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Abstract: In the present paper, we focused on exploring the possibility of providing a new class
of exact solutions for viable anisotropic stellar systems by means of the massive Brans—-Dicke (BD)
theory of gravity. In this respect, we used the decoupling of gravitational sources by minimal
geometric deformation (MGD) (e~7 = Y + B h) for compact stellar objects in the realm of embedding
class-one space-time to study anisotropic solutions for matter sources through the modified Einstein
field equations. For this purpose, we used the ansatz for ¥ relating to the prominent, well-known
and well-behaved Finch—-Skea model via Karmarkar condition, and the determination scheme for
deformation function h(r) was proposed via mimic requirement on radial pressure component:
61(r) = pr(r) and matter density: 63(r) = p(r) for the anisotropic sector. Moreover, we analyzed the
main physical highlights of the anisotropic celestial object by executing several physical tests for the
case 9} (r) = pr(r). We have clearly shown how the parameters «, § and wpp introduced by massive
BD gravity via the MGD approach incorporating the anisotropic profile of the matter distribution
have an immense effect on many physical parameters of compact bodies such as LMC X-4, LMC X-4,
Her X-1, 4U 1820-30, 4U 1608-52, SAX J1808.4-658 and many others that can be fitted.

Keywords: Brans-Dicke gravity; scalar field; compact star

1. Introduction

The exhaustive investigation of several sets of high-precision observational data
through Cosmic Microwave Background, SuperNova type Ia, Large Scale Structure, Weak
Lensing, Baryon Acoustic Oscillations and so on underpins a picture wherein the Universe
is spatially flat with solely about 30% of its full energy balance in the form of luminous
or dark matter types. On the other hand, the nature of the remaining 70%, living in some
obscure type of perplexing “dark energy ”, remains a mystery, although it may be precisely
portrayed by a specific kind of anti-gravitating stress. In this regard, discovering the physics
of this enigmatic dark energy, leading to the present accelerated expansion of the Universe,
is a crucial objective of modern physics, specifically astrophysics and cosmology.

The intensive discussion among astrophysicists and cosmologists has revealed the
possibility of different new scenarios in astrophysical and cosmological research that pro-
vide various sources for the observed acceleration and even a possibility to connect it to the
associated epoch of inflationary acceleration in the extremely precocious Universe. Conse-
quently, the general relativity theory (GRT) as a bound-together portrayal of space-time
and matter gives a basic insight into the astrophysical as well as cosmological phenomena.
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The careful solutions of the Einstein field equations (EFEs) represent the intrinsic char-
acteristics of self-gravitating stellar structures. In this respect, in 1916, Schwarzschild [1]
found the first spherical vacuum solution which indicates the outside geometry of perfect
matter distribution. Afterward, in 1939, Tolman [2] examined smooth coordinating con-
ditions for the resulting inside solutions with the outside one and furthermore explored
some accurate solutions for perfect fluid within sight of the cosmological constant. On
the other hand, in 1933, Lemaitre [3] suggested that anisotropy in the interior of heavenly
structures can occur due to rotational movement, phase transition, solid core or a mixture
of two fluids, and so on. At this stage, various analytical solutions are available in the
literature [4,5] which are physically acceptable solutions for both isotropic and anisotropic
relativistic stellar objects. Recently, several researchers have taken into account the pressure
via radial and tangential components to incorporate anisotropy in the configuration of
celestial bodies. Herrera and Santos [6] explored the possible parameters that prompt
anisotropy in spherical stellar systems in GRT. In the same spirit, Harko and Mak [7]
inferred static solutions representing the anisotropic inner side of cosmic stellar structures
via the anisotropy parameter. The same authors [8] show that the anisotropy is instigated
in a stellar system due to the existence of a solid core. In this respect, there are several
works accessible in the literature for spherically symmetric space-time with anisotropic
fluid distributions that make it possible to contrast with astrophysical observations that
have been derived in [9-19] (and the references therein).

In order to explore salient characteristics of compact objects, viz., mechanisms of
stability and hydrodynamic equilibrium, causality conditions, maximum limit of the mass—
radius ratio, maximum value of the superficial red-shift, the behavior of the material
content via energy conditions and so on, different strategies have been proposed. One of
these strategies is gravitational decoupling through the minimal geometric deformation
approach, which was originally supposed as an elective way to deform Schwarzschild
space-time in sight of astrophysics braneworld. It is worth noting here that this powerful
approach was originally provided in 2008 by Ovalle [20] in order to draw up such analytical
stellar solutions in astrophysics as well as cosmology. In this straightforward and powerful
approach, an extra source is joined in the grain distribution, relying on the prerequisite
that both sources solely associate with gravitation. In this regard, the system of field
equations splits into two sets with lesser degrees of freedom as contrasted to the original
system when we are basing it on a geometric deformation in the radial metric ingredient.
The two systems are tackled separately and their corresponding solutions are joined to
acquire a solution of the full system. According to this mechanism, the authors Ovalle and
Linares [21] applied the MGD approach in order to calculate an interior exact solution for an
anisotropic compact celestial object; they also found that their solution is compatible with
the Tolman IV solution in the background of astrophysics braneworld as well as assessing
the mass consequences for the compactness of self-gravitating stellar structures. Ovalle and
his colleagues [22] have also employed this approach to generate three anisotropic stellar
systems via the Tolman IV solution after incorporating the anisotropy impacts in the perfect
fluid distribution. Otherwise, this MGD approach has been performed to cover several other
subjects such as models for neutron stars [23], anisotropic-like Tolman IV solutions [24,25],
anisotropic-like Tolman VII solutions [26] as well as in alternative and modified theories of
gravitation, viz., f(G)—gravity [27], Lovelock—gravity [28], f(R, T)—gravity [29,30] and
Rastall—gravity [31], among others.

On the other hand, this MGD approach has been used by Cavalcanti et al. [32] to
explore the gravitational lensing singularity beyond to the GRT, and by Casadio and
his collaborators [33] to find the basic stability space for Bose-Einstein condensates in
gravitational structure. In sight of variable tension fluid branes, it was additionally applied
to examine the corrections to dark SU(N) stellar structure evident parameters [34].

The approach of gravitational decoupling by MGD is a greatly efficient procedure
to construct solutions of EFEs for self-gravitating celestial bodies. Notwithstanding, the
exchange of energy and momentum among the taken-into-account sources imposes some
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restriction on the deformation in the radial metric component, but the temporal metric
component remains unchanged, which divides the EFEs. Consequently, in order to beat this
weakness, the authors of [35] altered the MGD approach by incorporating deformations in
both (radial/temporal) metric functions, which is valid solely in the case when the matter
is absent, as well as when the Bianchi identities corresponding to self-gravitating systems
filled with fluid are also non-satisfied. Later on, the author of [36] proposed a more general
form of decoupling a spherical stellar structure by incorporating deformations in radial
as well as temporal metric components. The major upper hand of the extended MGD
approach is that it is conceivable for all space-time areas regardless of the choice of matter
distribution without imposing any restrictions. In this respect, several researchers have
used this extended MGD approach in the following ways: to generate anisotropic analogs
of Tolman IV [37] and Krori-Barua [38] solutions, to extend black holes in (3 + 1)- and
(2 4+ 1)-dimensional space-times [39-42], as well as to provide anisotropic solutions in GR
and modified theories [27,43,44].

It is well known that various alternative or modified theories of gravity are incorpo-
rated via modifying the Einstein—Hilbert action, which is generally used to investigate the
mystery of accelerated cosmic expansion as well as the truth of the dark sector i.e., dark
matter and dark energy [45]. In strong-field systems, all modified gravity theories may
stray broadly from GRT; however, in weak-field systems, they are in accord with GRT. It is
well remarkable that the modified gravity theories in strong-field systems may prompt a
correct and suitable gravity theory. The gravitational collapse phenomenon is a noticeable
paradigm of a strong-field system, so its survey in modified gravity theories has pulled
numerous researchers [46-50]. The dynamics of the collapse are modified in the case where
we consider the modeling of the self-gravitational fluid distribution in generalized theories
of gravity, which in turn uncovers the modification concealed in the fashioning of the
Universe structure.

