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Resumé de la thèse

Dans les années 1970, Vautherin et Brink [1] ont effectué les premiers calculs auto-consistents du problème
à N-corps nucléaire en utilisant une interaction de Skyrme [2]. Aujourd’hui la méthode de la fonctionnelle de
densité (EDF) ou la méthode champ-moyen est toujours utilisée à grande échelle pour étudier la structure
nucléaire. Le premier point fort de cette méthode est sa simplicité computationnelle qui permet de l’appliquer
dans l’entièreté de la charte nucléaire, des noyaux les plus légers aux éléments super lourds à plus que 250
nucléons [3]. Depuis le début des années 1980, les initiales ‘BFH’, représentant Paul Bonche, Hubert Flocard
et Paul-Henri Heenen, ont signé un grand nombre des papiers depuis 1984 [4, 5]. Ces trois scientifiques sont les
auteurs de trois codes numériques iconiques ev8, cr8 et ev4. Des versions évoluées de ces codes sont toujours
utilisées fréquemment aujourd’hui par des nombreux chercheurs. Au fil des années, deux désavantages de ces
trois codes sont apparus. Le premier désavantage est lié à la physique: bien que ev8, ev4, et cr8 offrent à
l’utilisateur accès à une variété de combinaisons de symétries conservées et brisées, un grand nombre n’est
pas accessible. De plus en plus souvent, les applications traitant des noyaux exotiques demandent des calculs
champ-moyen qui sont moins limités par les symétries imposées. Le deuxième désavantage est d’une nature
plus pratique: le maintien au même niveau d’une combinaison de trois codes qui ont des buts comparables
est difficile.
Le projet de mon doctorat était de construire un code qui unifie et généralise les fonctionnalités de ev8,
cr8 et ev4. Aujourd’hui MOCCa, un acronyme de Modular Cranking Code, est capable de reproduire toutes
les fonctionnalités des codes BFH. De plus, il est maintenant possible d’effectuer des calculs champ-moyen
pour un nombre des combinaisons de symétries conservées et brisées, offrant un domaine d’applications
énorme. Quatre symétries ont été toujours imposées dans les codes BFH, et sont maintenant toutes soumises
au choix de l’utilisateur, qui peut les conserver où les briser indépendamment. Ceci résulte en 16 modes
d’opération différents du code, dont tous ont des intérêts physiques pour décrire des phénomènes nucléaires.
La déformation octupolaire du 224Ra [6] et les bandes chirales du 138Nd [7] sont des exemples récents d’intérêt
expérimental, dont la description théorique est maintenant abordable avec un seul outil. Cet outil fait preuve
d’une grande complexité: sur le plan physique, des méthodes ont été développées pour résoudre les équations
du champ-moyen en l’absence des symétries facilitant le problème, tandis que sur le plan pratique, le traitement
d’un nombre de degrés de liberté non-physiques a eté amelioré. La dernière partie de la thèse, la plus
importante probablement du point de vue des futurs collaborateurs, est pour cette raison constituée d’un
manuel d’utilisateur. Deux applications de la méthode sont ainsi présentées: la description des transitions de
forme dans les isotopes de Radium et une étude de l’évolution des rayons de charge dans la châıne isotopique
du mercure démontrent la viabilité de la méthode.
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Introduction

