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Abstract

Solutions to the Bethe Ansatz equations for the ground state of spin-Y isotropic anti-ferromagnetic
periodic Heisenberg chains to length L = 2*' are obtained by combining Lagrange interpolation with
Newton—Raphson iteration. The long chain lengths allow many powers of a renormalization group
running coupling constant to be included in fits to the ground state energy and make possible the
confirmation of the convergence of the leading logarithmic term. The amplitude of this term is
consistent with that expected on the basis of conformal field theory and the connection of the discrete
spin-¥2 system to the continuum Wess—Zumino—Witten model. This resolves a decades old
discrepancy based on analysis of shorter chains. An analytical improvement to the Hulthén wave-
vector distribution is also provided.

1. Introduction

This paper presents the derivation and asymptotic analysis of the ground state energy of large (even) length L
periodic chains of s = V2 spins anti-ferromagnetically coupled as defined by the Hamiltonian

L
I o - -
H= 55 0;+ Git1, OLy1= O 1
i=1

where i labels both the sites and distance along the chain and the components of 6; are the Pauli spin matrices.
Eigenstates of (1) can be labelled by total Sand S_; for the ground state S = S, = 0. The motivation for these
calculations was an attempt to resolve a long standing apparent failure of universality first noted by Affleck et al
[1]. More evidence for failure was provided by Nomura [2] in an analysis of spin-Y2 chains to length L = 16 384.

The history of this model problem dates to 1931 when Bethe [3] (an English translation appears in [4])
conjectured that all eigenstates of (1) could be found based on the solutions of nonlinear algebraic equations that
he described. For the ground state these are equations for L/2 distinct real wave-vectors, each being associated
with one of the s, = —V2 spins on the chain. Subsequently Hulthén [5], starting from the Bethe Ansatz, obtained
the ground state energy E; in the limit L — oo. Hulthén’s result is

. B 1
€oo = lim — = — — 21n(2). 2
L—oo L 2 @ @
The development of conformal field theory (CFT) in the 1980s led to the realization that E; would approach the
Hulthén value Le, as 1/L with a coefficient constrained by the ‘conformal anomaly’ of the field theory in the
universality class of the spin-%2 anti-ferromagnet. Avdeev and Dérfel [6], building on earlier work by de Vega
and Woynarovich [7], concluded
72
lim L(E, — Les) = —— 3
L—oo 6

and confirmed this value by numerical evaluation of E; for chains to length L = 256. Hamer [8] came to the
same conclusion independently.

©2017 The Author(s). Published by IOP Publishing Ltd
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Affleck et al [1] argue that the spin-%: anti-ferromagnet is in the universality class of the k = 1 Wess—
Zumino—Witten nonlinear 0 model and use this to identify a marginal operator that will lead to corrections to E;
beyond the conformal anomaly term. Arguments by Cardy [9] specify what form these corrections must take
and Affleck et al conclude

2 C 1 3
B =lLe, — |1+ + . C=2-0375 (CFD), 4
LT 6L[ (L) O(ln3(L))) 8 (CFT) “

Cbeing universal. On the other hand Woynarovich and Eckle [10] had reported an analytic calculation that gave

C = 0.3433 (Woynarovich and Eckle) 5)

as the isotropic limit of an anisotropic spin-¥2 anti-ferromagnet. This clear violation of universality Affleck et al
recognized but left unresolved. Subsequently, Nomura [2] greatly extended previous numerical calculations of
E; reaching chains oflength L = 16 384 and concluded

C =0.36516(2) (Nomura). (6)

In deriving (6), Nomura incorporated Cardy’s conclusion that asymptotically the C correction term is
proportional to g” with ga running coupling that satisfies the renormalization group equation'

& _ gL
deﬂ(g)fg ot ™)

with the ellipsis indicating unknown terms. Nomura attributed the difference between (5) and (6) to an invalid
reliance by Woynarovich and Eckle on the Euler—-Maclaurin sum formula resulting in uncontrolled errors. Of
course, even if we accept (5) as unreliable, the apparent failure of universality remains because of the (4) and (6)
difference thatlies well outside Nomura’s error assignment. But this assignment can be faulted because it does
not include sensitivity to additional terms in 3(g) or variation in the constant of integration of (7). The major
goal of the present paper is to provide a realistic appraisal of such effects by first generating E; data for much
longer chains.

The outline of the remainder of the paper is as follows. Section 2 expands on the above historical summary by
providing formulas useful for subsequent analysis. Particular attention is paid to the approximation necessary to
derive (3) from the Hulthén [5] wave-vector distribution. Section 3 is a derivation of an analytic improvement on
the Hulthén wave-vector distribution. The approximation that led to (3) can be applied to this improved
distribution and leads to a result of the form of (4) but with C = (3/8)In*(2)—a roughly factor 2 underestimate
from the CFT prediction. Section 4 describes how Lagrange interpolation is combined with Newton—Raphson
(NR) iteration for an efficient generator for E; for large L. Results to a maximum L = 2*' are given. Section 5
describes the analysis of the data in section 4 with the conclusion that the CFT result (4) is unambiguously
confirmed.

2. E; alternatives from the Hulthén wave-vector distribution

The ground state is specified by a distinct real wave-vector k,,, 0 < k,, < 2, for each of the L/2 overturned spins
from a ferromagnetically aligned state. A convenient change of variable is to the ‘rapidity’ A, = cot(k, /2); these
variables for the ground state satisfy the Bethe ansatz equations (BAE)

L arccot(\,) — Zarccot(u) —nm=0, n,m= l, i, ey ———, (8)
— 2 2’2

where ), and similar sums hereafter are understood to range over all L/2 listed half-integer values. The arccot
function is its principal value; i.e. 0 < arccot(x) < 7for —oco <x < oo. Thesymmetry A;,_, = — A, allows
reductionto L/4 ((L + 2)/4) independent variables if L/2 is even (odd). The BAE (8) with its discrete solutions
A, can also be interpreted as defining a continuous function

n(\) = l(L arccot(A) — ZmarCCOt(A _ZAm)) g
s

with n taking on half-integer values whenever A is one of the solutions A, of (8). This point of view is useful in a
number of instances and, for example, allows one to identify n(co) = 0 and n(—oo) = L/2 as the limits on the
range of possible n. The energy of the ground state is

! The normalization of gin (7) is chosen to make the coefficient of -¢* in 3(g) equal 1.

