UNIVERSITY OF UDINE - ITALY

Department of Mathematics and Computer Science

Ph.D. Thesis

INSIGHTS INTO MACHINE
LEARNING: DATA CLUSTERING
AND CLASSIFICATION
ALGORITHMS FOR
ASTROPHYSICAL EXPERIMENTS

Supervisors: Candidate:
Prof. ALESSANDRO DE ANGELIS PRAVEEN BOINEE

Prof. GIAN LUCA FORESTI

Doctorate of Philosophy in Computer Science

XVIII cycle
AY 2005/2006

Abstract

Data analysis domain dealing with data exploration, clustering and classification is
an important problem in many experiments of astrophysics, computer vision, bioin-
formatics etc. The field of machine learning is increasingly becoming popular for
performing these tasks. In this thesis we deal with machine learning models based on
unsupervised and supervised learning algorithms.

In unsupervised learning category, we deal with Self-Organizing Map (SOM) with
new kernel function. The data visualization/exploration and clustering capabilities of
SOM are experimented with real world data set problems for finding groups in data
(cluster discovery) and visualisation of these clusters.

Next we discuss ensembling learning, a specialized technique within the supervised
learning field. Ensemble learning algorithms such as AdaBoost and Bagging have
been in active research and shown improvements in classification results for several
benchmarking data sets. They grow multiple learner algorithms and combine them
for getting better accuracy results. Generally decision trees learning algorithm is used
as base classifiers to grow these ensembles. In this thesis we experiment with Random
Forests (RF) and Back-Propagation Neural Networks (BPNN) as base classifiers for
making ensembles. Random Forests is a recent development in tree based classifiers
and quickly proven to be one of the most important algorithms in the machine learning
literature. It has shown robust and improved results of classifications on standard data
sets. We experiment the working of the ensembles of random forests on the standard
data sets available in University of California Irvine (UCI) data base. We compare
the original random forest algorithm with their ensemble counterparts and discuss
the results.

Finally we deal the problem of image data classification with both supervised
(ensemble) learning and unsupervised learning. We apply the algorithms developed
in the thesis for this task. These image data are taken from the MAGIC telescope
experiment, which collects the images of particle rays coming from the outer universe.
We apply the ensembles of RF, BPNN for making a supervised classification of images
and compare the performance results. Then we discuss a SOM system, developed for
making an automatic classification of images using the unsupervised techniques.

Acknowledgments

I sincerely thank Prof. Alessandro De Angelis for being so friendly guide and giving

me lot of opportunities to see many beautiful places in Italy and Europe on my
research work. He is a professor with different attitude who is always available,
makes constructive remarks and makes things easy and fun. He is more a friend than
a professor. Working with him was very motivating. Many thanks to Prof. Gian
Luca Foresti for his gigantic patience for listening to me and correcting me in many
ways.

Special thanks to Udine University Chancellor Prof. Furio Honsell and Birla
Science Center Director Dr. Sidharth in India, because of whom the whole PhD of
mine has came into existence.

During my PhD I got lot of suggestions and help from many people. I take this
opportunity to thank them. Not in any particular order, I am very much greatful to
Marco Frailis, Trieste Longo (Francesco), Abelardo Moralejo, Riccardo Giannitrapani,
Fabrizio Barbarino, Oriana Mansutti , Barbara De Lotto, Massimo Pin, Alberto Forti,
Reddy, Tiziano, Erica. I am greatful to Alessia Degano for helping me in many titanic
burocratic issues.

I had a very special experience with my friends in the multinational - multi cul-
tural, multi-lingual apartment. Many many thanks to my very special spain friends
Maria, Cristina, Edurne (for being so beautiful and making me so mad!), Andrea,
Javier, Carlos.

Also I am thankful to other Indian students who are also fighting with their PhD’s.
My friendship with Subbu has gone upto Mt.Blanc levels especially in the last months
of my work. Also I am thankful to Reddy, Vijay, Rekha and beautiful Nirmala.

Many thanks to my family who were always with me both in the happy and tough
times.

Last but not least a very special acknowledgment to GOOGLE without which it
is almost impossible to do this job.

Contents

Introduction vii
Machine Learning System 1
1.1 System Design 2
1.2 Learningmodes L L e 5
1.3 Some learning algorithms o0 7
1.3.1 Back-Propagation Neural Network (BPNN) 7
1.3.2 k-nearest neighbors o oL 10
1.3.3 Decision Trees L 11
1.3.4 Support vector machines 12
Unsupervised Learning 15
2.1 Imtroduction 15
2.2 Cluster Analysis L 16
2.3 Cluster distance measures 17
2.3.1 Proximity measures oL 17
2.3.2 Dissimilarities Based on Attributes 17
2.3.3 Object Dissimilarity 18
2.4 Clustering Algorithmso 19
Self-Organizing Maps 23
3.1 Imtroduction 23
3.2 Algorithm 25
3.3 SOM as clustering technique 27
3.4 SOM as visualization technique 30
3.4.1 U-matrix 31
3.4.2 Component plane visualisation 33
3.5 Case study on Astrophysical experiment: GRB Data Analysis 34
Ensemble Learning 39
4.1 Imtroduction 39
4.2 Ensemble Mechanics o o 41
4.3 Methods for constructing the ensembles 43
4.3.1 Bagging 44
4.3.2 DBoosting. o 45

4.3.3 Other techniques 0. 49

ii Contents

5 Meta Random Forests 51
5.1 Imtroduction L 51
5.2 Random Forests 52
5.3 Error convergence in random forests 55
5.4 Bagged Random Forests 56
5.5 Boosted Random Forests, 57
5.6 Experiments on UCI datasets. 58
5.7 Discussion e e 60

6 MAGIC and its image classification 65
6.1 MAGIC Infrastructure 66
6.2 Image collection in MAGIC 67
6.3 Image processing in MAGIC 68
6.4 Supervised classification o 0oL 70

6.4.1 Random forests and its ensembles 71
6.4.2 BPNN and itsensembles. 72
6.4.3 Classificationresults 74
6.4.4 Experiments with R.K. Bock et.al Monte-carlo data sets 75
6.5 Unsupervised classification oL 76
Conclusions 85

Bibliography 87

List of Figures

1.1 Tabular representation of a dataset 2
1.2 Model for Machine learning System 3
1.3 Backpropagation neural network architecture. 8
1.4 A decision tree with the tests on attributes X and Y 11
1.5 Linear separation problem with SVM 13

2.1 Interesting clusters may exist at several levels. In addition to A, B and
C, also the cluster D, which is a combination of A and B, is interesting. 20

3.1 : Discrete neighborhoods (size 0, 1 and 2) of the centermost unit:
a) hexagonal lattice, b) rectangular lattice. The innermost polygon
corresponds to 0-neighbourhood, the second to the 1-neighbourhood
and the biggest to the 2-neighbourhood 24
3.2 Different map shapes. The default shape (a), and two shapes where
the map topology accommodates circular data: cylinder (b) and toroid

3.3 Updating the best matching unit (BMU) and its neighbors towards
the input sample with x. The solid and dashed lines correspond to
situation before and after updating, respectively 26
3.4 Different neighborhood functions. From the left "bubble’ h.; (t) =
1(o¢ — de;), 'gaussian’ he; (t) = e’dzi/z"f, ‘cut-gauss’ he; (1) = e—dei/207] (or — dei)s
and ’ep’ he; (t) = max {0, 1—(o¢ — dci)g}, de; = ||re — 14| is the dis-
tance between map units ¢ and ¢ on the map grid and 1 (z) is the step
function: 1(z) =0if z <0 and 1(x) =1 if > 0. The top row shows
the function in 1-dimensional and the bottom row on a 2-dimensional
map grid. The neighborhood radius usedis o, =2. 27
3.5 Different learning rate functions: 'linear’ (solid line) « (t) = oo (1 — ¢/T),
"power’ (dot-dashed) a () = g (0.005/ao)t/T and "inv’ (dashed) « (t) =
ap/ (14 100t/T), where T is the training length and g is the initial
learning rate. oL 28
3.6 Two side effects caused by the neighborhood function: (a) border effect
and (b) interpolating units. The + are the training data, and the

connected grid of circles is the map. 29
3.7 SOM classification of points in threed space 31
3.8 Component planes for the data points in 3-D space 32
3.9 SOM based system for GRB Data Analysis 34
3.10 GRB Classification models 37

3.11 Component plane distribution for BATSE data 38

List of Figures

3.12 BATSE data classification: SOM with cut-gaussian kernel, the two
groups are visually distinct[blue color codes] with a well separated
boundary

4.1 The basic architecture of an ensemble.
4.2 Loss functions of the margin for binary classification. Zero-one misclas-
sification loss (solid line), log-likelihood loss (dashed line), exponential
loss (dotted line), squared error loss (dashed/dotted).

5.1 Schematic of AdaBoost random forests.
5.2 Performance of random forests as function of number of trees
5.3 ROC Comparison for various UCI data sets
5.4 Classification accuracies for RF and its ensembles for various UCI data

6.1 The MAGIC telescope
6.2 Schematic view of 17m¢ MAGIC telescope [111].
6.3 A simulated MAGIC Camera
6.4 Images of various particles recorded on the simulated camera of the
MAagIC.o
6.5 Image parameters. (x,y) are coordinates in the original camera system.
(z0,y0) is a reference point, for example the source position or the
center of the camera. oL L o
6.6 Fundamental BPNN used for ensembling to perform image classifica-
tion in MAGIC e
6.7 A bagged BPNN ensemble. The ensemble is built by using bootstrap re-
sampling to generate multiple training sets which are then used to train
an ensemble of BPNNs. The predictions generated by each network are
averaged to generate more stable bagged ANN ensemble predictions. .
6.8 Alpha distributions
6.9 ROC curves for BPNN and its ensembles
6.10 ROC curves for RF and its ensembles
6.11 Classifier performances study: Bock et.al classifications, ensemble clas-
sifiers used in this thesis L oo
6.12 The SOM based system for automatic separation of gamma events from
background events L
6.13 Data distributions for image parameters in crab on data set.
6.14 Classification using SOM L ..
6.15 QE of various cluster distances L.

68

3.1

4.1

4.2

5.1
5.2

6.1
6.2

List of Tables

Data explosion centers [2] viii

Important Attributes of BATSE catalog used in GRB classification by
various experiments oL oL o Lo 35

The exponential, binomial negative log-likelihood and squared error
loss functions for boosting. The miss classification plots are in figure 4.2 46
Some ensemble techniques oL Lo 50

Description of UCI datasets 59
The Classification results for Random Forests (RF), Bagged RF, Boosted

RF on various UCI data sets. (Notations % for classification accuracy,
MAE for Mean Absolute Error, ROC for ROC area) 61

Comparative study of 2 classifiers and their ensembles 75
SOM clustering results for different S (Qx) 79

Vi

List of Tables

Introduction

Nature has designed us as an advanced neural- cognitive system to learn, recognize
and make decisions. The ease, with which we recognize a face [especially of an op-
posite sex], learn and understand the spoken languages and several other daily life
decision makings are astoundingly complex tasks. These are internally performed by
a sophisticated coordination between brain, eye, ear, hands, legs etc. Humans learn
from experience, by mistakes or successes. By human nature, it is quite natural that
we seek to design and build systems that can also learn to perform these learning,
recognition and decision making tasks.

The field of machine learning is concerned with designing machines to learn from
experience, learn from examples to make decisions. It deals with the formalization
of human learning and decision making. Thus the aim of the machine learning is
to automate the process of solving problems, and thereby machine learning is rival
to what humans have considered their domain. It has a long history in engineering
and science applications. It is quite interdisciplinary and has roots in many disci-
plines ranging from statistics, biology, philosophy to computational theory, artificial
intelligence, data mining, cognitive science etc. It is also used interchangeably as
pattern recognition and is used to describe the wide range of problems such as recog-
nition, classification, grouping of patterns. These problems are important in variety of
applications such as Signal processing, Physics experiments, Computer vision, Bioin-
formatics, Genomics, Remote sensing, Financial forecasting etc [1].

After seeing table 1 we can start thinking that our world is now a data-driven one.
We are surrounded by very large collections of data from these applications, sometimes
with hundreds of millions of individual records stored in centralized data warehouses.
This ever growing data requires to be classified or clustered to get analyzed. Machine
learning algorithms are proved to be powerful, comprehensive methods used for this
purpose. It is an important data mining step which assists in converting the data
into information that informs, instructs, answers, or otherwise aids understanding
and decision-making. They learn by searching through an n-dimensional space of
a given data set to find an acceptable generalization to represent the analysis or
knowledge from the data.

In recent years there has been a significant growth of methods in the machine
learning field for learning from raw data to classify /cluster them. The proliferation of
low-cost computers (for software implementation), low-cost sensors, communications,
database technology (to collect and store data), and computer-literature application
experts who can pose “interesting” and “useful” application problems, all have con-
tributed for its development.

viii

Introduction

Problem domain Application Input Pattern | Pattern
Classes
Physics experiments[As- | Image classifi- | Atrributes [im- | Classes of im-
trophysical, high-energy] | cation, Particle | age/particle] ages/particles
separation
Bio-informatics Sequence analy- | DNA /Protein se- | Known types of
sis quence genes/patterns
Data Mining Searching for | Points in mul- | Compact and
meaningful tidimensional well separated
patterns space clusters
Document classification Internet search Text document Semantic cat-
egories (e.g.
business, sports,
etc.)
Document image analysis | Reading machine | document image | Alphanumeric
for blind characters,
words
Industrial automation Printed circuit | Intensity or | Defective /non-

board inspection

range image

defective nature

of product
Multimedia database re- | Internet search Video clip Video genres
trieval (e.g. action,

dialogue, etc.)

Biometric recognition

Personal identifi-
cation

Face, iris, finger-
print

Authorised users
for access control

Remote sensing

Forecasting crop
yield

Multispectral
image

Land wuse cat-
egories, growth
pattern of crops

Speech recognition

Telephone di-
rectory enquiry
without operator
assistance

Speech waveform

Spoken words

Table 1: Data explosion centers [2]

Introduction ix

Research Objectives

The research aims at developing new machine learning algorithms for data clustering
and classification. The developed algorithms are applied for data analysis tasks in
MAGIC telescope experiment. It is an international effort with 17 institutes. The
telescope collects image data at the rate of 432GB per day. At the end of year we
acquired with 37800GB of data to be analyzed. The task is to classify the images
based on their properties. The work is performed by both supervised and unsupervised
classification techniques. Also the algorithms are applied to Gamma ray burst data
sets, UCI data sets.

The thesis is written in three parts. First we discuss Self-Organizing Maps (SOM)
based on unsupervised learning. New kernel neighborhood functions are proposed
and applied to the algorithm. A case study on Gamma Ray Burst (GRB) analysis
has performed. In this experiment we use SOM for data exploration, visualsation and
cluster discovery in the GRB data sets.

In the second part the work is carried out with supervised classification algorithms,
especially of ensemble learning. The ensembles are applied to standard algorithms
such as random forests and Back propagation neural nets. The ensembles of ran-
dom forests are applied on standard UCI data sets to study the performance results
compared to the original random forests algorithm.

Finally in the third part, we use the proposed algorithms for image classification
in MAGIC. The image classification has done with supervised techniques by using
the ensembles of random forest and back propagation neural nets. Then we apply the
self organizing map for the classification of images in an automatic way.

Thesis Organization

Chapter 1 discusses the machine learning system in general and introduces various
learning modes and algorithms. Chapter 2 discusses the unsupervised learning giving
special emphasis to partition clustering algorithms, the basis for SOM. Also various
cluster distance measurements are discussed . In chapter 3 Self-organizing maps are
discussed with various kernel neighborhood functions. The clustering (quantization)
ability of SOM along with its visualization techniques such as U-matrix and compo-
nent plane visualization are discussed. In this chapter we experiment with gamma
ray burst analysis using SOM. Next in chapter 4 ensemble learning techniques are
discussed. We especially concentrate on bagging and boosting techniques. In chapter
5 we discuss tree classifier “Random forests” and discuss the making of its ensembles
with bagging and boosting. These algorithms are applied on UCI data sets. The
results and comparative study are discussed with the original random forests algo-
rithm. In chapter 6 MAGIC telescope project is introduced. We discuss the imaging
technique used in MAGIC for image collection and image processing. We apply the

1 University of California Irvine maintains the international machine learning database repository,
an archive of over 100 databases used specifically for evaluating machine learning algorithms.

X Introduction

supervised and unsupervised algorithms that are proposed in the thesis for the image
data classification for the MAGIC.

Thesis Contributions

- P. Boinee et.al, Meta Random Forests, In International Journal for Computa-
tional Intelligence, Volume-II, pages: 138-147 (2005)

- P. Boinee et.al, Ensembling Classifiers: An application to image data classi-
fication from chernkov telescope experiment. In Proceedings of International
Conference on Signal Processing, Enformatika series, Prague (2005)

- P. Boinee et. al, Self-Organising Networks for Classification: developing Ap-
plications to Science Analysis for Astroparticle Physics, CoRR ¢s.NE/0402014:
(2004)

- P. Boinee et al., Neural Networks for MAGIC data analysis, In proceedings of
Sixth International Conference on Foundations of Fundamental and Computa-
tional Physics, Udine, Ttaly (2004)

- P. Boinee et al., Automatic Classification using Self-Organizing Neural Networks
in Astrophysical Experiments, In Proc. of Science with the New Generation of
High Energy Gamma-ray Experiments, Perugia, Italy, (2003)

Machine Learning System

Ever since computers were invented, we have wondered whether they might be made
to learn. If we could understand how to program them to learn-to improve automat-
ically with experience-the impact would be dramatic. The field of machine learning
is concerned with the question of how to construct computer programs that auto-
matically improve with experience. According to [3], Machine learning is defined as
a computer program which learns a problem from experience E with respect to some
class of tasks T and performance measure P. The performance at tasks in T, as
measured by P, could improve with experience E.

We do not yet know how to make computers learn nearly as well as people learn.
However, algorithms have been invented that are effective for certain types of learning
tasks, and a theoretical understanding of learning is beginning to emerge. Many
practical computer programs have been developed to exhibit useful types of learning,
and significant commercial applications have begun to appear.

It is possible to relate the problem of learning to the general notion of inference in
classical philosophy. Every predictive-learning process consists of two main phases:

e Learning or estimating unknown dependencies in the system from a given set
of samples,

e Using estimated dependencies to predict new outputs for future input values of
the system.

These two steps correspond to the two classical types of inference known as induc-
tion (progressing from particular cases-training data-to a general mapping or model)
and deduction (progressing from a general model and given input values to particular
cases of output values). These processes may be described, formalized, and imple-
mented using different learning methods [4].

A learning method (essentially an algorithm usually implemented in software)
estimates an unknown mapping (dependency) between a system’s inputs and outputs
from the available data set, namely, from known samples. Once such a dependency has
been accurately estimated, it can be used to predict the future outputs of the system
from the known input values. Learning from data has been traditionally explored in
such diverse fields as statistics, engineering, and computer science. In this chapter

2 1. Machine Learning System

Samples Features
/(- o e

=
o ~

Feature's value for the
given sample

Figure 1.1: Tabular representation of a data set

we discuss the design of the general machine learning system and introduce various
learning modes and algorithms.

1.1 System Design

Machine learning system design have been inspired by the learning capabilities of
biological systems and, in particular, those of humans. In fact, biological systems
learn to cope with the unknown, statistical nature of the environment in a data-
driven fashion. Babies are not aware of the laws of mechanics when they learn how
to walk, and most adults drive a car without knowledge of the underlying laws of
physics. People are not born with such capabilities, but learn them through data-
driven interaction with the environment.

Machine learning is also data-driven. The input for the system is taken from a data
base, which in general a collection of data sets. Each data set is again a collection
of data vectors also called as “patterns” representing a collection of measurements
called as “features” of the learning problem. Thus a pattern can be viewed as a
representation of set of n features in the form of a n—dimensional vector. These
patterns can have optional label, which tells the type of class, a pattern belongs to.
Labeling of patterns depends on the type of learning used by the system in the training
mode. Supervised learning algorithms uses labeled data sets as input, whereas the
unsupervised learning algorithms directly operates on unlabeled patterns to adopt to
the underlying data distribution of the patterns.

The data set represents the standard model of structured data with the features
uniformly measured over many cases. Usually the pattern vectors in the data set
are represented in a tabular form, or in the form of a single relation (term used in
relational databases), where columns are features of objects stored in a table and rows
are values of these features for specific entities. A simplified graphical representation
of a data set and its characteristics is given in Figure 1.1. Many different types of
features (attributes or variables)-i.e., fields-in structured data records are common in
machine learning.

A machine learning system can be operated in two modes: training and testing

1.1. System Design 3

Train set

l

Pre-Processing —

Training mode:
Learner algorithm

Test set

Testing mode:
Trained Learner
algorithm

Result analysis

Figure 1.2: Model for Machine learning System

(figure 1.2). The preprocessing module essentially aims at the feature extraction/s-
election. It finds the appropriate features for representing the input patterns by
segmenting the pattern of interest from the background, removing noise, normalizing
the pattern, and any other operation which will contribute in defining a compact
representation of the pattern [1].

In the training module, a learner is trained by subjecting each pattern to it. It
essentially learns the underlying data distribution in the data set also called as the
training set. The decision making process by a learner in bayesian terms can be
summarized as follows: A given pattern is to be assigned to one of the k categories
C1,...,Cy based on a vector of n feature values = (z1,...,2,). The features are
assumed to have a probability density mass function conditioned on pattern class.
thus a pattern vector x belonging to class C; is viewed as an observation drawn
randomly from the class-conditional probability function p (z|C;). Now the task is to
find the decision boundary that exists among the various class in the input space. A
number of well defined decision rules exists in the literature for this purpose. They
include bayes decision rule, maximum likelihood rule (a special case of bayes decision
rule), and the Neyman-Pearson rule [1].

One the learner is trained, we enter into a testing phase. Typically the system is
provided with a test set of patterns. A trained learner tries to form generalizations
from particular, true facts, from the training data set [4]. These generalizations are
formalized as a set of functions that approximate a system’s behavior. The learning
machine is capable of implementing a set of functions f (z,w), w € W, where x is
an input, w is a parameter of the function, and W is a set of abstract parameters
used only to index the set of functions. Ideally, the choice of a set of approximating
functions reflects a priori knowledge, about the system and its unknown dependencies.
However, in practice, because of the complex and often informal nature of a priori
knowledge, specifying such approximating functions may be, in many cases difficult.

To explain the selection of approximating functions, we can use a graphical inter-

4 1. Machine Learning System

pretation of the inductive-learning process. The task of inductive inference is this:
given a collection of samples (z;, f (z;)), return a function h (z) that approximates
f (). The function h (x) is often called a hypothesis.

The task of learning machine is to select a function from the set of functions,
which best approximates the system’s responses. The learning machine is limited to
observing a finite number of samples n in order to make this selection. The finite
number of samples, which we call a training data set, is denoted by (z;,y;), where
i =1,...,n. The quality of an approximation produced by the learning machine is
measured by the loss function L (y, f (x,w)) where

- y is the output produced by the system,
- x is a set of inputs,

- f(x,w) is the output produced by the learning machine for a selected approxi-
mating function, and

- w is the set of parameters in the approximating functions.

