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Abstract
Solutions to the Bethe Ansatz equations for the ground state of spin-½ isotropic anti-ferromagnetic
periodicHeisenberg chains to length L=221 are obtained by combining Lagrange interpolationwith
Newton–Raphson iteration. The long chain lengths allowmany powers of a renormalization group
running coupling constant to be included infits to the ground state energy andmake possible the
confirmation of the convergence of the leading logarithmic term. The amplitude of this term is
consistent with that expected on the basis of conformal field theory and the connection of the discrete
spin-½ system to the continuumWess–Zumino–Wittenmodel. This resolves a decades old
discrepancy based on analysis of shorter chains. An analytical improvement to theHulthénwave-
vector distribution is also provided.

1. Introduction

This paper presents the derivation and asymptotic analysis of the ground state energy of large (even) length L
periodic chains of s=½spins anti-ferromagnetically coupled as defined by theHamiltonian
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where i labels both the sites and distance along the chain and the components of si are the Pauli spinmatrices.
Eigenstates of (1) can be labelled by total S and Sz; for the ground state S=Sz=0. Themotivation for these
calculations was an attempt to resolve a long standing apparent failure of universality first noted byAffleck et al
[1].More evidence for failurewas provided byNomura [2] in an analysis of spin-½ chains to length L=16 384.

The history of thismodel problemdates to 1931whenBethe [3] (an English translation appears in [4])
conjectured that all eigenstates of (1) could be found based on the solutions of nonlinear algebraic equations that
he described. For the ground state these are equations for L/2 distinct real wave-vectors, each being associated
with one of the sz=−½spins on the chain. SubsequentlyHulthén [5], starting from the BetheAnsatz, obtained
the ground state energyEL in the limit L→∞. Hulthén’s result is
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The development of conformal field theory (CFT) in the 1980s led to the realization thatELwould approach the
Hulthén value Lε∞ as 1/Lwith a coefficient constrained by the ‘conformal anomaly’ of thefield theory in the
universality class of the spin-½ anti-ferromagnet. Avdeev andDörfel [6], building on earlier work by deVega
andWoynarovich [7], concluded
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and confirmed this value by numerical evaluation ofEL for chains to length L=256.Hamer [8] came to the
same conclusion independently.
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Affleck et al [1] argue that the spin-½ anti-ferromagnet is in the universality class of the k=1Wess–
Zumino–Witten nonlinearσmodel and use this to identify amarginal operator that will lead to corrections toEL
beyond the conformal anomaly term. Arguments byCardy [9] specify what form these correctionsmust take
andAffleck et al conclude
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C being universal. On the other handWoynarovich and Eckle [10] had reported an analytic calculation that gave

= ( ) ( )C 0.3433 Woynarovich and Eckle 5

as the isotropic limit of an anisotropic spin-½ anti-ferromagnet. This clear violation of universality Affleck et al
recognized but left unresolved. Subsequently, Nomura [2] greatly extended previous numerical calculations of
EL reaching chains of length L=16 384 and concluded

= ( ) ( ) ( )C 0.365 16 2 Nomura . 6

In deriving (6), Nomura incorporated Cardy’s conclusion that asymptotically theC correction term is
proportional to g3 with g a running coupling that satisfies the renormalization group equation1
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with the ellipsis indicating unknown terms.Nomura attributed the difference between (5) and (6) to an invalid
reliance byWoynarovich and Eckle on the Euler–Maclaurin sum formula resulting in uncontrolled errors. Of
course, even if we accept (5) as unreliable, the apparent failure of universality remains because of the (4) and (6)
difference that lies well outsideNomura’s error assignment. But this assignment can be faulted because it does
not include sensitivity to additional terms inβ(g) or variation in the constant of integration of (7). Themajor
goal of the present paper is to provide a realistic appraisal of such effects byfirst generating EL data formuch
longer chains.

The outline of the remainder of the paper is as follows. Section 2 expands on the above historical summary by
providing formulas useful for subsequent analysis. Particular attention is paid to the approximation necessary to
derive (3) from theHulthén [5]wave-vector distribution. Section 3 is a derivation of an analytic improvement on
theHulthénwave-vector distribution. The approximation that led to (3) can be applied to this improved
distribution and leads to a result of the formof (4) butwithC=(3/8)ln2(2)—a roughly factor 2 underestimate
from theCFT prediction. Section 4 describes howLagrange interpolation is combinedwithNewton–Raphson
(NR) iteration for an efficient generator for EL for large L. Results to amaximum L=221 are given. Section 5
describes the analysis of the data in section 4with the conclusion that the CFT result (4) is unambiguously
confirmed.

