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Abstract

Several new solutions of Einstein gravity, Einstein-Maxwell, and supergravity are
presented. The solutions are derived, often from known solutions via analytic contin-
uation, or generating or transformation methods. Then their properties and global
structure are understood. Finally, their role in quantum gravity and string theory is
described.

First, we describe the card diagram which is used to describe all Weyl-type space-
times, and can be generalized beyond known Weyl types to include a cosmological
constant. Card diagrams are extensions of Weyl half-planes to include time-dependent
regions, and display all regions and global structure of a spacetime. Card diagrams
have enabled the author and his collaborators to easily understand global structure
of spacetime where pictureless methods would result in verbosity, confusion, or error.
Additionally, card diagrams teach us about the structure of gravitational equations,
sources, and solutions of PDEs/BVPs.

Then, we look at solutions gotten from the black dihole geometry. We review the
dihole wave, and the complicated S-dihole U/-universes and £-universes. Scaling limits
are discussed, and affine coordinates are emphasized for analyzing the complexified
non-Killing 2-manifolds.

Third, we give the correct global description of the odd-dimensional S-Kerr uni-
verses: D =5,7,9,.... All but the first (D = 5) yield a new instanton which can be
used to describe the semiclassical decay of a simpler spacetime into the S-brane.

Fourth, we discuss the variety of S-branes, bubbles, and anti-bubbles obtainable
from charged and spinning black holes in de Sitter and anti-de Sitter space.

Lastly, we use these twisted bubbles in AdSs to describe semiclassical decays of
AdS; orbifolds, and extend the Gibbons-Hawking thermodynamic formalism to the
twisted case. We use card diagrams for AdS to argue the global structure in the Kerr-
AdS case, and find that a certain non-Killing event horizon remains present in the
bubble spacetime for any a,b # 0, so with a cosmological constant, the nonspinning
case is highly nongeneric.
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Chapter 1

Introduction

Einstein’s 1915 theory of general relativity set the stage for much of modern the-
oretical physics. In addition to setting the basic notions of space and time, and
relativity’s astrophysical applications, its resistance to a quantum mechanical treat-
ment has led to great questions, great insights, and all but the original motivations of
string theory. String theory is still a background-dependent theory, where the back-
grounds solve classical field equations that can be corrected order by order. These
classical field equations are equations of gravity.

The simplest theory of pure gravity (in Lorentzian or Euclidean signature, and
in 4 or higher dimensions) is already highly interesting and nontrivial. Solutions are
hard to come by; standard textbooks often derive only those that can be solved by
ODEs. Classification of solutions, generating methods, and a large collection of solu-
tions with brief descriptions fill the compendium [1]. Adding to the difficulty is that
solutions which are locally well-behaved will have a singularity elsewhere (i.e. they are
incomplete), or will have incompatible closing loci of Killing directions with ensuing
CTCs or horizon orbifolds. Stationary solutions with multiple objects are difficult to
find, and truly dynamical solutions are nigh impossible.

Introduction of 1 Killing vector (for a stationary or brane-type solution) is usually
the minimum assumption for the derivation of 4d exact solutions. Einstein’s theory
then admits an Ehlers SO(2,1) symmetry group [2]. Additionally the Killing vector
gives us a notion of Geroch/Hansen/Simon potentials [3, 4, 5] and in asymptotically-
flat instances, conserved quantities. Einstein-Maxwell theory admits an SU(2,1)
Kinnersley symmetry group [6] including the popular Harrison transformations [7].

The introduction of a second Killing vector to a 4-manifold results in a much
more rigid structure, first discovered by Hermann Weyl in 1917 [8, 9]. The resulting
problem is still difficult yet tractable. Theoretical gravity takes more of a structure at
this stage, and admits a variety of generating techniques and an infinite-dimensional
Geroch/Kinnersley group of symmetries [10], as well as the specialized Bonnor trans-
form [11, 12, 13]. Weyl described space as a collection of fields on a ‘background’
space which is the flat half-plane (or alternatively, axially symmetric flat 3-space).
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The non-Killing 2-metric is conformally flat and the half-plane’s boundaries close the
Killing directions, yielding either horizons or closure (i.e. origin of polar coordinates).
When things go wrong, these become horizon orbifolds, or conical singularities. The
half-plane’s boundary is partitioned into ‘rods’ and ‘rays,” and certain quantities like
surface gravities are constant along rods and rays.

After Weyl’s seminal work, Achilles Papapetrou extended the static to the sta-
tionary case [14], and the Weyl-Papapetrou equations became nonlinear and hence
generally nonsolvable. A renaissance came with the modern work of Emparan and
Reall [15], generalizing the static Weyl harmonic method to D dimensions, assuming
D —2 Killing vectors, and then T. Harmark [16, 17] allowed D-dimensional stationary
solutions. We include the simple calculation for stationary electromagnetic fields for
the D-dimensional static case.

Weyl’s half-plane p > 0 gave rise to card diagrams, upon continuation of p — ip'.
Conformally Minkowskian 1+1 ‘vertical’ cards finished out the Weyl description of
spacetime. Card diagrams had several interesting properties and depicted spacetime
in a way much different from the renowned Penrose diagram. Often, a combination
of Penrose and card diagrams is useful to fully understand a spacetime’s structure.
Card diagrams go beyond Weyl’s original ideas though, in that they can still apply
in the presence of a cosmological constant. Pure (A)dSp spacetimes and black holes
(or bubbles, anti-bubbles, or S-branes) in (A)dSp will admit card diagrams despite
the failure of Weyl’s harmonic method and the lack of a Weyl canonical p coordinate.

The development of more complicated supergravity theories in the 1970s gives a
more direct injection of Einstein’s theory into string theory; various supergravity the-
ories in various dimensions represent the fields of string theory and many are related
via dimensional reduction. Solutions in four and five dimensions (some involving a
dilaton field) can be lifted to ten- and eleven-dimensional brane solutions in string
and M-theory. Generating techniques of ‘dilatonization’ are important for this lifting,
as is the well-known correspondence between the Taub-NUT instanton and D6-branes
[18, 19, 20, 21].

One useful fact of gravitational solutions with Z, or Lie symmetries is that an-
alytic continuation of the solutions can give new real-valued solutions. Each given
solution can generate several solutions, stationary or time-dependent, and each with
its own cosmological interpretation, even though the solutions are algebraically iden-
tical across the complexified manifold. Imaginary-source solutions [22, 23, 24, 25]
become reinterpreted as gravitational waves or S-branes, and black hole solutions
also yield bubble-type solutions which result after semiclassical spacetime decay.

These time-dependent solutions have been related to dynamical tachyon solutions
of string field theory pioneered by Sen [26, 27, 28] and Strominger/Gutperle [29].
Analytically continued gravitational solutions are thus interpreted as gravitational
wave or S-brane solutions, perhaps sourced at imaginary time. The establishment of
a (possibly conserved) S-charge for solutions, the issue of their regularity and possible
development of horizons, their asymptotics, and scaling limits, guide our description.
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Theoretical gravity concerns the finding of solutions and a description of their ge-
ometric properties. One is always straddling the line between a geometric description
and a coordinate-dependent description. Our theme is to deemphasize coordinate-
dependent ‘descriptions’ of spacetimes and yet to emphasize that spacetimes are in
fact naturally written in certain coordinate systems. Our other theme is that hori-
zons and singularities can be understood from the point of view of these canonical
coordinate systems, and that spacetime pieces can be trivially patched together to
understand a global structure.

This dissertation collects many related works by the author and his collabora-
tors concerning solutions of gravitational equations, their manipulation via analytic
continuation, their description and accounting, their relation to stringy objects, and
their use in describing spacetime evolution (classical or semiclassical). Some results
are published in e-print or journal, some are to be published, and others will appear
solely here.

In Chapter 2, we give the concept of the card diagram, a pictorial device used to
represent and work with Weyl spacetimes which has been very fruitful. They were
developed with J. Wang to keep track of analytic continuation of basic black hole,
bubble, and dihole geometries. The idea was to extend the conformal half-plane for
stationary regions to time-dependent regions. ‘Vertical cards’ and ‘special null lines’
were born and a whole new language and description of Weyl spacetimes emerged.
Card diagram methods make most analytic continuations obvious, allow one to keep
track of and give names to a host of solutions, and remove the need for long-winded
descriptions of horizons and spacetime structure.

Chapter 3 moves on to the dihole solution and analytic continuations thereof (the
S-dihole universes). Using both card diagram and spherical prolate/affine coordinates
we describe the complexified spacetime, ergosphere and ring singularity loci, and piece
together patches to give various universes. The U/ and U universes are similar in spirit
and can be described as an expanding bubble with a vertex in it, stretched out to
yield new internal i*. The U-universes are drawn as 3-dimensional diagrams and
are conjectured to have a complicated alternating sequence of Z* on their conformal
boundaries. They are nonsingular and also can be looked at as an evolution of a
hyperbolic plane as it collapses to a cigar and then relaxes again to the plane. Closely
related are £-universes with ergosphere singularities on their horizontal cards; these
can be interpreted as a pair of parallel charged S-branes.

Chapter 4 gives some results on spinning (Kerr) solutions. In odd dimensions D =
5,7,9,..., the Kerr S-brane with one spin parameter turned off, has an interesting
global structure for either a large mass or a small (anomalous) mass range. The
anomalous-range solutions continue to give new gravitational instantons. The D =5
case is degenerate with the known instanton but D = 7,9,... have a new topology
and must be new. They describe the semiclassical decay of a space into the new
anomalous-mass-range S-brane. A similar structure is present for S-branes deriving
from M2-brane solutions and similar solutions with the same codimension. We also
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give further solutions gotten from Kerr and a nonsingular S-brane for Taub-NUT.

Chapter 5 adds a cosmological constant. It is here that the form of the metric
can get quite complicated. We define procedures to achieve S-branes, bubbles, and
anti-bubbles from black holes in AdS or dS space in the spherically symmetric case,
and then move to the rotating case. There is a strange occurrence of W = 0 coor-
dinate singularities when we include both rotation and A that is not present with
either turned off. We show these are horizons in many cases and describe spacetimes
by skeleton diagrams (they are skeletons for Penrose diagrams, or are the 1d equiv-
alent of a 2d card diagram). We also give the simplest Weyl representations of pure
(A)dS, and (A)dSs. These spacetimes which are asymptotically locally AdS serve in
the AdS/CFT correspondence [30, 31, 32]; dominant Euclidean spacetimes satisfying
certain boundary conditions are dual to thermal states in the CFT [33, 34]. The so-
lutions here are primarily Lorentzian, possibly without an exterior stationary patch
and serve for Lorentzian AdS/CFT [35].

Chapter 6 uses the Kerr-AdSs bubble as an endpoint for the semiclassical decay of
a twisted AdSs orbifold. To see this, we analyze both geometries and show they have
the same asymptotics. One must be careful using spherical vs. spheroidal coordinates,
to get a match. In fact, the spheroidal coordinates for pure AdS; give a natural
explanation of the W = 0 horizons of S-branes and (anti-)bubbles for Kerr-(A)dSp.
These horizons are already present for pure (A)dSp in the given patched description,
and persist for say the Kerr-AdSp bubble. The bubble formation, which we would
expect to seal off these W = 0 horizons from the majority of the spacetime, does
not; the bubble surface does not expand quickly enough and both the non-Killing
horizon and W = 0 horizon (or orbifold) are accessible after bubble formation. We
also investigate the thermodynamics of the black holes-in-AdS and relate instanton
negative modes to specific heat in a constant-{2 ensemble. We also discuss a relation
to the flat case of Dowker et al. and the channels for decay.



Chapter 2

Card diagrams

To capture important physical properties of a spacetime we construct a new dia-
gram, the card diagram, which accurately draws generalized Weyl spacetimes in arbi-
trary dimensions by encoding their global spacetime structure, singularities, horizons,
and some aspects of causal structure including null infinity. One of our main results
is to describe how Weyl rods can be traversed and the whole spacetime including
the interior of horizons can be mapped out. Families of solutions share qualitatively
similar card structures. As examples we systematically discuss properties of a variety
of solutions including Kerr-Newman black holes, black rings, expanding bubbles, and
recent spacelike-brane solutions. Card diagrams draw only non-trivial directions and
so provide a clearer picture of the geometric features of spacetimes as compared to
Penrose diagrams, and can change continuously as a function of the geometric param-
eters. In addition we show how card diagrams not only capture information about a
geometry but also its analytic continuations. Weyl techniques are also applied to the
perturbations of bubble and S-brane solutions by Israel-Khan rods.

This text is based on the paper hep-th/0506023 with John E. Wang, and some
material had already been presented in hep-th/0409070.

2.1 A new diagram for spacetime structure

Spacetimes are geometrical objects, independent of the coordinates with which we
describe them. However, spacetimes are typically presented and visualized in specific
coordinate system. If the coordinates are poorly chosen, many properties of the
spacetime such as horizons, causally connected spacetime points, maximal extensions
and null infinity are not readily apparent.

A simplification occurs if a D dimensional Lorentzian spacetime has enough fibered
directions (like a (D — 2)-sphere) or other ignorable directions. One can draw two
dimensional diagrams for the remaining directions and such Lorentzian —+ signature
spacetime slices can be conformally compactified leading to Penrose diagrams.



Chapter 2: Card diagrams 6

Penrose diagrams are quite useful in understanding spacetime geometry and suc-
cessful especially in understanding causal structure although there are some limi-
tations to this approach. For instance just knowing the Penrose diagram for the
subextremal Q% < M? Reissner-Nordstrom black hole does not tell us what happens
to the spacetime structure in the chargeless or extremal limits. For more complicated
spacetimes, Penrose diagrams (which assume symmetry or fibering) can only draw a
slice of the spacetime. As a known example, the Penrose diagram for a Kerr black hole
does not clearly depict the ring singularity and the possibility of crossing through the
interior of the ring into a second universe. In addition, recently analytic continuation
has been applied to black hole solutions to yield bubble-type [36, 37, 38, 39, 40, 41]
or S-brane [41, 29, 27, 42, 43, 44, 45, 46, 23, 25, 47, 48, 49, 50, 51, 52] solutions. Of-
tentimes this is done in Boyer-Lindquist type coordinates which are hard to visualize.
Again we are not left with a clear picture of the resulting spacetime and the Penrose
diagrams are missing important noncompact spatial directions.

It is useful to have an alternative diagram which can also capture important
features of a spacetime. For this reason in this paper we expand the notion of drawing
spacetimes in Weyl space [53, 15]. Because our diagrams have the appearance of
playing cards glued together we will dub them Weyl card diagrams.

To understand the construction of a card diagram we recall that in D = 4 dimen-
sions a Weyl solution in canonical coordinates [15, 8, 54] is written as

ds® = —fdt* + f[e* (dp® + d2*) + p*de?] (2.1)

where f and v are functions of p, z. The original Weyl class requires two commut-
ing orthogonal Killing fields 0y, 0y in four dimensions [8], or D — 2 fields for general
D dimensions [15]." Sometimes Weyl solutions are called axially-symmetric gravita-
tional solutions although they in fact are more general. We also include the Weyl-
Papapetrou class for 2 commuting Killing vectors in D = 4 [14], and allow charged
static solutions in D > 4 (see the Appendix to this paper). Furthermore stationary
vacuum solutions in D > 4 are covered with the recent work of [16]. In four and
five dimensions this generalized Weyl class includes spinning charged black holes and
rings [15, 16, 57, 58] as well as various arrays [25, 51, 59] of black holes, spacelike-
branes, and includes backgrounds like Melvin fluxbranes [25, 51, 60, 61, 62, 63, 64]
and spinning ergotubes [65].

When constructing card diagrams, we will draw only Weyl’s canonical coordinates
(p, z), or coordinates related to them via a conformal transformation. The Killing
coordinates are ignorable and so this diagram is efficient and will show all details
of the spacetime. Since there are only two nontrivial coordinates, card diagrams
are two dimensional like Penrose diagrams and so are easy to draw. The difference
however is that while Penrose diagrams are truly two-dimensional, card diagrams are
drawn as if embedded in three dimensions. When a (p, z) region of the spacetime

Non-Weyl, axisymmetric spacetimes in D > 4 are discussed in [53, 56].
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has Euclidean ++ signature, we draw the two coordinates (p, z) horizontally; and
this makes a horizontal card. For Lorentzian signature +— regions we use (o', 2)
or (1,p), and draw the timelike coordinate vertically; this makes a vertical card.
Causal structure is automatically built into the vertical cards since the directions
(7, p) appear conformally only through the combination —d7?+dp?. Horizontal cards
and vertical cards are attached together at Killing horizons and so card diagrams
resemble a gluing-together of a house of playing cards.

In this paper we will present card diagrams for the familiar spacetimes of black
holes, as well as expanding bubbles, S-branes, and black rings. Many other spacetimes
including the S-dihole, infinite periodic universe, C-metric, and multiple-rod solutions
in 4 and 5 dimensions are presented in [51], and spacetimes derived from 4 and 5
dimensional Kerr geometries will be presented in [67].

In Section 2 we review the Schwarzschild black hole in the usual coordinates and
in Weyl coordinates. By extending through the horizon and properly representing
the interior of the black hole we construct the first card diagram. We emphasize
the construction of the interior of the black hole as a vertical card comprising four
triangles unfolded across special null lines. We then discuss general card diagram
properties such as the null lines, list the available card types, and describe the ~-flip
analytic continuation procedure.

In Section 3, we discuss the sub/super/extremal Reissner-Nordstrom black hole
card diagrams, the Kerr black hole, and the black ring/C-metric card diagrams. We
then show how a spacetime can have multiple card diagrams and as examples present
the elliptic, hyperbolic, and parabolic representations of the charged Witten bubble
and charged Spacelike brane which we also call S-Reissner-Nordstrom. Finally, as a
newer example we discuss the (twisted) S-Kerr solution [47, 48].

We conclude with a discussion in Section 4. We give an appendix on perturbing
Witten bubbles and S-branes by introducing Israel-Khan rods, in their hyperbolic
or elliptic representations. We also give an appendix on how the higher dimensional
vacuum Weyl Ansatz can be extended to include electromagnetic fields.

This paper is a condensed presentation of the card diagrams in [51].

2.2 Schwarzschild and general card diagrams

In this section we review the Schwarzschild black hole as an example of a Weyl
spacetime and then we explain the construction of its associated Weyl card diagram.
General features and properties of card diagrams are also developed.

Up to now if a solution such as the Schwarzschild black hole had horizons, then
only the regions outside the horizons have been drawn in Weyl coordinates [15, 54].
To go through a nonextremal horizon the Weyl coordinate p must be allowed to take
imaginary values. We discuss how the horizon can be represented as a junction of four
regions which we call four cards. The regions outside the horizon will be drawn as
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two horizontal cards while the regions between the horizon and the singularity will be
drawn as two vertical cards. The interior vertical cards naively are problematic and
have fourfold-covered triangles bounded by ‘special null lines’. However the triangles
can be unfolded and glued together into a square along the ‘special null lines’ to
achieve a singly covered representation of the spacetime by properly choosing branches
of a square root in the solution.

Note that card diagrams represent the spaces on which we solve the Laplace
equation (horizontal card) or wave equation (vertical card) to find a Weyl metric.
For example, the Schwarzschild black hole has a uniform rod source for the potential
log f, and the remainder of its z-axis encodes the vanishing of the ¢-circle. Thus
card diagrams give a full account of the boundary conditions necessary to specify the
spacetime.

2.2.1 Schwarzschild black holes

This section will describe the construction of the Schwarzschild black hole card
diagram. The Penrose and card diagrams are drawn in comparison in Fig. 2.1.

singularity

horizon MMM
singularity horizon \ V1

singularity

—

singulari

y

Figure 2.1: The Schwarzschild black hole represented both as a Penrose diagram as on
the left and as a Weyl card diagram on the right. The cards V1 and V2 are vertical
squares made of four triangles, while the cards H1 and H2 are horizontal and are
infinite half-planes. The four cards are joined together along the black hole horizon
on the z-axis.

The Schwarzschild metric in spherically symmetric (Schwarzschild) coordinates is

ds* = —(1 — 2M/r)dt* + (1 — 2M /r)'dr? + r*d6* + r*sin® Od¢?* . (2.2)
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There is a horizon at r = 2M and a curvature singularity at » = 0. On the other
hand, in Weyl’s canonical coordinates [15, 8, 54] it is

ds? = —fdt* + fH(e*(dp® + d2°) + p*d¢?)
where f and v are functions of the coordinates p and z:

(Ry + R_)* — 4M?

(Ry + R_+2M)?’

(Ry + R_)?>—4M?
4R, R_

Re = P2+ (z£M)2

f =

e

, (2.3)

Previously attention was restricted to the half-plane p > 0, —o0 < 2z < o0, known
as Weyl space, which describes the exterior of the black hole and whose horizon is
represented by a ‘rod’ line segment p = 0, —M < z < M; see Fig. 2.2. Note that
the non-Killing 2-metric is conformal to the Euclidean flat space dp? + dz?. The
coordinate transformation between Schwarzschild and Weyl coordinates is

p = Vr2—2Mrsiné, (2.4)
z = (r—M)cos@.

Now we wish to ask how Weyl’s coordinates draw the spacetime inside the horizon.
The Schwarzschild coordinates (2.4) tell us that for 0 < r < 2M, p is imaginary and
so we set p’ = ip. (In general we must perform an analytic continuation of Weyl
coordinates to go through a horizon which are at the zeros of the Weyl functions
f,€?7.) The analytic continuation gives a region with a conformally Minkowskian
metric —dp’? + dz? and we will draw this region as being vertical and perpendicularly
attached to the horizontal card at the horizon —M < z < M. The vertical direction
is always timelike in card diagrams.

Of course the horizon structure is a more complicated than just having two cards
joined together. For example we know the Penrose diagram in the ¢, r coordinates is
divided into four regions that meet in a x-horizon structure. In Weyl coordinates,
we already saw that we can extend p — +ip’ or go to negative p. This gives us the
four regions of the Schwarzschild black hole in Weyl coordinates. Two regions will be
horizontal at real values of p and two regions will be vertical with imaginary values
of p. So in addition to the first horizontal card in front of the horizon, we also have
a copy of the horizontal external universe behind the horizon and attach two vertical
cards, one above and one below the horizontal cards (see Fig. 2.1). All together, four
different regions attach together at the same —M < z < M rod horizon.

The four regions labelled H1, H2, V1 and V2 in the Penrose diagram map to the
similarly labelled four regions on the card diagram in Fig. 2.1. Note that the Weyl
cards show the r, # coordinates which is different from the Penrose diagram. However
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horizon

p'
boundary I / boundary
p

\ 0 const

r COﬂSt

Figure 2.2: In Weyl coordinates the Schwarzschild black hole is typically represented
as a p, z horizontal half-plane showing one external universe, H1, of » > 2M. The
horizon is represented as a rod along p =0 —M < 2z < M. The 0 < r < 2M region
will be drawn along the vertical perpendicular p’-direction.

the fact that the radial coordinate r describes four distinct regions, two where 0, is
spacelike and two where it is timelike, is still apparent in the Weyl card diagram.
Though a Penrose diagram always has a Lorentzian —+ signature, a card diagram
will flip from being Euclidean ++ to Lorentzian —+ across a nonextremal Killing
horizon.

Let us now examine the construction of the upper vertical card extended in the p/, z
directions. Looking at an r-orbit on the vertical card, we note that 0 < p’ < M =+ z.
The bounding lines Ry = \/—p2 + (2 £ M)? = 0, we will call ‘special null lines,
and they are a general feature of vertical cards with focal points (the rod endpoints
z = £M). Here the special null lines are the envelope of the r-orbits as we vary
0. Thus when inside the horizon the Schwarzschild coordinates apparently fill out a
vertical 45-45-90 degree triangle with hypotenuse length 2M a total of four times, as
shown in Figure 2.3.

Special null lines play an important role in Weyl card diagrams so let us explain
their significance. Keep in mind that we have already broken the manifest spherical
symmetry when we have written the Schwarzschild metric in Weyl coordinates, so
the existence of preferred special null lines is relative to this chosen axis. Consider
the two 3-surfaces

Ry =r— M=+ Mcosf =0, (2.5)

which are drawn in Fig. 2.4. These surfaces bound the trajectories of light rays that
do not move in the Killing directions. The surfaces intersect at » = M and partition
the black hole interior into four subregions. These regions correspond to four Weyl
triangles.

It is clear from (2.5) that R, is positive outside the horizon and there is no
difficulty going to negative values inside the horizon. On the other hand in terms
of Weyl coordinates, the functions Ry = /—p2+ (2 £ M)? are the square root of
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specia null line specia null line

boundary boundary

horizon

Figure 2.3: The Weyl representation of the interior of the Schwarzschild black hole
naively gives a triangle with base length 2M and height M. As we illustrate, the
triangle interior is covered four times by orbits of r at four different values of 6.

specia null line

horizon r=2M r:V

specia null line

Figure 2.4: The Weyl null lines for the Schwarzschild black hole correspond to two
3-surfaces which partition 0 < r < 2M into four subregions.
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a positive number when p' < z £ M and imaginary if p’ > z + M. Clearly, instead
of dealing with imaginary values of R, the way to go ‘beyond’ the special null line
Ri = 0is to keep p’ < z4 M but use the other square root branch for R as it enters
in the Weyl functions f and ~ by explicitly replacing R+ — —R.. Since we can pass
R, =0 and/or pass R_ = 0, it is clear that the four different branches of the square
root functions differentiate the four copies of the Weyl triangle.

From (2.3), passing each Ry = 0 null line changes the sign of ¢’ and hence
exchanges the timelike and spacelike nature of p’ and z. Since the vertical direction
on a vertical card always represents time, two of the triangles are drawn turned on
their sides, so the hypotenuse is vertical. When the four triangles describing the
interior of the black hole 0 < r < 2M are glued together along the special null lines
they fit neatly into a square; see Fig. 2.5. Because of the unfolding of the triangles,
the positive z-direction on the top triangle (and any attached horizontal cards) points
in the opposite direction compared to that on the original horizontal card.

singularity

boundary

/|

2M

Figure 2.5: Unfolding the four triangles along the 45° special null lines for the Weyl
card V1, 0 < r < 2M, produces a square of side length 2M. The horizon is at the
bottom and the singularity at the top. We also draw two lines of constant 6 and
varying r.

The upper vertical cards is thus a square of length 2M. The bottom of the upper
card V1 is the black hole horizon which connects to three other cards in a four card
junction. The right and left edges of this vertical card correspond to 6 = 0,7 and
are the boundaries where the ¢-circle vanishes. The top edge of the card represents
the r = 0 curvature singularity. The second vertical card V2 is built in analogous
fashion except the square is built in a downwards fashion towards negative values
of p/. Additionally there is a second horizontal card plane, H2, identical to H1 at
negative values of the p coordinate attached to the same horizon along [—M, M| on
the z-axis.
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One typically stops the construction of the Schwarzschild spacetime with the above
four regions, and considers the r < 0 regions of the metric to be a separate spacetime.
However for reasons which become clear when we look at the Reissner-Nordstrom and
Kerr black holes in Sections 2.3.1 and 2.3.1, we will continue the card diagram past
the singularity and attach two horizontal half-plane corresponding to negative-mass
(or 7 < 0) universes h3 & h4, and further vertical card above the singularity which is
identical to V2. The two new horizontal cards each represent negative mass-universes
with a singularity along —M < z < M. Note that while the Penrose diagrams for
the » > 0 and r < 0 regions of Schwarzschild cannot be attached together since the
singularity is spacelike in one region and timelike in another, cards can naturally be
attached at this rod-singularity. The extended card diagram for Schwarzschild, shown
in Fig. 2.6, is an infinite array of repeated cards representing positive and negative
mass universes and inside-horizon regions.

V2
V2

Vi1

V1
H2 H1 H2
R —
H1
V2 V2

AVAV\/\/\/ ha ; h3 h4

N

Figure 2.6: The extended card diagram for Schwarzschild includes both positive and
negative mass universes half-planes. Its cross-section for z = 0 is drawn on the right.

2.2.2 General properties of card diagrams

Having described the construction of the card diagram for Schwarzschild we now
turn to a few general remarks about these diagrams. Horizontal cards are conformally
Euclidean and represent stationary regions. Vertical cards are always conformally
Minkowskian and represent regions with (D —2) spacelike Killing fields. On a vertical
card time is always in the vertical direction and a point’s causal future lies between
45° null lines. Weyl’s coordinates certainly go bad at horizons, so these diagrams
are not a full replacement for Penrose diagrams at understanding causal structure or
particle trajectories. However, it is clear for example from Fig. 2.1 that two vertical
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and two horizontal cards attach together in a orthogonal +-configuration in precisely
the sense of the x-horizon structure of the Penrose diagram.

The prototypical horizon is that of the two Rindler and two Milne wedges of
flat space; this spacetime has two horizontal half-plane cards and two vertical half
plane cards that meet along the horizon being the whole z-axis. Zooming in on a
non-extremal horizon of any card diagram yields this Rindler/Milne picture.

A rod endpoint (p, z) = (0, z;) such as z = £M for Schwarzschild is a ‘focus’ for
the Weyl diagram and often represents the end of a black hole or acceleration horizon
on a horizontal card. Generally, multi-black hole Weyl spacetimes depend only on
distances to foci, such as Ry in the case of Schwarzschild [68].

To understand that in general it is natural to change the branch of the distance
functions, R;, when crossing the special null line that emanates from the foci at z = z;,
take some Weyl spacetime and imagine moving upwards in a vertical card to meet the
special null line at R; = 0 by increasing time p’ > 0 for fixed spatial z. Rearranging
R; = \/—p?+ (2 + 2)? as the semi-ellipse

R+ 0% =(2+ )%,

we see that a smooth traversal of this semi-ellipse across R; = 0 requires a change in
the sign of R;.

In many of our solutions, special null lines are used to reflect vertical triangular
cards to create full, rectangular cards. However, in the Bonnor-transformed S-dihole
geometry of [51] as well as double Killing rotated extremal geometries and parabolic
representations of the bubble and S-Schwarzschild in Sec. 2.3.2; the special null lines
will serve as conformal boundaries at null infinity Z=.

Boundaries of cards indicate where the metric coefficient along a Killing (circle)
direction vanishes. Which circle vanishes is constant over a connected piece of the
boundary, even when the boundary turns a right angle onto a vertical card. Further-
more the periodicity to eliminate conical singularities is constant along connected
parts of the boundary. For the Schwarzschild, the ¢-circle vanishes on both the con-
nected boundaries and has periodicity 27.

It is interesting to consider geodesic trajectories on card diagrams. For example
when a light ray is incident from a horizontal card onto a horizon (to enter the upper
vertical card), it must turn and meet that horizon perpendicularly. It then appears on
the vertical card, again perpendicular to the horizon. Only those light rays which go
from the lower vertical card to the upper vertical card directly can meet the horizon
rod at a non-right angle; these rays would touch the vertex of the x in a Penrose
diagram. When a light ray on a vertical card hits a boundary where a spacelike circle
vanishes, it bounces back at the same angle as drawn on the card relative to the
perpendicular.

Spacetimes with a symmetry group larger than the minimal Weyl symmetry can
have more than one card diagram representation. Multiple diagrams exist when there
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is more than one equivalent way to choose (D—2) Killing congruences on the spacetime
manifold. Examples we explicitly discuss in Sec. 2.3.2 are the 4d Witten bubble and
the 4d S-Reissner-Nordstrom (S-RN) which have three card diagrams corresponding
to the three types of Killing congruences on dS; and Hy. These different card diagrams
are associated for example with global, patched, and Poincaré coordinates for dS,
and the different representations will have different applications and reveal different
information. The S-Kerr solution, whose card diagram is discussed in Sec. 2.3.1, has
symmetry group U(1) x R and its unique card representation looks like the ‘elliptic’
representation of S-RN.

Our deck of cards: The building blocks for Weyl spacetimes

All spacetimes, new and old, in this paper are built from the following card types.

Horizontal cards are always half-planes. They may however have one or more
branch cuts which may be taken to run perpendicular to the z-axis. Undoing one
branch cut leads to a strip with two boundaries; multiple branch cuts lead to some
open subset, with boundary, of a Riemann surface.

Vertical cards may be noncompact: Full planes with or without a pair of special
null lines; half-planes with vertical or horizontal (horizon) boundary; or quarter planes
at any 45° orientation. Vertical cards may also be compact: Squares with a pair of
special null lines; or 45-45-90 triangles at any 45° orientation. All vertical boundaries
represent a Killing circle vanishes and hence the end of the card. All horizontal
boundaries represent a Killing horizon. All 45° null boundaries represent instances of
I+,

It is satisfying that for a variety of spacetimes including those in [67, 41], the cards
are always of the above rigid types.

There is one basic procedure which can be performed on vertical cards and their
corresponding Weyl solutions. It is the analytic continuation 2v — 2v 4 im, which
is allowed since v is determined by first order PDEs and €27 is real of either sign
on vertical cards. This continuation is equivalent to multiplying the metric by a
minus sign and then analytically continuing the D — 2 Killing directions. For charged
generalizations of Weyl solutions (see Appendix B), this procedure does not affect the
reality of the 1-form gauge field. We call this a y-flip since the way it acts on a card
is to flip it about a 45° null line (for example, look at the vertical cards in Figs. 2.18
and 2.19).

2.3 Card diagrams
In this section we construct the card diagrams for a wide assortment of solu-

tions including black holes and S-branes. The card diagrams are shown to be useful
in representing continuous changes in the global spacetime structure such as how
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Reissner-Nordstrom black holes change as we take their chargeless and extremal lim-
its. For the superextremal black holes we discuss how to deal with branch points
and cuts on horizontal cards. The card diagram also clearly represents the Kerr ring
singularity and how traversing the interior of the ring leads to a second asymptotic
spacetime. The 5d black ring solution and associated C-metric type solutions are
discussed.

Furthermore analytic continuation has an interesting interpretation in terms of
card diagrams. We will describe the effect of analytic continuation on the card di-
agrams by examining two known analytic continuations of the Reissner-Nordstrom
black hole, the charged bubble and the SO-brane which we also call S-RN. These
spacetimes each have three card diagram representation and two are obtained via
different analytic continuations. The Witten bubble and S-RN are related to each
other by what we call a y-flip.

2.3.1 Black holes
Subextremal Q? < M? Reissner-Nordstrom black holes

In the usual coordinates the Reissner-Nordstrom black hole takes the form

oM Q? oM Q*\ 1
2 2 2 | 20002 1 win2 0942
ds? = —(1= ==+ 5 )d+ (1= S5+ %) dr? + (0 + sin? 0d*|2.6)
A = Qdt/r
Using the coordinate transformation
p=/12—2Mr + Q?siné, z=(r— M)cosf (2.7)

we find the Weyl form of Reissner-Nordstrom black hole

ds* = —fdt* + f (e (dp* + dz?) + p*d¢?) (2.8)
(Ry+ R)? —4(0M? — Q?)
d (R, + R_ +2M)? (2.9)
(Bt RO A0 - Q)
AR, R_
L 20
R.+ R_+2M

R, = \/pQ—i—(zj: M?2—@Q?)?2=r—M++/M?>—Q?cosf

and the card diagram for Q? < M? is shown in Fig. 2.7. The construction of the card
diagram proceeds along similar lines to the Schwarzschild card diagram. There are
two adjacent horizontal half-planes, H1 and H2, which represent the positive mass
asymptotically flat regions. The outer horizon is a rod which lies on the z-axis for
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—/M? — Q? < z < \/M? — (Q%. The vertical cards, V1 and V2, are squares of length

24/ M? — (Q? and the diagonal lines connecting opposite corners of the square are
special null lines. The top of V2is the r = r_ rod, a four-card inner horizon. The black
hole singularity lies on the boundary of the h1 and h2 regions, at p?/Q?*+ 2?/M? = 1.
The rest of those horizontal cards, regions h3 and h4, are r < 0 or equivalently M < 0
nakedly singular RN ‘black holes.’

At each horizon, the card diagram is continued vertically to obtain an infinite
tower of cards. In Fig. 2.8 we show the Penrose diagram for comparison.

Although the chargeless () — 0 limit is hard to understand using Penrose dia-
grams, it is easy to understand using the card diagram in Fig. 2.7; the vertical card
expands to a 2M x 2M square and the singularity degenerates to a line segment
covering the inner horizon. Regions hl and h2 have collapsed and the singularity is
now ‘visible’ from V1 and V2 as well as h3 and h4. We have achieved the infinite
number of cards in the Schwarzschild card diagram Fig. 2.6.

Figure 2.7: The subextremal Reissner-Nordstrom card diagram. The ellipse singular-
ity has semimajor axes z = £M and p = @, and the rod endpoints are the foci on
the z-axis at z = -/ M? — Q2.

Extremal > = M? Reissner-Nordstréom black hole

Starting from the above card diagram we now examine the extremal limit () —
+M. In this case the vertical cards which represent the regions between the two
horizons get smaller and disappear. When ) = M, the horizontal cards are now only
attached at point-like extremal-horizons and only half of the horizontal cards remain
connected, see Fig. 2.9. The region near the point-horizons are anti-de Sitter throats
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Figure 2.8: The extended Reissner-Nordstrom Penrose diagram, including negative
mass universes.

although cards themselves cannot adequately depict the throat region. The throat is
a ‘connected’ sequence of points on vertically adjacent horizontal cards.

[ [ ]
z % .
P
P p
e P
[
p
N p ®
° [
Y [ ]

Figure 2.9: Extremal RN horizontal cards are connected in an AdS, fashion at their
origins. A side-view z = 0 cross section is also shown.

To understand how to go across the horizon, it is important to remember that
there are special null lines in r_ < r < r,. In the extremal case the focal distances
are equal (R = Ry = R_) and the null lines Ry = 0 degenerate to the origin. So
when we pass through the throat to an adjacent » < M horizontal card, the sign
changes for all occurrences of R = /p? + 22 = r — M. The singularity appears as a
semicircle on the r < M cards.



Chapter 2: Card diagrams 19

For axisymmetric Majumdar-Papapetrou solutions, this ‘sign change rule’ agrees
with that in [53]. Our analysis also applies to non-MP axisymmetric solutions such
as the dihole [12, 69, 70].