L measures the difference between the outputs produced by the system y; and that
produced by the learning machine f (x;,w) for every input point x;. By convention,
the loss function is nonnegative, so that large positive values correspond to poor
approximation and small positive values close to zero show a good approximation.
The expected value of the loss is called the risk functional R (w)

R(w) = [[L5 @) p (o) dedy

where L (y, f (z,w))is a loss function and p (z,y) is a probability distribution of sam-
ples. The R (w) value, for a selected approximating functions, is dependent only on a
set of parameters w. Inductive learning can be now defined as the process of estimat-
ing the function f (x, wept), which minimizes the risk functional R (w) over the set of
functions supported by the learning machine, using only the training data set, and not
knowing the probability distribution p (z,y). With finite data, we cannot expect to
find f (z, wept) exactly, so we denote f (x, wopi+) as the estimate of parameters wope+
of the optimal solution w,p: obtained with finite training data using some learning
procedure.

In a two-class classification problem, where the output of the system takes on only
two symbolic values, y = {0, 1}, corresponding to the two classes, a commonly used
loss function measures the classification error.

0 ify=f(z,w)

L(y’f(x’w)):{l ify # f (,w)

Maximum accuracy will be obtained by minimizing the risk functional because, in
that case, the approximating function will describe the best set of given samples. The
training of the learning machine can be interpreted in terms of “inductive principle”.

1.2. Learning modes 5

An inductive principle is a general prescription for obtaining an estimate f (2, Wopt+)
in the class of approximating functions from the available finite training data. An
inductive principle tells us what to do with the data, whereas the learning method
specifies how to obtain an estimate. Hence a learning method or learning algorithm is
a constructive implementation of an inductive principle. For a given inductive prin-
ciple, there are many learning methods corresponding to a different set of functions
of a learning machine. The important issue here is to choose the candidate models
(approximating functions of a learning machine) of the right complexity to describe
the training data.

The result analysis is governed by many factors such as : learning mode, learner
algorithm, analysis requirements in the problem domain. For a supervised learning
mode typically a learning algorithm outputs the probability of class assignment for
each pattern in the test row. These probabilities are inturn used to perform the
result analysis like classification accuracies rates (or error rates) of the learner. In
Unsupervised learning mode the learner algorithm can be used to group the data set
into clusters. These clusters can be analyzed by various cluster analysis techniques
(chapter 2). Also some specialized unsupervised learning algorithms such as Self-
Organizing Maps (SOM) can be used for cluster visualization, data exploration tasks
(Chapter 3).

1.2 Learning modes

In practice, the choice of a learner algorithm is a difficult task and driven by the
learning problem at the hand. The learning modes can be broadly classified in to
three types depending on the availability of a labeled training set.

Unsupervised learning

Unsupervised classification is a branch of machine learning designed to find natural
groupings, or clusters, in multidimensional data, based on measured or perceived sim-
ilarities among the patterns. It is used in a wide variety of fields under a wide variety
of names, the most common of which are cluster analysis. It has no explicit teacher,
and the system forms [26] clusters or “natural groupings” of the input patterns. In
conceptual terms, we may think of the teacher as having knowledge of the environ-
ment, with that knowledge being represented by a set of input-output examples. The
environment with its characteristics and model is, however, unknown to the learning
system. It operates on unlabeled data sets to discover the natural groups in the data
set. “Natural” is always defined explicitly or implicitly in the clustering system itself,
and given a particular set of patterns or cost function; different clustering algorithms
lead to different clusters. Often the user will set the hypothesized number of different
clusters ahead of time. It is often suitable for real world problems as it is difficult to
obtain the labeled data sets. We discuss more on unsupervised learning in chapter 2.

6 1. Machine Learning System

Supervised learning

Supervised learning is used to estimate an unknown dependency from known input-
output samples. It assumes the existence of a teacher-fitness function or some other
external method of estimating the proposed model. The term “supervised” denotes
that the output values for training samples are known (i.e., provided by a “teacher”)
[7]. In conceptual terms, we may think of the teacher as having knowledge of the
environment, with that knowledge being represented by a set of input-output exam-
ples. The environment with its characteristics and model is, however, unknown to
the learning system. The parameters of the learning system are adjusted under the
combined influence of the training samples and the error signal. The error signal is
defined as the difference between the desired response and the actual response of the
learning system.

Supervised learning algorithms work by searching through a space of possible
functions, called hypotheses, to find a function, h, that is the best approximation
to the unknown function f. To determine which hypothesis h is best, a learning
algorithm can measure how well A matches f on the training data points, and it can
also assess how consistent h is with any available prior knowledge about the problem.

As a performance measure for the system, we may think in terms of the mean-
square error or the sum of squared errors over the training samples. This function
may be interpreted as a multidimensional error surface, with tile free parameters
of the learning system as coordinate. Any learning operation under supervision is
represented as a movement of a point on the error surface. For the system to improve
the performance over time and therefore learn from the teacher, the operating point
on an error surface has to move down successively toward a minimum of the surface
[2]. An adequate set of input-output samples will move the operating point toward
the minimum, and a supervised learning system will be able to perform such tasks as
pattern classification and function approximation. Different techniques support this
kind of learning, and some of them such as neural networks, support vector machines,
decision trees etc. Supervised learning can be applied to many problems like signal
processing, image classification, handwriting recognition, medical diagnosis, and part-
of-speech tagging in language processing [3].

One of the most active areas of research in supervised learning has been to study
methods for constructing good ensembles of classifiers. Ensemble learning algorithms
work by running a “base learning algorithm” multiple times and forming a vote out
of the resulting hypotheses [62]. This area is referred to by different names in the
literature - committees of learners, mixtures of experts, classifier ensembles, multiple
classifier systems. In general, an ensemble method is used to improve on the accuracy
of a given learning algorithm. Practically it has proven that combining the predic-
tions of ensembles of classifiers produces more accurate predictions than the single
classifiers.

Ensembles or committee machines can be useful in many ways. The committee
might exhibit a test set performance unobtainable by an individual committee mem-
ber on its own. The reason for this is that the errors of the individual committee
members cancel out to some degree when their predictions are combined. The sur-

1.3. Some learning algorithms 7

prising discovery of this line of research is that even if the committee members were
trained on data derived from the same data set, the predictions of the individual
committee members might be sufficiently different such that this combining process
is beneficial in improving the classification accuracy. Ensemble learning is described
in more detail in chapter 4.

Reinforcement learning

The most typical way to train a classifier is to present an input, compute its tentative
category label, and use the known target category label to improve the classifier. In
reinforcement learning or learning with a critic, no desired category signal is given;
instead, the only teaching feedback is that the tentative category is right or wrong.
This is analogous to a critic who merely states that something is right or wrong,
but does not say specifically how it is wrong [26]. (Thus only binary feedback is
given to the classifier; reinforcement learning also describes the case where a single
scalar signal, say some number between 0 and 1, is given by the teacher.) In pattern
classification, it is most common that such reinforcement is binary either the tentative
decision is correct or it is not.

1.3 Some learning algorithms

In this section, we discuss some standard learning algorithms in the machine learning
literature. Here we mainly make the study based on learning modes, especially of
supervised and unsupervised. In supervised we deal with 4 types of models. First
we discuss Back-propagation neural network (BPNN), a standard algorithm available
under neural network category. In this thesis we develop the ensembles of BPNN for
image data classification for MAGIC telescope. Next we discuss k-nearest neighbor
algorithm (K-NN) which performs an instant learning from pattern by pattern in the
training set. Then we discuss decision trees a tree based classifier, which forms the
basis for making random forests a specialized trees based classifier. Finally we discuss
kernel based learners with support vector machines as an example.

Under unsupervised technique there exists a variety of algorithms like Self-Organising
Maps (SOM) [33], Fixed weight competitive nets [15], Adaptive resonance theory mod-
els [19]. Here we concentrate on SOM models that are discussed in detail in Chapter
3.

1.3.1 Back-Propagation Neural Network (BPNN)

Neural networks has great advantages of adaptability, flexibility, and universal non-
linear functional approximators [14]. One of the most popular algorithms in neural
networks category is the back-propagation algorithm [13]. The back-propagation al-
gorithm performs supervised learning on a multilayer feed-forward neural network. It
is based on Perceptron algorithm introduced by Rosenblatt [11] that is considered
as one of the first machine learning algorithms. Perceptron algorithm express linear

8 1. Machine Learning System

Tnpur Layer Hidden Layer Ontpur Layer

P P y-
—
. . 1
" i e A
o
)
.,

A — Y2

Y

Figure 1.3: Backpropagation neural network architecture.

decision surfaces. In contrast, the kind of multilayer networks [12] learned by BACK-
PROPAGATION algorithm [15] are capable of expressing a rich variety of nonlinear
decision surfaces. Its discovery played made the neural networks as a tool for solving
a wide variety of problems ranging from speech recognition to complex task of particle
separation in high energy physics experiments.

A multilayer neural network as shown in the figure 1.3 consists of sensory units
(neurons or nodes) divided into 3 layers - a input layer (X), one or more hidden
layers (Z) and an output layer (Y). The units in layers are fully connected with the
units in the next layer. These connections have weights associated with them. Each
signal traveling along the link is multiplied by the connection weight. The input signal
propagates through the network in a forward direction, on a layer -by-layer basis.

Algorithm

The training of a network by back-propagation involves three stages [14]: The feed-
forward of the input training pattern, the calculation and back-propagation of the
associated error, and the adjustment of the weights. After training, application of the
net involves only the computations of the feed-forward phase. Even if the training is
slow, a trained net can produce its output very rapidly.

Let x € R™ be the Input training vector, t € R™ be the Output target vector.
01 be the error correction weight for the output unit Yj, d; be the error correction
weight for the hidden unit Z;, a be the learning rate. During the feed-forward, each
input unit (X;) receives an input signal and broadcasts this signal to the each of the
hidden units Zi,...,Z,. Each hidden unit then computes its activation and sends
its signal (Z;) to each output unit. Each output unit (Y3) computes its activation
(yr) to form the response of the net for the given input pattern. During training,
each output unit compares its computed activation (yy) with its target value (tj) to
determine the associated error for that pattern with that unit. Based on this error,
the factor ox(k = 1,...,m) is computed. Jj is used to distribute the error at output
unit Yj back to all units in the previous layer (the hidden units that are connected

1.3. Some learning algorithms 9

to Yy). It is also used later to update the weights between the hidden layer and the
input layer. Listing 1.1 shows the algorithm.

Listing 1.1: BPNN algorithm

Step 0: Intialize weights with small random values
Step 1: While stopping condition is false do steps 2-9.
Step 2: for each tarining pair, do steps 3-8
Feedforward
Step 3: Each input unit (X;,i=1,...,n)
receives input signal z; and broadcasts
this signal to all units to hidden layer
Step 4: Each hidden unit (Z;,j=1,...,p)
sums its weighted input signals,
Z—in; =vj + Y1y Tivij
applies its activation function to
compute its output signal
zj = f(z —inj),
and sends this signal to all units
to the output units.
Step 5: Each output unit (Yy,k=1,...,m)
sums its weighted input signals,
y_ink:w0k+2§:12jwjk
and applies its activation function to compute
its output signal,
Yk = f(y —ing).
Back—propagation of error:
Step 6: Each output unit (Yi,k=1,...,m)
receives a target pattern corresponding to the input
pattern , computes its error information term,
O = (tk —yi) f/ (y —ing)
calculates its bias corerction term
used to update w_{0k} later
Awok:a(;k
and sends the Jp to units in the layer below.
Step 7: Each hidden unit (Z;,j=1,...,p)
sums its delta inputs from units in layer above.
8 —inj = 330 Owjk
multiplies by the derivative of its activation
function to calculate its error information term,
5j =4§— injf’ (Z - inj)
calculate its weight correction term
used to update v;; later
Avij:aéjxi
and calculates its bias corerction term
used to update wvg; later

10 1. Machine Learning System

Avoj:aéj.

Update weights and biases:

Step 8: Each output unit (Yz,k=1,...,m)
updates its bias and weights (j=0,...,p):
wjk (new) = wj (old) + Awjy,
Each hidden unit (Z;,j=1,...,p)
updates its bias and weights (i =0,...,n):
v;; (new) = v;; (old) + Awvy;

Step 9: Test stopping condition.

After all of the ¢ factors that have been determined, the weights for all the layers
are adjusted simultaneously [14]. The adjustment to the weight w; from the hidden
unit Z; to the output unit Y}, is based on the factor d; and the activation function z; of
the hidden unit Z;. The adjustment to the weight v;; form the input unit X; to hidden
unit Z; is based on the factor J; and the activation z; of the input unit. An activation
function for a backpropagation net should have several important characteristics: It
should be continuous differentiable, and monotonically non-decreasing. Furthermore,
for computational efficiency, it is desirable that its derivative be easy to compute.
For the most commonly used activation functions, the value of the derivative can be
expressed in terms of the value of the function. Usually the function is expected to
saturate, i.e, approach finite maximum and minimum values asymptotically. In this
thesis the BPPNN network is developed using a hyperbolic tangent function, which
has range of (-1, 1) and is defined as

x —T

[
et e %

— €

tanh (z) =

1.3.2 k-nearest neighbors

Instance-based learning methods such as nearest neighbor are conceptually straight-
forward approaches to approximating real-valued or discrete-valued target functions.
Learning in these algorithms consists of simply storing the presented training data
[3]. When a new query instance is encountered, a set of similar related instances is
retrieved from memory and used to classify the new query instance.

One important instance-based method is the k-nearest neighbors algorithm. This
algorithm assumes all instances correspond to points in the n-dimensional space R™.
The nearest neighbors of an instance are defined in terms of the standard euclidean
distance. More precisely, let an arbitrary instance x be described by the feature vector
(ay (x),...,a, (x)), where a, (r) denotes the vaue of the r*" atrribute of insyance z.
Then the distance between two instances z; and x; is defined to be d(x;,z;) where

2
d(asz)) = /S, (@ (23) — ar (2))
In nearest-neighbor learning the target function may be either discrete-valued or

real-valued. For learning discrete-valued target functions of the form f : R" — V,
where V is the finite set {v1,...,vs}. The k-nearest neighbor algorithm returns f (z,)

1.3. Some learning algorithms 11

Class 2

Figure 1.4: A decision tree with the tests on attributes X and Y

for approximating the discrete-valued target function f (x4), which is given by:

k

f((Eq) —— argmarycv Z o (Uv f (xz))

i=1

where ¢ (a,b) =1 if a = b and where § (a,b) = 0 otherwise. As shown here, the value
f (x4) returned by this algorithm as its estimate of f (x4) is just the most common
value of f among the k training examples nearest to z,. If we choose k = 1, then
the 1-nearest neighbor algorithm assigns to f (x4) the value f(z;) where z; is the
training instance nearest to x,. For larger values of k, the algorithm assigns the most
common value among the k nearest training examples.

1.3.3 Decision Trees

The decision-tree representation is the most widely used logic method for efficiently
producing classifiers from the data. There is a large number of decision-tree induc-
tion algorithms described primarily in the machine-learning and applied-statistics
literature. The decision tree algorithm is well known for its robustness and learning
efficiency with its learning time complexity of O(nlog2n), n being the number of rows
in the train set. The output of the algorithm is a decision tree, which can be easily
represented as a set of symbolic rules (IF ... THEN). The symbolic rules can be
directly interpreted and compared with the existing domain knowledge, providing the
useful information for the domain experts.

A typical decision-tree learning system adopts a top-down strategy that searches
for a solution in a part of the search space. It guarantees that a simple, but not
necessarily the simplest, tree will be found. A decision tree consists of nodes that
where attributes are tested. The outgoing branches of a node correspond to all the
possible outcomes of the test at the node. A simple decision tree for classification of
samples with two input attributes X and Y is given Figure 1.4.

All samples with feature values X > 1 and Y = B belong to Class2, while the
samples with values X < 1 belong to Classl, whatever the value for feature Y. The

12 1. Machine Learning System

samples, at a non leaf node in the tree structure, are thus partitioned along the
branches and each child node gets its corresponding subset of samples. Decision trees
that use univariate splits have a simple representational form, making it relatively
easy for the user to understand the inferred model; at the same time, they represent
a restriction on the expressiveness of the model. In general, any restriction on a
particular tree representation can significantly restrict the functional form and thus
the approximation power of the model.

A well-known tree-growing algorithm for generating decision trees based on uni-
variate splits is Quinlan’s ID3 with an extended version called C4.5, C5.0 [101].
Greedy search methods, which involve growing and pruning decision-tree structures,
are typically employed in these algorithms to explore the exponential space of possi-
ble models and to remove unnecessary preconditions and duplication. They apply a
divide and conquer strategy to construct the tree. The sets of instances are accom-
panied by a set of properties. Each node in the tree performs a test on the values of
an attribute, and the leaves represent the class of an instance that satisfies the tests.
The tree will return a ’yes’ or 'no’ decision when the sets of instances are tested on
it. Rules can be derived from the tree by following a path from the root to a leaf
and using the nodes along the path as preconditions for the rule, to predict the class
at the leaf. Random forests, an ensemble decision trees uses the trees that randomly
choose a subset of attributes at each mode. We discuss the random forest in chapter
5 in more detail.

1.3.4 Support vector machines

SVMs are kernel based learning algorithms used in machine learning and computer
vision research communities. However, SVMs have two possible limitations in real
world applications. First, the training of SVMs is slow, especially for large data
sets problems. Second, SVM training algorithms are complex, subtle, and sometimes
difficult to implement [17].

The basic training for SVMs involves finding a function which optimizes a bound
on the generalization capability, i.e., performance on unseen data. We are guven N
observations (Y € R with associated labels y(?,i = 1,..., N. These set of training
data {(a:(i),y(i))} is linearly separable if there exists a hyperplane (w?,b) for which
the positive examples lie on one side and the negative examples on the other. Let
us define the margin as twice the distance of the closest training example to the
hyperplane (w',b) (figure 1.5 (a)). The structural risk minimization principle [18]
states that a hyperplane which classifies the training set accurately with the largest
margin will minimize a bound on the generalization error and will generalize best,
regardless of the dimensionality of the input space.

Provided that all of the training examples are linearly separable, the goal is then to
find the optimal separating hyperplane (w?!,b) in the sense of maximizing the margin.
Let dy.p (x(s)) be the distance of the closest training example z(®) to a separating
hyperplane (w?,b):

0", (33(3)) _ | wtz®) +b |
’ [w

1.3. Some learning algorithms 13

’,w“l‘—b:—l
watb=0
vrth=11

w‘z+b<0\
wr+b=0

(a) Maximal margin classifier (b) Linear SVM classifier

Figure 1.5: Linear separation problem with SVM

If we constrain | wtz(®) |= 1, then d,, (x(s)) = m and the margin associated
to (wh,b) is equal to m The optimal separating hyperplane (wt,b) is found by
minimizing the legrangians multipliers Lo norm of w, under the constraint that the
training set is well separated by (w?,b) .

f(x) = Zijxj +5b
i=1
where L is the legrangian norms defined for coordinates for data point x and the
normal vector w. Thus the solution for linear decision function gives the optimal
separation for hyperplane (w',b) (fig 1.5 (b)).

14

1. Machine Learning System

Unsupervised Learning

2.1 Introduction

Unsupervised learning refers to situations where the objective is to construct decision
boundaries based on unlabeled training data to find the natural groups or clusters
that exist in the data set[7]. Unsupervised classification or clustering is a very dif-
ficult problem because data can reveal clusters with different shapes and sizes. To
compound the problem further, the number of clusters in the data often depends on
the resolution with which we view the data.

In unsupervised learning a higher-order statistical model is learnt from a set of
examples, with the aim of revealing hidden causes and density estimation. Appli-
cations range from data visualization [21] to data mining and knowledge discovery
[22]. These techniques are strongly related to the statistical field of cluster analysis,
where over the years large number of clustering methods have been proposed [23] [24]
[25]. In cluster analysis observed data are organized into meaningful structures or
taxonomies. The objective is to sort samples into clusters or groups, so that the de-
gree of association is strong between members of the same cluster and weak between
members of different clusters. A fair amount of research has been done on cluster
analysis giving many ad hoc methods to search for these groupings, or clusters.

There are at least five basic reasons for interest in unsupervised Procedures. First,
collecting and labeling a large set of sample patterns can be surprisingly costly. For
the MAGIC telescope experiment discussed in chapter 6, particle image data collec-
tion is virtually free, but accurately labeling the images of particles, i.e., marking the
particles with labels of gamma, hadrons, muons particle types is very expensive, time
consuming and error pruned . If a classifier can be crudely designed on a small set
of labeled samples, and then tuned up by allowing it to run without supervision on
a large, unlabeled set, much time and trouble can be saved. Second, one might wish
to proceed in the reverse direction: train with large amounts of (less expensive) unla-
beled data, and only then use supervision to label the groupings found. This may be
appropriate for large data mining applications where the contents of a large database
are not known beforehand. Again this can be useful for the MAGIC telescope as we
have giga bytes of data to be classified. The possible way of working it out is to group
the unlabeled data automatically by unsupervised technique, Self-Organizing Map

16 2. Unsupervised Learning

(SOM). The grouped data is then subjected to a supervised technique for identifying
the labels. Third, in many applications the characteristics of the patterns can change
slowly with time, for example in automated food classification as the seasons change.
If these changes can be tracked by a classifier running in an unsupervised mode, im-
proved performance can be achieved. Fourth, we can use unsupervised methods to find
features that will then be useful for categorization. There are unsupervised methods
that represent a form of data-dependent smart preprocessing or smart feature extrac-
tion. Lastly, in the early stages of an investigation it may be valuable to gain some
insight into the nature or structure of the data. The discovery of distinct subclasses
or similarities among patterns or of major departures from expected characteristics
may suggest we significantly alter our approach to designing the classifier.

In this chapter we discuss some fundamental issues and state-of-art related to
unsupervised learning. After discussing cluster analysis we describe the types of
clustering algorithms available in the literature with special emphasis on k-means
clustering, the basis for self-organizing map (SOM) discussed in next chapter.

2.2 Cluster Analysis

Cluster analysis is a very important and often required in real world problems. The
speed, reliability, and consistency with which a clustering algorithm can organize large
amounts of data constitute overwhelming reasons to use it in applications such as data
mining [2], information retrieval [9], image segmentation , signal processing [10]. As
a consequence, several clustering algorithms have been proposed in the literature and
new clustering algorithms continue to appear. Most of these algorithms are based
on a) iterative squared-error clustering or b) agglomerative hierarchical clustering.
Hierarchical techniques organize data in a nested sequence of groups which can be
displayed in the form of a dendogram or a tree. Squared-error partitional algorithms
attempt to obtain that partition which maximizes the between-cluster scatter.

It has a variety of goals. All relate to grouping or segmenting a collection of
objects into subsets or clusters, such that those within each cluster are more closely
related to one another than objects assigned to different clusters. An object can be
described by a set of measurements, or by its relation to other objects. In addition,
the goal is sometimes to arrange the clusters into a natural hierarchy. This involves
successively grouping the clusters themselves so that at each level of the hierarchy,
clusters within the same group are more similar to each other than those in different
groups. Cluster analysis is also used to form descriptive statistics to ascertain whether
or not the data consists of a set distinct subgroups, each group representing objects
with substantially different properties. This latter goal requires an assessment of the
degree of difference between the objects assigned to the respective clusters.

2.3. Cluster distance measures 17

2.3 Cluster distance measures

Central to all of the goals of cluster analysis algorithms is the notion of the degree
of similarity (or dissimilarity) between the individual objects being clustered. A
clustering method attempts to group the objects based on the definition of similarity
supplied to it. This can only come from subject matter under considerations [20]. In
this section we discuss the variety of distance measures used in clustering algorithms.