2.EL alternatives from theHulthénwave-vector distribution

The ground state is specified by a distinct real wave-vector kn, 0<kn<2π, for each of the L/2 overturned spins
from a ferromagnetically aligned state. A convenient change of variable is to the ‘rapidity’ l = ( )kcot 2 ;n n these
variables for the ground state satisfy the Bethe ansatz equations (BAE)
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whereåm and similar sums hereafter are understood to range over all L/2 listed half-integer values. The arccot
function is its principal value; i.e. 0�arccot(x)�π for−∞� x�∞. The symmetry l l= --L n n2 allows
reduction to L/4 ((L+2)/4) independent variables if L/2 is even (odd). The BAE (8)with its discrete solutions
ln can also be interpreted as defining a continuous function
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with n taking on half-integer values whenever l is one of the solutions ln of (8). This point of view is useful in a
number of instances and, for example, allows one to identify n(∞)=0 and n(−∞)=L/2 as the limits on the
range of possible n. The energy of the ground state is

1
The normalization of g in (7) is chosen tomake the coefficient of –g2 inβ(g) equal 1.
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An exact analytic solution to the BAE (8) is not known for general L. To get solutions of increasing accuracywrite
an unknown improved estimate l +ℓ( )1 as a small shift dl +ℓ( )1 from a known ℓth estimate lℓ.On substituting
l +ℓ( )1 into the BAE (8) and expanding tofirst order in dl +ℓ( )1 one obtains thematrix equation
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TheNR solution of (11), dl =+ -( )ℓ ℓ ℓ( ) ( ) ( )f h ,1 1 converges quadratically but because it requires numerical
matrix inversion it is practical in the elementary form given here only to lengths of several thousand. By
reparameterizing l in some appropriate basis, solutions to lengths L≈2×106 have been obtained as described
in section 4.

A useful initialization is provided by theHulthén solutionwhich is based on the approximation
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2
in the equation for lnd d obtained by differentiating (9). This equation is of convolution

form and can be solved by Fourier transform. Integration then yields l( )n whichwe identify as theHulthén
approximation l( )( )n .n
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As a consequence of (14), theHulthén approximation can bewritten
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and thefinal equality, giving the conversion to an integral over l( ),m
0 is useful inmany applications. For example,

one can easily check that themiddle term in (12) inHulthén approximation is
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inwhich n from (14) has been used for thefinal equality. This confirms that ( )hn
0 =0 inHulthén approximation.

There are ambiguities in the ground state energy of theHulthén solution depending on the approximations
one chooses tomake in (10). The integral approximation (15) applied to (10) gives
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whereas (10)without this approximation is
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as derived in the appendix. This last result shows theHulthén l( )
n
0 differs significantly from the exact ln of the

BAE (8) since the periodic boundary condition defining themodel (1) allows atmostO(1/L)finite size effects as
corrections to the extensive e¥L term. Indeed, the expected energy based onCFT is that given in (4).

A formula equivalent to (10) for ELwas derived by deVega andWoynarovich [7]. The key identity, restricted
here to the isotropic chain (1) and in the present notation, is
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where ln in the integral in (19) is understood to be the inverse of l( )n from (9). The proof of (19) follows trivially
onmaking the change of integration variable fromn to l using lnd d calculated from (9); explicitly, the last
term in (19) is
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where the integrals evaluated for thefinal equality are those that already appeared in (16) and (17). Substituting
(20) into (19) yields (10) and completes the proof. Note that (20) relies only on the functional formof (9) and not
that the lm in the sum in (9) satisfy the BAE. Thus any approximation to ln in (19) (and simultaneously to the
lm in (9)) has the same effect onEL as does the approximationwhen applied directly to (10). In particular (19)
reproduces theO(1) error found for theHulthén approximation ¢EL in (18).

On the other hand, different EL estimates using (19) are possible if one drops the constraint that the analytic
continuation from a discrete ln list to a continuous ln function be via (9). If the approximate ln is a known
analytic function such as theHulthén l( )

n
0 in (14), it would seemmore natural to define (19) by the condition that

the same analytic ln appear in both sumand integral. As an example, if in (19), with the constraining (9)
removed, we replace ln by theHulthén l( )

n
0 in both sum and integral and use the hyperbolic/trigonometric

equivalence from (14), we get
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a resultfirst obtained byAvdeev andDörfel [6] andHamer [8]. The leading correction in (21) agrees with the
CFT value in (4)which illustrates the dramatic improvement to an o(1/L) error that has been achieved. This is a
surprise since the removal of the constraint (9) has eliminated the justification for (19) to be the formula forEL. It
is of course possible that the dramatic error reduction has just been accidental—whichmotivates further
exploration in the following by observing what changes are induced in (21)when themodified (19) is applied to
an analytical improvement on theHulthén solution (14).

3. An improvedwave-vector distribution

Before proceedingwith the calculation of such an improvement, it is worth introducing a change of variable
l nn n inwhichwewrite the exact ln as
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with nn satisfying the symmetry condition n n= -- .L n n2 The unit spacing between n sets the scale for
distinguishing nn as either small or large. In the case that nn is small we find from (22) that
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Bymaintaining the functional formof theHulthén solution (14)wepreserve in (22), for example, the
hyperbolic/trigonometric equivalence pl n p= -( ) ( ( ) )n Lcosh 2 1 sin 2n n and so canwrite themodified2

deVega andWoynarovich energy formula (19) in the doubly subtracted form
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The numerical evidence discussed below suggests n∣ ∣n is bounded by 0.03 for all n and L and so in the following
we use only the linear in nn versions of (23) and (24).

