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Abstract
Thus far, several papers reported concrete resource estimates of Shor’s quantum algo-
rithm for solving the elliptic curve discrete logarithm problem. In this paper, we study
quantum FLT-based inversion algorithms over binary elliptic curves. There are two
major algorithms proposed by Banegas et al. and Putranto et al., where the former
and latter algorithms achieve fewer numbers of qubits and smaller depths of circuits,
respectively.We propose two quantumFLT-based inversion algorithms that essentially
outperform previous FLT-based algorithms and compare the performance for NIST
curves of the degree n. Specifically, for all n, our first algorithm achieves fewer qubits
than Putranto et al.’s one without sacrificing the number of Toffoli gates and the depth
of circuits, while our second algorithm achieves smaller depths of circuits without
sacrificing the number of qubits and Toffoli gates. For example, when n = 571, the
number of qubits of our first algorithm is 74 % of that of Putranto et al.’s one, while
the depth of our second algorithm is 83% of that of Banegas et al.’s one. The improve-
ments stem from the fact that FLT-based inversions can be performed with arbitrary
sequences of addition chains for n−1 although both Banegas et al. and Putranto et al.
follow fixed sequences that were introduced by Itoh and Tsujii’s classical FLT-based
inversion. In particular, we analyze how several properties of addition chains, which
do not affect the computational resources of classical FLT-based inversions, affect
the computational resources of quantum FLT-based inversions and find appropriate
sequences.
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1 Introduction

1.1 Background

RSA [2] and elliptic curve cryptography (ECC) [3, 4] are public-key cryptosystems
that are the most widely used in practice. RSA and ECC are believed to be secure since
there are no known polynomial time algorithms for solving the factorization problem
and elliptic curve discrete logarithm problem (ECDLP). NIST [5] recommends elliptic
curves for ECC over a prime field Fq and a binary field F2n . Specifically, degrees
n = 163, 233, 283, and 571 are recommended for binary elliptic curves. However,
Shor [6] proposed a quantum algorithm that solves the factorization problem and
ECDLP in polynomial time. Then, designing post-quantum public-key cryptosystems
(PQC) has been paid much attention and the timing of the transition to PQC has been
actively discussed.

Despite the theoretical effectiveness, Shor’s algorithm is currently not efficient in
practice. For example, there are several reports of the quantum algorithm to solve the
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factorization problem [7–16]; however, the target composite integers aremainly 15 and
21, while the classical factorization of 795-bit composite integers has been reported
[17]. The situation stems from the fact that physical realizations of large-scale quantum
computers have a lot of technical barriers. Thus, there are several papers [18–27] that
estimate the concrete resource estimates of quantum factoring and its improvements
in terms of the number of qubits, the number of quantum gates, and depth of circuits.

Compared with the situation of quantum factoring, the quantum resource estimates
of the ECDLP were not studied until recently. Although the first attempt was given
by Proos and Zalka [28], their analysis lacks the implementation of elliptic curve
additions that are the most dominant step to run Shor’s quantum algorithm. Roetteler
et al. [29] showed the first concrete resource estimates of ECDLP over a prime field
Fq by indicating how to perform elliptic curve additions quantumly. Subsequently,
Banegas et al. [30] gave the alternative results for a binary field F2n and the work was
followed by Putranto et al. [31].

In this paper, we focus on binary elliptic curves. We especially study an inversion
in F2n , where the computation is the most dominant operation to realize elliptic curve
additions. For this purpose, Banegas et al. [30] proposed two quantum methods for
inversion in F2n , i.e., an extended GCD-based inversion and FLT-based inversion1

inspired by Bernstein and Yang’s inversion [32] and Itoh and Tsujii’s inversion [33],
respectively. Their results indicate that the extended GCD-based inversion requires
fewer qubits, while the FLT-based inversion requires fewer Toffoli gates and a smaller
depth of circuits. Although Banegas et al. [30] tried to minimize the required number
of qubits, Putranto et al. [31] revisited the analysis to minimize the depth of circuits.
Then, Putranto et al. proposed a quantum FLT-based inversion algorithm that works
with a smaller depth of circuits and larger qubits than Banegas et al.’s FLT-based
inversion algorithm, while the numbers of Toffoli gates are unchanged.

1.2 Our contribution

In this paper, we propose two quantum FLT-based inversion algorithms.We concretely
analyze quantum resources for the algorithms over NIST-recommended curves. Then,
we show that our proposed algorithms improve previous FLT-based inversion algo-
rithms by Banegas et al. [30] and Putranto et al. [31] for all degrees n = 163, 233, 283,
and 571. Briefly speaking, our first and second algorithms are based on FLT-based
inversion algorithms by Putranto et al. and Banegas et al., respectively. Intuitively, our
algorithms successfully overcome the disadvantages of previous FLT-based inversion
algorithms. Indeed, for all degrees n, our first and second algorithms require fewer
qubits and smaller depth of circuits than Putranto et al. and Banegas et al., respec-
tively. Moreover, we want to claim two further benefits of our algorithms. At first,
our algorithms do not sacrifice the advantages of previous FLT-based inversion algo-
rithms in the sense that the number of qubits, number of Toffoli gates, and depth of
circuits of our first and second algorithms do not exceed those of Putranto et al. and
Banegas et al., respectively. Next, our algorithms successfully reduce the number of
Toffoli gates of previous FLT-based inversion algorithms for n = 571. In other words,

1 FLT is the abbreviation of Fermat’s little theorem.
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our algorithms improve all three factors of previous FLT-based inversion algorithms
for n = 571. For example, our first (resp. second) algorithm for n = 571 requires
74%, 93%, and 97% (resp. 93%, 93%, and 79%) of qubits, Toffoli gates, and depth of
Putranto et al.’s algorithm (resp. Banegas et al.’s algorithm).We also apply windowing
to our algorithms. Windowing is a way for reducing Toffoli gates by using quantum
read-only memory (QROM). Both Banegas et al. [30] and Putranto et al. [31] also
estimated the number of Toffoli gates when windowing is applied.
Difference from preliminary version In the preliminary version [1], we use quantum
multiplication by Hoof [34] to estimate quantum resources. Recently, Kim et al. [35]
proposed a new quantummultiplication that has an advantage over Hoof’s one in terms
of the number of Toffoli gates and depth. Therefore, in this version, we use Kim et
al.’s quantum multiplication to estimate quantum resources.

1.3 Technical overview

Both previous quantum FLT-based inversion algorithms by Banegas et al. [30] and
Putranto et al. [31] are modifications of Itoh and Tsujii’s classical FLT-based inversion
algorithm [33]. Given f ∈ F

∗
2n , both classical and quantum FLT-based inversion

algorithms compute f −1 ∈ F
∗
2n based on the fact that f

2n−2 = f −1. Itoh and Tsujii’s

inversion finally computes f −1 by
(
f 2

n−1−1
)2 = f 2

n−2 and the main step of the

algorithm is a computation of f 2
n−1−1. Here, we describe how to compute f 2

n−1−1 =
f 2

162−1 when n = 163. Observe that 162 has Hamming weight three in binary, where

162 = 128 + 32 + 2 = 27 + 25 + 21. We start from f = f 2
20−1 and compute

each f 2
21−1, f 2

22−1, . . . , f 2
27−1. Specifically, given f 2

2k−1−1 for k = 1, 2, . . . , 7 =
�log 162�, we can compute f 2

2k−1 by

f 2
2k−1−1 ×

(
f 2

2k−1−1
)22

k−1

= f 2
2k−1−1 × f 2

2k−22
k−1 = f 2

2k−1

with seven field multiplications. Then, we compute f 2
27+25−1 and f 2

27+25+21−1 =
f 2

162−1 by

(
f 2

27−1
)22

5

× f 2
25−1 = f 2

27+25−22
5 × f 2

25−1 = f 2
27+25−1,

(
f 2

27+25−1
)22

1

× f 2
21−1 = f 2

27+25+21−22
1 × f 2

21−1 = f 2
27+25+21−1,

with two field multiplications. Thus, nine field multiplications in total are required for
computing f 2

