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Abstract

Cosmology is the branch of physics that deals with the study of the universe as a whole.
At first glance our understanding of the universe seems to be solely anchored in classical
gravity. Indeed, general relativity is a powerful tool that provides a successful geometric
description of the cosmos. However, if one scratches beneath the surface, the universe
becomes a fascinating playground for thermal and quantum phenomena.

On the one hand, the quantum origin of primordial fluctuations and, ultimately, the
structure of the universe, is a spectacular and unavoidable prediction of the inflationary
paradigm. The universe may look classical, but it is certainly quantum at a fundamental
level. On the other hand, in an expanding universe many out-of-equilibrium thermody-
namic processes take place, which allows us to introduce an arrow of time: the very concepts
of past and future. The aim of the research collected in this thesis is to provide results and
insight regarding phenomena that transcend the bare geometric cosmic description and are
true quantum and thermodynamic windows into the universe.

On the quantum window we explore topics that merge quantum information techniques
in real space and physics of the early universe. One can view the amplification of quantum
fluctuations during inflation as a process of particle creation. We argue that due to this
process distant regions share long-range correlations, as opposed to the standard short-
range entanglement present in the Minkowski vacuum. We elaborate on this by showing
the enhancement of the perturbative mutual information between two arbitrary regions of
an inflating or radiation-dominated universe. Unlike the fast power decay found in the
Minkowski vacuum, in a cosmological setup the decay is logarithmic and long-range share
of information is possible. Furthermore, we study Bell inequalities in real space, showing
that they are not violated by the Bunch-Davies vacuum of de Sitter spacetime, despite
several hints on the existence of genuine quantum correlations in the quantum state of the
Mukhanov-Sasaki field.

On the thermodynamic window, we develop a framework that allows to formulate non-
equilibrium thermodynamics within general relativity in a consistent way. The Einstein
field equations or, equivalently, the Hamilton equations in the (3+1)-formalism are mod-
ified in compliance with the laws of thermodynamics. One immediate and fundamental
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consequence of this is the breaking of symmetry under time inversion and the emergence
of the arrow of time. Furthermore, the Raychaudhuri equation is also modified and, thus,
the way in which gravitational collapse takes place. When applied to cosmology, the Fried-
mann equations include an entropic force, which is always of accelerating nature when
the universe is expanding. Even though most of the expansion history of the universe is
isentropic, such a force may become relevant in out-of-equilibrium cosmic phenomena: for
instance (p)reheating, phase transitions and gravitational collapse.

Moreover, we propose an explanation to the current accelerated expansion of the uni-
verse as a sustained entropic force coming from the growth of the causal horizon in an open
inflation scenario. We name this the general relativistic entropic acceleration (GREA) the-
ory. Cosmological data in absence of priors on Hy strongly favours GREA in comparison
with ACDM. Future cosmological surveys will further constrain cosmological parameters
and may clearly support one model over the other.



Resumen

La cosmologia es la rama de la fisica que se encarga del estudio del universo en su conjunto.
A simple vista parece que nuestra comprensién del universo se fundamental inicamente en
gravedad clasica. En efecto, la relatividad general es una potente herramienta que ofrece
con éxito una descripcion geométrica del universo. Sin embargo, si nos adentramos bajo
la superficie, el universo se convierte en un escenario fascinante de fenénmenos térmicos y
cuanticos.

Por un lado, el origen cuantico de las fluctuaciones primordiales y, en ultima instancia,
de la estructura del universo, es una prediccion espectacular e inevitable del paragima infla-
cionario. El universo puede parecer cldsico, pero es sin duda cudntico a nivel fundamental.
Por otro lado, en un universo en expansion ocurren muchos procesos termodinamicos fuera
del equilibrio, lo cual nos permite introducir una flecha del tiempo: los propios conceptos de
pasado y futuro. El objetivo de la investigacién recogida en esta tesis es aportar resultados
y una mayor percepcion de los fenémenos que trascienden la mera descripcién geométrica
y son auténticas ventanas cuanticas y termodindmicas al universo.

En la ventana cudntica exploramos temas que combinan técnicas de informacién cuantica
en espacio real y fisica del universo temprano. Podemos entender la amplificaciéon de fluc-
tuaciones cuanticas durante inflacién como un proceso de creaciéon de particulas. Argu-
mentamos que, debido a este proceso, existen correlaciones de gran alcance entre regiones
distantes, en contraste con el entrelazamiento de corto alcanze presente en el vacio de
Minkowski. Continuamos mostrando el aumento de la informacién mutua perturbativa
entre dos regiones arbitrarias de un universo inflacionario o dominado por radiacién. A
diferencia del vacio de Minkowski, en el que esta cantidad decrece rapidamente como una
potencia, en un contexto cosmolégico el decrecimiento es logartimico, por lo que se com-
parte informacién a grandes distancias. Ademés, estudiamos las desigualdades de Bell en
espacio real, mostrando que el vacio de Bunch-Davies del espaciotiempo de de Sitter no
las viola, a pesar de que la existencia de correlaciones cudnticas genuinas en el estado del
campo Mukhanov-Sasaki pareceria indicar lo contrario.

En la ventana termodindmica, desarrollamos un marco teérico que permite formular
la termodinamica fuera del equilibrio en relatividad general de modo congruente. Las
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ecuaciones de campo de Einstein o, de manera equivalente, las ecuaciones de Hamilton en
el formalismo (3+1) se modifican de acuerdo con la segunda ley de la termodindmica. Una
consecuencia inmediata y fundamental es la ruptura de la simetria bajo inversién temporal
y la emergencia de la flecha del tiempo. Ademds, la ecuacién de Raychaudhuri se ve
modificada, asi como la manera en la que ocurre el colapso gravitacional. En aplicaciones a
cosmologia, las ecuaciones de Friedmann incluyen una fuerza entropica, que siempre tiende
a acelerar un universo en expansién. A pesar de que expansién del universo es isoentrépica
durante la mayor parte de su historia, dicha fuerza podria ser relevante en fenémenos
cosmicos fuera del equilibrio, por ejemplo: el (p)recalentamiento, las transiciones de fase y
el colapso gravitacional.

Ademas, proponemos una explicacién para la actual expansién acelerada del universo
en forma de una fuerza entrépica sostenida, debido al crecimiento del horizonte causal
en un escenario de inflaciéon abierta. Llamamos a esta idea la teoria de la aceleracion
entrépica relativista general (GREA!). Los datos de observaciones cosmoldgicas, exluyendo
probabilidades a priori de Hy, muestran una preferencia fuerte de GREA en comparacién
con ACDM. Serd tarea de los estudios cosmoldgicos futuros el constrenir todavia més los
parametros cosmolgdgicos y ofrecer un claro veredicto sobre uno u otro modelo.

'Por sus siglas en inglés, general relativistic entropic acceleration.
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Introduction

Cosmology is the science that studies the universe as a whole, aiming to answer some of
the oldest questions raised by humanity. Being a branch of modern physics since the early
20th century, it is now equipped with the proper tools to pose and tests hypotheses about
the origin, evolution, destiny and fundamental properties of the universe.

On the one hand, current technology allows to study cosmic structure in great detail,
even the so called large scale structure, forming a true cosmic cartography which allow us
to know that the universe is expanding and, at present, this expansion is accelerating. In
order to do so it analyzes visible light and other parts of the electromagnetic spectrum com-
ing from distant objects, such as galaxies and groups and clusters thereof. Furthermore,
studying the cosmic microwave background, a remnant of the early universe, allows one to
reconstruct the so called thermal history of the universe, back to the time when matter was
concentrated in a particle plasma. In contrast with other branches of physics, whose empir-
ical side rests on reproducible and standarizable experiments, cosmology has the challenge
of building knowledge and verifying or falsifying hypotheses solely from observations, for
it is impossible to create a new universe or repeat cosmic history.

On the other hand, theoretical physics offers a firm ground, a logical construct within
which cosmological observations can fit. The theory of general relativity, the theoretical
framework of spacetime as geometry and the gravitational interaction between systems
with energy and momentum, is a fundamental tool to understand the universe, its shape
and expansion rate at any of its stages. Quantum mechanics and quantum field theory are
also required to understand key aspects of the universe, in particular its evolution during
its earliest stages and even the origin of its structure. It is only natural, therefore, that
the birth of physical cosmology is a relatively recent happening, needing both advanced
observational instrumentation and the revolutions of phyiscs of the 20th century. Thanks
to its billions-of-years-lasting expansion, cosmology establishes a beautiful connection be-
tween the tiniest of elementary particles to the immensity of the entirety of the observable
universe. Thermodynamics plays a determinant role in the connection between the micro-
scopic and the macroscopic worlds. Most of the expansion of the universe takes place in
equilibrium, although certain key events take place out of equilibrium.
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The goal of this thesis is to deal with some aspects of the crossroad of gravity and
cosmology with quantum mechanics and thermodynamics.

The standard model of cosmology, ACDM?, is based precisely on these theoretical
and observational pillars. It proposes that the expansion of the universe is dominated by
the cosmological constant A, which determines its current acceleration, and dark matter.
Ordinary matter and radiation are less abundant ingredients, but allow us to perform the
observations themselves.

Despite the success of ACDM, the universe has some quite particular properties, such
as its homogeneity and isotropy on large scales, which require fine-tuned initial condi-
tions. Inflation is the theory that currently counts with greater support as an explanation
for these initial conditions. It proposes the existence of an accelerated expansion of the
universe before the creation of the matter we observe. In addition to determining the
geometry and basic symmetries of the universe, inflation offers a quantum origin for the
deviations of homogeneity and isotropy that we observe by the very existence of structure
in the universe, the matter that clusters in galaxies and groups thereof instead of being
completely homogeneous, as well as the anisotropies of the cosmic microwave background.
During inflation microscopic quantum fluctuations arise and are stretched out due to the
accelerated expansion until reaching macroscopic scales. These fluctuations turn then into
curvature perturbations of the universe and, later, into matter density perturbations.

These fluctuations of quantum origin can be studied with modern quantum information
techniques. The goal is to understand the nature of the classical and quantum correlations
between distant regions of the observable universe due to this common origin of structure. It
is possible to distinguish between classical and the so called genuinely quantum correlations,
given the fact that quantum mechanics violate the upper bound to correlations between
two subsystems established by classical physics. Quantum entanglement, which prevents
us from describing a given quantum subsystem with certainty without its complementary,
is perhaps one of the most novel phenomena in quantum mechanics and it is responsible
of the possibility of violating this bound.

The concept of entropy is key to study a quantum system. Entropy quantifies the lack
of information of a quantum system or subsystem and it is the first step to understand the
existence of entanglement and genuinely quantum correlations with other subsystems. In
other words, the lack of information suggests that it can be obtained if the interaction with
another subsystem is known. This quantity and others derived from it are to be studied
in this thesis, in the context of primordial perturbations as a quantum system.

Entropy plays yet another role in cosmology, as a key quantity in thermodynamics.
As a measure of the lack of information, the evolution of entropy distinguishes between
process in- and out-of-equilibrium in the thermodynamic sense. When it is conserved, the

2CDM stands for cold dark matter.
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system is in quasi-equilibrium and the dynamics is reversible, whereas it grows out of it
and the dynamics becomes irreversible. In other words, the deviation from thermodynamic
quasi-equilibrium implies irreversibility and information loss. Once reached, strict thermo-
dynamic equilibrium sets an upper bound on the entropy of the system and an exit from
it is exponentially unlikely.

Thermodynamics in general and entropy in particular are unexpectedly relevant in the
consistency between gravity and quantum mechanics, as well as in its potential unification
in a theory of quantum gravity. This is thanks to black holes, physical objects with
such a high density that they can trap light with their gravitational field. The discovery
that black holes satisfy the laws of thermodynamics points towards the existence of a
quantum microscopic description, from whose statistics emerges thermodynamics, as it
happens in any other many-particle quantum system. A greater logical connection between
thermodynamics and gravity, both in- and out-of-equilibrium, may help deepening its link
with quantum physics.

This thesis is organized in four parts and nine chapters as follows. In part I the founda-
tions of theoretical physics on which the thesis is based are reviewed: in chapter 1 several
aspects of cosmology are introduced, with emphasis on inflation, while chapter 2 collects
selected topics on quantum mechanics. In part II quantum properties of primordial per-
turbations in real space are discussed: chapter 3 deals with the entropy of entanglement,
chapter 4 presents a perturbative computation of the mutual information and chapter 6
deals with Bell inequalities. In part III a change in the usual treatment of out-of-equilibrium
thermodynamics in cosmology is proposed: in chapter 6 a covariant and variational formu-
lation of gravity and thermodynamics is presented, while chapter 7 deals with achieving
an accelerated expansion of the universe as an out-of-equilibrium process. Finally, the
conclusions of the thesis are collected in part IV, chapters 8 and 9.
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Introduccion

La cosmologia es la ciencia que estudia el universo en su conjunto, con el objetivo de
responder algunas de las preguntas mas antiguas planteadas por el ser humano. Como
rama de la fisica moderna desde principios del siglo XX, cuenta por primera vez con las
herramientas adecuadas para plantear y comprobar hipdtesis sobre su origen, evolucién,
destino y propiedades fundamentales.

Por un lado, la tecnologia actual permite estudiar la estructura césmica en gran de-
talle, incluso la llamada estructura a gran escala, constituyendo una auténtica cartografia
coésmica que nos permite saber que el universo se expande y que, en la actualidad, lo
hace de manera acelerada. Para ello analiza la luz visible y otras partes del espectro elec-
tromagnético que nos llegan de objetos distantes, como galaxias y grupos y cimulos de
estas. Ademads, el estudio la radiacién de fondo de microondas, un remanente del uni-
verso antiguo, permiten reconstruir la llamada historia térmica del universo, hasta cuando
la materia estaba concentrada en un plasma de particulas. A diferencia de otras ramas
de la fisica, cuyo lado empirico descansa sobre experimentos repetibles y estandarizables,
la cosmologia tiene el reto de construir conocimiento y verificar o falsar hipotesis a partir
uUnicamente de observaciones, pues es imposible crear un nuevo universo o repetir la historia
cosmica.

Por otro lado, la fisica tedrica ofrece un fundamento firme, un constructo légico en el
que encajar las observaciones cosmolégicas. La teoria de la relatividad general, el marco
tedrico del espacio-tiempo como geometria y de la interaccién gravitatoria entre sistemas
fisicos dotados de energia y momento, es una herramienta fundamental para comprender
el universo, su forma y su ritmo de expansién en cualquiera de sus estadios. La mecédnica
cuantica y la teorfa cudntica de campos también son necesarias para comprender aspectos
clave del universo, en particular su evoluciéon en las etapas més tempranas e incluso el
origen de su estructura. Es natural, por tanto, que el nacimiento de la cosmologia fisica sea
relativamente reciente, al necesitar tanto de instrumentacién observacional avanzada como
de las revoluciones de la fisica del siglo XX. Gracias a su expansion durante miles de millones
de anos, la cosmologia establece una bella conexién entre lo mintsculo de las particulas
elementales a la inmensidad de la totalidad del universo observable. En la conexién entre lo
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microscépico y lo macroscépico juega un papel determinante la termodindmica. La mayor
parte de la expansién del universo ocurre en equilibrio, pero ciertos momentos clave ocurren
fuera del equilibrio.

El objetivo de esta tesis es tratar algunos aspectos de la encrucijada de la gravedad y
cosmologia con la mecéanica cuantica y la termodinamica.

El modelo estandar de la cosmologia, llamado ACDM?, se basa precisamente en estos
pilares tedricos y observacionales. Propone que la expansion del universo esta dominado
por la constante cosmoldgica A, que determina su aceleraciéon actual, y la materia oscura.
La materia ordinaria y la radiacién son ingredientes menos abundantes, pero permiten la
propia realizacion de observaciones.

A pesar del éxito de ACDM, el universo tiene algunas propiedades muy particulares, por
ejemplo su homogeneidad e isotropia a grandes escalas, que requieren de unas condiciones
iniciales ajustadas. Inflacion es la teoria que actualmente cuenta con mayor respaldo para
explicar esas condiciones iniciales. Propone la existencia de una expansién acelerada del
universo antes de la creacién de la materia que observamos. Ademads de determinar la
geometria y las simetrias basicas del universo, inflacién ofrece un origen cuantico para
las desviaciones de homogeneidad e isotropia que observamos por la misma existencia de
estructura en el universo, la materia se concentra en galaxias y agrupaciones de estas en
lugar de ser totalmente homogénea, asi como las anisotropias en el fondo de radiacién de
microondas. Durante inflacién se producen fluctuaciones cuanticas a nivel microscopico que
son estiradas debido a la expansién acelerada hasta alcanzar escalas macroscopicas. Estas
fluctuaciones se traducen en perturbaciones de la curvatura del universo y, mas adelante,
en perturbaciones de la densidad de materia.

Estas fluctuaciones de origen cuantico se pueden estudiar mediante técnicas modernas
de informacién cudntica. El objetivo es comprender la naturaleza de las correlaciones
clasicas y cuanticas entre regiones distantes del universo debido a este origen comin de la
estructura. Es posible distinguir entre correlaciones cldsicas y las llamadas genuinamente
cuanticas, ya que la mecédnica cudntica viola la cota superior a las correlaciones entre
dos subsistemas establecida por la fisica clasica. El entrelazamiento cuantico, que impide
describir un subsistema cuantico determinado con seguridad sin su complementario, es
quizé uno de los fenémenos més novedosos de la mecanica cudntica y es responsable de la
posibilidad de violar dicha cota.

El concepto de entropia es clave en el estudio de un sistema cuantico. La entropia
cuantifica la falta informacion de un sistema o subsistema cudntico y es el primer paso
para entender la existencia de entrelazamiento y correlaciones genuinamente cuanticas con
otros subsistemas. Es decir, la falta de informacién sugiere que esta puede ser obtenida
si es conocida la interaccién con otro subsistema. Esta cantidad y otras derivadas de ella

3CDM significa cold dark matter o materia oscura fria
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son objeto de estudio de esta tesis, en el contexto de las perturbaciones primordiales como
sistema cuantico.

La entropia juega ademaés otro papel en cosmologia, como cantidad clave en termo-
dindmica. Como medida de la falta de informacién, la evolucién de la entropia permite
distinguir entre procesos dentro y fuera del equilibrio en el sentido termodinamico. Cuando
esta se conserva, el sistema se encuentra en cuasi equilibrio y la dindmica es reversible,
mientras que crece cuando sale de él y la dindmica se vuelve irreversible. Es decir, la
desviacion del cuasi equilibrio termodinamico conlleva irreversibilidad y pérdida de infor-
macion. El equilibrio termodinamico estricto, una vez alcanzado, supone una cota superior
a la entropia del sistema y una salida de él es exponencialmente improbable.

La termodindmica en general y la entropia en particular tienen una relevancia sorpren-
dente a priori en la coherencia entre la gravedad y la mecdnica cudntica, asi como en su
potential unién en una teoria de gravedad cuantica. Esto se debe a los agujeros negros,
objetos fisicos con una densidad tan alta que son capaces de atrapar la luz mediante su
campo gravitatorio. El descubrimiento de que los agujeros negros cumplen con las leyes
de la termodindamica es senal de la existencia de una descripcién microscopica cudntica, de
cuya estadistica emerge la termodindmica, al igual que en cualquier otro sistema cuantico
de muchas particulas. Una mayor conexion légica entre la termodindmica y la gravedad,
tanto dentro como fuera del equilibrio, podrian ayudar a profundizar su vinculo con la
cuantica.

Esta tesis se organiza en cuatro partes y nueve capitulos de la siguiente manera. En
la parte I se revisan los fundamentos de fisica tedrica en los que se basa la tesis: en el
capitulo 1 se introducen varios aspectos de cosmologia con enfasis en inflacién, mientras
que en el capitulo 2 se seleccionan temas relevantes de mecédnica cuantica. Los resultados de
la tesis se presentan en las partes II y III. En la parte II se discuten propiedades cuanticas
de las perturbaciones primordiales en espacio real: en el capitulo 3 se estudia la entropia de
entrelazamiento, en el capitulo 4 se realiza un calculo perturbativo de la informacién mutua
v en el capitulo 5 se estudian las desigualdades de Bell. En la parte III se propone un cambio
en el tratamiento de la termodindmica fuera del equilibrio en cosmologia: en el capitulo 6
se elabora una formulacién covariante y variacional que auna gravedad y termodinamica,
mientras que en el capitulo 7 se plantea como lograr una expansion acelerada del universo
como un proceso fuera del equilibrio. Finalmente, en la parte IV, capitulos 8 y 9, se
exponen las conclusiones de la tesis.
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Chapter 1

Inflationary cosmology

“Este palacio es fabrica de los dioses”, pensé primeramente.
Exploré los inhabitados recintos y corregi: “Los dioses que lo
edificaron han muerto”. Noté sus peculiaridades y dije: “Los
dioses que lo edificaron estaban locos”

Jorge Luis Borges, Fl Aleph (1943)

1.1 Spacetime, relativity and geometry

Cosmology, understood as the pursue of knowledge about the whole of existing phenomena,
is an ancient discipline. Religions throughout the world provided a plethora of beliefs about
the origin, purpose, nature and destiny of the universe. Metaphysics still addresses some
of these questions today from a rational point of view.

The scientific study of the universe, what one may call physical cosmology, is a relatively
modern branch of physics. It wasn’t until the development of a mathematically rigorous
and experimentally tested dynamical theory of spacetime, general relativity (GR) that one
was able to scientifically pose the questions mentioned above.

Space and time were considered separate and absolute entities for centuries. This
means that distances would look the same and clocks would tick at the same rate for any
observer. Albert Einstein challenged this view in 1905, proposing that space and time are
actually observer-dependent [9]: those that move faster experience time dilation and length
contraction. This striking statement was a logical consequence of the postulates of special
relativity (SR): all physical laws look the same to and the speed of light is measured to be
the same constant by any inertial observer, where an inertial observer moves at constant

3



Chapter 1. Inflationary cosmology

speed. Later in 1908, Hermann Minkowski interpreted this relative nature of space and
time as a single geometric entity: spacetime [10].

This geometric way of thinking can be seen as a true paradigm shift and allowed Einstein
to make the postulates of gravity consistent with the gravitational interaction.

e Principle of general covariance. The laws of physics are the same for all observers.
They admit a mathematical formulation in terms of tensors defined on a differentiable
manifold that make this invariance explicit. In other words, the laws of physics are
invariant under an arbitrary change of coordinates.

e The equivalence principle. The laws of physics reduce locally to those of SR, that is,
no local experiment can determine the existence of the gravitational interaction.

Based on these physical principles and their mathematical implementation, Einstein
proposed the gravitational field equations [11]

Geometry = Matter (1.1)

or, more concretely
G,uzx = HT,U,I/ . (12)

This equation relates a geometric quantity, the Einstein tensor G, with a description of
matter, the stress-energy tensor 7}, by the gravitational coupling k.

The description of gravity in terms of geometry ammounts to the replacement of flat
spacetime with the Minkowski metric 7, = diag(—1,1,1,1) by a more general spacetime
manifold equipped with a metric tensor g,,, with Lorentzian signature.

GR passed its first experimental tests by explaining the perihelion precession of Mercury
and predicting the correct value of the gravitational deflection of light [12], which doubled
the Newtonian prediction. It is considered today to be a successful physical theory, able to
explain all observed gravitational phenomena: celestial orbits [12], cosmic evolution [13],
black holes [14], gravitational waves [15-17], etc.

Einstein’s equations are compatible with yet another backbone of physics: the vari-
ational or extremal action principle. The gravitational part can be obtained from the
Einstein-Hilbert action [18]

1
Sen = 2K/d‘lac\/—gR, (1.3)

where R = g"VR,,, is the Ricci scalar, the trace of the Ricci tensor R,,,. The variation of
the Einstein-Hilbert action (0Sgg = 0) gives the vacuum Einstein field equations R, = 0.
Including matter, the whole action takes the form

S=8gn+Sm, (1.4)

4



1.2. FLRW cosmology

so that one defines the stress-energy tensor associated to a matter action as

2 0w
V=g ogn’

where L, is the matter Lagrangian given by S,, = [ é‘lxﬁm. GR is then a fully-fledged

Ty = (1.5)

theory, which is consistent with or generalizes the pringiples of classical physics.

Somewhat simultaneously to the development of relativity, another revolution of mod-
ern physics took place: the birth of quantum physics, required to explain the behavior
of microscopic phenomena, such as atoms and elementary particles. To put it in short:
quantum mechanics is revolutionary because it requires giving up one of the following two
physical principles: locality or realism. This will be discussed in more detail in chapter 2.

Strictly speaking, GR can be quantized within the framework of quantum field theory
(QFT) as an effective field theory (EFT) [19]. This means that its validity is restricted
below a certain energy scale, the Planck scale, which is way above the reach of any fea-
sible experiment performed with current and foreseeable technology. However, significant
departures from the classical theory, i.e., quantum corrections, are also expected to arise
around the Planck scale. Hence, classical gravity suffices in principle to explain observable
gravitational phenomena. There are proposals, however, as to how the logical and physi-
cal consistency of quantum gravity may constraint the range of low-energy effective field
theories of gravity and other fields that can be consistently completed at high energies by
it [20-22).

Furthermore, even if a classical theory suffices for observational purposes, it may as
well be that the correct one is not GR. Indeed, many modified gravity theories have been
proposed as alternatives to GR [23]. Reasons to do so vary, but phenomenologically can
be linked to two physical phenomena not fully-satisfactory described by GR: dark matter
and dark energy, which we will briefly discuss in sec. 1.2.

1.2 FLRW cosmology

As a physical theory of spacetime, GR provided for the first time the required tools to
describe the universe as a whole. Besides the physical principles included in the theory,
there is a crucial additional one: the Copernican principle. Loosely speaking, it is the
statement that humans, Earth or the Solar System are not privileged observers of the
universe. Put more rigorously: the universe is homogeneous and isotropic, i.e., the universe
looks the same everywhere and looking in any direction. This principle is named after
Nicolaus Copernicus, who argued in 1543 that Earth was orbiting the Sun, and thus had
no privileged position over the other planets.

5



Chapter 1. Inflationary cosmology

Mathematically, the copernican principle is translated into a particular ansatz for the
spacetime metric of the universe. In spherical coordinates (t,7, 6, ¢) this takes the form

dr?
1 — kr?

This is the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric, named after the four
scientists that contributed more generally to the foundation of homogeneous and isotropic
cosmology in the 1920s and 30s [24-27], also named FLRW cosmology after them. This
metric describes a spacetime geometry whose constant-time hypersurfaces are spatially ho-
mogeneous and isotropic. There exist three such hypersurfaces, labelled by k = {—1,0, 1},
corresponding to hyperbolic, Euclidian or elliptic space. They describe, respectively, an
open, flat or closed universe.

ds* = —dt* + d*(t) ( + 72 (d02 + sin? 0dgp2)) . (1.6)

Of uttermost relevance is the scale factor a(t), a function of time that describes the
expansion or contraction of physical distances within the hypersurfaces. A universe with
constant scale factor is said to satisfy the perfect Copernican principle, but this is not the
case of our universe. In fact, galaxies observed from Earth recede at a velocity proportional
to its distance [28]

v=Hd, (1.7)
where H is the Hubble parameter, which is actually time-dependent H = H(t). This

relation, called the Hubble law, can be shown to be the only one that can make galactic
recession consistent with spatial homogeneity and isotropy.

The time-dependent value of H(t) is a consequence of the dynamical expansion of the
universe and can be obtained by applying the Einstein field equations. In fact

Hit) =2 (1.8)

Let us asume that the universe is filled by a perfect fluid, characterized by the following
stress-energy tensor

TAW = (:0 +p)u,uuu + DGuv (1.9)
where p = p(t) and p = p(t) are, respectively, the energy density and pressure of the
perfect fluid as measured by a comoving observer who finds the universe around it to
be homogeneous and isotropic and, thus, p and p only can depend on cosmic time. The
covariant conservation of this tensor implies the continuity equation

D,T" =0 = jp+3H(p+p) =0. (1.10)

The Einstein field equations with the FLRW metric ansatz and the stress-energy tensor of
a perfect fluid become the Friedmann equations for the scale factor

HQZ% _ﬁ

2
i a
EZ—T(P+3P)-
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1.2. FLRW cosmology

Note that the continuity equation and the Friedmann equations are interdependent.

Hence, FLRW cosmology predicts a decelerating expansion of the universe. In the
distant past, the universe was filled with a plasma, much denser and hotter than it is today.
Since then it has expanded and cooled down in a procedure called the thermal history of
the universe. This framework, sometimes called Big Bang cosmology, can correctly predict
many present observations, such as the abundance of light elements in the universe [29], due
to Big Bang nucleosynthesis, or the cosmic microwave background (CMB) [30], redshifted
isotropic radiation coming from the last scattering between photons and free protons and
electrons before their recombination into hydrogen atoms.

One firstly observes two kinds of matter in the universe: baryonic matter' and photons.
Baryonic matter is a particular case of dust, i.e., it has negligible pressure (p = 0) due to
its non-relativistic nature. Photons, on the other hand, are a particular case of radiation,
i.e., their pressure is that of an ultra-relativistic particle (p = p/3).

These, however, cannot account for all phenomena observed in the universe. Frank
Zwicky proposed in the 1930s the existence of additional dust, called dark matter due to its
lack of electromagnetic interaction, motivated by the observed motion of galaxies in clusters
and the virial theorem [31]. This proposal was strengthened later by the study of galactic
rotation curves by Vera Rubin [32]. Since then, many other astronomical observations
require the inclusion of dark matter in the cosmic fluid. Whether it requires an extension
of the standard model of particle physics (SM) or can be explained by conventional physics,
such as black holes, is still up to debate. This dark matter is said to be cold, since it behaves
as dust.

Furthermore, the expansion of the universe is not decelerating today, contrary to pre-
dictions of FLRW cosmology. It was discovered in 1998 by observing Type la super-
novae [33,34] that, instead, it started accelerating recently. The current accepted expla-
nation for this observation is the existence of a non-vanishing cosmological constant A.
This means that the universe will asymptotically converge to de Sitter spacetime, thus
finishing emptied out and causally disconnected. A plethora of alternatives to the cosmo-
logical constant has been proposed. These can be put into to categories: modified gravity
(MG) at large scales and dark energy (DE) [35]. However, so far none of them provides a
statistically favored explanation in comparison with the cosmological constant.

Finally, we should mention that, although the universe is homogeneous and isotropic at
large scales, this feature is not exact and certainly does not hold at small scales due to exis-
tence of large scale structure (LSS) in the universe?. Observations of the CMB anisotropies

!The term baryonic matter as widely used in cosmology is somewhat inconsistent with the concept of
baryon in particle physics, since atomic nuclei are made up of baryons (protons and neutrons), but electrons
are certainly not. Since atomic nuclei make up most of the atomic mass, this inaccuracy is usually tolerated.

2SS is large compared to Earth, the Solar System or even the Milky Way galaxy, but small compared
to the size of the universe.
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are consistent with a spectrum of scale-invariant and small density perturbations [36], which
eventually grow due to gravitational collapse and form the large inhomogeneities observed
at small scales, thus explaining LSS [37].

The key ingredients outlined here: FLRW cosmology with baryonic matter, radiation
(photons and neutrinos), cold dark matter, the cosmological constant and a Gaussian and
scale-invariant spectrum of primordial perturbations constitute the concordance model of
cosmology, usually labelled A - cold dark matter (ACDM). This is the currently accepted
model to describe the universe as a whole. Despite the remaining uncertainties and the
unknown fundamental nature of some of its components, it is a remarkable achievement
that one can obtain such a consistent and accurate physical description of the universe
with 1) an underlying physical theory of spacetime and a model within it built from first
principles and 2) observations from Earth that are able to fit the parameters of the model
up to O(1%) or even better precision [38].

There remains the question of the initial conditions that deliver a universe such as
the one we observe and is accurately described by ACDM. As a matter of fact, these
initial conditions need to be finely tuned due to the dynamical behavior of the Friedmann
equation. A solution to this and other problems is provided by inflation.

1.3 The idea of inflation

Big Bang cosmology, as the logical consequence of GR, the Copernican principle and the
observed expansion of the universe is remarkably successful. Nevertheless, it suffers from
several theoretical issues [13,39]:

e The flatness problem. It can be summarized as the paradox of observing an almost
spatially flat universe, despite gravity tending to increase curvature. Let us rewrite
the first Friedmann equation as

1=0Q+Q, (1.12)

where 0 = 87Gp/(3H?) is the density parameter of the universe and Qx = —k/(aH)?
is the curvature parameter. During most of the known expansion history and before
the begin of its current accelerated state (dark energy domination), time evolution
tends to rapidly increase the value of Qg at rates Qi ~ t2/3 during matter domina-
tion and Qx ~ t during radiation domination. Hence, for the current observational
bounds on |[Qx| < 1073, the matter content of the very early universe must be pre-
cisely balanced as to give an extremely tiny value of the curvature parameter.

e The homogeneity problem. Similarly to the flatness problem, gravity tends to bring
together matter, and a paradox arises between the Copernican principle at large scales

8



1.3. The idea of inflation

and the dynamical evolution of the universe, which would again require deviations
from homogeneity in the very early universe to be extremely tiny.

e The horizon problem. Because of the finite speed of light and the finite age of
the universe, at any given time there exist causally disconnected patches. The CMB
photons we observe now arise from 10° causally disconnected regions at recombination
time, yet they have the same average temperature and correlated deviations from it.
This seems extremely unlikely, unless there was indeed a common causal origin.

One may argue that these problems do not actually exist, for they do not arise as
actual contradictions between FLRW cosmology and cosmological observations. Indeed,
these issues, which we could summarize as the initial conditions problem, are not really
concerned with the dynamical evolution of the universe nor the physical principles behind
our description for it. However, the goal of theoretical physics as a scientific discipline is
not merely to describe observations, but also to explain them. In a modern application
of Occam’s razor, a physical explanation can be regarded to be preferred if its requires a
smaller amount of free parameters®.

Therefore, one may aim to explain the universe without such fine-tuned initial condi-
tions or, at least, in terms of parameters that do not require them. This is achieved by
adding a cosmological era before radiation domination that has a very different dynam-
ical behavior. In order to suppress inhomogeneities and curvature and make tiny scales
cross outside the horizon (i.e. d/dt(a/dg) > 0), the expansion of the universe needs to be
accelerated

a>0, (1.13)

very much like it is today. An explanation in terms of the cosmological constant is, however,
inadequate, since such an accelerated expansion would not end. Instead, the theory of
inflation was developed in the early 1980s. First, Andrei Starobinsky realized that higher
curvature contributions to the action could set de Sitter spacetime as the initial state of
the universe [41]. Shortly after, Alan Guth realized that an exponential expansion would
solve the problems of FLRW cosmology [42]. Finally, Andrei Linde proposed a fully viable
model to start and end this exponential expansion [43].

During this new cosmological era, the universe is dominated by a scalar field ¢, the
inflaton, whose action is given by

Sy = / d'z/=g ({M@% — V<¢>> ( (1.14)

and V(¢) is the inflaton potential. Under the so called slow-roll conditions, an inflaton-
dominated universe undergoes an exponential expansion that quickly suppresses any inho-

30ccam’s razor is not only a traditional philosophical statement, but has also a modern implementation
in statistical model comparison [40].
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mogeneity or deviation from flatness and, hence, sets up the right initial conditions for our
universe to be consistent with our observations [13].

The main argument in favor of inflation is not, however, the solution of the initial
conditions problem per se. Rather, it is that it provides, at the same time, a quasi scale-
invariant spectrum of primordial Gaussian perturbations [44,45], as required by CMB and
LSS observations. Most models predict both scalar perturbations, responsible for curvature
and subsequent density perturbations, and yet-to-be-observed tensor ones. The mechanism
behind this will be reviewed in the next subsection.

The paramount role played by inflation in modern Cosmology can be understood from
its ability to explain these features of the universe from minimal assumptions. Its observa-
tional drawback its, consequently, that it seems to be hard to determine which particular
inflationary model is the right one [13]. Not only it’s hard to determine V' (¢), but one may
even have additional scalar fields (multi-field inflation), giving a much richer phenomenol-
ogy. CMB anisotropies provide the best tool today to constraint inflationary models [38],
precisely due to the differences between the spectra of primordial perturbations. These
are mainly characterized by the deviation from scale invariance (spectral index) for scalar
perturbations ns and the tensor-to-scalar ratio r. Future observations will provide tighter
constraints. Furthermore, the potential observation of primordial tensor perturbations
could be the definite observational test for inflation if the consistency relation r = —8ny is
measured, where n, is the tensor spectral index [39]. This could be measured either directly
as a contribution to the stochastic gravitational wave background (SGWB) or, more likely,
indirectly as B-modes in the CMB photons.

1.4 Cosmological perturbation theory

The Copernican principle does not hold exactly in our universe, as it is obvious from
the existence of galaxies, stars, planets or life. It is estimated to break down at around
scales of order ~ 100 Mpc?, see for instance ref. [46], so that structures form at smaller
scales and the metric from eq. (1.6) is no longer valid. Therefore, it is important to
understand how the spacetime geometry in GR behaves in the presence of these deviations
from homogeneity and isotropy. The loss of symmetry implies that there are no preferred
spatial hypersurfaces. Instead, one performs a (3+1)-splitting of spacetime, a foliation that
parametrizes the 4-dimensional metric g,,, by means of a 3-dimensional metric h;; and the
lapse and shift functions N and N*?. Spacetime dynamics is treated as the evolution of
space-like hypersurfaces Y;, parametrized by some parameter ¢, which is usually taken
to be the time coordinate. This is called the Arnowitt-Deser-Misner (ADM) formalism
of GR [47] and allows for a Hamiltonian formulation of the equations of motion. See

“1pc ~ 3.26 Iy ~ 3.09 - 10'® m is a common unit of length in Astronomy.
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1.4. Cosmological perturbation theory

refs. [39,48] for a modern review. An arbitrary® metric takes the form
ds? = —(Ndt)? + hy;(da’ + N'dt)(dx? + Ndt). (1.15)
We will denote as ¥ the 3-dimensional hypersurface and n its normal vector
ne = (—N,0,0,0), (1.16)

which is a unit vector, i.e., non® = —1. Spacetime indices are lowered and raised as usual
by guv. Spatial indices, however, are lowered and raised by h;;, which furthermore satisfies
hi;hi% = 6F.

Equivalently, one can write the splitting of the metric as
h,uzz = Guv +Npny , (1'17)

so that it is clear that h,, is purely tangential to the hypersurface. Then its spatial part
hij is equal to the pull-back of the 4-dimensional metric g,, onto ¥ and is a legitimate
3-dimensional metric.

The Einstein-Hilbert action, given by eq. (1.3), for this parametrization of the metric
is given by the following gravitational Lagrangian

Log=+v—gR=NVh ((3)R+Kinij —K2> 5 (1.18)

where K;; is the extrinsic curvature of the 3-hypersurface ¥ and is given by the Lie deriva-
tive along the normal vector n

1 1
Kij = §£nh” = ﬁ (80h2-j — VlN] — vle) . (119)
where V denotes the covariant derivative on > with respect to the 3-metric h;;. Its trace
and traceless part are

K =hiK; = % (80 InvVh — viAﬂ)

_ 1
Kij = Kij — gKh’LJ .

(1.20)

Unlike the intrinsic curvature, described by the Riemann tensor szk and its contractions,
the extrinsic curvature is a quantity that depends on the embedding of a surface in a larger
manifold.

The extrinsic curvature can be a complicated function of the parameters. Therefore,
it is convenient to shift to the Hamiltonian formulation of the stationary-action principle.

5The manifold must actually satisfy a causality requirement called called global hyperbolicity, which we
will not discuss in detail, but is basically related to admitting the foliation itself.
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Chapter 1. Inflationary cosmology

Note that the only quantity whose time derivative appears in the gravitational Lagrangian
is the 3-spatial metric h;; and, thus, it is the only dynamical or propagating degree of
freedom (d.o.f.). Correspondingly, one defines its conjugate momentum as:

i = 956 _ (K" — Kh') . (1.21)
ij

With this, the gravitational Lagrangian can be rewritten as

N o g
= NVRO® R — — (1117 — ~11% | — 29 V; N;
ko o ﬁ( ! 2 Vil

(1.22)
=Yh;; — NH — NjH' — 2V, (1T N;) (
where II = hinij and we introduced the functions
3) 1 i Lo
H=-VhOR+ = (1Y - _II
e 2 (1.23)

Hi = -2V, (h*l/QHiJ) .

Since N and N; are not dynamical variables, they merely enter the gravitational Lagrangian
as Lagrange multipliers. One defines the gravitational Hamiltonian as

He =0 — Lo

) g (1.24)
= NH+ N;H + V; (IIVN;) (
with the Hamiltonian and momentum constraints
OH
SN —H=0
(1.25)
5N;

The Hamiltonian evolution equations are obtained from the variations of the action with
respect to the metric and conjugate momentum

o SHe oL, /o §He 3
— 4 119 — g —— y g l 119 1.2
58 /d . K( ot “ahij> Shi; + ((1 mw) 5 ] < (1.26)

By setting the variation to 0 we obtain the two Hamilton equations

Ohij Ohi; (1.27)
57‘[6’ _ h
oTIid -
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1.4. Cosmological perturbation theory

These equations are equivalent to the Einstein field equations and, as such, describe the
dynamical evolution of the spacetime metric.

