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Abstract The monogamy relation of quantum states has
limited the shareability properties of quantum resources in
multiparty quantum systems. It plays a vital role in informa-
tion distribution and transformation over many sites in quan-
tum communications. Here, we focus on the monogamy rela-
tions of quantum correlations in the context of three-flavor
neutrino oscillations, related to the squared entanglement of
formation, the squared of quantum discord and its geomet-
ric variant. The monogamy relations in terms of the squared
entanglement of formation work for the electron and muon
antineutrino oscillations, suggesting that the bipartite entan-
glement measured by squared entanglement of formation of
the three-flavor neutrino system set a limitation to the sum of
pairwise squared entanglement of formation. Furthermore,
we found that the squared quantum discord is also monog-
amous in three-flavor neutrino system. As a comparison,
we test the monogamy of the quantum discord in neutrino
oscillations with the result that the quantum discord is not
monogamous. In addition, it is found that the bipartite geo-
metric quantum discord of three-flavor systems is equal to
the sum of the pairwise geometric quantum discord, i.e., the
monogamy relation for geometric quantum discord is sat-
urated for three-flavor neutrino system. These monogamy
relations of quantum correlations provide a way for studying
the distribution of quantum resources in neutrino oscillations,
which is of significance to explore the further applications of
neutrino oscillations in quantum communications.

1 Introduction

Neutrino is a massless and weakly interacting fermion in the
standard model description [1]. In the three-generation neu-
trino framework, neutrinos have previously been detected in
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three types, called flavors, known as electron e, muon μ and
tau τ neutrinos [2]. The flavor states of neutrinos are a linear
combination of the mass eigenstates [3,4]. Neutrino oscil-
lation (NO) suggests that neutrino can take the periodical
variation with a given flavor transforms into anther flavor
as it propagates a large distance, on account of the neutrino
masses and neutrino mixing. The probability of detecting a
particular flavor can be measured anytime during neutrino
propagation that can be used to study the classical and quan-
tum properties among neutrino systems. The last few years
have seen that many theoretical and experimental study of
the oscillation parameters [5–8]. The quantumness of neu-
trino oscillations (NOs) has been tested using the Leggett–
Garg inequality (LGI) regarded as the temporal analogue of
Bell’s inequality [9–14], which implies that the experimen-
tally observed NOs possess a violation of classical bounds
imposed by the LGI [15]. Recently, Blasone et al. studied
the existence of the quantum nonclassical features in NOs
by means of testing the necessary and sufficient conditions
for macrorealism [16].

Investing quantumness in NO is a very interesting issue, as
in this situation, NOs are inherently associated with quantum
correlations, such as quantum coherence and entanglement.
Since such linkage established between particle physics and
quantum information is of importance to study primary prop-
erties of these fundamental particles and explore the possibil-
ity of utilizing neutrinos as a resource in quantum information
processing. Therefore, using the tools of quantum resource
theory (QRT) to determine the quantumness in NOs has been
attached much attention of the researchers [17–27]. As the
essential tools in QRT, quantum correlations, such as entan-
glement and quantum discord (QD), are of great research
significance and play a crucial role in quantum information
processing, including quantum teleportation [28,29], quan-
tum computation [30,31], quantum key distribution [32,33],
and so on.
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One of the most important properties occurring in study-
ing multipartite quantum correlation is monogamy relation
which characterizes the constraints for sharing correlation
resources among different constituents in a multipartite sys-
tem. For example, in a tripartite system, the more correla-
tion between two parties A and B, the less lay in two par-
ties A and C , which exhibit a complementary behavior. The
monogamy property provides significant information about
the structure of quantum correlations. Monogamy property
has many applications in quantum physics [34,35]. Partic-
ularly, monogamy relation is also a crucial character guar-
anteeing security in quantum key distribution [36]. One of
the important issue in this field is to determine whether a
given correlation measure is monogamous. A bipartite quan-
tum correlation measure Q applied to a quantum state ρABC

has typically considered as monogamous if it satisfies the
following relation

QA|BC ≥ QAB + QAC , (1)

where QAB , QAC denote the correlations of the correspond-
ing reduced bipartite systems ρAB and ρAC , respectively, and
QA|BC stands for the correlation of the state ρABC consid-
ered in the A : BC bipartite split. This relation was first
proposed by Coffman et al. [37] using the squared concur-
rence C2 as the correlation measure for three-qubit states,
generally referred to as the CKW inequality. Since than, the
research on the original CKW inequality was extend to other
quantum correlation measures. Prabhu et al. proved that the
QD violate the monogamy relation even for the three-qubit
W state [38], while the square of quantum discord (SQD)
and the geometric measure of quantum discord (GQD) is
monogamous in this case [39,40]. Reference [41] shown that
the squared entanglement of formation (SEF), which quanti-
fies the bipartite entanglement, fulfill the monogamy relation
in multipartite mixed states. Some similar monogamy rela-
tions were also investigated for negativity [42,43], Tsallis
q-entropy entanglement [44], steering [45,46], and arbitrary
quantum entanglement measures [47,48].

