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Abstract

We study the possible effects of large Lorentz violations that can appear in the effective models in which the
Lorentz symmetry breakdown is performed with higher-order operators. For this we consider the Myers and Pospelov
extension of QED with dimension-five operators in the photon sector and standard fermions. We focus on the fermion
self-energy at one-loop order and find small and finite radiative corrections in the even CPT sector. In the odd CPT
sector a lower dimensional operator is generated which contains unsuppressed effects of Lorentz violation leading to
a possible fine-tuning. For the calculation of divergent diagrams we use dimensional regularization and consider an

arbitrary background four-vector.

1. Introduction

New physics standing in the form of Lorentz sym-
metry violation has been a starting point for several ef-
fective models beyond the standard model [1]. A low
energy remnant of this type is strongly motivated by
the idea that spacetime changes drastically due to the
appearance of some level or discreteness or spacetime
foam at high energies. The effective approach has been
shown to be extremely successful in order to contrast
the possible Lorentz and CPT symmetry violations with
experiments. A great part of these searches have been
given within the framework of the standard model ex-
tension with several bounds on Lorentz symmetry viola-
tion provided [2, 3, 4]. In general most of the studies on
Lorentz symmetry violation have been performed with
operators of mass dimension d < 4, [5]. In part because
the higher-order theories present some problems in their
quantization [6]. However, in the last years these oper-
ators have received more attention and several bounds
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have been put forward [7, 8, 9, 10, 11]. Moreover, a gen-
eralization has been constructed to include non-minimal
terms in the effective framework of the standard model
extension [12].

Many years ago Lee-Wick [13] and Cutkosky [14]
studied the unitarity of higher-order theories using the
formalism of indefinite metrics in Hilbert space. They
succeeded to prove that unitarity can be conserved in
some higher-order models by restricting the space of
asymptotic states. This has stimulated the construc-
tion of several higher-order models beyond the standard
model [15]. One example is the Myers and Pospelov
model based on dimension-five operators describing
possible effects of quantum gravity [16, 17]. In the
model the Lorentz symmetry violation is characterized
by a preferred four-vector n [18, 19]. The preferred
four-vector may be thought to come from a sponta-
neous symmetry breaking in an underlying fundamen-
tal theory. One of the original motivations to incorpo-
rate such terms was to produce cubic modifications in
the dispersion relation, although an exact calculation
yields a more complicated structure usually with the
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gramian of the two vectors k and n involved. The Myers
and Pospelov model has become an important arena to
study higher-order effects of Lorentz-invariance viola-
tion [8, 20, 21, 22].

This work aims to contribute to the discussion on
the fine-tuning problem due to Lorentz symmetry viola-
tion [23], in particular when higher-order operators are
present. There are different approaches to the subject,
for example using the ingredient of discreteness [24]
or supersymmetry [25]. For renormalizable operators,
including higher space derivatives, large Lorentz vio-
lations can or cannot appear depending on the model
and regularization scheme [26]. However, higher-
order operators are good candidates to produce strong
Lorentz violations via induced lower dimensional oper-
ators [27]. Some attempts to deal with the fine tuning
problem considers modifications in the tensor contrac-
tion with a given Feynman diagram [16] or just restrict
attention to higher-order corrections [28]. However
in both cases the problem comes back at higher-order
loops [29]. Here we analyze higher-order Lorentz vio-
lation by explicitly computing the radiative corrections
in the Myers and Pospelov extension of QED. We use
dimensional regularization which eventually preserves
unitarity, thus extending some early treatments [18, 20].

2. Lorentz fine-tuning

Consider the Yukawa model [23, 30]
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where the Lorentz violation was implemented by modi-
fying the propagators. In particular, the fermion propa-
gator changes as
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where A is an explicit cutoff and f (|I?| /A) obeys f(0) =
1 and f(c0) = 0. In this way the scalar self-energy I1(p)
is given by

. d*k > >
M(p) = —igy f Wf(lkl/A)f(Ik + FI/A)
1 1
xTr k—m+ie)(k+p—m+ie)

3)

The above integral has been ultraviolet regularized
and is therefore convergent. We expect to recover the
usual divergencies in the limit A — 0 of the first terms

of the expansion around p = 0

Popo (0 H(p))
il = TI0) +
(p) )+ 75, (apoapo B
pipi (0 H(p))
+ conv . (€))
2! (3plc9p, =0

