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Little is known about dark matter beyond the fact that it does not interact with the standard model 
or itself, or else does so incredibly weakly. A natural candidate, given the history of no-go theorems 
against their interactions, are higher spin fields. Here we develop the scenario of higher spin (spin s > 2) 
dark matter. We show that the gravitational production of superheavy bosonic higher spin fields during 
inflation can provide all the dark matter we observe today. We consider the observable signatures, and 
find a potential characteristic signature of bosonic higher spin dark matter in directional direct detection; 
we find that there are distinct spin-dependent contributions to the double differential recoil rate, which 
complement the oscillatory imprint of higher spin fields in the cosmic microwave background. We 
consider the extension to higher spin fermions and supersymmetric higher spins.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The precise identity of dark matter (DM) remains a mystery, 
despite decades of theorizing and detection efforts. Observations 
suggest that the dark matter does not interact with the standard 
model, or does so extremely weakly, creating significant room for 
model builders. Taken at face value, the observational evidence is 
at odds with the conventional origin story of dark matter, namely 
a thermal history, wherein the dark matter was initially in a state 
of thermal equilibrium with the standard model, sustained by in-
teractions.

There are now many alternative dark matter origin stories. A 
particularly compelling possibility, by virtue of its simplicity, is 
the genesis of dark matter via gravitational particle production 
(GPP) in the early universe [1–5], e.g., during cosmic inflation. A 
generic feature of inflation is that the exponential expansion acts 
as a gravitational amplifier for particle production. While many of 
these particles would be redshifted, some, depending on their in-
trinsic properties such as mass and spin, can survive as a relic 
after inflation ends. This idea was introduced in the context of 
superheavy ‘WIMPzilla’ dark matter, characterized by dark mat-
ter masses greater than the Hubble scale at the end of inflation 
(mDM > H) [1–6], and has since been explored in a variety of cos-
mological contexts (see e.g. [7–12]).
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On the other hand, inflation is known to exhibit a UV sensi-
tivity [13], motivating the search for a UV completion of inflation 
in theories beyond the standard model, such as string theory. In 
this context we may ask which states could be generically pro-
duced in an inflationary model that is connected to string theory. 
That massive higher spin particles are a natural consequence of 
string theory, and that generic cosmological inflation models in-
duce particle production, is suggestive of the potential implications 
for connections to other physics, namely the dark matter problem. 
Moreover, the Higuchi bound on the mass of higher spin fields, 
m2 ≥ s(s − 1)H2, which must be satisfied at all times during an 
early universe genesis mechanism, naturally suggests dark matter 
in the superheavy regime, and hence, in light of [1–5], a gravita-
tional origin of higher spin dark matter.

Despite the natural candidacy of higher spin fields as dark mat-
ter (and potentially an infinite tower of such fields), there has been 
little work done on investigating the feasibility of any such model 
beyond spin-3/2 [14–16], spin-2 [17–20] and spin-3 [21,22], aside 
from the suggestion in [23], and no work in a superheavy, grav-
itational production context. Additionally, there has been signifi-
cant recent interest in the ‘cosmological collider physics’ program 
[24–26] (see also the related ‘cosmological bootstrap’ [27–29]) of 
studying the imprint in the cosmic microwave background (CMB) 
of fields with masses heavier than the Hubble scale during infla-
tion, see e.g. [30–36]. This formalism has been applied to higher 
spin bosons [24,37,38], as well as higher spin fermions [39], and 
supersymmetric higher spin theory ([40–44]) [39]. However, thus 
far, no connections have been made between the massive higher 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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spin particles produced by the cosmological collider and dark mat-
ter.

In this work we consider inflationary production and cosmo-
logical implications of higher spin particles and find that they can 
naturally serve as 100 percent of the dark matter: Higher Spin 
Dark Matter (HSDM). We consider the implications of a small in-
teraction of HSDM with the standard model, and find a characteris-
tic angular dependence of nuclear recoil events for direct detection 
experiments. This mirrors the angular dependence in the cosmic 
microwave background non-Gaussianity that is predicted due to 
the production of higher spins during inflation [24,37,39].

The structure of the paper is as follows: in Section 2 we intro-
duce the relevant higher spin formalism. In Section 3 we calculate 
the gravitational production of higher spin dark matter (HSDM) 
and show that there is a parameter space such that higher spin 
particles can account for all the dark matter. In Section 4 we dis-
cuss the possibilities for directional direct detection and show that 
there is a spin dependent contribution to the double differential 
recoil rate. Lastly, in Section 5 we speculate on other possible ob-
servable avenues and conclude with a discussion in Section 6.