In this paper, we employ the monogamy relation related
to the SEF, the SQD and the GQD to investigate the distri-
bution of these quantum correlations in the three-flavor NO
systems. Based on these monogamy relations, we construct
the residual correlations, which can detect the genuine corre-
lation of three-qubit quantum systems. Through the positive
or negative of the residual correlations to judge whether these
correlations satisfy the monogamy relation. The results show
that all these correlation measures distribute in a monog-
amous way in three-flavor neutrino NO systems, meaning
that the correlation transformations are limited by the related
monogamy relations in NOs.

The article is organized as follows. In Sect. 2, we give a
brief introduction of three-flavor NOs model. In Sect. 3, we

introduce the monogamy relations in terms of SEF, SQD and
GQD. In Sect. 4, we investigate those monogamy relations in
the three-flavor electron and muon antineutrino oscillations,
respectively. Finally, we end with a summary in Sect. 5.

2 Three-flavor NOs

The three flavors of neutrinos, |νe〉,
∣
∣νμ

〉

, and |ντ 〉, as a liner
superposition of mass eigenstates, |ν1〉, |ν2〉, and |ν3〉, can be
expressed as

|vα〉 =
∑

i

U∗
αk |vk〉 , (2)

where α = e, μ, τ, k = 1, 2, 3, and U∗
αk is the complex con-

jugate of the αk − th elements of a leptonic mixing matrix,
namely, the Pontecorvo–Maki–Nakagara–Sakata (PMNS)
matrix, which is characterized by three mixing angles (θ12,
θ23, θ13) and a charge conjugation and parity (CP) violating
phrase δcp. The corresponding matrix can be written as

U =
⎛

⎝

c12c13 s12c13 s13e−iδcp

−s12c23 − c12s13s23e−iδcp c12c23 − s12s13s23eiδcp c13s23

s12s23 − c12s13c23eiδcp −c12c23 − s12s13s23eiδcp c13c23

⎞

⎠,

(3)

where ci j = cos θi j and si j = sin θi j (i, j = 1, 2, 3). As
the CP violating fails to be observed experimentally, so we
ignore it in the following discussion. The massive neutrino
states |vk〉 are eigenstates of the Hamiltonian with energy
eigenvalues Ek . In the plane wave picture, the time evolution
of the mass eigenstates |vk〉 during propagation is given by

|vk(t)〉 = e− i
h̄ Ek t |vk(0)〉 , (4)

where |vk(0)〉 indicates the mass eigenstates at t = 0. Using
the Eqs. (2), (3) and (4), one obtains the evolved neutrino
flavor states as

|vα(t)〉 = aαe(t) |ve〉 + aαμ(t)
∣
∣vμ

〉+ aατ (t) |vτ 〉 , (5)

where aαβ(t) = ∑

k U
∗
αke

−i Ek t/h̄Uβk .
The probability of detecting another flavor neutrino β with

energy E , evolved from the initial α flavor neutrino, is

Pα→β = δαβ − 4
∑

i> j

Re
(

Û∗
αi Ûβi Ûα j Û

∗
β j

)

sin2

(

Δm2
i j

Lc3

4h̄E

)

+ 2
∑

i> j

Im
(

Û∗
αi Ûβi Ûα j Û

∗
β j

)

sin

(

Δm2
i j

Lc3

2h̄E

)

, (6)
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where Δm2
i j = m2

i − m2
j , E is the energy of the neutrino

which take different values in different neutrino experiments,
and L = ct (c is the speed of light ) is the distance propagated
by the neutrino between the source and the detector. It was
nothing that the survival probability Pvα→vα = |aαα(t)|2 and

the oscillation probability Pvα→vβ = ∣
∣aαβ(t)

∣
∣2 satisfy the

normalization constraint: Pvα→vα + Pvα→vβ = |aαα(t)|2 +
∣
∣aαβ(t)

∣
∣2 = 1.

To simplify further the calculation, the oscillatory quantity

of Eq. (7),sin2
(

Δm2
i j

Lc3

4h̄E

)

can be written as

sin2
(

Δm2
i j
Lc3

4Eh̄

)

= sin2
(

1.27Δm2
i j [eV 2] L[km]

E[GeV ]
)

.

