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Tesis Doctoral dirigida por el Dr. Juan Garćıa-Bellido Capdevila, 
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Als meus pares 



No olvidemos que el libro ha sido nuestro aliado, desde hace 
muchos siglos, en una guerra que no registran los manuales de 
historia. La lucha por preservar nuestras creaciones valiosas: 
las palabras, que son apenas un soplo de aire; las fcciones 
que inventamos para dar sentido al caos y sobrevivir en él; los 
conocimientos verdaderos, falsos y siempre provisionales que 
vamos arañando en la roca dura de nuestra ignorancia. 

Irene Vallejo, El infnito en un junco (2019). 



Abstract 

Cosmology is the branch of physics that deals with the study of the universe as a whole. 
At frst glance our understanding of the universe seems to be solely anchored in classical 
gravity. Indeed, general relativity is a powerful tool that provides a successful geometric 
description of the cosmos. However, if one scratches beneath the surface, the universe 
becomes a fascinating playground for thermal and quantum phenomena. 

On the one hand, the quantum origin of primordial fuctuations and, ultimately, the 
structure of the universe, is a spectacular and unavoidable prediction of the infationary 
paradigm. The universe may look classical, but it is certainly quantum at a fundamental 
level. On the other hand, in an expanding universe many out-of-equilibrium thermody-
namic processes take place, which allows us to introduce an arrow of time: the very concepts 
of past and future. The aim of the research collected in this thesis is to provide results and 
insight regarding phenomena that transcend the bare geometric cosmic description and are 
true quantum and thermodynamic windows into the universe. 

On the quantum window we explore topics that merge quantum information techniques 
in real space and physics of the early universe. One can view the amplifcation of quantum 
fuctuations during infation as a process of particle creation. We argue that due to this 
process distant regions share long-range correlations, as opposed to the standard short-
range entanglement present in the Minkowski vacuum. We elaborate on this by showing 
the enhancement of the perturbative mutual information between two arbitrary regions of 
an infating or radiation-dominated universe. Unlike the fast power decay found in the 
Minkowski vacuum, in a cosmological setup the decay is logarithmic and long-range share 
of information is possible. Furthermore, we study Bell inequalities in real space, showing 
that they are not violated by the Bunch-Davies vacuum of de Sitter spacetime, despite 
several hints on the existence of genuine quantum correlations in the quantum state of the 
Mukhanov-Sasaki feld. 

On the thermodynamic window, we develop a framework that allows to formulate non-
equilibrium thermodynamics within general relativity in a consistent way. The Einstein 
feld equations or, equivalently, the Hamilton equations in the (3+1)-formalism are mod-
ifed in compliance with the laws of thermodynamics. One immediate and fundamental 
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consequence of this is the breaking of symmetry under time inversion and the emergence 
of the arrow of time. Furthermore, the Raychaudhuri equation is also modifed and, thus, 
the way in which gravitational collapse takes place. When applied to cosmology, the Fried-
mann equations include an entropic force, which is always of accelerating nature when 
the universe is expanding. Even though most of the expansion history of the universe is 
isentropic, such a force may become relevant in out-of-equilibrium cosmic phenomena: for 
instance (p)reheating, phase transitions and gravitational collapse. 

Moreover, we propose an explanation to the current accelerated expansion of the uni-
verse as a sustained entropic force coming from the growth of the causal horizon in an open 
infation scenario. We name this the general relativistic entropic acceleration (GREA) the-
ory. Cosmological data in absence of priors on H0 strongly favours GREA in comparison 
with ΛCDM. Future cosmological surveys will further constrain cosmological parameters 
and may clearly support one model over the other. 
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Resumen 

La cosmoloǵıa es la rama de la f́ısica que se encarga del estudio del universo en su conjunto. 
A simple vista parece que nuestra comprensión del universo se fundamental únicamente en 
gravedad clásica. En efecto, la relatividad general es una potente herramienta que ofrece 
con éxito una descripción geométrica del universo. Sin embargo, si nos adentramos bajo 
la superfcie, el universo se convierte en un escenario fascinante de fenónmenos térmicos y 
cuánticos. 

Por un lado, el origen cuántico de las fuctuaciones primordiales y, en última instancia, 
de la estructura del universo, es una predicción espectacular e inevitable del paragima infa-
cionario. El universo puede parecer clásico, pero es sin duda cuántico a nivel fundamental. 
Por otro lado, en un universo en expansión ocurren muchos procesos termodinámicos fuera 
del equilibrio, lo cual nos permite introducir una fecha del tiempo: los propios conceptos de 
pasado y futuro. El objetivo de la investigación recogida en esta tesis es aportar resultados 
y una mayor percepción de los fenómenos que trascienden la mera descripción geométrica 
y son auténticas ventanas cuánticas y termodinámicas al universo. 

En la ventana cuántica exploramos temas que combinan técnicas de información cuántica 
en espacio real y f́ısica del universo temprano. Podemos entender la amplifcación de fuc-
tuaciones cuánticas durante infación como un proceso de creación de part́ıculas. Argu-
mentamos que, debido a este proceso, existen correlaciones de gran alcance entre regiones 
distantes, en contraste con el entrelazamiento de corto alcanze presente en el vaćıo de 
Minkowski. Continuamos mostrando el aumento de la información mutua perturbativa 
entre dos regiones arbitrarias de un universo infacionario o dominado por radiación. A 
diferencia del vaćıo de Minkowski, en el que esta cantidad decrece rápidamente como una 
potencia, en un contexto cosmológico el decrecimiento es logart́imico, por lo que se com-
parte información a grandes distancias. Además, estudiamos las desigualdades de Bell en 
espacio real, mostrando que el vaćıo de Bunch-Davies del espaciotiempo de de Sitter no 
las viola, a pesar de que la existencia de correlaciones cuánticas genuinas en el estado del 
campo Mukhanov-Sasaki pareceŕıa indicar lo contrario. 

En la ventana termodinámica, desarrollamos un marco teórico que permite formular 
la termodinámica fuera del equilibrio en relatividad general de modo congruente. Las 
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ecuaciones de campo de Einstein o, de manera equivalente, las ecuaciones de Hamilton en 
el formalismo (3+1) se modifcan de acuerdo con la segunda ley de la termodinámica. Una 
consecuencia inmediata y fundamental es la ruptura de la simetŕıa bajo inversión temporal 
y la emergencia de la fecha del tiempo. Además, la ecuación de Raychaudhuri se ve 
modifcada, aśı como la manera en la que ocurre el colapso gravitacional. En aplicaciones a 
cosmoloǵıa, las ecuaciones de Friedmann incluyen una fuerza entrópica, que siempre tiende 
a acelerar un universo en expansión. A pesar de que expansión del universo es isoentrópica 
durante la mayor parte de su historia, dicha fuerza podŕıa ser relevante en fenómenos 
cósmicos fuera del equilibrio, por ejemplo: el (p)recalentamiento, las transiciones de fase y 
el colapso gravitacional. 

Además, proponemos una explicación para la actual expansión acelerada del universo 
en forma de una fuerza entrópica sostenida, debido al crecimiento del horizonte causal 
en un escenario de infación abierta. Llamamos a esta idea la teoŕıa de la aceleración 
entrópica relativista general (GREA1). Los datos de observaciones cosmológicas, exluyendo 
probabilidades a priori de H0, muestran una preferencia fuerte de GREA en comparación 
con ΛCDM. Será tarea de los estudios cosmológicos futuros el constreñir todav́ıa más los 
parámetros cosmolgógicos y ofrecer un claro veredicto sobre uno u otro modelo. 

1Por sus siglas en inglés, general relativistic entropic acceleration. 
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every day of my grandma Maŕıa, who saw the beginning but not the end of this thesis 
project, and my grandma Rosita, who makes sure everyone in Nules is aware of my steps. 
I’ll always treasure the memories with my grandpa Batiste and my great aunt Carmen, who 
I know believed in me since I took my frst steps in this pale blue dot. To my great uncle 
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Introduction 

Cosmology is the science that studies the universe as a whole, aiming to answer some of 
the oldest questions raised by humanity. Being a branch of modern physics since the early 
20th century, it is now equipped with the proper tools to pose and tests hypotheses about 
the origin, evolution, destiny and fundamental properties of the universe. 

On the one hand, current technology allows to study cosmic structure in great detail, 
even the so called large scale structure, forming a true cosmic cartography which allow us 
to know that the universe is expanding and, at present, this expansion is accelerating. In 
order to do so it analyzes visible light and other parts of the electromagnetic spectrum com-
ing from distant objects, such as galaxies and groups and clusters thereof. Furthermore, 
studying the cosmic microwave background, a remnant of the early universe, allows one to 
reconstruct the so called thermal history of the universe, back to the time when matter was 
concentrated in a particle plasma. In contrast with other branches of physics, whose empir-
ical side rests on reproducible and standarizable experiments, cosmology has the challenge 
of building knowledge and verifying or falsifying hypotheses solely from observations, for 
it is impossible to create a new universe or repeat cosmic history. 

On the other hand, theoretical physics ofers a frm ground, a logical construct within 
which cosmological observations can ft. The theory of general relativity, the theoretical 
framework of spacetime as geometry and the gravitational interaction between systems 
with energy and momentum, is a fundamental tool to understand the universe, its shape 
and expansion rate at any of its stages. Quantum mechanics and quantum feld theory are 
also required to understand key aspects of the universe, in particular its evolution during 
its earliest stages and even the origin of its structure. It is only natural, therefore, that 
the birth of physical cosmology is a relatively recent happening, needing both advanced 
observational instrumentation and the revolutions of phyiscs of the 20th century. Thanks 
to its billions-of-years-lasting expansion, cosmology establishes a beautiful connection be-
tween the tiniest of elementary particles to the immensity of the entirety of the observable 
universe. Thermodynamics plays a determinant role in the connection between the micro-
scopic and the macroscopic worlds. Most of the expansion of the universe takes place in 
equilibrium, although certain key events take place out of equilibrium. 
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The goal of this thesis is to deal with some aspects of the crossroad of gravity and 
cosmology with quantum mechanics and thermodynamics. 

The standard model of cosmology, ΛCDM2 , is based precisely on these theoretical 
and observational pillars. It proposes that the expansion of the universe is dominated by 
the cosmological constant Λ, which determines its current acceleration, and dark matter. 
Ordinary matter and radiation are less abundant ingredients, but allow us to perform the 
observations themselves. 

Despite the success of ΛCDM, the universe has some quite particular properties, such 
as its homogeneity and isotropy on large scales, which require fne-tuned initial condi-
tions. Infation is the theory that currently counts with greater support as an explanation 
for these initial conditions. It proposes the existence of an accelerated expansion of the 
universe before the creation of the matter we observe. In addition to determining the 
geometry and basic symmetries of the universe, infation ofers a quantum origin for the 
deviations of homogeneity and isotropy that we observe by the very existence of structure 
in the universe, the matter that clusters in galaxies and groups thereof instead of being 
completely homogeneous, as well as the anisotropies of the cosmic microwave background. 
During infation microscopic quantum fuctuations arise and are stretched out due to the 
accelerated expansion until reaching macroscopic scales. These fuctuations turn then into 
curvature perturbations of the universe and, later, into matter density perturbations. 

These fuctuations of quantum origin can be studied with modern quantum information 
techniques. The goal is to understand the nature of the classical and quantum correlations 
between distant regions of the observable universe due to this common origin of structure. It 
is possible to distinguish between classical and the so called genuinely quantum correlations, 
given the fact that quantum mechanics violate the upper bound to correlations between 
two subsystems established by classical physics. Quantum entanglement, which prevents 
us from describing a given quantum subsystem with certainty without its complementary, 
is perhaps one of the most novel phenomena in quantum mechanics and it is responsible 
of the possibility of violating this bound. 

The concept of entropy is key to study a quantum system. Entropy quantifes the lack 
of information of a quantum system or subsystem and it is the frst step to understand the 
existence of entanglement and genuinely quantum correlations with other subsystems. In 
other words, the lack of information suggests that it can be obtained if the interaction with 
another subsystem is known. This quantity and others derived from it are to be studied 
in this thesis, in the context of primordial perturbations as a quantum system. 

Entropy plays yet another role in cosmology, as a key quantity in thermodynamics. 
As a measure of the lack of information, the evolution of entropy distinguishes between 
process in- and out-of-equilibrium in the thermodynamic sense. When it is conserved, the 

CDM stands for cold dark matter. 
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system is in quasi-equilibrium and the dynamics is reversible, whereas it grows out of it 
and the dynamics becomes irreversible. In other words, the deviation from thermodynamic 
quasi-equilibrium implies irreversibility and information loss. Once reached, strict thermo-
dynamic equilibrium sets an upper bound on the entropy of the system and an exit from 
it is exponentially unlikely. 

Thermodynamics in general and entropy in particular are unexpectedly relevant in the 
consistency between gravity and quantum mechanics, as well as in its potential unifcation 
in a theory of quantum gravity. This is thanks to black holes, physical objects with 
such a high density that they can trap light with their gravitational feld. The discovery 
that black holes satisfy the laws of thermodynamics points towards the existence of a 
quantum microscopic description, from whose statistics emerges thermodynamics, as it 
happens in any other many-particle quantum system. A greater logical connection between 
thermodynamics and gravity, both in- and out-of-equilibrium, may help deepening its link 
with quantum physics. 

This thesis is organized in four parts and nine chapters as follows. In part I the founda-
tions of theoretical physics on which the thesis is based are reviewed: in chapter 1 several 
aspects of cosmology are introduced, with emphasis on infation, while chapter 2 collects 
selected topics on quantum mechanics. In part II quantum properties of primordial per-
turbations in real space are discussed: chapter 3 deals with the entropy of entanglement, 
chapter 4 presents a perturbative computation of the mutual information and chapter 6 
deals with Bell inequalities. In part III a change in the usual treatment of out-of-equilibrium 
thermodynamics in cosmology is proposed: in chapter 6 a covariant and variational formu-
lation of gravity and thermodynamics is presented, while chapter 7 deals with achieving 
an accelerated expansion of the universe as an out-of-equilibrium process. Finally, the 
conclusions of the thesis are collected in part IV, chapters 8 and 9. 
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Introducción 

La cosmoloǵıa es la ciencia que estudia el universo en su conjunto, con el objetivo de 
responder algunas de las preguntas más antiguas planteadas por el ser humano. Como 
rama de la f́ısica moderna desde principios del siglo XX, cuenta por primera vez con las 
herramientas adecuadas para plantear y comprobar hipótesis sobre su origen, evolución, 
destino y propiedades fundamentales. 

Por un lado, la tecnoloǵıa actual permite estudiar la estructura cósmica en gran de-
talle, incluso la llamada estructura a gran escala, constituyendo una auténtica cartograf́ıa 
cósmica que nos permite saber que el universo se expande y que, en la actualidad, lo 
hace de manera acelerada. Para ello analiza la luz visible y otras partes del espectro elec-
tromagnético que nos llegan de objetos distantes, como galaxias y grupos y cúmulos de 
estas. Además, el estudio la radiación de fondo de microondas, un remanente del uni-
verso antiguo, permiten reconstruir la llamada historia térmica del universo, hasta cuando 
la materia estaba concentrada en un plasma de part́ıculas. A diferencia de otras ramas 
de la f́ısica, cuyo lado emṕırico descansa sobre experimentos repetibles y estandarizables, 
la cosmoloǵıa tiene el reto de construir conocimiento y verifcar o falsar hipótesis a partir 
únicamente de observaciones, pues es imposible crear un nuevo universo o repetir la historia 
cósmica. 

Por otro lado, la f́ısica teórica ofrece un fundamento frme, un constructo lógico en el 
que encajar las observaciones cosmológicas. La teoŕıa de la relatividad general, el marco 
teórico del espacio-tiempo como geometŕıa y de la interacción gravitatoria entre sistemas 
f́ısicos dotados de enerǵıa y momento, es una herramienta fundamental para comprender 
el universo, su forma y su ritmo de expansión en cualquiera de sus estad́ıos. La mecánica 
cuántica y la teoŕıa cuántica de campos también son necesarias para comprender aspectos 
clave del universo, en particular su evolución en las etapas más tempranas e incluso el 
origen de su estructura. Es natural, por tanto, que el nacimiento de la cosmoloǵıa f́ısica sea 
relativamente reciente, al necesitar tanto de instrumentación observacional avanzada como 
de las revoluciones de la f́ısica del siglo XX. Gracias a su expansión durante miles de millones 
de años, la cosmoloǵıa establece una bella conexión entre lo minúsculo de las part́ıculas 
elementales a la inmensidad de la totalidad del universo observable. En la conexión entre lo 
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microscópico y lo macroscópico juega un papel determinante la termodinámica. La mayor 
parte de la expansión del universo ocurre en equilibrio, pero ciertos momentos clave ocurren 
fuera del equilibrio. 

El objetivo de esta tesis es tratar algunos aspectos de la encrucijada de la gravedad y 
cosmoloǵıa con la mecánica cuántica y la termodinámica. 

El modelo estándar de la cosmoloǵıa, llamado ΛCDM3 , se basa precisamente en estos 
pilares teóricos y observacionales. Propone que la expansión del universo está dominado 
por la constante cosmológica Λ, que determina su aceleración actual, y la materia oscura. 
La materia ordinaria y la radiación son ingredientes menos abundantes, pero permiten la 
propia realización de observaciones. 

A pesar del éxito de ΛCDM, el universo tiene algunas propiedades muy particulares, por 
ejemplo su homogeneidad e isotroṕıa a grandes escalas, que requieren de unas condiciones 
iniciales ajustadas. Infación es la teoŕıa que actualmente cuenta con mayor respaldo para 
explicar esas condiciones iniciales. Propone la existencia de una expansión acelerada del 
universo antes de la creación de la materia que observamos. Además de determinar la 
geometŕıa y las simetŕıas básicas del universo, infación ofrece un origen cuántico para 
las desviaciones de homogeneidad e isotroṕıa que observamos por la misma existencia de 
estructura en el universo, la materia se concentra en galaxias y agrupaciones de estas en 
lugar de ser totalmente homogénea, aśı como las anisotroṕıas en el fondo de radiación de 
microondas. Durante infación se producen fuctuaciones cuánticas a nivel microscópico que 
son estiradas debido a la expansión acelerada hasta alcanzar escalas macroscópicas. Estas 
fuctuaciones se traducen en perturbaciones de la curvatura del universo y, más adelante, 
en perturbaciones de la densidad de materia. 

Estas fuctuaciones de origen cuántico se pueden estudiar mediante técnicas modernas 
de información cuántica. El objetivo es comprender la naturaleza de las correlaciones 
clásicas y cuánticas entre regiones distantes del universo debido a este origen común de la 
estructura. Es posible distinguir entre correlaciones clásicas y las llamadas genuinamente 
cuánticas, ya que la mecánica cuántica viola la cota superior a las correlaciones entre 
dos subsistemas establecida por la f́ısica clásica. El entrelazamiento cuántico, que impide 
describir un subsistema cuántico determinado con seguridad sin su complementario, es 
quizá uno de los fenómenos más novedosos de la mecánica cuántica y es responsable de la 
posibilidad de violar dicha cota. 

El concepto de entroṕıa es clave en el estudio de un sistema cuántico. La entroṕıa 
cuantifca la falta información de un sistema o subsistema cuántico y es el primer paso 
para entender la existencia de entrelazamiento y correlaciones genuinamente cuánticas con 
otros subsistemas. Es decir, la falta de información sugiere que esta puede ser obtenida 
si es conocida la interacción con otro subsistema. Esta cantidad y otras derivadas de ella 

3CDM signifca cold dark matter o materia oscura fŕıa 
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son objeto de estudio de esta tesis, en el contexto de las perturbaciones primordiales como 
sistema cuántico. 

La entroṕıa juega además otro papel en cosmoloǵıa, como cantidad clave en termo-
dinámica. Como medida de la falta de información, la evolución de la entroṕıa permite 
distinguir entre procesos dentro y fuera del equilibrio en el sentido termodinámico. Cuando 
esta se conserva, el sistema se encuentra en cuasi equilibrio y la dinámica es reversible, 
mientras que crece cuando sale de él y la dinámica se vuelve irreversible. Es decir, la 
desviación del cuasi equilibrio termodinámico conlleva irreversibilidad y pérdida de infor-
mación. El equilibrio termodinámico estricto, una vez alcanzado, supone una cota superior 
a la entroṕıa del sistema y una salida de él es exponencialmente improbable. 

La termodinámica en general y la entroṕıa en particular tienen una relevancia sorpren-
dente a priori en la coherencia entre la gravedad y la mecánica cuántica, aśı como en su 
potential unión en una teoŕıa de gravedad cuántica. Esto se debe a los agujeros negros, 
objetos f́ısicos con una densidad tan alta que son capaces de atrapar la luz mediante su 
campo gravitatorio. El descubrimiento de que los agujeros negros cumplen con las leyes 
de la termodinámica es señal de la existencia de una descripción microscópica cuántica, de 
cuya estad́ıstica emerge la termodinámica, al igual que en cualquier otro sistema cuántico 
de muchas part́ıculas. Una mayor conexión lógica entre la termodinámica y la gravedad, 
tanto dentro como fuera del equilibrio, podŕıan ayudar a profundizar su v́ınculo con la 
cuántica. 

Esta tesis se organiza en cuatro partes y nueve caṕıtulos de la siguiente manera. En 
la parte I se revisan los fundamentos de f́ısica teórica en los que se basa la tesis: en el 
caṕıtulo 1 se introducen varios aspectos de cosmoloǵıa con enfásis en infación, mientras 
que en el caṕıtulo 2 se seleccionan temas relevantes de mecánica cuántica. Los resultados de 
la tesis se presentan en las partes II y III. En la parte II se discuten propiedades cuánticas 
de las perturbaciones primordiales en espacio real: en el caṕıtulo 3 se estudia la entroṕıa de 
entrelazamiento, en el caṕıtulo 4 se realiza un cálculo perturbativo de la información mutua 
y en el caṕıtulo 5 se estudian las desigualdades de Bell. En la parte III se propone un cambio 
en el tratamiento de la termodinámica fuera del equilibrio en cosmoloǵıa: en el caṕıtulo 6 
se elabora una formulación covariante y variacional que auna gravedad y termodinámica, 
mientras que en el caṕıtulo 7 se plantea cómo lograr una expansión acelerada del universo 
como un proceso fuera del equilibrio. Finalmente, en la parte IV, caṕıtulos 8 y 9, se 
exponen las conclusiones de la tesis. 
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Chapter 1 

Infationary cosmology 

“Este palacio es fábrica de los dioses”, pensé primeramente. 
Exploré los inhabitados recintos y correǵı: “Los dioses que lo 
edifcaron han muerto”. Noté sus peculiaridades y dije: “Los 
dioses que lo edifcaron estaban locos” 

Jorge Luis Borges, El Aleph (1943) 

1.1 Spacetime, relativity and geometry 

Cosmology, understood as the pursue of knowledge about the whole of existing phenomena, 
is an ancient discipline. Religions throughout the world provided a plethora of beliefs about 
the origin, purpose, nature and destiny of the universe. Metaphysics still addresses some 
of these questions today from a rational point of view. 

The scientifc study of the universe, what one may call physical cosmology, is a relatively 
modern branch of physics. It wasn’t until the development of a mathematically rigorous 
and experimentally tested dynamical theory of spacetime, general relativity (GR) that one 
was able to scientifcally pose the questions mentioned above. 

Space and time were considered separate and absolute entities for centuries. This 
means that distances would look the same and clocks would tick at the same rate for any 
observer. Albert Einstein challenged this view in 1905, proposing that space and time are 
actually observer-dependent [9]: those that move faster experience time dilation and length 
contraction. This striking statement was a logical consequence of the postulates of special 
relativity (SR): all physical laws look the same to and the speed of light is measured to be 
the same constant by any inertial observer, where an inertial observer moves at constant 
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Chapter 1. Infationary cosmology 

speed. Later in 1908, Hermann Minkowski interpreted this relative nature of space and 
time as a single geometric entity: spacetime [10]. 

This geometric way of thinking can be seen as a true paradigm shift and allowed Einstein 
to make the postulates of gravity consistent with the gravitational interaction. 

• Principle of general covariance. The laws of physics are the same for all observers. 
They admit a mathematical formulation in terms of tensors defned on a diferentiable 
manifold that make this invariance explicit. In other words, the laws of physics are 
invariant under an arbitrary change of coordinates. 

• The equivalence principle. The laws of physics reduce locally to those of SR, that is, 
no local experiment can determine the existence of the gravitational interaction. 

Based on these physical principles and their mathematical implementation, Einstein 
proposed the gravitational feld equations [11] 

Geometry = Matter (1.1) 

or, more concretely 
Gµν = κTµν . (1.2) 

This equation relates a geometric quantity, the Einstein tensor Gµν with a description of 
matter, the stress-energy tensor Tµν , by the gravitational coupling κ. 

The description of gravity in terms of geometry ammounts to the replacement of fat 
spacetime with the Minkowski metric ηµν = diag(−1, 1, 1, 1) by a more general spacetime 
manifold equipped with a metric tensor gµν with Lorentzian signature. 

GR passed its frst experimental tests by explaining the perihelion precession of Mercury 
and predicting the correct value of the gravitational defection of light [12], which doubled 
the Newtonian prediction. It is considered today to be a successful physical theory, able to 
explain all observed gravitational phenomena: celestial orbits [12], cosmic evolution [13], 
black holes [14], gravitational waves [15–17], etc. 

Einstein’s equations are compatible with yet another backbone of physics: the vari-
ational or extremal action principle. The gravitational part can be obtained from the 
Einstein-Hilbert action [18] Z 

1 √ SEH = d4 x −g R , (1.3)
2κ 

where R = gµν Rµν is the Ricci scalar, the trace of the Ricci tensor Rµν . The variation of 
the Einstein-Hilbert action (δSEH = 0) gives the vacuum Einstein feld equations Rµν = 0. 
Including matter, the whole action takes the form 

S = SEH + Sm , (1.4) 
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1.2. FLRW cosmology 

so that one defnes the stress-energy tensor associated to a matter action as 

Tµν 
2 

= −√ −g 
δLm 

δgµν , (1.5) 

where Lm is the matter Lagrangian given by Sm = 
R 
d4xLm. GR is then a fully-fedged 

theory, which is consistent with or generalizes the principles of classical physics. 

Somewhat simultaneously to the development of relativity, another revolution of mod-
ern physics took place: the birth of quantum physics, required to explain the behavior 
of microscopic phenomena, such as atoms and elementary particles. To put it in short: 
quantum mechanics is revolutionary because it requires giving up one of the following two 
physical principles: locality or realism. This will be discussed in more detail in chapter 2. 

Strictly speaking, GR can be quantized within the framework of quantum feld theory 
(QFT) as an efective feld theory (EFT) [19]. This means that its validity is restricted 
below a certain energy scale, the Planck scale, which is way above the reach of any fea-
sible experiment performed with current and foreseeable technology. However, signifcant 
departures from the classical theory, i.e., quantum corrections, are also expected to arise 
around the Planck scale. Hence, classical gravity sufces in principle to explain observable 
gravitational phenomena. There are proposals, however, as to how the logical and physi-
cal consistency of quantum gravity may constraint the range of low-energy efective feld 
theories of gravity and other felds that can be consistently completed at high energies by 
it [20–22]. 

Furthermore, even if a classical theory sufces for observational purposes, it may as 
well be that the correct one is not GR. Indeed, many modifed gravity theories have been 
proposed as alternatives to GR [23]. Reasons to do so vary, but phenomenologically can 
be linked to two physical phenomena not fully-satisfactory described by GR: dark matter 
and dark energy, which we will briefy discuss in sec. 1.2. 

1.2 FLRW cosmology 

As a physical theory of spacetime, GR provided for the frst time the required tools to 
describe the universe as a whole. Besides the physical principles included in the theory, 
there is a crucial additional one: the Copernican principle. Loosely speaking, it is the 
statement that humans, Earth or the Solar System are not privileged observers of the 
universe. Put more rigorously: the universe is homogeneous and isotropic, i.e., the universe 
looks the same everywhere and looking in any direction. This principle is named after 
Nicolaus Copernicus, who argued in 1543 that Earth was orbiting the Sun, and thus had 
no privileged position over the other planets. 
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Chapter 1. Infationary cosmology 

Mathematically, the copernican principle is translated into a particular ansatz for the 
spacetime metric of the universe. In spherical coordinates (t, r, θ, φ) this takes the form � � 

dr2 � �
2ds2 = −dt2 + a 2(t) + r dθ2 + sin2 θdφ2 . (1.6)

1 − kr2 

This is the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric, named after the four 
scientists that contributed more generally to the foundation of homogeneous and isotropic 
cosmology in the 1920s and 30s [24–27], also named FLRW cosmology after them. This 
metric describes a spacetime geometry whose constant-time hypersurfaces are spatially ho-
mogeneous and isotropic. There exist three such hypersurfaces, labelled by k = {−1, 0, 1}, 
corresponding to hyperbolic, Euclidian or elliptic space. They describe, respectively, an 
open, fat or closed universe. 

Of uttermost relevance is the scale factor a(t), a function of time that describes the 
expansion or contraction of physical distances within the hypersurfaces. A universe with 
constant scale factor is said to satisfy the perfect Copernican principle, but this is not the 
case of our universe. In fact, galaxies observed from Earth recede at a velocity proportional 
to its distance [28] 

v = Hd , (1.7) 
where H is the Hubble parameter, which is actually time-dependent H = H(t). This 
relation, called the Hubble law, can be shown to be the only one that can make galactic 
recession consistent with spatial homogeneity and isotropy. 

The time-dependent value of H(t) is a consequence of the dynamical expansion of the 
universe and can be obtained by applying the Einstein feld equations. In fact 

ȧ 
H(t) = (1.8) 

a 
Let us asume that the universe is flled by a perfect fuid, characterized by the following 
stress-energy tensor 

Tµν = (ρ + p)uµuν + pgµν (1.9) 
where ρ = ρ(t) and p = p(t) are, respectively, the energy density and pressure of the 
perfect fuid as measured by a comoving observer who fnds the universe around it to 
be homogeneous and isotropic and, thus, ρ and p only can depend on cosmic time. The 
covariant conservation of this tensor implies the continuity equation 

T µνDµ = 0 ⇒ ρ̇+ 3H(ρ + p) = 0 . (1.10) 

The Einstein feld equations with the FLRW metric ansatz and the stress-energy tensor of 
a perfect fuid become the Friedmann equations for the scale factor 

8πG k 
H2 = ρ − 

23 a (1.11)
ä 4πG 
= − (ρ + 3p) . 

a 3 
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1.2. FLRW cosmology 

Note that the continuity equation and the Friedmann equations are interdependent. 

Hence, FLRW cosmology predicts a decelerating expansion of the universe. In the 
distant past, the universe was flled with a plasma, much denser and hotter than it is today. 
Since then it has expanded and cooled down in a procedure called the thermal history of 
the universe. This framework, sometimes called Big Bang cosmology, can correctly predict 
many present observations, such as the abundance of light elements in the universe [29], due 
to Big Bang nucleosynthesis, or the cosmic microwave background (CMB) [30], redshifted 
isotropic radiation coming from the last scattering between photons and free protons and 
electrons before their recombination into hydrogen atoms. 

One frstly observes two kinds of matter in the universe: baryonic matter1 and photons. 
Baryonic matter is a particular case of dust, i.e., it has negligible pressure (p = 0) due to 
its non-relativistic nature. Photons, on the other hand, are a particular case of radiation, 
i.e., their pressure is that of an ultra-relativistic particle (p = ρ/3). 

These, however, cannot account for all phenomena observed in the universe. Frank 
Zwicky proposed in the 1930s the existence of additional dust, called dark matter due to its 
lack of electromagnetic interaction, motivated by the observed motion of galaxies in clusters 
and the virial theorem [31]. This proposal was strengthened later by the study of galactic 
rotation curves by Vera Rubin [32]. Since then, many other astronomical observations 
require the inclusion of dark matter in the cosmic fuid. Whether it requires an extension 
of the standard model of particle physics (SM) or can be explained by conventional physics, 
such as black holes, is still up to debate. This dark matter is said to be cold, since it behaves 
as dust. 

Furthermore, the expansion of the universe is not decelerating today, contrary to pre-
dictions of FLRW cosmology. It was discovered in 1998 by observing Type Ia super-
novae [33, 34] that, instead, it started accelerating recently. The current accepted expla-
nation for this observation is the existence of a non-vanishing cosmological constant Λ. 
This means that the universe will asymptotically converge to de Sitter spacetime, thus 
fnishing emptied out and causally disconnected. A plethora of alternatives to the cosmo-
logical constant has been proposed. These can be put into to categories: modifed gravity 
(MG) at large scales and dark energy (DE) [35]. However, so far none of them provides a 
statistically favored explanation in comparison with the cosmological constant. 

Finally, we should mention that, although the universe is homogeneous and isotropic at 
large scales, this feature is not exact and certainly does not hold at small scales due to exis-
tence of large scale structure (LSS) in the universe2 . Observations of the CMB anisotropies 

1The term baryonic matter as widely used in cosmology is somewhat inconsistent with the concept of 
baryon in particle physics, since atomic nuclei are made up of baryons (protons and neutrons), but electrons 
are certainly not. Since atomic nuclei make up most of the atomic mass, this inaccuracy is usually tolerated. 

2LSS is large compared to Earth, the Solar System or even the Milky Way galaxy, but small compared 
to the size of the universe. 
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are consistent with a spectrum of scale-invariant and small density perturbations [36], which 
eventually grow due to gravitational collapse and form the large inhomogeneities observed 
at small scales, thus explaining LSS [37]. 

The key ingredients outlined here: FLRW cosmology with baryonic matter, radiation 
(photons and neutrinos), cold dark matter, the cosmological constant and a Gaussian and 
scale-invariant spectrum of primordial perturbations constitute the concordance model of 
cosmology, usually labelled Λ - cold dark matter (ΛCDM). This is the currently accepted 
model to describe the universe as a whole. Despite the remaining uncertainties and the 
unknown fundamental nature of some of its components, it is a remarkable achievement 
that one can obtain such a consistent and accurate physical description of the universe 
with 1) an underlying physical theory of spacetime and a model within it built from frst 
principles and 2) observations from Earth that are able to ft the parameters of the model 
up to O(1%) or even better precision [38]. 

There remains the question of the initial conditions that deliver a universe such as 
the one we observe and is accurately described by ΛCDM. As a matter of fact, these 
initial conditions need to be fnely tuned due to the dynamical behavior of the Friedmann 
equation. A solution to this and other problems is provided by infation. 

1.3 The idea of infation 

Big Bang cosmology, as the logical consequence of GR, the Copernican principle and the 
observed expansion of the universe is remarkably successful. Nevertheless, it sufers from 
several theoretical issues [13, 39]: 

• The fatness problem. It can be summarized as the paradox of observing an almost 
spatially fat universe, despite gravity tending to increase curvature. Let us rewrite 
the frst Friedmann equation as 

1 = Ω + ΩK , (1.12) 

where Ω = 8πGρ/(3H2) is the density parameter of the universe and ΩK = −k/(aH)2 

is the curvature parameter. During most of the known expansion history and before 
the begin of its current accelerated state (dark energy domination), time evolution 
tends to rapidly increase the value of ΩK , at rates ΩK ∼ t2/3 during matter domina-
tion and ΩK ∼ t during radiation domination. Hence, for the current observational 
bounds on |ΩK | ≲ 10−3 , the matter content of the very early universe must be pre-
cisely balanced as to give an extremely tiny value of the curvature parameter. 

• The homogeneity problem. Similarly to the fatness problem, gravity tends to bring 
together matter, and a paradox arises between the Copernican principle at large scales 
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and the dynamical evolution of the universe, which would again require deviations 
from homogeneity in the very early universe to be extremely tiny. 

• The horizon problem. Because of the fnite speed of light and the fnite age of 
the universe, at any given time there exist causally disconnected patches. The CMB 
photons we observe now arise from 105 causally disconnected regions at recombination 
time, yet they have the same average temperature and correlated deviations from it. 
This seems extremely unlikely, unless there was indeed a common causal origin. 

One may argue that these problems do not actually exist, for they do not arise as 
actual contradictions between FLRW cosmology and cosmological observations. Indeed, 
these issues, which we could summarize as the initial conditions problem, are not really 
concerned with the dynamical evolution of the universe nor the physical principles behind 
our description for it. However, the goal of theoretical physics as a scientifc discipline is 
not merely to describe observations, but also to explain them. In a modern application 
of Occam’s razor, a physical explanation can be regarded to be preferred if its requires a 
smaller amount of free parameters3 . 

Therefore, one may aim to explain the universe without such fne-tuned initial condi-
tions or, at least, in terms of parameters that do not require them. This is achieved by 
adding a cosmological era before radiation domination that has a very diferent dynam-
ical behavior. In order to suppress inhomogeneities and curvature and make tiny scales 
cross outside the horizon (i.e. d/dt(a/dH ) > 0), the expansion of the universe needs to be 
accelerated 

ä > 0 , (1.13) 

very much like it is today. An explanation in terms of the cosmological constant is, however, 
inadequate, since such an accelerated expansion would not end. Instead, the theory of 
infation was developed in the early 1980s. First, Andrei Starobinsky realized that higher 
curvature contributions to the action could set de Sitter spacetime as the initial state of 
the universe [41]. Shortly after, Alan Guth realized that an exponential expansion would 
solve the problems of FLRW cosmology [42]. Finally, Andrei Linde proposed a fully viable 
model to start and end this exponential expansion [43]. 

During this new cosmological era, the universe is dominated by a scalar feld ϕ, the 
infaton, whose action is given by Z � � 

1 Sϕ = d4 x 
√−g ∂µϕ∂

µϕ − V (ϕ) (1.14)
2 

and V (ϕ) is the infaton potential. Under the so called slow-roll conditions, an infaton-
dominated universe undergoes an exponential expansion that quickly suppresses any inho-

3Occam’s razor is not only a traditional philosophical statement, but has also a modern implementation 
in statistical model comparison [40]. 
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Chapter 1. Infationary cosmology 

mogeneity or deviation from fatness and, hence, sets up the right initial conditions for our 
universe to be consistent with our observations [13]. 

The main argument in favor of infation is not, however, the solution of the initial 
conditions problem per se. Rather, it is that it provides, at the same time, a quasi scale-
invariant spectrum of primordial Gaussian perturbations [44,45], as required by CMB and 
LSS observations. Most models predict both scalar perturbations, responsible for curvature 
and subsequent density perturbations, and yet-to-be-observed tensor ones. The mechanism 
behind this will be reviewed in the next subsection. 

The paramount role played by infation in modern Cosmology can be understood from 
its ability to explain these features of the universe from minimal assumptions. Its observa-
tional drawback its, consequently, that it seems to be hard to determine which particular 
infationary model is the right one [13]. Not only it’s hard to determine V (ϕ), but one may 
even have additional scalar felds (multi-feld infation), giving a much richer phenomenol-
ogy. CMB anisotropies provide the best tool today to constraint infationary models [38], 
precisely due to the diferences between the spectra of primordial perturbations. These 
are mainly characterized by the deviation from scale invariance (spectral index) for scalar 
perturbations ns and the tensor-to-scalar ratio r. Future observations will provide tighter 
constraints. Furthermore, the potential observation of primordial tensor perturbations 
could be the defnite observational test for infation if the consistency relation r = −8nt is 
measured, where nt is the tensor spectral index [39]. This could be measured either directly 
as a contribution to the stochastic gravitational wave background (SGWB) or, more likely, 
indirectly as B-modes in the CMB photons. 

1.4 Cosmological perturbation theory 

The Copernican principle does not hold exactly in our universe, as it is obvious from 
the existence of galaxies, stars, planets or life. It is estimated to break down at around 
scales of order ∼ 100 Mpc4 , see for instance ref. [46], so that structures form at smaller 
scales and the metric from eq. (1.6) is no longer valid. Therefore, it is important to 
understand how the spacetime geometry in GR behaves in the presence of these deviations 
from homogeneity and isotropy. The loss of symmetry implies that there are no preferred 
spatial hypersurfaces. Instead, one performs a (3+1)-splitting of spacetime, a foliation that 
parametrizes the 4-dimensional metric gµν by means of a 3-dimensional metric hij and the 
lapse and shift functions N and N i . Spacetime dynamics is treated as the evolution of 
space-like hypersurfaces Σt, parametrized by some parameter t, which is usually taken 
to be the time coordinate. This is called the Arnowitt-Deser-Misner (ADM) formalism 
of GR [47] and allows for a Hamiltonian formulation of the equations of motion. See 

41pc ≃ 3.26 ly ≃ 3.09 · 1016 m is a common unit of length in Astronomy. 
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refs. [39, 48] for a modern review. An arbitrary5 metric takes the form 

ds2 = −(Ndt)2 + hij (dxi + N idt)(dxj + N jdt) . (1.15) 

We will denote as Σ the 3-dimensional hypersurface and n its normal vector 

nα = (−N, 0, 0, 0) , (1.16) 

αwhich is a unit vector, i.e., nαn = −1. Spacetime indices are lowered and raised as usual 
by gµν . Spatial indices, however, are lowered and raised by hij , which furthermore satisfes 
hij h

jk = δk 
i . 

Equivalently, one can write the splitting of the metric as 

hµν = gµν + nµnν , (1.17) 

so that it is clear that hµν is purely tangential to the hypersurface. Then its spatial part 
hij is equal to the pull-back of the 4-dimensional metric gµν onto Σ and is a legitimate 
3-dimensional metric. 

The Einstein-Hilbert action, given by eq. (1.3), for this parametrization of the metric 
is given by the following gravitational Lagrangian � �√√ (3)R + Kij K

ij − K2LG = −g R = N h , (1.18) 

where Kij is the extrinsic curvature of the 3-hypersurface Σ and is given by the Lie deriva-
tive along the normal vector n 

1 1 
Kij = £nhij = (∂0hij −∇iNj −∇j Ni) . (1.19)

2 2N 

where ∇ denotes the covariant derivative on Σ with respect to the 3-metric hij . Its trace 
and traceless part are � �√1 

K = hij Kij = ∂0 ln h −∇iN
i 

N (1.20)
1

K̄ij = Kij − Khij . 
3 

Unlike the intrinsic curvature, described by the Riemann tensor Rρ and its contractions, µνλ 
the extrinsic curvature is a quantity that depends on the embedding of a surface in a larger 
manifold. 

The extrinsic curvature can be a complicated function of the parameters. Therefore, 
it is convenient to shift to the Hamiltonian formulation of the stationary-action principle. 

5The manifold must actually satisfy a causality requirement called called global hyperbolicity, which we 
will not discuss in detail, but is basically related to admitting the foliation itself. 
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Chapter 1. Infationary cosmology 

Note that the only quantity whose time derivative appears in the gravitational Lagrangian 
is the 3-spatial metric hij and, thus, it is the only dynamical or propagating degree of 
freedom (d.o.f.). Correspondingly, one defnes its conjugate momentum as: 

√ � �∂LG
Πij Kij − Khij= = h . (1.21) 

∂ ̇hij 

With this, the gravitational Lagrangian can be rewritten as � �√ N 1 
h (3)R − Πij Π

ij − Π2 − 2Πij ∇iNj
h 2 (1.22) 

LG = N √ � � 
= Πij ˙ Πij Njhij − NH− NiHi − 2∇i , 

where Π = hij Πij and we introduced the functions � �√ 1 1 
h (3)R + ΠijΠ

ij − Π2 

h 2 
H = − √ 

(1.23)� � 
Hi h−1/2Πij= −2∇j . 

Since N and Ni are not dynamical variables, they merely enter the gravitational Lagrangian 
as Lagrange multipliers. One defnes the gravitational Hamiltonian as 

= Πij ˙HG hij − LG � � (1.24) 
Πij Nj= NH + NiHi + ∇i , 

with the Hamiltonian and momentum constraints 

δHG 
= H = 0 

δN 
(1.25)

δHG 
= Hi = 0 . 

δNi 

The Hamiltonian evolution equations are obtained from the variations of the action with 
respect to the metric and conjugate momentum Z �� � � � � 

δHG ∂Lm δHG
Πij − δΠijδS = d4 x − ˙ + 2κ δhij + ḣ ij − 

δΠij , (1.26)
δhij ∂hij 

By setting the variation to 0 we obtain the two Hamilton equations 

δHG ∂Lm 
= −Π̇ ij − +2κ 

δhij ∂hij (1.27)
δHG 

= ḣ ij . 
δΠij 
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1.4. Cosmological perturbation theory 

These equations are equivalent to the Einstein feld equations and, as such, describe the 
dynamical evolution of the spacetime metric. 

As discussed previously, infation makes the universe highly homogeneous, isotropic 
and fat. Simultaneously, it amplifes quantum fuctuations and sources small metric per-
turbations in a process that will described in more detail later. The general dynamics of 
perturbations can be rather complicated due to the equivalence principle: they couple to 
all kinds of matter which, in turn, couple again to the gravitational feld. However, suf-
ciently small perturbations are said to be linear, i.e., so small compared to the background 
metric that do not signifcantly act as sources of gravitational feld by these higher order 
efects. 

Perturbations can be of scalar, vector and tensor nature. The most general metric at 
linear order perturbation theory that includes all of them is [13, 39, 45] � 

ds2 =a 2(η) − (1 + 2ϕ)dη2 + 2(B|i − Si)dxidη � � (1.28) 
+ (1 + 2ψ)γij + 2E|ij + 2F(i|j) + δhij dxidxj , 

where γij is the metric induced on the constant-time hypersurfaces in the FLRW metric 
and |i denotes a covariant derivative with respect to that metric. Note that the vector 
perturbations are transverse, i.e., γij Si|j = 0 and γij Fi|j = 0, while the tensor perturbation 
is symmetric and transverse traceless, i.e., γij δhij = 0. We also introduced here a new 
time coordinate called conformal time Z 

dt 
η = , (1.29) 

a(t) 

which is particularly convenient, as it allows to factor out the scale factor a(η) in the 
metric. We will make this choice quite often. Derivatives with respect to η are denoted by 
′ . 

According to the principle of general covariance, there is freedom in choosing a set of 
coordinates for a given spacetime manifold. In cosmological perturbation theory, this free-
dom is translated into gauge redundancy. Under changes of coordinates, the set of scalar, 
vector and tensor perturbations introduced in eq. (1.28) transform in such a way that 
physical quantities remain invariant. Thus, it is useful to build gauge-invariant quantities. 

First, the gauge-invariant scalar quantities are the Bardeen potentials 

Φ = ϕ + H(B − E ′ ) + (B − E) ′ , 
(1.30)

Ψ = ψ −H(B − E ′ ) . 

Similarly, one can build the gauge-invariant vector quantity 

′ Σi = Si + Fi . (1.31) 
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Chapter 1. Infationary cosmology 

Tensor perturbations, on the other hand, are automatically gauge-invariant. 

From now on, we will pick the longitudinal or Newtonian gauge. For this particular 
gauge fxing, the two scalar metric perturbations coincide with the Bardeen potentials, i.e., 
ϕ = Φ and ψ = Ψ. Furthermore, vector perturbations vanish. Hence, the perturbed metric 
takes the form � � 

ds2 = −a 2(η) (1 + 2Φ(t, ⃗x))dη2 + (1 − 2Ψ(t, ⃗x))γij dxidxj , (1.32) 

where we do not include tensor perturbations, i.e., gravitational waves, because they de-
couple from scalar perturbations at linear order. 

