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Abstract
The system in consideration is a singular simple cubic cell of spins s = 1

2 doped in
centre with additional spin S = 1. The structure is located in external magnetic field
and is undergoing dissipative, Markovian evolution. The analysis of system time evo-
lution is focused on the entanglement evaluation and determination of its behaviour
over time. We found out the distinct effect of doping the structure with additional spin
S = 1 in the time evolution of the bipartite entanglement in |W 〉 state. We also distin-
guished the raising and lowering spin interaction with environment and determined its
impact on decoherence. Furthermore, we have shown that the entanglement between
spins is in the form of a damped superposition of Gaussian functions. Its pulsed nature
results from the unitary evolution in spin structure, while the damping is caused by
the influence of the environment.

Keywords Quantum entanglement · Spin systems · Open systems · Markovian time
evolution

1 Introduction

The entanglement, specific correlation between the elements of composite quantum
system, turned out to be one of the most surprising features of a quantum theory,
alongsidewith its non-determinismanddiscretisation of physical parameters. Since the
famous papers by Schrödinger [1] and Einstein, Podolsky and Rosen [2] it remains one
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of the most frequently discussed topics of modern physics. Development of quantum
information theory drew attention to possibility of utilising the entanglement as a
resource: in quantum cryptography [3–5], quantum computation [6, 7] and quantum
information processing [8–10]. Due to this reason, the gathering knowledge on the
entanglement formation andbehaviour over time is highly anticipated, anddetermining
the set of parameters for which the entanglement in particular quantum system will
be high and stable over time may be used as a guideline for manufacturing the real
layouts to implement the quantum informatics protocols on.

Recently, the spin structures gather popularity as a mean of system for analysis of
this particular quantum correlation [11–21]. They were analysed, among others, in
terms of thermal entanglement [18, 19, 22–24], in the presence of Dzyaloshinskii–
Moriya interaction [16, 17, 20, 25], Kaplan–Shekhtman–Entin-Wohlman–Aharony
interactions [26, 27] or three spin interaction [22, 28], and for various magnetic fields
[17, 19]. Also, the time evolution of quantum entanglement was discussed for numer-
ous models of coupling to the environment [16, 20, 27, 29, 30]. However, most of this
work is focused on the single pair of coupled spins.

There exist quantum states that are highly entangled and states with low entangle-
ment or evenwithout any entanglement at all. There aremultipleways to quantitatively
express the amount of entanglement in system: one of them is to determine the con-
ditions on the elements of density matrix to represent separable states in accordance
to the Peres–Horodecki criterion [31, 32] and then calculating the distance between
the analysed entangled state and the set of all separable states, utilising the Schmidt–
Hilbert norm [33, 34]—the further the state is from the set, the more entangled it is.
Other measures include among others: negativity [32], relative entropy of entangle-
ment [33], entanglement of formation [35] or, probably themost common, concurrence
[36]. This last measure proven to be a reliable mean to evaluate the amount of entan-
glement for coupled systems of dimensionality 2⊗2 and 2⊗3 [37] and therefore was
utilised in presented analysis.

The aimof thiswork is to determine the time behaviour of the bipartite entanglement
in a three-dimensional finite spin structure coupled with Markovian environment. To
this end, the Lindblad master equation was applied, and it was solved by numerical
finite step method, using the Runge–Kutta algorithm. Entanglement concurrence time
evolution was computed for 1

2 -
1
2 spins and for

1
2 and 1 spins using initial state, which

is equivalent of |W 〉 state [38, 39] for the system without the S = 1 dopant.
The paper is organised as follows: In Sect. 2, we present the analysed structure

and describe the mathematical formalism behind the system Hamiltonian and time
evolution of the structure state; we also present the tools to quantify the entanglement
in the system. Section3 covers the presentation and discussion of obtained results.
Finally, Sect. 4 serves as a summary of the research.

