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Abstract

The need for providing accurate and reliable templates for detecting gravitational
waves from the LIGO and LISA gravity wave detectors has fueled the numerical rela-
tivity effort toward solving the binary black hole problem. The waveforms from these
simulations are vital in extending the mass reach of the ground based detectors to include
the intermediate mass black hole binaries (M > 50M)). The aim of this thesis is to
study some aspects of how the merger waveforms from a variety of initial configurations
look under the eyepiece of data analysis. We study waveforms from equal mass binary
black holes which are initially non-spinning, spinning without precession and spinning
with precession in quasi-circular orbits. The mode content for these waveforms is found
to behave within the expectation set by the post-newtonian theory. Also studied are
waveforms from a number of initially non-spinning, equal mass binaries in eccentric or-
bits. One of the results of the thesis investigation is that for intermediate mass black
hole binaries a quasi-circular non-spinning template may be effective in capturing low
and moderate eccentricity waveforms. The analysis can be useful in guiding the set up
of a detection template bank for observing mergers of intermediate mass binary black

holes with ground based detectors.
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Chapter 1

Introduction

About a century and a half ago, Maxwell’s equations of electromagnetism were
published. Their prediction of the existence of electromagnetic waves was verified by
hertz in 1886, a couple of decades after the prediction. Today over hundred years later,
this prediction has been instrumental in revolutionizing the modern world and it would
be hard to imagine a world or a communication system without a theoretical or empirical
understanding of electromagnetic waves.

About half a decade after Maxwell’s unification of the electric and magnetic fields,
Einstein was successful in creating a theory of gravity consistent with the relativity
principle, a.k.a equivalence principle. The verification of Einstein’s prediction of the
bending of starlight by Eddington and his team in 1919 was but a beginning in a series
of spectacular triumphs of general relativity in the experimental tests. However there
was one prediction which took slightly longer to verify, and even so, has only indirectly
been verified till date. This was the existence of gravitational radiation, predicted by
Einstein soon after arriving at his equations. It was only about sixty years later that
Hulse and Taylor measured the rate at which the orbital period of binary pulsars decays,
and showed it matched the expectation from the energy loss to gravitational radiation

to within 0.3%. [35]



The quest for a direct detection of gravitational waves, which was pursued for
many years by physicists such as Joseph Weber using bar detectors, has remained unsuc-
cessful. This is in part because gravity is a weak force, thirty-seven orders of magnitude
weaker than electromagnetism. The other factor that makes the gravitational radiation
weak is that unlike in electromagnetism, wherein the changes in electric dipole moment
source the radiation, the dipole moment in the gravitational case is momentum, which is
locally conserved. The analog of the magnetic dipole moment being the angular momen-
tum, which is another conserved quantity, the first dominant source of radiation turns
out to be quadrupolar. Owing to all these factors the potentially observable sources of
gravitational radiation tend to be astrophysical in nature and the strains they would

cause in detectors would be of the order of thousandths of nuclear diameter.

1.1 Gravitational Radiation, Sources and Detection

With the advances in interferometry, it was possible to imagine attaining mea-
surement accuracies which would be enough to detect the minuscule strains that astro-
physical sources would induce on ground-based detectors. The size of the ground based
detector constrains the sources of this radiation and how many of those are expected in
some astronomical volume accessible to the detector. It turns out that compact object
binaries consisting of neutron star-black hole or binary black holes or even supernovae
can be strong sources for LIGO. Merger rate estimates for such mergers indicate that
while the expected detection rate for initial LIGO is small, that for the advanced LIGO

could be as high as one event per week.
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The next question is to see how to look for gravitational waves in the detector
data stream. The foundations of gravitational wave astronomy for these gravitational
wave detectors was laid by [25, 30, 31]. For an unknown signal such as a supernova,
there are various statistical methods like excess power, MaxEnt etc, which drive the
burst searches over the LIGO data. On the other hand when the form of the signal is
known a-priori, the best method for extracting the signal from noise is that of matched
filtering. For stellar mass sources the inspiral part of the signal is well approximated by
the restricted post-newtonian approximation, which is believed to provide a waveform,
potentially up to the innermost stable circular orbit frequency. For sources of a higher
total mass, the final merger and ringdown become significant.

While most black holes formed out of stellar collapse are typically of tens of
solar masses, the existence of the so called intermediate mass black holes is a subject
of ongoing debate. There are suggestions from observations which are yet to be well-
established, that there may be several intermediate mass black holes (50 < M /M® <
400) in galactic clusters. Hierarchical merger scenarios of galaxy formation suggest that
the super massive black holes at the centers of galaxies can form by runaway mergers of
binaries formed in clusters and the subsequent mergers of galaxies.

If such intermediate mass binaries exist, the majority of gravitational wave sig-
nal from them will come from the last few orbits prior to their coalescence and the
subsequent ringdown. The frequency of the gravitational waves from a non-spinning or
non-precessing spinning binary increases monotonically, and hence the higher the mass

of the black hole, more relevant the merger part gets to the detection.
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To know the final state of the merger or also the exact time of coalescence of the
binary would require a solution of the full Einstein equations. Solving the trajectories and
extracting the waveforms for this coalescence of binary black holes became the challenge
for numerical relativity for over a decade, and only in the last couple of years there has

been a breakthrough in obtaining waveforms for the coalescence of the binaries.

1.2 The numerical relativity binary black hole waveforms

The numerical simulations of binary black holes need to be carried out via su-
percomputers and for a long time it was difficult to avoid the code from crashing. In
2005, Bruegmann et al [10] evolved the first orbit or so although the code crashed be-
fore merger. Soon after, Pretorius [4] was successful in evolving several orbits of the
binaries,approaching the problem from an entirely different method. This code was both
stable and demonstrated numerical convergence. Before the successful availability of
these waveforms, it was difficult to get an accurate and reliable estimate of the parame-
ters of the black hole produced upon coalescence of the binary starting from some initial
configuration. Although there were some attempts to make analytical estimates of the
final state from approaches such as the effective-one body approach[44], the results were
not accurate enough to provide reliable results for data analysis. The availability of
these waveforms from the last few orbits opens up several possibilities in gravitational
wave astronomy in the strong field, especially for the higher mass black holes. In fact
soon after Pretorius[46] there was a flurry of activity, [16, 23] in the numerical relativity
community in which several groups were suddenly able to evolve long and stable binary

black hole evolutions just by slightly modifying their original approach.



1.2.1 Parameter Space of numerical relativity simulations

The first numerical relativity simulations considered equal mass, non-spinning
black holes as this is the most symmetric situation, and hence easiest to simulate in terms
of computational resources required. In general, given two black holes, each could have a
separate spin magnitude and orientation, a non=unit mass ratio, and possibly an initial
eccentricity. Together this would mean eight parameters (1, aq, a9, 1,59, ¢). In an world
with infinite computing power at hand one would simply run the simulations for all these
parameters, locate the points in evolution up to which post-newtonian approximation is
valid as a function of each of these parameters, and then use the "hybrid” waveforms
that cover the ”complete” regime of inspiral, merger and ringdown for searching over the
gravitational wave detector data.

Of course in real life the resources are limited, and it is not clear that one needs
to run all these simulations in order to detect the final orbits of a generic binary black
hole. It might be that just a few of these waveforms encode enough information to serve
as a basis for example, in detecting a generic waveform. Although this sounds unlikely,
a related question that would need to be answered is what is a minimal set of initial
waveform parameters for numerical relativity that need to be run in order to ensure the
detection of a generic astrophysical merger?

The one parameter which is intrinsic to the black holes but not mentioned above
is the mass of the black holes. The reason why mass was left out was because the form
of the Einstein equations which are numerically evolved is chosen to be in a mass-scale

independent form. As a result all the variables including space and time co-ordinates
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can be accordingly re-scaled for systems of different masses, the number of cycles and
orbits being the invariants because the initial separations would also scale with mass.
The frequency at which the merger occurs is inversely proportional to the mass.
And the merger of stellar mass black holes occurs at frequencies higher than the sweet
spot of the sensitivity of the interferometer. The mass of the black holes for which the
merger occurs at the sweet spot of the interferometer and hence for which the numerical
relativity waveforms are most relevant for gravitational wave detection with ground
based detectors, is of the order of 50 — 200M,. For the advanced detectors this range
will increase but the qualitative dependence of the various data analysis quantities on the
intrinsic parameters will have similar trends for both advanced LIGO as well as LISA.
For ease of presentation and approach, we shall just consider the initial LIGO noise curve
in this thesis. The generalization to other noise profiles is straightforward. In the next

section we shall give an overview of the specific problems addressed in this thesis.

1.3 Numerical Relativity meets Data Analysis

Numerical relativity efforts will benefit from a priori knowledge of where best
to spend those resources to create an appropriate library of waveforms. Additionally,
the cost of doing data analysis for a large template bank with many parameters is
also computationally expensive. Knowledge of the sensitivity of the waveforms to the
parameters will guide efforts in data analysis and numerical relativity. As the library of
numerical relativity waveforms grows, we can determine how the waveforms will be best
employed in the search for gravitational waves and the characterization of their sources.

They may be used in conjunction with post-Newtonian waveforms through stitching,
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as templates for binary mergers, or to test the quality of template spaces built from
post-Newtonian and / or approximate waveforms.

In [43], a comparison of the closeness between current gravitational wave search
template banks and numerical relativity waveforms from non-spinning binary black holes
(BBHs) has been performed. The numerical relativity waveforms were used as target
signals against which the template banks currently in use by LIGO to search for inspiral
gravitational waves were tested. They found matches greater than 0.96 for many of the
analytic and approximate template families at 10 — 120M;,. In [1], a phenomenological
family of waveforms was proposed to model the coalescence of the BBHs using a hybrid
method that combines analytical and numerical relativity waveforms. They achieve

matches greater than 0.99 at 30M, — 130M,, for non-spinning BBHs.

1.4 The layout of the thesis

As we saw in the previous section, there are several initial parameters on which
the numerical relativity waveforms depend. The objective of this thesis is to study the
impact of these parameters on the application of these waveforms to gravitational wave
detection. A toy model study exploring possible issues at this interface, using ringdown
waveforms from the Zerilli code, which does not include any noise profile unlike in the
case with binary black hole waveforms are studied in chapter two. In chapter three we
develop the data analysis toolkit, mathematical formulae etc., that would be needed for
the rest of the thesis. One of the first issues that arises before we use these waveforms
for inferring their data analysis properties, is that of how accurate they need to be for

being used to matched filter a realistic signal from nature. These issues in the context of
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a LIGO noise profile and binary black holes from non-spinning as well as some spinning
anti-aligned and spinning quasi-circular configurations is the subject of chapter four.
As the observer’s inclination with respect to the orbital plane of the binary
changes, the mode content in the observed waveform changes. Is it enough to use the
dominant mode waveform that is used in setting up inspiral template banks for the
merger detection case? It turns out that the answer to this depends on the initial con-
figuration of the system. On the data analysis side, sometimes the distinction between
the so-called minimax match and the fully phase optimised match isnt clarified, whereas
the difference can be quite significant. We investigate these issues for non-spinning and
anti-aligned spin waveforms with different initial spin directions in the chapter five.
The waveforms used in the analysis for these cases are short, two to three cycles
long waveforms that were generated when the PennState code first became functional,
in early part of fall 2006. Longer waveforms became available sometime in 2007, with
which one could study other issues like matching to the post-Newtonian approximation
as well as in decreasing the lower mass limit up to which these templates would be useful
for data analysis. Using the initial data at larger separations, waveforms from binaries
in eccentric orbits were generated and they seemed to exhibit a weak dependence of
the final spin on the initial eccentricity, for eccentricities as large as 0.4. Owing to this
one could imagine being able to detect waveforms with non-zero eccentricity in the final
orbits using the quasi-circular merger waveforms that will be used in future searches.
This forms the subject of chapter six. In chapter seven we investigate how effective

the non-spinning, quasicircular templates are in detecting the spinning waveforms at
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different observer inclinations, as well as in detecting an optimally oriented eccentric

binary source. The conclusions are presented in chapter eight.
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Chapter 2

Analyzing Zerilli Waveforms:
A Toy Model

As a precursor to the analysis of numerical relativity waveforms from binary-
black-hole mergers, we use numerical ringdown templates generated by a Zerilli code at
several resolutions. The aim is to give a first exposure to the concepts of data analysis
as they might be applicable for numerical relativity waveforms. The work presented in
this chapter upholds this claim and further investigates the role that truncation errors
play in creating a template space of numerical waveforms and performing a parameter
estimation for a model problem.

Our model problem is that of a perturbed Schwarzschild black hole. The solu-
tion to the ringdown is well known in general relativistic perturbation theory, and has
been used to create data analysis search algorithms for the ringdown waveforms [40, 52].
We use a code written by Pablo Laguna that solves the spherically symmetric Zerilli
equation[60] using finite differencing techniques to produce waveforms that have numer-
ical errors of the same kind as those present in a fully three-dimensional BBH template
from numerical relativity. This model has the added advantage that it mimics the end-
result of a BBH merger, the ringdown of the final black hole modulo the spin parameter
which we have set to zero to keep the parameter space one-dimensional. The notations
in this chapter differ slightly from those used for the full numerical relativity calculations

that forms the majority of this thesis. Because the calculations in this chapter assume a
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white noise profile, they are only illustrative of the concepts and not directly applicable
to LIGO.

We characterize the numerical errors in our ringdown waveforms through the
matched filtering procedure and identify where differences from the analytic case arise.
The waveforms are dominated by truncation errors and the outer boundary is causally
disconnected from our domain, as is the case in the full 3D BBH code. The model has
the advantage that the code is computationally efficient and can be run for large number
of resolutions quickly.

Once we used the ringdown waveforms to create a template bank, we found that
the coverage over the parameter space was incomplete and would result in loss of events
due to the differences between the signal and template manifold caused by the numerical
errors. In studying the use of these templates to estimate the parameters of the signal,
we found a systematic bias in the estimation of the source parameters at the order of
a percent, which means the procedure identified the ”"wrong” mass. While these effects
are small, they may be magnified when using the more complicated numerical BBH
waveforms.

The In §2.1 we describe the definitions and formalism for both the data analysis
and numerical Zerilli templates that we use throughout this chapter. The efficiency of
the template and tiling is given in §2.2. The systematic bias in parameter estimation

due to numerical error is presented in §2.3. We summarize and conclude in §2.4.
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2.1 The numerical Zerilli waveforms and data analysis formalism

The ringdown of a black-hole spacetime may be detectable by ground-based de-
tectors as it occurs as the end result of a BBH collision. Like the inspiral of two black
holes which is well understood with post-Newtonian theory, the ringdown of a black hole
is well established by perturbation theory. The waveform depends on the internal pa-
rameters, the mass and spin of the final black hole, and its initial amplitude is set by the
energy radiated during the merger. Echeverria [28] gave an analytic expression for the
waveform assuming only the contributions of the dominant mode, £ = 2,m = 2. Using
this form, the ringdown waveform has been used in burst and inspiral searches [24, 40]
as well as a model for both elucidating the Fisher matrix formalism for estimating the
parameter errors due to instrument noise [29] and for different detection tiling algorithms
[13, 40].

The Zerilli problem is a good model problem for the BBH waveforms since we can
solve it numerically to generate waveforms for a large range of resolutions, a task that
is computationally exhausting for the BBH case. The dominant source of error in the

code is the truncation error, given by

w(t) = wy(t) + c(t)ArP, (2.1)

where w(t) the the exact solution to the discrete equation, c(t)ArP is the truncation
error, Ar is the spatial grid spacing, p is the order of the truncation error and c(t) is
a time dependent scaling independent of the grid spacing. The truncation error will

also be proportional to the square of the temporal spacing but this is dominated by the
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spatial step. The code we use is second-order accurate, p = 2, as shown in a convergence
plot, fig. (2.1). Fig. (2.1) plots the scaled differences between the code output for five
grid sizes, Ar/m = (1,1/2,1/4,1/8,1/16) where m is the mass of the black hole and we
use geometricized units where G = ¢ = 1; and, therefore, the code units are transformed

into seconds by multiplying by 5u seconds per solar mass.
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Fig. 2.1. There are three curves in this plot. They are ¥ (t,Ar = m) — ¢ (t,Ar =
m/2)(gray, dot dashed), 4(¢(t,Ar = m/4) — (t,Ar = m/8))(black, dotted), and
16(¢(t, Ar = m/8) — 1 (t, Ar = m/16))(black, dashed). This demonstrates second order
convergence for the series of resolutions that we will be using in the analysis. The coars-
est resolution shows larger percentage errors toward the end of the simulation as seen

from the gray curve.

