

Recent results from the PolarquEEEst measurement campaign at large geographical latitudes

M. Abbrescia,^{a,b} **C. Avanzini**,^{c,d} **L. Baldini**,^{d,c} **R. Baldini Ferroli**,^e **G. Bagnani**,^{d,c} **M. Battaglieri**,^f **S. Boi**,^{g,h} **E. Bossini**,^{d,c} **F. Carnesecchi**,ⁱ **D. Cavazza**,^j **C. Cicalò**,^h **L. Cifarelli**,^{k,j} **F. Coccetti**,^l **E. Coccia**,^m **A. Corvaglia**,ⁿ **D. De Gruttola**,^{o,p} **S. De Pasquale**,^{o,p} **L. Galante**,^q **M. Garbini**,^{l,j} **I. Gnesi**,^{l,r} **E. Gramstad**,^s **S. Grazzi**,^{t,f} **E.S. Håland**,^s **D. Hatzifotiadou**,^{j,i} **P. La Rocca**,^{u,zi} **Z. Liu**,^v **L. Lombardo**,^x **G. Mandaglio**,^{t,zi} **A. Margotti**,^j **G. Maron**,^y **M. N. Mazziotta**,^b **A. Mulliri**,^{g,h} **R. Nania**,^j **F. Noferini**,^{j,*} **F. Nozzoli**,^z **F. Ould-Saada**,^s **F. Palmonari**,^{k,j} **M. Panareo**,^{za,n} **M. P. Panetta**,ⁿ **R. Paoletti**,^{zb,c} **M. Parvis**,^x **C. Pellegrino**,^{zc} **L. Perasso**,^f **O. Pinazza**,^j **C. Pinto**,^{zd} **S. Pisano**,^{l,e} **F. Riggi**,^{u,zi} **G. Righini**,^{ze} **C. Ripoli**,^{o,p} **M. Rizzi**,^b **G. Sartorelli**,^{k,j} **E. Scapparone**,^j **M. Schioppa**,^{zf,r} **G. Scioli**,^{k,j} **A. Scribano**,^{zb,c} **M. Selvi**,^j **M. Taiuti**,^{zg,f} **G. Terreni**,^c **A. Trifirò**,^{t,zi} **M. Trimarchi**,^{t,zi} **C. Vistoli**,^{zc} **L. Votano**,^{zh} **M. C. S. Williams**,^{i,v} **A. Zichichi**,^{l,k,j,i,v} and **R. Zuyeuski**,^{v,i}

^a*Dipartimento di Fisica “M. Merlin” dell’Università e del Politecnico di Bari, via Amendola 173, 70125 Bari, Italy*

^b*INFN, Sezione di Bari, via Orabona 4, 70126 Bari, Italy*

^c*INFN, Sezione di Pisa, largo Bruno Pontecorvo 3, 56127 Pisa, Italy*

^d*Dipartimento di Fisica "E. Fermi", Università di Pisa, largo Bruno Pontecorvo 3, 56127 Pisa, Italy*

^e*INFN, Laboratori Nazionali di Frascati, via Enrico Fermi 54, 00044 Frascati (RM), Italy*

^f*INFN, Sezione di Genova, via Dodecaneso, 33, 16146 Genova, Italy*

^g*Dipartimento di Fisica, Università di Cagliari, S.P. Monserrato-Sestu Km 0,700, 09042 Monserrato (CA), Italy*

^h*INFN, Sezione di Cagliari, Complesso Universitario di Monserrato, S.P. per Sestu – Km 0,700, 09042 Monserrato (CA), Italy*

ⁱ*i, Esplanade des Particules 1, 1211 Geneva 23, Switzerland Geneva*

^j*INFN, Sezione di Bologna, viale Carlo Berti Pichat 6/2, 40127 Bologna*

^k*Dipartimento di Fisica e Astronomia "A. Righi", Università di Bologna, viale Carlo Berti Pichat 6/2, 40127 Bologna*

^l*Museo storico della Fisica e Centro studi e ricerche "E. Fermi", via Panisperna 89/a, 00184 Roma, Italy*

