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The self-gravitating Fermi gas in Newtonian gravity

and general relativity
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We review the history of the self-gravitating Fermi gas in Newtonian gravity and gen-
eral relativity. We mention applications to white dwarfs, neutron stars and dark matter
halos. We describe the nature of instabilities and phase transitions in the self-gravitating
Fermi gas as energy (microcanonical ensemble) or temperature (canonical ensemble)
is reduced. When N < NOV, where NOV is the Oppenheimer-Volkoff critical particle
number, the self-gravitating Fermi gas experiences a gravothermal catastrophe at Ec

stopped by quantum mechanics (Pauli’s exclusion principle). The equilibrium state has
a core-halo structure made of a quantum core (degenerate fermion ball) surrounded by
a classical isothermal halo. When N > NOV, a new turning point appears at an energy
E′′

c below which the system experiences a gravitational collapse towards a black hole
[P.H. Chavanis, G. Alberti, Phys. Lett. B 801, 135155 (2020)]. When NOV < N < N ′∗,
the self-gravitating Fermi gas experiences a gravothermal catastrophe at Ec leading to a
fermion ball, then a gravitational collapse at E′′

c leading to a black hole. When N > N ′∗,
the condensed branch disappears and the instability at Ec directly leads to a black hole.
We discuss implications of these results for dark matter halos made of massive neutrinos.

Keywords: Fermi-Dirac statistics; White dwarfs; Neutron stars; Dark matter halos; Black
holes

1. Introduction

The self-gravitating Fermi gas can have applications in different astrophysical sys-

tems ranging from white dwarfs and neutron stars to dark matter halos, where

the fermions are electrons, neutrons and massive neutrinos respectively. The study

of the self-gravitating Fermi gas is also of fundamental conceptual importance as

it combines quantum mechanics and general relativity. Initially, fermionic models

were developed at zero temperature (T = 0) but they have been later generalized at

nonzero temperature, especially in the case of dark matter halos. In these Proceed-

ings, we provide a brief history of the self-gravitating Fermi gas. A more detailed his-

torical account of the statistical mechanics and thermodynamics of self-gravitating

systems (classical and quantum) in Newtonian gravity and general relativity can be

found in Refs.1–4.

The statistical equilibrium state of a system of self-gravitating fermions can be

determined from a maximum entropy principle. For systems with long-range interac-

tions the mean field approximation becomes exact in an appropriate thermodynamic

limit.3, 5 The most probable distribution of an isolated system of self-gravitating

fermions at statistical equilibrium is obtained by maximizing the Fermi-Dirac
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entropy S at fixed mass-energy E = Mc2 and particle number N :

max
{
S | E = Mc2, N fixed

}
. (1)

The variational problem for the first variations reads

δS/kB − β∞δE + αδN = 0, (2)

where β∞ = 1/kBT∞ and α = μ∞/kBT∞ are Lagrange multipliers associated with

the conservation of mass-energy and particle number. Here, T∞ and μ∞ represent

the temperature and the chemical potential measured by an observer at infinity. The

maximization problem (1) is associated with the microcanonical ensemble. If the

system is in contact with a thermal bath fixing the temperature T∞ the statistical

equilibrium state is obtained by minimizing the free energy F = E − T∞S at fixed

particle number N :

min {F = E − T∞S | N fixed} . (3)

This minimization problem is associated with the canonical ensemble. At T = 0

the equilibrium state is obtained by minimizing the mass-energy E = Mc2 at fixed

particle number N . The equilibrium states in the microcanonical and canonical

ensembles are the same. They are determined by the variational principle (2). How-

ever, their stability may differ in the two ensembles. This is the notion of ensemble

inequivalence for systems with long-range interactions.3, 5 Microcanonical stability

implies canonical stability but the converse is wrong.

The equilibrium state of a gas of self-gravitating fermions results from the bal-

ance between the repulsion due to the quantum pressure (Pauli’s exclusion prin-

ciple) and the gravitational attraction. The variational principle (2) yields all the

equations that we need to determine the equilibrium state of the self-gravitating

Fermi gas: (i) the Fermi-Dirac distribution function; (ii) the ideal equation of state

of fermions; (iii) the Oppenheimer-Volkoff equations determining the condition of

hydrostatic equilibrium in general relativity; (iv) the Tolman-Klein relations ex-

pressing how the local temperature T (r) and the local chemical potential μ(r) are

affected by the metric. We can solve these equations numerically and plot the caloric

curve T∞(E) relating the temperature to the energy. When T > 0 we need to enclose

the system within a spherical box of radius R in order to prevent its evaporation

and have equilibrium states with a finite mass. In the general case, the caloric curve

depends on N and R. For convenience, instead of T∞(E), we shall plot β∞(−E)

where E = (M − Nm)c2 is the binding energy which reduces to the usual energy

E = K + W (kinetic + potential) in the nonrelativistic limit c → +∞. At T = 0,

the system is self-confined (without the need of a box) and we shall plot the mass-

radius relation M(R) where R denotes here the radius where the density vanishes.

The maximum entropy formalism for classical and quantum self-gravitating sys-

tems in Newtonian gravity and general relativity is reviewed in Refs.3, 4 where all

the equations are derived and an exhaustive list of references is given.
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2. Self-gravitating fermions at T = 0

The study of a self-gravitating gas of fermions started in the context of white dwarf

stars when Fowler6 first realized that these compact objects owe their stability to

the quantum pressure of the degenerate electron gas. Indeed, the quantum pressure

arising from the Pauli exclusion principle is able to counteract the gravitational

attraction and explain the very high densities of white dwarf stars. Early studies

were devoted to determining the ground state (T = 0) of the system. Nonrelativis-

tic white dwarf stars are equivalent to a polytropic gas of index n = 3/2. Their

density profile can be obtained by solving the Lane-Emden equation numerically.