2 Model

The analysed model is a finite, three-dimensional structure similar to simple cubic
cell with spins s = 1

2 , placed in the corners. The structure consists also an additional
dopant with spin S = 1 in the centre. The entire system is located in an external
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Fig. 1 The model in
consideration. Spins s = 1

2 are
marked by the blue spheres and
are labelled for convenience
with letters: a to the left on the
dopant, and b to the right, and
with numbers, to easily
determine the order of coupling
by exchange interactions. Red
sphere in the centre is the
aforementioned dopant, with
spin S = 1

magnetic field (0, 0, h), acting along the z axis. The visualisation of the model is
shown in Fig.1.

If we assume that spins coupling range does not exceed the lattice constant, and
they interact according to Heisenberg XXX model, the Hamiltonian of the analysed
structure can be written as:

Ĥ = − j

⎡
⎣

4∑
i=1

�sa,i �sb,i +
∑
q=a,b

(�sq,1 + �sq,3
) (�sq,2 + �sq,4

)
⎤
⎦

−J �S ·
4∑

i=1

(�sa,i + �sb,i
) − h ·

(
ŜZ +

4∑
i=1

(ŝ Za,i + ŝ Zb,i )

)
(1)

where j is exchange integral for spins s = 1
2 and J is the integral for exchange

interaction between spin S = 1 and s = 1
2 . The superscript z indicates the component

of spin in the direction of the external magnetic field. We are primarily interested
in time evolution of system coupled to dissipative environment satisfying the Born–
Markov condition, which can be realized for example in a form of a large bosonic
reservoir. In aim to determine the change over time of density matrix ρ(t) describing
the overall state of the system, we utilize the Lindblad equation:

d

dt
ρ(t) = −i

[
Ĥ , ρ(t)

]
+ D(ρ). (2)

In (2), the first term (commutator) describes coherent time evolution governed by
the Hamiltonian, while the second D(ρ) indicates the dissipator, assumed here as:

D(ρ) =
⎛
⎝γP

⎡
⎣L(Ŝ+) +

∑
q=a,b

4∑
i=1

L(ŝ+
q,i )

⎤
⎦ + γN

⎡
⎣L(Ŝ−) +

∑
q=a,b

4∑
i=1

L(ŝ−
q,i )

⎤
⎦

⎞
⎠

(3)
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with L being Lindblad operator:

L(X̂) = X̂ρ(t)X̂† − 1

2
X̂† X̂ρ(t) − 1

2
ρ(t)X̂† X̂ . (4)

Parameters γP and γN are decoherence rates connected with spin raising and low-
ering effect of the system interaction with the reservoir, and the operators ŝ+

q,i (ŝ
−
q,i )

and Ŝ+(Ŝ−) denote the raising (lowering) operators for spins 1/2 and 1, respectively.
Individual forms of these operators result from formulas:

ŝ± = ŝ X ± i ŝY , Ŝ± = ŜX ± i ŜY

and in calculational basis they can be represented as:

ŝ+ =
[
0 1
0 0

]
, ŝ− =

[
0 0
1 0

]
,

Ŝ+ =
⎡
⎣
0 1 0
0 0 1
0 0 0

⎤
⎦ , Ŝ− =

⎡
⎣
0 0 0
1 0 0
0 1 0

⎤
⎦ .

To quantitatively describe the strength of bipartite entanglement in the system, the
concurrence measure is applied [35, 36]. For the entanglement between the two adja-
cent spins s = 1

2 , this measure must be calculated in respect to subsystem consisting
only the two examined spins (be it subsystem A, in no way related to spins sa,i ), so
the overall density matrix has to be reduced to a smaller form, in accordance with the
formula:

ρ̂ 1
2 , 12

= TrBρ =
dim(HB )∑

j=1

( ÎA ⊗ 〈φB
j |) · ρ · ( ÎA ⊗ |φB

j 〉) (5)

where TrBρ denotes partial trace of the density matix ρ over the subsystem B con-
sisting of six remaining spins s = 1

2 and spin S = 1; states {|φB
j 〉} j span complete

basis in subsystem B. Concurrence of the entanglement is calculated for the reduced
density matrix as:

C 1
2 , 12

= max{0,√λ4 − √
λ3 − √

λ2 − √
λ1}. (6)

In equation above λ4 ≥ λ3 ≥ λ2 ≥ λ1 are the eigenvalues of a matrix resulted from
following transformation on the reduced density matrix:

R 1
2 , 12

= ρ̂ 1
2 , 12

(
σ Y
2 ⊗ σ Y

2

)
ρ̂
†
1
2 , 12

(
σ Y
2 ⊗ σ Y

2

)
(7)

where σ Y
2 is Y-Pauli matrix-lower index to describe the dimensionality of it and does

not correspond to the position of spin in the spin structure.
To calculate the concurrence value between the spins S = 1 and s = 1

2 , the density
matrix also needs to be reduced, in this case, however, the reduction takes place in
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(a) Time dependence of entanglement concurrence without interaction with dopant
spin, external magnetic field and with no influence from environment (γP = γN = 0).
Exchange integral is set to be j = 1.

(b) Time dependence of entanglement concurrence without external magnetic field
and with no influence from environment (γP = γN = 0). Exchange integrals are set
as j = 1 and J = 1.

Fig. 2 Time evolutions of bipartite entanglement in isolated system in the absence of dopant (Fig. a) and
with dopant with spin S=1, (Fig. b)

respect to subsystem of dimensionality 2 ⊗ 3 (therefore B ′ in equation below is the
subsystem consisting the seven spins s = 1

2 that are not taken into consideration):

ρ̂ 1
2 ,1 = TrB′ρ. (8)

Concurrence for the systems of mentioned dimensionality is calculated similarly to
(6):

C 1
2 ,1 = max{0,√λ6 − √

λ5 − √
λ4 − √

λ3 − √
λ2 − √

λ1} (9)

where λ6 ≥ λ5 ≥ λ4 ≥ λ3 ≥ λ2 ≥ λ1 are the eigenvalues of the matrix [40, 41]:

R 1
2 ,1 = ρ̂ 1

2 ,1

(
σ Y
2 ⊗ O3

)
ρ̂
†
1
2 ,1

(
σ Y
2 ⊗ O3

)
, (10)
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Fig. 3 The example of decomposition of bipartite entanglementC1/2,1/2 into Gauss modes for some period
of time. The solid line represents the evolution of entanglement and the dashed lines the corresponding
Gaussian modes

Fig. 4 Time dependence of entanglement concurrence for various exchange integrals between spins s = 1
2 .

Model parameters are set as J = 1, h = 0 and γP = γN = 0.005. The magnitude or sign of j exchange
integral seem to have no impact on entanglement dynamics in analysed state
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Fig. 5 Time dependence of entanglement concurrence for various magnetic fields. Model parameters are set
as j = 1, J = 1 and γP = γN = 0.005. Magnetic field has no impact on the behaviour of the concurrence
in considered model

in which the operator O3 is a particular composition of all possible cyclic operators
for qutrits with appropriate phases, defined in calculational basis as [42, 43]:

O3 =
⎡
⎣

0 −i i
i 0 −i

−i i 0

⎤
⎦ . (11)

3 Time evolution of entanglement concurrence

The time behaviour of the entanglement in the system was calculated by numeri-
cal methods. Analytical solution for the system without the environment taken into
account and cursory solution of this problem with environment included is provided
in appendix; however, due to the scale of the problem the results presented belowwere
obtained by computer-assisted calculations. Equation (2) is solved approximately by
multi-step method using fourth-order Runge–Kutta algorithm, and for each step the
concurrences were computed in accordance to the formulas above. As an initial state,
we choose partially entangled state |α〉, which can be presented in the form:

|α〉 = 1

2
√
2

(| ↓↑↑↑↑↑↑↑〉 + | ↑↓↑↑↑↑↑↑〉 + ... + | ↑↑↑↑↑↑↑↓〉) ⊗ |0〉,
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Fig. 6 Time dependence of entanglement concurrence for various exchange integrals between spins s = 1
2

and spin S = 1. Model parameters are set as j = 1, h = 0 and γP = γN = 0.005

where the first term of the tensor product corresponds to one excitation in a ferromag-
netically ordered frame of spins s = 1