2.3.1 Proximity measures

Sometimes the data is represented directly in terms of the proximity (alikeness or
affinity) between pairs of objects. These can be either similarities or dissimilarities
(difference or lack of affinity). For example, in social science experiments, participants
are asked to judge by how much certain objects differ from one another. Dissimilari-
ties can then be computed by averaging over the collection of such judgments. This
type of data can be represented by an N x N matrix D, where N is the number of
objects, and each element d;;; records the proximity between the ith and i'th objects.
This matrix is then provided as input to the clustering algorithm. Most algorithms
presume a matrix of dissimilarities with non- negative entries and zero diagonal el-
ements: d;; = 0,4 = 1,..., N. If the original data were collected as similarities, a
suitable monotone-decreasing function can be used to convert them to dissimilarities.
Also, most algorithms assume symmetric dissimilarity matrices, so if the original ma-
trix D is not symmetric it must be replaced by (D + DT) /2. Subjectively judged
dissimilarities are seldom distances in the strict sense, since the triangle inequality
diir < di + dyy for all k € {1,..., N} does not hold. Thus, some algorithms that
assume distances cannot be used with such data.

2.3.2 Dissimilarities Based on Attributes

Most often we have measurements x;; for patterns ¢ = 1,..., N, on features j =
1,...,p. Since most of the popular clustering algorithms take a dissimilarity matrix as
their input, we must first construct pairwise dissimilarities between the observations.
In the most common case, we define a dissimilarity d; (x;;, z; ;) between values of the
jth variable, and then define

D (z;, ;) = Zdj (Tij, wirg) (2.3.1)

j=

—

as the dissimilarity between objects 7 and 7’.

squared distance

By far the most common choice is

2

dj (Tij, Tirg) = (Tij — Tirj) (2.3.2)

However, other choices are possible, and can lead to potentially different results.
For non quantitative attributes (e.g., categorical data), squared distance may not be

appropriate. In addition, it is sometimes desirable to weigh attributes differently.
Here we discuss alternatives in terms of the attribute type:

18 2. Unsupervised Learning

o Quantitative variables. Measurements of this type of features or variables or
attributes are represented by continuous real-valued numbers. It is natural to
define the “error” between them as a monotone-increasing function of their
absolute difference

d(zi,z;) =1(z; —z}|) (2.3.3)

Besides squared error loss (x; — wi/)Q, a common choice is the identity (absolute
error). The former places more emphasis on larger differences than smaller ones.
Alternatively, clustering can be based on the correlation

(@i = > (@ij — %) (zir; — Twr) (2.3.4)

\/Zj (wi; — T3)° > @iy — zy)”

with #; = >, x;;/p. If the inputs are first standardized, then - (2;; — xi/j)z =
2 (1 — p(x;,x;)) . Hence clustering based on correlation (similarity) is equivalent
to that based on squared distance (dissimilarity).

e Ordinal variables: The values of this type of variable are often represented as
contiguous integers, and the realizable values are considered to be an ordered
set. Examples are academic grades (A, B, C, D, F), degree of preference (can’t
stand, dislike, OK, like, terrific). Rank data are a special kind of ordinal data.
Error measures for ordinal variables are generally defined by replacing their M
original values with

i—1/2
M

in the prescribed order of their original values. They are then treated as quan-
titative variables on this scale.

di=1,...,M (2.3.5)

e Categorical variables: With unordered categorical (also called nominal) vari-
ables, the degree-of-difference between pairs of values must be delineated ex-
plicitly. If the variable assumes M distinct values, these can be arranged in a
symmetric M - M matrix with elements L,,, = L/, L. = 0, L. > 0. The
most common choices is L., = 1 for all # r, while unequal losses can be used
to emphasize some errors more than others.

2.3.3 Object Dissimilarity

Next we define a procedure for combining the p-individual attribute dissimilarities
dj (x5, xj),7 = 1,...,p into a single overall measure of dissimilarity D (x;,) be-
tween two objects or observations (x;, ;) possessing the respective attribute values.
This is nearly always done by means of a weighted average (convex combination)

p
D (l‘i, .Z‘;) = Z wj.dj (xij, SL’Z‘/J‘) (236)
j=1

2.4. Clustering Algorithms 19

Here w; is a weight assigned to the jth attribute regulating the relative influence
of that variable in determining the overall dissimilarity between objects. This choice
should be based on subject matter considerations. If the goal is to discover natural
groupings in the data, some attributes may exhibit more of a grouping tendency than
others. Variables that are more relevant in separating the groups should be assigned a
higher influence in defining object dissimilarity. Giving all attributes equal influence
in this case will tend to obscure the groups to the point where a clustering algorithm
cannot uncover them.

Although simple generic prescriptions for choosing the individual attribute dissim-
ilarities d; (@i, z;;) and their weights w; can be comforting, there is no substitute
for careful thought in the context of each individual problem. Specifying an appropri-
ate dissimilarity measure is far more important in obtaining success with clustering
than choice of clustering algorithm. This aspect of the problem is emphasized less in
the clustering literature than the algorithms themselves, since it depends on domain
knowledge specifics and is less amenable to general research. Finally, often obser-
vations have missing values in one or more of the attributes. The most common
method of incorporating missing values in dissimilarity calculations as in equation
2.3.6 is to omit each observation pair x;;, z;; having at least one value missing, when
computing the dissimilarity between observations z; and . This method can fail
in the circumstance when both observations have no measured values in common.
In this case both observations could be deleted from the analysis. Alternatively, the
missing values could be imputed using the mean or median of each attribute over the
non-missing data. For categorical variables, one could consider the value missing as
just another categorical value, if it were reasonable to consider two objects as being
similar if they both have missing values on the same variables.

2.4 Clustering Algorithms

Clustering algorithms divide, or partition, data into natural groups of objects. By
natural it means that the objects in a cluster should be internally similar to each
other, but differ significantly from the objects in the other clusters. Most clustering
algorithms produce crisp partitionings, where each data sample belongs to exactly
one cluster. To reflect the inherently vague nature of clusterings, there are also some
algorithms where each data object may belong to several clusters to a varying degree.
Another way to deal with the complexity of real data sets is to construct a cluster
hierarchy. Clustering may depend on the level of detail being observed, and thus
a cluster hierarchy may, at least in principle, be better at revealing the inherent
structure of the data than a direct partitioning 2.4.

Thus clustering algorithms can be fundamentally divided into two types: hier-
archical and partitional [24]. Hierarchical clustering algorithms find clusters one by
one. The hierarchical methods can be further divided to agglomerative and divi-
sive algorithms, corresponding to bottom-up and top-down strategies. Agglomerative
clustering algorithms merge clusters together one at a time to form a clustering tree
which finally consists of a single cluster, the whole data set. The algorithms consist

20 2. Unsupervised Learning

Figure 2.1: Interesting clusters may exist at several levels. In addition to A, B and
C, also the cluster D, which is a combination of A and B, is interesting.

of the following steps, Listing 2.1:

Listing 2.1: hierarchical clustering

1. initialize: assign each vector to its own cluster, or use

some initial partitioning provided by some other clustering algorithm
2. Compute distances d(C;,C;) between all clusters

3. merge the two clusters that are closest to each other

4. return to step 2 until there is only one cluster left

The problem of partitional clustering can be formally stated as follows: Given N
patterns in a d-dimensional metric space, determine a partition of the patterns into
k clusters, such that the patterns in a cluster are more similar to each other than
to patterns in different clusters [8]. Under partitional clustering we concentrate on
K-means algorithm.

The K-means algorithm is intended for situations in which all variables are of
the quantitative type, and squared Euclidean distance is chosen as the dissimilarity
measure.

P
d(x;, @) Z (i — xirg)” =| @ — 2 || (2.4.1)
j=1

Since the goal is to assign close points to the same cluster, a natural loss (or
energy) function would be

1 K
52 Yo dwa (2.4.2)

k=1C(i)=k C(i")=k

The above equation characterizes the extent to which observations assigned to the
same cluster tend to be close to one another. The minimum value for the equation
can be obtained by assigning the N observations to the K clusters in such a way
that within each cluster the average dissimilarity of the observations from the cluster
mean, as defined by the points in that cluster, is minimized.

2.4. Clustering Algorithms 21

Listing 2.2: K-means clustering algorithm

1. For a given cluster assignment C, the total cluster variance

is minimized with respect to {mq,...,mg} yielding
the means of the currently assigned clusters
2. Given a current set of means {mi,...,mg}, equn 2.3.4

is minimized by assigning each observation to the closest cluster mean.
That is, C (i) =argmini<k<r || ©; —my ||
3. First two steps are iterated until the assignments do not change.

An iterative descent algorithm for solving

= Mmine Z Z | i — zp ||? (2.4.3)

k=1C(i)=k

can be obtained by noting that for any set of observations S

Tg = argming, Z | 2 —m |2 (2.4.4)
i€S

Hence we can obtain C* by solving the enlarged optimization problem

MANG, (10} K Z > llw—ma | (2.4.5)

k=1C(i)=k

This can be minimized by an alternating optimization procedure given by K-means
clustering algorithm in Listing 2.2. Each of steps 1 and 2 reduces the value of the
criterion (eqn 2.4.5, so that convergence is assured. However, the result may repre-
sent a suboptimal local minimum. In addition one should start the algorithm with
many different random choices for the starting means, and choose the solution having
smallest value of the objective function.

K-means algorithm can be extended to perform unsupervised learning using neural
networks. These networks will look for regularities, or trends in the input signals, and
make adaptations according to the function of the network. Even without being told
whether it is right or wrong, the network still must have some information about how
to organize itself. This information is built into the network topology and learning
rules. Competition between processing elements could form a basis for learning.
Training of competitive elements could amplify the responses of specific groups to
specific stimuli. As such, it would associate those groups with each other and with
a specific appropriate response. Such a procedure was developed by Teuvo Kohonen
termed as Self-Organizing Maps (SOM) neural networks, and was inspired by learning
in biological systems [33].

22

2. Unsupervised Learning

Self-Organizing Maps

3.1 Introduction

Self-Organising Map (SOM) [33] is a neural network model that is based on unsu-
pervised learning. It is an effective method for clustering and visualization of high-
dimensional data. It proved to be a valuable tool in data mining and Knowledge
Discovery in Databases (KDD)! [36]. SOM has applications in pattern recognition,
image analysis, process monitoring [42], organization of document collections [43] etc.
In [48] a number of data analysis cases related to economics are presented in which
the SOM has been an important tool. More examples of fruitful usage of the SOM
in various engineering tasks can be found for example in [54] [55]. A comprehensive
bibliography of SOM research has been compiled by Kaski et al. [56].

A SOM consists of neurons organized on a regular low-dimensional grid. The
number of neurons can vary from a few dozen upto several thousand. Each neuron
is represented by a d-dimensional weight vector also called as prototype vector or
codebook vector , where d is equal to the dimension of the input vectors. The neurons
are connected to adjacent neurons by a neighborhood relation, which dictates the
topology, or structure, of the map. The topology can be broadly divided to two factors:
local lattice structure and the global map shape [57]. Examples of rectangular and
hexagonal lattice structures are shown in figure 3.1, and examples of different kinds
of map shapes in figure 3.2.

The SOM training algorithm resembles the vector quantization (VQ) algorithms,
such as k-means [58]. The important distinction is that in addition to the best-
matching weight vector is stretched towards the presented training sample, as in
figure 3.3. The end result is that the neurons on the grid become ordered: neighboring
neurons have similar weight vectors.

Since the weight vectors of the SOM have well-defined low dimensional coordinates
on the map grid, the SOM is also a vector projection algorithm [59]. Together the
prototype vectors and their projection define a low dimensional map of the data
manifold.

IThe non-trivial extraction of implicit, unknown, and potentially useful information from data

24 3. Self-Organizing Maps

;/\\
2 [] .‘/ ® \\\. L

e /& @ o @ LA N

LI I N Y)
/@ /O, O\ O\ @ A N
SR e ® o> o @
* @ (@) o o ~ Y 7
. e e @ L] ® . '\./ /./ .

, - -
. ‘\\‘. - e e [o \\./// L []
a) Hexagonal grid b) Rectangular grid

Figure 3.1: : Discrete neighborhoods (size 0, 1 and 2) of the centermost unit:

a) hexagonal lattice, b) rectangular lattice. The innermost polygon corresponds
to O-neighbourhood, the second to the l-neighbourhood and the biggest to the 2-
neighbourhood

R 7l
\ ~

a) Sheet b) Cylinder ¢} Toroid

Figure 3.2: Different map shapes. The default shape (a), and two shapes where the
map topology accommodates circular data: cylinder (b) and toroid (c).

3.2. Algorithm 25

3.2 Algorithm

The training algorithm is simple, robust to missing values, and - perhaps most im-
portantly - it is easy to visualize the map. These properties make SOM a prominent
tool in data mining, data exploration and cluster visualisation phase. The learning
process of the SOM is as follows:

1.

Initialisation phase: Initialise all the neurons in the map with the input
vectors randomly.

. Data normalization: For a better identification of the groups the data have

to be normalized. We employed the ‘range’ method where each component of
the data vector is normalized to lie in the intravel [0,1].

SOM Training: Select an input vector x from the data set randomly. A best
matching unit (BMU) for this input vector, is found in the map by the following
metric

[= me|l = min {{lz —mi[}

where m; is the reference vector associated with the unit 7.

Updating Step: The reference vectors of BMU and its neighborhood are up-
dated according to the following rule

mi(t) + at) - hei(t) - [2(t) — ms()], i€ Nu(t)

e+ 1) = {miu), i ¢ N1

where
hei(t) is the kernel neighborhood around the winner unit c.

t is the time constant.
z(t) is an input vector randomly drawn from the input data set at time ¢.
a(t) is the learning rate at time .

N,(t) is the neighborhood set for the winner unit c.

The above equation make BMU and its neighborhood move closer to the input
vector. This adaptation to input vector forms the basis for the group formation
in the map.

Data groups visualisation: steps 3 and 4 are repeated for selected number
of trials or epochs. After the trails are completed the map unfolds itself to the
distribution of the data set finding the number of natural groups exist in the
data set. The output of the SOM is the set of reference vectors associated with
the map units. This set is termed as a codebook. To view the groups and the
outliers discovered by the SOM we have to visualize the codebook. U-Matrix is
the technique typically used for this purpose.

26 3. Self-Organizing Maps

L] L L L
.
\ . .
ot
o °
L L]
s BMU
- . ®
. r

Figure 3.3: Updating the best matching unit (BMU) and its neighbors towards the
input sample with . The solid and dashed lines correspond to situation before and
after updating, respectively

In the thesis, the distance computation is modified based on the two factors:

e Missing Values: In the thesis, these are represented by the value of NAN in the
vector or data matrix. Missing components are handled by simply excluding
them from the distance calculation. It is assumed that their contribution to
the distance ||z — m;|| is zero. According to [60], this is a valid solution as the
same variables is ignored in each distance calculation over which the minimum
is taken.

e Mask: Each variable has an associated weighting factor. This is primarily used
in binary form for excluding certain variables from the BMU-finding process (1
for include, 0 for exclude). However, the mask can get any values, so it can be
used for weighting variables according to their importance.

With these changes, the distance measure becomes:

lz —m;|| = Z wg, (T — mk)2 (3.2.1)
keK

where K is the set of known variables of sample vector =, x; and my, are the k"
components of the sample and weight vectors and wy, is the k" mask value (mask(k)).
After finding the BMU, the weight vectors of the SOM are updated so that the BMU
is moved closer to the input vector in the input space. The topological neighbors of
the BMU are treated similarly. This adaptation procedures stretches the BMU and

3.3. SOM as clustering technique 27

Figure 3.4: Different neighborhood functions. From the left ’bubble’ h; (t) =
1 (ot — de;), 'gaussian’ he; (t) = e_dgi/%tz, ‘cut-gauss’ he; (t) = e—dei/207 1 (ot — dei)s
and ’ep’ hg; (1) = max {0, 1—(o¢ — dci)Q}, de; = ||re — ;]| is the distance between
map units ¢ and ¢ on the map grid and 1 (z) is the step function: 1(z) =0if x <0

and 1(z) = 1if 2 > 0. The top row shows the function in 1-dimensional and the
bottom row on a 2-dimensional map grid. The neighborhood radius used is o, = 2.

its topological neighbors towards the sample vector as shown in figure 3.3. As listed
in the SOM algorithm, the SOM update rule for the weight vector of unit ¢ is:

mi (t+1) = my () + a (t) he () [z () — mg (£)] (3.2.2)

The input vector z (t) is an input vector randomly drawn from the input data set at
time ¢, he; (t) the neighborhood kernel around the winner unit ¢. The neighborhood
kernel is a non-increasing function of time and of the distance of unit ¢ from the
winner c. It defines the region of influence that the input sample has on the SOM.
Different kernel neighborhoods that can be used with SOM are summarized in Figure
3.4, a(t) represents the learning rate, which is also a decreasing function of time used
to converge the map to the groups discovered by SOM in the data set. Figure 3.5
shows the different learning rates and their distributions.

For faster learning, SOM can be trained in a batch mode. Batch training algorithm
is also iterative, but instead of using a single data vector at a time, the whole data set
is presented to the map before any adjustments are made - hence the name “batch”.
In each training step, the data set is partitioned according to the Voronoi regions of
the map weight vectors, i.e each data vector belongs to the data set of the map unit
to which it is closest. After this, the new weight vectors are calculated as

Z;L:1 hic (1) z;

m; (t + 1) = Z?:I hic (t)

(3.2.3)

3.3 SOM as clustering technique

SOM clusters the data set based on its quantization capability on the given input
data set. Quantization reduces the original data set to a small representative set

28 3. Self-Organizing Maps

245

a4

035

as

Figure 3.5: Different learning rate functions: ’linear’ (solid line) «(t) =
ag (1 —=t/T), 'power’ (dot-dashed) «a(t) = ay (0.005/a0)t/T and "inv’ (dashed)
a(t) = ag/ (1 +100t/T), where T is the training length and «y is the initial learning
rate.

of prototypes to work with. The representative set of prototypes can be utilized in
computationally intensive tasks, like clustering or projection, to get approximative
results with reduced computational cost [45]. This reduction is important especially
in data exploration. In addition, since the prototypes are formed as averages of the
data samples, the effect of zero-mean noise as well as outliers are reduced [46].

Vector quantization algorithms, try to find a set of prototype vectors m; =
1,..., M which reproduce the original data set as well as possible. The best known
algorithm to find these prototypes is the k-means alogorithm [53]. Quantization algo-
rithms finds a set of M = k prototype vectors which minimize the quantixation error
E,, used to measure the quatization property of the algorithm.

1 N d
Eq= DO fwy =y

i=1 j=1

" (3.3.1)

where b; is the index of the best-matching prototype, r is the distance norm. The point
density of the prototypes follows the density of the training data. Asymptotically it
holds that:

p(m) < p(z) a4 (3.3.2)
where d is the dimension and p (z) and p (m) are the probability density functions
of the input data and the protoype vectors respectively.

The SOM is closely related to the k-means algorithm. If the neighborhood kernel
value is one for the BMU and zero elsewhere (hy,; = 0 (b;,7) in Eq. 3.2.2, the SOM
reduces to the adaptive k-means algorithm. Also batch map reduces to batch k-means.

The difference between classical vector quantization and SOM is that the SOM
performs local smoothing in the neighborhood of each map unit. This smoothing cre-
ates the ordering of the prototypes, but when the neighborhood radius ¢ is decreased

3.3. SOM as clustering technique 29

(a) Border effect (b) Interpolating units

Figure 3.6: Two side effects caused by the neighborhood function: (a) border effect
and (b) interpolating units. The + are the training data, and the connected grid of
circles is the map.

during the the training, it also implements a simulated annealing type of learning
scheme that makes the quantization process more robust. There are also two side
effects (fig. 3.6).

e Border effect: The neighborhood definition is not symmetric on the borders
of the map. Therefore, the density estimation is different for the border units
than for the center units of the map [47]. In practice, the map is contracted on
the borders. This has the effect that the tails of the marginal distributions of
variables are less well presented than their centers. In some cases, this may help
to reduce the effect of outliers, but in general, this is a weakness of the SOM.

e Interpolating units: When the data cloud is discontinuous, interpolating units
are the data distribution. However, in case of some analysis tools, for example
single linkage clustering, these may give false cues of the shape of the data
manifold and may need to be deemphasized or completely left out of analysis.

If the input data set considered as the set of stochastic data variables x that is
distributed according to a probability density function p (z) then the SOM forms
an approximation to this probability density function p (z), using a finite number of
centroid vectors m; (i = 1,...,k). Now these point density of the prototypes follows
roughly the probability density of the data. Once the centroid is chosen, the approx-
imation of x means finding the centroid vector m, closest to x vector in the input
space. The optimal solution of m; minimizes the average expected value E,, of the
quantization error E,, defined as

Fuvg = [Nl =mel*p(s) d (333)

According to [61] , if the number of centroid vectors is large, the optimal selection
of m; values is such that their point density (Eq. 3.3.2) approximates to
2
2

p(m) o< p(z) ¥~ G (3.3.4)

30 3. Self-Organizing Maps

Variables play an important role in quantization properties of the SOM. The
importances of variables defines the viewpoint of the quantization. When quantization
has a central role in data analysis, it is important to know what is this viewpoint,
because any analysis based on the quantization will reflect how well the variables
are represented.By adding, removing, or rescaling variables, a different quantization
result is acquired because the quantization error function F, changes correspondingly.
How well each variable is represented in the quantization depends on how strongly
the variable effects the total quantization error.

The quantization error E, can be expressed in terms of variable-wise errors Ej:

d
1
2
=~ ; E; (3.3.5)

In order to measure the granularity of the quantization with respect to each variable,
the errors I/; can be compared to quantizations performed on each variable separately
with increasing number of quantization points E; (k), k = 1,..., N. Depending on
the distribution characteristics of the variable, the quantization error decreases at
different rates. For example, for a uniformly distributed variable, the quantization
error reduces according to formula E; (k) = O'JQ-k‘_Z, where o is the standard deviation
of the variable. we use this SOM clustering capability to discover the groups of
Gamma ray bursts data sets in the case study of GRB analysis described in this
chapter. In chapter 6 we describe a SOM based system for automatic classification of
images based on the clustering property of SOM

N

d
1
By =) 5 D lwis = mu
i=1

i=1

3.4 SOM as visualization technique

One of the most important property of the SOM is that it is an efficient method
for visualization of high-dimensional data. The SOM is thus an excellent tool in
exploratory data analysis [50]. Visualization methods try to find low-dimensional
coordinates that preserve the distances (or the order of distances) between the orig-
inally high-dimensional objects. A classical projection method is multi-dimensional
scaling (MDS) [49] which tries to preserve pairwise distances between all objects while
reducing the dimension. The error function to be minimized is:

Emas =YY (dij — d};)’ (3.4.1)

i=1j=1

where d;; is the distance between data samples ¢ and j in the input space ||z; — x|,
and dgj is the corresponding distance between the projection coordinates in the output
space. There is also a non-metric version of MDS which tries to preserve the rank
order of the distances. other prominent projection techniques are sammons’ mapping
[51], Curvilinear Component Analysis(CCA) [52]

N N
sammons'mapping : Esqm = Z Z (dij — d;j)Q /d;j (3.4.2)

3.4. SOM as visualization technique 31

N N
CCA: Beca =3 (dij — diy)* ™% (3.4.3)

i=1 j=1

For SOM the error function minimization is given by

N M
Eom =Y Y _h(d) (d3)) (3.4.4)

i=1 j=1

where h (.) is the neighborhood kernel function. Since it is monotonically decreasing
function of d, ;» small distances in the outer space are emphasized, also d} ; is dependent
on the density distribution of the input data set. Thus, the definition of locality in
SOM tunes to input data density. Rather than try to preserve the original distances,
the SOM orders prototype vectors on a predefined map grid such that local neigh-
borhood sets in the projection are preserved. SOM is especially good at maintaining
the trustworthiness of the projection: if two data samples are close to each other in
the visualization, they are more likely to be close in the original high-dimensional
space as well. The visualization techniques which are mainly used in this thesis are
described below.