Superextremal Q? > M? Reissner-Nordstrom black holes

The superextremal Q% > M? Reissner-Nordstréom black hole does not have hori-
zons or vertical cards. Its card diagram consists of two horizontal cards, connected
along the branch cut 0 < p < /@Q?>— M?, z = 0. One card has a semi-ellipse
singularity passing through the points (p = 0,z = £M) and (p = Q,z = 0) (see
Fig. 2.10(a)).

These two horizontal cards are connected in the same sense as a branched Rie-
mann sheet. By choosing Weyl’s canonical coordinates (meaning Z = p + iz with
—(Coef dt*)(Coef d¢?) = (Re Z)?), the solution is no longer accurately represented on
the horizontal card. This can be seen by examining the coordinate transformation
(2.8) from Schwarzschild coordinates to Weyl coordinates. For fixed r and varying
0, the coordinates from M < r < oo cover the Weyl plane in semi-ellipses which
degenerate to the segment (0 < p < \/Q? — M2,z = 0), which serves as a branch
cut; and p = /Q? — M? is the branch point. The range —oo < r < M again covers
the half-plane with r = 0 forming an ellipse singularity. Crossing the branch cut

means choosing the opposite signs for Ry = \/p2 — (2 £1iy/Q% — M?)2, and indeed
we can think of the superextremal ‘rod’” as being complex-perpendicular to the Weyl
Z-plane.

This double cover of the Weyl plane can be fixed by taking a holomorphic square
root; this preserves the conformally Euclidean character of the card diagram. By

choosing a new coordinate W = \/Z — +/Q? — M2, we map both the positive and

negative-mass universes into the region (ImW)? — (ReW)? < \/Q? — M? (see Fig.
2.10(b)). The image of the z-axis boundary is a hyperbola where the ¢-circle vanishes.
The origin W = 0 is the image of the branch point and the image of the line segment
(0 <p< Q>+ M? z=0) is a line connecting the two hyperbolas and intersecting
the origin of the WW-plane. The singular nature of €  1/R, R_ o< 1/|AZ| < 1/|W?
has been fixed by e*'dZdZ = 4|W |22 dWdW . Finally the ‘black hole’ singularity is
mapped to a curved segment stretching from one hyperbola line to the other, to the
left of the branch cut.

Alternatively one can use a Schwarz-Christoffel transformation to map the two
universes onto the strip |[Im W| < Wj. This is useful when the horizontal card bound-
aries are horizons as it allows for multiple horizontal cards to be placed adjacent to
each other at the horizons (Fig. 2.17). This technique of fixing a horizontal card
with a branch point will also be used in more complicated geometries such as the hy-
perbolic representation of S-RN and multi-rod solutions in four and five dimensions

[51].
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Figure 2.10: (a) The superextremal RN black hole as two half-planes connected along
a branch cut; (b) after conformal transformation to the W-plane we obtain a branched,
static horizontal card, with two boundaries and one branch point.

Kerr black hole
Written in Weyl-Papapetrou form, the Kerr black hole is

ds* = —f(dt —wdg)? + (e (dp® + d2?) + p*dd?),
;o= (Ri + R_)? —4M? + 5%—(Ry — R_)?
 (Re + B+ 2M)? 4 s (Ry — RO
2y _ (R+ + R—)2 - 4M2 + MgiQQ (R-i- - R—)2
© - AR.R_ :
2aM(M + (1 - G
cT LRy + R_)2 — M2 4 2B )y
g\" 4(M2—a2)

where Ry = \/p2 + (2 £ VM2 —a?)?2 =r— M=+ M? — a?cosf. The transformation
to Boyer-Lindquist coordinates is p = v/r2 — 2Mr + a?sin6, z = (r — M) cos 6.

For a® < M? the Kerr black hole card diagram (see Figure 2.11) is similar to
Reissner-Nordstrom except that the singularity is a point and lies at p = a, 2 = 0
on each negative-mass card. The outer and inner ergospheres lie on the positive-and
negative-mass cards and are both described by the curve 2? = a?—(a?/a*—1)p*—p*/a?
which intersects the rod endpoints at z = +a = =+ M? — a?. The boundary of the
region with closed timelike curves is also described by a quartic polynomial in Weyl
coordinates. Once again the vertical card has two special null lines where Ry change
sign.

The r = 0 surface in BL coordinates is a semi-ellipse p?/a? + 22/M? = 1 on
the negative-mass card; but it is not a distinguished locus on the card diagram.
Attempting to make one loop around the ring in the Kerr-Schild picture clearly does
not make a closed loop in Weyl space, whereas two loops in the Kerr-Schild picture
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will form a single loop around the ring singularity on the card diagram. It is also
clear that it is possible to find classical trajectories which avoid the singularity and
which safely escape into a second asymptotically flat region.

A card diagram for a charged Kerr-Newman solution can similarly be constructed,
with a = /M2 — Q2 — a2.

The extremal Kerr(-Newman) solution has a card diagram like Fig. 2.9, but the
ring singularity is just a point at z = 0 and p = M on negative-mass cards. Again,
R = R, = R_ and the special null lines degenerate to the origin; crossing the origin
(which is a twisted AdS-type throat) entails changing the sign of R.

The superextremal Kerr(-Newman) solution is similar to the superextremal RN
(Fig. 2.10(b)) except that the curved-segment singularity is replaced by a point (z =
0), and the ergospheres map to an oo-looking locus centered at W = 0.

M <0
universe

inner

gosphere M >0

universe
. ) . univ
ring singularity
] outer V z
horizon J’z
M >0 ergo
univ

Figure 2.11: The Kerr card diagram.

The black ring
The 5d static black ring solution of [15] is

N :_%dtQ (2.10)
g [P - ) ()

where F(z) = 1—px, F(y) = 1—py, and 0 < p < 1. The coordinates z, y are 4-focus
(including oco) or C-metric [16, 66, 22, 71] coordinates that parametrize a half-plane
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of Weyl space p > 0, —o00 < z < o0:

1 ; >
p = m\/F(w)F(y)(l—fﬂ)(l—y)
L _ (U—ay(F@) - Fy)

2A(x — y)?

The foci are on the z-axis at z = +u/2A and z = 1/2A. The black ring horizon is also
on the z-axis along —p/2A < z < u/2A. The ¢-circle vanishes along z < —p/2A and
u/2A < z < 1/2A, and the 1-circle vanishes along z > 1/2A. Curves of constant y
degenerate to the horizon line segment as y — —oo, and degenerate to the (1/2A, c0)
ray (better pictured with a conformally equivalent disk) for y — —1. Curves of
constant x degenerate to the vanishing ¢-circle line segment for x — 1 and to the ray
(—o00, —p/2A) for z — —1.

The card diagram is easy to construct and is not much different from the four
dimensional Schwarzschild case. Past y = —oo we can go to y = +o00 and hence
imaginary p = ip’, and move up a p/A x p/A square with two special null lines. At
the top of the square, at y = 1/u we have the curvature singularity. Continuing again
to real p and running y down to 1, we map out a (negative-mass) horizontal card. The
locus y = 1 is the ray z > 1/2A. The space closes off here as the t-circle vanishes,
but we formally continue to illustrate how C-metric coordinates run on noncompact
vertical cards—this is useful in several applications, such as the Plebanski-Demianski
solution [72, 73, 74]. Past y = 1, we see that for fixed x, reducing y down to z makes
a topological half-line in a vertical card with a special null line. Then for —1 < y < =z,
we traverse another vertical card, which we could attach to our original positive-mass
horizontal card along z > 1/2A (see Fig. 2.12).

Note that when passing through the black ring horizon at y = —oo, the Weyl

conformal factor [15]
g Ltp Yoz Yo R2—C2’
4A RiRRs V Yis || Rs — (3

stays real; R3 — (3 and Yj3 go negative. As we pass the special null lines, explicit
appearances of R; and R, in the Weyl functions e?Yi, e?” change sign.

The charged ring of [58] is generated by a functional transformation and hence
inherits a card diagram structure. In fact, any geometry with D — 2 Killing directions
written in C-metric coordinates has a card diagram.

2.3.2 Charged Witten bubbles and S-branes

The Schwarzschild black hole can be analytically continued to two different time-
dependent geometries, the Witten bubble of nothing [36] with a dSs element and
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y=X

NY

y=xX

Figure 2.12: An extended card diagram for the black ring, where we have continued
past y =constant boundaries for —1 < x < 1. A y-orbit is drawn curving through
several cards. Only one of the vertical and horizontal cards are drawn at each four
card V-H-H-V card junction to avoid too many overlapping figures.

S-Schwarzschild [42, 43, 44] with an Hy element, and it is instructive to understand
how the card diagram changes.

Unlike the black hole geometries with their unique card diagrams, these geometries
can have multiple card diagram representations. Both the bubble and S-Schwarzschild
have three different card diagram representations corresponding to three different
ways to select Killing congruences. These three types of Killing congruences can be
understood by representing Hy as the unit disk (with its conformal infinity being the
unit circle). The orientation-preserving isometries of Hy are those Mébius transfor-
mations preserving the disk, PSL(2,R) [75]. Mobius transformations z +— Zjig have
two complex fixed points, counted according to multiplicity. In the upper half-plane
z = x + io0 representation, a, b, ¢, and d are real, so the fixed points are roots of a
real quadratic. Hence they may be (i) distinct on the real boundary (hyperbolic),
(i) degenerate on the real boundary (parabolic), or (iii) nonreal complex conjugate
pairs, one interior to the upper half-plane Hy (elliptic). Prototypes of Killing fields
are (i) z — (1 + €)z for the upper half-plane, (ii) 2 — z + € for the upper half-plane;
and (iii) z — ez for the disk |z| < 1. These are the striped, Poincaré, and az-
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imuthal congruences. In these hyperbolic, parabolic and elliptic representations, the
S-Reissner-Nordstrém (S-RN) and the Witten bubble each have 0, 1, and 2 Weyl foci.

Elliptic representations and extended card diagrams

The bubble of nothing in D dimensions has the interpretation as a semi-classical
decay mode of the Kaluza-Klein vacuum. A spatial slice is topologically SP—3 x R2,
where the R? is a cigar with the asymptotic-KK S! closing at some fixed r, which
is an SP~3 bubble. As time passes, the bubble increases in size and ‘destroys’ the
spacetime. The solution is obtained as an analytic continuation of a black hole and
can be generalized to incorporate gauge fields.

The electrically charged bubble of nothing in its elliptic representation is gotten
from (2.6) by sending ¢ — iz?, ¢ — i¢, and to keep the field strength real we need
@ — —iQ). The metric is

2 2
= (1- 2 _yp <

172 20002 w2 042
" = . 7’2) dr® 4 r<(df° — sin” 0dp~)
At # = 0, 7 there are clearly Rindler-type horizons about which we analytically con-
tinue @ and obtain the rest of dS,, —d#? +sinh? #d¢?. These six patches will precisely

correspond to the cards of Fig. 2.13.

boundary
V1 p Vi
//’7, 777777 z 7
p‘g Ap o~ special null line
/e H2 e
// Az Y- z
1 - a a, E
i i H1 i ~— horizon
V2 b V2

Figure 2.13: The elliptic representation of the non-singular charged Witten bubble
contains two horizons and four special null lines. Here, a = /M? + Q2.

Let us now turn to the effect of the analytic continuation of the Reissner-Nordstrom
black hole in Weyl coordinates. In Weyl coordinates, the effect of wick rotating
t — 4x* turns the horizon of the Schwarzschild card into an x*-boundary, while
¢ — 1¢ turns the boundaries on the horizontal card into noncompact acceleration
horizons along the rays |z| > M, p = 0. Sending § — 0,7 % i corresponds to
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p — *ip’ along the |z| > /M2 + @Q? rays. We find vertical noncompact quarter-
plane cards with special null lines along p/ = 2 — M for z > M and p) = —M — 2
for z < —M. Each quarter plane is a doubly covered triangle and it is necessary to
change branches of the function R at the null line, as they appear in (2.8).

The elliptic (and as we will shortly see the hyperbolic) representations of the
Witten bubble are so trivially obtained because their dS; Killing congruences are
trivially obtained from those on S%. Specifically, with Z = cosf, X = sinf cos ¢,
Y = sinfsin¢, sending ¢ — i, Y — Y’ gives X2 — Y2 + Z? = 1, or dS, with
¢ as an elliptic (azimuthal) congruence. On the other hand, sending 6 — 7/2 + i,
7 —iZ' gives X?+Y?2—7"? =1, or dS, with ¢ as a hyperbolic (striped) congruence.

The S-brane solution of [42, 43, 44|

2 2
ds* = (1+ ¥ — %)(dﬁf —(1+ ¥ - %)‘1dt2 + t*(df* + sinh? 0d¢?)
can also be gotten from (2.6) by taking t — iz*, § — i0, r — it, and M — iM.
From (2.7) we see that in Weyl’s coordinates we this analytic continuation of RN
can be implemented by sending t — iz, 2 — iT, M — iM, up to a real coordinate
transformation.

The card diagram for elliptic S-RN (Fig. 2.14) has the same structure as the
Witten bubble (Fig. 2.13) except that the 6-segment boundary is now 6 = 0 where
the ¢-circle vanishes. The right and left horizons are at ¢t = t4 = M + /M2 + Q2.
The t = 0 singularity is a hyperbola on the ¢ <t < ¢, horizontal cards, (p',7) =
(|Q|sinh 6, —M cosh ). Any ) # 0 gives the same qualitative diagram. The ‘smaller’
connected universe on the card diagram is the negative-mass version of S-RN. Either
sign of the mass gives a universe that is cosmologically singular. The Penrose diagram
is given in Fig. 2.15.

In the limit ) — 0, the hyperbola singularity degenerates to cover the horizon at
t = 0. The two t > 2M vertical cards and two 0 < ¢t < 2M horizontal cards then
form a positive-mass S-Schwarzschild, while each ¢t < 2M card forms a negative-mass
S-Schwarzschild whose singularities begin or end the spacetime.

One can alternatively form the elliptic S-Schwarzschild from the elliptic Witten
bubble by performing the ~-flip on any vertical card. This procedure is immediate;
the net continuation from Schwarzschild is 6 — 0, g, — —g,., and avoids r — it,
z — i1, and M — iM.

Note how the card representation of the S-brane is quite different from the black
hole card diagram while the Penrose diagrams are related by a simple ninety degree
rotation. This is because the card diagram shows the compact or noncompact 6
direction.

The elliptic form of the card diagrams show that Schwarzschild S-brane, Witten
bubble and Schwarzschild solutions have similar structures and in fact they are all re-
lated by ~-flips and trivial Killing continuations.? Solutions which are related in this

2Perturbed solutions that can only be obtained from z — i7 are considered to be less trivial.
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singularity .-~ 1 /XM
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Figure 2.14: The elliptic S-RN card diagram. The singularity is along the hyperbola
and it does not intersect the horizons.

manner may be conveniently drawn together in one diagram which simultaneously dis-
plays all of their card diagrams. For example in Fig. 2.16 the S-Schwarzschild solution
comprises regions 1,2, 3,4, 5, the Witten bubble regions 4,5, 6, and the Schwarzschild
black hole 6,7,8,9,10. Regions 1,2,10 correspond to a singular Witten bubble of
negative ‘mass.” In this diagram we also see that the unification of the special null
lines; we can say R, = 0 is the long -line and R_ = 0 is the long \ -line.

The Reissner-Nordstrom BH/bubble/S-brane solutions cannot be depicted to-
gether on such a diagram because () — i) changes 0 < r_ <r tor_ <0 < ry.
Similar diagrams can be found in [41, 71].

Hyperbolic representations and branch points

The charged Witten bubble can alternatively be obtained from the RN black hole
(2.6) by taking 6 — 7/2 4+ if and t — iz?, Q — —iQ:
2 2M 2\ -1
ds? = (1 2 —) (da*)? + (1 2 Q—2) dr? +12(—d6? + cosh? 0d?) (2.11)
r r
Here, 6 plays the role of time and 6 = 0 is the time where the bubble ‘has minimum
size.” (This statement has meaning if we break SO(2,1) symmetry.) To achieve this
in Weyl’s coordinates, we put z — i, t — ix*, Q — —iQ; the resulting space is
equivalent to Witten’s bubble by the real coordinate transformation

p=Vr2—2Mr coshf, T = (r — M)sinh6.

Thus in Weyl coordinates the only difference between the hyperbolic Witten bubble
and the elliptic S-RN is putting M — iM. Witten’s bubble universe is represented
in Weyl coordinates as a vertical half-plane card, p > 0, —oco < 7 < 00, where now
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e o] oo

Figure 2.15: The Penrose diagram for S-RN.

the z*-circle, and not the ¢-circle, vanishes at p = 0. Note that the vertical card now
has Minkowski signature and is conformal to —d7? + dp?. This vertical card does not
have special null lines and is covered only once by the Schwarzschild coordinates. The
bubble does have a rod which is along the imaginary 7 axis and which intersects the
card at the p =0, 7 = 0 origin. The reason there are no special null lines is that the
geometry’s foci are at imaginary values 7 = +¢M. The hyperbolic representation of
the charged Witten bubble is therefore just a vertical half-plane. In such a case the
card diagrams have just as much causal information as a Penrose diagram.

We obtain a hyperbolic representation for S-RN from (2.6) by sending ¢t — iz,
M — iM, r — ir, § — 7/2 40, and ¢ — i¢. The fibered directions are now
hyperbolic dH? = d6? + cosh?#dp>. In Weyl coordinates, to maintain reality of
the solution, we begin with RN (2.8) and send ¢t — iz*, ¢ — i¢, M — iM, and
must explicitly change the branch of the square root introducing the minus sign
R_ — —R_.3 This has the interpretation of staying on the same horizontal card but
rotating the rod in the complex z-plane. The foci are then at z = i/ M2 + Q?, p =0
and their special null lines intersect the real half-plane at z = 0, p = /M? 4+ Q2.
The half-plane is doubly covered, and we will take 0 < p < /M2 + Q? as the branch
cut. The sign change of R_ has effectively reversed the roles of r and € so that, after
undoing the branch cut with say a square-root conformal transformation, r =r, > 0
is one boundary-horizon and » = r_ < 0 is the other. The hyperbolic angle runs
—o0 < 6 < o0.

The doubly-covered half-plane is physically cut into two by the r = 0 singularity.
At each horizon r = r,. we have a four-card junction; the double half-plane horizontal
card meets another and two vertical cards. The vertical cards are at p — +ip’ and

3The naturalness of this sign change is explained in great detail in [51].
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Figure 2.16: The Schwarzschild black hole, Witten bubble and S-Schwarzschild are
all related by ~-flips and so their (elliptic) card diagrams may be combined into this
one extended diagram.

—00 < z < oo and have no special null lines or other features. A full card diagram is
shown in Fig. 2.17. Note that there are no boundaries of this card diagram where a
spacelike Killing circle vanishes.

Setting Ry = \/p2 + (z i/ M?+Q?)? = 0 and R = R,, the explicit form of
hyperbolic S-RN on the horizontal card is

ds? = —f(dz")? + f7H(e?(dp* + d2?) + pde?), (2.12)
M?+@Q*— (ImR)?
/ (ImR+ M)?
MA@ (mRp
| R|? ’
Q dz*
A"MR+M‘

We can arrive at this spacetime in a simpler way. Take the RN black hole and
continue to get the hyperbolic charged Witten bubbles. These universes are nonsin-
gular for r > r, or r < r_. They have boundaries at r = ry where the z*-circle
vanishes. Now, turn these universes on their sides with the v-flip. We decompactify
2% and r = 4 are now Milne horizons—we are looking precisely at the vertical cards
of Fig. 2.17, and they are connected in a card diagram by an r_ < r < r, card
which is now accessible. We see that generally, vertical half-plane cards parametrized
in spherical prolate fashion with no special null lines, when turned on their sides,
connect to branched horizontal cards.
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Figure 2.17: Hyperbolic S-RN card diagram after transformation to the W-plane on
the horizontal cards. The singularities are closer to the H_ horizon than to H,.

The @ — 0 limit (hyperbolic S-Schwarzschild) of the card diagram is easy to
picture: The singularities of Fig. 2.17 collapse onto the r = r_ horizon.

One may wonder what happens if we take z — 47, on the horizontal card for
hyperbolic S-RN, and achieves a vertical card sandwiched between special null lines
at p =/ M? + Q?>+|7|. This must unfold to give a vertical plane with two intersecting
special null lines. This card diagram structure is discussed in [51, 67].

Parabolic representations

There is a third way to put a Killing congruence on Hy or dS; using parabolic or
Poincaré coordinates. Parametrizing hyperbolic space (which is just Euclideanized
AdSy) as ds? = o2dx® + %2, and keeping the Schwarzschild S-brane coordinate r and
the usual z* we get a Poincaré Weyl representation of S-RN spacetime [29, 42, 43].
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It is

ds® = f(da")? — f 1 (¥ (—dp? + d2*) + pda?),

A = Qdx*/r,

fo= (=2M/r—@Q*/r?),
o TP =2Mr—Q?
© T ey

o= O'\/T’2—2M7”—Q2,
z = o(r—M).

In this Weyl representation, p’ is timelike on r > r, vertical cards which are non-
compact 45° wedges, 0 < +p’ < z. This connects along z > 0 to an r_ < r < r
horizontal card; » < r_ vertical cards attaches to z < 0. So this is similar to the ellip-
tic representation of S-RN, except the line segment —/M? + Q? < z < /M? + ?
has collapsed and the special null lines are now conformal null infinity (Fig. 2.18).
The singularity on the horizontal card is particularly easy to describe in these coor-
dinates. On the first horizontal card it is on a ray z/p = —M /@ and on the second
card it is on a ray z/p = M/Q.

null infinity 17

singularity

null infinity |~

Figure 2.18: The parabolic card diagram representation for S-Reissner-Nordstrom.
The 45° vertical lines represent null infinity.

If we take the r > r, (or r < r_) 45° wedges and turn them on their sides via
the ~-flip, we get the parabolic version of the r > r, (or r < r_) charged Witten
bubble. The line which used to be the horizon in the S-brane card diagram becomes
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0004

Figure 2.19: The parabolic representation of the Witten bubble contains an infinite
number of 45° wedge vertical cards pointing up and down with each wedge joined to
two others at the tip in a dS, fashion.

a boundary which is the ‘minimum volume’ sphere, at p = 0. Time is now purely
along the 7 direction as in the hyperbolic Witten bubble. The special null line is
still Z* since p = || corresponds to r — oco. The vertex of the card is not the end
of the spacetime. These wedge cards only represent ¢ > 0 and so the card diagram
should be extended to 0 < 0. The card diagram is an infinite array of 45° wedge
cards pointing up and an infinite number pointing down. The vertex of each upward
card is attached to its nearest two downward neighbors (one to the left and one to
the right), in the usual dS, fashion as shown in Figure 2.19. One can identify cards
so only needs one upward and one downward card with two attachments. Although
this card diagram is not the most obvious representation of the Witten bubble, it is
useful to understand the more complicated S-dihole ¢, Uy universes of [51].

2.3.3 S-Kerr

The twisted S-brane [47], see also [48], is also known as S-Kerr, and is another
example of a nonsingular time-dependent solution. It can be obtained from the Kerr
black hole using the following card diagram method. Double Killing continue ¢ — iz,
¢ — 1¢ to achieve a K, bubble solution, go to the vertical card via § — if, then
perform a y-flip to achieve the S-Kerr. S-Kerr has symmetry group U(1) x R and has
a unique card diagram. For the parameter range a®> < M? there are horizons and the
card diagram structure is that of the elliptic S-RN (Fig. 2.14) but is nonsingular. The
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foci are at z = &/ M? — a?. The ergosphere lies on the horizontal card and has the
same qualitative shape as it does for the Kerr black hole diagram. One can also draw
the CTC region. In comparison, the Penrose diagram showing (variably twisted) z*
and the Boyer-Lindquist coordinate r is shown in Fig. 2.20.

Figure 2.20: Subextremal a?> < M? S-Kerr Penrose diagram. V. map to vertical
cards of positive and negative ‘mass,” while all H diamonds give identical horizontal
cards. It is possible to identify cards (say, every other H diamond) so there are only
a finite number of regions in the spacetime.

Figure 2.21: The extremal a® = M? (left) and superextremal a? > M? (right) S-Kerr
Penrose diagrams.

In the extremal limit +a — M, 6-orbits on the vertical card shift up relative
to the special null line, and any fixed (r, #) point is sent above the null line. The
region below the null line disappears in this limit and the horizontal card collapses
to a point. Furthermore, those geodesics in the upper-right card can only reach the
lower-left card (and the same with upper-left and lower-right), splitting the universe
into connected 45° wedges just like the parabolic representation for the Witten bubble
(Fig. 2.19), where the connections for dS; were added for clarity.

The case a?> > M? for S-Kerr does not have horizons and can be represented as a
single vertical half-plane card with p > 0 and with no special null lines. Just like the
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hyperbolic Witten bubble, superextremal S-Kerr can be turned on its side with the
v-flip, to yield a new spacetime [67]. In the limit where |a| — oo, the #-orbits flatten
out on the card, and the solution becomes flat space.

The Penrose diagrams for extremal and superextremal S-Kerr are given in Fig. 2.21.

2.4 Discussion

In this chapter we have examined the utility of the Weyl Ansatz and constructed
an associated card diagram. The card diagram conveniently captures most of the
interesting properties of a spacetime including its singularities, horizons, and some
aspects of its causal structure and null infinity. Weyl coordinates provide a standard
reference against which we can describe geometric features. Card diagrams for families
of solutions such as charged and rotating black holes (and bubbles and S-branes)
share similar features, change continuously with parameters and help to keep track
of various analytic continuations. The only technical issues that arise involve dealing
with branches of Weyl distance square-root functions, special null lines, and branched
horizontal cards.

Here we give a summary of the solutions we have discussed in this paper. The card
diagrams correctly capture the different regions of the charged Reissner-Nordstrom
black hole and its various charged and chargeless limits, and its negative mass com-
plement. We also analyzed the Kerr black hole and its singularity structure. In
particular the safe passage through the interior of the ring to the second asymptotic
universe through r = 0 is clearly depicted.

The Witten bubbles and S-branes each have three card diagrams representations
corresponding to the three different choices of Killing congruence on dSs or Hy. The
elliptic representations has two foci and six cards. S-RN has a cosmological singular-
ity on the horizontal card splitting the card diagram into two connected universes,
whereas the charged bubbles are nonsingular. The hyperbolic representations have no
foci and hyperbolic S-RN has a branched horizontal card which we fixed by a confor-
mal mapping of the half-plane. Finally the parabolic representation of the bubble is
an infinite array of 45° triangle wedges connected pointwise while S-RN had a 6-card
butterfly shape. This parabolic representation showcases special null lines serving as
null infinity, and this will be useful for us in the investigation of the S-dihole in the
next chapter.

S-Schwarzschild can be obtained from the bubble in two ways. One may start
with the bubble and analytically continue M — ¢M in Weyl coordinates. In this case
the hyperbolic/elliptic representation of the bubble maps to the elliptic/hyperbolic
representation of the S-brane. There was also a second way to relate these two so-
lutions which we termed the ~-flip and which was conveniently visualized as a flip
of the associated cards about a null line. This procedure maintains the number of
Weyl foci on the card and so maps the elliptic/parabolic/hyperbolic bubble to the
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elliptic/parabolic/hyperbolic S-brane. The ~-flip provides a very simple and interest-
ing way to relate Schwarzschild with its analytic continuations the bubble and the
S-brane. In fact all spacetimes related in this way by ~-flips can be simultaneously
drawn together in a spherical prolate (or affine) diagram.

Just as we used the y-flip to turn the hyperbolic Witten bubble on its side and
got hyperbolic S-RN, we can take the vertical half-plane card diagrams for the Kerr
bubble, dihole wave, superextremal S-Kerr and superextremal S-dihole and apply the
~v-flip to yield new spacetimes. These solutions are not identical to any previously
described solutions and are described in Chapters 3 and 4.

2.5 Appendix: Perturbed bubbles and S-branes

The chargeless Schwarzschild black hole is easily perturbed as a Weyl solution
by adding more rod-horizons, to form Israel-Khan arrays. We can use these so-
lutions to smoothly perturb the Witten bubble in two different ways and also the
S-Schwarzschild in two different ways. Addition of charge can be done via Weyl’s
electrification method [51, 8, 76].

The analytic continuation in Weyl space to obtain the hyperbolic Witten bubble
is precisely the same as in [25], except here the Schwarzschild rod crosses z = 0.
Solutions which are even-in-z Israel-Khan arrays where no rod crosses z = 0 can
be analytically continued to gravitational wave solutions sourced by imaginary black
holes, ie rods at imaginary time. We can thus generalize the Witten bubble by adding
additional waves by symmetrically placing more rods in addition to the one which
crosses z = 0. We dub such an array the ‘hyperbolic-perturbed Witten bubble.” As
these additional rods are made to cover more of the z-axis and are brought closer and
closer to the principal rod, the deformed Witten bubble solution hangs longer with a
minimum-radius ¢-circle. In the limit where rods occupy the entire z-axis, we get a
static flat solution, which is Minkowski 3-space times a fixed-circumference ¢-circle.

The hyperbolic-perturbed Witten bubble can be turned on its side, yielding a
hyperbolic-perturbed S-Schwarzschild. It has the card diagram structure of Fig. 2.17.

We can also perturb S-Schwarzschild by adding rods before analytically continuing
z — i1, M — tM. We dub this the ‘elliptic-perturbed S-Schwarzschild.” It is different
than hyperbolic-perturbed S-Schwarzschild, and has the card diagram structure of
Fig. 2.14. Turned on its side, it yields an elliptic-perturbed Witten bubble, with the
card diagram structure of Fig. 2.13. It is different than the hyperbolic-perturbed
Witten bubble.

In any of the cases, we can choose to analytically continue the mass parameters of
the additional rods or not. Additionally, we can displace some rods in the imaginary
z-direction which affects the 7-center of their disturbance. If we do everything in an
even fashion, i.e. we respect Im 7 — —Im 7, the resulting geometry (at real 7) will be
real. In particular, rotating a rod at z > 0 counterclockwise means rotating its image
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at z < 0 clockwise. We see in the discussion of the 2-rod example [51] that there may
be several choices for branches.

The card diagram techniques allow us to easily construct these two inequivalent
families of perturbed Witten bubble and perturbed S-Schwarzschild solutions. These
and other multi-rod, S-dihole, and infinite-periodic-universe solutions are described
in [51] and cannot be easily described or understood without Weyl coordinates and
the construction and language of card diagrams. The nontrivial z — 7 continuation
is essential.

2.6 Appendix: Electrostatic Weyl formalism

The formalism of [15] can be extended for general D to include an electrostatic
potential. This is somewhat surprising since the electromagnetic energy-momentum
tensor

1
T =F,,Ff— ZgWFZ

is traceless only in D = 4 and so Einstein’s equations are more complicated. Nev-
ertheless, a cancellation does occur and one may sum the diagonal Killing frame
components of the Ricci tensor to achieve a harmonic condition.

Follow the notation of [15] and add a 1-form potential A(Z, Z)dt where t = z! is
timelike (e; = —1) and all other z%, i = 2,..., D — 2 are spacelike (with ¢; = +1).
The metric takes the form

D—2
ds® = —?1dt* + ) Vi(da')? + €*dZdZ,
i=2
from which we extract the frame metric
0 1/2 }

gpp = diag(—1,+1,...,+1) @ [ 12 0

For F = dA we have Fy; = —F;; = 0Ae V"¢ and Fop = —Fz = 0AeU1=C all
other components vanishing. We compute F? = —89AJA e~ 2V1—2C and

Ty = 20A9Ae 212
T, = 20A0Ae 2720 (i #1)

i

TZZ — _(aA)2€—2U1—2C
Tps = Typ
TZ? = 0.

The field equations are R;; — %gﬂ,;R = Tyyp; taking the trace, we get

AD-4)

[ 4 —2U1—2C
Do 0AO0Ae

R=—
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and Einstein’s equations are then

2(D — 4)

B =Tio = =5

gﬂ,gﬁAgA e~ 220 (2.13)

Form the sum $"77% R::¢;; the right side of (2.13) gives

2(D — 4)

D — 4)20A0A ¢ 21 —2C _
( )20A0A e 5 (

D —2)0A0A e 2 72¢ =,

Hence (following (2.4)-(2.5) of [15]) we get

D—2
90 exp (Z Ui> =0,
i=1
the Weyl harmonic condition.

One can add magnetostatic potentials along spatial Killing directions as well. We
skip remaining details and give the equations. Let us assume z! is timelike and
' are spacelike for i = 2,..., D — 2, the potential is A, = .77 A;da’, and the
metric is ds? = —e?V1(dat ) + ZZD Sl e2Ui(dat)? 4 e (dp® + d2?) and w = p + iz,
Ow = 3(9, — 10.). Einstein’s equations are

1= D—42

_ 2 —2U1 2 —2U1

AU, = 2(; (VA) +—D 2;(VA) 7
1 .
AU = (= (TAD ™ = (VA 4 3 (VA e

i#k,1
_D — 4 2 72U1 D 4 2 —2U;

D—Qiﬂ(m) + 5y (VADR),

and

)

) D-2
(OuwAr)?e (0wAi)* o,
Ow v = —Qp(z 0w U;0,U; + — 5 Z 5 ¢ ).

1 i<j i=2

%

Maxwell’s equations are

V- (VAiG_QUi>.

All Laplacians and divergences are with respect to a flat 3d axisymmetric auxiliary
space with coordinates p, 2.
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2.7 Appendix: Mobius transformations on hori-
zontal and vertical cards

Weyl’s canonical coordinates on a horizontal half-plane card have

fifo =" (2.14)

with conformal element dp? + dz?. (For Weyl-Papapetrou, we set p? = —detaxagas-)
This has the Mobius symmetries of translation z — 2z 4 € as well as uniform rescaling
(p,2) = (1+¢€)(p, 2), if we allow Killing rescaling. There is a third (elliptic) generator
of PSL(2,R) that does not leave (2.14) invariant and it is a rotation in the conformally

equivalent disk picture. If we let W = g—jr}, W = W, and Z = %, then with
Z = p+iz, Z = p+iZ, we have
4
5 = d , (2.15)
(2—2cosa)(p?>+ 22) +2+2cosa + 4zsina
2sina(—1+ p? 4 22) + 4z cosa

(2—2cosa)(p? +22) +2+2cosa+4zsina

w
|

One might ask how it affects vertical (say square) cards and special null lines. So put
p=r1ip, p=1ip in (2.15). The point 0 — —itana/2 and one can check that p? = 22
then maps to p"* = (Z+itan «/2)?, so special null lines are preserved. Square vertical
cards with their two intersecting special null lines, being built from four copies of a
45-45-90 triangle, are thus also preserved assuming their base does not then touch
Z = o0; but they are scaled in size.

This a-rotation maps Z = 0o +— Z,. Spherical prolate coordinates are degenerate
at oo and their a-rotation is then degenerate at Z..

Take for example the elliptic Witten bubble card diagram with rod endpoints
z4+ £ M = 0, and a-rotate it for some small & > 0. The degenerate point Z,, emits
special null lines that serve as ZF (see Fig. 2.22). So no new interior special null lines
are generated in this process. The special null line from Z_ goes and meets the left
Z* null line. The 45-45-90 triangle with base Z_ < z < Z, is unfolded just once
across the Z_ null line to form a larger 45-45-90 triangle with horizontal and vertical
legs and a null Z* hypotenuse. This interesting card structure could also occur as the
double Killing rotation to E-brane solution [77] of a two charged-BH solution where
just one is extremal.

Now there is the issue of the z > Z, and z < Z; horizons and their vertical
cards, which are connected across z = co which is not infinitely far away. We note
the totality of the vertical-cards region must have the features of the already-drawn
Z_ < Z < Zy, region: a vertical boundary, a null boundary, and a special null line that
meets the null boundary. To complete this, we need two additional cards (Fig. 2.23).
This figure shows a compactification of four vertical cards to see how they attach to
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Figure 2.22: Mobius-transformed bubble. This is not the whole spacetime; there are
additional vertical cards that connect the z > Z,, and z < Z, vertical card regions.

z,
[ee]

8II

Figure 2.23: A compactified representation of the vertical cards in the Z coordinate
for the —oo < z < z, vertical card of the original elliptic Witten bubble. The lower
two triangles are the cards shown in Fig. 2.22. Region III is half of a vertical full-plane
card with two special null lines; the spacetime lies to the lower-right of the  null
line. Region IV is a vertical wedge with a vertical boundary.

each other. New card III, uncompactified, is everything below a null boundary on a
vertical plane, and new card IV, uncompactified, is a 45° wedge with a vertical and
null boundary. We wee that card diagrams, though unwieldy, are sufficient for these
Mobius-transformed card coordinates.

Real Mobius transformations preserve intersections of the lines and circles with
the boundary, including the point at infinity. Those curves normally intersecting the
boundary can be continued to vertical lines and hyperbolas which are asymptotically
null; on vertical cards then, the action of Mobius transformations preserves this set.
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2.8 Appendix: Extension of card diagrams and the
notion of Weyl spacetime

History has shown increased applicability of Weyl techniques and card diagrams to
a more general class of spacetimes. The original 1917 work expanded with Papapetrou
[14], Emparan and Reall [15], and Harmark [16]. The idea was to look at Einstein’s
equations and use a harmonic condition to find special coordinates, namely p? =
—det(p_2)x(p-2)gap- The ensuing card diagram description, which includes vertical
card regions and attachments, came in 2004-2006. The main obstacle to the extension
of the whole program was that the analytical techniques were not compatible with a
nonzero cosmological constant.

We write the Einstein equation with cosmological constant A in D dimensions as
R,, = (D —1)Ag,,. Then following [15], in the static case we have

Ry = —2¢7%¢ (2@5&- + OU; ZéU + k + U Z aUk>€i6ij7
k k

and ¢;; = €0;;. Summing ¢ =1,..., D — 2 of Einstein’s R; = (D — 1)Agy gives

—2e2Ce N9 (%) = (D —1)(D — 2)A.