The density profile of white dwarf stars at T = 0 has a compact support, i.e.,

the density vanishes at a finite radius. The mass-radius relation of nonrelativistic

white dwarf stars was first obtained by Stoner,7 Milne8 and Chandrasekhar.9a They

showed that the radius of the star decreases as the mass increases according to the

law M = 91.9 �6/(G3m8R3) (see Fig. 1-a).11 All the configurations of the series of

equilibria are stable.
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Fig. 1. Mass-radius relation of self-gravitating fermions at T = 0 in Newtonian gravity
(the mass is normalized by M∗ = (3π/4)1/2�3/2c3/2/(G3/2m2) and the radius by R∗ =
(3π/4)1/2�3/2/(c1/2G1/2m2)). (a) Nonrelativistic white dwarf stars. (b) Special relativistic white
dwarf stars.

The fact that relativistic effects become important in white dwarf stars whose

mass is of the order of the solar mass was first reported by Frenkel12 in a not

well-known paper. However, he did not consider the implications of this result. Spe-

cial relativistic effects in white dwarf stars were studied in detail by Anderson,13

Stoner,14 Chandrasekhar,15 and Landau.16 They found that no equilibrium state is

possible above a maximum mass, now known as the Chandrasekhar limit.b These

authors considered the equation of state of a relativistic Fermi gas at T = 0 and

aStoner7 developed an analytical approach based on a uniform density approximation for the star
while Milne8 and Chandrasekhar9 developed a numerical approach based on the Lane-Emden
theory of polytropes.10
bSee the introduction of Ref.17 for a short history of the discovery of the maximum mass of white
dwarf stars.
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used Newtonian gravity appropriate to white dwarf stars.c An ultrarelativistic Fermi

gas at T = 0 is equivalent to a polytrope of index n = 3. Its density profile is ob-

tained by solving the corresponding Lane-Emden equation and it has a compact

support. For a polytrope n = 3, the mass-radius relation degenerates and indicates

that different configurations with an arbitrary radius can exist at the same mass

MChandra = 3.1M3
P/m

2 = 1.5M�, where MP = (�c/G)1/2 is the Planck mass and

m is the proton mass. This argument immediately implies the existence of a critical

mass.15 In a more detailed study, Chandrasekhar22 considered partially relativistic

configurations and numerically obtained the complete mass-radius relation of white

dwarf stars, valid for arbitrary densities, joining the nonrelativistic limit to the ul-

trarelativistic one (see Fig. 1-b).d As M approaches MChandra the radius of the star

tends to zero while its density tends to infinity, leading to a Dirac peak. This study

unambiguously shows the absence of equilibrium state above a maximum mass.

Therefore, the quantum pressure arising from the Pauli exclusion principle cannot

balance the gravitational attraction anymore when the star becomes sufficiently

relativistic (or when its mass is too large). This is a striking effect of relativity com-

bined with quantum mechanics and gravity. However, the result of Chandrasekhar22

was severely criticized by Eddington23 who argued that the absence of equilibrium

states above a maximum mass leads to a reductio ad absurdum of the formula of rela-

tivistic degeneracy. Although the arguments of Eddington were entirely unfounded,

his enormous prestige led to an early rejection of Chandrasekhar’s work by many

in the astronomical community. This pushed Chandrasekhar to abandon the sub-

ject, and delayed the discovery of the phenomenon of gravitational collapse and the

concept of black hole.

In the following years, similar results were found by Oppenheimer and Volkoff24

in connection to neutron stars. They solved the equations of general relativity with

the relativistic equation of state for fermions at T = 0 and found that the mass-

radius relation of neutron stars presents a turning point of mass (see Fig. 2).e As a

result, no equilibrium state exists above a maximum mass MOV = 0.384M3
P/m

2 =

0.710M�, where m is the neutron mass, called the Oppenheimer-Volkoff limit (note

that the density profile with the maximum mass MOV is not singular contrary to

the Newtonian density profile at the maximum mass MChandra). They argued that,

above that mass, the star undergoes gravitational collapse. This problem was specif-

ically studied by Oppenheimer and Snyder25 who obtained an analytical solution

of the Einstein equations describing the collapse of a pressureless gas up to its

cIn principle, general relativistic effects become important close to the Chandrasekhar maximum
mass18, 19 but other phenomena like Coulomb corrections to the electron pressure and the forma-
tion of neutrons by inverse beta decay destabilize the star before general relativistic effects come
into play.20, 21
dA similar mass-radius relation was obtained earlier by Stoner14 from an approximate analytical
model based on uniform density stars.
eIt was shown later that the mass-radius relation of neutron stars forms a spiral and that a mode
of stability is lost at each turning point of mass.21
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Schwarzschild radius. Strangely enough, these important results did not receive

much attention until the 1960’s. At that epoch, detailed models of compact objects

with more realistic equations of state taking into account the repulsive effect of nu-

clear forces and connecting white dwarfs to neutron stars were constructed and the

fundamental discoveries of Chandrasekhar, Landau and Oppenheimer and Volkoff

were confirmed (unfortunately, the early contributions of Anderson and Stoner were

forgotten).21 Pulsars were discovered by Hewish et al.26 in 1968. The same year,

Gold27, 28 proposed that pulsars are rotating neutron stars, and this is generally

accepted today. It is also at that moment that the name “black hole” was used by

Wheeler29 to designate the object resulting from gravitational collapse, and became

popular.
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Fig. 2. Mass-radius relation of self-gravitating fermions at T = 0 in general relativity (neutron
stars).

3. Nonrelativistic classical particles at T > 0 and self-gravitating

radiation

The thermodynamics of self-gravitating systems is a fascinating subject.30–32 Its

study started with the pioneering work of Antonov33 who considered an isolated

system of nonrelativistic classical particles in gravitational interaction. He used

a microcanonical ensemble description in which the mass and the energy are con-

served. This situation applies approximately to stellar systems like globular clusters.