1-xy points
2 - yz points
3 -2 points

SOM 16-4an 2003

(a) Points in threed - space (b) SOM grouping with U-matrix

Figure 3.7: SOM classification of points in threed space

3.4.1 U-matrix

U-matrix (unified distance matrix) representation of the Self-Organizing Map visual-
izes the distances between the map units or neurons. An U-Matrix displays the local
distance structure of the data set.It is a standard tool for the display of the distance
structures of the input data on SOM [50]. The distance between the adjacent neurons
is calculated and presented with different colorings between the adjacent nodes. In
U-matrix color coding scale is used to distinguish various clusters. The clusters and
their outliers, boundaries are represented by different colors. This can be a helpful
presentation when one tries to find clusters in the input data without having any
a priori information about the clusters. Teaching a SOM and representing it with

32 3. Self-Organizing Maps

“ariablel “ariable2

ad 2

“ariahle3 U-matrix

1.5 1.4
1 . 12

1
0s 0
il . 06
- BB

0.2

SOM 20-Jar-2003

Figure 3.8: Component planes for the data points in 3-D space

the U-matrix offers a fast way to get insight of the data distribution without human
intervention. The U-Matrix is constructed on top of the map. The color coding of a
map unit is based on the factor “U-height”. The unified distance matrix (U-matrix)
visualizes all distances between each map unit and its neighbors. This is possible
due to the regular structure of the map grid: it is easy to position a single visual
marker between a map unit and each of its neighbors. The map prototypes follow
the probability density function of the data, the “u-height” distances are inversely
proportional to the density of the data. Thus, cluster borders can be identified as
different colors separating the map units of low distances that are with in the cluster.
This interpretation can also be used in clustering. Let ¢ be a unit on the map, NN (i)
be the set of immediate neighbors on the map, m (i) the weight vector associated with
neuron ¢, then

U — height (i) = > d(m(i) — m(j)) (3.4.5)
JENN((3)

where d (m (i) —m (j)) is the distance used in the SOM algorithm to construct the
map. Thus U-Matrix is a display of the U-heights on top of the grid positions of the
neurons on the map. Once the u-heights are determined contrast color coding are
assigned to various clusters in the following way:

- U-height(i) = mean(U — heights) = (clustercenter)

- U-height(i) < mean(U — heights) = (intercluster)

- U-height(i) > mean(U — heights) = (intracluster)

- U-height(i) < min(U — heights) = U-height(i) = 0 (boundary)
Properties of the U-Matrix:

3.4. SOM as visualization technique 33

e the position of the projections of the input data points reflect the topology of
the input space, this is inherited from the underlying SOM algorithm

e weight vectors of neurons with large U-heights are very distant from other vec-
tors in the data space

e weight vectors of neurons with small U-heights are surrounded by other vectors
in the data space

e The U-Matrix realizes the emergence of structural features of the distances
within the data space.

e Outliers, as well as possible cluster structures can be recognized for high dimen-
sional data spaces.

e The proper setting and functioning of the SOM algorithm on the input data
can also be visually checked.

Figure 3.7 shows the SOM classification of points distributed in threed space. The
data set is constructed from the random vectors taken from a cube in 3D space. The
prototype vectors represented by '+’ in 3.7(a) are chosen at random to assign to
the SOM map. SOM discovered the three groups (XY, YZ, ZX plane points), the
U-matrix shows these groups in blue color well separated by the boundaries 3.7 (b).

3.4.2 Component plane visualisation

Component plane representation displays the values of each model vector element,
i.e. values of each variable, on the map grid. In figure 3.8, the three component
planes (XY, YZ, ZX) are shown. For each visualized variable, or vector component,
one SOM grid is visualized such that the colors (or for example sizes) of the map unit
markers change according to the visualized values. Relationships between variables
can be seen as similar patterns in identical places on the component planes: whenever
the values of one variable change, the other variable changes, too. Although any kind
of projection could be used to link the component planes together, the SOM grid
works particularly well in this task. Because of the dynamic focus of the map, the
behavior of the data can be seen irrespective of the local scale. By inspecting all the
component planes simultaneously, one may possibly observe relationships between
variables and even roughly distinguish structure of the input data. Ordering of the
component planes makes it easier to investigate a large number of component planes
simultaneously. The basic idea is to arrange the component planes in such a way that
similar planes (that is, interrelated variables) lie close to each other; this organization
is also carried out using the SOM algorithm. Coloring of the SOM was used with the
difference that the changes in the colors between neighboring units were chosen to
reflect cluster structure of the model vectors of the map.

34 3. Self-Organizing Maps

Data

Warehousing Data Mining Visualization

Figure 3.9: SOM based system for GRB Data Analysis

3.5 Case study on Astrophysical experiment: GRB
Data Analysis

Gamma ray bursts (GRBs) were arguably the biggest mystery in high-energy astron-
omy. They’ve been the target of intense research and speculation by astronomers.
Although 3 decades have passed since their discovery, very little is known about the
fundamental physical mechanisms behind these phenomena [34]. They are considered
to be short-lived bursts of gamma-ray photons, the most energetic form of light. At
least some of them are associated with a special type of supernovae, the explosions
marking the deaths of especially massive stars. Lasting anywhere from a few millisec-
onds to several minutes, gamma-ray bursts (GRBs) shine hundreds of times brighter
than a typical supernova and about a million trillion times as bright as the Sun, mak-
ing them briefly the brightest source of cosmic gamma-ray photons in the observable
Universe. GRBs are detected roughly once per day from wholly random directions of
the sky. GRBs exhibit great morphological diversity and complex temporal behavior:
To analyze their properties it is beneficial to find the classes that exists in the GRB
data. Studies based on GRB bulk properties (such as burst duration and spectral
hardness) have proved to be fruitful, and the discovery of distinct classes in the GRB
population might lead to some new astrophysical insight.

In 1991 NASA launched the Compton Gamma Ray Observatory carrying an in-
strument called the Burst and Transient Source Experiment, or “BATSE” for short.
BATSE was designed specifically for the study of the enigmatic gamma ray bursts and
has led to a new understanding of their origin and distribution in the universe. For
the GRB analysis we used the data sets taken from the BATSE catalog data[35]. The
gamma ray burst data sets are organised in in a series of burst catalogs containing all
burst data from the start of the mission. The catalogs follow the naming convention
“BATSE nB Gamma Ray Burst Catalog”, where n is an integer beginning at 1. The
latest published catalog as of 1999 March is the 4B Catalog. Each catalog contains
all burst data from the start of the mission. For example, the 2B catalog contains

3.5. Case study on Astrophysical experiment: GRB Data Analysis 35

all the data from the 1B catalog, the 3B catalog contains all data from the 2B (an
thus from the 1B), etc [35]. The BATSE GRB Team has the most recent published
catalog available on the World Wide Web. As of 1999 March, this corresponds to the
4B Catalog.

GRB class properties are indistinct, as overlapping characteristics of individual
bursts are convolved with effects of instrumental and sampling biases [38]. Table 3.1
shows some important attributes useful for classifying gamma ray bursts.

Attribute Description

Flux The rate of flow of photons. The peak flux
times are expressed in decimal seconds rel-
ative to the burst trigger time for the end
of the interval in which the flux was calcu-
lated. The fluxes are taken on three time
scales: 64 ms, 256ms, 1024ms.

Fluence The product (or integral) of radiation flux
and time. The four energy channels 1,2,3
and 4 cover the fluence with energy ranges
20-50 keV, 50-100 keV, 100-300 keV, and
E > 300 keV respectively.

Burst duration | Time it takes for 90% of the total burst
Parameter (T90) | flux to arrive, taken from duration table of
BATSE catalog

Burst duration | Time it takes for 50% of the total burst
Parameter (T50) | flux to arrive, taken from duration table of
BATSE catalog

Hardness ratio Ratio of fluence in different channels

Table 3.1: Important Attributes of BATSE catalog used in GRB classification by
various experiments

Previous Studies

Attempts to find the classes in the data sets have been done with standard statistical
analysis techniques [37], with machine learning approach based on decision trees [38]
and with self-organising maps [40].

Mukherjee et.al,. has revealed the presence of the 3 GRB sub classes performing
statistical analysis on BATSE 3B data [37]. Three attributes have used in this exper-
iment S23 fluence (time integrated flux in the 50 and 300 KeV range), T90 duration
(time interval during which 90% of the bursts emission is received) and HR321 hard-
ness ratio (the fluence in the 100 to 300 KeV band divided by the fluence in the 25
to 100 keV band).

A more extensive study of gamma-ray burst classes using Al techniques was con-
ducted by Hakkila et al. [38]: the supervised decision tree classifier C4.5 was used

36 3. Self-Organizing Maps

for this purpose. The data set consists of six basic parameters: T90 duration, flux,
fluence, and three hardness ratios (HR21, HR32 and HR43). A natural division of two
classes is expected based on duration (short bursts have durations < 2 seconds; long
ones have durations > 2 seconds). The results of the classification is shown in the
figure 3.10(a). It should be noted that a clean division does not exist between these
subclasses; there is considerable overlap in the distributions. This overlap represents
the existence of new class which is identified as a new bias in the BATSE instrument,
suggesting that the third class may be an instrumental effect and not a true separate
source population. Rajaneimi et.al has performed experiments using self-organising
map on the BATSE 3B Catalog [40]. the experiment is conducted using flux, duration
and fluence parameters. The results of the SOM algorithm using a gaussian kernel
are shown in the figure 3.10(b). The SOM map could able to classify the class 1 from
class2, but the class 3 is not clearly separated from class 1. Map units belonging to
class 3 are mostly placed on the border between classes 1 and 2.

In this thesis, experiments are conducted with the SOM system with cut-gaussian
kernel developed during the PhD Course. Two case studies are performed using
different parameter sets.

Case Study 1:

We first experimented with a data set of 5 dimensional parameter space: which
represents the burst arrival times along with their uncertainties at 50 and 90 seconds
and the flux of the burst arrival on 64ms timescale. We used a SOM with 10 x 10 map
units, randomly initialized weight vectors, and hexagonal topology and cut-gaussian
kernel neighborhood. Training is done on 100 randomly initialized maps, and the
map with the smallest average quantization error was chosen for further examination.
The map was then labeled using the training data set for map calibration. Figure
3.11 shows the component data visualisation for the data set.

Figure 3.10(c)shows the data groups discovered by SOM in the BATSE catalog
data. Basically it found 3 groups. classes 1 and 2 are visually distinct, in the map.
However class 3 is not properly distinguishable from class 1. Notably, the map mis-
classified class 3 bursts far more often than class 1 or class 2 bursts. This supports
the Hakkila et.al., hypothesis that basically there exists 2 groups of GRB’s, class 1
and 2, which are well separated in the parameter space. The formation of class 3 is
basically due to the bias in the instrument.

Case Study 2:

Bagoly et al. study [39] indicated only three variables are needed to characterize
the relationships between the bursts in the database, namely the fluence, burst du-
ration (T90), and flux. In this case study we used these 3 parameters to study the
GRB classification. We used a SOM with 10 x 10 map dimension, with a hexagonal
topology and cut-gaussian kernel neighborhood. Training is done on 100 randomly
initialized maps, and the map with the smallest average quantization error was chosen
for further examination. SOM now visualizes two different groups separated by well
defined boundary figure 3.12.

3.5. Case study on Astrophysical experiment: GRB Data Analysis

100.0

=}
T
il

0.01 0.70 1.00 100.00 1000.00
duration (seconds)

(a) Hakkila classification: HR32 vs. duration diagram. Long and short bursts
train the supervised classifier C4.5, even though there is not a clean subclass
separation. [38]

(b) Rajniemi Classification: SOM Map classification of
BATSE 3B Catalog [40]

(¢) Our Classification: SOM Map classification of BATSE 4B
Catalog

Figure 3.10: GRB Classification models

38 3. Self-Organizing Maps

Component Plane visualisation for duration table in Batse 4B

uncertainity in T50 uncertainity in T90
12 BE
L
t X :
.
2 a
:
e
E
Jo.s L

Figure 3.11: Component plane distribution for BATSE data

U-matrix

BATSE 4B data Classification: SOM with cut gaussian kernel

Figure 3.12: BATSE data classification: SOM with cut-gaussian kernel, the two
groups are visually distinct[blue color codes] with a well separated boundary

Ensemble Learning

4.1 Introduction

In this chapter we introduce ensemble learning techniques in more detail. Experi-
ments on several benchmark data sets and real world data sets showed an improved
classification results from ensemble learning techniques. It is the more active areas
of research within machine learning and is concerned with methods for improving
accuracy in supervised learning [62]. These algorithms combine “base classifiers” to
predict the label for the new data points (fig 4.1). The base classifiers can be any of
the standard supervised learning algorithms such as neural networks, decision trees,
support vector machines, instant based learners such as k-nearest neighbors [K-NNJ.
In this thesis we concentrate on 2 ensembles techniques AdaBoost and Bagging. The
following machine learning algorithms are used as basis for making these ensembles:

e Random forests, a tree based classifier based on decision trees.
e Back-propagation neural network [BPNN] of neural network category.

Ensemble methods aim at improving the predictive performance of a given statis-
tical learner or classifier. These algorithms construct a set of hypotheses (sometimes
called a “committee” or “ensemble”) to explain the data. These hypotheses are then
combined in some fashion to predict the label of new data points [64]. The training
data set is a collection of the data points associated with labels. The data points,
usually a vector of features (z).

To formalize the things lets start from the supervised learning technique. In super-
vised learning, a classifier is given a set of training examples of the form {(z1,41),- .., (Tm, Ym)},
for some unknow function y = f(x). The description z; is usually vector of the
form (x; 1,2 2,...,2;) whose components are real or discrete values, such as height,
weight, age, eye-color, and so on. These components of the description are often
referred to as the features or attributes of an example. The values of y are typically
drawn from a discrete set of classes Y in the case of classification or from the real line
in the case of regression. Our work is primarily focused on the classification task. A
learning algorithm L, is trained on a set of training examples, to produce a hypoth-
esis h, also called as classifier. Given a new example z, the hypothesis predicts the

40 4. Ensemble Learning

Data Vector x;

Base
casser]

Npdividal Ciassifationé |

Combination Technique
Resultant
classification

Figure 4.1: The basic architecture of an ensemble.

corresponding y value. The aim of the classification task is to learn a hypothesis that
minimizes the error in predictions on an independent test set of examples (generali-
sation error). For classification, the most common measure for error is the 0/1 loss
function given by:

0: ifC(x)=f(x)

errore. :{ 1: otherwise

Supervised algorithms search for a best possible hypothesis h to f that can be
applied to assign labels to new x values. Ensemble learning algorithms construct
a set of hypothesis {hi,ha,...,h,} and construct a combined classifier H* (z) =
T (hy(z),ha(x),...,hy (x)) to predict the label of new data points, where T a cri-
terion to combine the hypothesis. Experimental evidence has shown that ensemble
methods are often much more accurate than any single hypothesis [95].

According to Dietterich [63], learning algorithms that output only a single hypoth-
esis suffer from three problems: the statistical problem, the computational problem,
and the representation problem. These can be partly overcome by ensemble methods

e The statistical problem - In searching a large hypothesis space given a certain
number of available training examples, the possibility arises where a single hy-
pothesis within this space will not predict future data points well. A vote on
several equally good classifiers might reduce this risk.

e The computational problem - The learning algorithm may not be able to find
the best hypothesis within the hypothesis space. Certain algorithms rely on
heuristic methods to approximate hypotheses, as finding the hypothesis that
best fits the training data is sometimes computationally intractable. Ensembles
may be seen as a way of compensating for the use of these imperfect search
methods.

4.2. Ensemble Mechanics 41

e The representation problem - The hypothesis space may not contain any hy-
pothesis that are good approximations to the true target function that maps
any given training example Ai to its respective class Ci. Combining several
viable functions (that are only fair approximations) may expand the space of
functions and thus form a more accurate approximation to the true target func-
tion.

A learning algorithm that suffers from the statistical problem is said to have high
“variance”. An algorithm that exhibits the computational problem is sometimes de-
scribed has having “computational variance”, and a learning algorithm that suffers
from the representational problem is said to have high “bias”. Hence, ensemble meth-
ods can reduce both the bias and the variance of learning algorithms.

4.2 Ensemble Mechanics

Ensembles can be generalized in various directions. In [67], ensembles are formalized
in terms of Bayesian learning theory. Bayesian learning theory is used for decision
making using the knowledge of prior events to predict future events. Bayes first pro-
posed his theorem in his 1763 work (published two years after his death in 1761),
An Essay Towards Solving a Problem in the Doctrine of Chances. Bayes’ theorem
provided, for the first time, a mathematical method that could be used to calculate,
given occurrences in prior trials, the likelihood of a target occurrence in future trials.
According to Bayesian logic, the only way to quantify a situation with an uncertain
outcome is through determining its probability. Bayes’ Theorem is a means of quanti-
fying uncertainty. Based on probability theory, the theorem defines a rule for refining
an hypothesis by factoring in additional evidence and background information, and
leads to a number representing the degree of probability that the hypothesis is true.

Bayesian theory stipulates that in order to maximize predictive accuracy, instead
of using just a single learning algorithm, one should ideally employ all hypotheses
in the hypothesis space. Assume that a statistical model allows the inference about
the variable y in the form of the predictive probability density P (y|z), where z is a
vector of model parameters. Furthermore, assume that we have a data set D which
contains information about the parameter vector x in the form of the probability
density P (z|D). We then obtain

M

PID) = [Pulo) PeiD)de ~ 1 > P (o)

i=1

where M samples {x,}f\il are generated from the distribution P (z|D). This approx-
imation tells us that for Bayesian inference [68], one should average the predictions
of a committee of estimators.

The motivation for pursuing ensembles can be understood by analyzing the pre-
diction error of the combined system, which is particularly simple if we use a squared
error cost function. The expected squared difference between the prediction of a
committee member h; and the unknown target ¢ cab be written as

42 4. Ensemble Learning

E(hi—t) =FE(h; — ml—l—ml—t)
= E(hi —m;)” + E (m; —t)° + 2B ((hi — my) (m; — t)) (4.2.1)
= var; +bf

decomposes into the variance var; = E (h; — mi)2 and the square of the bias
b; = m; —t, with m; = E (h;). E(.) stands for the expected value, which is calculated
with respect to different data sets of the same size and possible variations in the
training procedure, parameters used for making the base classifier for ex: different
initializations of the weights in the neural network. Now ¢ can be estimated by forming
a linear combination of the h; which can be given as:

M
t=> ghi=g'f
=1

where f = (f1,..., fM)/ is the vector of the predictions of the committee members
and g = (g1,. .. ,gM)/ is the vector of weights. The expected error of the combined
system is

E(i-1) =E(f-EGfH +EE@GH -1
=E(g (f-E())’ +E(gm—1t)° (42.2)
=g Qg+ (¢'m —t)°

where () is an M x M covariance matrix with

Qij = E[(fi —ma) (fj —my)]
and m = (my,...,m M)/ is the vector of the expected values of the predictions of the
committee members. Here ¢’Qlg is the variance of the committe and ¢'m — ¢ is the
bias of the committee. If we simply average the predictors, i.e., set g; = ﬁ, the last
expression simplifies to

M M
E(i-t) —MQZQ“—&—]\;QZ > QZJ+M2(Z(i—t))2 (4.2.3)
i=1 j=1,j#1

If we now assume that the mean m; = mean, the variance 2;; = var and the inter-
member covariances {);; = cov are identical for all members, we obtain

2

. 1 M= —M
E (t — t)2 = M’UO/I” —+ TCO’U —+ (m@an — t)2 (424)

It is apparent that the bias of the combined system (mean —t) is identical to
the bias of each member and is not reduced. Therefore, estimators should be used

4.3. Methods for constructing the ensembles 43

which have low bias, and regularization - which introduces bias - should be avoided.
Secondly, the estimators should have low covariance, since this term in the error
function cannot be reduced by increasing M. The good news is that the term which
results from the variances of the committee members decreases as 1/M. Thus, if we
have estimators with low bias and low covariance between members, the expected error
of the combined system is significantly less than the expected errors of the individual
members. Thus , a committee can be used to reduce both bias and variance: bias is
reduced in the design of the members by using little regularization, and variance is
reduced by the averaging process which takes place in the committee.

Finally, the generalization error statistic of a committee is a function of the average
error of ensemble members and the average variance (or ambiguity) among them [69].
Optiz and Shavlik [70] empirically verified this claim, showing that ensembles that
consist of highly correct classifiers that disagree as much as possible generalize well.

The relationship between the error rate of the ensemble and the error rates of the
individual can be given by [71]

1+p(N-1)
N

where N is the number of classifiers, p is the correlation among the classifier errors,
E (Bayes) is the error rate obtained using the Bayes rule assuming that all the condi-
tional probabilities are known. E (ensemble) and F (individual) represent the error
rate of a classifier ensemble and the error rate of an individual component classifier
respectively. p = 0 means the error of the whole ensemble decreases proportionally to
the number of the component classifiers while p = 1 means the error of the ensemble
architecture equals to the error of a single component classifier.

E (ensemble) = E (individual) + E (Bayes) (4.2.5)

4.3 Methods for constructing the ensembles

Generally speaking, the classifier ensembles can be divided into parallel ensembles
and sequential ensembles. The categorization scheme can also be done according to
the combining strategies, e.g. the diversity of the classifier ensemble. Jain, Duin and
Mao ?? list a number of popular ensemble methods in their review paper on statistical
pattern recognition. Dietterich [63] describes the ensemble methods from the point
of view of machine learning and we review this categorization scheme in this thesis.
According to him there are two main approaches for constructing ensembles.

e Methods for Independently Constructing Ensembles
e Methods for Coordinated Construction of Ensembles

In the first approach each hypothesis is constructed independently in such a way
that the resulting set of hypotheses is accurate and diverse that is, each individual
hypothesis has a reasonably low error rate for making new predictions and yet the

LA numerical method to solve problems of deconvolution by introducing a priori information
about the smoothness of the expected result [65).

44 4. Ensemble Learning

hypotheses disagree with each other in many of their predictions. If such an ensemble
of hypotheses can be constructed, it is easy to see that it will be more accurate than
any of its component classifiers, because the disagreements will “cancel out.” Such
ensembles can overcome both the statistical and computational problems. Bagging is
the popular technique belonging to this category.

The second approach to designing ensembles is to construct the hypotheses in a
coupled fashion so that the weighted vote of the hypotheses gives a good fit to the
data. This approach directly addresses the representational problem discussed above.
Boosting is the very popular technique belonging to this category. we experiment
with this technique in this thesis.