Mean-field theory with Skyrme functionals In the seventies, Vautherin and Brink [1] were the first to
perform self-consistent calculations using an effective interaction from the hand of Skyrme [2] some 14 years
earlier. Several decades later energy density functional (EDF) theory or mean-field theory is still a widely
used method to study nuclear structure. While functionals have replaced effective interactions in the majority
of cases, the spirit of the method remains very much intact: use the variational principle with a very simple
ansatz to obtain an approximation to the energy of a nucleus [3].
The main appealing future of modeling nuclear structure in this way is the computational simplicity of the
method. Single calculations of limited complexity can in principle be performed on smartphones and already
quite involved calculations can be performed on personal computers. More complicated work like the one
presented here is only feasible with access to a scientific computing center, but is certainly not among the
more demanding applications typical in the academic world. This computational simplicity makes it possible
to apply the model to any nucleus, regardless of mass, in stark contrast to other microscopic models that are
often limited to light nuclei.
The greatest strength of density functional theory is also one of its weaknesses: the simplicity of the variational
ansatz. Already one year after the first paper, Vautherin [8] published an extended calculation without the
rotational symmetry that was assumed in his previous work. The breaking of symmetries in mean-field theory
is a practical way of on one hand maintaining the simplicity of the variational ansatz, while on the other
hand enlarging the variational space and greatly enhancing the power of the method. This dissertation is in
that sense a direct continuation of this work: understanding the consequences of conserved symmetries and
enlarging the grasp of mean-field models by lifting the restrictions they impose.

EV8, CR8 and EV4 Since the start of the eighties, my advisor prof. Heenen has been working on mean-
field theory together with a variety of people in Brussels and abroad. In particular the famous ‘BFH’ initials,
standing for Paul Bonche, Hubert Flocard and Heenen, have been signed on a great number of papers since
1984. They are the original authors of the original tools-of-the-trade computer codes named ev8, cr8 and
ev42. Today, evolved versions of these three codes are still in frequent use.
Of these, ev8 is the original template on which the other two codes are based. It represents the wavefunc-
tions on a 3D coordinate mesh [9, 10] and solves the mean-field equations without any rotational symmetry
assumption. Several point-symmetries, such as parity, however still are conserved, resulting in a code that
is very modest in its CPU time requirements today, even though it was very demanding in 1984. ev4 is
based on the exact same principle as ev8, and differs solely in the assumption of parity: ev8 assumes the
solution to be invariant under parity, while ev4 does not. cr8 is another variation on the theme of ev8, this
time cr8 does not respect time-reversal invariance while ev8 does. Breaking the symmetries of parity and
time-reversal results in an extra layer of complexity for ev4 and cr8 compared to ev8, but consequently also
a greater range of application.

MOCCa The combination of these three codes are at the base of a large body of work by many people,
spanning several decades. Over the years two drawbacks of the triumvirate of codes have become apparent.
The first is rooted in the physics: while ev8, cr8 and ev4 offer the user access to various combinations of
conserved and broken symmetries, the coverage is far from complete. More and more, applications to exotic
nuclei demand mean-field wavefunctions that are less restricted by symmetry. A more general approach is
thus needed in order to enlarge the reach of the methods (and the associated experience) encoded in the
BFH mean-field codes. An option of course would have been to simply write an additional code for every
interesting symmetry combination, but this is sheer madness given the amount of possibilities.
A second drawback is more rooted in the practical world: a set of three computer codes is needlessly hard to
maintain. Any new development (say, a new term in the functional) would have been coded and debugged

2Other mean-field codes have also seen some use, but these three really are the ‘flagships’.
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Introduction

(at least) three times, respecting for every code the quirks that had evolved over the years. Of course, in
practice this meant that various features were implemented and tested in one code and afterwards did not (or
only partially) find their way into the other codes.
The project for my dissertation was thus born: constructing a computer code that united and extended the
possibilities of the flagship codes. Now, at the end of my PhD, it exists and is called MOCCa, for Modular
Cranking Code. The only function of the final a is to make the acronym memorable. In hindsight, the other
parts of the acronym are not too indicative either: cranking is but one aspect of the code, while modular just
indicates that I did my best to keep everything tidy, organized and extensible.
At this point in time, MOCCa is able to recreate any result of the flagship codes obtained before the start of my
PhD3. On top of that, the code offers the user an unprecedented freedom with regards to symmetries imposed
on the wavefunctions. While it turned out that there are relevant symmetry combinations that MOCCa cannot
access, the application range of the current version is already staggering.
MOCCa consists at the moment of slightly more than 32000 lines of FORTRAN code. Arguably the most
advanced flagship code, cr8, consisted of slightly less than 16000 lines in its version 1.6.94. A software
project of this size and complexity is difficult to keep track of and keep understandable to less involved users.
For this reason I have opted to include in this dissertation rather complete discussions of many numerical
aspects of the solving algorithms in the code. While a significant portion of these are only slightly adapted
from the older codes, I feel that their inclusion here is quite valuable if only to gather and expand their
documentation, so that the poor PhD student that one day employs the code needs to spend less time trying
to understand arcane computational details.