The gray line indicates the coarsest resolution used which has a larger error at

the end of the simulation. The initial perturbation on the Schwarzschild background
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was given by an ingoing Gaussian pulse, ¢¥(t = 0,7) = e_(T_lom)z/(?’m)2. We send in
the dominant mode for a Schwarzschild black hole, the ¢ = 2 mode. A typical ringdown
waveform generated using the Zerilli code stretches over almost five orders of magnitude,
about 8 e-folding times.

There are a couple of complications that arise when using ringdown templates.
In order to isolate the ringdown from the initial pulse, we truncate the time series, v,
at an appropriate time we call ¢.,;. This is similar to the problem of isolating the
ringdown that Flanagan and Hughes point out [30, 31]. Here we use the Echeverria-Finn
convention [28, 29, 21] and integrate over the t > t.,; region ignoring ¢t < t.,;. In the
BBH waveforms, we may also choose to cut the waveform to remove the initial pulse
contamination; however, that cut may be made at a low amplitude. In addition, the
phase of the template is fixed by the initial data and, unlike the case for post-Newtonian
templates, is not a free parameter that can be maximized over.

The output of the detector is the signal, s(¢), and it is related to the noise of the
detector, n(t), and the gravitational waveform, h(t), such that s(t) = n(t) + h(t). The
scalar product between two functions hq(t) and hg(t) which are nonzero over some finite

time duration 7" can be defined as

T
(hylh) = /0 b (D ho(t)dt, (22)
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where ||h|| = /(h|h). Note this definition is equivalent to the standard Fourier domain

definition used in the literature

oo KX (F)h
(h1lhg) = 4R€/O %;)(f)df,

for Sy, (f) = 1, or white noise, by Parseval’s identity. We chose to remain in the time
domain to avoid the issues that arise in Fourier representation of ringdown signals[30]
since these issues will not contribute to our understanding of the role of numerical errors
in the analysis. We focus on the discretization of template parameters and chose no
noise for simplicity which results in s(t) = w(t). This leads to the absence of a mass
scale: ie. the results of the overlaps scale with the total mass.

Just for this chapter, the template parameters are the mass m of the black holes
and the numerical errors denoted by e such that A = [m, €] and p = 7, where 7 is the
time of arrival of the signal or the relative time lag between the signal and the template.
When calculating the match, the maximization over 7 is carried out for a template of
arbitrary but fixed length smaller than the signal and, in practice, would be only as
accurate as the smallest time step used numerically. We analyze the case of a family of
templates provided by numerical relativity for detection that are given by hT(t; M €),
where T' denotes the template. The templates are related to the exact waveform, h(t, m)
by
(2.3)

w(t;m, €) = w, (t; mgy) + e5€w(t; m

0 )

where ¢ = Ar? and 5€w(t) is an error function that is independent of € and equivalent to

c¢(t) in eqn.(2.1) but is renamed 5€w(t) for notational convenience when we expand the



16
match. This equation is just Richardson’s ansatz [47], truncated to the leading order of
our finite differencing scheme, which holds for any solution of a centered finite differencing
approximation with a uniform mesh. We will further assume that the waveform that
nature produces is represented by the solution, h(t;m) such that h(t) = w(t) and that

the Zerilli function is the waveform template, w(t, M, €) = (¢, mop, €).

2.2 Detection

2.2.1 The Match and Waveform Resolution

A statistic often used to compare templates is the normalized ambiguity function,
also called the match (defined in eqn.(2.7) in [41] and in [27]). The match is a measure of
how close a signal with given values of intrinsic parameters is to a template with different
ones. We follow the notation of [41] and set A to represent the intrinsic parameters like
the mass of the black hole and g to represent the extrinsic parameters such as sky
location and time of arrival that do not affect the dynamics of the waveform. The match
between two waveforms of slightly different parameters, hl (t; /\1, ,ul) and h2 (t; /\2, ,u2),

is defined as

M(h, hy) = (2.4)

(ho (E A 1 )by (B Ay, 1))
o AR Ay By )

ity T (A I Ty (6 A prg) |

Numerically computed waveforms will likely not have an analytic form in terms of
their parameters, A\. We can, however, qualitatively investigate how the templates vary

with small changes in their parameters, ¢ and m, for the simple case of the ringdown
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templates. The match between a signal of a template, w(t;m,, = m,€) and a signal of a

T

slightly different mass, w(t; m + dm) is given by

Mh,w] = M(m,dm,e) (2.5)

(w(t + 7;m + dm)|w(t;m,€))
[[(t 4 75m 4 dm)|| |Jw(t;m, €|

= mnax
T

Let us express the full variation of the match given in eqn.(2.5) between a signal
of mass parameter m + dm and a template of parameters (m,e) as a function of the
small perturbations around dm = 0 and € = 0 up to third order accuracy. In order to
do so, first we rewrite the template in terms of the signal using eqn.(2.3) and introduce

the variable (5mh, where (5mh = (h(t;m + dm) — h(t;m))/dm. We find that

M = 1-EA —am?a (2.6)
€€ mm

<5€h]h> (6mh]h>
+ 2(17/meAmE (1 — €7<h|h> — dmi(hm) > )

where the functions Aab for a,b running over m, € are given as

ab 9

(hlh) (h|h)?

1 <(6ah]6bh> (6_hlh) (6bh\h>> | o

and the notation h = h(t;m) was used for brevity. Note that the 5ah terms corre-
spond to the finite difference approximations to the partial derivative with respect to

the parameter a, and the terms in the expansion cannot be analytically calculated.
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We consider two cases for the dependence on the match with resolution of the

waveforms, one where we keep the mass of the template fixed and one in which we allow

it to vary. The mass of the template being set equal to the mass of the signal (dm = 0)

results in a special case of the match in eqn. (2.7) called the faithfulness, F, of the
templates [27] and is given by

F=1-A . (2.8)
€c

The faithfulness is used to measure the loss of signal-to-noise ratio due to numerical
errors in a template by expressing the numerical error as a perturbation of the template,
although we are not including the noise as part of the analysis. The faithfulness is related

to the accuracy criterion of Flanagan and Hughes (eqn. (8.6) in [31]) by

We shall see in the following sections how the various terms in the expansion can heuris-
tically explain the variation of the numerically calculated match with the parameters of
the various templates.

The templates are generated by solving the Zerilli equation for a series of resolu-

i—10)/2

tions Ar/m = 2 i€ {0,2,..10}.
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Fig. 2.2. The faithfulness, F, decreases as the grid size increases. Note the actual values

of F are very close to one, even for the coarsest resolutions of Ar/ mo = 1.

Fig. (2.2) plots F versus Ar/mT. We see that the faithfulness decreases with
increasing numerical error, as expected, but remains close to one even at the least resolved
case. This verifies the recent findings of the BBH waveforms [53, 18]. The templates, w,
are numerical and cannot be expanded around h analytically; however, the trend in the
figure can be seen heuristically from eqn. (2.8), where we note that 62 = Ar4 as we have
second order convergence. The term Aee is the fractional loss of the signal to noise ratio
due to the numerical error, defined by eqn. (2.7). For this Zerilli model, the numerical
errors seem not to be a significant factor for detection if we only use the faithfulness
statistic. The faithfulness, however, characterizes the behavior of the templates at just

one point in the parameter space whereas quantities such as the match are defined in
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the neighborhood and more strongly reflect the presence of the numerical error as we see

in the following subsection.

2.2.2 The Metric and the Template Space

In the previous subsection, we considered how the inefficiency of a single template
in spanning the parameter space varies with resolution. The match gives the relative
variation of the distance between points on the manifold, denoted by M/[h,w]. The
template w and the signal h will, at best, lie on different manifolds that coincide as € ap-
proaches zero, which assumes that the exact solution to the discrete equation represents
nature’s signal. Since we will not, in general, know the signal, we need a measure for
laying down templates of various parameters on a grid in order to make a detection. This
leads to a subcase of the match given by 1 — M[w,w] known as the metric, G [41, 42].
The metric is a measure of the closeness of the templates of a given € to each other and
is written explicitly as

(w(t;m + dm, €)|w(t;m,e€))

G=1- .
[lw(t;m + dm, e)|| ||w(t; m, )|

(2.9)

The metric is used to set up a template grid for detection and in §2.2.2 where we show
how the difference between the Glw, w| and M[h, w] can lead to a loss in detected event
rate.

The metric in the template space is specified by a minimum value for the fitting
factor between the templates and the match if phase optimisation is ignored. First we

evaluate G, in the neighborhood of a template at a single resolution and then we will use
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G to lay the next template at a different value of m. Since there is no intrinsic mass scale
in the analysis, it is sufficient to lay two templates to tile the space. The generalization
to N-templates is straight forward. When evaluating the metric, it is assumed that the

signal is within the template manifold, i.e. h = w.

0.98
0.9 0.95 1 1.05 11

dm

Fig. 2.3.  The solid curve indicates the match M[w(t;m,€),w(t;m,€)] =1 — G of the
templates of mass, m, with the base template of mass m=1. Both are constructed from
the coarsest resolution Ar/m = 1. The dotted curve is the match of the base template
with the signal h(m). Note for high thresholds there is a difference between the two
in terms of the tiling area. Also the peak match is significantly different from unity,

indicating the less than perfect effectualness of the numerical base template.

Fig. (2.3) shows how 1 — G and M vary with dm for the coarsest resolution,
Ar/m = 1. The difference between 1 — G and M will indicate potential loss in events

due to the tiling. To understand fig. (2.3) qualitatively, we expand the expression for
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the metric in terms of dm and € to second order as follows:

_ (A ol A (0 hlh)
g = dm mm+ €\ e (h|h)

(hlo 5 h(hlh)
e >> (2.10)

This equation is very similar to the expanded match between h and w, see eqn. (2.7).
The term in eqn. (2.7) that is second order in € and first order in dm does not appear
here because both the templates lie in the same submanifold over which the metric is
defined, and hence this is a "true” metric. In addition, dm = 0 is an extremum of
eqn. (2.10) unlike for eqn. (2.7). The effects of the numerical error now occur at higher
order as we can see in the coefficient of dm2. The numerical error again tends to reduce
the span or the width of the parabolas, thus requiring a greater number of templates at
lower accuracy to span the area.

The solid curves in fig. (2.4) indicate the template placement for two templates,

one of m, = 1 and the other m_ = 1.15 such that for any template of mass, m

< <
1 9 Sm=

1
m,, 1—G > 0.99. If we were to have a signal, h(m), that signal would have a match
with the two base templates given by the dotted curve. Because of the numerical errors
in the templates, there is an unanticipated hole in the parameter space, given by the

gray line in fig. (2.4), where M < 0.99 and signals in the corresponding parameter range

would not be detected.
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= 099

0.985

0.15

Fig. 2.4. The solid curves indicate the metric match between templates of the same
numerical accuracy of Ar/ m, = 1. The two solid curves are for different base templates,
one for m, = 1 and one for m, = 1.15, chosen so that the threshold of 0.99 is crossed for
all templates in between. The dotted curves indicate the match of these base templates
with the exact signal h. In the highlighted region, M falls below the threshold and so
the signals having their parameters in this region would not be detected. This leaves a

hole in the signal parameter space spanned by the tiling not anticipated by the tiling

scheme.

We plot the fraction of events missed by varying the threshold for two cases of

low resolution, Ar/ml =1 and 0.5 in fig. (2.5).
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Fig. 2.5. The dotted line is the fraction of events missed by the template which tiles
the parameter space without redundancy, for the coarsest resolution of Ar/ m, = 1. For
thresholds higher than 0.995, the loss increases monotonically up to 50% at a threshold
of 0.9975, which is not shown here. For comparison, the solid line shows the loss for a

more resolved case of Ar/ m, = 0.5.

The fraction of events lost is purely due to the numerical error in the template.
For every resolution, there is a critical threshold above which the holes will appear. This
implies that the choice of the threshold determines the numerical accuracy needed.

In order to make a detection, we first need to create a template bank out of our
Zerilli waveforms. In general, one would like to tile the parameter space for a given
threshold with the minimum number of templates within an acceptable loss that will
depend on the minimal match. When tiling a two-dimensional parameter space with
templates, some events are lost, although the fractional loss will depend on the tiling

scheme [13]. For the case of a one-dimensional parameter space, however, if the exact
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form of the signal is known, the tiling can be done without loss [48]. We find that
some loss occurs even in a one-dimensional parameter space when tiled with templates
containing numerical error.

The holes in the parameter space depend on the choice of tiling scheme. Avoiding
the holes simply requires a tiling scheme that allows for overlapping spans of adjacent
templates. For one-dimensional tiling this would not have been expected and arises from

the fact that the errors cause the template not to lie on the signal manifold.

2.2.3 Efficiency of a Given Template in Spanning the Signal Parameters

The difference between the span of a low and high resolution template can be
interpreted as the loss in the number of events due to its finite numerical accuracy
assuming a uniform distribution of signal across the parameter space. This can also be

called the inefficiency, x, of the template. This inefficiency can be written as

X(M =1- Span(./\/lth, €)/Span(M,, ,e =0) (2.11)

th€) th’

where M ih indicates a threshold match. The variation of the Span with € is seen in
fig. (2.8) for three values of Mth' Fig. (2.6) plots the x versus grid size for a series of

match thresholds.
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Fig. 2.6. The template inefficiency percentage in spanning the signal parameter space
is plotted as a function of the grid size in the figure, for various thresholds. The solid
line is for a threshold match of 0.995, dotted line for 0.99 and the dashed line for 0.98.

The inefficiency increases as the resolution decreases or the threshold increases.

Fig. (2.6) indicates that for sufficiently fine grids the inefficiency is negligible;
but for coarser grids and higher thresholds, the inefficiency is appreciably higher. Low
resolution templates serve well for detection at low thresholds, but for high thresholds
we may need more accurate templates. This conclusion will depend on the nature of the

numerical errors of the true BBH waveform.

2.3 DMass Bias

Now we examine the match for a given set of templates and signal for variations
of both variables, dm and e¢. The templates span ¢ while their mass is kept fixed,

w(t,mT = 1,¢), and the signals span the mass, h(t,m). First we explore the variation
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of M with dm = (m —m,,) for different resolutions in fig. (2.7). Then we determine the

7)

variation of the detection thresholds with numerical errors using contours of the match

in fig. (2.8).
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Fig. 2.7. The plot above shows the variation of the match M with dm/ m (fractional
mass difference between signal and template) for different grid sizes. The shift in the

parabolas indicates event loss as well as the bias in the span over the mass parameter.
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Fig. 2.8. The plot above shows the contours of the match with dm/ m (fractional mass
difference between signal and template) on x axis for different grid sizes (y axis). t=The
contours are of match values from outside to inside 0.99, 0.995, and 0.997. The width of
a contour of a certain match value denotes the span of the template in the signal space
for that match threshold. In other words this is the signal parameter space covered by
the template. The span decreases with resolution as you go down the y axis and the
center of the span is biased away from zero due to the numerical error. This indicates

that a low resolution template would be inefficient in detecting low frequency signals.

Fig. (2.7) shows that the variation of the match versus dm for various grid sizes,
Ar, is almost parabolic. The shape of the curves is dominated by the dependence on dm

and not as much on €. There is an effect on the shape due to numerical errors, but this
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is only significant at high thresholds, which is seen more clearly in fig. (2.8). In fig. (2.8),
the x-axis is m, the y-axis is Ar and the contours are of match values from outside to
inside 0.99, 0.995, and 0.997. The span for a template at a given resolution and threshold
value is the width of the corresponding contour. For example, for a template of grid size
0.25 and a match threshold of 0.99, the span is 1.08 < m < 0.92. All the signals within
that span will be detected for a threshold of 0.99.

The key features in the two plots are summarized in the following list.

e The peak of the parabolas move down as resolution decreases indicating a decrease

in the maximum match achievable: the effectualness.

e The bias in the span is indicated by the drift in the parabolas of coarser resolution
away from the base template. The base template is the the template in which

m = m,, = 1. The contours show that this bias is more pronounced for higher

T
thresholds than lower ones. The reduction in span can be interpreted as a fractional

loss in the signal or inefficiency of the template in spanning the signal parameter

space. We discuss this further in §2.2.2.

e The tendency of the parabolas to drift toward higher mass (lower frequency) causes
an overall effect of numerical error to underestimate the mass (overestimate the

frequency) of the signal.

e The width of the parabolas decrease slightly with decreasing resolution, the con-
tour plot again indicates that this is more notably at high thresholds. This has

implications for tiling, discussed in §2.2.2.
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Although these graphs are constructed through numerical signals and templates, the
bulk features can still be understood qualitatively using the functional form given in
eqn.(2.7). The term in eqn. (2.7) that is bilinear in dm and e causes the bias in span
of the template while the presence of € in the coefficient of the dm? term causes the
reduction in the span for lower accuracy(higher €) templates. The Amm term in the
coefficient of dm? is responsible for the near parabolic shape of the curves in fig. (2.7).
The reduction and bias in the span causes some inefficiency in detection.