2
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== 22 (1 — cos(ky) = = — Zn = )\2 (10)
An exact analytic solution to the BAE (8) is not known for general L. To get solutions of increasing accuracy write
an unknown improved estimate A1 as a small shift SX¢ 1 from a known #'th estimate X’. On substituting

X?+Dinto the BAE (8) and expanding to first order in §X¢ 1 one obtains the matrix equation
HE — FO§XCHD; explicitly,

h(f) Z (fnn ‘5nm+f,$i))5>\%+l)) )\Efﬂ) — )\;f) + 6)‘£1f+1)’ (11)
where
@) _ \®
h(f) =L arccot()\(f)) — Z arccot Tm —nm, (12)
2 ~A() L
@) _ @)
fnm - fnn - _menm' (13)

44+ 0 = A0 LY

The NR solution of (11), AX“+1 = (fO)1h®), converges quadratically but because it requires numerical
matrix inversion it is practical in the elementary form given here only to lengths of several thousand. By
reparameterizing \ in some appropriate basis, solutions to lengths L ~ 2 x 10° have been obtained as described
in section 4.

A useful initialization is provided by the Hulthén solution which is based on the approximation

L/2
m f dm in the equation for dn/d\ obtained by differentiating (9). This equation is of convolution
0

form and can be solved by Fourier transform. Integration then yields n(\) which we identify as the Hulthén
approximation 7(\ ). A summary of equations satisfied by A\ is

2O = _2 In(tan(nn/L)), n= £arctan(exp(—7r)\ﬁ10)/2)),
™ Vs
0)
A 4 — 2 osh(mA® /2). (14)
dn L sin(2nw/L) L

Asaconsequence of (14), the Hulthén approximation can be written
L/2 (0)
>~ [ dm= f A (15)
" 0 00 cosh(7r)\(°)/2)

and the final equality, giving the conversion to an integral over A%, is useful in many applications. For example,
one can easily check that the middle term in (12) in Hulthén approximation is

L/2 A0 _ O o0 L/2 2
f dm arccot| +——" | = f duf dm—
0 2 A" o 4+ (n— A

=[] :
N x;» . cosh(7r)\/2) 4+ (1 — N)?

N du L _ mL/4 =1L arccot()\?)) — nm (16)
A 1+ > cosh(mu/2)

in which n from (14) has been used for the final equality. This confirms that #®’ = 0in Hulthén approximation.
There are ambiguities in the ground state energy of the Hulthén solution depending on the approximations
one chooses to make in (10). The integral approximation (15) applied to (10) gives

E; (Hulthén) = L_ fL/Z dn;2 = L_ Lfoc dA !
2 0 14 A® 2 —00 cosh(mA/2) 1 + N2

= L(% -2 ln(Z)) = Ley, (17)

whereas (10) without this approximation is
272 In(2)
= 600 _—
)\(O) I’ (L)

as derived in the appendix. This last result shows the Hulthén A\ differs significantly from the exact ), of the
BAE (8) since the periodic boundary condition defining the model (1) allows at most O(1/L) finite size effects as
corrections to the extensive Le,, term. Indeed, the expected energy based on CFT is that given in (4).

A formula equivalent to (10) for E; was derived by de Vega and Woynarovich [7]. The key identity, restricted
here to the isotropic chain (1) and in the present notation, is

E} (Hulthén) = = — Z + O(1/1n*(L)) (18)

3
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1 L/2 1
e (Zh(—wz) - dm—m)] )

where )\, in the integral in (19) is understood to be the inverse of r1(\) from (9). The proof of (19) follows trivially
on making the change of integration variable from n to A using dn/dA\ calculated from (9); explicitly, the last
termin (19)is

L/2 dn 00 d\ L 2
7Tfo cosh(\,/2) f—oo cosh(ﬂ')\/Z)(l NSV Z”4 + N\, = /\)2)

0y !

— 1 - cosh(m . /2)
L2In2) - %, " cosh(mA,/2)’

4
e + (20)
where the integrals evaluated for the final equality are those that already appeared in (16) and (17). Substituting
(20) into (19) yields (10) and completes the proof. Note that (20) relies only on the functional form of (9) and not
thatthe A, in the sum in (9) satisfy the BAE. Thus any approximation to A, in (19) (and simultaneously to the
A in(9)) has the same effect on E; as does the approximation when applied directly to (10). In particular (19)
reproduces the O(1) error found for the Hulthén approximation E; in (18).

On the other hand, different E; estimates using (19) are possible if one drops the constraint that the analytic
continuation from a discrete A, list to a continuous A, function be via (9). If the approximate A, is a known
analytic function such as the Hulthén )\510) in (14), it would seem more natural to define (19) by the condition that
the same analytic \, appear in both sum and integral. As an example, if in (19), with the constraining (9)
removed, we replace A, by the Hulthén \¥) in both sum and integral and use the hyperbolic/trigonometric
equivalence from (14), we get

L/2
E/(Hulthén) = Le,, — w(zn sin(nm/L) — f dn sin(2n7T/L))
0

1 L 2 7t 5

be 7T(sin(w/L) 77) b =l ~ 3600 T 0a/L, D
aresult first obtained by Avdeev and Dorfel [6] and Hamer [8]. The leading correction in (21) agrees with the
CFT value in (4) which illustrates the dramatic improvement to an o(1/L) error that has been achieved. This is a
surprise since the removal of the constraint (9) has eliminated the justification for (19) to be the formula for E;. It
is of course possible that the dramatic error reduction has just been accidental—which motivates further
exploration in the following by observing what changes are induced in (21) when the modified (19) is applied to
an analytical improvement on the Hulthén solution (14).