Any iteration of (11) to improve on theHulthén l( )
n
0 ideally starts with an exact evaluation of the sum

contributing to ( )hn
0 in (12). Fortunately this can be done analytically by complex contour and residuemethods

2
Modifiedmeans dropping the constraining (9) as in the discussion leading to (21).
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similar to that described in the appendix. The details involve no new concepts but it is useful tofirst recast the
arccot function in the sum in (12) as an integral as was done in the first equality in (16). One can confirm that the
singularities in this case at l m= ( ) i2n

0 lie at n<0 and n>L/2 on the real n axis and thus again outside the
chosen contour in the appendix. Thefinal result is
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(With the substitution y=ln(1+ex)=arcsinh(ex(1+ex/2)/(1+ex)),−∞<x<∞, integrals such as (25)
can be done numerically as an equally weighted sumon a uniform gridwith exponential convergence bothwith
respect to the large ∣ ∣x cutoffs and the (inverse) grid spacing.)

Tomake the right hand side of (11) tractable we employ theHulthén integral approximation (15). The
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is a convolution. On substituting these (27), (28) values into (11), then taking a Fourier transform and using the
explicit ( )hn

0 from (25), we arrive at3
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The [ ] expression in (30) evaluates to
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with L( )y given in (26). The sumof logarithms in (31) is a logarithmof a product andwe get as ourfinal
expression
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As an example of the accuracy of (33), comparisons of n( )
n
1 with the exact nn obtained byNR iteration are

shown infigure 1 for L=210=1024 and L=221=2097 152. Extrapolation fromdiscrete to continuous n for

3
The resulting (29) has the structure of the Fourier transform equation that leads to theHulthén solution (14). The unknown n( )

n
1 in (29)

replaces l/nd d n in theHulthén equationwhile the known ( )hn
0 replaces l- +( )L 1 .n

2
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theNR solution is by the use of (9). A singleNR iteration starting from theHulthén solution is graphically almost
indistinguishable from the final (multiple iteration) result shown infigure 1 so that the error in n( )

n
1 is inferred to

be dominated by theHulthén integral approximationmade in its derivation. The qualitative agreement between
n( )

n
1 and the exact nn for the lengths L shown infigure 1 suggests wemight use (33) to guess how nn will approach

its L→∞ limit.
We consider two cases. In the limit L→∞with n=O(1), we simplify (33) by first noting

p p p p
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TheΓ functions involving -( )g y
n

can be expanded in an asymptotic series in 1/ln(L) and the remaining integrals

ò +
¥

( ) ( ( ))y y yd ln 1 exp 2i

0
can be obtained from the generating function (A.5) in the appendix. The result is
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Thefirst (L independent integral) term in (35) is 0.019 181, 0.012 768, 0.01 0168,K for = ¼n , ,1

2

3

2
while the

remaining term suggests νn(L)−νn(∞)will beO(1/ln2(L)) for n=O(1). A second asymptotic result is the
slope of n( )

n
1 at the symmetry point n=L/4.We have
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n
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which suggests∂νn/∂λn will beO(1/ln
3(L)) atλn=0.

The sought for improvement in energy referred to at the end of section 2 comes from the summinus integral
terms in n( )s n, n in (24). Again, working only to linear order in n( ),n

1 this energy correction is

Figure 1.The approximation n( )
n
1 from (33) and the exact nn fromNewton–Raphson iteration of (11) for chains of length L=210

(red) and 221 (blue) plotted against log2(n) for n<L/4. The first four discrete values = ¼( )n , ,1

2

3

2
are shown as crosses; the lower

pair at each nmark n( ),n
1 the upper pair n .n The two curves in the upper part of the graph are the ratios n n= ( )R n n

1 plottedwith respect
to the horizontalmarker lines indicating ratios ofR=0.80, 0.85 and 0.90.
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where ¢ = ¢( )t y Ltanh and = ( )t y Ltanh .The equality in (37) is the result of an explicit calculation of the
summinus integral difference by the complex contourmethod described in the appendix. For the leading terms
in (37) in the limit L→∞we can set ¢ =( )y Lcosh 2 1and all ln(Γ(K)) terms containing the ratio ¢t t then
vanish because of the anti-symmetry of their imaginary parts under ¢ «y y interchange. Further reduction
analogous to that in (34) followed by asymptotic expansion of theΓ functions gives the energy correction
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By comparisonwith the expected CFT correction in (4)we see the leading term in (38) has the correct length
dependence but is too small by a factor ln2(2). Hadwe used ln from (22)with nn = n( )

n
1 from (33) directly in (10)

wewould only have reduced the error in EL from its ¢ ( é )E Hulth nL value in (18) by anO(1) factor and not theO(L)
factor needed to get (38). Thus (38) provides another example besides (21) of the dramatic improvement
achieved by changing the analytic continuation prescription in (19). In the absence of any better analytical
approximations for nn beyond n( )

n
1 in (33) I return to the purely numerical solution of the BAE in section 4.