^m*Gran Sasso Science Institute, viale Francesco Crispi 7, 67100 L’Aquila, Italy*

ⁿ*INFN, Sezione di Lecce, via per Arnesano. 73100, Lecce, Italy*

^o*Dipartimento di Fisica "E. R. Caianiello", Università di Salerno, via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy*

*Speaker

^pINFN, Gruppo Collegato di Salerno, Complesso Universitario di Monte S. Angelo ed. 6 via Cintia, 80126, Napoli, Italy

^qTeaching and Language Lab (q), Politecnico di Torino, corso Duca degli Abruzzi 24, Torino, Italy

^rINFN, Gruppo Collegato di Cosenza, via Pietro Bucci, Rende (Cosenza), Italy

^sPhysics Department, s University, P.O.Box 1048, 0316 s, Norway

^tDipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, viale Ferdinando Stagno d'Alcontres 31, 98166 Messina (ME), Italy

^uDipartimento di Fisica e Astronomia "E. Majorana", Università di Catania, via S. Sofia 64, 95123 Catania, Italy

^vICSC World laboratory, Geneva, Switzerland

^xDipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, corso Duca degli Abruzzi 24, Torino, Italy

^yINFN, Laboratori Nazionali di Legnaro, viale dell'Università 2, 35020 Legnaro, Italy

^zINFN, Trento Institute for Fundamental Physics and Applications, via Sommarive, 14, 38123 Povo (TN), Italy

^{za}Dipartimento di Matematica e Fisica "E. De Giorgi", Università del Salento, via per Arnesano. 73100, Lecce, Italy

^{zb}Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Università di Siena, via Roma 56, 53100 Siena, Italy

^{zc}INFN-CNAF, viale Carlo Berti Pichat 6/2, 40127 Bologna, Italy

^{zd}Physik Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching bei München

^{ze}CNR, Istituto di Fisica Applicata "Nello Carrara", via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy

^{zf}Dipartimento di Fisica, Università della Calabria, via Pietro Bucci, Rende (CS), Italy

^{zg}Dipartimento di Fisica, Università di Genova, via Dodecaneso, 33, 16146 Genova (GE), Italy

^{zh}INFN, Laboratori Nazionali del Gran Sasso, via G. Acitelli 22, 67100 Assergi (AQ), Italy

^{zi}INFN, Sezione di Catania, via S. Sofia 64, 95123 Catania, Italy

E-mail: Francesco.Noferini@bo.infn.it

The Extreme Energy Events (EEE) project, mainly based on a network of cosmic ray telescopes, built by high school students at CERN and taking data for more than 15 years, has recently employed additional scintillation detectors for several measurement campaigns and long-term investigations of the secondary cosmic rays over a large range of northern latitudes. Muon measurements at the sea level were first performed on a sailboat from 66° to 82° N, and extended by the PolarquEEEst expedition by car, covering an overall latitude range from 35° to 82°N. Since 2019, three additional detectors, similar to those used in these expeditions, were permanently installed at Ny Alesund (79°N, Svalbard islands). Besides the prolonged monitoring of cosmic ray activity at a such northern latitudes, they observed the Rayleigh-Lamb waves generated by the 2022 Hunga-Tonga volcanic eruption. Results from the last three years of data taking will be presented and discussed.

38th International Cosmic Ray Conference (ICRC2023)
26 July - 3 August, 2023
Nagoya, Japan