Their equilibrium state (most probable state) can be obtained by maximizing the

Boltzmann entropy S at fixed mass M and energy E.34 This leads to the mean

field Boltzmann distribution which is self-consistently coupled to the Poisson equa-

tion. The Boltzmann-Poisson equation was previously introduced and studied in

the context of isothermal stars.10, 11 It can be reduced to the Emden equation that

has to be solved numerically. Antonov33 observed that no maximum entropy state

exists in an infinite domain (the solution of the Emden equation has an infinite

mass), so he proposed to confine the particles within a spherical box of radius R.
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This artifice prevents the evaporation of the system and leads to a well-defined

mathematical problem. By computing the second variations of entropy, Antonov33

showed that equilibrium states with a density contrast R = ρ0/ρ(R) < 709, where

ρ0 is the central density and ρ(R) the density on the edge of the box, are thermody-

namically stable (entropy maxima) while equilibrium states with a density contrast

R > 709 are thermodynamically unstable (saddle points of entropy). Lynden-Bell

and Wood35 rediscussed the results of Antonov33 in more physical terms. They plot-

ted the series of equilibria E(R) and showed that it displays damped oscillations.

As a result, there is no equilibrium state with an energy E < Ec = −0.335GM2/R,

where Ec corresponds to the first turning point of energy (with a density contrast

Rc = 709). Invoking the Poincaré turning point criterion,36 they concluded that the

series of equilibria becomes unstable at the minimum energy Ec. In this manner,

they recovered the critical density contrast Rc = 709 found by Antonov.33 They

also interpreted the Antonov instability in terms of a “gravothermal catastrophe”

caused by the negative specific heat of the system in its densest parts. When this

instability occurs, the system undergoes core collapse. This ultimately leads to a

binary star surrounded by a hot halo. Lynden-Bell and Wood35 considered other

statistical ensembles, notably the canonical ensemble in which the temperature and

the mass are fixed. In that case, the equilibrium state is obtained by minimizing

the Boltzmann free energy F = E − TS at fixed mass M . The series of equilibria

T (R) displays damped oscillations. No equilibrium state exists with a temperature

T < Tc = 0.397GMm/(kBR), where Tc corresponds to the first turning point of

temperature (with a density contrast R′c = 32.1).f Using the Poincaré turning point

criterion,36 they concluded that equilibrium states with a density contrastR < 32.1

are thermodynamically stable (free energy minima) while equilibrium states with

a density contrast R > 32.1 are thermodynamically unstable (saddle points of free

energy). Below Tc the system undergoes an “isothermal collapse” leading to a Dirac

peak containing all the particles. Since the stability limits in the microcanonical

and canonical ensembles differ, Lynden-Bell and Wood35 encountered for the first

time in statistical mechanics a situation of ensemble inequivalence. This is a pecu-

liarity of systems with long-range interactions.5 In the present context, it is related

to the fact that negative specific heats are allowed in the microcanonical ensemble

while they are forbidden in the canonical ensemble.35 Similar results were obtained

independently by Thirring.37 Katz38 plotted the caloric curve β(E) of isothermal

self-gravitating spheres and exhibited its spiral behavior (see Fig. 3-a).g He also

extended the Poincaré theory on linear series of equilibria36 to the case where there

are several turning points and developed a general method to determine the ther-

modynamical stability of the equilibrium states from the topology of the caloric

fThese results were first found by Emden.10
gThis spiral behavior was previously observed for self-gravitating isothermal stars in other repre-
sentations.11, 39–44 In the present case, it is associated with the damped oscillations of energy and
temperature as a function of the density contrast.
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curve β(E). A change of stability can only occur at a turning point of energy in

the microcanonical ensemble or at a turning point of temperature in the canonical

ensemble. A mode of stability is lost if the curve β(−E) turns clockwise and gained

if it turns anticlockwise. In this manner, one can determine the thermodynamical

stability of the system by simply plotting the caloric curve (series of equilibria). The

seminal works of Antonov,33 Lynden-Bell and Wood,35 and Katz38 were followed

by many other studies (see, e.g., Refs.45–52).
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Fig. 3. (a) Caloric curve of nonrelativistic classical self-gravitating particles (cold spiral).32

We have plotted the normalized inverse temperature η = βGMm/R as a function of minus
the normalized binding energy Λ = −ER/GM2. (b) Caloric curve of the self-gravitating radi-
ation in general relativity (hot spiral).54 We have plotted the normalized inverse temperature
�3/4c7/4/(kBT∞G1/4R1/2) as a function of minus the normalized energy −GM/Rc2.

The statistical mechanics of the self-gravitating black-body radiation (photon

star) confined within a cavity in general relativity was investigated by Sorkin et

al.53 and, more recently, by Chavanis.54 They showed that the caloric curve β∞(E)

forms a spiral (see Fig. 3-b). There is no equilibrium state above a maximum mass-

energy Mmaxc
2 = 0.246Rc4/G (corresponding to a density contrast 22.4) or above

a maximum temperature (T∞)max = 0.445 �3/4c7/4/(kBG
1/4R1/2) (corresponding

to a density contrast 1.91). In that case, the system is expected to collapse towards

a black hole. We note that the “hot spiral” (see Fig. 3-b) of the self-gravitating

radiation in general relativity (ultrarelativistic limit) is inverted with respect to the

“cold spiral” of the nonrelativistic classical self-gravitating gas (see Fig. 3-a).