In the event of a detection one would want to extract the parameters of the
source from the waveform. We evaluate the effectiveness of the templates in parameter
estimation and the dependency on grid size. A measure of this effectiveness can be
obtained by maximizing the match between a given signal and template by varying

parameters. This measure is called effectualness [27] and is given by
Ee) = mﬁxj\/l(n = mT/m, €). (2.12)

Note that we are now using templates of different mass and keeping the parameters of the
signal fixed. The effectualness decreases with increasing grid spacing as seen in fig. (2.9).

The numerical error distorts the template space causing the template that gives
the maximum match to have different parameters than that of the signal. The difference
between the values of the parameters for the most effectual template and that of the
signal is a systematic error, or bias, in estimating the parameters. Fig. (2.9) also shows
that the parameter estimation biases can be significant (of the order of a percent) without

significant effect on the effectualness.
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Fig. 2.9. The dotted curve indicates the variation of the effectualness with the grid size
of the numerical simulation. The solid curve is the bias in the estimation of the mass
in the signal due to the numerical error in the template. As the grid size increases, the

effectualness of the template decreases and the bias in estimating the mass increases.

Effectualness is inversely proportional to the event loss. A larger effectualness
implies that fewer events are missed in detection. As seen in fig. (2.9), the effectualness
decreases with increasing grid size. This means that, for the coarsest resolution used,
there can be a systematic bias of about 1.5% in estimating the mass of the black hole

even without instrument noise.
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2.4 Discussion and Directions

We study the effects of numerical error, namely the truncation error associated
with finite differencing, on aspects of detection and characterization of the gravitational-
wave signal. We generate black-hole ringdown templates numerically by solving the
Zerilli equation. While the ringdown alone can be modeled by analytic fits, we use the
numerical model to set the stage for future studies involving the necessarily numerical
templates provided by numerical relativity for the BBH coalescence. These numeri-
cal Zerilli templates are analyzed for detection, tiling and parameter estimation using
matched filtering.

The results of the paper are summarized as follows:

e Even for the coarsest resolution used in the study, the faithfulness F and effec-
tualness £ of the templates in detecting the signals are greater than 0.998. This
suggests that, in this model, the numerical errors will not have significant impact

on detection.

e We use the numerical templates to tile the parameter space such that no event
would be lost if the templates were identical to the signal. Because of the nu-
merical errors in the templates, the signal is not in the template manifold and we
have unanticipated holes in the parameter space. For every resolution, there is a
critical threshold above which the holes appear. These holes can be avoided by

implementing a scheme that over-populates the tiling space.
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e We find that the effect of numerical error is to induce a bias in the parameter
estimation. This can be as great as 1.5% for the coarsest resolution. It is likely

that this bias will carry over to the binary black hole case.

In this preliminary study, we have found that the mismatch and the bias induced
by numerical errors is significant only for high thresholds. These numbers may be larger
for the BBH merger waveforms for several reasons. In contrast to the BBH codes, the
Zerilli code is one-dimensional and allows us to isolate the truncation errors. The largest
grid sizes used in the Zerilli case are similar to those used in the BBH codes in the region
where gravitational waves are extracted. We expect the trends discussed here to carry
over to the BBH case; however, the phase errors will likely be more of a concern than
truncation errors. This will also become more crucial as increasing numbers of orbits are
computed. Future work will include the analysis for the BBH case and the inclusion of

instrumental noise profiles.
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Chapter 3

Formalism for data analysis of numerical waveforms

The aim of this chapter is to give an overview of the waveforms being studied as
well as the mathematical formulae etc. which will be used for the calculations in further

chapters.

3.1 The waveforms, numerical relativity considerations

The waveforms were extracted from the numerical evolution of the spacetime in
terms of the Newman-Penrose scalar, ¥ 4(t, x,y, z), which is expanded into angular modes
via _2Y£m(9, ¢), the spin-weighted spherical harmonics, by extraction on a sphere. The
dominant mode for the quasi-circular orbits is the quadrupole mode (¢ = 2, |m| = 2). The
angles # and ¢ are given by the spin weighted s = —2, spherical harmonics, _2Y£m(9, ?),
which correspond to the inclination and azimuthal angles between the source and detector
in the source frame. Our waveforms are then parametrized by their total mass, the initial
spins of the black holes, a = J/M 2, the angle of the spins with the orbit, ¢ and the
inclination and azimuthal angles, 8 and ¢. We will only consider black holes of equal
mass, M1 = M2 = M. When 6 = 0, the observer is directly above the orbital plane of
the binary and sees primarily the £ = m = 2 mode. As 6 increases, the waveforms are

a mixture of the non-zero modes which are all the modes we have extracted from the

code, £ < 4, except those modes that have zero amplitude within numerical error. Due
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to the trend of the spectral amplitudes we expect the higher order multiples to contain
less than 1% of the signal. This will clearly change as more complicated waveforms are

investigated than we study here.

3.1.1 The non precessing and precessing spinning waveforms

We study three sets of waveforms both the result of evolutions conducted by the
PSU numerical relativity group. What we call the A-series was published in [33] and
involves black holes of spins that are initially of equal-magnitude and anti-aligned, the
spin axis is aligned with the axis of the orbital angular momentum. The initial black-hole
spins covered the set a = 0.0,0.2,0.4,0.6,0.8.

The B-series was published in [34] and generalizes the A-series with variation of
the initial angle, 9, at a fixed magnitude of spins, a = 0.6. When ¥ = 0, we recover
the A-series. When ¢ = /2, the spin-directions lie in the plane of the orbit and are in
the“superkick” [32] configuration in which the maximum gravitational recoil from the
BBH mergers has been found. In [34], it was found that despite the precession inherent
in B-series, the black holes arrived at the plunge with the same entrance angle (see Fig.8
in [34]); and, therefore, in the cases we investigate, the initial and entrance angles are
the same.

Since these waveforms were originally produced to study the gravitational recoil
imparted to the final black hole after an asymmetric collision, only two to three orbits
were evolved (the merger phase dominates the recoil). The number of orbits is set by the
initial orbital frequency for a given total mass. In order to place the numerical waveforms

firmly in the frequency band of the detector, we use the initial LIGO noise curve and we
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only investigate masses larger than 50M o when calculating matches between waveforms.
The total mass sets the frequency at which the signal enters the band. For example,
the cutoff frequency for a binary system of 50M® is 0.02/M or approximately 80Hz and

about 40Hz for 100M o

3.1.2 Non-spinning, eccentric binaries: the E-series

The waveforms from the E-series, start with initial data set to start the waveforms
at much lower orbital frequency and the nearly zero eccentricity run in this case has
nearly 16 cycles compared to the short waveforms for the spinning case. As a result one
can take these waveforms as a realistic signal with the lower frequency cut off being at
40 Hz for initial LIGO, which is the case we are considering. The entire waveform is
”in-band” as a result.

It is important to keep in mind that the eccentricities we quote (and we use them
also to label the models) are to be taken only as a guide to the eccentricity in the initial
data, as the post-Newtonian (PN) expressions used do not include radiation reaction,
and the PN parameters are in a different coordinate system to the puncture initial data.
The initial eccentricity spans over e = 0,0.05,0.1,0.15,0.2,0.3,0.4,0.5,0.6,0.7,0.8.

The numerical simulations and results in this work were obtained with the same
infrastructure used in our previous BBH studies (see Ref. [53] for full details). We
have evolved the circular model at three different resolutions (finest grid spacings of
M/38.7, M/51.6 and M/64.5). We obtain approximately fourth order convergence in
the total energy and angular momentum radiated, consistent with the designed 4th

order accuracy.
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3.2 Data Analysis formulae

Our numerical waveforms are calculated during evolution in terms of the Newman-

Penrose ¥ 4 at a radius of extraction r using
rm¥,(t,7) = ZZ O ) oY, (6,6), (3.1)
m

and r is the extraction radius. The relationship between ¥ 4 at future null infinity and the
actual amplitude of the gravitational wave, h(t), is given in terms of the two polarizations

of the gravitational waves, h+ (t) and h., (t), as

() = 5 (b, (1) ik (1)), (3.2)

which will be approximately correct due to the finite extraction radius. To carry out the
matched filtering analysis, we compute the Fourier transform of the quantities h +(t) and
h, (t) called l~z+( f) and ilx (f) respectively. These transformed quantities are computed

directly from the Fourier transform of the real part of ¥ 4 such that

h (f) = FRe(W,))(f)/(=4x"f7). (3-3)

This avoids issues regarding integration constants that arise from the time domain in-
tegration of ¥ 4 [20]. Our initial data contains gravitational radiation which does not
correspond to that present in an astrophysical situation. This radiates away and is visi-

ble in the waveform as an initial data pulse. We remove this pulse from each waveform
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by removing the initial pulse from the time series of ¥ 4 where the pulse is distinct from
the ramp up of gravitational wave amplitude. This does introduce a small error and
ambiguity in where exactly to cut the waveform; however, the effect on the match of
cutting off the initial data is smaller than the effect of the numerical error. Alterna-
tively, leaving the initial data pulse in the waveform only adds noise to the spectrum
and does not qualitatively change the results.

Our analysis of the match of the numerical relativity waveforms will follow along
the lines of the matched filtering procedure for detecting gravitational waves. That is,
given two time domain waveforms hl(t) and h2(t), the scalar or inner product between

these two functions is defined as

(hlhy) = 4Re / T (3.4)

where the domain [f . | f is determined by the detector bandwidth and }N‘L( f) stands

min Ina,X]
for the Fourier transform of the respective time series. § h( f) denotes the noise spectrum
for which we use the initial LIGO noise curve. The fact that our numerical waveforms
only contain a few orbits before merger means that they do not span the entire LIGO
frequency band. The initial orbital frequency of these runs varies depending on the value
of the spin between approximately 0.016/m and 0.024/m. The most stringent lower limit
on fmin would be 0.024/m. We impose the condition that the signal-to-noise ratio would
be coming entirely from the domain spanned by our numerical waveforms such that fmin

is calculated for each mass of the template. This fixes the lowest mass for which the

templates could be useful to 50M o The maximum signal-to-noise ratio p obtained in
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the case when the source and template waveforms match exactly, is given by

The maximum signal-to-noise ratio p contained in each separate spherical har-

monic mode of the waveform hlm( f), is given by

3.2.1 The phase optimized matches

The match statistic [41] measures the loss of the signal-to-noise ratio due to the
template not being the same as the signal. It is properly defined as the overlap between
the signal and the template maximized over all the intrinsic parameters, however, we
will use it as a comparison measure between two templates h1 and h2. There are two

extrinsic parameters: the time of arrival of the signal, ¢, and the initial phase of the

07

orbit when it enters the LIGO band, ®. First, consider the maximized overlap between
templates defined with only maximization over time given by

@)

mm[hl, h2] = n%gux O[h17 h2] (3.7)

Olh,,h)] = Uy lhy) .
b2 (hy ) (hylhy)
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In Eq. (3.7), the maximization is to be understood as the maximum overlap between h1
and h,, obtained by shifting the template in time, i.e. h(t) — h(t + to) leading to the

numerator being written in frequency domain as

RN
max (h. |h )zmaX4Re/ max
to 12 b fos S,(f)

min

df . (3.9)

The Fourier transform is replaced by a discrete fast Fourier transform, transforming the
integral into a discrete sum. When computing the match without phase optimization,
we will typically compute the match of the templates using only A I

We also compute the match with an optimization over the phase, ® of the template

in addition to tO' A waveform of arbitrary initial phase ® is written as

ﬁ(f):h+(f)cosfl>+l~lx(f)sin<1>. (3.10)

Given an arbitrary waveform, i~11, the phase optimization over the template, i~12, can be

carried out using the normalized templates e, =h | where 4 runs over
Y

=+, X z'+,></th'+,><‘
1,2. In reference to the match we will always be referring to frequency domain templates

and for ease of notation we shall refer to & as h in the match formulae. The typical match

[39] is given by

Mtyp Hllfix %E;XO[hH" h2]

Q

2 2
n%sx \/O[el+,e2+] + O[el+,e2x] , (3.11)
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where we have assumed that e, and e . are nearly orthogonal, i.e. ( ~ 0.

24 P €y leg, )

This approximation is valid only for angles near (6 = 0, ¢ = 0) where the contribution
from the modes other than ¢ = |m| = 2 is negligible in comparison to the numerical
errors. For a general waveform at nonzero 6 and ¢, the overlap of the corresponding h n
and h>< is of the order of a few percent. In our spinning waveforms, we find a maximum
deviation from orthogonality of ~ 3% at an angle that approaches 7/2. In order to avoid
uncertainties in the matches at large angles, we construct an orthonormal waveform basis
as done by [49, 39] and outlined below.

Any arbitrary polarization other than (4, x) can be expressed as a linear combi-
nation of these linearly independent basis vectors. The phase optimization of the match
can then be done in terms of the new orthonormal basis vectors, one of which we choose

to be €L and the other e, given as

2.—1/2

) (3.12)

€L (ez’x - ei+<ez‘+’eix>) (1—(e; le

One can see that (el. +|e = 0 by construction. Given such orthonormalized basis

iJ_>
vectors for two sets of parameters ¢ = 1,2, we can calculate the upper and lower bounds
on the phase optimized match [27].

In this new orthonormal basis, we rewrite the typical match from Eq. (3.11) by
matching the + polarization of one template while optimizing over the phase of the other.
This mimics the situation in which one of the waveforms acts as the template and can

be maximized over its phase, ®_, while keeping the phase of the second template, <I>1,

27
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fixed, as follows

= max max O[h1+’h2]

typ t
= max,/Ole, e, ]2+ 0[e, e, 12 (3.13)
i 1+ %2+ 1+ %21

In general, the phase of the signal could take any value, and one would like to know
the best and worst possible values of the match. The expression for the best match (the

upper bound) is given by [27]

M, o = Hllff)lX %zix n%axO[hl,h2] (3.14)
1 1
A+B A-B\?2 222
= max + +C
tO 2 2

in which the phases of each template are optimized. The minimaz match is given by
the case when one maximizes the phase of one of the templates but minimizes over the
other. This is to mimic the worst case scenario when the signal phase is such that it

gives lower matches even when maximized over the template phase, given by [27]

- = maxminmaxOlh,,h,] (3.15)
minimax t P 172
0 2 1
1 1
A+ B A-B\2  _2]2|2
= max — +C
t 2 2
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and for both cases the functionals A, B, C' are written in terms of the ortho-normal basis

functions (eH_, eu_) and (62+, eQJ_) corresponding to the two templates being compared
B P P
A= legyleyrH e ey )
B = 2 2

(e yleg )" +{eg leg) )

Q
|

+

(g leg ) (e leg )t (e leg ) eg leg, 0

Note the symmetry of the formulae upon interchange of the two templates which
arises from the fact that only the relative phase between the two templates should matter.
Because of this, which template is maximized and which minimized is interchangeable.
We will refer to the target’s phase being minimized and the template’s phase being

maximized since this makes sense in a detection scenario.

3.2.2 Faithfulness and Fitting Factor

A measure for the loss of signal-to-noise first used by [3] consists in maximizing
over all the intrinsic and extrinsic source parameters. Since we do not have control of
the initial phase of the signal, we would like to accommodate the worst case scenario
by considering a minimax type of quantity, which is at the same time maximized over
the mass of the quasi-circular non-spinning template for example. Thus we shall use
a slightly different definition of the fitting factor than [39, 11]. For a signal waveform

s(m)from a binary with total mass m, and a template hT(m of mass parameter m

T) T’
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the fitting factor is defined as

T

FF = maacmTmmgZS maxt07¢h0[s(m), h™ (m (3.16)

S

»)

We shall use this definition while considering the eccentric binary black hole signal
detection in chapter six.