As discussed previously, inflation makes the universe highly homogeneous, isotropic
and flat. Simultaneously, it amplifies quantum fluctuations and sources small metric per-
turbations in a process that will described in more detail later. The general dynamics of
perturbations can be rather complicated due to the equivalence principle: they couple to
all kinds of matter which, in turn, couple again to the gravitational field. However, suffi-
ciently small perturbations are said to be linear, i.e., so small compared to the background
metric that do not significantly act as sources of gravitational field by these higher order
effects.

Perturbations can be of scalar, vector and tensor nature. The most general metric at
linear order perturbation theory that includes all of them is [13,39,45]

ds? =a? {( + 2¢)dn? +2(B|Z—S)d:1c dn

o 1.28
2¢7U+2aw+ﬂqm+5mﬁfﬂm% (1.28)

where «;; is the metric induced on the constant-time hypersurfaces in the FLRW metric
and |i denotes a covariant derivative with respect to that metric. Note that the vector
perturbations are transverse, i.e., v9S; il = 0 and v U F, il = 0, while the tensor perturbation
is symmetric and transverse traceless ie., 74 0hij = 0. We also introduced here a new
time coordinate called conformal time

dt
n= /(a(t) , (1.29)

which is particularly convenient, as it allows to factor out the scale factor a(n) in the
metric. We will make this choice quite often. Derivatives with respect to 1 are denoted by
/.

According to the principle of general covariance, there is freedom in choosing a set of
coordinates for a given spacetime manifold. In cosmological perturbation theory, this free-
dom is translated into gauge redundancy. Under changes of coordinates, the set of scalar,
vector and tensor perturbations introduced in eq. (1.28) transform in such a way that
physical quantities remain invariant. Thus, it is useful to build gauge-invariant quantities.

First, the gauge-invariant scalar quantities are the Bardeen potentials

b=¢p+HB-FE)+(B-E),

1.30
U =1¢—-H(B-FE). ( )
Similarly, one can build the gauge-invariant vector quantity

13



Chapter 1. Inflationary cosmology

Tensor perturbations, on the other hand, are automatically gauge-invariant.

From now on, we will pick the longitudinal or Newtonian gauge. For this particular
gauge fixing, the two scalar metric perturbations coincide with the Bardeen potentials, i.e.,
¢ = ® and ¥ = V. Furthermore, vector perturbations vanish. Hence, the perturbed metric
takes the form

ds* = —a*(n) (14 2®(t, Z))dn? + (1 — 2W(t, f))'yijdxidxj] Q (1.32)
where we do not include tensor perturbations, i.e., gravitational waves, because they de-

couple from scalar perturbations at linear order.

Connecting with the ADM formalism, this metric is parametrized by the quantities
N=1+®, N'=0 and hy=(1-2¥)y;. (1.33)

This metric is particularly suitable to describe the evolution of scalar perturbations during
inflation for two reasons: i) the spatial isotropy of the metric is manifest right away (gauge-
invariant vector perturbations decay quickly anyway) and ii) constant-time hypersurfaces
are orthogonal to geodesic curves.

Furthermore, it can be shown that, in GR and for isotropic stress-energy tensors, ® = W,
so that there is really only one scalar gravitational perturbation.

Up to this point we considered solely perturbations of the metric. However, the inflaton
field fluctuates as well and deviates from spatial homogeneity and isotropy

©(n,T) = @o(t) + dp(n, T) . (1.34)

Note that in this subsection we denote the inflaton field as ¢ in order to avoid confusion
with the scalar metric perturbation ¢. One can also build a gauge invariant perturbation
of the inflaton field

g =0d0p+ ¢ (B—FE) (1.35)

Finally, one can summarize the scalar gravitational and inflaton perturbations into a single
scalar perturbation called the Mukhanov-Sasaki variable [13,39, 44,49, 50]

v=adp+ 2P, (1.36)
where
©0
=a=2. 1.37
z=a 2 ( )

It is indeed remarkable that one can reduce cosmological perturbations from inflation to
just one scalar d.o.f. plus gravitational waves. Furthermore, the Mukhanov-Sasaki variable
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1.5. Quantum fields in curved spacetime

v is of uttermost importance to understand the quantum origin of these perturbations. It
is a dynamical variable whose action is

1 . Z”

Sy = 3 /dnd?’x ((}’)2 — 0% 0jvojv + 1)2> . (1.38)
z

This is the action of a scalar field in flat spacetime with time-dependent mass meg = —2" /2.

One can obtain the equation of motion of the field right away, but it is more instructive to

introduce first the Fourier modes

vi(n) = /(d?’xe“;'fv(n, 7). (1.39)
The equation of motion for each mode reads
v+ ERN Y (1.40)
k z
This equation has two quite distinct regimes:

e Sub-horizon regime, i.e., k% > 2”/z or k? > (aH)~2. These are modes whose wave-
length is much smaller than the Hubble scale and, thus, are not significantly affected
by the spacetime geometry. They behave as a collection of harmonic oscillators, i.e.,
plane waves.

e Super-horizon regime, i.e., k* < 2”/z or k* < (aH)™2. These are modes whose
wavelength is much larger than the Hubble scale and, thus, are significantly affected
by the spacetime geometry. In fact, they are sourced by it. Solutions are not inter-
preted as plane waves. Instead, each Fourier mode contains a growing and a decaying
mode. The growing mode is responsible for perturbations of cosmological relevance,
but the decaying mode is still related to their quantum nature.

1.5 Quantum fields in curved spacetime

Quantum fields are the theoretical fundament of particle physics. According to the math-
ematical framework of QFT, every elementary particle known in the SM is understood
as the excitation of an underlying field [51,52]. A quantum field is an operator function
of spacetime points and usual particle physics is defined on Minkowski spacetime, where
gravity is absent. It is possible, as mentioned earlier, to quantize gravity as an EFT on top
of Minkowski spacetime, so that the quantized gravitational field is actually the difference
huw = guv — Nuw- Again, quantum gravitational effects are not expected at energy scales
below the Planck scale. This does not mean, however, that gravity does not have an effect
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Chapter 1. Inflationary cosmology

on other quantum fields. In fact, by virtue of the equivalence principle, gravity couples
to any quantum field. QFT in curved spacetime addresses the quantization of a field in
geometric backgrounds different of Minkowski spacetime, i.e., in presence of gravity [53].

In Minkowski spacetime, quantum states associated to elementary particles can be
understood as irreducible representations of the Lorentz group. In this case the vacuum
state, the absence of particles, can be safely defined as the quantum state invariant under
Lorentz transformations or, in other words, equal to all the inertial observers of SR [13,51].
Particle states, excitations of the vacuum states, have an (inertial) observer-independent
particle number, even if energy and momentum are observer-dependent. As we will see,
this is no longer the case for an arbitrary gravitational background.

Let us consider a scalar field v(¢, ), which can be the Mukhanov-Sasaki variable de-
scribed previously. Its classical dynamics is described in terms of an equation of motion
that can be obtained by varying the action. In order to perform its canonical quantization,
which we will describe shortly, we need to derive its Hamiltonian dynamics. It is convenient
to modify the scalar field action by adding the total derivative ©

P !
AS, = — <v2> : (1.41)

which does not alter its dynamics. Then the canonically conjugated momentum and the
Hamiltonian are defined as

oL 2

pt, )= —— =0 —"v and H=pv' - L. (1.42)
o’ z

Canonical quantization is then performed by promoting v and p to quantum operators and
imposing the canonical quantization relation

[v(n, %), p(n, )] = i6® (@ — 7)), (1.43)

so that creation and annihilation operators, az and di, can be built from suitable linear
combinations of the Fourier transforms of v and p. Equivalently, one can perform the

operator mode expansion

(2m)2 2

where the mode functions vg(n) satisfy the equations of motion. A quantum field can be
then seen as an infinite collection of harmonic oscillators, one for each Fourier mode. For

N Pk 1 ik K\ A —ik-Z N
v(n,@:/( (ek vp(n)ay +e k vﬂn)a%), (1.44)

5See ref. [54] for a discussion on how both actions are equivalent not only at the classical level, but also
at the quantum one.
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1.5. Quantum fields in curved spacetime

a given operator mode expansion, the vacuum state is defined implicitly as the eigenstate
of all annihilation operators with eigenvalue 0

ap[0) =0 VkeR3, (1.45)

while (n, m...)-particle states are defined as

1,m,;2...>6 \/% {(a%)n (a%)(} 0) . (1.46)

In principle, infinitely many choices of mode functions v];(n) can be done, corresponding to
the infinite choice of basis of two-dimensional set of solutions of the equation of motion [53].
Then, in order for the quantum field to be correctly reproduced regardless of this choice,
the nature of the creation and annihilation operators must depend on it. Hence, the very
definition of the vacuum and particle states depends on the choice of mode functions.
Different choices of mode functions v; and uy are related by Bogolyubov transformations

vi(n) = aui(n) + Brun(n),  loaxl* +Be* = 1. (1.47)

g

Annihilation operators a; and by, are related similarly by
by = awip + Bia . (1.48)

As mentioned above, this arbitrariness is settled in Minkowski spacetime by demanding
the vacuum state to be invariant under Lorentz transformations. This means also that the
expected value of the Hamilton operator takes its minimum value for the vacuum state at
all times. In an arbitrary spacetime, Lorentz transformations are only valid locally but not
globally, and such a preferred choice is not available.

During inflation, the universe undergoes an exponential expansion, which can be ap-
proximated by a de Sitter-like expansion. In that case, the scale factor is

1 L m

- _ ’ - _ 1.49
““Tmy "TTES (1.49)
where 7 € (—o0,07) for de Sitter spacetime, although, in practice, it ranges until the end

of inflation at n = n, < 0.

Intuitively, one would expect short-distance to be unaffected by the expansion of the
universe or, in other words, the recession of relatively distant objects. This statement
is supported by the equivalence principle. This motivates the Bunch-Davies prescription
for the vacuum state of de Sitter spacetime, which states that the mode functions of the
vacuum reduce to those of Minkowski spacetime in the sub-horizon limit or, equivalently,
in the infinite past [55]. For a quasi-de Sitter expansion these mode functions are [13]

vg(n) = \/@H,?)(k\m). (1.50)
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Chapter 1. Inflationary cosmology

where HT(L2) is a Hankel function of second kind. For quasi - de Sitter expansion one has
n = 3/2, but in general it depends on the dynamics of the inflaton field. For instance, for

an inflaton potential V (¢) = m2¢?/2 one has n = \/9/4 — m?2/H? .
The Bunch-Davies vacuum has 0 particles only\in the limit where it matches the

Minkowski vacuum. This can be checked by inspecting the Hamiltonian in Fourier space

i = /<d3k; [g (azal) < %Z; (f(,;a,z - a,;a,;)] ( (1.51)

and performing the time-evolution in the Schrédinger picture” of the Bunch-Davies vacuum
Q) =0 o) (1.52)

where the time evolution operator is actually a squeezing operator. The resulting 2-mode
squeezed state is a high-occupation number quantum state that entangles particles with
momenta k and —k. The physical picture here is that, as time evolution proceeds during
inflation, particle pair production takes place. This is sourced by the gravitational field,
which acts as a classical source for the quantum field.

The 2-mode squeezed state can be parametrized as [56-58]

B 1

Q(n’) cosh? 7,

n=0

o0
Ze%"%(—l)” tanh" 7 nE,n_E>< (1.53)

where 7, and ¢y, are, respectively, the squeezing parameter and phase. They satisfy suitable
coupled differential equations, which can be solved analytically for quasi - de Sitter

1 1 1
Tk(n) = —arcsinh <2k77> ( Y= — §arctan <2k77) < (1.54)

The squeezing formalism is rather useful for characterizing the properties of the quantum
state. It can be applied to other models of single-field inflation. Furthermore, it can be
used to compute physical quantities such as the particle number per mode

AN

1\2
ni = sinh? 7, = (2]4:) , (1.55)
n

where the second equality holds for quasi - de Sitter inflation only. Cosmological observables
are usually obtained as correlation functions of the Mukhanov-Sasaki variable or quantities

"One can, alternatively, perform the time-evolution of the creation and annihilation operators in the
Heisenberg picture, which leads to a time-dependent Bogolyubov transformation.
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1.6. Quantum perturbations after inflation

derived from it. Hence, it is useful to compute the 2-point correlation functions in the
squeezing formalism [59, 60]

Bk i 1
(v(n, Z)v(n,v)) = / Welk(x*y)% (2sinh? ry, + 1 — sinh 27 cos 2y
NP Pk @k oo o :
(p(n, Z)p(n,v)) = W@ 5 (2 sinh” 7, + 1 + sinh 27}, cos 2<pk) (1.56)

— — d3k i (F—17 1 L. .
(v(n, ©)p(n, y)) = / (27r)3e k( y)§ (1 — 7 sinh 27 sin 2¢pg,) .

Plugging eq. 1.55 into eq. 1.56, one can check that scalar perturbations have a scale-
invariant spectrum, as required by cosmological observations. It is in this way that inflation
combines quantum field theory and gravity in order to provide a simple but deep origin to
the structure of the universe.

1.6 Quantum perturbations after inflation

We can conclude from the discussion in the two previous sections that there exist a single
scalar gauge-invariant quantity in cosmological perturbation theory, the Mukhanov-Sasaki
variable v. This quantity carries information from the Bardeen potential and the gauge
invariant perturbations of the inflaton in a single variable. Another relevant gauge-invariant
scalar quantity is the gauge-invariant curvature perturbation [60]

. v(n, T) . p(n, %)
C(%,n) = L ¢'(Z,n) = -, (1.57)
The direct quantization of this magnitude is more complicated than that of the Mukhanov-
Sasaki variable, which has a simple action. Still, it is perhaps of greater physical meaning.

At the end of inflation, the inflaton field decays into ultra-relativistc particles in a
process called reheating [61,62]. This cosmic era offers rich phenomenology, which we
will, however, not explore here. It is sufficient for our purposes to asume instantaneous
reheating, which means for cosmic history that the conformal time jumps 7, — —n. > 0,
while a(—n.) = a(n.). It is at this point (or, more generally, at the end of reheating), that
the universe is filled with these ultra-relativistic particles and the radiation era starts. The
universe continues expanding, albeit at a decelerating rate, so that the scale factor increases
then as a ~ 7. As the expansion proceeds, the universe cools down at a rate T ~ a~!, while
the energy density of radiation and dust scale, respectively, as p, ~ a~* and p,, ~ a3
for most of the expansion history®. Hence, the matter density eventually overtakes the

8The scalings are true during the radiation era as long as the number of relativistic species is constant.
As the universe cools down, this number decreases, which affects the temperature in a non-trivial way.
For instance, when electrons and positrons become non-relativstic, at T" ~ me, they are annihilated into
photons and increase the temperature of the plasma.
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Chapter 1. Inflationary cosmology

radiation density at the matter-radiation equality, which takes place at n = 1, and the
matter era begins. Then the scale factor increases as a ~ n?.

During inflation, perturbations are said to be stretched-out and exit the horizon when
their wave-length becomes larger than the event horizon dy = 1/H. This happens because
the scale factor a(t) grows faster than dp, which, in fact, remains almost constant. During
the radiation and matter eras, on the contrary, dg grows faster than a(¢), which means
that given wavelengths re-enter the horizon. Now, as long as they are in the super-horizon
mode, curvature perturbations are said to freeze, i.e., to be unaffected by cosmic evolution
until they cross the horizon again. This can be understood as follows: take the equation
of motion for the Mukhanov-Sasaki equation in the super-horizon limit k? < z”/z. Then
there is a solution v ~ z, which is called the growing mode, for which ¢ ~ constant and so
perturbations can be said to be frozen?. Likewise, there is a decaying mode, which is quickly
suppressed and becomes irrelevant classically. The entanglement between the growing
and the decaying mode is, however, relevant to some quantum features of cosmological
perturbations.

Many relevant phenomena take place during these eras, in particular those related
to cosmological perturbations: they leave their imprint in the CMB anisotropies and seed
structure formation [13,39]. This is due to the coupling between the Bardeen potential and
the matter content of the universe via the Einstein field equations. Current observations
are in excellent agreement with the generic predictions of inflation and are compatible with
many particular models [38]. They are, however, unable to resolve the quantum properties
of the Mukhanov-Sasaki field. Detecting genuine quantum phenomena associated with
cosmological observables would rule out classical origins of primordial perturbations, such
as thermal excitations [63]. Furthermore, it would be a powerful statement on the validity
of quantum mechanics and quantum field theory up to scales close to the Planck scale.
We will deal with the distinctive features of quantum mechanics as a theory and how to
quantify quantumness in the next chapter.

1.7 Primordial Black Holes

We finish this chapter by reviewing another potential observable consequence of cosmolog-
ical perturbations. Sufficiently large curvature perturbations may cause matter to undergo
gravitational collapse upon reentry and eventually form a black hole during the radiation
era [64,65]. To distinguish these black holes from astrophysical black holes, created by the
gravitational collapse of a star in the late universe, they are named primordial black holes

9This argument does not hold as it is for a radiation dominated universe, for which z” = 0. Instead,
solutions of the equations of motion are plane waves regardless of the wave-length of the mode. However,
initial conditions from inflation put all super-horizon modes in the growing part of the oscillation, and
remain so as long as they are super-horizon, for an oscillation takes around ~ k="' in conformal time.
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1.7. Primordial Black Holes

(PBH). Density contrasts of order dp/p ~ O(0.1) [66] or large non-Gaussianities induced
by quantum diffusion [67] are required. Gravitational collapse takes place once the per-
turbation re-enters the horizon due to causality, and produces a black hole with mass of
the order of the mass inside the Hubble radius, with negligible angular momentum. Thus,
these black holes are well described with the Schwarzschild metric'?.

Although the first proposals go back to the 1970s [69,70], PBHs have regained interest
in the last year due to the black hole merger observations by the gravitational wave obser-
vatories LIGO and VIRGO [17,71-73]. The origin of these black holes, with rather large
masses, is advocated by many cosmologists to be of primordial origin, although the ques-
tion is not settled yet. The Chandrasekhar limit sets a lower bound on the astrophysical
black hole mass of about M ~ 1.4Ms. Hence, a detection of a black hole below a solar
mass would be a definite signal of its primordial origin.

If they exist and are abundant, PBH could constitute a notable fraction of the dark
matter of the universe. Indeed, they only interact gravitationally with ordinary matter
and their equation of state is p = 0. This would allow to explain dark matter without
invoking physics beyond GR and the SM. PBH have sustained an extensive search and
many observational bounds have been set. Assuming a monochromatic mass distribution
for PBH, they could only constitute all of dark matter if their mass is in the asteroid
range, i.e., somewhat between 107190 and 10~ M, but the existence and size of these
windows are updated often [74]. For more general mass functions and spatially clustered
PBH, they could still constitute the whole of the dark matter.

These PBH would form during the radiation era. Hence, they require a sufficiently
large perturbation, which can trigger gravitational collapse and, furthermore, overcome ra-
diation pressure. Large curvature perturbations are scarce in single-field slow-roll inflation
and, thus, require in principle enhancements of the power spectrum of the Mukhanov-
Sasaki variable, linked to non-trivial inflationary dynamics. Another alternative is the
non-perturbative enhancement of large fluctuations due to quantum diffusion, which is a
generic feature of inflation.

A distinct feature of PBH formation is that the relevant scale is precisely the Hubble
radius Ry at formation time. In a radiation-dominated universe the scale factor grows
as a ~ t1/2 and therefore the Hubble scale grows as Ry = H~' = 2t. With this scaling
at hand, we can extract the evolution of the energy density from the second Friedmann
equation
81G 1 3

- d = 1.58
3 P e MOS0 PTG (1.58)

0Despite fulfilling the criterion of having vanishing angular momentum, it must be noted that the
Schwarzschild metric is a vacuum solution of the Einstein field equations. Its embedding into a cosmological
solution is non-trivial and there is no consensus as to how this should be done and how it affects the dynamics
of the event horizon of the black hole [68].
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Chapter 1. Inflationary cosmology

Then it is possible to compute the mass contained inside the Hubble scale as

t

M=—p2t)?=—. 1.59

Toon) = - (1.59)
The Schwarzschild radius of a black hole of this mass corresponds precisely to the Hubble
radius

Rg =2GM =2t = Ry . (1.60)

It is clear then that, up to a O(1) factor due to the efficiency of the gravitational collapse,
the PBH will be of the size of the Hubble scale, i.e. Mppgy = vM and so actually Rg = YRy.
This can obtained from estimates [69, 70], but is also confirmed by numerical simulations
[66, 75].

Should PBH exist due to primordial perturbations of quantum origin, it is natural to
reflect on the quantum properties these PBH may have. In particular, there may exist
quantum entanglement between them. Dealing with this intriguing possibility is one of the
main goals of this thesis. Furthermore, quantum entanglement between black holes has

been proposed to be equivalent to wormbholes, i.e., geometric links between them [76]. This
is the ER = EPR proposal''.

"'This proposal is named after two influential 1935 papers by Einstein and Rosen [77] and Einstein,
Podolsky and Rosen [78]. The latter will be briefly discussed in chapter 2.

22



Chapter 2

Quantum Mechanics

Our revels now are ended. These our actors,
As I foretold you, were all spirits, and

Are melted into air, into thin air;

And, like the baseless fabric of this vision,
The cloud-capp’d towers, the gorgeous palaces,
The solemn temples, the great globe itself,
Yea, all which it inherit, shall dissolve,

And, like this insubstantial pageant faded,
Leave not a rack behind. We are such stuff
As dreams are made on; and our little life
Is rounded with a sleep.

Prospero in The Tempest (ca. 1610) by William Shakespeare.

2.1 The postulates of Quantum Mechanics

Physics as a science progresses in a continuous interplay between theory and experiment.
Theoretical arguments, based on well-rooted principles and logical arguments, have led to
powerful predictions later confirmed by experiment. An example of this are gravitational
waves (GW), propagating excitations of the gravitational field. They were predicted in
1916 by Albert Einstein as a logical consequence of GR [15, 16], but not directly detected
until 2015 [17]. GW constitute now one of the most active fields of research, both at
the fundamental level and for their role as astronomical messengers. On the other hand,
experimental results lacking a satisfactory theoretical explanation have historically fos-
tered theoretical breakthroughs. This has meant, sometimes, abandoning deep physical
principles. A paradigmatic example of this is the birth of quantum mechanics (QM), mo-
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Chapter 2. Quantum Mechanics

tivated by the puzzling experimental results such as the black-body radiation [79] or the
photoelectric effect [80].

QM is considered to be one of the two revolutions of the 20th century in physics,
the other being relativity. SR meant rejecting the notion of absolute space and time
of Newtonian mechanics, and redefining them in a way consistent with the postulates
of relativity [9]. Likewise, GR led to the reformulation of a basic element of physics: the
inertial observer [11]. In sum, relativity destroyed the very concept of an absolute observer.

The postulates of QM have a profound impact on the description of Nature and its
observation. Let us briefly go over the its postulates to see this [81,82]

e An isolated physical system is described by a unit state vector |1) belonging to a

Hilbert space.

e The time-evolution of an isolated physical system is unitary and described by the
Schrodinger equation [83]

. d -
i ) = H 1) (2.1)

e Quantum measurements are described by a collection {M,} of measurement opera-
tors, so that the probability of obtaining the measure outcome m is

p(m) = (¢ M, Mn ) ( (2.2)
and the state vector subsequently becomes
M,
0) b (2.9

I

Hence, by its very postulates, QM makes a clear distinction between isolated time
evolution and measurements, which constitute an interaction and a departure from unitary
evolution. According to the mainstream Copenhagen interpretation [84,85], the wave
function described by [v) is said to collapse as a consequence of this interaction. It must
be noted, however, that the postulates assume that the measurement is performed by a
classical observer, which is not a quantum system. How the collapse of the wave function
occurs (or whether it happens at all) is still a matter of debate in the field of foundations
of QM and the heart of the so called measurement problem [85].

The postulates can be generalized to open quantum systems, i.e., those that constitute
a subsystem of a larger quantum system. In that case, the postulates are reformulated as
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2.2. Locality and realism

e An isolated physical system is described by a positive density matriz' p which acts
on a Hilbert space and satisfies Trp = 1.

e The Time-evolution of an isolated physical system is unitary and described by the
Schrédinger equation.

i%ﬁ - [H p} (2.4)

e Quantum measurements are described by a collection {M,,} of measurement opera-
tors, so that the probability of obtaining the measure outcome m is

p(m) = Tr (M, Mynp) ( (2.5)
and the state subsequently becomes
My pM;}
p—y —mPEm (2.6)
Tr (MM, )

The density matrix formulation reduces to the state vector one when there exists a state
vector such that p = |1) (¢|. Otherwise, the density matrix is said to describe an ensemble
of vector states |¢;) with probability p;, so that

p= Z(z i) (il - (2.7)

)

for a suitable basis choice. For an arbitrary basis, however, p need not be diagonal.

2.2 Locality and realism

Once we have set up the basics of QM, we are ready to understand some of its implications
for our understanding of fundamental physics. As mentioned earlier, relativity meant giving
up the notion of absolute space and time and, furthermore, the redefinition of what inertial
observers are. Classical physics, in the sense of non-quantum physics, regardless of whether
relativistic or not, lies on the principle of local realism:

e Locality. Physical interactions take place locally, i.e., only occur between nearby
physical systems. Furthermore, interactions mediated by a third system cannot travel
faster than the speed of light.

1A more appropriate name would perhaps be density operator, as the state space may be infinite di-
mensional. However, we will follow the historical and usual convention and call it density matrix.
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Chapter 2. Quantum Mechanics

e Realism. Physical magnitudes have well-defined values at all times, prior and irre-
spective of measurements.

In QM, the knowledge of a physical quantity precludes the knowledge of of another one if
their corresponding operators are non-commuting. This would not be the case if they were
linked to physical properties which are intrinsic and independent from measurement. Thus,
QM is not a local realist theory. However, this does not mean a priori that QM cannot be
reformulated as a local realist theory, which contains hidden variables to be discovered or
understood.

Local realism is not, however, a mere matter of interpretation of a physical theory, but
rather has precise phenomenological predictions. They can be tested. John Bell showed in
1964 that local realism sets an upper bound on the correlations shared by the constituents
of a bi-partite system [86]. This system can be, for instance, made of two subsystems A
and B, each of which is a spin-1/2 particle. According to the Stern-Gerlach experiment,
measurements of spin in a given direction S; always return a result aligned or anti-aligned
with it. We consider four measurement directions d, d@’, I;, v, Upon repeated measurements,
one can reconstruct the correlation function

E(d,b) = <36$5> . (2.8)

Then it can be shown that, under the assumption of locality and realism, the following
inequality is satisfied

—. =, -, -,

B = E(a,b)+ E(a,b)+ E(@,b) — E@@,b) <2. (2.9)

This is the Bell inequality in the Clauser-Horne-Shimony-Holt (CHSH) form [87]. As a
matter of fact, there exist quantum states which violate it. Consider, for instance, the
state

9= == (1t — b)) (210)

This is one of the so-called Bell states. If the spin is measured in the z-axis for both
subsystems, the outcome of one automatically predicts the outcome of the other one. Such
a state is said to be maximally entangled. Upon a suitable choice of axes, this state clearly
violates the Bell inequality

B=2V2. (2.11)

This value actually saturates the Tsirelson bound, which is the maximal value attainable
by B without further assumption. Hence, it can be concluded that QM is not a local realist
theory. Experimental results clearly confirm this prediction [88].

The breakdown of local realism due to quantum entanglement is a profound statement.
Einstein, Podolsky and Rosen (EPR) were the first to point out the contradiction between
entanglement and local realism, which they used to argue against QM being a complete
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2.8. Measures of entanglement and information

description of reality [78], a viewed not shared by Bohr [89]. We now understand that this
is not the case. QM is a valid physical theory and it cannot be replaced by a more complete
local realist physical theory?.

The key message to convey here is that QM allows for correlations that cannot be
explained within a classical theory (again, in the sense of a local realist theory). We saw in
chapter 1 that, according to the inflationary paradigm, cosmological perturbations are of
quantum-mechanical origin. Therefore, one may in principle be able to detect genuinely?
quantum features in cosmological observables. In later chapters we deal with this idea and
study quantum properties of the Mukhanov-Sasaki field, including Bell inequalities.

2.3 Measures of entanglement and information

Entanglement is probably the most distinctive feature of QM. It is behind phenomena
considered to be counter-intuitive and the reason behind enhanced correlations that can
lead to the violation of Bell inequalities. Even if its role is qualitatively clear and so is
its mathematical form in certain quantum states, it is not trivial to quantify it in general.
Here, we review some relevant quantities*. In doing so we will characterize a quantum
state by its density matrix p.

First, let us define the purity of a quantum state as
p="Trp?<1. (2.12)

If the inequality is saturated, the state is said to be pure. Such a state can be written as
a vector state as p = [¢) (¢|. Otherwise, the state is said to be mized. Another way of
quantifying this is by its von Neumann entropy [91]

S =—-Tr(plogp) . (2.13)

A pure quantum state has S = 0, while a mixed quantum state has S # 0. Later we shall
introduce other measures of entropy and distinguish them by labelling the von Neumann
entropy as Sy.

Quantum states describe a physical system which may be composed of many degrees of
freedom. Let us now asume that it can be split into complementary subsystems A and B.

2QM is still a falsifiable scientific theory. One may eventually find experimental results that contradict
it and require its replacement by another or more complete physical theory. Such theory would still be
inconsistent with local realism.

3In spirit of the Bell inequalities, by genuine we mean non-reproducible by classical systems. Neverthe-
less, systems with correlations consistent with classicality or local realism may still be well accommodated
within QM.

“See refs. [81,90] for a more general discussion.
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The quantum state p4 describing subsystem A can be obtained by tracing over the degrees
of freedom of B, i.e., p4 = Trpp. The state pp is likewise defined. The von Neumann
entropy of a subsystem is given by

Sa=—Tr(palogpa) . (2.14)

If p is pure, then S4 = Sp and is called the entanglement entropy. This quantity is a good
measure of the quantum entanglement between the A and B.

In general, a mixed state can be purified by embedding its state space into a larger
state space, so that the state is entangled with the complementary subspace [92]. Hence,
ensembles of states can be understood as quantum subsystems.

We are ready now to see the first link between entanglement and information. If the
basis is chosen so that p is diagonal, then the von Neumann entropy has the form of
the Shannon information entropy as defined for a probability distribution [93]. Hence, an
increase in entanglement between subsystems leads to a decrease in the information each of
them carry. Recall the example of a maximally entangled Bell state. Before measurement,
the state of each subsystem can be either ||) or [1) with probability 1/2 and so provides no
information. After measurement of one subsystem, however, the outcome of a measurement
on the complementary is fully determined. Both subsystems clearly share information.

The information thus shared by two subsystems is characterized by their mutual infor-
mation, defined as the difference

I(A,B) = Sa+ S — Saun - (2.15)

This quantity is non-negative, symmetric and extensible to multi-partite systems, where
A and B need not be complementary. Mutual information is a quantification of total
correlations between two subsystems: both classical and genuinely quantum. However,
one would aim at achieving a measure of quantum correlations only. Mutual information
as defined in eq. (2.15) is a quantum-mechanical extension of an equivalent definition in
probability theory, in which S; label the Shannon information entropy associated with
random variables and their probability distributions. Nevertheless, this extension is not
unique. Another one is provided by the expression

J(A,B) = Sa—Sap, (2.16)

where A|B refers to subsystem A conditioned on a measurement on subsystem B.

When applied to probability distributions, the functions introduced in egs. (2.15) and
(2.16) are equal. However, they differ when applied to quantum states. First, the measure-
ment on B needs to be specified with a complete set of measurements {M,,}. Second, due
to the entanglement between A and B, measurements on B have an effect on A that may
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2.8. Measures of entanglement and information

be larger than what one may expect when dealing with probability distributions. In prac-
tice, pa collapses according to eq. (2.6). In other words, quantum measurement destroys
correlations that were present due to quantum entanglement.

This departure due to the particular nature of quantum measurement allows one to
quantify genuine quantum correlations by means of the quantum discord [94,95]
where the minimum is taken over any possible complete set of measurements {M,}. Note
that, unlike mutual information, quantum discord is not symmetric. Furthermore, it van-
ishes if and only if there exist a quantum measurement on B that does not disturb the
state of A, confirming the key role played by quantum measurement.

Quantum discord is a widespread proposal to quantify quantum entanglement. How-
ever, its validity is unsettled. If the system AU B is in a pure state, then discord D trivially
equal to mutual information Z and to twice the entanglement entropy S. In this case, dis-
cord is a clear measurement of entanglement, but is not more useful than S or Z in that
respect. This happens because all correlations between A and B are genuinely quantum
due to the purity of the whole state. The power of discord would come when AU B is a
in a mixed state. In that case, correlations between A and B can also be classical, and
one needs a way to tell classical and quantum correlations apart. As we will later argue in
the context of QFT and cosmology, see chapter 5, quantum discord does not seem to be a
good proxy of Bell inequality violations, at least when the quantum state is highly mixed.

For completeness, let us comment that there exist other measures of quantum entan-
glement. Some of them are similar to quantum discord, but based on the distance between
the quantum states rather than on measurement [90]. Others follow different approaches.

As mentioned earlier, the quantification of entanglement is interesting to us in order to
probe the quantum origin of cosmological perturbations. Still, there are many other reasons
why the broader scientific community is interested in the quantification of entanglement.
Perhaps most crucially, 2-level quantum systems can be used to store quantum bits of
information (qubits), which are the basis of quantum computation [81]. Logical gates are
then applied by means of unitary operators in order to build quantum circuits, which end
with certain measurements that deliver the result of the computation. Quantum computing
has a promising future: it is known that quantum algorithms beat classical ones in certain
problems, such as the factorization of prime numbers or search algorithms.

Entanglement is a main resource in quantum computing, as it allows speed-ups due
to simultaneous computation. A wave function can store a number of parameters that is
exponential in the number of qubits, while quantum gates operate simultaneously on them.
Their extraction by quantum measurement is, however, highly non-trivial. Furthermore,
entanglement may not be the only valuable quantum resource, as there seems to be non-
trivial quantum correlations even in absence of entanglement and discord [96].
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2.4 Entanglement in QFT

We have seen how QM allows for the possibility of correlations between physical subsystems
that exceed those permitted by the requirements of locality and realism. It is natural to ask
ourselves if quantum entanglement is present in the fundamental interactions. Indeed, in
the framework of QFT, elementary particles or even the vacuum are full-fledged quantum
states.

It is hard, in general, to exactly characterize the state of a quantum field. This task
is simpler when the state is Gaussian. Let |¢) be the eigenvector of the quantum field
operator gZ; with eigenvalue ¢. In this basis, the components of an arbitrary Gaussian
density matrix are given by [97]

pl6*.67) =exn { [ olhor — gl hlo-+ 5 (o~ ol ) A
, (2.18)
# 8 @r =04 g (o 4ol ) rt gt (0 00 |

where the operators h, A and k depend on the spatial coordinates and products are under-
stood to be performed in the operator sense as

o ngl = /(d% Py 8 (DIE, §) b4 @) (2.19)

and so on.

A similar expression can be obtained for Gaussian mixed states by integrating over the
state ensemble, appropriately weighted by a Gaussian probability distribution. Likewise,
reduced density matrices can be obtained by integrating over some d.o.f. or, equivalently,
by projecting the fields onto the subspace of choice. Given these expressions, one is ready
to compute the von Neumann entropy of an arbitrary Gaussian state. Furthermore, the
resulting formula can be expressed in terms of the 1- and 2-point correlation function of
the Gaussian field, see refs. [97-99]

An essential example of Gaussian states are thermal states, which describe the state of
a field within a fluid at finite temperature T'. Such states describe, for instance, Hawking
[100] or Unruh [101] radiation. However, not all relevant quantum states are Gaussian.
Primordial non-Gaussianities are relevant in Cosmology [67,102], but we will not include
them in our analysis.

The first computation of entanglement entropy in QFT was performed by Bombelli
et al [103] by characterizing the vacuum state similarly to the way outlined above. They
showed that entanglement entropy in vacuum of a scalar field in a spherical region is
formally divergent. If a UV-regulator € is introduced, the entropy scales as the area

A

S~ . (2.20)
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This result was also found independently by Srednicki [104]. This is a crucial result for
at least two reasons. First, it shows that the entanglement entropy of a quantum field
is extensive, but not with the number of d.o.f. If that were the case, the entropy would
scale as the volume of the sphere, not as its surface. This can be understood by viewing
entanglement as a UV-phenomenon, i.e., the dominant contribution to the entanglement
entropy of a quantum field comes from the entanglement of neighbor d.o.f. across the
boundary of the sphere. Second, it has a potentially deep connection with black hole
physics. Indeed, the Bekenstein entropy of a black hole scales as its area [105], not its
volume, and is regulated by the Planck scale. Hence, it has been proposed that black hole
entropy may be due to quantum entanglement [103]. This idea has led to numerous works
connecting gravity with quantum entanglement [76, 106-109].

It must be noted, however, that there also exist proposals to explain black hole entropy
as regular micro-state entropy and not entanglement entropy, for instance in ref. [110].

Other quantum-information properties of the vacuum state of a scalar field in Minkowski
space-time have been computed. For instance, it was shown by Shiba in [111,112] that
the mutual information between two spheres of radii R; and Rs is given at first order in
perturbation theory by

1 RIR3
4 rt
We will apply the same method in sec. 4 to compute the mutual information of cosmo-
logical perturbations. Two comments are in order regarding this finding. First, unlike
entanglement entropy, mutual information is UV-finite. This suggests that the local en-
tanglement is no longer the one involved. This makes sense, since the spheres are actually
far apart. Second, the quantity is rapidly decreasing with distance. This is consistent with
the picture obtained from entanglement entropy. If the entanglement between far apart
d.o.f. is much smaller than that of nearby d.o.f. and the former dominates the expression
for the mutual information, then this will be comparatively small.

I~ (2.21)

2.5 Phase space formulation

Bell inequality violations make clear the departure of QM from classical physics. This
was perhaps expected from the very construction of the theory in terms of the postulates.
Indeed, classical and quantum physics look formally very distinct, and so do the mathe-
matical objects associated with them. Physical states in classical Hamiltonian mechanics
are points in phase space (Z,p), while quantum states are represented either by state vec-
tors or density matrices. A first link between them can be seen in canonical quantization,
a procedure already seen in sec. 1.5, which promotes phase space variables to quantum
operators & — # and D — ;5' and imposes the commutation relation

2%, p] ( 6, (2,37 =0, [pp']=0, (2.22)
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which replaces the Poisson bracket relation of Hamiltonian dynamics. If the phase space
variables are fields, then the Kronecker delta is replaced by a Dirac delta.

This link can be deepened by switching from the operator formulation to the phase
space formulation of QM?®. It is a completely equivalent mathematical formalism that makes
no use of the Hilbert space structure. Instead, phase-space variables are assigned quasi-
probabilistic distributions. We will briefly discuss how the phase space formulation can
be derived from the operator formulation, but it must be noted that the former may be
postulated independently from the latter.

First, let us introduce the Wigner function as

d"z - 1 1
(7, ) = —ipz 7 p G- =% 2.2
W(q. D) /R(%)ne <f<+ 5% P d 22>( (2.23)

where |¢) is a simultaneous eigenvector of the operators {#'} with eigenvalues {q'}%.This
is a real scalar function in phase space that fully characterizes the quantum state of the
physical system. Note that there is a one-to-one correspondence between a density matrix
and its Wigner function. Other quantum operators are similarly mapped to real scalar
functions in phase space by replacing p with the operator O in eq. (2.23). This map
is invertible and generically referred to as Wigner-Weyl transform. Expected values of
observables in a given state are then computed as integrals over phase space

(010), = Tr (40) é )" [ & adsWyla,)Wola.p). (221)

At this point, one is tempted to make an analogy between probability theory and QM,
interpreting Wj(q,p) as a probability distribution and Wp(q,p) as a random variable.
This can be done at the expense of discarding one of the axioms of probability theory, since
W5(q,p) can take negative values. Therefore, it is called a quasi-probability distribution,
which still satisfies

Jlradowitap) =1 () = 1. (2.25)

The possibility of the Wigner function taking negative values implies that expected values
of physical observables might be inconsistent with classical mechanics. In fact, they can
lead to Bell inequality violations. Even if the Wigner function is positive, as it is the case of
the one associated to a Gaussian state, Bell inequalities can be violated if it is constructed
with improper operators [117]. A proper operator admits a spectral decomposition as

0= /(d"q 0@l , (2.26)

®See ref. [113] for a review and [114-116] for the original formulation.
SNote that commuting operators are simultaneously diagonalizable.
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where O(q) is a bounded function. It’s Wigner-Weyl transformation is then
Wo(q:p) = O(q), (2.27)

which takes all and only the eigenvalues of O. An operator not satisfying this condition is
called improper.

The probabilistic nature of microscopic phenomena (and, at a deep fundamental level,
all physical phenomena) is a key building block of QM. It is supported by experimental
results such as the Stern-Gerlach experiment. As we have seen, this randomness is intrinsic,
i.e., not due to experimental error or uncertainties in the initial conditions. Here there is
a key discrepancy with classical mechanics: a point in phase space has a deterministic
future evolution. Observables in QM, on the contrary, are always probabilistic, even if the
evolution of the quantum state is deterministic.

Furthermore, it cannot be reproduced by usual probability theory. This sounds surpris-
ing at first, since one can have probabilistic outcomes if the classical state is not a point
in phase space, but rather a probability distribution representing a statistical ensemble.
Still, QM allows for Wigner functions which may take negative values and strongly deviate
from the classical result. This can lead to Bell inequality violations (although it is not
the only way [118]). In the usual operator formulation of QM, this discrepancy is due to
states having complex amplitudes in general, which leads to well-known genuinely quan-
tum phenomena such as interference. Probabilities are then computed as the square of the
amplitudes.