4.3.1 Bagging

Bagging is a statistical re-sample and combine technique used to improve the classifi-
cation accuracies of a classifier. It based on bootstrapping and aggregating techniques.
The idea of the bootstrap is to generate more (pseudo) data using the information
of the original data. True underlying sample properties are reproduced as closely
as possible and unknown model characteristics are replaced by sample estimates.
Bagging uses bootstrapping to generate multiple versions of a data set. Each of these
data sets have their own classifier. Th predictions from these classifiers are then
combined to get the final classification result. In theory this combination should
perform better than a single classifier built to solve the same problem.
Bootstrapping is based on random sampling with replacement. It generates the
samples more (pseudo) data using the information of the original data. True un-
derlying sample properties are reproduced as closely as possible and unknown model
characteristics are replaced by sample estimates. Therefore, taking a bootstrap i.e.,
(random selection with replacement) of the training set T, one can sometimes avoid
or get less misleading training objects in the bootstrap training set. Consequently, a
classifier constructed on such a training set may have a better performance.
Aggregating actually means combining classifiers [74]. Often a combined classifier
gives better results than individual classifiers, because of combining the advantages of
the individual classifiers in the final solution. Therefore, bagging might be helpful to
build a better classifier on training sample sets with misleaders. Breiman motivated
bagging as a variance reduction technique for a given base procedure, such as decision
trees or methods that do variable selection and fitting in a linear model. It has
attracted much attention, probably due to its implementation simplicity and the
popularity of the bootstrap methodology. At the time of its invention, only heuristic
arguments were presented why bagging would work. Later, it has been shown in ([90])
that bagging is a smoothing operation which turns out to be advantageous when
aiming to improve the predictive performance of regression or classification trees.
In case of decision trees, the theory in confirms Breiman’s intuition that bagging is
a variance reduction technique, reducing also the mean squared error (MSE). The
empirical fact that bagging improves the predictive performance of regression and
classification trees is nowadays widely documented ([90], [91], [92]. On average, when
taking a bootstrap sample of the training set, approximately 37% of the objects are

© 00~ Tk Wi+

4.3. Methods for constructing the ensembles 45

not presented in the bootstrap sample, meaning that possible ’outliers’ in the training
set sometimes do not show up in the bootstrap sample. Thus, better classifiers (with a
smaller apparent error - classification error on the training data set) may be obtained
by the bootstrap sample than by the original training set. These classifiers will be
presented ’sharper’ in the apparent error than those obtained on the training sets
with outliers. Therefore, they will be more decisive than other bootstrap versions
in the final judgment. Thus, aggregating classifiers in bagging can sometimes give a
better performance than individual classifiers. In Bagging [75] (short for Bootstrap
Aggregation Learning) we randomly generate a new training set, based on the original
set, for each ensemble member. Given a training set of size N, from this we uniformly
at random sample N items with replacement, then train a new ensemble member with
this resample. We repeat this for any new ensemble members we wish to create. The
resampled sets are often termed bootstrap replicates [77]; Breiman showed that on
average 63.2% of the original training set will present in each replicate. Listing 5.1
gives the algorithm.

Listing 4.1: Bagging Algorithm

Let M be the final number of predictors required.

Take a training set T{(x1,9v1),(z2,y2), .-, (Tm,Ym)}
for i=1 to M

{

Make a new training set Tpqy by resampling T.

Train a classifier h; with this set Ty, and add it to the ensemble.

}

For any new testing pattern z,the bagged output is:

hbag = ﬁ Zz hi ()

Bagging has proved to be a popular technique, applicable to many problems, but
the explanation for its success remains controversial. Friedman [78] suggests that
Bagging succeeds by reducing the variance component of the error and leaving the
bias unchanged;

while [79] shows evidence that Bagging can in fact converge without reducing
variance. Domingos [80] gives a Bayesian account, and investigates two hypotheses:
Bagging succeeds because

1. it is an approximation to Bayesian Model Averaging [81], and

2. it shifts the prior distribution of the combined estimator to a more appropriate
region of the model space; the empirical results on 26 real and artificial datasets
all support the second hypothesis and contradict the first.

4.3.2 Boosting

Boosting algorithms have been proposed in the machine learning literature by Schapire
([82]) and Freund ([83]). These first algorithms have been developed as ensemble
methods. Unlike bagging which is a parallel ensemble method, boosting methods are

46 4. Ensemble Learning

sequential ensemble algorithms where the weights c; are depending on the previous
fitted functions hq,...,hi_1. Boosting has been empirically demonstrated to be very
accurate in terms of classification, notably the so-called AdaBoost algorithm ([74]).

Boosting algorithms can be viewed as a functional gradient descent techniques
or nonparametric optimization algorithm in function space, as first pointed out by
Breiman ([74]). This view turns out to be very fruitful to adapt boosting for other
problems than classification, including regression and survival analysis. The goal is
to estimate a function h : R — R, minimizing an expected loss

E[(Y,9(X))], €(,): RxR—R*

based on the data T = {(x;,y;),(i=1,...,n)}. The loss function ¢ is typically
assumed to be convex in the second argument. We consider here both cases where
the univariate response Y is discrete (classification problem) or continuous (regression
problem) , since boosting is potentially useful in both cases. The most popular loss
functions, for regression and binary classification, are given in Table 4.1. While the
squared error loss is mainly used for regression, the log-likelihood and the exponential
loss are for classification problems. In this thesis we deal with Adaboost algorithm.

Boosting Loss function

AdaBoost (y,h) =exp(— 2y — 1) h)

LogitBoost | ¢ (y,h) =loga (1 +exp(—2(y — 1) h))
LBoost ((y,h) = (y — h)*

Table 4.1: The exponential, binomial negative log-likelihood and squared error loss
functions for boosting. The miss classification plots are in figure 4.2

AdaBoost algorithm introduced by Freund [83] and Schapire [82] is an extremely
effective method for constructing an additive model. Boosting works by repeatedly
running a given weak learning algorithm on various distributions over the training
data, and then combining the classifiers produced by the weak learner into a single
composite classifier [74]. The first provably effective boosting algorithms were pre-
sented It works by incrementally adding one hypothesis at a time to an ensemble.
Each new hypothesis is constructed by a learning algorithm that seeks to minimize
the classification error on a weighted training data set. The goal is to construct a
weighted sum of hypothesis such that hyoost (75) = D) wrhi (x;) has the same sign
as y; the correct label of x;.

Boosting resample the data set randomly with a non uniform probability distribu-
tion. It is an additive model of ensembles that predicts the class of a new data point
by taking an weighted sum of a set of component models. The component models
and the weights used in these algorithms fits the data well. Statistically these models
resemble generalized additive models, where the choice of one component hypothesis
influences the choice of other hypotheses and the weights assigned to them. Boost-
ing works by repeatedly running a learning algorithm on various distributions over
the training data, and then combining the classifiers produced by the learner into

4.3. Methods for constructing the ensembles 47

Figure 4.2: Loss functions of the margin for binary classification. Zero-one misclas-
sification loss (solid line), log-likelihood loss (dashed line), exponential loss (dotted
line), squared error loss (dashed/dotted).

the single composite classifier. The boosting algorithm takes as input a training set
T = ((x1,Y1) - - (Tm, ym))of m examples, where each instance z; is a vector of at-
tributes drawn from the input space X and y; belonging to the finite label set Y is the
class label associated with ;. In boosting classifiers and training sets are obtained
in a strictly deterministic way. Both training sets and classifiers are obtained sequen-
tially in the algorithm, in contrast to bagging, where training sets and classifiers are
obtained randomly and independently from the previous step of the algorithm. At
each step of the boosting, training data are reweighed in such a way that incorrectly
classified objects get larger weights in a new modified training set [89]. AdaBoost
manipulates the training examples to generate multiple hypotheses. It maintains the
probability distribution p; () over the training examples. In each iteration [it weights
the training samples with the probability distribution p; (). The learning algorithm
is then applied to produce the classifier h;. The error rate ¢; of this classifier on the
training examples is computed and used to adjust the probability distribution on the
training examples. The effect of the change in the weights is to place more weight on
training examples that were misclassified by h; and less weight on examples that were
correctly classified in the last stage. In subsequent iterations, therefore, AdaBoost
tend to construct progressively more difficult learning problems. The final classi-
fier, hpoost, is constructed by a weighted vote of the individual classifiers hq, ..., hg.
Each classifier is weighted according to its accuracy for the distribution p; that it was
trained on. Listing 4.2 shows the adaboosting algorithm.

Listing 4.2: Adaboost algorithm

1 Input:
2 Training set T={(z1,41), -, (Tm,Ym))
3 with labels y; €Y ={1,...,k}

0 O U

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

48 4. Ensemble Learning

basic learn algorithm base—learner

integer M specifying number of iterations

Initialize Dy (i)=L1 for all i

for t=1,...,M

{

call base—learner , providing it with distribution D;.
Get back a hypothesis hy: X — Y

Calculate the error of hyter =305)z Dt (0)

if 6t>1/2
{
M=t-1
exit

}

Br=e/(1—¢€)

update distribution Dy:
§F (e () = 33)

Dy (i) = 252 4,

else
. Dy (2
Dy (i) = 22
here Z; is a normalization constant
}
Output:
Rboost () = argmazyey 3 4.p, (2)=y logé

There seem to be two separate reasons for the improvement in performance that
is achieved by boosting. The first and better understood effect of boosting is that it
generates a hypothesis whose error on the training set is small by combining many
hypotheses whose error may be large (but still better than random guessing). It
seems that boosting may be helpful on learning problems having either of the fol-
lowing two properties. The first property, which holds for many real-world problems,
is that the observed examples tend to have varying degrees of hardness. For such
problems, the boosting algorithm tends to generate distributions that concentrate on
the harder examples, thus challenging the weak learning algorithm to perform well
on these harder parts of the sample space. The second property is that the learn-
ing algorithm be sensitive to changes in the training examples so that significantly
different hypotheses are generated for different training sets. In this sense, boosting
is similar to Breiman’s bagging which performs best when the weak learner exhibits
such ”unstable” behavior. However, unlike bagging, boosting tries actively to force
the weak learning algorithm to change its hypotheses by changing the distribution
over the training examples as a function of the errors made by previously generated
hypotheses.

Intuitively, taking a weighted majority over many hypotheses, all of which were
trained on different samples taken out of the same training set, has the effect of
reducing the random variability of the combined hypothesis. Thus, like bagging,

4.3. Methods for constructing the ensembles 49

boosting may have the effect of producing a combined hypothesis whose variance is
significantly lower than those produced by the weak learner. However, unlike bagging,
boosting may also reduce the bias of the learning algorithm, as discussed above [84].

Drucker, Schapire and Simard [85] performed the first experiments using a boost-
ing algorithm. They used Schapire’s [83] original boosting algorithm combined with
a neural net for an OCR problem. Followup comparisons to other ensemble methods
were done by Drucker et al. [86]. In [87] used AdaBoost with a decision-tree algo-
rithm for an OCR task. Jackson and Craven [88] used AdaBoost to learn classifiers
represented by sparse perceptrons, and tested the algorithm on a set of benchmarks.

4.3.3 Other techniques

Sharkey [93] points out that a limiting factor in research on combining classifiers is
due to a lack of awareness of the full range of available modular structures. One
reason for this is that there is as yet little agreement on a means of describing and
classifying types of multiple classifier systems in the literature. One possible way of
literature survey of ensembles is to study based on the outputs expected by ensembles
from individual classifiers [94]. These expectations can be grouped into three levels:
a) measurement (or confidence), b) rank and c¢) abstract. At the confidence level, a
classifier outputs a numerical value for each class indicating the belief or probability
that the given patterns belong to that class. At the rank level, a classifier assigns a
rank to each class with the highest rank being the first choice. Rank value cannot
be used in the isolation because the highest rank does not necessarily mean a high
confidence in the classification. At the abstract level, a classifier only outputs a unique
class label or several class labels. The confidence level conveys the richest information,
while the abstract level contains the least amount of information about the decision
being made. Following [1] here we summarize a number of popular ensemble methods
used in the machine learning literature (table 4.2). This is by no means an exhaustive
list.

50

4. Ensemble Learning

Model Info-level Comments

Bagging Confidence Uses bootstrapping to
generate many data sets
for base classifiers

Boosting Abstract Improves margins; un-
likely to overtrain; sensi-
tive to mislabels

Neural tree Confidence Handles large number of
classes

Voting Abstract Assumes independent
classifiers

Sum, mean, median Confidence Robust, assumes inde-
pendent confidence esti-
mation

Random subspace Confidence uses features to generate
many training sets

Generalized ensembles Confidence Considers error correla-
tion

Adaptive weighting Confidence Explores local expertise

Stacking Confidence Good utilization of train-
ing data

Borda count Rank Converts ranks into con-

fidences

Logistic regression

Rank-Confidence

Converts rank into confi-
dence

Dempster-Shafer

Rank-Confidence

Fuses non-probabilistic
confidences

Fuzzy integrals Confidence Fuses non-probabilistic
confidences

Mixture of Local Experts | Confidence Explores local expertise;

(MLE) joint optimization

Hierarchical MLE Confidence Same as MLE hierarchi-
cal

Associative switch Abstract Same as MLE; but no op-

timization

Table 4.2: Some ensemble techniques

Meta Random Forests

5.1 Introduction

Leo Breimans Random Forests (RF) [96] is a recent development in tree based clas-
sifiers and quickly proven to be one of the most important algorithms in the machine
learning literature. It has shown robust and improved results of classifications on stan-
dard data sets. It is throwing very good competition to neural networks, ensemble
techniques and support vector machines on various classification problems. Random
forest are considered to be special type of ensembles using bagging and random split-
ting methods for growing multiple trees. In this chapter we experiment with the
random forests as themselves acting as the base classifiers for making ensembles with
bagging and boosting. These meta random forests are then applied on UCI standard
data sets and compared the results with the original random forest algorithm.
The important properties of random forests can be summarized as follows [97]

e Random forests are computationally effective and offer good prediction perfor-
mance.

e It has proved to be robust to noise,
e Offers possibilities for explanation and visualization of its output.

e It generates an internal unbiased estimate of the generalization error as the
forest building progresses and thus does not overfit.

e It has an effective method for estimating missing data and maintains accuracy
when a large proportion of the data are missing.

e [t can be extended to unlabeled data, leading to unsupervised clustering, data
views and outlier detection.

In previous chapter we seen the construction of ensembling techniques of bagging
and boosting. The success of these ensemble methods is usually explained with the
error convergence of base classifiers [108]. To have a good ensemble one needs base
classifiers which are diverse (in a sense that they predict differently), yet accurate.

52 5. Meta Random Forests

The ensemble mechanism which operates on the top of base learners then ensures
highly accurate predictions. Here we discuss the possibilities of making ensembles of
random forests and how they perform on standard data sets. WEKA, a very nice
machine learning framework is used for this purpose [126]. It facilitates powerful
object oriented programming framework for making ensembles. It provides facilities
for using various machine learning algorithms as base classifiers for ensembles. In
this thesis the ensembles of random forests have been developed by using the WEKA
software framework.

The chapter is organised as follows. First we discuss the random forests in section
5.2. Section 5.3 discuss the error convergence property for random forests. Section
5.4, 5.5 discuss the making of meta random forests with bagging and boosting re-
spectively. Section 5.6 shows the experiments with standard data sets from UCI
repository. Finally in section 5.7 a discussion on performance results on UCI data
sets and comparative studies between meta random forests and the original random
forest are discussed.

5.2 Random Forests

Random forests construct a series of tree-based learners. Each base learner receives
different training set which are drawn independently with replacement from the origi-
nal learning set. Statistically speaking two elements serve to obtain a random forest -
resampling and random split selection. Resampling is done here by sampling multiple
times with replacement from the original training data set. Thus in the resulting
samples, a certain event may appear several times, and other events not at all. About
2/3"4 of the data in the training sample are taken for each bootstrap sample and the
remaining one-third of the cases are left out of the sample. This oob (out-of-bag)
data is used to get a running unbiased estimate of the classification error as trees are
added to the forest. The design of random forests is to give the user a good deal of
information about the data besides an accurate prediction. Much of this information
comes from using the oob cases in the training set that have been left out of the
bootstrapped training set. Random split selection selects a subset of features to grow
the nodes in the tree. It is also used to get estimates of variable importance. Thus
random forests perform randomized selection in both rows (by random sampling) and
in columns (by random splitting) for better classification results.
According to [96] the formal definition for random forests is as follows,
A random forest is a classifier consisting of a collection of tree structured classifiers
{h(x,0),k=1,...} where the {O} are independent identically distributed random
vectors and each tree casts a unit vote for the most popular class at input x.
Each tree is grown as follows:

e If the number of cases in the training set is n then sample n cases at random
but with replacement, from the original data. This sample will be the training
set for growing the tree.

e If there are M input variables, a number m << M is specified such that at each

5.2. Random Forests 53

node, m variables are selected at random out of the M and the best split on
these m is used to split the node. The value of m is held constant during the
forest growing.

e Each tree is grown to the largest extent possible. There is no pruning ®.

The overall forest error rate depends on two things:

- The correlation between any two trees in the forest. Increasing the correlation
increases the forest error rate.

- The strength of each individual tree in the forest. A tree with a low error rate
is a strong classifier. Increasing the strength of the individual trees decreases
the forest error rate.

The variable selection is an important criterion in classification problems for RF. One
way of variable selection is to to estimate the importance of the m!”* variable, in the
oob cases for the k*" tree, randomly permute all values of the m*" variable. These
altered oob x-values are put down the tree to get the classification results and new
internal error rate. The amount by which this new error exceeds the original test set
error is defined as the importance of the m*" variable. The other measure criterion
could be dealing with the nth case in the data. This nth case data margin at the
end of a run is the proportion of votes for its true class minus the maximum of the
proportion of votes for each of the other class.

After each tree is built, all of the data are run down the tree, and proximities are
computed for each pair of cases. If two cases occupy the same terminal node, their
proximity is increased by one. At the end of the run, the proximities are normalized
by dividing by the number of trees. Proximities are used in replacing missing data,
locating outliers, and producing illuminating low-dimensional views of the data.

To formalize the working of the random forests, Let the forest contain K classi-
fier trees hy (X),...,hk (x) and the joint classifier be h(x). Each training set of n
instances is drawn at random with replacement from the training set of n instances.
Each learning instance is represented by an ordered pair (x,y), where each vector of
attributes x consists of individual attributes A;,i = 1,...,d, (d is the number of at-
tributes) and is labeled with the target value y;,7 = 1,...,¢(c is the number of class
values). The correct class is denoted as y, without index. Each discrete attribute
A; has values v through v,,, (m; is the number of values of attribute A;).We write
p (v;,;) for the probability that the attribute A; has value v, p (y;) is the probability
of the class y; and p(y; | v) is the probability of the class y; conditioned by the
attribute A; having the value vy.

With this sampling of bootstrap replication, on average 36.8% of training in-
stances are not used for building each tree. These out-of-bag instances come handy
for computing an internal estimate of the strength and correlation of the forest. Let

1The technique of removing parts of a decision tree that do not capture true features of the
underlying pattern. Decision Tree algorithms typically employ prunning to avoid overfitting of the
data.

54 5. Meta Random Forests

out-of-bag instances for classifier hy (x) be O (x). Let @ (x,y;) be the out-of-bag
proportion of voted for class y; at input x and an estimate of P (h (x) = y;):

K
> I (hi (x) =55 (x,y) € Ox)
Q (x,y) = "= (5.2.1)
D (e (x);(x,y) € O)
k=1

where I (.) is the indicator function.
Calculate the margin function which measures the extent to which the average
vote for the right class y exceeds the average vote for any other class as follows.

mr (,9) = P (h () =) ~ magP (h () = ;) (5.2.2)
J#y
It is estimated with @ (x,y) and @ (x,y;). Strength is defined as the expected
margin, and is computed as the average over the training set:

n
C
s=—> (Q (x4, y) — mazQ (xi,yj)> (5.2.3)
- j=1
i=1 iy
The average correlation is computed as the variance of the margin over the square
of the standard deviation of the forest:

%i‘ <Q (xi,y) — TE{UQ (xi,yj)> —5?
7= var (mr) _ i=1 =i o
Sd(h())2 S - — 2
ft;\/pk + P+ (pk — D)

where

> I (x)=y)

o (xi,y) €0k

P TS T ()

(%:,y) €Ok

is an out-of-bag estimate of P (hy (x) = y) and

> I (h (%) =195)

. (x6,9)€0k

b > 1 (s (%)

(x:,y) €Ok

is an out-of-bag estimate of P (hy (x) = ¢;) and

5.3. Error convergence in random forests 55

g = argmagQ (x,y;)
J#y

is estimated for every instance x in the training set with @ (x, y;).

Breiman used unpruned decision tress as base classifiers and introduces additional
randomness into the trees [99]. The basic approach of the algorithm is to use a
splitting criterion to determine the most suitable attribute to be used for splitting the
nodes, to grow the tree. The algorithm continually perform this search for finding the
attributes to build the branches of the tree until there is no more splits are necessary.
Gini Index is the common splitting criterion used in the algorithm. It determines the
best attribute to be used for splitting the node, to grow the tree. The attribute with
the highest Gini index is chosen as split in that node. The gini index is given by the
formula:

Gini (A;) ==Y p:)*+ > _p (i) > pyi | vij)*
i=1 j=1 i=1

The other splitting criterion methods used in classification problems are Gain ratio
[101], ReliefF [102], MDL [103], and KDM [104]. Random Forests uses the Gini
index taken from the CART learning system [105].

5.3 Error convergence in random forests

The generalization error is defined as the probability of margin function defined over
the training set space (X,Y). It is given by

PE* = nyy (mg (X, Y) < 0)

where Px y is the probability over the X, Y Space.

The generalization error for random forests can be expressed in terms of two
parameters. One is how accurate the individual classifiers and the other is dependence
between them. The interplay between them gives the insights of the working of the
random forests. Here we derive the convergence factor for generalization error of
random forest. This factor estimates the accuracy of the classifier.

Theorem 5.3.1 As the number of trees increases, for almost surely all sequences
O, ... generalization error PE* converges to

PX,Y (P@ (h (@, X) = Y) — maa:j?gyP@ (h (@, X) = j) < O)

Proof. The theorem can be proved by showing that there exists a set of probability
zero C on the sequence space ©1,0,, ... such that outside of C, for all x,

N
%ZI(h(@n,x) = j) — Po (h(8,x) = j)

56 5. Meta Random Forests

For a fixed training set and fixed ©, the set of all x such that h (©,x) = j is a union
of hyper-rectangles. For all h (0, x) there is only a finite number K of such unions of
hyper-rectangles, denoted by Sy, ..., Sk. Define ¢ (©) = kif {x: h(0,x) = j} = S.
Let Nj be the number of times that ¢ (©,,) = k in the first N trials. Then

N
;T;I(h((amx) =Jj)= ;Xk:mj(xe i)

By the law of large Numbers,

Ne= 3 Y1000 =)

converges as to Po (¢ (0,) = k). Taking unions of all the sets on which conver-
gence does not occur for some value of k gives a set C' of zero probability such that
outside of C,

%ZI(h(@n,x):j)HZP@(gp(@):k)I(XESk).

Thus the theorem proves that as the number of trees grows in the RF the resultant
classifier converges to a probability Pg (h (0,x) = j). This shows that when the RF
itself used as a base classifier for ensembling, with many trees can produce better
convergence factors.

5.4 Bagged Random Forests

In this section we discuss the application of bagging algorithm to grow the ensembles
of random forest. The random forest itself is considered to be the varied version of
bagged decision trees. Here we experiment with the growth of ensembles of random
forests with bagging in order to reduce the overall bias and variance of learning system.
Listing 5.1 describes the bagged random forest algorithm.