162−1. In general, Itoh and Tsujii’s inversion requires �log(n−1)�+t−1
field multiplications, where t denotes the Hamming weight of n − 1 in binary.
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Next, we explain how to perform FLT-based inversion quantumly. Putranto et al.’s
algorithm [31] is simpler than Banegas et al.’s algorithm [30] since Banegas et al.’s
algorithm can be viewed as a modification of Putranto et al.’s algorithm by clearing
garbages and reduces the required number of qubits. Therefore, we use Putranto et
al.’s algorithm to explain an overview of quantum FLT-based inversion. For simplicity,
we focus on the number of qubits to perform Putranto et al.’s algorithm. At first, we

describe how to compute each f 2
21−1, f 2

22−1, . . . , f 2
27−1. A point to note is that

when given f 2
2k−1−1 as a quantum superposition in i-th register, we cannot efficiently

compute f 2
2k−1 in the next register. In turn, we apply CNOT gates and copy f 2

2k−1−1

in an (i + 1)-th register. Then, we apply CNOT gates to the i-th register and obtain(
f 2

2k−1−1
)2k−1

= f 2
2k−22

k−1

in the i-th register. Finally, we apply Toffoli gates to

the i-th and (i + 1)-th registers and obtain f 2
2k−1−1 × f 2

2k−22
k−1 = f 2

2k−1 in the

(i+2)-th register. Thus, when given f = f 2
20−1 in the first register, 2�log 162�+1 =

15 registers, i.e., 15n qubits, are required so far. Next, we explain how to compute

f 2
27+25−1 and f 2

27+25+21−1 = f 2
162−1.When given f 2

27−1 in i-th register and f 2
25−1

in j-th register, we apply CNOT gates to the i-th register and obtain

(
f 2

27−1
)22

5

=
f 2

27+25−22
5

in the i-th register. Then, we apply Toffoli gates to the i-th and j-th

registers and obtain f 2
27+25−22

5 × f 2
25−1 = f 2

27+25−1 in the 16-th register. Similarly,

we can compute f 2
27+25+21−1 = f 2

162−1 to the 17-th register. Finally, we apply CNOT
gates to the 17-th register and obtain = f 2

163−2 in the 17-th register. Therefore, 17
registers, i.e., 17n qubits, are required in total. In general, Putranto et al.’s quantum
FLT-based inversion algorithm requires (2�log(n − 1)� + t)n qubits.

Summarizing the above discussion, given f = f 2
20−1 and the previous FLT-based

inversion algorithms for n = 163 computes f 2
21−1, f 2

22−1, . . . , f 2
27−1, f 2

27+25−1,

and f 2
27+25+21−1 = f 2

162−1. The first key observation of our improvement is that the
exponents of 2 during the calculation, i.e.,

{20 = 1, 21, 22, . . . , 27, 27 + 25, 27 + 25 + 21 = 162},

is an addition chain for n−1 = 162. In general, an addition chain for N is a sequence
p0 = 1, p1, . . . , p� = N , where ps = pi + p j holds for some 0 ≤ i, j < s. Here, �

is called a length of an addition chain. We show that f 2
n−1−1 can be computed with

an arbitrary addition chain for n − 1 by following the similar steps of Putranto et al.’s
algorithm. For example, there is another addition chain

{1, 2, 4, 8, 16, 32, 33, 65, 97, 162}

for 162. Keen readers may think that the observation is not interesting since the rela-
tion between FLT-based inversion and addition chain has been already discussed in
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the context of classical computation [36–40]. These papers mentioned that the com-
putational cost of FLT-based inversion relates to the length of addition chains in the
sense that the number of field multiplications �log(n − 1)� + t − 1 is the same as
the length of addition chains. Similarly, the computational cost of quantum FLT-based
inversion relates to the length of addition chains in the sense that the number of Toffoli
gates is determined by the length of addition chains. Here, the length of an addition
chain {1, 2, 4, 8, 16, 32, 33, 65, 97, 162} is nine which is the same as that of previous
addition chain {20 = 1, 21, 22, . . . , 27, 27 + 25, 27 + 25 + 21 = 162}.

However, we show that the computational cost of quantum FLT-based inversion
also depends on other properties of addition chains. Hereafter, for an addition chain
{ps}�s=0,we call ps a doubled term if it is computed by ps = pi+pi for some0 ≤ i < s
and an added term otherwise. In the above example for n = 163, 21, 22, . . . , 27 are
doubled terms and 27 + 25, 27 + 25 + 21 are added terms for {20 = 1, 21, 22, . . . , 27,
27 + 25, 27 + 25 + 21 = 162} whereas {2, 4, 8, 16, 32} are doubled terms and
{33, 65, 97, 162} are added terms for {1, 2, 4, 8, 16, 32, 33, 65, 97, 162}. For an addi-
tion chain {ps}�s=0, let d and m denote the number of doubled terms and added terms,
where � = d + m. Then, we show that the number of qubits (2�log(n − 1)� + t)n
for Putranto et al.’s algorithm is essentially described by (2d + m + 1)n. In other
words, even if the lengths of addition chains are the same, the computational costs
of the quantum FLT-based inversion algorithm may not be the same depending on
other properties of addition chains. Indeed, an addition chain {20 = 1, 21, 22, . . . , 27,
27 + 25, 27 + 25 + 21 = 162} has seven doubled terms and two added terms whereas
{1, 2, 4, 8, 16, 32, 33, 65, 97, 162} has five doubled terms {2, 4, 8, 16, 32} and four
added terms {33, 65, 97, 162}. Therefore, quantum FLT-based inversion based on the
latter addition chain requires fewer qubits than that on the former. Based on the discus-
sion andmore,we findmore appropriate addition chains for all n = 163, 233, 283, 571
and obtain our improvements.

1.4 Organization

In Sect. 3, we review previous FLT-based inversion algorithms. In Sect. 4, we pro-
pose quantum FLT-based inversion algorithms. In Sect. 5, we compare our proposed
algorithms and previous quantum algorithms. In Sect. 6, we apply windowing to our
algorithms.

2 Preliminaries

In Sect. 2.1, we review binary elliptic curves and the binary elliptic curve discrete
logarithm problem (ECDLP). Then, we briefly explain Shor’s algorithm for binary
ECDLP in Sect. 2.2. We also describe an overview of quantum computing on the field
F2n in Sect. 2.3.
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2.1 Elliptic curve discrete logarithm problem

Let n be a positive integer. A binary elliptic curve of degree n is given by y2 + xy =
x3 + ax2 + b, where a ∈ F2n and b ∈ F

∗
2n . In general, the set of rational points

on an elliptic curve along with a special point O called a point at infinity forms a
group under point addition, where O is a neutral element. Let P = (x1, y1) and
Q = (x2, y2) denote points on a binary elliptic curve. When P �= Q, a point addition
P + Q = (x3, y3) is given by

x3 = λ2 + λ + x1 + x2 + a, y3 = (x2 + x3)λ + x3 + y2

with λ = (y1 + y2)/(x1 + x2). Let [k]P denote P + · · · + P that is a sum of k P’s
under point addition. Then, [2]P = (x3, y3) is given by

x3 = λ2 + λ + a, y3 = x21 + (λ + 1)x3

with λ = x1 + y1/x1. It is known that only basic arithmetic in F2n is sufficient for
computing point addition on a binary elliptic curve. Then, the task of the binaryECDLP
is computing k from P and [k]P .

2.2 Shor’s algorithm for binary ECDLP

Shor’s algorithm for the binary ECDLP of degree n consists of two parts, i.e., the point
addition part and Quantum Fourier Transform part. The point addition part requires
2n+ 2 times point additions with O(n3) gates, while the Quantum Fourier Transform
part requires O(n2) gates. Therefore, the point addition part is dominant in Shor’s
algorithm. As we mentioned in Sect. 2.1, an inversion in F2n , i.e., computation of λ,
is required for performing point addition P + Q. Moreover, several works [29–31,
41] indicate that the inversion computation requires the largest quantum resources in
point addition. Therefore, the efficiency of quantum inversion computations greatly
affects the total quantum resources for Shor’s algorithm.

2.3 Quantum computation in F2n

In quantum computation, we use a “qubit” represented by |0〉 , |1〉 and their super-
position. We represent an element of F2n by n qubits. Here, we use the fact that
for m(x) ∈ F2[x] which is an irreducible polynomial of degree n, it holds that
F2n 	 F2[x]/(m(x)). Thus, we can express an element of F2n as a polynomial of
degree at most n − 1 with its coefficients 0 or 1.