Above we have considered that the mixed terms

o11(0) 0°TI(0) O*TI(0) 5)
opu Apodp;i’ apidp;’
vanish. We have from rotational invariance
1 0*T1(p)
M(p) = T0)+—(p-P)|—=
2] 0) 2!(190 p )((9p18p1
+pg ey +a (6)

where the Lorentz violation is parametrized by the
quantity
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where the derivatives are with respect to x = II?I /A, we
arrive at
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We see that the Lorentz violation is not suppressed
by the ultraviolet scale. The term 7.y can be inter-
preted as a modification of the velocity of light as can
be seen from the correction of the dispersion relation
E = p2c? + m2¢* inthe form E2— 2 —m?>-TII(p) = 0
By using the value of the standard model couplings one
can set the value 77,y > 1073, On the other hand, from
the well tested bound on ¢ one has 77,y < 10729, which
is clearly in conflict with the above result. This leads to
a fine-tuning of the wave function in order to produce
an acceptable size of the radiative correction.

3. The QED extension with dimension-5 operators

The Myers-Pospelov Lagrangian extension of QED
with modifications in the photon sector can be written
as [16]
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where mp; is the Planck mass, & a dimensionless cou-
pling parameter and » is a four-vector defining a pre-
ferred reference frame. In addition we introduce the
gauge fixing Lagrangian term, L5 r = —B(x)(n - A) ,
where B(x) is an auxiliary field.

The field equations for A, and B derived from the
Lagrangian £ + L r read,
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where g = _1 Contracting Eq. (13) with 9, produces

(0 - n)B = 0, which allows us to set B = 0. In the same
way, the contraction of Eq. (13) with n, in momentum
space, leadstok-A =0 .

We can choose the polarization vectors e(") with a =
1,2 to lie on the orthogonal hyperplane deﬁned by k and
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with D = (n - k)> — n’k?. The photon propagator can be
written as
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is the orthogonal projector

4. The fermion self-energy

We compute the fermion self-energy with the modifi-
cations introduced only via the Lorentz violating photon
propagator (19). The one loop-order approximation to
the fermion self-energy is
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which can be decomposed into its CPT even part
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Next we expand in powers of external momenta obtain-
ing
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where X, are convergent terms in the limit g — 0 de-
pending on quadratic and higher powers of p.
The strategy to compute the next integrals is:
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1) Perform a Wick rotation to kg = (iko, /?), and extend
analytically the preferred four vector to ng = (ing, ii).

ii) Use dimensional regularization in spherical coor-
dinates for divergent integrals.

To begin, we are interested on the first two even con-
tributions in Egs. (22) and (24), which are
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Let us emphasize that the renormalization in the even
sector involves small corrections without any possible
fine-tuning. Also, the radiative corrections to the mass
and wave function are finite and have the usual logarith-
mic divergence in the limit g — 0.

Now we compute the lower dimensional operator
Yitysy, which arises in the radiative correction of the

odd sector. According to Egs. (23) and (24) it comes
from
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We can extract the correction from the most general
form of the above integral F' (fr + RnPn, , considering
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angle element in d dimensions,
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We see that the presence of the high scale g is to produce
small and finite corrections in the CPT even sector (29)
and to fine-tune the parameters in the CPT odd sector
of the theory. To deal with the large Lorentz corrections
in the odd sector we can take a step further in the renor-
malization program. We consider the usual subtraction
for the mass by choosing the physical mass mp to be the
pole of the renormalized 2-point function, which in our
Lorentz violating theory also depends on (n - p). Let us
write accordingly

iG(p,(n- p) = ’ . 69)
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In order to have a good limit of the usual theory when
taking the limit g — O we must choose the renormal-
ization points around p and (n - p) [32]. Only after this
procedure is implemented we may complete the study
on the possible fine-tuning aspects of the theory.

5. Conclusions

Effective field theory provides a very powerful tool
in order to check for consistent Lorentz symmetry vi-
olation at low energies. This is especially true for ef-
fective theories with higher-order operators where op-
erators generated via radiative corrections may be un-
protected against fine-tuning. However, in the Myers
and Pospelov model we have shown that the same sym-
metries that allow an operator to be induced will also
dictate the size of the correction.

We have considered the even and odd CPT parts
coming from modifications in the photon propagator.
‘We have shown that the radiative corrections to the even
CPT sector are given by small contributions to the usual
parameters of the standard model couplings. On the
contrary, in the odd CPT sector we have found large
Lorentz violations in the induced axial operator of mass
dimension-3. For the calculation we have used dimen-
sional regularization in order to preserve unitarity and
considered a general background which incorporates the
effects of higher-order time derivatives.
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