Connecting with the ADM formalism, this metric is parametrized by the quantities 

N = 1 + Φ , N i = 0 and hij = (1 − 2Ψ)γij . (1.33) 

This metric is particularly suitable to describe the evolution of scalar perturbations during 
infation for two reasons: i) the spatial isotropy of the metric is manifest right away (gauge-
invariant vector perturbations decay quickly anyway) and ii) constant-time hypersurfaces 
are orthogonal to geodesic curves. 

Furthermore, it can be shown that, in GR and for isotropic stress-energy tensors, Φ = Ψ, 
so that there is really only one scalar gravitational perturbation. 

Up to this point we considered solely perturbations of the metric. However, the infaton 
feld fuctuates as well and deviates from spatial homogeneity and isotropy 

φ(η, ⃗x) = φ0(t) + δφ(η, ⃗x) . (1.34) 

Note that in this subsection we denote the infaton feld as φ in order to avoid confusion 
with the scalar metric perturbation ϕ. One can also build a gauge invariant perturbation 
of the infaton feld 

δφ̄ = δφ + φ ′ (B − E ′ ) (1.35) 

Finally, one can summarize the scalar gravitational and infaton perturbations into a single 
scalar perturbation called the Mukhanov-Sasaki variable [13, 39, 44, 49, 50] 

v = aδφ + zΦ , (1.36) 

where 
φ ′ 

z = a 0 . (1.37)H 
It is indeed remarkable that one can reduce cosmological perturbations from infation to 
just one scalar d.o.f. plus gravitational waves. Furthermore, the Mukhanov-Sasaki variable 
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1.5. Quantum felds in curved spacetime 

v is of uttermost importance to understand the quantum origin of these perturbations. It 
is a dynamical variable whose action is Z � �′′ 1 z 2Sv = dηd3 x (v ′ )2 − δij ∂iv∂j v + v . (1.38)

2 z 

This is the action of a scalar feld in fat spacetime with time-dependent mass mef = −z ′′ /z. 
One can obtain the equation of motion of the feld right away, but it is more instructive to 
introduce frst the Fourier modes Z 

d3 ik⃗·x⃗ v
k⃗
(η) = xe v(η, ⃗x) . (1.39) 

The equation of motion for each mode reads � �′′ z′′ v + k2 − = 0 . (1.40)
k⃗ z 

This equation has two quite distinct regimes: 

• Sub-horizon regime, i.e., k2 ≫ z ′′ /z or k2 ≫ (aH)−2 . These are modes whose wave-
length is much smaller than the Hubble scale and, thus, are not signifcantly afected 
by the spacetime geometry. They behave as a collection of harmonic oscillators, i.e., 
plane waves. 

• Super-horizon regime, i.e., k2 ≪ z ′′ /z or k2 ≪ (aH)−2 . These are modes whose 
wavelength is much larger than the Hubble scale and, thus, are signifcantly afected 
by the spacetime geometry. In fact, they are sourced by it. Solutions are not inter-
preted as plane waves. Instead, each Fourier mode contains a growing and a decaying 
mode. The growing mode is responsible for perturbations of cosmological relevance, 
but the decaying mode is still related to their quantum nature. 

1.5 Quantum felds in curved spacetime 

Quantum felds are the theoretical fundament of particle physics. According to the math-
ematical framework of QFT, every elementary particle known in the SM is understood 
as the excitation of an underlying feld [51, 52]. A quantum feld is an operator function 
of spacetime points and usual particle physics is defned on Minkowski spacetime, where 
gravity is absent. It is possible, as mentioned earlier, to quantize gravity as an EFT on top 
of Minkowski spacetime, so that the quantized gravitational feld is actually the diference 
hµν = gµν − ηµν . Again, quantum gravitational efects are not expected at energy scales 
below the Planck scale. This does not mean, however, that gravity does not have an efect 
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on other quantum felds. In fact, by virtue of the equivalence principle, gravity couples 
to any quantum feld. QFT in curved spacetime addresses the quantization of a feld in 
geometric backgrounds diferent of Minkowski spacetime, i.e., in presence of gravity [53]. 

In Minkowski spacetime, quantum states associated to elementary particles can be 
understood as irreducible representations of the Lorentz group. In this case the vacuum 
state, the absence of particles, can be safely defned as the quantum state invariant under 
Lorentz transformations or, in other words, equal to all the inertial observers of SR [13,51]. 
Particle states, excitations of the vacuum states, have an (inertial) observer-independent 
particle number, even if energy and momentum are observer-dependent. As we will see, 
this is no longer the case for an arbitrary gravitational background. 

Let us consider a scalar feld v(t, ⃗x), which can be the Mukhanov-Sasaki variable de-
scribed previously. Its classical dynamics is described in terms of an equation of motion 
that can be obtained by varying the action. In order to perform its canonical quantization, 
which we will describe shortly, we need to derive its Hamiltonian dynamics. It is convenient 
to modify the scalar feld action by adding the total derivative 6 

� �′′ z 2∆Sv = − v , (1.41) 
z 

which does not alter its dynamics. Then the canonically conjugated momentum and the 
Hamiltonian are defned as 

′ ∂L z′ ′ p(t, ⃗x) ≡ = v − v and H = pv − L . (1.42) 
∂v ′ z 

Canonical quantization is then performed by promoting v and p to quantum operators and 
imposing the canonical quantization relation 

y)] = iδ(3)(⃗[v(η, ⃗x), p(η, ⃗ x − y⃗) , (1.43) 

so that creation and annihilation operators, â⃗ and â† , can be built from suitable linear
k k⃗ 

combinations of the Fourier transforms of v and p. Equivalently, one can perform the 
operator mode expansion Z � �d3k 1 i⃗ −i⃗ †k·x⃗ ∗ k·x⃗ v̂(η, ⃗x) = √ e vk(η)â⃗ + e vk(η)â⃗ , (1.44)

k k(2π)3/2 2 

where the mode functions vk(η) satisfy the equations of motion. A quantum feld can be 
then seen as an infnite collection of harmonic oscillators, one for each Fourier mode. For 

6See ref. [54] for a discussion on how both actions are equivalent not only at the classical level, but also 
at the quantum one. 
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a given operator mode expansion, the vacuum state is defned implicitly as the eigenstate 
of all annihilation operators with eigenvalue 0 

a⃗ |0⟩ = 0 ∀k⃗ ∈ R3 , (1.45)
k 

while (n, m...)-particle states are defned as E h� � � � i1 n m† † n⃗ ,m⃗ ... = √ a a ... |0⟩ . (1.46)⃗ ⃗k1 k2 k1 k2n!m!... 

In principle, infnitely many choices of mode functions v
k⃗
(η) can be done, corresponding to 

the infnite choice of basis of two-dimensional set of solutions of the equation of motion [53]. 
Then, in order for the quantum feld to be correctly reproduced regardless of this choice, 
the nature of the creation and annihilation operators must depend on it. Hence, the very 
defnition of the vacuum and particle states depends on the choice of mode functions. 
Diferent choices of mode functions vk and uk are related by Bogolyubov transformations 

∗ ∗ vk(η) = αkuk(η) + βkuk(η), |αk|2 + |βk|2 = 1 . (1.47) 

Annihilation operators âk and b̂k are related similarly by 
†b̂⃗ = αkâ⃗ + βk 

∗ a 
−k⃗ 
. (1.48)k k 

As mentioned above, this arbitrariness is settled in Minkowski spacetime by demanding 
the vacuum state to be invariant under Lorentz transformations. This means also that the 
expected value of the Hamilton operator takes its minimum value for the vacuum state at 
all times. In an arbitrary spacetime, Lorentz transformations are only valid locally but not 
globally, and such a preferred choice is not available. 

During infation, the universe undergoes an exponential expansion, which can be ap-
proximated by a de Sitter-like expansion. In that case, the scale factor is 

1 1 
a = − , η = − e −Ht (1.49)

Hη H 

where η ∈ (−∞, 0−) for de Sitter spacetime, although, in practice, it ranges until the end 
of infation at η = η∗ < 0. 

Intuitively, one would expect short-distance to be unafected by the expansion of the 
universe or, in other words, the recession of relatively distant objects. This statement 
is supported by the equivalence principle. This motivates the Bunch-Davies prescription 
for the vacuum state of de Sitter spacetime, which states that the mode functions of the 
vacuum reduce to those of Minkowski spacetime in the sub-horizon limit or, equivalently, 
in the infnite past [55]. For a quasi-de Sitter expansion these mode functions are [13] r 

π|η| 
H(2) (1.50)vk(η) = (k|η|) .n2 
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Chapter 1. Infationary cosmology 

(2)
where Hn is a Hankel function of second kind. For quasi - de Sitter expansion one has 
n = 3/2, but in general it depends on the dynamics of the infaton feld. For instance, forp 
an infaton potential V (ϕ) = m2ϕ2/2 one has n = 9/4 − m2/H2 . 

The Bunch-Davies vacuum has 0 particles only in the limit where it matches the 
Minkowski vacuum. This can be checked by inspecting the Hamiltonian in Fourier space Z � � � ′ � �� k i z†Ĥ = d3k â⃗ â − â⃗ â − â â⃗ (1.51)

k ⃗ k −k⃗ −k⃗ kk2 2 z 

and performing the time-evolution in the Schrödinger picture7 of the Bunch-Davies vacuum 

i ˆ 
Ω(η ′ ) = e H(η ′ −η) |Ω(η)⟩ (1.52) 

where the time evolution operator is actually a squeezing operator. The resulting 2-mode 
squeezed state is a high-occupation number quantum state that entangles particles with 
momenta k⃗ and −k⃗. The physical picture here is that, as time evolution proceeds during 
infation, particle pair production takes place. This is sourced by the gravitational feld, 
which acts as a classical source for the quantum feld. 

The 2-mode squeezed state can be parametrized as [56–58] 

∞
1 X E 

Ω(η ′ ) = e 2inφk (−1)n tanhn τk nk⃗, n−k⃗ , (1.53)
cosh2 τk n=0 

where τk and φk are, respectively, the squeezing parameter and phase. They satisfy suitable 
coupled diferential equations, which can be solved analytically for quasi - de Sitter � � � � 

1 π 1 1 
τk(η) = −arcsinh , φk = − arctan . (1.54)

2kη 4 2 2kη 

The squeezing formalism is rather useful for characterizing the properties of the quantum 
state. It can be applied to other models of single-feld infation. Furthermore, it can be 
used to compute physical quantities such as the particle number per mode � �2 

nk = sinh2 τk =
1 

, (1.55)
2kη 

where the second equality holds for quasi - de Sitter infation only. Cosmological observables 
are usually obtained as correlation functions of the Mukhanov-Sasaki variable or quantities 

7One can, alternatively, perform the time-evolution of the creation and annihilation operators in the 
Heisenberg picture, which leads to a time-dependent Bogolyubov transformation. 
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derived from it. Hence, it is useful to compute the 2-point correlation functions in the 
squeezing formalism [59, 60] Z 

d3k � �
ik⃗(x⃗−y⃗) 1 ⟨v(η, ⃗x)v(η, ⃗y)⟩ = e 2 sinh2 rk + 1 − sinh 2rk cos 2φk

(2π)3 2kZ 
d3k � �

ik⃗(x⃗−y⃗) k ⟨p(η, ⃗x)p(η, ⃗y)⟩ = e 2 sinh2 rk + 1 + sinh 2rk cos 2φk (1.56)
(2π)3 2 Z 
d3k ik⃗(x⃗−y⃗) i ⟨v(η, ⃗x)p(η, ⃗y)⟩ = e (1 − i sinh 2τk sin 2φk) . 
(2π)3 2 

Plugging eq. 1.55 into eq. 1.56, one can check that scalar perturbations have a scale-
invariant spectrum, as required by cosmological observations. It is in this way that infation 
combines quantum feld theory and gravity in order to provide a simple but deep origin to 
the structure of the universe. 

1.6 Quantum perturbations after infation 

We can conclude from the discussion in the two previous sections that there exist a single 
scalar gauge-invariant quantity in cosmological perturbation theory, the Mukhanov-Sasaki 
variable v. This quantity carries information from the Bardeen potential and the gauge 
invariant perturbations of the infaton in a single variable. Another relevant gauge-invariant 
scalar quantity is the gauge-invariant curvature perturbation [60] 

v(η, ⃗x) p(η, ⃗x)
ζ(x⃗, η) = , ζ ′ (x⃗, η) = . (1.57) 

z z 
The direct quantization of this magnitude is more complicated than that of the Mukhanov-
Sasaki variable, which has a simple action. Still, it is perhaps of greater physical meaning. 

At the end of infation, the infaton feld decays into ultra-relativistc particles in a 
process called reheating [61, 62]. This cosmic era ofers rich phenomenology, which we 
will, however, not explore here. It is sufcient for our purposes to asume instantaneous 
reheating, which means for cosmic history that the conformal time jumps η∗ → −η∗ > 0, 
while a(−η∗) = a(η∗). It is at this point (or, more generally, at the end of reheating), that 
the universe is flled with these ultra-relativistic particles and the radiation era starts. The 
universe continues expanding, albeit at a decelerating rate, so that the scale factor increases 
then as a ∼ η. As the expansion proceeds, the universe cools down at a rate T ∼ a−1 , while 

−4 −3the energy density of radiation and dust scale, respectively, as ρr ∼ a and ρm ∼ a 
for most of the expansion history8 . Hence, the matter density eventually overtakes the 

8The scalings are true during the radiation era as long as the number of relativistic species is constant. 
As the universe cools down, this number decreases, which afects the temperature in a non-trivial way. 
For instance, when electrons and positrons become non-relativstic, at T ≃ me, they are annihilated into 
photons and increase the temperature of the plasma. 
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radiation density at the matter-radiation equality, which takes place at η = ηeq, and the 
matter era begins. Then the scale factor increases as a ∼ η2 . 

During infation, perturbations are said to be stretched-out and exit the horizon when 
their wave-length becomes larger than the event horizon dH = 1/H. This happens because 
the scale factor a(t) grows faster than dH , which, in fact, remains almost constant. During 
the radiation and matter eras, on the contrary, dH grows faster than a(t), which means 
that given wavelengths re-enter the horizon. Now, as long as they are in the super-horizon 
mode, curvature perturbations are said to freeze, i.e., to be unafected by cosmic evolution 
until they cross the horizon again. This can be understood as follows: take the equation 
of motion for the Mukhanov-Sasaki equation in the super-horizon limit k2 ≪ z ′′ /z. Then 
there is a solution v ∼ z, which is called the growing mode, for which ζ ∼ constant and so 
perturbations can be said to be frozen9 . Likewise, there is a decaying mode, which is quickly 
suppressed and becomes irrelevant classically. The entanglement between the growing 
and the decaying mode is, however, relevant to some quantum features of cosmological 
perturbations. 

Many relevant phenomena take place during these eras, in particular those related 
to cosmological perturbations: they leave their imprint in the CMB anisotropies and seed 
structure formation [13,39]. This is due to the coupling between the Bardeen potential and 
the matter content of the universe via the Einstein feld equations. Current observations 
are in excellent agreement with the generic predictions of infation and are compatible with 
many particular models [38]. They are, however, unable to resolve the quantum properties 
of the Mukhanov-Sasaki feld. Detecting genuine quantum phenomena associated with 
cosmological observables would rule out classical origins of primordial perturbations, such 
as thermal excitations [63]. Furthermore, it would be a powerful statement on the validity 
of quantum mechanics and quantum feld theory up to scales close to the Planck scale. 
We will deal with the distinctive features of quantum mechanics as a theory and how to 
quantify quantumness in the next chapter. 

1.7 Primordial Black Holes 

We fnish this chapter by reviewing another potential observable consequence of cosmolog-
ical perturbations. Sufciently large curvature perturbations may cause matter to undergo 
gravitational collapse upon reentry and eventually form a black hole during the radiation 
era [64,65]. To distinguish these black holes from astrophysical black holes, created by the 
gravitational collapse of a star in the late universe, they are named primordial black holes 

9This argument does not hold as it is for a radiation dominated universe, for which z ′′ = 0. Instead, 
solutions of the equations of motion are plane waves regardless of the wave-length of the mode. However, 
initial conditions from infation put all super-horizon modes in the growing part of the oscillation, and 
remain so as long as they are super-horizon, for an oscillation takes around ∼ k−1 in conformal time. 
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(PBH). Density contrasts of order δρ/ρ ∼ O(0.1) [66] or large non-Gaussianities induced 
by quantum difusion [67] are required. Gravitational collapse takes place once the per-
turbation re-enters the horizon due to causality, and produces a black hole with mass of 
the order of the mass inside the Hubble radius, with negligible angular momentum. Thus, 
these black holes are well described with the Schwarzschild metric10 . 

Although the frst proposals go back to the 1970s [69,70], PBHs have regained interest 
in the last year due to the black hole merger observations by the gravitational wave obser-
vatories LIGO and VIRGO [17, 71–73]. The origin of these black holes, with rather large 
masses, is advocated by many cosmologists to be of primordial origin, although the ques-
tion is not settled yet. The Chandrasekhar limit sets a lower bound on the astrophysical 
black hole mass of about M ≃ 1.4M⊙. Hence, a detection of a black hole below a solar 
mass would be a defnite signal of its primordial origin. 

If they exist and are abundant, PBH could constitute a notable fraction of the dark 
matter of the universe. Indeed, they only interact gravitationally with ordinary matter 
and their equation of state is p = 0. This would allow to explain dark matter without 
invoking physics beyond GR and the SM. PBH have sustained an extensive search and 
many observational bounds have been set. Assuming a monochromatic mass distribution 
for PBH, they could only constitute all of dark matter if their mass is in the asteroid 
range, i.e., somewhat between 10−10M⊙ and 10−15M⊙, but the existence and size of these 
windows are updated often [74]. For more general mass functions and spatially clustered 
PBH, they could still constitute the whole of the dark matter. 

These PBH would form during the radiation era. Hence, they require a sufciently 
large perturbation, which can trigger gravitational collapse and, furthermore, overcome ra-
diation pressure. Large curvature perturbations are scarce in single-feld slow-roll infation 
and, thus, require in principle enhancements of the power spectrum of the Mukhanov-
Sasaki variable, linked to non-trivial infationary dynamics. Another alternative is the 
non-perturbative enhancement of large fuctuations due to quantum difusion, which is a 
generic feature of infation. 

A distinct feature of PBH formation is that the relevant scale is precisely the Hubble 
radius RH at formation time. In a radiation-dominated universe the scale factor grows 
as a ∼ t1/2 and therefore the Hubble scale grows as RH = H−1 = 2t. With this scaling 
at hand, we can extract the evolution of the energy density from the second Friedmann 
equation 

8πG 1 3 
H2 = ρ = and so ρ = . (1.58)

3 4t2 32πGt2 

10Despite fulflling the criterion of having vanishing angular momentum, it must be noted that the 
Schwarzschild metric is a vacuum solution of the Einstein feld equations. Its embedding into a cosmological 
solution is non-trivial and there is no consensus as to how this should be done and how it afects the dynamics 
of the event horizon of the black hole [68]. 
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Then it is possible to compute the mass contained inside the Hubble scale as 

M =
4π
ρ(2t)3 = 

t
. (1.59)

3 G 

The Schwarzschild radius of a black hole of this mass corresponds precisely to the Hubble 
radius 

RS = 2GM = 2t = RH . (1.60) 

It is clear then that, up to a O(1) factor due to the efciency of the gravitational collapse, 
the PBH will be of the size of the Hubble scale, i.e. MPBH = γM and so actually RS = γRH . 
This can obtained from estimates [69, 70], but is also confrmed by numerical simulations 
[66, 75]. 

Should PBH exist due to primordial perturbations of quantum origin, it is natural to 
refect on the quantum properties these PBH may have. In particular, there may exist 
quantum entanglement between them. Dealing with this intriguing possibility is one of the 
main goals of this thesis. Furthermore, quantum entanglement between black holes has 
been proposed to be equivalent to wormholes, i.e., geometric links between them [76]. This 
is the ER = EPR proposal11 . 

11This proposal is named after two infuential 1935 papers by Einstein and Rosen [77] and Einstein, 
Podolsky and Rosen [78]. The latter will be briefy discussed in chapter 2. 
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Chapter 2 

Quantum Mechanics 

Our revels now are ended. These our actors, 
As I foretold you, were all spirits, and 
Are melted into air, into thin air; 
And, like the baseless fabric of this vision, 
The cloud-capp’d towers, the gorgeous palaces, 
The solemn temples, the great globe itself, 
Yea, all which it inherit, shall dissolve, 
And, like this insubstantial pageant faded, 
Leave not a rack behind. We are such stuf 
As dreams are made on; and our little life 
Is rounded with a sleep. 

Prospero in The Tempest (ca. 1610) by William Shakespeare. 

2.1 The postulates of Quantum Mechanics 

Physics as a science progresses in a continuous interplay between theory and experiment. 
Theoretical arguments, based on well-rooted principles and logical arguments, have led to 
powerful predictions later confrmed by experiment. An example of this are gravitational 
waves (GW), propagating excitations of the gravitational feld. They were predicted in 
1916 by Albert Einstein as a logical consequence of GR [15, 16], but not directly detected 
until 2015 [17]. GW constitute now one of the most active felds of research, both at 
the fundamental level and for their role as astronomical messengers. On the other hand, 
experimental results lacking a satisfactory theoretical explanation have historically fos-
tered theoretical breakthroughs. This has meant, sometimes, abandoning deep physical 
principles. A paradigmatic example of this is the birth of quantum mechanics (QM), mo-
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Chapter 2. Quantum Mechanics 

tivated by the puzzling experimental results such as the black-body radiation [79] or the 
photoelectric efect [80]. 

QM is considered to be one of the two revolutions of the 20th century in physics, 
the other being relativity. SR meant rejecting the notion of absolute space and time 
of Newtonian mechanics, and redefning them in a way consistent with the postulates 
of relativity [9]. Likewise, GR led to the reformulation of a basic element of physics: the 
inertial observer [11]. In sum, relativity destroyed the very concept of an absolute observer. 

The postulates of QM have a profound impact on the description of Nature and its 
observation. Let us briefy go over the its postulates to see this [81, 82] 

• An isolated physical system is described by a unit state vector |ψ⟩ belonging to a 
Hilbert space. 

• The time-evolution of an isolated physical system is unitary and described by the 
Schrödinger equation [83] 

d 
i |ψ⟩ = Ĥ |ψ⟩ (2.1)
dt 

• Quantum measurements are described by a collection {Mn} of measurement opera-
tors, so that the probability of obtaining the measure outcome m is D E 

p(m) = ψ Mm 
† Mm ψ (2.2) 

and the state vector subsequently becomes 

Mm |ψ⟩ |ψ⟩ → rD . (2.3)E 
ψ Mm 

† Mm ψ 

Hence, by its very postulates, QM makes a clear distinction between isolated time 
evolution and measurements, which constitute an interaction and a departure from unitary 
evolution. According to the mainstream Copenhagen interpretation [84, 85], the wave 
function described by |ψ⟩ is said to collapse as a consequence of this interaction. It must 
be noted, however, that the postulates assume that the measurement is performed by a 
classical observer, which is not a quantum system. How the collapse of the wave function 
occurs (or whether it happens at all) is still a matter of debate in the feld of foundations 
of QM and the heart of the so called measurement problem [85]. 

The postulates can be generalized to open quantum systems, i.e., those that constitute 
a subsystem of a larger quantum system. In that case, the postulates are reformulated as 
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• An isolated physical system is described by a positive density matrix 1 ρ̂ which acts 
on a Hilbert space and satisfes Trρ = 1. 

• The Time-evolution of an isolated physical system is unitary and described by the 
Schrödinger equation. h id ˆi ρ̂ = H, ρ̂ (2.4)

dt 

• Quantum measurements are described by a collection {Mn} of measurement opera-
tors, so that the probability of obtaining the measure outcome m is � � 

p(m) = Tr M † Mmρ (2.5)m 

and the state subsequently becomes 

MmρMm 
† 

ρ → � � . (2.6) 
Tr MmρMm 

† 

The density matrix formulation reduces to the state vector one when there exists a state 
vector such that ρ̂ = |ψ⟩ ⟨ψ|. Otherwise, the density matrix is said to describe an ensemble 
of vector states |ψi⟩ with probability pi, so that X 

ρ̂ = pi |ψi⟩ ⟨ψi| . (2.7) 
i 

for a suitable basis choice. For an arbitrary basis, however, ρ̂ need not be diagonal. 

2.2 Locality and realism 

Once we have set up the basics of QM, we are ready to understand some of its implications 
for our understanding of fundamental physics. As mentioned earlier, relativity meant giving 
up the notion of absolute space and time and, furthermore, the redefnition of what inertial 
observers are. Classical physics, in the sense of non-quantum physics, regardless of whether 
relativistic or not, lies on the principle of local realism: 

• Locality. Physical interactions take place locally, i.e., only occur between nearby 
physical systems. Furthermore, interactions mediated by a third system cannot travel 
faster than the speed of light. 

1A more appropriate name would perhaps be density operator, as the state space may be infnite di-
mensional. However, we will follow the historical and usual convention and call it density matrix. 
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• Realism. Physical magnitudes have well-defned values at all times, prior and irre-
spective of measurements. 

In QM, the knowledge of a physical quantity precludes the knowledge of of another one if 
their corresponding operators are non-commuting. This would not be the case if they were 
linked to physical properties which are intrinsic and independent from measurement. Thus, 
QM is not a local realist theory. However, this does not mean a priori that QM cannot be 
reformulated as a local realist theory, which contains hidden variables to be discovered or 
understood. 

Local realism is not, however, a mere matter of interpretation of a physical theory, but 
rather has precise phenomenological predictions. They can be tested. John Bell showed in 
1964 that local realism sets an upper bound on the correlations shared by the constituents 
of a bi-partite system [86]. This system can be, for instance, made of two subsystems A 
and B, each of which is a spin-1/2 particle. According to the Stern-Gerlach experiment, 
measurements of spin in a given direction Ŝ  ⃗ always return a result aligned or anti-aligned a 

′ with it. We consider four measurement directions ⃗a, ⃗a , ⃗b, ⃗b ′ . Upon repeated measurements, 
one can reconstruct the correlation function D E 

⃗ ˆ ˆE(⃗a, b) = Sa⃗S⃗ . (2.8)
b 

Then it can be shown that, under the assumption of locality and realism, the following 
inequality is satisfed 

′ ′ B = E(⃗a, b⃗) + E(⃗a, b⃗ ′ ) + E(⃗a , b⃗) − E(⃗a , b⃗ ′ ) ≤ 2 . (2.9) 

This is the Bell inequality in the Clauser-Horne-Shimony-Holt (CHSH) form [87]. As a 
matter of fact, there exist quantum states which violate it. Consider, for instance, the 
state 

1 |ψ⟩ = √ (|↑↓⟩ − |↓↑⟩) . (2.10)
2 

This is one of the so-called Bell states. If the spin is measured in the z-axis for both 
subsystems, the outcome of one automatically predicts the outcome of the other one. Such 
a state is said to be maximally entangled. Upon a suitable choice of axes, this state clearly 
violates the Bell inequality √ 

B = 2 2 . (2.11) 

This value actually saturates the Tsirelson bound, which is the maximal value attainable 
by B without further assumption. Hence, it can be concluded that QM is not a local realist 
theory. Experimental results clearly confrm this prediction [88]. 

The breakdown of local realism due to quantum entanglement is a profound statement. 
Einstein, Podolsky and Rosen (EPR) were the frst to point out the contradiction between 
entanglement and local realism, which they used to argue against QM being a complete 
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description of reality [78], a viewed not shared by Bohr [89]. We now understand that this 
is not the case. QM is a valid physical theory and it cannot be replaced by a more complete 
local realist physical theory2 . 

The key message to convey here is that QM allows for correlations that cannot be 
explained within a classical theory (again, in the sense of a local realist theory). We saw in 
chapter 1 that, according to the infationary paradigm, cosmological perturbations are of 
quantum-mechanical origin. Therefore, one may in principle be able to detect genuinely3 

quantum features in cosmological observables. In later chapters we deal with this idea and 
study quantum properties of the Mukhanov-Sasaki feld, including Bell inequalities. 

2.3 Measures of entanglement and information 

Entanglement is probably the most distinctive feature of QM. It is behind phenomena 
considered to be counter-intuitive and the reason behind enhanced correlations that can 
lead to the violation of Bell inequalities. Even if its role is qualitatively clear and so is 
its mathematical form in certain quantum states, it is not trivial to quantify it in general. 
Here, we review some relevant quantities4 . In doing so we will characterize a quantum 
state by its density matrix ρ. 

First, let us defne the purity of a quantum state as 

p = Trρ2 ≤ 1 . (2.12) 

If the inequality is saturated, the state is said to be pure. Such a state can be written as 
a vector state as ρ̂ = |ψ⟩ ⟨ψ|. Otherwise, the state is said to be mixed. Another way of 
quantifying this is by its von Neumann entropy [91] 

S = −Tr (ρ̂ log ρ̂) . (2.13) 

A pure quantum state has S = 0, while a mixed quantum state has S ≠ 0. Later we shall 
introduce other measures of entropy and distinguish them by labelling the von Neumann 
entropy as SN . 

Quantum states describe a physical system which may be composed of many degrees of 
freedom. Let us now asume that it can be split into complementary subsystems A and B. 

2QM is still a falsifable scientifc theory. One may eventually fnd experimental results that contradict 
it and require its replacement by another or more complete physical theory. Such theory would still be 
inconsistent with local realism. 

3In spirit of the Bell inequalities, by genuine we mean non-reproducible by classical systems. Neverthe-
less, systems with correlations consistent with classicality or local realism may still be well accommodated 
within QM. 

4See refs. [81, 90] for a more general discussion. 
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The quantum state ρ̂A describing subsystem A can be obtained by tracing over the degrees 
of freedom of B, i.e., ρ̂A = TrB ρ̂. The state ρ̂B is likewise defned. The von Neumann 
entropy of a subsystem is given by 

SA = −Tr (ρ̂A log ρ̂A) . (2.14) 

If ρ is pure, then SA = SB and is called the entanglement entropy. This quantity is a good 
measure of the quantum entanglement between the A and B. 

In general, a mixed state can be purifed by embedding its state space into a larger 
state space, so that the state is entangled with the complementary subspace [92]. Hence, 
ensembles of states can be understood as quantum subsystems. 

We are ready now to see the frst link between entanglement and information. If the 
basis is chosen so that ρ̂ is diagonal, then the von Neumann entropy has the form of 
the Shannon information entropy as defned for a probability distribution [93]. Hence, an 
increase in entanglement between subsystems leads to a decrease in the information each of 
them carry. Recall the example of a maximally entangled Bell state. Before measurement, 
the state of each subsystem can be either |↓⟩ or |↑⟩ with probability 1/2 and so provides no 
information. After measurement of one subsystem, however, the outcome of a measurement 
on the complementary is fully determined. Both subsystems clearly share information. 

The information thus shared by two subsystems is characterized by their mutual infor-
mation, defned as the diference 

I(A, B) = SA + SB − SA∪B . (2.15) 

This quantity is non-negative, symmetric and extensible to multi-partite systems, where 
A and B need not be complementary. Mutual information is a quantifcation of total 
correlations between two subsystems: both classical and genuinely quantum. However, 
one would aim at achieving a measure of quantum correlations only. Mutual information 
as defned in eq. (2.15) is a quantum-mechanical extension of an equivalent defnition in 
probability theory, in which Si label the Shannon information entropy associated with 
random variables and their probability distributions. Nevertheless, this extension is not 
unique. Another one is provided by the expression 

J (A, B) = SA − SA|B , (2.16) 

where A|B refers to subsystem A conditioned on a measurement on subsystem B. 

When applied to probability distributions, the functions introduced in eqs. (2.15) and 
(2.16) are equal. However, they difer when applied to quantum states. First, the measure-
ment on B needs to be specifed with a complete set of measurements {Mn}. Second, due 
to the entanglement between A and B, measurements on B have an efect on A that may 
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be larger than what one may expect when dealing with probability distributions. In prac-
tice, ρA collapses according to eq. (2.6). In other words, quantum measurement destroys 
correlations that were present due to quantum entanglement. 

This departure due to the particular nature of quantum measurement allows one to 
quantify genuine quantum correlations by means of the quantum discord [94, 95] 

D(A, B) = min [I(A, B) − J (A, B)] , (2.17) 
{Mn} 

where the minimum is taken over any possible complete set of measurements {Mn}. Note 
that, unlike mutual information, quantum discord is not symmetric. Furthermore, it van-
ishes if and only if there exist a quantum measurement on B that does not disturb the 
state of A, confrming the key role played by quantum measurement. 

Quantum discord is a widespread proposal to quantify quantum entanglement. How-
ever, its validity is unsettled. If the system A∪B is in a pure state, then discord D trivially 
equal to mutual information I and to twice the entanglement entropy S. In this case, dis-
cord is a clear measurement of entanglement, but is not more useful than S or I in that 
respect. This happens because all correlations between A and B are genuinely quantum 
due to the purity of the whole state. The power of discord would come when A ∪ B is a 
in a mixed state. In that case, correlations between A and B can also be classical, and 
one needs a way to tell classical and quantum correlations apart. As we will later argue in 
the context of QFT and cosmology, see chapter 5, quantum discord does not seem to be a 
good proxy of Bell inequality violations, at least when the quantum state is highly mixed. 

For completeness, let us comment that there exist other measures of quantum entan-
glement. Some of them are similar to quantum discord, but based on the distance between 
the quantum states rather than on measurement [90]. Others follow diferent approaches. 

As mentioned earlier, the quantifcation of entanglement is interesting to us in order to 
probe the quantum origin of cosmological perturbations. Still, there are many other reasons 
why the broader scientifc community is interested in the quantifcation of entanglement. 
Perhaps most crucially, 2-level quantum systems can be used to store quantum bits of 
information (qubits), which are the basis of quantum computation [81]. Logical gates are 
then applied by means of unitary operators in order to build quantum circuits, which end 
with certain measurements that deliver the result of the computation. Quantum computing 
has a promising future: it is known that quantum algorithms beat classical ones in certain 
problems, such as the factorization of prime numbers or search algorithms. 

Entanglement is a main resource in quantum computing, as it allows speed-ups due 
to simultaneous computation. A wave function can store a number of parameters that is 
exponential in the number of qubits, while quantum gates operate simultaneously on them. 
Their extraction by quantum measurement is, however, highly non-trivial. Furthermore, 
entanglement may not be the only valuable quantum resource, as there seems to be non-
trivial quantum correlations even in absence of entanglement and discord [96]. 
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2.4 Entanglement in QFT 

We have seen how QM allows for the possibility of correlations between physical subsystems 
that exceed those permitted by the requirements of locality and realism. It is natural to ask 
ourselves if quantum entanglement is present in the fundamental interactions. Indeed, in 
the framework of QFT, elementary particles or even the vacuum are full-fedged quantum 
states. 

It is hard, in general, to exactly characterize the state of a quantum feld. This task 
is simpler when the state is Gaussian. Let |ϕ⟩ be the eigenvector of the quantum feld 

ˆoperator ϕ with eigenvalue ϕ. In this basis, the components of an arbitrary Gaussian 
density matrix are given by [97]� � �1 1 i† † † †ρ(ϕ+, ϕ−) = exp − ϕ hϕ+ − ϕ−h

†ϕ− + ϕ − ϕ λ+ + −2 2 2 � (2.18)� �i 1 1† † + λ† (ϕ+ − ϕ−) + ϕ + ϕ κ + κ† (ϕ+ + ϕ−) ,+ −2 2 2 
where the operators h, λ and κ depend on the spatial coordinates and products are under-
stood to be performed in the operator sense as Z 

† † †ϕ hϕ = d3x d3y ϕ (x⃗)h(x⃗, ⃗y)ϕ+(y⃗) (2.19)+ + + 

and so on. 

A similar expression can be obtained for Gaussian mixed states by integrating over the 
state ensemble, appropriately weighted by a Gaussian probability distribution. Likewise, 
reduced density matrices can be obtained by integrating over some d.o.f. or, equivalently, 
by projecting the felds onto the subspace of choice. Given these expressions, one is ready 
to compute the von Neumann entropy of an arbitrary Gaussian state. Furthermore, the 
resulting formula can be expressed in terms of the 1- and 2-point correlation function of 
the Gaussian feld, see refs. [97–99] 

An essential example of Gaussian states are thermal states, which describe the state of 
a feld within a fuid at fnite temperature T . Such states describe, for instance, Hawking 
[100] or Unruh [101] radiation. However, not all relevant quantum states are Gaussian. 
Primordial non-Gaussianities are relevant in Cosmology [67, 102], but we will not include 
them in our analysis. 

The frst computation of entanglement entropy in QFT was performed by Bombelli 
et al [103] by characterizing the vacuum state similarly to the way outlined above. They 
showed that entanglement entropy in vacuum of a scalar feld in a spherical region is 
formally divergent. If a UV-regulator ϵ is introduced, the entropy scales as the area 

A 
S ∼ . (2.20)

ϵ2 
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This result was also found independently by Srednicki [104]. This is a crucial result for 
at least two reasons. First, it shows that the entanglement entropy of a quantum feld 
is extensive, but not with the number of d.o.f. If that were the case, the entropy would 
scale as the volume of the sphere, not as its surface. This can be understood by viewing 
entanglement as a UV-phenomenon, i.e., the dominant contribution to the entanglement 
entropy of a quantum feld comes from the entanglement of neighbor d.o.f. across the 
boundary of the sphere. Second, it has a potentially deep connection with black hole 
physics. Indeed, the Bekenstein entropy of a black hole scales as its area [105], not its 
volume, and is regulated by the Planck scale. Hence, it has been proposed that black hole 
entropy may be due to quantum entanglement [103]. This idea has led to numerous works 
connecting gravity with quantum entanglement [76, 106–109]. 

It must be noted, however, that there also exist proposals to explain black hole entropy 
as regular micro-state entropy and not entanglement entropy, for instance in ref. [110]. 

Other quantum-information properties of the vacuum state of a scalar feld in Minkowski 
space-time have been computed. For instance, it was shown by Shiba in [111, 112] that 
the mutual information between two spheres of radii R1 and R2 is given at frst order in 
perturbation theory by 

1 R1
2R2 

2I ≃ . (2.21)
44 r 

We will apply the same method in sec. 4 to compute the mutual information of cosmo-
logical perturbations. Two comments are in order regarding this fnding. First, unlike 
entanglement entropy, mutual information is UV-fnite. This suggests that the local en-
tanglement is no longer the one involved. This makes sense, since the spheres are actually 
far apart. Second, the quantity is rapidly decreasing with distance. This is consistent with 
the picture obtained from entanglement entropy. If the entanglement between far apart 
d.o.f. is much smaller than that of nearby d.o.f. and the former dominates the expression 
for the mutual information, then this will be comparatively small. 

2.5 Phase space formulation 

Bell inequality violations make clear the departure of QM from classical physics. This 
was perhaps expected from the very construction of the theory in terms of the postulates. 
Indeed, classical and quantum physics look formally very distinct, and so do the mathe-
matical objects associated with them. Physical states in classical Hamiltonian mechanics 
are points in phase space (x⃗, ⃗p), while quantum states are represented either by state vec-
tors or density matrices. A frst link between them can be seen in canonical quantization, 
a procedure already seen in sec. 1.5, which promotes phase space variables to quantum 
operators x⃗ → x̂⃗ and p⃗ → p⃗̂  and imposes the commutation relation � � � � � �

i j = iδij i j i jx̂ , p̂  , x̂ , x̂ = 0 , p̂  , p̂  = 0 , (2.22) 
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which replaces the Poisson bracket relation of Hamiltonian dynamics. If the phase space 
variables are felds, then the Kronecker delta is replaced by a Dirac delta. 

This link can be deepened by switching from the operator formulation to the phase 
space formulation of QM5 . It is a completely equivalent mathematical formalism that makes 
no use of the Hilbert space structure. Instead, phase-space variables are assigned quasi-
probabilistic distributions. We will briefy discuss how the phase space formulation can 
be derived from the operator formulation, but it must be noted that the former may be 
postulated independently from the latter. 

First, let us introduce the Wigner function as Z � � 
dnz 1 1−ip⃗·z⃗Wρ̂(⃗ p) = e ⃗ ⃗ ˆ q − z , (2.23)q, ⃗ q + z ρ ⃗ ⃗ 
(2π)n 2 2R 

where |q⃗⟩ is a simultaneous eigenvector of the operators {x̂i} with eigenvalues {qi}6.This 
is a real scalar function in phase space that fully characterizes the quantum state of the 
physical system. Note that there is a one-to-one correspondence between a density matrix 
and its Wigner function. Other quantum operators are similarly mapped to real scalar 

ˆfunctions in phase space by replacing ρ̂ with the operator O in eq. (2.23). This map 
is invertible and generically referred to as Wigner-Weyl transform. Expected values of 
observables in a given state are then computed as integrals over phase space Z� � 

⟨O|O⟩ρ = Tr ρ̂Ô = (2π)n dnqdnpWρ̂(q, p)W ̂  (q, p) . (2.24)O 

At this point, one is tempted to make an analogy between probability theory and QM, 
interpreting Wρ̂(q, p) as a probability distribution and WÔ (q, p) as a random variable. 
This can be done at the expense of discarding one of the axioms of probability theory, since 
Wρ̂(q, p) can take negative values. Therefore, it is called a quasi-probability distribution, 
which still satisfes Z 

dnqdnpWρ̂(q, p) = Tr (ρ̂) = 1 . (2.25) 

The possibility of the Wigner function taking negative values implies that expected values 
of physical observables might be inconsistent with classical mechanics. In fact, they can 
lead to Bell inequality violations. Even if the Wigner function is positive, as it is the case of 
the one associated to a Gaussian state, Bell inequalities can be violated if it is constructed 
with improper operators [117]. A proper operator admits a spectral decomposition as Z 

ˆ dnO = q |q⃗⟩ O(q⃗) ⟨q⃗| , (2.26) 

5See ref. [113] for a review and [114–116] for the original formulation. 
6Note that commuting operators are simultaneously diagonalizable. 
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where O(q⃗) is a bounded function. It’s Wigner-Weyl transformation is then 

WÔ (⃗ p) = O(⃗ (2.27)q, ⃗ q) , 

ˆwhich takes all and only the eigenvalues of O. An operator not satisfying this condition is 
called improper. 

The probabilistic nature of microscopic phenomena (and, at a deep fundamental level, 
all physical phenomena) is a key building block of QM. It is supported by experimental 
results such as the Stern-Gerlach experiment. As we have seen, this randomness is intrinsic, 
i.e., not due to experimental error or uncertainties in the initial conditions. Here there is 
a key discrepancy with classical mechanics: a point in phase space has a deterministic 
future evolution. Observables in QM, on the contrary, are always probabilistic, even if the 
evolution of the quantum state is deterministic. 

Furthermore, it cannot be reproduced by usual probability theory. This sounds surpris-
ing at frst, since one can have probabilistic outcomes if the classical state is not a point 
in phase space, but rather a probability distribution representing a statistical ensemble. 
Still, QM allows for Wigner functions which may take negative values and strongly deviate 
from the classical result. This can lead to Bell inequality violations (although it is not 
the only way [118]). In the usual operator formulation of QM, this discrepancy is due to 
states having complex amplitudes in general, which leads to well-known genuinely quan-
tum phenomena such as interference. Probabilities are then computed as the square of the 
amplitudes. 

2.6 Quantum Statistical Mechanics 

Large quantum systems are hard to describe exactly, to the extent that they might be 
completely intractable at the microscopical level. Recall that the parameters describing a 
quantum state vector scale exponentially in the dimension of the Hilbert space. It is for 
this reason that, when dealing with a large system, microphysical details need to be coarse-
grained and one must focus instead on its macrophysical properties. This is the task of 
statistical mechanics [119]. Emergent physical laws, such as the laws of thermodynamics, 
ultimately have a microphysical origin. 

We will not attempt here a comprehensive review of statistical mechanics. Still, it is 
relevant to us to understand the role played by statistical mechanics in the defnition of 
concepts like entropy or information, and its connection with quantum mechanics. Indeed, 
as we saw in sec. 2.3, entropy can be understood as an inverse measure of information, 
either in a probability distribution or in a quantum state. Mixed states, which have a 
non-vanishing von Neumann entropy, can be understood as an ensemble of pure states. 
Ensembles of states are precisely the subject of study in statistical mechanics. On the 
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other hand, according to the laws of thermodynamics, entropy is a non-decreasing function 
of time and a macrophysical property of a large system. 

Hence, statistical ensembles are described by means of a quantum density matrix. 
In equilibrium, i.e., when ρ̇ = 0, it can be built right away according to three set-ups: 
microcanonical (total energy and particle number are fxed), canonical (only total particle 
number is fxed) and grand-canonical (neither total energy nor particle number are fxed). 
In all those ensembles, the entropy can be computed by the von Neumann formula in 
eq. (2.13). It typically grows logarithmic in the size of the phase space consistent with 
the macrophysical variables, i.e., it grows linearly with the number of particles or the 
dimension of the Hilbert space. Thus, entropy quantifes the lack of information due to the 
coarse-grain over a region of phase space, which is described by emergent microphysical 
quantities. 

Quantum Statistical Mechanics ultimately leads to the laws of thermodynamics. We 
provide them here in its axiomatic formulation frst introduced by Stückelberg [120]. 

• First law. For every system Σ, there exists an extensive scalar state function E, called 
energy, which is conserved unless external forces are applied on it (work is done) or 
there is heat or matter transfer with the exterior. 

dE 
= P W + P H + P M (2.28)

dt 

• Second law. For every system Σ, there exists an extensive scalar state function S, 
called entropy, which is a non-decreasing function of time. 

dS ≥ 0 . (2.29)
dt 

The equality is only saturated in equilibrium. 

The laws of thermodynamics are useful when dealing with systems that satisfy the local 
equilibrium condition, even if strictly speaking are out of equilibrium. More precisely, when 
dealing with a fuid changes of entropy are given by 

1 
dS = (dU + pdV ) , (2.30)

T 

where U is the internal energy of the system, T is its temperature, p its pressure and V 
its volume. If the system is isolated, transitions between these quasi-equilibrium states 
can only take place with an increase in entropy, i.e., with a loss of information about the 
system. 

It is not easy to reconcile the laws of thermodynamics, which allow for an increase in 
the entropy, with the fact that the von Neumann entropy SN is invariant under unitary 
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transformations and, thus, invariant under unitary evolution [81]. Let us briefy discuss 
solutions to this issue. First, due to interactions with an environment, a quantum sys-
tem may undergo non-unitary evolution in a process called decoherence [121], which can 
certainly change SN . Still, the total von Neumann entropy should remain constant. In 
thermodynamics, the von Neumann entropy is also called Gibbs entropy SG and has a clas-
sical analog [119]. Again, the classical SG does not grow as a consequence of the Liouville’s 
theorem, which states that phase space distribution functions are conserved by classical 
Hamiltonian evolution [122]. 

It must be noted, however, that this entropy is microscopic and relies on the validity 
of the statistical ensembles mentioned above, which is lost out of equilibrium. In this 
situation, the entropy of a macrostate M is given by the Boltzmann entropy [119, 122] 

SB = kB log |ΓM | , (2.31) 

where |ΓM | is the volume of phase space with microstates consistent with M . In local 
equilibrium, i.e., slowly varying conditons from one equilibrium state to another, SB = SG. 
Otherwise SB ≥ SG. In other words, one may argue that microscopic time evolution 
is reversible, but the coarse-graining procedure is not. The precise implementation of a 
quantum analog for the SB for a generic out-of-equilibrium situation (not assuming local 
equilibrium) is still a matter of debate [122]. The defnitons of computationally useful 
concepts like entropy or statistical ensemble lead to deep discussions in the philosophy 
of physics. It is worth pointing out their relevance in achieving full consistency between 
unitary QM and the second law of thermodynamics, but we shall not discuss them further. 