The RHS is nonzero and we cannot conclude that e>Vi

formalism which worked in [15] does not hold for A # 0.

In spite of this, it seemed clear that for certain spacetimes with D — 2 symmetries,
one could still change to Weyl-type coordinates and construct card diagrams with well-
behaved properties, without regard for Einstein’s field equations. The idea of the card
diagram was axiomatized and it is merely assumed that a horizontal card (stationary)
region of a spacetime can have its non-Killing 2-metric conformally mapped to the
half-plane, or a multiple branched cover of the half-plane. It is also a requirement that
all closures of Killing directions, spacelike or timelike, occur at the boundary of that
half-plane. The half-plane admits a group of symmetries PSL(2,R), and so the Weyl
coordinates (p, z) are well-defined for the given Killing®non-Killing representation of
the metric, up to this group. One then continues onto vertical cards and hopes for
ensuing good properties of the card diagram. (As we saw in the previous Appendix,
the elliptic generator of PSL(2,R) acts on vertical cards in an interesting way.)

This was first applied to (A)dS, and (A)dSs, each of which has non-minimal
Killing symmetry and thus admits many different card diagram representations. A
simple change of coordinate reverted the dr?/(1 + r?) piece to Reissner-Nordstrom-
like form, and then into spherical prolate and card diagram coordinates. Examples
of the simplest forms of these spaces are shown in the appendix to Chapter 5. Fur-
thermore, various AdS orbifolds [78] will be compatible with certain card diagram
structures. However, not all putative card representations of AdS space yield good
card diagrams—ensuing vertical cards can have horizon loci which are not at p = 0

is harmonic. Thus the Weyl



Chapter 2: Card diagrams 40

(such as the Kruskal representation of the AdSs constant curvature black hole of [79]
and Chapter 6). For standard card diagrams, setting p* = —detg,s for the Killing
submetric ensures the horizons always occur at p? = 0, but after relaxing this condi-
tion, it is not clear why some card diagram attempts succeed and others fail.

It was also eminently clear that any metric writable in C-metric (or black ring
[57, 58]) coordinates [22, 71, 66, 16, 55| would have a card diagram description, which
follows Fig. 2.12. The C-metric Ansatz involves a piece

dz? [p(Z) — dC?[p(C),

where p is a polynomial of fourth degree or less. (Missing degrees can be reinterpreted
as extra zeros at infinity. In the case of A # 0, the condition degree < 4 is tied to
the condition R =constant [80].) For p of degree 2 with distinct roots, this reduces
to spherical prolate coordinates; for p of degree 3 with distinct roots, this gives us
standard black ring coordinates with a single zero at infinity. The order of the zero of
p, if one or two, translates in the card diagram to the appearance of a vertical card:
there is a 90° turn from the horizontal boundary, or a 45° turn, respectively. The key
limitation in the C-metric Ansatz is that there is a symmetry exchanging C' and Z
in the conformal 2-metric; each uses the same polynomial p.

The next extension of card diagram applications would then be the famous 7-
parameter Demianski-Plebariski solution [72, 73, 74, 1] in 4d (with a mass, nut, cos-
mological constant, electric charge, magnetic charge, spin and boost parameter):

_ dp? dq? X(dr + ¢*do)? Y (dr — p*do)?
ds? = (1—pg)?((P* +¢ + + -
N ' 70 PP+ ¢ Pt
X(p) = (—g*+~v—A/6) +2lp — ep® +2Mp* — (e* +~v + A/6)p*,
Y(g) = (e 4+~ —A/6) — 2Mq + eq® — 2lg* + (¢ — v — A/6)q",

Ppmst = (e+1ig)/(q+1ip).

Also in five dimensions, we could try to extend card diagrams to spinning or charged
black holes in 5d with a cosmological constant [81, 82]. These all involve metrics
with non-Killing piece of the form dZ?/p(Z)+ dC?/q(C), where p and q are different
polynomials. These spacetimes, at least naively, will admit a card diagram descrip-
tion, and the description is unique up to the PSL(2,R) symmetry. The construction

follows: Integrate
d¢ = dZ/\/p(Z) (2.16)

and df = dC/\/q(C), so the non-Killing metric is oc d(® + df>. If p and ¢ have
simple zeros, then ((,6) form a finite-sized rectangle. The map from a rectangle to
the half-plane is given by the Schwarz-Christoffel transformation [83],

oo A
fi(z)= (2 — 2)12(z — 2)12(z — 25) 12

(2.17)
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where A is a constant, and is unique up to PSL(2,R). This gives ((p, z) and 0(p, z)
directly; the pre-image points of the Schwarz-Christoffel transformation become the
locations on the z-axis which serve as vertices in the card diagram. Two of them may
be chosen arbitrarily (say z; = —1, zo = +1), and the third’s location is nontrivial; it
is tied to the shape of the (6 rectangle. Solving the integral equation for z3 in general
is hard; in the C-metric case of p = ¢ it has already been solved for because the same
square root appears in (2.16) and (2.17).

We can then write the metric in Weyl form (there is no need to do the difficult
inversion of the Schwarz-Christoffel transformation). The metric is rewritten in terms
of p,z and the vertices z;, and all instances z — z; can be eliminated in favor of
R; = \/p? + (2 — z;)?; there is perhaps no unique way to do this. One then hopes
that €27, the coefficient of dp? + dz? has simple poles in all the R;, which would result
in a v-flip for vertical cards as one approaches special null lines, just like for ordinary
card diagrams. One also hopes that Killing closure or horizon loci occur only at
p* = 0.

Apart from a graphical representation of the spacetimes, which would aid in un-
derstanding their global structure (for example, the strange nature of the Kerr-AdS;
bubble, described in Chapter 6), these Weyl coordinates may give a clue as to a re-
formulation of the elliptic system of Einstein-Maxwell-A (or supergravity) equations.
The nonlinear equations could be understood as being sourced on the boundary p = 0,
and being solved on an auxiliary axisymmetric 3-space. This new understanding could
possibly lead to finding multi-object axisymmetric solutions in the given theory.

It remains to be seen whether the card diagrams for Demianski-Plebanski solutions
and black holes in AdS5 can be completed in general, and whether the new coordinates
give a useful new way to understand or solve the field equations.



Chapter 3
S-dihole

We construct a variety of S-brane solutions from the black dihole geometry. We look
at the complexified spacetimes and the global structure of real sections. Spherical
prolate, card, and Penrose diagrams are used to depict all spacetimes. These space-
times have complicated yet understandable structure and many interesting features.
The solutions admit several scaling limits to Melvin, S-Melvin, asymptotic cones, and
a surprising near-vertex limit to a charged expanding bubble. The expanding bubble
is related via Bonnor transformation to flat space in a special coordinate system, at
the north pole of the Kerr horizon. All systems of extremal 4d black holes, when
dilatonized, lift to D6-D6 systems in M-theory.

This chapter is based on a forthcoming paper with John E. Wang, and much of the
material has already been published in hep-th/0409070. The e-print hep-th/0409070
also contains a generalization to infinite arrays and a periodic-in-time universe.

3.1 Introduction

S-branes have been a topic of interest in the last several years, both in string
theory and its supergravity limit. Sen’s construction [26] of BPS and non-BPS branes
as solitons inside larger-dimension branes and the Gutperle/Strominger extension to
the timelike case [29] show the existence of these objects in string theory, as purely
spacelike-extended analogs of ordinary (timelike-extended) branes. References include
(27, 28, 42, 43, 44, 45, 46, 52, 48, 50, 84].

The closed string or gravitational description of these S-branes (valid at small
string coupling and small curvature) gives a cosmological evolution of a universe,
either nonsingular or possibly with some singularity behind one, or two or more hori-
zons. Time-dependent gravitational solutions, like S-branes and expanding bubbles
(36, 37, 38, 39, 40, 41, 85, 86, 87, 61|, are often related to stationary-exterior solutions
[88] by double analytic continuation. The continued directions need not be Killing,
and the complexified manifold with a time-dependent real section will have interesting

42
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structure (such as sources for the wave equation) off the real section.

For D-dimensional spacetimes with D — 2 commuting Killing vectors, the Weyl
formalism [8, 15] and card diagrams [89] are the standard technique to represent these
spacetimes and follow the analytic continuations. In [89], card diagrams were given
for the Kerr black hole and can be easily constructed for the Kerr bubble and S-Kerr
spacetimes. Under the Bonnor transformation [12, 13, 1], which maps a stationary
vacuum solution to a magnetostatic solution in 4d, these solutions are mapped to the
black dihole [12, 69, 70], dihole wave [25], and new S-dihole solutions. Specifically, in
the subextremal case we find three nonsingular solutions U, U; with purely vertical
cards, and three solutions £, £, with horizontal and vertical cards, and an ‘ergosphere’
singularity. In the superextremal case, we find a nonsingular vertical-card solution,
and also find that solution ‘turned on its side’ via the ~-flip [89].

The S-dihole U-type and E-type universes admit several scaling limits, which help
us give their physical interpretation. We find early- and late-time flat limits, large-
distance asymptotic conical deficits, near-origin limits to Melvin or S-Melvin (Melvin
on its side), a near-special null line intersection flat limit, and a surprising near-vertex
limit to the Reissner-Nordstrom (RN) bubble.

These Kerr-type solutions have an algebraic simplicity: Their card diagrams are
intimately related to spherical prolate coordinates, and then affine coordinates for the
complexified non-Killing manifold C* C P* x P!. We investigate the role of (degree
1 and 2) complex hypersurfaces such as ergospheres, ring singularities, and Killing-
degenerate (horizon) loci. The Bonnor transform maps ergospheres to ‘ergosphere
singularities’ and the rigid properties of these singularities are described, along with
the fact that their intersection with p? = 0 generates extremal black holes or sources
at imaginary time.

This paper is organized as follows. In Section 2, we give the Kerr solution and its
Bonnor transform, the black dihole. In Section 3, we review the dihole wave solution
and its scaling limits. In Section 4, we write down the S-dihole geometry generally,
and then analyze the subextremal case. This yields six universes, and we investigate
their scaling limits. The superextremal case is then investigated. We compute S-
charge when possible, discuss global structure, and give a prescription for writing the
solutions in terms of Weyl distance functions with branch choices. In Section 5, we
relate the Bonnor transformation to KK reduction, discuss the nontrivial nature of
its application, and lift certain solutions to D6-brane solutions of ITA string theory
and M-theory. In Section 6, we give conclusions.

Appendix 3.7 features the dihole wave and superextremal S-dihole turned on their
sides. Appendix 3.8 discusses hypersurfaces in the complexified non-Killing manifold.
Appendix 3.9 compares the Bonnor transforms of ergospheres and ring singularities.
Lastly, Appendix 3.10 analyzes the wave propagation of the dihole wave in Weyl
coordinates.
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3.2 Kerr, Bonnor transformation, and dihole

The 4d Kerr black hole in Boyer-Lindquist coordinates is

A in” ¢
g2 — —i(dt—asin29d¢)2+sné (adt — (r* + a®)dg)?
dr?
Y (—— + db*
+ <A + do”),

where A = r? —2Mr + a? and ¥ = r? + a? cos? §. This solution has symmetry group
R x U(1) and hence qualifies as Weyl-Papapetrou (a stationary axisymmetric vacuum
solution) [14, 16, 17]. Setting

p =12 —2Mr + a?siné, z=(r—M)cosb,

the solution can be written in Weyl-Papapetrou form
ds® = —f(dt +wdg)* + f~1(e*(dp® + dz?) + p*de?). (3.1)

The formulas for the functions are in [51, 89]. The Kerr black hole has a card diagram,
drawn in [51, 89]; for the subextremal case, the foci are at z = £/ M? — a?. There
is a nonsingular ‘ergosphere’ locus where g, = 0 or X — 2Mr = 0; this appears as a
semicircle-like locus on each horizontal card. There is also a ring singularity at > = 0
which appears as a point on the negative-mass horizontal card, and a region of CTCs
on that card.

Bonnor [12, 13] gave a transformation from a Weyl-Papapetrou metric to a mag-
netically charged static Weyl metric!. The Bonnor transformation takes the Weyl-
Papapetrou (3.1) to the magnetostatic Weyl

ds® = —f2dt* + f2(e¥(dp* + d2°) + p*dg?), (3.2)
A = Blp,z)do,

where w = iB and w is proportional to a parameter (a in the case of Kerr) which
must be analytically continued to make B real.

The black magnetic dihole [12, 69, 70] is the Bonnor transform of Kerr. For any
M > 0 and a # 0 it represents two oppositely charged, extremal (degenerate horizon)
black holes? We can write it in the inherited Boyer-Lindquist coordinates as

4 dr? Asin® 6

2Mr . 2 B
@ = (-0 t e @ A )>+(1‘_2A2“)2 ’
2aMrsin® 6
4 _ 2aMrsin®f 3.3
A + a?sin? 6 ¢ .

A = 72 —2Mr —d?, Y =172 —a%cos?h .

IFor electromagnetic Weyl solutions, see [8, 76] or appendices of [51, 89].
2For a = 0 the solution degenerates to the singular vacuum Darmois solution [1]. For M = 0, the
solution is again vacuum, and flat, though in general a Bonnor transform of flat space is not flat.
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The black hole horizons appear at z = £v/M?2 + a2, p = 0 on the Weyl half-plane. For
¢ ~ ¢+ 2, there is a conical excess strut on the z-axis between the horizons; one can
recompactify ¢ to eliminate this in favor of conical deficit strings for |z| > v/ M?2 + a?.
We will see that generally, Bonnor transforms of ergospheres g;; = 0 are singular when
on the interior of cards, but here the ergosphere ¥ —2Mr = 0 only intersects the Weyl
half-plane at the horizons, and is in fact responsible for them. If one passes through
the extremal black hole horizon at z = ++v/M? + a2, one must change the sign of R,
in the Weyl form of the dihole solution [54, 51|, and the ¥ = 0 ‘ring singularity’ gives
the black hole singularity in the ensuing horizontal card.

Since the horizon function A(r) = r? — 2Mr + a® with roots r = r is quadratic
for Kerr/dihole, the Weyl coordinates (and card diagrams) for these solutions are
intimately related to the spherical prolate coordinates. We will draw spherical prolate
diagrams to show different regions of the complexified spacetime. For dihole (M?+a?)
or subextremal Kerr (M? — a?), define

r—M=~vM?+a?Z, Z = 4 cosh(, cos(

and set C' = cosf, allowing 0 — 16 and 6 — 7+ 6 to give C' = £ coshf. Then Z and
C' are real variables with the lines Z = +1 (r =ry), C = £1 (# = 0, 1) distinguished.
In Weyl coordinates,

o = (M2 % a)(Z% — 1)(1 - C?),

so Z,C = =£1 correspond to p?> = 0.3 The 2-metric is conformal to Zd(? + df?
ZdQZfl - gffl.4 When both |Z],|C| > 1 or both are < 1, these are vertical card (time-
dependent) regions. We know from card diagrams that these regions are cut into
triangles by special null lines (see Figs. 3.1-3.2).

The spherical prolate diagram for subextremal Kerr is drawn in Fig. 3.1, and
shows p? = 0, special null lines, the ergosphere, and the ring singularity. Due to
the C — —C symmetry, regions IV and IV’ are identical, etc. The Kerr black hole
occupies regions I, I, III. The subextremal S-Kerr of [47] occupies regions IV, V, and
VI

The spherical prolate diagram for the dihole is drawn in Fig. 3.2. The region
exterior to both black holes is I, regions exterior to one but interior to another are II
and III, and the region interior to both is IV.

Some discussion of these singularity loci are given in Appendix 3.8 and 3.9.

3We remind the reader that p2 = —detax29.p and that this is invariant under Bonnor
transformation.

4Spherical prolate coordinates are a special case of C-metric coordinates; see [72, 22, 16] and
references therein. Our spherical prolate diagrams are analogs of C-metric diagrams in [71]. Complex
¢ € cos!R] is the basis for the skeleton diagrams of [41].
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Figure 3.1: The spherical prolate diagram for the Kerr black hole. The ergosphere,
ring singularity, and special null lines are labelled.

3.3 Dihole wave

Before deriving and discussing the new S-dihole solutions, we review the dihole
wave solution of [25]. It is gotten from the dihole (3.3) by sending ¢ — ix?, 6 —
7/2+i0. Then ¥ = r? 4 a?sinh®f, and shifting A, to remove the Dirac string, the
solution is

2Mr. o 4 dr?
ds? = (1— dz)? — —db?
S ( 2 )((«CE) +(A+(a2+M2)COSh20)3(A )>
A cosh? 6
T dé?
(1_2]\2/[r)2 (b

B ( 2aMrcosh*6  2Mr,

do . 3.4
A + a2 cosh? 6 a >¢ (3-4)

Periodically identifying ¢ ~ ¢ + 2mwa*/(M? + a*)* eliminates the conical singularity
at 7 = ry. The analytic continuation § — 7/2 + if is equivalent to C' — iS, where
S =sinh ¢ and S = 0 is a symmetric line (just like C' = 0 was a symmetric line) but
there is no other distinguished S. We draw a spherical prolate diagram (Fig. 3.3).
The dihole wave occupies region I, where time points right. The rest of the diagram
is realized as the dihole wave on its side (see Appendix 3.7).

In Weyl coordinates, one obtains the dihole wave by z — i, t — ia*. The card
diagram is a vertical half-plane p > 0, —co < 7 < oo. The sources (the extremal
black hole horizons, which appear as points in Weyl coordinates) are located at p = 0
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0=1t 6=0

Figure 3.2: The spherical prolate diagram for the black dihole. The ergosphere sin-
gularity, ‘ring’ singularity, and special null lines are labelled.

and 7 = +iv/M?2 + a2. These are interpreted as the intersection of p? = 0 with the
nonsingular ergosphere hypersurface 3 — 2Mr = 0 (see Appendix 3.8).

The wave-like character of this solution and the asymptotic fall-off on a null line
on the card diagram are described in Appendix 3.10.

Upon dilatonization [90, 91, 92, 54] with o = /3 (for a 4 — 5 lift [61, 93, 94]),
and then adding six flat directions, the dihole wave solutions can be interpreted as a
background of type ITA string theory with Euclidean D6- and D6-branes located at
imaginary time [23, 24, 25]. The 11d supergravity approximation will hold as long as
curvatures are small and distances between objects are small. Specifically, in the ITA
description, the distance between D-brane horizons must be much larger than a critical
distance o [, at which the lowest string mode of an open string between a neighboring
D- and D-branes becomes tachyonic. (In the case of an infinite alternating array, this
is known to create an S-brane for Sen’s rolling tachyon [23].) From simple dimensional
analysis considerations, there are no decoupling limits for D6-branes, so more objects
would have to be included to obtain any type of AdS/CFT correspondence from
these kind of geometries. Since there are no horizons or special null lines in the dihole
wave geometry, the dilatonization procedure does not affect the global structure of
the solution, and the dilatonized and undilatonized solutions have a similar physical
interpretation.

The continuation to get the dihole wave is very similar to that to get the Kerr
7/2-bubble [37], which is t — iz* 0 — 7/2 + i, a — ia; there is then a twisted
circle closing at » = r,. We can think of the dihole wave as the Bonnor transform of
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Figure 3.3: The spherical prolate diagram for the dihole wave (region I). Positive
S = sinh @ (time) points to the right.

the Kerr bubble (there is no relative a — ia between them, since the associated 5d
Killing submetrics have signature + + +; see Sec. 3.5).

3.3.1 Scaling limits

The scaling limit to find a Melvin [60, 62] region near the origin p, 7 ~ 0 of the
dihole wave was found in [25]. This is the same region in the complexified spacetime
as the Melvin scaling near p,z = 0 for the black dihole, in [63]. The Melvin scaling
and analytic continuation from dihole to wave, commute, and Melvin itself is invariant
under the continuation.

There is another, long-distance spatial scaling limit of the dihole wave. In Boyer-
Lindquist (r,6) coordinates, r is space and we can put r — Ar, z* — A\z*, ¢, —
G /N, A, — A, /), and send A — co. Then the vector potential scales to zero and
we get the vacuum solution

ds® = (da")? + dr® — r*d6* + r* cosh® 0d¢”.

The constraint 7 > 7, scales to r > 0, and we have a Rindler wedge of R%! flat space.
Changing to Weyl coordinates, the metric is

ds* = (daz*)? + dp* — dr* + p*d¢?, p > |7l

This is locally flat space, but there is an asymptotic conical deficit, since we earlier

identified ¢ ~ ¢ + QWW to avoid a conical singularity at p = 0. This solution is
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therefore interpreted as the creation of an SO-brane with energy per unit length equal
to the deficit angle over 8w, so E/L = 1(1 — (1 4+ M?/a?)7?) [95]. The dihole wave
universe with r < r_ gives the same result.

3.4 The S-Dihole Universes

We will discover several different universes that can be achieved from the black
dihole solution. Roughly, these are analogs of the Kerr double Killing bubbles, Kerr
7/2-bubble, and S-Kerr solutions.

3.4.1 Subextremal

We give a quick overview of the subextremal S-dihole solutions, then write them
generally, and then construct the six universes.

S-dihole has the horizon function A(r) = r*> — 2Mr + a* and in the subextremal
case a®> < M?, its spherical prolate diagram is identical to that of the Kerr black
hole, which we repeat in Fig. 3.4 with some new labellings. The Bonnor transform
has changed some powers and the Weyl special null lines (which appear as the x in
Fig. 3.1) become physically infinitely far away from the bulk of cards II, III, IV; and
serve as subsets of Z%. These Weyl null lines cut up the regions and we will find
six universes: U and Uy are 3-vertical-card universes (Fig. 3.5) that are nonsingular
and connected in a dSs fashion at their vertices, while £ and £, are 6-card universes
(Figs. 3.6,3.7) with an ergosphere singularity on the two horizontal cards.

We now write down the solution, and then cut it up into pieces and assemble the
regions into our six S-dihole universes. The S-dihole is gotten from the black dihole
(3.3) by

0 — 16, a — ia, t — izt b — 10, ~v-flip.

Here, the ~-flip of [51, 89] means we flip the sign of the 2 x 2 non-Killing metric in (3.2)
via €87 — —e®. Equivalently, we change the sign of the entire metric and continue
¢ — i¢, v* — iz*. The y-flip procedure preserves the reality of the magnetostatic
gauge field. The solution is then

2Mr. 9 a4 dr?
ds®> = (1-— dz*)? — — +db?
£ o= (=) (@ Yo _@arep At )
A sinh? 6
T T dé?
-
2aMr sinh® 0
A= (Rrasuiry )0 39

where ¥ = 724 a? cosh? . To change to spherical prolate coordinates, we set r— M =
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Figure 3.4: The regions of the S-dihole universe (subextremal). Regions III, and
IIT',, etc. are isometric. Each region will correspond to one card in some S-dihole
universe(s).

vV M? — a? cosh (, so the solution is

2Mr 2 YH(—d¢? + db?)
d 2 _ 1 — d 4\2 4
° ( 2 ) (( =) (M? — a2)3(sinh® ¢ — sinh? 9)3)
(M? — a?)sinh? ¢ sinh® §d¢?

+ - (3.6)
(1= 5y
2aMr sinh? 0
A= Y —2Mr a9,

where ¥ —2Mr = A+a?sinh? = (M?—a?) sinh? (+a?sinh?§ and ¥ = 72 +a? cosh? 6.

These coordinates cover regions III, and IV ; the null line which separates them
is ( = 0. In region II1,, ( is larger than # and hence ( is timelike. In region IV, ¢
is smaller than # and hence 6 is timelike.

U, Uy universes

Let us focus on region III,, which will be part of the & universe.
To see that the line 6 = ( serves as Z—, the relevant non-Killing part of the metric
is
—d¢? + db?
(sinh® ¢ — sinh? )3’
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Let us change variables so U = #, V = 42;0 where U > V > 0. For small V' and
staying away from U = 0, we have ds?* ~ —dUdV/V3. Next define v = —1/V?
U = —1/U2, so the metric is ds? ~ —dudv for v < u < 0. From these coordinate
transformations it is clear that region III, extends infinitely far into the negative v
direction. The uv chart for region III, looks like region III_ in Fig. 3.4, with Z
drawn explicitly as v = 0.

We will see later (Sec. 3.4.1) that there is a scaling limit towards the vertex 6, ~ 0
that yields a fibered dSs-type Poincaré (planar) horizon. Beyond this, there is another
time-dependent region where we conclude ( is still timelike. This must then be region
II. Applying the same argument at the bottom vertex of IT (r ~ r_,0 ~ 0) connects
us to region III_. These are the three cards that form the ¢ universe. We know from
the Penrose diagram of dS; that a horizontally-infinite array of regions accompanies
each dSy horizon. Thus the card diagram for U actually has an infinite number of
cards, shown in the right diagram in Fig. 3.5. In Weyl coordinates (o< —d7? + dp?)
the vertices are located at p = 0, 7 = £/ M? — a?. This universe is nonsingular and
not time-symmetric. Sending M — —M gives the time-reverse.

1 1

2 2 universe :
_ universes
M a cards cards ds 2
structure
as,
- 2 2 structure
M —a

Figure 3.5: The U universes. Each pointlike dS; horizon connects each card to two
adjacent regions which are isometric, as illustrated on the right. The zig-zag connec-
tions are suggestive of the Poincaré horizons.

Now, start in region IV, where 6 is time. A similar near-vertex scaling limit shows
dS, horizons, and that we must pass to region II; and then IV’,. This universe, U
is nonsingular and is time-symmetric.

Lastly, start in region IV_, where 6 is time. The vertex gives dS; horizons, and we
pass to regions II_ and IV’_. This universe, /_ is nonsingular and is time-symmetric.
It is related trivially to U, by M — —M. The cards for the U universes are summa-
rized in Fig. 3.5.
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&, £+ universes

We can turn any of the cards of the U, Uy universes on their sides via the ~-flip,
and achieve the following universes:

£ IL V, IV,, IV_
g:l: . I:|:> II:t, IIIi, III/:E

These regions are fitted together in 8-card diagrams, as shown in Figs. 3.6, 3.7.
They have ergosphere singularities on the horizontal cards, connecting the vertices
z = £V M? — a? and separating each £-type universe into an interior and exterior
universe. Upon dilatonization and lifting to 5d, these ergosphere singularities are
lifted (and the special null lines are then traversable).

E universe

Figure 3.6: The £ card diagram consists of eight cards and a singular ergosphere on
the horizontal cards V.

E, universes

Figure 3.7: The £, card diagrams are similar to £’s. The £_ universe has a ring
singularity atop the ergosphere at z = 0 (not pictured).
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Scaling limit to Melvin, flat space

Like the black dihole [63] and dihole wave [25], we can achieve a Melvin scaling
limit for some S-dihole universes. The Melvin universe has cylindrical symmetry,
with a magnetic field which decays to zero in the transverse direction. The quantity
> —2Mr, whose zero locus yields the ergosphere singularity, is the quantity of interest
yielding the nontrivial spatial dependence. Both the parameters M, a, and 6 — 7/2,
¢ must be scaled such that (§ — 7/2) ~ ( — 0 and M( ~ a (hence M > a).

The dihole and S-dihole (and dihole wave) are related by analytic continuation,
and the Melvin universes which come from the dihole and dihole wave are actually
from the same neighborhood of their complexified 4-manifolds. Since the r > r,
dihole is region I, and II, is directly adjacent (near p = 0, z = 0), we must also
have a Melvin scaling limit in II,. For r < r_, similar remarks apply to I_ and IT_.
As part of the Uy universes, 114 scale to

a4+ p?\2 /4M>*\4 4M*
at = (L) () (@) —ar+ dp?) + (g2 0o (37
A = —ardx*/2M*.
As part of the £1 universes, we must turn (3.7) on its side, changing
—dr? 4 dp* — dr* — dp?

and going through the p = 0 horizon by p — ip’ to yield a 4-card S-Melvin scaling
limit, with an ergosphere singularity at p’ = a on the horizontal cards [64].

There is no corresponding (S-)Melvin scaling limit for regions IT or V. The M >
a requirement makes the ergosphere ellipse in Fig. 3.4 very wide, so that on the
horizontal card V, it becomes infinitely far away from the p = 0 horizon at 8 = 0.
Hence U and £ have no Melvin scaling limit. There is also no Melvin limit for the
superextremal S-dihole (Sec. 3.4.2).

Now, we look at a scaling limit towards the future. Taking the U universe and
sending ¢ — oo (or r ~ v/M? — a? cosh{ — o), we get the flat scaling limit in the
far future

ds® ~ (dz*)* — dr? 4+ r*(d6* 4 sinh? 0d¢?). (3.8)

This is interpreted to hold for r > 0, i.e. above the null cone in R?!, times a spatial

line. The U4 universes also have flat space limits in the future and past, as r — +oo.

There is also a scaling limit towards the center vertex of Fig. 3.4, where the special
null lines meet. It is

MB8(—db* + d¢?)

(M? —a?)*((7/2 = 0)> + (7/2 = ()?)°

Picking a sign for each of 7/2—0, w/2 — ( (there are four choices) gives us a complete

metric < —dxtdx~ for each wedge card that meets at the vertex. It is clear that

special null lines act as ZF here. We have R*! x S!, where the proper circumference
of the S* is 27w/ M? — a2 and the Wilson line (as approached from Region II) is 47a.

ds® = (dz*)? + +(M? —a*)d¢?, A= 2adg.
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Scaling limit to RNN-bubble, S-RN

Next we examine the corner of the Weyl wedge card for say the U/ universe, where
0 and ( are small, and find in this limit a magnetic, dSs-fibered geometry. It is just
the RN-bubble. Define 6§ = /osinhn, ( = /o coshn and scale the coordinates as
o — /) xt — At X — co. This gives the o > 0 half of a universe

o'y T
SNV
(M? — a?)%2 cosh® nsinh® nd¢”
(M? cosh® n — a2)? ’
2aMr,do
a? + (M2 — a2) coth®

2
ds* = (M? cosh?n — a?)? <U (—do?/40® + dn2)>

(3.9)

where the constant ¥ = r? + a* = 2Mr,. The n — oo limit gives a proper ¢-
circumference of 2mv/M? — a2%, /M?. The card diagram consists of an upper and
lower noncompact wedge, connected in a dS, fashion. This is like the parabolic
(Poincaré) representation of the RN (charged Witten) bubble [51, 89]. Putting g,, —
G (MP—a?)3 |MPY%, A, — A (M?—a?)3?2 /MS,, ¢ — ¢M3/(M?—a?)?, and setting
2Mr = M? cosh?n — a?, we achieve the RN bubble

dT2 d0'2
d32 = fdgbZ + 7 + r2ddsg, ddS% = —? + 02(d:174)2,
A= Q- e (3.10)
7’+ T
with
2 2
r r

The ¢-direction is the RN bubble’s Euclidean time. Recalling that 0 < a? < M?, we
generate all shapes (parametrized by Q*/M3y) of bubbles of positive and negative
mass.

One can also perform near-vertex scaling on Uy universes and achieve RN bubbles.
The formulas are the same as for U up to a®> — M? — a?, a rescaling of Einstein-
Maxwell, and fixing ¢’s periodicity.

One can turn the RN bubble on its side via the y-flip and achieve S-RN, which in
its parabolic card description is a ‘butterfly’ diagram with two horizontal half-plane
cards and four vertical noncompact wedge cards. The ~v-flip and the small-o scaling
limit commute, and so one can achieve S-RN as a near-vertex scaling limit of the
E-universes.

We see that the S-RN curvature singularity (and since it is formally the same, the
RN curvature singularities) now has an interpretation as an ‘ergosphere’ singularity.
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(See Appendix 3.9, where we discuss the character of such a singularity and also
show how the Kerr ‘ring’ singularity can be interpreted as an ergosphere singularity.)
By ergosphere singularity, we mean one that can be eliminated via an appropriate
inverse Bonnor transformation or appropriate dilatonization and KK lift (see Sec. 3.5).
Indeed, if one interchanges the roles of ¢, ¢ and inverse Bonnor transforms the negative
mass card for the RN black hole, the curvature singularity becomes a nonsingular
ergosphere. Unfortunately, p = 0 (where the ¢-circle had vanished) becomes singular.

It is not clear how general and useful this idea may be—which familiar and un-
familiar curvature singularities in D dimensions can be easily lifted by an analogous
procedure, and what spacetimes result. A generalization of the Bonnor transform or
dilatonization procedures should yield interesting results.

3.4.2 Superextremal case

For the superextremal case a®> > M?, A has no roots and there are no horizons.
We set r— M = v/a? — M?sinh (, Z = sinh (. The spherical prolate diagram is shown
in Fig. 3.8; superextremal S-dihole is region I, and time runs up.

0=Tt 6=0

ergo

ring

Figure 3.8: The spherical prolate diagram for the superextremal S-dihole (Region I).
Time runs up the right column. The other regions will appear in the superextremal
S-dihole on its side (see Appendix 3.7).

The coordinate 6 is noncompact and spacelike. The ¢-circle vanishes along 6 = 0
around which the metric has the expansion

(r% + a?)?
A

This is smooth if ¢ ~ ¢ + 2m; this is the same periodicity for the black dihole on the
axis outside the black holes.

ds* D (d6* + 6*de?) .
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The superextremal S-dihole solution is the Bonnor transform of the superextremal
S-Kerr [47], which has the same spherical prolate diagram as in Fig. 3.8; it is also
region I, time running up. These superextremal solutions can be represented by one
vertical half-plane card with a vertical boundary.

We turn the superextremal S-dihole on its side in Appendix 3.7.

Scaling limits to (locally) flat space

The large-time (large-r) scaling limit for superextremal S-dihole is flat space, just
like for the late-time wedge of the U subextremal S-dihole universe.

On the other hand, just as for the dihole wave (which has the same card structure),
we can take a large-f spatial scaling limit to recover an asymptotic conical deficit.
We scale ¢ — Xe?, 2t — Az*, g — g /A% A — A/X. In this limit the solution
again simplifies to a vacuum solution

a8

2 482
ds® = (dx*)* + —(a2 )

(—R%d¢? + dR?) + (a®* — M*)R*cosh® (d¢?,  (3.11)
where r — M = v/a? — M?sinh ( and —oco < ( < oo parametrizes a Rindler wedge.
Changing to dimensionless Weyl coordinates, the metric becomes

CLS

2 14y2

(—dr* +dp?) + (a* = M?)p*de?®,  p>|r|.  (3.12)
The angular ¢ was previously periodically identified with ¢ ~ ¢ + 27 to avoid a

conical singularity at the origin so superextremal S-dihole has an asymptotic conical
singularity. We have created an SO-brane with E/L = 1(1 — (1 — M?/a?)?).

Extremal limit

Let us examine the extremal case a®> = M? for the S-dihole. The metric near the
degenerate vertex is

T4
TR

where T" = r — M. We find a metric singular at 7" = 0. This extremal case does
not have the de Sitter space of extremal S-Kerr ([47, 49] and see [96]) but a singular
metric. The Bonnor transformation has changed the powers of the coordinate 7" in the
metric components. Coming from the subextremal side, we see that two dS,-fibered
horizons are becoming coincident. One can use the Tx* part of the metric to show
one can reach T = 0 by a null geodesic in finite affine parameter; and the blowing
up of the Hy part of the metric indicates a singularity. Note that the near-vertex
limit and extremal limits do not commute: Putting a® = M? in the RN bubble (3.10)
yields a negative-mass chargeless bubble with a timelike singularity.

M* M*
dS2 dl’4)2 - Wde + W(dez + Sinh2 9d¢2),
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Coming from the superextremal side, we can interpret this as a Euclidean D6-
and D6-brane becoming closer together in imaginary time. They are separated by
a distance of Az = 2v/a? — M?. When the distance is dialed down to the critical
distance o< Ig, the lowest stretched open string mode will become tachyonic and
string loop effects will dominate [23, 24, 25]. So the extremal S-dihole supergravity
solution (which has unbounded curvature) should be replaced with some other, stringy
description.

3.4.3 S-charge

For an S-brane solution with electromagnetic field, the magnetic S-charge [29, 23]
is defined as the integral of F' over a two dimensional surface S which is spacelike and
transverse to the brane (or Killing) direction. In the absence of sources or singularities
and with sufficient decay of fields at infinity, the S-charge is conserved in the sense
that it does not depend on S. (Care must be taken to distinguish those & which
asymptote purely to i and those which hit ZF.

In [25] the S-charge of the dihole wave for r > r, was computed in Weyl coor-
dinates over a constant-7 slice to be @, = 2L (M + v/ M? + a?) and was shown to be
conserved. The S-charge along a constant-¢ slice in BL. coordinates can be shown to
give the same result. The result for the dihole wave with r < r_ is the same, up to
putting M — —M in the above formula.

S-dihole (3.5) has a vector potential

2aMr sinh? p
r2 — 2Mr + a2 cosh? §

The superextremal a? > M? spacetime has a simple card diagram—it is free of

horizons, singularities and special null lines. To compute the S-charge on a BL slice,
we fix 7 and integrate Fy,

m < 9 2a M7 sinh? @
Qs——/o d¢/0 05 ) = Mr/a.

1
47 r2 — 2Mr + a2 cosh? 0

This is not conserved, and is due to the fact that F,, does not decay fast enough;
as 0 — oo the drd¢ flux integral is d®,, = @dr.

On the other hand, we can compute S-charge for superextremal S-dihole at fixed
Weyl time 7. In this case Al,o = 0 and A|,.c = —2M?/a so the S-charge is
Q, = M?/a. This result is independent of 7 and so superextremal S-dihole has a
‘conserved’ S-charged in a quite limited sense.

The difference between the BL. and Weyl S-charges can be seen from looking at
the surfaces & in Weyl coordinates: The BL constant-r slice asymptotes to a finite,
nonzero slope at large values of 6 as shown in Fig. 3.9. We stress that r = constant
slices tend to i® as 6 — oo.
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constant BL time slice

constant Weyl time slice

Figure 3.9: Calculation of S-charge
on Boyer-Lindquist versus Weyl
time slices can lead to different
results.

The S-charges at » = and 7 = constant are the same for » = M (7 = 0) which is
in a sense the center of the cone of the Einstein-Maxwell waves (this is like a null cone
in R*!); we could say this is where the solution experiences a ‘bounce,” but there is
no time-symmetry since M # 0.