(7)

The allowed ranges of the oscillation parameters are deter-
mined by experimental data within the framework of three-
flavor neutrino oscillations. The best values of the three-
flavor oscillation parameters with the normal ordering of
neutrino mass spectrum (m1 < m2 < m3) are given by

Δm2
21 = 7.50 × 10−5eV 2,

Δm2
31 = 2.457 × 10−3eV 2,

Δm2
32 = 2.382 × 10−3eV 2,

θ12 = 33.48◦, θ23 = 42.3◦, θ13 = 8.50◦. (8)

Adopting the above values of parameters, the transition
probabilities Pve→vβ = ∣

∣aeβ(t)
∣
∣2 and Pvμ→vβ = ∣

∣aμβ(t)
∣
∣2

corresponds to initial electron and muon neutrino are plotted
in Fig. 1 as a function of the ratio L/E . Figure 1a shows
that the survival probability of electron flavor state is always
higher than 0.1, and the transition probabilities of other two
flavors are smaller than 0.7 in a range [0, 40] of L/E with
dimension km/MeV. From Fig. 1b, the survival probability
of muon flavor decreases first then grows with the variation
from 0 to 1, while the probability of detecting the electron
flavor is always smaller than 0.04 in a range [10, 1000] of
L/E with dimension km/GeV. According to Ref. [17], we
can present the neutrino modes in occupation number basis
in the following correspondence

|νe〉 ≡ |1〉e ⊗ |0〉μ ⊗ |0〉τ ≡ |100〉 ,
∣
∣νμ

〉≡ |0〉e ⊗ |1〉μ ⊗ |0〉τ ≡ |010〉 ,

|ντ 〉≡ |0〉e ⊗ |0〉μ ⊗ |1〉τ ≡ |001〉 . (9)

Consequently, the time evolution a flavor state |vα〉 (α=e, μ,
τ ) can be written as

|ψ(t)〉α = aαe(t) |100〉 + aαμ(t) |010〉 + aατ (t) |001〉 .

(10)

Fig. 1 Figure a gives the oscillation probability Pve(0)→ve(t) (red, solid
line), Pve(0)→vμ(t) (purple, dashed line), Pve(0)→vτ (t) (blue, dashed-
dotted line) when the initial neutrino flavor is electron flavor. The fig-
ure b gives the oscillation probability Pvμ(0)→vμ(t) (red, solid line),
Pvμ(0)→ve(t) (purple, dashed line), Pvμ(0)→vτ (t) (blue, dashed-dotted
line) when the initial neutrino flavor is muon flavor

Therefore, we can discuss the monogamy properties in
terms of the SEF, SQD, GQD in this three-flavor neutrino
system which is treated as a three-qubit system.

3 Monogamy relation for quantum correlation
measures

For any pure state |ψ〉AB , The entanglement of formation is
defined as

E f (|ψ〉AB) = S(ρA) = −
∑

μ j log2 μ j , (11)

where ρA = TrB (|ψ〉AB〈ψ |) and μ j are the eigenvalues of
ρA. When ρAB is a bipartite mixed state, using the convex
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roof extension method, the EOF is defined as

E f (ρAB) = min{pi ,|φi 〉AB}
∑

i

pi E f
(|φi 〉AB

)

, (12)

where the maximization is taken over all possible pure state
decompositions of ρAB = ∑

i pi |φi 〉AB 〈φi | with pi ≥ 0,
∑

i pi = 1. For a two-qubit mixed state ρAB , an analytical
formula for calculation of EOF was derived by Wootters [49],

E f (ρAB) = H

(

1 +
√

1 − |C(ρAB)|2
2

)

, (13)

where H(x) = −x log2 x − (1− x) log2(1− x) is the binary
entropy andC(ρAB) = max

{√
λ1 − √

λ2 − √
λ3 − √

λ4, 0
}

is the concurrence of the density ρAB , where λi s the eigen-
values of the matrix ρAB ρ̃AB with decreasing order, in which
ρ̃AB = (

σy ⊗ σy
)

ρ∗
AB

(

σy ⊗ σy
)

.
For any three-qubit state ρABC , the bipartite entanglement

quantified by SEF obeys the following monogamy inequality
[41]

E2
f (ρA|BC ) ≥ E2

f (ρAB) + E2
f (ρAC ), (14)

where E2
f (ρA|BC ) quantifies the entanglement between A

and the single object BC, and E2
f (ρAB) (E2

f (ρAC )) quantifies
the entanglement between A and B(C).