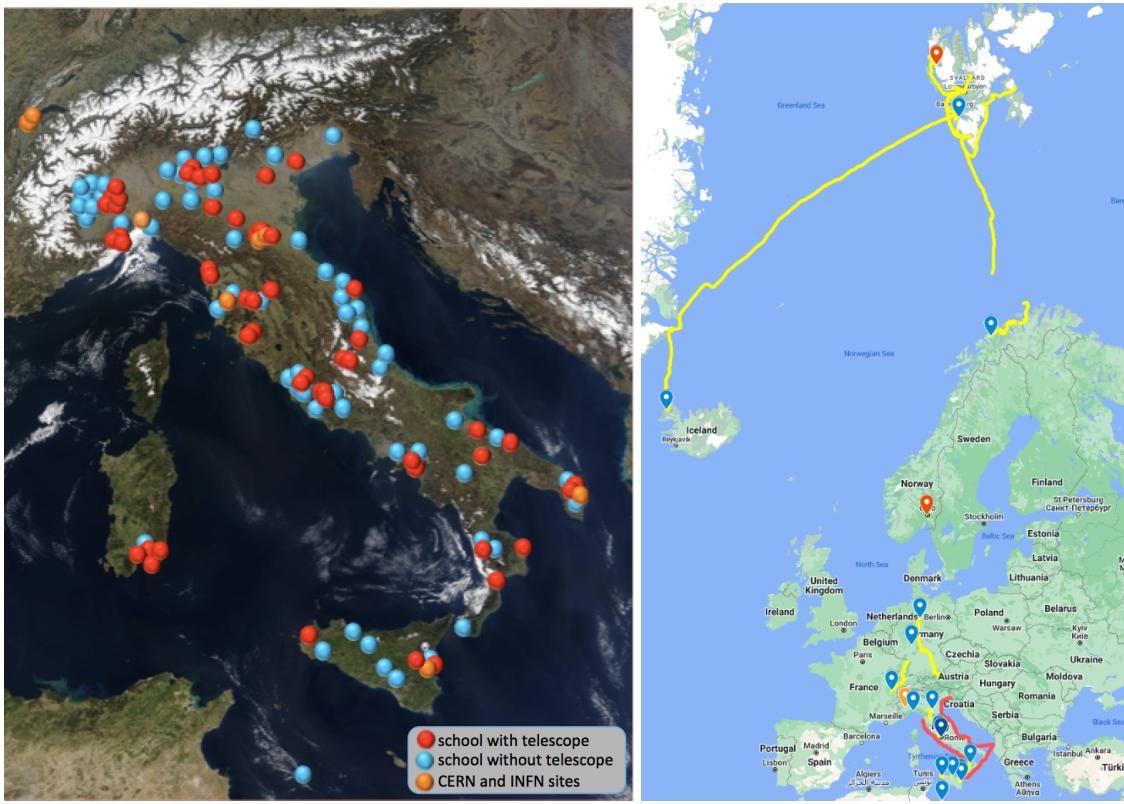
1. The EEE Project

The Extreme Energy Events Project (EEE) [1] born in 2004 with the idea to involve students of high schools into a real experiment. The main goal of the experiment is the search for cosmic ray events with high energy looking at long distance correlations in a network of telescope [2] spread in the whole Italian territory. The project started in 2004 with muon telescopes installed in few pilot schools and it grew in time reaching a notable size, with more than 50 telescope installed (Fig. 1-left). Since 2014 the data acquisition is coordinated, and all data are collected and processed in quasi real time in a single endpoint at INFN CNAF computing center in Bologna [3]. Since 2021 EEE started the transition to operate with Eco Freon [4] to strongly suppress the impact of CO₂ equivalent emission in the atmosphere.

In 2018 a new idea started inside EEE to bring cosmic ray telescopes at extreme latitude. This was realized by the construction of a different type of telescopes, POLA detectors, based on scintillators coupled with SiPM: the PolarquEEEst2018 expedition. The need for changing technology with respect an EEE gas detector was driven by the requirement to have it on board of a boat, the nanuq, sailing up to 82° N. Since 2019, three of four POLA detectors are operational at the site of Ny-Ålesund at the Svalbard.

In the next sections we will focus on the results coming in the last 4 years of PolarquEEEst data collection.

2. The PolarquEEEst data collection


At the end of July 2018, one detector, POLA-01, started its travel around the Svalbard island while other two detectors were installed at fixed positions in Norway and Italy as a reference, POLA-02 and POLA-03. During its trip POLA-01 measured muon flux at different latitude spanning an interval of 66° – 82° N. No significant variations in the muon flux were observed [5] and in 2019 the measurement was extended at lower latitude with an expedition on the road. Figure 1-right shows the travel of POLA-01 (yellow lines). In 2019 a fourth detector was built and in June of the same year three detectors were permanently installed at Ny-Ålesund to collect data.