2.6 Quantum Statistical Mechanics

Large quantum systems are hard to describe exactly, to the extent that they might be
completely intractable at the microscopical level. Recall that the parameters describing a
quantum state vector scale exponentially in the dimension of the Hilbert space. It is for
this reason that, when dealing with a large system, microphysical details need to be coarse-
grained and one must focus instead on its macrophysical properties. This is the task of
statistical mechanics [119]. Emergent physical laws, such as the laws of thermodynamics,
ultimately have a microphysical origin.

We will not attempt here a comprehensive review of statistical mechanics. Still, it is
relevant to us to understand the role played by statistical mechanics in the definition of
concepts like entropy or information, and its connection with quantum mechanics. Indeed,
as we saw in sec. 2.3, entropy can be understood as an inverse measure of information,
either in a probability distribution or in a quantum state. Mixed states, which have a
non-vanishing von Neumann entropy, can be understood as an ensemble of pure states.
Ensembles of states are precisely the subject of study in statistical mechanics. On the
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other hand, according to the laws of thermodynamics, entropy is a non-decreasing function
of time and a macrophysical property of a large system.

Hence, statistical ensembles are described by means of a quantum density matrix.
In equilibrium, i.e., when p = 0, it can be built right away according to three set-ups:
microcanonical (total energy and particle number are fixed), canonical (only total particle
number is fixed) and grand-canonical (neither total energy nor particle number are fixed).
In all those ensembles, the entropy can be computed by the von Neumann formula in
eq. (2.13). It typically grows logarithmic in the size of the phase space consistent with
the macrophysical variables, i.e., it grows linearly with the number of particles or the
dimension of the Hilbert space. Thus, entropy quantifies the lack of information due to the
coarse-grain over a region of phase space, which is described by emergent microphysical
quantities.

Quantum Statistical Mechanics ultimately leads to the laws of thermodynamics. We
provide them here in its axiomatic formulation first introduced by Stiickelberg [120].

e First law. For every system 3, there exists an extensive scalar state function F, called
energy, which is conserved unless external forces are applied on it (work is done) or
there is heat or matter transfer with the exterior.

dE

o= pPY 4 pH L pM (2.28)

e Second law. For every system X, there exists an extensive scalar state function .S,
called entropy, which is a non-decreasing function of time.
dsS
— >0. 2.29
dt — ( )
The equality is only saturated in equilibrium.

The laws of thermodynamics are useful when dealing with systems that satisfy the local
equilibrium condition, even if strictly speaking are out of equilibrium. More precisely, when
dealing with a fluid changes of entropy are given by

1
dS = 7 (dU +pdV) , (2.30)

where U is the internal energy of the system, T is its temperature, p its pressure and V
its volume. If the system is isolated, transitions between these quasi-equilibrium states
can only take place with an increase in entropy, i.e., with a loss of information about the
System.

It is not easy to reconcile the laws of thermodynamics, which allow for an increase in
the entropy, with the fact that the von Neumann entropy Sy is invariant under unitary
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transformations and, thus, invariant under unitary evolution [81]. Let us briefly discuss
solutions to this issue. First, due to interactions with an environment, a quantum sys-
tem may undergo non-unitary evolution in a process called decoherence [121], which can
certainly change Spy. Still, the total von Neumann entropy should remain constant. In
thermodynamics, the von Neumann entropy is also called Gibbs entropy Sg and has a clas-
sical analog [119]. Again, the classical Sg does not grow as a consequence of the Liouville’s
theorem, which states that phase space distribution functions are conserved by classical
Hamiltonian evolution [122].

It must be noted, however, that this entropy is microscopic and relies on the validity
of the statistical ensembles mentioned above, which is lost out of equilibrium. In this
situation, the entropy of a macrostate M is given by the Boltzmann entropy [119,122]

SB = k:B log ‘FM| y (2.31)

where |['js| is the volume of phase space with microstates consistent with M. In local
equilibrium, i.e., slowly varying conditons from one equilibrium state to another, Sp = S¢.
Otherwise Sp > Sg. In other words, one may argue that microscopic time evolution
is reversible, but the coarse-graining procedure is not. The precise implementation of a
quantum analog for the Sp for a generic out-of-equilibrium situation (not assuming local
equilibrium) is still a matter of debate [122]. The definitons of computationally useful
concepts like entropy or statistical ensemble lead to deep discussions in the philosophy
of physics. It is worth pointing out their relevance in achieving full consistency between
unitary QM and the second law of thermodynamics, but we shall not discuss them further.

2.7 Black Hole Thermodynamics

We finish this chapter by reviewing a topic that beautifully intertwines gravity, QM and
thermodynamics: the laws of black hole thermodynamics [14,123]. It illustrates the impor-
tance of the confluence of these three disciplines and suggests the existence of a microscopic
description of macroscopical gravitational systems in terms of a yet unknown theory of
quantum gravity.

Roughly speaking, a black hole is a physical object whose gravitational pull is so strong
that even light (or any other massless particle) can become trapped inside it [48]. This
trapping region is enclosed in the event horizon of the black hole, which characterizes its
size”. According to the no-hair theorem [124-126], a stationary black hole in GR can be

"The definition of the event horizon requires knowledge about the full future history of light-like
geodesics, which may not be known unless the black hole is stationary. Sometimes it is convenient to
use the notion of apparent horizon instead, which can be defined with information about the light-like
geodescics at a given space-like hypersurface.
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described by its mass M, its angular momentum .J and its electric charge @8. It is unlikely
that a black hole would keep a non-negligible electric charge for a long time, as it would
attract more matter with charge of the opposite sign, so we will focus here on black holes
with @ = 0, i.e., Kerr black holes [128].

Still, we will first discuss briefly the case = J = 0, as it is of great relevance
as well. Such an object is called a Schwarzschild black hole. Its metric, discovered by
Karl Schwarzschild in 1916 [129], is actually the first solution to Einstein’s field equations
ever found. It describes generically a static and spherically symmetric space-time, and so
many relevant physical problems such as celestial orbits or light deflection are studied with
this metric. Furthermore, it predicts the existence of an event horizon at the so called

Schwarzschild radius
2GM
TS =T o (2.32)

unless the metric is generated by a mass of larger size. Even if the Schwarzschild black
hole is a limiting case, it is a fair description when angular momentum is sufficiently small.
Furthermore, PBH, already discussed in sec. 1.7, are predicted to have negligible angular
momentum and are correctly described by the Schwarzschild metric.

Coming back to Kerr black holes, it is useful to parametrize their deviation from a
Schwarzschild black holes by introducing the parameter a = J/Mec. The event horizon of

a Kerr black hole is then located at
rg + \/;{55 — 4q2

TrEH — 2\ . (2.33)

Even if the Kerr solution is stationary, it is legitimate to ask oneself how do the parameters
M and J change, for instance if the black hole grows by matter accretion. This time
evolution from one member of the Kerr-family to another is governed by the laws of black
hole thermodynamics [14,48,123]:

e Zeroth law. For every Kerr black hole, the surface gravity « is constant and a function
of M and J only. Its precise form is
M2 — g2
2M (M +VMZ = o)

e First law. The variation of the black hole mass after any physical process is a function
of the variation of its event horizon area and its angular momentum.

dM = 8idA +QpudJ, (2.35)
s

K

(2.34)

8Electric charges are defined in GR in a way analogous to flat space-time. Mass and angular momentum
are trickier. For an asymptotic space-time, however, one can make sense of a global mass and angular
momentum associated with the space-time metric in terms of Komar integrals [127]. One speaks of this
Komar mass and angular momentum as belonging to the black hole itself.
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where A = WT% and Qp is the angular velocity of the horizon®”.
e Second law. The variation of the black hole area after any physical process is always
non-negative [130]
dA > 0. (2.36)

e Third law. No finite amount of physical processes can result in x = 0 [131].

These laws were first constructed as the laws of black holes mechanics, but its similarity
with the well-known laws of thermodynamics was soon realized. Of course, this similarity
was not enough to claim the thermodynamical nature of black holes. It was first argued
by Jacob Bekenstein in a thought experiment that the entropy of a black hole should scale
as its area [105]. Even if he did not showed what the proportionality coefficient should be,
we now understand the Bekenstein-Hawking entropy of a black hole to be

Ac3
Sy =kp—+. 2.37
BH BIGh ( )
Later, Stephen Hawking found that a quantum field in Schwarzschild space-time is put in

a thermal state [100], with temperature proportional to the surface gravity

hk

T —
" 2nckg’

(2.38)

so that a black hole emits black-body radiation, the so called Hawking radiation, decreasing
its mass and potentially leading to its evaporation. Note that this does not contradict the
second law, as the latter is proven for classical GR and a stress-energy tensor satisfying
certain conditions, which are violated by a quantum field.

We kept all physical constants to illustrate the underlying quantum nature of black
hole thermodynamics. Indeed, black holes are macroscopical objects and, as such, can be
understood to a great extent with classical physics alone. This can be seen from the fact
that the product Ty Spy does not depend on the Planck constant 4. On the contrary, both
Ty and Sppg do depend individually on . Hawking radiation and the micro-structure from
which Bekenstein entropy emerges are quantum phenomena. As mentioned in sec. 2.3, it
is still a matter of debate whether the area dependency of Sgy can be linked to quantum
entanglement.

In any case, the thermodynamical nature of black holes will play an important role
when embedding them as one of the components of non-equilibrium cosmology in chapter 6.
Furthermore, it will serve as inspiration for the treatment of other horizons in chapter 7,
such as the cosmic horizon.

9Qp is obtained as the polar component of the Killing vector field normal to the event horizon surface.
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We finish this section with the remark that the formation of a PBH by the gravitational
collapse of the radiation contained inside the Hubble scale is accompanied by an enormous
increase in classical entropy, as one would expect from an out-of-equilibrium process that
follows the laws of thermodynamics [1]. Indeed, the entropy of the gas of relativistic
particles within the Hubble scale can be written as [13,132]

272

Sgas = Eg*S(T)TSVHa (239)

where Vi is the Hubble volume, g, (7T') is the number of relativistic degrees of freedom and
natural units including kg = 1 were used, so that the entropy is a dimensionless quantity.
On the other hand, the resulting PBH carries the Bekenstein-Hawking entropy, which is
proportional to its event horizon area

2
2t

R (2.40)
P

Ap
= — = 4
SPBH 1Ay ™Y

where Ap = 47TL%3 is the Planck area, Lp is the Planck length and ¢p is the Planck time.
Since the Hubble scale is time-dependent, so are the mass and the entropy of the PBH.
Time and temperature are related in a radiation-dominated universe [13,132]

() (5

This way we can express both the entropy of the relativistic gas and the entropy of the
Primordial Black Hole as a function of temperature

4T3 [ 45 \V?
SgaS = L < 5 >

373 3
3T 1673 ¢, (2.42)
a2 4 P
Sppn = 4y 16734, ) {71
and so the ratio of both quantities is a function of temperature as well
S 405\'2 5 _ipT
B = <) 2, 122E (2.43)
Sgas 167 T

Let us apply this equation to the QCD phase transition temperature. Then T ~ 200 MeV
and g, ~ 10. Taking into account that Tp = 1.22 x 10'? GeV one gets

SpBH
Sgas

This large number suggests that gravitational collapse via PBH formation is an extremely
efficient way of generating a burst of entropy production which could fill the universe with
entropy. Even if PBH do not exist, black holes are known to give the largest contribution
to the entropy of the universe [133].

~~%. 5 x 101, (2.44)
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The quantum universe
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Chapter 3

A first approach

If you wish to make an apple pie from scratch, you must first
invent the universe.

Carl Sagan, Cosmos (1980).

3.1 Motivation

The common thread of part II is the study of correlations in cosmological perturbations
arising from inflation. Regardless of their origin, these perturbations are a crucial ingre-
dient of the standard cosmological model, ACDM. They are responsible for cosmological
observables such as CMB anisotropies or structure formation. According to the standard
framework reviewed in chapter 1, they arise as amplification or stretching of quantum
fluctuations during inflation, which reenter the horizon at later times.

More concretely, the starting question of this thesis was: can primordial black holes
(PBH) be entangled quantum-mechanically? We recall from sec. 1.7 that PBH are black
holes formed by gravitational collapse induced by large curvature perturbations. If they
have a quantum-mechanical origin in the sense described in sec. 1.5, we find our question
to be a natural and relevant one. The fact that genuinely quantum features cannot be
found easily in standard cosmological observables [117,134,135] already shows that this is
a non-trivial issue.

Entangled black holes are involved in one of the most fascinating conjectures proposed
in fundamental physics in the last years, namely the ER = EPR proposal [76]. Introduced
by Maldacena and Susskind in 2012, it states that wormholes and quantum entanglement
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are analogous phenomena'. Since PBH may be formed copiously in the early universe, their
quantum entanglement would lead one to postulate the existence of a wormhole network
filling up spacetime.

The present chapter will be, however, less ambitious. We will illustrate how long-range
correlations can be present in the early universe and how this is related to entanglement
entropy, a quantity introduced in sec. 2.3. As we already discussed, quantum entanglement
is present even in the Minkowski vacuum state in the form of the area law of entanglement
entropy. It is known that the vacuum state of de Sitter spacetime is entangled in a way that
goes beyond the area law found in Minkowski spacetime, as it was found by Maldacena and
Pimentel [136]. Its corresponding entanglement entropy includes both UV-divergent and
UV-finite terms. The former arise from local physics, while the latter are expected to be
related to true long-range or non-local correlations. If this entanglement arises in de Sitter
spacetime, it must be at least partially created during inflation as well. Entanglement may
occur between different momentum modes as well as between localized modes, and it may
change during time evolution, since it may not be unitary when restricted to individual
modes due to interactions among them. However, the whole quantum state of the field
must remain pure as dictated by unitary evolution. In this chapter we explore how some
terms can be related to the entanglement of isotropic modes across a spherical entangling
surface.

Even though quantum entanglement is easier understood when dealing with single
particles in quantum mechanics, it is in fact an inevitable and natural feature of any
quantum field theory. If we take the whole field to be the quantum system of interest, then
it can be split into subsystems whose correlations are measured by their entanglement
entropy. This entanglement entropy is dependent on the quantum state of the field and
the choice of subsystems. For instance, if we consider the vacuum state of a scalar field
theory in Minkowski spacetime, it can be expressed as a product state of single momentum
mode vacua and therefore there is no entanglement between them

0) = % |0), - (3.1)

However, if we choose the subsystems to be the localized modes inside and outside of
a sphere of radius R, then one finds quantum entanglement between the inner and the
outer modes with a UV-divergent entanglement entropy that scales with the area of the
sphere [103,104]

RQ

~ — 2
S~ (3.2)

1This is motivated by a previous proposal in holography, according to which a maximally extended AdS-
Schwarzschild BH is dual to the thermofield double state in a conformal field theory. Similar ideas were
already exposed by Israel in [92], without yet a reference to holography or the AdS/CFT correspondence.
Intuitively, it can be understood from the fact that a mixed state can be purified by embedding it in a
larger Hilbert space.
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3.2. Spherical modes

where € acts as a UV regulator. This is the celebrated area law and describes the dominant
contribution to the entanglement entropy of the vacuum state in Minkowski spacetime. It
is interpreted as the entanglement degrees of freedom close to the surface of the sphere and
is therefore related to local physics [136].

When the quantum field is coupled to gravity, particle creation can take place, as
explained in sec. 1.5. In momentum space, this can lead to quantum entanglement be-
tween different momentum modes, as it is the case of cosmological perturbations. This
phenomenon can also affect entanglement in real space and add both UV-divergent and
UV-finite contributions beyond the area law. For a massless free minimally coupled scalar
field in de Sitter spacetime these are given by [136]

RQ
SdS, UV-divergent — 0167 + log (EH) (02 + 63R2H2) (

S4s, UV-finite = c4aR2H? + ¢5log (—n) + constant .

(3.3)

The term ~ log (—n) signals the presence of long-range quantum correlations. They arise
from short-range physics due to the streching out of length-scales with the expansion. Since
during inflation the background metric can be regarded as approximate de Sitter spacetime,
we argue that such long-range quantum correlations may also be created during inflation
and survive during the subsequent radiation-dominated era.

In this chapter we inspect this question, reviewing ref. [1]. The remainder of it is
organized as follows. In section 3.2 we construct the spherical modes for the quantum state
after inflation. In section 3.3 we perform a restriction of these modes over a sphere in order
to compute its entanglement entropy. In section 3.4 we discuss the connection with the
result in de Sitter, as well as phenomenological consequences, such as PBH entanglement.

3.2 Spherical modes

3.2.1 The quantum state after inflation

Consider a massless field ®, which can be used for instance to describe primordial curvature
perturbations. As such, it is related with the Mukhanov-Sasaki variable introduced in
section 1.5 as v = a®. Since primordial gravitational waves are described by the same
dynamics, our results will also be valid for them. Following the usual prescription, we
place it in the Bunch-Davies vacuum state in the distant past. This is particularly safe
in applications to inflation, since only a piece of de Sitter is actually needed to describe
a short period of accelerated expansion and those modes with wavelength larger than
the event horizon at the beginning of inflation are phenomenologically irrelevant. On the
other hand, some phenomenologically relevant scales were smaller than the Planck scale
at the beginning of inflation. As the laws of physics at such small scales are not probed,
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Chapter 3. A first approach

deviations from the usual predictions of inflation may take place, which is known as the
Transplanckian problem [137]. We assume that these deviations, if exist, are negligible.

In the Schrodinger picture, the Bunch-Davies vacuum evolves into a squeezed state due
to the action of the time-evolution operator (S-matrix)

U (n,mo) = e~ 1=m)H) (3.4)

where 719 is the conformal time at the beginning of inflation. The Hamiltonian operator
contains a squeezing term, which is proportional to a’/a

!/

() =y [ @i (f(,;(n)&,g(n) ) 6 (eC,;m)a*_ £(0) = i g(n))| |
3.9

It can be shown that the time-evolution operator can be rewritten in the following way [138]

log U (1, 10) = /(d?’/ka(n) [f;(no)d_z;(no)e_w(g’m _&;Tz(no)&ig(no)eiqb(’;’")]( (3.6)

2

and it acts on the vacuum creating a two-mode squeezed state, which entangles the k and
—k modes as

cosh 7 =

2 1 > —id(k n
0,n) = U(1,0) [0, 70) = 2 Zée #E) ganhr ) I n) g (3.7)

where 7 and ¢ are respectively the squeezing parameter and phase, which depend only
on the conformal time 7 and the norm of the momentum k. We refer the reader to [56]
for a review of the physics and mathematics of squeezed states as well as to the original
references on two-mode squeezed states [57,58]. In the problem at hand one finds that
7 ~ N where N is the number of e-folds between horizon exit and the end of inflation, i.e.,

N ~log(n/no)-

This state shows entanglement between k and —k modes, measured by an entanglement
entropy given by [139]

-,

S(k) =2 [log(cosh 73,) — log(tanh 73,) sinh? 7] ( (3.8)

which reduces to S(k) ~ 274 in the limit 7, > 1 as it is usually the case. Indeed, due
to inflation the squeezing parameter can take values much larger than those attainable in
the laboratory [140]. This entanglement entropy is related to the coarsed-grained entropy
of primordial perturbations computed by Brandenberger, Mukhanov and Prokopec [59].
Indeed they found the entropy density to be

5= / d®klog sinh? 75, ~ /(d?’k%k. (3.9)

44



3.2. Spherical modes

Intuitively, this coarse-grained entropy seems to be equivalent to tracing over one of the two
subsystems of the 2-mode squeezed state. It must be noted, however, that the procedure
used in its computation is different.

It is true that apparently we are comparing entropy density with total entropy, but it is
not the case since after integrating the entanglement entropy over all possible momentum
modes we get a quantity in units of entropy density. The scaling can be properly regularized

via discretization
k
&k et ) kS L3 1
e () e -

which indeed grows as the volume.

The squeezing formalism readily allows us to understand the presence of quantum
entanglement in cosmological perturbations in momentum space. Here we are interested
in going beyond this statement and checking other ways in which quantum entanglement
may be present in this state. Therefore, we will try to elucidate the entanglement in real
or position space and, more precisely, between modes restricted to the interior and the
exterior of a sphere of radius R.

3.2.2 Canonical quantization in spherical coordinates

In order to achieve the restriction mentioned above, we perform a canonical quantization
in spherical coordinates. Introducing the auxiliary field y = a® 2 the equation of motion
of the scalar field takes a simple form [53]:

"

X' — V2 — %X:O. (3.11)

Using the fact that during the radiation-dominated era a ~ 7 the equation of motion
reduces to that on Minkowski spacetime and therefore its solutions are the well-known
plane waves. In spherical coordinates this is equivalent to

Py 10°

1
o e 0 e =0, (312

where the Laplacian on the 2-sphere is given by

1 0 (. 0 1 02
ASQ - sin@% (Sln 089) 6’ 751{12 987902 . (313)

2The field  is roughly equivalent to the Mukhanov-Sasaki variable v. Its dynamics, however, is simpli-
fied. For instance we take z = a. For this reason, we keep the notation x in order to avoid confusion.

45



Chapter 3. A first approach

The solutions to this equation are known to be (up to an overall constant N that we will
fix later)

N,
m(0,7,0,0) = ——e 15, (kr)Y;m (0, ), 3.14
Xk an (1,750, 0) T Ji(kr)Yim (0, ) (3.14)
where j;(z /35 Ji4+1/2(2) are the spherical Bessel functions and Y}, (6, ¢) are the spher-

ical harmonlcs Notice that for a massless field, as it is our case, the dispersion relation
reads w = k.

These mode functions need to be normalized with respect to the Klein-Gordon inner
product as

>
(Xklvak’l’m’) = Z/[ Tsz/dQ <{21m8nXk’l’m’> 6 2k26(k k‘ )5ll’5mm’ . (3.15)

The choice of functions makes therefore perfect sense from the point of view of the Klein-
Gordon inner product, since they are orthogonal. We reabsorb the factor 1/k? into the
definition of the mode functions since we anticipate it to be important for the operator
field expansion. We also reabsorb the constant factor 7/2 and finally get

1 —iw .
Xklm(na r, 95 SO) = ﬁe K k.]l(kr)ylm(ea 90) . (316)

The field operator x can be expanded in terms of these functions:

)Z(% T, 97 SO) - /( dk Z l( ]l k’l“) (le;(n(ea So)eiwn&klm + }/ZM(97 SO)e_iW”iile) '

(3.17)
The field operator must of course satisfy the Canonical Commutation Relation

[X(n,7,0,0), 1L(n, 7,0, )] = i6) (7 — ") (3.18)
which is achieved by imposing
(G Qg ] = 0 = [dllma &L’l’m'} <
[kt @l § 5(k — K)oy dmm’ .

As one would expect, this canonical quantization in spherical coordinates is completely
equivalent to the usual canonical quantization in cartesian coordinates. The destruction
and creation operators in both descriptions are related by the following expression

(3.19)

=0 m=—

46



3.2. Spherical modes

and its inverse

i = (—i)'k /(dmflma,;, (3.21)

where k = E/ k and is simply parametrized by two angular variables. In terms of this
creation and annihilation operators in spherical coordinates the time-evolution operator
becomes

Al X X .
log U(n) :/dngkén) Z |:Zk;2}/lm(k)}/l/m/(—k)&klmdkym/eZd)(k’n)
L mony (3.22)
O iy (et st e
T 1 (K )Y gt (=) g, Qg€ ] (
After applying some properties of the spherical harmonics and integrating over the angular
variables one gets a simpler expression for the operator:

3 Te\N m p —i AT o i
log U (n) = / (dké) 2.1 [felm%—me P = iy e ¢] : (3.23)
Im

This operator has a slightly different effect for [ = 0 and [ # 0. Indeed by expressing

v =1] (’zm(n) (3.24)

Ilym

we see that

) 7 s o —ig(k ST ot ik
log Upo(n) = /(dk kéﬁ) [akooakooe ¢(k.m) —a};OOaLOOe ¢(k’”)] i (3.25)

The operator Uy creates nothing but a one-mode squeezed operator out of the vacuum.
By factoring the state as well

10,7) = ®im [0,7)y,,, (3.26)
we find that

10,100 = Uoo(n) |0)

B 1 — x/2n)) [ (1 s (3.27)
= Q2 osth(n) ’;k n! ({262 o(k )tanth(U)) <Zn>k00 .

On the other hand, for‘the other modes Uy, is a two-mode squeezing operator

) 7 ~ —ig(k. AT i¢(k
log Uy (n) = /(dk:k(n)(—l)m [fglmakl,—me ok _ gl al, e d’(’w)} ( (3.28)

2
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which creates a two-mode squeezed state. This kind of state carries entanglement between
the m and —m modes, as can be seen from the form of the state

£ 21¢(k 77 m+1 tanh 75, (77)> "
0 =
0: )i = B Z k cosh 7 (n)

To sum up, in spherical coordinates the quantum state after inflation has the following
properties. First, the isotropic mode [ = 0 is found in a one-mode squeezed state. Second,
the anisotropic modes [ # 0 are found in a two-mode squeezed state, which entangles m
and —m modes. This is one source of entanglement, but there is still another one due to
the in and out bipartition by a spherical entangling surface of radius R.

17 ki ‘n>kl,fm : (3.29)

3.3 Entanglement across a sphere

3.3.1 Isotropic entanglement entropy

As stated in the previous section, the anisotropic modes (i.e. those with [ # 0) are found
in two-mode squeezed states and show therefore entanglement between m and —m modes.
This entanglement is related directly to the entanglement between k and —k modes that
is found in Cartesian coordinates. The computation of its entanglement entropy follows
analogously and delivers the same result Sy ~ 27, for large 7.

The second simplest form of entanglement is the one across a spherical entangling
surface of radius R for isotropic modes, i.e., those with [ = 0. This entanglement is most
interesting when R is taken to be the Hubble radius, but we will keep it as a free parameter
for now. We will proceed with the Ansatz that the creation and annihilation operators can
be split into an inner and an outer component as follows

koo = A = Ol in + Bak,out » (3.30)
with |a|? + |B]? = 1. With this choice, the inner and outer operators commute

[ak in, (k! m] [ k,out; ag out] 0
T
|:ak in’ ak:’ m} |: ,out’ ak’ out} 0 (331)

s o o _
[ak7in7 ak’,out] c‘/ k,in’ ak’,out - k,in, ak:’,out =0.
T

as expected from the CCR. Later‘we will deal with the fact that, in general, the following
commutators do not satisfy the canonical relations

s ) éé 500k = 1) # [n.000, 8 o] ( (3.32)
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3.3. Entanglement across a sphere

Note that the splitting performed in eq. (3.30) has the particularity of leaving the vacuum
state invariant when interpreted as a Bogolyubov transformation. We shall elaborate later
on this non-trivial statement. In a nutshell, this should be valid since i) isotropic modes
could at most be linked with logarithmic contributions to the entanglement entropy and ii)
we asume long- and short-range entanglement to be essentially independent phenomena,
the former being due to the structure of vacuum and the latter due to particle production.

Taking this partition, any quantum state can be expressed in terms of n-particle states
created by these inner and outer operators, which take the following form

m) = (a')"10) = («(*am +8%al,)" 10

/ o (3.33)
n
= ( ) BT M), ® [n—m) gy

where we dropped the subscript k for simplicity. Now, the I = 0 sector of the vacuum
state is a one-mode squeezed state, which can be written in its standard particle basis
decomposition and then split into inner and outer components

[e.9] /;é n
10,m)00 = ! E n)! (—1€2i¢ tanh7> X
Veosht = Kl! 2

(12 (3.34)
n _
S () e 20— )
m=0
and we can build the corresponding density matrix
poo = 0,700 (0,7lgg
JR— iy v/ (20)!(207)]
— _9)y—(ntn) VAZRAZ0 7
cosh Z (=2) nln'!
n,n'=0
( : 2n,2n’ m 1/2 o/ 1/2 (335)
2ip(n—n' n+n’
X .
e tanh"™" (1) Z (m) (m’> X
m,m’=0
x ot gln—m)+(n'—m’) lm);, m L @120 —m) 2n' —m/ out -

Now we trace out the inner degrees of freedom in order to obtain the reduced density

49



Chapter 3. A first approach

matrix of the outer degrees of freedom

o0
,aout - ﬂinﬁ = Z q‘in:ﬁ|q>in
q=0

min(2n,2n’)

JR— N/ @n)1(2n)! o, )
— _ 9y~ (nn) VA0 )7 2ig(n—n") 3.36
~ coshr Z l (=2) nln’! c . ( )
n,n’=0 =0
, o {20\ Y2 (20\ /2
x tanh™ ™" (1) gntn _21< ln> ( 7) 120 — D)oy 20" =1 _ . -

In order to compute the von Neumann entropy of this density matrix we would in principle
need to compute its logarithm and, therefore, diagonalize it. Its complicated structure and
infinite size make it seem an impossible task. Hence, we will compute it using a different
method, namely exploiting the available knowledge of the von Neumann entropy of generic
two-mode Gaussian states. Even though it may not seem obvious that pgg is a Gaussian
state, it has been proven that any quantum state created by a time evolution driven by a
bilinear two-mode Hamiltonian is a two-mode Gaussian state [56]. This means that, even
though the state itself is characterized by an infinite set of coefficients, it only contains
a much more reduced amount of information codified in its first and second statistical
moments, that is, in its expected values and covariance matrix. In other words: the
density matrix of a single mode is created from the vacuum by acting with a squeezing
operator, which depends on a few parameters, two per momentum mode. Therefore, its
entanglement entropy should also depend on these parameters only. This means that, even
though one needs in principle all the matrix elements to compute the logarithm of the
matrix, it cannot have any non-trivial dependence that is not encoded in the dependence
on the parameters. We use in the following the formalism described in [141] to compute
the entanglement entropy.

We introduce the following auxiliary field and conjugated momentum operators

1

o _ - A
Xin/out = T = (ain/out + ain/out)

‘f (3.37)
7Arin/0ut = ﬁ (éin/out - &iTn/out> (

Then we construct the covariance matrix o of a quantum state as follows:
L, N

Oij = 5 <a:,~xj + a;jxi> — <«Tz> <x]> , (338)

where i = 1,2 and the vector z is defined as x = (Xin, Tin)’ .
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3.3. Entanglement across a sphere

The expected values (Z;) can be set to zero without loss of generality. As a matter of
fact, they are zero in our case. Let us use the short notation

oo min(2n,2n’)

Pout = Z( Z Con 120 — 1)y 20/ — 1, - (3.39)

n,n'= =0

Then it follows

fo%) max 2n 2n

<&(T)ut> =Tr (f()utaout> Z Z( Cnn/lm “O2n—t2n/—1-1 = 0. (3.40)

n,n'=0

This is 0 because the condition of the Kronecker delta can never be fulfilled since n and
n' are integers. Similarly one obtains (Gou) = 0. Hence, we focus on the second statistical
moments

6T pita ﬁﬂ(dﬁ&*)(
in(2n,2n’)

= (fj Z cnn,l¢(€n—z)(2n'—z)'|2n—z—1> o' —1—1
n’/=0

in(2n—1,2n'—1)

Z Z( c,m/l\/(fn — D@2 = 1) San—1-120—1-1 (3.41)

n,n'=0
2n—1

- Z(—Q)_ 22 )) tanh®" 7 - 2n Z ”(27L_ll_)1)!a2!l62(n—l)
n)!

1
= o 22_2”2 2 tanh?" 7 - 2nB3% = B2 sinh? 7

Similarly for the other moment
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(ad) = Tr (pad) = Tr (apa)
oo min(2n—1,2n')

= 6 Z cnn/l-\/(én’—l—kl)(Zn—l)'-]2n—l—1> 2n' — 141
'=0

2n—1,2n')

= Z Z Cnn'l \/ n —1+ 1)(2n - l) : 62n—l—1,2n’—l+1

n,n'=0

oo 2n—2
2n)!(2n — 2)!

— —_1— 1 —1 —2n+1 ( .

COShT;; Vin 2n—1)(-2)” n!(n —1)!

1/2 1/2
. 219 tanh2n—1 T<2l”> / <2”l— 2) / a2l54n72l72
1 i 9—2n+1 (2n)! 0210 tanh2n—1 2n22 2n —2 215471—21—2

= —— an T o

cosh T <= nl(n —1)! l
= L i 2*2"Hﬂe2i¢ﬂ2 tanh®* ' 7 = €32 sinh 7 cosh 7.

cosh nl(n —1)!

(3.42)
We will neglect in the following the contribution of the phase, since we can always reabsorb
it by means of the transformation @ — e~*®a which does not affect the physics of the
problem.

Now we are ready to compute the elements of the covariance matrix

1
= (YX) = f%e" sinh T + 3 (3.43)
. 1 2 7 .
Onn = (A7) = 5 Bee T sinhT. (3.44)
oyr = 0. (3.45)

The entanglement entropy of the quantum state is related to the determinant of the co-
variance matrix as follows

5 12—Mﬂln<(f5)<m< TJ( (3.46)

1
h= ony/deto
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where n is the number of quantum modes. In our present case, n = 1. The determinant is
given here by

1
det o = 0y Orr — a?rx =1 + B2%(1 — ?)sinh? 7. (3.48)

Notice that this result is symmetric under the exchange of 32 and a? = 1 — /32, as it should.
We then get the expression
1 1
p= = ,
2vdet o \/ + 46202 sinh? 7

and the following result for the entanglement &ntropy

S =log B (1 + \/(—i— 43202 sinh? T‘>:| <

1 1
Z (= 242 ginh?
+2< 1—}—\/1—}—4504 sinh T)log

(3.49)

, 3.50
14+ Y+ 43202 sinh® 7 (3:50)
-1+ \/(—F 4822 sinh? 7 | \

Now, let us consider a completely equal bipartiton, i.e. a = =1/ V/2', so that

1
U= ———— =sechr. (3.51)
v ! + sinh? 7
For 7> 1, as it is usually the case in dosmological applications, this in turn leads to
S~ 27, (3.52)

which means that the entanglement between inner and outer modes grows linearly with
7 and vanishes for 7 = 0. This turns out to be the case as well for any other value of 5.
The main difference is that the linear behaviour is preceded by a slow exponential growth
before becoming linear, and the more 3 departs from its equipartion value § = 1/v/2, the
longer this linear behavior appears.

On the other hand, for fixed 7 the following dependence for a < % is observed
S ~loga. (3.53)

We will discuss this in a later section but we advance the following Ansatz for the scaling

of the coefficients v and
Oz:\/éj and B:\/‘—f, (3.54)

R
~ log — .
S~ log—, (3.55)

so that
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where L is an IR regulator. Therefore, an IR divergence arises due to the term log L. But
actually for really small o we have that S — 0. This can be checked taking the complete
formula or, more easily, performing a Taylor expansion around o = 0

S ~a?[1-log (i sinh? 7)] Enh2 T. (3.56)

This result should be interpreted carefully. Indeed, if wétake the limit L. — oo this is in a
sense equivalent to taking the limit R — 0. This would mean that all degrees of freedom
have been traced out and so the entanglement entropy must vanish. The actual quantity
should be regularized. We think a reasonable regularization scheme would be taking the
Hubble scale during inflation as initial size of the universe and then expand it exponentially
during the N e-folds that inflation lasts

L=H1eV, (3.57)

This prescription is borrowed from regularization schemes in quantum cosmology and
stochastic inflation [142-144]. It is also consistent with the Bunch-Davies prescription
for the vacuum state, since it cannot be applied to modes whose wavelength was larger
than the Hubble scale at the beginning of inflation.

The key statement is the scaling of the entropy as S ~ log R. This is a sub-dominant
correction to the area law, which seems to be unrelated to the isotropic modes. This
form of entanglement arises solely due to the squeezing and vanishes the moment the limit
7 — 0 is taken. The usual short-range UV-divergent and area-scaling contribution to
the entanglement entropy must still be present when the total entanglement entropy is
computed but is not related to the isotropic modes. From our expression it can be inferred
that the entanglement entropy given by the long-range correlations between isotropic modes
is in any case subdominant. However, to make a proper judgement it should still be
integrated for all the available modes.

3.3.2 Scaling of the bipartition

The expression we used to split the creation and annihilation operators of the scalar field
theory defined on the whole spacetime manifold seems a bit obscure. In this section we
will argue why the coefficients a and 8 should scale as indicated before.

In order to do this, let us place the theory in a spherically symmetric lattice, so that
the radial coordinate is discretized while keeping the angular coordinates continuous. Then
the field itself is discretized into a set of fields x, (6, ) living at each point of the lattice
and can be expanded in terms of its associated annihilation and creation operators a, and
a. They satisfy the canonical commutation relations

[&,,, ai,} < G (3.58)
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or, in the continuum limit,

o)

The usual momentum-defined creation a
Bessel transform in the continuum limit

ay = /(d?’r\/? jo(kr)ay . (3.60)

We can split this integral into two regions and so define the inner and outer components
of the operator

ay, = 4w /{derkKjo(kr)dT+4ﬂ /‘C drr2k‘\/?jg(kr)&r (3.61)

and we can approximately identify

[2
Qpin ~ 4T / drr?ky/ = jo(kr)ay
s

2
Qg out ~ 4T drr?k ;jo(kr)ar.

The integrals are defined in three dimensions and the delta function is defined to be the
spherically symmetric three dimensional one. This is done so in order to show that this
formalism can be generalized to include anistropic modes, even though we will not need
them here.

| ,
C 47rr25(r —7r). (3.59)

annihilation operators are recovered through a

(3.62)

From this point of view it is clear that it is legitimate to perform a bipartition of the
local degrees of freedom of the scalar field into inner and outer components with respect to
some spherical surface of radius R. For cosmological applications it is of particular interest
to pick R to be the Hubble radius. Formally, our results can be applied to any arbitrary
R but, as we will discuss in more detail in sec. 3.4, they can be physically trusted for R of
the order or larger than the Hubble scale.

Then there is an alternative field operator expansion in terms of inner and outer mode
functions. We restrict ourselves in the present analysis to the isotropic modes I = 0 but it
could be extended to the anisotropic modes as well. The expansion is then

X0 = dkﬁ (fk,inak,in + fk,outak,out + hC) 3 (363)

where h.c. stands for hermitian conjugate. The mode functions need to be normalized
with respect to the Klein-Gordon inner product

/g drrgjo(k:r)jo(kr) ~R

(3.64)
/R drrjo(kr)jo(kr) ~ L — R,
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where an IR regulartor L has once more been introduced. We find it reasonable to suggest
the following scaling for the coefficients of the mode splitting

a:\/g & 5:,/{_23 (3.65)

as it was used in the previous section. Notice once more that o? + 32 =1.

The creation and annihilation operators so constructed must be treated carefully, since
they do not exactly satisfy the canonical commutation relations

R R
[ak,in,az,’om} /0 drdr'rr’ jo(kr) jo(K'r") [a,,,aj,,} /O drrjo(kr)jo(k'r)  (3.66)

This integral does not give anything proportional to dxx even though it is clearly peaked
at k = k’. Of course, this means that the scalar product (k| k') will also be proportional to
this integral and, therefore, the set of states aj; |0) can be used to span the whole inner
Hilbert space but it does not form an orthonormal basis. However, once the Hilbert space
is restricted to one momentum mode, the set of vectors does form an orthonormal basis on
that Hilbert subspace thanks to the 6, factor appearing in the computation of the scalar
product. The same applies of course to the outer Hilbert space.

These considerations do not change the form of the quantum state after inflation as we
treated it in sec. 3.2. The reason is that, even though a single inner or outer operator may
affect several momentum modes, the combination ay i + G out = G does not.

One may wonder as well about the validity of the computation of the entanglement
entropy, since it involves the computation of two partial traces and no orthonormal basis
is available. We argue that, even though the partial traces indeed cannot be computed
exactly, our approximation is good enough. Let us assume that we have at our disposal an
orthonormal basis |j) where j stands as a multi-index that labels momentum and particle
number. This basis is related to our non-orthonormal basis j via a linear transformation

i =Clj). (3.67)

We actually have meaningful information regarding the linear operator C. Its matrix
elements are given by

R
Copgnm =Cjrn= j Clh) = <j h> /0 drr2jo(pr)j0(qr)5nm. (3.68)

The mode functions are normalized and therefore we have that C;; = 1 and so the linear
operator can be splitted into the identity plus corrections C = 1 + €. Since the integral is
peaked at p = g we assume € to be small. In particular, the inverse of the operator can
be written as C~! ~ 1 — e. Furthermore, it is traceless and so it does not affect at first

56



3.4. Discussion

order the computation of the relevant traces for our problem. Let us see how this works
out for the trace of some linear operator A

TrA=Y = (lAl)=>_ (i CTAC™" ]
J

5/

:;[6 Aj —Rej(j A63)+o(()}<

Now let use this expression for the density matrix p of a separable state with respect to
the momentum modes such as the one created after inflation. This operator is diagonal,
whereas all diagonal elements in e vanish. Hence, the expected value of the product of
both operators is 0. This leaves the approximate result

TrA~Y <( A (3.70)

(3.69)

This finishes the argument that the computation of the entanglement entropy above is a
good approximation.

3.4 Discussion

3.4.1 Mode counting and the area law

The computation presented in sec. 3.3 is far from accounting for the whole entanglement
entropy of the region inside a sphere of radius R. In fact, it is limited for two reasons:
it accounts only for isotropic modes (I = 0) and only those with a given momentum k.
Hence, it is a measure of the entanglement per isotropic mode. It is characterized by its
squeezing parameter 7, which is in turn a function of the momentum k and in particular
the number of e-folds Ny between horizon exit and the end of inflation. Roughly one gets
T ~ N [138].