4. Classical particles at T > 0 in general relativity

The statistical mechanis of classical particles in general relativity has been consid-

ered by Roupas55 and, independently, by Alberti and Chavanis.1 The caloric curve

depends on one parameter, the particle number N (more precisely N/R). Gener-

ically, the caloric curve β∞(E) has the form of a double spiral (see Fig. 4) which

combines the aspects of the “cold spiral” corresponding to a nonrelativistic gas and

the aspects of the “hot spiral” corresponding to an ultrarelativistic gas discussed
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in Sec. 3.h There is no equilibrium state below a minimum energy (resp. mini-

mum temperature) and above a maximum energy (resp. maximum temperature)

in the microcanonical (resp. canonical) ensemble. When the number of particles N

increases, the two spirals approach each other, merge, form a loop, and finally dis-

appear (by reducing to a point) at Nmax = 0.1764Rc2/Gm. For N > Nmax, there

is no equilibrium state whatever the value of mass-energy and temperature.
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Fig. 4. Caloric curve of classical particles in general relativity. We have plotted the normalized
inverse temperature η = β∞GNm2/R as a function of minus the normalized binding energy Λ =
−ER/GN2m2 for different values of the normalized particle number ν = GNm/Rc2. (a) Double
spiral (b) Merging (c) Loop (d) Point.1

5. Nonrelativistic fermions at T > 0

The statistical mechanics of self-gravitating fermions at nonzero temperature was

first studied by Hertel and Thirring56, 57 as a simple (nonrelativistic) model of neu-

tron stars. In that case, the density profile decreases with the distance as r−2 and

we need to confine the system within a box in order to have an equilibrium state

with a finite mass. Hertel and Thirring56 rigorously proved that the mean field ap-

proximation (which amounts to neglecting correlations among the particles) and the

Thomas-Fermi approximation (which amounts to neglecting the quantum potential)

hThe hot spiral of ultrarelativistic classical particles in general relativity is similar, but not iden-
tical, to the hot spiral of the self-gravitating radiation.1, 3, 54
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become exact in a proper thermodynamic limit where N → +∞. This leads to the

Fermi-Dirac-Poisson equations, also known as the temperature-dependent Thomas-

Fermi equations. Hertel and Thirring57 solved these equations numerically and

plotted the caloric curve. The caloric curve depends on one parameter, the box

radius R (more precisely NR3). They found that, for sufficiently large systems

(R > RCCP = 12.8 �2/(N1/3Gm3)), a negative specific heat region occurs in the

microcanonical ensemble (see Fig. 5). Since negative specific heats are forbidden in

the canonical ensemble, this implies that the statistical ensembles are inequivalent.

The region of negative specific heats which is allowed in the microcanonical en-

semble is replaced by a first order phase transition in the canonical ensemble. This

phase transition is expected to take place at a transition temperature Tt connecting

the gaseous phase to the condensed phase through a horizontal Maxwell plateau

in the caloric curve T (E). This is accompanied by a discontinuity of energy. There

is also a lower critical temperature Tc (spinodal point) at which the metastable

gaseous phase disappears and the system collapses (zeroth order phase transition).

This collapse is associated with the isothermal collapse of classical self-gravitating

systems.10, 49 However, for self-gravitating fermions, the collapse stops when quan-

tum degeneracy comes into play. In that case, the system achieves a “core-halo”

configuration made of a quantum core (fermion ball) containing almost all the mass

surrounded by a tenuous isothermal atmosphere. There is also a higher critical tem-

perature T∗ (spinodal point) at which the metastable condensed phase disappears

and the system explodes. These results were exported by Bilic and Viollier58 to the

context of dark matter.
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Fig. 5. Caloric curve of nonrelativistic self-gravitating fermions.32 We have plotted the normalized

inverse temperature η = βGMm/R as a function of minus the normalized energy Λ = −ER/GM2

for different values of the normalized radius, or degeneracy parameter μ = η0
√

512π4G3MR3,
where η0 = 2m4/h3 is the maximum possible value of the distribution function fixed by the Pauli
exclusion principle. (a) Dependence of the series of equilibria on the size of the system. (b) For
small systems, the caloric curve has an N-shape structure.

An exhaustive study of phase transitions in the self-gravitating Fermi gas

was made by Chavanis32, 59 in both canonical and microcanonical ensembles.
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Fig. 6. Caloric curve of nonrelativistic self-gravitating fermions.32 (a) For large systems, the
caloric curve has a Z-shape structure resembling a dinosaur’s neck. (b) Illustration of the micro-

canonical first order phase transition on the S(E) curve.

-7 -6 -5 -4 -3 -2 -1 0
ln(r/R)

0

3

6

9

12

15

18

ln
(ρ

/<
ρ>

)

μ=10
5

C

B
Λ=0.02

A

Gaseous solution

Core-halo solution

(a)

0 0.5 1 1.5
exp(Λ/3)

0

0.5

1

1.5

2

2.5

η=
βG

M
m

/R

μ=107

Λc

Λ*(μ)

Λmax(μ)

(b)

Fig. 7. (a) Density profiles corresponding to the gaseous and core-halo solutions.32 (b) The
classical limit μ → +∞ (very large systems).32 According to the Poincaré-Katz criterion,36, 38 the
equilibrium states are unstable in the microcanonical (resp. canonical) ensemble between the first
and the last turning points of energy (resp. temperature).

He confirmed the phase transition in the canonical ensemble previously found by

Hertel and Thirring57 and evidenced, for sufficiently large systems (R > RMCP =

130 �2/(N1/3Gm3)), a first order phase transition in the microcanonical ensemble

(see Fig. 6). This phase transition is expected to take place at a transition energy

Et connecting the gaseous phase to the condensed phase through a vertical Maxwell

plateau in the caloric curve T (E). This is accompanied by a discontinuity of tem-

perature. There is also a lower critical energy Ec (spinodal point) at which the

metastable gaseous phase disappears and the system collapses (zeroth order phase

transition). This collapse is associated with the gravothermal catastrophe of classi-

cal self-gravitating systems.33, 35 However, for self-gravitating fermions, the collapse

stops when quantum degeneracy comes into play. In that case, the system achieves a

core-halo configuration60 made of a quantum core (fermion ball) containing a mod-

erate fraction of the total mass surrounded by a massive isothermal atmosphere
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(see Fig. 7-a). There is also a higher critical energy E∗ (spinodal point) at which

the metastable condensed phase disappears and the system explodes. As a result,

there exist two distinct critical points in the self-gravitating Fermi gas, one in each

ensemble, above which phase transitions occur. For small systems (R < RCCP),

there is no phase transition, for intermediate size systems (RCCP < R < RMCP) a

phase transition takes place in the canonical ensemble but not in the microcanoncal

ensemble, and for large systems (R > RMCP) a phase transition takes place in both

ensembles. When R→ +∞, the series of equilibria rotates several times before un-

winding (see Fig. 7-b) and we recover the classical spiral from Fig. 3-a. Chavanis32

determined the phase diagram of the nonrelativistic self-gravitating Fermi gas. He

also argued that the lifetime of metastable states is extremely long, scaling as eN

where N is the number of particles, so that the first order phase transitions do not

take place in practice.61 Only zeroth order phase transitions associated with the

spinodal points are physically meaningful.