The Brans-Dicke (BD) theory of gravity [51,52] is the most natural suitable generaliza-
tion of GRT and has been widely investigated in different astrophysical and cosmological
aspects over the past decades. Their generalization is achieved by including Dirac percep-
tions in a scalar-tensor theory i.e., the gravitational field is interceded by the scalar field ¢
as well as the curvature due to geometric part i.e., Ricci scalar. BD gravity holds a constant
coupling parameter wpp, well known as the scalar field coupling, which can be tuned to fit
the perceptions [51-53] and also integrates a massless scalar field ¢(t) = 1/G(t) to analyze
the involvement of the Universe. The BD coupling parameter wpp has been proven by
a radar synchronization experiment which confirms that BD gravity is compatible with
all observational tests and solar system experiments for |wpp| > 4 x 10% [54,55]. On the
other hand, this marvelous theory provides suitable solutions to numerous cosmic issues
and also clarifies radiation-matter transition via combining observational data such as
the two-degree galaxy redshift survey [56] as well as cosmic microwave background data
from WMAP, VSA and CBI, which gives a broad scope of deviation from GRT [57-59]. We
would also like to remark on recent investigations on testing BD theory and on endeavors
at moderating the tensions employing specific potentials in the BD frame, see e.g., [60-62].
There are also tests on BD gravity with screening via scalar gravitational-wave memory, in
which the author of [63] assumes that the Sun’s Vainshtein mechanism does not influence
the scalar field profile generated by the distant compact celestial body and they have
shown that the scalar memory effect provides a strong technique for testing BD gravity
with the Vainshtein mechanism. Moreover, Sharif and his collaborators have investigated
self-gravitating objects in the context of Brans—Dicke gravity [64-67].

The naturalistic systems of compact celestial bodies have widely been interpreted
in scalar-tensor theories. In this regard, Ramazanoglu and Pretorius [68] investigated
the allowable range taking into account the mass and scalarization of neutron stars via
dispensing a mass to the scalar field. The authors of [69,70] studied how the dynamics or
structure of slowly and rapidly rotating neutron stars deviate from the GRT celestial model
in sight of a massive scalar field due to the most significant moment of inertia. In Ref. [71],
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the authors studied a certain class of scalar-tensor theories with a massive scalar field by
considering a quartic self-interaction term in the potential for analyzing the comportment
of static and slowly rotating neutron stars. The same authors [72] examined the impacts of
a self-interacting massive scalar field on the moment of inertia and compactness of slowly
rotating neutron stars by using diverse equations of state.

The coupling functions of the BD theory with a massive scalar field, which is allowed
by observation, may differ significantly from those in the massless scenario, as we noted
previously. Due to this occurrence, we typically come to the conclusion that anisotropic
compact stellar systems with massive scalar fields could, on average, have slightly unusual
topologies and properties when compared to their homologs in the massless scenario. In
light of this purpose, we explore the possibility of providing exact solutions by using the
decoupling of gravitational sources across MGD for viable compact stars in massive BD
gravity admitting the “Karmarkar condition”.

This paper has been organized as follows: after an exhaustive introduction in Section 1,
the suitable BD theory under gravitational decoupling formalism is laid down in Section 2.
The basic stellar equations and the MGD approach in massive BD gravity theory are
introduced in Section 3. In Sections 4 and 5, we provide a procedure for a space-time
to be embedding class-one and match the interior solution to an exterior Schwarzschild
line element, respectively. The physically and mathematically adequate solutions to the
modified Einstein field equations through the MGD approach with the mimic requirement
on matter density and radial pressure component for anisotropy in the context of massive
BD gravity are derived in Section 6. Next, in Section 7, we give the physical properties of the
anisotropic stellar structure in massive BD gravity via several physical and mathematical
tests. Finally, in Section 8, the conclusions are reported.

2. BD Theory under Gravitational Decoupling Formalism

In order to present the BD theory under gravitational decoupling formalism, we
introduce a modified complete action in this theory that is given by

- 1 _WBDgig —
S = 16”]{734) p V'Vig E(sv)]\/ gd'x

v /cm\/fgd4x+ﬁ/59\/fgd4x. (1)

Here, R is the Ricci scalar while £,; and £y denote the matter Lagrangian density and
Lagrangian density for a new sector, respectively, which have been coupled by constant
B, known as the coupling constant. However, L(¢) denotes a non-zero scalar field. As
usual, the symbol ¢ stands for the determinant of the metric g,,. In this connection, the
two Lagrangian density functions £, and Ly are related to the stress-energy tensor as

/jg 5gyv 4
_ 2 4(/=8L)
91“/ - /jg (5g;¢1/ : (3)

Since Lagrangian density depends solely on the metric tensor g, then Equations (2) and
(3) which yield the expressions for stress-energy tensors are expected to be of the form

Ty = —

B 20L,,
Ty = g],n/ﬁm - W/ 4)

20L,

Oy guvly — 8g7 ®)
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The modified complete action (1) for the BD gravity theory may be varied with regard to
metric tensor g, in order to benefit the general modified field equations as follows

1 87 1
RVV - Egva = ?(T.”V + IBG,W/) + ; |:q)'V;V — 8w D(P

6
WBD SwPs ¢ L() g
+7 <§0,y Qv — > ) - ) . (6)
Here, the [ represents the d’Alembert operator and it is defined as
_T"+0 1 dL(g)

Hp = 3+2wgp +3+2CUBD [ qu Z,C(QD) ! @

where T and © are the trace of the stress-energy tensor T;; and 6;;, respectively, and
™" =¢T;,  © =gy, ®)

The inner geometry of compact stellar objects is absolutely represented by a static spheri-
cally symmetric metric in Schwarzschild-like coordinates (¢, 7, 8, ¢) as follows

ds? = 8) @ — 1) dr? — (462 + sin® 0 dg?). )

Here, e¢(") and ¢'(") represent the metric functions of an astrophysical stellar object. More-
over, all throughout this work, we use the geometrized relativistic units as {G = ¢ = 1} and
the positive signature {+, —, —, —}. In this respect, we examine the physical highlights of
the astrophysical stellar object with anisotropic distribution identified by the accompanying
stress-energy tensor

Ty = (0 + pr)upty — Pt §uv + (Pr — Pr)vyvv- (10)

Here, p, pr and p; are the matter density, radial pressure and tangential pressure for
anisotropic matter distribution, respectively, and the covariant ingredient u, is the 4-
velocity with the normalization condition u,u* = —1and u, V#u, = 0.

3. Basic Stellar Equations and the Minimal Geometric Deformation (MGD) Approach
in BD Gravity Theory

3.1. Basic Stellar Equations in BD Gravity Theory

For a physically realistic astrophysical stellar system with spherical symmetry, the
combination of equations expressed in (6)-(9) and (10) provides the following differential
equations:

87 (s a0 1pote) _ (1) 1
p <p+ﬁ90>—|—¢fo =e . ) +r2, (11)
8. o\ _ Lo _ (¢ 1)_1
(P (Pr ﬁel) (Pfl =e€ r + T2 1,2/ (12)

g’
- 2> ’ (13)
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where prime indicates the derivatives with regard to the radial coordinate, ». Moreover, the

scalar tensor constituents fg ((P), fl1 @) and f22 @) can be expressed in terms of ¢ and 7, which
are explicitly given by
09) _ oyl p (2 1\, wBD n_ ,L(p)
fO e -q) + <1’ 2 % + 2(1) % e 2 ’ (14)
e) _ 9 [ g Q/ 1 WBD oy 5(4’)
fT=e _<r+2 A i el (15)
2(9) _ -1 [ 1 71 7/ 1, WBD 4 L(¢)

Nevertheless, from the expressions (6) and (9), we acquire,

Op = —e! Ki -+ é;) ¢'(r) + qv”(f)}/ (17)

Taking into account Bianchi Identity, the system of equations according to BD gravity theory
fulfill the accompanying preservation equation

- S0 p s -] + | - EE el -

g+ Lot - o] + o[ - S50 - 4@

r 81
o)/ 2,1 2
LAY+ 219 - 2] o (19)
Furthermore, the mass function for the interior stellar structure can be formulated as