Then one simply needs to integrate

S~ /(dk T log R (3.71)

This integral could be in principle model-dependent, although roughly 7, ~ N (k). Notice
that there is no dependence on R? as opposed to the standard area law for entanglement in
QFT on 3+1 dimensions. We can understand this from the point of view that, effectively,
the restriction to isotropic modes delivers a (1+1)-dimensional theory. Such theories are
known to have a logarithmic scaling of the entanglement entropy.

o7



Chapter 3. A first approach

In the computation of the entanglement entropy done by Maldacena and Pimentel they
also found a term proportional to the number of e-folds or, more explicitly, to log(—n).
This computation is performed in the limit of very late time and therefore we can consider
that every mode has crossed the inflationary event horizon long time ago. In that case

R A R R
S = dkN (k) log 7= dk log(—nk) log 7= Alog T [log(—n) +log A — 1] ,
0
(3.72)
where A is a UV cut-off. In the limit . — oo the logarithm must be replaced by a term
that goes as ~ % and so tends to 0. At the same time we take the limits A — oo and

keeping the product A% constant. Then we get the following contributions to the entropy

S = clog(—n) + ' log A, (3.73)

with some coefficients ¢ and ¢’ to be determined. Both kind of terms exist in dS and
therefore also in a radiation-dominated universe if we assume it is preceded by an extremely
long inflationary epoch.

In order to recover the usual UV-divergent area-law scaling entanglement entropy, as
well as additional UV-finite terms proportional to the area, the whole tower of I and m
modes must be taken into account. Restricting ourselves now to the true vacuum state |0),
it carries no angular momentum, i.e. [ =0 and m = 0. Angular momentum can be shown
to be a good quantum number of the particle states in spherical coordinates introduced
in sec. 3.2. This means that L?|l,m) = I(I + 1)|l,m) and L, |I,m) = m|l,m). Therefore,
if the vacuum is to be splitted, it must be done in a way that preserves the total angular
momentum. This can be done with the formalism of the Clebsch-Gordan coefficients,
widely used in Quantum Mechanics. One should therefore find an analogous of the singlet
state of two-particle systems with spin. However, the issue is not trivial, as in QFT the
total number of particles is not fixed a priori and there can be many contributions to the
vacuum state.

3.4.2 Phenomenological implications.

Formally, the computation showed here can be applied to any entangling sphere of radius
R, let it be smaller or larger than the Hubble scale Ry. However, from a more physical
point of view, it is only justified for R > Ry . In this regime, arguably dominated by super-
Hubble physics, perturbation modes are frozen and do not interact. On the contrary, when
modes re-enter the horizon, this interaction begins and can scramble the interior quantum
state, thus erasing long-range correlations inside the Hubble sphere, although not the
correlation of the observable universe with other causal domains. In addition, non-linear
interactions are likely to play a role in this process. Depending on the scales giving a
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stronger contribution to the entanglement entropy, this may have a non-negligible impact
on the entanglement entropy.

Following our earlier motivation in sec. 3.1, this scenario may change should a PBH be
formed during the radiation era. As mentioned in sec. 1.7, PBH are formed by gravitational
collapse, triggered by enhanced primordial perturbations [64,65]. The relevant scale for
the formation of a PBH in a radiation-dominated universe is the Hubble scale, as we
will briefly argue later and is supported by simple model estimates [69, 70] and numerical
relativity simulations [66,75]. This means that the PBH captures most of the long-range
entanglement of the Hubble sphere and keeps therefore long-range correlations with the
rest of the universe, including other causal domains that collapse to form a PBH as well.

It is in this precise context that we view gravitational collapse as an entanglement
trap that prevents the long-range correlation between different PBH to be destroyed by
scrambling. As time passes, the Hubble sphere grows and PBH formed in different causal
domains come into causal contact. This creates a network of entangled PBH inside the ob-
servable universe. Note that the entanglement of super-Hubble modes arise during inflation
as those modes are stretched beyond the horizon and keep this entanglement on non-causal
patches. As these modes re-enter the Hubble scale after inflation and induce black hole
collapse, the entanglement created during inflation is trapped inside these regions without
allowing for scrambling to take place.

In other words, a PBH keeps a long-range entanglement with other PBH. This is because
they trap entanglement before scrambling can take place, as scrambling is a sub-Hubble
process and PBH form with a size of the order of the Hubble scale at the time of collapse.
This entanglement exists regardless of whether they came into casual contact already or
not. A PBH keeps a long-range entanglement as well with non-collapsed regions of the
non-observable universe, as they didn’t undergo scrambling yet.

Perhaps it should be clarified that our use of entanglement entropy is not linked in
principle to the gravitational entropy associated to the event horizon of any black hole.
Instead, it is a description of how the degrees of freedom inside a spherical region are
entangled with the degrees of freedom existing outside. This concept is applicable to any
surface enclosing a volume. When a black hole is formed, the exterior degrees of freedom
cannot interact with the interior ones and therefore this entanglement is preserved. It may
be that the interior degrees of freedom interact with other degrees of freedom inside the
black hole. We do not make any claim regarding the nature of the degrees of freedom inside
the black hole, but rather than the entanglement entropy across the surface is preserved
by unitarity. As an analogy, we could think of a pair of entangled photons, one of them
being captured by a black hole and another one kept outside. It is unknown how the
swallowed photon will interact with the interior degrees of freedom of the black hole, but
due to unitarity the entanglement entropy of the system formed by the black hole and the
swallowed spin will be preserved.
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If this gravitational collapse is assumed to be unitary, then the entanglement entropy
will be conserved during the process. Nothing forbids, for instance, the formation of a black
hole by the collapse of a large number of particles which are entangled with distant objects.
Such a black hole would keep this quantum entanglement. Such a process is described for
instance in [76] in the context of building a pair of maximally entangled black holes by the
gravitational collapse of the Hawking radiation of an initially isolated black hole.

Entangled black holes have been considered before in the literature [76,92], being usually
maximally entangled. We have presented here a viable mechanism to produce entangled
PBH. It must be noted, however, that they would not be maximally entangled, as their
long-range entanglement entropy does not saturate the Bekenstein bound [145]. Since
two causally disconnected regions that collapse to form PBH far away from eachother are
individually entangled with the rest of the universe, they must necessarily be themselves
entangled with each other.

The entanglement trap is not, nevertheless, the only feasible behavior of long-range
correlations due to entanglement when PBH are involved. Alternatively, it is possible that
entanglement is not trapped, but rather is allowed to leak, so that the event horizon of a
PBH forms sort of a leaky barrier and is, in fact, no special surface. In other words, the
picture of discrete entangled particles, which may not escape the black hole, it is possible
that a dynamical continuous field leads to correlations between the PBH that change with
cosmic evolution. We will come back to this possibility in chapter 4 and discuss how it
could induce non-trivial interactions between distant PBH.

3.4.3 Remarks

The results of this chapter suggest the existence of long-range entanglement in the uni-
verse due to the inflationary origin of cosmic structures. Indeed, due to inflation, the
quantum state of a scalar field describing cosmological perturbations is highly squeezed.
This squeezing leads to subdominant terms in the entanglement entropy that go beyond
the (UV-divergent) area-law. This kind of term is also found in the entanglement entropy
of a field living in dS and signals the survival during the radiation era of the entanglement
created during inflation.

These terms arise due to the entanglement of super-Hubble modes that are stretched
beyond the horizon during inflation and maintain entanglement on non-causal patches.
In the case of modes that re-enter the Hubble scale after inflation and induce black hole
collapse, the entanglement is trapped inside these regions without allowing for scrambling
to take place.

It may seem puzzling that quantum entanglement of the state created during inflation
should be conserved after its end. Indeed, if inflation is capable of creating entanglement,
the next cosmological era may very likely destroy it. The creation or destruction of en-
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tanglement between quantum modes is possible since the time evolution of an individual
mode can be non-unitary in presence of interactions, for instance thanks to a gravitational
background. The time evolution of the total quantum state is of course unitary and re-
mains pure. In order to gain some intuition about the survival of the entanglement, let us
put in simpler, qualitative terms, the evolution that the quantum state undergoes during
inflation.

Any quantum field coupled to a gravitational background, even if minimally, is sourced
by it, which leads to particle creation in the form of entangled pairs in inflation. During
the radiation era, the dynamics of the field is equivalent to that of a field in Minkowski
spacetime and so there is no source that can affect the nature of the quantum state created
during inflation.

Furthermore, the locality of QM imposes entanglement to be created or destroyed by
local interactions only. Therefore, causally disconnected patches keep their correlations
(both classical and quantum) with time evolution. We can also understand this as a
consequence of the freezing of perturbations.

We have assumed throughout a standard single-field inflation because of the simplicity
of its treatment from a quantum field-theoretic point of view. However, more sophisti-
cated models of (multi-field) inflation might enhance the entanglement. In particular, it
would be fascinating if those models leading to PBH formation were also related to en-
hanced long-range entanglement. Such long-range correlations may give rise to the growth
of isocurvature perturbations on cosmological scales, which could have important conse-
quences for large scale structure formation and evolution.

We will encounter this issue throughout this thesis. Gaussian states can be well de-
scribed with a density matrix or a Wigner function, but non-gaussianities are usually
described either by higher-point correlation functions or by a probability distribution for
the field [67], which is a sufficient description for many relevant phenomena, but not a
complete one from the quantum-mechanical point of view.

Finally, it is worth pointing out that inspecting the entanglement entropy gives only
a hint towards the existence of long-range correlations and, possibly, quantum entangle-
ment. Strictly speaking, it solely quantifies the entanglement between complementary
patches. The scale of the correlation is then identified with the scale of the momentum
mode involved. UV-divergent contributions to the entropy are expected to be dominated
by short-range phenomena. Conversely, UV-finite contributions should be dominated by
long-range phenomena. However, a finer analysis is in order. As following next logical step,
the next chapter will be devoted to the computation of the mutual information between
two separate (i.e., non-complementary) spatial regions.
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Chapter 4

Mutual information from inflation

Whatever the rhythm was, luck rewarded us, because,
wanting connections, we found connections — always,
everywhere, and between everything. The world exploded in
a whirling network of kinships, where everything pointed to
everything else, everything explained everything else...

Casaubon in Foucault’s pendulum (1988) by Umberto Eco.

4.1 Motivation

Entropy and information play a key role in our understanding of physics. They are impor-
tant properties of quantum states and are useful in describing correlations between physical
subsystems. Furthermore, they are thought to be a bridge between classical gravity and
an underlying quantum theory of gravity. In fact, the study of entropy and information
applied to black hole physics is a fruitful field of research. The introduction of bekenstein-
hawking entropy [105], discussed in sec. 2.7 was followed by the discovery of the area law
of entanglement entropy [103,104], discussed in sec. 2.4. The link between these two con-
cepts added quantum information to the already successful crossover between gravity and
quantum field theory.

Cosmology also profits from this interplay between gravity and quantum physics. The
idea of inflation introduced a quantum origin of primordial perturbations [45]. This was
needed in order to explain the power spectra of the CMB and some features of the LSS
of the universe. Less known alternatives to inflation also explain power spectra by means
of quantum fluctuations [63]. Even though quantum fluctuations classicalize in the sense
that their observable features appear classical [138,139, 146], their quantum origin is still
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relevant. For instance, the study of the entropy of cosmological perturbations in momentum
space has long been considered [59] and has recently been extended to include non-linear
interactions [147]. In a more general sense, it has also been a matter of recent work the
study of the universe as a storage of quantum information in gravitational d.o.f., which
could in turn leave an imprint on primordial perturbations [148].

However, quantum information properties of primordial perturbations in real space
have been less studied. Following the path started in chapter 3, we turn now to the
study of mutual information in a cosmological set-up. As mentioned in sec. 2.3, mutual
information quantifies the total (classical and quantum) correlations between two quantum
subsystems. It is, therefore, a relevant quantity to understand the information content of
the cosmological perturbations of quantum origin.

For complementary subsystems, mutual information is simply equal to twice the entan-
glement entropy, as it can be readily seen from eq. (2.15), and is a quantity of no particular
interest. For two non-complementary subsystems, however, it provides additional insight.
This is the case, for instance, of a quantum field restricted to two separated regions. For a
scalar field in the Minkowski vacuum, the mutual information is a rapidly decaying func-
tion of the distance r between the involved regions. This was shown by Noburo Shiba
in [111,112], using a perturbative formalism that we will adapt to cosmological pertur-
bations. The particular expression for two spheres of radius Ry and Ry and Ry, Ry < r
is .
1 RiR;
4 47
which becomes quickly irrelevant with distance. We will see in the course of this chapter
how this quantity is enhanced thanks to particle production (or, equivalently, stretching
of quantum fluctuations) during inflation. Indeed, this same quantity for a scalar field in
the squeezed state resulting from the stretching of quantum fluctuations during inflation

at conformal time 7 is
1 R?R2 —no\1?
I(A,B) ~ — 221 -~ +log [ — 4.2
<,>16n4[<7+og(r>], (12

where v ~ 0.577216... is the Euler-Mascheroni constant. This much slower decay signals
long-range correlations between these disjoint regions and is due to the dependency of the
mutual information with the power spectrum. It is also a natural result: due to inflation
distant regions were causally connected in the past. Enhanced mutual information is
intuitively connected with the main dynamical prediction of inflation: an homogeneous
and isotropic universe with a nearly scale-invariant spectrum of curvature perturbations.

I(A,B) ~

(4.1)

This chapter is a review of the results presented in ref. [2] and is organized as folows. In
sec. 4.2 we compute the relevant correlation functions of primordial perturbations during
the inflationary and radiation eras. In sec. 4.3 we extend an existing formalism to pertur-
batively compute the mutual information of a Gaussian state and apply it to cosmological
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perturbations in sec. 4.4. We finish with a discussion of our results in sec. 4.5, in compari-
son with other work and for its relevance to our understanding of primordial perturbations
and the possible emergence of entropic forces.

4.2 Correlation functions

4.2.1 The quantum state of scalar perturbations

In this chapter we will describe scalar perturbations by means of a sigle scalar d.o.f., the
Mukhanov-Sasaki variable v, which was introduced in sec. 1.4. As we saw in sec. 1.5, at
linear order the time evolution of v is characterized by a bilinear Hamiltonian, so that a
Gaussian state remains Gaussian with time evolution. Hence, we describe the quantum
state during inflation by means of its 1- and 2-point correlation functions.

We briefly recall that the dynamics of of the Mukhanov-Sasaki variable is derived from
a perturbation of the action

"
S = ;/d4x ((}')2 — 26" 9000 + 202) , (4.3)

where ¢, is the speed of sound, which takes values ¢, = 1 during inflation and ¢; = 1//3’
during the radiation era. The corresponding equation of motion for the Fourier modes

vg(n) = f(?’a:e“g'fv(n,f) is:

z//
v+ <c§k2 - > v=20, (4.4)
z

which is the equation of motion of a harmonic oscillator with time-dependent mass. Thus,
whenever c¢2k? < 2" /2, particle creation can occur.

At the beginning of inflation, the perturbation field is assumed to be in the Bunch-
Davies vacuum, i.e., mode functions behave as plane waves in the distant past [53]. Then
these modes evolve and are put in a squeezed state after they become super-horizon. For
each momentum mode k, the state is described by a squeezing parameter 7, and angle dy.
This time-evolution is due to the z”/z term in the equation of motion (4.4).

Similarly to what we argued in chapter 3, in this chapter we will refer mostly to curva-
ture perturbations, but our conclusions can be extended to primordial gravitational waves
as well, at least qualitatively, since they have effectively the same dynamics.

The time-evolution of the quantum state for general inflationary models is more prac-
tically obtained after performing a canonical transformation of the Hamiltonian obtained
from the action (4.3). As discussed in sec. 1.5, this is equivalent to the addition of a total
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derivative to the action in order to get
1 4 N2 2 ¢ij Z Z\? 2
08 = B d'z (V)" — ;6" 0;v0v — 2;1}1} + ) (4.5)

Of course, from this action one gets the same equation of motion (4.4). The canonical
momentum and the Hamiltonian are given by

a/

p:’U,*gU,

1 y !
H = 2/d?’az (:{2 + ¢26" 9;v0;v + 2va> (
z

We will use this Hamiltonian for the rest of the chapter. For a detailed discussion of the two
Hamiltonians that can equivalently describe the time-evolution of primordial perturbations
and the canonical transformation that relates them, we refer the reader to refs. [49, 54].

(4.6)

Inflation is succeeded by the radiation era. Recall that n € (—o0, 0) for eternal inflation
or dS and n € (0,00) for an eternal radiation era. Instead, we will consider that inflation
starts at 179 < 0 and finishes at 7, < 0 and then the radiation era starts at —n,. The details
of the matching between 7, and —7, depend on the reheating scenario, but have little effect
on curvature perturbations. Nevertheless, the mode functions of the radiation era depend
of course on the boundary conditions imposed at —n,. First, we will obtain the correlation
functions in quasi de-Sitter inflation by obtaining the time evolution of the mode functions
and then generalize them by applying known results in the squeezing formalism.

4.2.2 Correlation functions in quasi de-Sitter

During quasi de-Sitter inflation ¢ = 1, a = —1/(Hn) and therefore z”/z = 2/n?. In this
scenario, the mode functions of the Bunch-Davies vacuum have a simple form

(K[l +1) kg

V= —— 4.7
From them one computes the mode functions for the canonical momentum
-/ CL, ; Z\/E‘ ;
Ph(n) = v (n) — Sofn) = e, (4.3

Mode functions allow us to build the mode expansions of the quantum field and its canonical
momentum

i = d*k iR, %\ A —iKZ, i (N A
0'0,7) = (57 (¢Fok (mar + e i mal) |
(2m)?/ (4.9)

T P’k iK%\ A —ikZ i (A
p (77735) = / (271')3/2 <ek T (n)ak+e k Wk(ﬂ)%i) .
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Now we can compute the correlation functions that characterize the Bunch-Davies vacuum
during quasi de-Sitter inflation:

e 1-point correlation functions
v'(,n) = pl(x,m) =0, (4.10)
e 2-point correlation functions
i Bk 1 1 iR
v'(n, Z)v'(n,y) = / (277)3ﬂ (1 + W) < ik(Z y),

p'(n, )p' (1, ) :/W,Qe_ik(f_y ) (4.11)

—
[\
3

~—

w
=
=

Vi, B (0, ) + 0, T (1,8) = /(

These integrals are taken over momenta that are affected by inflation, i.e. those that
are sub-horizon when inflation starts and become super-horizon before it ends. These are
momentum modes that satisfy

—no > k7> —n,. (4.12)

When inflation ends at n = 7., mode functions are matched at the beginning of the
radiation era at n = —n,. The radiation era satisfies 2”/z = 0 and so solutions to the
equation of motion (4.4) are plane waves. Once the boundary conditions are imposed and
taking into account that c% = 1/3 during the radiation era we get the solution

e’ikﬁ*
vp(n) = NG X
) (V3 + (1 + V3)nk(nk +19)) ookt (4.13)
2772]{;5/2
V4 (= VE)mkCnk +9) L baen.
22K/

Note that this mode function is a linear combination of oscillating functions, unlike in
the Minkowski vacuum, in which the oscillation affects only a global phase of the mode
function. Modes significantly affected by inflation satisfy kn, < 1 so it is enough to keep
leading terms in inverse powers of (kns), i.e.

r €ikn* . k( + *)
v (n) ~ W sin (%) < (4.14)
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The dependence on the sin function of the mode function is a general result for modes
significantly affected by inflation [45]. From (4.13) one can also get the explicit form of the
canonical momentum mode function 7} () by using the definition (4.6).

We will consider only super-horizon modes, i.e. those that satisfy kn < 1 at a given
time during the radiation era. For those the correlation functions are:

e 1-point correlation functions
(v"(x, ) = (z"(z,n)) = 0. (4.15)

e 2-point correlation functions

3 -
<U7’(77’f)1;7"(77’ g’» ~ /((;lﬂ];:g e%k(x—y)x
1

1 N =+ Nx 21
) <%+2k3n3+2< |74 ) k3n§+"'><

(" (0, B (0, §) + 2 (0, )" (1, &) = /

1 1 17—1—?7*) 1 >
X — = + ...
(km 3( |74 é%ﬁ’:

(" (n, D)p"(n,9) + " (n, Y)v" (0, L)) ~ /
(b))

The quadratic term in the field-field correlator is clearly dominant, while the expansion
in the others is a bit more involved and only the first term is shown for illustrative pur-
poses. Hence, after inflation ends and the radiation era starts, 2-point correlation functions
continue growing with conformal time 7. This is a general result that can be understood
as well in the squeezing formalism.

(4.16)

4.2.3 The squeezing formalism

For general inflationary models, one can treat the time-evolution of the Bunch-Davies
vacuum using the squeezing formalism, which of course can be applied to the quasi de-
Sitter case as well. Such a state was introduced in sec. 1.5 and widely used in chapter 3 in
the operator formalism. As a Gaussian state, it is characterized by the following correlation
functions involving the field v and its canonical conjugate p [59]
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e 1-point correlation functions
(v(n, %)) = (p(n, 7)) = 0. (4.17)

e 2-point correlation functions

3 -
(w(n, ), 7)) = / (irk)i% JFE—D)

( S+ 2sinh® 7, — sinh 27 cos 25k)> (
» . Pk - 9 :
(p(n, X)p(n,v)) = 2n)? e (1 + 2sinh® 73, 4 sinh 27, cos 20y,
( (4.18)

(w(n, Z)p(n, 7)) = / (%)geik@*ﬂ) (1+isinh27ksin25k)><

3k o (£
(p(n, Pv(n, 7)) = / (;r];) eik(a:—y)( 5 (1 — ¢sinh 27, sin 25k)) <

The squeezeng parameter 75, and phase §; can be derived from the inflationary dynam-
ics and the subsequent evolution in the radiation era and have a momentum-dependent
expression. However, we will perform the following approximation: we will assume a ran-
dom character of the phases J; so that integrals over sin 26 or cos 26; vanish. This is a
standard procedure in the study of primordial perturbations and is justified by the effect
of small self-interactions or interactions with other fields [59, 147]. It can be seen as a
coarse-graining or decoherence procedure, where the off-diagonal elements of the density
matix in momentum space p(E, —E, P, —p) decay. Strictly speaking, this is a rather rough
model for decoherence and there exist finer ways to account for it [149,150]. Nevertheless,
our results would not change significantly if the random phase approximation was not per-
formed. Therefore, this approximation will serve mostly as a computational simplification.
We leave this discussion to appendix A.1.

After averaging over the phases the correlators become

Pk kg 1

(v(n,Z)v(n,v)) = / (2@361 (1+231nh2 Tk) ,

2wy,
— JE dgk 7:4 F—if w .
{p(n, Z)p(n, 9)) :/(27T)3€k( D5 (14 2sinh’n) | (4.19)

(v(n, ©)p(n, ¥) +pn, §)v(n, T)) = 0.

jugate correlations for those momeritum modes that are affected by inflation, i.e. those

Because of the term (1 + 2sinh? Tk) ‘Cve get an effective enhancement of the field and con-
that satisfy

—no >kt > —n,, (4.20)
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The affected modes are thus those with wavelength smaller than the horizon when inflation
starts and larger than the horizon when it ends.

One could ask what should be the correlators for modes that are not squeezed. It is
clear that, for modes with small wavelength k~! < —7,, we can take them to be equal
to those of the Minkowski vacuum due to the Bunch-Davies prescription. However, there
is little if anything we can say about those modes with large wavelength k=! > —ng as
they were already super-horizon when inflation started. Those modes should have physical
effects only at extremely large scales, much larger than the observable universe. We expect
them to give an irrelevant contribution to the correlator and thus we will treat them as if
they were in the Minkowski vacuum as well.

In our discussion we will not pay too much attention to the particular inflationary dy-
namics. Instead, we will take the following quite general result for the squeezing parameter
during inflation [138]

; 1

7. = log (k) ( for —mo >kt > -7, (4.21)
-

and 7, = 0 otherwise. Notice that once inflation ends, this squeezing parameter will have

a dependence on the conformal time at the end of inflation, but not at its beginning. The

enhancement of the correlation functions for modes affected by inflation during inflation is

then

1/ 1
1 +sinh? 7} = 3 (W - k2772> ( (4.22)

and the correlation functions themselves become become

RN ¢k 11 gy
v'(n, £)v' (1, ) :/(27T)34/<?k?7726k( y)’

4.23
Bk ko1 ( )

p'(n, 2)p"(n, 9) :/(27f)34k2772€

e
~
sln
&

k-

Furthermore, during the radiation era the quantum state undergoes additional squeezing,
so that its parameter is given by [138]

1
7. = log (W) <Hog <|7;7 |> ( for k7' >n. (4.24)

This additional term stops growing once the mode re-enters the horizon at n = k! and
reaches 7 = 2log(|n«|k). We will restrict ourselves to modes that remain super-horizon in
order to avoid encountering non-linearities. It is important to notice that modes that are
sub-horizon when inflation ends are not squeezed during the radiation era.
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4.2. Correlation functions

The enhancement of the correlation functions during the radiation era for modes af-
fected by inflation is then

. 11 () Mend )~
1+ 2sinh? 7] = = < ) + E2p? < . 4.25
b 2 k277>;2< Tlend K n ( )

The second term can be neglected because of the condition knepq < 1 and the fact that
7 > |Nend|- The correlators in the random phase approximation for modes that are affect
by inflation and stay super-horizon at conformal time 7 in the radiation era are then given

by
Bk 11 1\’ i@y
r N\, T S\ - ik-(Z—7)
(" (n, Z)v" (n,9)) /((2ﬂ)3 T <77end) e :

o Erk 1 (N ke
(" (0, D)p" (1, 9)) /k (273 11212 ( ) c '

end

(4.26)

The enhancement of the 2-point correlation functions is translated into a slower decay.
The long range behavior of the Minkowski correlation functions is known to be [103,111]

I’k 1 2 &Ik, i 4
— T~ r d ]{ Wr o 427
/ erprt 7™ /((27r)3 e (4.27)
where r = |Z—g|. The result is similar when considering other powers of k in the integrand
d3k i
/((271’)3 ket T = pm Bt for o> -3, (4.28)

and thus correlations decay fast with distance. This is also true for several of the enhanced
terms, as they satisfy this form with o > —3. However, there is one term in the field-field
correlation function that has a = —3. We write this term schematically as'

{o(n, Z),v(n,5)) > EMI(r), (4.29)
with a function £(n) that carries the time-dependency as

1 L :
5 for n <mn, ie.,inflation

E(n) = (4.30)

1 2
2 <7;7*> for n > |n. ie., radiationera

and a function I(r) that keeps track of the spatial dependency, i.e., the decay with distance

3 7o
I(r) = /(E y (‘217:;,)];@“”. (4.31)

!Notice the change of notation with respect to ref. [2].
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Figure 4.1: An example of the difference between the enhanced correlator (red dashed
line) and the Minkowski one (restricted to inflationary modes, blue line) for —ny = 10,

—ns = 0.1, n = n.. The Minkowski correlator decays very fast for distances larger than
the scale of the largest momentum, while the enhanced correlator has a much slower decay.
Adapted from ref. [2].
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4.2. Correlation functions

Strictly speaking, during inflation the upper limit of this integral is given by the comoving
scale leaving the horizon at a given time, i.e., k = |n|~!. Hence, the splitting into a a
time-dependent and a spatial-dependent part is rough. In practice, we will also set a time-
dependent upper limit during the radiation era, as squeezing stops when modes reenter the
horizon and the spatial dependency of the correlation function changes.

In the long-range regime, this integral has an analytic expression

T T

where Ci is the cosine integral defined as

tdt t—1
Ci(z) = — /( cost =v+logx + /( %dt. (4.33)

And v = 0.577216... is the Euler-Mascheroni constant. Because of the logarithmic behavior
of the cosine integral, this term of the field-field correlator decays logarithmically with
distance until r ~ —ng, i.e. the enhancement happens only up to length-scales comparable
to the wavelength of the longest momentum modes affected by inflation.

If inflation lasts for a finite number of e-folds the correlation vanishes at infinity

lim I(r) =0. (4.34)

7—00

The expression above is not very intuitive, but we can approximate it by assuming that
r < —np which is a reasonable approximation until distances reach the scale of the horizon
at the beginning of inflation. Then we have

Ci <_7;70> 67 +log <_7;70> . sin <_7;70> é —Lno (4.35)
1) =5 [Ci (n) 67 T log (—”) 6 (%) sin (_; ) ; 1] | (4.36)

Since we are limiting ourselves to super-horizon scales, we can also assume 7 > n and
perform further approximations

Ci (;) 6 0, (2) (in <;) ~0. (4.37)
I(r) ~ # [log (;70> <+ 1- 7] ( (4.38)

Then

And we get the expression
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Even if this is an approximated expression, it will be the one we will make most use of.
First, it shows intuitively that correlations are kept at large distances due to the logarithmic
dependency. Second, it removes the additional dependency on n as it focuses on super-
horizon distances. This makes the high momentum cut-off at k = |n|~! less of an issue.
Even though it is clearly justified during inflation, it is not much so during the radiation
era. In practice, we choose not to deal in detail with modes that re-enter the horizon,
which may have a non-trivial time evolution.

The overall physical picture here is that field correlations are enhanced in those mo-
mentum modes affected by inflation. This can be understood as modes being stretched
out from small scales and then occupied due to particle creation. Distant regions of the
universe where in causal contact with the past and keep the resulting correlations as there
are no long-range (acausal) interactions able to break these correlations. The next step
will be to review the connection between correlation and entropy or information, with the
goal of computing the mutual information in real space during inflation and the radiation
era.

4.3 Perturbative mutual information

4.3.1 Entropy of the scalar field

Let us now revisit the problem of computing the entropy of a spatial region for a scalar
field in a gaussian state. Gaussian states are simple enough for a systematic method to
be developed but already include important states such as the Minkowski vacuum or the
squeezed state from inflation. In order to do so, we will take advantage of the fact that
Gaussian states can be fully characterized by its equal-time 1-point and 2-point correlation
functions. We refer the reader to [97-99] for additional details.

The computation of the entropy becomes particularly simple in the case of vanishing
expected values

(v(@) =0 (p(7)) =0 (4.39)
and vanishing symmetrized 2-point cross-correlation function
(v(@)p(@) + p(Hv(F)) = 0. (4.40)

This is the case for the squeezed state of the curvature perturbation field once the averaging
over phases is performed. The other 2-point correlation functions are given by the operator
kernels

X(Z,9) = (w(@v(y)) P(Z,9) = (p(Z)p(y)) - (4.41)
Then one defines the operator
Aog=X P, (4.42)
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4.8.  Perturbative mutual information
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Figure 4.2: Comparison between the exact expression for the enhanced correlator I(r)
eq. (4.32) (blue line), its approximation eq. (4.36) (red dashed line), and the further loga-
rithmic approximation eq. (4.38) (green dotted line), for —ng = 10, —n, = 0.1, n = 1. The
agreement is excellent until distances of the order of r/(—ng) ~ 1, where both approxima-

tions start to slowly diverge. Adapted from ref. [2].

75



Chapter 4. Mutual information from inflation

where the operator product is equivalent to a convolution of the kernels
Aal#,§) = /( B2X(7, 9P, 7). (4.43)
C

where the region Q€ comprises the local d.o.f. that we wish to trace out, thereby being
left with an operator kernel defined on €2 only. Then the entropy of the complementary
region €2 can be computed as

Sq = Tr[ (\/f;-i- 1/2)) log (J(;jt 1/2)) - Wf; - 1/2)) log (/fg - 1/2)>(l.£4)

Note that the kernel of the square root is not the square root of the kernel and so we
cannot give a closed expression for the kernel /Aq (Z, 7). However, in order to compute
numerically this complicated expression, we do not need to know it. Instead, one needs to

solve the eigenvalue problem for A, i.e. find those \; for which
/(d?’ymu DIHE = M@ (4.45)

where f; is the eigenfunction of Aq with eigenvalue A;. Then one has

Sa =Y fx) =

_ Z (Jf +1/2)) log W{ +1/2)) - (Jf ~1/2))og (/f ) }(4<.46)

Nevertheless, we will compute the mutual information perturbatively, without needing to
obtain exact results for Sq. That is, if we take Q2 = A U B, where A and B are, then we
have that

Saup(r)=Sa+ S —1(A,B)(r). (4.47)

As mentioned before, this method was introduced by Noburo Shiba in ref. [111], although
it was applicable only to the vacuum state. We will adapt it to the case of cosmological per-
turbations by using a more general formalism. The key is that the operator Aq introduced
here can be defined without any reference to the Lagrangian of the theory. Therefore,
its validity can be extended to arbitrary Gaussian states, and so we will apply it to the
quantum state following inflation. One expects that the mutual information should vanish
at infinite distance

li)rn I(A,B)(r)=0. (4.48)
Conversely,
Jim Saup(r) = Sa+Sp. (4.49)
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4.8.  Perturbative mutual information

The idea then is to expand perturbatively the joint entropy Saup as the individual entropies
S4 and Sp and a term involving functions of the distance that vanish at infinity. This can
be already done at the operator level by identifying what terms in A up depend on the
distance r and expanding them.

For the case at hand, A will carry both contributions from the Minkowski vacuum as
well as the squeezed modes. The former will be responsible for a mutual information that
scales as 7~ and thus is of no interest to us. The latter, however, will be responsible for
an enhanced mutual information that decays logarithmically.

4.3.2 The perturbative computation

We are interested in perturbative solutions to the eigenvalue problem
/(d?’yAQ(f, 0 1E) = Mifid). (450)

with the choice
Q=AUB, (4.51)

where A and B are two disjoint regions of size R4 and Rp separated by a large distance r
such that r > R4, Rp. Both regions need not be spherical, although this is the simplest
and perhaps most interesting application.

We will find these perturbative solutions by following the next steps

e We identify the perturbative and non-perturbative contributions.

e We identify the leading perturbative contribution. In our case this will mean keeping
only the enhancement of the correlation functions.

The behavior of Aq depends on whether z and y belong to the regions A or B. We
represent this in matrix form

o AQ(fayga) AQ(£a7gb)
Aalwy) = (Aﬁ(fb7ga) AQ(%%)) ( (4.52)

where it is understood that 7, ¥, € A and &, ), € B.

4.3.3 Perturbative part

We take first a look at the off-diagonal terms, as they clearly involve points belonging to
different regions. First, we rewrite the off-diagonal terms using the relation

A@(fa/ba :'jb/a) = 5(3) (fa/b’ gb/a) =0, (453)
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where () = {R3}¢ is the empty set. We will use the notation a/b to mean "a or b” and the
order will matter if it appears several times in an equation. Then the Dirac delta equals
0 because T, # Yo When one point belongs to A and the other belongs to B. We can
then rewrite

Aa(Zasys Yoa) = —DNac (Zasps Yo/a) - (4.54)
with

Aoe(Zaspy Yy/a) :/AdSZaX(fa/baga)P(gaagb/a)+/{dSZbX(fa/bvgb)P(gb7gb/a)' (4.55)

Strictly speaking, Ay ~ ¢ but the equality is not exact. The difference is small from the
operator point of view and we will neglect it. It is also an artifact of assuming random
phases.

Notice that for each of the integrals, either the kernel X (Z,¥) or P(Z,%) has a long-
distance behavior, i.e. it is evaluated at points belonging to different regions. Both kernels
have the form of a Fourier transform, regardless of whether we consider the Minkowksi or
the squeezed correlators

SRR dgk iﬂ il
X(QTay):/wX(k)ek( y)7

3 o
= [P te e,

where the only dependence on the direction of k is encoded in the exponential. In the
long-distance regime we can approximate

(4.56)
P(z,

<y

/d9 sin ge?FIT—Zlcosb /(d@ sin gtk cost — 28127(4]{;7,) (4.57)
and the integral over z will be irrelevant for this kernel since
|@—bl~r for Vae AbeB. (4.58)
Hence, we will approximate from now on
X(Zayps gb/a) ~ E(n)I(r) (4.59)

and we will keep only terms involving I(r) in the off-diagonal components of Ag, since they
are the leading perturbative contribution. This leaves us with

3P (2,
5A9(r):—5(n)1(7~)< d3za1g(za,y*a) Jpd bg( b,yb)>< (4.60)
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4.8.  Perturbative mutual information

4.3.4 Non-perturbative part

The non-perturbative part of Ag needs some refinement. One would think first to simply
choose its block-diagonal components

A§D2 = Aﬂ(fa/ba :’ja/b) ) (461)

but this still depends on r, as it integrates over z € Q¢ = (AU B)C. Instead, we define
the non-perturbative part as the limit

0 _ 1: D __ f CdSZX(fa,Z>P(Z, Ha) 0
Aq = lim Ag = ( ( 0 [fe B2X (T, 2)P(Z,5) ) |

The difference is given by a perturbative contribution that decays faster than I(r), as it
decays at most as slow as I(r) times an additional perturbative term

AO —AD _ (f d3ZbX(faaZb)P(vaga> 0 ) [
0 f(dBZX(fbga)P(Ea?gb)
Since X will decay at most as slow as I(r) and P will\decay as some inverse power of 7, it
is clear that AY, — Ag is a negligible perturbative term.

We have now a well-posed perturbative approach for the eigenvalue problem.

4.3.5 Non-hermitian perturbation theory

The first thing we should notice when taking the perturbative approach is that neither A?2
nor dAq are symmetric operators. This means that, in principle, it is not guaranteed that
Aq is diagonalizable or that the computation of its eigenvalues admits the usual perturba-
tive treatment. In practice, one can argue that Aq is diagonalizable [97], nevertheless the
issue of applying perturbation theory remains. For a detailed treatment of non-hermitian
perturbation theory we refer the reader to ref. [151]. We will need to work with symmetrized
forms of both operators, which we will achieve by introducing the following operator

. P(Z4,Ya) 0 )
Py= lim P = oo \ 4.62
0 7—00 ( 0 P(l’b, yb) ( )

so that the operator PyAq is indeed symmetric. Let us see why. For the perturbative part
it is pretty straightforward to check that

PO(SAQ(fa7gb) =
— [ a/d?’ P, %)X (Za, 5) P(Zh, G
[ @z [[#4P@0 20X G PG ) (0.63)
~ —Em)I(r) d3za /gd:ssz(fa,ga)]?(z_’b,gb).
A
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and
P05AQ (fbu ga

)
- — d3a/d3 P_’a_‘X_‘,_)aP_‘ay_'a
[ @z [P X G2 PG (164
~ —EMI(r) | dz / d 2y P(2y, Zp) P(Za, )
A

which is is clearly symmetric since P is symmetric. The non-perturbative part is perhaps
less obvious

PyAd(Za, a) = [<d3za /( d32P(Zq, 2,) X (Z4, 2)P(Z, 7,) (4.65)
C

Rl @ ) = [[ 2 [ dPl@ 3)X (5,2 P (4.66)

Nevertheless, we can now make use of the relation that was argued previously
A(S &P2X(Z,2)P(Z,7) = 67 - 7) (4.67)
and rewrite the non-perturbative part as
PoA(Ta, Ga) = — /A 4’z /(d3z2P(a?a, 21)X (21, 22) P(Z2, §a) + P(Za, Ja) - (4.68)

One can proceed analogously for P(Z,4p) and check that the result is symmetric.

Next, let us discuss the eigenvalue problem for A?Z first. We know that it is diagonaliz-
able and has real eigenvalues [97], but it is still a non-symmetric operator. Therefore, its
right and left eigenvectors do not need to coincide. Let us consider a right eigenvector f;

AL =N (4.69)

We can apply Py on the left and define a new set of vectors fio = Pyf?. Notice what
happens if we compute
PoAGSY = N Pof) = N7 (4.70)

It turns out that fio are left eigenvectors of A,
NFO = PoAQ 0 = AS Py f2 = A 72 (4.71)

For the perturbation theory to work, we would like this set of left and right eigenvectors
to form a complete biorthonormal set, i.e. that the following identity is satisfied

787 = 1"Pof) = 8. (4.72)
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4.8.  Perturbative mutual information

Let us see when this is true, starting from the fact that PyA is a symmetric operator
0= f"PoAQ Sy — FIAG Pofi = (N = 2 F (4.73)

which means that, if the eigenvalues are non-degenerate, then the set of left and right
eigenvalues is guaranteed to be biorthonormal. If they are degenerate, one has to look into
it more carefully.

We have the intuitive notion from QM that degeneracy arises when a symmetry is
present. The corresponding transformation allows us to add additional labels to the de-
generate eigenstates and also transform between them. Under which transformations is
A% invariant? Let us think of the space-time symmetries, which are actually restricted
to spatial symmetries, i.e. 3-dimensional rotations and translations, since we are working
with equal time correlators.

Translational symmetry is clearly broken by the choice of the regions A and B. It may
be only partially broken if these regions are infinite in some direction, but this is not of
interest for the case at hand. Then we are left with rotational symmetry only, which is
a symmetry only of A) restricted to either A or B when these are in turn spherically
symmetric regions. In addition to this restricted rotational symmetry, the permutation
A + B is also a symmetry if A and B have the same size and shape and this adds an
additional degeneracy.