2.7 Black Hole Thermodynamics 

We fnish this chapter by reviewing a topic that beautifully intertwines gravity, QM and 
thermodynamics: the laws of black hole thermodynamics [14,123]. It illustrates the impor-
tance of the confuence of these three disciplines and suggests the existence of a microscopic 
description of macroscopical gravitational systems in terms of a yet unknown theory of 
quantum gravity. 

Roughly speaking, a black hole is a physical object whose gravitational pull is so strong 
that even light (or any other massless particle) can become trapped inside it [48]. This 
trapping region is enclosed in the event horizon of the black hole, which characterizes its 
size7 . According to the no-hair theorem [124–126], a stationary black hole in GR can be 

7The defnition of the event horizon requires knowledge about the full future history of light-like 
geodesics, which may not be known unless the black hole is stationary. Sometimes it is convenient to 
use the notion of apparent horizon instead, which can be defned with information about the light-like 
geodescics at a given space-like hypersurface. 

35 



Chapter 2. Quantum Mechanics 

described by its mass M , its angular momentum J and its electric charge Q8 . It is unlikely 
that a black hole would keep a non-negligible electric charge for a long time, as it would 
attract more matter with charge of the opposite sign, so we will focus here on black holes 
with Q = 0, i.e., Kerr black holes [128]. 

Still, we will frst discuss briefy the case Q = J = 0, as it is of great relevance 
as well. Such an object is called a Schwarzschild black hole. Its metric, discovered by 
Karl Schwarzschild in 1916 [129], is actually the frst solution to Einstein’s feld equations 
ever found. It describes generically a static and spherically symmetric space-time, and so 
many relevant physical problems such as celestial orbits or light defection are studied with 
this metric. Furthermore, it predicts the existence of an event horizon at the so called 
Schwarzschild radius 

2GM 
rS = 

2 , (2.32) 
c 

unless the metric is generated by a mass of larger size. Even if the Schwarzschild black 
hole is a limiting case, it is a fair description when angular momentum is sufciently small. 
Furthermore, PBH, already discussed in sec. 1.7, are predicted to have negligible angular 
momentum and are correctly described by the Schwarzschild metric. 

Coming back to Kerr black holes, it is useful to parametrize their deviation from a 
Schwarzschild black holes by introducing the parameter a = J/Mc. The event horizon of 
a Kerr black hole is then located at q 

rS + r2 − 4a2 
S 

rEH = . (2.33)
2 

Even if the Kerr solution is stationary, it is legitimate to ask oneself how do the parameters 
M and J change, for instance if the black hole grows by matter accretion. This time 
evolution from one member of the Kerr-family to another is governed by the laws of black 
hole thermodynamics [14, 48, 123]: 

• Zeroth law. For every Kerr black hole, the surface gravity κ is constant and a function 
of M and J only. Its precise form is 

√ 
M2 − a2 

√κ = � � . (2.34) 
M2 − a22M M + 

• First law. The variation of the black hole mass after any physical process is a function 
of the variation of its event horizon area and its angular momentum. 

κ 
dM = dA +ΩH dJ , (2.35)

8π 
8Electric charges are defned in GR in a way analogous to fat space-time. Mass and angular momentum 

are trickier. For an asymptotic space-time, however, one can make sense of a global mass and angular 
momentum associated with the space-time metric in terms of Komar integrals [127]. One speaks of this 
Komar mass and angular momentum as belonging to the black hole itself. 
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where A = πr2 and ΩH is the angular velocity of the horizon9 .S 

• Second law. The variation of the black hole area after any physical process is always 
non-negative [130] 

dA ≥ 0 . (2.36) 

• Third law. No fnite amount of physical processes can result in κ = 0 [131]. 

These laws were frst constructed as the laws of black holes mechanics, but its similarity 
with the well-known laws of thermodynamics was soon realized. Of course, this similarity 
was not enough to claim the thermodynamical nature of black holes. It was frst argued 
by Jacob Bekenstein in a thought experiment that the entropy of a black hole should scale 
as its area [105]. Even if he did not showed what the proportionality coefcient should be, 
we now understand the Bekenstein-Hawking entropy of a black hole to be 

Ac3 
SBH = kB . (2.37)

4Gℏ 

Later, Stephen Hawking found that a quantum feld in Schwarzschild space-time is put in 
a thermal state [100], with temperature proportional to the surface gravity 

ℏκ 
TH = , (2.38)

2πckB 

so that a black hole emits black-body radiation, the so called Hawking radiation, decreasing 
its mass and potentially leading to its evaporation. Note that this does not contradict the 
second law, as the latter is proven for classical GR and a stress-energy tensor satisfying 
certain conditions, which are violated by a quantum feld. 

We kept all physical constants to illustrate the underlying quantum nature of black 
hole thermodynamics. Indeed, black holes are macroscopical objects and, as such, can be 
understood to a great extent with classical physics alone. This can be seen from the fact 
that the product TH SBH does not depend on the Planck constant ℏ. On the contrary, both 
TH and SBH do depend individually on ℏ. Hawking radiation and the micro-structure from 
which Bekenstein entropy emerges are quantum phenomena. As mentioned in sec. 2.3, it 
is still a matter of debate whether the area dependency of SBH can be linked to quantum 
entanglement. 

In any case, the thermodynamical nature of black holes will play an important role 
when embedding them as one of the components of non-equilibrium cosmology in chapter 6. 
Furthermore, it will serve as inspiration for the treatment of other horizons in chapter 7, 
such as the cosmic horizon. 

9ΩH is obtained as the polar component of the Killing vector feld normal to the event horizon surface. 
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We fnish this section with the remark that the formation of a PBH by the gravitational 
collapse of the radiation contained inside the Hubble scale is accompanied by an enormous 
increase in classical entropy, as one would expect from an out-of-equilibrium process that 
follows the laws of thermodynamics [1]. Indeed, the entropy of the gas of relativistic 
particles within the Hubble scale can be written as [13, 132] 

2π2 
Sgas = g∗S (T )T 3VH , (2.39)

45 
where VH is the Hubble volume, g∗(T ) is the number of relativistic degrees of freedom and 
natural units including kB = 1 were used, so that the entropy is a dimensionless quantity. 
On the other hand, the resulting PBH carries the Bekenstein-Hawking entropy, which is 
proportional to its event horizon area 

AH
SPBH = = 4πγ2 t

2 
, (2.40)

t24AP P 

where AP = 4πL2 is the Planck area, LP is the Planck length and tP is the Planck time.P 
Since the Hubble scale is time-dependent, so are the mass and the entropy of the PBH. 
Time and temperature are related in a radiation-dominated universe [13, 132] � �1/2 � �2 t 45 TP 

= . (2.41)
tP 16π3g∗(T ) T 

This way we can express both the entropy of the relativistic gas and the entropy of the 
Primordial Black Hole as a function of temperature � �1/24 T 3 45PSgas = 

3 T 3 16π3g∗ � � (2.42) 
45 T 4 

PSPBH = 4πγ2 
16π3g∗ T 4 

and so the ratio of both quantities is a function of temperature as well � �1/2SPBH 405 −1/2 TP 
= γ2 g∗ . (2.43)

Sgas 16π T 

Let us apply this equation to the QCD phase transition temperature. Then T ≃ 200 MeV 
and g∗ ≃ 10. Taking into account that TP = 1.22 × 1019 GeV one gets 

SPBH ≃ γ2 · 5 × 1019 . (2.44)
Sgas 

This large number suggests that gravitational collapse via PBH formation is an extremely 
efcient way of generating a burst of entropy production which could fll the universe with 
entropy. Even if PBH do not exist, black holes are known to give the largest contribution 
to the entropy of the universe [133]. 
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The quantum universe 
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Chapter 3 

A frst approach 

If you wish to make an apple pie from scratch, you must frst 
invent the universe. 

Carl Sagan, Cosmos (1980). 

3.1 Motivation 

The common thread of part II is the study of correlations in cosmological perturbations 
arising from infation. Regardless of their origin, these perturbations are a crucial ingre-
dient of the standard cosmological model, ΛCDM. They are responsible for cosmological 
observables such as CMB anisotropies or structure formation. According to the standard 
framework reviewed in chapter 1, they arise as amplifcation or stretching of quantum 
fuctuations during infation, which reenter the horizon at later times. 

More concretely, the starting question of this thesis was: can primordial black holes 
(PBH) be entangled quantum-mechanically? We recall from sec. 1.7 that PBH are black 
holes formed by gravitational collapse induced by large curvature perturbations. If they 
have a quantum-mechanical origin in the sense described in sec. 1.5, we fnd our question 
to be a natural and relevant one. The fact that genuinely quantum features cannot be 
found easily in standard cosmological observables [117,134,135] already shows that this is 
a non-trivial issue. 

Entangled black holes are involved in one of the most fascinating conjectures proposed 
in fundamental physics in the last years, namely the ER = EPR proposal [76]. Introduced 
by Maldacena and Susskind in 2012, it states that wormholes and quantum entanglement 
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are analogous phenomena1 . Since PBH may be formed copiously in the early universe, their 
quantum entanglement would lead one to postulate the existence of a wormhole network 
flling up spacetime. 

The present chapter will be, however, less ambitious. We will illustrate how long-range 
correlations can be present in the early universe and how this is related to entanglement 
entropy, a quantity introduced in sec. 2.3. As we already discussed, quantum entanglement 
is present even in the Minkowski vacuum state in the form of the area law of entanglement 
entropy. It is known that the vacuum state of de Sitter spacetime is entangled in a way that 
goes beyond the area law found in Minkowski spacetime, as it was found by Maldacena and 
Pimentel [136]. Its corresponding entanglement entropy includes both UV-divergent and 
UV-fnite terms. The former arise from local physics, while the latter are expected to be 
related to true long-range or non-local correlations. If this entanglement arises in de Sitter 
spacetime, it must be at least partially created during infation as well. Entanglement may 
occur between diferent momentum modes as well as between localized modes, and it may 
change during time evolution, since it may not be unitary when restricted to individual 
modes due to interactions among them. However, the whole quantum state of the feld 
must remain pure as dictated by unitary evolution. In this chapter we explore how some 
terms can be related to the entanglement of isotropic modes across a spherical entangling 
surface. 

Even though quantum entanglement is easier understood when dealing with single 
particles in quantum mechanics, it is in fact an inevitable and natural feature of any 
quantum feld theory. If we take the whole feld to be the quantum system of interest, then 
it can be split into subsystems whose correlations are measured by their entanglement 
entropy. This entanglement entropy is dependent on the quantum state of the feld and 
the choice of subsystems. For instance, if we consider the vacuum state of a scalar feld 
theory in Minkowski spacetime, it can be expressed as a product state of single momentum 
mode vacua and therefore there is no entanglement between them 

|0⟩ = ⊗k |0⟩k . (3.1) 

However, if we choose the subsystems to be the localized modes inside and outside of 
a sphere of radius R, then one fnds quantum entanglement between the inner and the 
outer modes with a UV-divergent entanglement entropy that scales with the area of the 
sphere [103, 104] 

R2 
S ∼ , (3.2)

ϵ2 

1This is motivated by a previous proposal in holography, according to which a maximally extended AdS-
Schwarzschild BH is dual to the thermofeld double state in a conformal feld theory. Similar ideas were 
already exposed by Israel in [92], without yet a reference to holography or the AdS/CFT correspondence. 
Intuitively, it can be understood from the fact that a mixed state can be purifed by embedding it in a 
larger Hilbert space. 
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where ϵ acts as a UV regulator. This is the celebrated area law and describes the dominant 
contribution to the entanglement entropy of the vacuum state in Minkowski spacetime. It 
is interpreted as the entanglement degrees of freedom close to the surface of the sphere and 
is therefore related to local physics [136]. 

When the quantum feld is coupled to gravity, particle creation can take place, as 
explained in sec. 1.5. In momentum space, this can lead to quantum entanglement be-
tween diferent momentum modes, as it is the case of cosmological perturbations. This 
phenomenon can also afect entanglement in real space and add both UV-divergent and 
UV-fnite contributions beyond the area law. For a massless free minimally coupled scalar 
feld in de Sitter spacetime these are given by [136] 

R2 � � 
SdS, UV-divergent = c1 + log (ϵH) c2 + c3R2H2 

ϵ2 (3.3) 
SdS, UV-fnite = c4R2H2 + c5 log (−η) + constant . 

The term ∼ log (−η) signals the presence of long-range quantum correlations. They arise 
from short-range physics due to the streching out of length-scales with the expansion. Since 
during infation the background metric can be regarded as approximate de Sitter spacetime, 
we argue that such long-range quantum correlations may also be created during infation 
and survive during the subsequent radiation-dominated era. 

In this chapter we inspect this question, reviewing ref. [1]. The remainder of it is 
organized as follows. In section 3.2 we construct the spherical modes for the quantum state 
after infation. In section 3.3 we perform a restriction of these modes over a sphere in order 
to compute its entanglement entropy. In section 3.4 we discuss the connection with the 
result in de Sitter, as well as phenomenological consequences, such as PBH entanglement. 

3.2 Spherical modes 

3.2.1 The quantum state after infation 

Consider a massless feld Φ, which can be used for instance to describe primordial curvature 
perturbations. As such, it is related with the Mukhanov-Sasaki variable introduced in 
section 1.5 as v = aΦ. Since primordial gravitational waves are described by the same 
dynamics, our results will also be valid for them. Following the usual prescription, we 
place it in the Bunch-Davies vacuum state in the distant past. This is particularly safe 
in applications to infation, since only a piece of de Sitter is actually needed to describe 
a short period of accelerated expansion and those modes with wavelength larger than 
the event horizon at the beginning of infation are phenomenologically irrelevant. On the 
other hand, some phenomenologically relevant scales were smaller than the Planck scale 
at the beginning of infation. As the laws of physics at such small scales are not probed, 
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deviations from the usual predictions of infation may take place, which is known as the 
Transplanckian problem [137]. We assume that these deviations, if exist, are negligible. 

In the Schrödinger picture, the Bunch-Davies vacuum evolves into a squeezed state due 
to the action of the time-evolution operator (S-matrix) 

ˆ −i(η−η0)Ĥ(η)U(η, η0) = e (3.4) 

where η0 is the conformal time at the beginning of infation. The Hamiltonian operator 
contains a squeezing term, which is proportional to a ′ /a Z � � � ′ � �� 

† † † †Ĥ(η) =
1 

d3k k â⃗ (η)â (η) + â (η)â⃗ (η) + i
a 

â (η)â (η) − â⃗ (η)â (η) .
k k⃗ k⃗ k k⃗ −k⃗ k −k⃗2 a 

(3.5) 
It can be shown that the time-evolution operator can be rewritten in the following way [138] Z 

log Û(η, η0) = d3k
τk(η) h 

â
k⃗
(η0)â−k⃗

(η0)e −iϕ(k⃗,η) − â⃗ 
† (η0)â †

−k⃗
(η0)e iϕ(k⃗,η) 

i 
(3.6)

2 k 

and it acts on the vacuum creating a two-mode squeezed state, which entangles the k⃗ and 
−k⃗ modes as 

∞ � �X n1 −iϕ(⃗ |0, η⟩ = Û(η, η0) |0, η0⟩ = ⊗k e k,η) tanh τk |n⟩⃗ |n⟩ , (3.7)k −k⃗cosh τk n=0 

where τ and ϕ are respectively the squeezing parameter and phase, which depend only 
on the conformal time η and the norm of the momentum k. We refer the reader to [56] 
for a review of the physics and mathematics of squeezed states as well as to the original 
references on two-mode squeezed states [57, 58]. In the problem at hand one fnds that 
τ ∼ N where N is the number of e-folds between horizon exit and the end of infation, i.e., 
N ∼ log(η/η0). 

This state shows entanglement between k⃗ and −k⃗ modes, measured by an entanglement 
entropy given by [139] � � 

S(k⃗) = 2 log(cosh τk) − log(tanh τk) sinh2 τk , (3.8) 

which reduces to S(k⃗) ≃ 2τk in the limit τk ≫ 1 as it is usually the case. Indeed, due 
to infation the squeezing parameter can take values much larger than those attainable in 
the laboratory [140]. This entanglement entropy is related to the coarsed-grained entropy 
of primordial perturbations computed by Brandenberger, Mukhanov and Prokopec [59]. 
Indeed they found the entropy density to be Z Z 

s = d3k log sinh2 τk ≃ d3k2τk . (3.9) 
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Intuitively, this coarse-grained entropy seems to be equivalent to tracing over one of the two 
subsystems of the 2-mode squeezed state. It must be noted, however, that the procedure 
used in its computation is diferent. 

It is true that apparently we are comparing entropy density with total entropy, but it is 
not the case since after integrating the entanglement entropy over all possible momentum 
modes we get a quantity in units of entropy density. The scaling can be properly regularized 
via discretization Z � �X kmax

d3k → = ∼ k3 L3 , (3.10)maxkmin
k 

which indeed grows as the volume. 

The squeezing formalism readily allows us to understand the presence of quantum 
entanglement in cosmological perturbations in momentum space. Here we are interested 
in going beyond this statement and checking other ways in which quantum entanglement 
may be present in this state. Therefore, we will try to elucidate the entanglement in real 
or position space and, more precisely, between modes restricted to the interior and the 
exterior of a sphere of radius R. 

3.2.2 Canonical quantization in spherical coordinates 

In order to achieve the restriction mentioned above, we perform a canonical quantization 
in spherical coordinates. Introducing the auxiliary feld χ = aΦ 2 the equation of motion 
of the scalar feld takes a simple form [53]: 

′′ a 
χ ′′ −∇2χ − χ = 0 . (3.11) 

a 

Using the fact that during the radiation-dominated era a ∼ η the equation of motion 
reduces to that on Minkowski spacetime and therefore its solutions are the well-known 
plane waves. In spherical coordinates this is equivalent to 

∂2χ 1 ∂2 1 − (rχ) − ∆S2 χ = 0 , (3.12)
∂r2 2∂η2 r r 

where the Laplacian on the 2-sphere is given by � � 
1 ∂ ∂ 1 ∂2 

∆S2 = sin θ + . (3.13)
sin θ ∂θ ∂θ sin2 θ ∂φ2 

2The feld χ is roughly equivalent to the Mukhanov-Sasaki variable v. Its dynamics, however, is simpli-
fed. For instance we take z = a. For this reason, we keep the notation χ in order to avoid confusion. 
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The solutions to this equation are known to be (up to an overall constant Nk that we will 
fx later) 

Nk
χk,l,m(η, r, θ, φ) = √ e −iωηjl(kr)Ylm(θ, φ) , (3.14)

2ω p
πwhere jl(z) = Jl+1/2(z) are the spherical Bessel functions and Ylm(θ, φ) are the spher-2z 

ical harmonics. Notice that for a massless feld, as it is our case, the dispersion relation 
reads ω = k. 

These mode functions need to be normalized with respect to the Klein-Gordon inner 
product as Z ∞ Z � � 

↔ 
(χklm, χk ′ l ′ m ′ ) = i r 2dr dΩ χklm 

∗ ∂ηχk ′ l ′ m ′ = 
π
δ(k − k ′ )δll ′ δmm ′ . (3.15) 

0 2k2 

The choice of functions makes therefore perfect sense from the point of view of the Klein-
Gordon inner product, since they are orthogonal. We reabsorb the factor 1/k2 into the 
defnition of the mode functions since we anticipate it to be important for the operator 
feld expansion. We also reabsorb the constant factor π/2 and fnally get r 

1 2 
χklm(η, r, θ, φ) = √ e −iωη kjl(kr)Ylm(θ, φ) . (3.16)

2ω π 

The feld operator χ can be expanded in terms of these functions: 

Z ∞ X l 
k � �∞ X 

Y ∗ iωη ̂  −iωη ̂ †χ̂(η, r, θ, φ) = dk √ jl(kr) lm(θ, φ)e aklm + Ylm(θ, φ)e a . 
0 2ω klm 

l=0 m=−l 
(3.17) 

The feld operator must of course satisfy the Canonical Commutation Relation 

ˆ ′ )[χ̂(η, r, θ, φ), Π(η, r ′ , θ ′ , φ ′ )] = iδ(3)(r⃗ − ⃗r (3.18) 

which is achieved by imposing h i 
† †[âklm, âk ′ l ′ m ′ ] = 0 = âklm, âk ′ l ′ m ′ h i (3.19)

† âklm, â ′ = δ(k − k ′ )δll ′ δmm ′ .k ′ l ′ m 

As one would expect, this canonical quantization in spherical coordinates is completely 
equivalent to the usual canonical quantization in cartesian coordinates. The destruction 
and creation operators in both descriptions are related by the following expression 

∞ lX X il 
â⃗ = Ylm(k̂)âklm (3.20)
k k 

l=0 m=−l 
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and its inverse Z 
âklm = (−i)lk dΩY ∗ k)â⃗ , (3.21)lm(ˆ 

k 

where k̂ = k⃗/k and is simply parametrized by two angular variables. In terms of this 
creation and annihilation operators in spherical coordinates the time-evolution operator 
becomes Z �X il+l ′ τk(η) −iϕ(k⃗,η)log Û(η) = d3k Ylm(k̂)Yl ′ m ′ (−k̂)âklmâkl ′ m ′ e 

2 ′ k2 
l,l ′ ,m,m (3.22) 

(−i)l+l ′ � 
Y ∗ k)Y ∗ 

′ (−ˆ † † iϕ(k⃗,η)− 
k2 lm(ˆ 

l ′ m k)â âkl ′ ′ e .klm m 

After applying some properties of the spherical harmonics and integrating over the angular 
variables one gets a simpler expression for the operator: Z X h iτk(η) −iϕ − ˆ† † iϕlog Û(η) = dk (−1)m âklmâkl,−me a â e .klm kl,−m (3.23)2 

l,m 

This operator has a slightly diferent efect for l = 0 and l ̸= 0. Indeed by expressing Y 
ˆ ˆU(η) = Ulm(η) (3.24) 

l,m 

we see that Z h iτk(η) −iϕ(k⃗,η) − ˆ† † iϕ(k⃗,η)log Û00(η) = dk âk00âk00e a â e . (3.25)k00 k002 

The operator U00 creates nothing but a one-mode squeezed operator out of the vacuum. 
By factoring the state as well 

|0, η⟩ = ⊗lm |0, η⟩lm (3.26) 

we fnd that 

|0, η⟩00 = Û00(η) |0⟩ p∞
1 X (2n!) 

� 
1 

� 
(3.27)

2iϕ(⃗ 
= ⊗k2 p − e k,η) tanh τk(η) |2n⟩k00 . 

cosh τk(η) n! 2 
n=0 

On the other hand, for the other modes Ulm is a two-mode squeezing operator Z 
τk(η) h 

−iϕ(k⃗,η) − ˆ† † iϕ(k⃗,η) 
i 

log Ûlm(η) = dk (−1)m âklmâkl,−me a â e , (3.28)klm kl,−m2 
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which creates a two-mode squeezed state. This kind of state carries entanglement between 
the m and −m modes, as can be seen from the form of the state � �n 

∞ 2iϕ(⃗X e k,η)(−1)m+1 tanh τk(η) 
|0, η⟩lm = ⊗k2 . (3.29)|n⟩klm |n⟩kl,−mcosh τk(η)n=0 

To sum up, in spherical coordinates the quantum state after infation has the following 
properties. First, the isotropic mode l = 0 is found in a one-mode squeezed state. Second, 
the anisotropic modes l ̸= 0 are found in a two-mode squeezed state, which entangles m 
and −m modes. This is one source of entanglement, but there is still another one due to 
the in and out bipartition by a spherical entangling surface of radius R. 

3.3 Entanglement across a sphere 

3.3.1 Isotropic entanglement entropy 

As stated in the previous section, the anisotropic modes (i.e. those with l ̸= 0) are found 
in two-mode squeezed states and show therefore entanglement between m and −m modes. 
This entanglement is related directly to the entanglement between k⃗ and −k⃗ modes that 
is found in Cartesian coordinates. The computation of its entanglement entropy follows 
analogously and delivers the same result Sk ≃ 2τk for large τk. 

The second simplest form of entanglement is the one across a spherical entangling 
surface of radius R for isotropic modes, i.e., those with l = 0. This entanglement is most 
interesting when R is taken to be the Hubble radius, but we will keep it as a free parameter 
for now. We will proceed with the Ansatz that the creation and annihilation operators can 
be split into an inner and an outer component as follows 

âk00 ≡ âk = αâk,in + βâk,out , (3.30) 

with |α|2 + |β|2 = 1. With this choice, the inner and outer operators commute � � � � 
âk,in, âk ′ ,in = âk,out, âk ′ ,out = 0 h i h i 
† † † † â a = â , â = 0k,in, ̂ k ′ ,in k,out k ′ ,out (3.31)h i h i� � † † †ˆ ak ′ = â a = ˆ a = 0 .ak,in, ̂  ,out k,in, ̂ k ′ ,out ak,in, ̂ k ′ ,out 

as expected from the CCR. Later we will deal with the fact that, in general, the following 
commutators do not satisfy the canonical relations h i h i 

† †ˆ a ̸= δ(k − k ′ ) ̸= ˆ a . (3.32)ak,in, ̂ k ′ ,in ak,out, ̂ k ′ ,out 
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3.3. Entanglement across a sphere 

Note that the splitting performed in eq. (3.30) has the particularity of leaving the vacuum 
state invariant when interpreted as a Bogolyubov transformation. We shall elaborate later 
on this non-trivial statement. In a nutshell, this should be valid since i) isotropic modes 
could at most be linked with logarithmic contributions to the entanglement entropy and ii) 
we asume long- and short-range entanglement to be essentially independent phenomena, 
the former being due to the structure of vacuum and the latter due to particle production. 

Taking this partition, any quantum state can be expressed in terms of n-particle states 
created by these inner and outer operators, which take the following form 

� � � �1 † n † † n 
|n⟩ = √ â |0⟩ = α ∗ âin + β ∗ âout |0⟩ 

n! Xn � �1/2 (3.33)
n 

= αmβn−m |m⟩in ⊗ |n − m⟩out , m 
m=0 

where we dropped the subscript k for simplicity. Now, the l = 0 sector of the vacuum 
state is a one-mode squeezed state, which can be written in its standard particle basis 
decomposition and then split into inner and outer components 

p � �nX1 ∞ 
(2n)! 1 |0, η⟩00 = √ − e 2iϕ tanh τ × 

cosh τ n! 2 
n=0 

(3.34)
2n � �1/2X 2n × αmβn−m |m⟩in ⊗ |2n − m⟩out m 

m=0 

and we can build the corresponding density matrix 

ρ̂00 = |0, η⟩00 ⟨0, η|00 p∞X1 ′ ) (2n)!(2n ′ )! 
= (−2)−(n+n 

′ ! 
× 

cosh τ n!n 
n,n ′ =0 

(3.35)
2n,2n ′ � �X �1/2 ′�1/2 

′ 2n 2n2iϕ(n−n× e 
′ ) tanhn+n (τ) · ×′ m m 

m,m ′ =0 

× αm+m β(n−m)+(n ′ −m ′ ′ ′ ′ ′ ) |m⟩in m ⊗ |2n − m⟩out 2n − m .
in out 

Now we trace out the inner degrees of freedom in order to obtain the reduced density 
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matrix of the outer degrees of freedom 

∞X 
ρ̂out = Trinρ̂ = ˆ⟨q|in ρ |q⟩in 

q=0 

∞ min(2Xn,2n ′ ) pX1 (2n)!(2n ′ )!′ ) 2iϕ(n−n ′ ) (3.36)= (−2)−(n+n 
′ ! 

e × 
cosh τ n!n 

n,n ′ =0 l=0 � �1/2� �1/2′ ′ 2n 2n′ −2l ′ × tanhn+n (τ )α2lβn+n |2n − l⟩ 2n − l . 
outl l out 

In order to compute the von Neumann entropy of this density matrix we would in principle 
need to compute its logarithm and, therefore, diagonalize it. Its complicated structure and 
infnite size make it seem an impossible task. Hence, we will compute it using a diferent 
method, namely exploiting the available knowledge of the von Neumann entropy of generic 
two-mode Gaussian states. Even though it may not seem obvious that ρ̂00 is a Gaussian 
state, it has been proven that any quantum state created by a time evolution driven by a 
bilinear two-mode Hamiltonian is a two-mode Gaussian state [56]. This means that, even 
though the state itself is characterized by an infnite set of coefcients, it only contains 
a much more reduced amount of information codifed in its frst and second statistical 
moments, that is, in its expected values and covariance matrix. In other words: the 
density matrix of a single mode is created from the vacuum by acting with a squeezing 
operator, which depends on a few parameters, two per momentum mode. Therefore, its 
entanglement entropy should also depend on these parameters only. This means that, even 
though one needs in principle all the matrix elements to compute the logarithm of the 
matrix, it cannot have any non-trivial dependence that is not encoded in the dependence 
on the parameters. We use in the following the formalism described in [141] to compute 
the entanglement entropy. 

We introduce the following auxiliary feld and conjugated momentum operators � �1 †χ̂in/out = √ âin/out + âin/out2 � � (3.37)−i †π̂in/out = √ âin/out − âin/out . 
2 

Then we construct the covariance matrix σ of a quantum state as follows: 

1 
σij = ⟨x̂ix̂j + x̂j x̂i⟩ − ⟨x̂i⟩ ⟨x̂j ⟩ , (3.38)

2 

where i = 1, 2 and the vector x is defned as x = (χin, πin)
T . 
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3.3. Entanglement across a sphere 

The expected values ⟨x̂i⟩ can be set to zero without loss of generality. As a matter of 
fact, they are zero in our case. Let us use the short notation 

∞ min(2Xn,2n )X ′ 

′ ρ̂out = cnn ′ l |2n − l⟩ 2n − l 
out . (3.39)out 

n,n ′ =0 l=0 

Then it follows 

∞ max(2n,2n ′ )D E � � X X √† † ′ â = Tr ρ̂outâ = cnn ′ l 2n − l · δ2n−l,2n ′ −l−1 = 0 . (3.40)out out 
n,n ′ =0 l=0 

This is 0 because the condition of the Kronecker delta can never be fulflled since n and 
′ n are integers. Similarly one obtains ⟨âout⟩ = 0. Hence, we focus on the second statistical 

moments 

D E � � � � 
†ˆ †ˆ † â a = Tr ρ̂â a = Tr âρ̂â   

∞ min(2Xn,2n ′ )X p ′ = Tr  cnn ′ l (2n − l)(2n ′ − l) |2n − l − 1⟩ 2n − l − 1  
n,n ′ =0 l=0 

∞ min(2n−1,2n ′ −1)X X p 
′ = cnn ′ l (2n − l)(2n − l) δ2n−l−1,2n ′ −l−1 (3.41) 

n,n ′ =0 l=0 
∞ 2Xn−1X1 (2n)! (2n − 1)! 

α2lβ2(n−l)= (−2)−2n tanh2n τ · 2n 
cosh τ (n!)2 l!(2n − l − 1)!

n=0 l=0 
∞X1 (2n)!

2−2n = tanh2n τ · 2nβ2 = β2 sinh2 τ . 
cosh τ (n!)2 

n=0 

Similarly for the other moment 
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⟨ââ⟩ = Tr (ρ̂ââ) = Tr (âρ̂â)  
∞ min(2n−1,2n ′ )X X p ′ = Tr  cnn ′ l · (2n ′ − l + 1)(2n − l) · |2n − l − 1⟩ 2n − l + 1  

n,n ′ =0 l=0 

∞ min(2n−1,2n ′ )X X p 
′ = cnn ′ l · (2n − l + 1)(2n − l) · δ2n−l−1,2n ′ −l+1 

n,n ′ =0 l=0 p∞ 2Xn−2X p (2n)!(2n − 2)! 
=

1 
(2n − l − 1)(2n − l) (−2)−2n+1 · 

cosh τ n!(n − 1)!
n=1 l=0 � �1/2� �1/22n 2n − 2 

α2lβ4n−2l−2 · e 2iϕ tanh2n−1 τ 
l l 

∞ 2Xn−2 � �X1 (2n)! 2n − 2 
2−2n+1 α2lβ4n−2l−2 = e 2iϕ tanh2n−1 τ 

cosh τ n!(n − 1)! l 
n=1 l=0 
∞X1 (2n)!

2−2n+1 = e 2iϕβ2 tanh2n−1 τ = e 2iϕβ2 sinh τ cosh τ . 
cosh τ n!(n − 1)!

n=1 
(3.42) 

We will neglect in the following the contribution of the phase, since we can always reabsorb 
−iϕˆit by means of the transformation â → e a which does not afect the physics of the 

problem. 

Now we are ready to compute the elements of the covariance matrix 

σχχ = ⟨χ̂χ̂⟩ = β2 e τ sinh τ +
1 
. (3.43)

2 

σππ = ⟨π̂π̂⟩ = 1 − β2 e −τ sinh τ . (3.44)
2 

σχπ = 0 . (3.45) 

The entanglement entropy of the quantum state is related to the determinant of the co-
variance matrix as follows � � � � 

1 − µ
S = ln 

2µ 
1 + µ 
1 − µ 

− ln 
2µ 

1 + µ 
, (3.46) 

with 
1 

µ = √ 
2n det σ 

, (3.47) 
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where n is the number of quantum modes. In our present case, n = 1. The determinant is 
given here by 

det σ = σχχσππ − σ2 =
1
+ β2(1 − β2) sinh2 τ . (3.48)πχ 4 

Notice that this result is symmetric under the exchange of β2 and α2 = 1−β2 , as it should. 
We then get the expression 

1 1 
µ = √ = p (3.49) 

2 det σ 1 + 4β2α2 sinh2 τ 

and the following result for the entanglement entropy � � q �� 
S = log 

1 
1 + 1 + 4β2α2 sinh2 τ 

2 � q � p ! (3.50)
1 1 + 1 + 4β2α2 sinh2 τ 

+ −1 + 1 + 4β2α2 sinh2 τ log p . 
2 −1 + 1 + 4β2α2 sinh2 τ 

√ 
Now, let us consider a completely equal bipartiton, i.e. α = β = 1/ 2 , so that 

1 
µ = p = sechτ . (3.51) 

1 + sinh2 τ 

For τ ≫ 1, as it is usually the case in cosmological applications, this in turn leads to 

S ∼ 2τ , (3.52) 

which means that the entanglement between inner and outer modes grows linearly with 
τ and vanishes for τ = 0. This turns out to be the case as well for any other value of β. 
The main diference is that the linear behaviour is preceded by a slow exponential growth√ 
before becoming linear, and the more β departs from its equipartion value β = 1/ 2 , the 
longer this linear behavior appears. 

On the other hand, for fxed τ the following dependence for α < √1 is observed 
2 

S ∼ log α . (3.53) 

We will discuss this in a later section but we advance the following Ansatz for the scaling 
of the coefcients α and β r r 

R R 
α = 

L 
and β = 1 − 

L 
, (3.54) 

so that 
R 

S ∼ log ,
L 

(3.55) 
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where L is an IR regulator. Therefore, an IR divergence arises due to the term log L. But 
actually for really small α we have that S → 0. This can be checked taking the complete 
formula or, more easily, performing a Taylor expansion around α = 0 � � �� 

S ≃ α2 1 − log α2 sinh2 τ sinh2 τ . (3.56) 

This result should be interpreted carefully. Indeed, if we take the limit L → ∞ this is in a 
sense equivalent to taking the limit R → 0. This would mean that all degrees of freedom 
have been traced out and so the entanglement entropy must vanish. The actual quantity 
should be regularized. We think a reasonable regularization scheme would be taking the 
Hubble scale during infation as initial size of the universe and then expand it exponentially 
during the N e-folds that infation lasts 

NL = H−1 e . (3.57) 

This prescription is borrowed from regularization schemes in quantum cosmology and 
stochastic infation [142–144]. It is also consistent with the Bunch-Davies prescription 
for the vacuum state, since it cannot be applied to modes whose wavelength was larger 
than the Hubble scale at the beginning of infation. 

The key statement is the scaling of the entropy as S ∼ log R. This is a sub-dominant 
correction to the area law, which seems to be unrelated to the isotropic modes. This 
form of entanglement arises solely due to the squeezing and vanishes the moment the limit 
τ → 0 is taken. The usual short-range UV-divergent and area-scaling contribution to 
the entanglement entropy must still be present when the total entanglement entropy is 
computed but is not related to the isotropic modes. From our expression it can be inferred 
that the entanglement entropy given by the long-range correlations between isotropic modes 
is in any case subdominant. However, to make a proper judgement it should still be 
integrated for all the available modes. 

3.3.2 Scaling of the bipartition 

The expression we used to split the creation and annihilation operators of the scalar feld 
theory defned on the whole spacetime manifold seems a bit obscure. In this section we 
will argue why the coefcients α and β should scale as indicated before. 

In order to do this, let us place the theory in a spherically symmetric lattice, so that 
the radial coordinate is discretized while keeping the angular coordinates continuous. Then 
the feld itself is discretized into a set of felds χr(θ, φ) living at each point of the lattice 
and can be expanded in terms of its associated annihilation and creation operators ar and 
ar 
† . They satisfy the canonical commutation relations h i 

âr, â
† 
′ ∼ δrr ′ (3.58)r 
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or, in the continuum limit, h i 
† âr, â ′ =

1 
δ(r − r ′ ) . (3.59)r 4πr2 

The usual momentum-defned creation and annihilation operators are recovered through a 
Bessel transform in the continuum limit rZ 

âk = d3 r 
2 
j0(kr)âr . (3.60)

π 
We can split this integral into two regions and so defne the inner and outer components 
of the operator r rZ R Z ∞ 

âk = 4π drr2k 
2 
j0(kr)âr + 4π drr2k 

2 
j0(kr)âr (3.61)

π π0 R 

and we can approximately identify rZ R 
âk,in ∼ 4π drr2k 

2 
j0(kr)âr

π0 (3.62)rZ ∞ 
âk,out ∼ 4π drr2k 

2 
j0(kr)âr . 

πR 

The integrals are defned in three dimensions and the delta function is defned to be the 
spherically symmetric three dimensional one. This is done so in order to show that this 
formalism can be generalized to include anistropic modes, even though we will not need 
them here. 

From this point of view it is clear that it is legitimate to perform a bipartition of the 
local degrees of freedom of the scalar feld into inner and outer components with respect to 
some spherical surface of radius R. For cosmological applications it is of particular interest 
to pick R to be the Hubble radius. Formally, our results can be applied to any arbitrary 
R but, as we will discuss in more detail in sec. 3.4, they can be physically trusted for R of 
the order or larger than the Hubble scale. 

Then there is an alternative feld operator expansion in terms of inner and outer mode 
functions. We restrict ourselves in the present analysis to the isotropic modes l = 0 but it 
could be extended to the anisotropic modes as well. The expansion is then Z ∞ k 

χ̂0 = dk √ (fk,inâk,in + fk,outâk,out + h.c.) , (3.63) 
0 2ω 

where h.c. stands for hermitian conjugate. The mode functions need to be normalized 
with respect to the Klein-Gordon inner product Z R 

drr2j0(kr)j0(kr) ∼ R Z0 
L (3.64) 
drr2j0(kr)j0(kr) ∼ L − R , 

R 
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where an IR regulartor L has once more been introduced. We fnd it reasonable to suggest 
the following scaling for the coefcients of the mode splitting r r 

R R 
α = & β = 1 − (3.65)

L L 

as it was used in the previous section. Notice once more that α2 + β2 = 1 . 

The creation and annihilation operators so constructed must be treated carefully, since 
they do not exactly satisfy the canonical commutation relations Z Zh i R h i R 

† † âk,in, â ∼ drdr ′ rr ′ j0(kr)j0(k ′ r ′ ) âr, â ′ ∼ drr2j0(kr)j0(k ′ r) (3.66)
k ′ ,out r 

0 0 

This integral does not give anything proportional to δkk ′ even though it is clearly peaked 
at k = k ′ . Of course, this means that the scalar product ⟨k | k ′ ⟩ will also be proportional to 

nthis integral and, therefore, the set of states â |0⟩ can be used to span the whole innerk,in 
Hilbert space but it does not form an orthonormal basis. However, once the Hilbert space 
is restricted to one momentum mode, the set of vectors does form an orthonormal basis on 
that Hilbert subspace thanks to the δnn ′ factor appearing in the computation of the scalar 
product. The same applies of course to the outer Hilbert space. 

These considerations do not change the form of the quantum state after infation as we 
treated it in sec. 3.2. The reason is that, even though a single inner or outer operator may 
afect several momentum modes, the combination âk,in + âk,out = âk does not. 

One may wonder as well about the validity of the computation of the entanglement 
entropy, since it involves the computation of two partial traces and no orthonormal basis 
is available. We argue that, even though the partial traces indeed cannot be computed 
exactly, our approximation is good enough. Let us assume that we have at our disposal an 
orthonormal basis |j⟩ where j stands as a multi-index that labels momentum and particle 

˜number. This basis is related to our non-orthonormal basis j via a linear transformation 

j̃ = Ĉ |j⟩ . (3.67) 

We actually have meaningful information regarding the linear operator C. Its matrix 
elements are given by ZD E R 

Cpqnm ≡ Cjh ≡ j̃ Ĉ |h⟩ = j̃ h̃ ∼ drr2j0(pr)j0(qr)δnm . (3.68) 
0 

The mode functions are normalized and therefore we have that Cjj = 1 and so the linear 
operator can be splitted into the identity plus corrections C = 1 + ϵ. Since the integral is 
peaked at p = q we assume ϵ to be small. In particular, the inverse of the operator can 
be written as C−1 ≃ 1 − ϵ. Furthermore, it is traceless and so it does not afect at frst 
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3.4. Discussion 

order the computation of the relevant traces for our problem. Let us see how this works 
out for the trace of some linear operator A X X 

TrA = = ⟨j| Â |j⟩ = j̃ Ĉ−1ÂĈ−1 j̃ 
j j ′ Xh � � �i (3.69) 

= j̃ Â j̃ − Re j̃ Aϵˆ j̃ + O ϵ2 . 
j ′ 

Now let use this expression for the density matrix ρ̂ of a separable state with respect to 
the momentum modes such as the one created after infation. This operator is diagonal, 
whereas all diagonal elements in ϵ vanish. Hence, the expected value of the product of 
both operators is 0. This leaves the approximate result XD ̃

 A ˜TrA ≃ j ′ j . (3.70) 
j̃ 

This fnishes the argument that the computation of the entanglement entropy above is a 
good approximation. 

3.4 Discussion 

3.4.1 Mode counting and the area law 

The computation presented in sec. 3.3 is far from accounting for the whole entanglement 
entropy of the region inside a sphere of radius R. In fact, it is limited for two reasons: 
it accounts only for isotropic modes (l = 0) and only those with a given momentum k. 
Hence, it is a measure of the entanglement per isotropic mode. It is characterized by its 
squeezing parameter τ , which is in turn a function of the momentum k and in particular 
the number of e-folds Nk between horizon exit and the end of infation. Roughly one gets 
τ ∼ N [138]. 

Then one simply needs to integrate Z 
S ∼ dk τk log R (3.71) 

This integral could be in principle model-dependent, although roughly τk ≃ N(k). Notice 
that there is no dependence on R2 as opposed to the standard area law for entanglement in 
QFT on 3+1 dimensions. We can understand this from the point of view that, efectively, 
the restriction to isotropic modes delivers a (1+1)-dimensional theory. Such theories are 
known to have a logarithmic scaling of the entanglement entropy. 
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In the computation of the entanglement entropy done by Maldacena and Pimentel they 
also found a term proportional to the number of e-folds or, more explicitly, to log(−η). 
This computation is performed in the limit of very late time and therefore we can consider 
that every mode has crossed the infationary event horizon long time ago. In that case ZZ ∞ ΛR R R 

S = dkN(k) log = dk log(−ηk) log = Λ log [log(−η) + log Λ − 1] ,
L L L0 0 

(3.72) 
where Λ is a UV cut-of. In the limit L → ∞ the logarithm must be replaced by a term 

Rthat goes as ∼ and so tends to 0. At the same time we take the limits Λ → ∞ andL 
keeping the product ΛR constant. Then we get the following contributions to the entropy L 

S = c log(−η) + c ′ log Λ , (3.73) 
′ with some coefcients c and c to be determined. Both kind of terms exist in dS and 

therefore also in a radiation-dominated universe if we assume it is preceded by an extremely 
long infationary epoch. 

In order to recover the usual UV-divergent area-law scaling entanglement entropy, as 
well as additional UV-fnite terms proportional to the area, the whole tower of l and m 
modes must be taken into account. Restricting ourselves now to the true vacuum state |0⟩, 
it carries no angular momentum, i.e. l = 0 and m = 0. Angular momentum can be shown 
to be a good quantum number of the particle states in spherical coordinates introduced 
in sec. 3.2. This means that L̂2 |l, m⟩ = l(l + 1) |l, m⟩ and L̂ 

z |l, m⟩ = m |l, m⟩. Therefore, 
if the vacuum is to be splitted, it must be done in a way that preserves the total angular 
momentum. This can be done with the formalism of the Clebsch-Gordan coefcients, 
widely used in Quantum Mechanics. One should therefore fnd an analogous of the singlet 
state of two-particle systems with spin. However, the issue is not trivial, as in QFT the 
total number of particles is not fxed a priori and there can be many contributions to the 
vacuum state. 

3.4.2 Phenomenological implications. 

Formally, the computation showed here can be applied to any entangling sphere of radius 
R, let it be smaller or larger than the Hubble scale RH . However, from a more physical 
point of view, it is only justifed for R > RH . In this regime, arguably dominated by super-
Hubble physics, perturbation modes are frozen and do not interact. On the contrary, when 
modes re-enter the horizon, this interaction begins and can scramble the interior quantum 
state, thus erasing long-range correlations inside the Hubble sphere, although not the 
correlation of the observable universe with other causal domains. In addition, non-linear 
interactions are likely to play a role in this process. Depending on the scales giving a 
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stronger contribution to the entanglement entropy, this may have a non-negligible impact 
on the entanglement entropy. 

Following our earlier motivation in sec. 3.1, this scenario may change should a PBH be 
formed during the radiation era. As mentioned in sec. 1.7, PBH are formed by gravitational 
collapse, triggered by enhanced primordial perturbations [64, 65]. The relevant scale for 
the formation of a PBH in a radiation-dominated universe is the Hubble scale, as we 
will briefy argue later and is supported by simple model estimates [69, 70] and numerical 
relativity simulations [66, 75]. This means that the PBH captures most of the long-range 
entanglement of the Hubble sphere and keeps therefore long-range correlations with the 
rest of the universe, including other causal domains that collapse to form a PBH as well. 

It is in this precise context that we view gravitational collapse as an entanglement 
trap that prevents the long-range correlation between diferent PBH to be destroyed by 
scrambling. As time passes, the Hubble sphere grows and PBH formed in diferent causal 
domains come into causal contact. This creates a network of entangled PBH inside the ob-
servable universe. Note that the entanglement of super-Hubble modes arise during infation 
as those modes are stretched beyond the horizon and keep this entanglement on non-causal 
patches. As these modes re-enter the Hubble scale after infation and induce black hole 
collapse, the entanglement created during infation is trapped inside these regions without 
allowing for scrambling to take place. 