. 0(9) \ .2
m(r) = e 26 ) :47(/ (ﬁ+ﬁ98+%>%dr. (19)

3.2. Gravitational Decoupling by the Minimal-Geometric-Deformation (MGD) Approach

The system of equations given in (11)—(13) are a profoundly non-linear ensemble of
equations. Along these lines, we shall apply the MGD method to deal with the non-linear
system of Equations (11)—(13) divided into two subsystems of equations. In light of this non-
linear system, let us take into account the grain anisotropic fluid solution {®, ¥, p, p;, p: } by
fixing the coupling constant 8 to zero, in order that the canonical metric (9) be appointed as,

2
ds? = @2 _ A r?(d6? + sin0 d¢?). (20)

¥(r)
Here, ¥(r) = 1 — 21i1/r represents the typical term of the mass function. Currently, in order
to observe the 6-sector effects arising from the new sector 6, in the non-linear system of
Equations (11)—(13), we need to include the coupling parameter § within the anisotropic
fluid distribution. In this way, so as to include the effects of the gravitational source 6,,,
in an anisotropic stellar system, we take into consideration the geometric deformation

functions ® and ¥, which are given as follows:

=7 = P+pBg (21)
¥Y—e = Y+Bh, (22)
where & is the deformation linked to the constituent of the radial metrics, and g is the

deformation linked to the constituent of the temporal metrics. It is worth mentioning
here that the deformations expressed in (21) and (22) are absolutely radial functions; this
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attribute guarantees the spherical symmetry of the stellar solution. The expected MGD
strategy identifies with set 1 = 0 or ¢ = 0; for this circumstance the deformation will be
carried out uniquely on the radial ingredient, surviving the temporal one unchanged, viz.,
g = 0. Hence, in this regard, we obtain

Y(r) = e 1) =¥ (r) + Bh(r), (23)

which is well known as the MGD (Minimal Geometric Deformation). Now, using this
MGD approach defined in Equation (23), it is clear to observe that the non-linear system of
Equations (11)—(13) divides into two systems of equations. Consequently, the first equations
system is identified as follows:

Lsmp+ ) - L (24)
LIRS ONE w<§+:2>—r12 25)
;(mfat—ff(‘”)) = Z<2C”+C’2+2§/>

+1PZ, (g’ + f) (26)

it is clear that these results correspond to = 0, which implies that the fluid matter distribu-
tion is purely anisotropic. Hence, from now on, we refer to the system of Equations (24)—(26)
known as the standard Einstein’s system in BD gravity theory. Moreover, we can establish
straightforwardly the amounts of matter density, pressures (radial and tangential), viz.,
0, pr, and Py, respectively, in terms of gravitational potentials ¢ and ¥ from expressions

(24)—(26). Here, fg (), fll @) and f22 @) are explicitly indicated as

RO = lyr 2 mge] By L0, @)
f~.11(qJ) _y (i n r;;’)q), B (’-;l;D (sz] B £(2<P)’ (28)
A=y :qv” + C + Z) ¢’ + a;ljpDcp’z] + %/(P/

_@. (29)

The BD gravity system (24)—(26) fulfill the accompanying preservation equations,

! p2, 1 !
=S - 2 0] + g [ - S (R
A+ A0+ 2EHY - )| =0 @)

(r)

Now, in order to establish the usual mass function, we use the definitionof ¥ =1 — %,
which leads to the following relation:

m(r) = /07214)[87'(53(r)+f8((’))]r2dr (31)

where 771 represents the mass function for the seed space-time.
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Now, the second equations system, dubbed as the quasi-Einstein system in BD gravity
theory, is identified in the case where we activate the coupling constant § in the system. In
this connection, we obtain

%(87168 + fg¢) = —h7/ = rﬁz (32)
%(8716% + }'11"’) = —h(%/ + rlz) (33)

Lo+ 7) =4 (a7 42428
A <§/ n %) (34)

where

Fol=h {go” + 27(’/ + ‘;’ZJ(p’z} + %,(p’, (35)
(B -]
F = [go” + C - '*Z) 9 + “Z?qv’z} + hg/q)“ (37)

Moreover, the corresponding preservation equations related to the equations system
(32)-(34) give,

_(f/ 0 _ pl de%_z 2 pl 1 _5/ 0(¢p)
T O+ e+ - 5(R
() 1)\ | 2(Fle) _ 2(9)]| _
A+ (R +2(RY -7 )}_o. (38)

Furthermore, we notice that the linear combination of both preservation equations given in
(30) and (38) with regard to coupling constant 8 provides the preservation equation for the
full system, which is expressed in (18).

Actually, it is significant to note that, from now onward, we will describe the full
physical parameters for the matter density, radial and tangential pressures as follows:

p(r) = p(r)+poy(r), (39)
pe(r) = pe(r) —BO1(r), (40)
pi(r) = pi(r) —BO3(r), (41)

where p, pr and p; are physical quantities already defined above. Then again, the physi-
cal amount, namely, the anisotropy parameter (A) can be performed by the expressions
addressed in (40)—(41), read as

A= (P — pr) + B(6] - 63).

Presently, the internal astrophysical stellar geometry for the assisting MGD system may be
specified by the accompanying metric,

-1
ds? = (1 de? — {1 - ZmT(r)] dr® — r?(d6* + sin0 d¢?). (42)

Here, m(r) characterizes the inward mass of the MGD system, which can be read as follows:

() = 5|22 i) 3)
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On the other hand, it is worth mentioning here that, throughout in our study, we take the
following form of the scalar function field £(¢) as follows:

1
L(g) = 5mGe*, (44)

where m, represents the mass of the scalar field and ¢ is the scalar function which is
defined as ¢ = ae” &) [73] with & and n being two constants.

As mentioned above, our objective is to find the solution using gravitational decou-
pling. As we know, the MGD technique allows obtaining the solution beyond the chosen
gravity. Furthermore, the MGD approach divides the original system into two parts: the
first system corresponds to pure Brans-Dicke gravity while the second system is due to
gravitational decoupling. We have assumed that the internal structure of the first system
is made of anisotropic fluid matter distribution rather than isotropic matter distribution.
Therefore, we need two extra conditions to solve the first system. Due to this reason, we
are interested in the embedding class-one condition (Karmarkar condition) along with the
radial metric function corresponding to the Finch—-Skea model to close the first system,
while the second system is solved by using the mimic constraints approach. Finally, we the
solution of the original system after combining the solutions of both systems, which is the
generalization of the embedding class-one solution beyond the Brans-Dicke gravity. The
procedure for the embedding class-one condition is discussed in next section.

4. Procedure for a Space-Time to Be Embedding Class-One

In 1925, Eisenhart [74] presented that an implanting class-one space [n + 1]-D space
VI"+1 can be carried out into a [1 + 2]-D pseudo-Euclidean space E!"*2], which can be
characterized by a [1 4 1]-D space V["*1 if there remains a symmetric tensor () Which
satisfies the associated Gauss—Codazzi equations as follows:

Runpg = 2 aypa4),

0 = Ay~ T}

q
[np]amq + rm[naP]W

where Rynpg and apy are the Riemann curvature tensor and the coefficients of the second-
order differential form, respectively, as well as e = £1. In 1921, Kasner [75] provided
that Schwarzschild’s vacuum may be submerged into 6-D pseudo-Euclidean space by a
progression of coordinate transformations. This implies that the Schwarzschild outside is
of class two. In the same spirit, in 1975, Gupta and Goel [76] also gave a 6-D implanted
Euclidean space-time, which is specified below,

z1 = ke%/? COSh(Ii)' 2y = ke®/? sinh(li>, z3 = f(r),

zg =rsinfcos¢, zs = rsinfsing, zg = rcosb,

which is used to transform a generalized 4-D space-time (9) into 6-D pseudo-Euclidean
space, viz.,

ds> = (dz1)? + (dzp)? T (dz3)? — (dz4)* — (dzs)?
—(dz)?, (45)

with [f'(r)]? = F[ - (11_1,—‘}!) + 1k?5¢"]. This also necessitates that the 4-D metric (9) may
be actualized in 6-D Euclidean space; notwithstanding, there subsists a possible situation
where (dz3)? = [f'(r)]? = 0, then the 6-D Euclidean space (45) may be reduced to 5-D
pseudo-Euclidean space. This is possible only if