A special case of the matches arises when all or some of the intrinsic source pa-
rameters of the two waveforms being compared are identical. For example in comparing
a spinning and a non-spinning waveform or an eccentric and a circular waveform, one
could keep the mass identical for the two. In this case we shall use the term faithful-
ness to mean the minimax match, wherein the mass parameter of the two waveforms is

identical.
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Chapter 4

The impact of finite differencing errors on matches

Both numerical accuracy, e.g. truncation errors, and astrophysical accuracy, e.g.
initial data choices, will play a role in determining the viability of numerical relativity
BBH waveforms acting as templates. Requirements may be more stringent when charac-
terizing the sources of gravitational waves; however, in this chapter we focus on the use
of numerical relativity waveforms as potential templates for detection, not for parameter

estimation.

4.1 The accuracy of quasi-circular merger waveforms

Requirements for detection were first placed on waveforms from BBHs generated
by numerical relativity in references [30, 31]. This early work preceded the successful
solution of the BBH problem by many years, but acts as a guide for determining the
constraint on numerical resolution accurate enough for data analysis purposes. These
methods were used by Miller [37] to establish accuracy requirements for parameter esti-
mation in a neutron star binary situation. A similar method was employed more recently
in reference [18] in connection with BBH evolutions of equal-mass, non-spinning black
holes over several orbits. Ref. [18], made a prediction of a maximum match that nu-

merical waveforms will resolve. In addition, we did a preliminary study of the impact
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that numerical errors can have on the faithfulness of numerical waveforms using a Zerilli-
based toy model in [54]. We now employ similar tests as [30] and [18] and verify the
predicted behavior of the match with resolution for our BBH evolutions. The dominant
mode in the waveform at an arbitrary inclination in source frame, in the inspiral case is
the quadrupole mode (¢ = 2, |m| = 2). For compact binary inspiral searches, restricted
post-Newtonian templates are commonly used for detection [26]. These templates in-
clude only the dominant harmonic in the amplitude while including as much information
as possible in the phase since phasing is the more important issue in matched filter-
ing. Corrected-amplitude templates have been considered in [56] and found to reduce
the signal-to-noise ratios for LIGO and add features to the detection and parameter
estimation for Advanced LIGO [57, 58].

In [18], it was found that using the ¢ = 2 mode was good enough for detecting
gravitational waves of non-spinning, equal mass binaries in quasicircular orbits. We
include in our analysis the angle from the spherical harmonics, # and ¢, where 6 is
related to the inclination angle of the binary with respect to the detector but in the
source frame. The waveform at a given angle is reconstructed from the different spin-2
spherical harmonic modes (¢, m) using modes ¢ < 4, the higher modes are too small to
resolve over numerical error. We find that, in general, we will need to include modes
other than the dominant £ = m = 2 to accurately represent spinning BBH waveforms.
We also explore the sensitivity of the match with the spin parameter of the black-holes’
initial angular momentum and how well a reduced template bank would do in matching

with a target template of arbitrary spin and inclination.
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We present our results for the variation of the match with resolution, including
convergence tests of the waveforms in the mass range of 50\ o to 300M o The spectra
of the BBH waveforms from the models R1 and S0.05-S0.20 are shown in Fig. 4.1, in
which we plot |h(f)|. The # = 0 lines correspond to the £ = |m| = 2 mode. The final

black hole in all these runs settled to the same final spin with a spin parameter a ~ 0.66.

0.03

0.02 £

0.01

MR I AR RN RET] STRTTITTT oo
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10-3

Fig. 4.1. The spectrum of the wave versus frequency of waveforms from different initial

spins in a log-log plot.
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In Fig. 4.1, when 6 = 0, the spectra for each value of a become very similar for

f > 0.05m. This is because all of the configurations we evolved settled down to very
similar final black holes. The spinning cases all have resolutions of m /40 and the non-
spinning, m/38.4. We present three cases of inclination angle, 6, for each set of spins,

and the units are fC = fphys /m. When 6 deviates from zero, however, the spectra

ode
show that there is significant variation between the different spinning waveforms. This
is in part due to the larger resolution requirements for the higher harmonics, however,
as we shall see in the following results, the resolution differences do not account for all
of the variation.

Firstly, in §4.2, we investigate the convergence of the dominant, £ = |m| = 2,
mode for non-spinning BBHs, the convergence of the spinning waveforms was published
in [33] to be between third and fourth order. In §4.3 we investigate the quality of
the numerical waveforms as templates in matched filtering in terms of the resolution
including spin and inclination angle. Next, in §5.3, we show how the inclusion of modes
¢ < 5 affects the match calculations when compared to just using the dominant mode
waveform ¢ = |m| = 2 as a function of the spin. Additionally, we determine the effect of
using a finite extraction radius on the quality of the matches. Lastly, in §7.2, we compare
the different spin waveforms to each other, including the dependence on 6 but keep the
masses the same. This is equivalent to checking the faithfulness [27] of the waveforms
assuming the orientation of the source for the different sources to be the same. While
this assumption will need to be relaxed in a fully general treatment for data analysis, it

suffices to demonstrate the importance and impact of using higher than dominant modes

in the analysis of these merger waveforms.
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4.2 Numerical Convergence

For simple linear systems such as the wave equation, it can be proved mathe-
matically that a suitable finite differencing scheme to numerically solve the equation
can yield solutions converging toward the continuum one as the numerical grid size is
refined. For the nonlinear Einstein equations, this sort of mathematical proof is not
possible. We instead show results from several simulations and assess their consistency
with fourth order convergence. A convergence test of the spinning series of runs called
S0.05-S0.20 is given in [33]. Here we investigate the quality of our numerical wave-
forms with a convergence test of the equal-mass, non-spinning R1 series of runs. These
runs are named Rla-R1f and only differ in their resolution. The suffix corresponds
to the grid spacing of the finest grid surrounding each black hole. The grid spacings
are Aa—f = {M/25,M /32, M/38.4, M/44.8, M /51.2, M /57.6}. We consider the conver-
gence properties of the £ = m = 2 mode of ¥ 4 computed on the coordinate sphere at
r = 30. In Fig. 4.3 we plot Re[\I/i’2], and Fig. 4.2 shows that \Iii’2 computed at r = 30
appears to converge monotonically with resolution to a continuum solution, and that
the high resolution results agree well with each other. Similar results (not shown) are
obtained for arg p2? and the coordinate locations of the black holes. Using the runs
Rla, R1b, and R1f we demonstrate fourth order convergence of the amplitude and phase
of \I/j’2 in Fig. 4.4 and Fig. 4.5. Note that if the resolutions being compared are very
close to each other, the difference between, say, fourth and fifth order convergence in
Fig. 4.4 is small, so we explicitly show how the curves should overlay for third, fourth

and fifth order, and show that the results are more consistent with fourth order than
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third or fifth. If we plot only the highest resolution runs, we find that the fourth order
convergence is lost; i.e. there is a source of error which spoils the convergence at high res-
olutions. However, as can be seen from Fig. 4.2, the waveforms still appear to converge

to a continuum solution, just at a different order.

0.0026
0.0025 |
0.0024 |

N= 0.0023 |
0.0022  /
0.0021 | /7 /

0.002

Fig. 4.2.  Monotonic change in \\112’2\ as resolution is increased. It appears that the
4

function is converging to a continuum solution.
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Fig. 4.3. Re[\I/2’2] computed at = 30 for three different resolutions. The feature at
4
t = 40 is due to the gravitational radiation present in the initial data, and will be cut

out of the waveform before taking Fourier transforms for data analysis.
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Convergence of ]@2’2] using the highest and the two lowest resolutions.
4

C3, C 0 C5 are the scaling factors expected for third, fourth and fifth order convergence

respectively. We see that a — b matches most closely with C e (b — f) indicating fourth

order convergence.
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Fig. 4.5. Convergence of arg 22, Asin Fig. 4.4, we see fourth order convergence.

4.3 Variation of Templates with Resolution

We can follow the numerical convergence properties through matched filtering
since we know how the numerical codes approximate the exact solution to the partial

differential equations discretely. For finite differencing this is expressed as
D p+1
h(t) = ho(t) +c()A" +0(A" ) (4.1)

where ho(t) is the exact solution found when the resolution goes to infinity, A is the grid
spacing (A = Ax = Ay = Az « At), p is the order of the truncation error and c(t) is a
time dependent scaling independent of the grid spacing. Since our code is approximately
fourth order accurate, we expect to scale with p = 4. Omne can calculate ho(t) using

Richardson extrapolation of three discrete, convergent solutions of different resolution.
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We have computed ho(t) for the R1 series of runs using Rla, R1b, and R1f and found
that ho(t) coincides to within 10™° in amplitude with the waveform evolved with the

finest resolution, A , = M/57.6. In light of this, we will use our finest resolution run,

f

indicated as h(A ,), in place of the Fourier transform of ho (t).

7

We can predict the behavior of the maximized overlap as a function of resolution
between two waveforms that differ only in their resolution by expanding the match
equation, Eq.(3.7), about AP = 0. Note that when A” is a constant in time, we can

+ CAI') , where i labels each waveform.

express Eq.(4.1), in the Fourier space as hz’ =h
(3

0

We expand the match for the case of two templates at two different resolutions to be as

general as possible, i.e. Olh,(A)), hQ(Aj)] as follows

1V 72

Oh.h] = 1- Lar_an?2 [ td <CIhO>2
e A R TN
+ 0%l 12)

The above equation was expanded for two matches of different resolution but the match
with the Richardson extrapolated solution can be recovered by setting Aj = 0 up to

the order expressed. This equation indicates that the mismatch, (1 — O ), goes like

max
A% F ig. (4.6) shows the dependence of the Omax on the resolution for three choices of
the total mass, m = {50, 100,200} M o The least squares fit is done for several possible
values of A%P including p = 3,4,5. The best fit is found for p = 4, and is the fit pictured

in Fig.(4.6).
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Fig. 4.6. The maximized overlap, O [hi’ h ], from Eq. (3.7) is plotted as a function

max f ]
of grid size for three total masses indicating fourth order convergence. The data are

given by the points and the least square fitting by the lines. The p = 4 fit differs for

different masses because of the weighting by the current LIGO noise curve S h( f).

Because of the computational cost of generating solutions to the Einstein equa-
tions at three resolutions for every waveform of interest, Flanagan and Hughes [31]

suggested computing the match between templates of neighboring resolutions, such as

O [h(A, ), h(A

s )] for example. A variation, used by Baumgarte et al [18], is to com-

b
pute the series of matches as Omax[h(AZ.), h(A f)], where the first template runs over all

the resolutions available, denoted by Ai, and the second template’s resolution is fixed to

the finest available.
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We plot the Flanagan and Hughes type of overlaps, Omax [h +(Aa), h +(Ab)] and

max[h +(Ab), h +(AC)] and three cases where we vary the resolution of one template

while keeping the second template fixed to the finest resolution, Omax [h+(Ai)’ h+(A f)]

where ¢ = a,b,c, in Fig. (4.7). These matches are unoptimized over the phase, but

optimized over the time ¢ and follow the definition given in Eq. (3.7).

0

0.99
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S 0.98

0.97

Fig. 4.7. The maximized overlaps, Omax [hl 4 h2 +], are plotted as a function of mass

for several resolutions of our equal-mass BBH series of runs. Labels (a,b,c) stand for
the coarse runs Rla,b, ¢ with resolutions m/25.6, m/32.0, m/38.4, while R1f has res-
olution m/57.6. The overlap between adjacent resolutions Omax[h+(Aa)’h+(Ab) has

deceptively high values compared to the matches with the finest resolution.
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The threshold of match above which the resolutions will be ”good enough” for
detection is typically set to 0.98. Clearly from the figure we can conclude for the 6 = 0,
a resolution of Ab = M /32.0 was enough for the entire mass range to reach a minimum
match of 0.98 and that, for a lower resolution of Aa = M /25.6, we only achieved Omax >
0.98 for total masses larger than 100M o One of the main features of the matches with
resolution is the decrease in the match toward smaller masses. This is partly due to
the low number of gravitational wave cycles we have present in the waveforms. The
numerical errors, however, will increase as we increase the total number of cycles so
the choice of resolution will depend on the number of orbits evolved and details of the
numerical scheme. As we evolve more cycles, we will also be extending the total mass
range into smaller masses.
The matches are expected to get closer to one when phase optimization is included.
Since the phase of a given signal waveform depends on the detector orientation and
several such variables, it could differ from the template up to a constant phase factor
and the match would vary depending on what the phase is. The worst case would occur
when the arbitrary phase is such that there is maximum destructive interference between
the target and the template, and sets up the lower bound on the possible matches,
inimax” If one does not add any phase factor to the numerically generated template ,
one gets what is called the typical match and if the phase factor is chosen for maximum

constructive interference, it yields the ”best” match, Mb The value of Mbes is a

est’ t

measure of the closest distance between two templates. We’ll use the minimax match for
the rest of the paper to report our results in terms of lower bounds and use the typical

and best matches to illustrate the range over the different type of matches.
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To demonstrate the differences in the match with choice of optimization, we tab-
ulate examples of optimization in Tab. 4.1 for few selected total masses between the
coarsest and finest runs. No optimization at all is listed in the second column, opti-
mization over just tO from Eq. (3.7) in the third, the typical match Eq. (3.13) in the
fourth, minimax, Eq. (3.16), in the fifth and finally best match, Eq. (3.15), in the final
column. The phase optimized matches, the last three columns, exceed the the thresh-
old of Omax > 0.98 for even the least resolved waveform when matched with the finest

resolution waveform.

Table 4.1.  Comparing matches with different optimizations between the coarsest (Rla)
and the finest (R1f) runs for selected total masses. The second column is the normalized
overlap between the two waveforms without optimization over ¢, the third column is the
match with optimization over tO’ the fourth is the typical match, the fifth the minimax,
and the final column is the best match.

m [0) [0) M

M .. M
max typ minimax best

44.67  0.7987  0.9658 0.9979 0.9974 0.9983
70.79  0.5458  0.9709 0.9989 0.9989 0.9991
112.2  0.2308  0.9794 0.9994 0.9993 0.9995
177.8 0.04864 0.9837 0.9994 0.9993 0.9996
281.8 —0.06719 0.9893 0.9993 0.9993 0.9996

We also calculated the minimax matches, see Eq. (3.16), for all the R1 resolutions,
although we do not plot them here, and found that for all the resolutions M . . >
minimax

0.99 in the mass range under consideration and show the same variation as the overlap.

These results hold only for § = 0 and a = 0.
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We now analyze the resolution needs of the spinning BBH waveforms of which we
only have three resolutions for each of the spinning configurations in contrast to the five

available for the non-spinning case. These are labeled A =M/32, A = M/38.4,
coarse m

ed
and Aﬁne = M /40. Later in this paper, we find that it is necessary to include the higher
modes for the spinning BBH templates; and, therefore, as we analyze the spinning BBH
waveforms versus resolution we also include its variation with 6. At inclination angle
6 = 0 only the £ = |m| = 2 mode is present in h, and when 6 # 0 all the modes get
mixed. We do not include modes ¢ > 5 in constructing h because these were too small to
be well resolved for the evolutions we use in this paper. The variation of 6 is presented
for two suggestive cases, § = 7/4 and 6 ~ /2. Values of # are not taken to be exactly
on the plane since the radiation is then linearly polarized and cannot be described with
two basis vectors and cannot be maximized over the phase at that point, but instead at
0 = 897 /180.

For the 6 = 0 case, all the spinning waveforms have a Mm. > 0.99 over the

inimax

entire mass range for matches between the A and A and between A and
coarse fine med

Aﬁne' These matches also follow the same trend with mass, i.e. decreasing matches
with decreasing total mass, as reported in Tab. 4.1. For 6 # 0, we plot the minimax
match for the a = 0.8 spin case between both the highest and coarsest and highest
and medium resolved waveforms at the two values of 6 in Fig. 4.8. We only show the
a = 0.8 waveforms since the matches of the high and low resolution of the other spin and
non-spinning runs are all Mminimax > 0.99 at these angles again over the entire mass

range. Note, however, that even though the matches are very high, they decrease with

increasing spin. This is expected since we are keeping the number of points across the
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black hole fixed, but as the spin increases, the horizon area decreases, hence the effective
numerical resolution of a high initial spin waveform is lower than that of a low initial
spin waveform. The case of § ~ 7/2 gave us the lowest matches of any angles between

0 and 7/2 and shows that the minimax match of the A and Am resolutions is

fine ed

. > 0.97. While the match of the coarsest resolution run at higher masses is
minimax

.. ~ 0.92, which indicates that the coarse resolution is not good enough for

minimax
meeting the threshold when a = 0.8 and 6 ~ /2. For the rest of the paper, we will
use the finest resolution for all spin cases to ensure that the errors due to resolution are

no greater 3% in the most difficult case to resolve: the high spin, high angle case, and

should be much lesser in other cases.
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Fig. 4.8. We plot the minimax match between the waveforms of ¢ = 0.8 for two cases
of inclination angle, § = 7/4 and § = 7/2 and two different resolutions Aﬁne with Ame q

and Aﬁ with A . Corresponding matches for lower spins are all > 0.99 and are
ne coarse

not shown here.