All detectors are connected at the EEE network and processed in the CNAF computing center. They can be controlled remotely, limiting the maintainance *in situ* at one week per year and guaranteeing a high duty cycle (> 99% with at least one active detector).

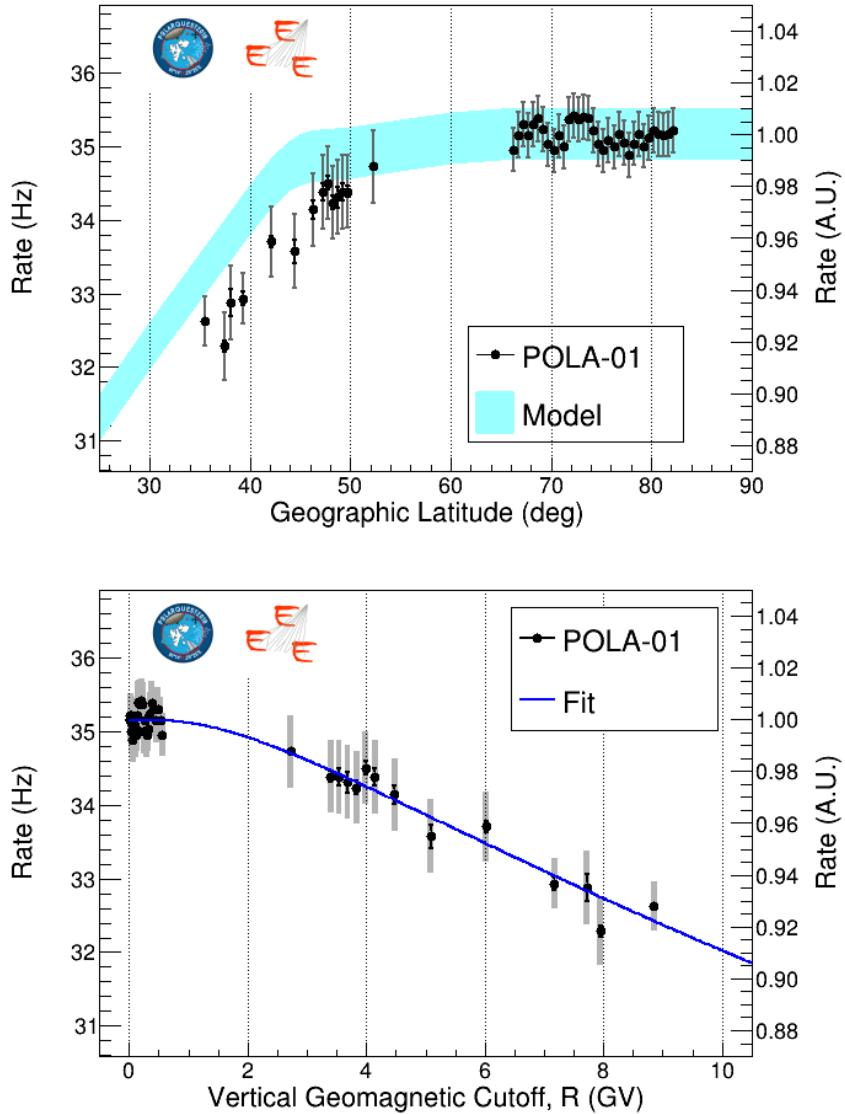
3. Recent results with the PolarquEEEst detectors

3.1 Muon measurements at the sea level up to extreme latitude

By combining the measurements with the POLA-01 detector on nanuq/Svalbard and in the European trip we were able to cover the range 35° – 82° N. The results were recently published in [6] and show an increase of the rate up to 52° as shown in Fig. 2-left. The picture is consistent with an increasing geomagnetic cut-off at lower latitude. The effect is qualitatively reproduced by the PARMA model [7] used to describe the data. Such a model allows to apply a geomagnetic cut-off on top of input primary Cosmic Ray spectra assuming then a shower development to extract secondary components at ground. As mentioned the comparison works only at a qualitative level,