3. An improved wave-vector distribution

Before proceeding with the calculation of such an improvement, it is worth introducing a change of variable
A, — U, in which we write the exact \,, as

Ay = _2 In(tan((n — v,)w/L)), Vy,=1n — £arctan (exp(—z)\n)), (22)
s ™ 2

with v, satisfying the symmetry condition vy /,_, = —;,. The unit spacing between 7 sets the scale for
distinguishing v, as either small or large. In the case that 1, is small we find from (22) that

=y — A0 = % cosh(mA? /2)v, + O (23)

By maintaining the functional form of the Hulthén solution (14) we preserve in (22), for example, the
hyperbolic/trigonometric equivalence cosh(r ), /2) = 1/ sin(2(n — v,)7/L) and so can write the modified”
de Vega and Woynarovich energy formula (19) in the doubly subtracted form

1 L L/2
E = Ley — w(m - ;] - W(Zns(n, V) — fo dn s(n, v,) ),
s(n, v,) = sin(2(n — v,)7/L) — sinQRumw/L) = —(27/L)cos(2nm/L)v, + OV2). (24)

The numerical evidence discussed below suggests |14 is bounded by 0.03 for all n and L and so in the following
we use only the linear in ;, versions of (23) and (24).

Any iteration of (11) to improve on the Hulthén \?) ideally starts with an exact evaluation of the sum
contributing to 7% in (12). Fortunately this can be done analytically by complex contour and residue methods

2 Modified means dropping the constraining (9) as in the discussion leading to (21).

4
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similar to that described in the appendix. The details involve no new concepts but it is useful to first recast the
arccot function in the sum in (12) as an integral as was done in the first equality in (16). One can confirm that the
singularities in this caseat \”’ = i & 2ilieatn < 0Oandn > L/2 on the real n axis and thus again outside the
chosen contour in the appendix. The final result is

o — 1 fw dy AP = A2 +1 AP + Ay + 9
= > (25)
2rdo 1+ exp(2y) AD LA +1 AD — A +9
where
AGy) = %m(tanh(y/m). 26)

(With the substitution y = In(1 + €) = arcsinh(e*(1 + €/2)/(1 + €%)), —00 < x < 00, integrals such as (25)
can be done numerically as an equally weighted sum on a uniform grid with exponential convergence both with
respect to the large |x| cutoffs and the (inverse) grid spacing.)

To make the right hand side of (11) tractable we employ the Hulthén integral approximation (15). The

necessary integral for the sum in f Yin (13) already appears in (16) with the result

1
Ll 8AY ~

~(0)
— =), 27)
4 cosh(7r/\(°)/2)

£, AP =

the last equality being the linearized form of (23). The (integral approximated) contribution from }_,, frfgz AW

dAW 2
f oA = A vy, (28)
s cosh(mAY /2) 4 + (W A9y T4+ 0 - 2Oy

is a convolution. On substituting these (27), (28) values into (11), then taking a Fourier transform and using the
explicit h,, ) from (25), we arrive at’

oo
m(l + e*ZW)f d)\(no)exp(—iq/\;o))y(nl) = f d\Dexp(—igh\ D)

h(q) :
= 4je2ldl sin sin(gA(y)). 29
s (zy) (aA() 29)
Inverse Fourier transformation of (29) after dividing out 7w (1 + e~2!4!) now gives
1 > dy >~ dq e2lal :
D= — — |2 — exp(i )\(0) ——— sinh(g)sin(gA . 30
V=) Treem| AL e o sinh(@sin(A Q) (30)
The [ ] expression in (30) evaluates to
372‘1 ©
— j; smh(q)sm(qA(y))sm(q)\ )
=—21lim ¥,%, f %(e—@k“)q — 2"k 1 o= (k+40)5in(gA(y))sin(gA?)
K—oo q
lim 3. k + g, () k+g () — Bk + g () + 1) 1)
R T G ) — Wk + 570 + ) (k+g, (") ’
where
3 .

850 =7+ SO0 £ M) (32)
with A(y) givenin (26). The sum of logarithms in (31) is a logarithm of a product and we get as our final
expression

O 1 f 0 dy
Toor2do 14 exp(2y)
Tg(y) — Wy + v (g~
« Rln &, 2 2)+ &, (y) + %) i @, (y)z . 33)
(g, () L(g, (y) — )I(g, () + %)

As an example of the accuracy of (33), comparisons of /"’ with the exact 1;, obtained by NR iteration are
shown in figure 1 for L = 2" = 1024and L = 2*' = 2097 152. Extrapolation from discrete to continuous n for

3 The resulting (29) has the structure of the Fourier transform equation that leads to the Hulthén solution (14). The unknown 1/5,1) in (29)
replaces dn/d )\, in the Hulthén equation while the known 1 (¥ replaces —L/(1 4 A2).