In quantum circuits, we use some quantum gates that are similar to NOT, AND, and
OR in classical circuits. In this paper, we consider only CNOT gates, Toffoli (TOF)
gates, and swap gates. Let a, b, and c denote quantum states of one-qubit. Then, CNOT,
TOF, and swap operations are given by
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CNOT(a, b) = (a, a ⊕ b), TOF(a, b, c) = (a, b, c ⊕ (a · b)),
swap(a, b) = (b, a),

respectively. The swap gate consists of three CNOT gates, while the TOF gate is more
expensive than a CNOT and swap gate.

We summarize known quantum algorithms which we will use for performing basic
arithmetic in F2n . Let ADD and SQUARE denote Banegas et al.’s algorithms [30] for
addition and squaring, respectively, while MODMULT denote Kim et al.’s algorithm
[35] for multiplication. Let f , g, and h be quantum states of elements in F2n . Then,
the algorithms are described as follows:

ADD( f , g) = ( f , f + g), SQUARE( f ) = f 2,

MODMULT( f , g, h) = ( f , g, h + f g).

Similarly, we also use a SQUARE−1 operation given by

SQUARE−1( f 2) = f .

Here, ADD, SQUARE, and SQUARE−1 are based on only CNOT gates. Specifically, the
number of CNOT gates are n for ADD, and at most n2 −n for SQUARE or SQUARE−1.
In contrast, MODMULT requires not only CNOT gates but also TOF gates. Throughout
the paper, ADD and MODMULT may take only specific inputs. Let 0 denote a quantum
state of a zero element in F2n . Then, when we set g = 0 as the input of ADD, given
f and ADD( f , 0) = ( f , f ) copy f to a new n-qubit register. Similarly, when we set
h = 0 as the input of MODMULT, given f , g and MODMULT( f , g, 0) = ( f , g, f g)
writes f g in a new n-qubit register.

3 FLT-based inversion

In this section, we review previous FLT-based inversion algorithms. In Sect. 3.1, we
briefly explain Itoh and Tsujii’s classical FLT-based inversion [33]. Then, in Sects. 3.2
and 3.3, we review Putranto et al.’s [31] and Banegas et al.’s [30] quantum FLT-based
inversion algorithm.

3.1 Classical FLT-based inversion

Let f be an element of F∗
2n . For simplicity, we use a notation

〈α〉:= f α

hereafter. The task of inversion is computing 〈−1〉 from 〈1〉. Based on the extended
Fermat’s little theorem, the FLT-based inversion method performs inversion by com-
puting 〈2n − 2〉 = 〈−1〉. For this purpose, we use the following three relations:
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〈22k−1 − 1〉 × 〈22k−1 − 1〉22k−1 = 〈22k − 1〉, (1)

〈2α − 1〉2β × 〈2β − 1〉 = 〈2α+β − 1〉, (2)

〈2n−1 − 1〉2 = 〈2n − 2〉. (3)

Let t denote the Hamming weight of n−1 in binary. Then, we have n−1 = ∑t
s=1 2

ks

with k1 = �log2(n − 1)� > k2 > · · · > kt ≥ 0. The FLT-based inversion consists of
three steps as follows.

First Step: The step computes 〈221 −1〉, 〈222 −1〉, . . . , 〈22k1 −1〉 from 〈220 −1〉 =
〈1〉. For this purpose, we apply (1) to 〈22i−1 − 1〉 and obtain 〈22i − 1〉
for i = 1, 2, . . . , k1 sequentially.

Second Step: The step computes 〈2n−1−1〉 from 〈22k1 −1〉, 〈22k2 −1〉, . . . , 〈22kt −1〉
which were computed in the first step. For this purpose, we apply (2) to

〈22ki+1 −1〉 and 〈2
∑i

s=1 2
ks −1〉, and obtain 〈22ki+1 −1〉× 〈2

∑i
s=1 2

ks −
1〉22

ki+1 = 〈2
∑i+1

s=1 2
ks − 1〉 for i = 1, 2, . . . , t − 1 sequentially, where

the last output is 〈2
∑t

s=1 2
ks − 1〉 = 〈2n−1 − 1〉.

Third Step: The step applies (3) to 〈2n−1 − 1〉 and obtain 〈2n − 2〉 = 〈−1〉.
Since the procedure may be complicated at the first glance, we describe the above

procedure in a case of n = 163. In this case, it holds that n−1 = 162 = 27 +25 +21,
where t = 3 and k1 = 7, k2 = 5, k3 = 1. In the first step, we compute 〈221 −
1〉, 〈222 − 1〉, . . . , 〈227 − 1〉 from 〈220 − 1〉 = 〈1〉. For this purpose, we apply (1) to
〈220 − 1〉, 〈221 − 1〉, . . . , 〈226 − 1〉 and obtain 〈221 − 1〉, 〈222 − 1〉, . . . , 〈227 − 1〉,
respectively. In the second step, we compute 〈227+25 − 1〉 and 〈227+25+21 − 1〉 =
〈2162 − 1〉 from 〈227 − 1〉, 〈225 − 1〉, 〈221 − 1〉. For this purpose, we first apply (2) to
〈227 − 1〉 and 〈225 − 1〉, and obtain 〈227 − 1〉225 × 〈225 − 1〉 = 〈227+25 − 1〉. Then,
we apply (2) to 〈227+25 − 1〉 and 〈221 − 1〉, and obtain 〈227+25 − 1〉221 × 〈221 − 1〉 =
〈227+25+21 − 1〉 = 〈2162 − 1〉. Finally, in the third step, we apply (3) to 〈2162 − 1〉 and
obtain 〈2163 − 2〉 = 〈−1〉.

3.2 Putranto et al.’s quantum FLT-based inversion algorithm

We explain Putranto et al.’s quantum FLT-based inversion algorithm [31] that is a
simple quantum translation of Itoh and Tsujii’s classical FLT-based inversion [33].
Putranto et al.’s algorithm is given in Algorithm 1. The algorithm saves the number
of TOF gates by using SQUARE which uses only CNOT gates. Here, we explain the
main parts of Algorithm 1, i.e., the loop from line 1 to 5 and from line 6 to 9.

Loop from line 1 to 5: The loop performs the first step of Itoh and Tsujii’s FLT-
based inversion. Specifically, for i = 1, 2, . . . , k1, the i-th
loop takes f2(i−1) = 〈22i−1−1〉 as input and outputs 〈22i −1〉
by applying (1). For this purpose, we first apply ADD to copy
f2(i−1) = 〈22i−1 − 1〉 in a new register f2(i−1)+1. Then,
we apply the SQUARE operation 2i−1 times to f2(i−1)+1 =
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Algorithm 1 Putranto et al.’s quantum FLT-based inversion algorithm
Require: An irreducible polynomial m(x) ∈ F

∗
2n of degree n, k1, . . . , kt as explained in Sect. 3.1, kp =

2k1 + t − 1, a polynomial f0 = f ∈ F
∗
2n of degree up to n − 1, polynomials f1, · · · , fkp initialized to

an all-|0〉 state.
Ensure: fkp = f −1

1: for i = 1, . . . , k1 do
2: ADD( f2(i−1), f2(i−1)+1)

3: for j = 1, . . . , 2i−1 do
4: SQUARE( f2(i−1)+1)

5: end for
6: MODMULT( f2(i−1), f2(i−1)+1, f2(i−1)+2)

7: end for
8: for i = 1, . . . , t − 1 do
9: for j = 1, . . . , 2ki+1 do
10: SQUARE( f2k1+i−1)

11: end for
12: MODMULT( f2ki+1 , f2k1+i−1, f2k1+i )

13: end for
14: if t = 1 then
15: swap( fk1 , fkp )

16: end if
17: SQUARE( fkp )

〈22i−1 − 1〉 and obtain 〈22i−1 − 1〉22i−1

in the same regis-
ter. Finally, we apply MODMULT to f2(i−1) = 〈22i−1 − 1〉
and f2(i−1)+1 = 〈22i−1 − 1〉22i−1

, and obtain 〈22i − 1〉 in
a new register f2(i−1)+2. Therefore, we use the MODMULT
operation k1 times and new 2k1 registers, i.e., 2k1n qubits.