¥)

Fop==[- U legg] — (46)
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or

1 k?
v=1t7 &2, (47)

The important condition (47) is equivalent to the embedded class-one solution (recog-
nized as the Karmarkar condition), which fulfills a necessary condition that was originally
determined by Karmarkar [77] with the help of Riemann tensor components as

Ri010R2323 = R1212R3030 + R1220R1330- (48)

In 1981, Pandey and Sharma [78] caused to notice the way that the Karmarkar condition
is the only significant condition required to transform into a class-one; they found the
satisfactory condition as Ro3p3 # 0. Subsequently, the basic and suitable condition to
be a class-one is one which satisfies simultaneously the Karmarkar and Pandey—-Sharma
conditions. Thus, in terms of the gravitational potential functions, the condition expressed
in (48) can be written as

1Ijl

111(11; — 1) — 2@// + glz) _ 6/2 (49)

in which, during integration, we obtain the g gravitational potential function as

2
e‘;‘:(A—i-B/\/;f—ldr). (50)

while A and B are two integration constants. One should consistently remember that
there is no class-one vacuum outside, as the static Schwarzschild’s vacuum is previously a
class-two solution.

5. Exterior Space-Time: Junction Conditions

Junction conditions play a crucial and important role in the study of compact stellar
structures which are bounded stellar objects by joining their interior and exterior space-time
at the surface X in a smooth way. In this respect, we can find all the constant parameters
involved in the system. The space-time corresponding to the interior solution for field
Equations (11)—-(13) is expressed by Equation (42). Therefore, the exterior space-time is
considered to be an empty space-time i.e., the exterior Schwarzschild solution which is
given explicitly as

-1
s’ = — <1 — 2/:/1> dr* — r*(d6?* — sin® 0 d¢?)

+ (1 — W) e, (51)

r

where M represents the stellar mass of the star. For analyzing the physical aspects, we need
to generate a connection between the inner and outer geometries of celestial objects, which
should be satisfied with the smoothness and continuity for inner and outer space-times at
the hypersurface & (f = ¥ — R = 0, where R is a radius). For this purpose, the following
conditions should be met at the boundary surface %,

[ds? s = [ds*+]s,  [Kij_lz = [Kij,]x, (52)
[@(r)-]z = [@(")+]z,  [@'(r)-]z = [@(r)+]x. (53)
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! Here, K; j denotes the curvature, whereas the subscripts — and + symbolize the interior
and exterior solutions, respectively. Now, we use the continuity of the first fundamental
form i.e., [ds?]x=0, and we will still find for any function F(r),

[Fly =F(r +R")—F(r - R )=F"(R)—F (R). (54)

It is worthwhile to mention that this condition supplies us g;,(R) = g,/ (R) and g;; (R) =
g;; (R). Moreover, the second fundamental form, viz., Kl-]-, which is equivalent to the O'Brien
and Synge [79] junction condition at the hypersurface X, must be satisfied by the space-time
(7). This condition denotes that radial fluid pressure p, vanishes at a certain radius r = ry,
which is expressed as

(e =0 = |p—poi(n)]_=o. (55)

This requirement establishes the size of the celestial object i.e., the radius R, which implies
that the material substance is restricted within the interior of the sector 0 < r < R, which
indicates that its exterior sector does not contain any matter. Moreover, the BD scalar field
P relating to the empty Schwarzschild solution was determined according to the procedure
addressed in [80]. Now, considering 7~ and 7t as the inner and outer space, respectively,
the line element for hypersurface is defined in terms of the proper time boundary 7y as

ds* = dy?* — R*(d6* + sin® 0 d¢?). (56)
The extrinsic curvature corresponding to the boundary X is given as follows:

Pk -k Iy’ ay'y 57)

K= —mt 2= i S
Y k- onini k2algni i

where 1! and mf denote the coordinates in the boundary X and the 4-velocity normal to %,
respectively. Here, the components corresponding to the 4-velocity are defined in terms of
the coordinates () of T+ as

af af df |-v/z |
+ ql k_
mg = i—dyk g dyi dy] with mm" = 1. (58)

Further, the unit normal vectors for the inner and outer areas can be defined as

m, = |:0,€77/2,0,0:|, and

-1/2
my = {0, <1— 21”) ,o,o}. (59)

Now, considering the Schwarzschild space-time (51) and using the line elements from
Equations (7) and (56), we can write

8], - o[-,
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where [r]y = R. The non-zero components corresponding to the curvature, Kjj, can be

achieved by using expression (59) as

ijs

_ g’ S St
Koo = {_ 20172 | Ky = Sin26K33 = [re ]y,

-1/2
Ki = {M <1 _ 2M> }
00 72 7 s

1/2
K= —L ki — Hl_w) L.

sin? 6 r

By using the junction condition [K,, ] = [K},]x with [r]x, we obtain the component of the
radial space-time as follows:

e 1R — (1 - 2;:’) (61)

Plugging this radial gravitational component into the matching condition [Kyy|s = K]z
provides

-1
=7 (1-2) ®

On the other hand, in principle, the #-sector may create some modification in outer space-
time and matter content. As such, the explicit expression for Equation (55) can be given by

pr(R) =B (61)" (R) = =B (61)" (R), (63)
where p,(R) refers to the radial pressure with respect to the inside matter distribution
when 8 = 0. The above condition (63) describes a second fundamental form related to the
Einstein field equations expressed explicitly by Equation (6). Now, the formula expressed
in (63) with the help of the value of (61)~(R) for the interior space-time via Equation (33)

comes out to be
Bh ¢ 1 2 ¢\, wep p
81 Mﬁrz%(ﬁz)‘/’ "2 ¢ 1 .
+pr(R) = =B (61)*(R), (64)

where ¢’ = 9,¢~ and X represent the boundary of the celestial configuration r = R.
Presently, we employ Equations (33), (61) and (62) into Equation (64) in order to find the
(61)7(R) expressed in Equation (64) for the exterior space-time, leading to

g o1 2 &\, wsp p
87 (P<r+r2 + r+2 ¢ 2(p(P <
r=
_ Bhg M 1 WBD p
T |\RER—2m) TR 29, %

+(122+R(RA_AM)¢;}. (65)

Here, h} and ¢, are two functions signifying the geometric deformation function and scalar
function, respectively, for the outside Schwarzschild line element (51) at the boundary
r = R of the celestial astrophysical structure due to the new sector ¢;;. It should be noted
that, if the outer space-time is represented by the Schwarzschild vacuum solution given in

pr(R)+ BL
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(51), at this stage, we should put i} = 0, in order to obtain the final form of Equation (65),
which can be derived as follows:

ﬁr(R)“r‘ﬁh(R) [(P(R)<€/(R)+l> _ WBD (PIZ(R)

871 R R? 2¢(R)
3+ E5)ew] -0 (66)
which is identical to
pr(R) —B6I(R) =0 = p;(R)=0. (67)

This condition (66) or (67) establishes the size of the compact celestial body. In view of
this relevant condition, we have discovered an important result that anisotropic radial
pressure vanishes at the surface, which is desired for the equilibrium of a celestial object in
the original Schwarzschild solution.

Finally, we want to mention that conditions (60)—(62) and (67) describe the primary
and adequate conditions to establish all the constants present in the stellar system.