6. General relativistic fermions at T > 0

The statistical mechanics of self-gravitating fermions at nonzero temperature in

general relativity was first considered by Bilic and Viollier.62 As before, the system

has to be confined within a spherical box of radius R in order to prevent its evap-

oration. The caloric curve depends on two parameters, the box radius R and the

particle number N . Bilic and Viollier62 studied the case where R is relatively small

and N < NOV. In that case, the results are qualitatively similar to those obtained

for nonrelativistic fermions (see Sec. 5). There is a first order phase transition in

the canonical ensemble which replaces the region of negative specific heat present in

the microcanonical ensemble. An equilibrium state, which is either “gaseous” (cor-

responding to the classical isothermal sphere) or “condensed” (made of a fermion

ball surrounded by a classical isothermal envelope), exists for any value of temper-

ature T∞ and binding energy E. General relativistic effects only introduce a small

correction to the Newtonian results.

A more general study was performed by Alberti, Chavanis and Roupas2, 63, 64

who considered arbitrary values of R and N . When N > NOV, they identified the

existence of a new turning point of temperature in the canonical ensemble and a

new turning point of binding energy in the microcanonical ensemble below which

the system collapses and forms a black hole of mass MOV (see Fig. 8). This is the

finite temperature generalization of the result originally found by Oppenheimer and

Volkoff24 at T = 0. These results lead to the following scenario (we restrict our-

selves to the microcanonical ensemble which is the most relevant). At high energies,

the system is in the gaseous phase. Below a critical energy Ec it becomes thermo-

dynamically unstable and experiences a gravothermal catastrophe. However, core

collapse stops when quantum mechanics (Pauli’s exclusion principle) comes into

play. This leads to the formation of a fermion ball surrounded by a hot halo. Below

E′′c , the condensed phase becomes thermodynamically and dynamically unstable
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Fig. 8. Caloric curve of self-gravitating fermions in general relativity when N > NOV.2 We
have plotted the normalized inverse temperature η = β∞GNm2/R as a function of minus the
normalized binding energy Λ = −ER/GN2m2 for different values of the normalized radius R/ROV

and normalized particle number N/NOV . (a) Small systems: As T decreases the system experiences
an isothermal collapse at Tc leading to a fermion ball, then a gravitational collapse at T ′

c leading to
a black hole. (b) Large systems: As E decreases the system experiences a gravothermal catastrophe
at Ec leading to a fermion ball surrounded by a hot halo, then a gravitational collapse at E′′

c leading
to a black hole.
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Fig. 9. Caloric curve of self-gravitating fermions in general relativity.2 When N > N ′∗ the con-
densed branch disappears completely so that only the collapse at Ec towards a black hole is
possible.

(in a general relativistic sense) and collapses towards a black hole. Alberti and

Chavanis2 also evidenced a critical particle number N ′∗ above which the condensed

phase completely disappears (see Fig. 9). In that case, there is no possibility to form

a fermion ball. The gravothermal catastrophe at Ec directly leads to a black hole. In

conclusion, for N < NOV the system forms a fermion ball; for NOV < N < N ′∗ the

system generically forms a fermion ball, then (possibly) a black hole; for N > N ′∗ the

system directly forms a black hole. Alberti and Chavanis2 emphasized the core-halo

structure of the equilibrium states in the microcanonical ensemble and mentioned

the relation to red-giants (leading to white dwarfs) and supernovae (leading to neu-

tron stars and black holes) suggested in Refs.64–67. They also provided the complete

phase diagram of the general relativistic Fermi gas.
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7. Truncated models

The study of phase transitions in the self-gravitating Fermi gas can be extended to

the fermionic King model described by the distribution function

f = A
e−β(ε−εm) − 1

1 + A
η0
e−β(ε−εm)

(ε ≤ εm). (4)

The fermionic King model was introduced heuristically by Ruffini and Stella68 as a

generalization of the classical King model69

f = A
[
e−β(ε−εm) − 1

]
(ε ≤ εm). (5)

The fermionic King model was also introduced independently by Chavanis70 who de-

rived it from a kinetic theory based on the fermionic Landau equation. The fermionic

King model is more realistic than the usual fermionic model because it avoids the

need of an artificial box to confine the system. The nonrelativistic fermionic King

model was studied by Chavanis et al.71, 72 who showed that the density profiles

generically have a core-halo structure with a quantum core (fermion ball) and a

tidally truncated isothermal halo leading to flat rotation curves.i They also studied

the caloric curves, the thermodynamical stability of the equilibrium states, and the

phase transitions between gaseous and condensed states (see Figs. 10 and 11). They

showed that the phenomenology of phase transitions in the fermionic King model is

the same as in the case of box-confined systems obtained in Refs.32, 59. The results

of Chavanis et al.72 have been generalized by Argüelles et al.73 to the fermionic

King model in general relativity. They also found that the phenomenology of phase

transitions in the general relativistic fermionic King model is the same as in the

case of box-confined systems obtained in Refs.2, 63, 64.
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Fig. 10. (a) Caloric curve of the nonrelativistic classical King model.71 (b) Density profiles along
the series of equilibria.71 The marginal (critical) King profile at the point of gravothermal instabil-
ity is relatively close to the Burkert74 profile (dashed line) which provides a good fit of the density
profile of dark matter halos.

iThe name “fermionic King model” was introduced in Ref.72.
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Fig. 11. (a) Caloric curve of the nonrelativistic fermionic King model for large systems.72 (b)
Density profiles corresponding to the stable gaseous phase (A), the stable condensed phase (C),
and the unstable intermediate solution (B).72