Besides entanglement, QD is also a prominent bipartite
quantum correlation measure, which is defined as [50,51]

D(ρAB) = S̃(ρA | ρB) − S(ρA | ρB), (15)

where S̃(ρA | ρB) = min{
MB

j

}
∑

j
p j S

(

ρA| j
)

is the

measurement-induced quantum conditional entropy, in which
{

MB
j

}

is POVM measurement performed on subsystem B,

and S(ρA|ρB) = S(ρA) − S(ρB) is the entropy of A con-
dition on B. Particularly, for a tripartite pure state |ψABC 〉,
combining Eq. (15) with the Koashi–Winter formula [52],
one obtains the pairwise QD as

D(ρik) = E f (ρi j ) − S(ρi | ρk), (16)

where the measurement is carried out on subsystem k, and
i �= j �= k ∈ {A, B,C}. Moreover, there exists a relation
between the QD and the entanglement of formation [53,54]

D
(

ρi | jk
) = E

(

ρi | jk
) = S (ρi ) . (17)

For any three-qubit pure state ρABC , the bipartite correlation
quantified by SQD fulfill the monogamy relation [39]

D2(ρA|BC ) ≥ D2(ρAB) + D2(ρAC ). (18)

On the other hand, the geometric measure of quantum
discord is defined as the the minimal square Hilbert-Schmidt
distance between a given quantum state of a bipartite system
AB and the closest classical state [55]

DG (ρAB) = min
σAB∈Ω

‖ρAB − σAB‖2
2 , (19)

where the minimum is over the set of classical-quantum states
Ω presenting zero discord, and the distance is the square of
the 2-norm, also referred to as Hilbert-Schmidt norm. It is
given by

‖ρ − σ‖2 = Tr(ρ − σ)2

For any two-qubit quantum state in terms of Bloch represen-
tation

ρ = 1

4

⎡

⎣I ⊗ I +
3
∑

i

(xiσi ⊗ I + yi I ⊗ σi ) +
3
∑

i, j=1

ti jσi ⊗ σ j

⎤

⎦ ,

(20)

where I is the 2 × 2 identity matrix and the operators
σi (i = 1, 2, 3) represent the three Pauli matrices, xi =
Tr ρ (σi ⊗ I ), yi = Tr ρ (I ⊗ σi ) are the components of local
Bloch vectors, ti j = Tr ρ

(

σi ⊗ σ j
)

is the elements of the
correlation matrix T . The explicit expression of the GQD is
given by [55]

DG(ρ) = 1

4

(

‖x‖2 + ‖T ‖2 − λmax

)

, (21)

where x = (x1, x2, x3)
T , and λmax is the largest eigenvalue

of the 3 × 3 matrix defined by

M = xxT + T T T . (22)

By simple computation, one can also obtain the alternative
compact form of GQD [56]

DG(ρ) = 1

4
min {λ1 + λ2, λ1 + λ3, λ2 + λ3} , (23)

where λi (i = 1, 2, 3) are the eigenvalues of the matrix M .
For an arbitrary three-qubit pure state, the monogamy rela-
tion for GQD is described as [40]

DG(ρA|BC ) ≥ DG(ρAB) + DG(ρAC ). (24)
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4 Monogamy relations in NOs

Here, we will test the monogamy relation related to the SEF,
the SQD and the GQD in electron and muon NOs, respec-
tively.

4.1 Monogamy relation in the electron antineutrino
oscillations

If the electron-neutrino produced in the initial time t = 0,
from Eq. (10), the time evolution of the initial electron neu-
trino can be written as

|ψe(t)〉 = aee(t) |100〉 + aeμ(t) |010〉 + aeτ (t) |001〉 , (25)

Now, we take the trace of density matrix ρe
ABC (t) =

|ψ(t)〉e 〈ψ(t)| over qubit C resulting in the reduced density
matrix of the two qubit system

ρe
AB = Trc(|ψ〉 〈ψ |)=

⎛

⎜
⎜
⎝

|aeτ |2 0 0 0

0
∣
∣aeμ

∣
∣
2

aeμaee∗ 0
0 aeeaeμ∗ |aee|2 0
0 0 0 0

⎞

⎟
⎟
⎠

.

(26)

Similarly, when traced over the qubit B, we can get the
reduced density matrix ρe

AC . Using Eqs. (11) and (13), the
pairwise SEF of in the three-flavor electron neutrino system
can be calculated as

E2
f (ρ

e
A|BC ) = [(Peτ + Peμ) log2(Peτ + Peμ) + Pee log2 Pee]2,

E2
f
(

ρeAB
) =

(

1 +√

1 − 4PeμPee
2

log2
1 +√

1 − 4PeμPee
2

+1 −√

1 − 4PeμPee
2

log2
1 −√

1 − 4PeμPee
2

)2

,

E2
f
(

ρeAC
) =

(
1 + √

1 − 4Peτ Pee
2

log2
1 + √

1 − 4Peτ Pee
2

+1 − √
1 − 4Peτ Pee

2
log2

1 − √
1 − 4Peτ Pee

2

)2

.