How can we know that this degeneracy brought by symmetry transformations T is not
harmful? The key is that restricted rotations and permutations commute with Py, which
is the operator that maps between left and right eigenvectors

[T,P)]=0. (4.74)

Recall the discussion on complete sets of commuting observables in Quantum Mechanics.
Here, because we are dealing with a non-hermitian operator that plays the role of a hamil-
tonian, not only do we need symmetry (i.e., [A, 7] = 0) but also the commuting relation
above in order to guarantee the existence of a complete biorthonormal set of eigenstates.
It is clear that Fy is both invariant under restricted rotations and permutations and this
is why it commutes with 1. Permutations are really not an issue, because it is clear that
eigenfunctions defined on different regions A and B are orthogonal. Due to rotational
symmetry, we can label the right eigenvectors with degenerated eigenvalue according to its
angular momentum

fitm = fi¥im , (4.75)
where Y},,, are the spherical harmonics. Furthermore, the left eigenvectors are
fitm = Pofim = Pofi¥im = fi¥im , (4.76)
since Py commutes with rotations. This guarantees now the biorthonormality relation
fgjn jol'm' = ﬁmfmefwm/ = 04O Oy (4.77)
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and, therefore, it is guaranteed that A% is diagonalizable and has a complete biorthogonal
set of eigenvectors. We will need this later and in particular we will need the resolution of

identity
Z@m4~ (4.78)

ilm
4.3.6 Computation

Let us now deal with the perturbation theory itself. We will keep first- and second-order
perturbations to the eigenvalues

A=A AL A7 (4.79)
so that the entropy can be computed in perturbation theory

dh 1 ,dh
Sap = Z h(Xi) = Sa+Sp + Z 5)\id7)\i - + 5(5)\1') 22l (4.80)

where d\; = 5)\11 + 5)\22 is the combined first- and second-order perturbation and we simply
denote by h the function of the eigenvalues that delivers the entropy. We can clearly
identify the mutual information as the third term in the RHS. We will see that the first
order perturbation to the entropy vanishes and so the second-order perturbation becomes
the most relevant one. The following lines are to great extent a reproduction of the results
from ref. [111].

We will try to keep Ry # Ro during the whole computation in order to keep it as
general as possible. In fact, we will keep the regions A and B of arbitrary shape. Recall
that the non-perturbative operator A, is divided in two blocks, affecting either region A or
B. Each of these blocks may have some common and some different eigenvalues. Then, let
us introduce extra indices to take this into account, as well as other possible degeneracies.
We label the eigenvalues in increasing order, i.e., A% > A when m > n and the right
eigenvectors with eigenvalue \2, as

0 ( %1%(5(1))( 0 5= < %22@1))>< (4.81)

being o and B some possible degeneracies. With this notation, the orthogonality property
is written as

fgjm r(L)jB = 0mn0ij0as - (4.82)
The right eigenvector f,, of the full operator Aq is a linear combination of the eigenvectors
of the blocks plus perturbations

fy = D @0 fmia+ Y (wﬁm + o+ Fiy = Gy + i+ Fry (4.83)
a B
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4.8.  Perturbative mutual information

Note that if AY, is not a common eigenvalue of both blocks, then either the a,, or the byg
coefficients vanish. We can now plug the perturbative expansion of the right eigenvector
fm~ in the eigenvalue equation to find

(A + 6AQ) frmy = (fn + 0Ny + 0N gj : (4.84)

The first order perturbation equation is obtained by neglecting second order perturbations
and pluging in the solution to the unperturbed eigenvalue equation

A fmy + OMQED = A fry 46X 6 - (4.85)
Similarly, we obtain the second order perturbation equation
A?Zf?nfy + 6AQf1%fL'y - )‘0 fm'y + 5)‘1 'yfmfy + 5)‘2 'y§m7 (486)
We take now the first order perturbation equation and multiply it by f° on the left

PO ALFL + PO AQel, = A0 FOLpL AL O el (4.87)

Since fgjﬂ o is a left eigenvector of A%, the first terms in the LHS and RHS cancel out, so
that we are left with

fmj'y 6AQ§m'y - 5A}n fm]ry’ém'y (488)

If we decompose back f?m =), 0y O t> ﬁ(b’YB me 5 We can rewrite this equation as

Z aVO‘VﬂJ";\/ 'ma + Z ( anjﬁy 'mB 5)&”’7 (a'W/(Sjl + bWV'(sjz) ’ (489)
a B

where we have used the orthonormality relation szT f](-) = 0;; and we have introduced the
operator
Vnzmjcmﬁ fOT 5AQ njp - (490)

mix

Because of the block structure of PydAq, it is clear that Vmom,@ foanﬁ = 0, while the
other components take the following form

V12

manf —

= —£()I0) /( Pz P (T, Z) foaFa) PG ) a5 () (4:91)
xB

= —EM)I(r)Crmang -

Note the symmetry
Vizos =V (4.92)

manf — Vnfma>
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which makes the definition of C,qns meaningful. We further define the set of matrices
(Cmn)aﬂ = Crang » (4.93)

so that the equation for the first order perturbation 5/\%7 can be rewritten as a block

matrix equation
—EmI(r) (@%m Cgm) (() 6 5L (g:) ( (4.94)

In the case that A\ is not a common eigenvalue of A” in both regions A and B, then either
the coefficients a., or b, (notice that they are vectors) vanish and so does the perturbation
SAL. On the contrary, if A? is indeed a common eigenvalue, then this equation becomes
an eigenvalue equation that is solved by means of a characteristic polynomial

det ‘r]‘M'mXMm _Cmm
—C},;m LNy, X Ny, 4
= det(x1ar,,x M, ) det (JUleme - ﬂflcgmcmm) (495)
= me*N" det (leNmXNm — CZLmCmm) s

where M,, and N,, are the degeneracies of the eigenvalues \? in each region with the
convention M,, > N,,. In other words, the perturbation is linked to the eigenvalue problem
for the matrix CL  C,,,, which is a symmetric positive semi-definite matrix, since Cyp,
is real and symmetric. This means that for all its eigenvalues ¢, > 0 and then the
perturbation dA!, either vanishes or comes in pairs of opposite sign

5Ny = EEMI() s (4.96)

and thus the first order perturbation to the entropy vanishes because the following combi-
nation also vanishes

Z Am dA =0. (4.97)

MmN, =20,

Next, we need to deal with the second order perturbation. Recall the relevant equation
A fr 4 6AQ Ly = A finy 4 6 X Fney + X0 Eny - (4.98)

We can multiply this time my éfjjm/ on the left in order to get rid of the first terms of the
left- and right-hand side

En 0N fh, = ESL/,&A;W L+ E 02,85, (4.99)
We need an explicit expression for . Let us look again at the first order perturbation
AQfL + 5A9£9n =20 fL, AL €0 . (4.100)
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4.8.  Perturbative mutual information

This means that

= (AL —2%) 7 (AL, — dAq) f?,w : (4.101)

We now insert the identity operator

%w = ( Q~ /\gn)_l Z gja Ngja <(X}m - 6AQ) (Erw

n7.j7a

0\—1 .0 70 0
( m >‘n) fnjafn;r‘a(sAQém'y .
n#m,j,a

(4.102)

Note that the addend would vanish if m = n due to the equation for the first-order
perturbation. Now we can plug this in the equation for 5)\%17

o ONZ,
= 52; (6Aq — dAL,) (m
=& (5<AQ =LY (0 = A0 L F0AES,, (4.103)

n¢m7‘j7a

= Y ((&—Aﬁ)152;,6A9f2jaf2}a5A952w.

n#m7]7a

In the last line we used 6} 75 = 0 for n # m. Finally, since §m7,§m7 -

nja

71 ~, ~O
Now = 2 (P =X &Ml heth,
e ) . (4.104)
=> % SAadndAQEY, |

n#m

where we have introduced the projector onto the subspace spanned by the eigenvectors
with eigenvalue A,

n 70
J,o
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Now we compute the perturbation to the entropy due to the second order perturbation

dh
N
Z( Td\, Y

m,y m
=3 > (o) 5%5A9¢3n6A959m$ N
myy n#m i e (4.106)
. .
-¥ r; —A0) Ty (fméz\mﬁnam) @ -
e (o o dh dh
= zn:mz>:n<>\9n — )\2) Tr (¢m6AQ¢n5AQ> : m A0, - T)\n )\n:)\g> :

In the last line we simply relabelled the indices so that m > n. Furthermore, the alternative
expression for the projector was used

zﬁsw 2 = G (4.107)
ol

What is the sign of this expression? Let us take a look at the trace

Tr (émaAqunéAQ) 6
-y <f3:a<smf0 )((mmmfzfo SEDS A(v;gmﬂvs;nf > (Vi)
i,0,5,8 4,0,7, i,0,3,8

_Z< nam,@)220~

We compute now the derivatives of h

e Function

h(\) = (x/f+ 1/2) log (W+ 1/2) - (ﬂ ~1/2) log (VA" - 1/2) ( (4.109)
e First derivative

%(A) Q\F [‘é (\F+1/2)_1og(\/i—1/2)}>0 for A>1/4. (4.110)

e Second derivative

d2h 4F+log(w—%)—log (\/x-l-%)
W= 4N3/2

<<o for A>1/2. (411
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4.8.  Perturbative mutual information

Furthermore, the first derivative is positive but monotonically decreasing, while the
second derivative is negative but monotonically increasing. Both tend to 0 for large A and
blow up for A — 1/4.

In particular, if m > n then \,, > A\, and so

b b 0 (4.112)

%
and the sign of the perturbation is non-positive.

There is also a second order perturbation coming from the term

112 d?h <
w) o <0, (4.113)
;( ) A%, »,,=x0

and thus the sign of this perturbation is non-positive as well.

The last step is to plug everything into the formula for the mutual information between
the two regions

I(A,B):SA+SB—SAB

dh 1 5 d?h 9 9
— Z dei - + 5 (0A) e AFAJ = —EM)*I(r)*G (A,B) > 0.
(4.114)
Therefore, there is a non-negative mutual information between disjoin regions that is en-
hanced due to inflation. Here G(A, B) is a function of the size and possibly the shape
of the regions A and B, e.g., for two spherical regions of radii Ry and Ry we would have

G(A, B) = G(Ry, R2), but its precise form is not that easy to compute.

Nevertheless, G(R1, R2) is a function of the short-range behavior of the operator P and
as such its leading term is expected to agree with the Minkowski computation. In that
case, one has the following result for the mutual information [111]

1
1674 4
Notice that we use the convention of factoring out of G(A, B) not only the long-range
dependence on 7 but also numerical coefficients coming from X (Z, ). The function G(A4, B)
was computed numerically by Shiba in ref. [112] and found

In(A,B) = G(A,B). (4.115)

1
G(R1, Ro) ~ _ZRng x 167 . (4.116)

We take this computation to be valid in leading order for our case, because the kernel
X (Z,7) is equal to the Minkowski kernel for most momenta. Dimensions agree but notice
that R; are comoving, not physical, radii.
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Chapter 4. Mutual information from inflation

Having this expression for the perturbative mutual information, we are ready to apply it
to cosmological perturbations during the inflationary and radiation eras by simply plugging
in the relevant functions £(n) and I(r).

4.4 Application to cosmological perturbations

In the previous section we obtained a perturbative expression for the mutual information
in real space as a function of the correlation function £(n)I(r). Using the expressions
obtained in sec. 4.2 we can obtain right away the expressions for the mutual information.

Let us first focus on inflation. Recall that during this era particle creation takes place
on super-horizon scales. As a consequence, correlations are enhanced and the field-field
2-point correlation function takes the form given by eq. (4.23), i.e.,

1
5(77)—4772

=gl (e () e GG

where the function I(r) admits several approximations. Then the perturbative mutual
information in inflation becomes

(4.117)

: 1
I'(A,B) :Zg(n)QI(r)QR%Rg x 167

w [ () G)-OR G

where we already implemented the approximation from eq. (4.36), which is valid for r <
—no. More compactly, we arrive at

2 2 B 2
(A, B) ~ ~ Fif% [<_fy+log (;“’)] : (4.119)

(4.118)

16 nt

using the approximation from eq. (4.38), which is valid for —ng > r > 1. We see that
the long-range behavior of the correlation function is inherited by the mutual information
and thus an enhancement is obtained due to particle creation during inflation. On the one
hand, the decay with distance is logarithmic and, therefore, slower than inverse powers of
r. On the other hand, the ratio R?R3/ n? can be potentially very large and does not depend
on the distance, as opposed to the mutual information for the Minkowski vacuum, which
behaves as RIR3/ r4, which is necessarily small for the perturbative approach to work.

Let us now turn to the radiation era. Since solutions to the equation of motion are plane
waves, it would seem that there is no additional particle creation during the radiation era.
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However, squeezing of a given mode continues as long as it remains super-Hubble. This
happens because initial conditions for plane waves fix the mode functions to grow for some
time. This leaves an imprint in the function £(n), which takes the following form during

the radiation era )
1 n
e =7 () (4.120)
4nvgnd Us

while I(r) stays the same. As a consequence, the perturbative mutual information during
the radiation era becomes

1 R2R? 4 0\ 1
I'(AB) = o= (:) [(—fy—f—log (?)] , (4.121)

where we already implemented the approximations for the regime 79 > r > 1 on I(r). This
result shows a continued growth of the perturbative mutual information with time as n* /1
during the radiation era.

4.5 Discusion

4.5.1 Comparison with other work

Some time after the publication in ref. [2] of the results presented in this chapter, Jérome
Martin and Vincent Vennin developed a non-perturbative method to compute entanglement
entropy, mutual information and quantum discord [152,153]. Their formalism is based on
coarse-groaning the quantum field on the regions of interest, which allows one the reduce
an infinite-dimensional eigenvalue problem, only tractable with approximations, to a finite
dimensional one. The similarities and discrepancies between our and their results are useful
to delimitate the validity of the perturbative approach to computing mutual information.

Qualitatively, they also find an enhancement of the mutual information, in the sense
that the decay is not a power law, as it would be the case in the Minkowski vacuum, but
rather a logarithmic or log-logarithmic one. In this sense, the non-perturbative analysis
confirms the translation of the long-range behavior of correlation functions into truly long-
range mutual information.

Quantitatively, the perturbative and non-perturbative computations agree when the
physical radius of the spheres involved is smaller than the Hubble radius during inflation.
In our notation, this is equivalent to R < n, for n < n.. For R > n,, both results
depart, having the non-perturbative one essentially a logarithmic dependency, on top of
the also logarithmic dependency on the distance. This suggests that the enhancement we
found, which goes as R*/n?* is actually the first term of a series that does not converge for
large values of R/n. This can be understood right away from the Taylor expansion of the
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Figure 4.3: Comparison between the mutual information of the Minkowski vacuum
eq. (4.115) (blue line) and the enhanced mutual information egs. (4.118) and (4.119) (red
dashed and green dotted lines, as in fig. 4.2), for n, = —0.1, np = —10, n = n, and
Ry = Ry =1 (gray vertical line). Adapted from ref. [2].
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logarithm function
k

log(1+z) =Y % , (4.122)
k=0

whose radius of convergence is 1, i.e., it converges only for |z| < 1.

Alternatively, it is also possible that the random phase approximation does have a
non-negligible effect even at the perturbative level, despite the arguments presented in the
appendix A.l.

Nevertheless, we emphasize the validity of the main physical picture: particle creation
during inflation does lead to an enhancement of the mutual information between distant
regions, which can even be causally disconnected at later times. This is a key feature
of inflation that is consistent with our current understanding of some of the fundamental
features of the universe. Namely, the Copernican principle can be satisfied thanks to the
enhanced mutual information that is shared by causally disconnected patches. We will
elaborate on this in the next subsection.

Martin and Vennin also present a way to compute quantum discord for fields non-
perturbatively in [152,153]. They found it to be non-vanishing for both the Minkowski
vacuum and the quantum state of primordial perturbation during the inflationary and
radation eras. In chapter 5 we will study whether a non-vanishing quantum discord in
field theory can be translated into genuine quantum observations, namely Bell inequality
violations.

4.5.2 Long-range correlations

The enhanced mutual information seems intuitively to be connected to some of the main
predictions of inflation, such as the leading homogeneous and isotropic nature of the uni-
verse and the common causal past of the observable universe. For instance, the CMB
temperature anisotropies are characterized with the 2-point correlation function of cur-
vature perturbations. The enhanced mutual information offers a new perspective on a
well-known fact, namely that fluctuations in distant points in the sky are tightly corre-
lated. Quantum correlations in the CMB have been explored by computing the quantum
discord of primordial perturbations in momentum space [60]. The enhanced mutual infor-
mation is a first step towards a similar study of quantum correlations in position space in
the CMB and possibly other cosmological observables.

Following the ideas presented in [1] we state that, should certain regions collapse to
form PBH during the radiation era, the PBH will inherit the enhanced mutual information
by the collapsing regions. Furthermore, since the quantum discord is also non-vanishing,
some of this mutual information is due to quantum entanglement. Whether this can lead
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to genuine quantum correlations will be discussed in chapter 5 in the context of Bell
inequalities.

Similarly to chapter 3, in our computation we considered a toy model for inflation that
delivers an exactly flat power spectrum. Under such circumstances the formation of a PBH
is an extremely unlikely event. Hence, in order to compute the mutual information between
two PBH, we would need to consider the power spectrum of the particular inflationary
model leading to sufficiently abundant PBH formation [64]. It deviates from flatness at
scales comparable to the comoving size of the PBH at formation time (or, equivalently, the
size of the Hubble scale at formation time), but not for scales well-probed such as the CMB
scales. However, this should make no difference for the mutual information shared by PBH
separated by distances so large that the power spectrum at the corresponding scale is flat
or nearly flat.

Entangled Black Holes have been considered previously in the literature, for instance
in the context of the celebrated ER = EPR correspondence [76]. In this framework, one
could picture the network of entangled PBH as a network of black holes connected by
wormbholes that fill the entire Universe. In that case, the mutual information shared by the
PBH would most likely be relevant in order to characterize the wormholes that connect
them, as long as genuinely quantum correlations are enhanced as well. For instance, two
black holes connected by an Einstein-Rosen bridge would be maximally entangled in the
ER = EPR correspondence, and so their mutual information would be maximal and equal
to the Bekenstein-Hawking entropy of a single black hole.

We wonder whether the entropy of the PBH network can be interpreted as thermody-
namical entropy and, in that case, lead to some kind of entropic forces that would affect
the dynamics of the network. Entropic forces will be the main topic of part III, where a
variational and covariant formulation of non-equilibrium thermodynamics in GR will be
presented and some of its phenomenological consequences will be explored. For now, we
discuss in the next subsection how entropic forces between PBH may work, although in a
pair-wise and non-relativistic set-up.

4.5.3 Entropic forces

Physical forces are usually of two kinds: either fundamental or residual. Entropic forces
belong to a third kind: they are due to collective behaviour and its tendency to increase
the entropy of a physical system. Conversely, they can be seen as the tendency to decrease
the Helmholtz free energy F

F=U-TS, (4.123)

where U, T and S are defined as in sec. 2.6. Following Shiba (see ref. [111]), if the entropy of
quantum fields admits a thermodynamic interpretation, then an entropic force X between
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two black holes arises and is given by

oF  oU 08

e

(4.124)
Here the physical system is the quantum field itself, not the black holes. Changes in the
internal energy U are due to the Casimir effect, which decay quickly as U ~ r~% in the
case of spheres. Changes in the entropy, however, decay much slower

oS oI 1

==, (4.125)

or or r
and lead to a repulsive interaction between black holes, which may eventually compete
with the attractive gravitational interaction.

4.5.4 Remarks

The quantum origin of primordial curvature perturbations generated during inflation has
provided a fascinating explanation for the origin of the matter distribution on large scales.
However, it is often thought to offer no distinctive signature or observational feature com-
pared to simply postulating the existence of a classical Gaussian (free) stochastic field of
density perturbations. This is due to the suppression of the decaying mode thanks to
squeezing, a phenomenon called decoherence without decoherence [146], which is actually
necessary in order to reproduce the apparently classical features of the primordial power
spectrum of matter fluctuations seen in the CMB and LSS.

Nevertheless, there has been recent interest on the quantum nature of the matter distri-
bution and how to properly distinguish quantum from classical perturbations. Although the
decaying mode is hopelessly suppressed in both slow-roll and ultra-slow-roll inflation [154],
there are actually features of the primordial bi-spectrum (the 3-point correlation function)
that would be distinctively quantum and may be probed in the future [102]. On the other
hand, the quantum nature of inflationary fluctuations can be explored with rare but highly
non-linear phenomena like primordial black hole collapse during the radiation era, that
arises precisely because of large non-Gaussian tails due to quantum diffusion during infla-
tion [67]. These events could provide the best clue as to the quantum nature of matter
fluctuations generated during inflation, affecting structure formation and constituting a
significant component of dark matter [155]. We believe the importance of the quantum
origin of cosmological perturbations should not be understated.

In this chapter we have studied the perturbative mutual information between two dis-
joint regions during the inflationary and radiation eras, which shows an enhancement with
respect to the mutual information in the Minkowski vacuum. However, the perturbative
approach as presented here seems to overestimate the mutual information, as compared
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to later non-perturbative results [152,153]. Even so, these studies found a similar long-
distance logarithmic behaviour and pre-factors of O(1) or larger, which are clearly enhanced
with respect to the Minkowski vacuum.

This phenomenon has a quantum origin, in the sense that is linked to squeezing and
particle creation. However, this does not mean per se that enhanced correlations are gen-
uinely quantum in the sense of chapter 2. It was also found in ref. [152,153] that quantum
discord in real space is non-vanishing for both the Minkowski vacuum and cosmological
perturbations, but is enhanced for the latter. This finding is both exciting and striking. On
the one hand, it suggests that particle creation during inflation leads to genuine quantum
correlations. On the other hand, these correlations seem to be present in the Minkowski
vacuum as well, albeit in smaller magnitude. In order to settle this issue, we explore in
chapter 5 whether Bell inequalities are satisfied in these contexts.

Finally, it is worth pointing out that even if the enhanced mutual information is dom-
inated by classical correlations, our results offer a new approach to the predictions of
inflation. Enhanced mutual information is a fundamental prediction of inflation and is re-
lated to a scale-invariant power spectrum of primordial perturbations. Furthermore, future
research in the topic of entropic forces, which has precedence in cosmology, could provide
relevant observational features. We will deal with entropic forces in part 111, although not
in the context of PBH.
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Chapter 5

Bell inequalities in de Sitter

All that is gold does not glitter,

Not all those who wander are lost;

The old that is strong does not wither,
Deep roots are not reached by the frost.

J.R.R. Tolkien, The Lord of the Rings (1954).

5.1 Motivation

The quantum origin of primordial perturbations is a backbone of the inflationary paradigm,
as it was reviewed in chapter 1. Thus, quantum mechanics offers an explanation to the ori-
gin of several cosmological observables, such as the CMB anisotropies and the emergence of
LSS of the universe. The transition of quantum to classical perturbations is understood to
take place either simply by the large squeezing of momentum modes, what John Archibald
Wheeler called decoherence without decoherence [146], or due to a regular decoherence
process [134]. Even though the question whether this explanation suffices is a matter of
debate [156], we will assume it to do so and not dive into possible fundamental quantum
issues, as observational predictions are unquestioned.

It may seem puzzling that a highly squeezed quantum state is regarded as a quasi
classical state of some sort, as they have distinctive quantum properties, such as a large
quantum discord [60] or violation of Bell inequalities [117], both features introduced in
chapter 2. It must be noted, however, that these studies have been mostly carried out in
Fourier space, whereas measurements are done in real space. Furthermore, the physical
significance of Bell inequalities in Fourier space is unclear. Indeed, their violation is re-
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garded as a genuine quantum feature, in the sense that it implies giving up either locality
or realism. However, the requirement of locality only makes sense in real space and it does
not seem to be much inconvenient to have non-locality in Fourier space. It may as well be
that this is simply what the Bell inequality is signalling.

The study of quantum properties in QFT is in general cumbersome due to the infinite
dimension of the Hilbert space. This is not much of an issue in Fourier space, as long
as the theory is linear and the quantum state is Gaussian, for the state factorizes into
Fourier modes. In real space, on the contrary, the quantum state, even if Gaussian, has a
complicated entangled structure. Indeed, this is why only a particular kind of modes was
considered in chapter 3 and a perturbative approach was taken in chapter 4. Nevertheless,
the dimension of the Hilbert state can be drastically reduced by performing a coarse-
graining of the quantum field over regions of interest, as first developed in ref. [152]. This
allows several problems to be tackled analytically and non-perturbatively, such as the
computation of entanglement entropy, mutual information and quantum discord.

Previous works have found that the quantum discord of a quantum field coarse-grained
over two spheres is non-vanishing, both in Minkowski and de Sitter space-time [153], the lat-
ter surely being of particular interest for cosmological applications. Still, it is unclear why
this happens, given that, contrary to de Sitter, there is no particle creation in Minkowski
space-time.

The goal of this chapter is to extend these previous studies to the problem of Bell
inequalities in real space. As such, it collects the results obtained in ref. [6]. By inspecting
these Bell inequalities, we will attempt to settle whether genuine quantum correlations
exist in real space in Minkowski and Sitter space-time. This is a natural continuation of
some of the questions raised in chapters 3 and 4 and closes our discussion on the quantum
universe that is developed in part II.

This chapter is organized as follows. In sec. 5.2 we present the formalism to build Bell
inequalities for quantum fields by means of a particular set of pseudo-spin operators. We
apply this to Minkowski and de Sitter space-times in secs. 5.3 and 5.4. We extend this to
additional pseudo-spin operators in sec. 5.5 and finish with our discussion of the results in
sec. 9.6.

5.2 Bell inequalities for quantum fields

Recall the introduction to Bell inequalities in sec. 2.2. They are usually set up in the
context of bipartite systems over which dichotomic measurements can be performed. A
paradigmatic example of such systems is two particles with spin, which are separated a
large distance.

Quantum fields are quite distinct from discrete particle systems in many respects. First,
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they take values over all space and one can hardly speak of the position of a quantum field.
Second, its phase space described by continuous variables, in particular the value of the
field or the conjugate momentum.

In order to be able to construct a Bell inequality for quantum fields, a two-step pro-
cedure must be followed. First, one needs to perform a coarse-graining of the field, as
mentioned in sec. 5.1, over two spherical regions around given spatial points #; and Zs.
Second, one needs to introduce dichotomic observables as functions of the continuous vari-
ables that describe the phase space of quantum fields.

5.2.1 Coarse-grained bipartite systems

First, let us review how to cast two-point measurements of a quantum field in terms
of a quantum bipartite system, following the proposal made in ref. [153], where further
details can be found. Let ¢(Z) be a real scalar quantum field (since all measurements are
performed at the same time, the time argument is omitted for notation convenience) and
(&) its conjugated momentum. We define the field coarse-grained at a location Z over a

radius R as S o
on@) = (%)’ /(d?’w(g) w (7). 6.1

with a similar expression for 7g(Z). In this formula, a is the scale factor of the universe,
such that space is labelled by comoving coordinates', and W is a window function that
asymptotes a constant at small arguments and decays at large arguments. It is normalised
such that

/ 22W (2)dz = 1/(47), (5.2)

i.e, such that a uniform field is left invariant by the coarse-graining procedure. Moreover,
in order for the coarse-grained configurations of the field to commute when evaluated at
two distant spatial locations, the support of W must be taken as compact. In practice, we
denote this supporte to be of size 1 + 6, i.e., W(z) =0 for z > 1 + 6.

Let us then consider two spatial points #; and Zo distant by d = a|¥] —Z2| > 2R(1+9).
Because of the compactness of W, one has

[pr(71), or(T2)] = [7rR(Z1), TR(Z2)] = 0, (5.3)

while the canonical commutation relation [¢(Z), 7(¥)] = id(Z — ¥) gives rise to

(6R(T), Tr(F;)] = idr (%)3 /{5 A=W (2) 61, = z% (%)3 Gsyy, (5.4)

!This is to make the formalism directly applicable to cosmology in sec. 5.4. Otherwise, in flat space-time,
one may simply set a = 1 and use physical coordinates, as in sec. 5.3.
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which defines the parameter GG, and where the prefactor is arranged such that G =1 for a
constant window function with 6 = 0. As a consequence, canonical commutation relations
for the coarse-grained fields are recovered only after rescaling the fields according to

qBR@):(g) o5 onl@ and ﬁR<f>=<R)2 o5 on@. (55)

The coarse-grained rescaled fields thus describe a bipartite system with canonical commu-
tation relations.

5.2.2 Pseudo-spin operators

Second, we require observables suitable to build a Bell inequality. In a nutshell, this
amounts to build a set of pseudo-spin operators {S, Sy, S.}, which satisfy two conditions:

1. S’% = 52 = 52 =1, so that their eigenvalues are +1.

2. The SU(2) commutation relations [SZ, SJ} é 2ieijk5’k, where ¢;;;, is totally antisym-

metric and €;,, = 1.

Several sets fulfilling this criteria can be defined, see ref. [117]. We will focus for the
main argument of the chapter on the Gour-Khanna-Mann-Revzen (GKMR) pseudo-spin
operators, although another set will also be considered alter.

GKMR operators are built from the eigenstates &R(f)> of the coarse-grained field
configuration. Let us first introduce the auxiliary states

@) =5 [ on@) i ~dn®)]

1 . (5.6)
0@) =5 | or(@) f —or(@))] (
in terms of which the GKMR operators are defined as
Su(@) = / dor (@) [|E(D)) (O(@)| + |O(@)) (£(Z)]]
Sy(&) =i OodczgR(f) [10(@)) (€(T)] - [£(2)) (O(Z)]] (5.7)

0
S.(7) = —/( dor(Z) [1€()) (E@)| - 10@) (O@)]] -
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5.2.3 (Gaussian states

Now that we have a way to define bipartite states from a quantum field and pseudo-spin
operators, we need to characterize the quantum states to be studied within this formalism.
We will work with Gaussian states, because they are of particular relevance to cosmology,
as they are obtained at linear order in perturbation theory?. Furthermore, they are easily
dealt with within the phase space formalism of QM, which was reviewed in sec. 2.5. The
Wigner function of a Gaussian state is then

(5.8)

where we have arranged the bipartite phase-space variables into the vector g = ((5 r(Z1), TR(71),
br(%2), Tr(Z2))T. This Wigner function is fully described by its covariance matrix +, which
can be written in terms of the anticommutator {A, B} = (AB + BA)/2 as [152]?

Yab = ({Gas Qb })

:;% (f>3/d1nkw2 <€k>

(;Wk) Ponll) 3 Paotisine

TS

) 7>¢n(k)sinc(kj> (
) T a k) sine (kd> (5.9)

- - 7 Pes(k) Por (k)

— gnm(k) %P¢¢(k) sinc <

X
TS

R
- - - ~Prn()

Note that this expression casts the result in terms of the Fourier transform of the window
function

W(z) = 42_3/ W(u/z)usinudu (5.10)
0
and the reduced power spectra of the field and its momentum, defined as
{0k dp}) = 2m°k > Py (k)5 (k — K) (5.11)

with similar expressions for Py, and Prr.

2We neglect here unavoidable non-Gaussianities coming from quantum difusion, which lead to non-
Gaussian tails in the probability distribution [67].
3Note that there is a factor 2 difference in the definition of the covariance matrix with respect to ref. [152].
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Here, the Fourier transform is defined as ¢(%) = (27)~3/2 [ Ee"%'fng(l;:’) with a similar
expression for 7(z), and the above definition of the power spedtrum assumes isotropy and
homogeneity, i.e., the Copernican Principle.

Note that the covariance matrix is symmetric by definition, so that only the upper
triangular part has been written explicitly. Furthermore, in our setup subsystems 1 and 2
are taken to be equal, so that the covariance matrix is also symmetric under their exchange.
As a consequence, there are only 6 independent entries, namely Y11, Y12, Y22, Y13, Y14 and
Y24-

It is important to stress that even if the quantum state of the field is pure, the state
of the bipartite system we consider is, in general, mixed. This can be understood as a
consequence of the quantum state not being a product state in real space, as opposed to
Fourier space, and can be seen by computing the purity parameter

1
=Tr(p?) = ——n
p=Tr(p%) N

which equals one for a pure state but is smaller than one otherwise, and where the second
expression is valid for Gaussian state.

(5.12)

This transition from a pure to a mixed state due to tracing over every spatial point
that does not lie within the spheres around #; and > can be understood as an effective
decoherence mechanism [152,153], a consequence of the correlations that exist everywhere
in real space. This can potentially blur the presence of a genuine quantum signal. Indeed,
classical and quantum correlations become harder to tell apart the more mixed the state is.
In ref. [152,153], its effect of quantum discord was investigated. While discord was found
to be non-vanishing, its magnitude is still smaller than that of Fourier space [60]. In the
following sections we will show how it affects Bell-inequality violations.

Note that tracing-out in Hilbert space is equivalent to phase-space marginalisation (see
Appendix D of ref. [157]). This is implemented in the phase-space formulation by inte-
grating the Wigner function over the appropriate phase-space coordinates. The resulting
Wigner function is still Gaussian.

5.2.4 Spin correlators

Recall from sec. 2.5 that in the phase-space formulation of QM, a Hilbert space operator
O os mapped to a phase-space function Wy. Its expectation value is then given by the
integral

(0) 6 T(50) = (20)° [ daWs(@)Wo(@). (5.13)

This formula can be used to‘compute the spin correlators that appear in the definition
of the Bell operator. First, we need the Wigner-Weyl transform of the GKMR operators,
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which are given by

W, o [0, 7(0)] = Gsiem [dn(2)]
Ws, o) [Fr@), 7(®)] = —(21@5 [6n@)] f 1 /(@) (5.14)
W, [§0@), 70(@)] = 36 [3r(@)] 6 rn()]

where P denotes the principal part. Since S;(#1) and 3]- (Z2) act on two separate sectors of
the full Hilbert space, where i, j = x, y or z, the Wigner-Weyl transform of their product
is simply given by the product of their Wigner-Weyl transforms, i.e.

ng(fl)@)gj(@)(Q) = Wéi(fl)(QL Q2)ng(f2)(Q3’ qa)- (5.15)

From the above expressions, one can thus readily compute the spin correlators in the
state eq. (5.8).

In general, one is free to set the directions of the spin measurements in an arbltrary
way. It is however common practice to consider the case where Sa = Sz, S r= Sx, and Sb
and Sb/ are set in the (zz) plane, i.e. Sb = sin 951 ~+ cos HSZ and Sb/ =sinf’ Sx + cos @’ Sz.
Since <Sx(fl)SZ(fQ)>f 0 (see below), upon optimising the polar angles § and ¢’ such as

to get a maximal valud for B, one obtains

B 2\/<{Z(f1>3z<fg)>2 + <3$(92’1)S$(:E’2)>2‘. (5.16)

Therefore, it is enough to compute the correlation functions of two pseudo-spin opera-
tors. We will first show the result and afterwords how to obtain them. First we have

(S5 s = o1

where one recovers the purity parameter introduced in eq. (5.12). This already indicates
that the effective decoherence mechanism mentioned above leads to a suppression of the
expectation value of the Bell operator, since

B = 2\/]32 + < x(fl)gx(52)>2‘7 (5'18)

which can be understood as quantum correlations being reduced. One also has

(8:(#)8:(7)) = = arctan [(12(@11@22 )] ( (5.19)

™
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Chapter 5. Bell inequalities in de Sitter

where a11, a12 and a9y are the entries of the symmetric two-by-two matrix

a=( "= H" ()T ™. (5.20)

-1

In this expression, the two overscripts indicate a restriction of the 4+~ matrix to the lines

labelled by the first index, and to the columns labelled by the second index.

Now, let us see how the integrals leading to these correlators are actually performed.
Plugging eq. (5.8) and eq. (5.14) into eq. (5.13), one first has

<Sx(fl)$x(f2)> 2 2\/m/dq sign(qy )sign(gs)e” SLE (5.21)

Since the field and momentum coordinates play different roles in this integral, let us first
re-arrange the entries of the g vector such that the field coordinates appear first, and then
the momentum coordinates

’ (5.22)

-1

which defines the permutation matrix P. In this new hasis, the matrix v~" reads

- “1\¢p  (m—1)m
T pTyip_ (E:’/_i;w 8_137”)< (5.23)

the sub-blocks of which are given by

,_.

-1

e ((V )1 (v s Cver _ (D12 (Y
()% = <(’Y BES (71)33>’ () = <(’71)32 (71)34><

“iyee _ (VD20 (v )2s 1 (v 22 (77 Haa (524
O ((7 D (7_1)43>< ()T = <(’Y_1)42 (7_1)44> '

We now want to diagonalise the quadratic form g7’y 'q = gy —1q, in a way that does
not modify its two first entries (such that the argument of the sign functions in eq. (5.21)
remains unaffected). This can be done by introducing the new variable @ defined as

_ 1 0
- << ) e 1) 529

4" 'a=QjaQy + Qr (v )" Qx, (5.26)

One has
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5.2.  Bell inequalities for quantum fields

where we have introduced

a= "= H" ()T )™ (5.27)

Qx

Since the Jacobian of the transformation that goes from g to Q is unity, eq. (5.21) gives
rise to

(8@ %(zﬁ e | 1Q110s sian(Quysian(@a)e U
x /(ngdQélezQE(‘Y_l)”Qw'

The integral over @ is a simple Gaussian integral and can be readily performed. Upon
splitting the integral over Q1 and Q2 according to their sign, one then finds

(88 >>é 1 | d@uaque et

and where Q4 and @ are the two-dimensional vectors that compose Q, i.e. Q = (Q¢> (

(5.28)

2/ et’ydet( -

s s [ o [

The first integral is again a simple Gaussian integral, while the second and third integrals
are equal because of the invariance of the problem under exchanging 'y and #5. It can be
computed by first integrating over ()2 and then over 1

/f dQl/ dQ2e 2 a11Q1+a22Q2+2a12Q1Q2)

- aquel i) [ aque (i) (5.30)

_an 9% \ 2
:/(]onl‘?( 2+2a22) : [1+erf <%Q1>:|
V 2a22 2a22

s a2
T 4+ arctan | —42
2+ (auam*a?z) (
o 2
V Tnam — a7y
Combining the above results\one obtains
1

. . 2 [[ dety! 12
ey 2 az 5.31
<5z(901)5w(x2)> 6 m\/ det(y~1)™" det a aretan <a11a22 —afy .
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This expression can be further simplified as follows. Using the formula for determinants of
block matrices in eq. (5.23), one has

dety~! = dety—T

= det(y™) " det { (¥ — (v ) (v ) ()™} ( (5.32)

= det('yfl)7r7r deta,
where we have recognised the matrix a defined in eq. (5.27). Upon replacing deta =
a11a22 — als in eq. (5.31) by det~y~!/det (7_1)M, one finally obtains

<Sm(:i'1)3x(i"2)> = —% arctan [(12(&11&22 - a%2)_1/2} < (5.33)
which is the equation used in the main text.
The other spin correlators are more straightforward to evaluate. One has

(8:(@)8.(32)) 6

- Wl/(m /<dq [_75((]1)] 6(Q2)Sign(q3))6_%qT7’1q

-1
 4ry/det vy
B -1
 dny/dety
=0

dquq4sign(q3)e_%qg’(“’71)33‘13_%Q4(771)44‘I4_‘14(771)43Q3 (5.34)

[(7_1)43%}2

1 _
2? /dQ3Sign(Q3)€_2q3(7 Dsagst 2(v"1)yq
k’y_ )aa

since the last integrand is an odd function, to be integrated over the real line. One finally
has

(S:@S:(2) f mml/m / dgr?6(q1)8(42)8(g3)(qa)e 29774 -
1 .

~ 4/det~

Before proceeding, let us comment on the window function. As mentioned above, it
needs to be compact for the phase-space operators at two different locations to commute.
The simplest choice would then be the Heaviside function. Nevertheless, such a function
can lead to divergences ref. [152,153] in intermediate, non-observable quantities. Therefore,
it is more convenient to consider a continuous window function that is made of a constant
piece and of a linear piece:

( for x <1,
3 1

0 for x>144,
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5.3. Flat space-time

where F(0) = (6 + 2)(62 4+ 26 + 2)/4 is such that the normalisation condition mentioned
above is satisfied.

With that expression, the Fourier transform of the window function is given by

—  3{zsin(z) = (1 +6)zsin[(1 + 6)z] +2cos(z) — 2cos [(1 4 J)z]}
W(z) = SF ()"

(5.37)

and one has
8(83 + 552 + 106 + 10)

5(0 +2)2(62 + 20 + 2)?
Now we have all the ingredients required to compute the expected value of the Bell operator
for any Gaussian state. As a test, we will first apply it to the Minkowski vacuum and then
go on with the quantum state relevant to cosmological perturbations: the Bunch-Davies
vacuum of de Sitter space-time.

G(5) = (5.38)

5.3 Flat space-time

Now that we have set up the tools required to study Bell inequalities in real space, we
consider as first application a massless scalar field placed in the vacuum state of Minkowski
space-time. This is the simplest setup and will allow us to test our formalism with a small
number of parameters, thus facilitating the discussion on whether violations occur or not.
Even though it may seem a trivial case, the fact that quantum discord is non-vanishing [152]
leaves the door open for Bell inequalities to be violated. The exception to this is the limit
0 — 0, for which discord does vanish. The aim of this section is to clarify the presence or
absence of genuine quantum correlations in the sense of Bell inequalities, regardless of the
fact that the Minkowski vacuum contains no particles.