6. Minimally Deformed Anisotropic Solution: Mimic Constraint Approach

As the modified Einstein field equations given in (11)—(13) are divided into two subsys-
tems according to the MGD method, the first subsystem corresponds to the field equations
given in (24)—(26) with five unknown parameters {¥, &, o, pr, p: } for the seed solution in
BD gravity with respect to the stress-energy tensor Ty, whereas the second subsystem
corresponds to the field equations expressed in (32)—(34) which examine the solution of
new f-sector, which basically consists of four unknown parameters {h(r),63,61,65}. In
this regard, if the first subsystem generally provides an achievable solution for anisotropic
distribution, then this leads directly to the absolute evaluation of the unknown parame-
ters of the second subsystem. In effect, for solving the system of equations via the MGD
approach, we need to use the well-known embedding class-one condition to reduce the
degree of freedom. Now, we take into account the ansatz for ¥ related to a well-defined
notable Finch-Skea model and execute a well-known embedding class-one condition (50).
Hence, we obtain the accompanying seed space-time, so-called embedding class-one seed
space-time, as

2 2
2 VaB , 2 dr
ds? = <A+2 r) dt Trad
—r?(d6? + sin® 0 d¢?). (68)

At this stage, ¥ = 1/(1+ar’) and ¢ = In (A + @72)2 can describe the solution of the
equations system (24)—(26) in the context of the BD gravity theory. Presently, in order to
close the second subsystem with the new 0-sector, we necessitate the deformation function
indicated by h(r). Since there are diverse ways to obtain the deformation function, however,
it ought to be satisfied with some fundamental prerequisites so as to be a permissible system
with respect to the physical and mathematical points of view. In such a manner, a straight-
forward and comfortable depiction of the geometric deformation function f(r) [28,81,82]
ought to be satisfied with these fundamental necessities or only involve oneself in the
ingredients of 8-sector with a linear, polytropic or barotropic equation of state. Here, we
will adopt the well-known methodology, specifically, the Mimic requirement method:

(A) Mimic requirement on the radial pressure component of the anisotropic sector, viz.,

(9% = pr)
(B) Mimic requirement on the density of the anisotropic sector, viz., (6] = p).

It is mentioned that both approaches are mainly used to determine the deformation
function (). The mimic-to-pressure constraint approach i.e., 6] = p, involves a deforma-
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tion function (h) that is free from the derivative. This approach directly determines the
expression for h(r) without any integration, while the mimicking of density constraint i.e.,
01 = p, procedure provides a differential in the differential equation in the deformation
function (1), whose solution depends on the seed solution. The second approach enhances
the total mass of the object.

6.1. Mimic Requirement on Radial Pressure Component for Anisotropy

Here, in order to obtain a physically and mathematically adequate solution, we
perform the radial pressure component expressed in Equation (25) and imitate its re-
lationship with the anisotropic area given by Equation (33) in order to close system of
Equations (32)—(34). In this scenario, we can obtain

01(r) = pr(r). (69)

This necessity derives that the stress-energy tensor for the seed solution is associated with
the anisotropy in a radial direction. This implies that Equations (25) and (33) are equivalent.
In this way, we determine the formula for the deformation function %(r), which takes the
following forms:

(r) Y ¢ rPwpp —Yro¢ (4+8'r)+ fulr)

VT (14T + g r (a4 1) — 2P wpp’ (70)

where, f11(r) = ¢ L(¢) —2¢* (Y =1+ ¥ 7).
Then, the minimally deformed radial gravitational potential e~" has taken its final
form, which is expressed explicitly as

Y ¢"2r2wpp — Y1 (4+&7) + f11(r)

y_
¢ T+ﬁ2(p2(1+§’r)+q)q)’r(4+§’r)—q)’zrzcuBD' @)
Now by combining Equations (44) and (68) into Equations (70) and (71), we obtain
_ r? [Ha(r) + Ha(r)]
N () y e TR A 72)
ol — —1? [H1(r) + Ha(r)] L1 73)

4741 (14 ar?)[Ha(r) —4A%]  14ar?’
where,

H(r) = 4 A% amy,(2A + /aBr?)?" — 4y/aAB[2>T*"
+42F "y — txmgprz(2A + +/aBr?)?"] + 4a%/2 ABr?
X [4" + amr? (2A + /aBr?)?",

Ho(r) = a® B2 4" 4 o m%,,r2(2A + VaBr?)?) +
a{4AP (4" + amir® (2A + v/aBr?)*"] + B
X [—421" — 434y 4 ocmZ(prZ(ZA + \/aBr?)?"
+252 2 wppl}.

Hs(r) = 4\/aAB(3 +4n)r?* + aB**(5 + 16n — 8n’wpp).

Now we can determine the expressions for #-sector components directly from Equa-
tions (32)—(34), namely 6)), 61 and 67 after plugging the deformation function /(r). In this
situation, we can obtain

ff ~
= (=) prr) 74)

pgeff) _ pgeff) + At (75)
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However, Equation (39) provides the explicit expression for effective matter density, viz.,
f)
p(eff) as

pt = p(r) + p6y. (76)

This mimic constraint procedure suggests that the deformed gravitational potential function
el can be determined explicitly, due to the fact that the condition expressed in Equation (71)
does not contain any integral term. On the other hand, the energy density §(r), radial p,(r)
and tangential p;(r) pressures for the seed solution are already given by Equations (24)-(26),
respectively. Now, after applying the boundary conditions (60)-(62), we obtain

VaB o, [ 2M
A+ TSR =1 T, (77)
2M
1 2M
1+aR2+ﬁh(R)_1_T 79)

The constant M, which is the mass of the stellar system, will be determined numerically by
using condition (67).

6.2. Mimic Requirement on Matter Density for Anisotropy

In this section, we consider another approach, namely, a mimic requirement on matter
density for anisotropy, which is also an effective technique to determine the physically
acceptable form of deformation function f(r). In this approach, we mimic the seed matter
density 0 (r) to its temporal component 6] (r), which is as follows

00(r) = p(r). (80)

Moreover, we acquire the first order linear differential equation in the deformation function
h(r) (by taking into account Equations (24)—(32) with the help of Equation (80)), which
leads to

L Fih = Glg¥), ®1

which provides
h=e [Flo¥)ir ( / G(g;¥) el Flot)rgy o H1>. (82)

Here, H; is an integration constant while F(¢; ¥) and G(¢; ¥) take the following form:

_ ¢?r*wpp + dreg’ +2¢""12 @ + 297
ro (¢'r +2¢) '

[(P rPrwpp¥e + ¥ ¢'r*¢? +2¢°

F(e;¥)

1
R

—L(@)r*¢? +4or¥? +2¢"1* ¥ ¢? +2%7r¢° + 2‘I’<p3} .

It is worthwhile to mention here that the deformed gravitational potential e~" related to
radial metric component ¥ can provide via Equation (82)

el = pe JE@¥M (/Ggo‘? efF""Pdrdr—i-Hl)

+Y. (83)
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Next we can find
= p(r) - pe} (84)
0= i) - 63, (85)

eff)

also using the formula () =p+ B 60); with the assistance of condition (80), we obtain

the expression of p(¢ff) as
ol = (1+B)p(1). (86)

Now we would like to highlight that, as we can see from Equation (83), the gravitational
potential # comprehends integral terms; in this way, it is not always possible to obtain
deformed radial gravitational potential e’ for a given function of . Subsequently, the
solution relating to this mimic requirement can be obtained by a numerical methodology
that will be considered in future works. Therefore, in the next section, we focus and
discuss the physical viability of the solutions under massive BD gravity obtained by the
first approach (Section 6.1), namely: mimic requirement on radial pressure component
for anisotropy.

7. Physical Properties of the Anisotropic Stellar Structure in the Massive BD Gravity
Theory

In the present section, we examine the physical validity of the accomplished solutions
under massive BD gravity by attempting to investigate various physical properties of the
anisotropic astrophysical structure via the MGD approach in the accompanying subsections.

7.1. Thermodynamic Observable

In this subsection, we introduce the main physical amounts that identify our stellar
system. These amounts are the matter density p, the radial p, and transverse p; pressures
and the anisotropy parameter A. It is worth mentioning that, in the investigation of
anisotropic compact stellar configurations, all the amounts indicated above should fulfill
some overall prerequisite in order to represent a well-defined astrophysical stellar interior.
These overall requirements are as follows:

1.  Non-physical and geometrical singularities in all interior points of the stellar struc-
ture exist.

2. All the physical quantities, viz., the matter density p, radial pressure p, and transverse
pressure p; should have their most extreme values at the core of the stellar structure,
which involves that they are monotonously decreasing functions with increasing
radius towards the frontier of the spherical object.