Organisation This dissertation is composed of four parts. Part I aims to introduce the reader to self-
consistent calculations in nuclear mean-field theory. Chapter 1 introduces Hartree-Fock calculations and the
Skyrme energy density functional. Chapter 2 introduces the concept of self-consistent symmetries, the sym-
metry groups we are mainly interested in as well as the physical motivation for not respecting those symmetries.
Chapter 3 introduces the HFB ansatz as way to introduce pairing into the many-body wavefunctions from
chapter 1. Part II discusses the implementation of MOCCa. Chapter 4 discusses how we represent the nuclear
wavefunctions and how we solve the mean-field equations. We outline how we generate and control symmetry
breaking configurations in chapter 5. The following chapter in this part, chapter 6 details how the pairing
equations from chapter 3 can be solved in practice. During this PhD, a lot of time was spent on ensuring
MOCCa could reproduce the older codes and so in Chapter 7 some tests of MOCCa are presented. The final
chapter in this part deals with the numerical accuracy of the suite of mean-field codes, ev8, ev4, cr8 and
MOCCa. An extensive study was published and is attached. Part III deals with applications of the framework
discussed in the previous parts. Chapter 9 shows the capabilities of MOCCa in a proof-of-concept study of a
number of Radium isotopes. The second chapter of this part, chapter 10 details a series of calculations along
the isotopic chain, focusing on the rms charge radii of these nuclei. The final part, part IV, consists of a single
chapter: a manual for MOCCa. It is perhaps the most important chapter of all, as MOCCa is a complex code,
that is unfortunately still hard to use.

3Some developments were made during my PhD that still have to find their way into MOCCa.
4V1.6.9 is a rather old version, and the latest version of cr8 consists of slightly more than 30000 lines of code. Nevertheless,

I feel justified comparing to v1.6.9 since automated computer scripts wrote a large part of those roughly 14000 lines of difference
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Skyrme energy density functional theory
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Chapter 1

The Hartree-Fock approach

This first chapter will deal with the basics of everything that follows: the Hartree-Fock method applied to
the nuclear many-body problem. The initial sections introduce the formal background of the variational
calculations which MOCCa performs. These sections are heavily indebted to [11, 12] and the interested reader
will have no trouble to find other excellent introductions to the subject both in nuclear structure and in other
fields. After this introduction we will specify more precisely to the nuclear problem and the concept of Skyrme
energy density functionals (EDFs).
Section 1.1 will introduce the problem and the concept of Slater determinants, while section 1.2 introduces
formally the variational procedure that is at the heart of dissertation. The single-particle wavefunctions that
are the fundamental variables of the Hartree-Fock method are further specified in section 1.3. The Skyrme
energy density functional and its various constituents will be introduced in section 1.4. Some remarks on
the strong and weak points of the method are collected in section 1.5, while configuration mixing as a
beyond-mean-field procedure is introduced briefly in section 1.6.