5
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0.90

0.85

R=0.80

5 10 15
log,(n)

Figure 1. The approximation »/{) from (33) and the exact 1, from Newton—Raphson iteration of (11) for chains of length L = 2'°

(red) and 2! (blue) plotted againstlog,(n) forn < L/4.The first four discrete values (n = %, %, .. ) are shown as crosses; the lower

pair at each n mark /", the upper pair #;,. The two curves in the upper part of the graph are the ratios R = v’ /1, plotted with respect
to the horizontal marker lines indicating ratios of R = 0.80, 0.85 and 0.90.

the NR solution is by the use of (9). A single NR iteration starting from the Hulthén solution is graphically almost
indistinguishable from the final (multiple iteration) result shown in figure 1 so that the error in /{” is inferred to
be dominated by the Hulthén integral approximation made in its derivation. The qualitative agreement between
1 and the exact 1, for the lengths L shown in figure 1 suggests we might use (33) to guess how 1, will approach
its L — oo limit.

We consider two cases. In the limit L — oo withn = O(1), we simplify (33) by first noting

&N ==+ i ln(l) +001/1), g ()= 3 + i ln(
27T 4 T

nm

] + O(1/L%. (34)

[Ty

TheT functions involving g "(y) can be expanded in an asymptotic series in 1/In(L) and the remaining integrals

00 .
f dy In'(y) /(1 + exp(2y)) can be obtained from the generating function (A.5) in the appendix. The result is
0

== A MG+ m@)rG+ 50 ()
" rrde 1+ exp2y) ra(§-+-5%1n(;£))
In(2) In(nm//8)
- 321112(L)(1 + hj(L) + ) o5

The first (L independent integral) term in (35) is 0.019 181,0.012 768,0.01 0168, ... for n = %, %, ...while the
remaining term suggests ,,(L) — v,(c0) willbe O(1/ In*(L)) forn = O(1). A second asymptotic result is the

slope of /{) at the symmetry pointn = L/4. We have

_ Yy (i i )_(l i )_(E i ))
2r2Jo 1+ exp(2y) J(Zw 4+4A(y) v 4+4A(y) v 4—|—4A(y)

61/;1)
0
A0

AP=0

_ 7Tln(2)(1 ~ 9In() N ]
C 41n3(L) 2In(L)

(36)

which suggests dv,/ O\, will be O(1/In*(L)) at A, = 0.
The sought for improvement in energy referred to at the end of section 2 comes from the sum minus integral
termsin s(#, v,) in (24). Again, working only to linear order in v, this energy correction is

6
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2 W L2 M
- >, cosnm/L)v, —j; dn cos2nm/L)v;,

00 /
4 _ Yy cosh(Zy’/L)f _
mLJdo 1+ exp(2y’) 1+ exp(Zy)

1“(0+ + L ln(t’/t))F3( — In(t ’t))P3(1 + - In(#/ /t)) ( + - In(t /f))

< F(0++ In(¢’ t))F3( ln(t’/t))f‘3(1+ In(t ’t)) ( Z'Lﬁln(t’/t))

> (37)

where t’ = tanh(y’/L)and t = tanh(y/L). The equality in (37) is the result of an explicit calculation of the
sum minus integral difference by the complex contour method described in the appendix. For the leading terms
in (37)in the limit L — oo we can set cosh(2y’/L) = landallIn(T'(...)) terms containing the ratio ¢/ /¢ then
vanish because of the anti-symmetry of their imaginary parts under y’ < y interchange. Further reduction
analogous to that in (34) followed by asymptotic expansion of the I" functions gives the energy correction

P foo y (2 = L@/ )3 - Linw/ )
7Ldo 1+ exp@y)Jo 1+ exp(2y) P(=L @/ Jyy))ri(1 = Linw/\yy))

_ m Q) - 91n(2) n
~16L In¥(L) 2l )

(38)

By comparison with the expected CFT correction in (4) we see the leading term in (38) has the correct length
dependence but is too small by a factor In*(2). Had we used \,, from (22) with 2}, = D from (33) directlyin (10)
we would only have reduced the error in E; from its E; (Hulthén) value in (18) by an O(1) factor and not the O(L)
factor needed to get (38). Thus (38) provides another example besides (21) of the dramatic improvement
achieved by changing the analytic continuation prescription in (19). In the absence of any better analytical
approximations for 4, beyond /{" in (33) I return to the purely numerical solution of the BAE in section 4.

4. E; by NR with Lagrange interpolation

The NR procedure for finding the solutions A, of the BAE (8) as described in the discussion of equations (11)—(13)
isimpractical for chains of length L greater than several thousand. To deal with long chains we restrict the number
of variables treated by NR to a limited number M of A,,, > 0,m = 1,2, ..., M, and use a Lagrange interpolation
scheme that accurately and efficiently determines all remaining A, in terms of the basis variables ), . In our
implementation of the Lagrange interpolation we assume A, is a smooth function A, (x,) where x,, = A9 a5 given

by (14)". Weiincorporate the symmetry A ,_, = — A, in our basis choice in which case for any n that is distinct
fromalln,,,
u An M2 2 ! L 2
M=BY 45—  B=x]l Gi—x) P = x [ G, - x), (39)
m=1 (xn - xny,,)an m=1 k=1

where the prime on the second product in (39) indicates the term k = m is excluded. NR iteration proceeds as
follows. We assume that at the Zth iteration the M terms A, = )\ff) are known from a previous step. For all

other 1, (39) serves to define the A", The M array elements h,(l:/:) in (12), when expressed explicitly in terms of
)\ff) > 0, are

1
h}gi) =L — l)arccot()\%?) — (nm + 5)77

/\(f) )\ff) /\(f) )\gf) 0 L/2 even 40
— / t J t J —
> nel arcco 5 + arcco 5 arc cot ()\;i)/z) L/2 odd, (40)

where the prime on the sum means the term 7 = ,, is excluded. The M* matrix elements N ) " are the derivatives

frfflﬂ =— Bhéi ) / 8A§$ and although easy to calculate from (40), result in lengthier analytical expressions than
those in (13) because of the dependencies )\ff) ()\fj; ) given by (39). Data for a new NR iteration beginning with (39)
is obtained by matrix inversion as in the solution of (11), i.e. )\(f +h— /\(f) + ((fO)'h®), . Iteration stops

whenthe M h,, “) in (40) vanish to our chosen numerical accuracy and we then deem the BAE (8) satisfied—at least
within the llmltatlons of the Lagrange interpolation (39).