3.  Concerning the anisotropy parameter A, it should be zero at the core i.e., A = 0.
This is because, at the core of the stellar structure, the radial pressure is equal to the
transverse pressure (p, = p;). Then again, its values must be positive towards the
boundary of the spherical object (in the case of repulsive anisotropic force).

The complete comportment of these thermodynamic observable components, viz., p,
pr, Pt and A is illustrated in Figures 1-11. In these graphs, we can see that all the physical
amounts that characterize the stellar system satisfy the overall necessities. A few remarks
concerning the physical and mathematical point of view of these quantities are given below:

*  Figures 1-3 show the variation of the matter density with respect to the radial coor-
dinate for all chosen values of the parameters «, B and wpp, respectively, by setting
M = 1.97Mg, R = 9.69km, my = 0.001, n = —0.01, B = (0.0416, 0.0415)/km,
A = (0.38284, 0.3857) and a = (0.0163, 0.016) /km?. We can see from these plots
that the matter density has its most extreme values at the center of the stellar struc-
ture and decreases monotonically towards the surface with an increasing radius, r.
Additionally, it is positive everywhere inside the stellar configuration. Interestingly,
the effect of the three parameters, &, f and wpp, on the density energy, p, has been
further demonstrated for both BD and BD+MGD scenarios, where any increase in
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« and B shifts the energy density, p, to higher equilibrium values throughout the
stellar interior for all & € [0.3, 0.9] and B € [0.0, 1.0], while any increase in wpp shifts
the energy density to lower equilibrium values throughout the stellar interior for all
wpp € [0.0, 1000].

Figures 4-8 display the variation of the radial and transverse pressures for the same
parameters used in Figures 1-3. From the five graphs, we can see that these physical
amounts have their most extreme values at the core of the stellar object and are
monotonic decreasing functions with increasing radial coordinates, r. Moreover, the
radial pressure p, disappears at the surface of the stellar object, and the transverse p;
one dominates at all points. It should be noted that the equilibrium values for p, and p;
increase when o € [0.3, 0.9] increases from 0.3 to 0.9, as illustrated in Figures 4 and 7.
In contrast, when we increase § € [0.0, 1.0] from 0.0 to 1.0, the radially and tangentially
outward pressures are reduced for both the BD and BD+MGD scenarios (see Figure 5).
An emerging characteristic in Figures 6 and 8 is that the parameter wgp reduces
the radially outward pressure and enhances the tangential surface stresses, as the
parameter wpp € [0.0, 1000] increases.

Figures 9-11 exhibit the variation of anisotropy parameters for all the parameters
taken into account in Figures 1-3, whatever the interior of the stellar structure. Its
comportment is positive at all points inside the stellar structure, disappearing at
the core i.e., A = 0, in impact at the core of the star p, = p; and has a monotonic
increasing function with increasing radial coordinate, r. As we clarified above, A > 0,
which implies that p; > p;; this presents that the system encounters a repulsive
force (outwards). This last item counteracts the gravitational gradient progressing
the stability and equilibrium state as well as one having more compact and massive
stellar configurations. It is interesting evidence that the three parameters, «, f and
wpp, for both the BD and BD+MGD scenarios enhance the turbulence throughout the
stellar interior, as A increases for « € [0.3, 0.9], € [0.0, 1.0] and wpp € [0.0, 1000],
respectively (see Figures 9-11 for more details).

0.2 (Dashed) - BD+MGD

=~ @ = 0.3 (Red), 0.5 (Blue)

800

600

400

200

Figure 1. Variation of matter density against r for M = 1.97My, R = 9.69km, wpp = 5,
my = 0.001, n = —0.01, B = (0, 0.2), B = (0.0416, 0.0415)/km, A = (0.38284, 0.3857) and
a = (0.0163, 0.016) /km?.



Universe 2023, 9, 208

18 of 31

250
6B =0.25
200 N
£
S L
> 150 4
Q
S L
Q
100 N
50 Il Il Il L Il
2 4 6 8

r km

Figure 2. Variation of matter density against r for M = 1.97Mg, R = 9.69km, wpp = 5, myp = 0.001,
B =0.0415/km, n = —0.01, « = 0.15, A = 0.3857 and a = 0.016/km?.
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Figure 3. Variation of matter density against » for M = 1.97Mg, R = 9.69km, « = 0.5, my = 0.001,
n=—0.01,8=(0, 02), B=0.0416/km, A =0.38284 and a = 0.0163/km?.
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Figure 4. Variation of radial pressure against r for M = 1.97M, R = 9.69km, wpgp = 5,
my = 0.001, n = —0.01, B = (0, 0.2), B = (0.0416, 0.0415)/km, A = (0.38284, 0.3857) and

a = (0.0163, 0.016) /km?.
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Figure 5. Variation of pressures against  for M = 1.97Mg, R = 9.69km, wpp = 5, myp = 0.001,

B = 0.0415/km, n = —0.01, « = 0.15, A = 0.3857 and a = 0.016/km?.
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Figure 6. Variation of radial pressure against r for M = 1.97M,, R = 9.69km, a« = 0.5, my = 0.001,

n=—001,B=(0,02), B=00416/km, A = 0.38284 and a = 0.0163/km?.
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Figure 7. Variation of transverse pressure against r for M = 1.97Mp, R = 9.69km, wpp = 5,
my = 0.001, n = —0.01, B = (0, 0.2), B = (0.0416, 0.0415)/km, A = (0.38284, 0.3857) and

a = (0.0163, 0.016) /km?.
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Figure 8. Variation of transverse pressure against r for M = 1.97Mg, R = 9.69km, a« = 0.5,
mey = 0.001, n = —0.01, B = (0, 0.2), B=0.0416/km, A =0.38284 and a = 0.0163/km?2.
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Figure 9. Variation of anisotropy against r for M = 1.97M¢, R = 9.69km, wpp =5, my = 0.001,
n = =001, B = (0, 02), B = (0.0416, 0.0415)/km, A = (0.38284, 0.3857) and
a = (0.0163, 0.016) /km?.
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Figure 10. Variation of anisotropy against r for M = 1.97Mg, R = 9.69km, wpp =5, myp = 0.001,
B = 0.0415/km, n = —0.01, « = 0.15, A = 0.3857 and a = 0.016/km?.
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Figure 11. Variation of anisotropy against r for M = 1.97Mg, R = 9.69km, a = 0.5, my = 0.001,
n=-0.01p8= (0, 0.2), B=0.0416/km, A = 0.38284 and a = 0.0163/km?.

7.2. Causality and Stability Condition

All through the adjustments introduced by the anisotropies source 8, in the stellar
interior, we need to examine if the irritation presented by this new source provides to the
stellar system a stable equilibrium. To do this, we employ Abreu’s criteria dependent on
Herrera’s cracking approach [83]. Fundamentally, this criterion establishes the stability
of compact stellar structures via the speeds of propagation related to the pressure waves
in the principal directions of the spherical object i.e., in radial and transverse directions.
Consequently, according to this criterion, the subliminal velocities corresponding to every
direction are characterized by

d d
2 _ P 2 _ APt
T e and v; dp (87)

(%

In order to obtain a genuinely allowable stellar system, the two velocities v, and v; should
be limited by the velocity of light (¢ = 1 in relativistic geometrized units). This reveals to
us that the sound waves in the fluid do not spread at arbitrary velocities. This is known as
the causality condition, which can be read as follows:

0<v,<1 and 0<o; <1. (88)