2. Higher spin field theory

The Standard Model of particle physics comprises particles with 
s = 0, 1/2 and 1, while gravity has spin s = 2. No fundamental 
particle with s > 2 has ever been observed in nature. However, 
there is a long history of the study of higher spins (HS). Begin-
ning shortly after the advent of relativistic quantum field theory 
[45], the theory of higher spins has been developing for a century, 
notably [40,41,46–53]; for recent work see e.g. [54–73].

There are well known ‘no-go’ theorems that significantly limit 
the interactions of HS particles in a self-consistent quantum field 
theory. Generally, such theorems make it the case that in flat 
space, massless HS particles are forbidden from interacting with 
electromagnetism or gravity1 [74–79]. Two notable ‘no-go’ theo-
rems are Weinberg’s theorem [74], which necessitates that, in flat 
space, there are no long range interactions with spin greater than 
two, and the Coleman-Mandula theorem [75], which demonstrates 
that, assuming an S-matrix and finite degrees of freedom, there 
can be no conserved higher spin charges associated with particles 
of s > 2.

A caveat to these arguments is massive higher spin theories. The 
mass term explicitly breaks the higher spin gauge invariance, such 
that there is no conserved current, and hence no conflict with the 
Coleman-Mandula theorem. As such, massive higher spins are not 
plagued by the same restrictions due to no-go theorems [80]. In-
deed, massive higher spin excitations are intrinsic to string theory, 
and comprise the Regge trajectories. Higher spin fields have been 
considered in studies of inflation in string theory [81–83], and in 
the AdS/CFT correspondence [46,48,84]. It is thought that the ten-
sionless limit of string theory is a higher spin field theory [85–89], 
and it has been suggested that string theory itself is a symmetry 
broken phase of a HS field theory [46,90–92].

While the full theory of higher spins is not known, progress 
can be made by enumerating the irreducible representations of 
the spacetime symmetry group, thereby identifying the building 
the blocks of the theory. Although the representation theory of HS 
fields in a general Freidmann-Robertson-Walker spacetime is not 
known, the representations are known for flat space and (A)dS.

For cosmological purposes, in particular during inflation, we 
may make use of the results for de Sitter space. In this context, 
a lower bound on the higher spin mass is given by the Higuchi 

1 Note that both during inflation and in the present day, the universe is de Sitter 
space.
2

bound: m2 ≥ s(s − 1)H2 [93,94]. Beyond this, fields can be orga-
nized into three categories of unitary, irreducible representations 
of the spacetime isometry group [95,96]. They are the principal 
series:

m2

H2
≥

(
s − 1

2

)2

, (1)

the complementary series:

s(s − 1) <
m2

H2
<

(
s − 1

2

)2

, (2)

and the discrete series:

m2

H2
= s(s − 1) − t(t + 1). (3)

In addition, In this work, we focus on the complementary series 
and principal series representations.

The evolution of HS fields in de Sitter space was derived in [37], 
which we summarize below. The spin-s generalization of Klein-
Gordon equation is the Casimir eigenvalue equation of the de Sitter 
group [37],(� − m2 + (s2 − 2s − 2)H2

)
σμ1...μs = 0 (4)

This is supplemented by constraint equations corresponding to 
transverse and traceless conditions on σ . To solve this equation, 
we expand the field σμ1···μs into its different helicity components,

σμ1···μs =
s∑

λ=−s

σ
(λ)
μ1···μs . (5)

A mode of helicity λ and n polarization directions can be written 
as,

σ
(λ)
i1···inη···η = σλ

n,s ε
λ
i1···in

, (6)

where σλ
n,s = 0 for n < |λ|. The polarization vector ελ

i1···in is sym-
metric, transverse, and traceless; for details, see [37].

The helicity-λ mode function with n = |λ| number of polariza-
tion directions satisfies,

σλ|λ|,s ′′ − 2(1 − λ)

η
σλ|λ|,s

′
(7)

+
(

k2 + m2/H2 − (s + λ − 2)(s − λ + 1)

η2

)
σλ|λ|,s = 0 .

This admits an exact solution, given by [37],

σλ|λ|,s = As Zλ
s (−kη)3/2−λH (1)

iμs
(k|η|) , (8)

where μs is defined as

μs =
√

m2

H2
−

(
s − 1

2

)2

. (9)

The normalization coefficients are given by,

As = eiπ/4e−πμs/2 (10)

and

(Zλ
s )2 = 1

k

(
k

H

)2s−2

(Zλ
s )2, (11)

with
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(Zλ
s )2 = π

4

[(2λ − 1)!!]2s!(s − λ)!
(2s − 1)!!(s + λ)! (12)

·�(1/2 + λ + iμs)�(1/2 + λ − iμs)

�(1/2 + s + iμS)�(1/2 + s − iμs)
.

The other mode functions can then be obtained iteratively from 
the recursion relation:

σλ
n+1,s = − i

k

(
σλ

n,s
′ − 2

η
σλ

n,s

)
−

n∑
m=|λ|

Bm,n+1 σλ
m,s , (13)

where,

Bm,n ≡ 2n n!
m!(n − m)!(2n − 1)!!