Bagging could be used for enhancing the accuracy of random forests. It can be used
to give ongoing estimates of the generalization error (PE*) of the combined ensemble
of forests and the trees within the forests, along with the estimates for the strength and

5.5. Boosted Random Forests 57

correlation.
Listing 5.1: Bagged Random Forests
1 Input:
2 Training Set T with n number of training samples
3 Input vector z; € R*, d is the dimension of the input vector
4 Label of the =z =vy;, y; €{1,...,c}
5 " Base Random Forest =h;
6 Number of random forests to be generated =M
7
8 for each iteration ¢=1...M
9 {
10 Construct a bootstrap sample by randomly drawing n times
11 with replacement from the original data set T
12 T} (z;,y;) <« bootstrapped (T (x;, y;))
13 Generate a random forest h; over the bootstrapped sample T}
14 to minimize the bias over the data set.
15 }
16 The final bagged ensemble,

17 RFbag = ﬁ sz\i1 hz (Tz*)
18 Output: RFy

For each trail ¢ = 1,..., M, a bootstrap training set of size n is sampled (with
replacement), from the original instances. This training set is the same size as the
original data, but some instances may not appear in it while others appear more
than once, generally one-third of the instances are left out from the original set. The
learning system generates a random forest classifier from each of the M bootstrapped
samples.

To classify an instance z, a vote for the class ¢ is recorded by every classifier for
which h; () = ¢ and the final classifier RFy,, is then the class with the the most
votes. Since the error rate decreases as the number of combinations increases, the use
of several RF could be resulting in the better accuracy results.

5.5 Boosted Random Forests

Here we use random forests as a base learner to grow ensembles of boosting. Listing
5.2 describes the algorithm. The purpose of boosting is to sequentially apply the RF
algorithm to repeatedly modified versions of the data, thereby producing a sequence
of RF algorithms h,, (x) ¢ = 1,..., M. The predictions from all of them are then
combined through a weighted majority vote to produce the final prediction:

RFpo0st = sign(A o, (X))

1=

58 5. Meta Random Forests

Listing 5.2: Boosted Random Forests

1 Input:
2 Training Set T with n number of training samples.
3 Input vector z; € R*, d is the dimension of the input vector
4 Label of the =z, =vy;, y; €{1,...,c}
5 m!* Base Random Forest = h,,
6 M be the number of Random forests to grow
7 Initialize the observation weights:
8 for all i=1,..., n
9 w,=1/n
10 for m= 1 to M
11
12 Fit a random forest h, (x) to training—set T using weights w;
13 Compute error of hy,
14 err — 2uiz1 Wili#hm(zi))
m S wi
15 Compute relative importances of h,,
16 am = log (1 —erry,) /erry)
17 Set w; «— w;-explam - I (Yi # hm ()], i=1,...,n.
18 }
19
20 Output:
21 RFpoost = Sign [Zf\le amhm (x)]

In the algorithm aq, s, ..., ap represent the relative importances, for are each
of the random forest classifier, computed by the boosting algorithm. Their effect is
to give higher influence to the more accurate classifiers in the sequence. Figure 5.1
shows a schematic of the AdaBoost procedure for random forests, here RF classifiers
are trained on weighted versions of the dataset, and then combined to produce a final
prediction.

5.6 Experiments on UCI data sets

UCT machine learning repository [106] contains data sets that have been in use to
evaluate learning algorithms. Each data file contains individual records described in
terms of attribute-value pairs. The ensembles of RF along with the original RF have
been evaluated on several datasets from the UCI Machine learning Repository. The
data sets used in the experiment are summarized in the table 5.1

For the original random forest algorithm, 20 decision trees have been grown for
these experiments. In all the experiments at an average a random forest with 20 trees
have shown significant improvements in the classification accuracies, further growth of
trees have not shown any significant improvements in classification accuracies (Figure
5.6). The experiments are conducted with unpruned trees, and the variable yielding

5.6. Experiments on UCI data sets

59

Weighted Sample RS

Weighted Sample

Weighted Sample

Training

Sample

.4’.4’.4’.‘..
' | '
1 I '
| '

Figure 5.1: Schematic of AdaBoost random forests.

Data set total cases | Classes | Cont.attribute | Discr.attribute
BreastCancer 699 2 9 0
Heart-c 303 2 8 5
Glass 214 6 9 -
Hepatitis 155 2 6 13
Labour 57 2 8 8
Sonar 208 2 60 -
Vowel 990 11 11 10
Letter 20000 26 16 -
WaveForm 300 3 21 -
Letter 20000 26 16 -

Table 5.1: Description of UCI data sets

60 5. Meta Random Forests

‘Impruvement in Random Forest Accuracy

a0
g0 f—————
70
B0
50
40
a0
20

S|

Accuracy in %

D T T T T
0 a0 100 180 200 250

Number of Trees

Figure 5.2: Performance of random forests as function of number of trees

the smallest gini-index has been used for splitting, tree building is stopped when the
number of instances in a node is 5 or less. RF facilitate to deal with the fractional
instances, required when some attributes have missing values, which can be easily
adapted to handle the instance weights used in the ensembles.

The following parameters are used for bagging random forest. A 100% bagSizePer-
cent [Size of each bag, as a percentage of the training set size] without any out-of bag
errors. We used 20 random forests to grow the bagged ensembles with a random seed
of 1. Further increase in random forests have not shown any significant improvements.
Most of the improvement from bagging is evident with in few replications, and it is
interesting to see the performance improvement that can be bought by a single order
of magnitude increase in computation. The boosting random forests have been grown
with the same parameters for RF described above. For boosting ensembles, 20 ran-
dom forests have been grown with a random number seed of 1. The weight threshold
for weight pruning has set to 100, only reweighing has been performed without any
resamplingof data sets. The data sets are splitted in 66% for training and remaining
34% for testing.

5.7 Discussion

The results of the trials are shown in the table 5.2. The following statistical measures
are used in the comparative study:

e ROC curves: A Receiver Operating Characteristic (ROC) curve summarizes
the performance of a classifier across the range of possible thresholds. It is a
standard comparision statistic used in machine learning literature for comparing
classifiers, as it does not merely summarize performance at a single arbitrarily
selected decision threshold, but across all possible decision thresholds. It plots

5.7. Discussion 61

RF BagRF BoostRF

Data sets % MAE ROC % MAE ROC % MAE ROC
Breast Cancer | 69.23 .362 .634 | 73.46 377 .683 | 66.32 .361 .624
Heart-C 82.69 .099 917 | 84.61 .099 937 | 82.69 .099 917
Glass 69.86 .108 .804 | 72.60 118 .804 | 67.12 .093 .839
Hepatitis 84.90 .221 .893 | 84.90 272 .866 | 88.67 113 .900
Labour 90 .205 .998 95 210 978 95 216 978
Sonar 73.23 .314 .857 | 80.28 .328 915 | 73.23 314 .857
Vowel 88.13 .054 .999 | 91.09 .062 1 92.28 .013 1

Letter 93.14 .014 .993 | 93.14 .014 993 | 93.14 .014 .993
Waveform 80.82 .188 935 | 84.76 .196 952 | 83.05 113 .944

Table 5.2: The Classification results for Random Forests (RF), Bagged RF, Boosted
RF on various UCI data sets. (Notations % for classification accuracy, MAE for
Mean Absolute Error, ROC for ROC area)

the sensitivity (true positives) versus one minus the specificity (false negatives).
we report the area bounded by these curves as the performance measure. An
ideal classifier hugs the left side and top side of the graph, and the area under
the curve is 1.0. Figure 5.3 shows ROC curves for various data sets comparing
RF along with its ensmebles.

e Classification accuracy: The classification accuracy for a classifier is defined
as percentage of number of correctly classified samples to the total number of
samples. Figure 5.4 shows the classification accuracies as barchart for various
UCI data sets.

e Mean Absolute Error: Mean absolute error is the average of the differ-
ence between predicted and actual value. It gives the average prediction error
representing a simple measure of overall error in the data distribution.

Bagged random forests have shown clear improvements over the original random
forests, whereas boosted technique has ranged from the best to rather mediocre re-
sults. When bagging and boosting are compared head to head, boosting leads to
greater accuracies for vowel and hepatitis data sets. But it also performed inferior to
random forests in data sets like Glass, Breast cancer. Bagging shown consistent per-
formances and been less risky. It proved to more suitable for increasing the random
forest accuracies.

The possible reason for boosting failure is the deterioration in generalization per-
formances. Freund and Schapire study [95] puts it down to overfitting - a large
number of trials T allows the composite classifier 7 fy,05¢ to become very complex.
AdaBoost stops when the error of any of the base classifier drops to zero, but does
not address the possibility that the final classifier 7 fyo0s: might correctly classify all
the training data even though no base classifier does. Further trials in this situation
have increased the complexity of the 7 fy,0s¢ but cannot improve its performance on

62 5. Meta Random Forests

the data sets. It also supports the hypothesis that over-fitting is a major factor in
explaining boosting’s failure on some data sets.

We investigated the possibilities of improving the random forests. Experiments
over diverse collection of data sets have confirmed that the ensembles of random forest
have improved the performance of classifications. Boosting and Bagging both have a
sound theoretical base and also have the advantage that the extra computation they
require is known in advance - if T classifiers are generated, then both require T times
the computational effort of random forests. In these experiments, a little increase in
computation can buys a significant increase in the classification accuracies. In many
applications, improvements of this magnitude would be well worth the computational
cost.

We use these random forest ensembles for the image data classification in MAGIC
telescope experiment discussed in the next chapter. Also we discuss the development
of BPNN ensembles for the application to MAGIC image data.

5.7.

Discussion

63

True Positive Rate

True Positive Rate

ROC Comparision - Glass

1
08
08
o7
06
05
04
03
02
01

17—
/ R
"\ BagRF
BoostRF
[
[
T T T T T T T T T 1
001 02 03 04 05 06 07 08 08 1
False Positive Rate
(a) glass
ROC Comparision- Hepatitis
-
—
mi| N
r "\ BagFF
1 7 EnostFF|
—] T T T T T T T T l
0 a1 02 03 04 05 06 07 08 08 1

False Positive Rate

(c) hepatitis

True Positive Rate

True Positive Rate

ROC Comparision - Heart

[—

7

)

01

T
0.2

T T T T T T T
0F 04 05 0& 07 08 09
False Positive Rate

(b) heart

ROC Comparision - SONAR

——

-

1
1

\ RF
"\ BagRF
BoostRF

T T T
0.4

T
05 08

03

False Positive Rate

(d) sonar

ROC Comparision - Wave Form

= 2
& 2
= —

N

"\ BaghF
EoostFF |

True Positive Rate

0 T T T 1

0 01 02 03 04 05

06

T
07 08

[Ik:]

1
1

07 08 O

False Positive Rate

(e) waveform

Figure 5.3: ROC Comparison for various UCI data sets

\RF
BagRF
" BoostRF

64 5. Meta Random Forests

Classification Accuracies Chart

100
an H
]
70
B0
a0
40
30 H
20+

= = H |=RF
— — — |mBagRF
— — H |[OBoostRF

0+ T
Breast Labour Sonar Glazs Wowel Wave Letter
Cancer Form

Figure 5.4: Classification accuracies for RF and its ensembles for various UCI data
sets

MAGIC and its image
classification

Figure 6.1: The MAGIC telescope

MAGIC(Major Atmospheric Gamma Imaging Telescope) is the world’s largest
imaging air Cherenkov telescope used for detecting the gamma signals from the outer
space [109]. Tt is an international collaboration project with more than 150 Physicists,
Computer scientists from 17 institutions. It is designed to provide vital information
on several established gamma-ray sources, like Active Galactic Nuclei, Supernova
Remnants, Gamma Ray Bursts and Pulsars. It is located in La Palma one of the
beautiful Canary islands in Spain at the Roque de los Muchachos Observatory Cen-
ter(28.8°N, 17.9°W), 2200 m above the sea level. The place is well known for its good
meteorological features and its altitude allows to make observations of astronomical
sources, with an almost always clean night sky. The data taking by the telescope
has been started in april 2004, and since then several sources are being observed. In
this chapter we discuss the classification of images collected by the MAGIC based on

66 6. MAGIC and its image classification

Mirror dish

Carbon Aher

Irame

Figure 6.2: Schematic view of 17m¢ MAGIC telescope [111]

the algorithms discussed in the thesis. First, the experiments are made with super-
vised (ensemble) techniques based on random forests and back-propogational neural
nets. Next we discuss using the unsupervised technique for automatic classification
of images based on SOM model.

6.1 MAGIC Infrastructure

The schematic view of the 17m diameter ¢ MAGIC telescope is shown in the figure
6.2. The main parts are the mirror dish to collect the signals from the outer space
astronomical sources and the camera which converts these signals into images. The
mirror dish has a parabolic shape with an area of 234 m2. The dish is composed of
956, 49.549.5¢m? spherical mirror tiles made of aluminum [110]. The parabolic shape
for the dish was chosen to minimize the time spread of the light flashes reflected
onto the camera plane, thus the rate of fake events induced by night-sky background
light are reduced. The aluminum plate of each tile is diamond-milled to achieve the
spherical reflecting surface with the radius of curvature most adequate for its position
on the paraboloid. The entire system is mounted on a lightweight (< 10 ton) carbon
fiber frame, which enables its altazimuth mount to point to any source in the sky in
less than 20 seconds. This feature is important as it is essential for the study of short
living events like Gamma ray burst’s.

The MAGIC camera is equipped with 576 “6-dynode” compact photomultiplier
(PMs). These PMs are arranged into two sections: The inner section contains 396
PMs arranged in a hexagonal grid and the remaining 180 PEs are arranged into 4
concentric rings around this hexagonal grid (figure 6.3). Each PM has 20% average
quantum efficiency in the 350-500 nm range and is coupled to a small Winston cone
type light collector to maximize the active surface of the camera. The total field of
view of the camera is about 4 °, with an angular resolution of 0.1°.

6.2. Image collection in MAGIC 67

Figure 6.3: A simulated MAGIC Camera

6.2 Image collection in MAGIC

The source observation by MAGIC is carried out during night time with a well or-
ganized night data taking schedule for various interesting astronomical objects. The
detection of signals from these sources is based on Imaging Atmospheric Cherenkov
Technique (IACT). Astronomical sources transmit extremely energetic particles trav-
eling very close to the speed of light or traveling faster than the speed of light “in the
medium of the atmosphere” [112]. Infact nothing can travel faster than the speed of
light “in a vacuum”, but that the speed of light is reduced when traveling through
most media (like glass, water, air, etc.). The resultant polarization of local atoms as
the charged particles travel through the atmosphere results in the emission of a faint,
bluish light known as ” Cherenkov radiation” [113], named for the Russian physicist
who made comprehensive studies of this phenomenon. Depending on the energy of
the initial cosmic gamma-ray, there may be thousands of electrons/positrons in the
resulting cascade which are capable of emitting Cherenkov radiation. As a result, a
large "pool” of Cherenkov light accompanies the particles in the air shower. This
pool of light is pancake-like in appearance, about 200 meters in diameter but only a
meter or so in thickness. MAGIC telescope, rely on this pool of light to detect the
arrival of a cosmic gamma-ray.

This large pool Cherenkov light is reflected from the mirror of telescope on to
the focal plane of one or many photo-multipliers (PMs) of camera, which convert the
incoming optical signal into an electronic signal to record the signal “image” or also
called as “event” figure 6.3. These images (electronic signals) are essentially analog
signals, which are first amplified obtaining the low and high gain signals and then
passed to FADC (Flash Analog to Digital Converter) module. This FADC module
is responsible for digitally sampling the signals into computer readable data which
represents the raw image formed on the camera. It is composed of several 8 bit
converters each operating at a frequency of 300MHz. Data are then transferred to
larger storage arrays and saved them in the raw data format on tapes and hard disks
[116]. In this way, a crude image of the Cherenkov light pool is recorded.

MAGIC collaboration has developed a software system called Magic Analysis and
Reconstruction Software (M ARS) for camera simulations and analysis tasks. The
software is a collection of C++ classes based on the well known data analysis package
ROOT [114]. A software release is documented and available on the web [115]. Figure

68 6. MAGIC and its image classification

Figure 6.4: Images of various particles recorded on the simulated camera of the magic.

6.4 shows the MARS based simulations of the images of various particles formed
on the camera. The images formed by the gamma-ray particles differs from that
produced by cosmic ray particles in a few fundamental ways. The Cherenkov light
collected from a gamma-ray shower has a smaller angular distribution and tends
to have an ellipsoidal shape which aligns itself with the direction of the incoming
photon. Cosmic-ray induced air showers also called as background events are made
of hadron and muon particles. They have Cherenkov light images which are much
broader and less well aligned with the arrival direction. By measuring the shape
of each shower image, and selecting only those events which are gamma-ray-like in
appearance, we can remove the background event contamination, resulting in a much
improved ability to detect the gamma signals from the source direction. The light
in this pool is very faint and can only be detected cleanly on dark, moonless nights.
Even though the total pool passes through the detector in only a few nanoseconds it
still helps for imaging this faint signal and to separate it from the ambient night sky.
Due to atmospheric radiations, the ground based observation of MAGIC, collects an
overwhelming background events containing hadrons and muons|[hadron events are
interchangeably used for background events in the MAGIC collaboration]. Thus an
efficient gamma- hadron separation on the basis of the image analysis is absolutely
crucial for understanding the gamma ray sources. In the imaging technique adapted
by the MAGIC, the differences in the shower development of gamma and background
particles shown up in the recorded images can be taken as the base point for the
classification task. In this regard, images are processed to extract some important
image parameters for the classification purposes.

6.3 Image processing in MAGIC

Processing of the raw images collected by the telescope is the key in extracting the
suitable image parameters for gamma - hadron separation task. The parameters used
in astrophysical experiments could be in thousands. A typical astronomical source
observation can yield upto 4 million events. Each event is distributed over 577 pixels
of camera. Thus total parameters come somewhere near 577*4 million to deal with.
For feasible image classification, reduction in these parameter set is mandatory. In this

6.3. Image processing in MAGIC 69

=

7%

WIDTH

LENGTH

7 AZWIDTH

Figure 6.5: Image parameters. (z,y) are coordinates in the original camera system.
(z0,y0) is a reference point, for example the source position or the center of the
camera.

section we describe the various image processing steps used in MAGIC for extracting
standard image parameters.

The first step in image processing is to convert the raw data into number of
photoelectrons, which are the direct measure of the observed cheronkov photons [117].
This process is called image calibration and is an important step to normalize signals
and cleaning image. It makes a synchronization between various pixels of camera to
return the same signal. To make this happen, a standard color pixel (ex: Led Green
or blue) is taken as a reference and a conversion factor for each pixel is calculated
[120]. In the subsequent process, image cleaning technique is applied to the shower
images to remove the unusable events and biases created due to night observations and
electronics of the telescope. These unusable events are either shower events, which are
too small for a reasonable image parameter set calculation or night sky background
triggered events. For further analysis it is useful to characterize the image by simple
parameters .

Hillas Image parameters are used to describe the light content, shape and ori-
entation of the recorded shower images in the camera [122],[118],[119],[121]. After
proper calibration and image cleaning the shower image is represented as the number
of Cherenkov photons N; and its error AN; for each pixel ¢ (1,..., Np;;). The Hillas
parameters are derived as the moments of the 2-dimensional distribution of N; and
represents the light distribution in the camera (figure 6.5). These hillas parameters
can be categorized based on the shape and orientation of the images . The important
hillas parameters are summarized as follows:

Length: 1t is the spread of light along the major axis of the image. It carries the
information of the longitudinal development of the shower. It represents the major
half axis of the ellipse [mm] i.e, half length of the shower image.

Width: The spread of light along the minor axis of the image. Carries with it infor-

70 6. MAGIC and its image classification

mation of lateral development of the shower. In the image it represents the minor
axis of the ellipse [mm)] i.e half width of the shower image.

Size: The total integrated light content of the shower. It represents the total number
of photons in the shower.

Conc?2: Tt is the ratio of sum of two highest pixels over size ratio.

Concl: 1Tt is the ratio of the brightest pixel over size.

Asym: Assymetry of the photon distribution along the shower axis.

MDIST: Distance between the center of the shower image and the brightest pixel.
LEAKAGE: Fraction of photons contained in the pixels close to the edge of the cam-
era.

DELTA: angle 6 between the shower axis and the x — axis of the camera

DIST: distance of center of shower image from the Reference Point (RP)

MISS: distance of the shower axis from the RP

ALPHA: angle a by which shower axis misses the RP, as seen from the center of the
shower image

BETA: angle 3 between the x — azis of the camera and the line connecting the RP
with the center of the shower image

AZWIDTH: half width of the shower image as seen from the RP.

Traditionally the separation task is carried out by statistical techniques such as
dynamical cuts. These cuts operate on one variable at a time but often made depen-
dent on other parameters based on logical operators such as AND or OR to partition
the given n-dimensional space; the problem gets unwidely even for a low n-space of
features, nevertheless this is the widely used technique for many cheronkov experi-
ments for image classification [123]. Now we discuss the usage of the machine learning
algorithms both supervised and unsupervised for the image classification task based
on these image parameters.

6.4 Supervised classification

Previous classification studies performed on MAGIC data sets shown that random
forest, neural networks performed better than other classifiers [124]. Here we experi-
ment with ensembles of random forests, neural networks and study their performance
results. The experiment is conducted on crab astronomical source. The data ana-
lyzed here were taken during September and October 2004 and in January 2005. The
Crab nebula is the remnant of a supernova explosion that occurred in 1054. The
~v-emissions from this source was first reported by the Whipple collaboration [136].
It exhibits a stable and strong -emission and is frequently used as the “standard
candle” in very high energy vy-astronomy [135]. The Crab nebula has been observed
extensively in the past over a wide range of wavelengths, covering the radio, optical
and X-ray bands, as well as high-energy regions up to nearly 100TeV [137].

Probing the presence of gamma signals from this sources is a challenge for ex-
perimenters. A total of 2.8 million images in 2004 and 4.5 million images from the
2005 observations were used . The overall observation time of the sample analyzed

6.4. Supervised classification 71

corresponds to 13 hours on-source and the data collected [around 25 Giga bytes], is
used as a test set for separating gammas from the hadrons. The training data sets
for the algorithms have been generated by a monte-carlo program, CORSIKA [125].
It is a package used to perform detail simulation of cheronkov light effect observed
by the MAGIC for various sky objects. The CRAB source was simulated with the
same parameter set that has been used for the observation. The Monte Carlo raw
data has been subjected to image calibration and image cleaning to extract the image
parameters. Image cleaning eliminates the biased data and outliers. Subsequently
the analysis is simplified with little or no loss of information, by converting the pixels
of image into image parameters for both gamma and other background particles. As
suggested in [124], the following image parameters have been chosen based on their
importance in the image properties : length, width, size, conc2, concl, pdist, m3long,
m3trans, alpha, dist. They are used only for relative comparison of algorithms. At im-
age processing stage, no care has been taken to optimize the data. Also, no particular
care has been taken to choose independent parameters since a robust discrimination
method should itself take care of correlations between parameters. The sample in
the training set contains 122800 background events, 720000 gamma events. Now we
discuss the algorithms used for the classification purpose and study the performance
results. Random forests, back propagation neural nets and their ensembles are devel-
oped for the classification tasks. WEKA, a very nice machine learning framework is
used for this purpose[126]. It facilitates powerful object oriented programming frame-
work for making ensembles. It provides facilities for using various machine learning
algorithms as base classifiers for ensembles.