Examining the EM field strength for the £ universe, we notice the following fact.
On the horizontal card (region V) there is an electric field in the r direction, and
for large values of 0, F; = 2M/a is constant. One can then interpret this as a
background electric field which is related to the two-dimensional object lying along
the ergosphere singularity. As time passes (we eventually go up the vertical IV cards)
the electric field eventually goes to zero so this gives support for the interpretation of
the S-dihole £-universe as the creation of a localized two-dimensional unstable object.
In contrast, the dihole wave is the formation and decay of a localized fluxbrane, which
is one-dimensional object.

The subextremal case U-universes are less directly amenable to S-charge than the
superextremal S-dihole. The noncompact wedge universes which are regions I11. and
IV have finite but nonconserved S-charge as we compute along a constant-time (say
BL time r) slice out to the boundary. However, these surfaces S, asymptote to the
conformal infinity Z*, not to i°. One can compactify the noncompact wedge a la
Penrose, and the emergent 7" has infinite S-charge, being the limit as one runs up Z .
(1% is treated merely the singular boundary between Z¥; it can have more structure
as in [97, 98].)

On the other hand, the compact wedge cards have a clear i on the card diagram.
S-charges are conserved and finite; one evaluates A, at i° and subtracts Ay evaluated
anywhere on the p = 0 boundary. Keeping in mind that ¢ ~ ¢ + 27 for U and ¢ ~
d+2mrat/(M? —a?)? for Uy, the S-charges are Q, = a, and QT = ﬁ(a—Mri/a).
The S-charge suggests that the i in the upper, middle, and lower cards are disjoint,
and helps us to conclude the global structure (see Fig. 3.13).
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3.4.4 A desingularizing change of coordinates

a -orbit a
A
Z=1 1
i3
Z=-1 -1
c=1

Figure 3.10: The shown patch for «, 3, on the right, fills out three triangles on the
CZ diagram, left, for the three cards of the S-dihole U-universe.

The three vertical cards for the U/-universe, lie on the irregular patches 0 < p <
min(|z — vV M? — a?|,|z + vV M? — a?|), which are not easily amenable to finding a
cross-patch or global description. As the first step to a better global spacetime co-
ordinates, we give a desingularizing transformation, which re-renders the degenerate
vertex (where the complex ergosphere locus pierces the vertical cards at p = 0, and
where the RN bubble scaling limit is to be found) as a line segment.

One must find equations for orbits as drawn in Fig. 3.10. The answer has been
given implicitly by Penrose’s ideas for compactifying the 141 half-plane, using the
hyperbolic tangent, and by analytically continuing to achieve the noncompact wedges
with the hyperbolic cotangent. The derivation is omitted. In terms of the dimension-
less spherical prolate coordinates, the transformation is

Z:—a(l_@), Czl——ﬁ(l_QQ).

1 — a?(3? 1 — a?(3?

We require 0 < 3 < 1, and also 8 < 1/|a|. For fixed 3, an a-orbit for -1/ < a < 1/
snakes through all three vertical cards, hitting each vertex with slope AC/AZ =
23/(1 + [3%). The resulting a3 coordinate system is not Penrosian in the sense of
drawing light cones on the coordinate patch; there is a cross-term; but 9, and 9z do
have timelike and spacelike signature. To get the stated RN scaling limit, near the
vertex, use « — 1 ~ /2.

Note then how the degenerate vertices have become the segment 0 < § < 1 for
«a = +£1. This coordinate system is not adapted to the full spherical prolate diagram,
merely to the three given cards for the U-universe and their reflections about C' = 1.
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If one likes, one can rectangularize the coordinate patch via

Qinal = tanh ™ (Ba)/ tanh™*(3).

Then the patch is 0 < 6 < 1, —00 < Qgpa < 00.

We can make a direct assault on noncontractible loops. To directly check for an
nontrivial loop around dS,; from the near-vertex scaling limit, we make a change of
variables motivated from dS,; formulas

ot—0o  od(M?—a?)?

X0 = 5~ o (z*)? = sinhT (3.13)
+
X' = 2(M?* — a3t /52 = cosh7siny (3.14)
-1 AM2 — o2)3
x2=7 ;_U _ oM o5 @) (z*)? = coshTcos, (3.15)
+

and @ = /osinhn, ( = \/ocoshn. Thus o = coshTcosty — sinh7, and z* can be
solved from the X! equation. Plugging into the formula for the S-dihole, one can then
check the existence of nontrivial i)-loops in the S-dihole geometry. This description
holds for small 7.

As we see from the 2d Penrose diagram (Fig. 3.11), the loops obtained from the
vicinity of the upper vertex and the lower vertex, are not homotopic. The whole
spacetime has the topology of the tangent bundle to the 2-cylinder, minus one base
point and its plane fiber; Thus (S' x R3) \ R%. The fundamental group is the same
as a cylinder minus a point (or the plane minus two points).

A combination of the above coordinate transformations may yield further insight,
but the topology has been identified, and the ensuing complicated form of the metric
after such transformations defies any analysis by mere inspection. The real goal is
then to find coordinates near conformal null infinity to show its (patched) regularity.

3.4.5 Penrose diagram of I/ universe

Take the U universe with § = /osinhn and ( = /o coshn. If one takes the
o and z* coordinates (that is, ignores azimuthal ¢ and fixes an 7-slice), then the
small-o limit gives dS,. The large-o limit (the flat space future limit (3.8)) gives
ds? ~ (dz*)? — e?do?/o?, which is flat R, One then concludes that the Penrose
diagram for U in these two coordinates should be three rows of diamonds (Fig. 3.11).
However, this Penrose diagram is inadequate in two senses. First, it ignores the
important noncompact n-direction and hence misses out on some parts of Z*.> These
are represented as the special null lines or an ordinary (at infinity) Z= for the card
diagram. Second, the interior vertices, across the center of the Penrose diagram, are

5The often-drawn Penrose diagram for S-Schwarzschild is similarly inadequate for that solution,
since it does not draw noncompact directions.
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Figure 3.11: The Penrose diagram for the p = 0 slice of the U/ universe. The interior
vertices are at an infinite distance and cannot be traversed. Anticipating a sensible
3-diagram, it is canonical a la dS, to identify every other diamond horizontally, giving
the Penrose diagram the topology of a 2-cylinder minus a point.

an infinite distance away and cannot be traversed. They should be interpreted as
part of the missing i° or *. So we have drawn them as blown-up circles on the
Penrose diagram. (See [99] for a similar feature, in the cut-up multi-diamond Penrose

diagrams.)

Figure 3.12: (a) The Penrose diagram for dS,. (b) A 3-diagram of the Witten bubble;
the spacetime lies spatially outside dS,, and is cut into two patches by the parabolic
coordinates for dS,.

A conjunction of both the Penrose diagram (in o, z*) and card diagram (in o, 7)
highlights the features of the spacetime, but it would be nice to have a 3-diagram
(where only ¢ is ignored) to show the global properties of the spacetime, like its
topology and the conformal structure at infinity [100]. For the near-vertex limit
which is the RN bubble, its fibered dS, has the Penrose diagram in Fig. 3.12(a) and
a 3-diagram (ignoring the bubble circle ¢) in Fig. 3.12(b).
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For the U universe, the 3-diagram is as shown in Fig. 3.13, where the nondrawn
¢-direction closes the spacetime in a warped bubble locus. The bubble has a vertex
which is stretched to infinite distance, and serves as i* for the lower and upper cards,
and part of i° for the middle card. This is the vertex appearing on Fig. 3.11. S-charge
is finite along any curve in the diagram extending from the bubble surface to a point
between the lower i° and the upper %, at and beyond which it becomes infinite.

Dashed lines are drawn to indicate the Poincaré horizons for the near-horizon
dS,. These lines must extend as null planes and pierce Z. These piercings must be
interpreted as another (spacelike-extended) °, with Z below it and Z~ above it.

One may object that the given diagram is not Penrosian (causal as drawn) in that
the ZF, if they are null cones at 45°, cannot intersect in an ® as depicted. Actually,
the 3-metric for the S-dihole is not conformally flat, so no 3-diagram can be Penrosian.
This lack of conformal flatness of the 3-metric persists with a = 0, M. The thing to
check is the vanishing of the 3-tensor [101, 102])

1
Rape = Rab\c - Rac\b + Z(QacR\b - gabR|b>>
where all quantities are for the 3-manifold and the stroke indicates covariant differen-
tiation. We conclude that the S-dihole’s 3-diagram can only be considered schematic,
and find no further objections to Fig. 3.13. (The charged Witten bubble’s 3-metric

dr?

+r2ddS,?
7(r) ’

2 _
ds5 =

is conformally flat.)

Fig. 3.13 is missing the ¢-direction, so we discuss its evolution. As one passes from
the infinite past (drawn as a ring) forward through the two dS, horizons and to the
infinite future, the ¢ directions start as an ordinary hyperbolic space in (3.8), and
then close to a test-tube shape in the n¢ coordinates in (3.9) at each dS, horizon. In
the middle, we know that the near-i® scaling limit also gives a finite ¢-circumference.
This evolution is depicted in Fig. 3.14. Note that it is sensible to identify early and
late-time 6 with near-vertex 7, since both have hyperbolic trajectories on noncompact
wedge cards that do not intersect the special null line; we could also describe this
with the desingularized coordinate [3.

A full description of the £-universes is lacking; they can be described near their
foci, as two S-branes; these S-branes are connected in the bulk of the £-type universe.
We desire a more complete description and 3-diagram.
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top card

bottom card

Figure 3.13: The 3-diagram, analogous to that for the Witten bubble, for the U-
universe. The azimuthal symmetry of the Witten bubble is broken to a nonobvious
Poincaré translation symmetry. There are three disjointed sets of ordinary i°, and
three each of Z*. The Poincaré horizons extend as 2-planes in the diagram to pierce
null infinity and cause a singularity in its conformal structure (two additional 1°’s).
The Uy universes have an additional timelike Z, isometry as suggested by the picture.

3.4.6 Weyl coordinates and branches

The magnetic dihole in Weyl coordinates is ds* = — f2dt* + f2(e®(dp* + dz?) +
p*d®?) with

oo [(Ry +R_)? —4M? — £ (R, — R)*]
| (R + R +2M)? — 5= (Ry — R_)? |
o [(Re+R?—aM® - £ (R, - R
e AR (3.16)
4 oM@+ R 20 - FEE ,
F(Ry + R - M2 - a2y

Re = \/p+ (z 2 VI + a2 (3.17)

To achieve the dihole universe where either of the two black holes or both are
replaced by negative-mass objects, the card diagram rule [53, 51, 89] is just to explic-
itly change the sign of the branches of Ry in (3.16). This gives a Weyl description
of regions II, III, and IV in Fig. 3.2. The sign of R_ corresponds with the object at
6 = 0, and the sign of R, corresponds with the object at 6§ = .
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= G

1st dS horizon
center vertex 2nd dS horizon

far past far future

Figure 3.14: Time-evolution of spacelike 2-surfaces involving the ¢-circle, for the
S-dihole U universe. This is drawn for small a, where ¥_ < M? < ¥, and so the
asymptotic proper circumference of the ¢ circle increases for the bubble-type fiberings.

Let us move to region II1, of the U-universe of subextremal S-dihole. Starting
from the black dihole, we first continue a — ia, t — iz, ¢ — i¢ —this puts us in
region I on Fig. 3.4. Then we then keep z > vM? — a? and put p — ip/, to pass
to region II;, and then perform a ~-flip. The signs of (R, R_) for IIL, are thus
(+,4+). When we pass down through the vertex in the ¢ universe to region II, we
pass over the special null line for R_, and hence change the sign of R_ in (3.16). As
we go farther into the past and pass the R, vertex into region III_, we must change
the sign of R, as well. Thus the time-evolution of the ¢ universe from past to future
(from noncompact to compact to noncompact wedge card) is

U: (—,—), (+,-), (+,+)-

Uy (_’_'_)7 (+’+)7 (+’_)>
u_ (‘f’,_)a (_7_)’ (_7+)'

The &£, universe can be gotten directly from the dihole’s exterior universe. Then
£ is gotten by sending R_ — —R_, and &£_ is gotten by further sending R, — —R,.

3.5 KK interpretation and Bonnor Transform

The ergosphere singularity of a dilatonized version of S-Melvin was found and
discussed in [64]. Just as dilatonized Melvin can be obtained by twisting a completely
flat KK direction with an azimuthal angle [61], S-Melvin can be obtained by twisting
a completely flat KK direction with a boost parameter. The ergosphere singularity
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is then where the twisted KK direction becomes null. On one side of the ergosphere
singularity (small p on the horizontal card), the twisted KK direction is spacelike
whereas on the other side (large p on the horizontal card) it is timelike yielding a KK
CTC.

Actually, this is a general feature of ergosphere singularities: The singularity oc-
curs when the KK Killing direction goes null. This also occurs in the Bonnor trans-
formation (see Appendix 3.9). We wish to emphasize the following connection: The
‘ergosphere,” where a timelike Killing direction of say Kerr becomes null and switches
to spacelike, maps via the Bonnor transformation to an ergosphere singularity of say
the S-dihole &£, , where a dilatonized version has a KK circle changing signature. The
precise connection is that the Bonnor transformation can be understood from the
KK perspective in reducing from five to four dimensions.® If we take a magneto-Weyl
(MW) solution (3.2) and dilatonize it with a = v/3 [91, 92, 54] we get

ds?iil = —fl/2dt§/lw + f_1/2 (627(d02 + d22) + 02d¢2)
1
Ag = EBdgb (3.18)
e = f‘/g/Q.

Lifting to 5 dimensions [61, 25|, we get
dsiy = f(da® + Bdg)® — diyy + [ (€¥(dp” + d2°) + p*d¢?),

and the Killing tyrw becomes completely flat. It may be dropped and the resulting
4d solution is a Kerr-type instanton. Upon Wick rotating 2° — itge, and B — —iw,
the 2® direction becomes Kerr time. Hence 2° and tke, change signature on the same
complexified locus, the ‘ergosphere.’

For a time-dependent Weyl-Papapetrou geometry, we can add a trivial space direc-
tion and then KK reduce along a different space direction, and undilatonize. There is
no analytic continuation in this case and this is why S-dihole, as the Bonnor transform
of S-Kerr, does not have a — ia relative to it.

3.5.1 Generating nontrivial geometries from trivial ones

We have seen how the near-vertex scaling limit of the ¢/ universe gives us the RN
bubble. Turned on its side, this gives us the Reissner-Nordstrém S-brane (S-RN).
This should be the Bonnor transform of a near-vertex scaling limit of Kerr’s double
Killing bubble, K, for » > r,. Specifically, we want to zoom in on the north pole of
the Kerr horizon, i.e. § = 0 for K’s rod, at z = vV M? —a?, p = 0. Such focusing

limits on nonextremal geometries always give flat space, albeit in a strange coordinate

6This has been known; see comments in e.g. [70, 92].
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system. For K. ’s north pole, flat space is written on the horizontal card 0 < 2np <7
as

ds* = de* + édn® — (M?* cos’ n — a®)(dt + asin® ndo/(M? cos® n — a?))?
e2(M? — a?) cos? 1 sin? nd¢?
M?2 cos?n — a2 '

The corresponding instanton (¢t — ix°, a — ia) has a self-dual nut [103] at € = 0 for
the Killing vector 9/dz°.

The point is then that since the Bonnor transform relies on (i) a choice of two
Killing directions to put the metric in Weyl-Papapetrou form and (ii) and choice of
one of those two Killing directions to be ‘time,” it is not unique, and we can have a
nontrivial Bonnor transform of flat space. In the present example, the near-north-
pole limit of K, with its Killing time ¢ and azimuth ¢, transforms to give us the
S-RN solution in Poincaré/parabolic coordinates [51, 89], where ¢t — ix® is reduced
and ¢ becomes the bubble Euclidean circle. Kerr’s ergosphere has become the S-RN
singularity.

3.5.2 D6-brane interpretation

Upon dilatonization and lifting to 5d, six extra flat directions can be added to give
a solution to 11d supergravity (or M-theory). The local characterization of each black
hole as a self-dual/anti-self-dual nut gives it a (Euclidean) D6-brane interpretation
in the lifted theory [18, 19]. These objects may be located off the real manifold; in
Appendix 3.8 we describe how they may be located in Weyl coordinates in terms of
intersection of an ergosphere locus with p? = 0.

The formulas for reducing the 11d metric to the 10d ITA string metric are almost
identical to Einsteins; — Einsteiny reduction [93, 94]. To the metric in (3.18) we
merely add fY2(dR°)?, with an ISO(6,1) symmetry. Removing the dilaton here
could potentially yield S-brane solutions like the /-universes with fibered dSg scaling
limits.

3.6 Summary

The Kerr and Kerr 7/2-bubble solutions, under Bonnor transform, become the
black dihole and dihole wave solutions. Acting on S-Kerr or the double-Killing bubbles
of Kerr, Bonnor gives us new solutions which we refer to collectively as S-dihole
solutions.

There are six subextremal S-dihole universes which we called U, Uy and £, £+. The
three U-type universes were nonsingular and had a near-vertex limit to the Reissner-
Nordstrom bubble. Through a combination of card and Penrose diagram, we un-
derstand the features of the spacetimes, and have attempted to depict their global
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structure. The &£ universes had ergosphere singularities, represented the decay of
two-dimensional unstable objects, and had a near-vertex limit giving the S-Reissner-
Nordstrom solution.

The superextremal S-dihole has a simple card diagram. Physically it shows the
creation and decay of an asymptotic conical deficit, and it has an S-charge that is
conserved only in a limited sense (on constant-time Weyl slices). This is in contrast
with the dihole wave which has a robustly conserved S-charge. Both solutions turn
on their sides (see Appendix 3.7).

The roles of card, spherical prolate, and affine coordinates have been clarified,
as has the location of the ergosphere, ring singularity, and special p?> = 0 loci, and
their intersections (Appendix 3.8). The Bonnor transform of ergospheres and ring
(i.e. usual curvature) singularities are shown to have identical properties (Appendix
3.9).

The Bonnor transform is related to 5 — 4 KK reduction and Weyl dilatonization
procedures. These dilatonization procedures will not change spacetimes with sim-
ple card diagrams, but will destroy the interesting structure of those card diagrams
where the special null line serves as conformal null infinity, such as the U-type and
E-type universes. Dilatonized solutions lift to ITA string theory and M-theory as
configurations of D6- and D6-branes.

3.7 Appendix: More universes by turning cards
on their sides

Taking the half-plane vertical cards that are the dihole wave and the superextremal
S-dihole, we can turn them on their sides via the v-flip, namely % — —e® [51, 89).
Vertical cards are then connected by a horizontal card which is a doubly covered half-
plane, like the superextremal RN black hole in 4 dimensions [51, 89]. The geometries
we get have ergosphere singularities appearing as circular loci on the horizontal cards,
as well as a ‘ring’ singularity at a point. The ergosphere singularities can be gotten
rid of by dilatonization [92, 54] and lifting to 5d. The vertical cards are nonsingular.
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3.7.1 Dihole wave on its side

The dihole wave of [25] exists for r > r, and r < r_; both can be put on their
sides to give the vertical cards of this universe. It is
24

(A + (a2 + M?) cosh? §)3

ds* = (1- 2M7"/E)2<(d:c4)2 + (—dr?/A + d@z))

A cosh? 6
a2y
2aMr cosh? 6
A+ a2cosh’f
where ¥ = r2 4+ ¢?sinh?# and A = 2 — 2Mr — . This spacetime comprises all
three regions in the spherical prolate diagram in Fig. 3.3. Both Killing directions
are noncompact. It has an ellipse ergosphere singularity on the horizontal card and a
point % = 0 curvature singularity. A dilatonized version lifts to a 5d solution with just

the ¥ = 0 singularity. Our solution is the Bonnor transform of the Kerr 7/2-bubble
(gotten from Kerr by t — iz?, § — 7/2 +i0, a — ia), turned on its side [67].

2
597,

3.7.2 S-dihole superextremal on its side

Take the superextremal S-dihole, and turn it on its side via the y-flip. Written
for real 6 on the vertical half-plane cards, we have

o dr?
ds? = (1—=2Mr/S)((da™? +  _ap?
i ( /%) (( S AT @ ety A ))

A sinh? 6
d 2
LTI
2aMr sinh? 0

A+ a?sinh?g
where A = r2 — 2Mr + a? and ¥ = 72 + a?cosh®#. This spacetime comprises all
three regions in the spherical prolate diagram in Fig. 3.8. Both Killing directions are
noncompact. It has an ellipse ergosphere singularity on the horizontal card and a
point ¥ = 0 curvature singularity. A dilatonized version lifts to a 5d solution with
just the X = 0 singularity. Our solution is the Bonnor transform of the superextremal
S-Kerr, turned on its side [67].

3.8 Appendix: Ergosphere and ring singularity as
affine loci

The Kerr, black dihole, and related manifolds have two non-Killing directions
which can be complexified. We now study the ergosphere and ring singularity loci
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in terms of natural affine coordinates C, Z for C*> C P! x P!. Here, C' = £ cosh@ or
cosf, and for subextremal Kerr, Z = (r — M)/v/M? — a?. The dihole has a — ia
relative to Kerr.

Take subextremal Kerr or the black dihole. The family of polynomials P,(C, Z) =
(M? + a?)(Z? — 1)(1 — C?) — p? vanish to define p* = —detaxagas € C in terms of
the complex affine coordinates. The locus P, = 0 is only algebraically singular for
p?=0,ie C,Z =41, or for p> = —(M?*+a?), i.e. C = Z = 0. These are the five
vertices in Figs. 3.1,3.4.

Killing circles become null or vanish at p?> = 0, i.e. Z = %1 or C' = #1. The real
manifold’s card diagram is in some sense a square-root-fold over those C, 7 = +1
which serve as horizons.

For the Kerr black hole (or the S-dihole), the ring singularity is

(VM2 —a2Z + M)? +a*C* = 0.

This quadric is reducible to the union of two complex lines. They meet at the alge-
braically singular vertex, C' = 0, Z = —M/v/M? — a?, which happens to lie on the
real manifold.
The ergosphere, on the other hand, is
a’C? M?

2 _
Z +M2—a2—]\/[2—a2'

This is an irreducible hyperboloid. It is fitting that this geometrically nonsingular
locus (for Kerr) is also algebraically nonsingular. It forms an ellipse on the real CZ
plane; it circumscribes the square and the distinguished points of this ellipse are where
the ergosphere hits the C, Z = +1 vertices (see Fig. 3.1). The ergosphere asymptotes
to (M? —a?)Z%+ a?C? = 0 and the ring singularity is a shift of this so that its vertex
lies atop the ergosphere.

For the dihole, the ring singularity is

(VM2 +a2Z + M)?* — a*C* = 0.

which is now reducible in the reals: The singularity cuts two lines across the real C'Z
diagram, as shown in Fig. 3.2. Note then that the top region I is free of singularities,
being the exterior to both black holes. The bottom region IV is has two singularities,
each cutting off its black hole horizon (C,Z = %1 vertex) from the negative-mass
complement. The side regions II and III each have one ring singularity locus, cutting
off the appropriate black hole interior from the negative-mass complement (which
then also has a nonsingular black hole).

The ergosphere is at Z% — a*C?/(M? + a®) = M?/(M?* + a?), which intersects
the real manifold as a hyperbola. This hits the vertices C,Z = +1 and does not
enter the horizontal card regions I, II, ITI, IV. Thus the only effect on the ‘ergosphere
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singularity’ on the physical black dihole spacetime is to pierce the real Weyl half-
planes at vertices z = v/ M2 + a2, p = 0 and to create the extremal horizons.

For superextremal Kerr or S-dihole, we set r = M + va? — M?Z, Z = sinh (; see
Fig. 3.8. The polynomial

PAC,Z) = (a® = M*)(1+ Z2)(1 - C?) - p?

gives algebraic singularities at C' = Z = 0 (the branch point) as well as Z = =i,
C = #£1. The latter coincide with the intersection of the ergosphere singularity with
p* = 0, which are the imaginary ‘locations’ of the Euclidean D6-branes (or black
holes) in the superextremal S-dihole. Similar considerations apply to the dihole wave
(Fig. 3.3) and give the imaginary locations of the branes.

For all Kerr and derived solutions, it is satisfying that the features of the geometry
admit such a simple description in terms of hyperbolas and intersecting lines, and
that distinguished points occur at the intersection with special surfaces p? = 0, or at
algebraically singular points.

The use of these affine coordinates may have further uses. For example, it can
be proved in 4d Weyl-Papapetrou that any ergosphere locus that intersects p? = 0
transversally, must do so where p? is algebraically singular. This gives additional
explanation to why Kerr’s ergosphere hits Z = +1, C = %1, even though we already
know physically that the ergosphere must touch a spinning horizon at the poles.

Furthermore, loci such as ergosphere and ring singularity are always expressible
in terms of certain-degree polynomials in a compactified P! x P!. A variable-Q)
ergosphere defining polynomial will be reducible when 2 = €. is the angular velocity
at the horizon; then (ZF1) factors out. There may be other, physical or nonphysical,
values of parameters such as €2 that result in reducibility of these loci. The application
of polynomial or algebraic geometry to these loci may yield further insights into Weyl
spacetimes.

3.9 Appendix: Character of ergosphere and ring
singularities

We give a brief characterization of ergospheres and their Bonnor-transforms, and
compare them with the ‘ring’ singularity. Given a 2 x 2 Killing metric in the Weyl-
Papapetrou form (3.1) with the understanding that 0; is a distinguished direction
for an ensuing Bonnor transformation, we can define its ergosphere locus to be the
nonsingular locus where f vanishes. Then w must have a pole like f~! so that

—f fw 0 finite #£ 0
fo fp?— fw?) 7 \finite£0  finite )
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where we have nondegeneracy away from p? = 0. In the interior of a card, from (3.1)
we see that €?? ~ f to keep the coefficient of dp? + dz? finite. Thus in the Bonnor-
transformed geometry (3.2) we see that the coefficients of —dt? and dp? + dz? vanish
like f2, the coefficient of d¢? blows up like f~2, and the magnetic potential A4 blows
up like f~1. (At the card boundary p = 0, we have seen for the dihole that instead, the
ergosphere gives nonsingular extremal black holes which are locally AdS, x S2.) This
characterization of ergosphere singularities will help us to identify them—because
upon dilatonization and a KK lift to 5d, they are resolved (see Sec. 3.5).

When the Weyl-Papapetrou geometry is singular, we do not have much to say in
general, but we will look at the Bonnor transform of the Kerr ring singularity and
find a surprise. There, f ~ 1/ blows up, and e*? stays finite. Then, the Bonnor-
transformed geometry has non-Killing dp? + dz? as well as d¢? vanish like f~2 and
the —dt? direction blows up like f2. Also, one can compute the electric EM-dual
potential for the black dihole:

2Ma cos 6dt
(r2 — a?cos?0)’

At:

and this blows up like f. (It is not surprising that the electric potential blows up
at the curvature singularity of a charged black hole.) Thus the Bonnor transform
of a ring singularity is just like that for an ergosphere, but with the roles of ¢ and
t exchanged. It them seems possible that > = 0 could be made nonsingular with
the right inverse transform, but in the present case, the locus intersects the real
spacetime at a vertex point where it is algebraically singular, and also is a subset of
the ergosphere singularity. So we do not immediately expect any new nonsingular
geometries from this idea.

3.10 Appendix: Dihole wave fall-off

The magneto-gravitational wave decay for the dihole wave geometry [25, 51] can
be analyzed by setting 7 = p + constant, and looking at the decay of say gs4. The
result is gyy ~ 1+ O(1/7%/2).

We can understand this power-law decay in Weyl coordinates with the following
linearized model, using x,y, z, 7 coordinates in Minkowski 4-space. A codimension
3-+1 source for the wave equation gives precisely causal wave fronts, and a codimension
2 4 1 source can be gotten by dimensional reduction. Hence we may write a wave as

dgaa(x,y,7) = /OO ( dz + c.c.)

oo N2+ Y2 4 22 — 72 4 e

where € is a regulator. Along 22 + y?> — 72 = 0, dguy = % ffooo gfjﬁ If the wave is
regulated by displacing the source into imaginary time, 7 — 7 %+ ¢, we find that

€ < 7. Therefore the behavior for such time-displaced wave sources is §gqq ~ 1/ /2,
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Kerr S-brane and Instanton

The S-brane for the higher-dimensional Kerr (Myers-Perry) black holes [104] is
correctly analyzed in odd dimensions. Key issues of the global structure have been
missed in previous descriptions [49]. We find that in the ‘anomalous range’ of large
a; compared to small but positive mass u, for D = 7,9, ... there is a new instanton of
topology S® x RP~3, in contrast to the usual Kerr instanton of topology R? x SP~2.
Note that for D = 5 there is a putative ‘new instanton’ of R? x S2, but in this case it
is isometric to the usual one. There are indications that these new instantons mediate
the decay of simpler spacetimes with the same asymptotics, a work which has not
been completed.

Card diagrams are used to illustrate the D = 5 case. Unfortunately the D = 5
S-brane is identically a bubble, and the new instanton is the usual one, but the
constructions are markedly different and showcase the method, which applies in D =
7,9,.... We also give the 5d black hole ‘on its side’ solution, which is new and
nonsingular. We also give some other solutions like the Kerr bubble on its side,
superextremal S-Kerr on its side, the S-brane for Taub-NUT in 7/2- (nonsingular)
and double Killing- (CTCs) versions. We discuss Taub-NUT on its side and generating
techniques.

The S-Kerr work was done with J. E. Wang and may be forthcoming as a publi-
cation. For earlier S-Kerr work, see [47, 48].

4.1 0Odd D with one a; turned off: Global structure
of the solution

Take D = 2n + 1, and take a, = 0, with other a; # 0. The Myers-Perry black
hole solution is

ITF

2
—H e dr® (4.1)

= —dt* + Z 2 (dp? + p2de?) + dt + Z agde;)?

72



Chapter 4: Kerr S-brane and Instanton 73

and we set a,, = 0. Here,

- 2 2 - 7"2/%2
m=]o el F=) 5

To Wick rotate, we send
t—iz, r—it, a; —ia; pp—ip (=1,...,n—=1), ¢, — iy,

and we determine ¢,,’s compactness later. We also make the conventional change
p— —pfor D =5,9,13, ... but not for D =7, 11, .... The relation > .  u? =1
becomes p2 — S0 2 = 1. We get

ds® = d2* — 2dp? + P p2de? + Z(t2 + a7) (dp; + p7dg) (4.2)

L
- 2 dZ + Z Q; d¢z
[L:(# + a?) (u2 — 32, m)

2
_Hz‘(tQ + ai)(ﬂ% - Z¢ JW)
L+ ) s
where all products and sums are over ¢ = 1,...,n — 1. The S-brane solution has a
global structure which was missed in [49)].
There is a single horizon (where gy = 00) for u > [, a7, at some ¢ty > 0. This is

a horizon in the coordinates t and z, where Z is z twisted with ¢;’s. Near t = 0, the
metric contains pieces that look like

dt?

d¢ + (Hz Z>Mndt2

a

This is a ¢,-boundary, and we can avoid a conical singularity by compactifying

Hia’zz
M_Hiazz.

The tz Penrose diagram, drawn for a u, = 1 slice, is then four regions, all with

t > 0; they are connected in a X-pattern at ¢ = ty. The upper and lower regions

are diamonds. The left and right regions are triangles; the universe is closed on their

timelike ¢ = 0 boundaries; and CTCs can be found in these regions. See Fig. 4.1(a).
For 0 < po < [, aZ, there is no ¢z horizon. Near ¢ = 0, we have

~ ¢ + 27 (4.3)

t%idqﬁ %_L Z)lundtQ
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t =00 t =— OO

Figure 4.1: (a) On the left, the Penrose diagram for the ordinary u > [], a? nonsin-
gular S-Kerr. (b) On the right, the Penrose diagram for the anomalous p < [[, a?
nonsingular S-Kerr.

We want ¢, noncompact: This is a Milne horizon. The prototypical Milne embedding
is of t > 0, ¢ into the upper wedge of Minkowski 2-space ds? = —dT? 4 dX? as

X = tsinho
T = tcosh¢.

Setting t < 0 gives the lower Milne wedge, and continuing ¢ — +ir, ¢ — ¢ + im/2
gives the Rindler wedges. Thus ¢ > 0 is the upper diamond of our Penrose diagram,
t < 0 is the lower diamond, and imaginary ¢ gives right and left diamonds, which we
now investigate.

So put t — ir in (4.2); we get

ds® = d2” + r’dp) — rplde) + Z a; — ) (dp; + pidg}) (4.4)
— A dz + Z ;i d(;ﬁl
HZ(CL? - 7‘2) (lu“n z 1— a2/r ) i
(a? —r?)(u2 = >, —a2 -
2( e/ >dr2

H (az - TQ) K

Now, ¢, is a time direction, under which the metric is static. The rest of the Killing
directions have purely Riemannian (positive definite) signature, so there are no CTCs.
The next possible singularity occurs at [[,(a? — 7?) — p = 0, which has precisely one
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simple root 0 < r; < ay, with negative slope, where we take a; < --- < a,_;. Here,

grr = 00; nothing else goes wrong and in particular Coefdz? has not gone negative
2

since p2 — ZZ 17(’;# > p? > 1. We have a twisted Z-boundary at r = 1.

The surface gravity in [104] is

011 — 2pr
K= —————
2412

Y

r=r1

and we compute it (ignoring overall signs) in our present scenario to be

10
K = ZE H(CLl2 — T2>

=1

Y

r=ry
where we used [[1=, (a2 — r?) — = 0. For D = 5 this simplifies to x = /a2 — u/p.
Following [61] we can twist to new variables

~ a/Z

zZ =z, ¢ = ;i — iz, Q; =

2 2
a; — T

and compactify Z ~ Z + 27 /k to close off the spacetime at r = r;. Note that this
makes | = 2 + Sl Qia%i =2 null at r =ry.

It is appropriate to draw a t¢, Penrose diagram (drawn for the p, = 1 slice).
It again has four regions connected in a x-pattern at t = 0. The upper and lower
diamonds are at ¢ > 0 and ¢ < 0, and the right and left triangles are at » > 0 and
r < 0. The triangles end at their timelike boundary r = r;. See Fig. 4.1(b).

We do not consider the details of singular p < 0 for general odd D.

4.1.1 A simpler continuation

Usually in the construction of an S-brane, some continuation r — it is done.
Solutions have functions which depend on r and it is not a priori clear that a real
S-brane geometry can be obtained this way. Often times other parameters, M or a;
are continued, and the end result is that horizon functions and other functions take
the same functional form as in the black hole solution. As the reader may guess,
much of this analytic continuation is unnecessary.

We give a simpler analytic continuation for D = 2n + 1 S-Kerr. This is a gen-
eralization of the idea of the -flip for 4d and 5d solutions ([51], and below for 5d
S-Kerr). Take the D = 2n + 1 Kerr geometry (4.1) with a,, = 0, and continue

MZ_)ZMza i:17...,n—1, anﬁlqﬁn; Guv — —Guv-

The last step, being the sign flip of the metric, emphasizes that charged solutions
solve Einstein-anti-Maxwell (where the gauge field is imaginary) after this procedure.
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In the presence of a gauge field, a further () — Q) or some other transformation is
needed; this Q — (@) does change horizon functions. Additionally, if the cosmological
constant A is nonzero, it will flip sign. The constraint is now p2 — S0 p? = 1.

For D = 2n + 2 Kerr, there is —1 < pp < 1 in addition to p; > 1,2 =1,...,n.
Keep all the a;, i = 1,...,n turned on. Then the continuation [49] to S-Kerr is just

i — iy, t=1,...,n, I — —Guv-

The constraint is now pf — >0 u? = 1.

4.1.2 A New Kerr Instanton

For the range 0 < u < [[,a?, one can take the right diamond 0 < r < r; and
continue ¢, — 1¢,. This region is now a D-dimensional instanton, and one can
compactify according to

[L o}
Hi a? —H
to close off the spacetime at » = 0. Thus the coordinate r runs over [0, 7], the ¢,-

circle closes at » = 0 and the z-circle closes at » = r;. The topology of the instanton
is thus

n = GOp + 2T

S? x RP—3,

where S3 is parametrized by variables r, Z, and ¢,, and R”~? is parametrized by
variables p; and ¢; for i =1,...,n — 1. (Note that u, is a redundant variable.) This
is in contrast to the usual Kerr instanton which has topology

R? x SP72, (4.5)

where R? is parametrized by r and Z, and SP~2 is parametrized by cosines and
azimuthal angles p;, © = 1,...,n — 1, and ¢; including ¢,. What happens when
we make analytic continuation from the regular Kerr instanton, is that the ¢, circle
no longer closes at a special locus in the second factor of (4.5) but instead closes
at a special locus in the first factor of (4.5), giving us an S3, and the second factor
decompactifies to a hyperbolic sheet, or RP~3 (it is really half of a hyperboloid of
two sheets: p2 =1+ >, puf, pun, > 1).

We attempt to draw this instanton. Note that as p; — oo, the ¢, -circle gets very
large. Keeping in mind that R”~2 is like a hyperbolic sheet, we are led to Fig. 4.2.
For D =5, we have a card diagram, presented in Fig. 4.8.

The asymptotic region of the instanton is gotten by sending pu; — oco. We get
in this limit a fibering of a twisted S® x SP~* over p = />, u? where the radii of
the spheres are proportional to p. The details have not been finished in general D,
describing how this instanton mediates the decay of a spacetime.
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"‘
Figure 4.2: The new Kerr instanton. Here, 0 < r < 7y, and ¢,, generates the axial

symmetry of the diagram. The coordinate Z is not drawn but its circle vanishes at
the boundary r = 7. A particular R”~3 hyperbolic slice is drawn.