4.EL byNRwith Lagrange interpolation

TheNRprocedure forfinding the solutionsln of theBAE (8) as described in the discussionof equations (11)–(13)
is impractical for chains of lengthL greater than several thousand.Todealwith long chainswe restrict thenumber
of variables treatedbyNR to a limitednumberM of lnm

>0,m=1, 2,K,M, and use a Lagrange interpolation
scheme that accurately and efficiently determines all remainingln in termsof thebasis variablesl .nm

In our

implementationof theLagrange interpolationwe assumeln is a smooth functionl ( )xn n where l= ( )xn n
0 as given

by (14)4.We incorporate the symmetryl l= --L n n2 m m
in our basis choice inwhich case for anyn that is distinct

fromallnm ,
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where the prime on the second product in (39) indicates the term k=m is excluded.NR iteration proceeds as
follows.We assume that at the ℓth iteration theM terms l l= ℓ( )

n nm m
are known froma previous step. For all

other n, (39) serves to define the l ℓ( ).n TheM array elements ℓ( )hnm
in (12), when expressed explicitly in terms of

l ℓ( )
n >0, are
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where theprime on the summeans the termn=nm is excluded. TheM2matrix elements
¢

ℓ( )f
n nm m

are thederivatives

¢

ℓ( )f
n nm m

= l-¶ ¶
¢

ℓ ℓ( ) ( )hn nm m
and although easy to calculate from (40), result in lengthier analytical expressions than

those in (13)because of thedependenciesl l
¢

( )ℓ ℓ( ) ( )
n nm

given by (39). Data for a newNR iteration beginningwith (39)
is obtainedbymatrix inversion as in the solution of (11), i.e.l l= ++ -(( ) )ℓ ℓ ℓ ℓ( ) ( ) ( ) ( )f h .n n n

1 1
m m m

Iteration stops

when theM ℓ( )hnm
in (40) vanish to our chosennumerical accuracy andwe then deem theBAE (8) satisfied—at least

within the limitations of the Lagrange interpolation (39).

4
The choice l= ( )xn n

0 obviouslymakes the interpolation exact for l l= ( ).n n
0 Theremight be an advantage to using the improved l= ( )xn n

1

from (22)with n( )
n
1 from (33) but this has not been explored.
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It remains to discuss the choice of the special n=nm. It is essential that there be aminimumnumber of
n=nm= ¼, ,1

2

3

2
with unit gaps since no accurate interpolation is possible near the end-points of the l

interval. Following this are gaps of increasing size between n until a final n=nM near L/4. Becausewe are
interpolating in x it is plausible that the spacing in the corresponding l= ( )xn n

0
m m

should be nearly uniform. A

possible formula to achieve this is amodification of theHulthén l( )( )n n
0 from (14)whichwe define as

p
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¢
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L
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m

K
, arctan exp 2 1 , 41m

where the last termhas been added to provide extra flexibility and ¢K K, are parameters dependent on L. If we
define a crossover integermx as the largest (integer)m for which ¢ - ¢ >- ( ) ( )N K K N K K, , 1m m1 then the nm
list is

= +
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WecanmakeM andmx the independent variables in (42) by taking ¢K K, as the solution of the two equations
¢ - ¢ =- +( ) ( )N K K N K K, , 2m m1 1x x

which is an approximation to the defining equation for the crossovermx

and ¢ = - +( )N K K M m, 1 2m xx
whichmakes » ¢( )n N K K,m m form�mx in (42). These two equations
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x

where now thefirst equality determines K after which ¢K follows trivially. For example, at L=221withM=92
andmx=60, K =32.7464 and ¢K =2.3858. This is a special case of the parameter choice

= + = -( ( ) ) ( ( ) ) ( )M L m Lround 4 log 8 , round 3 log 3 44x2 2

whichwe have used and have found that for 210�L�221 yields an absolute error in the scaled energy deviation

p
e+ = - - ¥( ) ( )( )E

L
E L1

6
45L

corr
2

that is less than 10–41. The observed trend suggests this boundwill improve slightly for L>221.
Figure 2 shows for L=221 bothNR/Lagrange error5 dl l l= -/

n n
L

n
NR exact and the partial sum error

åd
l l
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⎝
⎜⎜

⎞
⎠
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4

1
46n

m n

n

m L m
2

NR
2

exact

L
2

defined such that the energy error d- =E E E .L
L

L
NR exact

1 2 The oscillatory behaviour of dln is typical with the
decay in amplitude towards large x the (deliberate) result of the largeM–mx choice (44). The decay in amplitude
towards small x is not easy tomodify given the constraint of the functional form (41) but it is appropriate as it
partially compensates for the growth in the number of ln terms between adjacent lnm

at small x and leads to a
substantial suppression of the dEn oscillation amplitude there. The further suppression of these oscillations by
about 2 orders ofmagnitude to afinal dE1 2 (the rightmost point infigure 2) is also typical.