Figure 1: The EEE network is shown (left): in red high schools with a comic ray telescope installed, in cyan high schools joining the project. The polarquEEEst coverage is reported as well (right) in the period 2018-2023: in yellow the trip of one of the 4 detectors (POLA-01), in red the trip of POLA-02.

and it is worth to note that the input spectra used in the model are not yet updated with the most recent measurements. It is possible also to report the measurements as a function of the cut-off rigidity corresponding to geographical coordinates, Fig. 2-right. The trend is consistent with the form function suggested in [8]:


$$r(R) = r_0(1 - e^{-\alpha R^{-k}}) \quad (1)$$

where r is the rate as a function of the cutoff rigidity R and r_0 , α and k are fit parameters found to be (35.15 ± 0.05) Hz, (6.8 ± 1.1) and (0.45 ± 0.08) , respectively.

In order to cover the missing range $52^\circ - 66^\circ$ N a next step is foreseen in 2024 to bring one detector to the North Europe. Since the detector used to cover the missing range will be a different one, POLA-02, a campaign of measurements was performed in 2022 on board of the Amerigo Vespucci boat (Marina Militare Italiana) around Italy, red path in Fig. 1-right. Data analysis of this new data is still ongoing and it will be very useful to verify detector calibrations before of the next step.

3.2 2019-2023 data at Ny-Ålesund (Svalbard)

As mentioned in the previous sections, three POLA detector are taking data since 2019 at Ny-Ålesund (Svalbard). In Fig. 3 the trending of the rate measured in the last 4 years is shown. Such a trending was build by averaging among the values measured by the all three detectors when

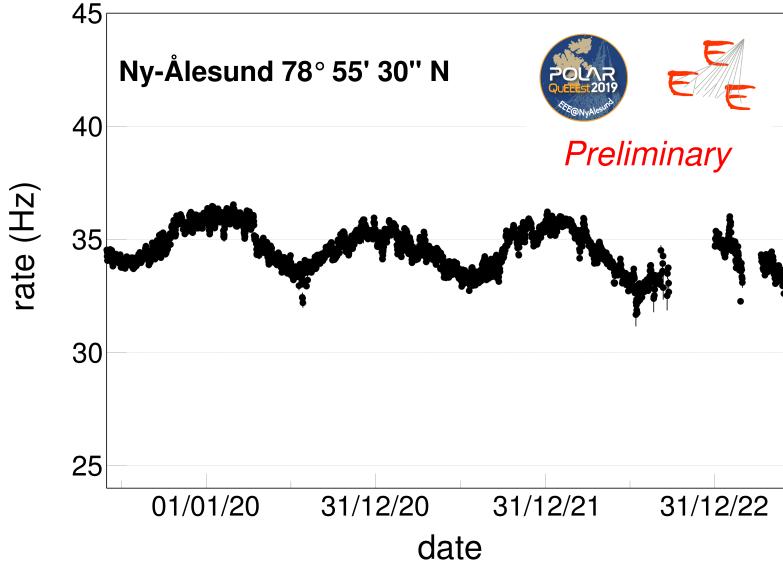
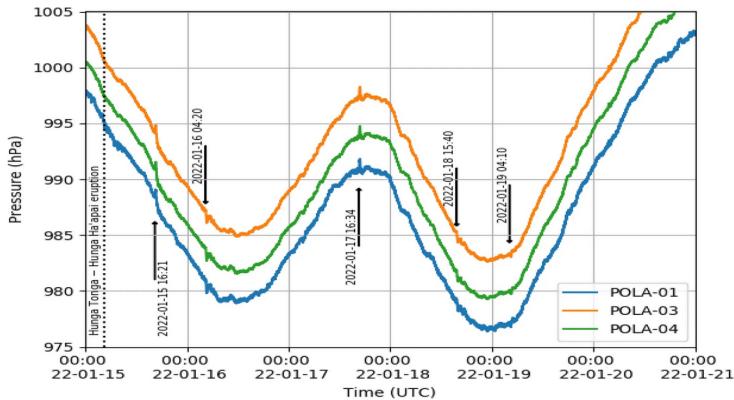