Fig. 4.8 shows two features of the minimax match, namely it decreases with
increasing 6 and with increasing mass. The decrease of the match in Fig. 4.8 at higher
mass is in contrast to Fig. 4.7. There are two differences between the figures, one is the
phase optimization which, from Tab. 4.1, we can see does not change the trend of the
match versus mass. The second difference is the inclusion of higher modes. The overall
match will be reduced with non-zero 6 since the frequencies of the modes increase with £,
placing stronger resolution requirements. The highest spin we analyze, a = 0.8, has the

lowest minimax matches of all the spin cases, as low as Mm. = 0.92 at the largest

inimax
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angle. Large spins demand more resolution in general and this is seen particularly when
resolving modes with ¢ > 2. For the lower spin runs, a < 0.6, the waveforms are well
resolved and the matches are all > 0.99 over the entire mass range even for 6 ~ 7/2. The
decrease in match is seen most strongly at the larger mass range since this mass range
targets the merger and ringdown part of the signal. We expect these match values and
all the matches reported in this section to change for waveforms with more gravitational
wave cycles since the numerical errors will grow as the length of the run increases and

the accumulating phase errors will likely play a larger role.

4.4 Are the waveforms good enough for detection?

The issue of how good the waveforms need to be for detection depends also on
how close these numerical relativity evolutions are to the waveforms from nature. One
objection that can be raised is that the numerical relativity initial data is conformally
flat and hence the waveforms may not match the physical ones. The resolution to this
objection would be if one could evolve the waveforms from far enough separation that
they could be compared to the post-Newtonian ones and also assess the validity of the
different approximation schemes in the late inspiral regime.

Such studies are now available, indicating that for atleast the equal mass, non-
spinning binaries, the waveforms can be matched to the post-newtonian ones at sufficient
far separations, to within suitable error bars in amplitude and phase [6]. How this match-
ing carries across the parameter space of spinning and unequal mass systems will become
evident as more such comparisons are performed. The issue relevant for numerical rel-

ativist would then be, do they have to stick to the highest accuracy afforded in order
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to start contributing to gravitational wave detection or is it possible to contribute via
several low resolution runs spanning a bigger parameter space?

Given the numerical convergence properties of our waveforms, we first predict
and show that the match has a dependence on the resolution of AZP , in which a fourth
order evolution scheme has p = 4. For the resolutions of our BBH evolutions, we get
very high matches (> 0.98) for resolutions above M /32 when a = 0 and above M /38
for waveforms with a = 0.8. The resolutions are only appropriate for the cases we have
investigated. For the waveforms generated out of the £ = |m| = 2 mode, we find that the
match values between the same waveforms at different resolution decreases as the total
mass decreases. We only report matches from 50M o 300M o where 50M o is set by
our initial orbital velocity.

While the question remains an interesting one, the indications are that moderate
amount of finite differencing errors in numerical relativity runs are not a handicap to
their applicability to detection, for the larger mass scales, the resolution increase is
important as the higher modes, which are more difficult to resolve, play an increasing
part. The resolution will also be very important in parameter estimation, and a low

resolution merger waveform will lead to biases in the inferred physical parameters.
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Chapter 5

Higher multipole modes in spinning binary black holes

5.1 The waveform for a detector at an arbitrary inclination

The multipolar analysis of BBH waveforms produced by numerical relativity has
been pursued for both unequal mass and spinning BBH configurations [50, 20, 19]. Using
only the dominant mode in comparing waveforms, tantamount to choosing an inclination
angle with the detector in the source frame of 6 = 0, results in a degeneracy of the A-
series parameter space for example.

An observer on the orbital axis of a merging binary, at § = ¢ = 0, will see a
fully circularly polarized waveform where ¢ = |m| = 2 is the only nonzero mode. An
observer, however, in the orbital plane of the binary or the equatorial plane of the final
black hole will see linearly polarized radiation with the contribution from ¢ = |m| = 2
at its minimum. All other observers with intermediate orientations would see elliptically
polarized waves that are combinations of all the modes. In practice, numerical relativity
can only resolve a finite set of modes. Since the orientation of any given binary will be
unknown a. priori, we analyze the templates’ dependence on the detector’s inclination
and azimuthal angles in the source frame, as well as the variation of the signal-to-noise
in each mode as a function of the source parameters. The location of the detector in the
center of mass frame fixes the mode content and the orientation of the detector fixes the

initial phase of the waveform.
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The masses are set such that the overlaps will not change significantly if we were
to add the inspiral portion of the signal. The change is minimal because for our A and
B series of waveforms the orbital frequency increases almost monotonically. Owing to
this, the gravitational wave frequency also increases monotonically with time implying
that extending the signal back in time will not change the spectrum in the merger band.
When precession is significant this will no longer be true and the inspiral will likely
contribute to the signal at higher frequencies.

In this chapter, we focus our attention on how different initial configurations, in
this case spin and initial spin orientation, result in different mode contributions to the
signal-to-noise ratio. To build intuition about what parameters might be important to
the template space of black-hole mergers, we calculate the overlap between pairs of our
waveforms. We perform a preliminary analysis on how faithful £ = m = 2 waveforms of
various parameters would be in matching with waveforms at various detector inclination
angles. The total mass for each template is kept fixed and the inclination angle of the
detector, 6, the spin, a, and 1, the initial orientation angle of the spins with the orbital
axis are varied as appropriate.

We also study the variation of the harmonic content with mass for the A-series
waveforms. Before we study the numerical runs, it is useful to look at the expressions for
the mode-content from the post-Newtonian approximation as well. These expressions can
be useful in determining the dependence of the signal amplitude on the initial parameters

such as a and ¥.
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5.2 Comparison to the post-Newtonian multi-mode distribution

One task facing the numerical relativist is to be able to locate the point at which
post-Newtonian expressions for the waveform agree with the numerical relativity wave-
forms. While the waveforms we analyze are not long enough to be able to do this, we can
certainly see the trends as a function of the initial parameters such as the spin magni-
tude and the orientation. The leading-order spin contributions to the various multipolar
components can be derived by projecting the expressions for the waveform onto spin
weighted spherical harmonics, according to the procedure described in [20, 19].

Let Sz’ be the projection of the spin of body i on the axis orthogonal to the orbital
plane. Si is positive (negative) if the spins are aligned (anti-aligned) with the orbital
angular momentum. The dimensionless spin parameter a, = SZ. /MZ2 (1 =1, 2) and the
spin combinations x = (a1 + a2)/2, X, = (a1 — a2)/2. Including only the dominant
spin-orbit (1.5PN order) and spin-spin (2PN) terms, in addition to the non-spinning

terms one finds three spin-dependent multipolar contributions:

Mrwsmnei& = 8\/ETI(MQ)8/3 (5:1)
2.2 5
X {_XSMQJF %(x2 - x2)(MQ)4/3} ;
Mrw;pineié = —\/g(MQ)?) [x (e 3} : (52)
1 a

3

Mm!)s]‘omew = g gﬁ(MQ)lo/?’ [XS(MQ)U?’]' (5.3)
3,2
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These expressions are a special case of the formulae in [19] for our specific con-
figuration of equal-mass binaries. The value of X is zero for our configuration and the
X, = acos?¥ in our notation. For the A-series these expressions predict that the odd
modes would be linearly proportional to the magnitude of spin. There is no apriori
reason to expect these post-Newtonian prediction to be valid in the late inspiral regime,
just a couple of cycles prior to the merger. We test how powerful these predictions are

for the waveforms considered.

5.3 Non precessing anti-aligned spin case: A-series

The resolution for this section will be fixed to the finest for the spin cases and the
corresponding resolution for the non-spinning case. We use the minimax match as defined
in Eq. (3.16), to see how different the ¢ = |m| = 2 waveforms, given by h(f = 0,¢ = 0),
are from the full waveforms, h(f,¢), for a given a. Our focus is on €, the inclination
of the detector in the source frame since it causes a larger variation in the match than
¢, the azimuthal angle. To reduce the number of parameters considered, and we set
¢ = /2 for the rest of the paper when 6 # 0. If we were to relax this condition, the

minimax matches would vary on the order of a percent.

5.3.1 Variation of mode content with spin

The mode content for the anti-aligned spin cases is a function of the initial observer
angle 6. To observe and study the variation with 6, we first fix the total mass for both
templates, h1 and h2, to 100M®. In Fig. 5.1 we present the minimax matches as a

function of @ for templates at 0 = {0, 7/4,7/3,7/2}. By holding the target template to
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0 = 0 for each spin case, we can determine at what angle and spin the matches drop

below the threshold. In the case of § = 0, the templates have the same parameters and

.. = 1 as it must. For a = 0, all the templates match the 6 = 0 target within
minimax

.. = 0.98. The plot also indicates that 8 = 0 is close to the full waveform for

minimax

0 < /3 for all of the spin cases. For 6 > 7/3, however, the match drops below 0.98 for

a > 0.2. As the inclination with the axis increases, the higher modes become important

with increasing spin.
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Fig. 5.1. The minimax match, M

minimax

[h1(9 = 0)]’h2(9i)]’ vs a is plotted for the

values 0. = {0,7/4,7/3,7/2} for the case m = 100M®.
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In order to have a qualitative understanding of why the match behaves as in
Fig. 5.1, we study the p per mode for the A-series. This is only a qualitative estimate
because the relative fraction of modes present in the signal will depend on the relative
spin-weighted spherical harmonics values at the particular angle. In practice the error
induced by ignoring the mixed terms is less than 20%, as the relative overlaps of the
significant modes from both the A and B-series of data are of this order. Since the p of
the £ = 2, m = 2 mode is much larger than the p of the other modes, we plot the ratio,
p(€,m)/p(2,2) in figure 5.2. The upper left plot corresponds to a system of mass 50M®,

the upper right to 100M o lower left to 200M © and lower right to 300M o
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Fig. 5.2. A series of plots are shown with the ratio of p per mode to the p of the
f = m = 2 mode versus the initial spin of the black holes. This is done for series-A.
Each plot refers to the calculation for a different total mass of the binary. Starting from
the upper left and moving right and then down, we have 5OM®, 100M®, 200M®, and

300M o on the lower right.

Across all the masses sampled, the ratio of the p for each mode grows with increas-
ing spin. This is especially true for the m = 1 and m = 3 modes which are suppressed
at low a. The m = 2 and m = 4 increase slightly with a. While the £ = 2, m = 1 mode

is the next mode dominant mode after the £ = m = 2 mode for the high-spin regime at
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low masses, the £ = 4, m = 4 is secondary for the entire a range at higher masses. For
low spins, the waveform is entirely dominated by the m = 2 modes.

All of our results have errors attributed to the numerical computation used in
computing the waveforms. In paper I, we analyzed the effects of resolution on the
matched filtering technique and found that for the resolutions used to compute the
waveforms studied here, the largest error would be +0.02 in the match, although that is

only for the a = 0.8 case, and is typically smaller.

5.3.2 Variation of mode content with mass

To study inclination variation as a function of mass, we add the scale with total
mass coming from the LIGO noise curve. We limit the presentation to two spins, a = 0.2
and a = 0.8 for clarity. The best, minimax and typical matches are plotted as a function
of m in Fig. 5.3 and Fig. 5.4. The matches are between h1(9 = 0) and h2(9i) for three
inclination angles each HZ. =7/4,7/3,~ 7w/2. We plot all three matches to demonstrate
the range that the matches can take depending on the choice of phase optimization.
The typical match is given by the lines and the minimax and best matches are specified
as the lower and upper error bars respectively. One can see that the minimax match
between the two templates sets a lower bound on the phase optimized matches. The
minimax match dips below 0.98 for § > 7/3 and m > 100 o for both spin cases; and
dips below 0.98 for the entire mass range for § ~ 7/2 when a = 0.8. This result implies
that using just the dominant mode and a 0.98 threshold would cause loss of the signal
for angles greater than 7/3. In fact, this result is potentially unexpected in how well

the 6 = 0 template matches at angles less than 7/3; however, as we evolve more cycles
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of the inspiral, we can expect this match to deteriorate. Additionally, the initial, non-
precessing configuration of the black holes is likely resulting in less harmonic content in
the waveforms which is in turn reflected in the match.

An even more stringent test is the best match. If the best match of a given angle
waveform is smaller than some threshold then we would know that the higher modes
are significant and need to be used in creating the template bank. We note that for
both spin cases the best match is below 0.98 for 6 ~ 7/2 at masses greater than 170M 5
indicating the need to include higher modes to make a detection at large inclination and
high masses.

One can see from the plots that the lower bound of the match between the circu-
larly polarized and the highly elliptically polarized waveform is lower in the high mass
cases. The decrease in the match at larger total masses may be indicating that the ring-
down is more sensitive to the presence of higher modes than the merger itself, since the
deviation from 0.98 is larger than expected from numerical error alone. These figures
also suggest that the ¢ = |m| = 2 mode is closer to the full waveform at lower masses
and lower spins. The fraction of events lost by not including the higher modes needs to

be calculated to predict the full impact.
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Fig. 5.3. The range of phase optimized matches between the § = 0 waveform and the
full waveform for a low spin case, a = 0.2. The curves denote typical match M typ [hl (0=
0), h2+(9i)] for 6. = {m/4,7/3,~ m/2}. The lower end of the error bar is given by the

minimax match and the higher end is given by the best match. The phase optimization

here is done over the phase of the h1 template.
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Fig. 5.4. The range of phase optimized matches between the § = 0 waveform and
the full waveform for a high spin case, a = 0.8. The curves denote typical match

[hl (0 =0),h (01)] for 92. = {w/4,7/3,~ ©/2}. The lower end of the error bar is

typ 2+

given by the minimax match and the higher end is given by the best match. The phase

optimization here is done over the phase of the h1 template.

5.3.3 Variation with the extraction radius

The waveforms that we are using have been extracted from the numerical solution
of the Einstein equation at a finite radius. In order to assess how the extraction radius,

T oxt affects the waveforms at a large extraction radius, we tabulate the M][n

inimax
the a = 0.8 waveforms in Tab. 5.1. Since the match carries more information than the

signal-to-noise ratio in individual modes, we just present the match. The matches are

computed for a template fixed at § = 0 and the target template at four values of 6 to
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measure how much of the variation with 6 depends on T oxt” The variation with the
extraction radius is of the order of ~ 1.3% in the worst case. There is an interplay
between better dynamical quality and increased numerical error as T ot is increased,

which is more noticeable in modes higher than ¢ = 2. For the rest of the paper we use

the waveforms at » . = 30m.
ext

Table 5.1. Minimax matches for m = 100M o and a = 0.8 between two waveforms
(0=

at the same extraction radius but different inclination angle given by M . .
minimax
0), 1, (6,)].

Tot 0o =0 92:7T/4 02:77/3 92~7T/2
30 09779  0.9602 0.9538 0.9518
40 09773 0.9530 0.9465 0.9519
50  0.9756  0.9473 0.9423 0.9546

60 09734  0.9445 0.9409 0.9564

We can see from this table that the higher modes deteriorate faster at closer radii.

5.4 The mode-content of B-series waveforms

The minimax match versus the initial angle for the B-series is presented in fig. 5.5.
Each line represents a choice of total mass, with 50M o the top most line and 300M 5
the bottommost. The match was computed by setting one waveform to § = 0 and the

other to 6 = w/2.4.
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Fig. 5.5. The minimax match versus initial angle for the B-series. Each curve represents
a particular choice of total mass, 50M o at the top with each successively lower line a
higher mass. To compute the match, we used one waveform with 8 = 0 and the other at

0 = m/2.4 radians for a given a and ¥.

We find that the variation of the match across initial angle for the given spin of
a = 0.6 does not change more than about 2%. The variation amongst different total
masses is more dramatic, dropping down below a match of 0.9 for most in the angles at
a mass of 300M o At that large mass range, the ringdown is contributing significantly
to the signal, and differences in the modes, like the £ = m = 4 mode, begin to make
important contributions. These BBH configurations settle down to a final black hole
with a spin of a = 0.62.