5.3.1 Covariance matrix

After expanding the field into independent Fourier modes, the mode functions in the vac-
uum state are given by ¢ = et /\/2k" and T = ¢p = —i\/k/2 e~ which give rise to
the reduced power spectra

Py = k2/(47%), Prx =k*/(47%) and Pyr =0 (5.39)

Plugging those expressions into eq. (5.9), the entries of the covariance matrix can be com-
puted and are given by

Ki(6) _ ’C (9)
Y11 = 37G(0) Y12 =0, Yoo = 37G(0) 5.0
Li(a, ) Ls(a, 6) .
Y13 = 37G(5) Y14 =0, Vo4 = 37G(0) |
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where we have introduced the integrals

K,.(6) = / IT2(2)d>

N (5.41)
L, (,0) = / 2HW? (2) sinc(az)dz,

which depend on the parameter

|

o' (5.42)

i

which measures the distance between the two patches in units of the patch radius. Note
that a > 2(1 4 0) is required in order for the two patches not to overlap. By plugging the
expression for W given below eq. (5.36) into eq. (5.41), those integrals can be performed
analytically, and {he corresponding expressions can be found in ref. [152].

Let us now evaluate the GKMR spin correlators following the method outlined in
subsec. 5.2.4. Since the field-momentum correlators vanish, namely vi2 = v14 = 0, one
can show that it is also true for the inverse covariance matrix, i.e., (y"1)?™ = 0. As a
consequence, eq. (5.20) leads to

a— (771)¢¢ _ # ( Y11 —713> ( (5.43)

7%1—7%3 —73 711

so eq. (5.19) and eq. (5.17) give rise to

(8:(@)8:(@)) (

= —arctan ’713) = —arctan / Li(a,9) ] (
& V (11 - 7%3 & \/’C%((S) - E%(a, 5)' (5.44)
<Sz(ffl)3z(52)>< '
1 9m2G2(6)

(=) (=30 [ 4/ IKH6) — £3(0.0)] [HE0) — L3(a.0)] (

where the result is also given in terms of the integrals introduced in eq. (5.41).

By plugging those expressions into eq. (5.16), one obtains an explicit formula for the
expectation value of the Bell operator in terms of the two parameter o and 3. The result is
displayed in the left panel of fig. 5.1 for § = 0.01 and as a function of a. One can see that
B(%, %) decreases with v and reaches an asymptotic value at large distances between the
two patches. This can be understood by expanding the above formulas in the limit where
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Bell operator in Minkowski (6 = 0.01) Bell operator in Minkowski (a = ;)
0.770 - — Bxact 167
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Figure 5.1: Expectation value of the GKMR Bell operator in the Minkowski vacuum. Left
panel: § = 0.01 and « is varied from its minimum allowed value, apyin = 2(1 + 6), to larger
values. The blue solid line stands for the full result, the orange dashed line is obtained from
the small-6, large-a approximation eq. (5.46), and the green dotted line corresponds to the
asymptotic value at large a. Right panel: o = aui, (which maximises the expectation
value of the Bell operator, see left panel) and § is varied. The approximation eq. (5.46),
displayed in orange, still provides a good fit to the full result at small §, even though ain
is not so much larger than one. From these figures one concludes that Bell inequalities are
never violated in this setup. From ref. [6]

0 is small but « is large, which gives rise to

(8u(@)8u(@) ) ~ 8 (1+5)+0<$,;>,

92

(5.45)
(8-5.(32)) = 91 i7r221113 [1 ! 818014 o (6’ alﬁ)] (
Together with eq. (5.16), this leads to
87 2 |4 1-2mg\’
EEEELR IARE T A > ’ (549

which is displayed as the orange dasheq line in fig. 5.1. One can check \that, when o > 1,
it provides a good fit to the full result indeed. At large «, B reaches a constant that is
given by the first term of eq. (5.46) and which is controlled by the purity of the state. It
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is displayed with the green dotted line. Note that the case é = 0 is singular, and leads to
B ~16/(9ma?) at large  (so the asymptotic value vanishes).

Since B is maximal when « is minimal, in the right panel of fig. 5.1 we set « to its
minimal value and let § vary, so as to optimise the expectation value of the Bell operator.
One can see that B increases with §,* and reaches an asymptotic value at large § of order
1.6. This is therefore the largest value one can obtain in this setup, and since it is smaller
than 2, we conclude that GKMR Bell inequalities are never violated in flat space time.

5.3.2 Discussion

We thus conclude this section by reporting no real-space Bell-inequality violation with the
GKMR pseudo-spin operators in the Minkowski vacuum state. This settles the question
raised earlier and establishes that, even though quantum discord in real space is non-
vanishing for this state, there is still no Bell inequality violation. This can be understood
from the fact that the interpretation of quantum discord for mixed states is less clear than
when dealing with pure states. One could argue that this result is actually a consequence
of the choice of pseudo-spin operators. Therefore, we will generalize our discussion to a
larger class of spin operators in sec. 5.5.

One may argue that this result was to be expected from the fact that the Minkowski
vacuum contains no particles. In the next section we take a next step and perform the
same computation for the Bunch-Davies vacuum in de Sitter space-time, in order to find
out whether the situation changes when particle creation takes place.

It is worth point out that it was found in ref. [152] that quantum discord decays as a—*

at large distances. The behaviour of quantum discord as a function of « is therefore the
same as for the Bell expectation value, and in that sense, it may be seen as a useful tracer
for identifying the configurations that are most likely to yield quantum effects. However, as
we shall now see, this is not always true, since this behaviour similarity is lost in de-Sitter
space times.

5.4 De-Sitter space-time

Let us now turn our attention to de-Sitter space times, in order to address the case of
primordial cosmological perturbations. Since particle creation takes place in this setup,
it is worth exploring how the situation changes with respect to Minkowski space-time.

“When § — 0, atmin — 2 and one has £1 = 3(13 — 161n2)/20, £3 = 3(In2 — 1)/2, K1 = 9/4 and K3
diverges logarithmically with . This leads to B ~ 0.16, which corresponds to the lower asymptotic value
in the right panel of fig. 5.1 that would be reached if the horizontal axis extended to large enough negative
values.
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5.4. De-Sitter space-time

Recall that we describe scalar primordial perturbations by means of the Mukhanov-Sasaki
variable, as discussed in chapter 1. It is placed in the Bunch-Davies state [55], which is
in excellent agreement with observations of the cosmic microwave background [38]. The
Fourier mode functions of the field v and its conjugated momentum p are thus given by

vp = —i/ f eikn (5.47)

i
SR

e~ tkn <1 i > d
V= —_ an 7=
kT VRk kn ( Pi

and allow us to compute the reduced power spectra.

5.4.1 Covariance matrix

The reduced power spectra associated to the mode functions in eq. (5.47) read

1+ k2n? k4 k2
va(k) = W, Ppp(k) - m, Pyp(k) == m . (548)
The covariance matrix is then obtained by plugging these expressions into eq. (5.9), and
this leads to

it = 0 1 (8.0) + i (3.9) (

M2 = —%’Cl(ﬂﬁ), Vo2 = %, 5.1
o = B L sf0,.0) + sl 5.0) |
=g e B8), =S

Therefore, it depends on four parameters, namely HR, «, § and d. The parameters o and
0 are defined identically to those introduced in sec. 5.3. We recall that they respectively
correspond to the distance between the two patches in units of their radius, see eq. (5.42),
and to the smoothing parameter of the window function, see eq. (5.36). In addition, there
are the parameters HR and (, which include the effects of space-time dynamics. The
parameter H R corresponds to the ratio between the size of the patches and the Hubble
radius, which is the typical distance that characterises the curvature of space-time. The
parameter [ is defined as the ratio between the size of the observed patches and the size
of the entire observable universe, i.e., the size of the region over which observations are

performed,
R

b=
Robs
The reason to do that is that, in practice, cosmological perturbations are measured as
fluctuations away from an average configuration. This average is computed as a mean

<1. (5.50)
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value over a finite part of the universe, the size of which is denoted Rps. This implies that,
in eq. (5.9), the window function needs to be replaced according to

W (kR/a) — W (kR/a) — W (kRops/a) . (5.51)

This can be simply modelled by imposing an infra-red cutoff ¥ > Sa/R in the integral of
eq. (5.9), see ref. [153] for further details. The integrals K and £ are thus defined in a
similar way as in eq. (5.41) but with 5 as a lower bound, namely

Ku(5.0) = [z,
S (5.52)
L,(c,B,0) = (Z'U‘W2(Z) (z) sinc(az)dz .

These integrals can be computed analytically in terms of the cosine integral function. The
relevant formulas can be found in appendix A of ref. [153], where a systematic expansion
in the regime f < 1, § < 1 and « > 1 is also performed. Let us finally note that, in the
limit where H = 0 (i.e., static space time), eq. (5.49) becomes the Minkowski formula in
eq. (5.40), which serves as a consistency check.

5.4.2 Spin and Bell correlators

We now compute the expectation value of the Bell operator by plugging the covariance
matrix eq. (5.49) into the formulas of subsec. 5.2.4. The result is displayed in fig. 5.2.
Since there is at most a logarithmic dependence of the result on these parameters, they do
not play a crucial role. Hence, we choose to show in 5.2 how the result depends on HR
and « instead. The dependence on § and 3 is shown for completeness in appendix B.1.

One can see that two regimes need clearly to be distinguished, depending on whether
HR < 1 (i.e. the size of the patches is smaller than the Hubble radius) or HR > 1 (i.e.
the patches are larger than the Hubble radius).

When HR < 1, the result seems to carry little dependence on «, and coincides with
the values obtained in the left panel of fig. 5.1 in the Minkowski vacuum. This is because,
when HR < 1/« all distances involved in the problem (namely R and d) are smaller than
the Hubble radius, hence the setup is equivalent to a local Minkowski background. This is
why the results of sec. 5.3 are recovered in this regime, which can be formally verified by
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expanding the above formulas in HR and then in o', leading to

(8:(#)8:(@))

5 8 32 [575 — 11+ 51n(28
~ gmaz T 1%)2{97r (e -+ In(ag) — 1] ¢ 20 LIl )]}(
A A L 47‘(‘2 871'2 )
<Z“”&“w>69u_2mg*‘&<HR> (5.53)

x +2v5(14+2In2) —5In2 + 41n? 2+
<1—2mQM1—2m3M<( el )

+lnﬁ(2—41112)—1—(7—4’@—41112)1115)(

where ~g is Euler’s constant and the result is further expanded in § and 8. One thus
recovers eq. (5.45), with corrections suppressed by (HR)?.

An in-between regime is give if 1 /o < HR < 1, R is smaller than the Hubble radius but
not d, hence the flat space-time result may be modified a priori. That is, the two spheres
are smaller than the Hubble sphere and exist in different Hubble patches. However, this
regime cannot be seen in fig. 5.2 since it does not display large-enough values of «. This
is why, in fig. 5.3, the expectation value of the Bell operator is shown as a function of «,
where 3 and § are fixed to the same value as in fig. 5.2, and where we have set HR = 1072,
For comparison, the flat space-time result is also displayed. No strong deviation from the
de-Sitter result can be observed, even when d is larger than the Hubble radius. In any
case, one can see that B decreases with «. Therefore, when HR < 1, B is maximal in the
Minkowski limit, where we have already shown that there is no Bell-inequality violation.

When HR > 1, one can see in fig. 5.2 that an asymptotic value is also reached, which
decreases with «. This can be understood analytically by performing a large HR, large «
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expansion of the above formulas, which leads to

N

(8:(@)8: (@)

~ g arctan 4 [1 —E — hl(aﬁ)]
T \/f+41n‘§) 11— 8yk — 4In(2a87)] |
< Az(fl)sz(f2)>

272 ) ) 5
~ (HR)Q{ 4(7E(1+21n2)—1—91n2—|—41n 2+ 2In(af?) 1—21n2><

+1nd (11 — 8yg —4ln2)]<

X [{— In2+4In’2 —Ina (2—41n§><#(3—41n2)1n6] }
(5.54)

In addition to the clear distinction between the two regimes, the main conclusion of our
analysis is that maximum expectation value for the Bell operator is obtained for large
HR and « close to its minimum value. This happens when the coarse-graining scale R
is large compared to the Hubble radius, and the two patches are almost adjacent. In
appendix B.1, we further show that decreasing § and 8 make B larger, but not to the
extent of leading to a Bell inequality violation. In fact, we can derive an upper bound on
B as follows. Formally, when 8 — 0, the integrals X_; and £_; logarithmically diverge,
and in the limit § — 0, K3 logarithmically diverges too. This behaviour is such that
p = <Sz(§7’1)3z(f2)> x 1/In(Bd) — 0 in this limit, and such that the argument of the
arctan function in ed, (5.19) goes to a finite constant (that only depends on « if one
further lets HR — oo). This proves that <‘SA’Z(:E'1)SA'Z(:1?2)>£< 1 in this limit, hence B < 2,

see eq. (5.16), which therefore applies to the whole paraméger space.

—-1/2

5.4.3 Discussion

The fact that no Bell-inequality violation is found in de Sitter is non trivial. One would
expect that, since entangled pairs of particles with opposite Fourier momenta are produced
on super-Hubble scales, this would lead to genuine quantum correlations. Indeed, the
quantum state in Fourier space in highly squeezed, which means that its quantum discord
is large as well [60,150] and Bell inequalities are violated (both with the GKMR operators
and with other pseudo-spin operators, see ref. [117,158]). The reason why this is no longer
the case in real space is subtle. Because the quantum state is correlated everywhere and
large spatial regions are traced over, one deals with mixed states. This impacts quantum
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discord as well, so that it becomes smaller in real space than it is in Fourier space [153],
although it is still non zero. This suggests that quantum discord may not always provide
a direct probe of genuine quantum correlations in the context of mixed states.

The relationship between quantum discord and Bell inequalities gives a rich scale de-
pendency. In fig. 5.4 we show these quantities and other relevant ones, such as mutual
information and purity, as a function of HR. The parameters «, 8 and ¢ are kept fixed.
One finds that B reaches a plateau in both the HR <« 1 (Minkowski) and HR > 1 limits,
being the latter higher than the former, with a transition from one to the other around
HR ~ O(1). In contrast, quantum discord vanishes in these two limits, and is maximal
when HR is of order one. Therefore, contrary to the flat space-time case discussed in
sec. 5.3, discord cannot be used to identify the setup configuration that maximises our
ability to detect quantum features.

For comparison, the state purity introduced in eq.(5.12) is also shown in fig 5.4. In the
limit HR < 1, it shares the same behaviour as B/2, as already explained in sec. 5.3. In
this regime, the more mixed the quantum state is, the smaller the value of B is, which is
intuitive. However, in the large H R limit, the behaviour of the state purity and of the
Bell expectation value are opposite: p decreases with HR while B increases. This can
be understood as follows. Since more entangled particle are created at large scales, the
field becomes more correlated in real space as R increases, as can be seen at the level
of the mutual information Z, which only increases with HR. It explains why the state
purity decreases (one traces over regions of space to which the system is more and more
entangled).

Both quantum discord and the Bell operator are driven by a compromise between the
amount of quantum entanglement (measured by mutual information Z) and the state purity
p. But since these two quantities evolve in opposite ways, how the trade-off is settled is a
priori not trivial, and it happens to be settled in different ways for D and B.

5.5 Other pseudo-spin operators

In the previous sections we have studied GKMR, pseudo-spin operators in field theory, and
use the general formalism to show that real-space Bell inequalities built with them are not
violated neither in Minkowski nor in de Sitter space-time. Since GKMR are built from the
fields and, in principle, one of possibly many pseudo-spin operators, one may argue that
our result is a mere consequence of the choice of pseudo-spin operator. Therefore, one may
hope to achieve Bell inequality violations by considering other operators. Unfortunately,
it is not possible to verify (at least with the present approach) all possible pseudo-spin
operators, given that there may exist an infinite number of them and that only a few
explicit constructions are known [117,159]. However, in this section we will still consider
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another set of pseudo-spin operators: the Larsson spin-operators [160], which is in fact an
infinite, one-parameter family of spin operators.

5.5.1 Larsson pseudo-spin operators

The idea of the Larsson pseudo-spin operators is to split the real axis describing the scalar
field value into intervals of size ¢, where ¢ can be freely chosen by the observer. One then
introduces [160]

2; / U donl@) | al@) + 6 <<<R<f> + Ol >><f3<f>+e},

8

< QZ”“)Z AOR(#) | on(@) + ) (Jrl@) ~ n(@)) <fR(f) +] ( (5.55)
s - 3 [ e ) <fm

One can check that these operators are indeed pseudo-spin operators, as they satisfy the
relations given below eq. (5.7). Their Wigner-Weyl transforms are given by [117]

[\

Wes ) = Z 2 cos [# (7)) {9 [&R(f) L 2n€] iy [{R(f) _ g ~(2n+ 1)@] } ,

Wi ) = f: 2sin [fR(f)e} {([{R@) - g - M] 9 [{R(f) g (2n + 1)@”

n=—oo

Wz = i (=1)" {9 [fR(f) - ”E] —0 [{R(f) —(n+ 1)4 } (

n=—

(5.56)
where 6 is here the Heaviside function. By plugging these expressions into eq. (5.13), one
obtains explicit expressions for the spin correlators in terms of double infinite sums of
integrals involving the error function, which we provide later in this section.

These expressions do not admit general analytic expressions, but can be evaluated
numerically. Before displaying the result, it is worth mentioning that further analytical
insight can be gained by expanding those formulas in the limits £ < 1 and ¢ > 1. Those
expansions are carried out later in this section. We give first the final result.
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When ¢ < 1, one obtains

) ) .
e a1 e N e
<Sﬁ($1)5£($2)> 1 Z e 2 a11a422—479 gg 1 )
e=(+1,£)7T (5‘57)

2
_ 7 (a11+agg—2a;2)

<5v£( 3)5’£(fz)> e 202 (aq11a22—a%s) — 0,
{—0

where a1 and ao are functions of the entries of the covariance matrix defined later in this
section.

Let us inspect this limit. The approximations above show that B — 2 as £ — 0, hence
there is no Bell-inequality violation in this regime. Let us note that, when ¢ decreases,
the size of the f-intervals in eq. (5.55) decreases, hence numerically one has to include
more terms before truncating the sum. This is why the small-¢ regime is numerically
challenging, and there is always a minimum value of £ below which the computation cannot
be performed, given finite numerical capacities. For this reason, having an analytical
control on the small-¢ regime is convenient and even necessary in order for the analysis to
be complete.

When £ > 1, one finds that
(Sh@)SL(E) ) [ 0, (5.58)
—00
while S’ﬁ(i’) approaches the S, component of the GKMR operator,
SL(T) — Si(3). (5.59)
L—o0

Its two-point function is thus given by eq. (5.19) in this limit. Considering eq. (5.16), this
allows us to establish the bound

Jim BY < BOEME (5.60)
— 00

that is, B’ is smaller than the GKMR result in the limit ¢ — co. Hence, no Bell-inequality
violation can be obtained in this regime either.

In between those two regimes, as mentioned above, one has to resort to numerical
computations, which we present in the next subsection.

Intermediate analytical expressions

By plugging eq. (5.8) and eq. (5.56) into eq. (5.13), one obtains explicit expressions for
the two-point correlation functions of the Larsson spin operators, involving a double sum
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of double integrals. One of these integrals [say the one over b r(Z2)] can be performed in
terms of the error function, and one obtains

n,m=—00

T 1 - 2 = (5.61)
< 2 (71)5% 2)> 27T\/<(ewdet(7‘1)”' 2. Huml@n @)

(Sh@nSi(@)) fo.

=2\ (= 1 . n+m - o
<ﬁml)gﬁ(@%zM(emdemmw S Az

n,m=—00

The functions Z, ,, and &, ;,, are defined as

2
T n+1)¢ d¢e—%¢2 (au—ﬁ) ¢12¢ + age(m + 1)¢ orf a12¢ + agaml
2a22 ¢ \ V2a22 V2az22
2 . 2&2
2n+1 dgf) Z ™ 6_%2(011_%)4';@22 (alzay_322a1)_2azg_geT'(771)ﬂﬂ'5
+2nl Il I L

7{1245 +ilas + aze (2m + 3) ¢
i —

— orf ?{12¢ + ilag + aso (2m + %) 4
\ v2a99

} (5.62)

where we recall that the matrix a was introduced in eq. (5.27), and where the integration
variable ¢ physically correspond to ¢ (Z). We have also introduced the vector € = (1, e2) 7,
and the quantities a1 and ao defined as

a 22{6_1)12[(7_1)”]111% + (D2l 2 ey

+ (Dl ™y e + (71)14[(71)””]2_21%}7(

1 (5.63)
o :2{6_1)32[(7_1)”]1}1% + (7 a2l e+

Yl e, + w—l)gnw—l)”ﬂg;ey}(

In general, the remaining integral and double sum need to be carried out numerically.
However, more analytical insight can be gained in the small-¢ and the large-£ limits.
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Small-¢ limit

When ¢ < 1, the functions Z,, ,, and &, ,, involve differences of error functions evaluated
at nearby points. They can therefore be Taylor expanded as follows

erf(bl + bzmﬁ) = Me—(bﬁ-bzmﬁf ’

\/7?
(5.64)

orf |:b1 +b ((m + 2) 4 —ort {bl o ((m * ;> 4 é (5.65)

~ Oby erf by + byt(2m + 1/2)] = Qbﬂe[b1+bzf(2m+é)]2 ,
T

d
erf [by + bo(m + 1)€] — erf(by + baml) ~ bzﬁm

and

d(2mb2€)

The remaining integrals in Z, ,, and X, ,, become Gaussian integrals and can thus be
performed analytically. Similarly, the sums over n and m can be approximated by Riemann
integrals upon introducing x = nf and y = mf and by noticing that

[e.e]

[o¢]
Pglnt,ml) ~ dzd
Zé g(nt,m )€<<1/oo rdyg (z,y) , (5.66)

n,m=— -

if g is a sufficiently smooth function.

In the particular case of interest to us, since g(n, m) is Gaussian, one can compute its
Riemann integral right away. This finally gives rise to

_ m2(ayy+agy—2a33)

<S£(f1)5’£(f2)> 6 e 202 (a11a92—a%,) —0 (5.67)

£—0

and

a11a3+ap9aT —2a15d1a9 +€T (v 1) €

<{ﬁ(fl)§ﬁ(fz)> ~ iZ(é{ ez —ady } 1. (5.68)

£—0
€

Large-/ limit

When ¢ — 0o, in the expression for S4(Z) given in eq. (5.55), one can see that only the
term with n = 0 has a non-empty integration domain. However, this term involves the
field eigenstate |0o), which necessarily vanishes when evaluated on a normalised state. This
implies that

0,
— 00

(St@)si) €—> (5.60)
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which can be further checked by noticing that for all m, the two error functions appearing
in the expression of X, ,, given in eq. (5.62) are evaluated at the same point (i.e. either
+00 or —o00), hence the difference always vanishes.

For S‘ﬁ (Z), when evaluating the expression given in eq. (5.55) in the limit £ — oo, only
the terms n = —1 and n = 0 remain, which leads to

st — C” 46R(®) Fnld)) <{R<f> " /f 46R(®) Fn(d)) <<<R<f>
= (:;dQER(f) QBR(f)> <fR(f) :

This formula coincides with the one for the S, component of the GKMR operator. Indeed,
by plugging eq. (5.6) into eq. (5.7), one obtains

8u(7) = 5 /( Abn(®) [ bl ) <<<R<f> - @) <<&R<f> ] <
- [ ain@ qER<f>><fR<f> ,

where the change of integration variable ¢gr(Z) — —¢g(¥) has been performed in the
second term. One thus has

(5.70)

(5.71)

SUE) — Su(E), (5.72)

£—00

hence the two-point function of the S%(&) operator is given by eq. (5.19) in the limit £ — oo.

5.5.2 Flat space-time

In fig. 5.5, we display the expectation value of the Larsson Bell operator in the Minkowski
vacuum, as a function of £, for « = 3 and é = 0.1. One can check that the small-¢ and the
large-¢ approximations derived above provide good fits to the full result in their respective
domains of validity. In between, we find that B’ is a decreasing function of ¢, and this
behaviour is observed for any value of § and «. As a consequence, one has B! < B0 =2,
hence there is no Bell-inequality violation in flat space time.

5.5.3 De-Sitter space-time

Similarly, the expectation value for the Larsson Bell operator is displayed as a function of
¢ in the de-Sitter Bunch-Davies vacuum state in fig. 5.6, for 6 = 0.1, 8 = 1074, o = 3 and
for a few values of HR. One can check that the small-¢ and the large-¢ approximations
derived above still provide good fits to the full result. In between, B’ goes through a
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local minimum at intermediate values of ¢, hence it is always smaller than 2. This same
behaviour is observed with other values for the parameters §, 8 and «, which allows us to
conclude that no Bell-inequality violation can be obtained with the Larsson operators.

5.6 Discussion

In this chapter we have discussed how to build real-space Bell operators in QFT and
obtained its expectation value when the field is placed in a Gaussian state. This allowed
us to continue our discussion on the existence of quantum correlations between distant
regions of the universe. We have found that there is no Bell inequality violation in both
the Minkowski vacuum and the Bunch-Davies vacuum of de Sitter space-time, the latter
being relevant to characterize primordial perturbations, in particular by means of the
Mukhanov-Sasaki variable.

This is to some extent a natural continuation of the discussion in chapters 3 and 4
and closes part II. In addition, it follows a serious of works dealing with this fascinating
topic, which we can trace back to refs. [60,161], where quantum discord in Fourier space
was computed for two-mode squeezed state, revealing that the creation of pairs of particles
with opposite Fourier momenta in de-Sitter geometries is associated with the produc-
tion of a large quantum discord, i.e.m with the presence of genuine quantum correlations.
Fourier-space Bell operators were then constructed in refs. [117,158], confirming that Bell
inequalities between opposite Fourier modes can indeed be violated, and hinting towards
the presence of quantum features in primordial fluctuations. However, as it was discussed
in sec. 2.2, Bell inequalities are build on the assumption of locality, whose violation has
not a clear significance in Fourier space.

Therefore, entanglement entropy, mutual information and quantum discord have been
studied in real space, in particular in refs. [1,2], on which chapters 3 and 4 are based, as well
as in refs. [152,153]. It was found that, although they remain non vanishing, their typical
values are greatly reduced compared to the Fourier-space setup, casting some doubt on the
ability of cosmological structures to display quantum correlations. We can understand this
phenomenon in real space due to the existence of local correlations, so that when regions
of space are traced over, the rest are left in a mixed state. This effect, called effective
decoherence, does not take place in Fourier space, for the two-mode squeezed state is a
product state of each Fourier mode.

The formalism of ref. [152] was employed in this chapter to be build Bell operators in
real-space QFT and to compute its expected value for Gaussian states. We have found
that no Bell inequality violation takes place in both Minkowski and de Sitter space-time,
despite the fact that quantum discord is non-vanishing in both cases [152,153]. In addition,
the notable difference between both states in Fourier space, the former being a Fock space
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vacuum the latter being a two-mode squeezed state with large quantum discord, does not
seem to play a role in our results.

This illustrates that the interpretation of quantum discord for mixed states is sub-
tle. Effective decoherence seems to act as a quantumness censor, at least in this setup.
Moreover, the configuration where it is maximal (namely when the two patches have size
comparable to the Hubble radius and are almost adjacent [153]) does not coincide with the
one where the expectation value of the Bell operator is maximal (namely when the patches
are large compared to the Hubble radius and are almost adjacent). This illustrates again
the subtleties of quantum discord for mixed states.

It is worth mentioning a few possible directions along which this research program could
be carried on. First, even though we have generalised our finding to another family of spin
operators in sec. 5.5, we have not tested all possible Bell operators (only a few explicit
constructions are known). Therefore, strictly speaking, we cannot claim that real-space
Bell inequalities can never be violated in de Sitter, and it would be interesting to derive a
generic mathematical argument (or expose a counter-example).

Second, there are other classes of Bell inequalities, which rely on measuring the system
at different times. Those are the temporal Bell inequalities [162-164], the Legget-Garg
inequalities [165], and the bipartite temporal Bell inequality [166]. The last two were
shown to be violated by cosmological perturbations in Fourier space in refs. [167] and [168]
respectively, and their investigation in real space remains to be carried out.

Third, it would be interesting to investigate correlations and entanglement between
more than two spheres. This may effectively reduce the size of the traced-out regions, hence
the importance of the effective decoherence effect. This may also require to account for non-
Gaussianities, which have been shown to be relevant for the search of primordial quantum
signals [102, 169]. Indeed, non-Gaussian tails are known to be present in cosmological
perturbations [67] and may give rise to genuine quantum correlations. The study of classical
and quantum correlations between more than two spheres is also relevant in trying to
understand how many-body entropic forces may exist between black holes, following the
arguments developed in chapter 4.

On top of the effective decoherence effect, a physical decoherence mechanism may take
place in the context of cosmology, arising from the fact that the scalar field describing cos-
mological adiabatic perturbations usually couples to other, unobserved degrees of freedom
(additional fields, unobserved scales, etc.). This may come as an additional quantumness
censor and would have to be studied, if one of the previously-mentioned directions turns
out successful. Recently, in ref. [150], it was found that there exists a wide region in pa-
rameter space where the Fourier-space quantum discord is unaffected by environmental
effects even where they make the state of the system fully decohere. Generalising this cal-
culation to real-space setups would further test the relationship between quantum discord,
Bell-inequalities violation, and the detectability of quantum features in cosmological fields.
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5.6. Discussion

This chapter closes part II, which dealt on the study of classical and quantum corre-
lations in cosmological perturbations. We conclude that finding genuine quantum corre-
lations is inherently hard, if possible at all, due to the unavoidable effective decoherence

present in any local QFT.
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Bell operator in de Sitter

Figure 5.2: Expectation value of the GKMR Bell operator in the Bunch-Davies vacuum
of the de-Sitter space-time, as a function of the parameters a« = d/R and HR. Here «
varies from its minimal value oy = 2(1 + §). The colour encodes the value of B, and
a few contour lines are displayed in white. The UV and IR regulators (on which there is
at most a logarithmic dependence) have been respectively set to 6 = 0.01 and = 1074
(see appendix B.1 for other slices in parameter space). Different behaviours are obtained
depending on whether HR < 1 or HR > 1, i.e. depending on the size of the measured
patches with respect to the Hubble radius (see main text for further details). From ref. [6].
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Bell operator for small HR
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Figure 5.3: Expectation value of the GKMR Bell operator in the Bunch-Davies vacuum
of the de-Sitter space time for 8 = 10~4, HR = 1072, § = 1072, and as a function of the
parameter o = d/R. For o < 1/(HR), all distances involved in the problem are smaller
than the Hubble radius hence the de-Sitter and Minkowski results coincide. Note that
values of @ > 1/ are not displayed since they would correspond to d > Rops. From ref. [6].
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Correlations in de Sitter
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Figure 5.4: Expectation value of the GKMR Bell operator B in the de-Sitter space time,
as a function of HR and for o = ain = 2(1+6), 8 =10"% and § = 1072, For comparison,
we also display (two times) the state purity p, to which B asymptotes in the small-HR
limit, as well as mutual information Z and quantum discord D, the latter being labelled
with the rightmost vertical axis. From ref. [6].
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Larsson Bell operator in Minkowski
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----- Large-¢ approximation
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Figure 5.5: Expectation value of the Larsson Bell operator in the Minkowski vacuum, as
a function of £, for « = 3 and 6 = 0.1. The blue solid line corresponds to the full result,
the red dashed line to the low-¢ approximation eq. (5.57), and the red dotted line to the
large-¢ limit eq. (5.58) and eq. (5.59). From ref. [6].
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Larsson Bell operator in de Sitter (sub-Hubble patches) Larsson Bell operator in de Sitter (super-Hubble patches)
2.00
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Figure 5.6: Expectation value of the Larsson Bell operator in the de-Sitter space-time, as
a function of £, for « = 3 and § = 0.1 and 8 = 10~ A few sub-Hubble values of HR
are shown in the left panel, and a few super-Hubble values in the right panel. The red
dashed line corresponds to the low-¢ approximation eq. (5.57), and the red dotted line to
the large-¢ limit eq. (5.58) and eq. (5.59), both in the case HR = 1. From ref. [6].
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The non-equilibrium universe
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Chapter 6

Irreversible gravity

Someone once told me that time was a predator that stalked
us all our lives. But I rather believe that time is a companion
who goes with us on the journey and reminds us to cherish
every moment because they’ll never come again. What we
leave behind is not as important as how we’ve lived. After
all, Number One, we’re only mortal.

Jean-Luc Picard in Star Trek: Generations (1994).

6.1 Motivation

Forces are key elements of the classical description of a physical system. They dictate the
equation of motion of a physical object in compliance with Newton’s second law, F = ma.
Forces can be generalized to relativistic physics (both SR and GR), taking the form of
tensors. They can be classified in three types depending on their microscopic origin:

e Fundamental forces. They are due to the fundamental interactions between the
elements of a physical systems and are functions of the charges of each element and
their phase space coordinates. The four fundamental interactions are the strong,
weak, electromagnetic and gravitational interaction.

e Residual forces. They are due to the microstructure of the elements of a physical
system. These elements are composite, so that their total total charge with respect
to a fundamental interaction vanishes, but the charge of the constituents does not.
The fundamental interaction between constituents of different elements leads to a
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residual force between them. Examples of residual forces include the nuclear and van
der Waals forces.

e Entropic forces. They are due to the tendency of collective macroscopic systems to
increase their entropy. An example is diffusion due to Brownian motion.

In theoretical physics we are mostly used to characterizing and working with funda-
mental forces and, to a lesser extent, residual forces. Nevertheless, entropic forces also play
a role in theoretical physics and couple microscopic and macroscopic dynamics. Further-
more, since they are linked to the increase of entropy, they break the symmetry under time
inversion and cause irreversible phenomena.

As we saw in sec. 4.5, repulsive entropic forces may arise between PBH due to their
tendency to increase the entropy of quantum field of cosmological perturbations. Such
proposal is derived from classical thermodynamics and non-relativistic forces. We would
like to understand how to generally formulate entropic forces in a fully general-relativistic
setup.

The goal of this chapter is to provide a variational and covariant formulation of non-
equilibrium thermodynamics. This first principles approach includes existing descriptions
of non-equilibrium phenomena, such as real fluids, but allows for other sources of entropy
and reconciles the irreversible nature of the laws of thermodynamics with the symmetries of
the Einstein-Hilbert action. Entropic forces between PBH will serve as motivation, but we
will not develop here the variational treatment of the thermodynamic variables associated
to the quantum field.

The link between gravity and thermodynamics is deep and provides insight into the
need of a UV-complete theory of quantum gravity. The work of Hawking [100] and Beken-
stein [105] introduced the notion of temperature and entropy of a black hole, leading to
the formulation of black hole thermodynamics [123]. This points towards the existence of
unknown microphysical quantum degrees of freedom (d.o.f.), being the geometric descrip-
tion of gravity an emergent macrophysical phenomenon. The link between gravity and
thermodynamics has only grown ever since. It has been argued that it constitutes the first
piece of the connection between classical and quantum gravity [106]. The discovery of the
area law of entanglement entropy [103,104] particularly supports this idea.

Motivated by the relevance of thermodynamics in gravity, we argue for the need of a
proper understanding of the interplay between GR and non-equilibrium thermodynamics.
GR, like other physical theories that can be deduced from the stationary action principle,
is a time-reversible theory. It is true that the dynamics of horizons has irreversible fea-
tures, as dictated for instance by the already mentioned black hole thermodynamics, in
particular the second law [130]. Still, irreversible phenomena are not included into GR in
a complete and systematic way. It is the purpose of the work presented in this paper to
provide such an inclusion, i.e. a covariant formulation of non-equilibrium thermodynamics
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in GR. Our results show that non-equilibrium phenomena, either in the matter content or
space-time itself, lead to a back-reaction on the gravitational field equations with potential
observational consequences.

This chapter is organized as follows. In sec. 6.2 we review existing work on the varia-
tional formulation of non-equilibrium thermodynamics. In sec. 6.3 we apply this concept
to gravity and show how it fits with both the Lagrangian and Hamiltonian formulation
of GR. In sec. 6.4 we argue that temperature and entropy are naturally included in the
matter or gravitational Lagrangian. In sec. 6.5 we look for applications of our results and
obtain the non-equilibrium Friedmann and Raychaudury equations. In sec. 6.6 we include
real fluids into the formalism. We finish with a discussion of our results in sec. 6.7.

6.2 Variational formulation

In this section we review the variational formulation for non-equilibrium thermodynamical
systems, which was developed by Gay-Balmaz and Yoshimura in refs. [170,171]. Such
formulation is the synthesis of two physical frameworks. On the one hand, one has the
laws of thermodynamics in the axiomatic formulation of Stiickelberg (see also sec. 2.6):

e First law or energy conservation. For every thermodynamic system there is an ex-
tensive scalar quantity F called energy, which can only change due to interactions

with the environment iE
— = P“(t). 6.1
= P() (6.1)
e Second law or positive entropy production. For every thermodynamic system there
is an extensive scalar quantity S called entropy, which is a monotonically increasing

function of time

as
dt
where the equality holds only once the system is in equilibrium.

It) >0, (6.2)

On the other hand, the dynamics of a mechanical system is dictated by the stationary
action principle:

e Stationary action principle. For a dynamical system with configuration manifold @
and Lagrangian function L(q, ¢) : TQ — R, the physical curve defined on an interval
t € [t1,t2], satisfies the variational condition

5 /t( dtL(g, ) =0, (6.3)
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which delivers the well-known Euler-Lagrange equations

oL o _ o
dt 0¢  Oq

In order to merge these principles, let us now consider a mechanical system whose
Lagrangian function depends on the entropy S as well. The stationary action principle
dictates that the physical curve (q(t),S(t)) on @ x R, defined on an interval t € [t1, 2],
satisfies the variational condition

5 /( dtL(g,d,8) = 0. (6.5)

Since the thermodynamical system is out of equilibrium, it must be supplemented with the
laws of thermodynamics. Energy conservation is related to the symmetry of the Lagrangian
under time translations and so is already encoded in the variational formulation. On
the other hand, the second law requires the introduction of a friction or entropic force
F:TQ xR — T*@Q and is implemented by a variational constraint

oo (0,0,9)65 = (F(a,4,5),04) (6.6

where (-,-) denotes the scalar product. This variational constraint comes also with a
phenomenological constraint

oL, . ¢ . .
S
The curve (q(t), S(t)) that satisfies all three conditions is given by:

d oL 0L
T a.  a. — F q)é7 S
dt 0q  Oq ( ) (6.8)
oL .
— 85 =(F(q,q 7).
55° = (F(¢,4,5),4)

Hence, once the effect of non-equilibrium thermodynamics is enforced by the second law,
one obtains the Euler-Lagrangian equation with an additional force of entropic origin.
This variational formulation of non-equilibrium thermodynamics applies as it is to isolated
systems, i.e. thermodynamic systems that do not exchange energy (heat and work) nor
matter with its environment. In order to consider a closed thermodynamic system, i.e. one
that exchanges energy but not matter with its environment, one must include the effect
of external work in eq. (6.5) and external heat supply in eq. (6.7). The generalization to
open systems, i.e. that allow both energy and matter exchange, is developed in [172]. As
we will see later, one often finds that the temperature of the thermodynamic system can

be introduced as
oL
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although it is not necessary to do so in the general case.

The thermodynamical nature of the system implies the explicit or implicit coarse-grain
of some d.o.f. Its detailed microphysics may be unknown, but its macrophysics has an
effect on the dynamics of other physical variables whose microphysics is known. This effect
is encoded by the second law of thermodynamics, which restricts the configuration space
and delivers a modified equation of motion, and it allows us to study the coupling between
these d.o.f.

The full variational implementation of the continuum case is a bit more involved, should
the entropy be allowed to have a spatial dependence [171]. The reason is that friction causes
internal entropy production, but entropy can also increase or decrease locally due to entropy
fluxes. For the sake of clarity and when required, we will instead follow a short-cut and
introduce the required additional equations from physical considerations.

6.3 Non-equilibrium dynamics in GR

After reviewing the variational formulation of non-equilibrium thermodynamics we are
ready to apply this same formalism to General Relativity. The coupling of the gravitational
field to coarse-grained physical d.o.f. delivers an effective modification of Einstein field
equations. We will first show this by supplementing the Einstein-Hilbert action with the
constraints given by the second law of thermodynamics. Then, we will check that it is also
consistent with the Hamiltonian formulation of General Relativity. We will also provide a
physical insight onto the effects of this effective modification of the gravitational dynamics
by inspecting the Raychauduri equation.

6.3.1 Lagrangian formulation

The variational formalism can be applied directly to the Einstein-Hilbert action without
any particular assumption on the metric. However, it requires the introduction of a foliation
of the space-time manifold. This cannot be avoided: the second law of thermodynamics
is linked to the existence of the arrow of time. Nevertheless, the Einstein field equations
keep its general covariance, as we will check shortly.

Let us build our action as the sum of the Einstein-Hilbert action of General Relativity
plus a matter term

where the coupling is k = 87G and we allow the matter Lagrangian £,,, which is a tensor
density, to have a dependency on the entropy S. It may as well depend on additional fields

133



Chapter 6. Irreversible gravity

that describe the matter content. In this setup, the stationary action principle takes the
form 0(6.10) = 0. That is

6(vV—gR) 6Ly / 0Ly
4 uv 4 _
/d x <% Sgv T agm ) 09+ [(d'e 5505 =0, (6.11)

which is now supplemented with the variational constraint given by the second law of
thermodynamics

oL 1
Tomsg — = v 6.12
g 08 = S Fuwig", (6.12)

where F),, is the tensorial friction or entropic force. Analogously to the Lagrangian density
one can define the friction density as

F, = /(d%ﬁ Fuw - (6.13)

The constrained stationary action principle gives the non-equilibrium Einstein field equa-
tions

1
R;u/ - §Rg;u/ =K (T;W - f;w) ) (6'14)

which includes the usual geometric and matter terms plus an entropic one. This equation
is one of the main results of our work and shows how non-equilibrium thermodynamics is
very relevant in gravitation.