8. Application to dark matter halos

In addition to white dwarfs and neutron stars,75 the self-gravitating Fermi gas

model has been applied in the context of dark matter halos made of massive neu-

trinos. The suggestion that dark matter is made of massive neutrinos was originally

proposed by Markov76 and Cowsik and McClelland.77, 78 This suggestion has been

developed by numerous authors (see the introduction of Ref.3 for an exhaustive

list of references). The first models decribed dark matter halos at T = 0 using

the equation of state of a completely degenerate fermion gas either in the nonrel-

ativistic limit or in general relativity. Subsequent models considered dark matter

halos at nonzero temperature showing that they have a core-halo structure consist-

ing of a dense core (fermion ball) solving the core-cusp problem of classical cold

dark matter surrounded by a dilute isothermal atmosphere leading to flat rotation

curves. Most models were based on the ordinary Fermi-Dirac distribution in New-

tonian gravity or general relativity. Some models were based on the more realistic

fermionic King model (describing tidally truncated fermionic dark matter halos).

The self-gravitating Fermi gas was also studied in relation to the violent relaxation

of collisionless self-gravitating systems described by the Lynden-Bell79 distribution

which is formally similar to the Fermi-Dirac distribution. As argued in Refs.71, 72,

the theory of violent relaxation may justify how a collisionless gas of self-gravitating

fermions, such as a dark matter halo, can reach a statistical equilibrium state de-

scribed by the Fermi-Dirac distribution on a timescale smaller than the age of the

universe.j

The detailed study of the motion of S-stars near the Galactic center has revealed

the presence of a very massive central object, Sagittarius A* (Sgr A*). This cen-

tral object is usually associated with a supermassive black hole (SMBH) of mass

jThe relaxation time due to close gravitational encounters exceeds the age of the universe by
many orders of magnitude. The collisional relaxation time may be shorter if the fermions are
self-interacting.80
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M = 4.2× 106M� and Schwarzschild radius RS = 4.02 × 10−7 pc. Whatever the

object may be, its radius must be smaller than RP = 6× 10−4 pc (RP = 1492RS),

the S2 star pericenter. Similar objects are expected to reside at the center of most

spiral and elliptical galaxies, in active galactic nuclei (AGN). Although it is com-

monly believed that these objects are SMBHs, this is not yet established on a firm

observational basis in all cases. Some authors have proposed that such objects could

be fermion balls or boson stars that could mimic a SMBH. Let us consider this pos-

sibility in the framework of the fermionic dark matter model. More precisely, let us

investigate if a fermion ball can mimic a SMBH at the center of the Galaxy.

Bilic et al.81 developed a general relativistic model of fermionic dark matter halos

at nonzero temperature with a fermion mass m = 15 keV/c2 that describes both

the center and the halo of the Milky Way in a unified manner. The density profile

has a core-halo structure made of a quantum core (fermion ball) surrounded by a

classical isothermal atmosphere. The core and the halo are separated by an extended

plateau. By using the usual Fermi-Dirac distribution and choosing parameters so as

to fit observational data at large distances, they found a fermion ball of mass Mc =

2.27×106M� and radius Rc = 18 mpc and argued that this fermion ball can mimic

a SMBH like Sgr A∗. Unfortunately, its radius is larger by a factor 100 than the

bound RP = 6× 10−4 pc set by later observations. This is why Bilic and coworkers

abandoned this fermion ball scenario (R. Viollier, private communication). The same

problem was encountered later by Ruffini et al.82 who developed a similar model

with a fermion mass m ∼ 10 keV/c2.

More recently, Argüelles et al.83 considered the general relativistic fermionic

King model accounting for a tidal confinement. They applied this model to the

Milky Way and determined the parameters by fitting the core-halo profile to the

observations. For a fermion mass m = 48 keV/c2 they obtained a fermion ball of

mass Mc = 4.2 × 106M� and radius Rc = RP = 6 × 10−4 pc which, this time, is

consistent with the observational constraints of Sgr A∗. Therefore, in order to obtain

accurate results, it is important to use the fermionic King model72, 83 instead of the

usual fermionic model.32, 81, 82 Argüelles et al.83 managed to fit the entire density

profile and the entire rotation curve of the Milky Way with the fermionic King

distribution and argued that a fermion ball can mimic the effect of a SMBH like

Sgr A∗. This scenario is very attractive because it can explain the whole structure

of the galaxy, the supermassive central object and the isothermal halo, by a single

distribution (the fermionic King model68, 70).

Developing the theory of phase transitions in the self-gravitating Fermi gas,

Chavanis et al.72 argued that the core-halo solution considered by Bilic et al.,81

Ruffini et al.,82 and Argüelles et al.83 with a small fermion ball mimicking a SMBH

surrounded by a classical isothermal atmosphere, which was claimed to reproduce

the structure of the Milky Way, is thermodynamically unstable because it lies in

the intermediate branch of the caloric curve between the first and the last turning

points of energy (see Fig. 7-b). As a result, it is a saddle point of entropy, not an

entropy maximum. Therefore, Chavanis et al.72 concluded that this type of solution
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is not likely to result from a natural evolution and, consequently, they questioned

the possibility that a fermion ball could mimic a central SMBH.

Following this study,72 Argüelles et al.73 computed the caloric curve of the

fermionic King model in general relativity (see Fig. 12). They showed that the

core-halo solution of Ref.83 which provides a good agreement with the structure of

the Milky Way lies just after the turning point (b) of energy (see the inset of Fig.

12), so that it is thermodynamically stable in the microcanonical ensemble which

is the correct ensemble to consider.k This is a very interesting result because it

shows that this core-halo structure may arise from a natural evolution in the sense

of Lynden-Bell. This gives further support to the scenario according to which a

fermion ball could mimic a SMBH at the center of the galaxies.

Fig. 12. Caloric curve of the general relativistic fermionic King model (from Ref.73).