Loop from line 6 to 9: The loop performs the second step of Itoh and Tsujii’s FLT-
based inversion. Specifically, for i = 1, 2, . . . , t−1, the i-th

loop takes f2ki+1 = 〈22ki+1 −1〉 and f2k1+i−1 = 〈2
∑i

s=1 2
ks −

1〉 as input, and outputs 〈2
∑i+1

s=1 2
ks − 1〉 by applying (2). For

this purpose, we first apply the SQUARE operation 2ki+1

times to f2k1+i−1 = 〈2
∑i

s=1 2
ks −1〉 and obtain 〈2

∑i
s=1 2

ks −
1〉22

ki+1
in the same register. Then, we apply MODMULT to

f2ki+1 = 〈22ki+1 − 1〉 and f2k1+i−1 = 〈2
∑i

s=1 2
ks − 1〉22

ki+1
,

and obtain 〈2
∑i+1

s=1 2
ks − 1〉 in a new register f2k1+i .

Therefore, we use MODMULT operation t − 1 times and new t − 1 registers, i.e.,
(t − 1)n qubits. We note that the last output of the loop is fkp = 〈2

∑t
s=1 2

ks − 1〉 =
〈2n−1 − 1〉.

Although we omit the detail, the line 12 performs the third step of Itoh and Tsujii’s
FLT-based inversion. To sumup,Algorithm1 applies theMODMULT operation k1+t−1
times and uses new (2k1 + t − 1)n = kpn qubits.

We note that we use Algorithm 1 two times for an inversion computation each. The
second operation uncomputes the ancillary qubits.
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3.3 Banegas et al.’s quantum FLT-based inversion algorithm

Algorithm 2 Banegas et al.’s quantum FLT-based inversion algorithm
Require: An irreducible polynomial m(x) ∈ F

∗
2n of degree n, k1, . . . , kt as explained in Sect. 3.1, kb =

max(k1 + t − 1, k1 + 1), a polynomial f0 = f ∈ F
∗
2n of degree up to n − 1, polynomials f1, · · · , fkb

initialized to an all-|0〉 state.
Ensure: fkb = f −1

1: for i = 1, . . . , k1 do
2: ADD( fi−1, fkb )

3: for j = 1, . . . , 2i−1 do
4: SQUARE( fkb )

5: end for
6: MODMULT( fi−1, fkb , fi )

7: for j = 1, . . . , 2i−1 do
8: SQUARE−1( fkb )

9: end for
10: ADD( fi−1, fkb )

11: end for
12: for i = 1, . . . , t − 1 do
13: for j = 1, . . . , 2ki+1 do
14: SQUARE( fk1+i−1)

15: end for
16: MODMULT( fki+1 , fk1+i−1, fk1+i )

17: end for
18: if t = 1 then
19: swap( fk1 , fkb )

20: end if
21: SQUARE( fkb )

We explain Banegas et al.’s quantum FLT-based inversion algorithm [30] that is a
fewer-qubit variant of Putranto et al.’s algorithm. Banegas et al.’s algorithm is given
in Algorithm 2 by clearing garbages. Algorithm 2 is similar to Algorithm 1 except the
additional step in from line 6 to 8. To demonstrate the effectiveness of the step, we
again focus on Algorithm 1. From line 1 to 5, for i = 1, 2, . . . , k1, the i-th loop takes
f2(i−1) = 〈22i−1−1〉 as input and outputs f2(i−1) = 〈22i −1〉. During the computation,

we also use a register f2(i−1)+1 that results in f2(i−1)+1 = 〈22i−1 − 1〉22i−1

. A point to
note is that the register f2(i−1)+1 is used only for the computation and remains as it is.
Therefore, Algorithm 2 initializes the register and successfully reduce the qubits by
applying SQUARE−1. On the other hand, due to the additional procedure, Algorithm
2 requires larger depth and more CNOT gates than Algorithm 1. We explain the loop
from line 1 to line 8 in Algorithm 2 below.

Loop from line 1 to 8: The loop performs the same step of the loop from line 1 to 5
in Algorithm 1. In particular, fki−1 , fkb , and fi in Algorithm 2
play the same role as fk2(i−1) , f2(i−1)+1, and f2(i−1)+2 inAlgo-

rithm 1, respectively. Thus, the loop takes fi−1 = 〈22i−1 − 1〉
as input and results in fi−1 = 〈22i−1 − 1〉, fkb = 〈22i−1 −

123



  122 Page 12 of 30 R. Taguchi, A. Takayasu

1〉22i−1

, and fi = 〈22i − 1〉 by line 5. Then, we apply the

SQUARE−1 operation 2i−1 times to fkb = 〈22i−1 − 1〉22i−1

and obtain 〈22i−1 − 1〉 in the same register. Finally, we apply
ADD to fi−1 = 〈22i−1 −1〉 and fkb = 〈22i−1−1〉, and initialize
fkb . Since fkb in Algorithm 2 plays the same role as f2(i−1)+1
in Algorithm 1 for all i = 1, 2, . . . , k1, Algorithm 2 reduces
k1 − 1 registers, i.e., (k1 − 1)n qubits. Therefore, we use the
MODMULT operation k1 times and new k1 + 1 registers, i.e.,
(k1 + 1)n qubits.

Although we omit the detail, fkb is also used to store the outputs of second and third
steps. Thus,Algorithm2 reduces onemore register, i.e., n qubits. To sumup,Algorithm
2 applies the MODMULT operation k1 + t − 1 times and use new (k1 + t − 1)n = kbn
qubits.

We repeatedly claim that we use Algorithm 2 two times in each inversion compu-
tation.

4 Ourmethod

In this section, we propose quantum FLT-based inversion algorithms. In Sect. 4.1,
we review the notion of addition chain which is a core tool of our improvement. In
Sects. 4.2 and 4.3, we propose our basic algorithm and extended algorithm that are
improvements of Putranto et al.’s algorithm [31] and Banegas et al.’s algorithm [30],
respectively.

4.1 Addition chain

Let N and � be nonnegative integers. An addition chain for N of length � is given by
p0 = 1, p1, p2, . . . , p� = N with the following property:

• for all s = 1, 2, . . . , �, there exist i and j which satisfy 0 ≤ i, j < s and
ps = pi + p j .

If there are no i and j such that i �= j satisfying ps = pi + p j , ps should be computed
by ps = 2pi for some 0 ≤ i < s. We call such ps a doubled term. Otherwise, we call
ps including p0 an added term. For an addition chain {ps}�s=0, we define two sets

D:= {s ∈ {1, 2, . . . , �} | ps is a doubled term} ,

M := {s ∈ {1, 2, . . . , �} | ps is an added term} ,

such that D ∩ M = ∅. We also introduce two sequences {as}�s=1 and {bs}�s=1 that
satisfy ps = pas + pbs for all 1 ≤ s ≤ �. Intuitively, the sequences indicate how each
term ps is computed. We note that the sequences may not be unique for an addition
chain {ps}�s=0.

Aw we explained in Sect. 1.3, there is relation between the FLT-based inversion
and addition chains. In the first and second steps of Algorithms 1 and 2, we start
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from 〈220 − 1〉 and compute 〈221 − 1〉, 〈222 − 1〉, . . . , 〈227 − 1〉, 〈227+25 − 1〉, and
〈227+25+21 − 1〉 = 〈22162 − 1〉 when n = 163. Here, we focus on the exponents of 2,
i.e,.,

{20 = 1, 21, 22, . . . , 27, 27 + 25, 27 + 25 + 21 = 162}.

We find that the sequence of numbers is an addition chain for 162. Moreover,
21, 22, . . . , 27 are doubled terms and 27 + 25, 27 + 25 + 21 = 162 are added terms.
In general, Algorithms 1 and 2 are based on the same addition chain for n − 1 follow-
ing Itoh and Tsujii’s FLT-based inversion. Moreover, the first �log2(n − 1)� elements
excluding 20 = 1 are always doubled terms and the last t − 1 elements are always
added terms. Hereafter, we call the sequence Itoh and Tsujii’s addition chain.

4.2 Basic algorithm

We find that previous quantum FLT-based inversion algorithms [30, 31] are based on
Itoh and Tsujii’s addition chains that are automatically determined by the value n−1.
Here, we show that Putranto et al.’s algorithm [31] can use arbitrary addition chains
and does not necessarily have to be specific to Itoh and Tsujii’s addition chains.

At first, we introduce some properties that arbitrary addition chains inherently
satisfy. These properties enable us to prove the main theorem later.

Lemma 1 For an arbitrary addition chain {p′
s}�s=0 for N of length �, there exists an

addition chain {ps}�s=0 for the same N and � so that the latter addition chain satisfies
following properties.

