivatives with respect to ξ, and also the

Lee forms W and Z:

∇#ξµ “ pLξξqµ “ ´Ω#,#µ (F.1)

∇ᾱξβ “ ´Ωᾱ,#β (F.2)

∇#ωαβ “ 2iΩ#,αβ (F.3)

Wα “ ´Ω#,#α ´ 2Ωβ βα (F.4)

Wᾱ “ ´Ω#,#ᾱ ´ 2Ωβ̄ β̄ᾱ (F.5)

Zρ̄ “ 2Ω#,#ρ̄ ` 2Ωρ̄,γ
γ

` 2Ωγ̄ γ̄ρ̄ (F.6)

Zρ “ 2Ω#,#ρ ` 2Ωρ,γ̄
γ̄

` 2Ωγ γρ (F.7)

pLξωqαβ “ 2iΩ#,αβ ` ipdξqαβ (F.8)
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pLξωqᾱβ̄ “ ´2iΩ#,ᾱβ̄ ´ ipdξqᾱβ̄ (F.9)

pLξωqαβ̄ “ ipΩβ̄,#α `Ωα,#β̄q (F.10)

pLξχqαβγ “ 3Ω#,rγ
λεαβsλ ´ 3Ωrγ,#

λεαβsλ “ pΩ#,λ
λ

´Ωλ,#
λ
qεαβγ (F.11)

pLξχqαβγ̄ “ pΩ#,γ̄
λ

´Ωγ̄,#
λ
qελαβ (F.12)

Lξχ̄ “ pLξχq
˚ . (F.13)

The spin-connection components are rewritten in terms of those covariant quantities as

Ωµ,α
α

“ ´
1

2
ppLξξqµ `Wµ ` Zµq (F.14)

Ω#,#µ “ ´∇#ξµ “ ´i∇#ω#µ “ ´pLξξqµ (F.15)

Ω#,αβ “ ´
i

2
∇#ωαβ “ ´

1

2
pipLξωqαβ ` pdξqαβq (F.16)

Ωᾱ,βγ “ ´
i

2
pdωqᾱβγ (F.17)

Ωᾱ,#β̄ “
1

2

`

ipLξωqᾱβ̄ ´ pdξqᾱβ̄ ´ εβ̄
γρ

pLξχqγρᾱ
˘

(F.18)

Ωᾱβ̄γ̄ “
i

2
∇ᾱωβ̄γ̄ (F.19)

εαβγ∇αωβγ “
1

3
εαβγpdωq

αβγ (F.20)

Ωᾱ,#β “ ´∇ᾱξβ “ ´i∇ᾱω#β (F.21)

Ω#,ρ
ρ

“ ´
1

6
εαβγpLξχ̄q

αβγ
`∇λξλ (F.22)
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Ωβ βα “
1

2
ppLξξqα ´Wαq (F.23)

Ωrα
#
βs

“ ´
1

2
pdξqαβ (F.24)

Ωα #α “ ´∇αξα “ ´i∇αω#α . (F.25)
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