(27)

To determine the monogamy of entanglement measured by
SEF in the three-flavor electron antineutrino oscillations, we
can define the residual SEF as

E2
R

(

ρe
ABC

) = E2
f (ρ

e
A|BC ) − E2

f

(

ρe
AB

)− E2
f

(

ρe
AC

)

, (28)

which can detect the three-qubit entanglement in pure state.
In Fig. 2, we plot the time evolutions of bipartite entan-

glement E2
f (ρ

e
A|BC ), E2

f

(

ρe
AB

)

and E2
f

(

ρe
AC

)

as a func-
tion of the ratio L/E as well as the related residual

Fig. 2 The monogamy of SEF tests for electron. Figure a gives
E2(ρe

A|BC ) (red, solid line), E2(ρe
AB) (blue, dashed line), E2(ρe

AC )

(purple, dashed-dotted line) vs. L/E . Figure b gives the residual SEF
(red, solid line) in the electron antineutrino oscillations

SEF E2
R(ρe

A|BC ). The bipartite entanglement E2
f (ρ

e
A|BC ),

E2
f

(

ρe
AB

)

and E2
f

(

ρe
AC

)

all exhibit a obvious oscillatory
behavior with the variation that increases firstly and then
decreases. At around L/E = 10.8 km/MeV, E2

f (ρ
e
A|BC )

reaches the maximum value 1. From Fig. 2b, at L/E = 0,
the residual SEF E2

R(ρe
A|BC ) = 0, which implies the initial

electron flavor state is a biseparable state. Furthermore, the
residual SEF is always greater than or equal to zero, meaning
the monogamy relation E2

f (ρ
e
A|BC ) ≥ E2

f (ρ
e
AB)+ E2

f (ρ
e
AC )

is valid in electron antineutrino oscillation. Note also from
the plot that the monogamy relation is considerably tight in
the case that, for whole range of L/E , the value of E2

f (ρ
e
A|BC )

is sufficiently limited to ensure that the subsystems between
A, B, and A,C are not freely share entanglement in the oscil-
lation process.

Now, we study the monogamy relation of SQD in the
electron antineutrino oscillation system. Consider a von Neu-
mann measurement on the subsystem B for three-flavor elec-
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Fig. 3 The monogamy of SQD tests for electron. Figure a gives
D2(ρe

A|BC ) (red, solid line), D2(ρe
AB) (blue, dashed line), D2(ρe

AC )

(purple, dashed-dotted line) vs. L/E . Figure b gives the residual SQD
D2

R(ρe
ABC ) (red, solid line) in comparison to the residual QD DR(ρe

ABC )

(blue, dashed line) in electron antineutrino oscillations

tron neutrino state, then according to Eq. (16), we can obtain
the SQD of subsystem ρe

AB and ρe
AC as

D2(ρeAB) =
[

−1 + √
1 − 4Peτ Pee

2
log2

1 + √
1 − 4Peτ Pee

2

−1 − √
1 − 4Peτ Pee

2
log2

1 − √
1 − 4Peτ Pee

2
+Peτ log2 Peτ + (Peμ + Pee) log2(Peμ + Pee)

−Peμ log2 Peμ − (Peτ + Pee) log2(Peτ + Pee)

]2

,

(29)

D2(ρeAC ) =
[

−1 +√

1 − 4PeμPee
2

log2
1 +√

1 − 4PeμPee
2

−1 −√

1 − 4PeμPee
2

log2
1 −√

1 − 4PeμPee
2

+Peμ log2 Peμ + (Peτ + Pee) log2(Peτ + Pee)

−Peτ log2 Peτ − (Peμ + Pee) log2(Peμ + Pee)

]2

.

(30)

Using Eq. (17), the SQD of the system ρe
ABC between A and

BC can be obtained as

D2(ρeA|BC ) = [(Peτ + Peμ) log2(Peτ + Peμ) + Pee log2 Pee]2.

(31)

Then, similar to the definition of residual SEF, we can define
the residual SQD corresponding to the monogamy relation
in Eq. (18),

D2
R

(

ρe
ABC

) = D2(ρe
A|BC ) − D2 (ρe

AB

)− D2 (ρe
AC

)

, (32)

which are plotted in Fig. 3b in comparison with the resid-
ual QD DR

(

ρe
ABC

)

as will as the bipartite correlations
D2

R

(

ρe
ABC

)

, D2
f

(

ρe
AB

)

and D2
f

(

ρe
AC

)

are plotted as a func-
tion of ratio L/E in Fig. 3a. We can observe that the resid-
ual QD is always negative. That is to say, the QD is not
monogamous for the electron antineutrino oscillations. The
residual SQD D2

R

(

ρe
ABC

)

is always greater than or equal to
zero, suggesting that the monogamy relation D2(ρe

A|BC ) ≥
D2(ρe

AB) + D2(ρe
AC ) works for electron antineutrino oscil-

lation system. Thus, the single-site correlation D2(ρe
A|BC )

can set a limit for the pairwise correlations D2(ρe
AB) and

D2(ρe
AC ), which can reflect in in Fig. 3a that the evolutions

of D2(ρe
AB) and D2(ρe

AC ) coincide with the D2(ρe
A|BC ).