This causality condition is authoritative notwithstanding if the material substance of the
stellar structure is isotropic or anisotropic and also has strong ramifications on the com-
portment of the matter distribution inside the stellar configuration. In this respect, from
Figures 12-14, we can observe that v? and ©? fulfill the causality condition for all chosen
values of the parameters «, f and wpp, leading to a stable and viable stellar configuration
under massive BD gravity via the MGD approach. It is intriguing to notice that v; is
sensitive to changes in parameter strength, wpp, in comparison to v,. The radial variation
for both remains causal: v, € [0.0, 1.0] and v; € [0.0, 1.0] throughout the stellar interior.
Consequently, according to these three graphs, we can clearly see that our stellar
system is fully stable under Abreu’s criteria based on Herrera’s cracking approach.
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Figure 12. Variation of sound velocity against » for M = 1.97My, R = 9.69km, wpp =
5, my = 0.001, n = —0.01, B = (0, 0.2), B = (0.0416, 0.0415)/km, A = (0.38284, 0.3857) and
a = (0.0163, 0.016) /km?.
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Figure 13. Variation of sound velocity against r for M = 1.97Mg, R = 9.69km, wpp = 5, my =
0.001, B =0.0415/km, n = —0.01, « = 0.15, A = 0.3857 and a = 0.016/km?.
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Figure 14. Variation of sound velocity against ¥ for M = 1.97My, R = 9.69km, a« = 0.5, my =
0.001, n = —0.01, B = (0, 0.2), B =0.0416/km, A = 0.38284 and a = 0.0163/km?.
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7.3. M — Rand M — I Diagrams with Observational Data

We analyze the M — R and M — [ curves generated from the solution under massive
BD gravity and give a pedagogical clarification of the effects presented by gravitational
decoupling by means of MGD with the choices made on parameters « and wpp, in order to
provide a more realistic scenario and reliable stellar system. In this connection, we bound
the mentioned parameters by employing genuine observational data.

From Figures 15 and 16, we give the total mass in Solar mass, i.e., M in My with the
total radius R for the chosen specific values of parameters « and wpp. In this respect, we
have examined two cases. In the first case, we have made « vary according to values 0.3,
0.5, 0.7, 0.9, by fixing the BD-parameter wpp to 5 as shown in Figure 15. In the second
case, we varied wgpp as 0, 500, 1000, by fixing the parameter a« to 0.5 as illustrated in
Figure 16. In both cases, we also define the parameters: my = 0.001, n = —0.01, § = 0.2,
B = (0.0415,0.0416/km, A = (0.3857,0.38284) and a = (0.016,0.0163) /km?. We sum up
the new insights as follows:

*  Regarding the first case, Figure 15 highlights that, as the values of « increase, the
maximal mass M and the corresponding radial coordinate R increase accordingly.
Hence, this increase in the maximum mass on M — R curves confirms the existence of
gravitational decoupling (i.e., non-disappearing anisotropic term), which is expected.
The most extreme mass in the M — R curves is about 2.75M, and in this manner,
more massive compact stellar structures can be fitted. It also provides a direct
correlation between the parameter, #, and the maximum mass, M, and its radius, R,
where any increase in a shifts the stable compact stellar structure to a lower M at a
lower confining radius for each « € [0.3, 0.9]. For instance, the highest maximum
mass, M, is around 2.75 M), and its radius, R, is 9.35 km with « = 0.9, while the
lowest maximum mass, M, is 1.56 M), and its radius, R, is 5.40 km with « = 0.3.

*  Regarding the second case, Figure 16 shows that the most extreme value of mass
progressively decrements for the incrementing values of BD-parameter wpp. In
this regard, our anisotropic astrophysical stellar system becomes more massive and
transforms into more compact stellar structures. We also demonstrate the impact of
the parameter wpp on the mass and its radius by considering values of wpp, such that
wpp € [0.0, 1000]. We find that the maximum mass and its radius decrease as wpp
increases, for example, where the highest maximum mass, M, is 2.5512 M and its
radius, R, is 8.76 km for wgp = 0; the lowest maximum mass, M, is 2.484 M, and its
radius, R, is greater than 8.62 km for wpp = 1000.

LMC X—4 (Red) (9.35,2.75) *
251 SMC X-4 (Black) ' ]
HerX-1 (Blue) (8.27,2.3;;.~\\\
4U 1820-30 (Orange) \‘
207 4U 1608-52 (Cyan) e 1 1
- SAX J1808 .4-3658(Purple) ~ (©98200 i
(2] . 1
© 1 1
= y ' 7
= 150 * H / 1
o (5.4,1.56) ‘\ ; 'l
2 H / / "i"
“ ! s !
S 10t ,/' /'I % ¥ f
‘0/' ,o," ’)
/ - e
"""" = 0.3 (Red), 0.5 (Blue),
0.7 (Black), 0.9 (Orange)
7 8 9 10

R Tkm1

Figure 15. M — R curve for wpp =5, my = 0.001, n = —0.01, =02, B = (0.0415) /km, A = 0.3857
and a = 0.016/km?.
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Figure 16. M — R curve for a = 0.5, my = 0.001, n = —0.01, B = 0.2, B = 0.0416/km, A = 0.38284
and a = 0.0163/km?.

Finally, for both cases, we have discovered a good adjustment for six compact stellar
structures, viz., LMC X-4 (red), LMC X-4 (black), Her X-1 (blue), 4U 1820-30 (Orange),
4U 1608-52 (Cyan), SAX J1808.4-3658 (Purple) and many other compact stars that can be
adjusted. On the other hand, it is clear how the two parameters « and wpp presented by
massive BD gravity incorporating the anisotropic comportment of the matter distribution
has a great influence on many physical parameters of the stellar structure.

On the other hand, adopting the Bejger and Haensel concept [84], one can examine the
moment of inertia I connecting to a static stellar solution, which could provide a precise
tool for determining the stiffness of an equation of state (EoS). This concept is given by

_2 (M/R) - km 2
I= 5 (1 + M. ) MR~ (89)

In Figures 17 and 18, we feature the variation of the maximum moment of inertia I with
respect to the total mass M for the same values of parameters taken into consideration
in M — R curves, respectively. It is facile to see the effect of « and wpp on I — M curves
from both figures for all the increasing value choices of the parameters « and wpp. In this
regard, we observe that the maximum moment of inertia I is always increasing from the
null central value up to a specific mass value, and afterward decreases quickly. Therefore,
we can conclude that the stiffness of the EoS is better through increasing the sensitivity
of I — M curves in both cases corresponding to the increase of the parameters o and wpp.
Moreover, our resulting I — M curves are also equipped with observational data for the
same well-known compact stellar structures fixed in M — R curves, which are well fitted.
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Figure 17. M — I curve for wpp = 5, my = 0.001, n = —0.01, B = 0.2, B = (0.0415) /km, A = 0.3857
and a = 0.016/km?.
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Figure 18. M — I curve for km, a« = 0.5, mp = 0.001, n = —0.01, B = 0.2, B = 0.0416/km, A =
0.38284 and @ = 0.0163/km?.

7.4. Mass—Central Density Relationship

To provide more investigations of the stability of the compact stellar system, we focus
on the mass—density relation known as the static stability criterion, which is a significant
thermodynamic amount. This static stability criterion was pointed out initially by Chan-
drashekhar [85] to describe the stability of a gaseous stellar structure according to radial
perturbations. On the other hand, the development and simplification of this static stability
criterion was envisaged by Harrison et al. [86] and Zeldovich and Novikov [87]. This
Harrison—Zeldovich-Novikov static stability criterion infers that any solution describes
static and stable stellar structure if the gravitational mass M is an increasing function of its
central density p. i.e.,

oM (p.)

—— >0, 20

o ©0)
or otherwise unstable if aM(p.)
Oc

—— <0, 91

o 91)

under radial pulsation. From Figures 19 and 20, it is easy to see that the gravitational
mass is an increasing function with regard to central density, which fulfills the Harrison—
Zeldovich—-Novikov static stability criterion under radial pulsation. We can also observe
that the stellar structures become more massive as p. is increased, and we found that the
solution picks up its stability with an increase in all chosen values of different parameters,
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viz., «, f and wpp in both scenarios BD in solid and BD+MGD in dashed as shown in
Figures 19 and 20.

30 mmmmm e

25¢

@ = 0.3 (Red), 0.5 (Blue)
0.7 (Black), 0.9 (Orange)

2.0

m ( pc) [ Solar Mass]

B =0 (Solid) - BD
0.2 (Dashed) - BD+MGD

0.000 0.002 0.004 0.006 0.008 0.010
pe 1 km?