1.1 The nuclear many-body problem: Slater determinants

Let us consider the nuclear many-body problem, with Hamiltonian Ĥ. We would like to solve the static
Schrödinger equation exactly for the many-body wavefunction Ψ of a given nucleus with A nucleons, of which
Z are protons and N are neutrons. Solving the many-body problem means then that we would like to find
the eigenstates of the many-body Hamiltonian |Ψi〉 so that

Ĥ|Ψi〉 = Ei|Ψi〉 i = 1, 2, . . . . (1.1)

Note that we use capital Greek letters for many-body wavefunctions and calligraphic letters for many-body
operators. We will not specify the Hamiltonian Ĥ for now, and neither will we specify any symmetries of
either the Hamiltonian or the many-body wavefunctions, and we leave the indexing integer i undefined. This
introduction aims to introduce the most general problem, that can later be amended by specifying a specific
form for Ĥ, which might exhibit some particular many-body symmetries.
Consider a complete orthonormal basis of single-particle states |φ`〉, indexed by an integer `. Note that we will
always use lowercase Greek letters for single-particle wavefunctions. For each of these single-particle states
we have a corresponding creation and annihilation operator â†l , âl. Since we are dealing with protons and
neutrons, the |φl〉 are two-component spinors representing spin 1

2 fermions. The creation and annihilation
operators consequently obey the following fermionic commutation relations{

âi, âj

}
= 0 ,{

â†i , â
†
j

}
= 0 ,{

âi, â
†
j

}
= δij .

(1.2)

Consider the vacuum |0〉. By simply acting on it with creation operators A times, we get an A-body state
|ΨSlater〉

|ΨSlater〉 =

A∏
l=1

â†l |0〉 . (1.3)

This kind of many-body wavefunction is called a Slater determinant. We call the single-particle states in the
chosen basis occupied if they enter the product in Eq. (1.3) and unoccupied otherwise. It is important to
notice that a Slater determinant is completely determined by the set of occupied levels. Note that we cannot
allow an index l to be repeated in Eq. (1.3): this would correspond to occupying a given level twice and thus
annihilating the resulting Slater determinant.
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1. The Hartree-Fock approach

An important object is the density matrix ρ̂ of a many-body state, which is a single-particle operator. The
simplest way to define it is through its matrix elements in the basis of the single-particle states

ρij = 〈Ψ|â†j âi|Ψ〉 . (1.4)

The density matrix takes on a rather specific form when dealing with Slater determinants

ρ̂ =

A∑
l=1

|φl〉〈φl| , (1.5)

where the |φl〉 in the sum are the occupied levels of the Slater determinant. This means that ρ̂ is a projector,
so that

ρ̂2 = ρ̂ . (1.6)

We can thus deduce from the density matrix the set of occupied levels of the Slater determinant: they are
precisely the eigenstates of ρ̂ with eigenvalue equal to 1.

1.2 Selecting the best Slater Determinant: Hartree-Fock equations

The Hilbert space of the quantum-mechanical many-body problem is mind-bogglingly big: some simplification
is needed so that we even might start making a chance to solve it. This is the main interest of the Slater
determinants introduced in the previous section: their simplicity. The space of all Slater determinants makes
up only a very small part of the total Hilbert space1 and we can simplify the nuclear many-body problem
greatly by restricting ourselves to only the many-body states that are Slater determinants.
It is idle hope however that the eigenstates of the many-body Hamiltonian Ĥ will be Slater determinants:
the space of Slater determinants is too small to contain the exact solution |Ψexact〉. We can however look for
an optimal Slater determinant that best approximates the ground-state of the system. We now define the
Hartree-Fock energy of a Slater determinant |ΨSlater〉 as

EHF = 〈ΨSlater|Ĥ|ΨSlater〉 . (1.7)

The variational principle now guarantees us that the lowest EHF we can find is an upper bound for the energy
of the true ground state of Ĥ. Using variational calculus, we can write this problem as

δEHF = δ〈Ψ|Ĥ|Ψ〉 = 0 , (1.8)

where the variation is over all possible Slater determinants. It turns out that the condition that determines
the Slater determinant [11] with the lowest Hartree-Fock energy is[

ĥ, ρ̂
]