To study the monogamy relation of GQD in three-qubit
neutrino system, we firstly evaluate the pairwise GQD in
pure bipartite state of three-flavor electron neutrino system.
For this, we write the three-flavour electron neutrino state in
Schmidt decomposition form

|ψ(t)〉e = √

Peτ + Peμ|0〉A
[√

Peμ
Peτ + Peμ

×
(√

Peτ
Peμ

|01〉 + |10〉
)]BC

+√

Pee|1〉A|00〉BC ,

(33)

where |0〉A (|1〉A) are the eigenvectors of the reduced density

matrix ρe
A. Similarly,

√
Peμ

Peτ +Peμ
(
√

Peτ
Peμ

|01〉+|10〉) (|00〉) are

the eigenvectors of the reduced density matrix ρe
BC , and Pee,

Peτ + Peμ are nonzero eigenvalues for ρe
A and ρe

BC , respec-
tively. In this case, the matrix M, defined by Eq. (22), can be
expressed as the diagonal form

Me
AB
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Fig. 4 The twice of GQD 2DG(ρe
A|BC ) (red, solid line), 2DG(ρe

AB)

(blue, dashed line), and 2DG(ρe
AC ) (purple, dashed-dotted line) vs.

L/E . One can see that the monogamy relation DG(ρe
AB)+DG(ρe

AC ) =
DG(ρe

A|BC ) holds in electron antineutrino oscillations

=
⎛

⎝

4Pee(Peτ + Peμ) 0 0
0 4Pee(Peτ + Peμ) 0
0 0 2[P2

ee + (Peτ + Peμ)2]

⎞

⎠ .

(34)

and using Eq. (23), we can obtain the GQD for subsystem A
and BC as

DG(ρe
A|BC ) = 2Pee(Peτ + Peμ). (35)

Similarly, we can get the matrices Me
AB and Me

AC . Then
the GQD of reduced matrix density ρe

AB and ρe
AC can be

calculated as

DG(ρe
AB) = 2Pee Peμ, (36)

DG(ρe
AC ) = 2Pee Peτ . (37)

Using the Eqs. (35), (36) and (37), we obtain the following
relation

DG(ρe
AB) + DG(ρe

AC ) = DG(ρe
A|BC ). (38)

which shows that the monogamy relation of GQD is satu-
rated for the electron antineutrino oscillation system. Here,
we use 2DG as a suitable correlation measure, as GQD is
not normalized to one. In Fig. 4, we plot the time evolution
of 2DG(ρe

AB), 2DG(ρe
AC ) and 2DG(ρe

A|BC ). At the point
L/E = 0, 2DG(ρe

A|BC ) = 0, which means the initial fla-
vor electron state is a biseparable state under the bipartition
A | BC . Moreover, we can find that DG(ρe

AB) and DG(ρe
AC )

always exhibit inverse change trends that DG(ρe
AB) increase

along with DG(ρe
AC ) decrease, and the sum of DG(ρe

AB)

and DG(ρe
AC ) is always equal to DG(ρe

A|BC ) with respect to
L/E .

Fig. 5 The monogamy of SEF tests for muon. Figure a gives
E2(ρ

μ
A|BC ) (red, solid line), D2(ρ

μ
AB) (blue, dashed line), D2(ρ

μ
AC )

(purple, dashed-dotted line) vs. L/E . Figure b gives the residual SEF
(red, solid line) in the muon antineutrino oscillations

4.2 Monogamy relations in the muon antineutrino
oscillations

When a muon flavor state generated at the source in initial
time t = 0, using Eq. (11), the evolution of states for the
three-flavor NOs can be expressed as

∣
∣ψμ(t)

〉 = aμe(t) |100〉 + aμμ(t) |010〉 + aμτ (t) |001〉 ,

(39)

The reduced density matrix ρ
μ
AB is given by tracing of density

matrix ρ
μ
ABC (t) = |ψ(t)〉μ 〈ψ(t)| over qubit C

ρ
μ
AB =Trc(|ψ〉 〈ψ |)=

⎛

⎜
⎜
⎜
⎝

∣
∣aμτ

∣
∣2 0 0 0

0
∣
∣aμμ

∣
∣2 aμμaμe

∗ 0

0 aμeaμμ
∗ ∣

∣aμe
∣
∣2 0

0 0 0 0

⎞

⎟
⎟
⎟
⎠

. (40)

For the reduced density matrix state of the subsystem ρ
μ
AB

and ρ
μ
AC , The corresponding matrix ρ

μ
AB

˜ρ
μ
AB and ρ

μ
AC

˜ρ
μ
AC
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can be simply obtained. Then the SEF of pairwise qubits are
given by

E2
f

(

ρ
μ
AB

) =
(

1 +√

1 − 4PμμPμe

2
log2

1 +√

1 − 4PμμPμe

2

+1 −√

1 − 4PμμPμe

2
log2

1 −√

1 − 4PμμPμe

2

)2

,

E2
f

(

ρ
μ
AC

) =
(

1 +√

1 − 4Pμτ Pμe

2
log2

1 +√

1 − 4Pμτ Pμe

2

+1 −√

1 − 4Pμτ Pμe

2
log2

1 −√

1 − 4Pμτ Pμe

2

)2

.