6.4.1 Random forests and its ensembles

Random forests and its ensembles have been thoroughly described in chapter “Meta
Random Forests”. Here we used these algorithms for studying the performance results
of the MAGIC experiment. The tree growing begins with all cases being contained in
the root node. The root node is then split by a cut using one of the image parameters,
into two successive nodes to achieve a classification by separation of the classes. When
using all of 10 image parameters, three of them are chosen randomly and uniformly
distributed. The image parameter yielding the smallest Gini-index among these three
is used for splitting. Subsequently, the same procedure is applied to each branch in
turn. The tree growing stops only when all nodes contain pure data, i.e. from one
class only. These nodes are then called terminal nodes and receive their class label
from the training data. No pruning is performed. Using unpruned trees (in general
poor classifiers) requires a reasonably large number of them to be combined. For our
data, growing 20 trees turns out to be sufficient: the quality of the classification in
terms ROC plot remains unchanged after a certain number of trees has been reached.
Combining classifications from the trees is simply done by calculating the arithmetic
mean from the 20 classifications of all trees (considered as 0 and 1). The results
are verified with R statistical software [127], Breiman original FORTRAN sources for
the Random Forests technique [128]. Random Forests are themselves proved to be
powerful classifiers, and given good results for MAGIC data sets. The ensembles of

72 6. MAGIC and its image classification

Cortrols.

Epoch 0

Start LeamingRate = 03

Num O1 Epochs |10
Error per Epoch =0 Momertum = 0.2

Figure 6.6: Fundamental BPNN used for ensembling to perform image classification
in MAGIC

random forests have further improved the classification accuracy. For both bagging
and boosting, the random forests of 20 trees, each constructed while considering four
random features have been used as base classifiers and iterated for 10 times.

6.4.2 BPNN and its ensembles

BPNN has been described in “Chapter 1 - section 1.3.1” here we discuss the ensembles
of it and the application to MAGIC data sets. The fundamental neural network is
shown in the figure 6.6 with the following architecture: 10-6-2 [10 input neurons, 6
hidden neurons, 2 output neurons one for gamma and and one for background] with
learning rate as 0.2 and momentum factor as 0.3. 10 neural nets are used with each
neural network trained for 20 iterations. Both bagging and adaboosting has been
done using the same parameter set.

One fundamental weakness of neural networks is that they are very sensitive to
the training data sets (i.e.) small changes in training set and/or parameter selection
can cause large changes in performance. They are unstable or exhibit variance. The
fact that neural networks are high variance means that different networks will produce
different results for individual test cases. Two networks tested on the same data may
have similar average accuracies but may disagree on several individual samples [131].
This instability is magnified when real-world systems such as MAGIC data sets are
modeled as they contain more noise and dominated by only one class events.

In general, neural network classifiers provide more information than just a class
label. It can be shown that the network outputs approximate the a-posteriori prob-
abilities of the classes, and it might be useful to use this information rather than
to perform a hard decision for one recognized class. This issue is addressed by
AdABoost algorithm [129] when the classifier computes the confidence scores for

6.4. Supervised classification 73

each class. The result of the training the t*" classifier is now a hypothesis h; :

XY — [0, 1]. Furthermore, as described in adaboost algorithm in “Ensemble Learn-
ing” chapter, we use a distribution D; (i,y) over the set of all miss-labels B =
{(4,y):i€{l,...,Ny},y # v}, where N, is the number of training examples. There-
fore |B| = N, (k —1). Adaboost modifies this distribution so that the next learner
focuses not only on the examples that are hard to classify, but more specifically on
improving the discrimination between the correct class and the incorrect class that
competes with it. Note that the miss-label distribution D; induces a distribution
over the examples: P; (i) = W}/ >, W} where W} = 3" Dy (i,y). Pi(i) may be
used for resampling the training set. According to [129] the pseudoloss of a learning
machine is defined as:

1 .
€=3 Z Dy (i,y) (1 — he (24, 95) + he (24,9))
(i,y)€B

It is minimized if the confidence scores of the correct labels are 1.0 and the con-
fidence scores of all the wrong labels are 0.0. The final decision f is obtained by
adding together the weighted confidence scores of all the machines (all the hypothesis
hi,ha,...).

Neural networks have trained by minimizing a quadric criterion that is weighted
sum of the squared differences (z;; — ’z\ij)Q, where z; = (241, 2i2, - - - 2ik) 1s the desired
output vector (with a low target value everywhere except at the position corresponding
to the target class) and z; is the output vector of the network [130]. A score for class j
for pattern ¢ can be directly obtained from the j —th element Z;; of the output vector
Z;. When a class must be chosen, the one with the highest score is selected. Let
Vi (i,5) = D (4,7) /maxyry, Dy (i, k) for j # y; and V; (4,y;) = 1. These weights are
used to give more emphasis to certain incorrect labels according to the Pseudo-Loss
Adaboost.

Generally decision trees are adaboosted by training the ¢t —th classifier with a fixed
training set obtained by resampling with replacement once from the original training
set: before starting the t—th classifier, we sample N patterns from the original training
set, each time with a probability P; (i) of picking pattern ¢. Training is performed for
a fixed number of iterations always using this same resampled training set.

The BPNN is adaboosted by using the stochastic version of the above tech-
nique.Each t-th network is trained by using a different training set at each epoch(pass
of entire train set to the neural network), by resampling with replacement for each
epoch: after each epoch, a new training set is obtained by sampling from the original
training set with probabilities P; (¢). For an online stochastic gradient case, this is
equivalent to sampling a new pattern from the original training set with the proba-
bility P; (i) before each forward/backward pass through the neural network. Training
continues until a fixed number of pattern presentations has been performed. The
training cost that is minimized for a pattern that is the i — th one from the original
training set is %Z; Vi (4, §) (235 — 22-]-)2.

Bagged BPNN ensembles are generated by using bootstrap [132], a very popular
statistical resampling technique, which is used to generate multiple training sets and

74 6. MAGIC and its image classification

Available Training Data

£
Train O
oo [y
\
\
\Q
) Train 1 \
% \
&8 \
BPI2
B
Train 2 \\
-
-

y ‘»{//

\
T Averags
Results

. 7N
BRI -2 Result
] 7 Trainn2
.
Train n-1

Figure 6.7: A bagged BPNN ensemble. The ensemble is built by using bootstrap re-
sampling to generate multiple training sets which are then used to train an ensemble
of BPNNs. The predictions generated by each network are averaged to generate more
stable bagged ANN ensemble predictions.

networks for an ensemble (see Figure 6.7 for an illustration of this). Although other
ensemble techniques such as boosting have been shown to out-perform bagging on
some data-sets [133], bagging has shown number of key advantages when applied to
real-world tasks for ex: medical decision support. One of the most important is the
ease with which confidence intervals can be computed [134]. Another is the robustness
and stability of the technique itself. Here we probe the performance of this technique
for MAGIC.

6.4.3 Classification results

One standard way of data analysis in MAGIC is to obtain the significance of the
detected gamma signal from astrophysical source.

If €, is the acceptance efficiencies for gammas and ¢, are the acceptance efficiency
of background (An acceptance efficiency is the conditional probability of an event
given the probability of occurrence of all events of its category), then according to
[138] significance is determined by

oL = \/ﬁ{No"ln [12(1 (Al)} + Noggln [(1+a) (Non)]}m

N0n+N0ff Non+Noff

where N,,, are the total number of gamma events/images, N, s are the total number
of background images/events.

The parameter « plays a vital role in determining the significance of gamma signal
detection from the telescope. The « distribution for gamma events takes a gaussian
curvature where as for other events in in principle flat i.e. all a values have equal

6.4. Supervised classification 75

probability [Figure 6.8(a), (b)]. We got good significance values with BPNN compare
to RF.

| NN gh separalion: Alpha distribullion

] T T

. || [Mel~T

5 F] | NEzcoas- 2100
1500F : . HOH =2043
1400} + i i I_E.‘li!iﬂ“ﬁ-‘“

E 150 Alpha Plot .__'_
Crab Hebuda . o

0 + ;:;;u::n:n- 2100

150 +:|:

100 T

. wﬁ“@%ﬁ%

(b) RF

Figure 6.8: Alpha distributions

Experiments are performed in the WEKA software framework, to compare various
classification algorithms on image data classification task. The statistical measures
used in the comparative study are discussed in the chapter “Meta random forests”.
Table 6.1 shows the classification results for Random forests (RF), Back propagation
neural networks [BPNN], along with their bagged and boosted ensembles. Though the
ensembles take much time than single classifiers they produce improved classification
results. We saw significant improvements with bagged random forests. Adaboosted
random forests also showed improved classification results though they are inferior to
that of bagged ones. In neural network category, Boosted neural network has shown

76 6. MAGIC and its image classification

Model Classification Accuracy[%] | ROC Area | Mean Error rate
RF 78.9085 0.818 0.2748
Bagged RF 81.2461 0.8753 0.276
Boosted RF 79.9527 0.8481 0.2006
BPNN 78.28 0.8651 0.2644
Bagged BPNN 80.1893 0.8666 0.2888
Boosted BPNN 81.7508 0.8671 0.2564

Table 6.1: Comparative study of 2 classifiers and their ensembles

ROC for BPNN Ensembles

7 NG
"\ Bagged BANN

True Positive Rate

7
04 / "\ Boosted BANN
[
/
]

False Fositive Rate

Figure 6.9: ROC curves for BPNN and its ensembles

improved accuracies with bagged MLP standing second.

The ensembles have shown classification improvements for all algorithms, Figure
6.9, 6.10 shows the ROC plots. Though they take more time for training, it is impor-
tant for MAGIC experiment as analysis of gamma ray events are heavily dependent
on classification accuracies. In overall rankings Boosted neural networks, Bagged ran-
dom forests have shown superior results. Bagging has shown good results with tree
based classifiers, especially for random forests. Though neural networks benefited
from bagging but they got better accuracies with boosting. The future work will
be concentrated on introducing more base classifiers and experimenting with other
ensemble techniques such as multi-boost, random committee.

6.4.4 Experiments with R.K. Bock et.al Monte-carlo data sets

R. K. Bock et.al, have performed a case study comparing different classification meth-
ods, using as input a set of Monte Carlo data [124]. The data set contains two classes,
gamma rays or hadronic showers with 10 image parameters. There are 12332 gamma
events and 6688 hadron events. In this paper, 2/3 of both gamma and background
events are used as train sample and remaining 1/3 as test sample. The various clas-
sification models used in this study are: classification trees, forests, kernel methods,
neural networks (Neunet package, neural network with switching units, multi-layer

6.5. Unsupervised classification 77

ROC for Random Forests Ensembles

N RF
045 Vi *\ Bagged RF
04 i "\ Boosted RF

True Positive Rate

o
rrrrrrrr T T T T T T T T T T T

0 005 01 0.5 02 025 03 035 04 045 05 055 06 065 07 075 08 085 08 085 1

False Positive Rate

Figure 6.10: ROC curves for RF and its ensembles

perceptrons), nearest neighbor methods, support vector machines. The ROC curves
for these classifiers are shown in the figure 6.11(a)

Based on these data sets, in this thesis we performed the classification experiments
using ensembles of RF and BPNN. The parameters set used for these algorithms are
identical to the description made in the section 6.4.1 and 6.4.2. The ROC curves for
the RF ensembles are shown in figure 6.11(b) and for BPNN ensembles in 6.11(c).

6.5 Unsupervised classification

We experimented with SOM networks for making an automatic separation of gamma
events from other particle events. The test in conducted again on the crab source. As
many real world experiments, producing the labeled data for MAGIC is a costly affair
and offered with statistical biases in their data distributions. The main motivation of
this work is to make the classification with no monte-carlo data.

Now the train data set comes from off_data set which contains only background
events. The data is collected during the MAGIC observation in the off line mode i.e
the telescope is pointed away from the actual source path to collect the background
events. The test set comes from the data collected directly pointing to the source.
This test set termed as on_data set contains the mixture of gamma events from the
crab source and background events due to the atmospheric interactions. Now the task
is to separate the gamma events from the background events in this on_data set. For
this we trained the SOM map only with the off_data set events thus after training
the SOM will able to learn the data distribution of the background events. Now the
on_data set events are subjected to SOM in the testing phase. Since the SOM knows
the off data events, it is self-organised grouping all the background events at one end
of the map while all the gamma events are collected at other end of the map. Thus
an automatic classification is performed on the on_data set. The whole experimental
setup is organized into following steps (figure 6.12)

Parameter set extraction: First the image parameters for the off_data set con-
taining background events and on_dataset containing mixture of gammas, background

78 6. MAGIC and its image classification

events are extracted following the image processing steps described in this chapter

Data Normalization: Normalization usually means linear scaling of variables.
More generally, it corresponds to selecting a distance metric in the input space.
The distance metric sets the viewpoint from which the whole sample analysis looks
into the data by defining how important different variables are in the subsequent
analysis methods.A well known normalization technique [range method] is used to
normalize the components of the input vector so that the component values lie in
the range [0, 1]. Each attribute z; in the event vector is divided by the factor
Vi +...+zi+ ...+ Tm, m being the dimension of the event vector. This step
is useful to make a balanced comparison of euclidean distance among the various map
units. The transformation permits a clear differentiation between gamma events and
background events.

SOM Training: The normalized train data is then used for SOM training. Each
SOM map unit is randomly initialized with an event vector from the off_data set.
During the training process, SOM model unfold itself according to the data distribu-
tion of the background events. The neighborhood functions used for self-organising
in the map are gaussian and cut-gaussian kernels. The training is carried out in 2
phases. The first phase of training was carried out for 150 epochs, with a learning
rate of 0.5, while the second phase was 300 epochs, with a learning rate of 0.01.
These parameters were retained, after we tried more than 50 trainings, with different
architectures. After these two phases, the codebook(which is the collection of the ref-
erences vectors of all map units) approximates the probability density function p (x)
of the background events. The power law relating codebook vectors and p (x) of input

data set is given by p(x)ﬁir [140], where d is the dimension and r is the distance
norm . Thus SOM follows the density of the input data reducing the computational
complexities to the linear functions of the input data samples. Experiments shown
that clustering SOM codebook is better then clustering the entire data set [140]. Now
the trained map represented by its codebook is ready to be tested and can be used
for event classification task.

SOM Testing - Cluster Analysis: Group formation or clustering is one of
the main application of SOM. The groups in the the on_data set are detected by
comparing its event vectors with every reference vector in the codebook of the SOM
map. In [139], [140], [45] different ways to cluster data using SOM has discussed. In
this thesis we employed, a knn based partitional clustering algorithm listing 6.1 for
finding the groups in on_data set. The algorithm is is based on a cluster distance
function S (Q) and a cut value ¢ in (0,1) interval for labeling the groups it found.
If S (Qr) <= ¢, it is more likely to be a background event otherwise it is more likely
to be a gamma event. Thus the events are got labeled resulting in an automatic
classification. The following cluster-distance measures [140] have been used in the
experiment .

Let S (Qk) be the cluster distance function for a cluster Q; here we have only
one cluster i.e., the codebook of SOM map.

Ny be the number of codebook vectors,

6.5. Unsupervised classification 79

CL = Nik Zrier x; be the mean of the code book vector,

x;» be the event vector from ON data set.

x; € Qi be the i*" codebook vector representing closest match to x; , based on eu-
clidean distance metric.

the various cluster distance functions are:
average distance:
/
Y i i — |

S, =
Ny (Ne —1)

nearest neighbor distance:

_ Syming {[lz; — =]}

Snn Nk,
centroid: o |
i 1T5 — Ck
Se = N,
variance:
Sy =" |l7} — cxll”
Listing 6.1: KNN based clustering
1 Input:
2 On data set O={z}}
3 SOM codebook Qp = {z;}
4 Distance function S(Qy)
5 k best matching units for a given (z;)
6 cutvalue c
7
8 for each z, €0
9
10 for each x; € Q
11 {
12 find the first k& Best matching units (BMU)
13 BMU = argmin,; ||x; — 24|
14 for each of the k£ BMU
15 Calculate S;(Qr),i=1,...,k
16 Savg (Qi) = Ximy wi S; (Qn) ,wi = gy
17 P (Sy (Q0) <c)
18 x} — backgroundevent
19 else
20 x; — gammaevent
21 }
22

23}

80 6. MAGIC and its image classification

The k BMU’s are weighted according to their inverse square distances from the in-
put event vector. The data sets are stored in the secondary memory and data items
are transferred to the main memory one at a time for clustering. Only the cluster
representations are stored permanently in the main memory to alleviate space limita-
tions. The computational complexity of the nearest-neighbor algorithm both in space
(storage of prototypes) and time (search) has received a great deal of analysis. There
are a number of elegant theorems from computational geometry on the construction
of Voronoi tesselations and nearest-neighbor searches in one- and two-dimensional
spaces. However, because the MAGIC is a multidimensional data classification prob-
lem we concentrate on the more general d-dimensional case. For n labelled training
samples in d- dimensions, and seek to find the closest to a test point 2’ (k = 1). In
the most naive approach we inspect each stored point in turn, calculate its Euclidean
distance to x, retaining the identity only of the current closest one. Each distance
calculation is O (d), and thus this search is O (an). One method for reducing the
complexity of nearest-neighbor search is to eliminate “useless” codebook vectors dur-
ing testing, a technique known variously as editing, pruning or condensing. A simple
method to reduce the O (n) space complexity is to eliminate prototypes that are sur-
rounded by training points of the same category label. Now the complexity statistics
reduces to O (d°nl?/2] Inn), |.] is the “floor” operation.

Cluster visulisation: The clusters discovered by SOM are visualised using U-
matrix, a matlab tool to visualize these clusters [141]. SOM is an excellent tool for
visualisation of high dimensional data. Figure 6.13 displays the data distribution of
individual image parameters for crab on_data. These distribution maps can assist
analyst to observe the possible relationships that exist between the variables and
even roughly distinguish the structure of the input data. The variable distribution
planes are organized in such a way that similar planes lie close to each other; this
organization is carried out by SOM itself. We experimented with two types of kernels
based on gaussian curvature. The group visualisation by these two type of kernel
based SOM maps are shown in the figure 6.14, the color coding of the map based
on the HSV color system [142]. The value of component H (hue) was dependent on
direction from the center of the map, S (saturation) was held constant, and V (value)
was inversely proportional to the map unit distance from the center of the map. Thus
the groups are formed at the ends of the map with separation boundaries and the
clusters concentrated in the center of the map. Figure 6.14 visualizes the classification
groups found by the SOM system. The 2 groups found here are represented by blue
color. The experiments are performed by using two kernels gaussian and cutgaussian.
For gaussian kernel a map of 25X25 network is used and trained for 300 epochs.
Cutgaussian kernel map of 40X30 size is trained with 300 epochs. The cut-gaussian
kernel shown better performance than that of of gaussian kernel.

The data set is again taken from the CRAB data source, this time with number
of off_data events 2.5 million and on_data set contains 7.3 million events [mixture of
gamma and background] to be classified. An quantisation error represents the norm
of difference of an input vector from the closest reference vector. We used Average
Quantization Error (QE) of the MAP as the benchmark criteria. The experiments
are carried out with various distance functions and the nearest neighbor measure has

6.5. Unsupervised classification 81

Cluster distance measure | Total Epochs | QE | found gammas [%]
Sa 300 0.43 65
Snn 300 0.35 73
Se 300 0.47 61
Sy 300 0.39 70

Table 6.2: SOM clustering results for different S (Q)

proved to be more effective giving a lowest quantisation error of 0.35. QE at various
epochs are shown in figure 6.5. The results of the classification of events based on
cut-gaussian SOM and percentage of gammas found are summarized in table 6.2.

82 6. MAGIC and its image classification

1
09| * ClassA e
e
- cass B

L o cuassc F

. A

~-- High Energy gyt
07 %+
s
¥
Y
e
P
§ +
#*
ot
304 ;t* ++
 ur
I E
03 NI
Rt
3 40 F
02 . AR
+ TR,
0.1 + * " * ”
-
¥ o
+ + + X

107
hadron acceptance

(a) Several classification methods compared: a logarithmic
axis is used to better show the low-acceptance region. Results
are grouped: class A are regression tree and PDE methods,
class B contains various Neural Net meth- ods, class C com-
prises SVM, direct selection, LDA, and composite probabil-
ities. For comparison with present telescopes, a (nearest-
neighbour) result for events with incident energies above 120
GeV is also shown. [124]

ROC for RF Ensembles

A

(]
T
o
(]
>
= # RF
W v BAGRF
o & BOOSTRF
@
=]
2
=
0.1 T T T T T T T T T
0 01 02 0.3 04 05 06 07 0.8 0.9 1
False Positive Rate
(b) RF Ensembles
ROC - BPNN Ensembles
1
0.9
98 os
(1]
x 0.7
=y
Y 06
o + BPNN
n 0.5+ v BAG BPNN
& 0.4 R A BOOST BPNN
0]
303
k= 0.2
0.1
0 T T T |
0 0.25 0.5 0.75 1

False Positive Rate

(¢) BPNN Ensembles

Figure 6.11: Classifier performances study: Bock et.al classifications, ensemble clas-
sifiers used in this thesis

6.5. Unsupervised classification 83

Image Data
parameters - Normalizatio
extraction

SOM SOM
Training . Testing with

with
off_dataset

on_dataset

Cluster U-matrix based

analysis cluster
visualization

Figure 6.12: The SOM based system for automatic separation of gamma events from
background events

Length

28000

- g H

18.2 0.387
d

Conct

66300
32700'

aas

-0.71

-5.21

-0.037,

—4.86 0.782 } HBW.T
d

80.7

—0.68 72.8

d

M3Trans Alpha

—0D.504

’o . . od,a_as

SOM 24 - Mar-2005

Figure 6.13: Data distributions for image parameters in crab on data set.

6. MAGIC and its image classification

U ratrix

U-matrix

Magic Data Classification

(a) with gaussian map (b) with cut-gaussianmap

Figure 6.14: Classification using SOM

QE for various cluster functions

[

1
g %
IS
5 p—
S s 2V
] —a
E 04 s
=3
<]

0z

o

Epochs #

Figure 6.15: QE of various cluster distances

Conclusions

In this thesis experiments on novel machine learning algorithms are performed based
on unsupervised and supervised learning techniques. In unsupervised model, we ex-
perimented with Self-Organizing Maps (SOM) with new kernel neighborhood func-
tions. The SOM capabilities for data visualization have been explored. Experiments
are performed on an astrophysics data catalog (Gamma ray bursts). We used SOM
system for data exploration, visualization and cluster discovery in the data sets. The
cluster discovery resulted in 3 groups in the data set, which well agrees with the pre-
vious studies of GRB studies. The experiment is conducted with two different data
sets on the BATSE 4B Catalog. The first case study demonstrates the existence of 3
classes, but the class 3 is not clearly distinguished from class 1 supporting the hypoth-
esis of instrument bias in the misclassification of some events of class 1 as class 3. In
the second case study we used the bagoly et.al., suggested attributes . This time the
SOM has clearly distinguished the class 2 events from the classl. The cut gaussian
kernel makes the winner map unit to get adapted to the data vectors to maximum
extent and the adaptation falls away as the distance of map units increases from the
winner unit. This gaussian form of adaption to the data set distribution forms the ba-
sis for the self organisation with in the map thus assisting in the automatic discovery
of the groups that exist in the dataset.

In the ensemble (supervised) learning, we experimented with 2 different machine
learning algorithms. BPNN, a neural network model is used to grow ensembles with
bagging and boosting. In tree based model we choose random forests to grow en-
sembles. The methodology is novel and experiments on standard UCI data sets have
shown improvements in the classification results compared to the standard random
forest algorithm.

The above developed algorithms are used in the image data classification per-
formed with in the MAGIC telescope experiment framework. The research is carried
out to perform the classification both in supervised and unsupervised fashion. We
used BPNN ensembles and random forest ensembles to perform a supervised classifi-
cation. The results show that the ensembles have performed superior to the original
algorithms with BPNN ensemble giving better performances. All the experiments are
carried out using the WEKA software tool for machine learning. One of the impor-
tant requirements for the MAGIC is to perform the classification of image data in an
automatic way. We worked on this task by applying SOM based system. The clusters
discovered by SOM are labeled by using a KNN- model algorithm to perform an au-
tomatic classification of images. The self-organisation capability of SOM directed by
its kernel function, makes the identical types of events to be accumulated at one end
of the map where as the other event types are moved toward the other end. Thus the
self-organisation capability of the map forms the basis for the automatic classification

86 Conclusions

of events. We used various cluster distance measures for this task and the results are
compared.