Figure 2: Cosmic particle rate measured by the POLA-01 detector as a function of the geographic latitude (top panel), and as a function of the vertical geomagnetic cutoff (bottom panel) [6].

available. A clear seasonal modulation (Winter-Summer) effect can be observed as found also in previous experiments in the past [9]. This effect is usually ascribed, for low energy muons O(1 GeV), to a change in the temperature of the atmosphere and then in the air density: an increase of the temperature favours the production of muons at the higher altitude which then can decay with a higher probability before to reach the ground level.


The study of such an effect along time is useful to better understand this mechanism in order to move to the search of other kind of periodicity. The study of correlation of the muon flux with other atmospheric parameters is interesting as well. Some of these parameters are already measured by the CNR Climate Change Tower sited close to one of our detector at Ny-Ålesund and this kind of

correlations will be deeply studied in the close future.

Figure 3: Muon flux as measured by polarquEEEst detectors at Ny-Ålesund in the period 2019-2023.

In addition to that the high duty cycle of POLA detector is one of the key feature of our observatory in Ny-Ålesund. This capability allows us to be very reactive in case of a trigger for unexpected events coming from other observatories. So far, no interesting event related to cosmic rays were triggered and observed also in our station. However, on the 15th January of 2022 the Hunga-Tonga volcano (South Pacific Ocean) erupted, producing a shock-wave travelling along the globe. Such an intense event was also registered in our station and our detectors were able to catch the signal (pressure variation) with a significance larger than 3 sigma and an amplitude up to 1 hPa [10]. In Fig. 4 the pressure profile in the period of interest is reported. Different spikes are clearly visible in all the three detectors at the same time in correspondence of the shock-wave impulse passing through the station. This is a nice example of interdisciplinary application of our project.

Figure 4: Real time pressure as a function of time (UTC) from January 15 to January 21, 2022 observed with POLA-01 (blue line), POLA-03 (orange line) and POLA-04 (green line), respectively [10].

4. Summary and outlooks

PolarquEEEst, as part of the EEE network, represents an unique opportunity to measure secondary muon flux at ground up to extreme latitude (North Hemisphere), investigating the effect of Geomagnetic cut-off. The permanent installation at Ny-Ålesund of three detectors allow to study different kind of correlations between the muon rate at ground and atmospheric/astrophysics effects. A clear annual modulation was clearly observed in the last 4 years, as also shown in the past and the search for other kind of periodicities is now started. Measuring cosmic ray flux along time could be in future also a potential monitoring tool for spotting changes related to the environment, solar activity, . . .

References

- [1] A. Zichichi. ProgettoEEE – Extreme Energy Events – La Scienza nelle Scuole. Società Italiana di Fisica (2017) https://eee.centrofermi.it/images/EEE-PaperAZ/EEE_Paper_AZ-2017.pdf.
- [2] M. Abbrescia *et al.*, NIM A 845 (2017) 383.
- [3] F. Noferini *et al.*, NIM A824 (2016) 329.
- [4] E. Bossini *et al.*, NIM A1046 (2023) 167754.
- [5] M. Abbrescia *et al.*, EPJ C80 (2020) 665 [Erratum: EPJ C80 (2020) 897].
- [6] M. Abbrescia *et al.*, EPJ C83 (2023) 293.
- [7] T. Sato, PLOS ONE 10(12) (2015) e0144679; PLOS ONE, 11(8) (2016) e0160390.
- [8] L.I. Dorman, S.G. Fedchenko, L.V. Granitsky, and G.A. Rishe., Proceedings 11th International Cosmic Ray Conference 1970.
- [9] R.R.S. Mendonça *et al.*, ApJ 830 (2016) 88.
- [10] M. Abbrescia *et al.*, Scientific Reports 12 (2022) 19978.