In other words, a PBH keeps a long-range entanglement with other PBH. This is because 
they trap entanglement before scrambling can take place, as scrambling is a sub-Hubble 
process and PBH form with a size of the order of the Hubble scale at the time of collapse. 
This entanglement exists regardless of whether they came into casual contact already or 
not. A PBH keeps a long-range entanglement as well with non-collapsed regions of the 
non-observable universe, as they didn’t undergo scrambling yet. 

Perhaps it should be clarifed that our use of entanglement entropy is not linked in 
principle to the gravitational entropy associated to the event horizon of any black hole. 
Instead, it is a description of how the degrees of freedom inside a spherical region are 
entangled with the degrees of freedom existing outside. This concept is applicable to any 
surface enclosing a volume. When a black hole is formed, the exterior degrees of freedom 
cannot interact with the interior ones and therefore this entanglement is preserved. It may 
be that the interior degrees of freedom interact with other degrees of freedom inside the 
black hole. We do not make any claim regarding the nature of the degrees of freedom inside 
the black hole, but rather than the entanglement entropy across the surface is preserved 
by unitarity. As an analogy, we could think of a pair of entangled photons, one of them 
being captured by a black hole and another one kept outside. It is unknown how the 
swallowed photon will interact with the interior degrees of freedom of the black hole, but 
due to unitarity the entanglement entropy of the system formed by the black hole and the 
swallowed spin will be preserved. 
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If this gravitational collapse is assumed to be unitary, then the entanglement entropy 
will be conserved during the process. Nothing forbids, for instance, the formation of a black 
hole by the collapse of a large number of particles which are entangled with distant objects. 
Such a black hole would keep this quantum entanglement. Such a process is described for 
instance in [76] in the context of building a pair of maximally entangled black holes by the 
gravitational collapse of the Hawking radiation of an initially isolated black hole. 

Entangled black holes have been considered before in the literature [76,92], being usually 
maximally entangled. We have presented here a viable mechanism to produce entangled 
PBH. It must be noted, however, that they would not be maximally entangled, as their 
long-range entanglement entropy does not saturate the Bekenstein bound [145]. Since 
two causally disconnected regions that collapse to form PBH far away from eachother are 
individually entangled with the rest of the universe, they must necessarily be themselves 
entangled with each other. 

The entanglement trap is not, nevertheless, the only feasible behavior of long-range 
correlations due to entanglement when PBH are involved. Alternatively, it is possible that 
entanglement is not trapped, but rather is allowed to leak, so that the event horizon of a 
PBH forms sort of a leaky barrier and is, in fact, no special surface. In other words, the 
picture of discrete entangled particles, which may not escape the black hole, it is possible 
that a dynamical continuous feld leads to correlations between the PBH that change with 
cosmic evolution. We will come back to this possibility in chapter 4 and discuss how it 
could induce non-trivial interactions between distant PBH. 

3.4.3 Remarks 

The results of this chapter suggest the existence of long-range entanglement in the uni-
verse due to the infationary origin of cosmic structures. Indeed, due to infation, the 
quantum state of a scalar feld describing cosmological perturbations is highly squeezed. 
This squeezing leads to subdominant terms in the entanglement entropy that go beyond 
the (UV-divergent) area-law. This kind of term is also found in the entanglement entropy 
of a feld living in dS and signals the survival during the radiation era of the entanglement 
created during infation. 

These terms arise due to the entanglement of super-Hubble modes that are stretched 
beyond the horizon during infation and maintain entanglement on non-causal patches. 
In the case of modes that re-enter the Hubble scale after infation and induce black hole 
collapse, the entanglement is trapped inside these regions without allowing for scrambling 
to take place. 

It may seem puzzling that quantum entanglement of the state created during infation 
should be conserved after its end. Indeed, if infation is capable of creating entanglement, 
the next cosmological era may very likely destroy it. The creation or destruction of en-
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tanglement between quantum modes is possible since the time evolution of an individual 
mode can be non-unitary in presence of interactions, for instance thanks to a gravitational 
background. The time evolution of the total quantum state is of course unitary and re-
mains pure. In order to gain some intuition about the survival of the entanglement, let us 
put in simpler, qualitative terms, the evolution that the quantum state undergoes during 
infation. 

Any quantum feld coupled to a gravitational background, even if minimally, is sourced 
by it, which leads to particle creation in the form of entangled pairs in infation. During 
the radiation era, the dynamics of the feld is equivalent to that of a feld in Minkowski 
spacetime and so there is no source that can afect the nature of the quantum state created 
during infation. 

Furthermore, the locality of QM imposes entanglement to be created or destroyed by 
local interactions only. Therefore, causally disconnected patches keep their correlations 
(both classical and quantum) with time evolution. We can also understand this as a 
consequence of the freezing of perturbations. 

We have assumed throughout a standard single-feld infation because of the simplicity 
of its treatment from a quantum feld-theoretic point of view. However, more sophisti-
cated models of (multi-feld) infation might enhance the entanglement. In particular, it 
would be fascinating if those models leading to PBH formation were also related to en-
hanced long-range entanglement. Such long-range correlations may give rise to the growth 
of isocurvature perturbations on cosmological scales, which could have important conse-
quences for large scale structure formation and evolution. 

We will encounter this issue throughout this thesis. Gaussian states can be well de-
scribed with a density matrix or a Wigner function, but non-gaussianities are usually 
described either by higher-point correlation functions or by a probability distribution for 
the feld [67], which is a sufcient description for many relevant phenomena, but not a 
complete one from the quantum-mechanical point of view. 

Finally, it is worth pointing out that inspecting the entanglement entropy gives only 
a hint towards the existence of long-range correlations and, possibly, quantum entangle-
ment. Strictly speaking, it solely quantifes the entanglement between complementary 
patches. The scale of the correlation is then identifed with the scale of the momentum 
mode involved. UV-divergent contributions to the entropy are expected to be dominated 
by short-range phenomena. Conversely, UV-fnite contributions should be dominated by 
long-range phenomena. However, a fner analysis is in order. As following next logical step, 
the next chapter will be devoted to the computation of the mutual information between 
two separate (i.e., non-complementary) spatial regions. 
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Chapter 4 

Mutual information from infation 

Whatever the rhythm was, luck rewarded us, because, 
wanting connections, we found connections — always, 
everywhere, and between everything. The world exploded in 
a whirling network of kinships, where everything pointed to 
everything else, everything explained everything else... 

Casaubon in Foucault’s pendulum (1988) by Umberto Eco. 

4.1 Motivation 

Entropy and information play a key role in our understanding of physics. They are impor-
tant properties of quantum states and are useful in describing correlations between physical 
subsystems. Furthermore, they are thought to be a bridge between classical gravity and 
an underlying quantum theory of gravity. In fact, the study of entropy and information 
applied to black hole physics is a fruitful feld of research. The introduction of bekenstein-
hawking entropy [105], discussed in sec. 2.7 was followed by the discovery of the area law 
of entanglement entropy [103, 104], discussed in sec. 2.4. The link between these two con-
cepts added quantum information to the already successful crossover between gravity and 
quantum feld theory. 

Cosmology also profts from this interplay between gravity and quantum physics. The 
idea of infation introduced a quantum origin of primordial perturbations [45]. This was 
needed in order to explain the power spectra of the CMB and some features of the LSS 
of the universe. Less known alternatives to infation also explain power spectra by means 
of quantum fuctuations [63]. Even though quantum fuctuations classicalize in the sense 
that their observable features appear classical [138, 139, 146], their quantum origin is still 
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relevant. For instance, the study of the entropy of cosmological perturbations in momentum 
space has long been considered [59] and has recently been extended to include non-linear 
interactions [147]. In a more general sense, it has also been a matter of recent work the 
study of the universe as a storage of quantum information in gravitational d.o.f., which 
could in turn leave an imprint on primordial perturbations [148]. 

However, quantum information properties of primordial perturbations in real space 
have been less studied. Following the path started in chapter 3, we turn now to the 
study of mutual information in a cosmological set-up. As mentioned in sec. 2.3, mutual 
information quantifes the total (classical and quantum) correlations between two quantum 
subsystems. It is, therefore, a relevant quantity to understand the information content of 
the cosmological perturbations of quantum origin. 

For complementary subsystems, mutual information is simply equal to twice the entan-
glement entropy, as it can be readily seen from eq. (2.15), and is a quantity of no particular 
interest. For two non-complementary subsystems, however, it provides additional insight. 
This is the case, for instance, of a quantum feld restricted to two separated regions. For a 
scalar feld in the Minkowski vacuum, the mutual information is a rapidly decaying func-
tion of the distance r between the involved regions. This was shown by Noburo Shiba 
in [111, 112], using a perturbative formalism that we will adapt to cosmological pertur-
bations. The particular expression for two spheres of radius R1 and R2 and R1, R2 ≪ r 
is 

1 R1
2R2 

2I(A, B) ≃ , (4.1)
44 r 

which becomes quickly irrelevant with distance. We will see in the course of this chapter 
how this quantity is enhanced thanks to particle production (or, equivalently, stretching 
of quantum fuctuations) during infation. Indeed, this same quantity for a scalar feld in 
the squeezed state resulting from the stretching of quantum fuctuations during infation 
at conformal time η is � � ��21 R1

2R2
2 −η0

I(A, B) ≃ 1 − γ + log , (4.2)
16 η4 r 

where γ ≃ 0.577216... is the Euler-Mascheroni constant. This much slower decay signals 
long-range correlations between these disjoint regions and is due to the dependency of the 
mutual information with the power spectrum. It is also a natural result: due to infation 
distant regions were causally connected in the past. Enhanced mutual information is 
intuitively connected with the main dynamical prediction of infation: an homogeneous 
and isotropic universe with a nearly scale-invariant spectrum of curvature perturbations. 

This chapter is a review of the results presented in ref. [2] and is organized as folows. In 
sec. 4.2 we compute the relevant correlation functions of primordial perturbations during 
the infationary and radiation eras. In sec. 4.3 we extend an existing formalism to pertur-
batively compute the mutual information of a Gaussian state and apply it to cosmological 
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perturbations in sec. 4.4. We fnish with a discussion of our results in sec. 4.5, in compari-
son with other work and for its relevance to our understanding of primordial perturbations 
and the possible emergence of entropic forces. 

4.2 Correlation functions 

4.2.1 The quantum state of scalar perturbations 

In this chapter we will describe scalar perturbations by means of a sigle scalar d.o.f., the 
Mukhanov-Sasaki variable v, which was introduced in sec. 1.4. As we saw in sec. 1.5, at 
linear order the time evolution of v is characterized by a bilinear Hamiltonian, so that a 
Gaussian state remains Gaussian with time evolution. Hence, we describe the quantum 
state during infation by means of its 1- and 2-point correlation functions. 

We briefy recall that the dynamics of of the Mukhanov-Sasaki variable is derived from 
a perturbation of the action Z � �′′ 1 z2 2δS = d4 x (v ′ )2 − c δij ∂iv∂j v + v , (4.3)s2 z 

√ 
where cs is the speed of sound, which takes values cs = 1 during infation and cs = 1/ 3 
during the radiation era. The corresponding equation of motion for the Fourier modes R 

ik⃗·x⃗vk(η) = d3xe v(η, ⃗x) is: � �′′ z 
v ′′ + cs 

2k2 − v = 0 , (4.4) 
z 

which is the equation of motion of a harmonic oscillator with time-dependent mass. Thus, 
2whenever c k2 < z ′′ /z, particle creation can occur. s 

At the beginning of infation, the perturbation feld is assumed to be in the Bunch-
Davies vacuum, i.e., mode functions behave as plane waves in the distant past [53]. Then 
these modes evolve and are put in a squeezed state after they become super-horizon. For 
each momentum mode k, the state is described by a squeezing parameter τk and angle δk. 
This time-evolution is due to the z ′′ /z term in the equation of motion (4.4). 

Similarly to what we argued in chapter 3, in this chapter we will refer mostly to curva-
ture perturbations, but our conclusions can be extended to primordial gravitational waves 
as well, at least qualitatively, since they have efectively the same dynamics. 

The time-evolution of the quantum state for general infationary models is more prac-
tically obtained after performing a canonical transformation of the Hamiltonian obtained 
from the action (4.3). As discussed in sec. 1.5, this is equivalent to the addition of a total 
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derivative to the action in order to get !Z � �2′ ′ 1 z z2 ′ 2δS = d4 x (v ′ )2 − c δij ∂iv∂j v − 2 vv + v . (4.5)s2 z z 

Of course, from this action one gets the same equation of motion (4.4). The canonical 
momentum and the Hamiltonian are given by 

′ a′ p = v − v , 
aZ � � (4.6)′ 1 z2 2H = d3 x p + c δij ∂iv∂j v + 2 vp .s2 z 

We will use this Hamiltonian for the rest of the chapter. For a detailed discussion of the two 
Hamiltonians that can equivalently describe the time-evolution of primordial perturbations 
and the canonical transformation that relates them, we refer the reader to refs. [49, 54]. 

Infation is succeeded by the radiation era. Recall that η ∈ (−∞, 0) for eternal infation 
or dS and η ∈ (0, ∞) for an eternal radiation era. Instead, we will consider that infation 
starts at η0 < 0 and fnishes at η∗ < 0 and then the radiation era starts at −η∗. The details 
of the matching between η∗ and −η∗ depend on the reheating scenario, but have little efect 
on curvature perturbations. Nevertheless, the mode functions of the radiation era depend 
of course on the boundary conditions imposed at −η∗. First, we will obtain the correlation 
functions in quasi de-Sitter infation by obtaining the time evolution of the mode functions 
and then generalize them by applying known results in the squeezing formalism. 

4.2.2 Correlation functions in quasi de-Sitter 

2During quasi de-Sitter infation c = 1, a = −1/(Hη) and therefore z ′′ /z = 2/η2 . In thiss 
scenario, the mode functions of the Bunch-Davies vacuum have a simple form 

i (k|η| + i) ik|η|v = √ e . (4.7)k 
2 k3/2|η| 

From them one computes the mode functions for the canonical momentum 
√ ′ 

i i ′ a i i k ik|η|pk(η) = vk (η) − vk(η) = √ e . (4.8) 
a 2 

Mode functions allow us to build the mode expansions of the quantum feld and its canonical 
momentum Z � �d3k ik⃗x⃗ i∗ −ik⃗x⃗ i † v i(η, ⃗x) = e vk (η)âk + e vk(η)â ,k(2π)3/2 Z (4.9)� �d3k ik⃗x⃗πi∗ −ik⃗x⃗πi † p i(η, ⃗x) = e k (η)âk + e k(η)â .k(2π)3/2 
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4.2. Correlation functions 

Now we can compute the correlation functions that characterize the Bunch-Davies vacuum 
during quasi de-Sitter infation: 

• 1-point correlation functions 

v i(x, η) = p i(x, η) = 0 . (4.10) 

• 2-point correlation functions Z � � 
d3k 1 1 −ik⃗(x⃗−y⃗)v i(η, ⃗x)v i(η, ⃗y) = 1 + 

k2η2 e ,
(2π)3 2k Z 
d3k k −ik⃗(x⃗−y⃗)p i(η, ⃗x)p i(η, ⃗y) = e , (4.11)
(2π)3 2 Z 

d3k 1 −ik⃗(x⃗−y⃗)v i(η, ⃗x)p i(η, ⃗y) + p i(η, ⃗y)v i(η, ⃗x) = e . 
(2π)3 k|η| 

These integrals are taken over momenta that are afected by infation, i.e. those that 
are sub-horizon when infation starts and become super-horizon before it ends. These are 
momentum modes that satisfy 

− η0 > k−1 > −η∗ . (4.12) 

When infation ends at η = η∗, mode functions are matched at the beginning of the 
radiation era at η = −η∗. The radiation era satisfes z ′′ /z = 0 and so solutions to the 
equation of motion (4.4) are plane waves. Once the boundary conditions are imposed and 
taking into account that c2 = 1/3 during the radiation era we get the solutionS 

ikη∗ e 

(− 3 + (1 + 3 )η∗k(η∗k + i)) √i k(η+η∗)× e 3 (4.13)
2η∗ 

2k5/2 
√ √ � 
( 3 + (1 − 3 )η∗k(η∗k + i)) − √i k(η+η∗)+ e 3 . 

2η∗ 
2k5/2 

Note that this mode function is a linear combination of oscillating functions, unlike in 
the Minkowski vacuum, in which the oscillation afects only a global phase of the mode 
function. Modes signifcantly afected by infation satisfy kη∗ ≪ 1 so it is enough to keep 
leading terms in inverse powers of (kη∗), i.e. 

ikη∗ 
� � 

e k(η + η∗)r vk(η) ≃ √ sin √ . (4.14)
i 2 η∗ 

2k5/2 3 

v r 
k(η) = √ 

2 
× � √ √ 

67 



Chapter 4. Mutual information from infation 

The dependence on the sin function of the mode function is a general result for modes 
signifcantly afected by infation [45]. From (4.13) one can also get the explicit form of the 
canonical momentum mode function πr (η) by using the defnition (4.6).k 

We will consider only super-horizon modes, i.e. those that satisfy kη ≪ 1 at a given 
time during the radiation era. For those the correlation functions are: 

• 1-point correlation functions 

⟨v r(x, η)⟩ = ⟨πr(x, η)⟩ = 0 . (4.15) 

• 2-point correlation functions Z 
d3k ik⃗(x⃗−y⃗)⟨v r(η, ⃗x)v r(η, ⃗y)⟩ ≃ e × 
(2π)3 � � �2 � 

1 1 1 η + η∗ 1 × + + + ... 
2k 2k3η2 2 |η∗| k3η2 

∗ ∗Z 
d3k ik⃗(x⃗−y⃗)⟨v r(η, ⃗x)p r(η, ⃗y) + p r(η, ⃗y)v r(η, ⃗x)⟩ ≃ e × 
(2π)3 � � � � (4.16)

1 1 η + η∗ 1 × − + ... . 
kη∗ 3 |η∗| k3η3 

∗ Z 
d3k ik⃗(x⃗−y⃗)⟨v r(η, ⃗x)p r(η, ⃗y) + p r(η, ⃗y)v r(η, ⃗x)⟩ ≃ e × 
(2π)3 � � � � 

1 1 η + η∗ 1 × − + ... . 
kη∗ 3 |η∗| k3η3 

∗ 

The quadratic term in the feld-feld correlator is clearly dominant, while the expansion 
in the others is a bit more involved and only the frst term is shown for illustrative pur-
poses. Hence, after infation ends and the radiation era starts, 2-point correlation functions 
continue growing with conformal time η. This is a general result that can be understood 
as well in the squeezing formalism. 

4.2.3 The squeezing formalism 

For general infationary models, one can treat the time-evolution of the Bunch-Davies 
vacuum using the squeezing formalism, which of course can be applied to the quasi de-
Sitter case as well. Such a state was introduced in sec. 1.5 and widely used in chapter 3 in 
the operator formalism. As a Gaussian state, it is characterized by the following correlation 
functions involving the feld v and its canonical conjugate p [59] 
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• 1-point correlation functions 

⟨v(η, ⃗x)⟩ = ⟨p(η, ⃗x)⟩ = 0 . (4.17) 

• 2-point correlation functions Z � � 
d3k � �

ik⃗(x⃗−y⃗)⟨v(η, ⃗x)v(η, ⃗y)⟩ = e 
1 

1 + 2 sinh2 τk − sinh 2τk cos 2δk ,
(2π)3 2k Z � � 
d3k k � �

k(x⃗−y⃗)⟨p(η, ⃗x)p(η, ⃗y)⟩ = e i⃗ 
1 + 2 sinh2 τk + sinh 2τk cos 2δk ,

(2π)3 2 Z � � (4.18)
d3k i � �

ik⃗(x⃗−y⃗)⟨v(η, ⃗x)p(η, ⃗y)⟩ = e 1 + i sinh 2τk sin 2δk ,
(2π)3 2 Z � � 
d3k −i� �

ik⃗(x⃗−y⃗)⟨p(η, ⃗y)v(η, ⃗x)⟩ = e 1 − i sinh 2τk sin 2δk . 
(2π)3 2 

The squeezeng parameter τk and phase δk can be derived from the infationary dynam-
ics and the subsequent evolution in the radiation era and have a momentum-dependent 
expression. However, we will perform the following approximation: we will assume a ran-
dom character of the phases δk so that integrals over sin 2δk or cos 2δk vanish. This is a 
standard procedure in the study of primordial perturbations and is justifed by the efect 
of small self-interactions or interactions with other felds [59, 147]. It can be seen as a 
coarse-graining or decoherence procedure, where the of-diagonal elements of the density 
matix in momentum space ρ(k⃗, −k⃗, ⃗p, −⃗p) decay. Strictly speaking, this is a rather rough 
model for decoherence and there exist fner ways to account for it [149,150]. Nevertheless, 
our results would not change signifcantly if the random phase approximation was not per-
formed. Therefore, this approximation will serve mostly as a computational simplifcation. 
We leave this discussion to appendix A.1. 

After averaging over the phases the correlators become Z 
d3k � �

ik⃗(x⃗−y⃗)⟨v(η, ⃗x)v(η, ⃗y)⟩ = e 
1 

1 + 2 sinh2 τk ,
(2π)3 2ωkZ 
d3k � �

ik⃗(x⃗−y⃗) ωk (4.19)⟨p(η, ⃗x)p(η, ⃗y)⟩ = e 1 + 2 sinh2 τk ,
(2π)3 2 

⟨v(η, ⃗x)p(η, ⃗y) + p(η, ⃗y)v(η, ⃗x)⟩ = 0 . � � 
Because of the term 1 + 2 sinh2 τk we get an efective enhancement of the feld and con-
jugate correlations for those momentum modes that are afected by infation, i.e. those 
that satisfy 

− η0 > k−1 > −η∗ , (4.20) 
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The afected modes are thus those with wavelength smaller than the horizon when infation 
starts and larger than the horizon when it ends. 

One could ask what should be the correlators for modes that are not squeezed. It is 
clear that, for modes with small wavelength k−1 < −η∗, we can take them to be equal 
to those of the Minkowski vacuum due to the Bunch-Davies prescription. However, there 
is little if anything we can say about those modes with large wavelength k−1 > −η0 as 
they were already super-horizon when infation started. Those modes should have physical 
efects only at extremely large scales, much larger than the observable universe. We expect 
them to give an irrelevant contribution to the correlator and thus we will treat them as if 
they were in the Minkowski vacuum as well. 

In our discussion we will not pay too much attention to the particular infationary dy-
namics. Instead, we will take the following quite general result for the squeezing parameter 
during infation [138] � � 

τ i = log 
1 

for − η0 > k−1 > −η , (4.21)k −ηk 

and τk = 0 otherwise. Notice that once infation ends, this squeezing parameter will have 
a dependence on the conformal time at the end of infation, but not at its beginning. The 
enhancement of the correlation functions for modes afected by infation during infation is 
then � � 

1 + sinh2 τ i =
1 1

+ k2η2 (4.22)k 2 k2η2 

and the correlation functions themselves become become Z 
d3k 1 1 ik⃗·(x⃗−y⃗)v i(η, ⃗x)v i(η, ⃗y) = e , 

k (2π)
3 4k k2η2 Z (4.23) 

ik⃗·(x⃗−y⃗)p i(η, ⃗x)p i(η, ⃗y) = 
d3k k 1 

e . 
(2π)3 4 k2η2 

k 

Furthermore, during the radiation era the quantum state undergoes additional squeezing, 
so that its parameter is given by [138] � � � � 

1 η 
τ r = log + log for k−1 > η . (4.24)k |η∗|k |η∗| 

k−1This additional term stops growing once the mode re-enters the horizon at η = and 
reaches τk

r = 2 log(|η∗|k). We will restrict ourselves to modes that remain super-horizon in 
order to avoid encountering non-linearities. It is important to notice that modes that are 
sub-horizon when infation ends are not squeezed during the radiation era. 
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4.2. Correlation functions 

The enhancement of the correlation functions during the radiation era for modes af-
fected by infation is then !� �2 � �21 1 η ηend

1 + 2 sinh2 τ r = + k2η2 . (4.25)k 2 k2η∗ 
2 ηend 

∗ η 

The second term can be neglected because of the condition kηend ≪ 1 and the fact that 
η > |ηend|. The correlators in the random phase approximation for modes that are afect 
by infation and stay super-horizon at conformal time η in the radiation era are then given 
by Z � �2d3k 1 1 η ik⃗·(x⃗−y⃗)⟨v r(η, ⃗x)v r(η, ⃗y)⟩ = e , 

k (2π)
3 4k k2η∗ 

2 ηendZ � (4.26)�2d3k k 1 η ik⃗·(x⃗−y⃗)⟨p r(η, ⃗x)p r(η, ⃗y)⟩ = e . 
k (2π)

3 4 k2η∗ 
2 ηend 

The enhancement of the 2-point correlation functions is translated into a slower decay. 
The long range behavior of the Minkowski correlation functions is known to be [103, 111] Z Z 

d3k 1 d3kik⃗·r⃗ −2 k·r⃗ −4 e ∼ r and kei
⃗ ∼ r , (4.27)

(2π)3 k (2π)3 

where r = |x⃗− y⃗|. The result is similar when considering other powers of k in the integrand Z 
d3k 

kα ik⃗·r⃗ −(3+α)e = r for α > −3 , (4.28)
(2π)3 

and thus correlations decay fast with distance. This is also true for several of the enhanced 
terms, as they satisfy this form with α > −3. However, there is one term in the feld-feld 

1correlation function that has α = −3. We write this term schematically as 

⟨v(η, ⃗x), v(η, ⃗y)⟩ ⊃ E(η)I(r) , (4.29) 

with a function E(η) that carries the time-dependency as  1 for η < η∗ i.e., infation4η2 
E(η) = � �2 (4.30)

1 η 
4η2 for η > |η∗| i.e., radiation era 

∗ η∗ 

and a function I(r) that keeps track of the spatial dependency, i.e., the decay with distance Z 
d3k 1 

I(r) = e ik⃗·r⃗ . (4.31)
(2π)3 k3 

k∈inf 

1Notice the change of notation with respect to ref. [2]. 
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Figure 4.1: An example of the diference between the enhanced correlator (red dashed 
line) and the Minkowski one (restricted to infationary modes, blue line) for −η0 = 10, 
−η∗ = 0.1, η = η∗. The Minkowski correlator decays very fast for distances larger than 
the scale of the largest momentum, while the enhanced correlator has a much slower decay. 
Adapted from ref. [2]. 
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4.2. Correlation functions 

Strictly speaking, during infation the upper limit of this integral is given by the comoving 
scale leaving the horizon at a given time, i.e., k = |η|−1 . Hence, the splitting into a a 
time-dependent and a spatial-dependent part is rough. In practice, we will also set a time-
dependent upper limit during the radiation era, as squeezing stops when modes reenter the 
horizon and the spatial dependency of the correlation function changes. 

In the long-range regime, this integral has an analytic expression � � � � � � � � �� 
1 r r −η0 r η r 

I(r) = − Ci +Ci + sin − sin , (4.32)
2π2 −η0 η r −η0 r η 

where Ci is the cosine integral defned as Z ∞ Z x cos tdt cos t − 1 
Ci(x) = − = γ + log x + dt . (4.33)

t tx 0 

And γ = 0.577216... is the Euler-Mascheroni constant. Because of the logarithmic behavior 
of the cosine integral, this term of the feld-feld correlator decays logarithmically with 
distance until r ≃ −η0, i.e. the enhancement happens only up to length-scales comparable 
to the wavelength of the longest momentum modes afected by infation. 

If infation lasts for a fnite number of e-folds the correlation vanishes at infnity 

lim I(r) = 0 . (4.34) 
r→∞ 

The expression above is not very intuitive, but we can approximate it by assuming that 
r ≪ −η0 which is a reasonable approximation until distances reach the scale of the horizon 
at the beginning of infation. Then we have � � � � � � 

r r r r 
Ci ≃ γ + log , sin ≃ . (4.35)−η0 −η0 −η0 −η0 

Then � � � � � � � ��η �1 r −η0 r 
I(r) ≃ Ci − γ + log − sin + 1 . (4.36)

2π2 η r r −η∗ 

Since we are limiting ourselves to super-horizon scales, we can also assume r ≫ η and 
perform further approximations � � � ��η � r r 

Ci ≃ 0 , sin ≃ 0 . (4.37)
η r η 

And we get the expression � � � � 
1 −η0

I(r) ≃ log + 1 − γ . (4.38)
2π2 r 
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Chapter 4. Mutual information from infation 

Even if this is an approximated expression, it will be the one we will make most use of. 
First, it shows intuitively that correlations are kept at large distances due to the logarithmic 
dependency. Second, it removes the additional dependency on η as it focuses on super-
horizon distances. This makes the high momentum cut-of at k = |η|−1 less of an issue. 
Even though it is clearly justifed during infation, it is not much so during the radiation 
era. In practice, we choose not to deal in detail with modes that re-enter the horizon, 
which may have a non-trivial time evolution. 

The overall physical picture here is that feld correlations are enhanced in those mo-
mentum modes afected by infation. This can be understood as modes being stretched 
out from small scales and then occupied due to particle creation. Distant regions of the 
universe where in causal contact with the past and keep the resulting correlations as there 
are no long-range (acausal) interactions able to break these correlations. The next step 
will be to review the connection between correlation and entropy or information, with the 
goal of computing the mutual information in real space during infation and the radiation 
era. 

4.3 Perturbative mutual information 

4.3.1 Entropy of the scalar feld 

Let us now revisit the problem of computing the entropy of a spatial region for a scalar 
feld in a gaussian state. Gaussian states are simple enough for a systematic method to 
be developed but already include important states such as the Minkowski vacuum or the 
squeezed state from infation. In order to do so, we will take advantage of the fact that 
Gaussian states can be fully characterized by its equal-time 1-point and 2-point correlation 
functions. We refer the reader to [97–99] for additional details. 

The computation of the entropy becomes particularly simple in the case of vanishing 
expected values 

⟨v(x⃗)⟩ = 0 ⟨p(x⃗)⟩ = 0 (4.39) 

and vanishing symmetrized 2-point cross-correlation function 

⟨v(x⃗)p(y⃗) + p(y⃗)v(x⃗)⟩ = 0 . (4.40) 

This is the case for the squeezed state of the curvature perturbation feld once the averaging 
over phases is performed. The other 2-point correlation functions are given by the operator 
kernels 

X(x⃗, ⃗y) = ⟨v(x⃗)v(y⃗)⟩ P (x⃗, ⃗y) = ⟨p(x⃗)p(y⃗)⟩ . (4.41) 

Then one defnes the operator 
ΛΩ = X · P , (4.42) 
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Figure 4.2: Comparison between the exact expression for the enhanced correlator I(r) 
eq. (4.32) (blue line), its approximation eq. (4.36) (red dashed line), and the further loga-
rithmic approximation eq. (4.38) (green dotted line), for −η0 = 10, −η∗ = 0.1, η = η∗. The 
agreement is excellent until distances of the order of r/(−η0) ∼ 1, where both approxima-
tions start to slowly diverge. Adapted from ref. [2]. 
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Chapter 4. Mutual information from infation 

where the operator product is equivalent to a convolution of the kernels Z 
ΛΩ(x⃗, ⃗y) = d3zX(x⃗, ⃗z)P (z⃗, ⃗y) , (4.43) 

ΩC 

where the region ΩC comprises the local d.o.f. that we wish to trace out, thereby being 
left with an operator kernel defned on Ω only. Then the entropy of the complementary 
region Ω can be computed as ��p � �p � �p � �p �� 
SΩ = Tr ΛΩ + 1/2) log ΛΩ + 1/2) − ΛΩ − 1/2) log ΛΩ − 1/2) . 

(4.44) 
Note that the kernel of the square root is not the square root of the kernel and so we √ 
cannot give a closed expression for the kernel ΛΩ (x⃗, ⃗y). However, in order to compute 
numerically this complicated expression, we do not need to know it. Instead, one needs to 
solve the eigenvalue problem for ΛΩ, i.e. fnd those λi for which Z 

d3 yΛΩ(x⃗, ⃗y)fi(x⃗) = λifi(y⃗) , (4.45) 
Ω 

where fi is the eigenfunction of ΛΩ with eigenvalue λi. Then one has X 
SΩ = h(λi) = 

i X��p � �p � �p � �p �� 
= λi + 1/2) log λi + 1/2) − λi − 1/2) log λi − 1/2) . 

i 
(4.46) 

Nevertheless, we will compute the mutual information perturbatively, without needing to 
obtain exact results for SΩ. That is, if we take Ω = A ∪ B, where A and B are, then we 
have that 

SA∪B(r) = SA + SB − I(A, B)(r) . (4.47) 

As mentioned before, this method was introduced by Noburo Shiba in ref. [111], although 
it was applicable only to the vacuum state. We will adapt it to the case of cosmological per-
turbations by using a more general formalism. The key is that the operator ΛΩ introduced 
here can be defned without any reference to the Lagrangian of the theory. Therefore, 
its validity can be extended to arbitrary Gaussian states, and so we will apply it to the 
quantum state following infation. One expects that the mutual information should vanish 
at infnite distance 

lim I(A, B)(r) = 0 . (4.48) 
r→∞ 

Conversely, 
lim SA∪B (r) = SA + SB . (4.49) 
r→∞ 
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4.3. Perturbative mutual information 

The idea then is to expand perturbatively the joint entropy SA∪B as the individual entropies 
SA and SB and a term involving functions of the distance that vanish at infnity. This can 
be already done at the operator level by identifying what terms in ΛA∪B depend on the 
distance r and expanding them. 

For the case at hand, Λ will carry both contributions from the Minkowski vacuum as 
well as the squeezed modes. The former will be responsible for a mutual information that 
scales as r−4 and thus is of no interest to us. The latter, however, will be responsible for 
an enhanced mutual information that decays logarithmically. 

4.3.2 The perturbative computation 

We are interested in perturbative solutions to the eigenvalue problem Z 
d3 yΛΩ(x⃗, ⃗y)fi(x⃗) = λifi(y⃗) , (4.50) 

Ω 

with the choice 
Ω = A ∪ B , (4.51) 

where A and B are two disjoint regions of size RA and RB separated by a large distance r 
such that r ≫ RA, RB. Both regions need not be spherical, although this is the simplest 
and perhaps most interesting application. 

We will fnd these perturbative solutions by following the next steps 

• We identify the perturbative and non-perturbative contributions. 

• We identify the leading perturbative contribution. In our case this will mean keeping 
only the enhancement of the correlation functions. 

The behavior of ΛΩ depends on whether x and y belong to the regions A or B. We 
represent this in matrix form � � 

ΛΩ(x⃗a, ⃗ya) ΛΩ(x⃗a, ⃗yb)ΛΩ(x, y) = , (4.52)
ΛΩ(x⃗b, ⃗ya) ΛΩ(x⃗b, ⃗yb) 

where it is understood that x⃗a, ⃗ya ∈ A and x⃗b, ⃗yb ∈ B. 

4.3.3 Perturbative part 

We take frst a look at the of-diagonal terms, as they clearly involve points belonging to 
diferent regions. First, we rewrite the of-diagonal terms using the relation 

Λ∅(x⃗a/b, ⃗yb/a) = δ(3)(x⃗a/b, ⃗yb/a) = 0 , (4.53) 
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where ∅ = {R3}C is the empty set. We will use the notation a/b to mean ”a or b” and the 
order will matter if it appears several times in an equation. Then the Dirac delta equals 
0 because x⃗a/b ≠ y⃗b/a when one point belongs to A and the other belongs to B. We can 
then rewrite 

ΛΩ(x⃗a/b, ⃗yb/a) = −ΛΩC (x⃗a/b, ⃗yb/a) , (4.54) 

with Z Z 
ΛΩC (x⃗a/b, ⃗yb/a) = d3 zaX(x⃗a/b, ⃗za)P (z⃗a, ⃗yb/a) + d3 zbX(x⃗a/b, ⃗zb)P (z⃗b, ⃗yb/a) . (4.55) 

A B 

Strictly speaking, Λ∅ ≃ δ but the equality is not exact. The diference is small from the 
operator point of view and we will neglect it. It is also an artifact of assuming random 
phases. 

Notice that for each of the integrals, either the kernel X(x⃗, ⃗y) or P (x⃗, ⃗y) has a long-
distance behavior, i.e. it is evaluated at points belonging to diferent regions. Both kernels 
have the form of a Fourier transform, regardless of whether we consider the Minkowksi or 
the squeezed correlators Z 

d3k ik⃗(x⃗−y⃗)X(x⃗, ⃗y) = X(k)e ,
(2π)3 Z (4.56)
d3k −ik⃗(x⃗−y⃗)P (x⃗, ⃗y) = P (k)e ,
(2π)3 

where the only dependence on the direction of k⃗ is encoded in the exponential. In the 
long-distance regime we can approximate Z Z 

x−z⃗| cos θ ≃ dθ sin θeikr cos θ 2 sin(kr)
dθ sin θeik|⃗ = (4.57)

kr 

and the integral over z will be irrelevant for this kernel since 

|⃗a − b⃗| ≃ r for ∀a⃗ ∈ A, b⃗ ∈ B . (4.58) 

Hence, we will approximate from now on 

X(x⃗a/b, ⃗yb/a) ≃ E(η)I(r) (4.59) 

and we will keep only terms involving I(r) in the of-diagonal components of ΛΩ, since they 
are the leading perturbative contribution. This leaves us with � R � 

0 B zbP (z⃗b, ⃗yb)δΛΩ(r) = −E(η)I(r) R d3 
. (4.60) 

A d
3zaP (z⃗a, ⃗ya) 0 
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4.3. Perturbative mutual information 

4.3.4 Non-perturbative part 

The non-perturbative part of ΛΩ needs some refnement. One would think frst to simply 
choose its block-diagonal components 

ΛD 
Ω = ΛΩ(x⃗a/b, ⃗ya/b) , (4.61) 

but this still depends on r, as it integrates over z ∈ ΩC = (A ∪ B)C . Instead, we defne 
the non-perturbative part as the limit �R � 

AC d
3zX(x⃗a, ⃗z)P (z⃗, ⃗ya) 0 

Λ0 = lim ΛD = R .Ω Ω r→∞ 0 BC d
3zX(x⃗b, ⃗z)P (z⃗, ⃗yb) 

The diference is given by a perturbative contribution that decays faster than I(r), as it 
decays at most as slow as I(r) times an additional perturbative term �R � 

d3zbX(x⃗a, ⃗zb)P (z⃗b, ⃗ya) 0BΛ0
Ω − ΛD R .= Ω 0 d3zX(x⃗b, ⃗za)P (z⃗a, ⃗yb)A 

Since X will decay at most as slow as I(r) and P will decay as some inverse power of r, it 
is clear that Λ0 − ΛD is a negligible perturbative term.Ω Ω 

We have now a well-posed perturbative approach for the eigenvalue problem. 

4.3.5 Non-hermitian perturbation theory 

The frst thing we should notice when taking the perturbative approach is that neither Λ0 
Ω 

nor δΛΩ are symmetric operators. This means that, in principle, it is not guaranteed that 
ΛΩ is diagonalizable or that the computation of its eigenvalues admits the usual perturba-
tive treatment. In practice, one can argue that ΛΩ is diagonalizable [97], nevertheless the 
issue of applying perturbation theory remains. For a detailed treatment of non-hermitian 
perturbation theory we refer the reader to ref. [151]. We will need to work with symmetrized 
forms of both operators, which we will achieve by introducing the following operator � � 

P (x⃗a, ⃗ya) 0 
P0 = lim P = , (4.62) 

r→∞ 0 P (x⃗b, ⃗yb) 

so that the operator P0ΛΩ is indeed symmetric. Let us see why. For the perturbative part 
it is pretty straightforward to check that 

P0δΛΩ(x⃗a, ⃗yb) = Z Z 
= − d3 za d3 zbP (x⃗a, ⃗za)X(z⃗a, ⃗zb)P (z⃗b, ⃗yb) 

A B (4.63)Z Z 
≃ −E(η)I(r) d3 za d3 zbP (x⃗a, ⃗za)P (z⃗b, ⃗yb) . 

A B 

79 



Chapter 4. Mutual information from infation 

and 
P0δΛΩ(x⃗b, ⃗ya)Z Z 

= − d3 za d3 zbP (x⃗b, ⃗zb)X(z⃗b, ⃗za)P (z⃗a, ⃗ya) (4.64)
A ZB Z 

≃ −E(η)I(r) d3 za d3 zbP (x⃗b, ⃗zb)P (z⃗a, ⃗ya) , 
A B 

which is is clearly symmetric since P is symmetric. The non-perturbative part is perhaps 
less obvious Z Z 

P0Λ
0 
Ω(x⃗a, ⃗ya) = d3 za d3zP (x⃗a, ⃗za)X(z⃗a, ⃗z)P (z⃗, ⃗ya) (4.65) 

A AC 

and Z Z 
P0Λ

0 
Ω(x⃗b, ⃗yb) = d3 zb d3zP (x⃗b, ⃗zb)X(z⃗b, ⃗z)P (z⃗, ⃗yb) . (4.66) 

B BC 

Nevertheless, we can now make use of the relation that was argued previously Z 
y) = δ(3)(⃗d3zX(x⃗, ⃗z)P (z⃗, ⃗ x − y⃗) (4.67) 

R3 

and rewrite the non-perturbative part as Z Z 
P0Λ

0
Ω(x⃗a, ⃗ya) = − d3 z1 d3 z2P (x⃗a, ⃗z1)X(z⃗1, ⃗z2)P (z⃗2, ⃗ya) + P (x⃗a, ⃗ya) . (4.68) 

A A 

One can proceed analogously for P (x⃗b, ⃗yb) and check that the result is symmetric. 

Next, let us discuss the eigenvalue problem for Λ0 frst. We know that it is diagonaliz-Ω 
able and has real eigenvalues [97], but it is still a non-symmetric operator. Therefore, its 
right and left eigenvectors do not need to coincide. Let us consider a right eigenvector fi 

Λ0
Ωf

0 = λif0 . (4.69)i i 

We can apply P0 on the left and defne a new set of vectors f̃0 := P0fi 
0 . Notice whati 

happens if we compute 
P0Λ

0
Ωf

0 = λ0 
i P0f

0 ≡ λ0f̃0 . (4.70)i i i i 

It turns out that f̃0 are left eigenvectors of Λ0 
i Ω 

0† 0†λ0f̃0 = P0Λ
0
Ωf

0 = Λ P0f
0 = Λ f̃0 . (4.71)i i i Ω i Ω i 

For the perturbation theory to work, we would like this set of left and right eigenvectors 
to form a complete biorthonormal set, i.e. that the following identity is satisfed 

0† 0†f̃  
i fj 

0 = fi P0fj 
0 = δij . (4.72) 

80 



4.3. Perturbative mutual information 

Let us see when this is true, starting from the fact that P0Λ is a symmetric operator 
0† 0† 0† 0†f00 = f P0Λ

0
Ωfj − f Λ P0fj = (λj − λi)f̃  

j , (4.73)i i Ω i 

which means that, if the eigenvalues are non-degenerate, then the set of left and right 
eigenvalues is guaranteed to be biorthonormal. If they are degenerate, one has to look into 
it more carefully. 

We have the intuitive notion from QM that degeneracy arises when a symmetry is 
present. The corresponding transformation allows us to add additional labels to the de-
generate eigenstates and also transform between them. Under which transformations is 
Λ0 invariant? Let us think of the space-time symmetries, which are actually restrictedΩ 
to spatial symmetries, i.e. 3-dimensional rotations and translations, since we are working 
with equal time correlators. 

Translational symmetry is clearly broken by the choice of the regions A and B. It may 
be only partially broken if these regions are infnite in some direction, but this is not of 
interest for the case at hand. Then we are left with rotational symmetry only, which is 
a symmetry only of Λ0 restricted to either A or B when these are in turn sphericallyΩ 
symmetric regions. In addition to this restricted rotational symmetry, the permutation 
A ↔ B is also a symmetry if A and B have the same size and shape and this adds an 
additional degeneracy. 

How can we know that this degeneracy brought by symmetry transformations T is not 
harmful? The key is that restricted rotations and permutations commute with P0, which 
is the operator that maps between left and right eigenvectors 

[T, P0] = 0 . (4.74) 

Recall the discussion on complete sets of commuting observables in Quantum Mechanics. 
Here, because we are dealing with a non-hermitian operator that plays the role of a hamil-
tonian, not only do we need symmetry (i.e., [Λ, T ] = 0) but also the commuting relation 
above in order to guarantee the existence of a complete biorthonormal set of eigenstates. 
It is clear that P0 is both invariant under restricted rotations and permutations and this 
is why it commutes with T . Permutations are really not an issue, because it is clear that 
eigenfunctions defned on diferent regions A and B are orthogonal. Due to rotational 
symmetry, we can label the right eigenvectors with degenerated eigenvalue according to its 
angular momentum 

film = fiYlm , (4.75) 

where Ylm are the spherical harmonics. Furthermore, the left eigenvectors are 

f̃  
ilm = P0film = P0fiYlm = f̃iYlm , (4.76) 

since P0 commutes with rotations. This guarantees now the biorthonormality relation 
0† 0†f̃  f0 = f̃  fj 0Y ∗ ′ ′ (4.77)ilm jl ′ m ′ i lmYl ′ m = δij δll ′ δmm 
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and, therefore, it is guaranteed that Λ0 is diagonalizable and has a complete biorthogonal Ω 
set of eigenvectors. We will need this later and in particular we will need the resolution of 
identity X 

f̃0 0† = 1 . (4.78)ilmfilm 
ilm 

4.3.6 Computation 

Let us now deal with the perturbation theory itself. We will keep frst- and second-order 
perturbations to the eigenvalues 

λi = λi 0 + δλi 1 + δλ2 
i , (4.79) 

so that the entropy can be computed in perturbation theory " #X X dh 1 
SAB = h(λi) = SA + SB + δλi + (δλi)

2 d
2h

, (4.80)
dλi λi=λ0 2 dλi 

2 
λi=λ0 

i i i i 

where δλi = δλ1 
i + δλ2 is the combined frst- and second-order perturbation and we simplyi 

denote by h the function of the eigenvalues that delivers the entropy. We can clearly 
identify the mutual information as the third term in the RHS. We will see that the frst 
order perturbation to the entropy vanishes and so the second-order perturbation becomes 
the most relevant one. The following lines are to great extent a reproduction of the results 
from ref. [111]. 

We will try to keep R1 ≠ R2 during the whole computation in order to keep it as 
general as possible. In fact, we will keep the regions A and B of arbitrary shape. Recall 
that the non-perturbative operator Λ0 is divided in two blocks, afecting either region A orΩ 
B. Each of these blocks may have some common and some diferent eigenvalues. Then, let 
us introduce extra indices to take this into account, as well as other possible degeneracies. 
We label the eigenvalues in increasing order, i.e., λ0 > λ0 when m > n and the right m n 
eigenvectors with eigenvalue λ0 asm � � � � 

fm 
0
1α(x⃗a) 0 

fm 
0
1α = fm 

0
2β = 

f0 , (4.81)
0 m2β(x⃗b) 

being α and β some possible degeneracies. With this notation, the orthogonality property 
is written as 

0† f0f̃  
miα njβ = δmnδij δαβ . (4.82) 

The right eigenvector fmγ of the full operator ΛΩ is a linear combination of the eigenvectors 
of the blocks plus perturbations X X 

=fmγ aγαf
0 bγβ f

0 
mγ + f2 

mγ + f1 
mγ . (4.83)m1α + m2β + f1 

mγ ≡ ξ0 
mγ + f2 

α β 

82 



4.3. Perturbative mutual information 

Note that if λ0 is not a common eigenvalue of both blocks, then either the aγα or the bγβ m 
coefcients vanish. We can now plug the perturbative expansion of the right eigenvector 
fmγ in the eigenvalue equation to fnd � � � � 

Λ0
Ω + δΛΩ fmγ λ0 

m + δλ1 
mγ (4.84)= mγ + δλ2 fmγ . 