* The choice x, = A\ obviously makes the interpolation exact for A, = A\?). There might be an advantage to using the improved x,, = \{"
from (22) with 1/5,1) from (33) but this has not been explored.
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It remains to discuss the choice of the special n = n,,. It is essential that there be a minimum number of
%, %, ... with unit gaps since no accurate interpolation is possible near the end-points of the A
interval. Following this are gaps of increasing size between n until a final n = ny,near L/4. Because we are
interpolating in x it is plausible that the spacing in the corresponding x,, = )\51(2 should be nearly uniform. A

n=mn, =

possible formula to achieve this is a modification of the Hulthén #(A(”)) from (14) which we define as

Nu(K, K’y = L arctan(exp(—r(2m — 1) /K)) + % (a1)
iy

where the last term has been added to provide extra flexibility and K, K’ are parameters dependent on L. If we
define a crossover integer 11, as the largest (integer) m for which N,,, (K, K’) — N,,(K, K') > 1thenthen,,
list s
o — 1 n INa(K, K| — [N, (K, K| +M—my, m=1, 2,...,m, 42)
2 M — m, m=m,+ 1, my + 2, ..., M.

We can make M and m, the independent variables in (42) by taking K, K’ as the solution of the two equations
Ny —1(K, K') — N, +1(K, K') = 2 which is an approximation to the defining equation for the crossover 11,
and N,, (K, K'Y = M — m, + 1/2 whichmakes n,, ~ N,,(K, K’) for m < m, in (42). These two equations
can be reduced to

L
—arctan
2

sinh 27 /K) - L( 1 L B B ) _ 1
cosh (2ms — l)w/K)] = M + 5 7rarctan(exp( @2m, — Dm/K)| =1+ I (43)

where now the first equality determines K after which K’ follows trivially. For example, at L = 2°' with M = 92
andm, = 60, K = 32.7464 and K’ = 2.3858. This is a special case of the parameter choice

M = round(4log,(L) + 8), m, = round(3log,(L) — 3) (44)

which we have used and have found that for 2'° < L < 22! yields an absolute error in the scaled energy deviation

1 4 Elom = —6—€(EL — Lew) (45)
™

that is less than 10™*". The observed trend suggests this bound willimprove slightly for L > 2%,

Figure 2 shows for L = 2°! both NR/Lagrange error” §), = AN/ — A“““and the partial sum error
il 4
8Ey=—3 _ S (46)
m=n 1+ )‘m NR/L 1+ /\m exact
defined such that the energy error Ef*/L — E&* = §F, /,. The oscillatory behaviour of 6, is typical with the

decay in amplitude towards large x the (deliberate) result of the large M—m, choice (44). The decay in amplitude
towards small x is not easy to modify given the constraint of the functional form (41) but it is appropriate as it
partially compensates for the growth in the number of ), terms between adjacent ), atsmall xandleadstoa
substantial suppression of the 6E,, oscillation amplitude there. The further suppression of these oscillations by
about 2 orders of magnitude to a final ¢E, /, (the rightmost point in figure 2) is also typical.

This explicit cancellation in the generation of 0F; , implies a loss of significant digits but a more important
loss of significance is the cancellation between terms in the sum for A, in (39). In total up to 15 digits can be lost
which is in addition to the 12 digits lost in cancellation in the scaled energy deviation 1 + E“°™ in (45).
Significant cancellation between terms in (40) can also occur so in view of this, for all L > 10°, a conservative
extended precision arithmetic of 90 digits was used; somewhat less for shorter chains. Finally, if the NR/
Lagrange iteration is initialized with A, = )\533 about seven iterations are required before reaching the

interpolation limiting accuracy. This number can be reduced if instead one starts with )\511: defined by (22) with

V%: given by (33) (see the note following (26) for an efficient integration scheme). Whatever initialization is
chosen, this must be carried to a precision comparable to that used for a general iteration term—otherwise
roundoff noise can lead to failure to converge.

The energies from the NR /Lagrange calculation for 2'° < L < 2*' given below are exact to the 40 digits
listed. They confirm the Nomura values for L < 2! Thelast three columns are the fit deviations
8 = E“™|s, — E™ of formulas described in the next section and referenced by their equation numbers.

Error determination is based on comparison with a more accurate calculation using expansion in a 204 Chebyshev polynomial basis set.
The Lagrange interpolation scheme described here is easier to implement, much less susceptible to round-off error and instability and, for
the same basis size, essentially equivalent in accuracy.
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L 1 4 EC€om = (—6L/m?)(E; — Les,) §(53) 5(54) §(55)
2097152 1.000081050086135313454688662452763521206 0 0 0
1835008  1.000083096474927292989270418050736915191  —3.4e — 22 2.7e — 22 0
1572864  1.000085546235668476454363746871380851621 0 0 0
1310720  1.000088570775667055270129520221282550084 12e — 22 —1.0e —22 —2.0e — 24
1048576  1.000092471625031702224953466828629442713 0 0 0
917504  1.000094917082268124913917006674920835904  —2.6e — 23 2.3e — 23 9.2¢ — 25
786432  1.000097849636823617629200371776879381852 0 0 0
655360  1.000101477735522509468375560360104220493 2.7¢ — 23 —25e—23 —1.5e—24
524288  1.000106168996359769499298747911421197484 0 0 0
458752  1.000109116720315360135595366310833088736  —1.3e — 23 1.3e — 23 l.le — 24
393216  1.000112658327251866029261777940740512121 0 0 0
327680  1.000117049939119148111069596344850580197 286 —23 —29e—23 —29e— 24
262144  1.000122744527394407084252107106935899734 0 0 0
229376  1.000126331783060470071402899910340569343  —2.9¢ — 23 3.2¢ — 23 3.8¢ — 24
196608  1.000130650883549182071494396745116225903 0 0 0
163840  1.000136020170540532016881669523969918431 12¢ —22 —1l4e—22 —1.9e—23
131072 1.000143004431517556269879312454318689861 0 0 0
114688  1.000147416562487464634658566644122385892  —2.6e — 22 3.3e — 22 5.0e — 23
98304 1.000152741357221336727246932361660346540 0 0 0
81920 1.000159379628436424882094700267691501477 24 — 21 —32e—21 —5.4e— 22
65536 1.000168045008730501878824011060266768932 0 0 0
57344 1.000173536528742117459963450369417150724  —1.5¢ — 20 2.2e — 20 4.1e — 21
49152 1.000180181565563862129023425154527900152 0 0 0