(i) Both {ps}�s=0 and {p′
s}�s=0 consist of the same elements although the order may

not be the same. In other words, for all 0 < s < �, there exists 0 < s′ < � such
that ps = p′

s′ . Specifically, p0 = p′
0 = 1 and p� = p′

� = N hold.
(i i) A sequence consisting of only added terms of {ps}�s=0 are monotonically increas-

ing. In other words, for all i, j ∈ M such that i < j , it holds that pi < p j .
(i i i) An element for computing a doubled term appear just before the doubled term.

In other words, for all i ∈ D, it holds that pi = 2pi−1.

Proof It is clear that for an arbitrary addition chain {p′
s}�s=0 for N of length �, there is

a unique sequence {ps}�s=0 that satisfy all properties (i)–(iii). What we have to show
is that {ps}�s=0 is an addition chain for N of length �. Due to the property (i), p0 = 1
and p� = N hold. We complete the proof by showing that for all s = 1, 2, . . . , �,
there exist i and j which satisfy 0 ≤ i ≤ j < s and ps = pi + p j . If s ∈ D, it holds
that ps = 2ps−1 = ps−1 + ps−1 due to the property (i i i).

Hereafter, we consider the case of s ∈ M such that ps = pi + p j . To prove the
claim, we show that for all 1 ≤ s < v ≤ �, it holds that ps < pv . If the statement
holds, there exist i and j which satisfy 0 ≤ i ≤ j < s and ps = pi + p j since pi < ps
and p j < ps hold. If v ∈ M holds, then it holds that ps < pv due to the property (i i).
If v ∈ D, then there exists an index v′ ∈ M such that s ≤ v′ < v and pv = 2v−v′

pv′ .
Due to the property (i i), it holds that ps ≤ pv′ < 2v−v′

pv′ = pv . Thus, we complete
the proof. ��
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We are ready for providing the existence of quantum an FLT-based inversion algo-
rithm that uses an arbitrary addition chain.

Theorem 2 Let f be an element of F∗
2n and {ps}�s=0 be an addition chain for n − 1 of

length � satisfying the properties (i)–(iii) of Lemma 1. Let d and m denote the numbers
of doubled terms and added terms in {ps}�s=0, respectively. There exists a quantum
algorithm that takes f = 〈1〉 and {ps}�s=0 as input and outputs 〈2n−1 − 1〉 with new
(2d + m + 1)n = (� + d + 1)n qubits and MODMULT operations � times.

We note that an algorithm given in Theorem 2 is an extension of Putranto et al.’s
algorithm [31] for an arbitrary addition chain. In other words, when the algorithm takes
Itoh and Tsujii’s addition chain as input, then the efficiency is the same as Putranto
et al.’s algorithm since it holds that d = �log2(n − 1)� and m = t − 1 for Itoh and
Tsujii’s addition chain.

Proof In this proof, we assume pas ≤ pbs , where {as}�s=1 and {bs}�s=1 are sequences
that satisfy ps = pas + pbs for all 1 ≤ s ≤ � as we introduced in Sect. 4.1. Hereafter,
we are given 〈2p0 − 1〉 = f and compute 〈2p1 − 1〉, . . . , 〈2p� − 1〉 sequentially. We
show the proof by mathematical induction. Specifically, we show how to compute
〈2pu − 1〉 for 1 ≤ u ≤ � by assuming that 〈2p1 − 1〉, . . . , 〈2pu−1 − 1〉 have been
computed.

At first, we discuss the simplest case. In particular, we show how to compute
〈2pu − 1〉 by assuming that 〈2pau − 1〉 and 〈2pbu − 1〉 are stored as they are. We divide
the situation into two cases, i.e., u ∈ D and u ∈ M , and explain separately.

Case of u ∈ D: We can compute 〈2pu − 1〉 in essentially the same way as in the loop
from line 1 to 5 inAlgorithm1. Let 〈2pau −1〉 be stored in i-th register.
We first apply ADD to copy 〈2pau −1〉 in a new j-th register. Then, we
apply the SQUARE operation 2pau times to j-th register and obtain
〈22pau − 2pau 〉 in the same register. Finally, we apply MODMULT to
〈2pau − 1〉 in the i-th register and 〈22pau − 2pau 〉 in the j-th register,
and obtain 〈222pau − 1〉 in a new k-th register. Due to u ∈ D, it holds
that pu = pau + pau = 2pau , i.e., 〈222pau − 1〉 = 〈2pu − 1〉. Here,
we use the MODMULT operation once and new two registers ( j-th and
k-th register), i.e., 2n qubits.

Case of u ∈ M : We can compute 〈2pu − 1〉 in essentially the same way as in the loop
from line 6 to 9 in Algorithm 1. Let 〈2pau − 1〉 and 〈2pbu − 1〉 be
stored in i-th register and j-th register, respectively.Wefirst apply the
SQUARE operation 2pbu times to 〈2pau −1〉 in i-th register and obtain
〈2pau+pbu − 2pbu 〉 in the same register. Then, we apply MODMULT
to 〈2pau+pbu − 2pbu 〉 in the i-th register and 〈2pbu − 1〉 in the j-th
register, and obtain 〈2pau+pbu −1〉 = 〈2pu −1〉 in a new k-th register.
Here, we use theMODMULT operation once and new one register (k-th
register), i.e., n qubits.

After the computation, 〈2pau −1〉 is still stored as it is if u ∈ D; however, 〈2pau −1〉
becomes 〈2pau −1〉2pbu = 〈2pau+pbu −2pbu 〉 if u ∈ M . In other words, an assumption
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that 〈2pau − 1〉 and 〈2pbu − 1〉 are stored as they are does not always hold. We note
that the assumption always hold if u ∈ D since au = u − 1 due to the property (iii) of
Lemma 1.

Next, we show how to compute 〈2pu − 1〉 for u ∈ M in general. Let cu and du be
nonnegative integers. Then, we show how to compute 〈2pu −1〉 from 〈2pau+pcu −2pcu 〉
and 〈2pbu+pdu − 2pdu 〉. We should consider three cases, i.e., the case of (cu, du) =
(0, 0), the case of cu > 0 ∧ du = 0, and the case of du > 0. When (cu, du) = (0, 0),
we can compute 〈2pu − 1〉 as explained above since 〈2pau − 1〉 and 〈2pbu − 1〉 are
stored as they are. Hereafter, we show how to compute 〈2pu − 1〉 if cu > 0 ∧ du = 0
by following the same way as the case of (cu, du) = (0, 0). Moreover, we show that
the case of du > 0 never happens.

Case of cu > 0 ∧ du = 0: Let 〈2pau+pcu − 2pcu 〉 and 〈2pbu − 1〉 be stored in i-th
register and j-th register, respectively. We first apply the
SQUARE operation 2pbu−pcu times to 〈2pau+pcu −2pcu 〉 in
the i-th register and obtain 〈2pau+pbu − 2pbu 〉 in the same
register. Then, we apply MODMULT to 〈2pau+pbu − 2pbu 〉
in the i-th register and 〈2pbu − 1〉 in the j-th register, and
obtain 〈2pau+pbu − 1〉 = 〈2pu − 1〉 in a new k-th register.
Here, we use the MODMULT operation once and new one
register (k-th register), i.e., n qubits.
Here, we should check that pbu − pcu > 0 holds. As we
have described so far, 〈2pau −1〉becomes 〈2pau+pcu −2pcu 〉
whenwe compute 〈2pau+pcu −1〉. If pau + pcu is a doubled
term and pau = pcu holds, 〈2pau −1〉 is still stored as they
are; in other words, cu = 0 holds. Thus, pau + pcu is an
added term. In this case, since 〈2pau+pcu − 1〉 was already
computed, it holds that pau + pcu < pbu + pcu due to the
property (ii) of Lemma 1.

Case of du > 0: As we have described so far, 〈2pbu − 1〉 becomes
〈2pbu+pdu − 2pdu 〉 when we compute 〈2pbu+pdu − 1〉. Let
u′ be an index such that pu′ = pbu + pdu . Then, it hold
that au′ = bu and bu′ = du . Since 〈2pbu+pdu − 1〉 was
already computed, it holds that pbu + pdu < pau + pbu ⇔
pdu < pau due to the property (ii) of Lemma 1. Moreover,
as we mentioned at the beginning of this proof, pas ≤ pbs
holds for all s. Thus, it holds that pau ≤ pbu = pau′ ≤
du = pbu′ . This is the contradiction. Thus, du > 0 never
happens.