The frst order perturbation equation is obtained by neglecting second order perturbations 
and pluging in the solution to the unperturbed eigenvalue equation 

Λ0
Ωf

1 = λ0 f1 (4.85)mγ + δΛΩξmγ 
0 

m mγ ξ
0 

mγ + δλ1 
mγ . 

Similarly, we obtain the second order perturbation equation 

Λ0
Ωf

2 = λ0 fmγ 
2 + δλ1 

mγ + δλ2 (4.86)mγ + δΛΩfmγ 
1 

m mγ f
1 

mγ ξ
0 
mγ . 

f̃0†We take now the frst order perturbation equation and multiply it by on the left 

0† 0† 0† 0†f̃  
Ωf

1 
mjγ ′ δΛΩξ

0 = λ0 f̃  
mγ + δλ1 f̃  

mjγ ′ ξ
0 (4.87)mjγ ′ Λ

0 
mγ + f̃  

mγ m mjγ ′ f
1 

mγ mγ . 

0†Since f̃  is a left eigenvector of ΛΩ
0 , the frst terms in the LHS and RHS cancel out, somjγ ′ 

that we are left with 
0† 0†f̃  

mγ = δλ1 f̃  
mjγ ′ ξ

0 (4.88)mjγ ′ δΛΩξ
0 

mγ mγ . P P 
If we decompose back ξ0 = m1α + β we can rewrite this equation asmγ α aγαf

0 bγβf m 
0
2β X X � �j1 j2 + = δλ1 , (4.89)aγαVmγ ′ mα bγβ Vmγ ′ mβ mγ aγγ ′ δ

j1 + bγγ ′ δ
j2 

α β 

0†where we have used the orthonormality relation f̃  
i fj 

0 = δij and we have introduced the 
operator 

ij 0†V = f̃  δΛΩf
0 (4.90)mαnβ miα njβ . 

V 22Because of the block structure of P0δΛΩ, it is clear that V 11 = = 0, while themαnβ mαnβ 
other components take the following form 

V 12 = mαnβ Z 
= −E(η)I(r) d3 xad

3 zad
3 zbd

3 ybP (x⃗a, ⃗za)fm 
0
1α(x⃗a)P (z⃗b, ⃗yb)fn 

0
2β (y⃗b) (4.91) 

A2×B2 

≡ −E(η)I(r)Cmαnβ . 

Note the symmetry 
V 12 = V 21 (4.92)mαnβ nβmα , 

83 



���� ����

����

Chapter 4. Mutual information from infation 

which makes the defnition of Cmαnβ meaningful. We further defne the set of matrices 

(Cmn)αβ ≡ Cmαnβ , (4.93) 

so that the equation for the frst order perturbation δλ1 can be rewritten as a block mγ 
matrix equation � �� � � � 

0 Cmm aγ aγ− E(η)I(r) = δλ1 . (4.94)
CT 0 mγ 
mm bγ bγ 

In the case that λ0 is not a common eigenvalue of Λ0 in both regions A and B, then eitherm 
the coefcients aγ or bγ (notice that they are vectors) vanish and so does the perturbation 
δλ1 . On the contrary, if λ0 is indeed a common eigenvalue, then this equation becomes m m 
an eigenvalue equation that is solved by means of a characteristic polynomial 

x1Mm×Mm −Cmmdet −CT 
mm xNm×Nm � � (4.95)−1CT = det(x1Mm×Mm ) det x1Nm×Nm − x Cmmmm� �

Mm−Nn= x det x 21Nm×Nm − CT ,mmCmm 

where Mm and Nm are the degeneracies of the eigenvalues λ0 in each region with them 
convention Mm ≥ Nm. In other words, the perturbation is linked to the eigenvalue problem 
for the matrix CT Cmm which is a symmetric positive semi-defnite matrix, since Cmmmm 
is real and symmetric. This means that for all its eigenvalues cmα ≥ 0 and then the 
perturbation δλ1 either vanishes or comes in pairs of opposite signm 

δλmγ 
1 = ±E(η)I(r) √ 

cmγ , (4.96) 

and thus the frst order perturbation to the entropy vanishes because the following combi-
nation also vanishes X 

δλ1 dh 
= 0 . (4.97)mγ dλmγ mλm =λ0 

Next, we need to deal with the second order perturbation. Recall the relevant equation 

Λ0 = λ0 f2 
Ωf

2 
mγ mγ + δλ1 

mγ f
1 

mγ ξ
0 (4.98)mγ + δΛΩf

1 
m mγ + δλ2 

mγ . 

˜We can multiply this time my ξ0† on the left in order to get rid of the frst terms of themiγ ′ 
left- and right-hand side 

0† 0† 0†˜ ˜ξmγ ′ δΛΩfmγ 
1 = ξmγ ′ δλ

1 
mγ + ξ̃  

mγ ξ
0 (4.99)mγ f

1 
mγ ′ δλ

2 
mγ . 

We need an explicit expression for f1 Let us look again at the frst order perturbation mγ . 

Λ0
Ωfmγ 

1 + δΛΩξ
0 = λ0 

mf
1 

mγ ξ
0 (4.100)mγ mγ + δλ1 
mγ . 
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4.3. Perturbative mutual information 

This means that � �−1 � � 
f1 = ΛΩ

0 − λ0 δλ1 ξ0 (4.101)mγ m mγ − δΛΩ mγ . 

We now insert the identity operator 

  
f1 � 

Λ0 �−1 X 
f0 f̃0† � � 

ξ0 
mγ = Ω − λ0 

m njα njα δλmγ 
1 − δΛΩ mγ 

n,j,α (4.102)X � �−1 0† = λ0 − λ0 f0 f̃  δΛΩξ
0 

m n njα njα mγ . 
n̸=m,j,α 

Note that the addend would vanish if m = n due to the equation for the frst-order 
perturbation. Now we can plug this in the equation for δλ2 

mγ 

0†ξmγ ′ δλ
2 

mγ 
˜ 

mγ ξ
0 

0† � � 
= ξ̃  δΛΩ − δλ1 f1 

mγ ′ mγ mγ 

˜ � � X � �−10† 0† = ξ δΛΩ − δλ1 λ0 − λ0 f0 f̃  δΛΩξ
0 (4.103)mγ ′ mγ m n njα njα mγ 

n̸=m,j,α X � �−1 0̃† 0† = λ0 − λ0 ξmγ ′ δΛΩf
0 f̃  

njαδΛΩξ
0 

m n njα mγ . 
n̸=m,j,α 

0† 0†In the last line we used δλ1 ξ̃  = 0 for n ̸= m. Finally, since ξ̃  
njα mγmγ mγ ′ f
0 

mγ ′ ξ
0 = δγγ ′ 

X � �−1 
ξ̃0† 0†δλ2 = λ0 − λ0 

n njαf̃
 δΛΩξ

0 
mγ m mγ δΛΩf

0 
njα mγ 

n̸=m,j,αX � (4.104) 
− λ0 �−1 

ξ̃0†≡ λ0 ˆ δΛΩξ
0 

m n mγ δΛΩϕn mγ , 
n̸=m 

where we have introduced the projector onto the subspace spanned by the eigenvectors 
with eigenvalue λn X 

0†ϕ̂ 
n = f0 f̃  (4.105)njα njα . 

j,α 
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Chapter 4. Mutual information from infation 

Now we compute the perturbation to the entropy due to the second order perturbation 

dh 
δλ2 

mγ dλmm,γ λm =λm 
0 XX � �−1 ˜ dh 

λ0 − λ0 ξ0† ˆ= m mγ δΛΩϕnδΛΩξ
0 

n mγ dλm λm =λ0m,γ n̸=m m � (4.106)XX � �−1 
� dh 

λ0 ˆ ˆ= − λ0 Tr ϕmδΛΩϕnδΛΩm n dλm λm =λ0 m n≠ m m !XX � �� �−1 dh dh 
λ0 ˆ ˆ= − λ0 Tr ϕmδΛΩϕnδΛΩ · − .m n dλm dλn=λ0 λn =λ0 n m>n λm m n 

In the last line we simply relabelled the indices so that m > n. Furthermore, the alternative 
expression for the projector was used X 

ξ0 ξ̃0† ˆ= ϕm . (4.107)mγ mγ 
γ 

What is the sign of this expression? Let us take a look at the trace � � 
ˆ ˆTr ϕmδΛΩϕnδΛΩ = X � �� � X X � �2 

f̃0† 0† ij ji ij= δΛΩfmjβ 
0 f̃  δΛΩf

0 = V V = Vniα mjβ niα nαmβ mβnα nαmβ 
i,α,j,β i,α,j,β i,α,j,β X 

= E(η)2I(r)2 (Cnαmβ )
2 ≥ 0 . 

αβ 
(4.108) 

We compute now the derivatives of h 

• Function �√ � �√ � �√ � �√ � 
h(λ) = λ + 1/2 log λ + 1/2 − λ − 1/2 log λ − 1/2 . (4.109) 

• First derivative h � �√ �idh 1 �√ 
(λ) = √ log λ + 1/2 − log λ − 1/2 > 0 for λ > 1/4 . (4.110)

dλ 2 λ 

• Second derivative 
√ �√ � �√ � 

4 λ 1+ log λ − 1 − log λ +d2h 1−4λ 2 2 (4.111)(λ) = < 0 for λ > 1/2 . 
dλ2 4λ3/2 
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4.3. Perturbative mutual information 

Furthermore, the frst derivative is positive but monotonically decreasing, while the 
second derivative is negative but monotonically increasing. Both tend to 0 for large λ and 
blow up for λ → 1/4. 

In particular, if m > n then λm > λn and so ! 
dh dh − < 0 (4.112)
dλm dλn0 0 

nλm =λ λn =λm 

and the sign of the perturbation is non-positive. 

There is also a second order perturbation coming from the term X� �2 d2h 
δλ1 ≤ 0 , (4.113)m dλ2 

m λm =λ0 
mmγ 

and thus the sign of this perturbation is non-positive as well. 

The last step is to plug everything into the formula for the mutual information between 
the two regions 

I(A, B) = SA + SB − SAB" #X dh 1 
= − δλi + (δλi)

2 d
2h 

= −E(η)2I(r)2G (A, B) ≥ 0 . 
dλ2dλi 20 

i 
0λi=λ i λi=λi i 

(4.114) 
Therefore, there is a non-negative mutual information between disjoin regions that is en-
hanced due to infation. Here G(A, B) is a function of the size and possibly the shape 
of the regions A and B, e.g., for two spherical regions of radii R1 and R2 we would have 
G(A, B) = G(R1, R2), but its precise form is not that easy to compute. 

Nevertheless, G(R1, R2) is a function of the short-range behavior of the operator P and 
as such its leading term is expected to agree with the Minkowski computation. In that 
case, one has the following result for the mutual information [111] 

1 
IM (A, B) = − G(A, B) . (4.115)

16π4 r4 

Notice that we use the convention of factoring out of G(A, B) not only the long-range 
dependence on r but also numerical coefcients coming from X(x⃗, ⃗y). The function G(A, B) 
was computed numerically by Shiba in ref. [112] and found 

G(R1, R2) ≃ − 
1 
R1

2R2
2 × 16π4 . (4.116)

4 
We take this computation to be valid in leading order for our case, because the kernel 
X(x⃗, ⃗y) is equal to the Minkowski kernel for most momenta. Dimensions agree but notice 
that Ri are comoving, not physical, radii. 
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Chapter 4. Mutual information from infation 

Having this expression for the perturbative mutual information, we are ready to apply it 
to cosmological perturbations during the infationary and radiation eras by simply plugging 
in the relevant functions E(η) and I(r). 

4.4 Application to cosmological perturbations 

In the previous section we obtained a perturbative expression for the mutual information 
in real space as a function of the correlation function E(η)I(r). Using the expressions 
obtained in sec. 4.2 we can obtain right away the expressions for the mutual information. 

Let us frst focus on infation. Recall that during this era particle creation takes place 
on super-horizon scales. As a consequence, correlations are enhanced and the feld-feld 
2-point correlation function takes the form given by eq. (4.23), i.e., 

1 E(η) = 
4η2 � � � � � � � � �� (4.117)
1 r r −η0 r η r 

I(r) = − Ci +Ci + sin − sin ,
2π2 −η0 η r −η0 r η 

where the function I(r) admits several approximations. Then the perturbative mutual 
information in infation becomes 

1 E(η)2I(r)2R2
1R

2Ii(A, B) ≃ 2 × 16π4 
4 
R2 � � � � � �η � � ��2 (4.118)

1 1R2
2 −η0 r r ≃ 1 − γ + log +Ci − sin ,

16 η4 r η r η 

where we already implemented the approximation from eq. (4.36), which is valid for r < 
−η0. More compactly, we arrive at � � ��21 R1

2R2 −η02Ii(A, B) ≃ 1 − γ + log , (4.119)
16 η4 r 

using the approximation from eq. (4.38), which is valid for −η0 > r > η. We see that 
the long-range behavior of the correlation function is inherited by the mutual information 
and thus an enhancement is obtained due to particle creation during infation. On the one 
hand, the decay with distance is logarithmic and, therefore, slower than inverse powers of 
r. On the other hand, the ratio R1

2R2
2/η4 can be potentially very large and does not depend ∗ 

on the distance, as opposed to the mutual information for the Minkowski vacuum, which 
behaves as R2

1R
2
2/r

4 , which is necessarily small for the perturbative approach to work. 

Let us now turn to the radiation era. Since solutions to the equation of motion are plane 
waves, it would seem that there is no additional particle creation during the radiation era. 
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However, squeezing of a given mode continues as long as it remains super-Hubble. This 
happens because initial conditions for plane waves fx the mode functions to grow for some 
time. This leaves an imprint in the function E(η), which takes the following form during 
the radiation era � �21 η E(η) = , (4.120)

4η2 η∗end 

while I(r) stays the same. As a consequence, the perturbative mutual information during 
the radiation era becomes � �4 � � ��21 R1

2R2 η −η02Ir(A, B) ≃ 1 − γ + log , (4.121)
16 η4 r∗ η∗ 

where we already implemented the approximations for the regime η0 > r > η on I(r). This 
result shows a continued growth of the perturbative mutual information with time as η4/η4 

∗ 
during the radiation era. 

4.5 Discusion 

4.5.1 Comparison with other work 

Some time after the publication in ref. [2] of the results presented in this chapter, Jérôme 
Martin and Vincent Vennin developed a non-perturbative method to compute entanglement 
entropy, mutual information and quantum discord [152, 153]. Their formalism is based on 
coarse-groaning the quantum feld on the regions of interest, which allows one the reduce 
an infnite-dimensional eigenvalue problem, only tractable with approximations, to a fnite 
dimensional one. The similarities and discrepancies between our and their results are useful 
to delimitate the validity of the perturbative approach to computing mutual information. 

Qualitatively, they also fnd an enhancement of the mutual information, in the sense 
that the decay is not a power law, as it would be the case in the Minkowski vacuum, but 
rather a logarithmic or log-logarithmic one. In this sense, the non-perturbative analysis 
confrms the translation of the long-range behavior of correlation functions into truly long-
range mutual information. 

Quantitatively, the perturbative and non-perturbative computations agree when the 
physical radius of the spheres involved is smaller than the Hubble radius during infation. 
In our notation, this is equivalent to R < η, for η < η∗. For R > η∗, both results 
depart, having the non-perturbative one essentially a logarithmic dependency, on top of 
the also logarithmic dependency on the distance. This suggests that the enhancement we 
found, which goes as R4/η4 is actually the frst term of a series that does not converge for 
large values of R/η. This can be understood right away from the Taylor expansion of the 
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Figure 4.3: Comparison between the mutual information of the Minkowski vacuum 
eq. (4.115) (blue line) and the enhanced mutual information eqs. (4.118) and (4.119) (red 
dashed and green dotted lines, as in fg. 4.2), for η∗ = −0.1, η0 = −10, η = η∗ and 
R1 = R2 = 1 (gray vertical line). Adapted from ref. [2]. 
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logarithm function 
∞X xk 

log(1 + x) = , (4.122)
k 

k=0 

whose radius of convergence is 1, i.e., it converges only for |x| < 1. 

Alternatively, it is also possible that the random phase approximation does have a 
non-negligible efect even at the perturbative level, despite the arguments presented in the 
appendix A.1. 

Nevertheless, we emphasize the validity of the main physical picture: particle creation 
during infation does lead to an enhancement of the mutual information between distant 
regions, which can even be causally disconnected at later times. This is a key feature 
of infation that is consistent with our current understanding of some of the fundamental 
features of the universe. Namely, the Copernican principle can be satisfed thanks to the 
enhanced mutual information that is shared by causally disconnected patches. We will 
elaborate on this in the next subsection. 

Martin and Vennin also present a way to compute quantum discord for felds non-
perturbatively in [152, 153]. They found it to be non-vanishing for both the Minkowski 
vacuum and the quantum state of primordial perturbation during the infationary and 
radation eras. In chapter 5 we will study whether a non-vanishing quantum discord in 
feld theory can be translated into genuine quantum observations, namely Bell inequality 
violations. 

4.5.2 Long-range correlations 

The enhanced mutual information seems intuitively to be connected to some of the main 
predictions of infation, such as the leading homogeneous and isotropic nature of the uni-
verse and the common causal past of the observable universe. For instance, the CMB 
temperature anisotropies are characterized with the 2-point correlation function of cur-
vature perturbations. The enhanced mutual information ofers a new perspective on a 
well-known fact, namely that fuctuations in distant points in the sky are tightly corre-
lated. Quantum correlations in the CMB have been explored by computing the quantum 
discord of primordial perturbations in momentum space [60]. The enhanced mutual infor-
mation is a frst step towards a similar study of quantum correlations in position space in 
the CMB and possibly other cosmological observables. 

Following the ideas presented in [1] we state that, should certain regions collapse to 
form PBH during the radiation era, the PBH will inherit the enhanced mutual information 
by the collapsing regions. Furthermore, since the quantum discord is also non-vanishing, 
some of this mutual information is due to quantum entanglement. Whether this can lead 
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to genuine quantum correlations will be discussed in chapter 5 in the context of Bell 
inequalities. 

Similarly to chapter 3, in our computation we considered a toy model for infation that 
delivers an exactly fat power spectrum. Under such circumstances the formation of a PBH 
is an extremely unlikely event. Hence, in order to compute the mutual information between 
two PBH, we would need to consider the power spectrum of the particular infationary 
model leading to sufciently abundant PBH formation [64]. It deviates from fatness at 
scales comparable to the comoving size of the PBH at formation time (or, equivalently, the 
size of the Hubble scale at formation time), but not for scales well-probed such as the CMB 
scales. However, this should make no diference for the mutual information shared by PBH 
separated by distances so large that the power spectrum at the corresponding scale is fat 
or nearly fat. 

Entangled Black Holes have been considered previously in the literature, for instance 
in the context of the celebrated ER = EPR correspondence [76]. In this framework, one 
could picture the network of entangled PBH as a network of black holes connected by 
wormholes that fll the entire Universe. In that case, the mutual information shared by the 
PBH would most likely be relevant in order to characterize the wormholes that connect 
them, as long as genuinely quantum correlations are enhanced as well. For instance, two 
black holes connected by an Einstein-Rosen bridge would be maximally entangled in the 
ER = EPR correspondence, and so their mutual information would be maximal and equal 
to the Bekenstein-Hawking entropy of a single black hole. 

We wonder whether the entropy of the PBH network can be interpreted as thermody-
namical entropy and, in that case, lead to some kind of entropic forces that would afect 
the dynamics of the network. Entropic forces will be the main topic of part III, where a 
variational and covariant formulation of non-equilibrium thermodynamics in GR will be 
presented and some of its phenomenological consequences will be explored. For now, we 
discuss in the next subsection how entropic forces between PBH may work, although in a 
pair-wise and non-relativistic set-up. 

4.5.3 Entropic forces 

Physical forces are usually of two kinds: either fundamental or residual. Entropic forces 
belong to a third kind: they are due to collective behaviour and its tendency to increase 
the entropy of a physical system. Conversely, they can be seen as the tendency to decrease 
the Helmholtz free energy F 

F = U − TS , (4.123) 

where U , T and S are defned as in sec. 2.6. Following Shiba (see ref. [111]), if the entropy of 
quantum felds admits a thermodynamic interpretation, then an entropic force X between 
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two black holes arises and is given by 

∂F ∂U ∂S 
X = − = − + T . (4.124)

∂r ∂r ∂r 

Here the physical system is the quantum feld itself, not the black holes. Changes in the 
internal energy U are due to the Casimir efect, which decay quickly as U ∼ r−8 in the 
case of spheres. Changes in the entropy, however, decay much slower 

∂S ∂I 1 
= − ∼ , (4.125)

∂r ∂r r 

and lead to a repulsive interaction between black holes, which may eventually compete 
with the attractive gravitational interaction. 

4.5.4 Remarks 

The quantum origin of primordial curvature perturbations generated during infation has 
provided a fascinating explanation for the origin of the matter distribution on large scales. 
However, it is often thought to ofer no distinctive signature or observational feature com-
pared to simply postulating the existence of a classical Gaussian (free) stochastic feld of 
density perturbations. This is due to the suppression of the decaying mode thanks to 
squeezing, a phenomenon called decoherence without decoherence [146], which is actually 
necessary in order to reproduce the apparently classical features of the primordial power 
spectrum of matter fuctuations seen in the CMB and LSS. 

Nevertheless, there has been recent interest on the quantum nature of the matter distri-
bution and how to properly distinguish quantum from classical perturbations. Although the 
decaying mode is hopelessly suppressed in both slow-roll and ultra-slow-roll infation [154], 
there are actually features of the primordial bi-spectrum (the 3-point correlation function) 
that would be distinctively quantum and may be probed in the future [102]. On the other 
hand, the quantum nature of infationary fuctuations can be explored with rare but highly 
non-linear phenomena like primordial black hole collapse during the radiation era, that 
arises precisely because of large non-Gaussian tails due to quantum difusion during infa-
tion [67]. These events could provide the best clue as to the quantum nature of matter 
fuctuations generated during infation, afecting structure formation and constituting a 
signifcant component of dark matter [155]. We believe the importance of the quantum 
origin of cosmological perturbations should not be understated. 

In this chapter we have studied the perturbative mutual information between two dis-
joint regions during the infationary and radiation eras, which shows an enhancement with 
respect to the mutual information in the Minkowski vacuum. However, the perturbative 
approach as presented here seems to overestimate the mutual information, as compared 
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to later non-perturbative results [152, 153]. Even so, these studies found a similar long-
distance logarithmic behaviour and pre-factors of O(1) or larger, which are clearly enhanced 
with respect to the Minkowski vacuum. 

This phenomenon has a quantum origin, in the sense that is linked to squeezing and 
particle creation. However, this does not mean per se that enhanced correlations are gen-
uinely quantum in the sense of chapter 2. It was also found in ref. [152,153] that quantum 
discord in real space is non-vanishing for both the Minkowski vacuum and cosmological 
perturbations, but is enhanced for the latter. This fnding is both exciting and striking. On 
the one hand, it suggests that particle creation during infation leads to genuine quantum 
correlations. On the other hand, these correlations seem to be present in the Minkowski 
vacuum as well, albeit in smaller magnitude. In order to settle this issue, we explore in 
chapter 5 whether Bell inequalities are satisfed in these contexts. 

Finally, it is worth pointing out that even if the enhanced mutual information is dom-
inated by classical correlations, our results ofer a new approach to the predictions of 
infation. Enhanced mutual information is a fundamental prediction of infation and is re-
lated to a scale-invariant power spectrum of primordial perturbations. Furthermore, future 
research in the topic of entropic forces, which has precedence in cosmology, could provide 
relevant observational features. We will deal with entropic forces in part III, although not 
in the context of PBH. 
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Chapter 5 

Bell inequalities in de Sitter 

All that is gold does not glitter, 
Not all those who wander are lost; 
The old that is strong does not wither, 
Deep roots are not reached by the frost. 

J.R.R. Tolkien, The Lord of the Rings (1954). 

5.1 Motivation 

The quantum origin of primordial perturbations is a backbone of the infationary paradigm, 
as it was reviewed in chapter 1. Thus, quantum mechanics ofers an explanation to the ori-
gin of several cosmological observables, such as the CMB anisotropies and the emergence of 
LSS of the universe. The transition of quantum to classical perturbations is understood to 
take place either simply by the large squeezing of momentum modes, what John Archibald 
Wheeler called decoherence without decoherence [146], or due to a regular decoherence 
process [134]. Even though the question whether this explanation sufces is a matter of 
debate [156], we will assume it to do so and not dive into possible fundamental quantum 
issues, as observational predictions are unquestioned. 

It may seem puzzling that a highly squeezed quantum state is regarded as a quasi 
classical state of some sort, as they have distinctive quantum properties, such as a large 
quantum discord [60] or violation of Bell inequalities [117], both features introduced in 
chapter 2. It must be noted, however, that these studies have been mostly carried out in 
Fourier space, whereas measurements are done in real space. Furthermore, the physical 
signifcance of Bell inequalities in Fourier space is unclear. Indeed, their violation is re-
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garded as a genuine quantum feature, in the sense that it implies giving up either locality 
or realism. However, the requirement of locality only makes sense in real space and it does 
not seem to be much inconvenient to have non-locality in Fourier space. It may as well be 
that this is simply what the Bell inequality is signalling. 

The study of quantum properties in QFT is in general cumbersome due to the infnite 
dimension of the Hilbert space. This is not much of an issue in Fourier space, as long 
as the theory is linear and the quantum state is Gaussian, for the state factorizes into 
Fourier modes. In real space, on the contrary, the quantum state, even if Gaussian, has a 
complicated entangled structure. Indeed, this is why only a particular kind of modes was 
considered in chapter 3 and a perturbative approach was taken in chapter 4. Nevertheless, 
the dimension of the Hilbert state can be drastically reduced by performing a coarse-
graining of the quantum feld over regions of interest, as frst developed in ref. [152]. This 
allows several problems to be tackled analytically and non-perturbatively, such as the 
computation of entanglement entropy, mutual information and quantum discord. 

Previous works have found that the quantum discord of a quantum feld coarse-grained 
over two spheres is non-vanishing, both in Minkowski and de Sitter space-time [153], the lat-
ter surely being of particular interest for cosmological applications. Still, it is unclear why 
this happens, given that, contrary to de Sitter, there is no particle creation in Minkowski 
space-time. 

The goal of this chapter is to extend these previous studies to the problem of Bell 
inequalities in real space. As such, it collects the results obtained in ref. [6]. By inspecting 
these Bell inequalities, we will attempt to settle whether genuine quantum correlations 
exist in real space in Minkowski and Sitter space-time. This is a natural continuation of 
some of the questions raised in chapters 3 and 4 and closes our discussion on the quantum 
universe that is developed in part II. 

This chapter is organized as follows. In sec. 5.2 we present the formalism to build Bell 
inequalities for quantum felds by means of a particular set of pseudo-spin operators. We 
apply this to Minkowski and de Sitter space-times in secs. 5.3 and 5.4. We extend this to 
additional pseudo-spin operators in sec. 5.5 and fnish with our discussion of the results in 
sec. 5.6. 

5.2 Bell inequalities for quantum felds 

Recall the introduction to Bell inequalities in sec. 2.2. They are usually set up in the 
context of bipartite systems over which dichotomic measurements can be performed. A 
paradigmatic example of such systems is two particles with spin, which are separated a 
large distance. 

Quantum felds are quite distinct from discrete particle systems in many respects. First, 
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they take values over all space and one can hardly speak of the position of a quantum feld. 
Second, its phase space described by continuous variables, in particular the value of the 
feld or the conjugate momentum. 

In order to be able to construct a Bell inequality for quantum felds, a two-step pro-
cedure must be followed. First, one needs to perform a coarse-graining of the feld, as 
mentioned in sec. 5.1, over two spherical regions around given spatial points x⃗1 and x⃗2. 
Second, one needs to introduce dichotomic observables as functions of the continuous vari-
ables that describe the phase space of quantum felds. 

5.2.1 Coarse-grained bipartite systems 

First, let us review how to cast two-point measurements of a quantum feld in terms 
of a quantum bipartite system, following the proposal made in ref. [153], where further 
details can be found. Let ϕ(x⃗) be a real scalar quantum feld (since all measurements are 
performed at the same time, the time argument is omitted for notation convenience) and 
π(x⃗) its conjugated momentum. We defne the feld coarse-grained at a location x⃗ over a 
radius R as Z � �� �3a a |y⃗ − ⃗x|

ϕR(x⃗) ≡ d3y⃗ ϕ(y⃗) W , (5.1)
R R 

with a similar expression for πR(x⃗). In this formula, a is the scale factor of the universe, 
such that space is labelled by comoving coordinates1 , and W is a window function that 
asymptotes a constant at small arguments and decays at large arguments. It is normalised 
such that Z ∞ 

z 2W (z)dz = 1/(4π) , (5.2) 
0 

i.e, such that a uniform feld is left invariant by the coarse-graining procedure. Moreover, 
in order for the coarse-grained confgurations of the feld to commute when evaluated at 
two distant spatial locations, the support of W must be taken as compact. In practice, we 
denote this supporte to be of size 1 + δ, i.e., W (z) = 0 for z ≥ 1 + δ. 

Let us then consider two spatial points x⃗1 and x⃗2 distant by d ≡ a|x⃗1 − x⃗2| > 2R(1+ δ). 
Because of the compactness of W , one has 

[ϕR(x⃗1), ϕR(x⃗2)] = [πR(x⃗1), πR(x⃗2)] = 0 , (5.3) 

while the canonical commutation relation [ϕ(x⃗), π(y⃗)] = iδ(x⃗ − y⃗) gives rise to � Z 1+δ � �3a �3 3 a 
[ϕR(x⃗i), πR(x⃗j )] = i4π dzW 2 (z) δij ≡ i Gδij , (5.4)

R 4π R0 

1This is to make the formalism directly applicable to cosmology in sec. 5.4. Otherwise, in fat space-time, 
one may simply set a = 1 and use physical coordinates, as in sec. 5.3. 
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which defnes the parameter G, and where the prefactor is arranged such that G = 1 for a 
constant window function with δ = 0. As a consequence, canonical commutation relations 
for the coarse-grained felds are recovered only after rescaling the felds according to 

� �s � �2 
s 

R 4π R 4π
ϕ̃R(x⃗) = ϕR(x⃗) and π̃R(x⃗) = ϕR(x⃗). (5.5) 

a 3G(δ) a 3G(δ) 

The coarse-grained rescaled felds thus describe a bipartite system with canonical commu-
tation relations. 

5.2.2 Pseudo-spin operators 

Second, we require observables suitable to build a Bell inequality. In a nutshell, this 
ˆ ˆamounts to build a set of pseudo-spin operators {Ŝ  

x, Sy, Sz}, which satisfy two conditions: 

1. Ŝ2 = Ŝ2 = Ŝ2 = 1, so that their eigenvalues are ±1.x y z h i 
2. The SU(2) commutation relations Ŝi, Ŝj = 2iϵijkŜk, where ϵijk is totally antisym-

metric and ϵxyz = 1. 

Several sets fulflling this criteria can be defned, see ref. [117]. We will focus for the 
main argument of the chapter on the Gour-Khanna-Mann-Revzen (GKMR) pseudo-spin 
operators, although another set will also be considered alter. E 

˜GKMR operators are built from the eigenstates ϕR(x⃗) of the coarse-grained feld 
confguration. Let us frst introduce the auxiliary states h E Ei1 ˜|E(x⃗)⟩ = ϕR(x⃗) + −ϕ̃R(x⃗)

2 h E Ei (5.6)
1 ˜|O(x⃗)⟩ = ϕR(x⃗) − −ϕ̃R(x⃗) ,
2 

in terms of which the GKMR operators are defned as Z ∞ 
Ŝx(x⃗) = dϕ̃R(x⃗) [|E(x⃗)⟩ ⟨O(x⃗)| + |O(x⃗)⟩ ⟨E(x⃗)|] Z0 

∞ 
ˆ d˜Sy(x⃗) = i ϕR(x⃗) [|O(x⃗)⟩ ⟨E(x⃗)| − |E(x⃗)⟩ ⟨O(x⃗)|] (5.7) 

0Z ∞ 
Ŝ  
z(x⃗) = − dϕ̃R(x⃗) [|E(x⃗)⟩ ⟨E(x⃗)| − |O(x⃗)⟩ ⟨O(x⃗)|] . 

0 
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5.2.3 Gaussian states 

Now that we have a way to defne bipartite states from a quantum feld and pseudo-spin 
operators, we need to characterize the quantum states to be studied within this formalism. 
We will work with Gaussian states, because they are of particular relevance to cosmology, 
as they are obtained at linear order in perturbation theory2 . Furthermore, they are easily 
dealt with within the phase space formalism of QM, which was reviewed in sec. 2.5. The 
Wigner function of a Gaussian state is then 

− 1 qTγ−1q
2e 

Wρ̂(q) = √ , (5.8)
(2π)2 det γ 

where we have arranged the bipartite phase-space variables into the vector q = (ϕ̃R(x⃗1), π̃R(x⃗1), 
ϕ̃R(x⃗2), π̃R(x⃗2))

T . This Wigner function is fully described by its covariance matrix γ, which 
can be written in terms of the anticommutator {A,ˆ B̂} ≡ (ÂB̂ + B̂Â)/2 as [152]3 

γab ≡ ⟨{q̂a, q̂b}⟩� �3 Z �� 
4π R R 

W 2 
3G a a 

fd ln k k= ���� 

× 

  

  
. 

(5.9) 

a a kd kd Pϕϕ(k)
R 

Pϕπ(k) Pϕϕ(k) sinc 
R a 

Pϕπ(k) sinc 
a ���� 

R a kd R kd − Pππ(k) 
a 

Pϕϕ(k) sinc 
R a 

Pππ(k) sinc 
a a 

a − − Pϕϕ(k) Pϕπ(k)
R 

R − − − Pππ(k) 
a 

Note that this expression casts the result in terms of the Fourier transform of the window 
function Z ∞ fW (z) ≡ 4z 

and the reduced power spectra of the feld and its momentum, defned as 
†⟨{ϕ̂ , ϕ̂  ⃗

k ′ }⟩ = 2π2k−3Pϕϕ(k)δ(k⃗ − ⃗k ′ ) (5.11)
k⃗ 

with similar expressions for Pϕπ and Pππ. 
2We neglect here unavoidable non-Gaussianities coming from quantum difusion, which lead to non-

Gaussian tails in the probability distribution [67]. 
3Note that there is a factor 2 diference in the defnition of the covariance matrix with respect to ref. [152]. 

−3 W (u/z)u sin u du (5.10) 
0 
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Here, the Fourier transform is defned as ϕ̂(x⃗) = (2π)−3/2 R dk⃗e−ik⃗·x⃗ϕ̂(k⃗) with a similar 
expression for π̂(x), and the above defnition of the power spectrum assumes isotropy and 
homogeneity, i.e., the Copernican Principle. 

Note that the covariance matrix is symmetric by defnition, so that only the upper 
triangular part has been written explicitly. Furthermore, in our setup subsystems 1 and 2 
are taken to be equal, so that the covariance matrix is also symmetric under their exchange. 
As a consequence, there are only 6 independent entries, namely γ11, γ12, γ22, γ13, γ14 and 
γ24. 

It is important to stress that even if the quantum state of the feld is pure, the state 
of the bipartite system we consider is, in general, mixed. This can be understood as a 
consequence of the quantum state not being a product state in real space, as opposed to 
Fourier space, and can be seen by computing the purity parameter 

p ≡ Tr(ρ̂2) = √ 1 
, (5.12)

4 det γ 

which equals one for a pure state but is smaller than one otherwise, and where the second 
expression is valid for Gaussian state. 

This transition from a pure to a mixed state due to tracing over every spatial point 
that does not lie within the spheres around x⃗1 and x⃗2 can be understood as an efective 
decoherence mechanism [152,153], a consequence of the correlations that exist everywhere 
in real space. This can potentially blur the presence of a genuine quantum signal. Indeed, 
classical and quantum correlations become harder to tell apart the more mixed the state is. 
In ref. [152, 153], its efect of quantum discord was investigated. While discord was found 
to be non-vanishing, its magnitude is still smaller than that of Fourier space [60]. In the 
following sections we will show how it afects Bell-inequality violations. 

Note that tracing-out in Hilbert space is equivalent to phase-space marginalisation (see 
Appendix D of ref. [157]). This is implemented in the phase-space formulation by inte-
grating the Wigner function over the appropriate phase-space coordinates. The resulting 
Wigner function is still Gaussian. 

5.2.4 Spin correlators 

Recall from sec. 2.5 that in the phase-space formulation of QM, a Hilbert space operator 
Ô os mapped to a phase-space function WO. Its expectation value is then given by the 
integral ZD E 

Ô = Tr(ρ̂ Ô) = (2π)2 (q). (5.13)dqWρ̂(q)WÔ 

This formula can be used to compute the spin correlators that appear in the defnition 
of the Bell operator. First, we need the Wigner-Weyl transform of the GKMR operators, 
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which are given by 

h i h i1˜ ˜W ̂  ϕR(x⃗), π̃R(x⃗) = sign ϕR(x⃗)Sx(x⃗) (2π)h i h i 
W ̂  ϕ̃R(x⃗), π̃R(x⃗) = − 

(2

1 
π) 
δ ϕ̃R(x⃗) P [1/π̃R(x⃗)] (5.14)Sy (x⃗) h i h i1˜ ˜W ̂  ϕR(x⃗), π̃R(x⃗) = − δ ϕR(x⃗) δ [π̃R(x⃗)] ,Sz (x⃗) 2 

where P denotes the principal part. Since Ŝi(x⃗1) and Ŝj(x⃗2) act on two separate sectors of 
the full Hilbert space, where i, j = x, y or z, the Wigner-Weyl transform of their product 
is simply given by the product of their Wigner-Weyl transforms, i.e. 

W ̂  (q) = W ̂  (q1, q2)W ̂  (q3, q4). (5.15)Si(x⃗1)⊗Ŝj (x⃗2) Si(x⃗1) Sj (x⃗2) 

From the above expressions, one can thus readily compute the spin correlators in the 
state eq. (5.8). 

In general, one is free to set the directions of the spin measurements in an arbitrary 
way. It is however common practice to consider the case where Ŝ  

a = Ŝ  
z, Ŝ  

a ′ = Ŝ  
x, and Ŝb 

and Ŝb ′ are set in the (xz) plane, i.e. Ŝb = sin θŜ  
x + cos θŜ  

z and Ŝb ′ = sin θ ′ Ŝ  
x + cos θ ′ Ŝ  

z.D E 
Since Ŝ  

x(x⃗1)Ŝ  
z(x⃗2) = 0 (see below), upon optimising the polar angles θ and θ ′ such as 

to get a maximal value for B, one obtains rD E2 D E2 
B = 2 Ŝ  

z(x⃗1)Ŝ  
z(x⃗2) + Ŝ  

x(x⃗1)Ŝ  
x(x⃗2) . (5.16) 

Therefore, it is enough to compute the correlation functions of two pseudo-spin opera-
tors. We will frst show the result and afterwords how to obtain them. First we have D E 

Ŝ  
z(x⃗1)Ŝ  

z(x⃗2) = √ 1 = p , (5.17)
4 det γ 

where one recovers the purity parameter introduced in eq. (5.12). This already indicates 
that the efective decoherence mechanism mentioned above leads to a suppression of the 
expectation value of the Bell operator, since r D E2 

B = 2 p2 + Ŝ  
x(x⃗1)Ŝ  

x(x⃗2) , (5.18) 

which can be understood as quantum correlations being reduced. One also has D E h i 
2Ŝ  

x(x⃗1)Ŝ  
x(x⃗2) = − 

2 
arctan a12(a11a22 − a12)−1/2 (5.19)

π 

101 



Chapter 5. Bell inequalities in de Sitter 

where a11, a12 and a22 are the entries of the symmetric two-by-two matrix 

a = (γ−1)ϕϕ − (γ−1)ϕπ[(γ−1)ππ]−1(γ−1)πϕ . (5.20) 

In this expression, the two overscripts indicate a restriction of the γ−1 matrix to the lines 
labelled by the frst index, and to the columns labelled by the second index. 

Now, let us see how the integrals leading to these correlators are actually performed. 
Plugging eq. (5.8) and eq. (5.14) into eq. (5.13), one frst has ZED 1 − 1 qTγ−1 

2Ŝ  
x(x⃗1)Ŝ  

x(x⃗2) q . (5.21)√ dq sign(q1)sign(q3)e= 
(2π)2 det γ 

Since the feld and momentum coordinates play diferent roles in this integral, let us frst 
re-arrange the entries of the q vector such that the feld coordinates appear frst, and then 
the momentum coordinates 

q̄ = 

  
  = 

  
  

ϕ̃R(x⃗1) 
ϕ̃R(x⃗2) 
π̃R(x⃗1) 

1 0 0 0 
0 0 1 0 
0 1 0 0 q , 

(5.22) 
0 0 0 1π̃R(x⃗2) | {z 

P 
} 

which defnes the permutation matrix P . In this new basis, the matrix γ−1 reads � � 
(γ−1)ϕϕ (γ−1)ϕπ 

γ−1 = P Tγ−1P (5.23)= ,
(γ−1)πϕ (γ−1)ππ 

the sub-blocks of which are given by � �� � 
(γ−1)11 (γ−1)13 (γ−1)12 (γ−1)14(γ−1)ϕϕ , (γ−1)ϕπ = �� = ,
(γ−1)31 (γ−1)33 (γ−1)32 (γ−1)34� � (5.24)
(γ−1)21 (γ−1)23 
(γ−1)41 (γ−1)43 

(γ−1)22 (γ−1)24(γ−1)πϕ , (γ−1)ππ == . 
(γ−1)42 (γ−1)44 

Tγ−1We now want to diagonalise the quadratic form q q = qTγ−1q, in a way that does 
not modify its two frst entries (such that the argument of the sign functions in eq. (5.21) 
remains unafected). This can be done by introducing the new variable Q defned as �� 

1�−1 
0 

Q . (5.25)�q = 
(γ−1)ππ (γ−1)πϕ − 1 

One has 
Tγ−1 

π (γ
−1)ππQπ ,q q = Qϕ 

TaQϕ + QT (5.26) 
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where we have introduced 

a = (γ−1)ϕϕ − (γ−1)ϕπ[(γ−1)ππ]−1(γ−1)πϕ (5.27) � � 
Qϕand where Qϕ and Qπ are the two-dimensional vectors that compose Q, i.e. Q = . 
Qπ 

Since the Jacobian of the transformation that goes from q to Q is unity, eq. (5.21) gives 
rise to ZD E 1 − 1 QTaQϕŜ  

x(x⃗1)Ŝ  
x(x⃗2) = √ dQ1dQ2 sign(Q1)sign(Q2)e 2 ϕ 

(2π)2 det γ Z (5.28) 
− 1 QT 

π (γ
−1)ππ Qπ× dQ3dQ4e 2 . 

The integral over Qπ is a simple Gaussian integral and can be readily performed. Upon 
splitting the integral over Q1 and Q2 according to their sign, one then fnds �ZD E 1 − 1 QTaQϕŜ  

x(x⃗1)Ŝ  
x(x⃗2) = p dQ1dQ2e 2 ϕ 

ππ 2π det γ det(γ−1)Z Z Z � (5.29)Z ∞ 0 0 ∞ 
− 1 QTaQϕ − 1 QT 

2 ϕ 2 ϕ aQϕ−2 dQ1 dQ2e − 2 dQ1 dQ2e . 
0 −∞ −∞ 0 

The frst integral is again a simple Gaussian integral, while the second and third integrals 
are equal because of the invariance of the problem under exchanging x⃗1 and x⃗2. It can be 
computed by frst integrating over Q2 and then over Q1 Z ∞ Z 0 

− 1 QT 
dQ1 dQ2e 2 ϕ aQϕ = 

0 −∞ ZZ ∞ 0 
− 1 (a11Q2+a22Q2+2a12Q1Q2)= dQ1 dQ2e 2 1 2 

0 −∞ 
2Z ∞ 

� 
− a11 + a12 

� 
Q2 Z 0 a22 

� 
a12 

�2 
2 2a22 1 − Q2+ Q1 = dQ1e dQ2e 2 a22 (5.30)

0 −∞ Z � 
a 2 � r � � ��∞ a11 + 12 Q2− 

2 2a22 1 π a12 
= dQ1e 1 + erf √ Q1

2a22 2a220 � � 
π a12+ arctan 22 a11a22−a12 = p . 

2a11a22 − a12 

Combining the above results, one obtains s � �D E 2 det γ−1 
Ŝ  
x(x⃗1)Ŝ  

x(x⃗2) = − arctan 
a12 

. (5.31)ππ 2π det(γ−1) det a a11a22 − a12 
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This expression can be further simplifed as follows. Using the formula for determinants of 
block matrices in eq. (5.23), one has 

det γ−1 = det γ−1 � �ππ 
n o 

γ−1 (γ−1)ϕϕ − (γ−1)ϕπ[(γ−1)ππ]−1(γ−1)πϕ = det det (5.32) � �ππ 
γ−1 = det det a , 

where we have recognised the matrix a defned in eq. (5.27). Upon replacing det a =� �ππ2 γ−1a11a22 − a12 in eq. (5.31) by det γ−1/ det , one fnally obtains D E h i 
2Ŝ  

x(x⃗1)Ŝ  
x(x⃗2) = − 

π 
2 
arctan a12(a11a22 − a12)−1/2 , (5.33) 

which is the equation used in the main text. 

The other spin correlators are more straightforward to evaluate. One has D E 
Ŝ  
x(x⃗1)Ŝ  

z(x⃗2) = Z 
1 − 1 qTγ−1q= √ dq [−πδ(q1)] δ(q2)sign(q3))e 2 

(2π)2 det γZ −1 − 1 q3(γ−1)33q3− 1 q4(γ−1)44q4−q4(γ−1)43q3= √ dq3dq4sign(q3)e 2 2 (5.34)
4π det γ s 2Z [(γ−1)43q3]−1 2π − 1 q3(γ−1)33q3+ 

= √ dq3sign(q3)e 2 2(γ−1)44 
4π det γ (γ−1)44 

= 0 
since the last integrand is an odd function, to be integrated over the real line. One fnally 
has ZD E 1 − 1 qTγ−1qŜ  

z(x⃗1)Ŝ  
z(x⃗2) = √ dqπ2δ(q1)δ(q2)δ(q3)δ(q4)e 2 

(2π)2 det γ 
(5.35)

1 
= √ . 

4 det γ 

Before proceeding, let us comment on the window function. As mentioned above, it 
needs to be compact for the phase-space operators at two diferent locations to commute. 
The simplest choice would then be the Heaviside function. Nevertheless, such a function 
can lead to divergences ref. [152,153] in intermediate, non-observable quantities. Therefore, 
it is more convenient to consider a continuous window function that is made of a constant 
piece and of a linear piece:  

1 for x ≤ 1 ,3 1 
W (x) = − (x − 1) + 1 for 1 < x ≤ 1 + δ , (5.36)

4πF(δ) δ
0 for x > 1 + δ , 
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where F(δ) = (δ + 2)(δ2 + 2δ + 2)/4 is such that the normalisation condition mentioned 
above is satisfed. 