2 , while the second represents the state of the
S = 1 spin. In other words, the first term is equivalent of |W 〉 state for the frame, in
notation below the arrows refers to values of spins s = 1

2 z-projection-↑: mS = 1
2 ,

↓: mS = − 1
2 , the second term can in general take three values; −1, 0 and 1 and refer

to value of spin S = 1 z-projection.
Since our system is highly symmetric, to determine the structure of bipartite entan-

glement it is sufficient to calculate the entanglement between two spins 1/2 and
between any spin 1/2 and spin 1 of the considered spin system. In Fig. 2a, we present
evolution of the bipartite entanglement for spins a1 and b1 for the case of no interac-
tion with spin S = 1 (J = 0). If we then turn on the interaction of spins 1/2 with spin
1 (J �= 0), then the evolution of bipartite entanglement proceeds as shown in Fig. 2b.

Without the S = 1 dopant, the |α〉 state is an eigenstate of the frame of spins s = 1
2 ,

therefore in isolated system the time evolution does not change the initial bipartite
entanglement; in other words, during unitary evolution all 1/2 spins are equally entan-
gled with concurrence equal to 0.25 (see Fig. 2a). Introduction of the dopant into the
structure changes the behaviour of the bipartite entanglement which becomes a time
dependent and periodic, both for C 1

2 , 12
and for C 1

2 ,1 (see Fig. 2b). Within one period,
peaks of highest concurrence can be observed: C 1

2 , 12
reaches 0.25 at the begging and

the end of the period, while C 1
2 ,1 exceeds the value 0.3 twice during that period. The
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Fig. 7 Time dependence of entanglement concurrence for decoherence parameters, γP = γN . Model
parameters are set as j = 1, J = 2 and h = 0

peaks within one period can be decomposed into a sum of Gaussian modes what sug-
gests the pulsed nature of entanglement between spins in considered quantum system,
where each peak has the form of a Gaussian mode. The example of decomposition
of entanglement C1/2,1/2 into Gauss modes for some period of time is presented in
Fig. 3.

The series of numerical simulations showed that the time evolution of the state
|α〉 does not depend on exchange integral j between spins s = 1

2 , neither it does not
depend on applied external field. Illustrative results of simulations confirming the lack
of dependence on j and h are shown in Figs. 4, 5.

In contrast to the interaction integral between the spins located at the vertices of
the cubic structure under consideration, the dopant interaction integral is relevant.
By varying the value of the J integral, we can adjust the period of the entanglement
variation by changing its frequency, as shown in Fig. 6. The change in frequency of
entanglement evolution holds for both kinds of entanglement: for C 1

2 , 12
and for C 1

2 ,1-
the periods for the former are longer. It is, however, noteworthy that without dopant
time of total concurrence loss for C 1

2 , 12
is extended in comparison with situations with

dopant, but the price is impossibility of utilising the entanglement between spins s = 1
2

and S = 1.
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Fig. 8 Time dependence of entanglement concurrence for decoherence parameters γP < γN . Model
parameters are set as j = 1, J = 2 and h = 0

The next step of our simulations was to analyse the different characteristics of
dissipative environment. We prepared three sets of various dissipative parameters and
conducted a comparative analysis on them. The sets correspond to situations, where
there is an equal probability that environment raise or lower any spin in structure
(γN = γP ); the environment prefers to lower spins than to raise them (γN > γP );
the environment prefers to raise spins than lower them (γN < γP ). The results are
presented in Figs. 7, 8 and 9.