Future work can be concentrated on working with various image data collections
available in the MAGIC experiment. More ensemble learning techniques as described
in section 4.3.3 can be introduced to work with the base classifiers introduced in the
thesis. On other hand there is a scope of introducing new base classifiers such as K-
Nearest Neighbor (K-NN), Radial basis function networks, Probabilistic neural nets,
support vector machines etc to grow the ensembles.

In unsupervised learning category, more work can be concentrated on using dif-
ferent map dimensionalities, learning rates. Experiments can be performed by using
the SOM variants such as Self-organizing tree algorithm (SOTA) [143], Generative
topographic map(GTM) etc. [144].

[1]

2]

Bibliography

A. K. Jain, R. P. W. Duin, J. Mao Statistical Pattern Recognition: A Review,
EEE Transactions on Pattern Analysis and Machine Intelligence (1999)

D. Judd, P. K. McKinley, and A. K. Jain. Large scale parallel data clustering.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8):871876
(1998)

T. M. Mitchell, Machine Learning, McGraw Hill (2005)

M. Kantardzic, Data Mining: Concepts, Models, Methods, and Algorithms, John
Wiley &Sons (2003)

L. Kuncheva, C. Whitaker, Measures of diversity in classifier ensembles and
their relationship with ensemble accuracy, Machine Learning, pp. 181-207 (2003)

P. Melville, R. J. Mooney, Constructing Diverse Classifier Ensembles Using
Artificial Training Fxamples, In Proceedings of the Eighteenth International
Joint Conference on Artificial Intelligence (IJCAI-03), pp. 505-510, Mexico (
2003)

A. D. Gordon. Classification, Chapman & Hall/CRC (1999)

H. Frigui, R. Krishnapuram, A robust competitive clustering algorithm with
applications in computer vision, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 21(5):450465 (1999)

S. K. Bhatia, J. S. Deogun. Conceptual clustering in information retrieval. IEEE
Transactions on Systems, Man, and Cybernetics, 28(3):427436 (1998)

C. Carpineto and G. Romano. A lattice conceptual clustering system and its
application to browsing retrieval. Machine Learning, 24(2):95122 (1996)

F. Rosenblatt: The Perceptron: a perceiving and recognizing automaton, Tech-
nical Report 85-460-1, Cornell Aeronautical Laboratory, Ithaca, N.Y., 1957.

J. L. McClelland, D. E. Rumelhart: Ezplorations in Parallel Distributed Pro-
cessing, Cambridge, MA: MIT Press 1988.

D. E. Rumelhart, G.E. Hinton, R. J. Williams: Learning Representations by
Back-propagating Error, Nature, 323:533/536. Reprinted in Anderson& Rosen-
feld, pp. 696-699, 1988.

S. Haykin: Neural Networks- A comprehensive Foundation, Macmillan College
Publishing Company, 1994.

88

Bibliography

[15]
[16]

[17]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

L. Fausett: Fundamentals of Neural Networks, Prentice Hall, 1994.

K. Hornik, M. Stinchcombe, and H. White: Multilayer feedforward networks
are universal approzimators, Neural Networks, 2:359-366, 1989.

J. Platt, Fast training of support vector machines using sequential minimal op-
timization, In, B. Scholkopf, C. Burges, A. Smola, (eds.): Advances in Kernel
Methods - Support Vector Learning, MIT Press (1998)

V. N. Vapnik, The nature of statistical learning theory, Springer Verlag (1995)

G. A. carpenter, S. Grossberg, A massively Parallel Architecture for a Self-
organizing Neural Pattern Recognition Machine, Computer vision, Graphics and
Image processing, 37:54-115 (1987)

J. Friedman, T. Hastie, R. Tibshirani, The Elements of Statistical Learning:
Data Mining, Inference and Prediction, Springer series (2001)

L. Akarun, D. O. zdemir, and O. Yalc, In. Joint quantization and dithering
of color images, In Proc. IEEE Int. Conf. on Image Processing, pages 557-560
(1996)

M. Aguilar, D. A. Fay, D. B. Ireland, J. P. Racamoto, W. D. Ross, and A. M.
Waxman, Field evaluations of dual-band fusion for color night vision, In J.G.

Verly, editor, SPIE Conference on Enhanced and Synthetic Vision 1999, pages
168-175, (1999)

J. Hartigan, Clustering Algorithms, Wiley (1975)

A. K. Jain, R. C. Dubes, Algorithms for Clustering Data, Prentice-Hall, Engle-
wood Cliffs, NJ (1988)

L. Kaufman, P. J. Rousseeuw, Finding Groups in Data, John Wiley & Sons
(1990)

R.O. Duda, P. E. Hart, D. G. Stork, Pattern Classification , John Wiley & Sons,
Inc (2001)

R. O. Duda, P. E. Hart, Pattern classification and scene analysis, John Wiley,
New York (1973)

U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Ad-
vances in Knowledge Discovery and Data Mining AAAT/MIT Press (1996)

D. J. Hand, H. Mannila, and P. Smyth, Principles of Data Mining, MIT Press
(2000)

M. Kamber J. Han, Data Mining : Concepts and Techniques, Morgan Kaufmann
(2000)

Bibliography 89

[31] B. D. Ripley, Pattern Recognition and Neural Networks, Cambridge University
Press, Cambridge (1996)

[32] D. J. Willshaw, C. V. der malsburg, How patterned neural connections can be
setup by self-organization, Proc.Roy.Soc. Lond. B, 194, 431-445.

[33] T. Kohonen, Self-Organizing Maps, third edition Springer-Verlag (2002)

[34] Website for GRB’s, http://imagine.gsfc.nasa.gov/docs/science/know_11/grbs_proof.html
[35] Site for GRB data from BATSE:, http://wwu.batse.com/

[36] SOM research website: http://www.cis.hut.fi/research/som-research/som.shtml

[37] Mukherjee, S., et al. 1998, ApJ, 508, 314

38] Hakkila, J., et al. 2000, ApJ, 538, 165

[39] Bagoly, Z., et al. 1998, ApJ, 498, 342

[40] H. J. Rajaneimi, P. Mahonen, Classifying Gamma-Ray Bursts using Self-
Organizing maps, The Astrophysical Journal, 566:202-209 (2002)

[41] L. Chittaro, L. Ieronutti, A Visual Tool for Tracing Behaviors of Users in
Virtual Environments, Proceedings of AVI 2004: 6th International Conference
on Advanced Visual Interfaces, pp.40-47 ACM Press (2004)

[42] O. Simula, E. Alhoniemi, J. Hollmn, and J. Vesanto. Monitoring and model-
ing of complex processes using hierarchical self-organizing maps, In Proceedings
of the 1996 IEEE International Symposium on Circuits and Systems, volume
Supplement, pages 73-76. IEEE, (1996)

[43] T. Kohonen, S. Kaski, K. Lagus, J. Salojrvi, J. Honkela, V. Paatero, and A.
Saarela, Self organization of a massive document collection IEEE Transactions
on Neural Networks, (11):574-585 (2000)

[44] J. Vesanto, Importance of Individual Variables in the k-Means Algorithm, In
Proceedings of the Pacific-Asia Conference Advances in Knowledge Discovery
and Data Mining (PAKDD2001), Springer-Verlag, pp. 513518 (2001)

[45] J. Vesanto, Data exploration process based on the SOM, PhD thesis, Helsinki
University of Technology (2002)

[46] T. Kohonen, Comparison of SOM Point Densities Based on Different Criteria,
Neural Computation, 11(8):20812095 (1999)

[47] J. Lampinen and T. Kostiainen, Generative probability density model in the
Self-Organizing Map, In U. Seiffert and L. Jain, editors, Self-organizing neural
networks: Recent advances and applications, pages 7594. Physica Verlag (2002)

90

Bibliography

[48]

[49]

[50]

[51]

[52]

[60]

[61]

[62]

G. Deboeck, T. Kohonen, editors, Visual explorations in Finance using Self-
Organizing Maps, Springer-Verlag, London (1998)

J. B. Kruskal, Multidimensional Scaling by Optimizing Goodness of Fit to a
Nonmetric Hypothesis, Psychometrika, 29(1):127 (1964)

J. Himberg, J. Ahola, E. Alhoniemi, J. Vesanto, and O. Simula, The selforga-
nizing map as a tool in knowledge engineering, In N. R. Pal, editor, Pattern
recognition in soft computing paradigm, pages 3865. World Scientific (2001)

J. W. Sammon, Jr., A Nonlinear Mapping for Data Structure Analysis, IEEE
Transactions on Computers, C-18(5):401409 (1969)

P. Demartines, J. Hrault, Curvilinear Component Analysis: A Self- Organizing
Neural Network for Nonlinear Mapping of Data Sets, IEEE Transactions on
Neural Networks, 8(1):148154 (1997)

J. Moody, C. J. Darken, Fast Learning in Networks of Locally- Tuned Processing
Units, Neural Computation, 1(2):281294 (1989)

T. Kohonen, E. Oja, O. Simula, A. Visa, and J. Kangas, Engineering Applica-
tions of the Self-Organizing Map, Proceedings of the IEEE, 84(10):1358-1384,
(1996)

O. Simula and J. Kangas, Neural Networks for Chemical Engineers, volume 6
of Computer-Aided Chemical Engineering, chapter 14, Process monitoring and
visualization using self-organizing maps. Elsevier, Amsterdam (1995)

S. Kaski, J. Kangas, and T. Kohonen, Bibliography of self-organizing map
(SOM) papers: 1981-1997, Neural Computing Surveys, 1:102-350 (1998)

J. Vesanto, Neural network tool for data mining: SOM Toolboz, In Proceedings
of Symposium on Tool Environments and Development Methods for Intelligent
Systems (TOOLMET2000), pages 184-196, Oulu, Finland (2000)

R. M. Gray, Vector quantization, IEEE ASSP Magazine, pages 4-29, (1984)

S. Kaski, Data Ezploration Using Self-Organizing Maps, PhD thesis, Helsinki
University of Technology, Acta Polytechnica Scandinavica: Mathematics, Com-
puting and Management in Engineering, (1997)

T. Samad, S.A. Harp, Self-Organization with Partial Data, Network, 3:205-212,
IOP Publishing Ltd, (1992)

H. Ritter, Asymptotic Level Density for a Class of Vector Quantization Pro-
cesses, IEEE Transactions on Neural Networks, 2(1):173175 (1991)

T. G. Dietterich, Ensemble Methods in Machine Learning, Proc. of the 1st Inter-
national Workshop on Multiple Classifier Systems, Lecture Notes in Computer
Science, 1857, 1-15. Springer-Verlag (2000)

Bibliography 91

[63] T. G. Dietterich, Ensemble learning, In Arbib, M. (Ed.), The Handbook of
Brain Theory and Neural Networks, 2nd Edition. MIT Press (2002)

[64] T. Dietterich, Machine learning research: Four current directions, Al Magazine,
18(4), 97-136 (197)

[65] Data Analysis hand book website http://rkb.home.cern.ch/rkb/AN16pp/node237 . html#SECTION00023’

[66] T. G. Dietterich, Machine Learning, In Nature Encyclopedia of Cognitive Sci-
ence, Macmillan, London (2003)

[67) K. Ali, J. Pazzani, Error reduction through learning multiple descriptions, Ma-
chine, Learning 24(3), 173-202 (1996)

[68] J. M. Bernardo, A. F. M. Smith, Bayesian Theory, JohnWiley & Sons, New
York (1993)

[69] A. Krogh, J. Vedelsby, Neural network ensembles, cross validation, and ac-
tive learning, In G. Tesauro, D. Touretzky, T. Leen (Eds), Advances in Neural
Information Processing System, 7, 231-238. MIT Press (1995)

[70] D. Opitz, J. Shavlik, Generating accurate and diverse members of a neural-
network ensemble, In D. Touretzky, M. Mozer, M. Hesselmo, (Eds.), Advances
in Neural Information Processing Systems, 8, 535-451. MIT Press (1996)

[71] T. G. Dietterich, An experimental comparison of three methods for constructing
ensembles of decision trees: Bagging, Boosting and randomization, Machine
Learning 40 (2) 139-157 (2000)

[72] Y. H. Hu, J. N. Hwang, Handbook of Neural Network Signal Processing, CRC
Press (2002)

[73] L. Breiman, Bagging predictors Machine Learning, 24(2), 123-140 (1996)

[74] Y. Freund, R. Schapire, Fzperiments with a new boosting algorithm In Saitta, L.
(Ed), Proceedings of the 13th International Conference on Machine Learning,
148-156. Morgan Kaufmann (1996)

[75] K. Cherkauer, Human expert-level performance on a scientific image analysis
task by a system using combined artificial neural networks, In P. Chan, editor,
Working Notes of the AAAT Workshop on Integrating Multiple Learned Models,,
pages 15-21. (1996)

[76] J. Carney, P. Cunningham, The NeuralBAG algorithm: optimizing generaliza-
tion performance in Bagged Neural Networks, In: Verleysen, M. (eds.): Pro-
ceedings of the 7th European Symposium on Artificial Neural Networks , pp.
3540 (1999)

[77] B. Efron, R. Tibshirani, An Introduction to the Bootstrap, Chapman and Hall
(1993)

92

Bibliography

[78]

[79]

[80]

[81]

[82]

[83]

J.H. Friedman, Bias, variance, 0-1 loss and the curse of dimensionality, Tech-
nical report, Stanford University (1996)

Y. Grandvalet, Bagging can stabilize without reducing variance, In ICANN’01,
Lecture Notes in Computer Science. Springer (2001)

P. Domingos, Why does bagging work? A bayesian account and its implications,
In D. Heckerman, H. Mannila, D. Pregibon, and R. Uthurusamy, (eds), Pro-
ceedings of the Third International Conference on Knowledge Discovery and
Data Mining (KDD-97), page 155. AAAT Press (1997)

J. A. Madigan, D. Hoeting, C. T. Raftery, Bayesian model averaging: A tuto-
rial. Statistical Science, 44(4):382417 (1999)

R. E. Schapire, The strength of weak learnability, Machine Learning, 5:197-227
(1990)

Y. Freund, Boosting a weak learning algorithm by majority, Information and
Computation, 121(2):256-285 (1995)

E. B. Kong, T. G. Dietterich, Error-correcting output coding corrects bias and
variance, In Proceedings of the Twelfth International Conference on Machine
Learning, pages 313-321 (1995)

H. Drucker, R. Schapire, P. Simard, Boosting performance in neural net-
works, International Journal of Pattern Recognition and Artificial Intelligence,
7(4):705-719 (1993)

H. Drucker, C. Cortes, L. D. Jackel, Y. LeCun, and V. Vapnik, Boosting and
other ensemble methods, Neural Computation, 6(6):1289-1301 (1994)

H. Drucker, C. Cortes, Boosting decision trees, In Advances in Neural Informa-
tion Processing Systems 8 (1996)

J. C. Jackson, M. W. Craven, Learning sparse perceptrons, In Advances in
Neural Information Processing Systems 8 (1996)

M. Skurichina, R. P. W. Duin, Bagging, Boosting and the Random Subspace
Method for Linear Classifiers, Vol. 5, no. 2: 121-135, Pattern Analysis and
Applications (2002)

P. Bhlmann, B. Yu, Analyzing bagging, Annals of Statistics 30, 927-961 (2002)
L. Breiman, Out-of-bag estimation, Technical Report (1996)

S. Borra, A. Di Ciaccio, Improving nonparametric regression methods by bagging
and boosting, Computational Statistics & Data Analysis 38, 407-420 (2002)

A. J. C. Sharkey, Types of multinet system, In Proc. of the Third International
Workshop on Multiple Classifier Systems (2002)

Bibliography 93

[94] L. Xu, A. Krzyzak, C. Y. Suen, Methods for combining multiple classifiers and
their applications in handwritten character recognition, IEEE Trans. Syst., Man,
Cybern., vol. 22, pp. 418-435, 1992.

[95] Y. Freund, R. E. Schapire, A decision-theoretic generalization of online learning
and an application to boosting, In Computational Learning Theory: Second
European Conference, EuroCOLT ’95, pages 23-37, Springer-Verlag (1995)

[96] L. Breiman, Random Forests Technical Report, University of California, 2001.
[97) Website for Random Forests: http://www.stat.berkeley.edu/users/breiman

[98] L. Breiman, Looking Inside the Black Boxz, Wald Lecture 11, Department of
Statistics, California University (2002)

[99] M. Sikonja, Improving Random Forests. , In J.-F. Boulicaut et al.(Eds): ECML
2004, LNAT 3210: pp. 359-370, Springer, Berlin, (2004)

[100] L. Breiman, J. H. Friedman, R. A. Olshen and C. J. Stone. Classification and
regression trees. Wadsworth Inc., Belmont, California (1984)

[101] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, San
Francisco, (1993)

[102] 1. Kononenko. FEstimating attributes: analysis and extensions of Relief. In Luc
De Raedt and Francesco Bergadano, editors, Machine Learning: ECMIL-94,
pages 171-182. Springer Verlag, Berlin (1994)

[103] I. Kononenko. On biases in estimating multi-valued attributes. In Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAT'95), pages
1034-1040. Morgan Kaufmann (1995)

[104] T. G. Dietterich, M. Kerns, and Y. Mansour. Applying the weak learning frame-
work to understand and improve C4.5. In Lorenza Saitta, editor, Machine
Learning: Proceedings of the Thirteenth International Conference (ICML’96),
pages 96-103. Morgan Kaufmann, San Francisco (1996)

[105] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
regression trees. Wadsworth Inc., Belmont, California (1984)

[106] UCI data sets repository, http://www.ics.uci.edu/ mlearn/MLRepository.html

[107] J.R. Quinlan, Bagging, Boosting, and C4.5, In Proceedings, Fourteenth Na-
tional Conference on Artificial Intelligence (1996)

[108] R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boosting the margin:
a new explanation for the effectiveness of voting methods. In D. H. Fisher, edi-
tor, Machine Learning: Proceedings of the Fourteenth International Conference
(ICML’97), pages 322-330. Morgan Kaufmann (1997)

94 Bibliography

[109] Website for MAGIC Telescope: http://wwwmagic.mppmu.mpg.de

[110] A. Moralejo for the MAGIC Collaboration, The MAGIC telescope for gamma-
ray astronomy above 30 GeV, Chin. J. Astron. Astrophys. Vol.3 Suppl. 531-538
(2003)

[111] D. Paneque, The MAGIC Telescope: development of new technologies and first
observations, PhD thesis , MPI Munich, August (2004)

[112] Nasa website on cernkov radiation: http://imagine.gsfc.nasa.gov/docs/science/how_12/Cherenkov
[113] P. A. Cherenkov, C.R. Acad. Sci. U.S.S.R., 2, p. 451 (1934)

[114] ROOT website: http://root.cern.ch/

[115] MARS website: http://magic.astro.uni-wuerzburg.de/mars/

[116] D. Kranich, Temporal and spectral characteristics of the active galactic nucleus
Mkn -501 during a phase of high activity in the TeV range, PhD thesis, Max-
Plank Institute of Astro-physics, Munich (2002).

[117] T. C. Weekes, M.F. Cawley, D.J. Fegan et al.,Observation of TeV gamma rays
from the Crab nebula using the atmospheric Cherenkov imaging technique. As-
trophysical Journal, 342: 379-395 (1989)

[118] A.M. Hillas, Proc. 19th ICRC, La Jolla 3 (1985) 445
[119] P.T. Reynolds et al., ApJ 404 (1993) 206

[120] F. Barbarino, Gamma-hadron separation using neural network techniques, Tesi
di Laurea, Udine University (2004)

[121] D.J. Fegan, J.Phys.G: Nucl. Part. Phys. 23 (1997) 1013

[122] W. Wittek, Image Parameters , MAGIC-TDAS 02-03, Internal Technical report
(2002)

[123] D.J.Fegan, Gamma/hadron separation at TeV energies, Topical Review,
J.Phys.G: Nucl. Part. Phys. 23 (1997) 1013.

[124] R. K. Bock et al., Methods for multidimensional event classification: a case
study using images from a Cherenkov gamma-ray telescope, Nucl. Instr. Methods

A516: 511-528 (2004)

[125] D. Heck, et al., CORSIKA, A Monte Carlo code to simulate extensive air show-
ers, Forschungszentrum Karlsruhe, Report FZKA 6019 (1998)

[126] Tan H. Witten, E. Frank, Data Mining: Practical machine learning tools and
techniques, 2nd Edition, Morgan Kaufmann, San Francisco (2005)

[127] R statistical software: www.r-project.org/

Bibliography 95

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[142]

[143]

Fortran Source code for random forests
http://www.stat.berkeley.edu/users/breiman/RandomForests

Y. Freund, R. E. Schapire, A decision-theoretic generalization of online learning
and an application to boosting, In Computational Learning Theory: Second
European Conference, EuroCOLT ’95, pages 23-37, Springer-Verlag (1995)

H. Schwenk, Y.Bengio, Boosting Neural Networks, Neural Computation, Volume
12, Number 8, pp. 1869-1887(19), MIT Press (2000)

P. Cunningham, J. Carney, S. Jacob, Stability Problems with Artificial Neural
Networks and the Ensemble Soloution , Technical report, Department of Com-
puter Science, Trinity College Dublin, Ireland (2003)

B. Efron, R. Tibshirani, An Introduction to the Bootstrap, Monographs on
Statistics and Applied Probability, No 57, Chapman and Hall (1994)

D. Opitz, J. Shavlik, Generating accurate and diverse members of a neural
network ensemble, in D. Touretzky, M. Mozer and M. Hasselmo, eds.,Advances
in Neural Information Processing Systems 8, 535-541, MIT Press (1996)

J. Carney, P. Cunningham, Confidence and prediction intervals for neural net-
work ensembles, in proceedings of IJCNN99, The International Joint Conference
on Neural Networks, Washington, USA (1999)

R. M. Wagner et al., Observations of the Crab nebula with the MAGIC telescope,
29'" International Cosmic Ray Conference Pune (2005) 00, 101.106

T. Weekes et al., Astrophys. J. 342 (1998) 379
F. A. Aharonian et al, Astrophys. J. 614 (2004) 897
T. Li, Y. Ma, ApJ, 272, 317 (1983)

E. Alhoniemi, Unsupervised Pattern Recognition Methods for Exploratory Anal-
ysis of Industrial Process Data, PhD thesis, Helsinki University of Technology
(2002)

J. Vesanto, E. Alhoniemi Clustering of the Self-Organizing Map. In IEEE Trans-
actions on Neural Networks, Volume 11, Number 3, pp. 586600 (2000).

J. Vesanto, Neural network tool for data mining: SOM Toolbox, In Proceedings
of Symposium on Tool Environments and Development Methods for Intelligent
Systems (TOOLMET2000), pages 184-196, Oulu, Finland (2000)

A. R. Smith. Color gamut transform pairs, Computer graphics, 12(3):1219
(1978)

J. Dopazo, J. M. Carazo, Phylogenetic reconstruction using an unsupervised
growing neural network that adopts the topology of a phylogenetic tree, Journal
of Molecular Evolution 44, 226-233 (1997)

96 Bibliography

[144] C. M. Bishop, M. Svensn, C. K. I. Williams, GTM: The generative topographic
mapping. Neural Computation, 10:215234 (1998)