This explicit cancellation in the generation of d /E1 2 implies a loss of significant digits but amore important
loss of significance is the cancellation between terms in the sum for ln in (39). In total up to 15 digits can be lost
which is in addition to the 12 digits lost in cancellation in the scaled energy deviation 1+E(corr) in (45).
Significant cancellation between terms in (40) can also occur so in view of this, for all L>106, a conservative
extended precision arithmetic of 90 digits was used; somewhat less for shorter chains. Finally, if theNR/
Lagrange iteration is initializedwith l l= ( )

n n
0

m m
about seven iterations are required before reaching the

interpolation limiting accuracy. This number can be reduced if instead one starts with l( )
n
1
m
defined by (22)with

n( )
n
1
m
given by (33) (see the note following (26) for an efficient integration scheme).Whatever initialization is

chosen, thismust be carried to a precision comparable to that used for a general iteration term—otherwise
roundoff noise can lead to failure to converge.

The energies from theNR/Lagrange calculation for 210�L�221 given below are exact to the 40 digits
listed. They confirm theNomura values for L�214. The last three columns are the fit deviations
δ=E(corr)|fit−E(corr) of formulas described in the next section and referenced by their equation numbers.

5
Error determination is based on comparisonwith amore accurate calculation using expansion in a 204Chebyshev polynomial basis set.

The Lagrange interpolation scheme described here is easier to implement,much less susceptible to round-off error and instability and, for
the same basis size, essentially equivalent in accuracy.
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1 6 53 54 55
2097152 1.000081050086135313454688662452763521206 0 0 0
1835008 1.000083096474927292989270418050736915191 3.4 22 2.7 22 0
1572864 1.000085546235668476454363746871380851621 0 0 0
1310720 1.000088570775667055270129520221282550084 1.2 22 1.0 22 2.0 24
1048576 1.000092471625031702224953466828629442713 0 0 0
917504 1.000094917082268124913917006674920835904 2.6 23 2.3 23 9.2 25
786432 1.000097849636823617629200371776879381852 0 0 0
655360 1.000101477735522509468375560360104220493 2.7 23 2.5 23 1.5 24
524288 1.000106168996359769499298747911421197484 0 0 0
458752 1.000109116720315360135595366310833088736 1.3 23 1.3 23 1.1 24
393216 1.000112658327251866029261777940740512121 0 0 0
327680 1.000117049939119148111069596344850580197 2.8 23 2.9 23 2.9 24
262144 1.000122744527394407084252107106935899734 0 0 0
229376 1.000126331783060470071402899910340569343 2.9 23 3.2 23 3.8 24
196608 1.000130650883549182071494396745116225903 0 0 0
163840 1.000136020170540532016881669523969918431 1.2 22 1.4 22 1.9 23
131072 1.000143004431517556269879312454318689861 0 0 0
114688 1.000147416562487464634658566644122385892 2.6 22 3.3 22 5.0 23
98304 1.000152741357221336727246932361660346540 0 0 0
81920 1.000159379628436424882094700267691501477 2.4 21 3.2 21 5.4 22
65536 1.000168045008730501878824011060266768932 0 0 0
57344 1.000173536528742117459963450369417150724 1.5 20 2.2 20 4.1 21
49152 1.000180181565563862129023425154527900152 0 0 0
40960 1.000188492183195473302232533492142643021 7.2 19 1.1 18 2.2 19
32768 1.000199383786021884117134699980606702216 9.2 18 1.5 17 3.2 18
28672 1.000206310933716567942545210616155079801 3.1 17 5.2 17 1.1 17
24576 1.000214718383741847496160899642853757329 1.1 16 1.9 16 4.2 17
20480 1.000225271338001813823099638592801448104 4.2 16 7.5 16 1.7 16
16384 1.000239164527636125176648422184626024386 1.8 15 3.4 15 8.2 16
14336 1.000248037055212883942857400350360894153 4.1 15 8.1 15 2.0 15
12288 1.000258842848304376281821974242658051600 1.0 14 2.1 14 5.1 15
10240 1.000272462982075322067292125312215582199 2.8 14 5.9 14 1.5 14
8192 1.000290488657940293078826184721388003671 9.1 14 2.0 13 5.3 14
7168 1.000302055438341796824090819395671052890 1.8 13 4.1 13 1.1 13
6144 1.000316199623778790719021453526843680651 3.8 13 8.9 13 2.4 13
5120 1.000334115613427365139798199672763152963 8.9 13 2.2 12 6.1 13
4096 1.000357975096997705815434074081431739878 2.4 12 6.4 12 1.8 12
3584 1.000373373157363738488167310047788737824 4.4 12 1.2 11 3.4 12
3072 1.000392294579193567967977993550110659004 8.6 12 2.4 11 6.9 12
2560 1.000416406166814600073425973427641699488 1.9 11 5.5 11 1.6 11
2048 1.000448765316782104236916021558253734798 4.7 11 1.4 10 4.3 11
1792 1.000469798975450287854350448333457011409 8.0 11 2.6 10 7.6 11
1536 1.000495806787296861214322652005585270378 1.5 10 4.9 10 1.5 10
1280 1.000529206963127633094617181289410927092 3.0 10 1.1 09 3.2 10
1024 1.000574490607464531886530633281452298779 7.2 10 2.6 09 7.9 10

47

L
corr 2

The analysis of the energies (47) described in the following section unambiguously confirms theCFT
result (4).