To sum up, when we compute 〈2pu − 1〉, we always apply MODMULT once and use
2n and n new qubits if u ∈ D and u ∈ M , respectively. Therefore, we apply MODMULT
operation d + m = � times and use new (2d + m + 1)n qubits. ��

We describe our basic algorithm based on Theorem 2 in Algorithm 3. We note
that Algorithm 3 takes not only an addition chain {ps}�s=0 but also {as}�s=1, {bs}�s=1,
and {Qs}�s=1 as input. Here, we explain the roles of the additional inputs. We proved
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Algorithm 3 Basic algorithm
Require: An irreducible polynomial m(x) ∈ F

∗
2n of degree n, an addition chain {ps }�s=0 for n − 1 of

length � (composed of d doubled terms and m added terms) and related {as }�s=1, {bs }�s=1, {Qs }�s=1, a
polynomial g0 = f ∈ F

∗
2n of degree up to n − 1, polynomials g1, . . . , gd+m initialized to an all-|0〉

state.
Ensure: gd+m = f 2

n−2

1: dcount ← 0
2: for s = 1, . . . , d + m do
3: if s ∈ D then
4: ADD(gas , hdcount )
5: for i = 1, . . . , Qs do
6: SQUARE(hdcount )
7: end for
8: MODMULT(gas , hdcount , gs )
9: dcount ← dcount + 1
10: else[s ∈ M]
11: for i = 1, . . . , Qs do
12: SQUARE(gas )
13: end for
14: MODMULT(gas , gbs , gs )
15: end if
16: end for
17: SQUARE(gd+m )

Theorem2by assuming pas < pbs ; however, the algorithmbecomes less efficient since
we apply SQUARE operation 2pbs times to 〈2pas − 1〉 and obtain 〈2pas+pbs − 2pbs 〉 for
computing 〈2pas+pbs − 1〉 from 〈2pas+pbs − 2pbs 〉 and 〈2pbs − 1〉. In other words, we
can save the number of SQUARE if we apply the operation 2pas times to 〈2pbs − 1〉
and obtain 〈2pas+pbs −2pas 〉 for computing 〈2pas+pbs −1〉 from 〈2pas+pbs −2pas 〉 and
〈2pas −1〉. Therefore, the restriction pas < pbs results in more CNOT gates and larger
depth. However, the restriction is required for proving the existence of a quantum
algorithm for arbitrary addition chains. In contrast, we focus on specific binary curves
recommended by NIST. Thus, Algorithm 3 takes {as}�s=1 and {bs}�s=1 as input, where
it is interesting that pas ≥ pbs hold for most s. The last input {Qs}�s=1 describes the
numbers of SQUARE to be applied in each step.

4.3 Extended algorithm

As we explained in Sect. 3.3, Banegas et al. [30] reduced the required qubits from
Putranto et al.’s algorithm [31] by clearing garbages and sacrificing the number of
CNOT gates and the depth. In the same way, we can reduce required qubits of our
Algorithm 3 as described in Algorithm 4. What is more, we introduce a trade-off
parameter L , where Algorithm 4 with the larger L requires fewer qubits, more CNOT,
and larger depth. We can further save one register, i.e, n qubits, to store the output
〈2n − 2〉 if the last element n − 1 of an addition chain is an added term, where we can
find such an addition chain for NIST recommended curves for all n. The performance
of Algorithm 4 is described as follows.
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Algorithm 4 Extended algorithm

Require: An irreducible polynomialm(x) ∈ F
∗
2n of degree n, an addition chain {ps }�s=0 for n−1 of length

� (composed of d doubled terms and m added terms) and related {as }�s=1, {bs }�s=1, {Qs }�s=1, {c�t }dt=0,
a polynomial g0 = f ∈ F

∗
2n of degree up to n − 1, polynomials g1, . . . , gd+m−1, h0, . . . , hd−L−1

initialized to an all-|0〉 state, an array pl that members are initialized to −1.
Ensure: hd = f 2

n−2

1: dcount ← 0
2: for s = 1, . . . , d + m do
3: if s ∈ D then
4: if pl[dcount] �= −1 then
5: GARBAGECLEAR(c�dcount , pl[dcount], dcount)
6: end if
7: ADD(gas , hdcount )
8: for i = 1, . . . , Qs do
9: SQUARE(hdcount )
10: end for
11: MODMULT(gas , hdcount , gs )

12: pl[dcount] ← as
13: dcount ← dcount + 1
14: else[s ∈ M]
15: for i = 1, . . . , Qs do
16: SQUARE(gas )
17: end for
18: MODMULT(gas , gbs , gs )
19: end if
20: end for
21: if pl[d] �= −1 then
22: GARBAGECLEAR(c�d , pl[d], d)

23: end if
24: for i = 1, . . . , Qd+m do
25: SQUARE(gad+m )

26: end for
27: MODMULT(gad+m , gbd+m , hd )

28: SQUARE(hd )

Theorem 3 Let f be an element of F∗
2n and {ps}�s=0 be an addition chain for n − 1 of

length � satisfying the properties (i)–(iii) of Lemma 1 and � ∈ M. Let d and m denote
the numbers of doubled terms and added terms in {ps}�s=0, respectively. There exists
a quantum algorithm that takes f = 〈1〉, {ps}�s=0, and L ∈ {0, 1, . . . , d − 1} as input
and outputs 〈2n−1−1〉with new (2d+m−L)n = (�+d−L)n qubits and MODMULT
operations � times.

Algorithm 4 takes pl and {c�t }dt=0 as addition input. An array pl has d − L
members, and stores indices of the polynomials g which are used for ADD to clear
garbages. The sequence {c�t }ts=0 describe the number of times to applying SQUARE or
SQUARE−1 for clearing garbages.More precisely,we applySQUARE c�t times if c�t >

0 and SQUARE−1 −c�t times if c�t < 0. We set c�0 = 0 and x :=x mod (d − L).
Garbages are stored in h0, . . . , hd−L−1 in turn and clearing is performed by initializing
them to 0 from h0 to hd−L−1 in this order. We describe the algorithm for clearing
garbages in Algorithm 5. We note that the case of L = 0 is different from basic
algorithm since clearing to store 〈2n−1 − 1〉 is still performed. When L = d − 1,

123



  122 Page 18 of 30 R. Taguchi, A. Takayasu

we only prepare a polynomial h0 for garbages; however, initializing is performed
whenever we compute 〈2ps − 1〉, where s ∈ D. In general, each time L increases by
1, we apply an additional clearing that implicates the trade-off between the number of
qubits and the number of CNOT gates, and the depth.

Algorithms 3 and 4 are also applied two times for an inversion computation each.
We uncompute the ancillary qubits by the second operation.

Algorithm 5 GARBAGECLEAR(c, k, �)
Require: Integers c, k, �.
1: if c > 0 then
2: for i = 1, . . . , c do
3: SQUARE(h�)

4: end for
5: end if
6: if c < 0 then
7: for i = 1, . . . , −c do
8: SQUARE−1(h�)

9: end for
10: end if
11: ADD(gk , h�)

5 Comparison

In this section, we compare our proposed quantum FLT-based inversion algorithms
with previous ones [30, 31]. In Sect. 5.1, we find addition chains for our algorithms.
In Sect. 5.2, we compare the quantum resources for computing inversion. In Sect. 5.3,
we show the effectiveness of the trade-off parameter L of our extended algorithm. In
Sect. 5.4, we compare the quantum resources for point addition and Shor’s algorithm.
Difference from preliminary version As mentioned in Sect. 1.2, we use quantum mul-
tiplication by Hoof [34] in [1]; however, we use one by Kim et al. [35] in this version.
Therefore, we update the number of quantum resources in Tables and Figures by Kim
et al.’s multiplication.