= 0 , (1.9)

where we also define the single-particle Hamiltonian ĥ as

hij =
∂EHF(ρ)

∂ρji
. (1.10)

Eq. (1.9) has as major implication that ĥ and ρ̂ can be diagonalized simultaneously. The single-particle
basis in which both are diagonal is called the Hartree-Fock basis2. In this basis Eq. (1.9) corresponds to an
eigenvalue problem

hij = εiδij . (1.11)

Note that this equation determines the eigenstates of ĥ and thus the entire Hartree-Fock basis. But it is still
up to us to choose which of the single-particle states in the resulting basis to occupy, meaning that we can still
build several Slater determinants out of all the basis vectors. Occupying the lowest-lying single-particle states
will (in general) result in the ground state, and different choices of occupation will lead to excited states.

Unfortunately, the optimal ĥ from Eq. (1.10) depends on the particular many-body state under consideration
(through ρ̂) and as such the problem posed by the combination of Eqs. (1.9) and (1.10) is very much nontrivial

1In fact, the Slater determinants form an infinite-dimensional basis of the complete Hilbert space.
2Strictly speaking the variation of Eq. (1.9) has as subsidiary condition that the single-particle states in the Slater determinants

should be orthonormal.
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1.3. Single-particle states

1 Guess initial Slater Determinant |Ψ(0)〉
2 while

[
ĥ(i), ρ̂(k)

]
6= 0 do

3 Compute density matrix ρ̂(i)

4 Compute single-particle Hamiltonian ĥ(i) (ρ̂)

5 Find levels φ
(i)
i by diagonalizing ĥ(i)

6 Choose A levels to occupy

7 Construct new Slater Determinant |Ψ(i)〉
8 i = i + 1

9 end

Algorithm 1: Schematic algorithm for the solution of the Hartree-Fock equations.

to solve. Problems like these are often called self-consistent equations and we can only hope to solve them
through an iterative scheme. Schematically one proceeds as in algorithm 1: starting with an initial guess

one proceeds at iteration (i) by diagonalizing ĥ(i) to get new single-particle wavefunctions |φ(i)
i 〉. With a

specific choice of occupation, they generate a Slater determinant |Ψ(i)〉 which in turns gives rise to ĥ(i+1).
When this process returns the same Slater determinant, that is to say |Ψ(i)〉 ≈ |Ψ(i+1)〉, one has reached
self-consistency and we have solved the Hartree-Fock equations. In practice, however, Algorithm 1 is far from
a practical manual to solve the Hartree-Fock equations. We will enter in great detail how MOCCa solves the
equations in chapter 4.

1.3 Single-particle states

Some more comments are in order on the subject of the single-particle states |φl〉. The above discussion can be
applied to the general quantum-many-body system, but we will now specify somewhat to the nuclear problem.
Important coordinates for the single-particle wavefunctions in this case are not only the spatial coordinate
r, but also the spin coordinate σ and the isospin coordinate q. The full dependency of the single-particle
wavefunctions in coordinate space is thus

φl (x, y, z, σ, q) with σ = ±1 , q = ±1. (1.12)

Note that it is not a priori clear that the single-particle wavefunctions correspond to definite isospin: definite
neutron or proton single-particle wavefunctions. The components of the |φl〉 can thus simultaneously be
non-zero for both q = +1 and q = −1. We will often drop the isospin index q to a subscript where practical
to lighten the notation.
It is important to stress that the complete set of occupied orbitals |φl〉 completely determine the density
matrix ρ̂ of a Slater determinant. The density matrix in turn completely specifies a given Slater determinant
|ΨHF 〉 up to an overall phase. This implies that it is in fact very natural (and practical) to consider them
(and their values in coordinate-spin-isospin space) as the degrees of freedom of the variational problem Eq.
(1.8). The actual implementation of MOCCa will greatly depend on this, see chapter 4.
A result that will be significant in chapter 2 is the following: Slater determinants are invariant under unitary
transformations that do not mix occupied and unoccupied states. Indeed, suppose we transform the single
particle states |φi〉 with a unitary transform Û into single-particle states |χj〉 we get for the new density matrix
ρ′