With that expression, the Fourier transform of the window function is given by 

3{z sin(z) − (1 + δ)z sin [(1 + δ)z] + 2 cos(z) − 2 cos [(1 + δ)z]}fW (z) = 
4 (5.37)

δF(δ)z 

and one has 
8(δ3 + 5δ2 + 10δ + 10) 

G(δ) = . (5.38)
5(δ + 2)2(δ2 + 2δ + 2)2 

Now we have all the ingredients required to compute the expected value of the Bell operator 
for any Gaussian state. As a test, we will frst apply it to the Minkowski vacuum and then 
go on with the quantum state relevant to cosmological perturbations: the Bunch-Davies 
vacuum of de Sitter space-time. 

5.3 Flat space-time 

Now that we have set up the tools required to study Bell inequalities in real space, we 
consider as frst application a massless scalar feld placed in the vacuum state of Minkowski 
space-time. This is the simplest setup and will allow us to test our formalism with a small 
number of parameters, thus facilitating the discussion on whether violations occur or not. 
Even though it may seem a trivial case, the fact that quantum discord is non-vanishing [152] 
leaves the door open for Bell inequalities to be violated. The exception to this is the limit 
δ → 0, for which discord does vanish. The aim of this section is to clarify the presence or 
absence of genuine quantum correlations in the sense of Bell inequalities, regardless of the 
fact that the Minkowski vacuum contains no particles. 

5.3.1 Covariance matrix 

After expanding the feld into independent Fourier modes, the mode functions in the vac-p√ −ikt/ ˙uum state are given by ϕ⃗ = e 2k and π⃗ = ϕ⃗ = −i k/2 e−ikt , which give rise to
k k k 

the reduced power spectra 

Pϕϕ = k2/(4π2) , Pππ = k4/(4π2) and Pϕπ = 0 (5.39) 

Plugging those expressions into eq. (5.9), the entries of the covariance matrix can be com-
puted and are given by 

K1(δ) K3(δ)
γ11 = , γ12 = 0 , γ22 = 

3πG(δ) 3πG(δ) 
(5.40)L1(α, δ) L3(α, δ)

γ13 = , γ14 = 0 , γ24 = ,
3πG(δ) 3πG(δ) 
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where we have introduced the integrals Z ∞ 
µ fKµ(δ) = z W 2(z)dz 

0Z ∞ (5.41) 
µ fLµ(α, δ) = z W 2 (z) sinc(αz)dz , 

0 

which depend on the parameter 
d 

α ≡ , (5.42)
R 

which measures the distance between the two patches in units of the patch radius. Note 
that α > 2(1 + δ) is required in order for the two patches not to overlap. By plugging the 
expression for Wf given below eq. (5.36) into eq. (5.41), those integrals can be performed 
analytically, and the corresponding expressions can be found in ref. [152]. 

Let us now evaluate the GKMR spin correlators following the method outlined in 
subsec. 5.2.4. Since the feld-momentum correlators vanish, namely γ12 = γ14 = 0, one 
can show that it is also true for the inverse covariance matrix, i.e., (γ−1)ϕπ = 0. As a 
consequence, eq. (5.20) leads to � � 

1 
a = (γ−1)ϕϕ γ11 −γ13 = , (5.43)

γ2 − γ2 
11 13 −γ13 γ11 

so eq. (5.19) and eq. (5.17) give rise to D E 
Ŝ  
x(x⃗1)Ŝ  

x(x⃗2) ! " # 
2 γ13 2 L1(α, δ) 

= arctan p = arctan p
π γ2 − γ2 π K2(δ) − L2(α, δ)11 13 1 1D E (5.44) 

Ŝ  
z(x⃗1)Ŝ  

z(x⃗2) 

1 9π2G2(δ) 
= q� = q�� � � � � � 

4 γ2 − γ2 γ2 − γ2 4 K2(δ) − L2(α, δ) K2(δ) − L2(α, δ)11 13 22 24 1 1 3 3 

where the result is also given in terms of the integrals introduced in eq. (5.41). 

By plugging those expressions into eq. (5.16), one obtains an explicit formula for the 
expectation value of the Bell operator in terms of the two parameter α and β. The result is 
displayed in the left panel of fg. 5.1 for δ = 0.01 and as a function of α. One can see that 
B(x⃗1, ⃗x2) decreases with α and reaches an asymptotic value at large distances between the 
two patches. This can be understood by expanding the above formulas in the limit where 
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Figure 5.1: Expectation value of the GKMR Bell operator in the Minkowski vacuum. Left 
panel: δ = 0.01 and α is varied from its minimum allowed value, αmin = 2(1 + δ), to larger 
values. The blue solid line stands for the full result, the orange dashed line is obtained from 
the small-δ, large-α approximation eq. (5.46), and the green dotted line corresponds to the 
asymptotic value at large α. Right panel: α = αmin (which maximises the expectation 
value of the Bell operator, see left panel) and δ is varied. The approximation eq. (5.46), 
displayed in orange, still provides a good ft to the full result at small δ, even though αmin 
is not so much larger than one. From these fgures one concludes that Bell inequalities are 
never violated in this setup. From ref. [6] 

δ is small but α is large, which gives rise to � �ED δ28 1 Ŝ  
x(x⃗1)Ŝ  

x(x⃗2) ≃ (1 + δ) + O , ,
9πα2 α2 α4 � � �� (5.45)ED 4π2 8 1 Ŝ  

z(x⃗1)Ŝ  
z(x⃗2) ≃ 1 + + O δ, . 

9 1 − 2 ln 2 
δ 81α4 α6 

Together with eq. (5.16), this leads to 

B ≃ 
8π2 

9 1 − 2 ln 2 
δ 

  
    

!2 
1 − 2 ln 2 

δ2 4 
1 + (5.46)+ ,

α4 π381 

which is displayed as the orange dashed line in fg. 5.1. One can check that, when α ≫ 1, 
it provides a good ft to the full result indeed. At large α, B reaches a constant that is 
given by the frst term of eq. (5.46) and which is controlled by the purity of the state. It 
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is displayed with the green dotted line. Note that the case δ = 0 is singular, and leads to 
B ≃ 16/(9πα2) at large α (so the asymptotic value vanishes). 

Since B is maximal when α is minimal, in the right panel of fg. 5.1 we set α to its 
minimal value and let δ vary, so as to optimise the expectation value of the Bell operator. 
One can see that B increases with δ, 4 and reaches an asymptotic value at large δ of order 
1.6. This is therefore the largest value one can obtain in this setup, and since it is smaller 
than 2, we conclude that GKMR Bell inequalities are never violated in fat space time. 

5.3.2 Discussion 

We thus conclude this section by reporting no real-space Bell-inequality violation with the 
GKMR pseudo-spin operators in the Minkowski vacuum state. This settles the question 
raised earlier and establishes that, even though quantum discord in real space is non-
vanishing for this state, there is still no Bell inequality violation. This can be understood 
from the fact that the interpretation of quantum discord for mixed states is less clear than 
when dealing with pure states. One could argue that this result is actually a consequence 
of the choice of pseudo-spin operators. Therefore, we will generalize our discussion to a 
larger class of spin operators in sec. 5.5. 

One may argue that this result was to be expected from the fact that the Minkowski 
vacuum contains no particles. In the next section we take a next step and perform the 
same computation for the Bunch-Davies vacuum in de Sitter space-time, in order to fnd 
out whether the situation changes when particle creation takes place. 

It is worth point out that it was found in ref. [152] that quantum discord decays as α−4 

at large distances. The behaviour of quantum discord as a function of α is therefore the 
same as for the Bell expectation value, and in that sense, it may be seen as a useful tracer 
for identifying the confgurations that are most likely to yield quantum efects. However, as 
we shall now see, this is not always true, since this behaviour similarity is lost in de-Sitter 
space times. 

5.4 De-Sitter space-time 

Let us now turn our attention to de-Sitter space times, in order to address the case of 
primordial cosmological perturbations. Since particle creation takes place in this setup, 
it is worth exploring how the situation changes with respect to Minkowski space-time. 

4When δ → 0, αmin → 2 and one has L1 = 3(13 − 16 ln 2)/20, L3 = 3(ln 2 − 1)/2, K1 = 9/4 and K3 

diverges logarithmically with δ. This leads to B ≃ 0.16, which corresponds to the lower asymptotic value 
in the right panel of fg. 5.1 that would be reached if the horizontal axis extended to large enough negative 
values. 
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Recall that we describe scalar primordial perturbations by means of the Mukhanov-Sasaki 
variable, as discussed in chapter 1. It is placed in the Bunch-Davies state [55], which is 
in excellent agreement with observations of the cosmic microwave background [38]. The 
Fourier mode functions of the feld v and its conjugated momentum p are thus given by � � r 

−ikη ′ e i a k′ −ikη v⃗ = √ 1 − and p⃗ = v − v⃗ = −i e , (5.47)
k k k⃗ k2k kη a 2 

and allow us to compute the reduced power spectra. 

5.4.1 Covariance matrix 

The reduced power spectra associated to the mode functions in eq. (5.47) read 

1 + k2η2 k4 k2 
Pvv(k) = , Ppp(k) = , Pvp(k) = . (5.48)

4π2η2 4π2 4π2η 

The covariance matrix is then obtained by plugging these expressions into eq. (5.9), and 
this leads to � � 

(HR)2 1 
γ11 = K−1(β, δ) + K1(β, δ) ,

3πG(δ) (HR)2 

HR K3(β, δ)
γ12 = − K1(β, δ) , γ22 = ,

3πG(δ) 3πG(δ)� � (5.49)
(HR)2 1 

γ13 = L−1(α, β, δ) + L1(α, β, δ) ,
3πG(δ) (HR)2 

HR L3(α, β, δ)
γ14 = − L1(α, β, δ) , γ24 = . 

3πG(δ) 3πG(δ) 
Therefore, it depends on four parameters, namely HR, α, β and δ. The parameters α and 
δ are defned identically to those introduced in sec. 5.3. We recall that they respectively 
correspond to the distance between the two patches in units of their radius, see eq. (5.42), 
and to the smoothing parameter of the window function, see eq. (5.36). In addition, there 
are the parameters HR and β, which include the efects of space-time dynamics. The 
parameter HR corresponds to the ratio between the size of the patches and the Hubble 
radius, which is the typical distance that characterises the curvature of space-time. The 
parameter β is defned as the ratio between the size of the observed patches and the size 
of the entire observable universe, i.e., the size of the region over which observations are 
performed, 

R 
β ≡ < 1 . (5.50)

Robs 

The reason to do that is that, in practice, cosmological perturbations are measured as 
fuctuations away from an average confguration. This average is computed as a mean 
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value over a fnite part of the universe, the size of which is denoted Robs. This implies that, 
in eq. (5.9), the window function needs to be replaced according to 

W (kR/a) → W (kR/a) − W (kRobs/a) . 

This can be simply modelled by imposing an infra-red cutof k > βa/R in the integral of 
eq. (5.9), see ref. [153] for further details. The integrals K and L are thus defned in a 
similar way as in eq. (5.41) but with β as a lower bound, namely 

fff (5.51) 

Z ∞ 
µKµ(β, δ) = z W 2(z)dz , 

β 
(5.52)∞ 

W 2(z) (z) sinc(αz)dz . 

f
fZ 

µLµ(α, β, δ) = z 
β 

These integrals can be computed analytically in terms of the cosine integral function. The 
relevant formulas can be found in appendix A of ref. [153], where a systematic expansion 
in the regime β ≪ 1, δ ≪ 1 and α ≫ 1 is also performed. Let us fnally note that, in the 
limit where H = 0 (i.e., static space time), eq. (5.49) becomes the Minkowski formula in 
eq. (5.40), which serves as a consistency check. 

5.4.2 Spin and Bell correlators 

We now compute the expectation value of the Bell operator by plugging the covariance 
matrix eq. (5.49) into the formulas of subsec. 5.2.4. The result is displayed in fg. 5.2. 
Since there is at most a logarithmic dependence of the result on these parameters, they do 
not play a crucial role. Hence, we choose to show in 5.2 how the result depends on HR 
and α instead. The dependence on δ and β is shown for completeness in appendix B.1. 

One can see that two regimes need clearly to be distinguished, depending on whether 
HR ≪ 1 (i.e. the size of the patches is smaller than the Hubble radius) or HR ≫ 1 (i.e. 
the patches are larger than the Hubble radius). 

When HR ≪ 1, the result seems to carry little dependence on α, and coincides with 
the values obtained in the left panel of fg. 5.1 in the Minkowski vacuum. This is because, 
when HR ≪ 1/α, all distances involved in the problem (namely R and d) are smaller than 
the Hubble radius, hence the setup is equivalent to a local Minkowski background. This is 
why the results of sec. 5.3 are recovered in this regime, which can be formally verifed by 
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expanding the above formulas in HR and then in α−1 , leading to 

D E 
Ŝ  
x(x⃗1)Ŝ  

x(x⃗2) ≃ � � 
8 8 32 [5γE − 11 + 5 ln(2β)]≃ + (HR)2 [γE + ln(αβ) − 1] + ,

9πα2 9π 405α2π D E 4π2 8π2 
Ŝ  
z(x⃗1)Ŝ  

z(x⃗2) ≃ + (HR)2 
(5.53)9|1 − 2 ln δ | 81 

2 � 
× 

1 
1 + 2γE (1 + 2 ln 2) − 5 ln 2 + 4 ln2 2+ 

(1 − 2 ln δ )|(1 − 2 ln δ )|2 2 � 
δ 

+ ln β(2 − 4 ln ) + (7 − 4γE − 4 ln 2) ln δ ,
2 

where γE is Euler’s constant and the result is further expanded in δ and β. One thus 
recovers eq. (5.45), with corrections suppressed by (HR)2 . 

An in-between regime is give if 1/α ≪ HR ≪ 1, R is smaller than the Hubble radius but 
not d, hence the fat space-time result may be modifed a priori. That is, the two spheres 
are smaller than the Hubble sphere and exist in diferent Hubble patches. However, this 
regime cannot be seen in fg. 5.2 since it does not display large-enough values of α. This 
is why, in fg. 5.3, the expectation value of the Bell operator is shown as a function of α, 
where β and δ are fxed to the same value as in fg. 5.2, and where we have set HR = 10−2 . 
For comparison, the fat space-time result is also displayed. No strong deviation from the 
de-Sitter result can be observed, even when d is larger than the Hubble radius. In any 
case, one can see that B decreases with α. Therefore, when HR ≪ 1, B is maximal in the 
Minkowski limit, where we have already shown that there is no Bell-inequality violation. 

When HR ≫ 1, one can see in fg. 5.2 that an asymptotic value is also reached, which 
decreases with α. This can be understood analytically by performing a large HR, large α 
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expansion of the above formulas, which leads to D E 
Ŝ  
x(x⃗1)Ŝ  

x(x⃗2) ≃ ( ) 
2 4 [1 − γE − ln(αβ)]≃ arctan p ,
π (3 + 4 ln α ) [11 − 8γE − 4 ln(2αβ2)]D E 2 

Ŝ  
z(x⃗1)Ŝ  

z(x⃗2) ≃ (� � � 
2π2 � � δ ≃ 4γE(1 + 2 ln 2) − 1 − 9 ln 2 + 4 ln2 2 + 2 ln αβ2 1 − 2 ln 

(HR)2 2 � 
+ ln δ (11 − 8γE − 4 ln 2) × 

� � � �)−1/2 

× 3 − ln 2 + 4 ln2 2 − ln α 2 − 4 ln 
δ 

+ (3 − 4 ln 2) ln δ . 
2 

(5.54) 
In addition to the clear distinction between the two regimes, the main conclusion of our 
analysis is that maximum expectation value for the Bell operator is obtained for large 
HR and α close to its minimum value. This happens when the coarse-graining scale R 
is large compared to the Hubble radius, and the two patches are almost adjacent. In 
appendix B.1, we further show that decreasing δ and β make B larger, but not to the 
extent of leading to a Bell inequality violation. In fact, we can derive an upper bound on 
B as follows. Formally, when β → 0, the integrals K−1 and L−1 logarithmically diverge, 
and in the limit δ → 0, K3 logarithmically diverges too. This behaviour is such thatD E 
p = Ŝ  

z(x⃗1)Ŝ  
z(x⃗2) ∝ 1/ ln(βδ) → 0 in this limit, and such that the argument of the 

arctan function in eq. (5.19) goes to a fnite constant (that only depends on α if one D E 
further lets HR → ∞). This proves that Ŝ  

z(x⃗1)Ŝ  
z(x⃗2) < 1 in this limit, hence B < 2, 

see eq. (5.16), which therefore applies to the whole parameter space. 

5.4.3 Discussion 

The fact that no Bell-inequality violation is found in de Sitter is non trivial. One would 
expect that, since entangled pairs of particles with opposite Fourier momenta are produced 
on super-Hubble scales, this would lead to genuine quantum correlations. Indeed, the 
quantum state in Fourier space in highly squeezed, which means that its quantum discord 
is large as well [60,150] and Bell inequalities are violated (both with the GKMR operators 
and with other pseudo-spin operators, see ref. [117,158]). The reason why this is no longer 
the case in real space is subtle. Because the quantum state is correlated everywhere and 
large spatial regions are traced over, one deals with mixed states. This impacts quantum 
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discord as well, so that it becomes smaller in real space than it is in Fourier space [153], 
although it is still non zero. This suggests that quantum discord may not always provide 
a direct probe of genuine quantum correlations in the context of mixed states. 

The relationship between quantum discord and Bell inequalities gives a rich scale de-
pendency. In fg. 5.4 we show these quantities and other relevant ones, such as mutual 
information and purity, as a function of HR. The parameters α, β and δ are kept fxed. 
One fnds that B reaches a plateau in both the HR ≪ 1 (Minkowski) and HR ≫ 1 limits, 
being the latter higher than the former, with a transition from one to the other around 
HR ∼ O(1). In contrast, quantum discord vanishes in these two limits, and is maximal 
when HR is of order one. Therefore, contrary to the fat space-time case discussed in 
sec. 5.3, discord cannot be used to identify the setup confguration that maximises our 
ability to detect quantum features. 

For comparison, the state purity introduced in eq.(5.12) is also shown in fg 5.4. In the 
limit HR ≪ 1, it shares the same behaviour as B/2, as already explained in sec. 5.3. In 
this regime, the more mixed the quantum state is, the smaller the value of B is, which is 
intuitive. However, in the large HR limit, the behaviour of the state purity and of the 
Bell expectation value are opposite: p decreases with HR while B increases. This can 
be understood as follows. Since more entangled particle are created at large scales, the 
feld becomes more correlated in real space as R increases, as can be seen at the level 
of the mutual information I, which only increases with HR. It explains why the state 
purity decreases (one traces over regions of space to which the system is more and more 
entangled). 

Both quantum discord and the Bell operator are driven by a compromise between the 
amount of quantum entanglement (measured by mutual information I) and the state purity 
p. But since these two quantities evolve in opposite ways, how the trade-of is settled is a 
priori not trivial, and it happens to be settled in diferent ways for D and B. 

5.5 Other pseudo-spin operators 

In the previous sections we have studied GKMR pseudo-spin operators in feld theory, and 
use the general formalism to show that real-space Bell inequalities built with them are not 
violated neither in Minkowski nor in de Sitter space-time. Since GKMR are built from the 
felds and, in principle, one of possibly many pseudo-spin operators, one may argue that 
our result is a mere consequence of the choice of pseudo-spin operator. Therefore, one may 
hope to achieve Bell inequality violations by considering other operators. Unfortunately, 
it is not possible to verify (at least with the present approach) all possible pseudo-spin 
operators, given that there may exist an infnite number of them and that only a few 
explicit constructions are known [117, 159]. However, in this section we will still consider 
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another set of pseudo-spin operators: the Larsson spin-operators [160], which is in fact an 
infnite, one-parameter family of spin operators. 

5.5.1 Larsson pseudo-spin operators 

The idea of the Larsson pseudo-spin operators is to split the real axis describing the scalar 
feld value into intervals of size ℓ, where ℓ can be freely chosen by the observer. One then 
introduces [160] 

Z∞ h ED ED iX (2n+1)ℓ 
Ŝℓ d˜ ˜ ˜ ˜ ˜(x⃗) = ϕR(x⃗) ϕR(x⃗) + ℓ ϕR(x⃗) + ϕR(x⃗) ϕR(x⃗) + ℓ ,x 

2nℓn=−∞ 
∞ ZX (2n+1)ℓ h ED ED i 

Ŝℓ d˜ ˜ ˜ ˜ ˜(x⃗) = −i ϕR(x⃗) ϕR(x⃗) + ℓ ϕR(x⃗) − ϕR(x⃗) ϕR(x⃗) + ℓ , (5.55)y 
2nℓn=−∞ 

∞ ZX (n+1)ℓ ED 
Ŝℓ(x⃗) = (−1)n dϕ̃R(x⃗) ϕ̃R(x⃗) ϕ̃R(x⃗) .z 

nℓn=−∞ 

One can check that these operators are indeed pseudo-spin operators, as they satisfy the 
relations given below eq. (5.7). Their Wigner-Weyl transforms are given by [117] 

∞ � � � � ��X ℓ ℓ˜ ˜W ̂  = θ ϕR(x⃗) − − 2nℓ − θ ϕR(x⃗) − − (2n + 1)ℓ ,S (x⃗)ℓ
x 

2 cos [π̃R(x⃗)ℓ] 
2 2 

n=−∞ � � � ��X∞ h i� ℓ ℓ˜ ˜ ˜2 sin ϕR(x⃗)ℓ θ ϕR(x⃗) − − 2nℓ − θ ϕR(x⃗) − − (2n + 1)ℓ= ,W ̂ ℓSy(x⃗) 2 2 
n=−∞ 

∞X n h i h io 
(−1)n θ ϕ̃R(x⃗) − nℓ − θ ϕ̃R(x⃗) − (n + 1)ℓ= ,W ̂ ℓSz(x⃗) 

n=−∞ 
(5.56) 

where θ is here the Heaviside function. By plugging these expressions into eq. (5.13), one 
obtains explicit expressions for the spin correlators in terms of double infnite sums of 
integrals involving the error function, which we provide later in this section. 

These expressions do not admit general analytic expressions, but can be evaluated 
numerically. Before displaying the result, it is worth mentioning that further analytical 
insight can be gained by expanding those formulas in the limits ℓ ≪ 1 and ℓ ≫ 1. Those 
expansions are carried out later in this section. We give frst the fnal result. 
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When ℓ ≪ 1, one obtains � � 
2 2D E ℓ2 a11ã2+a22ã1−2a12ã1ã2X +ϵT ·[(γ−1)ππ ]·ϵ 

Ŝℓ 1 2 2
(x⃗1)Ŝ

ℓ (x⃗2) ≃ e a11a22−a12 −→ 1 ,x x 4 ℓ→0 
ϵ=(±1,±1)T (5.57) D E − π

2(a11+a22−2a12) 
2 )Ŝℓ(x⃗1)Ŝ

ℓ(x⃗2) ≃ e 2ℓ2(a11a22−a12 −→ 0 ,z z 
ℓ→0 

where ã1 and ã2 are functions of the entries of the covariance matrix defned later in this 
section. 

Let us inspect this limit. The approximations above show that Bℓ → 2 as ℓ → 0, hence 
there is no Bell-inequality violation in this regime. Let us note that, when ℓ decreases, 
the size of the ℓ-intervals in eq. (5.55) decreases, hence numerically one has to include 
more terms before truncating the sum. This is why the small-ℓ regime is numerically 
challenging, and there is always a minimum value of ℓ below which the computation cannot 
be performed, given fnite numerical capacities. For this reason, having an analytical 
control on the small-ℓ regime is convenient and even necessary in order for the analysis to 
be complete. 

When ℓ ≫ 1, one fnds that D E 
Ŝℓ (x⃗1)Ŝ

ℓ (x⃗2) −→ 0 , (5.58)x x 
ℓ→∞ 

while Ŝ 
z
ℓ(x⃗) approaches the Ŝ  

x component of the GKMR operator, 

Ŝ 
z
ℓ(x⃗) −→ Ŝ  

x
ℓ (x⃗). (5.59)

ℓ→∞ 

Its two-point function is thus given by eq. (5.19) in this limit. Considering eq. (5.16), this 
allows us to establish the bound 

Bℓ < BGKMR lim , (5.60) 
ℓ→∞ 

that is, Bℓ is smaller than the GKMR result in the limit ℓ → ∞. Hence, no Bell-inequality 
violation can be obtained in this regime either. 

In between those two regimes, as mentioned above, one has to resort to numerical 
computations, which we present in the next subsection. 

Intermediate analytical expressions 

By plugging eq. (5.8) and eq. (5.56) into eq. (5.13), one obtains explicit expressions for 
the two-point correlation functions of the Larsson spin operators, involving a double sum 
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˜of double integrals. One of these integrals [say the one over ϕR(x⃗2)] can be performed in 
terms of the error function, and one obtains 

∞D E 1 X
Ŝℓ(x⃗1)Ŝ

ℓ(x⃗2) = p (−1)n+mZn,m(x⃗1, ⃗x2),z z 
2π det γ det(γ−1)ππ 

n,m=−∞ D E ∞X1 (5.61)
Ŝℓ (x⃗1)Ŝ

ℓ (x⃗2) = p Xn,m(x⃗1, ⃗x2),x x ππ 2π det γ det(γ−1) n,m=−∞D E 
Ŝℓ (x⃗1)Ŝ

ℓ(x⃗2) = 0 .x z 

The functions Zn,m and Xn,m are defned as 

Zn,m(x⃗1, ⃗x2) = �r Z a 2 � � � � � ��(n+1)ℓ − 1 ϕ2 12π 2 a11− a12ϕ + a22(m + 1)ℓ a12ϕ + a22mℓ 
dϕe a22 erf √ − erf √ 

2a22 nℓ 2a22 2a22 

Xn,m(x⃗1, ⃗x2) = � �Z ℓ r 2 ℓ2 ã2 
− ϕ

2 a12 iℓϕ y − ℓ
2 
ϵT·(γ−1)ππ +(2n+1)ℓ X2 π a11− + (a12ãy −a22ã1)− ·ϵ

2 a22 a22 2a22 2
dϕ e 

ℓ +2nl 2a22 
2 ϵ1,ϵ2=−1,1( " � � # " � � #)

3 1 a12ϕ + iℓã2 + a22 2m + 2 ℓ a12ϕ + iℓã2 + a22 2m + 2 ℓ × erf √ − erf √ ,
2a22 2a22 

(5.62) 
where we recall that the matrix a was introduced in eq. (5.27), and where the integration 
variable ϕ physically correspond to ϕ̃R(x⃗). We have also introduced the vector ϵ = (ϵ1, ϵ2)

T , 
and the quantities ã1 and ã2 defned as 

� 
1 

ã1 = (γ−1)12[(γ
−1)ππ]−1ϵx + (γ−1)12[(γ

−1)ππ]12 
−1ϵy112 � 

+ (γ−1)14[(γ
−1)ππ]− 

21
1ϵx + (γ−1)14[(γ

−1)ππ]−1ϵy ,22 � (5.63)
1 

ã2 = (γ−1)32[(γ
−1)ππ]−1ϵx + (γ−1)32[(γ

−1)ππ]12 
−1ϵy+112 � 

+ (γ−1)34[(γ
−1)ππ]−1 + (γ−1)34[(γ

−1)ππ]−1 .21 ϵx 22 ϵy 

In general, the remaining integral and double sum need to be carried out numerically. 
However, more analytical insight can be gained in the small-ℓ and the large-ℓ limits. 
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Small-ℓ limit 

When ℓ ≪ 1, the functions Zn,m and Xn,m involve diferences of error functions evaluated 
at nearby points. They can therefore be Taylor expanded as follows 

d 2b2ℓ −(b1+b2mℓ)2 
erf [b1 + b2(m + 1)ℓ] − erf(b1 + b2mℓ) ≃ b2ℓ erf(b1 + b2mℓ) = √ e ,

d(b2mℓ) π 
(5.64) 

and � � � � � � � � 
3 1 

erf b1 + b2 2m + ℓ − erf b1 + b2 2m + ℓ ≃ 
2 2 

(5.65)
d 2b2ℓ 1 2 −[b1+b2ℓ(2m+ )]≃ ℓb2 erf [b1 + b2ℓ(2m + 1/2)] = √ 2e . 

d(2mb2ℓ) π 

The remaining integrals in Zn,m and Xn,m become Gaussian integrals and can thus be 
performed analytically. Similarly, the sums over n and m can be approximated by Riemann 
integrals upon introducing x = nℓ and y = mℓ and by noticing that 

∞ ZX ∞ 
ℓ2 g(nℓ, mℓ) ≃ dxdyg (x, y) , (5.66)

ℓ≪1 −∞n,m=−∞ 

if g is a sufciently smooth function. 

In the particular case of interest to us, since g(n, m) is Gaussian, one can compute its 
Riemann integral right away. This fnally gives rise to 

D E − π
2(a11+a22−2a12) 

)Ŝℓ(x⃗1)Ŝ
ℓ(x⃗2) ≃ e 2ℓ2(a11a22−a12

2 −→ 0 (5.67)
z z 

ℓ→0 

and � �D E X ℓ2 a11ã2
2+a22ã1

2−2a12ã1ã2 ·[(γ−1)ππ ]·ϵ1 2 2 
Ŝℓ (x⃗1)Ŝ

ℓ (x⃗2) ≃ e a11a22−a12 
+ϵT 

−→ 1 . (5.68)x x 4 ℓ→0 
ϵ 

Large-ℓ limit 

ŜℓWhen ℓ → ∞, in the expression for (x⃗) given in eq. (5.55), one can see that only thex 
term with n = 0 has a non-empty integration domain. However, this term involves the 
feld eigenstate |∞⟩, which necessarily vanishes when evaluated on a normalised state. This 
implies that D E 

Ŝℓ (x⃗1)Ŝ
ℓ (x⃗2) −→ 0 , (5.69)x x 

ℓ→∞ 
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which can be further checked by noticing that for all m, the two error functions appearing 
in the expression of Xn,m given in eq. (5.62) are evaluated at the same point (i.e. either 
+∞ or −∞), hence the diference always vanishes. 

For Ŝℓ(x⃗), when evaluating the expression given in eq. (5.55) in the limit ℓ → ∞, onlyz 
the terms n = −1 and n = 0 remain, which leads to Z 0 ED Z ∞ ED 

Ŝℓ(x⃗) −→ dϕ̃R(x⃗) ϕ̃R(x⃗) ϕ̃R(x⃗) + dϕ̃R(x⃗) ϕ̃R(x⃗) ϕ̃R(x⃗)z 
ℓ→∞ 

∞
−∞ ED 0Z (5.70) 

= dϕ̃R(x⃗) ϕ̃R(x⃗) ϕ̃R(x⃗) . 
−∞ 

This formula coincides with the one for the Ŝ  
x component of the GKMR operator. Indeed, 

by plugging eq. (5.6) into eq. (5.7), one obtains Z ∞ h ED ED i 
Ŝ  
x(x⃗) =

1 
dϕ̃R(x⃗) ϕ̃R(x⃗) ϕ̃R(x⃗) − −ϕ̃R(x⃗) −ϕ̃R(x⃗) 

0Z2 
∞ ED (5.71) 

d˜ ˜ ˜= ϕR(x⃗) ϕR(x⃗) ϕR(x⃗) , 
−∞ 

where the change of integration variable ϕ̃R(x⃗) → −ϕ̃R(x⃗) has been performed in the 
second term. One thus has 

Ŝ 
z
ℓ(x⃗) −→ Ŝ  

x(x⃗), (5.72)
ℓ→∞ 

hence the two-point function of the Ŝℓ (x⃗) operator is given by eq. (5.19) in the limit ℓ → ∞.x 

5.5.2 Flat space-time 

In fg. 5.5, we display the expectation value of the Larsson Bell operator in the Minkowski 
vacuum, as a function of ℓ, for α = 3 and δ = 0.1. One can check that the small-ℓ and the 
large-ℓ approximations derived above provide good fts to the full result in their respective 
domains of validity. In between, we fnd that Bℓ is a decreasing function of ℓ, and this 
behaviour is observed for any value of δ and α. As a consequence, one has Bℓ < Bℓ→0 = 2, 
hence there is no Bell-inequality violation in fat space time. 

5.5.3 De-Sitter space-time 

Similarly, the expectation value for the Larsson Bell operator is displayed as a function of 
ℓ in the de-Sitter Bunch-Davies vacuum state in fg. 5.6, for δ = 0.1, β = 10−4 , α = 3 and 
for a few values of HR. One can check that the small-ℓ and the large-ℓ approximations 
derived above still provide good fts to the full result. In between, Bℓ goes through a 
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local minimum at intermediate values of ℓ, hence it is always smaller than 2. This same 
behaviour is observed with other values for the parameters δ, β and α, which allows us to 
conclude that no Bell-inequality violation can be obtained with the Larsson operators. 

5.6 Discussion 

In this chapter we have discussed how to build real-space Bell operators in QFT and 
obtained its expectation value when the feld is placed in a Gaussian state. This allowed 
us to continue our discussion on the existence of quantum correlations between distant 
regions of the universe. We have found that there is no Bell inequality violation in both 
the Minkowski vacuum and the Bunch-Davies vacuum of de Sitter space-time, the latter 
being relevant to characterize primordial perturbations, in particular by means of the 
Mukhanov-Sasaki variable. 

This is to some extent a natural continuation of the discussion in chapters 3 and 4 
and closes part II. In addition, it follows a serious of works dealing with this fascinating 
topic, which we can trace back to refs. [60, 161], where quantum discord in Fourier space 
was computed for two-mode squeezed state, revealing that the creation of pairs of particles 
with opposite Fourier momenta in de-Sitter geometries is associated with the produc-
tion of a large quantum discord, i.e.m with the presence of genuine quantum correlations. 
Fourier-space Bell operators were then constructed in refs. [117, 158], confrming that Bell 
inequalities between opposite Fourier modes can indeed be violated, and hinting towards 
the presence of quantum features in primordial fuctuations. However, as it was discussed 
in sec. 2.2, Bell inequalities are build on the assumption of locality, whose violation has 
not a clear signifcance in Fourier space. 

Therefore, entanglement entropy, mutual information and quantum discord have been 
studied in real space, in particular in refs. [1,2], on which chapters 3 and 4 are based, as well 
as in refs. [152, 153]. It was found that, although they remain non vanishing, their typical 
values are greatly reduced compared to the Fourier-space setup, casting some doubt on the 
ability of cosmological structures to display quantum correlations. We can understand this 
phenomenon in real space due to the existence of local correlations, so that when regions 
of space are traced over, the rest are left in a mixed state. This efect, called efective 
decoherence, does not take place in Fourier space, for the two-mode squeezed state is a 
product state of each Fourier mode. 

The formalism of ref. [152] was employed in this chapter to be build Bell operators in 
real-space QFT and to compute its expected value for Gaussian states. We have found 
that no Bell inequality violation takes place in both Minkowski and de Sitter space-time, 
despite the fact that quantum discord is non-vanishing in both cases [152,153]. In addition, 
the notable diference between both states in Fourier space, the former being a Fock space 
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vacuum the latter being a two-mode squeezed state with large quantum discord, does not 
seem to play a role in our results. 

This illustrates that the interpretation of quantum discord for mixed states is sub-
tle. Efective decoherence seems to act as a quantumness censor, at least in this setup. 
Moreover, the confguration where it is maximal (namely when the two patches have size 
comparable to the Hubble radius and are almost adjacent [153]) does not coincide with the 
one where the expectation value of the Bell operator is maximal (namely when the patches 
are large compared to the Hubble radius and are almost adjacent). This illustrates again 
the subtleties of quantum discord for mixed states. 

It is worth mentioning a few possible directions along which this research program could 
be carried on. First, even though we have generalised our fnding to another family of spin 
operators in sec. 5.5, we have not tested all possible Bell operators (only a few explicit 
constructions are known). Therefore, strictly speaking, we cannot claim that real-space 
Bell inequalities can never be violated in de Sitter, and it would be interesting to derive a 
generic mathematical argument (or expose a counter-example). 

Second, there are other classes of Bell inequalities, which rely on measuring the system 
at diferent times. Those are the temporal Bell inequalities [162–164], the Legget-Garg 
inequalities [165], and the bipartite temporal Bell inequality [166]. The last two were 
shown to be violated by cosmological perturbations in Fourier space in refs. [167] and [168] 
respectively, and their investigation in real space remains to be carried out. 

Third, it would be interesting to investigate correlations and entanglement between 
more than two spheres. This may efectively reduce the size of the traced-out regions, hence 
the importance of the efective decoherence efect. This may also require to account for non-
Gaussianities, which have been shown to be relevant for the search of primordial quantum 
signals [102, 169]. Indeed, non-Gaussian tails are known to be present in cosmological 
perturbations [67] and may give rise to genuine quantum correlations. The study of classical 
and quantum correlations between more than two spheres is also relevant in trying to 
understand how many-body entropic forces may exist between black holes, following the 
arguments developed in chapter 4. 

On top of the efective decoherence efect, a physical decoherence mechanism may take 
place in the context of cosmology, arising from the fact that the scalar feld describing cos-
mological adiabatic perturbations usually couples to other, unobserved degrees of freedom 
(additional felds, unobserved scales, etc.). This may come as an additional quantumness 
censor and would have to be studied, if one of the previously-mentioned directions turns 
out successful. Recently, in ref. [150], it was found that there exists a wide region in pa-
rameter space where the Fourier-space quantum discord is unafected by environmental 
efects even where they make the state of the system fully decohere. Generalising this cal-
culation to real-space setups would further test the relationship between quantum discord, 
Bell-inequalities violation, and the detectability of quantum features in cosmological felds. 
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5.6. Discussion 

This chapter closes part II, which dealt on the study of classical and quantum corre-
lations in cosmological perturbations. We conclude that fnding genuine quantum corre-
lations is inherently hard, if possible at all, due to the unavoidable efective decoherence 
present in any local QFT. 
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Figure 5.2: Expectation value of the GKMR Bell operator in the Bunch-Davies vacuum 
of the de-Sitter space-time, as a function of the parameters α = d/R and HR. Here α 
varies from its minimal value αmin = 2(1 + δ). The colour encodes the value of B, and 
a few contour lines are displayed in white. The UV and IR regulators (on which there is 
at most a logarithmic dependence) have been respectively set to δ = 0.01 and β = 10−4 

(see appendix B.1 for other slices in parameter space). Diferent behaviours are obtained 
depending on whether HR < 1 or HR > 1, i.e. depending on the size of the measured 
patches with respect to the Hubble radius (see main text for further details). From ref. [6]. 
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Figure 5.3: Expectation value of the GKMR Bell operator in the Bunch-Davies vacuum 
of the de-Sitter space time for β = 10−4 , HR = 10−2 , δ = 10−2 , and as a function of the 
parameter α = d/R. For α ≪ 1/(HR), all distances involved in the problem are smaller 
than the Hubble radius hence the de-Sitter and Minkowski results coincide. Note that 
values of α > 1/β are not displayed since they would correspond to d > Robs. From ref. [6]. 
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we also display (two times) the state purity p, to which B asymptotes in the small-HR 
limit, as well as mutual information I and quantum discord D, the latter being labelled 
with the rightmost vertical axis. From ref. [6]. 
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Figure 5.5: Expectation value of the Larsson Bell operator in the Minkowski vacuum, as 
a function of ℓ, for α = 3 and δ = 0.1. The blue solid line corresponds to the full result, 
the red dashed line to the low-ℓ approximation eq. (5.57), and the red dotted line to the 
large-ℓ limit eq. (5.58) and eq. (5.59). From ref. [6]. 
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Figure 5.6: Expectation value of the Larsson Bell operator in the de-Sitter space-time, as 
a function of ℓ, for α = 3 and δ = 0.1 and β = 10−4 . A few sub-Hubble values of HR 
are shown in the left panel, and a few super-Hubble values in the right panel. The red 
dashed line corresponds to the low-ℓ approximation eq. (5.57), and the red dotted line to 
the large-ℓ limit eq. (5.58) and eq. (5.59), both in the case HR = 1. From ref. [6]. 
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Chapter 6 

Irreversible gravity 

Someone once told me that time was a predator that stalked 
us all our lives. But I rather believe that time is a companion 
who goes with us on the journey and reminds us to cherish 
every moment because they’ll never come again. What we 
leave behind is not as important as how we’ve lived. After 
all, Number One, we’re only mortal. 

Jean-Luc Picard in Star Trek: Generations (1994). 

6.1 Motivation 

Forces are key elements of the classical description of a physical system. They dictate the 
equation of motion of a physical object in compliance with Newton’s second law, F⃗ = ma⃗. 
Forces can be generalized to relativistic physics (both SR and GR), taking the form of 
tensors. They can be classifed in three types depending on their microscopic origin: 

• Fundamental forces. They are due to the fundamental interactions between the 
elements of a physical systems and are functions of the charges of each element and 
their phase space coordinates. The four fundamental interactions are the strong, 
weak, electromagnetic and gravitational interaction. 

• Residual forces. They are due to the microstructure of the elements of a physical 
system. These elements are composite, so that their total total charge with respect 
to a fundamental interaction vanishes, but the charge of the constituents does not. 
The fundamental interaction between constituents of diferent elements leads to a 
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residual force between them. Examples of residual forces include the nuclear and van 
der Waals forces. 

• Entropic forces. They are due to the tendency of collective macroscopic systems to 
increase their entropy. An example is difusion due to Brownian motion. 

In theoretical physics we are mostly used to characterizing and working with funda-
mental forces and, to a lesser extent, residual forces. Nevertheless, entropic forces also play 
a role in theoretical physics and couple microscopic and macroscopic dynamics. Further-
more, since they are linked to the increase of entropy, they break the symmetry under time 
inversion and cause irreversible phenomena. 

As we saw in sec. 4.5, repulsive entropic forces may arise between PBH due to their 
tendency to increase the entropy of quantum feld of cosmological perturbations. Such 
proposal is derived from classical thermodynamics and non-relativistic forces. We would 
like to understand how to generally formulate entropic forces in a fully general-relativistic 
setup. 

The goal of this chapter is to provide a variational and covariant formulation of non-
equilibrium thermodynamics. This frst principles approach includes existing descriptions 
of non-equilibrium phenomena, such as real fuids, but allows for other sources of entropy 
and reconciles the irreversible nature of the laws of thermodynamics with the symmetries of 
the Einstein-Hilbert action. Entropic forces between PBH will serve as motivation, but we 
will not develop here the variational treatment of the thermodynamic variables associated 
to the quantum feld. 

The link between gravity and thermodynamics is deep and provides insight into the 
need of a UV-complete theory of quantum gravity. The work of Hawking [100] and Beken-
stein [105] introduced the notion of temperature and entropy of a black hole, leading to 
the formulation of black hole thermodynamics [123]. This points towards the existence of 
unknown microphysical quantum degrees of freedom (d.o.f.), being the geometric descrip-
tion of gravity an emergent macrophysical phenomenon. The link between gravity and 
thermodynamics has only grown ever since. It has been argued that it constitutes the frst 
piece of the connection between classical and quantum gravity [106]. The discovery of the 
area law of entanglement entropy [103, 104] particularly supports this idea. 

Motivated by the relevance of thermodynamics in gravity, we argue for the need of a 
proper understanding of the interplay between GR and non-equilibrium thermodynamics. 
GR, like other physical theories that can be deduced from the stationary action principle, 
is a time-reversible theory. It is true that the dynamics of horizons has irreversible fea-
tures, as dictated for instance by the already mentioned black hole thermodynamics, in 
particular the second law [130]. Still, irreversible phenomena are not included into GR in 
a complete and systematic way. It is the purpose of the work presented in this paper to 
provide such an inclusion, i.e. a covariant formulation of non-equilibrium thermodynamics 
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in GR. Our results show that non-equilibrium phenomena, either in the matter content or 
space-time itself, lead to a back-reaction on the gravitational feld equations with potential 
observational consequences. 

This chapter is organized as follows. In sec. 6.2 we review existing work on the varia-
tional formulation of non-equilibrium thermodynamics. In sec. 6.3 we apply this concept 
to gravity and show how it fts with both the Lagrangian and Hamiltonian formulation 
of GR. In sec. 6.4 we argue that temperature and entropy are naturally included in the 
matter or gravitational Lagrangian. In sec. 6.5 we look for applications of our results and 
obtain the non-equilibrium Friedmann and Raychaudury equations. In sec. 6.6 we include 
real fuids into the formalism. We fnish with a discussion of our results in sec. 6.7. 

6.2 Variational formulation 

In this section we review the variational formulation for non-equilibrium thermodynamical 
systems, which was developed by Gay-Balmaz and Yoshimura in refs. [170, 171]. Such 
formulation is the synthesis of two physical frameworks. On the one hand, one has the 
laws of thermodynamics in the axiomatic formulation of Stückelberg (see also sec. 2.6): 

• First law or energy conservation. For every thermodynamic system there is an ex-
tensive scalar quantity E called energy, which can only change due to interactions 
with the environment 

dE 
= P ext(t) . (6.1)

dt 

• Second law or positive entropy production. For every thermodynamic system there 
is an extensive scalar quantity S called entropy, which is a monotonically increasing 
function of time 

dS 
= I(t) ≥ 0 , (6.2)

dt 
where the equality holds only once the system is in equilibrium. 

On the other hand, the dynamics of a mechanical system is dictated by the stationary 
action principle: 

• Stationary action principle. For a dynamical system with confguration manifold Q 
and Lagrangian function L(q, q̇) : TQ → R, the physical curve defned on an interval 
t ∈ [t1, t2], satisfes the variational condition Z t2 

δ dtL(q, q̇) = 0 , (6.3) 
t1 
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which delivers the well-known Euler-Lagrange equations 

d ∂L ∂L − = 0 . (6.4)
dt ∂q̇ ∂q 

In order to merge these principles, let us now consider a mechanical system whose 
Lagrangian function depends on the entropy S as well. The stationary action principle 
dictates that the physical curve (q(t), S(t)) on Q × R, defned on an interval t ∈ [t1, t2], 
satisfes the variational condition Z t2 

δ dtL(q, ˙ (6.5)q, S) = 0 . 
t1 

Since the thermodynamical system is out of equilibrium, it must be supplemented with the 
laws of thermodynamics. Energy conservation is related to the symmetry of the Lagrangian 
under time translations and so is already encoded in the variational formulation. On 
the other hand, the second law requires the introduction of a friction or entropic force 
F : T Q × R → T ∗Q and is implemented by a variational constraint 

∂L 
(q, q̇, S)δS 

∂S 
= ⟨F (q, q̇, S), δq⟩ , (6.6) 

where ⟨·, ·⟩ denotes the scalar product. This variational constraint comes also with a 
phenomenological constraint 

∂L 
(q, q̇, S) Ṡ 

∂S 
= ⟨F (q, q̇, S), q̇⟩ . (6.7) 

The curve (q(t), S(t)) that satisfes all three conditions is given by: 

d ∂L ∂L − = F (q, q̇, S)
dt ∂q̇ ∂q 
∂L 

Ṡ = ⟨F (q, q̇, S), q̇⟩ . 
∂S 

(6.8) 

Hence, once the efect of non-equilibrium thermodynamics is enforced by the second law, 
one obtains the Euler-Lagrangian equation with an additional force of entropic origin. 
This variational formulation of non-equilibrium thermodynamics applies as it is to isolated 
systems, i.e. thermodynamic systems that do not exchange energy (heat and work) nor 
matter with its environment. In order to consider a closed thermodynamic system, i.e. one 
that exchanges energy but not matter with its environment, one must include the efect 
of external work in eq. (6.5) and external heat supply in eq. (6.7). The generalization to 
open systems, i.e. that allow both energy and matter exchange, is developed in [172]. As 
we will see later, one often fnds that the temperature of the thermodynamic system can 
be introduced as 

∂L 
= −T , (6.9)

∂S 
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although it is not necessary to do so in the general case. 