40960 1.000188492183195473302232533492142643021 72¢e —19 —1l1le—18 —22e—19
32768 1.000199383786021884117134699980606702216 9.2¢e — 18 —15e—17 —3.2e— 18
28672 1.000206310933716567942545210616155079801 31e—17 —52e—17 —1l.1le— 17
24576 1.000214718383741847496160899642853757329 l.le—16 —19 — 16 —4.2e— 17
20480 1.000225271338001813823099638592801448104 42e¢e —16 —7.5e—16 —17e— 16
16384 1.000239164527636125176648422184626024386 1.8¢ — 15 —34e—15 —82e—16
14336 1.000248037055212883942857400350360894153 4le—15 —8.le— 15 —2.0e — 15
12288 1.000258842848304376281821974242658051600 1.0e — 14 —2.1le—14 —5.1e— 15
10240 1.000272462982075322067292125312215582199 28¢—14 —59—14 —15e— 14
8192 1.000290488657940293078826184721388003671 91e — 14 —2.0e —13 —53e— 14
7168 1.000302055438341796824090819395671052890 1.8¢ — 13 —41le— 13 —1l.1le— 13
6144 1.000316199623778790719021453526843680651 38¢ —-13 —89e — 13 —2.4e— 13
5120 1.000334115613427365139798199672763152963 89 — 13 —22e—12 —6.1e —13
4096 1.000357975096997705815434074081431739878 24e — 12 —64e— 12 —1.8¢ — 12
3584 1.000373373157363738488167310047788737824 44e — 12 —12e—11 —3.4e— 12
3072 1.000392294579193567967977993550110659004 8.6e —12 —24e—11 —6.9e — 12
2560 1.000416406166814600073425973427641699488 1.9e — 11 —55e—11 —1.6e — 11
2048 1.000448765316782104236916021558253734798 47¢e — 11 —14e—10 —43e— 11
1792 1.000469798975450287854350448333457011409 8.0e — 11 —2.6e— 10 —7.6e — 11
1536 1.000495806787296861214322652005585270378 1.5¢ — 10 —49e—-10 —1.5e— 10
1280 1.000529206963127633094617181289410927092 30e —10 —1.1le—09 —3.2e—10
1024 1.000574490607464531886530633281452298779 72¢e — 10 —2.6e — 09 —7.9¢ — 10
(47)

The analysis of the energies (47) described in the following section unambiguously confirms the CFT
result (4).

5. Energy scaling analysis

The logarithmic corrections to scaling beyond the conformal anomaly term are contained in E“°™ as defined in
(45) and displayed in (47). A fit which includes analytic corrections,

E(Corr)lﬁt_l — Cg3 + b/Lz, (48)

incorporates the expected CFT asymptotic scaling but treats C as a fitting parameter rather than fixed at the CFT
value 3/8. The coupling g in (48) satisfies the renormalization group equation

dg _ IR S
LdL = B(g), B(@) =—¢ > 8 al(g), (49)
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Figure 2. The L = 22! Newton—Raphson/Lagrange (scaled) errors 6}, x 10%versus x = A, The integers labelling different
coloured segments of the curve are the exponents k. The corresponding (scaled) partial sum error 6E,, x 10%has been shifted to a
baseline at—5 for clarity.

which allows for additional terms not present explicitly in (7). Integration of (49) yields

!
ln(i) _11 1n[l N 1) T T a— , (50)
L) g 2 g 2] ewo (14 8)(14 £ 4 ga(gh)

where Ly is a (model dependent) integration constant. When a(g) = 0, (48) combined with (50) with

Ly = 0.5653 is the Nomura [2] fit°. For long chains the analytic correction b/ L?in (48)is unimportant and
E“°™ /¢(L)’, taken as a proxy for C, is shown as squares in figure 3 using the Nomura data for

2560 < L < 16 384. Thisis supplemented as crosses using the additional data (47). The trend with increasing L
clearly shows Nomura’s conclusion C / 0.365 is no longer tenable.