ρ̂ =

A∑
i=1

|φi〉〈φi| =
A∑
i=1

A∑
j=1

A∑
k=1

Uji|χj〉〈χk|U∗ki =

A∑
j=1

|χj〉〈χj | = ρ̂′ (1.13)

where we have used in the second equality that Û is a unitary transformation by explicitly taking the sum over
index i. Since this transformation leaves ρ̂ invariant, it will also leave the Slater determinant |Ψ〉 invariant
(up to a phase).
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1. The Hartree-Fock approach

1.4 The Skyrme energy density functional

Let us now focus on the nuclear Hamiltonian Ĥ that we left unspecified before. Since nucleons are composite
particles made of quarks that interact by the strong interaction, we need to content ourselves with a model
for Ĥ, an effective interaction Ĥeff. In fact, we don’t even need that: notice that Eqs. (1.9) and (1.10)
only directly reference its expectation value 〈Ĥeff〉. A formula that models EHF (and its derivative, the
single-particle Hamiltonian) is all we need to solve the Hartree-Fock equations. The Skyrme energy density
functional is exactly such a model. We will split it into four different terms [10]

EHF = EKin + ECoul + ESkyrme + ECorr . (1.14)

In this decomposition EKin is the kinetic energy and ECoul is the energy due to the Coulomb repulsion of the
protons in the nucleus. ESkyrme is the Skyrme part of the functional, aiming to provide an effective way to
capture the effect of the strong interaction in the nucleus. The term ECorr is a collection of different possible
corrections to the energy. We will come back in detail to every term in the following sections.
The three first terms of the Hartree-Fock energy can be written as integrals over energy densities, meaning
that all of these three terms can be written as

Ei =

∫
dr Ei(r) . (1.15)

The quantities Ei(r) are functions in position space, meaning that the terms Ei become functionals: thus the
nomenclature of the energy density functional. Aside from the Coulomb contribution, the kinetic and Skyrme
energy density are local functions, as they depend only on a single space-coordinate r. This locality presents
an enormous advantage for every practical calculation of EHF as the numerical cost of evaluating Eq. (1.14)
is quite modest3. The Coulomb term of course is not local, as the Coulomb interaction has infinite range and
involves a double integral over coordinate space.
This locality of the Skyrme energy density is historically based on a zero-range effective interaction v̂Skyrme

that contributed to an effective many-body Hamiltonian Ĥeff. Many terms in Eq.(1.14) are directly inspired
by contributions of this type of interaction to the expectation value of Ĥeff. However, the prescription we will
present can no longer be related to an expectation value of a many-body Hamiltonian. Many widely used
functionals that perform well on the mean-field level share this characteristic, even though it is very much a
problem for beyond-mean-field calculations [14, 15, 16].
Although a detailed discussion of the Skyrme EDF is outside of the scope of this work, a note is in order
on how particular functionals are constructed. People wishing to construct a new functional have two main
things to do: first determine the terms in the functional they want to include and what parameters control
them. The first step concerns many choices: which Skyrme terms to allow? Do we include pairing in the fit?
If so, what kind? Should the functional be derived from a many-body Hamiltonian or not? After fixing all of
these (and many more) choices, the coupling constants that govern the terms should be fitted to a suitable
set of experimental data. Most of the time the experimental data in question are the binding energies and
mean-square radii of (doubly-)magic nuclei [17] and properties of the interaction in infinite nuclear matter.
Other observables can in principle be included but are more rare, such as fission barrier heights in [18].
A final remark is in order before specifying the terms in Eq. (1.14). The particular form of the Skyrme
EDF that will be presented here does not in any way represent the simplest, nor the most general, nor the
most widely accepted form of a Skyrme EDF. It simply corresponds to the type of functionals that cr8 was
able to handle in 2012 [19], which form is sufficient to treat many of the more widely used functionals in
recent history, see Appendix A. Note that the more recent type of functionals respecting the connection with
many-body Hamiltonians such as SLyMR0 [16] are not incorporated yet.