�[ 1
2 (1 + m + n)]

�[ 1
2 (1 + m − n)] . (14)

Care should be taken when considering these mode functions, 
since they are normalized with respect to σ with all lower indices. 
The quantity of physical interest is the two point function of two 
contracted σ , i.e.,

〈σi1...isσ
is ....is 〉 = 1

a2s
〈σi1...isσis....is 〉. (15)

More generally, for σλ
n,s , we are interested in the two-point corre-

lation function,

〈σλ
n,sε

λ
i1....in

σλ
n,sε

λi1....in 〉 = 1

a2n
〈σλ

n,sε
λ
i1....in

σλ
n,sε

λ
i1....in

〉. (16)

The remaining contraction of polarization vectors can be computed 
from [37]

ελ
i1···is

ελ∗
i1···is

= (2s − 1)!!(s + λ)!
[(2λ − 1)!!]2s!(s − λ)! , (17)

where we have used the normalization εs
i1 ···is

εs∗
i1···is

= 2s [37].

3. Gravitational production of higher spin dark matter

The Higuchi bound m2 > s(s −1)H2 [93,94] suggests that higher 
spin fields as realized in nature, insofar as they can be described 
by a single effective field theory in both the very early universe 
and in the late universe, should be cosmologically heavy. Guided 
by past literature [1–5], it is logical then to consider gravitational 
particle production as a genesis mechanism for higher spin dark 
matter. With this in mind, our first goal is to make a conservative 
estimate of the gravitational production of higher spin particles in 
the very early universe. This will serve as a proof of principle of 
gravitational particle production (GPP) as a genesis mechanism for 
higher spin dark matter (HSDM).

We will consider only the gravitational production during in-
flation, and not the transition between inflation and the radiation 
dominated phase that is the usual focus of works on GPP of dark 
matter [1–5,9,10]. This simplification is not made for convenience, 
but rather due to the limited knowledge of higher spin field the-
ories as discussed previously. Our calculation provides a lower 
bound on the production, suitable for a demonstration that early 
universe GPP can provide enough higher spin particles to explain 
the observed DM abundance. We expect a more detailed analysis 
(e.g., directly from string theory) to change slightly the quantita-
tive relationship between s, m, and H , that leads to the correct 
relic density, but not the qualitative result.

We focus on HS fields that during inflation are in either the 
complementary or principal series, defined by Eqs. (2) and (1) re-
spectively. We make use of the fact that cosmic history is thought 
to be book-ended by de Sitter phases: cosmic inflation in the first 
moments and dark energy in the present. The full structure of the 
3

higher spin theory is not known in for the intervening time pe-
riod. However, post-inflation we are left with a collection of non-
relativistic particles that simply redshift as matter, and hence we 
do not need to consider the detailed field theory dynamics. This 
negates the need to have complete knowledge of higher spin the-
ories.

In general, gravitational particle production occurs when the 
field mass, including all contributions from quantum and gravita-
tional effects, changes non-adiabatically. The canonical example is 
the primordial curvature, ζ , which obeys the equation of motion 
(in exact dS space)

v ′′
k +

(
k2 − 2

η2

)
vk = 0. (18)

Adiabaticity is violated when k = √
2/|η| 	 aH , i.e., when a given 

mode exits the horizon. The resulting particle production can be 
thought of as Hawking radiation emitted by the de Sitter horizon 
[97], see e.g. the discussion in [98], and indeed computed using 
conventional particle production methods [99,100]. Alternatively, 
the equation of motion can be solved exactly at all times as a func-
tion of kη, see e.g. [101].

For a massive scalar field the effective mass is similarly given 
by [101]

ω2
k = k2 − 2 − (m/H)2

η2 . (19)

For m/H 
 1, adiabaticity is violated at k 	 μ/|η| = μaH where 
μ ≡ m/H [10]. The scale k∗ = μaH defines an effective horizon, 
and all modes which have k > k∗ at the end of inflation, i.e. which 
have exited this effective horizon, have undergone particle produc-
tion during inflation.

This is the principle behind superheavy dark matter. The total 
energy density in a massive scalar can be computed as

ρϕ = m2
ϕ〈δϕ2〉 	 m2

ϕ

k∗∫
0

d3k |δϕk|2, (20)

corresponding to a particle number, n = ρϕ/mϕ ,

n = mϕ

k∗∫
0

d3k |δϕk|2. (21)

The phenomenology of superheavy dark matter is thus determined 
by the dark matter mass and the energy scale of inflation. Due to 
the decay outside the horizon of the heavy field, along with the 
phase space suppression in the limit k → 0, the integral is dom-
inated by the contribution from the upper bound. The number 
density scales with H3, where H is the Hubble constant during 
inflation. The relic density can be tuned to the observed value 
by tuning the mass mDM as a function of H ; for the canonical 
super-heavy dark matter, one finds mDM � H leads to the observed 
density [1–5].