Looking at Fig. 7, it is easy to see that an increase of γP and γN parameters has a
strongly dampening influence on the entanglement of both C 1

2 , 12
and C 1

2 ,1. However,
if we compare the red and blue plots in Figs. 8 and 9, it can be seen that the decisive
influence on the decoherence rate is exerted by the spin-lowering factors from the
environment. Difference between the plots in Fig. 8 is minimal (due to identical values
of γN ) and is difficult to notice even in close-up (see Fig. 10a), while similar difference
for Fig. 9 can be spotted on the original figure-for sake of clarity; we nevertheless
pictured the close-up in Fig. 10b-here, the γP have identical values, so the results
confirm the previously stated observation.
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Fig. 9 Time dependence of entanglement concurrence for decoherence parameters γP > γN . Model
parameters are set as j = 1, J = 2 and h = 0

(a) Comparison of C 1
2 ,

1
2

for identical
γN , but different γP .

(b) Comparison of C 1
2 ,

1
2

for identical
γP , but different γN .

Fig. 10 Close-ups of comparisons for particular concurrence behaviours
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4 Conclusion

We have conducted a numerical analysis of bipartite entanglement evolution in simple
cubic cell of spins s = 1

2 with addition of spin S = 1 in the centre, placed in external
magnetic field and in dissipative, Markovian environment. We successfully applied
the open system formalism, namely Lindblad master equation, in research focused on
determining the impact of additional spin on the behaviour of bipartite entanglement
between spins s = 1

2 and between spin s = 1
2 and spin S = 1. As an initial state,

we assumed the equivalent of W state for structure devoid of an additional node. We
compared the behaviour of concurrence in isolated systemwith and without additional
spin, and for different exchange integrals and applied magnetic fields. Moreover, we
analysed various environment parameters to determine its impact on the decoherence.
We found out that inclusion of the additional spin introduces the state into a behaviour
where entanglement pulses can be distinguished (the periods of increased entangle-
ment), which is a direct result of getting the structure out of its eigenstate by expanding
the Hilbert space of the system (it gains additional degrees of freedom). We would
especially like to draw the readers attention to two periods of entanglement between
s = 1

2 and S = 1, where, in isolated system, the concurrence C 1
2 ,1, a resource available

only in doped system, reaches its maxima, which, in turn, are greater than the maxi-
mal value of the concurrence between two spins s = 1

2 . We found out that for initial
state |α〉 = |W 〉 ⊗ |0〉 neither the external magnetic field, nor the exchange integral
between spins s = 1

2 has any impact on the concurrence behaviour in time. However,
the exchange integral between spins of the frame and spin S = 1 has-the increase of
exchange interaction strength results in higher frequency of the entanglement pulses.
In open systems, the analysis showed that both concurrences decrease exponentially;
decrease rate is dictated by the environment parameters. However, for our definition
of W state it turned out that the rate of lowering spins γN has a bigger impact on
decoherence time than its raising spins counterpart γP , yet this conclusion appears to
result solely from the definition on initial state.
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Appendix A

Analytical solution for density matrix elements

First step in obtaining the explicit form of density matrix undergoing the time evolu-
tion is to examine it without the external influence of the bosonic environment. The
Liouville–von Neumann equation (closed system equivalent of Lindblad formula)
reads:

d

dt
ρ(t) = −i

[
Ĥ , ρ(t)

]
.

Both operators can be expressed in basis constructed from the eigenvectors of Hamil-
tonian:

Ĥ =
∑
k=1

Ek |εk〉〈εk |, ρ(t) =
∑
k,l

pk,l(t)|εk〉〈εl |. (A1)

Without the loss of generality, one can determine the form of k, l-th element of density
matrix:

d

dt
pk,l(t) = −i

[
Ĥ , ρ(t)

]
k,l

= −i〈εk |Ĥρ(t) − ρ(t)Ĥ |εl〉
= −i〈εk |Ĥρ(t)|εl〉 + i〈εk |ρ(t)Ĥ |εl〉. (A2)

It is easy to see which components of sums from (A1) would be equal to zero due to
scalar products of different basis vectors (〈εα|εβ〉 = 0 when α �= β) after substituting
them to (A2), and what remains is:

d

dt
pk,l(t) = −i〈εk |Ek |εk〉〈εk |pk,l |εk〉〈εl |εl〉 + i〈εk |pk,l |εk〉〈εl |El |εl〉〈εl |εl〉. (A3)