As the first and most important modification of Nomura, allow L, as a free parameter keeping cu(g) = 0.
Determine a sequence of C, b and L, from 3-point fits of E“°™|g, ; (48) to E“°™ data (47) at L = 27,2° "' and
27212 < p < 21.Theresults for Cfor integer p are shown as the lowest diamond sequence in figure 3. The
overlapping curve is a (negative) deviation from 3/8 that is proportional to yz/ > = 1/In*(L) with an amplitude
such that it passes through the point for L = 22!, This agreement between the C deviation from 3/8 and a pure
1/In*(L) power suggests that we introduce a constant cl(g) = ¢ into (3(g) in (49). The resulting added integral
term =& cogin (50) is a relative O(g2 ) correction to the leading 1 /¢ which in turn is an implicit relative
O(1/In*(L)) correction to ¢’ in the 3-parameter E(°°”)|ﬁt_1 in (48). To check this determine a new sequence of C,
b, cyand Ly from 4-point fits to ECo™ (47)atL = 2F,... 27313 < p < 21. The results for this new C sequence
are shown as the highest cross sequence in figure 3 together with a (positive) deviation curve proportional to
y*/3 = 1/In*(L). The new agreement between the C deviation and a pure power suggests the process we have
started be continued, first with an a(g) = ¢y + ¢,¢” and then with a(g) = ¢y + .8 + ¢4¢", resulting in the two
remaining cross sequences shown in figure 3. All these fits are plausibly consistent with a deviation pattern of
alternating sign and of magnitude proportional to y*"/*, n = 1,2,... . Although the fits become unstable for 1
much beyond four, the sequences already shown in figure 3 are impressive evidence that the CFT result (4) is
correct and applies to the spin-V2 isotropic Heisenberg chain.

As an alternative analysis consider keeping a(g) = 0 throughout but changing E“°™|, ; to include explicit
corrections to g° of the form g°**" which are the leading corrections, deduced by power counting, that would be
induced by the powers g™ in a(g). Define

Itis not clear why Nomura would have considered the non-universal integration constant L, = 0.5653 he determined from the excited
triplet state as a plausible choice for the ground state.
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Figure 3. The amplitude Cversusy = 1/ In*(L) for various fits described in the text. Sequences (and associated curves) are labelled by

the number of parameters N used in each fit. Each C from an N-parameter fit to E<°™ at L = 27, 277", ... 2" "Nis displayed as a point
at L = 2°. All curves are pure power laws y? /% = 1/In®¥*(L) measured from 3/8 and passing through the L = 2*' terminal
points of the C fit sequences.
m
E@D|g 5 =Cg> + > a,g>" + b/I? (51)

n=0

and determine C, b, {a,,} and L, from N(= m+4)-point fits of E“°™|g, , (51) to E°™ data (47) exactly as done
above for C, b, { ¢, } and L. The results are shown as the diamond sequences in the upper part of figure 3 and are a
natural extension to N = 6 of the a(g) = 0, N = 3 diamond sequence. The similarity to the a(g) = 0based
results supports the conclusion that the CFT result (4) is correct.

The fit sequence using (51) can be carried beyond N = 6. The analogs of the last (L = 2*') N = 6 point in
the form 10°(C-3/8) = 3.31 are —0.26,9.95,1.91,3.09, —3.66 and —1.11 for N = 7 through 12. With
increasing N the fits cover a larger range of L and the simple form (51) becomes inadequate. A possible
alternative extrapolationto L — oo is to use the N = 6 sequence from figure 3 and assume that the power law
sequence used in the construction of the curves in figure 3 applies to higher order. Some results are given in the
Neville-like table

L=2¥ 331
0.39

L =2%. 471 1.11

—0.08 0.41
L=2"Y 714 1.71 0.83

—1.32 — 0.05
L=28 1172 3.32

—4.76
L =27 2127 (52)

where the first column entries labelled by L are N = 6 diamond estimates 10°(C—3/8). The nth following
column entries are the corresponding scaled C.,, deviations where I take 1/In(L) as a reasonable proxy for g(L)
and use the fitting function C; = C, + ¢;/In*(L) + ... + ¢,/In®"?*(L). The Neville table using the N = 6
cross estimates is similar. There is nothing in the extrapolated C, values to suggest any systematic deviation
from the CFT C = 3/8 but they are disappointing—being at best an order of magnitude improvement on the
N = 6fitin figure 3. To see whether more substantial improvement is possible I turn to higher order fits that
utilize more of the large L raw data from (47).

11
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An example of a higher order fit thatincludes b — b(g) is

Lo = 0.4834655080, 3(g) = -g*>-¢°/2,
Eom|e = 0.3750032579g> + 0.7582000831g> + 11.40101912g’—318.0740987g°
+ 60748.49506g''-4835298.643¢g'> + 231829573.1g"°
+ (1.189710255-173.8677649g> + 3110.122858g°—258835.2988g") /12. (53)

The coefficients in (53) have been too severely truncated for (53) to be used to determine the fit accuracy but the
deviations § = E“°™|—E“™ calculated directly from the original multiple precision fit are recorded as
column §(53) in (47). Each zero in that column marks a datum that has been used in the fit to generate (53). The
deviation of the C coefficient in (53) from 3/8 is fairly typical of such high order fits and illustrates that, even with
datato L = 2*', obtaining C to an accuracy better than 1 part in 10° does not seem possible. An intriguing
observation is the ~21.19 amplitude of the 1/ L% termin (53); this is reasonably close to the 77%/60 = 1.151...
Avdeevand Dorfel [6] and Hamer [8] result given in (21) which if exact would be an even greater enigma than
suggested in remarks following (21). Another observation regarding (53) is the rapid growth of the coefficients of
¢" with increasing n. While this might indicate the exact g series is asymptotic rather than convergent, a more
likely reason is that no term in the g series has the exactly correct L dependence. This would imply the higher
order terms must in part fit the lower order term errors which necessarily requires a growth in coefficients to
compensate the decay in ¢" magnitude with increasing n. One can speculate that this error is intrinsic to the
single variable approach—a proper renormalization group treatment probably requires a Wilson structure of
coupled equations in many variables.