The thermodynamical nature of the system implies the explicit or implicit coarse-grain 
of some d.o.f. Its detailed microphysics may be unknown, but its macrophysics has an 
efect on the dynamics of other physical variables whose microphysics is known. This efect 
is encoded by the second law of thermodynamics, which restricts the confguration space 
and delivers a modifed equation of motion, and it allows us to study the coupling between 
these d.o.f. 

The full variational implementation of the continuum case is a bit more involved, should 
the entropy be allowed to have a spatial dependence [171]. The reason is that friction causes 
internal entropy production, but entropy can also increase or decrease locally due to entropy 
fuxes. For the sake of clarity and when required, we will instead follow a short-cut and 
introduce the required additional equations from physical considerations. 

6.3 Non-equilibrium dynamics in GR 

After reviewing the variational formulation of non-equilibrium thermodynamics we are 
ready to apply this same formalism to General Relativity. The coupling of the gravitational 
feld to coarse-grained physical d.o.f. delivers an efective modifcation of Einstein feld 
equations. We will frst show this by supplementing the Einstein-Hilbert action with the 
constraints given by the second law of thermodynamics. Then, we will check that it is also 
consistent with the Hamiltonian formulation of General Relativity. We will also provide a 
physical insight onto the efects of this efective modifcation of the gravitational dynamics 
by inspecting the Raychauduri equation. 

6.3.1 Lagrangian formulation 

The variational formalism can be applied directly to the Einstein-Hilbert action without 
any particular assumption on the metric. However, it requires the introduction of a foliation 
of the space-time manifold. This cannot be avoided: the second law of thermodynamics 
is linked to the existence of the arrow of time. Nevertheless, the Einstein feld equations 
keep its general covariance, as we will check shortly. 

Let us build our action as the sum of the Einstein-Hilbert action of General Relativity 
plus a matter term Z Z 

1 
d4 x 

√−g R + d4 xLm(gµν , S) , (6.10)
2κ 

where the coupling is κ = 8πG and we allow the matter Lagrangian Lm, which is a tensor 
density, to have a dependency on the entropy S. It may as well depend on additional felds 
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that describe the matter content. In this setup, the stationary action principle takes the 
form δ(6.10) = 0. That is Z � √ � Z 

1 δ( −g R) δLm ∂Lm
d4 x + δgµν + d4 x δS = 0 , (6.11)

2κ δgµν δgµν ∂S 

which is now supplemented with the variational constraint given by the second law of 
thermodynamics 

∂Lm 1 
δS = Fµν δg

µν , (6.12)
∂S 2 

where Fµν is the tensorial friction or entropic force. Analogously to the Lagrangian density 
one can defne the friction density as Z 

Fµν = d3 x 
√−g fµν . (6.13) 

The constrained stationary action principle gives the non-equilibrium Einstein feld equa-
tions 

1 
Rµν − Rgµν = κ (Tµν − fµν ) , (6.14)

2 
which includes the usual geometric and matter terms plus an entropic one. This equation 
is one of the main results of our work and shows how non-equilibrium thermodynamics is 
very relevant in gravitation. 

Note that the Bianchi identities, a refection of the general covariance of the theory, 
allow the covariant non-conservation of the energy-momentum tensor 

DµTµν = Dµfµν . (6.15) 

One can include a dependence of the entropy on the spatial position by introducing the 
entropy density s(x⃗, t) and rewriting the variational constraint as 

1√∂Lm 
δs = −g fµν δg

µν , (6.16)
∂s 2 

provided that there is no dependence of the Lagrangian on the partial derivatives ∂µs. 

For now, we have shown that the variational constraint is enough to obtain the non-
equilibrium Einstein feld equations. We will deal with the phenomenological constraint in 
the next subsection, once a foliation of space-time is explicitly introduced in the context of 
the ADM formalism. The phenomenological constraint will allow us to obtain an implicit 
expression for the force fµν . 

The fully rigorous implementation of the variational constraint becomes a bit more 
subtle once this spatial dependence is introduced. In practice, the function s is not the 
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entropy itself, but rather a function that plays a role in the entropy balance equation. In 
particular δs is the entropy density variation due to internal processes and not to entropy 
fuxes. We leave the discussion of this equation to the next section, as it also requires the 
introduction of a foliation. 

6.3.2 Hamiltonian formulation 

The variational formalism delivers a modifcation of Einstein feld equations due to the 
appearence of a force of entropic origin. We will make the efect of this entropic force more 
concrete by employing the Hamiltonian formulation of General Relativity or Arnowitt-
Deser-Misner (ADM) formalism. That is, we perform a (3+1)-splitting of space-time, 
a foliation that parametrizes the 4-dimensional metric gµν by means of a 3-dimensional 
metric hij and the lapse and shift functions N and N i . Space-time dynamics is treated as 
the evolution of space-like hypersurfaces Σt, parametrized by some parameter t, which is 
usually taken to be the time coordinate. We already reviewed this formalism in sec. 1.4 
in the context of Cosmological Perturbation Theory. Here, it will allow us to include non-
equilibrium phenomena in a general way. For more details, see e.g. [48]. In the ADM 
formalism, an arbitrary metric takes the form 

ds2 = −(Ndt)2 + hij (dxi + N idt)(dxj + N jdt) . (6.17) 

We will denote as Σ the 3-dimensional hypersurface and n its normal vector: 

nα = (−N, 0, 0, 0) , (6.18) 
αwhich is a unit vector, i.e. nαn = −1. Space-time indices are lowered and raised as usual 

by gµν . Spatial indices, however, are lowered and raised by hij , which furthermore satisfes 
hij h

jk = δk 
i . 

Equivalently, one can write the splitting of the metric as: 

hµν = gµν + nµnν , (6.19) 

so that it is clear that hµν is purely tangential to the hypersurface. Then its spatial part 
hij is equal to the pull-back of the 4-dimensional metric gµν onto Σ and is a legitimate 
3-dimensional metric. 

The Einstein-Hilbert action for this parametrization of the metric is given by the fol-
lowing gravitational Lagrangian � �√√ (3)R + Kij K

ij − K2LG = −g R = N h , (6.20) 

where Kij is the extrinsic curvature of the 3-hypersurface Σ and is given by the Lie deriva-
tive along the normal vector n 

1 1 
Kij = £nhij = (∂0hij −∇iNj −∇j Ni) . (6.21)

2 2N 

135 



Chapter 6. Irreversible gravity 

where ∇ denotes the covariant derivative on Σ with respect to the 3-metric hij . Its trace 
and traceless part are � �√1 

K = hij Kij = ∂0 ln h −∇iN
i 

N (6.22)
1

K̄ij = Kij − Khij . 
3 

Unlike the intrinsic curvature, described by the Riemann tensor Rρ and its contractions, µνλ 
the extrinsic curvature is a quantity that depends on the embedding of a surface in a larger 
manifold. 

The extrinsic curvature can be a complicated function of the parameters. Therefore, 
it is convenient to shift to the Hamiltonian formulation of the stationary-action principle. 
Note that the only quantity whose time derivative appears in the gravitational Lagrangian 
is the 3-spatial metric hij and, thus, it is the only dynamical or propagating d.o.f. Corre-
spondingly, one defnes its conjugate momentum as 

√ � �∂LG
Πij Kij − Khij= = h . (6.23) 

∂ ̇hij 
With this, the gravitational Lagrangian can be rewritten as � �√ N 1 

h (3)R − Πij Π
ij − Π2 − 2Πij ∇iNj

h 2 (6.24) 
LG = N √ � � 

= Πij ˙ Πij Njhij − NH− NiHi − 2∇i , 

where Π = hij Πij and we introduced the functions � �√ 1 1 
h (3)R + ΠijΠ

ij − Π2 

h 2 
H = − √ 

(6.25)� � 
Hi h−1/2Πij= −2∇j . 

Since N and Ni are not dynamical variables, they merely enter the gravitational Lagrangian 
as Lagrange multipliers. One defnes the gravitational Hamiltonian as � � 

= Πij ˙ Πij NjHG hij − LG = NH + NiHi + ∇i , (6.26) 

with the Hamiltonian and momentum constraints 
δHG δHG 

= H = 0 = Hi = 0 . (6.27)
δN δNi 

The evolution equations are obtained upon taking variations of the Hamiltonian, but these 
need to be modifed once the second law of thermodynamics is enforced and entropic forces 
come into play. The frst Hamilton equation is 

δHG ˙ ∂ḣ kl 
Πkl − 

∂LG ∂ḣ kl 
= hij − = ḣ ij . (6.28)

δΠij ∂Πij ∂Πij∂ ̇hkl 
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This equation is true regardless of the constraint imposed by the second law of thermody-
namics. The second Hamilton equation will carry the efect of non-equilibrium thermody-
namics. Let us compute it starting from the derivative 

∂HG 
= Πkl ∂ḣ

 
kl ∂LG ∂ḣ kl ∂LG ∂LG ∂LG ∂h

kl 
− − = − = − . (6.29)

∂hij ∂hij ∂ ̇  ∂hij ∂hij ∂hij ∂hkl ∂hijhkl 

One usually applies the feld equation in order to obtain the second Hamilton equation (see 
e.g. [173]). Here, we will do the same but taking into account the constraints imposed by the 
second law of thermodynamcs. The 3+1 splitting of the space-time manifold allows us to 
identify the 3-metric hij as the dynamical d.o.f. Then we argue that the phenomenological 
constraint should involve only those and, therefore, relates their dynamical evolution to 
changes in the entropy density 

√ 
hij

∂L 
£ns =

1 
N h f̃ij £n . (6.30)

∂s 2 
The Lie derivative £n along the normal vector n serves here as a generalization of the time 
derivative. Note that the same equation for the phenomenological constraint is obtained if 
one characterizes the evolution of the hypersurfaces by the fow along the vector m = Nn, 
which may be preferred as it satisfes g(∂t,m) = 1. The variational constraint should only 
involve dynamical d.o.f. as well 

√∂L 
δs =

1 
N h f̃ij δh

ij . (6.31)
∂s 2 

The tensor f̃ij should now be understood as the pull-back of the projection of fµν on Σ, 
i.e. 

f̃ij = hµhjν fµν (6.32)i 

We argue that this is the only non-vanishing part of fµν . Our claim is supported by the 
fact that 

µ£n(n n ν ) = 0 (6.33) 

The tensor f̃ij will have contributions from its trace and trace-less component according 
to the tensor decomposition 

1 ˜ f̄ + fTT f̃ij = fhij + ∇(if̃  
j) + ∇i∇j , (6.34)ij3 

where 
¯ ∇ifTT = hij fTT f̃ = f̃ij hij ∇if̃i = 0 ∇i∇if = 0 ij ij = 0 . (6.35) 

We point out now that the interpretation of s(t, ⃗x) as the entropy density is subtle. Instead, 
it is a function that satisfes the following entropy balance equation 

£ns = £ns tot −∇ij
i , (6.36)s 
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where £ns
tot is the total entropy production and js is the entropy fux in the hypersurface. 

Hence, £ns is interpreted as the internal entropy production. It is important to bear 
this balance in mind when applying the phenomenological constraint to actual physical 
scenarios. We refer the interested reader to the appendix and to the original work on the 
variational formulation of non-equilibrium thermodynamics in the continuum [171] for the 
description of a fully variational formulation and its consistency with the shortcut version 
presented here. 

Once we have properly taken into account the constraints given by the second law of 
thermodynamics, we are ready to obtain the feld equation for the 3-metric as 

√δLG ∂LG ∂LG 1 
= − ∂µ = − N h f̃ij . (6.37)

δhij ∂hij hij∂∂µ 2 

One can then recast it as � � 
∂hkl 

= ∂µ 
hkl 

− N h f̃  
kl (6.38) 

∂LG ∂h
kl ∂LG 1 √ 

∂hkl ∂hij ∂∂µ 2 ∂hij 

and rewrite the derivative � �√∂HG ∂LG 1 
= − ∂µ 

hkl 
− N h f̃  

kl 
∂hkl 

. (6.39)
∂hij ∂∂µ 2 ∂hij 

Now, by using the relations 

∂hij 1 
= − (hikhjl + hilhjk)

∂hkl 2 
(6.40)

∂∂µhij 1 
= − δν (hikhjl + hilhjk)

∂∂ν hkl 2 µ 

we get √∂HG ∂HG 1 
Πij h f̃ ij= − ˙ + ∂k − N (6.41)

∂hij ∂∂khij 2 
and introducing the functional derivative 

δHG ∂HG ∂HG 
= − ∂µ (6.42)

δhij ∂hij ∂∂µhij 

we obtain the second Hamilton equation 
√δHG 1 

Πij − h f̃ ij= − ˙ N . (6.43)
δhij 2 

This equation is modifed by the existence of an entropic force in consistency with the 
thermodynamical constraint. Physically, it is this equation that describes the dynamical 
evolution, for it implicitly contains a second time derivative of the feld. 
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Matter can be included in the Lagrangian density as 

L = LG(hij , ḣ ij ) + 2κ Lm(hij , S) , (6.44) 

where we introduced the gravitational coupling in the matter Lagrangian for convenience. 
Then the Hamilton equations become 

δHG 
= ḣ ij

δΠij 
(6.45)√δHG δLm

Πij − 2κ h f̃ ij= − ˙ − κN ,
δhij δhij 

where the entropic term carries the coupling κ as well if it comes from the matter La-
grangian. The Hamiltonian and momentum constraints are likewise modifed by the intro-
duction of matter 

δHG ∂Lm δHG ∂Lm 
= H = 2κ , = Hi = 2κ . (6.46)

δN ∂N δNi ∂Ni 

The variational formalism for non-equilibrium thermodynamics developed in refs. [170,171] 
fts nicely in both the Lagrangian and Hamiltonian formulation of General Relativity. 
This means that one can naturally consider efects of non-equilibrium thermodynamics in 
General Relativity and obtain analytical or numerical solutions to the equations of motion. 

6.3.3 The Raychauduri equations 

The appearance of an entropic term in Einstein’s feld equations can have dynamical efects 
that may look as a violation of the energy conditions. We wil look now into this possibility 
by studying a congruence of worldlines in an arbitrary space-time. These need not be 
geodesics and have tangent vector n. The congruence is then characterized by the tensor 

1 
Θµν = Dν nµ = Θhµν + σµν + ωµν − aµnν (6.47)

3 

where θ is the expansion rate of the congruence, σµν is its shear or symmetric trace-less 
part and ωµν is its vorticity or antisymmetric part. If the worldline is not a geodesic, then 
the congruence sufers an acceleration given by 

aµ = n ν Dν nµ (6.48) 

One can compute the Lie derivative of the expansion of the congruence along its tangent 
vector and fnd the Raychauduri equation [48] 

1 
£nΘ = − Θ2 − σµν σ

µν + ωµν ω
µν − Rµν n

µn ν + Dµa
µ . (6.49)

3 
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Let us perform the standard analysis of the sign of this equation. It is clear that σµν σ
µν > 0 

and Θ2 > 0. On the other hand, if the congruence is chosen to be orthogonal to the spatial 
hypersurfaces, as we have been considering, then the vorticity vanishes ωµν = 0. Lastly, 

ν νit is left to consider the term Rµν n n , which we can rewrite with the help of the feld 
equations � � 

1 1µ ν µ ν µRµν n n = 8πG Tµν n n + T − fµν n n ν − f (6.50)
2 2 

If the strong energy condition is satisfed, then 

1µTµν n n ν ≥ − T (6.51)
2 

and, in the absence of intrinsic acceleration, aµ = 0, we can establish the bound � � 
1 1 

£nΘ+ Θ2 ≤ 8πG fµν n
µn ν + f (6.52)

3 2 

For a vanishing entropic force fµν = 0, this means that an expanding congruence can-
not indefnitely sustain its divergence and will eventually recollapse. On the contrary, a 
positive and sufciently large entropic contribution can avoid such recollapse. This may 
become relevant for an expanding universe, but also to generic gravitational collapse and 
the singularity theorems [174–176]. 

The shear σµν is also afected by the inclusion of an entropic force. Its evolution 
equation is given by 

2 1 1λ ρ ˆ£nσµν = − θ σµν − σµλσλν − ωµλω
λ
ν + Cλµρν n n + hµν (σλρσ

λρ − ωλρω
λρ) + Rµν ,

3 3 2 
(6.53) 

where Cλµρν is the Weyl tensor and R̂µν is the spatial, trace-free part of the Ricci tensor 

1
R̂µν = hµλhνρRλρ − hµν hλρR

λρ (6.54)
3 

This explicit dependence on the Ricci tensor allows us to directly include the efect of the 
entropic force and establish a bound. Indeed, using the modifed Einstein feld equation 
we get � � 

ˆ ˆRµν = 8πG Tµν − f̂µν , (6.55) 

ˆwhere f̂µν and Tµν are the analogously defned spatial, trace-free part of the friction and 
stress-energy tensors. Then we can rewrite the evolution equation for the shear as: 

2 λ ρ£nσµν = − θ σµν − σµλσλν − ωµλω
λ
ν + Cλµρν n n 

3 � � (6.56)
1 ˆ+ hµν (σλρσ

λρ − ωλρω
λρ) + 4πG Tµν − f̂µν ,

3 
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which means that the entropic force directly sources the shear in a way similar to that of 
the stress-energy tensor. 

These results also apply to a congruence of worldlines which are not normal to the 
hypersurfaces that defne the foliation of the space-time. In that case, the vorticity is 
non-vanishing and has the evolution equation 

2 
£nωµν = − θ ωµν − 2σλ ωµ]λ , (6.57)[ν3 

which is not directly sourced by the entropic term. Of course, it is still afected indirectly 
due to modifcations in the metric, the expansion and the shear. 

The decomposition of the 2-tensor describing the congruence of geodesics into global 
expansion, shear and vorticity, which are afected by the entropic forces via the correspond-
ing Raychaudhuri equations, brings to mind the evolution of large scale structures in the 
cosmic web due to gravitational collapse of initial fuctuations. The growth of structure 
brings order into an otherwise homogeneous universe, so we expect a corresponding en-
tropy production in the outskirts of large structures like galaxies and clusters of galaxies. 
According to our formulation, on supergalactic scales, such an entropy production should 
give rise to a local acceleration, leaving large voids between superclusters, enhancing the 
contrast induced by the usual gravitational collapse. Moreover, in the formation of the 
frst spiral galaxies there is also an associated entropy production which could give rise to 
a tiny acceleration, that may explain part of the rotation curves of galaxies, beyond that 
produced by the dark matter in the halos of galaxies. 

6.4 Temperature and entropy 

So far we have imposed the second law of thermodynamics by a constraint which contains 
the derivative ∂L/∂S. The goal of this section is to understand how this term is often linked 
to the concept of temperature of a thermodynamical system, not only in a mechanical 
system but also in General Relativity. In doing so, we will consider two sources of entropy: 
hydrodynamical matter and gravity itself. 

6.4.1 Bulk entropy: Hydrodynamical matter 

Let us frst consider a mechanical system with Lagrangian given by 

L(q, q̇, S) = EK (q, q̇) − U(q, S) , (6.58) 

where EK and U are, respectively, the kinetic and internal energy. Notice that only the 
latter depends on the entropy S. One way of obtaining the temperature of this thermody-
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namic system is by defnition: 
∂U ∂L 

T = = − . (6.59)
∂S ∂S 

Then the entropic constraint can also be written as 

T Ṡ = −F q̇ > 0 . (6.60) 

We can generalize this to a fuid whose Lagrangian is pure internal energy, as it is the case 
for instance of the cosmic fuid [45]. The matter Lagrangian is then given by Z Z 

L = d3 xL = − d3 x 
√−g ρ(gµν , s) , (6.61) 

where ρ(gµν , s) is the energy density of the fuid. Hence, hydrodynamic matter has a well 
defned notion of temperature 

1 ∂Lm ∂ρ 
T = −√ = − . (6.62)−g ∂s ∂s 

If the fuid is homogeneous and isotropic this defnition is equivalent to 

∂L 
T = − . (6.63)

∂S 

The tensor entropic force for a space-time flled with hydrodynamic matter in the ADM 
formalism is then given implicitly by 

ḣ ijFij = −T Ṡ ≤ 0 . (6.64) 

Since entropy is a monotonically increasing function of time, the second law of thermody-
namics constraints the sign of the tensor entropic force. 

6.4.2 Surface terms: Entropy in the boundary 

One can also wonder about the efect of the entropy associated to space-time itself, in 
particular to horizons. It can be incorporated in a natural way by extending the Einstein-
Hilbert action with a surface term, the Gibbons-Hawking-York (GHY) term of refs. [177, 
178]. 

Let us consider a space-time manifold M with metric gµν , which has a horizon hyper-
surface that we denote by H. This is a submanifold of the whole space-time. By taking 
nµ, the normal vector to the hypersurface H, we can defne an inherited metric on H 

gµν = hµν + nµnν . (6.65) 
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With this, one can defne the GHY term as Z √ 
SGHY =

1 
d3 y hK , (6.66)

8πG H 

where K is the trace of the extrinsic curvature of the surface. We already considered 
this quantity when discussing the ADM formalism. Notice, however, that here we are not 
foliating the entire space-time, but rather considering the properties of a particular hyper-
surface, the horizon. From the thermodynamic point of view, the GHY term contributes to 
the internal energy of the system. Hence, it can be related to the temperature and entropy 
of the horizon as Z 

SGHY = − dt N(t) TS . (6.67) 

where we have kept the lapse function N(t), to indicate that the variation of the total action 
with respect to it will generate a Hamiltonian constraint with an entropy term together 
with the ordinary matter/energy terms. In order to illustrate this, let us now compute the 
GHY for two horizons of interest: the event horizon of a Schwarzschild black hole and the 
horizon of black holes in FLRW universe. 

Schwarzschild black hole 

In order to illustrate this, let us now compute the GHY term for the event horizon of a 
Schwarzschild black hole of mass M . Its space-time is described by the metric � � � �−12GM 2GM 

ds2 = − 1 − dt2 + 1 − dr2 + r 2dΩ2
2 . (6.68) 

r r 

The normal vector to a 2-sphere of radius r around the origin of coordinates is r 
2GM 

n = − 1 − ∂r . (6.69) 
r 

With this, the trace of the extrinsic curvature for such a sphere scaled by the metric 
determinant is √ 

hK = (3GM − 2r) sin θ . (6.70) 

Integrating over the angular coordinates and setting the 2-sphere at the event horizon, i.e. 
r = 2GM , and restoring for a moment ℏ and c, the GHY becomes Z Z 

SGHY = − 
1 

dtMc2 = − dtTBH SBH , (6.71)
2 

where TBH is the Hawking temperature and SBH is the Bekenstein entropy of the Schwarz-
schild black hole 

ℏc3 Ac3 4πGM2 
kBTBH = , SBH = kB = kB . (6.72)

8πGM 4Gℏ ℏc 
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This favors the interpretation of the GHY term of a horizon as a contribution to the internal 
energy in the thermodynamic sense. 

Cosmological black holes 

The natural inclusion of temperature and entropy from surface terms allows is also useful 
when embedding black holes into an expanding universe. This embedding is not unique [68], 
but one can keep the discussion rather generic by considering the generalized McVittie 
solution 

= −N(t)2 B(t, r̄)2 � �
2ds2 dt2 + a(t)2A(t, r̄)4 dr̄ + r̄2dΩ2 , (6.73)2A(t, r̄)2 

where 
m(t)

A(t, r̄) = 1 + 
2r̄ (6.74) 
m(t)

B(t, r̄) = 1 − ,
2r̄ 

being m(t) > 0 the comoving mass of the black hole, i.e. m(t) = M(t)/a(t), and N(t) the 
lapse function linked to the residual gauge freedom. Note the use of isotropic coordinates, 
which are obtained by introducing a new comoving radial coordinate r̄, related to the usual 
areal radius r by � �2 m(t) 

r = a(t)r̄ 1 + . (6.75)
2r̄ 

For a black hole much smaller than the Hubble scale, its apparent horizon is located at its 
Schwarzschild radius [68] and we can assign to it the usual Bekenstein entropy and Hawking 
temperature. Performing a computation similar to that of the Schwarzschild black hole, 
we arrive at the following result for the GHY term Z 

SGHY = − dtN(t)TBH SBH . (6.76) 

The growth of black holes comes with an increase in the entropy and an associated entropic 
force, which may have an impact on the dynamics of the scale factor. Furthermore, if the 
universe is populated by many black holes, one can compute their average contribution to 
the stress-energy tensor from these surface terms. Indeed, if one takes now the homogeneous 
and isotropic fat FLRW metric, which is valid at sufciently large scales, then the GHY 
term can be approximated as Z ZX √ SGHY = − dtN(t)TBH SBH ≃ − d4 x −g nBH TBH SBH , (6.77) 

i 

where nBH is the number density of the black holes. This delivers the following contribution 
to the stress-energy tensor 

T00 = N(t)2ρBH . (6.78) 
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The other components of the stress-energy tensor depend on the accretion onto the black 
holes. If there is no accretion, as it is the case of the original McVittie metric [68], then 
the Tij and T0i components vanish and so does the pressure p and we recover the standard 
interpretation of a collection of black holes as dust. Other accretion conditions may lead 
to diferent equations of state. 

Interpretation as a thermodynamic system 

One may interpret the efects of the GHY term as the inclusion of a thermodynamic system. 
For a localized object like a black hole, its properties are characterised by the Lagrangian 

L = −U , (6.79) 

where U is the internal energy of the system, which we fnd to be 

U = −NTS . (6.80) 

If we ignore the lapse function, linked to the freedom in choosing the time coordinate, this 
expression is similarly found in usual thermodynamics. 

Furthermore, if the thermodynamic system is extended, as in the case of the cosmolog-
ical black holes, one may interpret this thermodynamic system not as an isolated object 
but rather as a fuid. In that case the internal thermodynamic energy can be written as a 
spatial integral of an energy density Z 

U = d3 x 
√−g ρ (6.81) 

and deliver the Lagrangian of a perfect fuid. This fuid satisfes the second law of ther-
modynamics and may be considered as an efective real fuid after allowing an increase in 
entropy. In sec. 6.6 we discuss how the variational formalism includes the theory of real 
fuids and provides an extension thereof. 

6.5 Non-equilibrium Cosmology 

Let us now illustrate the potential of our covariant formulation of non-equilibrium ther-
modynamics in General Relativity by studying how it afects the trajectory of particles. 
We will consider a particularly relevant example of a space-time, an FLRW universe, and 
show how the Friedmann equations get modifed in this context. These equations directly 
afect the geodesics followed by inertial observers. 
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Chapter 6. Irreversible gravity 

The efect of non-equilibrium thermodynamics in an expanding FLRW universe requires 
the consideration of a homogeneous and isotropic space-time described by the metric � � 

dr2 
ds2 = −N(t)2dt2 + a 2(t) + r 2dΩ2 . (6.82)

1 − kr2 2 

This fts naturally with the ADM formalism upon the choice for the shift functions 

N i = 0 (6.83) 

as well as the 3-dimensional metric h 

a2(t)
hrr = 

1 − kr2 
2 (6.84)

hθθ = a 2(t) r 
hφφ = a 2(t) r 2 sin2 θ . 

These are imposed by the Copernican Principle, i.e. homogeneity and isotropy. On the 
contrary, the lapse function N is not determined a priori, so we will keep it free for now. It 
is related to the freedom in choosing the time coordinate. The square root of the 3-metric 
determinant is √ a3(t) r2 sin θ 

h = √ . (6.85)
1 − kr2 

We can then compute the extrinsic curvature and fnd the conjugate momentum to the 
3-metric √1 ȧ 2 ȧ 

Kij hij Πij h hij= = − (6.86)
N a N a 

and the corresponding traces 
√3 ȧ 6 ȧ 

K = Kij hij = Π = Πij hij = − h , (6.87)
N a N a 

as well as the 3-dimensional Ricci scalar 
6k(3)R = 
2 . (6.88) 
a 

The frst Hamilton equation provides no additional information by itself, so the dynamics 
is obtained from the second Hamilton equation and the Hamiltonian constraint. Let us 
begin with the Hamiltonian constraint. We need the quantity � �21 6 ȧ 

Πij Π
ij − Π2 = − h . (6.89)

2 N2 a 

Then 
√ √ � ȧ �2 δLm6k 6 H = − h − h = 2κ . (6.90) 

a2 N2 a δN 
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The RHS is related with the stress-energy tensor in the following way 

√δLm δLm 
= −T 00N2 = − 2N h . (6.91)

δN δg00 

Note the slightly diferent defnitions for the contravariant and covariant stress-energy 
tensor, due to the sign fip of the functional derivative 

−2 δLm
Tµν = √ 

δgµν−g 
(6.92)

2 δLm
T µν = √ . −g δgµν 

An FLRW universe is flled with a cosmological perfect fuid, whose stress-energy tensor is 
given by 

T µν µ ν µν= (ρ + p)u u + pg , (6.93) 

where the density ρ and pressure p are allowed to have a dependence on the entropy S 
as well as on the scale factor a. Since the fuid that we are considering is isotropic and 
homogeneous, its 4-velocity is � � 

1 
uµ = , 0, 0, 0 gµν u

µu ν = −1 . (6.94)
N 

Then we can identify the time-time component of the stress-energy tensor with the energy 
density of the fuid 

T 00 = ρN−2 (6.95) 

and the Hamiltonian constraint becomes 

√ � �2√ a √6k 6 ˙ H = − h − h = −2κρ h . (6.96)
2 N2a a 

This expression can be rearranged as � �21 ȧ k 8πG 
+ = ρ (6.97)

N2 a 2a 3 

This is the frst Friedmann equation, which is nothing but a constraint on the dynamics of 
the FLRW space-time. If we make the choice N = 1, which corresponds to the choice of 
cosmic time as time coordinate, we get the frst Friedmann equation in its usual form � �2 ȧ k 8πG 

+ 
2 = ρ . (6.98) 

a a 3 
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Of course, one can work with conformal time and choose N = a. Then the frst Friedmann 
equation becomes � �2′ a 8πG 

+ k = ρa2 , (6.99) 
a 3 

which is consistent with a direct coordinate transformation. 

Let us take a look now at the equation of motion involving the trace of the conjugate 
momentum 

Π̇ =Π̇ ij hij +Πij ḣ ij 
√δHG δLm 

= − hij + 2κ hij − κN h f̃ ij hij +Πij δHG 
δhij δhij δΠij (6.100) 
√ √ � � √1 3 
h (3)R += N N h Kij K

ij − K2 + 2κ
δLm 

hij − κN h f̃ ij hij . 
2 2 δhij 

The only term left to compute in this expression is � �26 ȧ 
Kij K

ij − K2 = − . (6.101)
N2 a 

Then: 

√ √ � �2 
! 

√ √1 6k 3 6 ȧ
Π̇ = N h + N h − + κ hNT ij hij − κN h f̃  , (6.102)

2 a2 2 N2 a 

where we used the defnition of the spatial components of the stress-energy tensor 

√ δLm
h T ijN = 2 (6.103)

δhij 

On the other hand, we have the geometric relation " # 
√ √ √ ˙ � �2 ä ȧ N ȧ˙ ˙ hK2Π = −2 hK − 2N = −6 h − + 2 , (6.104)

aN aN2 a 

where we used ! 
2 ˙ä ȧ ȧ N

K̇ = 3 − − . (6.105)
aN a2N aN2 

Using both expressions for Π̇, the frst Friedmann equation (i.e. the Hamiltonian constraint) 
and the spatial trace of the stress-energy tensor, 

1 4πG 
κT ij hij = 3p , (6.106)

6 3 
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we get the equation of motion 

˙ä ȧN − 
aN2 aN3 

4πG 4πG 
= − (ρ + 3p) + Nf̃  . 

3 3 
(6.107) 

Of course, for N = 1 this is nothing but the second Friedmann equation with an additional 
term of entropic origin. The efect of non-equilibrium thermodynamics is now encoded in 
the spatial trace 

f̃ = f̃ ij hij . (6.108) 

This trace is related to the rate of entropy production by the second law of thermodynamics, 
encoded in the phenomenological constraint. Let us check how 

1 δL 1˙ ḣ ijS = a 3f̃ij = −aa˙ 2f̃  . (6.109)
2κ δS 2 

Introducing the temperature of the cosmological fuid, 

1 ∂L 
= −T , (6.110)

2κ ∂S 

we get the expression for the trace of the entropic force 

T Ṡ 
f̃ = 

2 . (6.111) 
aa˙ 

With this, the equation of motion becomes ! 
ä 4πG 4πG T Ṡ 
= − (ρ + 3p) + , (6.112) 

a 3 3 a2ȧ 

which is the second Friedmann equation modifed by the enforcement of the second law of 
thermodynamics. 

Most of the expansion history of the universe is adiabatic and thus remains unafected by 
the inclusion of the efects of non-equilibrium thermodynamics in the Friedmann equations. 
Nevertheless, we can think of several phenomena in the expansion history during which 
entropy is copiously produced, such as the reheating of the universe, phase transitions and 
gravitational collapse to form black holes. We claim that these and other non-adiabatic 
phenomena in cosmology should be revisited, as their efect on the expansion rate may be 
non-negligible. 

The assumption of homogeneity and isotropy implies that the tensor friction or entropic 
force f̃ij has only a trace component f̃ . If we perturb around this solution, we expect the 
trace-less components to play a role as well, following the tensor decomposition in eq. (6.35). 
We leave the exploration of its consequences to a future publication where we will study 
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the theory of cosmological perturbations in the presence of entropic forces arising from the 
trace, shear and vortical components of f . 

Certain processes like gravitational collapse and structure formation are highly non-
linear and cannot be understood within perturbation theory. It may be useful to treat 
this regime, highly non-linear and out of equilibrium, as an efective fuid. In this regard, 
we consider in the next section the similarities between generic entropic forces and the 
viscosity of a real fuid. 

In principle, out of equilibrium phenomena could be incorporated into N-body simula-
tions that study structure formation. This could be achieved by taking the non-relativistic 
limit of the non-equilibrium gravitational equations of motion in order to obtain a Newto-
nian plus entropic force. 

6.6 Real fuids in the variational formalism 

The results obtained in the previous sections are consistent with the relativistic dynamics 
of real fuids, i.e. fuids with viscosity and heat transfer. Such fuids are described by a 
stress-energy tensor that deviates from that of a perfect fuid [179, 180] 

Tµν = (ρ + p)uµuν + pgµν + τµν . (6.113) 

This can be seen as a particular case of the variational formalism if the following equation 
is satisfed 

τµν = −fµν (6.114) 

The additional term satisfes the orthogonality property 

uµτµν = 0 . (6.115) 

This is consistent with our description in the ADM formalism. In the comoving orthog-
onal gauge, uµ = nµ and so the motion of the fuid is orthogonal to the constant time 
hypersurfaces. 

For a vanishing chemical potential, the second law of thermodynamics of a real fuid 
takes the form 

µTDµ(σu
µ) = τµν Dν u (6.116) 

The LHS can be split into parallel and perpendicular components to the hypersurfaces, so 
that 

µDµ(σu
µ) = nµn αDα(σu

µ) + ∇µ(σu
µ) = nµ£n(σu

µ) + nµσuαDαn + ∇µ(σu
µ) , 

(6.117) 
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where σ is the local entropy density of the fuid. In the comoving orthogonal gauge this 
expression becomes 

Dµ(σu
µ) = £nσ + ∇µ(σn

µ) . (6.118) 

On the other hand, in this gauge we have 

1 
Dµuν = £nhµν

2 
(6.119) 

and the temperature of the fuid can be identifed with 

1 ∂L 
T = − √ (6.120) 

N h ∂s 

We fnd then that the second law of thermodynamics of a real fuid can be rewritten in 
terms of the phenomenological constraint. This requires the following identifcations 

totfµν = −τµν s = σ ji = −σui . (6.121)s 

We can still go one step further in the identifcation between the entropic force tensor 
and the viscosity tensor by inspecting its usual form � � 

2 
τµν = − η (Dν uµ + Dµuν − uν u αDαuµ − uµu αDαuν ) − ζ − η Dαu α (gµν + uµuν ) ,

3 
(6.122) 

where η and ζ are, respectively, the shear and bulk viscosity coefcients. Let us now 
focus on a homogeneous and isotropic fuid flling an FLRW universe. In this example, the 
covariant derivatives are given by 

ȧν δνDµu = , (6.123)µa 
which means that the viscosity tensor is reduced to 

ȧ 
τµν = −3ζ hµν . (6.124) 

a 

We can compare this with the expression of the trace of the entropic force obtained previ-
ously 

T Ṡ 
= f̃ = f̃ ij hij = −τij hij (6.125) 

a3H 
and obtain the following identity for the bulk viscosity coefcient 

T Ṡ 
ζ = > 0 . (6.126)

9H2 3a 

Let us elaborate a bit on the results of this section. First of all, the conventional formulation 
of general relativistic real fuids can be recovered by means of the variational formulation 
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of non-equilibrium thermodynamics in General Relativity. In fact, one does not even need 
to impose additional terms on the energy momentum tensor. Instead, they are efectively 
generated by simply assuming the pressure and the energy density of the fuid to have a 
dependency on the entropy. 

The variational description allows the inclusion of dissipative efects to any matter or 
gravity content, as long as it has time-dependent entropy. This means that we can interpret 
non-equilibrium phenomena in General Relativity as an efective viscosity term of a real 
(i.e. non ideal) fuid. In this sense, our results allow for a variational, frst principles 
formulation of real fuids and the generalization of their dissipative efects to arbitrary 
matter and gravity contents. 

We point out that the variational and phenomenological constraints are imposed before 
obtaining the equations of motion and must be satisfed at all times. This is a fundamental 
diference with the theory of real fuids. 

Here we considered a vanishing chemical potential, which means that we did not impose 
particle number conservation. This excludes thermal conduction efects. Nevertheless, one 
could in principle impose also particle number conservation at the Lagrangian [171]. 

In the homogeneous and isotropic limit there is only bulk viscosity, parametrized by 
ζ. However, shear viscosity, parametrized by η, may play a role in characterizing entropic 
forces in gravitational collapse and structure formation. 

6.7 Discussion 

In this chapter we constructed a variational formulation of non-equilibrium thermodynam-
ics in GR. This allows for a synthesis of two key physical principles: the extremal action 
and the laws of thermodynamics. More precisely, thermodynamics is included as a vari-
ational constraint, which modifes the variational problem posed by the extremal action 
principle. Consequently, the equations of motion are modifed in compliance with the laws 
of thermodynamics, allowing for a departure of (global) equilibrium. 

Applications to Cosmology are immediate. Non-equilibrium phenomena lead to a mod-
ifcation of the usual cosmic dynamics, with the inclusion of a repulsive (accelerating) term 
in the second Friedmann equation. We identify two possible contributions to the entropy of 
the universe: fuids (bulk entropy) and horizons (boundary entropy), such that dissipative 
phenomena in real fuids and horizon growth lead to entropy production. In contrast to 
the usual formulation of real fuids, we point out that ours is based on frst principles and 
allows for the inclusion of other irreversible phenomena that do not admit, in principle, a 
fuid description. 

It is key to explore possible contributions to the entropy of the universe and identify 
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whether entropy-producing phenomena could dominate the dynamics of the universe, thus 
leading to an accelerated expansion. This will be the main goal of the following chapter. 
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Chapter 7 

Entropic cosmic acceleration 

Andábamos sin buscarnos pero sabiendo que andábamos para 
encontrarnos. 

Julio Cortázar, Rayuela (1963). 

7.1 Motivation 

Gravity is usually regarded to be a purely attractive force. Indeed, Newton’s law of Grav-
itation admits only positive charges (gravitational mass), as opposed to Coulomb’s law of 
electrostatics, which admits both positive and negative (electric) charges. Even though this 
requirement was frst imposed by hand, as in our daily experience no negative gravitational 
mass is ever observed, can be deeply justifed within feld theory. While the photon is a 
spin-1 feld and admits both positive and negative charges, the graviton is a spin-2 feld 
and admits only positive charges. 

A similar observation can be done in the geometric language provided by GR and its 
description of the gravitational interaction. Indeed, geodesic congruences tend to converge 
due to Penrose-Hawking theorems [174–176], as we discussed in sec. 6.3. However, in 
order for these theorems to hold, certain conditions on the stress-energy tensor must be 
imposed. They are satisfed by ordinary matter, but not a frst principles requirement of 
theory. Hence, GR allows gravity to act as a repulsive force. 

We just mentioned that we do not observe negative gravitational mass (energy) in our 
daily experience. Indeed, negative energy is considered to be unphysical, since Hamiltoni-
ans that are unbounded from below lead to instabilities. However, pressure gravitates in 
GR and it is possible for gravity to become repulsive while keeping energy positive if there 
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is a sufciently strong negative pressure. Specifcally, such matter should satisfy the weak 
energy condition, but violate the strong one. This is enough for the hyphotheses of the 
Penrose-Hawking theorem not to be satisfed. 

We do not observe this negative pressure in our daily experience either, but it has 
at least two paramount contributions to the expansion history of the universe. One is 
infation, a period in which an accelerated expansion of the universe is required in order 
to solve the horizon problem (see sec. 1.3). The other is the current accelerated expansion 
of the universe, confrmed by cosmological observations since the late 1990s. The former 
can be explained by the action of one or multiple scalar felds, although its dynamics is 
loosely constrained today. The latter is currently best modeled by the simple addition of 
a cosmological constant Λ (see sec. 1.2), which behaves as a fuid with equation of state 
p = wρ, with w = −1, which violates the strong energy condition. Despite this, ΛCDM 
currently sufers from observational tensions that suggest the need to replace it by another 
model. Indeed, early- and late-time measurements of H0, the current expansion rate of the 
universe, seem to be inconsistent [181]. There exists a plethora of alternative proposals 
to replace the cosmological constant by either modifying gravity (MG) or adding an extra 
fuid called dark energy (DE), but none of them seems to be able to solve the tension while 
providing a competitive ft to cosmological data [36, 182,183]. 

In chapter 6 we presented the variational formulation of non-equilibrium thermody-
namics in GR. As a consequence of the inclusion of thermodynamics as a constraint, the 
second Friedmann equation gets an accelerating term of entropic energy. Therefore, entropy 
production gravitates similarly to negative pressure ! 

ä 4πG T Ṡ 
= − ρ + 3p − . (7.1) 

a 3 a2ȧ 

This can be interpreted in two ways. One is to see irreversible phenomena as a way to 
produce an accelerated divergence of a geodesic congruence without violating the energy 
conditions, i.e., regarding the entropic force tensor as a separate entity. Alternatively, we 
can include the entropic force tensor as a contribution to the stress-energy tensor of a real 
fuid. Either way, an acceleration of the expansion of the universe can be achieved. 

We note that the relations between entropy and cosmic evolution have been explored 
before, for instance in emergent gravity [108] or in the thermodynamic interpretation of 
the bare Friedmann equations [184, 185]. 

This chapter is devoted to explore whether the cosmological constant can be replaced 
by an acceleration of entropic origin. This can be achieved if the entropic force term 
is large enough to overcome the attractive terms coming from energy density and usual 
(positive) pressure. In section 7.2 we outline how entropic forces can arise in the universe 
and illustrate it with some examples, of which the horizon growth is the most promising 
one. In section 7.3 we present how this leads to General Relativistic Entropic Acceleration 
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(GREA) theory, which is compared against ΛCDM in section 7.4 using recent cosmological 
data. We fnish with some discussion of our results in section 7.5. 

7.2 Contributions to entropy 

In this section we discuss several cosmic contributions to entropy and whether they can be 
considered serious candidates to give a positive and dominant contribution to the acceler-
ation of the universe. We will distinguish two groups: the matter content of the universe, 
even if exotic, gives bulk entropy, while horizons give gravitational boundary entropy. 

Bulk entropy 

Bulk entropy is produced during cosmic expansion during certain out-of-equilibrium pro-
cesses, such as (p)reheating, phase transitions or gravitational collapse. However, most of 
the expansion history of the universe is adiabatic and deviations from it are expected to 
be short-lived. This means that, although it may provide interesting phenomenology, it 
seems unable to explain the current accelerated expansion of the universe. 

Furthermore, out-of-equilibrium ordinary particle matter is unlikely to provide even 
a short-lived acceleration of the universe. This matter is fully described microscopically 
by the phase space coordinates of all its particles. As dictated by statistical mechanics 
(see sec. 2.6), its associated macroscopic variables are phase space functions. A comoving 
observer with 4-velocity uµ measures an efective pressure given by � � 

1 1 1 1 T Ṡ 
i j i jpef = Rij − Rgij u u = (Tij − fij ) u u = p − . (7.2)

3 2 3 3 a2ȧ 

If the matter content of the universe admits a description in terms of usual statistical 
mechanics, then this pressure is a function of phase space as Z 

d3p |p⃗|2 
= g p f(p⃗) > 0 , (7.3)pef 

(2π)3 3 |p⃗|2 + m2 

where f(p⃗) is the probability distribution in phase space and m is the rest mass of the 
particle. Thus, a negative efective pressure does not seem to be consistent with usual 
statistical mechanics and somewhat exotic1 matter should be advocated. However, such 
matter models have been proposed, for instance in refs. [186, 187] and can even lead to 
sustain entropy growth. 

1Motivated by the breakdown of the usual statistical interpretation of pressure, in this chapter we will 
refer to matter with negative efective pressure as exotic. We will not consider matter with negative mass 
or energy density. 
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Alternatively, one could think of particle creation scenarios, where entropy is increased 
to a fast growth of occupation numbers. This is the situation, for instance, during (p)re-
heating. It must be noted, however, that entropy production comes with an increase in 
energy density 

T T � � ds˙ 3 ˙ 2 ˙S = a s + 3a as = Ta + 3Ts . (7.4) 
a2ȧ a2ȧ da 

A simpler way to achieve an acceleration with ordinary matter may come from particle 
creation. Here we outline a frst approach to the issue. Let us frst use the thermodynamic 
relation 

Ts = (ρ + p) → Ts − p = ρ (7.5) 

in order to rewrite the second Friedmann equation as � � 
ä 4πG ds 
= − −2ρ − Ta . (7.6) 

a 3 da 

If we consider the extreme case of the particle number density to be constant during 
a particle-creation process, then ds/da = 0 and an acceleration of the universe takes 
place. This may be achieved with slower particle creation rates too. However, it must be 
noted that particle creation needs to be sourced by some other (possibly exotic) matter 
component, either directly or indirectly via space-time geometry. Whether such an entropic 
force emerges and is relevant during particle-creation events such as (p)reheating is a 
relevant question, but out of the scope of this thesis. 

Boundary entropy 

Boundary entropy is given by the existence of horizons that determine the causal structure 
of the universe, limiting causal contact to fnite patches. It can be incorporated in a natural 
way by extending the Einstein-Hilbert action with a surface term, the Gibbons-Hawking-
York (GHY) term [3, 177, 178]. From the thermodynamic point of view, the GHY term 
also contributes to the internal energy of the system. Hence, it can be related to the 
temperature and entropy of the horizon as Z Z√ 

SGHY =
1 

d3 y hK = − dt N(t) TS , (7.7)
8πG H 

where we used the notation of the ADM formalism. Note that we have kept the lapse func-
tion N(t), to indicate that the variation of the total action with respect to it will generate 
a Hamiltonian constraint with an entropy term together with the ordinary matter/energy 
terms. Of course, this is a consequence of the symmetry under time reparametrization. 