4.1.3 Extremal

For pn = [],;a? we have an extremal situation. Then the ordinary ¢z horizon
coincides with the vanishing ¢, direction (we have r = 0). Twist to 2, ¢; (i =
1,...,n—1) with ; = 1/a;, and both Z and ¢,, noncompact. We take a near-horizon

scaling limit: Put t — t/\, Z — Az, and send A — oco. We find a dS; in this small-¢
limit:

dt?
d 2 — 2 2t2d~2 t2d 2 .
’ ’“‘”(“ STy P y P

- 1 -
+3 a2 (dp? + pldg?) — M—Q(Z a;p2d;)’. (4.6)

where « is some constant that depends on the a;. So not only do we have the
nonsingular ¢ > 0 region, but we have an isomorphic ¢ < 0 copy. The full solution
is nonsingular. Since the Killing directions always have Riemannian signature, there
are no CTCs.

The appearance of dSs is in contrast to the even-dimensional extremal S-Kerr,
which has dSy [49]. The presence of these fibered dSs, dS3 geometries in the near-
horizon limit is interesting in light of certain no-go theorems [105].

4.1.4 Kerr bubbles

For completeness, we describe the types of Kerr bubbles available.
In odd dimensions D = 2n+ 1, there are y; and ¢;, ¢ = 1,...,n. By taking t — iz
and ¢; — i¢; for one particular j, and continuing all angular momenta a; — ia;
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except aj, we achieve the K; bubble. The non-stationary part of the spacetime is
gotten to by going through the Rindler horizon p; = 0 to imaginary p;.

In even dimensions D = 2n + 2, there is ug as well as y;, ¢;, 2 =1,...,n. We can
find a KC; bubble as above, but there is also the possibility of a Iy (or 7/2-) bubble
by taking pg — 7/2 4 iug. If rotations are turned on, this is different from the I;,
1=1,...,n.

4.2 5D case and card diagrams

The simplest nontrivial example of D odd is D = 5. Since this spacetime has
three commuting Killing vectors, it is of generalized Weyl type [16] and we can use
canonical coordinates to draw a card diagram [51]. We start with the black hole and
the old instanton, turn a black hole solution on its side, then move onto bubbles,
S-branes and the new instanton.

4.2.1 Two turned on

The solution, writing a; — a, as — b, 1 — @, P — P, 3 — cosb, ps — sin @, is

p(dt + acos? Odg + bsin? Odqp)?
72 4+ a2 sin® 0 + b2 cos? 0
+(r? + b%) sin” 0dyp* + (r® + a*sin® 0 + b* cos® 0)

r2dr?
dn*).
X<r4+r2(a2+62—u)—l—a262 * )

ds* = —dt* + + (r* 4+ a®) cos? 0dg?  (4.7)

Using the canonical coordinates of [16], or just by solving an appropriate change of
variables with a spherical prolate coordinate Ansatz, the Weyl coordinates are

1

p= 3 sin 20/14 + (a2 + b2 — p)r? + a2 (4.8)
1 2 K2

z = —(T2—u)00829.
2 2

The relevant horizon function is A = r* + (@ + b* — p)r? + a?b?, with roots 7} =
,ufaz7b2i\/(,u,fa27b2)274a2b2

5 . We first take the case where both angular momenta are
turned on, and assume a > b > 0. Treating a, b as fixed and viewing the discriminant
as a quadratic in y, there are three special values u = (a £ b)? (each extremal) and
p = 0 (the solution is flat). There are then four parameter ranges, u > (a + b)?
(ordinary), (a —b)* < p < (a + b)? (superextremal), 0 < pu < (a — b)? (anomalous),
and pu < 0 (negative mass). In the ordinary, anomalous, and negative mass ranges, A
has two distinct roots; these are all subextremal. There are rod horizons of half-length

a=3/(n—a®—b?)? — 4a2b2.
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Ct = %24’2 There is
« 2 2 2 2 .

just one (outer) ergosphere, where gy = 0, at r2,, = p — “F= 4+ 5% cos20. Since

both a,b are turned on, the metric is not singular at > = 0 and can be continued

to negative values of r%, as can be seen by setting 21 = r? [104]. Then there is a
: : _ 2 _ a?+b? a?—b2

singularity locus where g, = 00, at rg,, = —*5— + *5 cos 20.

In the 4d Kerr case the inner and outer ergospheres had identical shapes and were
right on top of each other, but on different horizontal cards [51]. For the 5d case the
ergosphere and the singularity occupy the same locus up to reflection § — 7/2 — 0
(see Fig. 4.3). This can be seen from the spherical prolate coordinates and the fact

that

The horizon function minimizes at the ‘central’ value of r2

12 o (0) =12 = Toier — Tone (/2 — 0).

ergo center center sing
Since the z direction points opposite directions on the two horizontal cards, this means
the loci actually do coincide in p, z coordinates. For the example shown, a > b > 0,
the ergosphere hugs closer to the horizon at § = w/2 and the singularity hugs closer
to the horizon at 6 = 0.

T W—wa A

Figure 4.3: The Myers-Perry black hole card diagram, with both turned on, a > b > 0;
and in the ordinary range p > (a + b)2. The labelling ¢, 1, t indicate boundaries
where circles vanish and a spinning horizon. Of course, there are four cards that meet
at each horizon and an infinite stack of cards, that are not drawn [51].

Beyond the singularity we have a negative-r? solution; however, it has signature
————— . This can be seen by checking the signature as r> — —oo which is clearly
————— , and using some facts about the determinant of the metric. From [82]
the 3 x 3 determinant of the t¢1 Killing directions is —A cos? §sin? 6, and so the full
5 x 5 determinant is —(r? + a?sin? § + b? cos #)? cos? fsin? #, when it is expressed in
terms of di? = r?dr?. The 5 x 5 determinant is negative except where it vanishes, at
the singularity. The metric signature cannot change unless the determinant passes
through zero.
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The extremal solution y = (a + b)? has its rod degenerate to a point. The two
horizons are now r3 = ab, and the ergosphere is 2, = 2ab + b 4 b 6520
which is nearest the horizon at § = /2, r? = 2ab + b*, and farthest at 6 = 0,
r? = 2ab+ a®. The ergosphere stays away from the horizon just like the 4d case. The

solution written explicitly is

(a + b)%(dt + acos? Od¢ + bsin® Odiy)?

ds* = —dt? >+ a? 20de? (4.9
° * 72 + a2 sin® @ + b2 cos? f (" + @) cos™0dg” (4.9)
2d 2
+(r? + b%) sin” 0dyp* + (r® + a*sin® 0 + b cos® 0) <ﬁ + d92).

To check near the horizon, we twist to ¢ = » — Qyt, =1 — Qyt, t = t where both
angular velocities are equal: Q, = €2, = —1/(a+b). After twisting, it is easy to take
a near-horizon limit: Put 72 = ab + ¢* and send ¢ — 0 holding edt fixed. Since the
di?, dide, and didi) are all O(e?), the latter two vanish in this limit and the resulting
spacetime is static. We are left with

ab + a® cos? 0 + b?sin? 0
(a + b)2(ab + a?sin® @ + b2 cos? )
(a + b)%(a cos® Od¢ + bsin® dip)?

ab + a2sin® @ + b2 cos? 6
4+ (ab + a®sin® 0 + b? cos® 0)(de? /* + db?).

ds? = —&Xdi?

+ (a + b)(acos® Bdg? + bsin® Odi)?)

Superextremal solutions (a—b)? < u < (a+b)? have a branch cut on the horizontal
card and are nakedly singular.

The extremal 1 = (a—b)? solution we will call ‘anomalous extremal.’” It is extremal
in that the rod horizon has degenerated into a point. However, unlike the = (a+b)?
extremal solution, on the main horizontal card, the ergosphere and singularity locus

are both present and enter into the point-horizon. Setting 72, = r2 . = —ab we get

ergo cent
cos20 = —(a—0b)/(a+b), the asymptotic angle where the ergogsphere threads through
the horizon. The singularity threads through at angle cos20 = (a —b)/(a + b). Both
the singularity and ergosphere emerge on the secondary horizontal card.

The anomalous (subextremal) region 0 < pu < (a — b)? has the ergosphere and
singularity each running from one horizontal card up the vertical card to the other
horizontal card. They do not intersect. The horizon rod is actually cut into two pieces
by the ergosphere; the rod which is immediately accessible to the outside-ergo region
is actually a twisted Z° boundary, whereas the rod part which is inside the ergosphere
is a 7°-horizon. The ergosphere locus on the vertical card, where the Killing directions
have signature + + +, is a singularity.

As p | 0 the ergosphere approaches (from below) the special null line that goes
from 7 =73, 0 = 0 to r = r2, § = 7/2. The singularity approaches this null line
from above. This null line is preferred over the other because a > b. At p = 0 we
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have a strange parametrization of flat space (it is not singular). The main horizontal
card has signature — + + 4+ + and has the 1-circle vanish along the rod as well as the
right semi-infinite ray. The vertical card is split into two triangles; the triangles and
the secondary horizontal card represent flat space of various signatures.

For the region p < 0, the ergosphere lies above the singularity and both are
purely on the vertical card. The ergosphere on the vertical card is again a singularity.
However, the 7> — oo universe is not nakedly singular. It does have CTCs. The
r? — —oo horizontal card has signature — — — — — and has r2 as boundary, where we
must twist ¢ and 1 to close an #° circle. Flipping the sign of the metric, we have a
++ 4+ + Kerr instanton. To see that this is the regular Kerr instanton, note that (i)
sending a — ia, b — ib, t — ix® is the same as (ii) sending r*> — —r?, y — —p, and
G — —9u in (4.7). In particular, performing either (i) or (ii), the horizon function
becomes A = r* — r?(a® 4+ b* + u) + a?b*. This has two roots for all ;1 > 0, and the
special values are y = —(a & b)? and of course y = 0. So the ranges for p for the
Kerr instanton map via y — —pu to the ranges for the black hole, and every p > 0
nonsingular instanton is the secondary horizontal card for a p < 0 black hole.

For a = b > 0, we do not have the anomalous region or the anomalous extremal
solution, but we have all other solutions. They have the additional feature that the
ergosphere and singularity loci are invariant under § — 7/2 — 6.

4.2.2 One turned on

The case of one angular momentum turned on and the other turned off is sub-
stantially different from the case of both turned on. For the black hole, we turn off
the 1-rotation. The solution is

p(dt + acos? 0dg)?

ds* = —dt* + T a2ainZ0 + (r* 4 a®) cos® fdg¢? (4.10)
+r?sin? 0dy* + (r* + a® sin® 0) (% + df?).
and
p = %sin 204/ + (a2 — p)r2 (4.11)
z = %cos 20(r* — a —2a2)' (4.12)

The horizon function is 74+ (a? — p)r?, with roots r* = p—a?, 0. Extremality is when
p = a?, and we call this solution ‘half-anomalous.” The p = 0 solution is flat and so
we have three parametric ranges, u > a? (ordinary), 0 < u < a? (anomalous), and
i < 0 (negative mass). Note that though the spherical prolate coordinates respect
r? = 0 as a ‘rod horizon/boundary,” the metric does not have g,, = co there and it is
not a horizon.
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Take tth ordinary p > a® case. The cal;d dia2gram is drawn in Fig. 4.4. The center
is ? = L5 the ergosphere is r* = p — % + % cos 20 which touches 1 = p — a® at
0 = 7/2, and the singularity is 72 = —% + % cos 20 which touches 12 at § = 0. The
r? — oo universe is well behaved through the ergosphere, through the 73 horizon,
but as we approach the r? rod, the 1-direction vanishes as timelike r? decreases to
zero. We had already compactified ¢ ~ 1) + 27 at § = 0, so this is a Milne orbifold.
Furthermore there is a curvature singularity at r?> = 0, # = 0 where the singular locus

on the top horizontal card meets the rod’s endpoint.

g
Z<7
sing
P K ~
¢ t U]
- a Z
ergo
p

Figure 4.4: The Myers-Perry black hole card diagram, with one turned on, a > b = 0;
and in the ordinary range p > a?. This time, the top of the square is not a spinning
t horizon, but is a special locus of -vanishing. It is a Milne orbifold. The curvature
singularity touches the upper-right corner.

The half-anomalous extremal case can be gotten by putting 4 = a? in (4.10). The
singularity on the secondary horizontal card goes into the extremal horizon 72 = 0
and stops at # = 0; it does not go into the primary horizontal card and so we call the
solution half-anomalous. There is no near-horizon limit because, even if one could
rescale the compact ¢, the whole §# = 0 ray would become singular. One might
wonder whether to call the extremal spacetime nakedly singular. The spacetime is
nonsingular for all 2 > 0, but the curvature invariant is unbounded on this open set
as can be seen by taking a path approaching r? = 0, # = 0. From the point of view of
string theory, o/-corrections to Einstein’s equations mean that the written solution is
not valid for all 2 > 0.

The anomalous case with b = 0 is similar to the anomalous case for a > b > 0.
When we set b = 0, the edge of the ergosphere and singularity that had been closest
to the rod endpoints get stuck on the rod endpoint. Note that the 7> = 0 horizon
is now ‘outer,” i.e. it has a larger value of 72, and r?> = 0 is the rod-horizon on
the principal horizontal card. So the w-circle vanishes there and it has a conical
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singularity because this rod boundary requires a different periodicity than the 6 = 0
ray. The ergosphere runs from the primary horizontal card into the vertical card
and terminates at # = 7/2 in the upper-left corner. The singularity runs from the
secondary horizontal card down into the vertical card and terminates at = 0 in the
lower-right corner.

The negative mass case has a singularity purely on the vertical card which touches
the outer horizon r*> = 0, # = 0, and an ergosphere purely on the vertical card.
The interior of the principal horizontal card is then nonsingular, but its rod horizon
is 72 = 0, where the v-circle vanishes with different periodicity than on the right
semi-infinite ray. So it has a conical singularity. The secondary horizontal card is
nonsingular and signature — — — — — , giving the known Kerr instanton, related to
the usual formulation by © — —pu.

4.2.3 Turning on its side

The operation known as a -flip [51] amounts to continuing all Killing directions
and also sending ¢,, — —g,,. This takes a vertical card and turns it on its side,
switching the timelike and spacelike (non-Killing) directions. Let us take the vertical
square card for the p > a? 5d black hole with one angular momentum on, and turn
it on its side, so that 72 = 0 is the left boundary and r?> = pu — a? is the right
boundary, the ¢-direction closes on the bottom and the ¢ direction closes at the top
(with Euclidean periodicity 27). Rename t — z°. The card diagram is in Fig. 4.5.

sing g

¢ ergo

Figure 4.5: The Myers-Perry black hole with a > b = 0, u > a? turned on its side.
The special locus of vanishing 1 is the left boundary, so v is compact, and the top
of the square is a Milne orbifold.

Then the horizontal card on its left semi-infinite ray has the special 72 = 0 closing
of the 1)-direction with periodicity 2wa/+/u — a2. On the right semi-infinite ray r* =
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p— a2, we twist to ¢ = ¢ — Qz® with Q = —a/p and then compactify 7° at fixed
o. We leave ¢ noncompact so the rod is a nonsingular horizon. At the top of the
vertical card we have a Milne orbifold again, and at the top-left we have a curvature
singularity.
Since 6 = 7/2 is the rod horizon, we continue § — 7/2 + i6 in (4.10) in addition
to the y-flip to get the horizontal card solution,

p(dz® — asinh? fdg)?
r2 + a2 cosh?

ds* = —(dz°)*+ — (r? + @®) sinh® fd¢? (4.13)

dr?

2

+r? cosh? 0dy* + (r* + a® cosh® ) ( s+ d92) (4.14)

There is a ¢-ergosphere where g4 = 0,
(r* + a*)(r* + a® cosh® ) = pa®sinh? 6,

which is a topological semi-infinite ray which touches the special ¥-boundary at
a’/p = tanh?® #, and bends around the horizon to go parallel to the positive z+axis.
Since v is compact, there does not seem to be a large-6 scaling limit.

4.2.4 Kerr bubbles

We can make bubble universes K, by analytically continuing an angle to time.
Without loss of generality, we consider a,b > 0 and continue

t — 2", Y — ), a — ia.
The solution, written on the horizontal card for real 0 < 6 < /2, is

d82 _ (dl‘5)2 _ ,u(dx5 +a COS2 6d¢ + bsin2 9d1/})2
B r2 — a2sin? 6 + b2 cos? 0
—(r* 4 b%) sin® 0dyp* + (r® — a®sin® § + b* cos? 0)

r2dr?
a6?).
% (7“4 +72(b? — a? — p) — a?b? *

+ (r* — a®) cos® fd¢?

The horizon function is then A = 7% + (b* — a? — p)r? — a®v?. If a,b > 0 then this
always has two roots ri = —%ﬁ + 1/(0? —a? — u) + 4a?b? and r3 > 0 and
r? < 0. Note that Al,z = —pa? and Al = v?(2(b* — a?) — p). We have the card
dlagram structure as shown in Fig. 4.6. We twist to ng ¢ — Qpa®, 1/1 Y — Qpa®,

7° = 2° and compactify z° on the rod and the adJacent vertical boundary.

The smgularlty on the horizontal card is r3,, = a?sin®60 — b cos2 . The most
positive value is r? = a® at § = 7/2, where A = —pa?, so for pp > 0, a*> < r2 and this
stays away from the spacetime. On the vertical card, 7%, = —a smh2 0 —b? cosh? § <
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Figure 4.6: The Myers-Perry bubble, where we took ¢ to be time. This diagram
applies for a,b > 0, or for a = 0 and the ordinary range pu > b?.

0 stays away from the spacetime. There is no nonsingular KX_ universe at negative r?
because rging runs on the vertical cards.

If we have a = 0 and b > 0, then the horizon function is identical to that of the
black hole, A = r?(r? +b? — ). We again have three ranges, ‘ordinary,” ‘anomalous,’
and ‘negative-mass’; they are separated by the half-anomalous extremal ;. = b and

the flat o = 0. The singularity is r% = —b? cos? § with most positive value 0. In the

Sin

ordinary case p > b?, this means 0 :grz <13 = pu—b? so the singularity stays away.
In the half-anomalous extremal case, the singularity touches r?> = 0, § = 7/2; but for
0 <m/2,r | 0 gives an infinite nonsingular throat. For either the anomalous case or
the negative-mass case, the singularity touches the point r* = 0, § = 7/2; this is the
left endpoint of the rod.

If instead b = 0 and a > 0, then A = r?(r* — a® — ). We go ahead and term
the three ranges ‘ordinary’ p > 0, ‘anomalous’ —a? < u < 0, and ‘negative-mass’

p < —a®. The singularity is %, = a?sin®6. The most positive value is a® at

sing
9 = /2. In the ordinary case p > 0, r3 = p+a® is larger than this so the singularity
stays away from the spacetime. For any of the cases of p < 0, the singularity is on

the horizontal card.

4.2.5 S-Kerr

Taking all the bubble solution’ vertical cards and turning them on their sides
with a ~-flip, we achieve the S-Kerr solutions. This demonstrates concretely the
global properties already discussed in Sec. 4.1. We are always now at noncompact
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hyperbolic 8; the solution is

dx® 4 a cosh? @d¢ — bsinh? Ody))?
r2 4+ a2sinh? @ + b2 cosh? @

+(r* 4 b?) sinh? Odrp? + (7“2 + a? sinh? # + b* cosh? 9)

ds* = (dz°)* — Al + (r* — a®) cosh? fd¢?

Qd 2
(- — +de?)
202 — a® — ) — a2b?
and the singularity is 72, = —a®sinh® 6§ — b® cosh® 6.

With both turned on, a,b > 0, we always have an ordinary subextremal card
diagram with two z° horizons and a ¢ boundary. The most positive value of rZ,, is
—b?. The horizon function A|_j = b?(2(b* — a?) + ) so if u > 2(a* — b?) then the
singularity lies purely on the secondary vertical quarter-plane cards. If p is smaller
than this, the singularities also stretch to the horizontal cards.

If a =0, we have
o p(dx® — bsinh® fdy))”
r2 4 b2 cosh? 4
dr?

2 2\ inh2 2 2 2 2
+(7” +b)51nh edw +(7’ + b* cosh 9)<—m

+ r% cosh? fd¢? (4.15)

ds* = (dx°)

+ o)
Now rZ . = —b*cosh? § with most positive value —b%. For the ordinary range p > b?
(Fig. 4.7), this is always less than 72 = 0. There is a twisted 2° horizon at r3 = p— b
and 72 = 0 is the special closing of the ¢-circle. The v-circle closes on the rod and
the adjacent vertical boundary. This is a nonsingular spacetime, ordinary 5d S-Kerr.!
There are CTCs on the horizontal card; to see this one can look at large 6.

The anomalous 0 < u < b? case (Fig. 4.8) has r2 = u — b? so the singularity still
stays away. This is a twisted ° boundary. The right ray of the horizontal card is
r3 = 0 making ¢ into the special Rindler/Milne horizon. The 1 circle closes on the
rod and the adjacent vertical boundary. This is a nonsingular spacetime, anomalous
5d S-Kerr. Since the 2% directions have signature +-, there are no CTCs.

There is an extremal case for p = b*:

o b’(dz® — bsinh® fdy)?
2 + b2 cosh? 6
+(r? + b%) sinh? fdy* + (r* + b? cosh® 9)( —dr?/r* 4 db?).

ds* = (da®) + 7% cosh? 0d¢?

Then the horizontal card collapses and we have an upper 72 > 0 triangular wedge
vertical card, with the ¢ ~ v 4 27 circle closing on the vertical boundary. We twist

"'We apologize for our conventions for which to turn off: Both the nonsingular S-Kerr’s we get
have @ = 0, so 2® is twisted with 1) which was the bubble time. For the black hole with one turned
off, in our presentation we arbitrarily chose b = 0. In our general odd-D S-brane treatment, we
turned off ¢,, which would be b = 0.
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> r ?2_-)
r°=0 rf=H—p?

Figure 4.7: The ordinary g > b* nonsingular S-brane solution.

Figure 4.8: The anomalous range 0 < g < b? nonsingular S-brane solution. This
horizontal card of this solution, upon ¢ — i¢, gives us the new instanton.

to ¢ = 1 — Qa® where Q = —1/b, and then take a near-horizon limit r* — 0 dilating
2°. The twist vanishes and we get a ‘little’ dS3 region:

ds® = cosh? 9<r2((d97;5)2 IV + dg?) — dr /7"2) + b2 sinh? 0d? + b2 cosh? 062,

At the vertex, the triangle wedge attaches to an identical r < 0 lower triangle wedge
in a dS3 fashion, just like the parabolic-parabolic card diagram representation of the
5d Witten bubble of [51]. We thus avoid any singularities at r* < 0.

We emphasize that while extremal S-Kerr with one turned on has a near-horizon
scaling limit, the black hole does not. This may be confusing because such solutions
all occur at the same ‘point’ in the card diagrams. The key issue is that extremality
means that the r2 < r? < ’ri region collapses, but contrary to the card picture,
0 < 6 < /2 does not collapse at the horizon. The Myers-Perry 5d singularity touches
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the horizon only at # = 7/2 and stays away from the extremal S-Kerr solution.

The a = 0, u < 0 case has a singularity on the horizontal card.

Now, we instead try b = 0. Then 72, = —a®sinh®# with most positive value 0.
For the > 0 or —a® < p < 0 cases, r2 = 0 and 3 = p + a® so the singularity
touches the rod’s left endpoint at > = 0, § = 0. Furthermore 1) closes on the rod but
closes also on the left ray 7% = 0, so there are conical singularities. The case pu < —a?
is singular on the horizontal card. It still has ¢ ~ ¢ + 27 from the rod, but puts

7”3_ = 0 on the right ray, where 1 closes to give a Rindler/Milne orbifold.

4.2.6 Instantons and Spacetime Decay

Let us take the horizontal cards of S-Kerr and try to make nonsingular instantons.
If both a, b are turned on, we have Q, # Q_ at r> = r2 and cannot in general close
twisted #°, Z° circles.

The new Kerr instanton can be easily gotten from the a = 0, 0 < p < b* ‘anoma-
lous’ nonsingular 5d S-Kerr. Simply take ¢ — i¢ in (4.15) which turns the right-ray
Rindler horizon into a boundary of the horizontal card.?

No new nonsingular instantons are gotten from setting b = 0.

It is now obvious that the horizontal card of the S-Kerr (with a = 0) coincides
with that of Sec. 4.2.3 up to Killing continuation. It was nontrivial to discover that
for D = 5, this new instanton is in fact identical to the ordinary Kerr instanton. This
comes from an interesting algebraic symmetry between radial and angular direction
for Kerrs with one angular momentum turned on. Using affine coordinates, we refer
to this as C' <= Z symmetry. This flips the spherical prolate diagram about its 45°
line. As such, this instanton mediates decay of a simpler, flat orbifold spacetime, as
described in [61]. The initial spacetime is ‘simpler’ in that the finite-sized ¢-rod is
deleted as a source from Fig. 4.8. This deleting of a finite source is typical; since the
semi-infinite sources are preserved, the leading asymptotics of solutions to the elliptic
Weyl-Papapetrou(-Harmark) equations are unchanged.

It is quite likely that the addition of a cosmological constant will lift the remarkable
C « Z symmetry, yielding a new S-brane and new instanton in D = 5.

Although card diagrams do not generalize to D > 6 Myers-Perry black holes, we
hope that they have made the structure of the D = 5 (which is eminently different
from D = 4) black hole, bubble, S-brane, and instantons clear. In the case, of the
anomalous S-brane mediating spacetime decay via a new instanton for D = 7,9,...,
the idea of deleting a finite-sized locus of source for elliptic equations holds. In
principle this describes the simpler spacetime which decays into the S-brane.

Details of the D = 7,9,... decay are forthcoming from the present author and
J. E. Wang.

20ne might note that one could also take b — ib, 2° — iz®, ¢ — i, and flip the sign of Guv; this
gives the same instanton.
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4.3 Global Structure of SM2-brane, etc.

We give here the complete global structure of the SM2-brane, which is analogous
to the 9d S-Kerr; the solution was given in [49]. This analysis also applies to SD3-
branes, analogous to the 7d S-Kerr, and Sp-branes with D — p odd, also found in
[49]. The SM5-brane is analogous to the even-dimensional 6d S-Kerr solution, and
has already been properly discussed.

The spinning M2-brane solution has a corresponding S-brane with the same in-
teresting global structure as the odd-dimensional black hole. It has the possibility
of extremality and a dS3 scaling limit (after twisting) at the extremal horizon. The
M2-brane solution is [106, 107, 49]

ds® = H3(—(1-2M/r°A)dt* + dE})

+H1/3< Adr?
H1H2H3H4 — 2M/T’6

4M cosh o 2M
e leuld¢ldt+ A leuzd@ )

where dFE2 = dx? +dx3, H; = 1 +12/r%, A = H1H2H3H4Z _ M2/H;, and H =
1 4 2M sinh® o /rA. Note that A should be compared to ILF in the Myers-Perry
notation, and is not the horizon function, which is the reciprocal of the coefficient of
dr®. The constraint is p + p3 + p3 + p = 1 and each g; > 0. The gauge field is

4
+r2ZHi<duz + p7de?)

1—H !
Ag = ———(—cosh adt + leyzdgb, ) Adxy A dxs.

sinh «
=1

To get the nice nonsingular structure we want to set Iy, =0; Hy =1. Asr | 0, we
have ds® D BI312pu3dr? /(131312 — 2M) + p2dp? and H ~ 1, much like the black hole
case.

The analytic continuation to S-brane is p; — iug, @ = 1,2,3, ¢y — iy, dE3 —
—dFj3 via x; — ix;, and then a sign flip ¢, — —g,,. The stress tensor Tﬁ;form D
(#)guw || Fy ||* has an odd number of metrics appearing and Az has an even number of
dx;, so we must continue @ — tav. We also rename ¢ — z. The S-brane geometry is

ds*> = H73((1—2M/rSA)dz* + dE3)
—|—H1/3< B Adr?
H1H2H3H4 — 2M/T6
2y + s

4Mcosa i L 2dbudt — 112d
TISHA Z it 49 6HA Z it d:) >

4
+12 Y Hy(dp? + pide?)
=3
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Here, A = HyHyHs(p3 — 30, pi2/H;) and H = 1 — 2M sin® a/rSA.

Note that A > 0 for 72 > 0. The horizon function is then (r? + 13)(r? + 12)(r® +
12)—2M, just like the 7d black hole case. There is a regular range, 2M > [313]%, where
we have a spinning horizon at 2 > 0 and then the ¢,-circle closes at 7 = 0. There is
an extremal case [31313 = 2M where we can twist and find a dS; scaling limit. There
is an anomalous range 0 < 2M < [3{3]2) where we first have the ¢,-horizon at 7? = (
and then pass to negative 2, and find a Z-boundary at r* = —rf > —[3.

As in Myers-Perry, define F' = p3 — Z?:l p?/H;, 1 = H HyHs. An H = 0 singu-
larity occurs when r®IIF = 2M sin? . In the ordinary case, the left side minimizes
at 72 = 0, g = 1 to 21312, So actually we need 2M sin® v < 121212 < 2M. In the
extremal case, we need sin® a < 1. In the anomalous case, we go to negative r2 where
H; < 0; we still have F > 1. But r®H,HyHz > 2M for r* > —r? so again we only
need sin?a < 1. All 2M < 0 solutions are singular; as r? decreases from oo, we hit
rSH,HyHs = 2M sin® a before rHy HyHy = 2M.

One can repeat the above analysis for the SD3-brane case and for Sp-branes where
D — pis odd.

4.4 More universes by turning cards on their sides

-

ring sing

Lo ring sing
ring sing

6=1t 6=0 6=m 6=0 6= 6=0

Figure 4.9: Subextremal, extremal, and superextremal spherical prolate diagrams for
the Kerr, Kerr bubbles K., and S-Kerr universes. The black hole (or superextremal
massive stationary object) is the middle column. The K. bubbles are the top and
bottom rows (in the superextremal case they are joined). The S-Kerr is either the right
or left column. These diagrams are drawn in affine coordinates, C' = + cosh 6, cos 6,

and Z = (r — M)/vVM? —a?, (r — M)/M,(r — M)/va?> — M?2.

We understand from [51] or the right-hand superextremal diagram in Fig. 4.9, how
a vertical half-plane card with spherical prolate coordinates attaches to a branched
half-plane horizontal card, we are in a position to take all the vertical half-plane cards
we know and turn them on their sides via 2y — 2y + ¢w. Some of the geometries
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have ugly features on their horizontal cards, but none are nakedly singular on vertical
cards. In the following examples all derived in some sense from Kerr geometry, we
borrow the term ‘ring singularity’ to refer to the obvious singularity > = 0, where
Coef (dz*)? blows up.

4.4.1 Kerr bubble on its side

The r > ry and r < r_ Kerr m/2-bubbles (gotten from z — i7 or § — 7/2 + i0)
are put on their sides to give the vertical cards of this universe. It is

Sdr?
A

A h?
ds? = = (dz* 4 acosh? dg)* + cosh” 0

4 2 2 2
> (—adz® + (r* — a®)do)” —

+ 2do?,

where ¥ = r2 4+ a?sinh?60, A = r2 — 2M R — a®. There is an ergosphere which is
a topological circle on the horizontal card, and a ring singularity which is a point
r = 0, 8 = 0 on the ergosphere. But keep in mind here that ¢ can be taken to be
noncompact, so the ring singularity is really a 1-brane singularity.

4.4.2 S-Kerr superextremal on its side

We write the solution for real § meaning on the vertical card; one runs 6 from 0 to
im on the horizontal card and then from im to im + 0o on the other (identical) vertical
card. We have

Sdt2 A inh” 0
ds? = S + 5 (da’ + asinh? 0dg)” + S0 7 (adat — (2 + a?)dp)? — $d6?,

where A =t — 2Mt + a® and ¥ = t* + a® cosh? §. This geometry has an ergosphere
(which is fine—and keep in mind that ¢ is noncompact) and the ring singularity
also appears at t = 0, # = iw/2. In principle we already know this geometry; it is

the superextremal Kerr bubble KL; it occupies the entire superextremal diagram in
Fig. 4.9.

4.5 Taub-NUT, bubbles, and S-branes
The Brill-charged Taub-NUT spacetime ([108, 109, 110, 111, 1]) with metric

r? 4 [?
r2 —2Mr — 12 + Q?

2 oMr— 24 02
ds? = —_ 2:_[2 e (dt + 2l cos 0dg)* +
r

+(r? + 1*)(d6? + sin® 0d¢?)

dr?

has a card diagram like Kerr except ergospheres sit atop the horizons and there is
no ring singularity. The Taub-NUT space is problematic because there are too many
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types of boundaries. On the semi-infinite ray # = 0, one must twist to zz =t+2l¢to

close the ¢-circle, but on the semi-infinite ray § = m, one must twist to £ = ¢ — 2l¢ to
close the ¢-circle. This means ¢ ~ ¢ + 47l must be compactified and the horizon rod
then is a Rindler orbifold.

If Q% > m? + [? then the Brill-charged Taub-NUT is superextremal; there is no
horizon hence no Rindler orbifold; and no singularity. The time is still compactified
however.

Besides the Q = 0 Taub-NUT instanton [112], which exists only for the special
value of [ = £iM, and the special Taub-bolt instanton of Page [113], there are a
number of other solutions that are easily obtainable and not problematic because
they have fewer types of Euclidean boundaries.

First, there is the Taub-NUT 7 /2-bubble, obtained by ¢ — iz*, § — 7/2 + i6 (or
z — i1 in Weyl coordinates), @) — Q. It is important here, that [ is left alone; the
solution is always subextremal. This gives a vertical half-plane card without special
null lines, like the hyperbolic Witten bubble [51] or dihole wave of [25, 51]. One can
also get a negative-r bubble or equivalently a negative-mass bubble. ‘Nutty bubbles’
have been described by Mann et al. [85, 87].

The Taub-NUT 7 /2-bubbles of positive and negative mass can be turned on their
sides, like the solutions of the previous section. They are connected by a branched
horizontal card. The solution is

r? — 2Mr — I — Q°

ds® = g (dx* — 20 sinh 0dp)? + (r* + I*) cosh? Od¢*
—dr?
2 2 2
i+ )<r2—2Mr—l2—Q2 0 >

There are no singularities anywhere. There are also no boundaries, so both % and ¢
are left noncompact, and hence the horizontal card has no CTCs. A fuller investiga-
tion to the physical description or application of this nonsingular /2-S-Taub-NUT
spacetime and its orbifolds might merit its own publication.

If we did not continue ) — () then we have an E-bubble which can be superex-
tremal if Q% > [? + M?. The superextremal Taub-NUT E-bubble has a card diagram
structure like superextremal E-RN; a vertical full-plane card with two intersecting
special null lines [51]. Furthermore it is nonsingular. It can be turned on its side to
yield a non-time-symmetric universe of the same card diagram structure.

On the other hand, we can take Taub-NUT and just do the Killing rotation
t —ixt, ¢ — i¢, and Q — iQ. Then § = 0, 7 are both horizons with ¢ noncompact.
The Taub-NUT rod closes the z* circle (no twisting is needed) and this gives us a
nonsingular NUT bubble universe. It turns out this is the same as the solution gotten
from § — 7/2 + if. To prove this, instead of constructing the map explicitly, one
need only analyze the representation of the Killing SO(3) — SO(2, 1) algebra, which
makes the spacetime homogeneous on an r = constant slice. Here is the proof: the
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Killing algebra of Taub-NUT is generated by

& o= singb89+cosgz5(cot88¢+ 21 8t>

sin 6

£ = 0S¢0y — sin gb(cot 00, + 21 8t>

sin 6
§& = 0O
& = 20,
where [§;,&;] = €&, and & is invariant. Under the continuation to get the 7/2-

bubble, we continue all but &3 by i; whereas to get the double Killing bubble, we
continue all but & by i. The point ¢t = 0, ¢ = 0, § = 7/2 is shared between the
two continuations, and at that point the contravariant metric at constant r takes the
form
(ds3)™" = (f/4P)El + (r* + ) (F& £ &),

where 4 is for the two choices for continuation. Since this point can generate the
entire r = constant hypersurface by Lie dragging, the 3-metrics are isometric. Since
they are fibered in an identical way over the r-coordinate, the 4-metric Taub-NUT
bubbles are isometric. This is an extension of the equivalence of hyperbolic and
elliptic card diagrams for Schwarzschild or RN bubbles.

The double Killing bubble’s vertical card can be turned on its side. We must then
twist to close at # = 0, and the ensuing horizontal card for this S-Taub-NUT always
has CTCs on its horizontal card. However, it must be locally isometric to the 7/2
S-Taub-NUT. It turns out the present S-Taub-NUT is a nontrivial quotient of the
7/2 S-Taub-NUT, gotten by 27-parametric identifications along orbits of

21
K = cos ¢p0y — sin ¢(tanh 00, + m@) + 210,a.

This vector field partitions R? into separate regions of two types, and the double
Killing S-Taub-NUT comes from one of these region. There may be another (possibly
well-behaved) quotient from the other region.

Their also then exist parabolic representations for the NUT-bubble and S-Taub-
NUT; the card structure will look just like for the Schwarzschild/RN case.

It can be noted that M = 0 for Taub-NUT gives an additional Z, isometry for
some extension of the full spacetime. Then, upon turning the vertical card on its
side, we achieve Taub-NUT on its side. The principal horizontal card has the same
closure data on the left and right rays and hence has good properties. Including a
cosmological constant and gauge field, Taub-NUT on its side thus has apart from an
overall scale parameter, two additional parameters, [ and (). Also, we can reconsider
adding M back into the game: The asymmetry provided by the mass parameter could
be fixed by a generalized Harrison transformation, where the electric potential @ /r
at r = ry,r9 could be used to fix the conical singularities. This may be forthcoming
from the author.



Chapter 5

S-branes and (Anti-)Bubbles in
(A)dS Space

We describe the construction of new locally asymptotically (A)dS geometries with
relevance for the AdS/CFT and dS/CFT correspondences. Our approach is to obtain
new solutions by analytically continuing black hole solutions. A basic consideration
of the method of continuation indicates that these solutions come in three classes:
S-branes, bubbles and anti-bubbles. A generalization to spinning or twisted solu-
tions can yield spacetimes with complicated horizon structures. Interestingly enough,
several of these spacetimes are nonsingular.

This chapter is based on the e-print hep-th/0502162 with Dumitru Astefanesei.