The generalization of this to the energy density of a bosonic 
higher spin field σ produced gravitationally during inflation is 
given by,

ρσ 	 m2〈σ 2〉 = m2
∑
n,λ

ελ
i1···in

ελ∗
i1···in

∫
d3k

|σλ
n,s|2

a2n
, (22)

where the sum is over all values of n and λ, and the contraction 
of polarization vectors is given by Eq. (17).

To evaluate this we begin from the equation of motion Eq. (8). 
To put this in a more familiar form, we rescale σ in Eq. (8) as 
σ̂ = η1−λσ . This removes the first-derivative term, leading to,
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σ̂ λ|λ|,s ′′ +
(

k2 − s(s − 1) − μ2
s

η2

)
σ̂ λ|λ|,s = 0, (23)

which describes a simple harmonic oscillator with a time-dependent
mass. We can see that the λ dependence has canceled identically, 
and the effective mass is given by,

m2
eff = μ2∗H2 ≡ (s(s − 1) − μ2

s )H2, (24)

where we define the quantity μ∗ ≡ s(s − 1) − μ2
s , with μs given 

by Eq. (9).
In analogy with a massive scalar, adiabaticity is maximally vi-

olated (|ω̇k|/ω2
k is peaked) when k = √

2μ∗aH 	 μ∗aH . Thus, we 
take the UV cutoff of the energy density integral to be this scale of 
adiabaticity violation. Incidentally, this cutoff is also the dividing 
line between relativistic and non-relativistic particles. Thus, inde-
pendent of discussions of adiabaticity violation, this approach is 
equivalent to considering only those perturbations which become 
non-relativistic already during inflation and thus can be treated as 
non-relativistic at all times following inflation.

In principle, Eq. (22) involves the sum over all excitations of 
the spin-s field σ . However, the dominant excitation of a spin-s
field near the Higuchi bound is σ 0

s,s . This can be seen qualita-
tively from Eqs. (8) and (13). Eq. (8) will have a maximum value 
at λ = 0 and all other modes with λ > 0 will be suppressed in 
comparison. It can then be seen from Eq. (13) that the domi-
nant contribution will be the n = s state, due to the contribution 
from Bm,n . Curiously, this is the same mode which is considered in 
the ‘cosmological collider physics’ program [24–26], leading to the 
characteristic Legendre polynomial angular dependence of 3-point 
functions [24,37,39].

Given the subdominance of all other modes, we approximate 
the full density as that which comes from σ 0

s,s . We use the recur-
sion relation Eq. (13) to explicitly numerically calculate the mode 
functions, σ 0

n,s . We then calculate the density of excitations at the 
end of inflation using

ρσ 0
s,s

(ti) = m2 (2s − 1)!!
s!

aμ∗ H∫
0

d3k a−2s|σ 0
s,s|2, (25)

where ti denotes the end of inflation, and μ∗ is given by Eq. (24). 
The factorial prefactors come from evaluating the contraction of 
λ = 0, n = s, polarization vectors.

The integral is again dominated by the contribution from the 
upper bound, and in the numerics that follow we make use of this 
approximation. Further, since μ∗ � s > 1, by the Higuchi bound, 
the DM density is dominated by particles that are still sub-horizon 
at the end of inflation (k/a < H) and those which re-enter the 
horizon immediately following inflation k/a ∼ H . Since m/H is 
greater than 1 for all subsequent times, we can approximate these 
particles as non-relativistic for all times post-inflation. From this 
we define the present DM density as,

ρtoday = ρinflation

a(ti)
3

, (26)

where ρinflation is defined by the integral Eq. (25), and a(ti) is the 
scale factor of the universe at the end of inflation (we normalize 
a = 1 today).

The acceptable parameter space for our HSDM model will 
be that for which the relic density Eq. (26) matches the ob-
served dark matter abundance. The observed dark matter density 
is given by ρDM0 = 3m2

pl H
2
0
CDM where 
CDM is the abundance 

observed to be 
CDMh2 	 0.12 [102], and H0 ≡ 100h km/s/Mpc =
2.13h ×10−33 eV with h 	 0.7. From this we find ρDM0 evaluates to 
4

ρDM0 = 3.95 ×10−11 eV4. Meanwhile, the redshift factor in Eq. (26)
can be simplified by expand a(ti) as a ratio of redshifts,

a(ti) = 1 + zeq

1 + zi

1

1 + zeq
, (27)

where eq refers to matter-radiation equality. We have zeq 	 3400
and (1 + z) ∝ T for z � zeq . Taking Teq 	 0.8eV 	 1eV and instant 
reheating Tre 	 (g∗π2/30)−1/4√Hmpl , with g∗ ∼ 100, the above 

becomes a(ti) = 1.43 × 10−18
√

eV
H .