5. Energy scaling analysis

The logarithmic corrections to scaling beyond the conformal anomaly term are contained inE(corr) as defined in
(45) and displayed in (47). Afit which includes analytic corrections,

= +∣ ( )( )E Cg b L_ , 48corr
fit 1

3 2

incorporates the expected CFT asymptotic scaling but treatsC as afitting parameter rather than fixed at the CFT
value 3/8. The coupling g in (48) satisfies the renormalization group equation

b b a= = - - -( ) ( ) ( ) ( )L
g

L
g g g

g
g g

d

d
,

2
, 492

3
4
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which allows for additional terms not present explicitly in (7). Integration of (49) yields

ò
a

a
= - + + ¢

¢

+ + + ¢ ¢¢= ¢ ¢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )( )

( )

( )
( )L

L g g
g

g

g g
ln

1 1

2
ln

1 1

2
d

1 1
, 50

g

g

g g
0 0

2 2
2

where L0 is a (model dependent) integration constant.Whenα(g)=0, (48) combinedwith (50)with
L0=0.5653 is theNomura [2]fit6. For long chains the analytic correction b/L2 in (48) is unimportant and
E(corr)/g(L)3, taken as a proxy forC, is shown as squares infigure 3 using theNomura data for
2560�L�16 384. This is supplemented as crosses using the additional data (47). The trendwith increasing L
clearly showsNomura’s conclusionC≈0.365 is no longer tenable.

As thefirst andmost importantmodification ofNomura, allow L0 as a free parameter keepingα(g)=0.
Determine a sequence ofC, b and L0 from3-point fits of E(corr)|fit_1 (48) toE

(corr) data (47) at L=2p, 2p–1 and
2p–2, 12�p�21. The results forC for integer p are shown as the lowest diamond sequence infigure 3. The
overlapping curve is a (negative) deviation from3/8 that is proportional to y2/3=1/ln2(L)with an amplitude
such that it passes through the point for L=221. This agreement between theC deviation from3/8 and a pure
1/ln2(L)power suggests that we introduce a constantα(g)=c0 intoβ(g) in (49). The resulting added integral
term≈c0g in (50) is a relativeO(g

2) correction to the leading 1/gwhich in turn is an implicit relative
O(1/ln2(L)) correction to g3 in the 3-parameter E(corr)|fit_1 in (48). To check this determine a new sequence ofC,
b, c0 and L0 from4-point fits toE(corr) (47) at L=2p,K 2p–3, 13�p�21. The results for this newC sequence
are shown as the highest cross sequence infigure 3 togetherwith a (positive) deviation curve proportional to
y4/3=1/ln4(L). The new agreement between theC deviation and a pure power suggests the process we have
started be continued, first with anα(g)=c0+c2g

2 and thenwithα(g)=c0+c2g
2+c4g

4, resulting in the two
remaining cross sequences shown infigure 3. All thesefits are plausibly consistent with a deviation pattern of
alternating sign and ofmagnitude proportional to y2 n/3, n=1, 2,K . Although thefits become unstable for n
much beyond four, the sequences already shown infigure 3 are impressive evidence that the CFT result (4) is
correct and applies to the spin-½ isotropicHeisenberg chain.

As an alternative analysis consider keepingα(g)=0 throughout but changing E(corr)|fit_1 to include explicit
corrections to g3 of the form g5+2nwhich are the leading corrections, deduced by power counting, that would be
induced by the powers g2n inα(g). Define

Figure 2.The L=221Newton–Raphson/Lagrange (scaled) errors dln×10k versus l= ( )x .n
0 The integers labelling different

coloured segments of the curve are the exponents k. The corresponding (scaled) partial sum error dEn×10k has been shifted to a
baseline at –5 for clarity.

6
It is not clear whyNomurawould have considered the non-universal integration constant L0=0.5653 he determined from the excited

triplet state as a plausible choice for the ground state.
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å= + +
=

+∣ ( )( )E Cg a g b L_ 51
n

m

n
ncorr

fit 2
3

0

5 2 2

and determineC, b, {an} and L0 fromN(=m+4)-pointfits ofE(corr)|fit_2 (51) toE
(corr) data (47) exactly as done

above forC, b, {cn} and L0. The results are shown as the diamond sequences in the upper part offigure 3 and are a
natural extension toN=6 of theα(g)=0,N= 3 diamond sequence. The similarity to theα(g)≠0 based
results supports the conclusion that the CFT result (4) is correct.