However, it does not prove that this core-halo structure with a very high central

density will necessarily arise from a natural evolution. The reason is that violent

relaxation is in general incomplete.79 The fluctuations of the gravitational potential

that are the engine of the collisionless relaxation can die out before the system has

reached statistical equilibrium. Therefore, it is not clear if violent relaxation can

produce this type of structures.l In order to vindicate this scenario, the next step

would be to perform direct numerical simulations of collisionless fermionic matter to

kChavanis et al.72 did not focus on the stable branch of condensed states located after point (b)
because they argued that these solutions are not astrophysically relevant. Indeed, by considering
particular solutions of the condensed branch, they observed that these solutions have a too ex-
tended envelope that is not consistent with the structure of dark matter halos (see solution C in
Fig. 11-b and Figs. 38-45 of Ref.72). Although this claim is correct for most of the solutions on the
condensed branch, it turns out that the solutions located just after point (b) are astrophysically
relevant and correspond to the core-halo solutions studied by Argüelles et al.83
lIt may be easier to form core-halo configurations with a very high central density if the fermions
are self-interacting and if the Fermi-Dirac equilibrium state results from a collisional relaxation of
nongravitational origin instead of a collisionless relaxation as suggested in Ref.80.
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see if they spontaneously generate fermion balls with the characteristics of SMBHs.

A purely gaseous solution without quantum core, which is also a maximum entropy

state, may be easier to reach through a violent relaxation process and is consistent

with the observations. However, it does not account for a massive central object at

the center of the galaxies. In that case, we either have to introduce a primordial

SMBH “by hand” or advocate a scenario of gravitational collapse such as the one

described below.80

For a fermion mass m = 48 keV/c2, the mass Mh = 1011M� of the Milky Way

is larger than the OV mass MOV = 2.71× 108M�, so we have to take into account

general relativity in the caloric curve. As first shown by Alberti and Chavanis2, 64

for box-confined fermionic systems, and recovered by Argüelles et al.73 for tidally

truncated models, relativistic effects create a new turning point of energy in the

caloric curve at which the condensed branch terminates (see Figs. 8, 9 and point

(c) in Fig. 12). Below E′′c the system collapses towards a black hole.

Suppose that violent relaxation selects the gaseous solution. On a secular

timescale, because of collisions, the system follows the upper branch of the series of

equilibria (gaseous states) up to the point of minimum energy Ec. At that point, it

becomes thermodynamically unstable and undergoes a gravothermal catastrophe.

However, core collapse is stopped by quantum mechanics, leading to the formation

of a fermion ball. Then, if the energy keeps decreasing, the system follows the lower

branch of the series of equilibria up to the point of minimum energy E′′c where

it becomes thermodynamically and dynamically unstable (in a general relativistic

sense) and collapses towards a SMBH of mass MOV. A similar outcome arises if

violent relaxation selects the core-halo solution where the fermion ball mimics a

SMBH. On a secular timescale, the system follows the lower branch of the series

of equilibria up to the point of minimum energy E′′c at which it collapses towards

a SMBH. In the two cases, the ultimate fate of the system is to form a SMBH of

mass MOV surrounded by an envelope. However, the formation of a SMBH may

take time (more than the age of the universe) so that the two objects (fermion ball

or SMBH) are possible in practice.

For a fermion mass m = 48 keV/c2, the OV mass MOV = 2.71× 108M� is too

large to account for the mass of a SMBH like Sgr A∗ at the center of the Milky

Way. This suggests that the object at the center of the Galaxy (Sgr A∗) is a fermion

ball instead of a SMBH as argued by Argüelles et al.73 However, for very large

halos (N > N ′∗), it is shown by Alberti and Chavanis2 that the condensed branch

disappears (see panel (b) of Fig. 9). In that case, there is no stable solution with

a fermion ball and the system necessarily collapses towards a SMBH. Therefore,

medium size galaxies like the Milky Way should harbor a fermion ball of mass

Mc = 4.2× 106M� while very large galaxies like ellipticals should harbor a SMBH

of mass MOV = 2.71× 108M� that could even grow by accretion. This scenario80

could account for the mass of SMBHs in AGNs like the one recently photographed

in M87 (Mh ∼ 1013M� and MBH ∼ 1010M�).
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On the other hand, for a much larger fermion mass m = 386 keV/c2, the OV

mass MOV = 4.2×106M� is comparable to the mass of Sgr A∗. Furthermore, when

applied to the Milky Way, the caloric curve corresponding to m = 386 keV/c2 is

similar to the one reported in panel (b) of Fig. 9 so there is no possibility to form

a fermion ball. In that case, the Milky Way could have undergone a gravitational

collapse at Ec leading to a SMBH of mass MOV = 4.2× 106M�.80 In this process,

the halo surrounding the SMBH is left undisturbed and could correspond to a

marginal classical King profile, which is known71, 72 to give a good agreement with

the empirical Burkert74 profile of observed dark matter halos (see Fig. 10-b).

Different scenarios are possible depending on the value of the fermion mass m.

Argüelles et al.73, 83 determined the mass of the fermionic dark matter particle in

such a way that the fermion ball that would be at the center of a large fermionic

dark matter halo, like the one that surrounds the Milky Way, mimics the effect of

a SMBH of mass Mc = 4.2× 106M� and radius Rc = 6× 10−4 pc like Sgr A∗. This

leads to a fermion mass m = 48 keV/c2.m Alternatively, Chavanis80, 86 determined

the mass of the fermionic dark matter particle by arguing that the smallest halos

observed in the universe (dSphs like Fornax) with a typical mass M ∼ 108M� and

a typical radius R ∼ 1 kpc represent the ground state of the self-gravitating Fermi

gas at T = 0. This yields a much smaller fermion mass m = 165 eV/c2. When

this model is applied to the Milky Way,80 it leads to a large fermion ball of mass