(41)

and the SEF of bipartite system ρ
μ
A|BC is calculated as

E2
f (ρ

μ
A|BC ) = [(Pμτ + Pμμ) log2(Pμτ + Pμμ)

+ Pμe log2 Pμe]2. (42)

The residual SEF corresponding to the monogamy relation
in Eq. (14) in muon antineutrino oscillations system is

E2
R

(

ρ
μ
ABC

) = E2
f (ρ

μ
A|BC ) − E2

f

(

ρ
μ
AB

)− E2
f

(

ρ
μ
AC

)

. (43)

Figure 5 has drawn the dynamics of the E2
f (ρ

μ
A|BC ), E2

f (ρ
μ
AB)

and E2
f (ρ

μ
AC ) as a function of ratio L/E , and to examine the

monogamy relation of SEF in muon neutrino oscillations,
we plotted the residual SEF in Fig. 5b. This figure shows
that as the ratio L/E increase, E2(ρ

μ
A|BC ) increases from

zero to the maximum 0.06 at around L/E = 495 km/GeV,
and then decreases. The bipartite entanglement E2

f (ρ
μ
AB)

and E2
f (ρ

μ
AC ) show complementary behavior in a range

[261, 762] of L/E– an increase of E2
f (ρ

μ
AB) lead to a cor-

responding decrease of the E2
f (ρ

μ
AC ). It can be seen from

Fig. 5b that the residual SEF is positive or equal to zero in the
range [10, 1000] of L/E with dimension km/GeV. It turns
out that the monogamy relation E2

f (ρ
μ
A|BC ) ≥ E2

f (ρ
μ
AB) +

E2
f (ρ

μ
AC ) holds for the muon antineutrino oscillations.

To examine the monogamy relation of SQD in the three-
flavor muon NOs, we primarily calculate the SQD for the
subsystems ρ

μ
AB , ρ

μ
AC and ρ

μ
A|BC as

D2(ρ
μ
AB) =

[

−1 +√

1 − 4Pμτ Pμe

2
log2

1 +√

1 − 4Pμτ Pμe

2

−1 −√

1 − 4Pμτ Pμe

2
log2

1 −√

1 − 4Pμτ Pμe

2
+Pμτ log2 Pμτ + (Pμμ + Pμe) log2(Pμμ + Pμe)

−Pμμ log2 Pμμ − (Pμτ + Pμe) log2(Pμτ + Pμe)

]2

, (44)

D2(ρ
μ
AC ) =

[

−1 +√

1 − 4PμμPμe

2
log2

1 +√

1 − 4PμμPμe

2

Fig. 6 The monogamy of SQD tests for muon. Figure a gives
D2(ρ

μ
A|BC ) (red, solid line), D2(ρ

μ
AB) (blue, dashed line), D2(ρ

μ
AC )

(purple, dashed-dotted line) vs. L/E . Figure b gives the D2
R(ρ

μ
ABC )

(red, solid line) in comparison with the DR(ρ
μ
ABC ) (blue, dashed line)

in the muon antineutrino oscillations

−1 −√

1 − 4PμμPμe

2
log2

1 −√

1 − 4PμμPμe

2
+Pμμ log2 Pμμ + (Pμτ + Pμe) log2(Pμτ + Pμe)

−Pμτ log2 Pμτ − (Pμμ + Pμe) log2(Pμμ + Pμe)

]2

. (45)

D2(ρ
μ
A|BC ) = [(Pμτ + Pμμ) log2(Pμτ + Pμμ) + Pμe log2 Pμe]2.

(46)

According to monogamy relation in Eq. (24), we can con-
struct the residual SQD in the three-flavor muon antineutrino
oscillations as

D2
R
(

ρ
μ
ABC

) = D2(ρ
μ
A|BC ) − D2 (ρ

μ
AB

)− D2 (ρ
μ
AC

)

. (47)

Figure 6a has drawn the D2(ρ
μ
A|BC ), D2(ρ

μ
AB), D2(ρ

μ
AC )

as a function of L/E . From Fig. 6a, one can see that the
bipartite correlations D2(ρ

μ
AB) and D2(ρ

μ
AC ) show comple-

mentary behavior in a range [335, 665] of L/E , where at
around L/E = 510 km/GeV, D2(ρ

μ
AB) increases the max-
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Fig. 7 The twice of GQD 2DG(ρ
μ
A|BC ) (red, solid line), 2DG(ρ

μ
AB)

(blue, dashed line), and 2DG(ρ
μ
AC ) (purple, dashed-dotted line) vs.