5.1 Our choice of addition chains

As we showed in Theorems 2 and 3, the quantum resource of FLT-based inversion
depends on d,m, � of addition chain. Table 1 summarizes d,m, � Itoh and Tsujii’s
addition chain for all n recommended by NIST. We find addition chains for all n in
order of priority the number of TOF and qubits. In other words, we first find addition
chains with the minimum length �, then find the one with minimum doubled terms d
among them. Table 2 summarizes d,m, � our choice of addition chains, and Table 3
summarizes the concrete addition chains {ps}�s=0 with the sequences {as}�s=1, {bs}�s=1,
and {Qs}�s=1 which are input of our algorithms.Wecanfind addition chainswith shorter
length � for n = 571. Moreover, we can find addition chains with fewer doubled terms
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Table 1 d, m, � of Itoh and
Tsujii’s addition chains

n 163 233 283 571

d 7 7 8 9

m 2 3 3 4

� 9 10 11 13

Table 2 d, m, � of our choice of
addition chains

n 163 233 283 571

d 5 4 3 4

m 4 6 8 8

� 9 10 11 12

d for all n. Our choice of addition chains work well with our algorithms. Indeed, we
can save CNOT gates since pas ≥ pbs holds for most s as we discussed at the end of
Sect. 4.2. Similarly, we can save one register for Algorithm 4 since n − 1 is an added
term as we discussed in Sect. 4.3.

5.2 Comparison in a quantum inversion computation

Table 4 compares quantum resources among the following algorithms:

• basic algorithm: our proposed Algorithm 3
• extended algorithm: our proposed Algorithm 4 for L = d − 1
• PWLK22-FLT: Putranto et al.’s FLT-based algorithm
• BBHL21-FLT: Banegas et al.’s FLT-based algorithm
• BBHL21-GCD: Banegas et al.’s GCD-based algorithm

in terms of the number of TOF, qubits, CNOT, and depth.
We do not compare with Kim and Hong’s GCD-based inversion algorithm [42]

which achieves fewer qubits and fewer TOF gates than Banegas et al.’s GCD-based
inversion algorithm since it does not estimate the number of CNOT gates and the
depth.

We compare the quantum resources for computing h+g f −1 from f , g, h with two
inversions and one modular multiplication. Here, the depth of ADD is 1. We calculate
the number of CNOT gates and the upper bound of the depth of SQUARE by using
LUP decomposition which Banegas et al.’s [30] used. The number of TOF gates and
CNOT gates and the upper bound of the depth of MODMULT are given by Hoof [34].
We also calculate the depth considering parallel computation by ourselves, although
we do not describe it in detail. However, since paralleling is not complete, the depth
is upper bound in each case.

As we described in Sects. 4.2 and 4.3, our algorithms achieve the same perfor-
mance when we use Itoh and Tsujii’s addition chain. However, we find better addition
chains with smaller � and/or d for all n as we claimed in Sect. 5.1. Thus, our basic
and extended algorithms are strictly better than PWLK22-FLT and BBHL21-FLT,
respectively. Indeed, Algorithms 3 and 4 successfully reduce all quantum resources
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Table 3 Our choice of addition chains {ps }�s=0 with the sequences {as }�s=1, {bs }�s=1, and {Qs }�s=1

n Sequences

163 ps : 1, 2, 4, 8, 16, 32, 33, 65, 97, 162

as : 0, 1, 2, 3, 4, 5, 5, 7, 8

bs : 0, 1, 2, 3, 4, 0, 6, 5, 7

Qs : 1, 2, 4, 8, 16, 1, 32, 32, 65

233 ps : 1, 2, 4, 8, 16, 24, 40, 56, 96, 136, 232

as : 0, 1, 2, 3, 4, 4, 4, 7, 8, 8

bs : 0, 1, 2, 3, 3, 5, 6, 6, 6, 9

Qs : 1, 2, 4, 8, 8, 16, 16, 40, 40, 96

283 ps : 1, 2, 4, 6, 12, 18, 30, 48, 78, 126, 204, 282

as : 0, 1, 2, 3, 4, 4, 6, 6, 8, 8, 8

bs : 0, 1, 1, 3, 3, 5, 5, 7, 7, 9, 10

Qs : 1, 2, 2, 6, 6, 12, 18, 30, 48, 78, 78

571 ps : 1, 2, 4, 8, 16, 18, 34, 50, 84, 134, 218, 352, 570

as : 0, 1, 2, 3, 4, 4, 4, 7, 7, 9, 9, 11

bs : 0, 1, 2, 3, 1, 5, 6, 6, 8, 8, 10, 10

Qs : 1, 2, 4, 8, 2, 16, 16, 34, 50, 84, 134, 218

of PWLK22-FLT and BBHL21-FLT, respectively. Moreover, our extended algorithm
achieves smaller depth than PWLK22-FLT when n = 571. Compared with BBHL21-
GCD, although BBHL21-GCD achieves fewer qubits than our algorithms by two, our
algorithms achieve much fewer TOF than BBHL21-GCD by ten.

Remark 1 In the preliminary version [1], addition chains given in Table 3 are different
from the ones which are used for quantum resource estimation. In this version, we
correctly describe addition chains used for estimation in Tables 3, 5.

Remark 2 After the publication of the preliminary version [1],KimandHong proposed
a quantum GCD-based inversion algorithm [42] which achieves slightly fewer qubits
and fewer TOF gates than Banegas et al.’s GCD-based inversion algorithm. However,
we do not list the algorithm in Table 4 sinceKim andHong did not estimate the number
of CNOT gates and the depth and the analysis of their GCD-based algorithm is out
of scope of this paper. We note that Kim and Hong’s GCD-based algorithm does not
violate the advantage of FLT-based algorithms since the number of TOF gates of the
former algorithm is close to that of Banegas et al.’s GCD-based inversion algorithm
and much larger than those of FLT-based ones.

5.3 Quantum resources trade-off in extended algorithm

We describe the quantum resources of Algorithm 4 (extended algorithm) for all pos-
sible trade-off parameters L . As we discussed in Sect. 4.3, the extended algorithm for
L = 0 is not the case of basic algorithm, but the case that only n qubits for storing
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Fig. 1 Quantum resources trade-off in extended algorithm where n = 163

Fig. 2 Quantum resources trade-off in extended algorithm where n = 233

the computation results are reduced. Figures1, 2, 3, 4, 5, 6, 7, 8 illustrate the trade-off
with respect to L . Throughout the comparisons, we do not consider the number of
TOF since L does not affect it. In all Figs. 12, 3, 4, 5, 6, 7, 8, the round points which
are placed on the rightmost represent basic algorithm, then L = 0, 1, 2, . . . from the
right to the left. We can see that the number of qubits decreases and the number of
CNOT gates and the depth increase for the larger L . However, we can see the same
depth in the case of basic algorithm and L = 0 although the numbers of CNOT gates
are not the same. The reason is that we can completely parallelize clearing garbage for
storing 〈2n−1 − 1〉. Although we may be able to parallelize other clearing procedures
and will get better upper bounds of the depth, we leave it as a future work.

5.4 Comparison in Shor’s algorithm

Table 4 compares quantum resources among Shor’s algorithm based on our proposed
FLT-based inversion algorithms and previous inversion algorithms as in Table 4 in
terms of the number of TOF, qubits, CNOT, and depth. To perform 2n + 2 point
additions, we use Banegas et al.’s point addition algorithm [30]. A point addition
computation contains two quantum inversion computations. We simply add the num-

123



Concrete quantum cryptanalysis… Page 23 of 30   122 

Fig. 3 Quantum resources trade-off in extended algorithm where n = 283

Fig. 4 Quantum resources trade-off in extended algorithm for n = 571

Fig. 5 Quantum resources trade-off in FLT-based inversion algorithms where n = 163

bers in Table 4 for counting the quantum resources. Banegas et al.’s point addition
algorithm contains some computations which we do not summarize. We refer to the
paper [30] for counting the number of TOF gates and CNOT gates for those com-
putations. We consider parallel quantum computing and calculate the depth of them
by ourselves. Since we use semiclassical Fourier transform [43] in a part of Shor’s
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Fig. 6 Quantum resources trade-off in FLT-based inversion algorithms where n = 233

Fig. 7 Quantum resources trade-off in FLT-based inversion algorithms where n = 283