Putting things together, we find that the DM density after infla-
tion must satisfy,

ρ(ti) = 1.17 × 1037
(

H

eV

)3/2

eV4, (28)

with ρ(ti) given by Eq. (25).
To gain intuition as to the range of masses that can provide 

the correct relic density, we note the peculiar case of the com-
plementary series, which occupies a narrow range of masses just 
above the Higuchi bound. At the saturation limit of the Higuchi 
bound, we approach partial masslessness and states become gauge 
redundancies [38]. To avoid this we deform away from the Higuchi 
bound by a small amount 2δ and consider m2/H2 = s(s − 1) + 2δ. 
In this limit, μs , Eq. (9), becomes

μs → i

2
(1 − 4δ) . (29)

One can appreciate from the above that μs is purely imaginary. 
This is a feature of the complementary series Eq. (2), which corre-
sponds to 0 < δ < 1/4. It follows that the exponential suppression, 
which one might anticipate for excitations of a heavy field, and is 
encoded in Eq. (10), becomes a phase factor – i.e., is not a sup-
pression at all.

In Fig. 1 we illustrate the values of s and H for which the cor-
rect relic density of particles is produced. By varying the mass, 
points in the colored regions can achieve the correct relic density. 
The colors pink and blue denote masses in the complementary se-
ries and principle series respectively.

The lower and upper dashed lines of Fig. 1 denote the lower 
edge of the complementary series (the Higuchi bound) and upper 
edge of the complementary series. The parameter space below the 
lower edge is ruled out: the DM particle mass cannot be lower 
than the Higuchi bound, and decreasing H while leaving m/H
fixed will lead to an underproduction of DM during inflation. The 
upper bound of this band represents the upper limit on particles 
with masses in the complementary series. If m/H and s remain 
fixed, increasing H will lead to an overproduction of the DM. A 
simple way out is to increase m/H , leaving the complementary 
series, and thereby generating an exponential suppression of the 
amount of DM, which is denoted by the light blue portion of Fig. 1.

By considering masses slightly in the principal series we are 
able to obtain the correct relic density over the entire blue region 
of Fig. 1. This imposes a relation between m and H , at fixed values 
of s, as shown in Fig. 2. From left to right, fixed curves from s = 2 −
8, respectively show that for any spin, there is a continuous range 
of allowed H values with increasing mass. The allowed parameter 
space is bounded by the Planck mass, above which is forbidden 
and denoted by the gray shaded region. Although we have only 
explicitly shown up to s = 8, one can appreciate that there is a 
much larger space where solutions will be present, up to m/H =
1018 and correspondingly increasing spin. This allows for a wide 
range of H and s values, which makes HSDM amenable to a variety 
of inflation models.
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Fig. 1. Regions of {s, H} values that give the observed density of higher spin dark 
matter, with mass in the complementary series (pink) or principal series (blue). The 
dashed lines denote the boundaries of the complementary series, i.e., assuming a 
mass that differs from the Higuchi bound by a fractional difference δ = 0.001 and 
δ = 0.2499 as the lower and upper bounds, respectively. The blue region extends up 
to Planck scale, H = Mpl .

Fig. 2. Sample parameter space for particles in the principal series. Lines of fixed 
s indicate allowable H values as a function of the HSDM mass. Each curve is trun-
cated at the lower boundary of the principal series, i.e., the top dashed line of Fig. 1. 
The black curve corresponds to mass m equal to the Planck mass, m = Mpl , and the 
gray region is super-Planckian masses m > Mpl .

4. Directional direct detection

Direct detection is a prominent detection strategy for dark mat-
ter. In this approach, one hopes to observe nuclear recoil events 
generated by scattering of incoming dark matter particles. As re-
alized early on [103], a signature prediction of the motion of the 
earth through the enveloping dark matter halo is a preferred di-
rection of nuclear recoil events, suggesting an approach known 
as directional direct detection [104]. More recently, it has been 
demonstrated [105–107] that the angular dependence of the direc-
tional direct detection signal can distinguish between spin-0, and 
spin-1/2, and spin-1 dark matter. It is logical, therefore, to con-
sider the directional direct detection signature of higher spin dark 
matter.

Any such direct detection signal is premised upon an inter-
action of dark matter with the standard model. As discussed in 
Sec. 2, while higher spin interactions are naively strongly con-
strained, this is relaxed for massive higher spins. The interactions 
of massive higher spin fields can be understood as a low energy 
effective field theory, with a UV completion given by string theory. 
The possible interactions have been studied in detail and enumer-
ated in e.g. [62,63,66,67].