5.1 Introduction

Time-dependent backgrounds in string theory provide an interesting arena for
exploring intrinsically dynamical issues such as black hole evaporation, cosmological
evolution or the possible formation and resolution of singularities. An essential in-
gredient in understanding quantum gravity in asymptotically Anti-de Sitter (AdS)
spacetimes is the Maldacena conjecture (or the AdS/Conformal Field Theory (CFT)
correspondence) [30, 33, 31].! In this framework, a large black hole in AdS is de-
scribed as a thermal state of the dual conformal field theory. A remarkable property
of the AdS/CFT correspondence is that it works even far from the conformal regime
[114, 115]. This result is consistent with the interpretation of the radial coordinate
of AdS space as a energy scale of the dual CFT. In other words, timelike D-branes
lead to a spacelike holography.

Inspired by the fact that the microphysical statistical origin of cosmological hori-
zon entropy may well be associated with a holographic dual theory, some authors

Tt is referred to as a duality in the sense that the supergravity (closed string) description of D-
branes and the field theory (open string) description are different formulations of the same physics.

94
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conjectured a de Sitter/CFT correspondence [116, 117, 118] — the bulk time transla-
tion is dual to the boundary scale transformation and so the time is holographically
reconstructed. Using the analogy with D-branes, one expects new (spacelike) objects
S-branes to be at the heart of the dS/CFT correspondence. An S-brane [29] is a
topological defect for which time is a transverse dimension and so it exists only for
a moment (or brief period) of time. In the same way that (for A = 0) p-branes are
stationary solutions of supergravity and string theory, S-branes are time-dependent
backgrounds of the theory.

In this paper we find three families of exact solutions: S-branes, bubble-like solu-
tions and the newly coined anti-bubble solutions. Roughly speaking, in D dimensions,
these solutions involved a (D — 2)-dimensional hyperbolic space, de Sitter, or anti-de
Sitter component, respectively. The solutions are classified according to the technique
of their construction. (See also [119].)

The first is the S-brane type [120, 25, 47, 48, 49, 50, 51, 67, 122, 121, 123] describing
a shell of radiation coming in from infinity and creating an unstable brane which
subsequently decays.? Nonspinning S-branes solutions involve Hp_; which can be
quotiented, to yield topological (A)dS black holes — these have been known (see e.g.
[99, 125] and references therein). For example, a spherical black hole with A > 0,
under analytic continuation and sign flip of metric, gives a black solution with A < 0
and a hyperbolic component. We may refer to this as a (topological) black hole in
AdS, or as the corresponding S-brane solution to a black hole in dS. On the other
hand, a BHAdS with A < 0 yields a cosmologically singular S-BHAdS with A > 0;
this solution has an exterior region [88] which is time-dependent, like de Sitter space
itself.*> The S-BH(A)dS solutions have timelike singularities and the Penrose diagrams
are related to a m/2-rotation of the corresponding black hole Penrose diagrams [99].
However, in the Reissner-Nordstrom case, the inmost horizon is moved to negative r
and the r > 0 S-brane Penrose diagram has fewer regions. The solutions we describe
here are analogs of the S-branes found previously (with A = 0) and that justifies the
terminology.

With A = 0, a black hole is stationary and an S-brane is time-dependent, but a
A # 0 will dominate at large r and its sign determines the signature of the Killing
vector. Black holes and S-branes in AdS are both stationary, and black holes and
S-branes in dS are both time-dependent.

The second family are of bubble type [36, 37, 38, 39, 40, 124]. A bubble is a
(D — 3)-sphere which exists only for r > rp,. An 2P Killing circle vanishes at
7 = Tmin. These bubbles are time-dependent since the (D — 3)-sphere expands in a

2The solutions in [25] do not have horizons and are better described as gravitational wave solu-
tions, describing the creation and decay of a fluxbrane. They were constructed by analytic continu-
ation keeping in mind Sen’s rolling tachyon solution for unstable D-branes [27].

3We emphasize a solution being time-dependent if it does not have an exterior/asymptotic region
with a timelike Killing vector. Thus the Schwarzschild black hole is not time-dependent even though
there is no global timelike Killing vector, and de Sitter space is time-dependent.
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de Sitter fashion. We also define ‘double bubbles’ as solutions where an expanding
(D — 3)-sphere exists over an interval ry;, < 7 < ., and the xP-circle closes at both
endpoints (hence two ‘bubbles of nothing’).

The third family is the newly coined anti-bubbles, which must be distinguished
from expanding bubbles. Here, we have AdSp_5 whose spatial section is not a sphere
but a noncompact ‘anti-bubble.” This spatial section exists only for » > ry;,. We
also find double anti-bubbles where the AdSp_5 runs over rpin < r < rmax-

When rotation parameters are added (hence looking at Kerr-(A)dS solutions),
there is an additional complication to the solution where a quantity W (or Ay) can
vanish. This can generate additional horizons changing the time-dependent or sta-
tionary nature of various regions in the solution. Also, sometimes this will close the
spacetime creating boundary conditions with inconsistent Killing compactifications.

In some cases involving rotation, there are two types of S-branes. For example,
the D = 4 Kerr solution admits a usual S-brane [47] and also a m/2-S-brane [67].
This is analogous to the double Killing Kerr bubble (with horizons and CTCs) as
opposed to the § — 7/2 + if Kerr bubble (without horizons or CTCs). The idea is
that in even dimensions, one direction cosine is not associated with a rotation and
hence it is different; in any dimension, direction cosines with rotations turned off are
different from those with rotations turned on. We will be careful to emphasize when
such different solutions are available.

The rest of the paper is organized as follows: In Sec. 5.2 we look at the simple case
of RN(A)dS black holes in D = 4 and find the bubbles, S-branes and anti-bubbles (as
well as interior double bubbles and anti-bubbles) using card diagram* techniques and
using 76 diagrams. Then in Sec. 5.3 we look at the general-D RN(A)dS solutions,
finding bubbles, S-branes and anti-bubbles. We see how the conformal boundary
geometry of the S-brane fits nicely with that for the bubble to give the global boundary
of AdS.

In Sec. 5.4 we move to the Kerr solutions. These solutions are sometimes plagued
by what we call W = 0 coordinate singularities [82] (also called Ay = 0 singularities
[39]). We find that these are just spinning Killing horizons (or twisted closures of
spatial Killing circles), which complicate the structure of the spacetime. We allow
general rotation parameters and try to avoid W = 0 singularities. Then, in Sec. 5.5,
we only turn one rotation on and allow W = 0 singularities. Here we find extremely
interesting global structures for bubble geometries with W = 0 singularities and
illustrate them by drawing skeleton diagrams® for the @ coordinate.

4Card diagrams are applicable for D = 4 or 5 black hole spacetimes which have the requisite 2
or 3 Killing fields. Card diagrams and the technique of the v-flip were used to understand S-branes
in [51].

5A skeleton diagram is a 1-dimensional analog of a card diagram; it shows only the coordinate
which determines where the horizons are. The skeleton diagram for the Schwarzschild black hole is
a +, where the horizontal legs are where r is spacelike and the vertical legs where r is timelike. Four
legs meet at a nonextremal horizon.
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We conclude in Sec. 5.6 by outlining the role of these solutions in the holographic
AdS/CFT correspondence (or the putative dS/CFT correspondence). Lastly we give
a short appendix on generalized card diagrams as they apply to pure (A)dSp space
for D =4,5.

We will not look at genus-zero planar or toroidal black holes or their generaliza-
tions — see [99, 125] and references contained therein.

5.2 4d Examples

Before writing down the general analytic continuation, we look at the simple case
of four dimensions. Here (as well as in five dimensions) black holes in (A)dS are of
Weyl type: in D dimensions they have D — 2 commuting Killing fields. Methods of
obtaining bubbles, anti-bubbles and S-branes are then very evident (see Figs. 5.1-
5.4). Unlike previous approaches to analytic continuation to S-branes (involving
continuations like r — it), we will find all the spacetimes by only performing simple
analytic continuations involving real sections of hyperboloids, by making sign flips in
the metric and sometimes continuing to imaginary charge.

We begin discussing the variety of solutions we will obtain starting with the 4d
Reissner-Nordstrom-(A)dS black hole solution. From the 4d RNdS black hole with
A > 0 we can obtain an S-brane with A < 0 as well as a static ‘anti-bubble’ (which
is to an expanding bubble what AdSs is to dSy) with A < 0. From the 4d RNAdS
black hole A < 0 we can obtain a bubble solution with A < 0 as well as an S-brane
with A > 0.

5.2.1 De Sitter
The RNdS, solution with A = (D —1)/1*, A > 0 is

ds> = —f(r)(dz)? +dr?*/f(r) + r2dQ3, (5.1)
A = Qda*/r

where f(r) = 1 —2M/r + Q?/r* — r?/I>. We take the horizon function to be the
quartic polynomial 72f(r) = —r*/I1®> + r?> — 2Mr + @Q?, which can have up to four
roots® r; < 0 < ry < r3 < ry. The root 74 is the cosmological horizon of de Sitter,
and r3 and ry are the outer and inner black hole horizons, which can coincide in an
‘extremal’ case. The singularity is at 7 = 0, and r < 0 with its single (cosmological)
horizon 7, represents a negative-mass black hole in dS;. We can draw the two non-
Killing directions r, § on the diagram in Fig. 5.1. The RNdS, black hole solution
occupies the middle row, to the right of the singularity. On this and also Fig. 5.2

6See [99] for a discussion of roots and parameters. However, the triple root ro = r3 = 74 is
singular.
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we anticipate several solutions that can be obtained from RNdS, by trivial analytic

continuation.

NA<O
Double anti-bubble

NA<O
Anti-bubble

6=0

A>0
RNdS,4

=1t

Figure 5.1: Those regions of the extended RNdS, spacetime, where we do not send
@ — iQ). We have the black hole with A > 0, the anti-bubble with A < 0, and
the ro < r < r3 double anti-bubble with A < 0. This 0 diagram is similar to the
C-metric diagrams in [71].

N>0
Double bubble

% A<o
H v H \% H S-RNdS,
8=0
\% H % \ H \
6=1
H v, % H v, H

1 2 3

Figure 5.2: Those regions of the extended RNdS, spacetime, where we send ) — Q).
We have the r3 < r < r; double bubble with A > 0, and the S-RNdS, with A < 0.

We can explicitly give dQ2 = df? + sin® 0d¢?. An alternative way to write it (to
make contact with later formulas) is to set —1 < pg = cosf < 1 and 0 < py =sinf <
1; we have the constraint pg + p? = 1.

This 4d spacetime has two commuting Killing vectors (say, the z* and ¢ directions)
and so is of generalized Weyl type. The regions in Fig. 5.1 are labelled H(orizontal)
and V(ertical) in analogy with Weyl card diagrams [51] (and see Appendix A to this
paper). Horizontal cards are stationary regions of spacetimes, whereas vertical cards
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are time-dependent and have D — 2 commuting spatial Killing fields. There are two
basic operations one can perform on cards. On a horizontal card, one can do a double
Killing continuation to pick a new time direction. On vertical cards, one can perform
an operation known as a y-flip which exchanges the timelike and spacelike character of
the two non-Killing directions. The ~-flip can be realized by changing the sign of the
metric g,, — —¢,, and analytically continuing all Killing directions; here z* — iz*
and ¢ — i¢. Along with the sign flip of the metric, from the Einstein-Maxwell-A
equation we must flip the sign of A. Our conventions are to leave the parameter [
alone but now interpret the solution to solve a A < 0 equation. The sign flip of the
metric also forces the gauge field strength to become imaginary; but we also continue
the 1-form dz* — idx*, so the net result is a real field strength. In summary, the
~-flip takes a signature (D — 1,1) vertical card with a real field strength and given A
and turns it ‘on its side’ to yield a signature (D — 1, 1) vertical card with a real field
strength and opposite sign of A.

It is clear then that we can take the vertical-card r > r4 region and turn the card
on its side with a ~-flip. We now occupy the right column of Fig. 5.1. The solution is

a8 = —f(r)(da")? - % 26 42 sin? 0
— = f(r)(da*)? — Jfl<—7f) +12d6% — 12 sinh® 0d¢”.

We decompactify ¢ to get horizons at ¢ = 0,7; the 0 < # < 7 variable can be
continued 0 — i, § — 7w + i6 to give a patched representation of AdS;. We must
compactify zt ~ x4 +47|f'(r4)| ™! to avoid a conical singularity at 7 = r,. In summary,
we have AdS, and an z%-circle fibered over r > r,. At r = r4 the x%-circle closes in a
fashion very similar to well-known expanding bubble solutions giving a minimum-size
AdS,. In analogy with ‘bubble’ terminology we shall call this solution [38] the RNdS,
anti-bubble, with A < 0.

Note that we could also perform the ~-flip on 7 < r < r3. Now the space-
time has two boundaries r = ry, 73 where the x*-circle closes. We must then match
f'(r2) + f'(r3) = 0 to eliminate conical singularities at both ends; then of the pa-
rameters M, () and [, one is dependent — one can also be eliminated by a global
conformal transformation, leaving one true dimensionless shape parameter. This so-
lution occupies the center column in Fig. 5.1, and we call it the ry < r < r3 RNdS,
double anti-bubble. Since it does not have an r — oo asymptotic region, it is not
useful for holography.

The region r3 < r < ry is a stationary region (horizontal card) and we may
perform a double Killing continuation z* — iz* ¢ — i¢ to get a new solution.
We must also continue () — @) to make the field strength real. Then the horizon
function r?f(r) =1 —2M/r — Q?/r? + r?/I? is changed and its roots are generically
ry < rp <0 < rg <rg. We now reference solutions to Fig. 5.2; note that positive-
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and negative-mass solutions are qualitatively similar. The solution is

ds* = f(r)(dz*)* + Jfl(—i + r?(d6? — sin® 0 d¢”) (5.2)
= f(r)(da")® + ;{:) +72(—db? + sinh?  d¢p?).

We see now a patched dS,; and the z* circle vanishes at r = 73,74, S0 we require
f'(r3) + f'(r4) = 0 and have the r3 < r < ry RNdS, double bubble. It solves A > 0
Einstein-Maxwell-A. Since it does not have an r — oo asymptotic region, it is not
useful for holography.

We can however take the vertical card at hyperbolic € on the RNdS, double bubble
and perform a y-flip. The resulting solution has A < 0 and we call it S-RNdS,, since
it is the S-brane gotten from the RNdS,; geometry. It occupies the top row of Fig. 5.2,
to the right of the singularity. It is
ar” + 72(d#* 4 sinh? 0d¢?)
f(r) '
We see H,, azimuthally parametrized. Note that just as the RNdS, black hole is not
stationary, its S-brane is not time-dependent.

The RNdS4, RNdS4 anti-bubble and S-RNdS, all have r — oo asymptotic regions
where they are locally asymptotic to (A)dSy, depending on their sign of A.

We summarize the five spacetimes gotten from RNdS, in the following table.

ds* = f(r)(dz*)* —

Hyp. iQ? ¢ cpct z* cpct Asym.
S?2  No  Yes No dS,
AdS, No No Yes AdS,

RNdS, doub. bub. dS; Yes No  Double
RNdS, doub. anti-bub. AdS, No No  Double
S-RNdS, — H, Yes Yes No AdSy

Here we give the name, the sign of the cosmological constant, the real section of
the complex 2-hyperboloid, whether () has been continued with @) — (), whether ¢
is compact, whether z¢ is compact, whether 2 has two boundaries instead of just
one since this is a nontrivial condition and whether the manifold asymptotes locally
to (A)dSs. The isometry group of the solution is the isometry of the hyperbolic
space (SO(3), SO(2,1) or SO(1,2)) times R (if 2* is noncompact) or U(1) (if z* is
compact).

Name
RNdS,
RNdS, anti-bub.

I+ I + =

5.2.2 Anti-de Sitter
To achieve RNAdS,, take [ — il in (5.1). We have

ds> = —f(r)(dz)? +dr?/f(r) + r2dQ3, (5.3)
A = Qdx*/r
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where f(r) =1—2M/r +Q?%/r?>+r?/I2. Then r?f(r) can have at most two roots; we
assume ) # 0 and M is large enough so that this happens. Then 0 < r; < 7y — see
Fig 5.3. Looking ahead, when we will have to send ) — i), we will have r; < 0 < ry
— see Fig. 5.4.

A>0
Double anti-bubble

\% % H \%
6=0

NA<O
H v H RNAdS

0=m

r
1 r2

Figure 5.3: Those regions of the extended RNAdS, spacetime, where we do not send

A<0
Bubble

N>0
\ H \ S-RNAdS,

6=0

1 2

Figure 5.4: Those regions of the extended RNAdS, spacetime, where we send ) — Q).

Since our discovery of solutions parallels the RNdS, case, we will be brief. We
can take r > ry which is static, and double Killing rotate 24 — iz?*, ¢ — i), Q — Q.
We then get the RNAdS, bubble solution with a patched description of dS, fibered
over r > 1y, and an z*-circle which closes at 7 = ry to give the bubble. This is the
right column of Fig. 5.4.

We can perform a ~-flip on the upper (vertical card) region of the RNAdS, bubble
to achieve S-RNAdS,, which is the top row of Fig. 5.4, to the right of the singularity.
It has azimuthally parametrized Hy and A < 0.
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Finally we can perform a ~-flip on r; < r < ry of the RNAdS, black hole to
achieve a double anti-bubble. It has AdS,, A > 0, and appears as the central column
in Fig. 5.3.

The RNAdS, black hole, bubble and S-brane asymptote to (A)dSs locally.

Again we summarize

Name A Hyp. iQ? ¢ cmpct z* cmpet Asym.
RNAdS, - 8?2 No Yes No AdS,
RNAdS, bub. — dSy;  Yes No Yes AdSy
RNAdS, doub. anti-bub. + AdS; No No Double
S-RNAdS, + H; Yes Yes No dS4

The fact that all the listed solutions are different from each other is evident just
by looking at where they stand in relation to their neighbors and the singularity, in
Figs. 5.1-5.4. One can also use the symmetry groups to prove they are different.

These 4d solutions with SO(3) symmetry can also yield bubbles, anti-bubbles or
S-branes based on the continuation § — 7/2 + i instead of § — if. These solutions
are not different from those solutions just described. However, even-dimensional Kerr
solutions admit @ — /2416 solutions which are different from those gotten by taking
the analog of # — 6. This distinction has been emphasized in [51, 67| and we will
revisit it below.

The card-diagram method of the ~-flip also applies in 5d. Card diagrams of
(A)dS, and (A)dSs spacetime can be drawn; in fact due to their extra symmetries,
many different card diagram representations exist. These diagrams are also useful for
visualizing the local-(A)dSs, AdS; asymptotia of the black hole, bubble, anti-bubble,
and S-brane solutions. For some details and diagrams, see Appendix A to this paper.

However, card diagram methods do not apply in D > 6. Nonetheless, analogs of
these RN solutions do exist in all D > 4, and we give them in the next section.

5.3 General Reissner-Nordstrom-(A)dSp Solutions

We construct the S-branes for the general RN(A)dSp solution, along with the
bubbles and anti-bubbles. We will not have Figs. 5.1-5.4 to guide us, but again we
will only do simple analytic continuations involving cos(h)-type quantities, metric
sign flips, and @ — Q). We will not focus on double (anti-)bubble solutions, only
on those solutions with r — oo asymptotia. We also give the r — oo conformal
boundary geometry (CBG) gotten from the given coordinates.
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5.3.1 De Sitter
The RNdSp black hole is

2 D\2 dr? 2 102
ds* = —f(r)(dz") +m+r dQy,_, (5.4)

B D -2 Qdz*
A = \l2(D—=3) +»

where f(r) =1 —2M/rP=3 4 Q?/r*P=3 —¢2/I? A = (D — 1)/I*> > 0. The horizon
function is the polynomial 2?3 f(r). For D even, an appropriate parameter sub-
domain gives roots r; < 0 < ry < r3 < ry; — we consider the solution for » > 0. For
D odd we let 7? be the independent variable and allow it to go negative. Then for
the appropriate parameter subdomain the horizon function has roots which we call
0 <73 <r?<r?and we consider 72 > 0 (there is no r? root in our notation).

Take D = 2n + 2 even first; we can write

A = dpg + dpf + - + dpl + pdgt + -+ prde, (5.5)

where —1 < pip <l and 0 <pu; <14i=1,...,n. The constraint is g+ > ;' , p7 = 1.
To get the S-brane, we send p; — ip;, 2 =1,...,n,send g,, — —gu, and Q — Q).
The line element (5.5) becomes, including the sign flip, the (still spacelike)

dHY, 5 = —dpg + dpgi + -+ + dpy + pi1deT + - - - + pdey, (5.6)

with constraint p§ — 1, 47 = 1. The solution is

ds® — f(r)(de)z—;(T)

B D -2 Qdz*
A= \'2(D-3) r

which has A < 0. As r — oo, the solution is asymptotically locally AdSp. The
conformal boundary geometry (CBG) in these coordinates is ds? = —(dzP)?/1* +
dHQD_27 which is Riime X Hp_o. There is no invariant relating the size of these two
components. The horizon function now has roots r; < ry < 0 < r3 < r4 like the
S-RNdS, case. Our r — oo gets the asymptotia gotten from one Rindler wedge of
the r4 horizon — there is another Rindler wedge ignored in this procedure.

Taking the S-brane, we can take z” — iz”, continue back Q — —iQ, so r; <
0 <1y <1y <ry We compactify 2P ~ 2P + 4x|f'(r4)|~! to form an anti-bubble at
r = ry, and then take for example ¢; — 2¢;. Thus

+ erH2D_2,

ds* = —f(r)(dazP)? — dr”

2 2
) + r*dAdST_,.
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Here,
dAdS),_y = —dpg + dpf + - - + dpy, — p7de] + p3des + - - + pido,

is a patched description; we can go through the p; Rindler horizon to p; — ip;. This
anti-bubble solution was discovered in planar coordinates in [126] where they were
termed fluxbranes. In planar coordinates the solutions resemble branes but keeping
in mind their global structure, we choose not to think of them as branes, the term
anti-bubble (for the AdSp_» factor) being more appropriate.

The CBG is ds? oc (dzP)?/1?> + dAdS},_,, which is S'xAdSp_,. Since a2 is
compact, there is a dimensionless invariant, the ratio of the circumference of the
xP-circle to the unit-sized AdSp_s.

In odd dimension D = 2n + 1 the idea is the same, but the cosines are set up

differently. We have p;, i =1,...,n, with 0 < p; <1 and
A _y = dpi + -+ + dyp + p{d¢T + - + iy dey,. (5.7)

To get the S-brane, take p; — ip; 1 =1,...,n—1, g, — —Gu, @ — 1Q, flip the sign
of A, and ¢,, — i¢,. Then we have

dH},_y = dpi + -+ dpp_y — dps, + pidey + -+ + pnddy, (5.8)

and the geometry is

B dr?

f(r)

The horizon function now has roots r3 < 0 < r2 < r2.
To go to the anti-bubble, send ” — iz”, return Q — —iQ, and send say ¢; —

1¢1. Then

ds* = f(r)(dz)? +r2dH3, .

dAdST o = dpii + -+ dpl_y — dpl — pidet + p3des + - - + pndon.

This is in the ‘real’ y; patch where the constraint reads p? — p? —p3 — -+ — p2_| =
1, but going through the Rindler horizon at p; = 0, we send p; — ip; and get
w2+t —p3 — -+ —p2_, = 1. The anti-bubble is

ds* = — f(r)(dzP)? - %

The CBG is ds? o« (dz”)?/1> + dAdS},_,, which is S'xAdSp_,. Since z” was
compactified at the largest r-root, there is a dimensionless invariant, the circumference
of the zP-circle over the unit AdS size.

+r2dAdS?,_,.
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5.3.2 Anti-de Sitter

From the RNAdSp solution we will make a A < 0 bubble and A > 0 S-brane.
The solution is like for RNdSp except f(r) = 1 —2M/rP=3 4+ Q?/r?P=3) 172 /12 with
roots 0 < ry < ro.

For D = 2n + 2, dQ% , is as in (5.5). To get the bubble, send z? — iz?,
compactify at r9, and send say ¢ — i¢;. The solution is

2 py2  dr’ 2
ds* = f(’l“)(dl‘ ) + m + ddsD—Z? (59)

where
ddSh_y = dpg + dpii + -+ + dpip, — pideT + p3dds + - + pnder.

Of course we can go through the Rindler horizon at p; = 0 and send gy — 4pq. This
bubble was described in [38, 39].

The CBG is ds? o< (dzP)?/1? 4+ ddS},_, which is S'xdSp_,. There is a dimension-
less invariant, the ratio of the sizes of these factors.

To get the S-brane from the black hole, send p; — iy, i =1,...,n, gy — —Guv»
@ — 1Q, and flip the sign of A. Now r; < 0 < ry; the solution is

dr?

ds* = f(r)(dxz")* — m

+r2dHY_,, (5.10)
where
dH?,_y = —dp2 + dp? + - - + dp® + p2dg? + -+ dpi2.

The constraint is pf — >, u2 = 1. Since the singularity is just protected by a
cosmological horizon 1o, this solution is nakedly singular, like the S-Schwarzschild
geometry of pure Einstein theory.
The CBG is ds? o (dzP)?/I1? + dHZ _,, which is R x Hp_,. This is a Euclidean
geometry, so this would serve to investigate the putative dS/CFT correspondence.
In odd dimensions D = 2n + 1, we have dQ% , given by (5.7). The bubble is
gotten by sending P — ix”, Q — iQ and say ¢; — i¢;. The solution is (5.9), where

ddST_y = dpf + - - + dp — pide; + ppdds + - - + pldoy,.

The odd-dimensional S-brane on the other hand is gotten from u; — iu; @ =
L,...,n—1, g — —Yuv, ¢n — i¢,. The solution is (5.10) with the hyperbolic space
given by (5.8).
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5.3.3 Extremal S-RNdS)
Take S-RNdASp,

ds* = f(r)(dz”)* —dr?*/f(r) + r*dH3,_, (5.11)

D —2 QdzP
A = 1/2<D_3) —. (5.12)

Here, f(r) = 1 —2M/rP=3 — Q?/r?P=3) —¢2/I2. For D even we normally assume
four roots r; < 7y < 0 < r3 < ry. For D odd we have rZ < 0 < r2 < r2. In either
case, one can find an extremal solution where r3 = r4. Here, ‘extremal’ refers just to
degenerate horizons; this solution is the analog of the r3 = r4 maximal RNdSp black
hole solution where the outer black hole horizon coincides with the cosmological (de
Sitter) horizon. Then f(r) ~ —A(r — ry)?, and letting € = 7 — ry, we can take a
scaling limit where € — 0, ex” fixed, which is

d 2
ds? = —A(dzP)? + Aig 4 r2dHE

and F o TL%?_Qd:cD A de. This solution is AdSs x Hp 5. Thus extremal S-RNdS,

interpolates4 between AdSs x Hp_o at the extremal horizon to local AdSp at r = oo
and the latter can have a CBG of Hp_3 X Rijme.

Solutions which interpolate between spacetimes with similar Hp_ o factors were
found in [127]. For de Sitter bounces, see [121].

5.3.4 Embedding the Conformal Boundary Geometry of Bub-
bles and S-branes

In [39] the conformal boundary of the RNAdSp bubble was given as a subset of
Stne X SP72 which is the global conformal boundary of AdSp — we have identified
the time-circle in the canonical fashion. There, it was found that in the 2”@ strip,
where 0 < # < 7 is the polar angle for the SP~2 of RNAdSp, the bubble asymptotes
to the open set |0 — m/2| < |#P — 7/2|; each bubble asymptotes to one diamond in
Fig. 5.5. We now complete the picture by showing that S-RNdSp asymptotes to the
remainder triangles.

First, take D = 2n + 1 odd. The embedding of dSp into RP'! is
X" = V1—r2sinha?

Xt = T[4 COS P1
X? = rusing;

XP = +v1-—r2coshz?.
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=]

Figure 5.5: Penrose diagram for the global conformal boundary of AdSp. The top
and bottom z” = +7 are identified. Each diamond is filled in by the asymptotia of
an RNAdSp bubble, and S-RNdSp, gives triangles. Four triangles and two diamonds

neatly fit together so their closure gives the whole global boundary.

Here, a prime denotes a timelike coordinate. We want to send p; — ip; for i =
1,...,n—1, ¢, — i¢y, and flip the sign of g,,. Then we get, upon also taking r > 1,

Vr2 — 1sinh 2”
Ty COS @y

T Sin ¢y

7 by, cosh ¢y,
7y, Sinh ¢y,

+v/r2 — 1cosh 2.

Then X'P=2 > 0 and we let X"°/X'P=2 = T. The global-time angle tan=' 7T runs
from —7/2 to /2. Then tan |0 — 7/2| = |XP|/{/(XP1)2 + (X1)2 4 (X2)2 +--- =
(cosh 2%) /(pi,, cosh ¢,) > |T|, so we have precisely two triangles from this description.

For D = 2n + 2 even, we have

X/O
Xl

V1 —r2sinh 2
Ty COS ¢y

T Sin ¢y

o

+v1 — r2cosh 2.
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Sending p; — i, for ¢ = 1,...,n and flipping the sign of g,,, and going to r > 1, we
get

X" = Vr2—1sinha?”

X' = rugcosdy

X% = 741 Sin ¢q

X/D—l — TMO
XP = +Vr2 —1coshz”.

We have X'P~1 > 0 so set X"/X'P~1 = (sinha?)/py = T, and —c0 < T < oo0.
Furthermore, | XP|//(X1)2 + (X2)2 + - -+ = (cosha?) /o > |T|.

5.4 Kerr-(A)dSp And Related Solutions which avoid
W =0

We now find S-branes, bubbles and anti-bubbles from the Kerr-(A)dS solutions.
In the notation of [82], for bubbles, S-branes and anti-bubbles, a quantity W defined
below has the possibility to zero along certain hypersurfaces which are r-independent
— they depend on the cosines and hyperbolic functions.

In this section, we will look for solutions which avoid W = 0, which are clearly
good solutions, with an expected global structure. The W = 0 coordinate singularity
for the Kerr-AdS, bubble was a source of some confusion in [39]; actually it is a
regular spinning horizon with a constant angular velocity. Following their approach,
in Sec. 5.5 we will look at the case of general D with one angular momentum turned
on, and explore solutions where we allow W = 0. In this case there are two nontrivial
Killing directions and one nontrivial cosine, like the D = 4 case. A treatment of
general D, general a; will not be given here.

5.4.1 Black Holes, S-branes: Odd dimensions

In odd dimensions D = 2n + 1, there are n angular momentum parameters a;,
1 = 1,...,n for a spinning black hole, and we want to turn off just one of them,
a, = 0. This will force a horizon/polar-origin/orbifold for both the black hole and
S-brane at r? = 0.
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For A =1/1? for A = (D — 1)\ > 0, the Kerr-dS solution of [82] is

Udr? 2M - a;pidg;\ 2
d2 - _ 1—\ 2 d D\2 <d D (! Z)
’ W= A de™) 4 g + (3 ;HAaf

n T’2+ 2
+> az (dp? + 12 (de; — NaydzP)?)
1

L (i (r2 + a?)uiduiy (5.13)

—
+
>

Rl vl

W(l— \r?) 1+ Aa?

where V = 7%(1—)\7”2>H?:1(T2+CL ), W=>" 1+/\ e and U =) " | T2+a2 H] l(r +
a?). The constraint is 7", 7 = 1 and for reference, F' = U/V =

The thermodynamics of these black holes are discussed in [128].

To get the S-brane, continue y; — tu; fori =1,...,n—1, ¢, — i¢, and perform
a flip g, — —g,,.- The change in the sign of the metric necessitates a change in the
cosmological constant — our notation will be A < 0 but 1/1*> = X\ > 0. So the S-Kerr-
dSp solves Einstein’s equations with A < 0. The constraint is now p2 — S~ p? = 1.
The solution is

1— )\7'2 Zl 1 r2+a

Udr* 2M a;p2deg
d2 — 1_/\2 dDQ_ . dD 1 %
° W= M) de™)” = 57 U( Zl+/\a>

r? +a?

A 2 o (7 + a?)pidpi 2
} = 5 Dy
W(l— Ar?) (T HnGH Z 1+ Aa?

i=1

(5.14)

Now, W and U are given in terms of yu; by

and
_ 2 12 2 2
U= (-2 5m) [1e% )

Note that all elements in the solution that are functions of r, a; and A\ have not
changed and so it is clear that the S-brane has the same parameter regions and
ensuing horizon structure as the black hole. However, the description of each r-
interval as stationary or time-dependent is flipped. In particular, horizons are still
located at V' — 2M = 0. The determinant of the (n + 1) x (n + 1) Killing submetric
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has det g, = r*(V —2M)W [[}
case [82].
Consider the horizon function

-1 T A T which has opposite sign from the black hole

n—1

PV =2 =01 w) [T07 + a?) - 20).

i=1

The geometry depends only on r2, which we take to be the independent variable, and
allow to be negative. In the ord1nary parameter range 2M > Hl i a? = A? then for
sufficiently small A, there are two positive roots 0 < r} < r3. For r* > r3, the solution
is stationary as we expect for asymptotically AdSp space. With r? < r? < r2 the
solution is time-dependent and for r? = r2, there is an extremal horizon with an AdS,
scaling limit. For 0 < r? < r? the solution is stationary. At r? = 0, the solution is
not singular and the ¢,-circle closes with periodicity”

On ~ G + 21/ A2/ (A2 — 2M).

Since r2 > 0, there is no U = 0 singularity.

For the anomalous parameter range 0 < 2M < A? (described for A = 0 in [67]
(Chapter 4) and in great detail for D = 5 black holes and S-branes), any A > 0 is
allowed and we have a root 72 = 13 > 0, a ¢,, Milne horizon at 7? = 0 and another root
at r? = —r? < 0. Without loss of generality we assume 0 < a; < ay < --- < a,_1 and
so —a? < —r} < 0. The spacetime closes at > = —r? — the twisting and periodicity
can be gotten by continuing the angular momentum and surface gravity of [82]. In
particular, just put Tporizon — 1 (Fhorizon — —@71 also gives the right answer) and
k — £ik. We have

. (1 4 \a? - 1 1
Q’:—az( + al), m:rl(l—i—/\rf)z + —.

2 2 2 2

For n =2, A = 0, this reduces to Q = a/2M, k = Y221 which matches [67]. Since
—r? <a? <a3 <---, there is no U = 0 singularity.

The region —7? < r? < 0 for an anomalous range S-Kerr-dS gives upon ¢, — i¢,
the new S-Kerr instanton of [67] (or Chapter 4). The extremal case 2M = A? is
nonsingular at r* = r? = 0 and has a dSs scaling limit as described in Chapter 4.

For the Kerr-dS black hole, A > 0 and W = Z 17 +;\ 2 never zeroes. For A a
little negative, namely — min;(a; %) < A < 0, W is still p081tlve This is the Kerr-AdS
black hole which avoids W = 0. For A < —min;(a; ?), there is a mixture of positive
and negative terms and we will find a W = 0 coordlnate singularity (moreover, a

priori the spacetime has the wrong signature).

"The global structure here for D odd is just like the A\ = 0 case, which was first discovered by
Jones and Wang (Chapter 4).



Chapter 5: S-branes and (Anti-)Bubbles in (A)dS Space 111

2
For S-Kerr-dS, we have W = p2 — Z?;ll i fi(ﬁ' For A > 0, from the constraint

pz — Z;:ll u? = 1, this never zeroes; we have a good S-Kerr-dS with A < 0. However,
any A < 0 will give us a W = 0 coordinate singularity.

5.4.2 Black holes and S-branes: Even dimensions

The even-dimensional case D = 2n -+ 2 is quite different from the odd-dimensional
case. Here we have n rotation parameters and we want to leave them all on, so
the black hole has an equatorial ‘ring’ singularity and the S-brane is nonsingular at
r = 0.8 The black hole solution is

Udr? 2M "L a;p2de;\2
d2 - _ 1_)\2 dD2 dD 11 7
° W= A ) de™) + oo + U’( §;1+Aﬁ)
& 2—|—a r? +a Dr2
+du +§: 2:1+A2mel,MM$)

A 2 r? + af)padpi \
+W0—Aﬂxrmwm+zg 1+ \a? >

The constraint is ug + > i, u? = 1, where —1 < o < 1 has no rotation parameter
and 0 < p; < 1fore =1,...,n has rotation parameter ¢;. We have V = %(1 —

>‘7"2) Hi:1(T2 + a; ) W = No + Zz 1 1+>\a27 U=1 (N% + Zi:l ﬁw) Hz’:1(7’2 + a?),
and for reference F = U/V = -2 (2 + 1, i 7).

For the even-dimensional case, the solution depends properly on r, not r2. It has
the symmetry » — —r, M — —M. For the right range of parameters, the horizon
function 7V (r) — 2Mr has four roots, 1, < 0 < ry < r3 < ry; an extremal black hole

occurs for 9 = r3. Since all a; are turned on, at r = 0 there is only a U = 0 SP~3
‘ring’ singularity at pp = 0 — hence we can go to negative 7.

The continuation to S-brane is p; — p;, ¢ = 1,...,n, and g,, — —¢gu. We then
have A with sign opposite to A.
Udr? a;pde
d2:W1—)\2 dD2_ <dD 11 7,>
i (=A™ = o ~ +§:1+Aa

a; D
—dﬂo+21—|— 2 +Zl—|—/\2“z de; — ha;dz”)”

Z

A e+ a; zd i\ 2
(TQMOCZNO—Z( )Mg M)
i=1

CW(L = Ar?) 1+ \a2

8The global structure of this solution for the A = 0 case was worked out by Lii and Vazquez-Poritz
[49]. The D =4 S-Kerr-dS with A < 0 is in [99].
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The quantity V is as for the black hole, W = pg — 3", 1fiaz and U = (u% —

Sy %) [T, (r*+a?). The constraint is now ud — > 1, u? = 1 and this implies
1o > 1. Since there is no ring singularity, we may follow r — —oo and so the solution
is nonsingular.

S-Kerr-dS with A > 0 avoids W = 0. S-Kerr-AdS with A < 0 hits a W = 0
coordinate singularity:.