Note that the Bianchi identities, a reflection of the general covariance of the theory,
allow the covariant non-conservation of the energy-momentum tensor

D*T,,, = D" fy . (6.15)

One can include a dependence of the entropy on the spatial position by introducing the
entropy density s(Z,t) and rewriting the variational constraint as

oL,
Os

provided that there is no dependence of the Lagrangian on the partial derivatives d,s.

0s = %\/—g Judgh”, (6.16)

For now, we have shown that the variational constraint is enough to obtain the non-
equilibrium Einstein field equations. We will deal with the phenomenological constraint in
the next subsection, once a foliation of space-time is explicitly introduced in the context of
the ADM formalism. The phenomenological constraint will allow us to obtain an implicit
expression for the force f,, .

The fully rigorous implementation of the variational constraint becomes a bit more
subtle once this spatial dependence is introduced. In practice, the function s is not the
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6.3. Non-equilibrium dynamics in GR

entropy itself, but rather a function that plays a role in the entropy balance equation. In
particular ds is the entropy density variation due to internal processes and not to entropy
fluxes. We leave the discussion of this equation to the next section, as it also requires the
introduction of a foliation.

6.3.2 Hamiltonian formulation

The variational formalism delivers a modification of Einstein field equations due to the
appearence of a force of entropic origin. We will make the effect of this entropic force more
concrete by employing the Hamiltonian formulation of General Relativity or Arnowitt-
Deser-Misner (ADM) formalism. That is, we perform a (3+41)-splitting of space-time,
a foliation that parametrizes the 4-dimensional metric g,, by means of a 3-dimensional
metric h;; and the lapse and shift functions N and N ¢, Space-time dynamics is treated as
the evolution of space-like hypersurfaces ¥, parametrized by some parameter ¢, which is
usually taken to be the time coordinate. We already reviewed this formalism in sec. 1.4
in the context of Cosmological Perturbation Theory. Here, it will allow us to include non-
equilibrium phenomena in a general way. For more details, see e.g. [48]. In the ADM
formalism, an arbitrary metric takes the form

ds? = —(Ndt)? + hy;(da’ + N'dt)(da? + Ndt). (6.17)

We will denote as ¥ the 3-dimensional hypersurface and n its normal vector:
ng = (—=N,0,0,0), (6.18)
which is a unit vector, i.e. non® = —1. Space-time indices are lowered and raised as usual

by g.v. Spatial indices, however, are lowered and raised by h;;, which furthermore satisfies
hi;hik = 6F.

Equivalently, one can write the splitting of the metric as:
h;w =G +nuny, (619)

so that it is clear that h,, is purely tangential to the hypersurface. Then its spatial part
hij is equal to the pull-back of the 4-dimensional metric g,, onto ¥ and is a legitimate
3-dimensional metric.

The Einstein-Hilbert action for this parametrization of the metric is given by the fol-
lowing gravitational Lagrangian

Lc=+—gR=NvVh (<3>R + Ky K — K2> : (6.20)

where K;; is the extrinsic curvature of the 3-hypersurface ¥ and is given by the Lie deriva-
tive along the normal vector n

1
Kij = §£nhij = dohij — ViN; — V;N;) . (6.21)

1
o ¢
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where V denotes the covariant derivative on 3 with respect to the 3-metric h;;. Its trace

and traceless part are
g 1 ,
K = hKy =~ (80w VA~ Vi)
_ 1
Kij = Kij — gKh” .

(6.22)

Unlike the intrinsic curvature, described by the Riemann tensor R’ ,» and its contractions,
the extrinsic curvature is a quantity that depends on the embedding of a surface in a larger
manifold.

The extrinsic curvature can be a complicated function of the parameters. Therefore,
it is convenient to shift to the Hamiltonian formulation of the stationary-action principle.
Note that the only quantity whose time derivative appears in the gravitational Lagrangian
is the 3-spatial metric h;; and, thus, it is the only dynamical or propagating d.o.f. Corre-
spondingly, one defines its conjugate momentum as

i = 956 _ (K7 — Kh") . (6.23)
ij

With this, the gravitational Lagrangian can be rewritten as

N 1 y
Lo=NVh®R - — (H,Hw - H2> — 217 V; N
¢ VE Y 2 g (6.24)
=Yh;; — NH — NyjH' — 2V, (1T N;) (
where II = hijﬂij and we introduced the functions
1 o1
H=—-VhOR+ —— (Hijnw - H2>
v 2 (6.25)

H = —29; (b1

Since N and N; are not dynamical variables, they gerely enter the gravitational Lagrangian
as Lagrange multipliers. One defines the gravitational Hamiltonian as

He =9hy; — Lo = NH+ NH + V; (IIVN;) § (6.26)
with the Hamiltonian and momentum constraints
Ha OHea .
_— = = = ? = . 2
5N H=0 SN, H' =0 (6.27)

The evolution equations are obtained upon taking variations of the Hamiltonian, but these
need to be modified once the second law of thermodynamics is enforced and entropic forces
come into play. The first Hamilton equation is

He Ohpy 4y 0L Ohyy
Sy — ke 2GR 6.28
ST~ 1 i Ohyy 011V & (6:2%)
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6.3. Non-equilibrium dynamics in GR

This equation is true regardless of the constraint imposed by the second law of thermody-
namics. The second Hamilton equation will carry the effect of non-equilibrium thermody-
namics. Let us compute it starting from the derivative

OHe _ quOhw _ 0LgOhw 0L _ OLg _ _OLg ORM (6.29)
8hij N 8hz~j ahkl 8hij 8hij N ahij ~ OhM 8hij ’ .
One usually applies the field equation in order to obtain the second Hamilton equation (see
e.g. [173]). Here, we will do the same but taking into account the constraints imposed by the
second law of thermodynamcs. The 341 splitting of the space-time manifold allows us to
identify the 3-metric h;; as the dynamical d.o.f. Then we argue that the phenomenological
constraint should involve only those and, therefore, relates their dynamical evolution to
changes in the entropy density
0L pos= Invi fij£nhi . (6.30)
0s 2
The Lie derivative £,, along the normal vector n serves here as a generalization of the time
derivative. Note that the same equation for the phenomenological constraint is obtained if
one characterizes the evolution of the hypersurfaces by the flow along the vector m = Nn,
which may be preferred as it satisfies g(9;, m) = 1. The variational constraint should only
involve dynamical d.o.f. as well

9L s — Lnvi fij0h¥ . (6.31)
0s 2

The tensor ﬁ-j should now be understood as the pull-back of the projection of f,, on X,
i.e.

fij = MR fuw (6.32)

We argue that this is the only non-vanishing part of f,,. Our claim is supported by the
fact that
Ln(nfn”) =0 (6.33)

The tensor fij will have contributions from its trace and trace-less component according
to the tensor decomposition

_ 1. - _
fij = gfhij +Vuly +ViVif + ng, (6.34)

where o ~

f=Ffh" Vifi=0 V'Vif=0 VT =nfT=0. (6.35)
We point out now that the interpretation of s(¢, Z) as the entropy density is subtle. Instead,
it is a function that satisfies the following entropy balance equation

£ps = £,8°0 — Vit (6.36)
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where £,,5% is the total entropy production and j, is the entropy flux in the hypersurface.
Hence, £,s is interpreted as the internal entropy production. It is important to bear
this balance in mind when applying the phenomenological constraint to actual physical
scenarios. We refer the interested reader to the appendix and to the original work on the
variational formulation of non-equilibrium thermodynamics in the continuum [171] for the
description of a fully variational formulation and its consistency with the shortcut version
presented here.

Once we have properly taken into account the constraints given by the second law of
thermodynamics, we are ready to obtain the field equation for the 3-metric as

0Lg _ 0Lq 0Lq 1 -
5o~ oo~ g —5 NV i (6.37)
One can then recast it as
OLc Oh¥ < 0La 1 ~ Rk
— =0, — fNﬁfkl (6.38)
oLkl dhij “88#}#“1 2 hij
and rewrite the derivative
0He 0La 1 =\ Ohk
_ _ - 6.39
Ohij (a" 5, hF! NV ’“l> Ohij (6.39)

Now, by using the relations

Ohi; 1
& = —= (hirhji + hahyy)
o (6.40)
885th’ = =50 (hachji + hith)
we get
0Ha . 0Ha 1 o
=_I1Y 4+ 9 — =NVh fY .
Ohi; O goumg ~ 2NV (6.41)
and introducing the functional derivative
0Ha OHea 0He
= -0 6.42
(5hij 8hij “88Mhij ( )
we obtain the second Hamilton equation
SHe o1 .
=—IIY — —NvVh f¥. 6.43
Sy SNVR'S (6.43)

This equation is modified by the existence of an entropic force in consistency with the
thermodynamical constraint. Physically, it is this equation that describes the dynamical
evolution, for it implicitly contains a second time derivative of the field.
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6.3. Non-equilibrium dynamics in GR

Matter can be included in the Lagrangian density as
L = Lc(hij, hij) + 26 L (hij, S) (6.44)

where we introduced the gravitational coupling in the matter Lagrangian for convenience.
Then the Hamilton equations become

oI Y
6.45)
SHa » 5L . (
=-IIY -2 — kN 4
5y K Sty K ﬁf ,

where the entropic term carries the coupling x as well if it comes from the matter La-
grangian. The Hamiltonian and momentum constraints are likewise modified by the intro-
duction of matter

UG _ 45 Om  OHe _ iy OLm

ON TN N N, (6.46)

The variational formalism for non-equilibrium thermodynamics developed in refs. [170,171]
fits nicely in both the Lagrangian and Hamiltonian formulation of General Relativity.
This means that one can naturally consider effects of non-equilibrium thermodynamics in
General Relativity and obtain analytical or numerical solutions to the equations of motion.

6.3.3 The Raychauduri equations

The appearance of an entropic term in Einstein’s field equations can have dynamical effects
that may look as a violation of the energy conditions. We wil look now into this possibility
by studying a congruence of worldlines in an arbitrary space-time. These need not be
geodesics and have tangent vector n. The congruence is then characterized by the tensor

1
Ouw =Dyn, = §@hw’ + o + W — auny (6.47)

where 6 is the expansion rate of the congruence, o, is its shear or symmetric trace-less
part and w,,, is its vorticity or antisymmetric part. If the worldline is not a geodesic, then
the congruence suffers an acceleration given by

a, =n"Dyny, (6.48)

One can compute the Lie derivative of the expansion of the congruence along its tangent
vector and find the Raychauduri equation [48]

1
£,0 = —592 — oo™ + wwt — Ryntn” + Dyat . (6.49)
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Let us perform the standard analysis of the sign of this equation. It is clear that o,,,0#" > 0
and ©2 > 0. On the other hand, if the congruence is chosen to be orthogonal to the spatial
hypersurfaces, as we have been considering, then the vorticity vanishes w,, = 0. Lastly,
it is left to consider the term R,,n"n", which we can rewrite with the help of the field
equations

1 1
Rntn” = 8rG (Twn’“‘n” + §T — fuwnt'n” — 2f) ( (6.50)
If the strong energy condition is satisfied, then
1
Tyntn” > _iT (6.51)

and, in the absence of intrinsic acceleration, a, = 0, we can establish the bound
1., L1
£00 + 59 < 8nG | frntn” + if (6.52)

For a vanishing entropic force f,, = 0, this means that an expanding congruence can-
not indefinitely sustain its divergence and will eventually recollapse. On the contrary, a
positive and sufficiently large entropic contribution can avoid such recollapse. This may
become relevant for an expanding universe, but also to generic gravitational collapse and
the singularity theorems [174-176].

The shear oy, is also affected by the inclusion of an entropic force. Its evolution
equation is given by

Ruu )

(6.53)
where C,,,, is the Weyl tensor and R, is the spatial, trace-free part of the Ricci tensor

1 1
Lnopy =— 59 O — 0'#)\0')\1, — w#,\w)‘l, + C')\M,,,n)‘np + ghW(aApa)‘p — w,\prp) + 5

. 1
Ry = hynhy,, RN — §hwhApR)‘p (6.54)

This explicit dependence on the Ricci tensor allows us to directly include the effect of the
entropic force and establish a bound. Indeed, using the modified Einstein field equation
we get,

A

Ry = 87G (TW _ fu,,) / (6.55)

where f/w and Tuv are the analogously defined spatial, trace-free part of the friction and
stress-energy tensors. Then we can rewrite the evolution equation for the shear as:

2

Lnopy =— 50 Opw — O'H)\O')\V - wu,\wAV + C’,\W,,nAnp
i R R A X (6.56)
+ ghw,(aApo P —wyw™) +4rG (Tw/ — qu) <
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which means that the entropic force directly sources the shear in a way similar to that of
the stress-energy tensor.

These results also apply to a congruence of worldlines which are not normal to the
hypersurfaces that define the foliation of the space-time. In that case, the vorticity is
non-vanishing and has the evolution equation

2
Lnuy = —59 W — 20[1%] ), (6.57)

which is not directly sourced by the entropic term. Of course, it is still affected indirectly
due to modifications in the metric, the expansion and the shear.

The decomposition of the 2-tensor describing the congruence of geodesics into global
expansion, shear and vorticity, which are affected by the entropic forces via the correspond-
ing Raychaudhuri equations, brings to mind the evolution of large scale structures in the
cosmic web due to gravitational collapse of initial fluctuations. The growth of structure
brings order into an otherwise homogeneous universe, so we expect a corresponding en-
tropy production in the outskirts of large structures like galaxies and clusters of galaxies.
According to our formulation, on supergalactic scales, such an entropy production should
give rise to a local acceleration, leaving large voids between superclusters, enhancing the
contrast induced by the usual gravitational collapse. Moreover, in the formation of the
first spiral galaxies there is also an associated entropy production which could give rise to
a tiny acceleration, that may explain part of the rotation curves of galaxies, beyond that
produced by the dark matter in the halos of galaxies.

6.4 Temperature and entropy

So far we have imposed the second law of thermodynamics by a constraint which contains
the derivative 0L/0S. The goal of this section is to understand how this term is often linked
to the concept of temperature of a thermodynamical system, not only in a mechanical
system but also in General Relativity. In doing so, we will consider two sources of entropy:
hydrodynamical matter and gravity itself.

6.4.1 Bulk entropy: Hydrodynamical matter
Let us first consider a mechanical system with Lagrangian given by
L(q,4,5) = Ex(¢,4) — U(g, 5), (6.58)

where Ex and U are, respectively, the kinetic and internal energy. Notice that only the
latter depends on the entropy S. One way of obtaining the temperature of this thermody-
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namic system is by definition:
ou oL

T=—=—+. 6.59
oS oS ( )

Then the entropic constraint can also be written as
TS =—F§>0. (6.60)

We can generalize this to a fluid whose Lagrangian is pure internal energy, as it is the case
for instance of the cosmic fluid [45]. The matter Lagrangian is then given by

L= /d?’xﬁ =— /<d3az\/qp(gm,, s), (6.61)

where p(g,., s) is the energy density of the fluid. Hence, hydrodynamic matter has a well
defined notion of temperature

1 9Ly, op
T _ __9 6.62
V—g O0s 0s ( )
If the fluid is homogeneous and isotropic this definition is equivalent to
oL
T=——. 6.63
55 (6.63)

The tensor entropic force for a space-time filled with hydrodynamic matter in the ADM
formalism is then given implicitly by

Fyhi = -TS <0. (6.64)

Since entropy is a monotonically increasing function of time, the second law of thermody-
namics constraints the sign of the tensor entropic force.

6.4.2 Surface terms: Entropy in the boundary

One can also wonder about the effect of the entropy associated to space-time itself, in
particular to horizons. It can be incorporated in a natural way by extending the Einstein-
Hilbert action with a surface term, the Gibbons-Hawking-York (GHY) term of refs. [177,
178].

Let us consider a space-time manifold M with metric g,,,, which has a horizon hyper-
surface that we denote by . This is a submanifold of the whole space-time. By taking
n*, the normal vector to the hypersurface H, we can define an inherited metric on H

G = hpw + 1m0y (6.65)
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With this, one can define the GHY term as
1
=— || @Pyvh K :
Sony = g [ @i K. (6.66)

where K is the trace of the extrinsic curvature of the surface. We already considered
this quantity when discussing the ADM formalism. Notice, however, that here we are not
foliating the entire space-time, but rather considering the properties of a particular hyper-
surface, the horizon. From the thermodynamic point of view, the GHY term contributes to
the internal energy of the system. Hence, it can be related to the temperature and entropy
of the horizon as

Samy = — / AN TS. (6.67)

where we have kept the lapse function N(t), to indicate that the variation of the total action
with respect to it will generate a Hamiltonian constraint with an entropy term together
with the ordinary matter/energy terms. In order to illustrate this, let us now compute the
GHY for two horizons of interest: the event horizon of a Schwarzschild black hole and the
horizon of black holes in FLRW universe.

Schwarzschild black hole

In order to illustrate this, let us now compute the GHY term for the event horizon of a
Schwarzschild black hole of mass M. Its space-time is described by the metric

2GM 2GM\
ds® = — <<_ Ci >dt2+ <<— Gr ) dr® +r2d03 . (6.68)

The normal vector to a 2-sphere of radius r around the origin of coordinates is

_2GM

T

o, . (6.69)

n=-—

With this, the trace of the extrinsic curvature for such a sphere scaled by the metric
determinant is

Vh'K = (3GM — 2r)sin. (6.70)

Integrating over the angular coordinates and setting the 2-sphere at the event horizon, i.e.
r = 2G M, and restoring for a moment A and ¢, the GHY becomes

1
Sary = —2/dtM62 = —/dtTBHSBH, (6.71)

where Tpp is the Hawking temperature and Spjr is the Bekenstein entropy of the Schwarz-
schild black hole

hed Ac3 ArGM?
seGapc OB = ke =k

el (6.72)

kT =
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This favors the interpretation of the GHY term of a horizon as a contribution to the internal
energy in the thermodynamic sense.

Cosmological black holes

The natural inclusion of temperature and entropy from surface terms allows is also useful
when embedding black holes into an expanding universe. This embedding is not unique [68],
but one can keep the discussion rather generic by considering the generalized McVittie
solution

ds? = _N(t)Qljg: gj dt? + a(t)?A(t, 7)* (dr? + 72dQ3) | (6.73)
where
A(t,r) =1+ m2(_t)
mz“t) (6.74)
B(t,r)=1-— 97

being m(t) > 0 the comoving mass of the black hole, i.e. m(t) = M(t)/a(t), and N(¢) the
lapse function linked to the residual gauge freedom. Note the use of isotropic coordinates,
which are obtained by introducing a new comoving radial coordinate 7, related to the usual

areal radius r by
2
r = at)r (1 s “;9) . (6.75)

For a black hole much smaller than the Hubble scale, its apparent horizon is located at its
Schwarzschild radius [68] and we can assign to it the usual Bekenstein entropy and Hawking
temperature. Performing a computation similar to that of the Schwarzschild black hole,
we arrive at the following result for the GHY term

Scry = —/dtN(t)TBHSBH. (6.76)

The growth of black holes comes with an increase in the entropy and an associated entropic
force, which may have an impact on the dynamics of the scale factor. Furthermore, if the
universe is populated by many black holes, one can compute their average contribution to
the stress-energy tensor from these surface terms. Indeed, if one takes now the homogeneous
and isotropic flat FLRW metric, which is valid at sufficiently large scales, then the GHY
term can be approximated as

SGHY = — Z(dtN(t)TBHSBH >~ —/d4.%'\/anHTBHSBH7 (6.77)
i
where npg is the number density of the black holes. This delivers the following contribution
to the stress-energy tensor

Too = N(t)?psH - (6.78)
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The other components of the stress-energy tensor depend on the accretion onto the black
holes. If there is no accretion, as it is the case of the original McVittie metric [68], then
the T;; and Tp; components vanish and so does the pressure p and we recover the standard
interpretation of a collection of black holes as dust. Other accretion conditions may lead
to different equations of state.

Interpretation as a thermodynamic system

One may interpret the effects of the GHY term as the inclusion of a thermodynamic system.
For a localized object like a black hole, its properties are characterised by the Lagrangian

L=-U, (6.79)
where U is the internal energy of the system, which we find to be
U=-NTS. (6.80)

If we ignore the lapse function, linked to the freedom in choosing the time coordinate, this
expression is similarly found in usual thermodynamics.

Furthermore, if the thermodynamic system is extended, as in the case of the cosmolog-
ical black holes, one may interpret this thermodynamic system not as an isolated object
but rather as a fluid. In that case the internal thermodynamic energy can be written as a
spatial integral of an energy density

U= /(d%\/qp (6.81)

and deliver the Lagrangian of a perfect fluid. This fluid satisfies the second law of ther-
modynamics and may be considered as an effective real fluid after allowing an increase in
entropy. In sec. 6.6 we discuss how the variational formalism includes the theory of real
fluids and provides an extension thereof.

6.5 Non-equilibrium Cosmology

Let us now illustrate the potential of our covariant formulation of non-equilibrium ther-
modynamics in General Relativity by studying how it affects the trajectory of particles.
We will consider a particularly relevant example of a space-time, an FLRW universe, and
show how the Friedmann equations get modified in this context. These equations directly
affect the geodesics followed by inertial observers.
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The effect of non-equilibrium thermodynamics in an expanding FLRW universe requires
the consideration of a homogeneous and isotropic space-time described by the metric

ds? = —N(£)2d2 + a(t) ( 1 f”;rg + &m;) ( (6.82)
This fits naturally with the ADM formalism upon the choice for the shift functions
N'=0 (6.83)
as well as the 3-dimensional metric h

h@g = a2(t) T2 (6'84)

hpp = a*(t) rsin? 6 .

These are imposed by the Copernican Principle, i.e. homogeneity and isotropy. On the
contrary, the lapse function N is not determined a priori, so we will keep it free for now. It
is related to the freedom in choosing the time coordinate. The square root of the 3-metric
determinant is Z(t) r2sin g

vh = (6.85)
We can then compute the extrinsic curvature and find the conjugate momentum to the

3-metric

1a 2a

K9 = _=p9 1Y =—-=_"Vhh¥ .
N o Vi (6.86)
and the corresponding traces
g 34 g 6 a
K=KYh;j=—- II=0"Yh;; = ———-Vh, .
=N =N Vi (6.87)
as well as the 3-dimensional Ricci scalar
6k
GIR = = (6.88)

The first Hamilton equation provides no additional information by itself, so the dynamics
is obtained from the second Hamilton equation and the Hamiltonian constraint. Let us
begin with the Hamiltonian constraint. We need the quantity

I1;, 11% 1H2— 6 azh 6.89
g7 =3I =—mm \5) ™ (6-89)

Then )
6k 6 / 0L,
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The RHS is related with the stress-energy tensor in the following way

oL 5L
M _TMoN = —TON2VR . 91
ON 5900 h (6 ) )

Note the slightly different definitions for the contravariant and covariant stress-energy
tensor, due to the sign flip of the functional derivative
-2 0L,

T, = ——=mm
=g g
2 0L

B V=4 5g;w ‘

An FLRW universe is filled with a cosmological perfect fluid, whose stress-energy tensor is

(6.92)

™

given by
™ = (p + p)u"u” + pg"”, (6.93)

where the density p and pressure p are allowed to have a dependence on the entropy S
as well as on the scale factor a. Since the fluid that we are considering is isotropic and
homogeneous, its 4-velocity is

1
ut = <N,0,O,O> ( guutu” = —1. (6.94)

Then we can identify the time-time component of the stress-energy tensor with the energy
density of the fluid
7% = pN~2 (6.95)

and the Hamiltonian constraint becomes
—6k 6 [a\® —

This expression can be rearranged as

1 /a\? k s8rnG

This is the first Friedmann equation, which is nothing but a constraint on the dynamics of
the FLRW space-time. If we make the choice N = 1, which corresponds to the choice of
cosmic time as time coordinate, we get the first Friedmann equation in its usual form

<d>2+’f: G (6.98)

a a? 3
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Of course, one can work with conformal time and choose N = a. Then the first Friedmann

equation becomes
a\? &G
— k= ——pa’ 6.99
(%) +r="500, (6.99

which is consistent with a direct coordinate transformation.

Let us take a look now at the equation of motion involving the trace of the conjugate
momentum

1 =TTy + T

L Lo . L 6HG
= = G i 2y iy — ANV [y T (6.100)
:%N\/W)R + gN\/E (KK — K?) m‘;i;?h” — kNVR filh; .

The only term left to compute in this expression is
I 6 (a)’
KKV — K* = —— - (6.101)
Then:

2 N2

.1 6k 3 6 (a)°
H:iN\/ng-FfN\/h <> )(Fm/ NT"Yh;; — kNVh 1, (6.102)
a
where we used the definition of the spatial components of the stress-energy tensor

NVRT# = 20Em
(Shij

(6.103)

On the other hand, we have the geometric relation

N2

II=—2Vh K —2NVh K? = —G\F[—Wm('f]( (6.104)

where we used

K=3 d—éﬂ—‘ﬂv)( (6.105)

Using both expressions for f[, the first Friedmann equation (i.e. the Hamiltonian constraint)
and the spatial trace of the stress-energy tensor,

1 AnG
AT 7hij = %3;), (6.106)
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we get the equation of motion

i aN A7 G ArG -
— = — “INF. 1
N aNG 3 (p+3p) + 3 f (6.107)

Of course, for N = 1 this is nothing but the second Friedmann equation with an additional
term of entropic origin. The effect of non-equilibrium thermodynamics is now encoded in
the spatial trace

f=Ffn;. (6.108)

This trace is related to the rate of entropy production by the second law of thermodynamics,
encoded in the phenomenological constraint. Let us check how

~adfiih = —aa’f . (6.109)

Introducing the temperature of the cosmological fluid,

1 0L

595 =1 (6.110)

we get the expression for the trace of the entropic force

. TS
= —. 11
=5 (6111)
With this, the equation of motion becomes
i 4rG 4nG TS
a_ 3 -/~ = 6.112
" 5 (p+3p) +— a2a> ( (6.112)

which is the second Friedmann equation modified by the enforcement of the second law of
thermodynamics.

Most of the expansion history of the universe is adiabatic and thus remains unaffected by
the inclusion of the effects of non-equilibrium thermodynamics in the Friedmann equations.
Nevertheless, we can think of several phenomena in the expansion history during which
entropy is copiously produced, such as the reheating of the universe, phase transitions and
gravitational collapse to form black holes. We claim that these and other non-adiabatic
phenomena in cosmology should be revisited, as their effect on the expansion rate may be
non-negligible.

The assumption of homogeneity and isotropy implies that the tensor friction or entropic
force fij has only a trace component f . If we perturb around this solution, we expect the
trace-less components to play a role as well, following the tensor decomposition in eq. (6.35).
We leave the exploration of its consequences to a future publication where we will study
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the theory of cosmological perturbations in the presence of entropic forces arising from the
trace, shear and vortical components of f.

Certain processes like gravitational collapse and structure formation are highly non-
linear and cannot be understood within perturbation theory. It may be useful to treat
this regime, highly non-linear and out of equilibrium, as an effective fluid. In this regard,
we consider in the next section the similarities between generic entropic forces and the
viscosity of a real fluid.

In principle, out of equilibrium phenomena could be incorporated into N-body simula-
tions that study structure formation. This could be achieved by taking the non-relativistic
limit of the non-equilibrium gravitational equations of motion in order to obtain a Newto-
nian plus entropic force.

6.6 Real fluids in the variational formalism

The results obtained in the previous sections are consistent with the relativistic dynamics
of real fluids, i.e. fluids with viscosity and heat transfer. Such fluids are described by a
stress-energy tensor that deviates from that of a perfect fluid [179, 180]

Ty = (p + P)uptiy + PGpw + T - (6.113)

This can be seen as a particular case of the variational formalism if the following equation
is satisfied

T = —fuw (6.114)

The additional term satisfies the orthogonality property
w7, =0. (6.115)

This is consistent with our description in the ADM formalism. In the comoving orthog-
onal gauge, u* = n* and so the motion of the fluid is orthogonal to the constant time
hypersurfaces.

For a vanishing chemical potential, the second law of thermodynamics of a real fluid
takes the form
TD,(ou") = 1, Dyut (6.116)

The LHS can be split into parallel and perpendicular components to the hypersurfaces, so
that

D,(out) = nyn*Dy(ou”) + V,(ou”) = nyLy(out) + nyou®*Dan? + V , (out),
(6.117)
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where o is the local entropy density of the fluid. In the comoving orthogonal gauge this
expression becomes

D,(ou") = £y0 + V,(ont). (6.118)
On the other hand, in this gauge we have

1
Dyuy = 5 £nlyn (6.119)

and the temperature of the fluid can be identified with

1 oL
T=-—_2Z2 6.120
N+h 0Os ( )

We find then that the second law of thermodynamics of a real fluid can be rewritten in
terms of the phenomenological constraint. This requires the following identifications

fuw=—Tw =0 ji=—0cu'. (6.121)

We can still go one step further in the identification between the entropic force tensor
and the viscosity tensor by inspecting its usual form

2
T = — 1 (Dyuy + Dyuy, — upu® Doy, — uyu®Douy,) — <(: — 377) éaua (G + upuy)
(6.122)
where 1 and ( are, respectively, the shear and bulk viscosity coefficients. Let us now
focus on a homogeneous and isotropic fluid filling an FLRW universe. In this example, the
covariant derivatives are given by

Dt = 35;, (6.123)
which means that the viscosity tensor is reduced to
a
Ty = —3Cah,w. (6.124)

We can compare this with the expression of the trace of the entropic force obtained previ-
ously

g = = [Ty = —mgh? (6.125)
and obtain the following identity for the bulk viscosity coefficient
TS
= ) 12
¢ 9H2a3 >0 (6.126)

Let us elaborate a bit on the results of this section. First of all, the conventional formulation
of general relativistic real fluids can be recovered by means of the variational formulation

151



Chapter 6. Irreversible gravity

of non-equilibrium thermodynamics in General Relativity. In fact, one does not even need
to impose additional terms on the energy momentum tensor. Instead, they are effectively
generated by simply assuming the pressure and the energy density of the fluid to have a
dependency on the entropy.

The variational description allows the inclusion of dissipative effects to any matter or
gravity content, as long as it has time-dependent entropy. This means that we can interpret
non-equilibrium phenomena in General Relativity as an effective viscosity term of a real
(i.e. non ideal) fluid. In this sense, our results allow for a variational, first principles
formulation of real fluids and the generalization of their dissipative effects to arbitrary
matter and gravity contents.

We point out that the variational and phenomenological constraints are imposed before
obtaining the equations of motion and must be satisfied at all times. This is a fundamental
difference with the theory of real fluids.

Here we considered a vanishing chemical potential, which means that we did not impose
particle number conservation. This excludes thermal conduction effects. Nevertheless, one
could in principle impose also particle number conservation at the Lagrangian [171].

In the homogeneous and isotropic limit there is only bulk viscosity, parametrized by
¢. However, shear viscosity, parametrized by 1, may play a role in characterizing entropic
forces in gravitational collapse and structure formation.

6.7 Discussion

In this chapter we constructed a variational formulation of non-equilibrium thermodynam-
ics in GR. This allows for a synthesis of two key physical principles: the extremal action
and the laws of thermodynamics. More precisely, thermodynamics is included as a vari-
ational constraint, which modifies the variational problem posed by the extremal action
principle. Consequently, the equations of motion are modified in compliance with the laws
of thermodynamics, allowing for a departure of (global) equilibrium.

Applications to Cosmology are immediate. Non-equilibrium phenomena lead to a mod-
ification of the usual cosmic dynamics, with the inclusion of a repulsive (accelerating) term
in the second Friedmann equation. We identify two possible contributions to the entropy of
the universe: fluids (bulk entropy) and horizons (boundary entropy), such that dissipative
phenomena in real fluids and horizon growth lead to entropy production. In contrast to
the usual formulation of real fluids, we point out that ours is based on first principles and
allows for the inclusion of other irreversible phenomena that do not admit, in principle, a
fluid description.

It is key to explore possible contributions to the entropy of the universe and identify
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6.7. Discussion

whether entropy-producing phenomena could dominate the dynamics of the universe, thus
leading to an accelerated expansion. This will be the main goal of the following chapter.
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Chapter 7

Entropic cosmic acceleration

Andédbamos sin buscarnos pero sabiendo que anddbamos para
encontrarnos.

Julio Cortézar, Rayuela (1963).

7.1 Motivation

Gravity is usually regarded to be a purely attractive force. Indeed, Newton’s law of Grav-
itation admits only positive charges (gravitational mass), as opposed to Coulomb’s law of
electrostatics, which admits both positive and negative (electric) charges. Even though this
requirement was first imposed by hand, as in our daily experience no negative gravitational
mass is ever observed, can be deeply justified within field theory. While the photon is a
spin-1 field and admits both positive and negative charges, the graviton is a spin-2 field
and admits only positive charges.

A similar observation can be done in the geometric language provided by GR and its
description of the gravitational interaction. Indeed, geodesic congruences tend to converge
due to Penrose-Hawking theorems [174-176], as we discussed in sec. 6.3. However, in
order for these theorems to hold, certain conditions on the stress-energy tensor must be
imposed. They are satisfied by ordinary matter, but not a first principles requirement of
theory. Hence, GR allows gravity to act as a repulsive force.

We just mentioned that we do not observe negative gravitational mass (energy) in our
daily experience. Indeed, negative energy is considered to be unphysical, since Hamiltoni-
ans that are unbounded from below lead to instabilities. However, pressure gravitates in
GR and it is possible for gravity to become repulsive while keeping energy positive if there

155



Chapter 7. Entropic cosmic acceleration

is a sufficiently strong negative pressure. Specifically, such matter should satisfy the weak
energy condition, but violate the strong one. This is enough for the hyphotheses of the
Penrose-Hawking theorem not to be satisfied.

We do not observe this negative pressure in our daily experience either, but it has
at least two paramount contributions to the expansion history of the universe. One is
inflation, a period in which an accelerated expansion of the universe is required in order
to solve the horizon problem (see sec. 1.3). The other is the current accelerated expansion
of the universe, confirmed by cosmological observations since the late 1990s. The former
can be explained by the action of one or multiple scalar fields, although its dynamics is
loosely constrained today. The latter is currently best modeled by the simple addition of
a cosmological constant A (see sec. 1.2), which behaves as a fluid with equation of state
p = wp, with w = —1, which violates the strong energy condition. Despite this, ACDM
currently suffers from observational tensions that suggest the need to replace it by another
model. Indeed, early- and late-time measurements of Hy, the current expansion rate of the
universe, seem to be inconsistent [181]. There exists a plethora of alternative proposals
to replace the cosmological constant by either modifying gravity (MG) or adding an extra
fluid called dark energy (DE), but none of them seems to be able to solve the tension while
providing a competitive fit to cosmological data [36,182,183].

In chapter 6 we presented the variational formulation of non-equilibrium thermody-
namics in GR. As a consequence of the inclusion of thermodynamics as a constraint, the
second Friedmann equation gets an accelerating term of entropic energy. Therefore, entropy
production gravitates similarly to negative pressure

a 47G TS
E = —73 p+3p— a2a> ( (71)

This can be interpreted in two ways. One is to see irreversible phenomena as a way to
produce an accelerated divergence of a geodesic congruence without violating the energy
conditions, i.e., regarding the entropic force tensor as a separate entity. Alternatively, we
can include the entropic force tensor as a contribution to the stress-energy tensor of a real
fluid. Either way, an acceleration of the expansion of the universe can be achieved.

We note that the relations between entropy and cosmic evolution have been explored
before, for instance in emergent gravity [108] or in the thermodynamic interpretation of
the bare Friedmann equations [184,185].

This chapter is devoted to explore whether the cosmological constant can be replaced
by an acceleration of entropic origin. This can be achieved if the entropic force term
is large enough to overcome the attractive terms coming from energy density and usual
(positive) pressure. In section 7.2 we outline how entropic forces can arise in the universe
and illustrate it with some examples, of which the horizon growth is the most promising
one. In section 7.3 we present how this leads to General Relativistic Entropic Acceleration
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(GREA) theory, which is compared against ACDM in section 7.4 using recent cosmological
data. We finish with some discussion of our results in section 7.5.

7.2 Contributions to entropy

In this section we discuss several cosmic contributions to entropy and whether they can be
considered serious candidates to give a positive and dominant contribution to the acceler-
ation of the universe. We will distinguish two groups: the matter content of the universe,
even if exotic, gives bulk entropy, while horizons give gravitational boundary entropy.

Bulk entropy

Bulk entropy is produced during cosmic expansion during certain out-of-equilibrium pro-
cesses, such as (p)reheating, phase transitions or gravitational collapse. However, most of
the expansion history of the universe is adiabatic and deviations from it are expected to
be short-lived. This means that, although it may provide interesting phenomenology, it
seems unable to explain the current accelerated expansion of the universe.

Furthermore, out-of-equilibrium ordinary particle matter is unlikely to provide even
a short-lived acceleration of the universe. This matter is fully described microscopically
by the phase space coordinates of all its particles. As dictated by statistical mechanics
(see sec. 2.6), its associated macroscopic variables are phase space functions. A comoving
observer with 4-velocity u* measures an effective pressure given by

1 1 1 - 178
— (R — “Ra: Vi = = (T: — £Vl = p— =22 7.9
Deft 3 <Rz] 2Rgz]> <U 3 ( ij fzg) uw 3 424 ( )

If the matter content of the universe admits a description in terms of usual statistical
mechanics, then this pressure is a function of phase space as

d3p
Deft = g/<(27r)3 3

where f(p) is the probability distribution in phase space and m is the rest mass of the
particle. Thus, a negative effective pressure does not seem to be consistent with usual
statistical mechanics and somewhat exotic! matter should be advocated. However, such
matter models have been proposed, for instance in refs. [186, 187] and can even lead to
sustain entropy growth.

(7.3)

!Motivated by the breakdown of the usual statistical interpretation of pressure, in this chapter we will
refer to matter with negative effective pressure as exotic. We will not consider matter with negative mass
or energy density.
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Alternatively, one could think of particle creation scenarios, where entropy is increased
to a fast growth of occupation numbers. This is the situation, for instance, during (p)re-
heating. It must be noted, however, that entropy production comes with an increase in
energy density

T . T ds

—8 = — (a5 + 3a%as Ta— +3T's. 7.4

aa aa (a% + ) C da * (74)
A simpler way to achieve an acceleration with ordinary matter may come from particle

creation. Here we outline a first approach to the issue. Let us first use the thermodynamic
relation

Ts=(p+p)—=+Ts—p=p (7.5)

in order to rewrite the second Friedmann equation as

a 4G ds

—=—\(-2p—-Ta— || 7.6

a 3 < p da> ( (7.6)
If we consider the extreme case of the particle number density to be constant during
a particle-creation process, then ds/da = 0 and an acceleration of the universe takes

place. This may be achieved with slower particle creation rates too. However, it must be
noted that particle creation needs to be sourced by some other (possibly exotic) matter
component, either directly or indirectly via space-time geometry. Whether such an entropic
force emerges and is relevant during particle-creation events such as (p)reheating is a
relevant question, but out of the scope of this thesis.

Boundary entropy

Boundary entropy is given by the existence of horizons that determine the causal structure
of the universe, limiting causal contact to finite patches. It can be incorporated in a natural
way by extending the Einstein-Hilbert action with a surface term, the Gibbons-Hawking-
York (GHY) term [3,177,178]. From the thermodynamic point of view, the GHY term
also contributes to the internal energy of the system. Hence, it can be related to the
temperature and entropy of the horizon as

Sy = &rlG/ ByvVh'K = —/dt N()TS, (7.7)
H

where we used the notation of the ADM formalism. Note that we have kept the lapse func-
tion N (¢), to indicate that the variation of the total action with respect to it will generate
a Hamiltonian constraint with an entropy term together with the ordinary matter/energy
terms. Of course, this is a consequence of the symmetry under time reparametrization.

In sec. 6.4 we already computed the contribution to the action of the GHY term associ-
ated with black holes, let them be of astrophysical or primordial origin. Their temperature
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and entropy is given by the Hawking and Bekenstein formulas. Assuming their total co-
moving number is conserved, their contribution to the total energy and entropy density is
given by (h=c=1)

ppr =npg M, spy =npygirGM?, (7.8)

and therefore the contribution to the second Friedmann equation becomes

d d
@’ (pBHA) TBHdt(SBHa )=20, (7.9)

since the number density of black holes dilutes with the volume. Therefore, static black
holes do not have an entropic contribution to the dynamics of the universe.

Next, it is natural to consider the entropy associated with cosmic horizons. These per-
haps make the breaking of symmetry under time inversion most clear, as they keep growing
with time. We will also describe them by means of a GHY term. There are two reasons for
this, in addition to the motivation from black hole thermodynamics. First, since they also
scale with the area, they can accommodate a Bekenstein-like formula in a thermodynamic
contribution to the action. Second, it provides an effective fluid description (with effective
density, pressure and entropic force), which is a requirement of the variational formalism
in its present form.