Thefit sequence using (51) can be carried beyondN=6. The analogs of the last (L=221)N=6 point in
the form105(C –3/8)=3.31 are−0.26, 9.95, 1.91, 3.09,−3.66 and−1.11 forN=7 through 12.With
increasingN thefits cover a larger range of L and the simple form (51) becomes inadequate. A possible
alternative extrapolation to L→∞ is to use theN=6 sequence from figure 3 and assume that the power law
sequence used in the construction of the curves infigure 3 applies to higher order. Some results are given in the
Neville-like table

=

=
-

=
- -

=
-

= ( )

L

L

L

L

L

2 : 3.31
0.39

2 : 4.71 1.11
0.08 0.41

2 : 7.14 1.71 0.83
1.32 0.05

2 : 11.72 3.32
4.76

2 : 21.27 52

21

20

19

18

17

where thefirst column entries labelled by L areN=6 diamond estimates 105(C –3/8). The nth following
column entries are the corresponding scaledC∞ deviationswhere I take 1/ln(L) as a reasonable proxy for g(L)
and use thefitting functionCL=C∞+c1/ln

8(L)+K+cn/ln
6+2n(L). TheNeville table using theN=6

cross estimates is similar. There is nothing in the extrapolatedC∞ values to suggest any systematic deviation
from theCFTC=3/8 but they are disappointing—being at best an order ofmagnitude improvement on the
N=6fit infigure 3. To seewhethermore substantial improvement is possible I turn to higher order fits that
utilizemore of the large L raw data from (47).

Figure 3.The amplitudeC versus y=1/ln3(L) for variousfits described in the text. Sequences (and associated curves) are labelled by
the number of parametersNused in each fit. EachC from anN-parameter fit toE(corr) at L=2p, 2p–1,K 2p+1–N is displayed as a point
at L=2p. All curves are pure power laws y(2N–4)/3=1/ln(2N–4)(L)measured from3/8 and passing through the L=221 terminal
points of theCfit sequences.
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An example of a higher order fit that includes b→b(g) is

b= =

= + +
+ +
+ +

( ) – –
∣ –

–
( – – ) ( )

( )

/

/

L g g g

E

0.4834655080, 2,

0.3750032579g 0.7582000831g 11.40101912g 318.0740987g

60748.49506g 4835298.643g 231829573.1g

1.189710255 173.8677649g 3110.122858g 258835.2988g L . 53

0
2 3

corr
fit

3 5 7 9

11 13 15

3 5 7 2

The coefficients in (53) have been too severely truncated for (53) to be used to determine thefit accuracy but the
deviations δ=E(corr)|fit—E(corr) calculated directly from the originalmultiple precision fit are recorded as
column δ(53) in (47). Each zero in that columnmarks a datum that has been used in the fit to generate (53). The
deviation of theC coefficient in (53) from3/8 is fairly typical of such high order fits and illustrates that, evenwith
data to L=221, obtainingC to an accuracy better than 1 part in 105 does not seempossible. An intriguing
observation is the≈1.19 amplitude of the 1/L2 term in (53); this is reasonably close to the 7π2/60=1.151K
Avdeev andDörfel [6] andHamer [8] result given in (21)which if exact would be an even greater enigma than
suggested in remarks following (21). Another observation regarding (53) is the rapid growth of the coefficients of
gnwith increasing n.While thismight indicate the exact g series is asymptotic rather than convergent, amore
likely reason is that no term in the g series has the exactly correct L dependence. This would imply the higher
order termsmust in part fit the lower order term errors which necessarily requires a growth in coefficients to
compensate the decay in gnmagnitudewith increasing n. One can speculate that this error is intrinsic to the
single variable approach—a proper renormalization group treatment probably requires aWilson structure of
coupled equations inmany variables.

Amore accessible numerical question is whether theCFT amplitudeC=3/8 can be imposedwithout a
dramatic reduction in the quality of afit such as (53). The answer is in the affirmative; an example is

b= =

= + + +
+ +
+ +

( ) – – –
∣ ( )

–
( – – ) ( )

( )

/

/

/

L g g g g

E g g g g

g g g

g g g L

0.4836300075, 2 0.7920786733 ,

3 8 0.7395919879 6.482899058 98.44496044

14465.68686 1246508.930 93781125.78

1.270707901 244.5382883 14353.69283 531957.3542 54

0
2 3 5

corr
fit

3 5 7 9

11 13 15

3 5 7 2

inwhich a new termhas been introduced intoβ(g) in lieu of a variableC. Thefit deviations of (54) are shown as δ
(54) in (47) and are seen to differ little from the δ(53). Adding another term toβ(g) and imposing a newfit
constraint at L=1835 008 gives

b= =

= +
+ +

+ +

( ) – – – –
∣ ( ) – –

–
( – – ) ( )

( )