The ro = r3 extremal case of the S-brane is nonsingular at the extremal horizon

and has a dS, scaling limit [49]. The r3 = r4 extremal case has an AdS, scaling limit.

5.4.3 Asymptotics
Take say the odd D case. Sending r — oo for the black hole, we get a CBG

ds® o AW(dzP)?+> (dp? + p2(do; — AaidzP)?)

— 1+ Aa?
Ly g2
w 1+ Aa?

=1

This appears to be spinning, but the spinning is a pure coordinate effect. If we let
b = ¢; + Ma;zP, we get

n

1

1
ds? o< AW (daP) +Zl+)\ Q(duz + 2dd;) =777 (

=1 =1

pidpi )2
1+ Aa?

This is the same CBG as we get from the M = 0 case, which was identically (A)dSp.
In fact these are just the ‘spheroidal coordinates’ of [82]. This boundary is conformal
t0 Rgpace X SP72 for A > 0 and Ryjpme x SP72 for A < 0.

The S-brane we know has no W = 0 locus for A > 0 (A < 0) and has CBG

ds? o< AW (dzP Z

du, + pi(dg; — Aa;dx”)?)

n—1

pidp; )2.

1
_d2 2d2 - ndn_
i+ padel + — (pndp T

4%

Again sending r — oo has dropped out the M parameter, so this CBG should be
conformal to Rijme X Hp_s.

5.4.4 The pp-negative S-Kerr-dS for even dimensions

There is another S-brane obtainable from Kerr-dSp for D even. This is the analog
of the 4d ‘Kerr m/2-bubble on its side’ of Chapter 4. A sphere in even D is written
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as
A0, o = dpg + dpf + - + dpl + 7ddT + -+ pndo?,

where the constraint is g + >, uZ = 1. Send po — ipo and p; — ip; i =2,...,n
¢1 — 1¢1, and flip the sign of the metric. We then get
dHY,_y = dpg — dpi + -+ + dpiy + pi1doT + - - + prdey,

where —p2+p2 — p3 —- - —p2 = 1. In the Kerr case along with ¢; — i¢; we must do
ay; — ia;. We call the resulting solution the p;-positive S-Kerr-dS, or a pg-negative
S-Kerr-dS. This emphasizes that in the Hp_5 constraint, it is not po but rather a p;
that has a rotation angle, that has the plus sign. The full Kerr S-brane is

ds* = W — M%) (dzP)? -

Udr? 2M <de N arp3de,

V—QM_ U 1— X2

n 2 2

aiﬂid¢z‘)2 2 1 r’ +a

d _

+;1+)\a2 Tt 2{ 1+Zl+)\a2 i
o b — Aayds” PO 26— Aada)?
+1_)\2M1(¢1 adz Zl+)\2ﬂz ¢ — Aa;dz”)

A r? — " 7?2 4+ a? 2
S d d T4 )
W(l—Ar2)<  Hodpio + A?‘“ i ZX_;HAC@“ a

Here, W = —p2 + % — i 1+,\ T For 0 < X\ < 1/a?, this does not zero, and we
never go to imaginary p,. There is no U =0 singularity at » = a;, because pu; > 1.
Horizons are given by m < ry < 0 < r3 < ry. This solution is also important for
constructing even-dimensional anti-bubbles.

5.4.5 Spinning A bubble or anti-bubble solutions

It was noticed in [39] that Kerr-AdS bubbles are ‘problematic’ from the W = 0
singularity, even in the simple 4d case. We now check that W = 0 always occurs in
Kerr-AdS bubbles and find ways to avoid W = 0 for anti-bubbles constructed from
Kerr-dS.

Bubbles with large-r asymptotia can only come from A < 0 (A < 0) black holes,
where the large-r region is stationary. Then in even D = 2n + 2,

2 - 1
W = pug + L
Ho —~ 1+ Aa?
One way to get a bubble is to send g — ipg, ¥ — ix”, and a; — ia; i = 1,...,n.

This is the analog of the Kerr 7/2-bubble in 4d gotten from # — 7/2 + i, which has
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no Killing horizons or CTCs. Then

W__“0+21_/\2’ where —,ug—l—Zu?:l.
i=1

We see that the terms with + signs in 1 are divided to make them smaller; the —pu3
can dominate and make W = 0.

Another type of bubble? is gotten by picking one angle from ¢, . . ., ¢,, for example
¢. Take 2P — izP, ¢y — i¢y, a; — ia; i = 2,...,n. This is the analog of the K
bubble of [51, 67] in 4d obtained from double Killing continuation, which has Killing
horizons and CTCs. In our present case, we can continue past pu; = 0 to pu1 — iy
and get

n

2 n
_ 2 :U’l Hi 2 2 2 _
W=y — 1+l + ;:2 1- 2 a2’ where Mo — p1+ E_ i = 1.

Even if a; = 0, if some a; is turned on, W = 0 still occurs.

For odd D, there is no pg. One can check that in any case except no angular
momentum, W = 0 occurs.!”

For anti-bubbles, the situation is better — we find Kerr-dSp anti-bubbles that
avoid W =0 for all D > 4, and an extra one in D = 4. The idea is to make the term
with the + coefficient in W to have a denominator smaller than the denominator of
all — terms. Recall that to take an anti-bubble we start with Kerr-dSp with A > 0.
Take D even and first go to the usual S-brane with A < 0:

n 'LLZ n
W =g — 2 1+)\2, where M(Q)—ZM%:L
Then pick say the angle ¢;. Send 2P — iz?, ¢1 — idy, a; — ia;, i = 2,...,n. We
have
W=pu2— —2 — — where pg—z,ule.

1+ = 1-Aaf’

This hits W = 0 unless we turn off a; (with ¢ = 2,...,n), but in that case going
through the horizon to p; — iy,

W = g +

1+)\ ZM@

9These two types of bubbles are not the same as the two solutions presented at the beginning of
[86], in the context of one angular momentum on. There, the first is a bubble with W = 0, and the
second is an anti-bubble with W = 0; its dSp_5 is part of an AdSp_4 which is part of a perturbed
AdSp_s. The construction of an anti-bubble by continuing from hyperbolic space suggests those
authors also considered the S-brane.

10Tn [39], (31)-(34) should be corrected to have A, =1 — Ol‘—; sinh? 7 — %2 cosh? 7,50 W ox Ay =0
also occurs.
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This still hits zero unless D = 4 where ¢ = 2,...,n don’t exist. So the D = 4
case with a turned on, works. This solution can be easily obtained by card diagram
methods using Fig. 5.1 by performing a y-flip on the » > r4, 0 < # < 7 region (and
extending to 6 — 6 or 6 — 7 +i0).

In even D, we can also find a whole family of anti-bubbles from pp-negative S-
branes. Picking p; to have the + sign, this S-brane has

2 n 2 n
Ky M 2 2 2
W = — 2 - here — — .= 1.
Mo—i_l—)\a% 7:21_’_)\@227 w Mo + Ky ;Nz
Then double Killing 2P — iz?, ¢ — i¢y1, a; — ia; (with i = 2,...,n), we have
2 n 2 n
M1 H 2 2 2
W = —ug — here — — 2 — 1.
For0 <1—Xa?<1—Xa?i=2,...,n, weavoid W = 0. Note that we never get to

a p1 = 0 ¢1-horizon, so the above distribution of hyperbolic pieces is global. So for
general even D we have this Kerr-dS anti-bubble. We stress that the D = 4 solution
of this is different from the one gotten from the ordinary S-brane. This present D = 4
solution can be obtained from the black hole by § — 7/2 + 0, performing a ~-flip
to make the non-Killing directions ++, and then ¢ — i¢, a — ia. To avoid the
U = 0 ‘ring’ singularity, taking a; > ay > -+, we want the largest horizon root (the
anti-bubble) to occur at r4 > as. This can always be arranged for large enough 1.
In odd dimension D = 2n + 1, the S-brane with a,, turned back on has

,u2 n—1 /,LQ n—1
_ n i 2 2
STow i Ve o=l
noi=1 i i=1
To get a good anti-bubble, we send z” — iz?, ¢,, — iy, a; — ia; i =1,...,n— 1,
hence )
W= M w

1—Xa} “~1-Aa}

For 0 < 1— a2 < 1— Aa?, we avoid W = 0. Again, we never reach a p, = 0 ¢,-
horizon so the above characterization is global. The D = 5 solution can be obtained
by ~y-flipping the » > r4, 0 < 6 < 7/2 of the black hole, going to p; — iy where
g1 = sin 6, then continuing ¢; — i¢;, a; — ia; (with ¢ = 1,2). Taking a2 > a? > - -,
the largest root (anti-bubble) is at r? > a? for large [, so the solution is nonsingular.

5.5 Kerr-(A)dSp: One a; on, and allow W =0

When a W = 0 coordinate singularity occurs, an extra horizon-like locus will be
present. We will just look at the case of one angular momentum on, where the Kerr-
(A)dSp solution simplifies considerably [81]. For bubbles, we find that in D > 4 there
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is one family of nonsingular solutions and in D = 4 there is an additional solution.
For S-Kerr-AdS, D > 4 we find one family. There are no other generically nonsingular
solutions.

5.5.1 Bubbles

Let’s examine bubbles; take D = 4 first. The Kerr-AdS, black hole solution [134]
1s

dr? do? A asin® 0 2
d 2 — 277 —_— d 4_ —d
< = A E T @) T F T )
.9 1 — 2 /712 2 2 2
| sin 0(1 — (a®/1?) cos” 0) (adz® — rta d¢)2, (5.15)

2 1—a?/12

where A = (r? + a?)(1 4+ r2/1%) — 2Mr, p* =1* + a*cos®* 6, and 0 < 6 < 7.
The 7/2-bubble is gotten from § — /2 + i, a — ia, z* — ixz*. Then

dr? df? A acosh’f o
i = (U 2 (dpt = 20
i a A 11— (a2/l2)sinh29> * p2( v 1—1—(12/12 ?)
cosh? 0(1 — (a?/I?) sinh? 0) r?
d d 1
+ = (a x+1+2/l2 )", (5.16)

where A = (r? —a?)(1+7?/1?) — 2Mr has roots r; < 0 < ry, and p =72 4 a®sinh* 6.
At r = r5, A = 0 and the differential displacement adz* + 1 Sl /12 d¢ = 0 is null. So

let ¢ = ¢ — Qat, 74 = 2%, Q = —a(1 + a?/12)/(r2 ) Then d¢ = 0 is null so the
vector (9/01* ) is null at » = ro. We can Compactlfy 1t ~ 744 3 for some periodicity
to make r = ro the origin of polar coordinates. We must leave gb noncompact to get a
horizon at W = 0 (and make no reference to the previous r*¢ Killing coordinates).!*
The metric is now

dr2 do? A acosh’f , ~ 2
ds? = p?(=— — — 4——al Qdi*
S ( A 1—(a2/l2)sinh26>+p2( x 2/12< ¢ +Qde )>
cosh?0(1 — (a?/1%) sinh? @ - r? —
( (p2/ ) )(adx4 —2/l2(d¢ + Qdz )) . (5.17)

Setting sinh 6y = [/|al, this metric has expected bubble properties for —fy < 6 < 6.
Following [39], set sinh§ = [/a — €?; then for small real ¢, we have

dr?  2la(l® +r?) 12

A _ ~ 4\ 2
ds* =~ (r? lQ)K T i de* + o (dz* — —(dgb + Qdi*))
2(* 4+ a?) r? — a?
s —_— Q : 1
i +r2)( adz* e (d + Qdzt))* (5.18)

HThe differentials dz?*, d¢ are still well defined and it is still acceptable to write the metric in
terms of them.
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At e =0, di* — %(dq@ + Qdz*) = 0 is null. That is a regular spinning horizon — the
angular velocity of a regular spinning horizon must be constant [88, 82]. On this side
of the horizon the Killing submetric has signature ++ and on the other side it will

have +—. We let 2¢ = #* — B¢, ¢ = ¢, where U = Q7 (1 — a?/I?). Then di* = 0 is

null, or the vector (9/0¢)z gives us the Milne trajectories.

e - GO plee)
0

(9 90 [@¢)
0

o) -0 ee)

Figure 5.6: A skeleton diagram for the 6 coordinate of the Kerr-AdS, m/2-bubble.
Horizontal segments are where 6 is spacelike and vertical where 6 is timelike. Here,
four-segment intersections are spinning #*¢ horizons.

This horizon is then just like a Kerr horizon except the role of the two Killing
metric squares is reversed and 7 is replaced by 6. If we repress the Killing directions
and r > ry, we arrive at a spacetime skeleton diagram for just the 6 coordinate — see
Fig. 5.6. The vertical legs have 6 timelike and the horizontal legs have 6 spacelike.
The spacetime is periodic in time; each dSp_o-type region gives way to horizons
beyond which are stationary regions. The r — oo limit gives a CBG which can be
represented by the same skeleton diagram — the metric is

db?

1— ‘;—22sinh29‘

cosh? 6
1+ a?/12

acosh? 6

ey (do + Qdz?)

L, .. ~ 4N 2
ds* o 7 (dz* — (do + Qdz*))” +
On the other hand, we can form the double Killing bubble from (5.15). We take

z* — iz* and ¢ — i¢ and then the metric becomes

d_7“2 d6? A asin® 6

ds2 = p? e Sg4 v 2
’ p(A+1—C;—2200820)+p2(x 1—a?/l? 2
sin? §(1 — (a?/1?) cos? 0) . rPtad 2

where A = (r* + a®)(1 +72/1%) — 2Mr, p* = 1% 4 a”® cos 6.

We must twist like before: ¢ = ¢ — Qa*, 7* = 2%, Q = a(l — a®/1?)/(r3 + a?),
7t ~ 74 + 8 for some 3, ¢ noncompact. So replace dp — d¢ + Qdz* and dz* — dit
in (5.19).
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Take the case (> > a%. Then 0 < 0 < 7 is fine, and we can continue 6§ — i6:

dr? do? A asinh? @

d 2 — 2= = = d~4 e
§ p<A 1—6;—22cosh20)+02(x+1_a2/l2
sinh®#(1 — (a?/1%) cosh® ) (adi* r? —a?

P 1— a?/P2

(d + Qdi*))?

(dé + Qdi"))*,  (5.20)

where A = (r2 +a?)(1 4+ 12/1?) — 2Mr, p* = r? + a® cosh® §. With cosh® 0y = I /a?,
6 = 0y is a horizon as before, and beyond it we have stationary regions of 8 > 6.
The skeleton diagram is shown in Fig. 5.7(a). It is canonical to identify every other
0 < 0 < 7 horizontal segment. If on the other hand a? > [?, then with cos? 6 = [*/a?,
we imagine expanding out from 6 = 7/2, we have 6, occurring before §# = 0,7 and
the skeleton diagram is shown in Fig. 5.7(b). These solutions are nonsingular.

- 0 m T+6, 8, %0, .
-ico | —ioco T+io0 “ico| ico T+ioo
— TT TU
9, 0
N 0 n +8, ~ 6 48, _
ico 00 T+i00 -ico| ioo T+ioo
) Tt 0 |
- 0 T mn-6 €] 0

Figure 5.7: Skeleton diagram for the 6 coordinate of the Kerr-AdS, double Killing
bubble. Horizontal segments are where 6 is spacelike and vertical where 6 is timelike.
(a) The figure on the left is the case where [? > a*. (b) The figure on the right is the
case where [? < a?.

For D > 5, we must add 72 cos? 0dQ% _, to the metric as in (5.15) [81] and also
set A = (r2 +a®)(1+ r?/1?) — 2M /rP=5. The motivation is

dQ2_, = df* + sin? d¢?* + cos? dQ%_,,

where 0 < @ < 7/2. To get the 7/2-bubble, send § — /2 + i, 2P — izl a — ia,
and dQ3,_, — —dH3%,_,. Our motivating element becomes

ddS?,_, = —df* + cosh? fd¢? + sinh® 0dH?, .

D D

Alternatively, we could have done d©Q%,_, — ddS7, ,, ” — iz” a — ia, where our

motivating element becomes

ddS?, , = df* + sin? §d¢* + cos® 0ddS?, _,. (5.21)
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These two representations of dSp_o are connected together where either hyperbolic
space or dSp_4 degenerates to the null cone. A skeleton diagram is drawn in Fig. 5.8.
This spacetime, however, is problematic — we have a compactification at § = 0 of
(5.21) and another compactification condition at r = 7. Generically, both Killing
directions are compact, and the horizon at § = 7/2 4 if, is thus an orbifold.

2+ T/2+i00
et o —

/2

/200 - /2—i00
/2 -i 60

Figure 5.8: A skeleton diagram for the 6 coordinate of the Kerr-AdSp 7/2-bubble
for D > 5, one turned on. At # = 0, a Killing direction closes the spacetime. (For
D > 6, there is only one dSp_4 leg and we have a - junction instead of + junction
at 0 =m/2.) At 0 = /2, dSp_4 becomes null and becomes Hp_4. At 6 = 7/2 £ 16,
there is a spinning horizon orbifold — this solution is singular.

The double-Killing bubble, gotten from z” — ix?, ¢ — i¢, is nonsingular. There
are two cases, [ > a? and a® > [?. The skeleton diagrams are different from the
D = 4 case and are shown in Figs. 5.9(a,b).

100 IGO 100 - 100 0 100
- /2 /2 nlz—‘—% /2
-0 —ieo -ico0 — 100 ) fee)

Figure 5.9: Skeleton diagrams for the 6 coordinate of the Kerr-AdSp double-Killing
bubble for D > 5, one turned on. At § = +m/2, the SP~* closes the spacetime. The
four-leg junctions are all spinning horizons. (a) The diagram on the left is for 2 > a®.
(b) The diagram on the right is for I* < a?.
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5.5.2 S-branes and anti-bubbles
The 7/2-S-Kerr-AdS with one on can be motivated from the continuation and
sign flip
dQ% , = db? +sin®0d¢? + cos® 0dQ3%,
— dH3, , = df® + cosh®0d¢? + sinh® Q% _,.

The full continuation of Kerr-AdS is § — 7/2+1i0, g, — — g, ¢ — i¢, a — ia. The
result has A > 0 and is

dr? dn? A acosh? 6

2 2 b :

o dr? 2 acosh ¥ 22
= T e T A T T ) 522
Cosh29(1_( /) sink® 9) (ad D_ud¢>2—|— ?sinh? 0dQ7

p2 a sin adzx 1+a2/12 [ainil D—4>

where p? = 72 + a?sinh*# and A = (r? — a?)(1 +72/1?) — 2M /rP~5. This has W =0
at 0 = £60, where sinh 6§y = [/|al; 0 is spacelike and for r > ry, the Killing directions
are ++, so this closes the spacetime. The conditions at 46, are identical hence
compatible and one Killing direction is noncompact to give a horizon at r = ry. This
solution is nonsingular.

The 7/2-S-Kerr-dS solution has no W = 0 and has already been discussed, but
we use m/2-S-Kerr-dS to construct anti-bubbles. The 7/2-S-Kerr-dSp solution with
one on is

dr? do? A a cosh? 6
ds? = p*(——+ + =5 (da? + ——7
° (=4 1+(a2/12)sinh29) 2 (4 1— a2/i2

cosh? 6 o 198 . 19 » r—a
(14 (a*/1?) sinh® 0) (adx gy

d¢)’ (5.23)

2
+

dg)” + 12 sinh? 0dO2,_,,

where p? = 2 + a?sinh? 6 and A = (r? — a?)(1 — 2 /1?) — 2M /rP~>.
One anti-bubble is gotten from 2P — ix?, ¢ — i¢, with motivating element

dAdS} _, = df? — cosh® 0dp* + sinh? 0dQ3, .

This solution does not have W = 0 so it was already covered in the last section.

For D > 5, another anti-bubble is gotten from z” — iz?, a — ia, dQ% , —
ddS?, ,. Since W o 1 — (a?/I?)sinh? 6, the space closes at § = £6,. But the space
also closes at r = ry and these two conditions are not compatible, orbifolding the
horizon that occurs at 6 = +im/2.

We now investigate the usual S-Kerr-AdS and Kerr-dS anti-bubbles instead of the
7 /2-versions and find that generically they are all problematic, though there may be
lower-dimensional parametric families or special cases that work.
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The usual S-brane is gotten from the black hole by g,, — —g,u, 0 — 6, dQ}_, —
—dH3,_,. S-Kerr-AdSp with one on is

dr? db? A, , asinh*@
N 1 — (a?/12) cosh29) - E( S a?/1?
sinh?0(1 — (a?/1%) cosh? 0) r? + a?

02 1— a?/2

where p? = r2 + a?cosh®@ and A = (r? + a?)(1 4+ r2/1?) — 2M/rP=5. Here W = 0
occurs, and this solution is problematic. Assuming /2 > a? to get the right signature,
the # = 0 and 0 = 6, conditions are incompatible, forcing z” to be compact and the
r = r9 horizon to be an orbifold.

S-Kerr-dSp is

ds* = p*(— dqb)2 (5.24)

(adx4 — dgb)Q + 7% cosh? §dH% _,,

dr? d6? A asinh®@ o
ds* = p*(— —— —(dz* + ————d 5.25
§ (=4 +1+(a2/l2)cosh29)+p2(x T e ?) (5:25)
sinh? #(1 + (a?/1%) cosh? ) ,  r+a 2 9 o )
pe (adz* — mdqb) + r* cosh” 0dH7,_,,

where p? = 2 + a? cosh? § and A = (72 + a?)(1 — r2/1?) — 2M /rP=5.

The double Killing anti-bubble is gotten from (5.25) by 2? — iz?, ¢ — i¢.
The solution as written is then good down to 6§ = 0 where we have a spinning
Rindler horizon; then move up to § = +in/2 where Hp_4 becomes dSp_4 and then
to 0 = +im /240y with sinh 6y = [/]a|, where the space closes. The space closing here
is generally incompatible with the r = 75 condition, making the # = 0 horizon into
an orbifold. The exception is D = 4 where there is no Hp_4; this has no W = 0 and
has already been discussed.

On the other hand, for D > 5, making an anti-bubble from z” — iz?, a — ia,
dH2,_, — dAdS},_, gives W o< 1 — (a?/I?) cosh® §. Assuming I> > a?, the spacetime
closes at 8 = 0 as well as § = 6y and in general this is not compatible with the
r = ry condition. Also there may be a ‘ring’ singularity p? = 0, although it does not
propagate to large r.

5.6 Conclusions and Relation to Holography

In this paper we presented a procedure to generate time-dependent (and other
black and anti-bubble) backgrounds starting from black holes solutions in (A)dS
spacetime. We hope that our unified treatment of S-branes, bubbles and anti-bubbles
with an emphasis on which solutions are possible, which are distinct, and what is their
global structure including horizons and singularities, is useful to the reader. Some so-
lutions in this paper are already known; several have been reexamined, reinterpreted
or renamed (the ‘anti-bubble’) and several new solutions have been presented.
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We have emphasized D = 4,5 rf-diagrams and 6-skeleton diagrams to keep track
of spacetime regions and for pure (A)dSp for D = 4,5 we present various card di-
agrams in Appendix A. Our analytic continuation has been simple, involving only
Killing directions and cosine directions. For D = 4,5 analytic continuation has been
restated in terms of the card diagram technique of the y-flip.

We find six types of spacetimes with a characteristic expected conformal boundary
geometry. Black holes in AdS have S”~2 x Ryjme, bubbles have dSp_, x S, anti-
bubbles have AdSp_, x S' and S-branes with A < 0 have Hp_5 X Riime. Black holes
in dS have conformal boundary geometry SP—2 x R.pace and S-branes with A > 0
have Hp_s X Rgpace- Solutions from Kerr-(A)dS which have W = 0 horizons, if they
are good spacetimes, have a more complicated global structure for themselves and for
their conformal boundaries.

Since many of the presented solutions are locally asymptotically (A)dS, it would
be interesting to study them in the context of gauge/gravity dualities — the holo-
graphic results concerning some of the new spacetimes are forthcoming. The main
tool that we use is the counterterm method proposed by Balasubramanian and Kraus
in [135]. That is, to regularize the boundary stress tensor and the gravity action
by supplementing the quasilocal formalism [136] with counterterms depending of the
intrinsic boundary geometry. This way, the infrared divergencies of quantum grav-
ity in the bulk are equivalent to ultraviolet divergences of dual theory living on the
boundary. This method was also generalized to locally asymptotically dS spacetimes
[137, 138]. However, unlike the AdS/CFT correspondence, the conjectured dS/CFT
correspondence is far from being understood (see, e.g., [139] for a nice review).

Recently, Ross and Titchener [140] used the counterterm method to show that
the AdS/CFT may teach us how to choose the right vacuum for the strongly-coupled
CFT living on a dS background. A blowing up of 2-point correlators at null separa-
tion in the constant curvature orbifold (non-Killing horizon black hole) suggests the
Euclidean vacuum for de Sitter space. Also, Balasubramanian et al. [79] investigate
the semiclassical decay of a class of orbifolds of AdS space via a bubble of nothing.

Using similar ‘holographic’ reasoning'? to investigate some of the solutions pre-
sented in this paper, we hope to shed light on different aspects of the gauge/gravity
correspondence for time-dependent backgrounds.

5.7 Generalized card diagrams for (A)dS,, (A)dS;

Some of the solutions in this paper were found in analogy with card diagram
techniques [51] (see also [8, 15, 54, 25, 16]). Furthermore the asymptotia of these
solutions can be understood from the card diagram perspective. It is thus appropriate

120ther interesting examples of time-dependent AdS/CFT and dS/CFT correspondences can be
found in [39, 86, 141, 142, 143, 85, 144, 145]. It is also worth mentioning that, in a different context
[146], some unexpected results were obtained for asymptotically AdS Taub-NUT spacetimes.
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to give a small application of card diagrams to (anti-)de Sitter space in dimensions
4 and 5, where they have the requisite 2 and 3 commuting Killing fields. The Weyl
technique for Einstein’s dynamical equation fails with a nonzero A. Nonetheless
these spacetimes still have satisfying card diagrams. Here, we will not give a theory
of generalized card diagrams, but rather just some examples which we can obtain by
formal analogy to the 4d Reissner-Nordstrom black hole. More conventional Penrose
diagrams for (A)dS may be found in [147, 148].

The massless RN black hole of imaginary charge (to make it subextremal) has
line element o< + df?. Once the non-Killing directions are of this form, we can

dr?
2_02
immediately go to gpherical prolate coordinates via r = @ cosh ¢; then ds? oc d(?+db?;
and then to card diagram coordmates via p = @) sinh (sinf, z = () cosh cos 0.

De Sitter 4-space has 1 2 e + df* Set uw = 1/r. Then we get oc 2 12 + db?
and can proceed as above. The result is an elliptic card diagram with a rod horizon
—1/l < z < 1/1, and the vertical square card above it is bisected halfway up at u =0
(see Fig. 5.10(a)). Please note that for simplicity we have only drawn two cards at
each 4-card horizon; see [51].

X4 "z X4 ® X 4 G
r=co
ds AdS
p 4 p 4

Figure 5.10: (a) On the left, we have dS; fibered by S?. Turning the vertical square
card on its side, we get (b) the diagram on the right; it is AdS, fibered by patched
AdS,. This is the same fibering as the RNdS, anti-bubble.

<
i
™
kS

ﬂ\N

Turning the vertical card on its side via the v-flip, we achieve AdS, in a coordinate
system similar to the RNdS4 anti-bubble solution (see Fig. 5.10(b)). An infinite stack
of cards give periodic time. The RNdS, anti-bubble asymptotes to all the r = oo
asymptotia drawn here. Fig. 5.10(b) can be double Killing continued to give a card
diagram suitable for understanding S-RNdS,; this will be skipped for brevity.

To get AdS, fibered with spheres we start with 1+ 2/12 + df?. Let u = 1/r as

for de Sitter, and we get o 2 HQ + df?. Now, the solution is superextremal and on
a branched horizontal card. To go to spherical prolate coordinates, let v = [sinh (.
The resulting card diagram is shown in Fig. 5.11. This card diagram can be double
Killing continued to give AdS, fibered by dS,, like the RNAdS, bubble; this will be
skipped for brevity.

We give one more example of an interesting 4d de Sitter card diagram: the purely
time-dependent one where dS; is fibered by azimuthal dSy and Hy; see Fig. 5.12. Each
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Figure 5.11: AdS, fibered by S2. Shown as a doubly covered half-plane and then in
a conformally fixed picture.

45-45-90 triangle with a vertical hypotenuse is a compactified representation of a half-
plane vertical card without special null lines. The cards are compactified in precisely
the same way as for a Penrose diagram. The S-RNAdS, solution asymptotes down
through the Hy-fibered region to the two r = oo regions drawn, with the exception
of the ‘point’ on the right side (actually a ¢-circle) where the z*-circle would vanish.

r =00
o| M2
ds, |x*
0| H,
r=on

Figure 5.12: dS, fibered by azimuthal H,, dS;. These vertical cards have been
compactified.

Lastly we look at 5d case and find a card diagram which has both 5d de Sitter
and anti-de Sitter in the same diagram. Take dSs fibered by S with dQ2 = d#* +
cos? Od¢? +sin? Odyp?; it has % +72d6? just like the 4d case. We will get an elliptic
card diagram. We want the rightward z-ray boundary to be # = 0 and now we want
the leftward z-ray boundary to be 6 = 7/2, not m. So in analogy with 4d RN, we
need the metric to look like % + 4d0*.

To this end, let u = 1/r? and then u = v + 1/2[*. The metric is o % +
4d6? and we let v = (1/2[%)cosh (. The card diagram is then as follows: take the
card diagram structure of the Schwarzschild black hole [51]; call the positive-mass
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external universe the ‘primary’ horizontal card and the negative-mass universe the
‘secondary’ horizontal card. Alternatively, take Fig. 5.10 and label the alternating
levels of horizontal cards primary and secondary. Two primary horizontal cards and
two vertical cards which connect at an r = [ horizon form a dS; of signature ++-++—.
Each secondary horizontal card forms an AdSs of opposite signature + — — — —. The
horizontal edges of the vertical cards which are not horizons give r = oo regions for
the dSs and AdSs universes that ‘meet’ there. Note that both + + + + — dSs and
— — — — + AdS; satisfy the Einstein-A equation with the same A > 0, and hence can
appear on the same card diagram.

These diagrams also apply to orbifolds of pure (A)dS space, such as the constant-
curvature black hole of [78], which has a non-Killing horizon, and bears certain re-
semblance to a BHAdS bubble.



Chapter 6

Semiclassical decay of the twisted

AdS; orbifold

Semiclassical decay of spacetime orbifolds via bubble production has been known
since [36]. The analog of Witten’s decay of the KK vacuum, in the A < 0 case, is
the decay of the constant-curvature black hole (or AdSs orbifold), and was described
in [79]. This is the analog of the BTZ black hole [78]; the horizon is non-Killing; the
bubble formation seals off the non-Killing horizon from the majority of the spacetime
(the stationary patch of spacetime which survives the bubble formation).

Here, we extend this to the spinning black hole, or Kerr case. The black hole
orbifold generalizes the twisted flat case of [61]. We generalize the Laplace transform
argument of Hawking and Page [149] for the connection of instanton negative modes
and negative specific heat (at constant extensive J, i.e. ‘volume’). Furthermore, the
card diagram for AdS; compatible with the given orbifold, as covered by spheroidal
coordinates, shows us the nature of the singularities in the skeleton diagrams for the
Kerr-AdSs bubble. We find that if a # 0, then the non-Killing horizon is not shielded
from the magjority of the spacetime.

The AdS case is especially interesting because the Lorentzian semiclassical evo-
lution, valid at small curvatures, should be dual via AdS/CFT to a decay in the
boundary, nongravitational theory.

This work grew from the idea of J. Simén and was in collaboration with V. Bal-
asubramanian, D. Astefanesei, and K. Larjo, and may be forthcoming from those
authors.

126
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6.1 The Kerr-AdS; black hole, instanton, and bub-
ble

The Kerr-AdS;s black hole, with A = 1/{*> > 0, taken from [82] is

Udr? 2M apdey  brAdiy
2 _ 1 2\ 742 _ B 9
ds W+ N + o+ T = =5 = 7 03)
r+a, L, R T ,
Tz (A7 4 i (do + Aadt)?) + 5 (dV® + v (di + Abdt)?)
A r? + a? r? + b?
- d dv)?.
W wd) 1 a2+ Ty d)

Note: we have changed the sign convention of A from [82, 41]. Here, V = &(1 +
M) (r? + a®)(r? + %), W = % + ﬁ, pr+ v =1,U =r*+ p?*b* + v?a®. The
function r?(V — 2M) gives us the horizons, U = 0 gives us the curvature singularity.
(In 5d this singularity is not a ‘ring’ and cannot be traversed.) The locus W = 0 will
give us new f-horizons in bubble, anti-bubble, and S-brane solutions (see Chapter 5

and [39, 41]).
Letting p1 = sin ¢, this simplifies to
O(9)(1 + Ar?) Udr? 2M ap’dey  bridiy
ds* = — dt? dt — — 2
° T Y R Ty v At s U wu vl wanp v 2
2 2 2 b2 UdeQ
+ I _+;;2 12 (do + Nadt)? + = i V2 (dipo + Abdt)® +

1\ o)’

Here, U = 1% + a%cos? ¥ + b?sin® 9 and O(¥) = 1 — Aa®cos?9 — Ab%sin?4). The -
horizons would occur at ©()) = 0. For the Kerr-AdS; black hole, ¥-horizons are not
present if we keep \a?, \b? < 1.

If one takes the r — oo limit, the conformal boundary geometry is rotating in
these coordinates. We thus make the coordinate transformation to ¢y = ¢ — Aat,

Yo = 1 — bt and get

O(9)(1+ Ar?) Udr?
d 2 _ 2 e — .
i A )1 T v o (6.1)
2M( O(d)dt _asin®9dp  beos’ ﬁdwo)g
U021 - %) 1-xa®  1- A
r?+a* r? + b? Udy?
in? Ydg? 2 9dyp? .
T g2 S VAT g cos AT
The r — oo CBG is
O(v)dt* o r2 d?
d 2 o 219d 2 2’l9d 2
S v v e R v L L VTR ST
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which is clearly not rotating. (The description in [81] is erroneous.) It is quite clear
that for the CBG, ©(¥) = 0 is a Killing horizon. This is also clear from (6.1) that
at © = 0, the Killing 3 x 3 submetric has rank 2, with (0/0t),,, null; the horizon
has no angular velocity in these coordinates. (The angular velocity of a regular
spinning horizon in any case must be constant [88].) The surface gravity (or Euclidean
periodicity) of a horizon must also be constant; to see that the r-dependence of (6.1)
does not spoil this, note that U|g_, = A~ + 72, so that the relevant submetric is

O(0)Adt? dW)

ds? ~ (N 1) (- T~ 2a?)(I—A2)  6)

(6.2)

The expanding bubble must be gotten from double Killing continuation; choosing
1 to become time, the complete continuation is t — iy, ¥ — @), a — ia. The metric
is then

ds?

O(9)(1 + Mr?)dx? Udr? 2M < O(1)dx
(

L) 1—n) v~ U \Geaa)1—am P

_asin219d¢_ b cos® >2
1+ Aa? 1 — \b?
"2 — g2 , r2 4 2 U do2
in? 9do? — 2 9du)? )
—l—l_i_)\azsm o) T2 OO W) +9(19)

Now, O(¥) = 1+ Aa%cos? ¥ — Ab?sin® ¥, U = r? — a®cos? ) + b?sin?9, and V =
(L4 M) (r? — a®)(r? + b%).

The horizon function is r2(V — 2M) = (1 + Ar?)(r? — a?)(r? + b*) — 2Mr?, which
we treat as a function of 2. As r? — oo, it is ~ Ar® > 0, whereas at 2 = 0, it equals
—a?b? < 0. Thus there must be a root at > > 0. In general we can have one, two, or
three roots (possibly degenerate) at r> > 0. Call the largest root r* = 7%, which may
be degenerate. (The instanton on the other hand, has b — ib relative to the bubble,
hence has zero, one, or two roots at r* > 0.)

We want to avoid the U = 0 curvature singularity. The function U is smallest
at ¥ = 0, where Uly—o = 7?> — a®. Thus we need r% > a?. Indeed, the horizon
function at r? = a? is —2Ma? < 0. Below, we will go beyond the acceleration horizon
via ¥ — 7/2 447, and then U = r% + a?sinh® 7 + b?cosh®>7 > 0. So the bubble
spacetime misses the curvature singularity. We have already shown that the ©(¢) = 0
horizons are nonsingular for (0/0x). noncompact (they will be horizon orbifolds for
(0/0x) compact; this happens when b = 0), so apart from CTCs and CNCs, the
bubble spacetime is nonsingular.

From [82], the r*-horizon velocities for the black hole/bubble are

a(l — Aa?)

Q0 =2 Q% =
BH 2, + a2 2 — a?

ia(1l + A\a?) Qw:ba—Aw)
’ r3+ b
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Thus, to close the spacetime at r? = 1%, we twist to (BH—bubble)
i X=X — X=X
0=¢— gt — b=0¢+Q%
Y= - Q% — =9 - Q%

Then we compactify x ~ x + 3 (i.e. at constant ®, 1&) where k£ = 27/, and the
bubble has (continued from [82])

1 N 1 ) 1
2 rd 4 b2 Ty

k=ry(l+ \r¥) (7"2 (6.4)

2 —a
We replace dy — dx, d¢ — do—Q2dx, dip — dip+Q¥dy in the metric (6.3). It seems
that the stationary patches have no CTCs if we assume A\b? < 1 and (Q¥)2 < \.

The region 0 < ¥ < 7/2 constitutes a stationary patch. 7/2 < ¢ < 7 is another
such patch; at the juncture at 9 = 7/2 we have a Rindler horizon where 8/dy = /)
goes null. Here, we put § — 7/2 +4i7 to go to time-dependent patches. We discuss
the © = 0 horizons shortly.