All the scalar products above are equal to one and therefore can be omitted in the
expression:

d

dt
pk,l(t) = −i pk,l (Ek − El) , (A4)

which translates to following form of denisty matrix elements:

pk,l(t) = pk,l(0) · e−i(Ek−El )t . (A5)

However, at this point it should be marked that this form corresponds to basis con-
structed with eigenvectors of Hamiltonian. In aim to translate this result to the
calculational basis, that allows to determine the entanglement between the particular
spins of the structure, the change of basis is required. Eventually, the element in the
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m-th row and n-th column of density matrix in this calculational basis, denoted by
ρm,n , is expressed by:

ρm,n =
∑
k,l

〈m|εk〉pk,l(0)e−i(Ek−El )t 〈εl |n〉,

where |m〉 and |n〉 are the base vectors of calculational basis. Further calculations
(reduction of he Hilbert space, determination of concurrence using (6) or (9)) do not
require any complex calculation methods; nevertheless, they are extremely labour-
intensive and their determination is best entrusted to the computational software.

In order to attempt an analytical solution for an open system, we start the analysis
with determining the effect of the dissipator on the pk,l element of density matrix,
initially for only one dissipative operator Â in Lindblad equation:

D(ρ) = γL( Â). (A6)

All the operators we used in dissipator act on the space spanned by the computational
basis vectors; therefore, they can be decomposed to the form:

Â =
∑
k,l

Ak,l |k〉〈l|,

which allows to write the k,l-th element of dissipator as:

[D]k,l = 〈k|γL( Â)|l〉
= γ 〈k|2 Âρ(t) Â† − Â† Âρ(t) − ρ(t) Â† Â|l〉
= γ

(
2〈k| Âρ(t) Â†|l〉 − 〈k| Â† Âρ(t)|l〉 − 〈k|ρ(t) Â† Â|l〉

)

Proceeding as in the case of a closed system, one can derive the result:

[D]k,l = 2γ
∑
m,n

(
Ak,m A∗

l,n · ρm,n(t) − 1

2
A∗
m,k Am,n · ρn,l(t) − 1

2
A∗
n,m An,l · ρk,m(t)

)

(A7)
As one can notice, a complete solution to determine the explicit form of the density
matrix requires solving a system of interconnected differential equations. However,
the case discussed in paper allows for two more simplification: firstly, the operators in
dissipator are of two kinds—raising and lowering spin operators. In their calculation
basis matrix form, they have only two types of elements—0 and 1. The only terms that
will not be zeroed out in the above equation are those that relate to the two elements
of the matrix Â that both are equal to one. What is more, the initial state consists of
several calculational basis vectors, all of them with the same probability amplitude

(for |α〉 this amplitude is ρ0 = 1
8 ). Assuming operationally that

[
Ĥ , ρ(t)

]
= 0, the
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Lindblad equation for the situation considered in paper simplifies to:

d

dt
ρk,l(t) =

∑
α,β

ηγx · ρα,β(t) (A8)

where η can be equal to either+2 or−1, depending on what part of Lindblad operator
this term originates from, x can be P (for spin raising operator) or N (for spin lowering
operator), and ρα,β are the terms from (A7) that were associated with two nonzero
elements of operator matrix. The selection of these elements can be laborious, yet it is
perfectly doable knowing the matrix forms of the operators in question. The implicit
form of particular density matrix element reads:

ρk,l(t) =
∑

all nonzero

elements from (A7)

ρ0 · eηγX t . (A9)

While solution (A9) is far from rigorous, it allows, along with (A5), to draw some
conclusions: the unitary density matrix evolution for discussed system without the
bosonic environment consists of periodic changes in the population of states that are
not eigenstates, while the inclusion of the dissipative environment into account will
result in exponential change in time of the density matrix elements. Both of these
findings have their confirmation in numerical results presented in the main paper.
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