Figure 19. m(p.) — p. curves for & = 0.5, mgp = 0.001, n = —0.01, B = (0, 0.2), B =0.0416/km and
A = 0.38284.

m (pc) [ Solar Mass]
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0.000 0.002 0.004 0.006 0.008 0.010
pe I km?

Figure 20. m(p.) — p. curves for wpp = 5, my = 0.001, B = 0.0415/km, n = —0.01, « = 0.7 and
A = 0.3857.

8. Conclusions

The considered massive BD theory is one of the most extraordinary currently attainable
alternative gravity theories that have huge deviations from the GRT on the one hand and
are in concurrence with all the current observations on the other. Moreover, the massive
BD theory is a well-posed theory which does not suffer from intrinsic problems and it is
one of the best correct generalizations of GRT. This makes the solutions provided in this
article and their stellar astrophysical implications very important.

In the present paper, we study the possibility of providing a new class of exact
solutions for viable anisotropic stellar systems by means of massive BD gravity. In this
regard, gravitational decoupling through the MGD approach in the arena of the embedding
class-one space-time has effectively been employed to explore anisotropic solutions for
matter sources. Our preliminary studies confirm that the decoupling of gravitational
sources by MGD for compact stellar objects in massive BD gravity admitting the Karmarkar
condition is a powerful mechanism to establish a more overall stellar solution of the
modified Einstein field equations. For this purpose, we have constructed modified Einstein
field equations given in (11)-(13), which disintegrate into two subsystems according to the
MGD approach:
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®  The first subsystem (standard Einstein’s system) corresponds to the field equations
given in (24)—(26) with five unknown parameters, {'¥, ¢, p, pr, p+}, and portrays the
seed solution in BD gravity with respect to the stress-energy tensor Tj;..

*  The second subsystem (quasi-Einstein system) corresponds to the field equations
expressed in (32)—(34) and examines the solution of a new 8-sector, which comprises
mostly four unknown parameters, {h(r), 63, 6},63}.

Hence, in order to solve the complete stellar system identified by these two subsystems,
we have proposed two approaches, namely, the mimic requirement on density and pressure
component for §-sector, {63(r) = p(r) and 61(r) = p.(r)}, respectively. For a detailed
analysis for the massive stellar structure, we used the ansatz for ¥ relating to the notable,
well-recognized and well-comported Finch-Skea model via the embedding class-one con-
dition, as well as the deformation function indicated by i(r) via mimic requirement on the
radial pressure component for anisotropic sector, viz., 61 (r) = p,(r). It is worth mentioning
that we have analyzed the stellar structures supported by an anisotropic matter distribution
in the background of massive BD gravity via the MGD approach for several values of
constant parameters depending on &, 8 and wpp. The unknown parameters appearing in
the anisotropic stellar system have been determined via matching the interior astrophysical
stellar geometry for the system to the Schwarzschild line element that describes the vacuum
in the exterior of the stellar structure. Moreover, for studying the physical validity of the
accomplished solutions under massive BD gravity, we have analyzed various physical
properties of the anisotropic astrophysical structure via the MGD approach, which can be
summarized as follows:

¢ Wehave observed in Figures 1-8 that all the thermodynamic observables, in particular,
matter density, radial and transverse pressures with respect to the radial coordinate
r have maximum values at the center and show limited, positive and monotonic
decreasing comportment gradually toward the minimum values at the boundary of
the celestial bodies, while the radial pressure becomes zero at the surface, which
affirms the physical suitability and agreeability of the envisaged solutions. From
these plots, we affirm additionally that our celestial bodies are completely free from
any physical or mathematical singularities for all various parametric values of &, 8
and wpgp.

¢  The graphs corresponding to the comportment of anisotropy parameter A versus
radial coordinate r are illustrated in Figures 9-11. We see that the vanished anisotropy
parameter A at the origin obtains positively defined increases to reach its maximum
value at the surface of the stellar structure. Moreover, the fact that A > Oi.e., pr > pr
implies that the stellar system encounters a repulsive force that counteracts the gravi-
tational gradient, progressing the stability and equilibrium state, as well as one that
has more compact and massive celestial bodies.

*  The anisotropic stellar model is also consistent with the causality condition which
is affirmed as the components of sound velocity lie within their prescribed bounds
for all chosen values of the parameters «, § and wpp, leading to a stable and viable
compact stellar object under massive BD gravity via the MGD approach, as shown in
Figures 12-14.

*  Our investigation of the M — R curves is very important for compact stellar objects
and shows the maximal bound for the celestial bodies. In Figures 15 and 16, we
present the behavior of the total mass M (in Solar mass M) with respect to the total
radius R for the chosen specific values of parameters & and wpp, by fixing § to 0.2. In
the current massive BD gravity model via the MGD approach, we find from Figure 15
that, due to &, as « increased, the maximum mass M increased with increasing radius
R, which provides us with more massive compact stellar structures. On the other
hand, as observed from Figure 16, due to wpp, as wpp increased, the maximum mass
M decreased with increasing radius R, which provides us also a stellar system that is
more compact and massive. On the other hand, we highlight the effect of « and wgp,
by fixing B to 0.2, on the behavior of the maximum moment of inertia I against the total
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mass M, as illustrated in Figures 17 and 18. From these graphs, we can conclude that
the stiffness of the EoS is better through increasing the sensitivity of I — M curves in
both cases corresponding to the increase of the parameters, « and wpp, which implies
that the I,y is always increasing from the zero up to a My, value, and thereafter
decreases quickly. Finally, our generating M — R and I — M diagrams are well fitted
with observational data, viz., LMC X-4, LMC X-4, Her X-1, 4U 1820-30, 4U 1608-52,
SAX J1808.4-3658 and many other compact stellar structures that can be fitted. It is
clear how both parameters « and wpp presented by massive BD gravity via the MGD
approach incorporating the anisotropic profile of the matter distribution has a great
influence on many physical parameters of the compact stellar structures. Furthermore,
the predicted radii for different compact objects are mentioned in Table 1 for different
« and wpp. It is observed that, for lower values of &, higher mass objects are ruled out.
On the other hand, when « increases, compactness decreases, whereas compactness
increases as wgp increases.

It is well recognized that, for spherically symmetric static astrophysical systems, the
Harrison—Zeldovich-Novikov static stability criterion plays a crucial role under radial
pulsation, which must be satisfied to ensure stability. From Figures 19 and 20, we
observe that this static stability criterion is well satisfied under a radial perturbation,
and we can also notice that the stellar structures become more massive as p. increases.
Moreover, the stellar solution regains its stability with an increase in all chosen values
of different parameters, viz., «, f and wpp in both scenarios BD and BD+MGD.

Furthermore, it is mentioned that all the obtained results in this manuscript reduce to

Einstein’s GR when ¢ = constant and wpp — 0.

Finally, we would like to mention here that all these new exact solutions for viable

anisotropic stellar systems by means of massive BD gravity under gravitational decoupling
through the MGD approach in the realm of the embedding class-one space-time are very
much able to represent and describe the anisotropic compact celestial bodies.

Table 1. Physical parameters of the observed compact stars for constants used in Figures 15 and 16.

Predicted Radii (km)

Strange Stars Observed Mass o WBD
(Mg) 0.3 0.5 0.7 0.9 0 500 1000
Her X-1 0.85 £ 0.15 [88] 5.58 6.83 7.76 8.52 8.11 8.096 8.066
SAX J1808.4-3658 0.9 £0.3[89] 5.63 6.91 7.86 8.64 8.24 8.21 8.18
SMCX-1 1.04 £ 0.09 [90] 5.82 7.39 8.50 9.41 8.95 8.89 8.83
LMCX-4 1.29 4+ 0.05 [90] 5.75 7.12 8.10 8.96 8.54 8.48 8.45
4U 1820-30 1.58 + 0.06 [91] - 7.51 8.77 9.77 9.27 9.19 9.11
4U 1608-52 1.74 4+ 0.14 [92] - 749 8.56 9.92 8.27 8.21 8.175
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Note

1

We denote m(R) = M = M — “R1i(R), where M is the total mass for the seed system.
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