In sec. 6.4 we already computed the contribution to the action of the GHY term associ-
ated with black holes, let them be of astrophysical or primordial origin. Their temperature 
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and entropy is given by the Hawking and Bekenstein formulas. Assuming their total co-
moving number is conserved, their contribution to the total energy and entropy density is 
given by (ℏ = c = 1) 

ρBH = nBH M , sBH = nBH 4πGM
2 , (7.8) 

and therefore the contribution to the second Friedmann equation becomes 

3 d d 
a (ρBH a 3) = TBH (sBH a 3) = 0 , (7.9)
dt dt 

since the number density of black holes dilutes with the volume. Therefore, static black 
holes do not have an entropic contribution to the dynamics of the universe. 

Next, it is natural to consider the entropy associated with cosmic horizons. These per-
haps make the breaking of symmetry under time inversion most clear, as they keep growing 
with time. We will also describe them by means of a GHY term. There are two reasons for 
this, in addition to the motivation from black hole thermodynamics. First, since they also 
scale with the area, they can accommodate a Bekenstein-like formula in a thermodynamic 
contribution to the action. Second, it provides an efective fuid description (with efective 
density, pressure and entropic force), which is a requirement of the variational formalism 
in its present form. 

A frst natural choice of boundary hypersurface in FLRW metric is the apparent cosmo-
logical horizon [188]. The reason for this is that it can be defned locally in time, without 
reference to the past or future history of the universe. It is located at the physical radial 
coordinate 

1 
rAH = p . (7.10) 

H2 − k2/a2 

Let us now compute its GHY term. We can consider a comoving sphere around the origin 
of coordinates r = 0 with unit normal vector p

rr∂r 
−1 n = g = a 1 − kr2 ∂r . (7.11) 

Then the trace of its extrinsic curvature is p√ 
hK = 2N(t) r a 1 − kr2 sin θ (7.12) 

the GHY term (7.7) for the apparent horizon is Z Z 
1 2SGHY = − dt N(t) H rAH = − dt N(t) TAH SAH ,
2G 

where TAH is the temperature and SAH the entropy associated with the apparent horizon, 
3ℏcH kBc π r2 

kBTAH = , SAH = AH . (7.13)
2π ℏ G 
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This type of cosmological horizon does not contribute with a sufcient amount of en-
tropy growth to afect the expansion of the universe. Therefore, we need to consider another 
kind of horizon. We suggest a contribution coming from the causal (particle) horizon, which 
does keep track of the history of the universe and the regions that came into causal contact. 

We turn now to the causal cosmological horizon of a FLRW universe. Let us start by 
considering an arbitrary comoving 2-sphere around the origin of coordinates. Then the 
trace of its extrinsic curvature is given by eq. (7.12) and the GHY term (7.7) for the causal � √ � √ 
cosmological horizon, dH = a η, with r = sinh η −k / −k , where η is conformal time, 
can be written as Z Z Z√ 
SGHY = − dt N(t) √ 1 a 

sinh 
� 
2η −k 

� 
− dt N(t) TH SH = − dtN a 3ρH ,

2G −k 

where TH is the temperature and SH the entropy associated with the causal cosmological 
horizon � √ � 

ℏc sinh 2η −k πc3 a2η2 
kBTH = √ , SH = kB . (7.14)

2π aη2 −k ℏ G 

The fact that we can naturally assign a temperature and an entropy to a hypersurface is 
a signal of the existence of an underlying quantum description of gravity and thermody-
namics. This is made explicit by the appearance of ℏ in both quantities. Their product, 
however, does not depend on ℏ and leads to a classical emergent phenomenon, the accel-
eration of the universe. 

This kind of entropic term can actually lead to cosmic acceleration. Contrary to the 
apparent horizon, the causal horizon keeps growing with time and can be large enough to 
reach scales where curvature is non-negligible and the non-linearity of GHY in an open 
universe becomes relevant. 

7.3 GREA theory 

General Relativistic Entropic Acceleration (GREA) theory is a proposal to explain the 
current accelerated expansion of the universe. In its formulation based on horizon entropy, 
it relies on the existence of a large causal horizon in an open universe that underwent open 
infation in the past. 

Open infation is a scenario that allows the universe to be non-fat. The universe is 
nucleated in de Sitter space, i.e., in eternal infation [189] with curvature of order one. This 
nucleation takes place due to the tunneling of a quantum feld from the false to the true 
vacuum. Inside the true vacuum bubble, local space-time as seen by a comoving observer 
is essentially fat if infation lasts long enough, e.g. of order N ∼ 70 e-folds. Nevertheless, √ 
there is still a given casual horizon with −k = a0H0. Inspired by this scenario we propose 

160 



7.4. GREAT against ΛCDM 

a GHY thermodynamic term that induces an entropic contribution satisfying [4] � �2TH SH 1 sinh(2a0H0η) ΩK Trh2 −2NρH a = = , = e (1 + zeq) , (7.15) 
a 2G a0H0 1 − ΩK Teq 

where η is the conformal time, ΩK is the curvature parameter inside the infated patch, Trh 
is the reheating temperature, Teq and zeq are, respectively, the temperature and redshift 
at matter-radiation equality. We now introduce, for convenience, the time coordinate 
τ = a0H0η and denote with primes the derivatives w.r.t. to τ . Then the second Friedmann 
equation becomes � �2′ 2 2a a a 4π a3/2 

= ΩM +ΩK + Ω sinh(2τ ) , (7.16)2 K 2a0 a0 a 3 a0 0 

where ΩM is the matter density parameter. 

Thus, the expansion of the universe is afected by the increase in entropy of the causal 
horizon. Since the causal horizon keeps growing, the entropic term eventually dominates 
and leads to a late-time cosmic acceleration. Contrary to a cosmological constant, however, 
the entropic term is diluted with the expansion, albeit at a slower rate than radiation and 
dust, and the universe ends in Minkowski space-time in the far future. 

From the mathematical point of view, this modifed second Friedmann equation is a 
diferential equation in re-scaled conformal time τ . It is, however, an integro-diferential 
equation in cosmic time t, unlike the usual second Friedmann equation. Physically, this is 
related to the nature of the entropic term associated to the causal horizon: it builds up as 
the expansion proceeds. 

7.4 GREAT against ΛCDM 

The GREA theory is successful in providing an explanation for the current accelerated 
expansion of the universe. As such, it joins the plethora of possible alternatives to the 
cosmological constant Λ. Therefore, it is paramount to test GREAT against Λ using 
current cosmological data and fnd which one is preferred statistically. 

This analysis was performed in ref. [5] and provided promising results for GREAT. In 
this section we present a summary of the datasets, numerical methods and the obtained 
results. We will not, however, dive into the details, which are available in the paper for 
the interested reader. 

First, we must note that, at the time at which the analysis was performed, no cosmo-
logical perturbation theory has been developed within the context of GREA. This is also 
true at the time of the writing of this thesis. The cosmological efects of entropic forces are 
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only available at the background level, as presented in sec. 6.5. It is for this reason that the 
choice of datasets is limited to those that test the background evolution of the universe. 
We note, however, that we built variational non-equilibrium thermodynamics in the ADM 
formalism (see sec. 6.3), so that one can consistently build a cosmological perturbation 
theory as well. 

7.4.1 Datasets 

Taking this issue into account, the datasets included in the analysis are: 

• H(z) data. It is obtained from two sources: redshift drift of distant objects over 
long periods of time [190] and Baryon Acoustic Oscillations (BAO) in the radial 
direction [191]. It is assumed that the H(z) data are uncorrelated with each other. 
The compilation is used as in ref. [192], which contains 36 points in the redshift range 
0.07 ≤ z ≤ 2.34 and which are in the form (zi, Hi, σHi ). 

• Supernovae type Ia data coming from the Pantheon compilation [193]. It containes 
1048 Supernovae Ia points in the redshift range 0.01 < z < 2.26, along with their 
covariance matrix. 

• BAO data, including points from 6dFGS [194], WiggleZ [195], the MGS, ELG, LRG, 
quasars and DR12 galaxy samples BAO points from the completed SDSS-IV eBOSS 
survey [196], the year 3 DES [197] and the Lyman-α (Lyα) absorption and quasars, 
auto and cross correlation points from ref. [198]. It is assumed that the data are 
independent with each other. However, it must be noted that, since some of the 
points are derived by the same survey, inevitably there will be common overlapping 
galaxies between the datasets, which will result to strong covariances that are not 
included in the analysis. Even if some of them are, such as the covariance matrix 
of the WiggleZ data, full correlations are not publicly available. This is clearly a 
limitation in the analysis. 

• CMB shift parameters [199, 200]. They encapsulate the geometric information in 
the CMB spectrum, via the location of the peaks and are in a sense a compressed 
form of the CMB likelihood. This allows us to use information from CMB surveys 
at the background level, without needing to include entropy in cosmological per-
turbation theory. As GREA requires a non-fat universe, the Planck 2018 chains 
base omegak plikHM TTTEEE lowl lowE lensing are used to estimate the data vec-
tors. 

• Riess et al H0 prior. The measurement of H0 from ref. [201] is included as well. It 
comes from a sample of 75 Milky Way Cepheids, which were used to recalibrate the 
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extragalactic distance ladder. This approach gives a value 

H
(R) 

= 73.2 ± 1.3 km s−1 Mpc−1 . (7.17)0 

• Freedman et al H0 prior. Finally, the measurement of H0 from ref. [202] is also 
included. It comes from the Tip of the Red Giant Branch (TRGB) method using 
stars in the Large Magellanic Cloud (LMC). This approach gives a value 

(TRGB) 
H = 69.6 ± 0.8 (stat) ± 1.7 (syst) km s−1 Mpc−1 (7.18)0 . 

These datasets provide complete information on the background evolution of the uni-
verse. They are used in ref. [5] to perform a Bayesian model comparison between GREAT 
and the cosmological constant using Markov Chain Monte Carlo (MCMC) techniques. 

Given that the H0 priors seem to be in tension with other data [203, 204], they must 
be taken with care. The H0 tension is the observational discrepancy between the values of 
H0 obtained by early- and late-time measurements. The tension seems to be statistically 
signifcant and it currently lacks a compelling enough solution. In order to factor out the 
efects of the tension, three diferent analysis are performed: 1) without including any of 
the H0 priors, 2) including the Riess et al prior and 3) including the Freedman et al prior. 

7.4.2 Bayesian inference and model comparison 

Since statistics was not used before in the thesis, we will take now a small detour to intro-
duce some key concepts. There are two main interpretations of the concept of probability: 
frequentist and Bayesian. In the former, probabilities describe the frequency or propensity 
of some phenomenon; while according to the latter probabilities are interpreted as a rea-
sonable expectation or a quantifcation of belief. This philosophical distinction has direct 
consequences on parameter estimation, which is one of the main tasks of statistics. For 
instance, physical parameters Θ are treated as immutable values within classical (frequen-
tist) statistics, while Bayesian statistics treats them as random variables. The latter is the 
standard approach in modern Cosmology. In Bayesian statistics, prior probability p(Θ) is 
updated according to Bayes’ theorem by the likelihood L of data being observed given an 
outcome of the random variables describing the physical parameters 

L(data|Θ) 
p(Θ|data) = R p(Θ) , (7.19)

dΘL(data|Θ)p(Θ) 

giving the posterior probability p(Θ|data). Estimates for Θ can be obtained from the 
posterior distribution, for instance by fnding its maximum. Since it can be a complicated 
multivariate function, MCMC techniques are useful to sample it and fnd local maxima. 
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Following this approach, each dataset mentioned above carries a likelihood L. Since 
they are assumed to be uncorrelated, the total likelihood can be written as the product 

Ltot = LSnIa × LBAO × LH(z) × Lcmb × LH0 . (7.20) 

Furthermore, since the likelihoods are assumed to be Gaussian2 , they can also be easily 
described in terms of a χ2 distribution. Total likelihood can be translated into the total 
χ2 as a sum, taking into account that χ2 = −2 ln Ltot, i.e.tot 

χ2 = χ2 
BAO + χ2 . (7.21)tot SnIa + χ2 

H(z) + χcmb 
2 + χ2

H0 

Note that maximal likelihood is equivalent to minimal χ2 . For the included dataset, the 
total χ2 is given by eq. (7.21) and the parameter vectors for both the ΛCDM and GREAT � � 
models are given by: ΘModel = Ωm0, Ωbh

2, h, Ωk . Then, the best-ft parameters and their 
uncertainties are obtained via an MCMC code written by Savvas Nesseris3 . Regarding the 
prior distribution p(ΘModel) for each model, in the case of ΛCDM model they are given by 
Ωm0 ∈ [0.01, 0.5], Ωbh

2 ∈ [0.015, 0.035], Ωk ∈ [−0.1, 0.1], h ∈ [0.5, 1], while for the GREAT 
model they are given by Ωm0 ∈ [0.01, 0.5], Ωbh

2 ∈ [0.015, 0.035], Ωk ∈ [0.00001, 0.1], 
h ∈ [0.5, 1]4 . In the sampling approximately O(105) points are obtained for each of the 
models. 

MCMC techniques allow to obtain the best parameter ft for each model. Now, in order 
to compare the quality of ft, an additional step must be taken. Bayesian model comparison 
is based on the Bayesian evidence B, which is calculated as the integral Z 

E = dΘL(data|Θ)p(Θ) , (7.22) 

which is computed using thermodynamic integration, a method based on MCMC techniques 
and described in the paper. Interestingly, the evidence is a likelihood function in which all 
parameters of the model have been marginalized. Hence, it quantifes the probability of the 
data giving a model regardless of the particular realization of the parameters understood 
as random variables. Qualitatively, it can be immediately understood that models with 
larger E are preferred. Quantitatively, this is expressed with the Bayes ratio between two 
models i and j as 

Ei
Bij = . (7.23)

Ej 

The Bayes ratio is interpreted by means of the Jefreys’ scale [205] as follows: 

• For ln Bij < 1.1 the preference of j over i is said to be weak. 
2This is usually justifed in application of the central limit theorem. 
3https://github.com/snesseris/GREAT-project 
4Note that for the GREAT model Ωk has to be positive as otherwise the square of the Hubble parameter 

may become negative. 
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• For 1.1 < ln Bij < 3 the preference of j over i is said to be defnite. 

• For 3 < ln Bij < 5 the preference of j over i is said to be strong. 

• For ln Bij > 5 the preference of j over i is said to be very strong. 

In this way, we can obtain a quantitive comparison between two models that aim to 
explain a given dataset (i.e., physical observations). 

7.4.3 Results 

Let us collect here the results of the model comparison between GREAT and ΛCDM: 

• Table 7.1 shows the results of the MCMC analysis when no H0 prior is included. 
The logarithmic Bayes ratio ln BΛ,G ≃ −9.006 indicates a very strong preference of 
GREAT over ΛCDM. 

• Table 7.2 shows the results of the MCMC analysis when the Riess et al H0 is included. 
The logarithmic Bayes ratio ln BΛ,G ≃ 0.386 renders the test inconclusive, giving only 
weak evidence in favor of ΛCDM. 

• Table 7.3 shows the results of the MCMC analysis when the Riess et al H0 is included. 
The logarithmic Bayes ratio ln BΛ,G ≃ −0.373 renders the test inconclusive, giving 
only weak evidence in favor of GREAT. 

These results have two immediate consequences. First, GREAT is a serious and viable 
alternative to ΛCDM. Indeed, excluding the H0 priors in the analysis gives a very strong 
preference of GREAT over ΛCDM. Most of the diference in χ2 comes from the CMB min 
data, as can be seen in table 7.4. Second, the tension between the H0 priors and the rest 
of the data dilutes this statistical preference, rending the model comparison inconclusive. 
We may interpret this result as steaming from the fact that the CMB data is driving most 
of this preference, so that the early-late universe tension is playing a key role. 

7.5 Discussion 

General Relativistic Entropic Acceleration is a proposal to explain the current accelerated 
expansion of the universe by means of an entropic force associated to the causal horizon. In 
particular, the size of the causal horizon is large enough and is controlled by the curvature 
parameter Ωk thanks to open infation. 
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No priors 
Parameter ΛCDM GREAT 

Ωm,0 
Ωb,0h

2 

Ωk,0 
H0 
χ2 
min 

ln E 

0.3057 ± 0.0056 
0.0224 ± 0.0002 
0.0012 ± 0.0018 
68.08 ± 0.58 

1075.63 
−557.515 

0.3522 ± 0.0190 
0.0225 ± 0.0001 
0.0010 ± 0.0002 
68.38 ± 0.48 

1071.35 
−548.509 

ln Bij 0 −9.006 

Table 7.1: Here we present the results of the MCMC analysis when not including any H0 
prior. In particular, we show the mean values, 1σ errors of the parameters for the GREAT 
and ΛCDM models respectively, along with the minimum χ2 and the log-evidence ln E, 
and the diference of the log-evidence with respect to the ΛCDM model ln Bij . The latter 
give a Bayes ratio of BΛ,G = exp (−9.006) ∼ 1/8150, thus resulting in very strong evidence 
in favor of the GREAT model according to the Jefreys’ scale [205]. Note that H0 is given 
in units of km s−1 Mpc−1 . 

Including Riess et al H0 prior 
Parameter ΛCDM GREAT 

Ωm,0 0.2995 ± 0.0051 0.3350 ± 0.0155 
Ωb,0h

2 0.0224 ± 0.0002 0.0225 ± 0.0001 
Ωk,0 0.0029 ± 0.0017 0.0008 ± 0.0002 
H0 68.85 ± 0.53 68.98 ± 0.44 
χ2 1088.79 1083.39min 
ln E −557.588 −557.974 
ln Bij 0 0.386 

Table 7.2: Here we present the results of the MCMC analysis when we include all the 
available data and the Riess et al H0 prior. In particular, we show the mean values, 1σ 
errors of the parameters for the GREAT and ΛCDM models respectively, along with the 
minimum χ2 and the log-evidence ln E and the diference of the log-evidence with respect 
to the ΛCDM model ln Bij . The latter give a Bayes ratio of BΛ,G = exp (0.386) ∼ 1.47, 
thus resulting in the two models being considered statistically equivalent according to the 
Jefreys’ scale [205]. Note that H0 is given in units of km s−1 Mpc−1 . 

Current cosmological data show that this proposal is a serious alternative to the cosmo-
logical constant. Indeed, if no prior on the current expansion rate of the universe H0 is set, 
datasets involving the background expansion of the universe (H(z), SnIa, BAO and CMB 
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Including Freedman et al H0 prior 
Parameter ΛCDM GREAT 

Ωm,0 0.3047 ± 0.0052 0.3502 ± 0.0157 
Ωb,0h

2 0.0224 ± 0.0001 0.0225 ± 0.0001 
Ωk,0 0.0015 ± 0.0017 0.0010 ± 0.0002 
H0 68.20 ± 0.54 68.46 ± 0.45 
χ2 1076.23 1071.74min 
ln E −550.484 −550.111 
ln Bij 0 −0.373 

Table 7.3: Here we present the results of the MCMC analysis when we include all the 
available data and the Freedman et al H0 prior. In particular, we show the mean values, 
1σ errors of the parameters for the GREAT and ΛCDM models respectively, along with the 
minimum χ2 and the log-evidence ln E and the diference of the log-evidence with respect 
to the ΛCDM model ln Bij . The latter give a Bayes ratio of BΛ,G = exp (−0.373) ∼ 0.689, 
thus resulting in the two models being considered statistically equivalent according to the 
Jefreys’ scale [205]. Note that H0 is given in units of km s−1 Mpc−1 . 

No priors breakdown 
Model CMB BAO SnIa H(z) χ2 

tot 
ΛCDM 4.28 13.99 1034.84 22.52 1075.63 
GREAT 0.07 14.39 1034.82 22.10 1071.35 

Table 7.4: Here we present the breakdown of the χ2 for both ΛCDM and GREAT for the 
diferent datasets used in our analysis, in the case of not including any H0 prior. The 
best-ft parameters from the MCMC are given in Table 7.1. As can be seen, the main 
contribution in the diference of the χ2s comes from the CMB and to a lesser extent from 
the H(z) and BAO data, while the values for the SnIa are practically the same. 

shift parameters) give a very strong preference of GREAT over ΛCDM, if one interpretes 
the Bayesian ratio with Jefreys’ scale. However, this preference disappears when the priors 
are included, so that the model comparison is inconclusive. This is probably due to the 
tension between early- and late-time measurements. 

If the cosmological constant is unnecessary to explain cosmological observations, this 
would partly solve the cosmological constant problem, in the sense that a vanishing cosmo-
logical constant can be understood to be protected by a high-energy symmetry, which is 
yet to be discovered. On the contrary, a tiny cosmological constant, as the one considered 
in ΛCDM is hard to justify within QFT. Likewise, the issue of why vacuum energy does 
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not seem to gravitate would still need to be solved. 

Future surveys like CMB-S4, Euclid, DESI and LSST will provide tighter constraints 
and hopefully shed light as to which model is preferred by data. To see how this will 
happen, let us parametrize the equation of state GREAT by the redshift expansion 

z 
w(z) = w0 + wa , (7.24)

1 + z 

known as the Chevallier-Polarski-Linder (CPL) parametrization [206,207]. For ΛCDM one 
simply has w0 = −1 and wa = 0, while GREAT and other dark energy models typically 
have diferent values. We show in fg. 7.1 the contour plots for (w0, wa) given the datasets 
H(z), SnIa, BAO, CMB shift parameters and the Riess et al H0 prior. As it can be seen 
in this plot, both GREAT and ΛCDM are compatible with the data, although the value 
of GREAT is closer to the maximum of the posterior distribution. Future surveys will 
hopefully shrink the contour plots and allow us to distinguish both models. 

It is worth pointing out that a positive contribution to the Friedmann equation when 
non-equilibrium phenomena are present and, thus, it may well be that other sources of 
entropy need to be taken into account in addition to that of the causal horizon. An 
example of this relevant to late-time cosmology would be ordering and formation of LSS. 
This process is clearly irreversible, and may perhaps be characterized in terms of growing 
of the total entropy of the universe, even if ordering means a local decrease in entropy. 

In our view GREAT is a powerful explanation to the current accelerated expansion of 
the universe, as it fts the data well and does not require additional parameters, which 
would be disfavored from the point of view of statistics. Furthermore, the thermodynamic 
bridge between the physics of yet unknown quantum gravitational degrees of freedom and 
large-scale cosmological physics makes it a compelling argument in light of the success of 
black hole thermodynamics. We look forward to further developments and both theory 
and observations that will clarify the role of these entropic forces in the cosmic expansion. 
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Figure 7.1: The 68.3% and 95.5% confdence contours for the CPL model for the w0, wa 
parameters, when including all data and the Riess prior. The black dot corresponds to the 
best-ft value, the red dot to the ΛCDM model and the orange star to the prediction of 
GREAT (w0, wa) = (−0.946, −0.318) [4]. From ref. [5] 
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Chapter 8 

Conclusions 

Theoretical cosmology sits at a fascinating crossroad between gravity, quantum mechanics, 
and thermodynamics. Indeed, general relativity is a theory of spacetime itself, quantum 
feld theory explains the physics of the very early universe and the origin of perturba-
tions, while thermodynamics and statistical mechanics constitute the indispensable bridge 
between the microscopic and macroscopic descriptions of physical reality. 

In this thesis we have explored several topics related to the quantum and thermal 
nature of the universe. Motivated by an initial question: can primordial black holes be 
entangled?, we have taken a path to other questions like: what else can we learn from 
cosmic correlations? Are they genuinely quantum? Or also: Can entanglement between 
black holes lead to an entropic force in the universe? How would we characterize entropic 
forces and generic non-equilibrium phenomena within the usual description of the universe? 
How do they impact the expansion of the universe? 

The quantum origin of primordial perturbations is an unavoidable consequence of the 
infationary paradigm. These perturbations are responsible for the anisotropies in the 
cosmic microwave background, seeding the structure formation in the universe and possibly 
forming primordial black holes by inducing gravitational collapse during the radiation era. 
These have been mostly studied in Fourier space and many of its quantum-information 
properties were known. In part II we have investigated some of these quantities in real 
space, which is relevant in order to understand the quantum nature of the correlations 
between distant regions of the universe, not between distinct momentum modes. 

In chapter 3 we have studied the entanglement entropy of a spherical region in the 
early universe, in particular for a quantum feld placed in a squeezed state. We have found 
UV-fnite contributions that are suspected to be due to long-range correlations and, thus, 
could lead to classically correlated or quantum entangled primordial black holes, as they 
are formed by collapse triggered by the quantum feld of primordial perturbations. This is 
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a realistic proposal of the existence of a network of entangled black holes in the universe. 
Should the ER = EPR correspondence hold, then these black holes could be connected via 
wormholes. 

In chapter 4 we have computed the perturbative mutual information of primordial 
perturbations for infation and the radiation era. We have found a two-fold enhancement. 
On the one hand, the decay is logarithmic with distance, thus much slower than the quartic 
decay found in the Minkowski vacuum. This shows the existence of long-range correlations 
due to infation. On the other hand, mutual information seems to be larger the longer 
infation lasts. Later non-perturbative studies cast doubt on the latter, which may be an 
artifact of the perturbative expansion, which may lead to a divergent series. Nevertheless, 
it confrms the logarithmic decay, which means that distant regions of the universe do share 
large amounts of information due to their common origin during infation. 

In chapter 5 we have attempted to show a distinctive signal of genuine quantum cor-
relations by studying Bell inequalities in real space for both the Minkowski vacuum and 
the Bunch-Davies vacuum of de Sitter space-time. Despite the fact that quantum discord, 
a measure of such genuine correlations, is non-vanishing in both cases, we have found no 
violation of Bell inequalities. This shows the difculty of fnding these genuine quantum 
correlations in feld theory, due to efective decoherence taking place. Furthermore, it casts 
doubt on the ability of quantum discord to quantify them when dealing with mixed states. 

Even though we have not exhausted all possible constructions of Bell and similar in-
equalities, further attempts to probe the quantum nature of primordial perturbations may 
need go beyond Gaussian states. Primordial non-gaussianities are inevitable due to quan-
tum difusion during infation [67] and may lead to interesting, observable quantum phe-
nomena. In this sense, there exist proposals to probe this quantumness by means of the 
3-point correlation function [102]. 

Entropic forces between PBH may still arise even if long-distance correlations are mostly 
classical, as they still have an impact on the overall entropy of the quantum feld of primor-
dial perturbations. We look forward to a more complete characterization of the primordial 
black hole network and the multi-partite information shared by them, as well as whether 
multi-partite Bell inequalities may provide distinctive quantum signals. 

In our usual understanding of physical forces, we are used to both fundamental and 
residual forces. Entropic forces constitute a third kind and are due to the emergent phe-
nomena in the collective motion of many particles. In part III we have taken a new per-
spective on out-of-equilibrium phenomena in gravity and cosmology, leading to potentially 
observable consequences. 

In chapter 6 we have developed the variational and covariant formulation of non-
equilibrium thermodynamics in general relativity. Built on an existing mathematical frame-
work, this allows for the logical synthesis of the laws of thermodynamics and the extremal 
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action principle in the context of General Relativity. As a consequence, the Einstein feld 
equations get a contribution in the form an entropic force. When applied to cosmology, 
this delivers the non-equilibrium Friedmann equations, which also get an entropic force 
term. 

In chapter 7 we have followed these ideas to understand the efect of entropy-producing 
processes in the universe, as the entropic force always tends to accelerated its expansion. We 
have found that the increase in entropy associated to the cosmic horizon from open infation 
may be responsible for the current accelerated expansion in the universe. This proposal, 
called general relativistic entropic acceleration (GREA) is, thus, a viable alternative to the 
cosmological constant. According to latest cosmological data, not only is GREA a serious 
competitor, but is also favored when H0 priors are not included. 

We currently fnd ourselves at a fascinating, golden age in cosmology. Observations are 
not only able to confrm qualitatively our description of the universe, but also provide true 
precision tests. In years and decades to come, they will be able to powerfully constrain 
cosmological parameters and reach a conclusion as to whether GREA can statistically 
overpower the cosmological constant. 

It is our frm opinion that the feedback between theoretical and observational Physics 
will continue to foster exciting developments at the fascinating crossover of physical realms 
and human motivations that is Cosmology. 

175 



Chapter 9 

Conclusiones 

La cosmoloǵıa teórica se asienta en una encrucijada fascinante entre gravedad, mecánica 
cuántica y termodinámica. En efecto, la relatividad general es una teoŕıa del propio espacio-
tiempo, la teoŕıa cuántica de campos explica la f́ısica del universo muy temprano y el origen 
de las perturbaciones, mientras que la termodinámica y la mecánica estad́ıstica constituyen 
el indispensable puente entre las descripciones microscópica y macroscópica de la realidad 
f́ısica. 

En esta tesis hemos explorado varios temas relaciones con la naturaleza cuántica y 
térmica del universo. Motivados por la pregunta inicial: ¿es posible que los agujeros negros 
primordiales estén entrelazados?, hemos explorado otras preguntas como: ¿qué queda por 
aprender de las correlaciones cósmicas? ¿Son genuinamente cuánticas? O también: ¿es 
posible que el entrelazamiento entre agujeros negros conlleve una fuerza entrópica en el 
universo? ¿Cómo se caracterizan las fuerzas entrópicas y los fenómenos fuera del equilibrio 
en la descripción habitual del universo? ¿Qué impacto tienen en la expansión del universo?. 

El origen cuántico de las perturbaciones primordiales es una consecuencia inevitable 
del paradigma infacionario. Estas perturbaciones son responsables de las anisotroṕıas del 
fondo de radiación de microondas, del inicio de la formación de estructura en el universo 
y, posiblemente, de la formación de agujeros negros primordiales por colapso gravitacional 
inducido durante la era de radiación. Estas perturbaciones se han estudiado principalmente 
en espacio de Fourier, en el que se conocen muchas de sus propiedades de información 
cuántica. En la parte II hemos investigado algunas de estas cantidades en espacio real, lo 
que es relevante para entender la naturaleza cuántica de las correlaciones entre regiones 
distantes del universo, no entre diferentes modos de momento. 

En el caṕıtulo 3 hemos estudiado la entroṕıa de entrelazamiento de una región esférica 
en el universo temprano, considerando en particular un campo cuántico en un estado 
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comprimido1 . Hemos encontrado contribuciones UV-fnitas que, sospechamos, se deben 
a correlaciones de largo alcance y, por tanto, podŕıan conllevar la existencia de agujeros 
negros primordiales correlacionados clásicamente o entrelazados cuánticamente, debido a su 
formación por colapso estimulado por el campo cuántico de perturbaciones primordiales. Se 
trata de una postura realista para la existencia de una red de agujeros negros entrelazados 
en el universo. Si la conjetura ER = EPR es correcta, estos agujeros negros podŕıan estar 
conectados mediante agujeros de gusano. 

En el caṕıtulo 4 hemos calculado la información cuántica perturbativa de las pertur-
baciones primordiales durante infación y la era de radiación. Hemos encontrado un in-
cremento doble. Por un lado, la dependencia con la distancia es logaŕıtmica y, por tanto, 
mucho más lenta que la dependencia cuártica t́ıpica del vaćıo de Minkowski. Esto mues-
tra la existencia de correlaciones de largo alcance debido a infación. Por otro lado, la 
información mutua parece ser mayor cuanto más tiempo dura infación. Estudios no per-
turbativos posteriores ponen en duda la validez del segundo punto, que podŕıa ser un 
artefacto de la expansión perturbativa, quizá ligada a una serie divergente. No obstante, 
confrma la dependencia logaŕıtmica, lo que signifca que, en efecto, regiones distantes del 
universo comparten grandes cantidades de inforamción debido a su origen común durante 
infación. 

En el caṕıtulo 5 hemos intentado mostrar una señal caracteŕıstica de las correlaciones 
cuánticas genuinas, estudiando las desigualdades de Bell en espacio real, tanto para el vaćıo 
de Minkowski como para el vaćıo de Bunch-Davies del espacio de de Sitter. A pesar de que 
la discordancia cuántica2 , una medida de correlaciones cuántica genuinas, es distinta de 
cero para ambos casos, no hemos contrado violación alguna de las desigualdades de Bell. 
Esto muestra la difcultad de encontrar estas correlaciones cuánticas genuinas en teoŕıa de 
campos, debido al mecanismo de decoherencia efectiva. Además, cuestiona la habilidad de 
la discordandia cuántica a la hora de cuantifcarlas en el contexto de estados mixtos. 

A pesar de que no hemos agotado todas las posibles construcciones de desigualdades 
de Bell y similares, es posible que los intentos ulteriores de explorar la naturaleza cuántica 
de las perturbaciones primordiales requiran ir más allá de los estados Gaussianos. Las 
no-Gaussianidades primordiales son inevitables debido a la difusión cuántica que ocurre 
durante infación [67] y podŕıan conllevar fenónmenos cuánticos interesantes y observables. 
En este sentido, hay propuestas para su estudio mediante la función de correlación de 3 
puntos [102]. 

Es posible que surjan fuerzas entrópicas entre agujeros negros primordiales, incluso si 
las correlaciones de largo alcance son principalmente clásicas, pues tendŕıan igualmente 
un impacto en la entroṕıa del campo cuántico de perturbaciones primordiales. Esperamos 
el desarrollo futuro de una caracterización más completa de la red de agujeros negros 

1Squeezed state en inglés. 
2Quantum discord en inglés. 
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primordiales y la información mutua multipartita que comparten, aśı como el estudio de 
desigualdades de Bell multipartitas, que podŕıan desvelar señales cuánticas genuinas. 

En nuestra concepción habitual de las fuerzas f́ısicas, estamos acostumbrados a las 
fuerzas fundamentales y residuales. Las fuerzas entrópicas son un tercer tipo y se deben 
a fenómenos emergentes del movimiento colectivo de muchas part́ıculas. En la parte III 
hemos tomado una nueva perspectiva sobre los fenómenos fuera del equilibrio en gravedad 
y cosmoloǵıa, lo cual podŕıa tener consecuencias observables. 

En el caṕıtulo 6 hemos desarrollado la formulación variacional y covariante de la ter-
modinámica fuera del equilibrio en relatividad general. Basada en un formalismo matemático 
existente, permite la śıntesis lógica de las leyes de la termodinámica y el prncipio de acción 
extrema en el contexto de la relatividad general. En consecuencia, las ecuaciones de campo 
de Einstein reciben una contribución en forma de fuerza entrópica. Al aplicar esta mod-
ifcación a cosmoloǵıa se obtienen las ecuaciones de Friedmann fuera del equilibrio, que 
también contienen un término de fuerza entrópica. 

En el caṕıtulo 7 hemos continuado estas ideas con el fn de entender el efecto de procesos 
productores de entroṕıa en el universo, puesto que la fuerza entrópica siempre tiende a 
acelerar su expansión. Hemos encontrado que el incremento de entroṕıa asociado con 
el horizonte cósmico en infación abierta podŕıa ser responsable de la actual expansión 
acelerada del universo. Esta propuesta, llamada aceleración entrópica relativista general 
(GREA3) es, por tanto, una alternativa viable a la costante cosmológica. De acuerdo con 
las observaciones cosmológicas recientes, GREA no es solo un competidor serio, sino que 
es preferido estad́ısticamente cuando no se incluyen las probabilidades a priori de H0. 

Nos encontramos en una fascinante era dorada de la cosmoloǵıa. Las observaciones per-
miten confrmar cualitativamente nuestra descripción del universo y proporcionan auténticos 
tests de precisión. En las próximas décadas y años tendrán la capacidad sufciente para 
constreñir los parámetros cosmológicos y llegar a una conclusión sobre la preferencia o no 
de GREA sobre la constante cosmológica. 

En nuestra opinión, la retroalimentación de la f́ısica teórica y observacional contin-
uarán impulsando desarollos apasionantes en la fascinante encrucijada de campos f́ısicos y 
motivaciones humanas que constituyen la cosmoloǵıa. 

3General relativistic entropic acceleration en inglés. 

179 



Part V 

Appendices 

181 



Appendix A 

Mathematical addenda 

Some computational shortcuts were taken at diferent point of the thesis. For their rele-
vance we can highlight the random phase approximation in chapter 4 and the treatment 
of variational non-equilibrium thermodynamics for continuum systems in chapter 6. The 
aim of this appendix is to provide these shortcuts with further support and motivation. 

A.1 Non random phases 

One may wonder whether assuming that the squeezing phases δk are random has a notice-
able efect on the mutual information of primordial perturbations computed in chapter 4. 
In the following we argue why it is not the case. 

In the case that ⟨vp + pv⟩ ̸= 0 then one cannot simply compute the entropy of the 
quantum state by fnding the eigenvalues of the operator Λ, as described in sec. 4.3. Instead, 
one needs to consider an operator built from the larger feld � � 

v 
χ = . (A.1)

π 

Its 2-point correlation function contains all the 2-point correlation functions of the state � �
1 
2C(x⃗, ⃗y)1 X(x⃗, ⃗y)

∆(x⃗, ⃗y) = ⟨χ(x⃗)χ(y⃗⟩ = , (A.2)1 
22 C(x⃗, y⃗ P (x⃗, ⃗y) 

where 
C(x⃗, ⃗y) = ⟨v(x⃗)p(y⃗) + p(y⃗)v(x⃗)⟩ . (A.3) 

This correlation function transforms under symplectic transformations as 

∆ → S∆S† . (A.4) 
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Such transformations are not similarity transformation and, hence, do not leave the eigen-
values of ∆ invariant. Still, Williamson’s theorem guarantees that there exists a symplectic 
transformation that brings ∆ to a diagonal form [97]. Note that any symplectic transfor-
mation S preserves the symplectic form � � 

SΩS† = Ω where Ω = 0 i 
(A.5)−i 0 

or, equivalently 
S† = ΩS−1Ω . (A.6) 

This means that the problem of fnding symplectic eigenvalues of ∆ is equivalent to fnding 
conventional eigenvalues of ∆Ω � � 

−2 
i C iX 

∆Ω = . (A.7)i−iP C2 
√ 

If we assume random phases, then C = 0 and the eigenvalues of ∆Ω are those of Λ , so 
that both the formalism used in section IV and the one presented here are consistent. If 
C ≠ 0, we need to study the eigenvalue problem of this operator. The determinant of a 
block matrix admits the following decomposition � � 

M11 M12M = 
M21 M22 (A.8) 

det(M) = det(M22)det(M11 − M12M
−1 
22 M21) . 

We are interested in the determinant of ∆Ω − λ in order to fnd the eigenvalues of ∆Ω and 
thus 

det(∆Ω − λ) = !� � � �−1i i i (A.9)
det C − λ det C − λ − X C − λ P . 

2 2 2 

This expression admits two approximations. First, since we are interested in the pertur-
bative regime, C will have a subdominant contribution in the frst determinant and can 
be neglected. This argument is valid as well for the frst term of the second determinant. 
Second, since C deals with only a subset of momentum modes, we can assume that it has 
a norm smaller than that of the identity and hence we can expand the inverse as � �−1 � � 

− λ−1 1 − λ−1 i C ≃ −λ−1 1 + λ−1 i C , (A.10)
2 2 

and thus � � 
det(∆Ω − λ) ≃ det −λ + λ−1X(1 + iλ−1C/2)P . (A.11) 
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A.2. Non-equilibrium in the continuum 

Recall that the dominant perturbative contribution is given by X being perturbative and 
P being non-perturbative. Then, C will be non-perturbative as well. Since it is only 
non-vanishing for momenta afeced by infation, it does not afect the more relevant high-
momentum modes of P . Hence, we can conclude than the efect of averaging over the 
squeezing phases has a negligible efect on the mutual information of primordial perturba-
tions. 

A.2 Non-equilibrium in the continuum 

Here we connect the variational formulation for continuous systems described by Gay-
Balmaz and Yoshimura [171] with the shortcut used in the Hamiltonian formulation of 
non-equilibrium thermodynamics in General Relativity, see sec. 6.3. 

The original rigorous variational formulation of non-equilibrium thermodynamics re-
quires the addition of a new term in the Lagrangian and the introduction of new variables Z � � 

δ d4 x 
√−g L + (S − Σ)Γ̇ = 0 . (A.12) 

Γ is the thermodynamic displacement, while S and Σ are functions whose time derivatives 
will be linked to internal and total entropy production. The variation of the action is equal 
to Z � � 

δL ∂L 
d4 x 

√−g δϕ + δS − (Ṡ − Σ)˙ δΓ + (δS − δΣ)Γ̇ . (A.13)
δϕ ∂S 

The stationary-action principle is now supplemented with the phenomenological and vari-
ational constraints 

˙ ˙ ˙∂L 
Σ = −P i∇iϕ + J i∇iΓ 

∂S (A.14)
∂L 

δΣ = −P i∇iδϕ + J i∇iδΓ ,
∂S 

which assume that there is no external power supply. We will restrict ourselves to the 
simple case where the feld is scalar and so the tensor P is a vector, but it could have a 
higher order. In the original work the authors describe a fuid in its material representation. 
In that case ϕ is a position vector and P is a 2-tensor. 

With this constraints, the variation of the action is equal to !Z � � �−1 � � 
δL ∂L ∂L˙d4 x 

√−g + Γ̇ P i∇i δϕ + Γ + δS 
δϕ ∂S ∂S ! (A.15)� �−1 � 

+ Σ̇ − Ṡ − Γ̇ ∂L 
J i∇i δΓ = 0 . 

∂S 
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Integrating by parts we get !!Z � � �−1 � � √ δL ∂L ∂L˙ P i ˙d4 x −g −∇i Γ δϕ + Γ + δS 
δϕ ∂S ∂S !! (A.16)� �−1 � 

∂L 
Σ̇ − ˙ ˙ J i+ S + ∇i Γ δΓ = 0 . 

∂S 

The equations of motion are obtained as usual by noticing that each variation is indepen-
dent. From δS we get 

∂L
Γ̇ = − ≡ T , (A.17)

∂S 
while δϕ and δΓ give 

δL 
+ ∇iP i = 0 

δϕ (A.18) 
Σ̇ = Ṡ + ∇iJ

i . 
These equations of motion and the phenomenological constraint fully describe the time 
evolution of the system. The last one is the entropy balance equation. Even though 
we imposed it earlier, this shows that it can also be derived from the stationary-action 
principle. 

We will now perform a variable transformation that will afect only the phenomenolog-
ical constraint, in order for it to have the form used throughout the paper. Note that the 
variational condition is invariant under the following redefnitions � �∂L ∂L � � 

δΣ → δΣ+ ∇i J
iδΓ −∇i P iϕ̇ 

∂S ∂Σ � � (A.19)
∂L ∂L � � 

δS → δS + ∇i J
iδΓ −∇i P iϕ̇ 

∂S ∂S 
and the equivalent changes in the derivatives � � � �∂L ∂L˙ ˙ J i ˙ P i ˙S → S + ∇i Γ −∇i ϕ 

∂S ∂S � � � � (A.20)
∂L ∂L˙ ˙ J i ˙ P i ˙Σ → Σ+ ∇i Γ −∇i ϕ . 
∂S ∂S 

These replacements add total derivatives to the varied Lagrangian and so have no physical 
efect. The equations of motion stay the same. In fact, these are the kind of terms added 
when integrating by parts before obtaining the equations of motion. The temperature also 
stays the same, since ∂S/∂S ′ = 1, being S ′ the newly defned entropy. 

As already mentioned, the only fnal equation that is transformed is the phenomeno-
logical constraint, which becomes 

T Σ̇ = ∇iP iϕ̇+ T ∇iJ
i , (A.21) 
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that is 
T Ṡ = ∇iP iϕ ,˙ (A.22) 

where ∇iP i is what we called the friction or entropic force tensor, only that it is a scalar 
here. In our formulation we replace the time derivative by a more covariant notion of time 
evolution, the Lie derivative along the normal vector n. 

We conclude that both formulations are equivalent. Our choice is motivated by sim-
plicity and physical intuition, as a homogeneous and isotropic entropy function becomes a 
particular case in a clearer way. 
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Appendix B 

Suplementary material 

In this appendix we provide supplementary material that supports the arguments presented 
in some chapters of the thesis. First, we provide additional results on the Bell inequal-
ities studied in chapter 5, in particular by using Larsson operators. Second, we provide 
additional details on the analysis reviewed in chapter 7, more precisely in sec. 7.4. 

B.1 Bell graphs 

In this appendix, we provide additional fgures, fgs. B.1, B.2 and B.3, which are not directly 
relevant to the discussion presented in the main text in chapter 5, but which nonetheless 
complete the parameter-space exploration. 

189 



Appendix B. Suplementary material 

−4 −2 0 2 4

ln(HR)

−14

−12

−10

−8

−6

−4

ln
β

Bell operator in de Sitter

0.7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

1.5

0.8

1.0

1.2

1.4

B
(~x

1
,~x

2
)

Figure B.1: Expectation value of the GKMR Bell operator in the Bunch-Davies vacuum of 
the de-Sitter space-time, as a function of the parameters β and HR. The colour encodes 
the value of B, and a few contour lines are displayed in white. The UV regulator is set to 
δ = 0.01 and α = d/R is set to the minimum α = 2(δ + 1). 
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Figure B.2: Expectation value of the GKMR Bell operator in the Bunch-Davies vacuum of 
the de-Sitter space-time, as a function of the parameters β and HR. The colour encodes 
the value of B, and a few contour lines are displayed in white. The IR regulator is set to 
β = 10−3 and α = d/R is set to the minimum α = 2(δ + 1). 
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Figure B.3: Expectation value of the GKMR Bell operator in the Bunch-Davies vacuum of 
the de-Sitter space-time, as a function of the parameters β and HR. The colour encodes 
the value of B, and a few contour lines are displayed in white. The size of the patch is set 
to HR = 103 and α = d/R is set to the minimum α = 2(δ + 1). 
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B.2. GREAT vs ΛCDM 

Figure B.4: The 68% and 95% confdence contours for the GREAT (left panel) and 
ΛCDM(right panel) models respectively, including all the data, but no prior on H0. 
The red points/dashed lines correspond to the Planck best-ft (Ωm,0, Ωb,0h

2 , Ωk,0, H0) = 
(0.315, 0.0224, 0.001, 67.4), where H0 is given in units of km s−1 Mpc−1 . 

B.2 GREAT vs ΛCDM 

For completeness, we show here the contour plots of confrontation of GREAT and ΛCDM 
against cosmological data. These are fgs. B.4, B.5 and B.6. This complements the best ft 
parameters provided in section 7.4. 
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Figure B.5: The 68.3%, 95.5% and 99.7% confdence contours for the GREAT (left panel) 
and ΛCDM(right panel) models respectively, including all data and the Riess H0 prior. 
The red points/dashed lines correspond to the Planck best-ft (Ωm,0, Ωb,0h

2 , Ωk,0, H0) = 
(0.315, 0.0224, 0.001, 67.4), where H0 is given in units of km s−1 Mpc−1 . 
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B.2. GREAT vs ΛCDM 

Figure B.6: The 68.3%, 95.5% and 99.7% confdence contours for the GREAT (left panel) 
and ΛCDM(right panel) models respectively, including all data and the TRGB prior on H0. 
The red points/dashed lines correspond to the Planck best-ft (Ωm,0, Ωb,0h

2 , Ωk,0, H0) = 
(0.315, 0.0224, 0.001, 67.4), where H0 is given in units of km s−1 Mpc−1 . 
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