A more accessible numerical question is whether the CFT amplitude C = 3/8 can be imposed without a
dramatic reduction in the quality of a fit such as (53). The answer is in the affirmative; an example is

Lo = 0.4836300075, B(g) = —g>—g>/2-0.7920786733¢°,
EC€m|g = (3/8)g® + 0.7395919879g° + 6.482899058¢7 + 98.44496044¢°
+ 14465.68686¢'!—1246508.930¢' + 93781125.78g">
+ (1.270707901-244.5382883¢> + 14353.69283g°—531957.3542¢7) /? (54)
in which a new term has been introduced into 3(g) in lieu of a variable C. The fit deviations of (54) are shown as &
(54)in (47) and are seen to differ little from the 5(53). Adding another term to 5(¢) and imposing a new fit
constraintat L = 1835 008 gives
Lo = 0.4836491910, 3(g) = —g>—g>/2—1.346579559¢° —541.9522010¢7,
ECom|e = (3/8)g® + 0.7338448228¢5—2.689714940¢7 —1102.903176g°
+ 69567.74617¢'1—4512379.419¢"3 + 201152072.3g"
+ (1.224301918-220.6853420¢> + 9104.234658¢°—476403.4388¢”) /2. (55)
The deviations §(55), shown as the last column in (47), are only a marginal improvement on 6(54). The effect of
eliminating some low order terms in E“°™ g, in favour of terms in ((g) is illustrated by
Ly = 0.4836482940,
B(g) = —g2-¢3/2-0.6525707300g*~ 1.314696674¢5 + 9.012883800g°—498.9349125¢7,
E(com)|o = (3/8)g%-1002.089691¢° + 66725.41067g'!-4268983.752¢'3 + 186770225.8¢"
+ (1.220515404-221.9288813g> + 8813.378480g° —487846.3619¢7) /I2. (56)
The deviations 6(56) are about 3% smaller than the §(55)—an inconsequential difference. The effect of other

changes such as including a 1/L* term or using only data from the largest chain lengths in the fits are also small.
Provided the CFT amplitude C = 3/8 isaccepted, I estimate from (54)—(56) and other fits that

Lo = 0.48364(2). (57)

It is interesting to note that with this value for L, rather than the Nomura L, = 0.5653, the ratio E“°™ /¢(L)’
approaches 3/8 from above rather than below. While it is clear that no significance can be attached to any single
high order term in the fits, the global quality of the fits as seen in the deviation columns in (47) is good and I
estimate that for L > 2*', the error in the fits (55) or (56) is bounded by ~10™"> with the maximum error at

L~ 10%.

6. Conclusions

Numerical solutions to the BAE for the ground state of spin-Y2 isotropic anti-ferromagnetic periodic Heisenberg
chains to length L = 2°" have been obtained. An analysis of the ground state energy shows unambiguously that
the amplitude of the leading logarithmic term is consistent with that expected on the basis of CFT and the
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connection of the discrete spin-%: system to the continuum k = 1 Wess—Zumino—Witten nonlinear o model.
This resolves a decades old discrepancy based on analysis of shorter chains.

That such exceptionally long chains could be treated depended on the use of a Lagrange interpolation
scheme which reduced the number of variables to be iterated by NR from O(L) to O(In(L)). It is not clear how the
method might be best adapted for states for which the Bethe wave-vector distribution does not have the
exceptional smoothness of the ground state distribution.

An analytical formula has been derived that is an improvement on Hulthén’s wave-vector distribution and
while it has the qualitative features of the exact (numerical) distribution it is at best semi-quantitatively useful.

Appendix

This appendix derives the analytic formula (A.4) for the energy difference
A = E](Hulthén) — E; (Hulthén), (A.1)

where the two energies are defined in (17) and (18). It follows that A is the difference between sum and integral
2

of —4/(1 + A ") where )\510) is defined in (14) and we can use complex contour integral methods to obtain an

analytic expression. Specifically, the sum can be expressed, via the residue theorem, as

—2i yﬁ' dn tan( ) /(1 + A9, (A.2)

where the contour is the rectangle with vertices at (¢, £C) and (L/2—¢, +C) with L/2 understood to be integer
and thelimitse — 0 + and C — oo ultimately to be taken. Note that the integrand singularities at A"’ = +i
areatn = oo and not within the (finite) contour. Now tan(7#) rapidly approaches +i(—i) as one leaves the real
axis into the upper(lower) half plane. If we use the asymptotic +i(-i) everywhere on the upper(lower) contour
the integral approximation to the sum is recovered and so we will get the sum minus integral difference
expression for A by modifying (A.2) by the replacements tan(mn) — tan(7n) — i(tan(wn) + i) in the upper
(lower) half planes. Contributions to this new contour integral on the segments at =Cvanish as C — oo while
thelimite — 0 + dictates the correct logarithmic branch for A"’ on the remaining segments. On the line

n = L/2+iy, \ = —isign(y) + A(my)andonn = 0+iy, \¥) = —isign(y) — A(my) where

A(my) = (2/7) In(tanh(m|y|/L)). The result of the contour integration is

0 1 1
A =4 dy(1 — tanh(wy)) - - - (A.3)
S ’ (1 TA+ AP L1 G- Ay
and a final substitution 7y — yand algebraic simplification yields
A = 47('sz0 dy ! !
y=0 1 + exp(2y) In(tanh(y/L)) 72 + In?(tanh(y/L))
272 In(2) 972 1n%(2) 312 (3) _
=— +...+ ="+ .. F 0 A4
In3(L) In*(L) 417 In*(L) (@™ (&4

The terms following the last equality in (A.4) are the start of a double asymptotic expansion. The first block is
based on the approximation tanh(y/L) = y/L followed by expansion in inverse powers of In(L) in the integrand

in (A.4). All coefficients, C; = f dy Ini(y) /(1 + exp(2y)), in this expansion can be obtained from the
0

generating function

i?—;a = f:o n jyexpy(;y) = F(;:l 1)C(a + 1)(1 - %)

_ ln;2) _ %3 1“;(2) + z—z!lnl(zz)aun%z) bty — 127 — (A.5)
ORCIDiDs
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