Fig. 8 Quantum resources trade-off in FLT-based inversion algorithms for n = 571
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Table 5 Quantum resources of
extended algorithm in each L

n = 163 Qubits CNOT Depth
Basic 2771 1, 557, 528 300, 920

L 0 2608 1, 558, 514 300, 920

1 2445 1, 560, 486 301, 584

2 2282 1, 563, 452 302, 906

3 2119 1, 569, 058 305, 548

4 1956 1, 579, 944 310, 830

n = 233 Qubits CNOT Depth
Basic 3961 3, 345, 540 434, 995

L 0 3728 3, 346, 398 434, 995

1 3495 3, 348, 114 435, 391

2 3262 3, 350, 148 436, 177

3 3029 3, 353, 750 437, 747

n = 283 Qubits CNOT Depth
Basic 4811 5, 489, 296 837, 096

L 0 4528 5, 491, 032 837, 096

1 4245 5, 494, 504 838, 270

2 3962 5, 502, 090 840, 612

n = 571 Qubits CNOT depth
Basic 10, 849 23, 458, 648 3, 433, 263

L 0 10, 278 23, 463, 104 3, 433, 263

1 9707 23, 472, 016 3, 436, 581

2 9136 23, 486, 414 3, 443, 211

3 8565 23, 514, 068 3, 456, 469

algorithm, we use only another control qubit to point additions, therefore the whole
number of qubits increases by 1 from the number of qubits used in a single inversion.
Table 6 shows the number of quantum resources in Shor’s algorithm. Our two algo-
rithms still perform better like a comparison in an inversion algorithm, since inversion
computations occupy the largest part of a point addition computation in a view of the
number of qubits and quantum gates. However, Banegas et al.’s point addition algo-
rithm initializes λ, and this leads us to compute two inversions. If we prepare other n
qubits for λ in each point addition, we can save up an inversion and the number of TOF
gates and CNOT gates and the depth will be about a half of the values summarized in
Table 6. Then, the number of qubits increases by (2n + 1)n.

6 Windowing

We briefly explain the quantum read-only memory (QROM) in Sect. 6.1. Then we
describe point addition using windowing by Häner et al. [41] and show the optimal
window size and the number of TOF gates in each case in Sect. 6.2.

123



  122 Page 26 of 30 R. Taguchi, A. Takayasu

Table 6 Comparison of the number of TOF gates, qubits, and CNOT gates and the depth in Shor’s algorithm
between ours and prior works

n Basic algorithm
TOF Qubits CNOT Depth

163 13, 175, 432 2772 1, 072, 118, 184 204, 448, 960

233 30, 000, 204 3962 3, 276, 928, 512 423, 198, 828

283 49, 121, 208 4812 6, 491, 648, 712 977, 034, 976

571 228, 787, 416 10, 850 55, 651, 292, 840 8, 000, 884, 320

n Extended algorithm
TOF Qubits CNOT Depth

163 13, 175, 432 1957 1, 086, 823, 080 210, 949, 920

233 30, 000, 204 3030 3, 284, 613, 072 425, 774, 700

283 49, 121, 208 3963 6, 506, 182, 696 981, 029, 152

571 228, 787, 416 8566 55, 778, 093, 800 8, 053, 979, 648

n PWLK22-FLT
TOF Qubits CNOT Depth

163 13, 175, 432 3098 1, 072, 545, 896 204, 451, 584

233 30, 000, 204 4661 3, 278, 237, 040 423, 204, 444

283 49, 121, 208 6227 6, 494, 863, 592 977, 046, 336

571 246, 235, 704 14, 276 59, 611, 633, 224 8, 283, 571, 296

n BBHL21-FLT
TOF Qubits CNOT Depth

163 13, 175, 432 1957 1, 101, 105, 512 231, 735, 936

233 30, 000, 204 3030 3, 303, 969, 552 446, 331, 132

283 49, 121, 208 3963 6, 668, 162, 664 1, 145, 860, 480

571 246, 235, 704 9137 61, 566, 056, 552 10, 217, 128, 064

n BBHL21-GCD
TOF Qubits CNOT Depth

163 288, 641, 640 1157 322, 348, 232 342, 017, 408

233 772, 092, 828 1647 926, 366, 688 945, 272, 484

283 1, 359, 458, 584 1998 1, 644, 682, 056 1, 672, 269, 248

571 10, 156, 396, 536 4015 13, 091, 280, 488 12, 963, 368, 704

6.1 Quantum read-only memory

Quantum read-only memory (QROM) allows classical memory to be accessed by
giving an index, which can be represented by superposition. Let A denote the number
of data stored in QROM. We explain data as |di 〉 for i = 0, 1, . . . , A − 1. Then, the
QROM operation is given by
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Table 7 Optimal window size w and the number of TOF gates for Shor’s algorithm

n Basic algorithm Extended algorithm

w TOF w TOF

163 9 1, 781, 025 9 1, 781, 025

233 9 3, 679, 975 9 3, 679, 975

283 10 5, 765, 145 10 5, 765, 145

571 11 23, 390, 601 11 23, 390, 601

n PWLK22-FLT BBHL21-FLT BBHL21-GCD

w TOF w TOF w TOF

163 9 1, 781, 025 9 1, 781, 025 13 26, 303, 013

233 9 3, 679, 975 9 3, 679, 975 14 64, 402, 483

283 10 5, 765, 145 10 5, 765, 145 15 108, 252, 597

571 11 24, 976, 809 11 24, 976, 809 16 704, 590, 641

QROM

(
A−1∑
i=0

αi |i〉 |Si 〉
)

=
A−1∑
i=0

αi |i〉 |Si + di 〉 , (4)

where |i〉 is the index, αi ∈ C is the amplitude of |i〉, and |Si 〉 is the arbitrary quantum
state. For constructing QROM, we require some quantum resources, including TOF
gates. Babbush et al. [44] gave a T -depth-less QROM construction, and they made
use of 2(A − 1) TOF gates. We note that several ancillary qubits are also required
for QROM; however, we do not count them because we only focus on the number
of TOF gates in this section. Generally, QROM is used for skipping some quantum
computations and saving the quantum gates. Therefore, we should carefully analyze
the balance between the required TOF gates for QROM and the reduced TOF gates.

6.2 Point addition using windowing

Quantum computation using QROM has been discussed. For example, Gidney
[45] explained several quantum basic arithmetics with QROM. Those ways of using
QROM for looking up some data are called windowing. Häner et al. [41] indicated
that point addition on elliptic curves using windowing is also possible, and Banegas
et al. [30] and Putranto et al. [31] made use of that method. We describe the outline
below. Let w be an nonnegative integer, and A = 2w. Then, QROM stores [i]U for
i = 0, 1, . . . , 2w − 1, where U is a point on a binary elliptic curve. Point addition
algorithm which uses LOOKUP to access the above QROM is explained by Banegas
et al. [30]. We can decrease the times of point addition from 2(n + 1) to 2� n+1

w
�+ 12,

therefore the number of TOF gates decreases with increasingw. However, the number
of TOF gates to construct a QROM is 2(2w − 1).

2 A point addition for canceling is contained. See Banegas et al.’s paper [30] for detailed information.
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Now we find an optimal w, which minimizes the number of TOF gates, about
each n for each algorithm. Then, we calculate the total number of TOF gates and
compare our algorithms to prior works. We show the result in Table 7. Our two algo-
rithms and prior FLT-based algorithms bring the same results for n = 163, 233, 283.
For n = 571, we can see the advantage of our algorithms over PWLK22-FLT and
BBHL21-FLT. However, the optimal w of BBHL21-GCD are larger than others. That
is because BBHL21-GCD uses much more TOF gates than FLT-based algorithms,
then windowing performs better.

7 Conclusion

In this paper, we reconsidered quantumFLT-based inversion algorithms from the view-
point of addition chains. In purpose of analyzing the quantum resources for quantum
computation, we described the number of TOF gates, qubits, and CNOT gates and
the depth change depending on the addition chain. Also, we showed the existence
of a quantum FLT-based inversion algorithm whose input contains an arbitrary addi-
tion chain. Then, we constructed two algorithms, basic algorithm corresponding to
Putranto et al.’s algorithm and extended algorithm corresponding to Banegas et al.’s
algorithm. Moreover, we reduce the number of TOF gates and the number of qubits
preferentially in this order and optimized addition chains. As a result, basic algorithm
and extended algorithm purely improve Putranto et al.’s algorithm and Banegas et
al.’s algorithm, respectively. That stems from the existence of better addition chains,
whose length is shorter, or d is smaller than Itoh and Tsujii’s addition chains. We can
say that our results gave a more precise estimation of quantum resources used to solve
binary ECDLP with NIST recommending n.

We get some optimized addition chains that perform the same as addition chains
in Table 3, therefore we can choose an addition chain that depth is also reduced the
most. We have already chosen addition chains that achieve less depth; however, it is
extremely hard to optimize the depth since that requests a complete analysis of parallel
quantum computation. We leave it to future work. Also, there may be a better way to
clear all qubits used in inversion algorithms.
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