L/E . One can see that the monogamy relation DG(ρ
μ
AB)+DG(ρ

μ
AC ) =

DG(ρ
μ
A|BC ) holds in muon antineutrino oscillations

imal value with 0.04, while D2(ρ
μ
AC ) reaches its minimal

value with 0.0014. In order to examine the monogamy of
SQD in the muon antineutrino oscillation system, we plot-
ted the residual SQD D2

R

(

ρ
μ
ABC

)

in comparison to that of
QD DR

(

ρ
μ
ABC

)

in Fig. 6b. From Fig. 6b, although the QD
is not monogamous in three-flavored muon NOs, we can
see that the residual SQD is positive or equal to zero as
the L/E increases, showing that SQD is monogamous i.e,
D2(ρ

μ
A|BC ) ≥ D2(ρ

μ
AB) + D2(ρ

μ
AC ).

Now, we want to detect how the correlations measured by
GQD distributed in the muon antineutrino oscillation system.
Similar to the case of electron antineutrino oscillation system,
we can calculate the DG(ρe

A|BC ) as

DG(ρ
μ
A|BC ) = 2Pμe(Pμτ + Pμμ), (48)

where DG(ρ
μ
A|BC ) is the GQD of ρ

μ
A|BC with respect to bipar-

tition between A and BC . Resorting to Eq. (23), the GQD
for subsystems ρ

μ
AB and ρ

μ
AC are given by

DG(ρ
μ
AB) = 2Pμe Pμμ, (49)

DG(ρ
μ
AC ) = 2Pμe Pμτ , (50)

respectively. Thus using Eqs. (48), (49) and (50), we obtain
the relation that

DG(ρ
μ
AB) + DG(ρ

μ
AC ) = DG(ρ

μ
A|BC ). (51)

Therefore, the monogamous behavior of GQD is saturated for
the muon antineutrino oscillation system. In Fig. 7, we plot
the dynamics of 2DG(ρ

μ
AB), 2DG(ρ

μ
AC ) and 2DG(ρ

μ
A|BC )

as a function of ratio L/E . From Fig. 7, we can find that

the sum of pairwise DG(ρ
μ
AB) and DG(ρ

μ
AC ) is always equal

to DG(ρe
A|BC ) with respect to L/E . This suggests that the

correlation measured by GQD between the subsystem A and
BC contains correlation of the subsystem between A, B and
A, C in the muon antineutrino oscillation system.

5 Conclusions

In this paper, we have explored the distributions of quantum
correlations in three-flavor neutrino systems, by investigat-
ing several monogamy relations related to the SEF, SQD, and
GQD, for initial electron-neutrino and muon-neutrino oscil-
lations. We have shown that the SEF, SQD, and GQD display
monogamy behaviors in three-flavor NOs systems by exam-
ining the fulfillment of monogamy relations of these quan-
tum correlations. These relations will restrict the correlations
evolutions in NOs, i.e., the correlations between part A and
BC of NOs systems, which provide a tight bound to limit
the correlations between the subsystem A, B and A, C in the
neutrino propagation. This limitation makes a complemen-
tary behavior between two pairwise neutrino flavor systems
arise in Nos. Among these monogamy relations, we find that
SQD is monogamous in NOs, while QD is not monogamous
in this case, indicating that investing the monogamy property
in NOs is essentially rely on the choice of suitable correlation
measures. For GQD, it is demonstrated that the monogamy
relation is saturated for three-flavor neutrino systems, i.e., the
correlation measured by GQD between a single subsystem
and remaining subsystems of the three-flavor NOs contains
correlations of the reduced pairwise neutrino subsystems.
The results also show the residual correlation is a reasonable
measure which can not only explicitly characterizes the struc-
ture of quantum correlations in NOs, but also quantify the
constraints imposed by monogamy relations in NOs. These
monogamy relations give us a better understanding of the dis-
tribution of correlations in the three-flavor neutrino systems
and provide a promise way towards studying the information
flows and transformations in neutrino communications.

As an extension of our work, we plan to consider a more
complete monogamy relation which exhibits the correlations
between ABC , AB, AC , and BC of a tripartite system in
three-flavor NOs. In this case, we can not only explore the
multipartite correlation in a effective way, but also can inves-
tigate the distribution of quantum correlations in NOs in more
details.
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