Mc = 9.45× 109M� and radius Rc = 240 pc. Therefore, it predicts the existence of

a large dark matter bulge at the center of the Galaxy instead of a compact fermion

ball mimicking a SMBH.n A large dark matter bulge is not inconsistent with the

observations and may even solve some issues. For example, De Martino et al.87

have argued that the presence of a bosonic dark matter bulge (soliton) of mass

Mc � 109M� and radius Rc � 100 pc at the center of the Galaxy may account for

the dispersion velocity peak observed in the Milky Way. A large dark matter bulge

made of fermions should have the same effect.80

Finally, we mention potential difficulties or, alternatively, potentially important

predictions associated with the model of Argüelles et al.73, 83 If the fermion mass is

m = 48 keV/c2, dark matter halos of mass Mh = 108M� such as dSphs like Fornax

should have a very pronounced core-halo structure since they do not correspond to

the ground state of the self-gravitating Fermi gas (unlike the model of Ref.80 with

m = 165 eV/c2). More precisely, the fermionic dark matter model with a fermion

mass m = 48 keV/c2 predicts that dSphs of mass Mh = 108M� should contain

a fermion ball of mass Mc = 1.57 × 104M� and radius Rc = 5.42 mpc possibly

mIn very recent works, Becerra-Vergara et al.84, 85 showed that the gravitational potential of a
fermion ball (with a particle mass m = 56 keV/c2) leads to a better fit of the orbits of all the 17
best resolved S-stars orbiting Sgr A∗ (including the S2 and G3 objects) with respect to the one
obtained by the central SMBH model.
nIn that case, a primordial SMBH has to be introduced “by hand” at the center of the Galaxy in
order to account for the presence of Sgr A∗.
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mimicking an intermediate mass black hole.80 This result is consistent with the

detailed work of Argüelles et al.88 who obtained dense cores of mass between Mc =

103M� and Mc = 106M� depending on the central effective temperature of the

fermions. This is either a very important prediction (if confirmed by observations)

or the evidence that this model is incorrect (if invalidated by observations). It would

be extremely important to clarify this issue by confronting the model of Argüelles

et al.73, 83 to ultracompact halos in order to determine which of the two models

(the model of Argüelles et al.73, 83 with m = 48 keV/c2 or the one developed by

Chavanis80 with m = 165 eV/c2 or m ∼ 1 keV/c2) is the most relevant for dark

matter halos.

9. Conclusion

In these Proceedings, we have provided a brief history of the self-gravitating Fermi

gas in Newtonian gravity and general relativity. We have focused exclusively on

papers that discuss the caloric curves and the mass-radius relations of the self-

gravitating Fermi gas. We have shown how these curves become more and more

complex, displaying various types of phase transitions and instabilities, when grav-

ity effects, thermal effects, quantum effects, relativity effects and tidal effects are

progressively taken into account. Of course, there are many more interesting papers

on self-gravitating fermions that are not reviewed here. A detailed bibliography on

the subject can be found in Refs.3, 80 and in standard textbooks of astrophysics.

We have applied the self-gravitating Fermi gas model to dark matter halos.

The Fermi-Dirac distribution may be justified either from the theory of collisionless

violent relaxation72, 79 or from a collisional relaxation of nongravitational origin if

the fermions are self-interacting.80 If the fermions have a small mass (m � 1 keV/c2),

the caloric curve applied to the Milky Way has an N -shape structure (see Fig. 5-b)

and the equilibrium states display a large quantum bulge of mass Mc ∼ 1010M� and

radius Rc ∼ 100 pc surrounded by an isothermal atmosphere similar to the Burkert

profile.80 If the fermions have a large mass (m ∼ 50 keV/c2), the caloric curve has

a Z-shape structure (see Fig. 6-a). It displays a nonrelativistic turning point of

energy at Ec triggering the gravothermal catastrophe. For nonrelativistic fermions,

the gravothermal catastrophe is stopped by quantum degeneracy (Pauli’s exclusion

principle).60 This may lead to a compact fermion ball of mass Mc ∼ 4.2 × 106M�
and radius Rc ∼ 6 × 10−4 pc mimicking a SMBH surrounded by an isothermal

atmosphere.73 When N > NOV, which is the case for the Milky Way, a new turning

point of energy appears at E′′c due to general relativity (see Figs. 8-b and 12). It

triggers a gravitational collapse towards a SMBH. This new turning point of energy

was first evidenced in Refs.2, 63, 64 for box-confined fermions and confirmed in Ref.73

for the fermionic King model. The possibility to form either a fermion ball or a

SMBH at the center of the galaxies depends on the size of the galaxy. In medium

size galaxies like the Milky Way (when N < N ′∗) we expect to form a fermion ball of

mass Mc ∼ 4.2×106M� but in large galaxies (when N > N ′∗) the condensed branch
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Fig. 13. Dinosaur (artistic view) similar to Fig. 6-a.

disappears (see Fig. 9-b) and the gravothermal catastrophe necessarily results in the

formation of a SMBH of mass MOV ∼ 108M�.

It is interesting to study the effect of the dimension of space d on phase transi-

tions in the self-gravitating Fermi gas. This is done in Refs.17, 89–91. In particular,

it is shown that fermion stars are unstable in a universe with d ≥ 4 dimensions. In

that case, quantum mechanics cannot stabilize matter against gravitational collapse

even in the nonrelativistic regime.17, 89, 90 This is similar to a result found by Ehren-

fest92 who considered the effect of the dimension of space on the laws of physics and

showed that planetary motion and the Bohr atom would not be stable in a space of

dimension d ≥ 4. Therefore, the dimension d = 3 of our Universe is very particular

with possible implications regarding the Anthropic Principle.

Finally, it is interesting to compare the results obtained for fermion stars

with those obtained for boson stars and self-gravitating Bose-Einstein condensates

(BECs) (see our contribution93 in these Proceedings). Similarly to fermionic dark

matter halos, BEC dark matter halos also have a core-halo structure in which the

“fermion ball” is replaced by a “soliton”. The analogy between fermionic and bosonic

dark matter halos is discussed in Refs.80, 86, 94.
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