/

/

/

L g g g g g

E g g g g

g g g

g g g L

0.4836491910, 2 1.346579559 541.9522010 ,

3 8 0.7338448228 2.689714940 1102.903176

69567.74617 4512379.419 201152072.3

1.224301918 220.6853420 9104.234658 476403.4388 . 55

0
2 3 5 7

corr
fit

3 5 7 9

11 13 15

3 5 7 2

The deviations δ(55), shown as the last column in (47), are only amarginal improvement on δ(54). The effect of
eliminating some low order terms inE(corr)|fit in favour of terms inβ(g) is illustrated by

b
=

= +

= + +
+ +

( ) – – – – –
∣ ( ) – –

( – – ) ( )

( )

/

/

/

L

g g g g g g g

E g g g g g

g g g L

0.4836482940,

2 0.6525707300 1.314696674 9.012883800 498.9349125 ,

3 8 1002.089691 66725.41067 4268983.752 186770225.8

1.220515404 221.9288813 8813.378480 487846.3619 . 56

0
2 3 4 5 6 7

corr
fit

3 9 11 13 15

3 5 7 2

The deviations δ(56) are about 3% smaller than the δ(55)—an inconsequential difference. The effect of other
changes such as including a 1/L4 term or using only data from the largest chain lengths in the fits are also small.
Provided theCFT amplitudeC=3/8 is accepted, I estimate from (54)–(56) and otherfits that

= ( ) ( )L 0.48364 2 . 570

It is interesting to note that with this value for L0 rather than theNomura L0=0.5653, the ratio E(corr)/g(L)3

approaches 3/8 from above rather than below.While it is clear that no significance can be attached to any single
high order term in thefits, the global quality of the fits as seen in the deviation columns in (47) is good and I
estimate that for L>221, the error in thefits (55) or (56) is bounded by≈10–13 with themaximum error at
L≈1021.

6. Conclusions

Numerical solutions to the BAE for the ground state of spin-½ isotropic anti-ferromagnetic periodicHeisenberg
chains to length L=221 have been obtained. An analysis of the ground state energy shows unambiguously that
the amplitude of the leading logarithmic term is consistent with that expected on the basis of CFT and the
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connection of the discrete spin-½ system to the continuum k=1Wess–Zumino–Witten nonlinearσmodel.
This resolves a decades old discrepancy based on analysis of shorter chains.

That such exceptionally long chains could be treated depended on the use of a Lagrange interpolation
schemewhich reduced the number of variables to be iterated byNR fromO(L) toO(ln(L)). It is not clear how the
methodmight be best adapted for states for which the Bethewave-vector distribution does not have the
exceptional smoothness of the ground state distribution.

An analytical formula has been derived that is an improvement onHulthén’s wave-vector distribution and
while it has the qualitative features of the exact (numerical) distribution it is at best semi-quantitatively useful.

Appendix

This appendix derives the analytic formula (A.4) for the energy difference

D = ¢ -( é ) ( é ) ( )E EHulth n Hulth n , A.1L L

where the two energies are defined in (17) and (18). It follows thatΔ is the difference between sum and integral

of l- +( )( )/4 1 n
0 2

where l( )
n
0 is defined in (14) andwe can use complex contour integralmethods to obtain an

analytic expression. Specifically, the sum can be expressed, via the residue theorem, as

p l- +∮ ( ) ( ) ( )( )i n n2 d tan 1 , A.2n
0 2

where the contour is the rectangle with vertices at (ε,±C) and (L/2–ε,±C)with L/2 understood to be integer
and the limits ε→0+andC→∞ultimately to be taken.Note that the integrand singularities at l = ( ) in

0

are at n=∞ and notwithin the (finite) contour.Now tan(πn) rapidly approaches+i(–i) as one leaves the real
axis into the upper(lower) half plane. If we use the asymptotic+i(–i) everywhere on the upper(lower) contour
the integral approximation to the sum is recovered and sowewill get the summinus integral difference
expression forΔ bymodifying (A.2) by the replacements tan(πn)→tan(πn)−i (tan(πn)+i) in the upper
(lower) half planes. Contributions to this new contour integral on the segments at±C vanish asC→∞while
the limit ε→0+dictates the correct logarithmic branch for l( )

n
0 on the remaining segments. On the line

n=L/2+iy, il p= - + L( ) ( )( ) y ysignn
0 and on n=0+iy, l p= - - L( ) ( )( ) y yi signn

0 where
p p pL =( ) ( ) ( ( ∣ ∣ ))/ /y y L2 ln tanh .The result of the contour integration is
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and afinal substitutionπy→y and algebraic simplification yields
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The terms following the last equality in (A.4) are the start of a double asymptotic expansion. Thefirst block is
based on the approximation tanh(y/L)=y/L followed by expansion in inverse powers of ln(L) in the integrand

in (A.4). All coefficients, ò= +
¥

( ) ( ( ))/C y y yd ln 1 exp 2 ,i
i

0
in this expansion can be obtained from the
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