A first natural choice of boundary hypersurface in FLRW metric is the apparent cosmo-
logical horizon [188]. The reason for this is that it can be defined locally in time, without
reference to the past or future history of the universe. It is located at the physical radial

coordinate 1

2 _k2/q2 '
Let us now compute its GHY term. We can\consider a comoving sphere around the origin
of coordinates r = 0 with unit normal vector

n=g"o =a'\/1—kr20,. (7.11)
Then the trace of its extrinsic curvature is
Vh'K = 2N(t)ray/1 — kr? sin 6 (7.12)

the GHY term (7.7) for the apparent horizon is

TAH — (710)

1
SGHY:—ﬁ dtN(t)H’l“iH:—/(dtN(t)TAHSAH,

where T'apr is the temperature and S4p; the entropy associated with the apparent horizon,

he H g _k‘BCSﬂ'T%H
2 A= 7 g

kpTay = (7.13)
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This type of cosmological horizon does not contribute with a sufficient amount of en-
tropy growth to affect the expansion of the universe. Therefore, we need to consider another
kind of horizon. We suggest a contribution coming from the causal (particle) horizon, which
does keep track of the history of the universe and the regions that came into causal contact.

We turn now to the causal cosmological horizon of a FLRW universe. Let us start by
considering an arbitrary comoving 2-sphere around the origin of coordinates. Then the
trace of its extrinsic curvature is given by eq. (7.12) and the GHY term (7.7) for the causal
cosmological horizon, dy = an, with r = sinh (r(m ) /C/j , where 7 is conformal time,

can be written as

&my—ig/@wmngmqﬁwwv</ﬁN@nﬁH——/ﬁN&M,

where T is the temperature and Sy the entropy associated with the causal cosmological

horizon
inh /& 3.2 2
kT = 1o S VR) [ Tt (7.14)
2 andv/ —k h G

The fact that we can naturally assign a temperature and an entropy to a hypersurface is
a signal of the existence of an underlying quantum description of gravity and thermody-
namics. This is made explicit by the appearance of A in both quantities. Their product,
however, does not depend on h and leads to a classical emergent phenomenon, the accel-
eration of the universe.

This kind of entropic term can actually lead to cosmic acceleration. Contrary to the
apparent horizon, the causal horizon keeps growing with time and can be large enough to
reach scales where curvature is non-negligible and the non-linearity of GHY in an open
universe becomes relevant.

7.3 GREA theory

General Relativistic Entropic Acceleration (GREA) theory is a proposal to explain the
current accelerated expansion of the universe. In its formulation based on horizon entropy,
it relies on the existence of a large causal horizon in an open universe that underwent open
inflation in the past.

Open inflation is a scenario that allows the universe to be non-flat. The universe is
nucleated in de Sitter space, i.e., in eternal inflation [189] with curvature of order one. This
nucleation takes place due to the tunneling of a quantum field from the false to the true
vacuum. Inside the true vacuum bubble, local space-time as seen by a comoving observer
is essentially flat if inflation lasts long enough, e.g. of order NV ~ 70 e-folds. Nevertheless,
there is still a given casual horizon with v/—k = agHy. Inspired by this scenario we propose
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a GHY thermodynamic term that induces an entropic contribution satisfying [4]

TySy 1 sinh(2a0H, Qe Con (T’
pHa2: :26;((1()[{()7])7 1—QK:e N <> (1+2eq), (7.15)

Teq

where 7 is the conformal time, Qi is the curvature parameter inside the inflated patch, Ty,
is the reheating temperature, Toq and zeq are, respectively, the temperature and redshift
at matter-radiation equality. We now introduce, for convenience, the time coordinate
T = agHn and denote with primes the derivatives w.r.t. to 7. Then the second Friedmann
equation becomes

a'\? a a?  Ar _3/9 a?
— ) =Quy — +Qx =+ — Q.7 — sinh(2 7.16
(ao> Ma0+ Kag+ 3 K a2 sinh(27). (7.16)

where )/ is the matter density parameter.

Thus, the expansion of the universe is affected by the increase in entropy of the causal
horizon. Since the causal horizon keeps growing, the entropic term eventually dominates
and leads to a late-time cosmic acceleration. Contrary to a cosmological constant, however,
the entropic term is diluted with the expansion, albeit at a slower rate than radiation and
dust, and the universe ends in Minkowski space-time in the far future.

From the mathematical point of view, this modified second Friedmann equation is a
differential equation in re-scaled conformal time 7. It is, however, an integro-differential
equation in cosmic time ¢, unlike the usual second Friedmann equation. Physically, this is
related to the nature of the entropic term associated to the causal horizon: it builds up as
the expansion proceeds.

7.4 GREAT against ACDM

The GREA theory is successful in providing an explanation for the current accelerated
expansion of the universe. As such, it joins the plethora of possible alternatives to the
cosmological constant A. Therefore, it is paramount to test GREAT against A using
current cosmological data and find which one is preferred statistically.

This analysis was performed in ref. [5] and provided promising results for GREAT. In
this section we present a summary of the datasets, numerical methods and the obtained
results. We will not, however, dive into the details, which are available in the paper for
the interested reader.

First, we must note that, at the time at which the analysis was performed, no cosmo-
logical perturbation theory has been developed within the context of GREA. This is also
true at the time of the writing of this thesis. The cosmological effects of entropic forces are
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only available at the background level, as presented in sec. 6.5. It is for this reason that the
choice of datasets is limited to those that test the background evolution of the universe.
We note, however, that we built variational non-equilibrium thermodynamics in the ADM
formalism (see sec. 6.3), so that one can consistently build a cosmological perturbation
theory as well.

7.4.1 Datasets

Taking this issue into account, the datasets included in the analysis are:

e H(z) data. It is obtained from two sources: redshift drift of distant objects over
long periods of time [190] and Baryon Acoustic Oscillations (BAO) in the radial
direction [191]. It is assumed that the H(z) data are uncorrelated with each other.
The compilation is used as in ref. [192], which contains 36 points in the redshift range
0.07 < z < 2.34 and which are in the form (z;, H;,on,).

e Supernovae type la data coming from the Pantheon compilation [193]. It containes
1048 Supernovae la points in the redshift range 0.01 < z < 2.26, along with their
covariance matrix.

e BAO data, including points from 6dFGS [194], WiggleZ [195], the MGS, ELG, LRG,
quasars and DR12 galaxy samples BAO points from the completed SDSS-IV eBOSS
survey [196], the year 3 DES [197] and the Lyman-a (Lya) absorption and quasars,
auto and cross correlation points from ref. [198]. It is assumed that the data are
independent with each other. However, it must be noted that, since some of the
points are derived by the same survey, inevitably there will be common overlapping
galaxies between the datasets, which will result to strong covariances that are not
included in the analysis. Even if some of them are, such as the covariance matrix
of the WiggleZ data, full correlations are not publicly available. This is clearly a
limitation in the analysis.

e CMB shift parameters [199,200]. They encapsulate the geometric information in
the CMB spectrum, via the location of the peaks and are in a sense a compressed
form of the CMB likelihood. This allows us to use information from CMB surveys
at the background level, without needing to include entropy in cosmological per-
turbation theory. As GREA requires a non-flat universe, the Planck 2018 chains
base_omegak plikHM_TTTEEE lowl_lowE _lensing are used to estimate the data vec-
tors.

e Riess et al Hy prior. The measurement of Hy from ref. [201] is included as well. Tt
comes from a sample of 75 Milky Way Cepheids, which were used to recalibrate the
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extragalactic distance ladder. This approach gives a value

H™ =732+ 1.3kms ! Mpe . (7.17)

e Freedman et al Hy prior. Finally, the measurement of Hy from ref. [202] is also
included. It comes from the Tip of the Red Giant Branch (TRGB) method using
stars in the Large Magellanic Cloud (LMC). This approach gives a value

H{™B) = 69.6 + 0.8 (stat) = 1.7 (syst) kms ™ Mpe ™. (7.18)

These datasets provide complete information on the background evolution of the uni-
verse. They are used in ref. [5] to perform a Bayesian model comparison between GREAT
and the cosmological constant using Markov Chain Monte Carlo (MCMC) techniques.

Given that the Hj priors seem to be in tension with other data [203,204], they must
be taken with care. The Hy tension is the observational discrepancy between the values of
Hj obtained by early- and late-time measurements. The tension seems to be statistically
significant and it currently lacks a compelling enough solution. In order to factor out the
effects of the tension, three different analysis are performed: 1) without including any of
the Hy priors, 2) including the Riess et al prior and 3) including the Freedman et al prior.

7.4.2 Bayesian inference and model comparison

Since statistics was not used before in the thesis, we will take now a small detour to intro-
duce some key concepts. There are two main interpretations of the concept of probability:
frequentist and Bayesian. In the former, probabilities describe the frequency or propensity
of some phenomenon; while according to the latter probabilities are interpreted as a rea-
sonable expectation or a quantification of belief. This philosophical distinction has direct
consequences on parameter estimation, which is one of the main tasks of statistics. For
instance, physical parameters O are treated as immutable values within classical (frequen-
tist) statistics, while Bayesian statistics treats them as random variables. The latter is the
standard approach in modern Cosmology. In Bayesian statistics, prior probability p(©) is
updated according to Bayes’ theorem by the likelihood £ of data being observed given an
outcome of the random variables describing the physical parameters

L(data|O©)
fC@L(data!@)p(@)
giving the posterior probability p(©|datw). FEstimates for © can be obtained from the

posterior distribution, for instance by finding its maximum. Since it can be a complicated
multivariate function, MCMC techniques are useful to sample it and find local maxima.

p(Oldata) =

p(©), (7.19)
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Following this approach, each dataset mentioned above carries a likelihood L. Since
they are assumed to be uncorrelated, the total likelihood can be written as the product

'Ctot = ESnIa X EBAO X £H(z) X Ecmb X EHO- (720)

Furthermore, since the likelihoods are assumed to be Gaussian?, they can also be easily
described in terms of a x? distribution. Total likelihood can be translated into the total
x? as a sum, taking into account that y2, = —21In Ly, i.e.

2 2 2 2 2 2
Xtot = XSnla T XBAO T XH(Z) + Xemb + XHp- (721)

Note that maximal likelihood is equivalent to minimal x?. For the included dataset, the
total x2 is given by eq. (7.21) and the parameter vectors for both the ACDM and GREAT
models are given by: Oyjodel = (ng, Oh2, h, Qk) Then, the best-fit parameters and their
uncertainties are obtained via an MCMC code wriften by Savvas Nesseris®. Regarding the
prior distribution p(©yjede1) for each model, in thecase of ACDM model they are given by
Qmo € [0.01,0.5], Q,h? € [0.015,0.035], ) € [-0.1,0.1], h € [0.5,1], while for the GREAT
model they are given by Q,,0 € [0.01,0.5], Qh% € [0.015,0.035], Q; € [0.00001,0.1],
h € [0.5,1]*. In the sampling approximately O(10°) points are obtained for each of the
models.

MCMC techniques allow to obtain the best parameter fit for each model. Now, in order
to compare the quality of fit, an additional step must be taken. Bayesian model comparison
is based on the Bayesian evidence B, which is calculated as the integral

E = /d@ﬁ(data|@)p(@), (7.22)

which is computed using thermodynamic integration, a method based on MCMC techniques
and described in the paper. Interestingly, the evidence is a likelihood function in which all
parameters of the model have been marginalized. Hence, it quantifies the probability of the
data giving a model regardless of the particular realization of the parameters understood
as random variables. Qualitatively, it can be immediately understood that models with
larger E are preferred. Quantitatively, this is expressed with the Bayes ratio between two

models 7 and j as
E;
By =—. 2

The Bayes ratio is interpreted by means of the Jeffreys’ scale [205] as follows:

e For In B;; < 1.1 the preference of j over ¢ is said to be weak.

2This is usually justified in application of the central limit theorem.

3https://github.com /snesseris/ GREAT-project

4Note that for the GREAT model 2 has to be positive as otherwise the square of the Hubble parameter
may become negative.
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7.5. Discussion

e For 1.1 < In B;; < 3 the preference of j over 7 is said to be definite.
e For 3 < InB;; <5 the preference of j over i is said to be strong.

e For In B;; > 5 the preference of j over i is said to be very strong.

In this way, we can obtain a quantitive comparison between two models that aim to
explain a given dataset (i.e., physical observations).

7.4.3 Results

Let us collect here the results of the model comparison between GREAT and ACDM:

e Table 7.1 shows the results of the MCMC analysis when no Hy prior is included.
The logarithmic Bayes ratio In By ¢ ~ —9.006 indicates a very strong preference of
GREAT over ACDM.

e Table 7.2 shows the results of the MCMC analysis when the Riess et al Hy is included.
The logarithmic Bayes ratio In Bj ¢ ~ 0.386 renders the test inconclusive, giving only
weak evidence in favor of ACDM.

e Table 7.3 shows the results of the MCMC analysis when the Riess et al Hy is included.
The logarithmic Bayes ratio In By ¢ ~ —0.373 renders the test inconclusive, giving
only weak evidence in favor of GREAT.

These results have two immediate consequences. First, GREAT is a serious and viable
alternative to ACDM. Indeed, excluding the Hy priors in the analysis gives a very strong
preference of GREAT over ACDM. Most of the difference in x2. comes from the CMB
data, as can be seen in table 7.4. Second, the tension between the Hy priors and the rest
of the data dilutes this statistical preference, rending the model comparison inconclusive.
We may interpret this result as steaming from the fact that the CMB data is driving most
of this preference, so that the early-late universe tension is playing a key role.

7.5 Discussion

General Relativistic Entropic Acceleration is a proposal to explain the current accelerated
expansion of the universe by means of an entropic force associated to the causal horizon. In
particular, the size of the causal horizon is large enough and is controlled by the curvature
parameter £, thanks to open inflation.
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No priors
Parameter ACDM GREAT
Qo 0.3057 + 0.0056  0.3522 £ 0.0190
Qp0h? 0.0224 £ 0.0002 0.0225 + 0.0001
Qk.0 0.0012 4+ 0.0018  0.0010 =+ 0.0002

Hy 68.08 + 0.58 68.38 + 0.48
o 1075.63 1071.35
InE —557.515 —548.509
In Bi]’ 0 —9.006

Table 7.1: Here we present the results of the MCMC analysis when not including any Hy
prior. In particular, we show the mean values, 1o errors of the parameters for the GREAT
and ACDM models respectively, along with the minimum y? and the log-evidence In E,
and the difference of the log-evidence with respect to the ACDM model In B;;. The latter
give a Bayes ratio of By ¢ = exp (—9.006) ~ 1/8150, thus resulting in very strong evidence
in favor of the GREAT model according to the Jeffreys’ scale [205]. Note that Hy is given

in units of kms~! Mpc~!.

Including Riess et al Hy prior
Parameter ACDM GREAT
Q.o 0.2995 4+ 0.0051 0.3350 £+ 0.0155
Qp0h? 0.0224 £ 0.0002 0.0225 + 0.0001
Q.0 0.0029 4+ 0.0017 0.0008 £ 0.0002

Hy 68.85 & 0.53 68.98 & 0.44
o 1088.79 1083.39
InE —557.588 —557.974
In B;; 0 0.386

Table 7.2: Here we present the results of the MCMC analysis when we include all the
available data and the Riess et al Hy prior. In particular, we show the mean values, 1o
errors of the parameters for the GREAT and ACDM models respectively, along with the
minimum y? and the log-evidence In E and the difference of the log-evidence with respect
to the ACDM model In B;;. The latter give a Bayes ratio of By g = exp (0.386) ~ 1.47,
thus resulting in the two models being considered statistically equivalent according to the
Jeffreys’ scale [205]. Note that Hy is given in units of kms~ Mpc~!.

Current cosmological data show that this proposal is a serious alternative to the cosmo-
logical constant. Indeed, if no prior on the current expansion rate of the universe Hj is set,
datasets involving the background expansion of the universe (H(z), Snla, BAO and CMB
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Including Freedman et al Hy prior
Parameter ACDM GREAT
Qmo 0.3047 +0.0052 0.3502 4+ 0.0157
Qp0h? 0.0224 £ 0.0001  0.0225 + 0.0001
Qi.0 0.0015 4+ 0.0017 0.0010 £ 0.0002

Hy 68.20 + 0.54 68.46 + 0.45
oin 1076.23 1071.74
In E —550.484 ~550.111
In Bi]’ 0 —0.373

Table 7.3: Here we present the results of the MCMC analysis when we include all the
available data and the Freedman et al Hy prior. In particular, we show the mean values,
1o errors of the parameters for the GREAT and ACDM models respectively, along with the
minimum y? and the log-evidence In E' and the difference of the log-evidence with respect
to the ACDM model In B;;. The latter give a Bayes ratio of By ¢ = exp (—0.373) ~ 0.689,
thus resulting in the two models being considered statistically equivalent according to the
Jeffreys’ scale [205]. Note that Hy is given in units of kms~! Mpc~!.

No priors breakdown
Model CMB BAO Snla  H(z)  xiy
ACDM 428 13.99 1034.84 2252 1075.63
GREAT 0.07 14.39 1034.82 22.10 1071.35

Table 7.4: Here we present the breakdown of the y? for both ACDM and GREAT for the
different datasets used in our analysis, in the case of not including any Hy prior. The
best-fit parameters from the MCMC are given in Table 7.1. As can be seen, the main
contribution in the difference of the x?s comes from the CMB and to a lesser extent from
the H(z) and BAO data, while the values for the Snla are practically the same.

shift parameters) give a very strong preference of GREAT over ACDM, if one interpretes
the Bayesian ratio with Jeffreys’ scale. However, this preference disappears when the priors
are included, so that the model comparison is inconclusive. This is probably due to the
tension between early- and late-time measurements.

If the cosmological constant is unnecessary to explain cosmological observations, this
would partly solve the cosmological constant problem, in the sense that a vanishing cosmo-
logical constant can be understood to be protected by a high-energy symmetry, which is
yet to be discovered. On the contrary, a tiny cosmological constant, as the one considered
in ACDM is hard to justify within QFT. Likewise, the issue of why vacuum energy does
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not seem to gravitate would still need to be solved.

Future surveys like CMB-54, Euclid, DESI and LSST will provide tighter constraints
and hopefully shed light as to which model is preferred by data. To see how this will
happen, let us parametrize the equation of state GREAT by the redshift expansion
(7.24)

w(z) = wo + ey
known as the Chevallier-Polarski-Linder (CPL) parametrization [206,207]. For ACDM one
simply has wy = —1 and w, = 0, while GREAT and other dark energy models typically
have different values. We show in fig. 7.1 the contour plots for (wp,w,) given the datasets
H(z), Snla, BAO, CMB shift parameters and the Riess et al Hy prior. As it can be seen
in this plot, both GREAT and ACDM are compatible with the data, although the value
of GREAT is closer to the maximum of the posterior distribution. Future surveys will
hopefully shrink the contour plots and allow us to distinguish both models.

It is worth pointing out that a positive contribution to the Friedmann equation when
non-equilibrium phenomena are present and, thus, it may well be that other sources of
entropy need to be taken into account in addition to that of the causal horizon. An
example of this relevant to late-time cosmology would be ordering and formation of LSS.
This process is clearly irreversible, and may perhaps be characterized in terms of growing
of the total entropy of the universe, even if ordering means a local decrease in entropy.

In our view GREAT is a powerful explanation to the current accelerated expansion of
the universe, as it fits the data well and does not require additional parameters, which
would be disfavored from the point of view of statistics. Furthermore, the thermodynamic
bridge between the physics of yet unknown quantum gravitational degrees of freedom and
large-scale cosmological physics makes it a compelling argument in light of the success of
black hole thermodynamics. We look forward to further developments and both theory
and observations that will clarify the role of these entropic forces in the cosmic expansion.
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07

Wy

Figure 7.1: The 68.3% and 95.5% confidence contours for the CPL model for the wg, w,
parameters, when including all data and the Riess prior. The black dot corresponds to the
best-fit value, the red dot to the ACDM model and the orange star to the prediction of
GREAT (wg, w,) = (—0.946, —0.318) [4]. From ref. [5]
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Chapter 8

Conclusions

Theoretical cosmology sits at a fascinating crossroad between gravity, quantum mechanics,
and thermodynamics. Indeed, general relativity is a theory of spacetime itself, quantum
field theory explains the physics of the very early universe and the origin of perturba-
tions, while thermodynamics and statistical mechanics constitute the indispensable bridge
between the microscopic and macroscopic descriptions of physical reality.

In this thesis we have explored several topics related to the quantum and thermal
nature of the universe. Motivated by an initial question: can primordial black holes be
entangled?, we have taken a path to other questions like: what else can we learn from
cosmic correlations? Are they genuinely quantum? Or also: Can entanglement between
black holes lead to an entropic force in the universe? How would we characterize entropic
forces and generic non-equilibrium phenomena within the usual description of the universe?
How do they impact the expansion of the universe?

The quantum origin of primordial perturbations is an unavoidable consequence of the
inflationary paradigm. These perturbations are responsible for the anisotropies in the
cosmic microwave background, seeding the structure formation in the universe and possibly
forming primordial black holes by inducing gravitational collapse during the radiation era.
These have been mostly studied in Fourier space and many of its quantum-information
properties were known. In part II we have investigated some of these quantities in real
space, which is relevant in order to understand the quantum nature of the correlations
between distant regions of the universe, not between distinct momentum modes.

In chapter 3 we have studied the entanglement entropy of a spherical region in the
early universe, in particular for a quantum field placed in a squeezed state. We have found
UV-finite contributions that are suspected to be due to long-range correlations and, thus,
could lead to classically correlated or quantum entangled primordial black holes, as they
are formed by collapse triggered by the quantum field of primordial perturbations. This is
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a realistic proposal of the existence of a network of entangled black holes in the universe.
Should the ER = EPR correspondence hold, then these black holes could be connected via
wormbholes.

In chapter 4 we have computed the perturbative mutual information of primordial
perturbations for inflation and the radiation era. We have found a two-fold enhancement.
On the one hand, the decay is logarithmic with distance, thus much slower than the quartic
decay found in the Minkowski vacuum. This shows the existence of long-range correlations
due to inflation. On the other hand, mutual information seems to be larger the longer
inflation lasts. Later non-perturbative studies cast doubt on the latter, which may be an
artifact of the perturbative expansion, which may lead to a divergent series. Nevertheless,
it confirms the logarithmic decay, which means that distant regions of the universe do share
large amounts of information due to their common origin during inflation.

In chapter 5 we have attempted to show a distinctive signal of genuine quantum cor-
relations by studying Bell inequalities in real space for both the Minkowski vacuum and
the Bunch-Davies vacuum of de Sitter space-time. Despite the fact that quantum discord,
a measure of such genuine correlations, is non-vanishing in both cases, we have found no
violation of Bell inequalities. This shows the difficulty of finding these genuine quantum
correlations in field theory, due to effective decoherence taking place. Furthermore, it casts
doubt on the ability of quantum discord to quantify them when dealing with mixed states.

Even though we have not exhausted all possible constructions of Bell and similar in-
equalities, further attempts to probe the quantum nature of primordial perturbations may
need go beyond Gaussian states. Primordial non-gaussianities are inevitable due to quan-
tum diffusion during inflation [67] and may lead to interesting, observable quantum phe-
nomena. In this sense, there exist proposals to probe this quantumness by means of the
3-point correlation function [102].

Entropic forces between PBH may still arise even if long-distance correlations are mostly
classical, as they still have an impact on the overall entropy of the quantum field of primor-
dial perturbations. We look forward to a more complete characterization of the primordial
black hole network and the multi-partite information shared by them, as well as whether
multi-partite Bell inequalities may provide distinctive quantum signals.

In our usual understanding of physical forces, we are used to both fundamental and
residual forces. Entropic forces constitute a third kind and are due to the emergent phe-
nomena in the collective motion of many particles. In part III we have taken a new per-
spective on out-of-equilibrium phenomena in gravity and cosmology, leading to potentially
observable consequences.

In chapter 6 we have developed the variational and covariant formulation of non-
equilibrium thermodynamics in general relativity. Built on an existing mathematical frame-
work, this allows for the logical synthesis of the laws of thermodynamics and the extremal
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action principle in the context of General Relativity. As a consequence, the Einstein field
equations get a contribution in the form an entropic force. When applied to cosmology,
this delivers the non-equilibrium Friedmann equations, which also get an entropic force
term.

In chapter 7 we have followed these ideas to understand the effect of entropy-producing
processes in the universe, as the entropic force always tends to accelerated its expansion. We
have found that the increase in entropy associated to the cosmic horizon from open inflation
may be responsible for the current accelerated expansion in the universe. This proposal,
called general relativistic entropic acceleration (GREA) is, thus, a viable alternative to the
cosmological constant. According to latest cosmological data, not only is GREA a serious
competitor, but is also favored when Hy priors are not included.

We currently find ourselves at a fascinating, golden age in cosmology. Observations are
not only able to confirm qualitatively our description of the universe, but also provide true
precision tests. In years and decades to come, they will be able to powerfully constrain
cosmological parameters and reach a conclusion as to whether GREA can statistically
overpower the cosmological constant.

It is our firm opinion that the feedback between theoretical and observational Physics
will continue to foster exciting developments at the fascinating crossover of physical realms
and human motivations that is Cosmology.
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Chapter 9

Conclusiones

La cosmologia tedrica se asienta en una encrucijada fascinante entre gravedad, mecanica
cudntica y termodindmica. En efecto, la relatividad general es una teoria del propio espacio-
tiempo, la teoria cudntica de campos explica la fisica del universo muy temprano y el origen
de las perturbaciones, mientras que la termodinamica y la mecéanica estadistica constituyen
el indispensable puente entre las descripciones microscépica y macroscopica de la realidad
fisica.

En esta tesis hemos explorado varios temas relaciones con la naturaleza cuantica y
térmica del universo. Motivados por la pregunta inicial: jes posible que los agujeros negros
primordiales estén entrelazados?, hemos explorado otras preguntas como: jqué queda por
aprender de las correlaciones cosmicas? zSon genuinamente cudnticas? O también: ses
posible que el entrelazamiento entre agujeros negros conlleve una fuerza entrdpica en el
universo? ;Como se caracterizan las fuerzas entrdpicas y los fendmenos fuera del equilibrio
en la descripcion habitual del universo? ;Qué impacto tienen en la expansion del universo?.

El origen cuantico de las perturbaciones primordiales es una consecuencia inevitable
del paradigma inflacionario. Estas perturbaciones son responsables de las anisotropias del
fondo de radiacién de microondas, del inicio de la formacién de estructura en el universo
y, posiblemente, de la formacién de agujeros negros primordiales por colapso gravitacional
inducido durante la era de radiaciéon. Estas perturbaciones se han estudiado principalmente
en espacio de Fourier, en el que se conocen muchas de sus propiedades de informacién
cuantica. En la parte II hemos investigado algunas de estas cantidades en espacio real, lo
que es relevante para entender la naturaleza cuantica de las correlaciones entre regiones
distantes del universo, no entre diferentes modos de momento.

En el capitulo 3 hemos estudiado la entropia de entrelazamiento de una regién esférica
en el universo temprano, considerando en particular un campo cudntico en un estado
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comprimido'. Hemos encontrado contribuciones UV-finitas que, sospechamos, se deben
a correlaciones de largo alcance y, por tanto, podrian conllevar la existencia de agujeros
negros primordiales correlacionados clasicamente o entrelazados cudnticamente, debido a su
formacién por colapso estimulado por el campo cuantico de perturbaciones primordiales. Se
trata de una postura realista para la existencia de una red de agujeros negros entrelazados
en el universo. Si la conjetura ER = EPR es correcta, estos agujeros negros podrian estar
conectados mediante agujeros de gusano.

En el capitulo 4 hemos calculado la informacién cuantica perturbativa de las pertur-
baciones primordiales durante inflacién y la era de radiacién. Hemos encontrado un in-
cremento doble. Por un lado, la dependencia con la distancia es logaritmica y, por tanto,
mucho mas lenta que la dependencia cuartica tipica del vacio de Minkowski. Esto mues-
tra la existencia de correlaciones de largo alcance debido a inflacion. Por otro lado, la
informacién mutua parece ser mayor cuanto mas tiempo dura inflacién. Estudios no per-
turbativos posteriores ponen en duda la validez del segundo punto, que podria ser un
artefacto de la expansion perturbativa, quiza ligada a una serie divergente. No obstante,
confirma la dependencia logaritmica, lo que significa que, en efecto, regiones distantes del
universo comparten grandes cantidades de inforamcién debido a su origen comin durante
inflacion.

En el capitulo 5 hemos intentado mostrar una senal caracteristica de las correlaciones
cudnticas genuinas, estudiando las desigualdades de Bell en espacio real, tanto para el vacio
de Minkowski como para el vacio de Bunch-Davies del espacio de de Sitter. A pesar de que
la discordancia cudntica?, una medida de correlaciones cudntica genuinas, es distinta de
cero para ambos casos, no hemos contrado violaciéon alguna de las desigualdades de Bell.
Esto muestra la dificultad de encontrar estas correlaciones cuanticas genuinas en teoria de
campos, debido al mecanismo de decoherencia efectiva. Ademads, cuestiona la habilidad de
la discordandia cudntica a la hora de cuantificarlas en el contexto de estados mixtos.

A pesar de que no hemos agotado todas las posibles construcciones de desigualdades
de Bell y similares, es posible que los intentos ulteriores de explorar la naturaleza cuantica
de las perturbaciones primordiales requiran ir mas alld de los estados Gaussianos. Las
no-Gaussianidades primordiales son inevitables debido a la difusién cudntica que ocurre
durante inflacién [67] y podrian conllevar fendnmenos cudnticos interesantes y observables.
En este sentido, hay propuestas para su estudio mediante la funcién de correlaciéon de 3
puntos [102].

Es posible que surjan fuerzas entrépicas entre agujeros negros primordiales, incluso si
las correlaciones de largo alcance son principalmente cldsicas, pues tendrian igualmente
un impacto en la entropia del campo cuéntico de perturbaciones primordiales. Esperamos
el desarrollo futuro de una caracterizaciéon mas completa de la red de agujeros negros

! Squeezed state en inglés.
2 Quantum discord en inglés.
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primordiales y la informaciéon mutua multipartita que comparten, asi como el estudio de
desigualdades de Bell multipartitas, que podrian desvelar seniales cuanticas genuinas.

En nuestra concepcion habitual de las fuerzas fisicas, estamos acostumbrados a las
fuerzas fundamentales y residuales. Las fuerzas entrépicas son un tercer tipo y se deben
a fenémenos emergentes del movimiento colectivo de muchas particulas. En la parte 111
hemos tomado una nueva perspectiva sobre los fenémenos fuera del equilibrio en gravedad
y cosmologia, lo cual podria tener consecuencias observables.

En el capitulo 6 hemos desarrollado la formulacién variacional y covariante de la ter-
modinamica fuera del equilibrio en relatividad general. Basada en un formalismo matematico
existente, permite la sintesis 1égica de las leyes de la termodindmica y el prncipio de accién
extrema en el contexto de la relatividad general. En consecuencia, las ecuaciones de campo
de Einstein reciben una contribucion en forma de fuerza entrépica. Al aplicar esta mod-
ificacién a cosmologia se obtienen las ecuaciones de Friedmann fuera del equilibrio, que
también contienen un término de fuerza entrépica.

En el capitulo 7 hemos continuado estas ideas con el fin de entender el efecto de procesos
productores de entropia en el universo, puesto que la fuerza entrépica siempre tiende a
acelerar su expansién. Hemos encontrado que el incremento de entropia asociado con
el horizonte césmico en inflacién abierta podria ser responsable de la actual expansién
acelerada del universo. Esta propuesta, llamada aceleraciéon entrépica relativista general
(GREA?) es, por tanto, una alternativa viable a la costante cosmolégica. De acuerdo con
las observaciones cosmolégicas recientes, GREA no es solo un competidor serio, sino que
es preferido estadisticamente cuando no se incluyen las probabilidades a priori de Hy.

Nos encontramos en una fascinante era dorada de la cosmologia. Las observaciones per-
miten confirmar cualitativamente nuestra descripcién del universo y proporcionan auténticos
tests de precisién. En las préximas décadas y anos tendran la capacidad suficiente para
constrenir los parametros cosmoldgicos y llegar a una conclusion sobre la preferencia o no
de GREA sobre la constante cosmoldgica.

En nuestra opinién, la retroalimentacion de la fisica tedrica y observacional contin-
uaran impulsando desarollos apasionantes en la fascinante encrucijada de campos fisicos y
motivaciones humanas que constituyen la cosmologia.

3 General relativistic entropic acceleration en inglés.
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Appendix A

Mathematical addenda

Some computational shortcuts were taken at different point of the thesis. For their rele-
vance we can highlight the random phase approximation in chapter 4 and the treatment
of variational non-equilibrium thermodynamics for continuum systems in chapter 6. The
aim of this appendix is to provide these shortcuts with further support and motivation.

A.1 Non random phases

One may wonder whether assuming that the squeezing phases d; are random has a notice-
able effect on the mutual information of primordial perturbations computed in chapter 4.
In the following we argue why it is not the case.

In the case that (vp + pv) # 0 then one cannot simply compute the entropy of the
quantum state by finding the eigenvalues of the operator A, as described in sec. 4.3. Instead,
one needs to consider an operator built from the larger field

x= (W> ( (A1)

Its 2-point correlation function contains all the 2-point correlation functions of the state

T,y

SR 1 T
A, 5) = 5 (@) = <fc(w’y) f(ﬁ ;y))> , (A2)

where
C(&,y) = ((@)p(y) + p(H)v(Z)) - (A.3)

This correlation function transforms under symplectic transformations as

A — SAST. (A.4)
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Such transformations are not similarity transformation and, hence, do not leave the eigen-
values of A invariant. Still, Williamson’s theorem guarantees that there exists a symplectic
transformation that brings A to a diagonal form [97]. Note that any symplectic transfor-
mation S preserves the symplectic form

SOS =0 where 0= (" ° (A.5)
— 0

or, equivalently

ST =qs1q. (A.6)

This means that the problem of finding symplectic eigenvalues of A is equivalent to finding

conventional eigenvalues of AQ
—iC X
AQ (—z’ 50) < (A.7)

If we assume random phases, then C' = 0 and the eigenvalues of AQ are those of VA, so
that both the formalism used in section IV and the one presented here are consistent. If
C # 0, we need to study the eigenvalue problem of this operator. The determinant of a
block matrix admits the following decomposition

My Mo
M p—
<M21 M22> ( (A.8)
det(M) = det(Mgg)det(Mn — M12M2_21M21) .

We are interested in the determinant of A — A in order to find the eigenvalues of AQ and

thus
det(AQ — \) =

det (;c _ )\> {et %o A-X <;c _ A) - P) ' (A.9)

This expression admits two approximations. First, since we are interested in the pertur-
bative regime, C will have a subdominant contribution in the first determinant and can
be neglected. This argument is valid as well for the first term of the second determinant.
Second, since C' deals with only a subset of momentum modes, we can assume that it has
a norm smaller than that of the identity and hence we can expand the inverse as

. —1 .
! <1 - /\1;C> ~ ! <1 + )\1;C> ( (A.10)

det(AQ — \) ~ det [-A + AT X (1 +iA1C/2)P] ( (A.11)

and thus
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Recall that the dominant perturbative contribution is given by X being perturbative and
P being non-perturbative. Then, C' will be non-perturbative as well. Since it is only
non-vanishing for momenta affeced by inflation, it does not affect the more relevant high-
momentum modes of P. Hence, we can conclude than the effect of averaging over the
squeezing phases has a negligible effect on the mutual information of primordial perturba-
tions.

A.2 Non-equilibrium in the continuum

Here we connect the variational formulation for continuous systems described by Gay-
Balmaz and Yoshimura [171] with the shortcut used in the Hamiltonian formulation of
non-equilibrium thermodynamics in General Relativity, see sec. 6.3.

The original rigorous variational formulation of non-equilibrium thermodynamics re-
quires the addition of a new term in the Lagrangian and the introduction of new variables

6/((14:5 —g (c +(S - z)f) é 0. (A.12)

I is the thermodynamic displacement, while S and ¥ are functions whose time derivatives
will be linked to internal and total entropy production. The variation of the action is equal
to

/d4x = (%M + gg(ss _(§— $)OT + (05 — 5z)f> . (A13)

The stationary-action principle is now supplemented with the phenomenological and vari-
ational constraints

oL .

=% = —P'V;p+ J'V,
gg (A.14)
%52 = —P'V;6¢ + J'V,0T,

which assume that there is no external power supply. We will restrict ourselves to the
simple case where the field is scalar and so the tensor P is a vector, but it could have a
higher order. In the original work the authors describe a fluid in its material representation.
In that case ¢ is a position vector and P is a 2-tensor.

With this constraints, the variation of the action is equal to
VAN . L
4. Ave =
/(da: g[<5¢+1“<85> PV1>5¢+<F+85><S
. VA
»-S-T|=— VWi | pT .
ceser (i) ) o
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Integrating by parts we get
5L (oL T . oL
4. Y o v~ i i
/dm g[<5¢ Vi F<85’) P>>5¢+<F+8S><S
.. AN
cueses 1 (%))l o

The equations of motion are obtained as usual by noticing that each variation is indepen-
dent. From 6S we get

(A.16)

F:—g‘c =T, (A.17)
while d¢ and 6" give

0L L v.Pi—0

op (A.18)

¥ =S+ V,J'.

These equations of motion and the phenomenological constraint fully describe the time
evolution of the system. The last one is the entropy balance equation. Even though
we imposed it earlier, this shows that it can also be derived from the stationary-action
principle.

We will now perform a variable transformation that will affect only the phenomenolog-
ical constraint, in order for it to have the form used throughout the paper. Note that the
variational condition is invariant under the following redefinitions

oL oL ; .
SO SS0T 4+ Vi (J'T) £V, (Pl6)
95> 7 gxtn + Vi (JO0) £V (P

oL oL

(A.19)
2268 < S208 + Vi (J9T) £V (1) (

oS oS

and the equivalent changes in the derivatives

oL

. oL . . .
o5 s (1) ()
558 = 58+ Vi () Vi (PG
oL . oL - . .
ind ) JNad S E) v (JT) » (P’ ) .
95 — 95 +V; Vi ¢
These replacements add total derivatives to the varied Lagrangiah and so have no physical
effect. The equations of motion stay the same. In fact, these are the kind of terms added
when integrating by parts before obtaining the equations of motion. The temperature also

stays the same, since 95/9S" = 1, being S’ the newly defined entropy.

(A.20)

As already mentioned, the only final equation that is transformed is the phenomeno-
logical constraint, which becomes

T = V;P'¢+TV,;J*, (A.21)
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that is _ N
TS =V, P'¢, (A.22)

where V; P’ is what we called the friction or entropic force tensor, only that it is a scalar
here. In our formulation we replace the time derivative by a more covariant notion of time
evolution, the Lie derivative along the normal vector n.

We conclude that both formulations are equivalent. Our choice is motivated by sim-
plicity and physical intuition, as a homogeneous and isotropic entropy function becomes a
particular case in a clearer way.
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Appendix B

Suplementary material

In this appendix we provide supplementary material that supports the arguments presented
in some chapters of the thesis. First, we provide additional results on the Bell inequal-
ities studied in chapter 5, in particular by using Larsson operators. Second, we provide
additional details on the analysis reviewed in chapter 7, more precisely in sec. 7.4.

B.1 Bell graphs

In this appendix, we provide additional figures, figs. B.1, B.2 and B.3, which are not directly
relevant to the discussion presented in the main text in chapter 5, but which nonetheless
complete the parameter-space exploration.
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Appendiz B. Suplementary material

Bell operator in de Sitter

Figure B.1: Expectation value of the GKMR Bell operator in the Bunch-Davies vacuum of
the de-Sitter space-time, as a function of the parameters g and HR. The colour encodes
the value of B, and a few contour lines are displayed in white. The UV regulator is set to
9 =0.01 and oo = d/R is set to the minimum o = 2(6 + 1).
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Figure B.2: Expectation value of the GKMR, Bell operator in the Bunch-Davies vacuum of
the de-Sitter space-time, as a function of the parameters g and HR. The colour encodes
the value of B, and a few contour lines are displayed in white. The IR regulator is set to
B =10"% and a = d/R is set to the minimum « = 2(5 + 1).
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Figure B.3: Expectation value of the GKMR, Bell operator in the Bunch-Davies vacuum of
the de-Sitter space-time, as a function of the parameters g and HR. The colour encodes
the value of B, and a few contour lines are displayed in white. The size of the patch is set
to HR = 10® and o = d/R is set to the minimum o = 2(§ + 1).
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Figure B.4: The 68% and 95% confidence contours for the GREAT (left panel) and
ACDM(right panel) models respectively, including all the data, but no prior on Hy.
The red points/dashed lines correspond to the Planck best-fit (2,0, Q.0h?, Qk.0, Ho) =
(0.315,0.0224,0.001, 67.4), where Hy is given in units of kms™! Mpc~!.

B.2 GREAT vs ACDM

For completeness, we show here the contour plots of confrontation of GREAT and ACDM
against cosmological data. These are figs. B.4, B.5 and B.6. This complements the best fit
parameters provided in section 7.4.
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Figure B.5: The 68.3%, 95.5% and 99.7% confidence contours for the GREAT (left panel)
and ACDM(right panel) models respectively, including all data and the Riess H prior.
The red points/dashed lines correspond to the Planck best-fit (meo,Qb’ohz,Qho,Ho) =
(0.315,0.0224,0.001, 67.4), where Hy is given in units of kms~! Mpc™
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Figure B.6: The 68.3%, 95.5% and 99.7% confidence contours for the GREAT (left panel)
and ACDM(right panel) models respectively, including all data and the TRGB prior on Hy.
The red points/dashed lines correspond to the Planck best-fit (meo,Qb’ohz,Qho,Ho) =
(0.315,0.0224,0.001, 67.4), where Hy is given in units of kms™! Mpc~ .
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