In fig. 5.6, we once again investigate a qualitative interpretation of the match

through the p as plotted versus the initial angle, 1 for each mode. The upper left plot
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corresponds to a system of mass 50M o the upper right to 100M o lower left to 200M ©
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Fig. 5.6. A series of plots are shown with the ratio of p per mode to the p of the
¢ = m = 2 mode versus the initial angle. This is done for series-B. Each plot is the
calculation computed for a different total mass of the binary. Starting from the upper

left and moving right and then down, we have 50M o 100M o 200M o and 300M o on

the lower right.
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Across the mass scales sampled, as the initial angle increases, the odd-m modes
decrease. In the non-precessing case, the strength of the odd-modes is expected to vary
with the z-component of the spin which is proportional to the cosine of the entrance
angle. Since in this series of runs, the spins precess about the z-axis and ¢ remains
constant, the relative strength of the modes show similar trends as the non-precessing
case. At higher masses, where the ringdown dominates the signal, the £ = 4, m = 4
mode is contributing a large portion of the p of the total signal, over 20% for a BBH of
300M o total mass. It is interesting to note that in the ”superkick” the spread of the
modes is reduced in p compared with the parallel configuration at ¢ = 0. The decrease
of the odd m modes is expected. For example, the £ = 2, m = 1 will be suppressed when

the spins lie in the orbital plane for equal-mass black holes as discussed in [19].

5.5 Dominant mode versus full waveform for spinning binaries

We did a multipolar analysis of the modes in each waveform and calculated the
signal-to-noise ratio of each mode versus the p in the £ = m = 2 alone. For the A-
series, the p per mode increased as the magnitude of the spins increased at every total
mass. The odd-m modes increased from almost no contribution at low spins to a 10%
contribution at larger spins. At a given spin, the £ = 2, m = 1 mode dominated the p at
low mass, but the £ = m = 4 mode’s ratio to £ = m = 2 grew with increasing mass.

For the B-series, we found that the diversity of contributing modes decreases
with increasing angle, except for the £ = m =4 and ¢ = 3, m = 2 modes which remain
relatively constant across ¥ for a given mass. As in the variation with a, at low total

binary mass, the secondary signal is the ¢ = 2, m = 1 mode, but at higher masses the
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£ =m =4 and the £ = 2, m = 2 modes are stronger. As anticipated, the { =2, m =1
mode decreases to zero as the initial angle moves to lie parallel to the orbital plane.

In this chapter we also include the variation of the match with the observer’s
inclination angle with respect to the source angular momentum axis. It is often con-
venient and instructive to extract the gravitational waveform, W n decomposed into
spin-weighted spherical harmonics as a function of £ and m. Including modes higher
than the dominant mode, ¢ = |m| = 2, is equivalent to allowing the inclination angle
of the binary system to vary. Only at § = 0 would the ¢ = |m| = 2 mode be the only
harmonic in the waveform. The target waveform will have an unknown orientation; and,
therefore we vary the inclination to study what effect this may have on detection. As
we include all the modes in the analysis the match decreases, to as low as =~ 0.85, must
notably for larger masses and higher spins. Some decrease in match is expected since
the higher modes require more resolution; however, the decrease was greater than that
accounted for by the resolution alone.

We investigated the match between a waveform from the A-series containing only
the £ = m = 2 mode and a mode summed waveform. There we found strong dependence
on the match with spin, with the £ = m = 2 waveform failing to match to spinning
waveforms especially for spins equal to and greater than a = 0.6. We did a similar study
here for the B-series, comparing two waveforms of a = 0.6 at various ¥. We found,
despite the variation of the p versus 1), the match to not depend on the initial angle.
The inclusion of modes was much more important to templates of higher mass, where

the merger and ringdown dominate the signal, than at lower masses. This importance
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will be more evident in matches using unequal-mass and spinning waveforms with larger

spin.
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Chapter 6

Merger of Eccentric Binary Black Holes

6.1 Motivation: waveforms from eccentric binaries

It is well known that gravitational radiation leads to circularization of a binary
system [45]. Although stellar mass BBHs will likely have completely circularized by the
time they are observable by ground-based interferometers, scenarios have been suggested
for which BBHs in eccentric orbits are not only astrophysically interesting but also
could be detected by space- or ground-based interferometers [38, 59]. For instance,
galactic mergers leave behind supermassive BBHs that likely interact with a gaseous
environment. Such systems source for LISA. A gaseous-gravitational driven inspiral
could yield a BBH arriving at the last few orbits and merger with a non-vanishing
eccentricity. An observation of the gravitational waves from an eccentric BBH merger
will allow us to determine the amount of angular momentum lost to gas and, in particular,
the gravitational torques between the binary and the possible presence of a circumbinary
disc that affect the eccentricity of the binary [12].

We study the circularization of an initially eccentric binary through gravitational
wave emission in the dynamic, nonlinear regime. In Ref. [17], it was found that, for
equal-mass, non-spinning black holes (BHs) initially in quasi-circular orbits, the merger
produced a BH with spin parameter a /Mf ~ 0.69, which, within the accuracy of the

results, was independent of the initial separation. In addition the authors found that, at
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t ~ 50 M, ¢ before the amplitude of the gravitational wave reaches its peak, the BBHs enter

a undversal plunge during which the binary has lost “memory” of its initial conditions.
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Fig. 6.1. Waveform polarizations h+ for the cases e = 0.1 and e = 0.3

Similar results were also obtained by the AEI-JENA collaboration. In this chap-
ter, our main goals are to investigate whether sufficient eccentricity is lost during the
late stages of inspiral to circularize the orbit and exhibit the same universality as in the
circular case and to extract the spin parameter and mass of the final BH, and compare
the values with those from circular inspirals. We also investigate the distribution of the

signal-to-noise ratio among the various multipole modes, and show that for optimally
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oriented binaries at identical distance from the detector, eccentric binaries can have a
higher signal-to-noise than the circular ones.

The numerical simulations and results here were obtained with the same infras-
tructure used in our previous BBH studies (see Ref. [53] for full details). We have evolved
the circular model at three different resolutions (finest grid spacings of M/38.7, M/51.6
and M/64.5). We obtain approximately fourth order convergence in the total energy
and angular momentum radiated, consistent with the designed 4th order accuracy. The

construction of initial data etc. are addressed in the next section.

6.2 Initial data for the eccentric runs

We construct initial data using the puncture approach [7], which requires speci-
fying the coordinate locations and momenta for the two BHs. For “circular” orbits, we
follow [8]. For eccentric models, we use the conservative 3PN expressions in Ref. [9].
These expressions require the specification of the eccentricity e and the mean motion
n = 2w/ Pr’ where Pr is the radial (pericenter to pericenter) orbital period. There are
three PN eccentricities, which are the same to 1 PN order, and we choose e o which
appears in the PN Kepler equation, following Ref. [9]. It is important to keep in mind
that the eccentricities we quote (and we use them also to label the models) are to be
taken only as a guide to the eccentricity in the initial data, as the PN expressions used
do not include radiation reaction, and the PN parameters are in a different coordinate
system to the puncture initial data.

We construct a family of initial data by fixing n = 0.01625/M (PT ~ 387M) and

varying e in the range 0.05—0.8 to 2PN order, this means that the systems have the same
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binding energy and that, at high eccentricities, there are portions of the orbit for which
the PN condition v/¢ < 1 is no longer valid. The binary separation D is determined
from Eq. (23) in Ref. [9], and the tangential linear momentum, P/M, of each BH at
apocenter is obtained from J = PD, where .J is the total angular momentum computed
as a PN expansion in n and e (Eq. (21) in Ref. [9]). The bare BH masses my o are chosen

to make the irreducible BH masses M, , =05 (ie. M = M, + M, = 1). Table 6.1

provides the initial data parameters.

¢ [D/M P /M| ¢ | DM P ,/M

0.00 | 12.000  0.0850 | 0.40 | 18.459  0.0498
0.05 | 12.832 0.0792 | 0.50 | 20.023  0.0429
0.10 | 13.645 0.0741 | 0.60 | 21.539  0.0361
0.15 | 14.456  0.0695 | 0.70 | 22.955  0.0292
0.20 | 15.264 0.0651 | 0.80 | 24.072  0.0214
0.30 | 16.870  0.0571 - - -

Table 6.1.  Initial data parameters: The runs are labeled by their initial eccentricity
e. The BHs have linear momenta j:P1 9 /M and are separated by a coordinate distance

D/M.

6.3 Final spin from eccentric mergers

We now discuss M ¢ and a,., computed using two independent methods. In one

f7

method, they are obtained from the radiated energy and angular momentum using M, ¢ =

adm rad f adm

M — F _ and af/M = (J — Jrad)/MQ. The subscript adm stands for the
f
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respective quantities calculated via the Arnowitt-Deser-Misner method calculating the
respective quantities at null infinity as per standard prescriptions [?]. In the second

method, M ¢ and a, are computed from the quasi-normal mode (QNM) frequencies [22]

f

emitted by the final BH, extracted using least squares fitting. As a cross-check, for some
of the models we also determine a /M ¢ using an approximate technique derived from the

isolated horizon formalism [14]. Table 6.3 gives the energy Era and angular momentum

d

J . radiated as well as the final mass M ¢ and spin a,. Fig. 6.2 gives the final mass

rad £

Mf and spin a, as a function of e. Notice the agreement in a, and M, ¢ that the three

f f

methods give within the estimated error bars. The final mass and spin also agree well

in the circular case with the values obtained in Ref. [20].

€ J\f/Ef—ad % % % % MMf MMf
adm M flead  “flgnm " flin admlpad 7 admlgnm
0.00 | 0.039 0391 0714  0.689 - 0.961 0.964
0.05| 0.039 0388 0713  0.688 - 0.961 0.963
0.10 | 0.040 0388  0.707  0.689 - 0.960 0.963
0.15| 0.039 0385 0.696  0.690 - 0.961 0.964
0.20 | 0.040 0389 0.676  0.690 - 0.960 0.963
0.30 | 0.039 0372 0.68  0.686  0.681 0.961 0.964
040 | 0.040 0279 0716  0.698  0.693 0.960 0.962
0.50 | 0.038 0.190 0.742  0.717  0.712 0.962 0.964
0.60 | 0.022 0108 0713  0.707  0.702 0.978 0.980
0.70 | 0.011  0.063  0.623  0.641  0.634 0.989 0.994
0.80 | 0.004 0.033 0484 0515  0.502 0.996 1.002
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Fig. 6.2. Plots of Mf/Madm and af/Mf as functions of the initial eccentricity e. Note
that the error bars shown here on the radiation quantities for eccentric runs are copied

from the e = 0 case and thus should be treated as indicative only.

Given an initial eccentricity, it is always possible to choose a large enough semi-
major axis or orbital period for which the binary circularizes before it arrives at the
merger. Our family of initial configurations was designed to investigate, for a fixed initial
orbital period, how much initial eccentricity a binary is able to have and still enter the
merger with essentially vanishing eccentricity. Since we do not have a good measure of
eccentricity applicable prior to the merger, we focus on the end state, namely M ¢ and Qg

of the final BH. We see from fig. 6.2 that af/Mf ~ 0.69 for e < 0.4 and Mf/Madm ~ 0.96

for e < 0.5, both values of Mf and a. in agreement with the circular result. We note

f

that the remaining orbits, the ones which do not circularize, are all configurations which

seem to plunge immediately rather than entering an orbital phase. We conclude that for
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the systems we studied with approximately constant initial orbital period, within our
error bars, orbits with e < 0.4 essentially circularize before they merge, and orbits with
e 2 0.5 plunge.

We also observe for e < 0.4 that rather than ag decreasing monotonically, a max-
imum spin parameter a; /Mf ~ (.72 is obtained around e = 0.5. Given the size of our
uncertainties and that the maximum is found in the three independent methods used to
calculate the spin, we are confident that this maximum is real for our family of initial

data. At about e = 0.6, a, starts decreasing monotonically. We are currently considering

f
larger, but still computationally feasible, initial separations to investigate if there is any
bound orbital (rather than plunge) configuration that does not circularize.

As e — 1, corresponding to vanishing linear momenta (i.e. a head-on collision from
rest), we find that ay /M ¢ 0, in line with the symmetry of the head-on collision, and
M I Ma d 23 expected, since NR simulations of a head-on collision have shown that

M, ~ (1-0.001)M_

¢ [2]. Note that the ringdown result for e = 0.8 gives M, > Ma dm

dm

which is clearly unphysical, but the error bars account for this.

6.4 Gravitational waves from eccentric binaries

In figs. 6.1 and 6.3 we display the gravitational wave strains and coordinate inspi-
ral tracks for e = 0.1 and e = 0.3. The difference in initial eccentricity has a large effect
during the inspiral. Qualitatively, the case with larger eccentricity exhibits a more rapid
inspiral[45]. However, at some point both systems enter a “circular” plunge, hinting
that circularization may have occurred. We find that the simulations with e > 0.5 show

plunge-type rather than orbital-type behavior in the coordinate motion from the very



88

start. Note that the tracks shown in Fig. 6.3 represent the coordinate positions of the

individual BHs, and once a common horizon forms, they are less meaningful.

5F 15
0F 10
-5 b 1-5

Fig. 6.3. Inspiral tracks for initial eccentricity e = 0.1 (left panel) and e = 0.3 (right
panel).

We now consider the emitted radiation and focus on the dominant £ = 2, m =
2 mode of the complex Newman-Penrose (NP) quantity ¥ 4= A(t)exp (—ip(t)). To
compare the orbits, we apply a time shift to A and ¢ as in Ref. [17], so the maximum of A
(i.e. the peak of the amplitude of the gravitational wave) is at t /M ;=0in each evolution.
In Fig. 6.4, we plot the shifted amplitudes and frequencies w = dp/dt extracted at
r = 70 M. The cases displayed are those with eccentricities e = 0 — 0.5 in steps of 0.1

and e = 0.8.
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Fig. 6.4. Frequency of the £ = 2, m = 2 mode of the NP radiation scalar r \1’4

In Fig. 6.4, the oscillations and growth in w at early times (inspiral) can be in
general terms understood from simple Newtonian considerations. That is, ignoring radi-
ation reaction, the oscillations (i.e. amplitude and period) in w are a direct consequence
of the eccentricity and not present in the e = 0 case. The period of these oscillations
is the period PT of the extrema in the separation, and the amplitude of the oscillations
increases with e. If one adds radiation reaction, the amplitude of the oscillations in w
decreases with time, corresponding to a reduction in eccentricity. As expected from the
overall reduction in the binary separation, there is an overall growth of w due to the
energy and angular momentum loss. Also consistent with the predictions in [45], the
higher eccentricity evolutions merge more quickly. We note that in the Newtonian case,

we would observe that Pr = P,, where P, is the time the binary takes to complete one

¢’ ¢
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revolution in the angular coordinate ¢. Due to the effects of precession caused by GR,
the two periods are very different (this can be seen from PN equations).

During the merger or plunge phase, w increases dramatically and then levels off,
signaling that the BBH has merged. After this point, w remains constant, a direct
consequence of the QNM ringing of the final BH.

As mentioned before, one of the objectives of this work is to investigate whether
a given initial data configuration will circularize before it merges. By this we mean that
the radiation from the late stages of the evolution is identical to that from an orbit which
started with zero eccentricity. We see in Fig. 6.4 indications that the low e evolutions
show the universality of a circular orbit at the very late stage of inspiral. The w’s from
different eccentricities near the peak amplitude at merger seem to be indistinguishable
for low enough eccentricity. In order to investigate this in more detail, in the inset of
Fig. 6.4 we focus on the plunge stage. Here we plot eccentricities e = 0 — 0.8 in steps of
0.1. Up until e = 0.4 and after t/M P~ —50, the frequencies w from each run follow each
other. Noticeable differences start showing for e > 0.5, which is the first configuration

to plunge immediately without orbiting first.

6.5 Signal-to-noise ratio in the higher modes for eccentric binaries

There is a nonnegligible dependence of the signal-to-noise ratio on the eccentricity,
especially near the transition point between inspiral and plunge. Before we analyse the
signal-to-noise ratio and the fitting factors of the eccentric binaries with respect to a
quasi-circular one, it is helpful to note the relative distribution of the signal-to-noise in

the various spherical harmonic modes. This will also justify our choice of looking at
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just the optimally oriented binaries for further analysis. Notice how the p in (4,4) mode
has a significantly different variation with mass than the (2,2) mode. The p near the
e =~ 0.5 for higher masses, which is the transition point between the inspiral and plunge
is consistently higher than the circular case by 20%. The (2,0) mode contributes three
times more in the nearly plunging case of e = 0.8, while for e < 0.5, its contribution is
more or less independent of eccentricities. The (3,2) and (4,4) mode on the other hand

show a greater variation with mass compared to the (2,2) mode.