As r — oo for the bubble, the CBG is similarly patched; for 0 < ¢ < 7/2 or
/2 <9 <7, we have

Odx> sin?y - . cos?V | - L d?
2 612 ,
o AT 21— N2 11 (do—Q°dX)* = 5 (AW + QYY) + =5, (6.5)
while sending ¥ — /2 + 47 gives

Ody* cosh® T sinh? T - T2

(dp—Q%dx)*+

ds® o

(dip+Q¥YdY) R (6.6)

T2 (1 =) 15 a2 Y

where © = 1 — \a?sinh® 7 — A\b? cosh? 7.

We now analyze the © = 0 horizons. For simplicity, just look at the CBG (6.6).
As shown earlier (viz. (6.2)), the entire ¥-horizon analysis is independent of r and in
the bulk it will apply at all » > rg.

First, assume Ab* < 1, so that the ¥ = 7/2 patch-change horizon occurs before
the ©® = 0 horizon, i.e. © = 0 at some real 7 = +7,. At 7 = +7, the vector

0 0 0

— = QY=
ox ol o

is null. For b # 0, since the -direction is noncompact, this vector is noncompact and
we have a regular horizon. In this case it is a finite 7-distance to the CTC boundary
(see the skeleton diagram in Fig. 6.1). For b = 0, our vector is compact and we
have a twisted Milne orbifold (see Fig. 6.2), and the CTCs begin right at the horizon
orbifold.
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le9) T 0o
0=1t 06=0
-0 Ty oo

Figure 6.1: The skeleton diagram and Penrose diagram of the CBG for the general
a, b # 0 expanding bubble solution. This runs from ¢ = 0,7 to ¥ — 7/2 4+ 7. The
boundary of the CTCs is labelled as a singularity.

The skeleton diagram and Penrose diagram for the CBG are shown in Figs. 6.1,
6.2. The whole spacetime has a structure of the CBG’s Penrose diagram times r > rg,
plus two nondrawn Killing directions. For any fixed r, the ©¥ = 0 worldline is complete,
just like the right boundary of the dS; Penrose diagram.

The CBG is in fact rotating (with one parameter, o b) for the stationary 0 < 9 <
7/2 patch, since we have a mix (di) +Q¥dx)? in (6.5). The bulk geometry is actually
rotating about the axis r = ry where 0/0x vanishes. Unlike the black hole case, the

present rotation cannot be removed by a coordinate change ¢ = ¢ + Q¥y, because
X is periodic and we must keep @ZNJ noncompact. The a parameter twists spatial with
spatial directions. On the other hand, in the large-7 (© < 0) stationary region, we
see a 2-parameter rotation in (6.6).

6.1.1 Large b: A different skeleton diagram

As discussed in [41], for large values of b, the zero of © can occur before ¥ = 7/2,
resulting in a different skeleton diagram for an r = constant slice (or the r — oo CBG)
(see Fig. 6.3). This holds for r > rg for the Kerr-AdSs bubble, and for sufficiently
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o0 T 0 o0
0=t 0=0
~00 g ~©OO

Figure 6.2: The skeleton diagram and Penrose diagram of the CBG for the b =
0 expanding bubble solution. The Penrose diagram (which suffers from the same
deficiencies as the ordinary 4d Kerr Penrose diagram) tries to represent noncompact
Killing orbits at the # = 7/2 horizon and compact ones at the © = 0 horizon orbifold.
The Milne orbifold can connect to just one Rindler orbifold. CTCs begin right at the
horizon orbifold.

large r, for the twisted AdSs orbifold. For Ab? > 1, we write the metric as

P O(1 + Ar?)dx? Udr*  2M < B Ody 6.7)
(I (N2 -1)  V-2M U (1+Xa®)(A\2 —1)
asin?® ¥ bcos? 9 | \2
————d¢p + ———d
1+ Aa? o+ b2 —1 1/’)
r’—a® 2 2 r’ + b 2 2
+1+)\a2 sin” vdo” + S ddap=.

We see that 0/0x (which is noncompact since b # 0) gives a horizon at ¥ = 9y, where
©(Jy) = 0. From (6.4), & is still real, so 9/9x still closes the spacetime at r = rg.

At ¥ = 7/2, we have a Milne horizon where spacelike 9/9v¢ goes null. We put
¥ — m/2 £47T, where T is now spacelike. By considering the smallest square-norm
of a closed Killing orbit, continuity, and the fact that there is a unique null Killing
direction at the horizon, we can conclude that CTCs must stay a finite 7-distance
away from this horizon.
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=" * *% =00

6=0 ——4— 6=0

=-00 ¥ 3¢ =00

Figure 6.3: For the case A\b?> > 1, the skeleton diagram of an r = constant slice of the
Kerr-AdSs bubble is different. The 9 = 1y 0/0x horizon occurs before the ¢ = /2
0/0% horizon.

6.2 The twisted AdS; Orbifold

Here we describe the general twisted AdS; orbifold, which generalizes the constant-
curvature black hole of [78]. We first write it in terms of a continuation of a S3-fibered
coordinates (with ‘spherically symmetric’ radial coordinate R and angle #), and then
in terms of the ‘spheroidal’ r, ¢ coordinates of [82], which will make contact with the
r — oo limit of Kerr-AdSs.

AdS; fibered by S® with spherically symmetric radial coordinate R is

dR?
ds* = —(1 + R*)dt* + T + R*(d6? + sin® §d¢? + cos® Odip?),
where 0 < 0 < 7/2, and ¢ and 1) are 2m-periodic. We continue t — ix, ¥ — it to
achieve another description of AdSs, fibered by dSs:

dR*
1+ R?
The ordinary orbifold is gotten by compactifying the x-direction. For the twisted
orbifold, we first want to twist to ¢ = ¢ — Q%, ¥ = ¥ + Q% X = x, and then

compactify xy ~ x + 3 at constant ¢, ¥. Equivalently, we compactify along orbits of
the Killing vector field I = 9, + Q995 — Q¥0y. This has square-norm

gl =1+ R* + R*(Q%)?sin? 0 — R*(Q2¥)? cos? 0

ds* = (1 + R*)dx* + + R2(d#? + sin® 0dp* — cos® Odip?).

The region 0 < 6§ < 7/2 is stationary (in the language of card diagrams, it is a
horizontal card) and could have CTCs. We see that with this twisted compactification,
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CTCs are avoided precisely for (Q2¥)? < 1. The angle ¢ is still 2r-periodic, and @ is
noncompact stationary time.

We discuss the rest of the global structure of this solution in these coordinates.
At 6 = 7/2, the Killing vector 8/ = 8/dv goes null. It has noncompact orbits and
this is a Rindler horizon. We pass via § — 7/2+i7 to the Milne wedges. The metric
is then (written for simplicity with untwisted differentials)

2
1+ R?

This time-dependent (vertical card) region has a null boundary at infinity where R, 7
go bad: we label it by R = 0, 7 = oo. This is the non-Killing horizon for the constant-
curvature black hole, described in Kruskal coordinates [79] by the cone 7,,y"y” = 0.
Beyond this, we put R — iR’ and 7 — 7 +im/2, to get

d R/2
1— R”?

ds® = (14 R¥)dx* + + R*(—d7? + cosh? 7d¢? + sinh? Td?).

ds> = (1 — R?)dx* — + R?(dr?* 4 sinh® 7d¢?* 4 cosh? 7di)?).

At R' =1, there is a Killing horizon: d/dx goes null. Since
0 0 0 0
ox  Ox ¢ o
for Q¥ # 0, this is noncompact and hence a Milne horizon. (For Q¥ = 0, this is a

Milne orbifold, and we would end the nonsingular spacetime here.)
Into the Rindler wedge for R’ > 1, we have CTCs from the y-circle, at a locus

R/2 — ]'
1 — sinh? 7(Q¢)2 — cosh® 7(Q¥)2’

For 7 = 0, this is R”? = 1/(1 — (Q¥)?), and we see now ¥ # 0 keeps the CTCs away
from the Milne/Rindler R’ = 1 horizon. The value of R’ increases with 7, and at a
finite 7 the CTC boundary goes to R’ = oo.

6.2.1 Card diagram for dS;-fibered coordinates

AdS; fibered by dS; has a somewhat complicated card diagram, which we now

derive.
We first start with AdS; fibered by S®. Following the technique in [41], the non-
Killing metric of
dR?
1+ R?
in can be reduced to spherical prolate form via

1 cosh(—1
R 2 7

+ d6?
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giving
R2
ds®> D Z(dg2 + 4d6?).

The factor of 4 indicates that in 5d we will run 0 < 6 < 7/2 over one card, instead
of 0 < 6 < 7w. The spherical prolate form then yields a card diagram upon

1 1
P=s sinh ( sin 26, =3 cosh ( cos 26.

The card diagram for AdSj fibered by S® is thus a spherical prolate (1-rod) half-
plane horizontal card. The right ray 6 = 0 is the closure of the ¢-circle, the left ray
0 = /2 is the closure of the v-circle, and the rod —1/2 < z < 1/2 represents R = oc.
The point at infinity on the Weyl half-plane represents the worldline R = 0.

When we continue v — i), x — ix to get AdSs fibered by dSs, this half-plane
becomes the static patch of dS3. We call this the ‘primary’ horizontal card. Contin-
uing 0 — 7/2 £ i1 gives quarter-plane (‘primary’) vertical cards each with a special
null line from z = —1/2. The card coordinates here are

1 1
p = 5 sinh ¢ sinh 27, 2= cosh ¢ cosh 2. (6.8)

This card diagram (which is only part of the spacetime) is shown in Fig. 6.4.

R =0 atinfinity

’ R= 00

Figure 6.4: The card diagram for AdSs fibered by dSs, showing primary horizontal
and vertical cards. This covers real R > 0. The locus ( = 0 is R = oo and is a rod
on each horizontal half-plane and the vertical card boundaries. A typical 6, T-orbit is
drawn.

At R = 0, dS; degenerates, and we know we must put R — iR’ (or { — { + im),

and 27 — 27 + iw. We have
1 cosh(+1

R?2 2
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and the card coordinates are still as (6.8). We have a ‘secondary’ vertical card.
However, now ( is timelike and 7 spacelike. We begin to fill out a secondary card
diagram which is attached to the primary one along the conformal null infinities of
the vertical cards (Fig. 6.5). This attachment takes place at ( = 7 = oo and of
course the spacetime is nonsingular. An actual card diagram could be gotten via a
PSL(2,R) automorphism of the half-plane moving the point at infinity to a finite
point, but we will just treat Fig. 6.5 as schematic.

//
=00 ¢ ,/ &0 =0
&= = @
. secondary . 2=0
=0 { =00
(0] im. /
(TREANN - / ®
N R =
(= R=0
=0 6=m/2 ¢=0 . 6=0
primary

/K|

Figure 6.5: A schematic, complete card diagram for AdS; covered by dSs;. We refer
to horizontal and vertical cards as primary and secondary, as indicated. The primary
and secondary vertical cards are joined along their conformal null boundaries, at
7= = 00. A typical R =constant, 0, T-orbit is drawn on the primary cards and a
T =constant, R'-orbit on the secondary cards.

At R’ =1, we have the y-horizon, and put ( — ¢£. Then
1 cosé+1

R? 2
and . |
P=3 sinh £ sinh 27, i=-3 cos & cosh 27.

We call this the ‘secondary’ horizontal card. The right ray ¢ = 0 is the x-horizon,
the rod —1/2 < z < 1/2is 7 = 0, the closure of the ¢-circle, and the left ray £ = 7 is
R = oc.

There is an infinite stack of card diagrams connected through the conformal null
infinities of the vertical cards; this is illustrated in Fig. 6.5. Identifying every other
pair of primary horizontal cards gives the canonical time-periodicity of AdSs.
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6.3 AdS; in spheroidal coordinates

To make contact with the Kerr-AdSs solution and to show they have the same
r — oo asymptotics, we will write AdS5 in spheroidal coordinates and then continue to
‘de Sitter-oidal’ coordinates. We find that in the r coordinate, we know the solutions
are asymptotic drawing from our knowledge of the Kerr-Schild form of the metric,
whereas for holography, motivated by the AdS; twisted orbifold, we will want to
dispense with the r coordinate and move to an R coordinate for finding a CBG on
which the dual CFT lies.

From [82], and putting p = sin), v = cos ), AdS5 in spheroidal coordinates is

O(1 + \r?)dt? Ur?dr? Ud?
daag: — — OUEATAE rar +
(1 =Xa?)(1 =A%) (14 Ar2)(r2 4 a?)(r? + b?) S}
r’+ad® o TEHD 2 2
+1 Y sin® dd¢” + w2 cos” ¥di)

Here, ©(Y) = 1 — Aa%cos? 9 — \p? sin® ¥, and U = 72 + a® cos? ¥ + b%sin? ), and ¥ is
a spheroidal angle. The connection to spherically symmetric coordinates (with angle

~

g, or in the notation of [82] 0) is
(1—Xa®)R*sin®6 = (r*+ a?)sin® ¥,
(1 =AM R*cos® = (r* +b*) cos® 0.

To mimic Kerr-AdSs, we continue t — iy, ¥ — i1, and a — ia. Note that since a is
a completely redundant parameter for pure AdSs; its continuation just changes the
way we parametrize spheroids. We get

(14+ Xa*)R*sin®f = (r® —a?)sin® 9, (6.9)
(1= A?*)R?cos’ = (r? +b*) cos® V.

Take the case A\b?> < 1. The metric is

JAdS? O(1 + Ar?)dy? Ur?dr? N Udy?
> (1+Xa®)(1 = A2) (14 M2)(r2 — a?)(r? + b?) S
r?—a® | 2 2 % 4 b 2 2
+1—|—)\a2 sin® ddo* — T e OO Id?,

where © = 1 + \a®cos? ¥ — A\b?sin? ¥, U = r? — a® cos® ¥ + b? sin? 9.
Near r = a, the metric looks like
Ua*dr? n (r? — a?) sin? Od¢?
(12 — a®)(1 + Aa?)(a® + b?) 1+ Aa? ’

and away from ¥ = 0 we have U ~ (a?+b?) sin? 94 €2, where r2 —a? = ¢€2; this gives us
the closure of the ¢-circle, ¢ ~ ¢+ 2w. Of course ¥ = 0 also gives us closure of the ¢-
circle. The loci ¥ = 0 and r = a meet at U = 0, which is not a curvature singularity
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since 2M = 0. The r, 9 coordinates cover the primary Weyl cards as depicted in
Fig. 6.6. Note that, including the point at half-plane infinity, these coordinates have
four foci and so resemble C-metric coordinates, although they are not precisely C-
metric coordinates. In particular we do not have a symmetry between interchange of
r and 9 directions, like we do for spherical prolate or C-metric coordinates. In any
event, the requisite Schwarz-Christoffel transformation to the half-plane has been
solved implicitly in going to this formulation.

Figure 6.6: The r, ¥ coordinates cover the primary Weyl half-plane as shown. The
f = 0 ray is split into a ¥ = 0 rod and then an r = a ray. They meet at
R = /(a®> +b%)/(1 — Ab?). The T-orbits must be asymptotically null on the pri-
mary vertical card to pass to the secondary vertical card across their conformal null
boundaries.

We can solve (6.9) to get

(r? —a?)sin?9  (r? + b?) cos? ¥

R =
1+ Aa? 1 — b2
2 _ 2 2 2 1 12) cinh2
. (r* —a®)cosh®T  (r* 4+ b%)sinh” T (6.10)
1+ Aa? 1 — b2
This hits R =0 at 221
tanh?7 = ¢

24+ 021+ Xa?’
which always occurs. Go to R — iR/; as T — o0,

27 (r2+b2 - r2—a2>£'

1—A? 14+ Xa?/ 4
We see that R? — oco. The r = constant slices pass through the non-Killing horizon
NK at R = 0, and the y-horizon at R’ = 1, and all the way to R? = —oco. See
Fig. 6.7. They are significantly different than the R =constant slices, which always
stay ‘outside the light cone,” i.e. outside of NK (see Fig. 6.5).
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=7

Figure 6.7: Some 7 orbits are drawn over the whole card diagram. As r — oo,
they asymptote to R = oo but also to R’ = oo (the leftmost ray) on the secondary
horizontal card. The CTC boundary for b # 0 is shown as a singularity. The leftmost
focus on the secondary horizontal card is at tanh® 7 = (1 — Ab?)/(1 + Aa?). All labels
of Fig. 6.5 apply.

K

Presumably, the Kerr-AdSs bubble has a card diagram gotten from the Schwarz-
Christoffel transformation, but this has not been worked out, and we proceed by
analogy to the spheroidal AdSs; geometry.

From the skeleton diagram fibered over r? > r%, we know that the Kerr-AdSs
bubble has a global structure and is covered by r,19 coordinates just like this card
diagram. Just replace r? = a® with 72 = r% in the card diagram and take this as a
(somewhat loose) representation of the Kerr-AdSs; bubble. Naively, we would have
thought that the 72 = r?% closure of the spacetime would have kept us away from the
non-Killing horizon N'K (the analog of R? = 0) and the y-horizon (analog of R’ = 1),
but as the r coordinates show, it does not. So when a or b is nonzero, the structure
of the bubble changes significantly. From the card diagram, the 7? = r% is no more
‘expanding’ than is the left border 7 = 0 in the secondary vertical card of Figs. 6.5,
6.7. Of course, this region is expanding; the H3 has a size proportional to R’. We
do not have an expanding hole in the spacetime any more than we would have if the
bubble had not formed.

We have not calculated N K’s location for the Kerr-AdSs bubble, and it is not
clear if it has a local geometric characterization. The card diagram for Kerr-AdSs
would clear these matters up.

Despite the complicated nature of the r = constant surfaces, on the primary sta-
tionary patch 0 < 9 < 7/2 they behave quite normally: r — oo is the same as
R — o00. Across the whole ¢ skeleton diagram and a fortior: in the primary station-
ary patch, the r — oo limit of the AdS; orbifold precisely matches the r — oo limit
of the Kerr-AdSs bubble. This is easy to see from the Kerr-Schild form of Kerr-AdSs:



Chapter 6: Semiclassical decay of the twisted AdSs orbifold 139

Kerr is a perturbation of AdSs, where the perturbation is proportional to a parameter
14, the mass. As r — oo, all reference to u disappears, hence the Kerr-AdSs; bubble
is asymptotic to itself with = 0, i.e. pure AdSs.

The twisting to X, ¢, ¢ occurs in parallel for both pure AdS; and the Kerr-AdS;
bubble.

For purposes of time-dependent holography, we will not want to take an r — oo
limit of the Kerr-AdS; bubble. We have seen that the skeleton diagram of the CBG
is complicated and has CTCs (see the orbits in Fig. 6.7). Instead, we will want to
take an analog of an R — oo limit. To this end, change variables as in (6.9) and take
the limit R — oo. Since r% > a?, we have no problem at r*> = a?. Also, from (6.10),
R — oo implies r — 0o. From (6.9) we have

2 R? + AR*(a®sin® 0 — b? cos? 0) + a® — b?
B 2
R? + AR?(a?sin® § — b% cos? ) + a2 — b?

£[( : )

1/2
—Xa’R? + R*(a® cos 0 — b*sin” 0) + a2b2]

The CBG is the same as for the twisted AdS5 orbifold: a semidirect product of dS; and
S1. Other quantities such as the stress tensor can be computed in these coordinates.

We stress that the © = 0 horizons are no longer mysterious; they are just the
x-horizons already present in AdSj; fibered by dSs3, and do not arise due to the in-
troduction of a physical angular velocity. Instead, a = b = 0 is a special case where
the rightful y-horizon is avoided. Further analytic continuation in the spheroidal/de
Sitter-oidal coordinates r,v9 may yield representations of AdSs relevant to the anti-
bubbles or S-branes of [41].

6.3.1 Case of large b
For A\b? > 1 it is not clear how to interpret

(1+ Xa®)R*sin Oy, = (r® —a®)sin®0,
—(Ab* = 1)R?cos® Oy = (r* + b%) cos® 6.

The reasoning by analogy of the previous sections fails, and this case requires new
insight.

6.4 Flat space KK Reduction and Electromagnetic
Dilatonic Melvin

We first discuss the reduction of [61] and add an additional translation-twist com-
ponent, and then give a boost-twist component.
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Take flat 5d space as
ds® = —dt* + d2* + dp* + p*d¢? + (dz®)>
Dowker et al. [61] discuss KK reducing along (-length orbits of the Killing vector
1 =0/0z° + (B —2mn/B3)0/09,

where any integer n gives the same 5d spacetime. The proper orbit length is then
B+/1+ p*(B —27n/B3)2. For consistency we must consider regions of p > 3, and
then to keep the [-orbit small we must have |B — 2mn/3| < 1/p small. Thus the
physical regime is |B — 2mn/3| < 1/0.

However, this is not quite general. Once one has already compactified the 5d
spacetime, one can KK-reduce along

| =md/0z® + (mB — 27n/3)0/0¢,

for some m # 1. For B3/27 close to a rational number, the proper circumference of
this circle can remain small even for large p. For different regimes of p, different m
will apply to give the minimum circumference. This will give different effective 4d
field configurations. The conclusion |B — 27n/f| < 1/ of [61] only applies when p
is not too large or if we assume m = 1.

Now, we also give the formulas for an electromagnetic dilatonic Melvin universe,
gotten from two twists, A and B. We twist to { = ¢ — Az®, ¢ = ¢ — B, #° = 2%, so
the metric is

ds® = —(dt + Adi®)? + d22 + dp® + p*(dp + Bdi®)? + (di®)>.

The dilaton is gs5 = e~4/V3 =1 — A2 4 B2p% and CTCs are avoided by A2 < 1. The
4-geometry is then

(14 p*B¥)di*  2ABp*dido
1— A2+ p2B2 ' 1 — A2+ p?B2

4glwdl,udxu _ \/1 — A2 +p232< _

(1 — A%)dg’
1 — A2 + pQB2

) +d2* + dp*.

and the gauge-field is

1

Ay drt = B,

(—Adi + Bp*dg).

We see that we have a p-electric field as well as a z-magnetic field. The case A = +1
gives a null orbifold.
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6.4.1 Twisted reduction with a rotation and boost

Let us take the near-the-light-cone scaling limit for the general Q¢ # 0, Q¥ # 0
twisted AdSs orbifold. The metric is, dropping tildes, and for AdS; length [ = 1,

2

dAdS: = (1+ R*)dx*+ T + R*(d9” + sin® (d¢ + Q%dx)*
— cos® O(dv + QVdx)?).

We wish to perform a scaling limit where A — 0 and we zoom in on R = 0.
Since R = 0 is where the dS; degenerates and passes to Hs, i.e. a light cone, we are
performing a near-the-light-cone scaling limit. Specifically, put

R— R/y, x = x/7, B— B/v, QY —= Q% ds* — y%ds?, | — A,

then send v — oco. Note that x ~ x + 3 remains invariant under this scaling; as we
enlarge the geometry via ds?> — ~2ds?, we must correspondingly make smaller the
x-circle periodicity (3, to keep its proper circumference finite. The 27 x 3 coordinate
Killing rectangle for (untwisted) ¢o and x, has fixed width, and becomes less tall;
and the twist Q¢ must be enlarged so we have the same ¢g-rotation for a single loop
around the y-circle.

The rescaling of 3 and Q%Y is in some sense extra to the idea of ‘zooming in,’
as we can clearly see from the following. The primary horizontal card of the twisted
AdS5 orbifold had no CTCs when the condition

Q%) <1/

was satisfied. As 7 — oo, this is violated. So this scaling limit is more than a
zooming-in (or focusing) on a fixed global Lorentzian geometry. The interpretation
of the flat-space orbifold as a local description of physics, or as a connection from the
A =0 to A < 0 physics, as in [79], is made with heavy reservations.

The scaling limit results in

ds? = dy® + dR? + R (d92 +sin2 0(d + Q0dx)? — cos? O(dip + dexf) .
We can put this into a Weyl-type form! with p = Rsinf, 2 = Rcos6:

1
ds® = dx* + ﬁ(dp2 4+ d2?) 4 p*(do + Q%dx)* — 22 (dy + Q¥dx)>.

There are CTCs at 1+ (02%)2p? — (Q¥)?2? < 0. At z = 0 there is a horizon from /9y
we can put z — +i7 to go to the Milne wedges.

IThe strict 5d Weyl form would have p = (R/2)sin26, z = (R/2) cos 20, and is gotten from the

main text form by p + iz — (p+iz)?.
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We can perform KK reduction along the x-direction. This generalizes the result
of [61] to a twisted KK reduction of flat space, where the twist is not only a rotation
(parameter %) but also a boost (parameter QY).

Following the formulas in [61], we get

e MVE = 14 ()27 — ()22,

1
AT T

ds = (L4 (020 = (Q)23) 2 (dp? + p2dg? + d=2 — 22dy?
_opds -y
L+ (92 — (22

QP p2de — QY22 dy)),

This 4d metric is stationary in this patch; we can also put z — 47 to go past the
z = 0 Killing horizon to the Milne wedges.

Near p = 0, z = 0 (which means near the origin of the rotating 2-plane Iy,
and near the x-structure Killing horizon in the other plane Ilj), the field strength is
approximately

Fy ~20%p A pdp — 2Q¥dz A zdi.

This is a nonvanishing magnetic field pointing in the z-direction (spatial direction of
I1y) as well as an electric field also pointing in the z-direction.

The present solution in general has only 2 Killing vectors; the electromagnetic wave
propagates loosely along 1 + (29)%p? — (Q¥)22% = constant. This can be continued
to 1+ (Q9)2p? + (Q¥)%r2 = constant. This scaling limit solution is unphysical, since
CTCs occur; only the near-origin (small p, z) of the card diagram can be related to
the near-origin (small R) of the AdS; orbifold.

The solution with Q¥ = 0 is just Melvin [60]; this has 3 Killing vectors. The
solution with Q¢ = 0 was the cosmological scenario in [64], also called S-Melvin (or
Melvin on its side) in [51]; it also has 3 Killing vectors.

6.5 Thermodynamic stability and instanton nega-
tive modes

For the ‘bounce’ instanton to contribute to the semiclassical decay of the orbifold
spacetime, it must have a nonconformal negative mode [150]. (Conformal modes
are decoupled from the gauge-fixed effective action of Euclidean gravity; see [151]).
Explicitly finding such a mode is quite difficult, even for the Schwarzschild-flat space
instanton [151], where the mode defies an analytic solution. We instead will explore
a link between the existence of a such a mode and the thermodynamic stability of
the black hole.
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This analysis was done for the nonrotating case (Schwarzschild-AdS) in the canon-
ical ensemble in [149]. When a nonconformal negative mode is present, there is an
imaginary factor in Z(3) at 1-loop level. Upon inverse Laplace transform to the
(microcanonical) density of states N(E), a saddle-point calculation shows that N(F)
will be real precisely when the steepest descent is along a real displacement of [,
which is precisely when the Helmholtz free energy? Fy = E — T,S shows the system
is thermodynamically unstable (Cy < 0).

We extend this analysis to the rotating case. Take an ensemble of black holes at
constant temperature and angular velocity—these intensive quantities are calculated
at the instanton horizon and give us the twist and periodicity at infinity. The analog
is a gas at constant temperature and pressure. For stable equilibrium, the Gibbs free
energy at constant Tg, €2

Go(T, Q) = E — TyS — Qo J

must be a minimum.

One can analyze equilibrium conditions using any pair of variables, wherever those
variables are nonsingular. We demand that the 1st derivative of Gy vanishes, and that
the Hessian 2 x 2 matrix of 2nd derivatives is positive-definite. Since the 1st derivative
vanishes, the Hessian will transform like a symmetric covariant tensor at that point.
Its signature is thus invariant under nonsingular changes of variable.

The condition dGy = 0 tells us that 7" = Ty and Q = Qp (unless we have the
exceptional case where the Hessian is singular, i.e. marginal stability).

For the second derivatives, it is easier to use variables (T, J), because 902Gy /dJOT
vanishes at equilibrium, and the stability condition is easy to read as

0*Gy
oT1?

_9S

a5 1 092G,
o OT

=—0C;>0
. L T 9.J2

a0

= —| =—-—>0.
o 0J

O_JKJ

We have defined C; = (0E/0T),, the specific heat at constant .J, and
k= (1/J)(0J/0Q)r, the analog of the isothermal compressibility.

For more than one angular momentum parameter, using variables (T, J;, Js), the
Hessian is no longer diagonal, since 0°Gg/0.J20.J; = (0Q41/0.J2) 7.5, = (0Q2/0 1)1, 7
0. The condition for ‘compressibility’ is now more complicated.

Let us instead consider intensive variables (T',€2). In these variables, the Hessian

is then
as  oJ
aT  aT
Hess Gy = o5 oy |

0 90
which is symmetric. One positive eigenvalue is guaranteed by g—é > 0, which is the
same as Jk > 0 as before. Further defining o = (1/J)(0J/9T)q, Cq = T(0S/9T)q,

2This standard textbook construction [152], is to be contrasted with F' = E — T'S; it is Fy that
is minimized at stable equilibrium in a T' = T ensemble.
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and using Cq — C; = JT'a?/k, the determinantal condition
lC’QJ/{ > J20z2
T

gives us
CJ > 0.

This is the same condition as before.> The Hessian at equilibrium transforms as a
covariant rank 2 tensor, and hence the signature of the Hessian at equilibrium is an
invariant.

When comparing to the inverse Laplace transform method, below, we will change
to variables

F=p Q=p2  0y=0—(B)0, o= (1/B)0q.

The saddle-point function will be 5'F — Q'J — 'G where E and J are constants; the
linear terms will tell us £ and J in terms of their equilibrium values, but do not affect
the Hessian in this coordinate system. We have the following remarkable identity at
equilibrium:

_oE  0J
Hess[ﬁ’,Q’](—ﬁ’G):ﬁ’Hess[ﬁ’,Q’](Go):( ” fgj). (6.11)
T B B0

At equilibrium, Hess('E—Q'J — #'G)) = #'Hess(Gy) holds in any nonsingular coordi-
nate system. To be positive definite, we require Jx > 0 as usual from the lower-right
entry, and the determinant yields C; > 0.

For two angular momenta, we have

_0E oL aJ
o5’ o5’ Gleg

Hess|3, ](—0'G) = 'Hess[3, Q](Go) = | =322 120 1oh |  (512)
_10E 100 10J
B0 B O BN

Of course it is easier to evaluate the signature of G using variables T', Jy, Jo. The
Hessian is then

1 OF
wor O 0
o0 o0
o o | (6.13)
0 0o 0o
o0J1 0J2

3Tt is a common misconception that Cq > 0, or constant-pressure specific heat, is an eigenvalue
condition for thermodynamic stability in a constant-pressure ensemble. This is incorrect. Constant-
pressure ensembles do allow for constant-volume, variable pressure fluctuations, and these must be
stable.
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and at equilibrium we put 7' = Tg, 1 = (21)0, 22 = (Q22)o.
We will now invert the Laplace transforms to write the microcanonical density of
states in terms of the partition function,

Z(3,Q) = / dE e "F / dJ " N(E, J).
0 —00

Looking at the outer Laplace transform, in AdS the density of states grows slowly
enough that the Laplace transform in E should exist for all Re 8 > 0; we will thus
invert with a contour Re 3 = B for some B > 0. First, set ' = 3, Q' = (Q; then
inversion yields

00 , 1 B+ico ,
/ dJ e N(E,J) = — / dB' Ze”'E.
—0o0 2mi B—ioc0

The inverse Laplace transform proof [83] goes through for a transform defined over
—00 < J < o0, as long as N(E, J) has compact support in J for fixed E. Choosing

an arbitrary Re ' = W yields

1 W —ioco , 1 B+i00 ,
N(E,J) = — / dQVe ¥ — / dB' e’ E7(5 ., )3).

270 Jw tico 27T JB_ioo

The integrand is
exp(BE — Q' J — BG(8,Q'/3)),

where E' and J are just parameters.
Recall that G(3,92) has dG = (S/5%)d3 — J(3,9Q)dS2. Then the first-order condi-
tions relate the parameters £ and J to the expected thermodynamic functions:

0 / ! o
%(6}3 —QJ = pGB,2/B) =0
gives
E=G((3,Q2)+TS(B,Q)+QJ(5,Q),
and P
gives

J=J(3,9Q).

Hence we choose (B, W) so our contours reach the saddle point which depends on
(E,J). Parametrizing § = B + it, Q' = W + iu, we have a 2d real integral [ dtdu
expanded to second order about (f,u) = (0,0). The Hessian can be expanded about
principal axes. For simplicity we stick to the (4’,€) notation; for real convergent
saddle-point integration, we want this to be positive definite. By the identity (6.11),
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this Hessian is positive proportional to that for Gy.* Thus, each negative G eigen-
value will contribute a factor of ¢ to the saddle-point integration, cancelling a factor
1 in Z to yield a real N. We expect C'; > 0 to hold for large black holes in AdS with
small rotation parameters, whereas Jx > 0 for black holes and rings is more subtle.
When C; < 0, the saddle-point integration gives a factor of ¢ from which we infer
that Z is purely imaginary, hence the instanton has a negative nonconformal mode.

For multiple angular momenta, we can invert each finite-support Laplace trans-
form. The Hessian identity (6.12) has been shown to hold for n = 2 angular momenta,
and by symmetry it must hold for any n > 2.

6.6 Thermodynamic stability of Kerr-AdS;
The Kerr-AdSs black hole has

a(l+r3/1%) b(1+ 73 /1%)
=" p ¢ r2 b2
¥ T

3 b — 5

where r, satisfies
(r* +a?)(r* + b*) (1 +r?/1?) — 2M71* = 0.

We also have

1 1 1
)__7

T =k =71, (1+r2/1?
T k=re(l+ry/ )(ri+a2+ri+62 Ty

Komar integrals give us unambiguously

J_ﬂ'MCL _ wMb = _1_ 2/l2 :—1—b2/l2
e 9m2m ) b 9mem v —a e/t ==
fanpon Zpsa

and from [128] we have

TM (22, + 25, — Z,5)
4=2=2

—a—b

E =

It remains, and should be forthcoming from the aforementioned contributors, to
check the ‘isothermal compressibility’ conditions and specific heat,

0J, ) (OJZ- ) <8E>
—_— > 0, det > 0, — > 0.
(391 T Iy 0% ) ;. 1,

4One can more directly relate G’s Hessian to thermodynamic stability based on G(p, T, N) and
extensivity; see [153].
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A technique is to set

dE = FEydM + E,da + Eydb
AT = TydM + Tyda + Tydb
dJ; = JudM + Juda + Jydb
dQ = QndM + Qieda + Qupdb,

then for example we can check the specific heat by setting j; = VJ;/|VJi], E, =
VE — (VE-j)j, T, = VT — (VT - ;)ji, and check the sign of E| - T).

Our characterization of thermodynamic stability should be contrasted with that
in [154], where specific heat is computed at constant a, b. That quantity is not
physically relevant.

6.7 Decay channels

It may be that for a given twisted orbifold, there is more than one Kerr instanton
that asymptotes to that orbifold. The reason for this is that if we identify

(X, @, ) >~ (x + Bnog, ¢ + Q1 Bng + 2mng, ¢ + Qo fng + 21n4),

then putting ; — €; + 2wm; /3 give the same results for any integers m;. Equiva-
lently, K71 ~ k=1, + m;, as far as asymptotia are concerned.

Let us restrict to looking at b = 0 (or Qs = 0) solutions, where the algebra is
greatly simplified. We also assume M > 0. For the instantons or bubble-like solutions,
we must continue a — ia from the black hole formulas. Then (r3 — a®)(1 + 1% /1?) =

2M, so r is monotonically increasing in M. Also,

a

(1= i?;a;)’

k0, =

so absolute value of k71, is monotonically decreasing with M. But as M | 0,
k1Q, — sign(a). Thus —1 < k7'Q, < 1, which is the same bound as for A = 0 in
[61].

This means that for given x'€),, which is determined by the orbifold, there will
be a Kerr-AdSs instanton at that value of x and rotation parameter €2, or also one
at k£ and a shifted rotation Q, + . In the case k7', ~ 0, the unshifted instanton
dominates actionwise, and its 4d KK description is appropriate showing it as a dila-
tonic, expanding bubble. There is also the suppressed ‘shifted’ instanton with a large
value of a, which has a 4d KK description (reduced on the same untwisted circle, i.e.
with small Q = Q, £ k) as a pair of dilatonic extremal black holes accelerating in a
magnetic field. The dilatonic bubble singularity has been blown-up to a finite-sized
2-sphere with singularities at the north and south poles [61].
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For larger £~ '€, (meaning towards £1/2 in the —1/2 < x71Q, < 1/2 circle),
a KK description is not appropriate, because the KK circle is only small at radial
distances that are just as small.

The case b # 0 is harder to analyze. Even with orbifolds where 25 = 0, it could be
the case b # 0 instanton can serve to decay the spacetime. We think this is unlikely
and there will be one extra instanton by b-shifting for each nonzero €2,.

6.8 Summary and outlook

Via the counterterm method, one can calculate masses and renormalized actions
of the Kerr-AdS; bubble solutions. Solutions coming from M > 0 black holes had
negative bubble mass in the Schwarzschild case, and we expect that this will persist
here, at least for small rotation parameters. In the case where the bubble mass
is smaller than the zero mass of the AdSs twisted orbifold, and where there is a
thermodynamic instability, semiclassical decay can proceed spontaneously. With a
and b off, the bubble locus sealed the black hole singularity from the majority of the
spacetime. With a on, the black hole orbifold singularity remains and is accessible
from the majority of the spacetime—the expanding bubble does not seal it off. With
a and b on, the y-horizon is still accessible, and the singular CTC region for the
bubble is moved away from the y-horizon into the secondary stationary region. The
precise parameter regions for this decay are still forthcoming.

It is quite likely that similar decays could proceed to what were termed S-brane and
anti-bubble solutions in [41]. The new Kerr-AdSp instanton for odd D = 5,7,9,...
(from the anomalous S-brane with one turned off), is a good place to start. A proper
description of the ensuing radiation coming from mass loss, or a holographic descrip-
tion, are not imminent.

There is a long history of literature on black hole thermodynamics, instantons,
analytic continuation, and thermodynamic and dynamical instability. Recent interest
has been spurred by the AdS/CFT correspondence and the boundary theory. See
[155]-[183].
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