We will consider a simple interaction between a higher spin 
boson and a standard model nucleus, e.g., Xenon, that we model as 
5

a Dirac fermion. We construct an interaction through a derivative 
coupling of the higher spin boson to the fermion vector current. 
We consider the low energy effective interaction Lagrangian,

Lint = gs

�s
∂μ1...μs (ψ̄γ μψ)σ

μ1...μs
μ + h.c., (30)

where � is a UV scale that corresponds to the cutoff of the mas-
sive higher spin theory, and gs is a coupling constant. Note that 
here σ refers to a spin-(s + 1) field, rather than spin-s. We com-
pute the nuclear recoil scattering cross section in App. A. We ob-
tain,

dσ

dEr
	 m3

π v2

1

(2s + 1)

g4
s

�4s

[
p′s P s(k̂

′ · p̂′) + ks P s(k̂
′ · k̂)

]2

·
[

ps P s(k̂ · p̂)
]2 · 32k2

(p · k)2
, (31)

where p and p′ and k and k′ refer to the ingoing and outgoing 
momenta of the SM nucleus and DM, respectively, v is the rela-
tive velocity of the incoming DM particle, and P s are the Legendre 
polynomials. The details of the computation of the cross section 
can be found in App. A.

The quantity relevant to direct directional detection is the dou-
ble differential rate of nuclear recoil events [105,106]. This is given 
in standard notation by

d2 R

dE Rd

= κDM

∫
d3vδ(v · w − wq) f (v + v⊕(t))v2 dσ

dE R
. (32)

Here, v is the relative velocity of the incoming DM particle relative 
to the target nucleus, κDM is related to the local halo density of DM 
near the earth (ρDM 	 0.3 GeV/cm3), f is the velocity distribution 
of DM in the galactic halo, which is dependent on v as well as v⊕ , 
the time dependent Earth velocity in the galactic rest frame. We 
also define w as a unit vector pointing in the direction of nuclear 
recoil, wq = q/(2μ). We will follow the methods in [106], outlined 
below, to obtain an expression for our particular case.

Following [106], we assume a Maxwell-Boltzmann velocity dis-
tribution f (v), truncated at the galactic escape velocity, which we 
take to be vesc = 544 km/s. The most probable speed is v0 = 220
km/s, which is the circular speed of the local standard of rest. This 
can be written as

f (�v) = 1

N
e−(�v+�v2

e )/v2
0 , (33)

where

|�v + �ve| ≤ vesc. (34)

Here �ve is the Earth velocity in the galactic rest frame, which is 
generally a function of time, but for simplicity can be taken to be 
its constant magnitude, �ve = 232 km/s. The overall normalization 
N is a constant given by

N = π v2
0

[√
π v0 erf

(
vesc

v0

)
− 2vesce−v2

esc/v2
0

]
. (35)

We can then break up the velocity integral into two parts:

∫
d3 v =

vesc−ve∫
vmin

dv v2

1∫
−1

dcosθ

2π∫
0

dφ

+
vesc+ve∫

dv v2

v2
esc−v2−v2

e
2v ve∫

dcosθ

2π∫
dφ.

(36)
vesc−ve −1 0
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For simplicity here we focus on the first term; the resulting spin 
and angular dependence is the same in both cases. We make use 
of the identity,

δ

(
�v · q̂ − q

2μ

)
= δ(v − v̄)

|v̂ · q̂| , (37)

where

v̄ = q

2μ(v̂ · q̂)
, (38)

where v̂ is a unit vector in the direction of the incoming dark 
matter velocity, q̂ is a unit vector in the recoil direction, and μ
is the reduced mass of nucleon-DM system, μ = mN mDM

mN +mDM
. Then, 

performing the integral over the Dirac delta function we obtain,

d2 R

dE Rd

= ρDM

2NπmmN

1∫
−1

dcosθ

2π∫
0

dφ
v̄4

|v̂ · q̂|e−(v̄+ve)
2/v2

0

· dσ

dE R
(v̄)�(v̄ − vmin)�((vesc − ve) − v̄), (39)

where we have taken the dark matter mass to be m. Now let us 
define the angles α, β , θ , and φ, such that

q̂ = (sinαcosβ, sinαsinβ, cosα), (40)

v̂ = (sinθcosφ, sinθsinφ, cosθ) (41)

and

v̂ ′ = v

v ′ v̂ + q

mv ′ q̂, (42)

where v̂ is the direction of the incoming DM particle, q̂ is the di-
rection of nuclear recoil, v̂ ′ is the direction of the outgoing HS DM 
particle, and p̂ is the unit vector in the direction of the incom-
ing nucleus, which we will take to be in the ẑ direction. One can 
deduce v ′ from conservation of momentum.