0.12f
0.10f
£ s 0.08f
g g 0,06,
0.04f
0.02
‘ 0.00
. 0.0
e
0.12} ] 0.12F
0.10f 1 010k
£ 008 £008
§ 0.06 3 0.06f
QL QL
0.04 0.04
0.02f 0.02],
0.00 0.00%
0.0 0.0

Fig. 6.5. The relative signal-to-noise in different modes of the eccentric waveforms. The
(dots, squares, vertical triangles, diamonds and inverted triangles) represent the total
masses (40, 80, 120, 160,200)M® respectively. The top left[right] figure is for (I,m) =

(2,2)[(2,0)], bottom left[right] is for (3,2)[(4,4)] modes respectively.
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In fig. 6.5 we plot the signal-to-noise ratio as a function of eccentricity for a
number of total mass values. The signal-to-noise is normalized such that the peak signal-
to-noise ratio in the dominant mode of a non-eccentric binary is unity. This effectively
amounts to fixing all the eccentric signals equidistant from the detector. The binaries are
assumed to all have the same total mass. As we see below, for low eccentricities, other
than the dominant (I = |m| = 2) mode the [ = |m| =4,l = 3,|m| =2 andl = 2,m =0
modes are the major contributors and carry less than ~ 10% of the signal for most cases.
The interference between the modes can also constructively add up. To check this effect
we also calculated the fitting factors between the full waveform at various inclination
angles and the [ = m = 2 mode and found that even for significant eccentricities (e = 0.2),
the fitting factors were always> 0.95 even without maximizing over the mass. Thus the
results for fitting factors calculated between just the dominant modes, should be valid
to within ~ 5% for an arbitrarily oriented source for low eccentricities e < 0.2. For
higher eccentricities (¢0.5) the mode content is a few percent higher, and the error will
be slightly higher, but one can even in this case the errors should not be higher than of
the order of 10%. For ease of presentation we shall ignore the higher modes and assume
optimal orientation in the signal as well as templates, which in practice implies using
just the £ = m = 2 mode.

The variation in p with eccentricity is depicted as a contour plot in fig. [?] where
we have removed the previous normalization. The contours correspond to the physical
scale and we see that there is significantly more signal from an eccentric binary of e &~ 0.5
than a quasicircular binary at identical distance. This relationship can be inverted to

infer that an eccentric binary e ~ 0.5 can be seen to slightly greater distance (20 — 25%
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farther) than a circular binary. This will increase the detection volume in which an
eccentric binary can be detected by a factor of 1.8 — 2.4 compared to that for a circular
one. This assumes matched filtering of an eccentric binary merger signal with an identical
eccentric template. In practice, it would be important to know how different are these
signals when matched to a quasicircular template, and if a template bank consisting
of quasi-circular templates will be successful in capturing these mergers with residual

eccentricity in the last few orbits. This forms the subject of our next section.

500

400

300

200

100

Fig. 6.6. For a threshold signal-to-noise of 10, the contours of the maximum distance
reach(also called the signal horizon) in the (Mass, eccentricity) parameter space. The

contours are labeled in units of 10 Mpc to facilitate display.
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6.6 Conclusion

We have carried out a series of eccentric orbit simulations of BBH to investigate
the merger dynamics in the non-linear regime and to determine the final state of the
system. The family of simulations consisted of binaries with approximately constant
initial orbital period and varying initial eccentricity. We found that for initial e < 0.4,
the final BH parameters are Mf/Madm ~ 0.96 and af/Mf ~ 0.69, the same as in the
circular case. We also find that for e < 0.4 the binary begins to enter a wuniversal
plunge at t ~ 50 M ¢ before the amplitude of the gravitational radiation reaches its peak,
as observed in the circular case. In a sense, one effect is a consequence of the other.
Namely, the emergence of a universal plunge implies that the final state of the system,
i.e. the final BH, is “unique.” Reaching the same final state is also a strong indication
that the binary has circularized by the time it enters the plunge.

We also examined the distribution of the signal-to-noise in various modes and
found that the signal to noise in the dominant mode among different eccentric binaries
seemed to peak at e = 0.5, the eccentricity beyond which there seemed to be only a
plunge phase. This results in being able to see an eccentric event with eccentricities in
the regime (0.4,0.55) farther out than one can see a circularized binary. In the next
chapter we shall present a preliminary investigation of how efficient the quasicircular

merger templates to be used in LIGO are for detecting eccentric binaries.
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Chapter 7

Detection of spinning and eccentric binaries

7.1 First steps toward detecting generic IMBH mergers

At the time of writing this, the search strategies used in the LIGO inspiral group
for binary black hole coalescences employ the so-called restricted post-Newtonian wave-
forms for quasi-circular orbits. While there are detection template families that are
designed to capture the spin precession in the inspiral case, the issue of searching for the
merger /ringdown phase of these waveforms is still yet to be properly addressed. There is
work in progress to test the use of full NR waveforms in both inspiral and burst detection
schemes . This has the potential of extending the upper mass limit of searches for initial
LIGO from 30]\4® to 2OOM® depending on the type of waveform being used.

In a general astrophysical scenario such as an IMBH binary in a stellar cluster,
it is possible to conceive of a generic binary with both non-zero eccentricity as well
as arbitrary spin orientation. Although there are claims that the spins of the binary
will get aligned to the angular momentum owing to friction with gaseous environment,
the so-called ”wet merger” scenario, it is possible that there maybe some mergers with
arbitrarily aligned spins. Our approach in examining the detectability of a generic merger
of an intermediate mass binary is to first consider an equal mass spinning binary with
anti-aligned spins and check the effectiveness of a non-spinning as well as moderately

spinning template in searching for it. Next we examine a non-spinning but eccentric
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equal-mass binary merger signal, and examine how well a numerical quasicircular (e ~ 0)
merger waveform can capture such a merger. This are preliminary attempts at learning

how numerical relativity templates may become a tool for astrophysical discovery.

7.2 Observing the spin in merging binaries

7.2.1 Comparing waveforms of different non-precessing spins

Computing the full solution to the BBH problem is computationally expensive,
an expense that increases as the spins increase and the mass-ratio decreases. To learn
if we can alleviate some of this computational expense by fore-knowledge of the density
of the required template space, we investigate how well a specific template matches a
target template of arbitrary spin and inclination angle. The resolution is held fixed at
(A =m/40). We will study several cases, including spin configurations relative to each
other at different inclination angles for a fixed mass of 100M o and then we specialize to
a few angles and study the typical, minimax and the best phase optimized matches.

The simplest approach to compare the spinning waveforms is to fix the observer
inclination angle 8 = 0 for both the target and template waveform. We then choose the
template to have some spin and calculate the match of that template with a target that

varies with the spin a of the black hole. Specifically we focus on M

minimax

[hl(a
where a; and aj run over all the combinations of spin. The minimax matches between all
combinations of the spins are > 0.995 over the mass range considered. This reflects the
fact that the binaries approach the same final black hole and that the initial spin gets

radiated away in modes other than ¢ = |m| = 2, where they are almost identical during
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the late stages of the binary merger (sometimes called universality [15]). The dominant
modes of non-spinning and anti-aligned spinning waveforms are thus indistinguishable
hinting that the non-spinning case may be sufficient for a detection but potentially
making parameter estimation problematic. This degeneracy with spin, however, does
not hold when we include more radiation modes.

We explore the matches between different spin templates at different inclination
angles, considering first the templates with a fixed mass of 100M o The variation of the
minimax match between a template of a = 0 and target templates that vary with a is
presented in Fig. 7.1 and with both the template and target varying with a # 0 in Fig. 7.2.

Iy (a =

In terms of the match, Fig. 7.1 corresponds to a minimax match, M . .
minimax

0), h2(ai)], and Fig. 7.2 between six combinations of the four spinning configurations,

minimax [hl (az

.),h2(aj)] both versus 6. In both figures, at § < 7/3 the template is

within a M . .
min

imax of 0.98 with the targets, making them indistinguishable. When the

template is fixed at @ = 0 in Fig. 7.1, the match is > 0.98 for all § except with a > 0.6,
which shows a stronger drop-off with angle for higher initial spins. Fig. 7.2 shows that the
matches between adjacent templates among the a = {0.2,0.4,0.6,0.8} group are better
than 0.99, while the matches that have a spin parameter difference a; = ay, > 0.4 drop
below 0.98 at higher angles. These templates are based on short waveforms of just two
and a half cycles and the matches will likely get worse when more cycles are included.
We conclude from these plots that the £ = |m| = 2 mode continues to dominate the other

modes at small angles, § < 7/4, leading to similar matches between a spinning and non-

spinning configuration. As the inclination angle grows, however, the presence of higher
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modes becomes more pronounced, breaking the degeneracy between the waveforms from

different initial spin configurations.

=
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Fig. 7.1.
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waveform at resolution m/38.4. The mass of the final black hole for all the cases is

100M® and the spins run over a, = {0.2,0.4,0.6,0.8}. Note the monotonic decrease of

the match with angle.
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The minimax match between the waveforms of different nonzero initial spins,

[hl (ai), h2 (aj)] as a function of . The mass of the final black hole for all the

cases is 100M® and {al., aj} runs over {0.2,0.4,0.6,0.8}. Note the monotonic decrease

of the minimax match with the angle 6.

For completeness, we present the table of the range of values over which the

phase optimized matches of the different spinning waveforms can vary in Tab. 7.1. These

matches are evaluated at § ~ 7/2 to report the widest range of matches calculated. The

table indicates that the range of matches is higher at lower masses and tends to decrease

with mass.

To place the minimax matches between the spins in context with the typical

and the best matches, we present the typical match M

(a = 0),h2(a = aj)] for



100

Table 7.1.  The range of phase optimized matches reported as (M

minimax’ Mbest>

between two templates of various spin pairs (al, a2) where both templates have 6 ~ 7 /2.

(al, a2) 5OM® 120]\4® 300M®

(0.0,0.2) (0.8940,0.9513)  (0.9228,0.9618)  (0.9446,0.9701)
(0.0,0.4) (0.8570,0.9507)  (0.8882,0.9604)  (0.9141,0.9684)
(0.0,0.6) (0.8595,0.9530)  (0.8898,0.9618)  (0.8234,0.9427)
(0.0,0.8) (0.7325,0.9196)  (0.7896,0.9326)  (0.8369,0.9449)
(0.2,0.4) (0.9860,0.9964)  (0.9884,0.9967)  (0.9858,0.9954)
(0.2,0.6) (0.9742,0.9927) (0.9751,0.9927,) (0.9665,0.9912)
(0.2,0.8) (0.9526,0.9832) (0.9497,0.9793,) (0.9194,0.9681)
(0.4,0.6)  (0.9973,0.9993)  (0.9959,0.9988,) (0.9945,0.9971)
(0.4,0.8) (0.9808,0.9956) (0.9732,0.9902,) (0.9611,0.9738)
(0.6,0.8) (0.9911,0.9982) (0.9880,0.9950,) (0.9824,0.9867)

a;= {0.2,0.8} and 6 = {7/2,7/4} in Fig. 7.3. The error bars are given by the minimax
and the best match in order to demonstrate their variation with mass. As seen in Fig. 7.3,
the difference between the minimax and best matches is slight at small values of 8 and a,
while for large angles it can vary over the order of ~ 3%. The variation is much higher
at lower masses because there are more cycles in the sensitive part of the LIGO noise
curve making the match more sensitive to the relative phasing of the templates. The
figure indicates that using a non-spinning waveform as the template in detection would

cause the largest losses when the target has large spin and angle.
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Fig. 7.3.  We plot the range and the typical values of phase optimized match between

the waveforms of different initial spins, M typ[h

mass where a, = {0.2,0.8} and Gj ={n/4,7/2}.

+1(a =0, Hj), h2 (ai, Hj)] as a function of

7.2.2 Comparison between non-spinning template and spinning signal

We have seen the variation of the match between templates of the same spin
parameters and different angles and different spin parameters and the same angle. In
setting up a template bank using these numerical waveforms, it may be useful to know
if just a couple of templates at some specific inclination and spins can cover the whole
set, of waveforms considered here.

For this study we calculate the minimax matches between a template of a given
value of spin and inclination angle and a target with a spin parameter varying over

a, = {0.0,0.2,0.4,0.6,0.8} and a fixed, but different inclination angle. In Fig. 7.4 we
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plot the variation of the minimax match for a template with a, = 0.0 and 91 = /4 with
target templates of varying spin and 92 ~ /2 as a function of total mass. We made
the choice of the template to have 91 = 7/4 since we have concluded that a choice of
0 = 0 is going to fail to match well over a range of target inclination angles, especially
at lower masses. We choose the target template to have 92 ~ 7/2 to calculate the worse
case scenario for the inclination angle of the target. In Fig. 7.5 we substitute a template
of a, = 0.4 and keep all the other parameters the same as in Fig. 7.4. This improves the
matches at smaller total mass. One can see from the figures that the higher the match
threshold, the smaller the mass range covered by the template. A coarse template bank
would do better with a = 0.4 and 6 = 7/4 than a = 0 at the same 0 = /4 especially for
the lower masses and hints that there may be an optimal way to lay out this template
space. Another feature is that for higher masses, the matches for both the cases look

similar, as the late-merger/ringdown has some universality-independence from the initial

spin.
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We plot the minimax match between the target templates of different initial

minimax [ 1

h (a=0,0 = 7T/4),h2(a2.,0

7m/2)] as a function of mass. Notice the low matches at the smaller masses.
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Fig. 7.5.  We plot the minimax match between the target templates of different initial
spins at a fixed 6 with a template of a = 0.4, Mminimax[hl(a =0.4,0 =7/4), h2 (ai, 0=

7/2)] as a function of mass.

The use of these axial-spin waveforms as templates for detection has some limi-
tations. The waveforms investigated here are from a non-precessing, anti-aligned config-
uration, the study in case of precessing binaries with arbitrary spin configurations will
be the subject of a future work. It is likely that the higher radiation modes will play
an even bigger role than they do for the relatively simple case investigated here. The
major limitation however, is the small number of gravitational wave cycles present in
the waveforms. The ISCO frequency is about 0.02/m. The mass at which the ISCO
frequency hits the seismic wall of LIGO noise curve of 40 Hz is about 100M o If one

allows the lower limit in the match integrals to vary or be fixed at 0.02/m = 70 Hz for
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example, then we can trust these matches up to ~ 60M o assuming that we will search
for events that are merging in the LIGO band with little to no inspiral. Although the
results will not change too much at high masses even if inspiral is included in the numer-
ical templates, low mass results are expected to have lower matches. Finally, another
limitation of these matches is that it assumes identical total mass for the template and
the waveform being compared to it. This assumption needs to be relaxed to estimate

the ”effectualness” of templates for detection, which will be done in a future work.

7.3 Observing the eccentricity in binary black holes with non-eccentric

templates

7.3.1 Motivation and Previous work

If there are mergers of binary black holes with residual eccentricity, the searches
with post-newtonian or even hybrid (post-Newtonian + numerical relativity) templates
assuming a quasicircular orbit will miss some of the events. The extent of such losses was
first investigated by Martel and Poisson, [36]. They matched phenomenological circular
quadrupolar waveform templates to match with target waveforms from some nonzero
eccentricity orbits with binaries of different mass ratios. They found that for a given
eccentricity the loss of snr decreased with increasing mass and for a given mass the loss
of snr increased with increasing eccentricity. Recently, this problem was reanalysed by
Tessmer and Gopakumar [51] using higher order post-Newtonian waveforms. They found
that the conventional quasi-circular waveforms did not give appreciable matches with 2.5

PN eccentric waveforms, but taking the e — 0 limit of the eccentric waveform evolution
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equations gave waveforms that had fitting factors > 0.96 for e < 0.1 for a (10 + 10)M®
binary.

One possible source for ground-based detectors is the intermediate mass binary
black holes, with mass range 30 < M /M 5 < 300 [30]. While the generation mecha-
nisms for such mass ranges are uncertain, it is possible that the mergers that form such
binaries leave some residual eccentricity in the binaries. For these mergers the leading
contribution to the signal to noise ratio will come from the last few orbits pre-merger
and the ringdown phase post-merger, and the waveforms for these can only be obtained
by numerically solving the Einstein equations on a supercomputer. Given the recent
revolution in the field of numerical relativity, several binary black hole orbits can now
be evolved all the way up to the coalescence and the waveforms are available for sev-
eral different initial parameter choices such as different spins, spin orientations, mass
ratios, and also eccentricities. It is now possible to start at separations far enough that
3.5 PN waveforms can be matched to the numerical ones in the inspiral regime for the
non-spinning BBHcase. This leads to the possibility of constructing merger waveforms
phenomenologically by using a semi-analytic fit of these numerical waveforms.

Phenomenological templates to cover the complete waveform including the inspi-
ral, merger and ringdown have been constructed by different collaborations (Ajith et al
and buonanno et al). These templates will extend the reach of the detectors beyond the
30—40M o limit which the inspiral waveform templates offer. A natural pipeline that will
emerge soon from the NINJA ( Numerical Relativity Injection Analysis group) to cover
the massive and intermediate mass binary merger searches in LIGO will incorporate the

numerical relativity merger/ringdown waveforms in some form or other.
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The effect of the eccentricity in the last few orbits on waveforms has been studied

and the seemingly weak dependence of the final black hole spin on the initial orbital
eccentricity has been observed in 3d numerical evolutions of Einstein equations. The last
few orbits will contribute significantly to the signal to noise ratio only for massive and
intermediate mass black hole binaries, and not as much for the stellar mass ones. How
efficient would a pipeline incorporating the quasi-circular numerical relativity merger
waveforms be in detecting the merger of an eccentric IMBH binary that merges in the
LIGO band? In the last few orbits naively one would expect the radiation reaction
and hence the effect of orbital eccentricity to increase, leading to significant phase and
amplitude differences between quasi-circular and eccentric waveforms. A search that uses
just a circular templates should thus be less efficient in capturing eccentric waveforms.
However, the weak dependence of the final spin on the initial eccentricity suggests that
the circular templates for the last few cycles may be able to detect a significant range
of eccentricity with just a mild loss of signal-to-noise. As we shall see below, both these
statements are true, the former for low masses for which the first part of the late inspiral
dominates and the latter for high masses wherein the plunge and ringdown dominates

with respect to the LIGO noise.
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Fig. 7.7. The physical frequency corresponding to the three regions demarcated in the

previous figure, to give an idea of the frequency scales involved.
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7.3.2 Fitting factors of eccentric merger signals with non-eccentric tem-

plates

In what follows we shall restrict attention to equal mass binary black holes. Con-
sider optimally oriented eccentric binaries with differing specification of initial eccentric-
ities at the same distance from the detector and with the same detector orientation. The
search templates are ”complete” quasi-circular waveforms which could be parametrized
models in principle, such as (Ajith, buonannol, buonanno2) or hybrid waveforms con-

structed by joining Post-newtonian waveform to the numerical one.

1.00
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Fig. 7.8. The fitting factors as a function of eccentricity. The curves correspond to
differen total binary mass Msignal /M@ of the signal waveform: filled circles-60,squares-
80, diamonds-100, upright triangles-120, inverted triangles-140, open circles-160, open

square-180, open diamond-200.
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Fig. 7.9. The fractional error in mass parameter for different eccentricities as a function
of mass, in percent. There is greater error at lower masses, even for low eccentricities.
Each set of errors corresponds to different eccentricity of the signal waveform: filled
circles-0.05,squares-0.1, diamonds-0.15, upright triangles-0.2, inverted triangles-0.3, open

circles-0.4, open square-0.5, open diamond-0.6.

In practice, since the circular e = 0 run starts at lower angular frequency than
the eccentric ones, we use our largest separation, circular numerical waveform as the
template and calculate the fitting factors for the series of eccentric waveforms. If we
had longer eccentric waveforms, and if we wished to probe the low mass region of the
parameter space, then it would be imperative to extend the template. The signals consist
of the different eccentric waveforms. We plot in fig. 7.8 the fitting factors optimized over
the mass of the circular template as a function of eccentricity for various mass values of
the signal. The fitting factors seem to monotonically increase with mass and show an

almost monotonic decrease with eccentricity.
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Overall it is interesting to note that for masses less than 30M 5 the fitting factors

of low eccentricities (e < 0.1) are high ( more than 0.9). With higher masses, the range
of eccentricities covered by the circular templates increases almost monotonically. The
oscillation seen around e = 0.4 is owing to the fact that beyond this eccentricity the
orbits just plunge without finishing an orbit for the initial data used. While the value
of initial eccentricity is dependent on the separation specified, what this demonstrates is
that even for pretty high eccentricities, quasicircular templates are remarkably efficient
at covering the merger /ringdown for massive binaries M > 60M o Sav- Overall one could
attribute the fact that the circular templates covers the eccentric parameter space so
well to universality however this is unclear if we look at the way the cut off frequencies

and the universality scales.

7.3.3 The impact on actual event loss rate

As we saw in the previous chapter, given a signal to noise threshold of 10, the
signal from an eccentricity in the transition regime (0.4 < e < 0.55) can be seen a few
tens of percent farther out than a circular case. Assume a uniform distribution of merger
events over little more than the detection volume accessible for the circular case. Further
assume that the events from all eccentricities are equally probable. Then, the detection
rate of the eccentric binaries will be accordingly higher compared to the circular ones. We
can see this behaviour in the figure 7.10 where the first figure is the fractional difference
in the detection volume of an eccentric signal compared to a circular signal assuming a

template identical to the respective signal. In an actual detection scenario however, the
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signal-to-noise will be diminished by the fitting factor with nonoptimal template used to

detect these eccentric binaries. the volume will diminish by a factor F'F 3.

AV%

Fig. 7.10. The percent fractional difference in detection horizon volume relative to quasi-
circular signals as a function of eccentricity. The reduction in detection volume because
of using non-eccentric templates is most noticeable for total binary mass Msz'gnal /M 5
of 60M 5 indicated by filled circles and filled squares-80 .

In this case the fractional difference relative to the quasicircular case in the detection
volume is given by the figure on the right panel of fig. 7.10. The left figure is for the
case when the templates used are identical to the eccentric signals and the right figure
to the case when the quasi-circular templates are used to detect the eccentric signals. If
we assume all eccentricities are equally probable, this will be the same as the fractional

difference in event rate.
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As we can see for masses > 100M o there is no noticeable difference between the
detection volumes. For lower masses like 60M o the nonoptimal nature of the template

can cause as much as 10% of the detection volume and perhaps the same event rate loss.

7.4  Effectiveness of non-eccentric, non-spinning templates

Our aim in this chapter was to determine the efficiency of a search which neglects
the spin and eccentricity in the binary black hole waveform signals.

In light of the computational effort involved in searching over large, densely popu-
lated template banks, we calculate the match between waveforms of different initial spin
to see if a reduced set of spinning waveforms would be good enough. The waveforms we
use in this analysis evolve toward the same Kerr black hole (a ~ 0.66) even though the
initial spins of the individual black holes vary from 0.0 to 0.8 because of the fixed initial

ADM angular momentum. This results in very high matches Mmini Nbe 0.99, between

ma.
all the spinning and non-spinning waveforms for the dominant mode. Without adding
information from the higher radiation modes, all the spinning BBH waveforms appeared
the same in terms of matched filtering.

Once h was constructed using the modes ¢ < 5 which were resolvable over numer-
ical noise in the BBHsimulations, this degeneracy broke. We constructed two ”typical”
cases, one in which the template had a fixed § = /2 and a = 0 and the other a = 0.4.
The templates were matched against a target template also at § = 7/2 for each spinning
waveforms. When a = 0, the matches were as low as 0.88 versus m, but were > 0.95 for

m > 100M o By choosing an intermediate spin of a = 0.4, the matches were improved

for the lower masses, m < 100M o increasing the lowest value from 0.88 to 0.96. We
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speculate that this indicates that there may be an optimal layout for the template space
for a coarse search over spins. The matches were always at their highest at 100M o
although not necessarily greater than 0.98.

The issue of whether or not a quasicircular template will be effective in detecting
an eccentric signal on the other hand, seemed to have been resolved in the favor of
affirmative ref. [36]. For low eccentricities which are astrophysically more probable,
found that a quadrupolar template was effective in capturing a circular signal. When
the next higher order post-newtonian templates are used to repeat the comparison in
[51] , the matches turned out to be lower, indicating that a quasicircular template may
not suffice to detect inspiral of an eccentric binary. However this was done for stellar
mass black holes. What would happen in the case of massive and intermediate mass
black hole binaries that are eccentric in the LIGO band? Would a numerical-relativity
guided template be effective in capturing such a merger/ringdown signal resulting from
an eccentric binary?

We examined this question using numerical relativity waveforms from eccentric
binaries ranging from quasicircular up to high eccentricities. We found that the signal
to noise among different eccentric binaries seemed to peak at e = 0.5, the eccentricity
beyond which there seemed to be only a plunge phase. This results in being able to see
an eccentric event with eccentricities in the regime (0.4,0.55) farther out than one can
see a circularised binary. Then we calculated the fitting factors between the eccentric
waveforms and circular templates and found that for higher masses M > 100M o the
fitting factors could be as high as 0.97 for eccentricities up to 0.4, while at moderate

masses of 60M®, the fitting factors would be > 0.95 for e < 0.15.
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It is important to note that these eccentricities are almost the final eccentricities,
at the endpoint of the evolution of the binary, and an unambiguous definition of these
eccentricities in the merger regime is not available. So it would not be fair to com-
pare these eccentricity values to those in [36] or [51] papers, as those eccentricities will
circularise much faster.

Also the fitting factors they calculate are, in the parlance of [55] typical matches or
best matches, instead of minimax matches which we calculate. It would be interesting to
see how their numbers change when the fitting factor is changed from typical to minimax
match value.

One would expect that closer one gets to the merger, the higher modes dominate
and this should break the degeneracy between eccentric and non-eccentric waveforms.
The higher modes become more significant as the masses increase leading to reduced
fitting factors. At high masses the degeneracy is broken even with just the dominant
mode alone. At low masses the higher harmonics do not carry a significant fraction of
the signal-to-noise and hence, atleast heuristically we do not expect our inferences to
change by much.

It is indeed somewhat surprising that a LIGO data analysis pipeline based on
complete (inspiral+merger/ringdown) waveforms that are based on numerical relativity
ones, would be quite effective in detection of the last few orbits of eccentric binaries.
While one could argue that this can be qualitatively seen from the circularisation of
the plunge and the apparent universality in the last phase of the eccentric binaries,
the mass range of 20 — 60M o still remains in need of investigation. This will lead to

one more source of error in the parameter estimation and source characterisation owing
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to the effectualness and faithfulness of the circular templates even when matched to
eccentric signals. In a certain sense LIGO will be blind, (or rather deaf) to only very
high eccentricities. All moderate to low eccentricities (e < 0.1) for intermediate mass
binaries ( 60 < M/M 5 < 300), would be detected in the searches by quasicircular
templates. The quasicircularity of the templates used in detection would cause a bias
in the estimated parameters of the binary such as the mass owing to the correlation
of the eccentricity with other parameters, and how this result changes with inclusion
of higher harmonics will need more study. This analysis and conclusions are with non-
spinning, equal mass waveforms, and the generic case spin of detection of the merger of
an unequal mass binary with spin and eccentricity will attract quite some attention over

the few years.
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Chapter 8

Summary and Future work

The woods are lovely, dark and deep,
But I have promises to keep,

And miles to go before I sleep,

And miles to go before I sleep.

Robert Frost

8.1 Summary

The objective of this thesis has been to take the first steps toward using the
binary black hole merger waveforms generated from numerical relativity simulations for
gravitational wave observations. We investigated the accuracy requirement posed by the
matched filtering detection method as well as properties of waveforms from spinning as
well as eccentric binaries.

We found that while significant accuracy may be required to use the waveforms for
lower mass binaries, the highest accuracies attainable are good enough to give negligible
detection losses. The higher the inclination of the observer in the source frame, greater

is the accuracy required because the higher modes dominate over the quadrupole mode.
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We investigated the contribution of individual modes to the signal-to-noise ratio
from the last orbits, merger and ringdown of a binary black coalescence. We studied two
types of data, spinning binaries in circular orbits ( A and B-series) and non-spinning
binaries in eccentric orbits (E-series). They have equal-mass black holes with equal,
initial spin magnitudes. The spins are anti-aligned with each other. In the A-series,
the spins were kept parallel to the direction of the orbital angular momentum, but the
magnitude of the spins varied. In the B-series, the magnitude was kept fixed to a = 0.6,
but the initial angle the spins make with the orbital angular momentum varied. In the
E-series, one measure of the initial eccentricity is varied, while the holes are initially
non-spinning.

As for the case of eccentric runs from the E-series, we studied the final spin, mode
content and the signal-to-noise ratio in their radiation. We found that the final state
of the binary only weakly depended on the eccentricity up to significant eccentricities
e 0.4. At this point the binary begins to enter a universal plunge before the amplitude
of the gravitational radiation reaches its peak. For these eccentric binaries we found
that the quadrupole mode dominated the signal-to-noise ratio, but the signal carried in
higher modes did depend on the source parameters non-trivially. There was a somewhat
unexpected result that for high masses, significant eccentricities in the last few orbits

can be captured by a non-eccentric detection template.

8.2 Directions for future work

The promise of numerical relativity solution of the two body general relativistic

problem having been fulfilled, there is a huge parameter space of initial configurations
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that will need to be explored in order to ensure that a possible astrophysical binary
black hole merger is reliably detected. The availability of waveforms opens up a plethora
of possibilities including testing general relativity in the strong field regime, a deeper
understanding of the merger history of galaxies which involves formation of intermediate
mass black holes, and with space based detectors even a deeper insight into the structure
formation in dark matter halos and the nature of dark energy.

The work contained here dealt exclusively with initial LIGO and equal mass
binaries, owing to the availability of the corresponding waveforms. The generalisation
to include other noise profiles such as advanced LIGO or LISA is trivial and would not
really change the qualitative conclusions. However, one important question that needs
to be addressed for these cases is how effectively can the parameters of the source be
characterised by using these numerical waveforms by the different detectors, and the
corresponding distance reach as a function of the initial parameters.

As for the space based detectors, untangling the signals of stellar or intermediate
mass binaries from the signal-dominated data stream would be another challenge, which
if tackled can give lot of information on the detailed merger tree dynamics of galaxy
mergers. Since the energy radiated can be maximum in certain initial configurations,
such as the spins parallel to the orbital axis, such configurations may be visible further
out than other configurations, introducing a bias in the detection probability for different
initial configurations. A simple case for ground based detectors in the case of a generic
spinning binary merger is under investigation and a factor of two increase in detection

volume and hence detection rate for certain configurations is estimated. It would be
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interesting to develop this into a formalism for testing the so called ”wet-merger” sce-
nario that predicts that the final spins before merger would be aligned if the binary
is surrounded by accreting matter, and not aligned in absence of such matter. If it is
possible to distinguish the merger waveforms from these configurations one could then
characterise not only the binary but also possibly their environment.

The last few cycles of merger could be a strong source for burst searches in ground
based detectors and it would be interesting to see how well can one characterise the
source. Whether one can distinguish a supernova burst waveform from a heavy IMBH
binary merger waveform can be an interesting question for example. One could further
ask on this lines how well do the burst searches characterise the merger phase and how
the matched filtering performance compares to them.

Another interesting avenue is the construction of the so-called hybrid templates,
which combine the post-Newtonian inspiral waveforms and the numerical merger wave-
forms for a search strategy. A comparison of a spin aligned waveform with the post-
Newtonian counterpart could be important for extending the detection range for spinning
binary black holes too.

If there are reliable astrophysical mechanisms to give significant eccentricity in
the last few orbits of an IMBH binary, then this would further require extending the
analysis here by inclusion of eccentric merger waveforms as templates.

One area which is as yet untouched is construction of a detection strategy for
a purely numerical waveform. The template layout for post-Newtonian waveforms is
possible because their dependence on all the various source parameters is known ana-

lytically. In the absence of such an analytical waveform, there have been attempts to
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construct phenomenological waveforms by Buonanno et al, Ajith et al etc. The question
is given the numerical waveforms from a set of different initial configurations, such as
some arbitrary spin orientations, arbitrary spin magnitudes and say eccentricity, it may
be possible to generate some interpolating function that could give the waveform from a
generic set of parameters, and such a function could then be used to set up a template
grid for efficient detection.

It is an exciting time for the emerging field of gravitational wave astronomy as
we work toward first direct detection of black holes, and hopefully this new window to
the universe will bring with it fresh surprises, insights and challenges to keep us busy in

the years to come.
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