Substituting into Eq. (39) the cross section Eq. (31), we find the 
double differential recoil rate,

d2 R

dE Rd

	 32ρDM g4

s m2
N

2N(2s + 1)π2�4sm

∫
d
′ fSI(v)

·
[

qs P s(v̂ ′ · q̂) + ms v̄s P s(v̂ · v̂ ′)
]2 ·

[
ps P s(p̂ · v̂)

]2
,

(43)

where d
′ is the integration over incoming momenta, and fSI(v)

is the spin-independent contribution to the scattering rate, given 
by,

fSI(v) = v̄4

|v̂ · q̂|(p · v̄)2
· e−(v̄2+v2

e +2v̄ ve cos θ)/v2
0

·�(v̄ − vmin)�((vesc − ve) − v̄).

(44)

Finally, in the limit that the dark matter mass is larger than the 
momentum transfer, i.e., m 
 q, the term proportional to mv̄ in 
the second line will be dominant over the first.

The final result is then given by,

d2 R

dE Rd

= N

�4s

∫
d
′ fSI(v)

[
ms v̄s P s(v̂ · v̂ ′)

]2[
ps P s(p̂ · v̂)

]2
,

(45)

where the prefactor N is defined as,

N = 32ρDM g4
s m2

N
2

. (46)

2N(2s + 1)π m
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Here, note the distinct dependence on the Legendre polynomials, 
P s . The angular dependence in fSI(v) is spin-independent and is 
present in conventional WIMP models.

The angular dependence on the Legendre polynomials, on the
other hand, is a direct consequence of considering higher spins. 
This generalizes previous works (see e.g. [105–108]) that consid-
ered the imprints of spin-0, 1/2, and 1 DM in the double differ-
ential recoil rate, leading to ring-like features. Our HSDM model 
modulates the bosonic signal further, with an added angular de-
pendence on Legendre polynomials, P s , due to scattering of a 
spin-s + 1 boson.

This avenue for direct detection is complementary to work that 
has been done within the ‘cosmological collider physics’ program, 
which predicts that higher spin particles produced during inflation 
will leave behind a distinctive signature in the cosmic microwave 
background, proportional to Legendre polynomials [25,37,39]. An 
implication of our results is the potential for a dual ‘smoking gun’ 
signature and relationship between CMB experiments and dark 
matter direct detection experiments. We see that the angular de-
pendence on Legendre polynomials in the CMB non-gaussianity is 
mirrored by the appearance of Legendre polynomials in the double 
differential recoil rate.

5. Other observable windows

Aside from direct detection, one might wonder what signature 
higher spin dark matter may leave at the other pillars of dark 
matter detection: collider production, and indirect detection (e.g., 
at the galactic center [109]). To this end, we consider the other 
possible interactions that could couple higher spin dark matter 
candidate to the Standard Model.

The simplest possibility is to directly couple a higher spin boson 
to the Standard Model Higgs boson. For example, an interaction of 
the form,

Lσ H H = 1

�s−1 σ (s)∂(s)|H|2, (47)

where ∂(s) denotes s number of derivatives. From this interaction, a 
high energy Higgs boson, e.g. generated at a collider, could radiate 
a spin-s boson σ . At quadratic order in σ , one could have a σ 2|H |2
interaction, allowing 2 ↔ 2 scattering of the Higgs and HS boson.

The field content of the standard model is not restricted to 
bosons, and nor are higher spin field theories. Higher spin fermions
are interesting in their own right, and may serve as their own dark 
matter candidate. Unfortunately, a relic density computation as has 
been done here is not readily repeated for fermions, since the ex-
act solution of HS fermions in dS space is not known. Nonetheless, 
one may expect a higher spin fermion dark matter candidate to 
couple to the standard model fermions via 4-fermion interactions, 
e.g., of the form,

L4 f = 1

�2
�̄μ1...μs�μ1...μs f f̄ , (48)

where � is a spin-s + 1/2 fermion, and f is a standard model 
fermion. Such an interaction allows for signatures at precision elec-
troweak experiments, and via annihilation of HS fermions into 
standard model fermions, a signature in the galactic center [109].

Finally, there is the possibility that the higher spin bosons and 
higher spin fermions could be organized into multiplets, that is, 
into super-multiplets of a supersymmetric theory of higher spin 
fields [42–44] (for recent work, see e.g. [54–57,59,61–64,66–69]). 
Supersymmetry constrains both the spectrum of the theory and 
the interactions, as discussed in a cosmological context in [39]. 
Even if supersymmetry is broken at a high scale, one would expect 
some remnant of this structure to remain at energies accessible by 
terrestrial experiments.
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The cosmological collider analysis of higher spin supersymme-
try [39] revealed correlated signals, with the usual P s(cos θ) an-
gular dependence accompanied by superpartner contributions that 
scale as P s+1(cos θ) and 

∑
m Pm

s (cos θ). It will be interesting to 
compute the dual signal in directional direct detection.

6. Discussion

In this work we have considered gravitationally produced mas-
sive higher spin particles as a model of dark matter. We have 
shown that there is a wide range of parameter space for super-
heavy particles with s > 2 for which the correct relic density of 
dark matter is produced. We have also explored a potential direc-
tional direct detection signature, showing that there is distinctive 
spin dependent angular dependence in the double differential re-
coil rate. This enters in the form of Legendre polynomials and is 
complementary to the ‘cosmological collider’ signature in the cos-
mic microwave background.

This opens up opportunities to explore a wide range of new 
models and parameter spaces to aid in the search for dark mat-
ter. We have mentioned several possibilities, but there is certainly 
much that is still unknown. In future work we will perform a more 
rigorous numerical exploration of our results in the context of di-
rectional direct detection, in order to show more explicitly the 
impact of the higher spin angular dependence in the double dif-
ferential recoil rate. It would also be of interest to build a similar 
model for fermionic HSDM and build connections to HS supersym-
metry. We leave these explorations and others to future work.

Comment added: During the final preparation of this manu-
script we became aware of recent work [110] with thematic over-
lap to this paper. The effective field theory approach taken there 
is promising and may yield further directional direct detection sig-
natures in addition to that considered here. There is no overlap in 
the content of the papers.
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Appendix A. Matrix element calculation

We here show technical details of the differential cross sec-
tion used in Section 4. To calculate the differential cross section 
for a HSDM particle scattering off a SM fermion, there are several 
subtleties that must be considered. The vertex factor for scattering 
with σ 0

s,s is given by

V = −i
gs

�s

[
s∑

n=0

(
s

n

)
ki1...is−n

1 kin...is
2

]
γ μ, (A.1)

where we have considered all possible combinations of derivatives 
on ψ̄ψ , and k1 and k2 correspond to the momenta of the stan-
dard model nucleons. We assume that the incoming nucleon is at 
rest, therefore the only terms that contributes to the vertex will be 
those which have either ks

1 or ks
2. The helicity state of the higher 

spin particle is λ. Thus, this expression can be simplified as

V = −i
gs

s
(k1i ...is

+ k2i ...is
)γ μ. (A.2)
� 1 1
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Each higher spin external leg carries a factor of the spin-s + 1
polarization tensor ε[λ′′]i1...is

μ (k3). This can be decomposed into a 
spin-1 component and a spin-s component as follows:

ε[λ′′]i1...is
μ (k3) = ε[λ′]

μ (k3)ε
[λ]i1...is (k3), (A.3)

where λ′ = −1, 0, 1 and λ = −s...s are the possible helicity states 
of the spin-1 and spin-s components, respectively. Lastly, note that 
generally, working in an expanding background will lead to addi-
tional factors of the scale factor, a(t). However, for the remainder 
of the calculation we normalize a(t) = 1, to account for the in-
sensitivity of particle physics experiments today to the previous 
expansion of the universe. The matrix element can easily be found 
in analogy with standard QED computations, and with the use of 
the relation

q̂i1 ...q̂isε
λ
i1...is

≡ Eλ
λ (θ,φ)Pλ

s (cos θ), (A.4)

where cos θ = q̂ · k̂, cosφ = q̂ · ε and Eλ
λ and Pλ

s are the transverse 
and longitudinal parts of the spherical harmonics, respectively [37,
38], where for the λ = 0 modes we simply have q̂i1 ...q̂isε

λ
i1...is

=
P s(cos θ). Then, we find the matrix element to be

|M|2 = g4
s

�4s

[
p′s P s(k̂

′ · p̂′) + (p + k)s P s(k̂
′ · ˆ(p + k))

]2

·
[

ps P s(k̂ · p̂) + (p + k)s P s(k̂ · ˆ(p + k))
]2

· (2m)2

(2p · k)2
(16p2 + 64p · k + 32k2),

(A.5)

where k and k′ refer to the incoming and outgoing HSDM particle, 
respectively, p and p′ refer to the standard model nucleus, and we 
note ˆ(p + k) ≡ (�p + �k)/|�p + �k|. From the matrix element, one can 
find the differential scattering cross section given by

dσ

dE R
= 2m

π v2

1

(2 J + 1)(2sχ + 1)
|M|2. (A.6)

We will simplify this by noting that in our construction, we as-
sume that the standard model nucleus is stationary and the in-
coming HS particle has a much larger momentum, k 
 p. In this 
limit, we can also take k′ · (p + k) = k′ · k. Thus, keeping only the 
relevant dominant terms in k, we obtain for the cross section

dσ

dE R
	 m3

π v2

1

(2s + 1)

g4
s

�4s

[
p′s P s(k̂

′ · p̂′) + ks P s(k̂
′ · k̂)

]2

·
[

ps P s(k̂ · p̂)
]2 · 32k2

(p · k)2
. (A.7)
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