3Functionals using non-local energy densities (and consequently non-local mean-field densities) exist, for a recent example
see [13].
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1.4. The Skyrme energy density functional

1.4.1 Mean-field densities

Before we move on to specify the terms of the functional further, we will introduce the mean-field densities
as functions in coordinate-isospin space that characterize a particular Slater determinant

ρq(r) =
∑
j,σ

φ∗j (r, σ, q)φj(r, σ, q) (1.16a)

τq(r) =
∑
j,σ

[
∇φ∗j (r, σ, q)

]
· [∇φj(r, σ, q)] , (1.16b)

Jµν,q(r) =
1

2i

∑
σ1,σ2

σν,σ1,σ2

∑
j

[
φ∗j (r, σ1, q)

]
[∇µφj(r, σ2, q)]−

[
∇µφ∗j (r, σ1, q)

]
[φi(r, σ2, q)] , (1.16c)

sµ,q(r) =
∑

j,σ1,σ2

σµ,σ1,σ2
φ∗j (r, σ1, q)φj(r, σ2, q) , (1.16d)

jµ,q(r) =
1

2i

∑
j,σ

[
φ∗j (r, σ, q)

]
[∇µφj(r, σ, q)]−

[
∇µφ∗j (r, σ, q)

]
[φj(r, σ, q)] , (1.16e)

Tµ,q(r) =
∑

j,σ1,σ2

σµ,σ1,σ2

[
∇φ∗j (r, σ1, q)

]
· [∇φj(r, σ2, q)] , (1.16f)

Fµ,q(r) =
1

2

∑
ν,σ1,σ2

σν,σ1,σ2

∑
j

[
∇µφ∗j (r, σ1, q)

]
[∇νφj(r, σ2, q)] +

[
∇νφ∗j (r, σ1, q)

]
[∇µ φj(r, σ2, q)] .

(1.16g)

Where q = n, p is an isospin index, the Greek indices µ, ν range over the Cartesian directions x, y, z and the
σµ,σ1,σ2

are the matrix elements of the Pauli matrices. The mean-field density ρ is simply called the density,
while τ is the kinetic density and Jµν is often called the spin-current density. The densities s, j,T and F are
respectively called the spin density, current density, spin-kinetic density and tensor-kinetic density [20]. The
only single-particle wavefunctions |φj〉 that enter the sums in these definitions are the occupied orbitals in the
Hartree-Fock basis.
The total density ρt(r) as well as the isoscalar ρ0(r) and isovector density ρ1(r) will make frequent appear-
ances:

ρt(r) = ρ0(r) = ρn(r) + ρp(r) , ρ1(r) = ρn(r)− ρp(r) . (1.17)

When no subscript is specified, it is the total density that is implied. Similar definitions of course hold for all
of the mean-field densities above.
The following alternative notations for parts of the tensor density Jµν that will be used throughout the text
are

J (0)(r) =
∑

µ=x,y,z

Jµµ(r) , (1.18a)

J (1)
κ (r) =

∑
µ,ν=x,y,z

εκµνJµν(r) , (1.18b)

J (2)
µν (r) =

1

2
[Jµν(r) + Jνµ(r)]− 1

3
δµνJ

(0)(r) . (1.18c)

Note that J (0), J (1) and J (2) correspond to the decomposition of the tensor Jµν into a pseudoscalar, vector
and symmetric traceless tensor [21].

1.4.2 The kinetic energy density EKin

The kinetic energy density is given by

EKin(r) =
∑
q=n,p

~2

2mq
τq(r) , (1.19)

where mq is the nucleon mass. Note that the majority of Skyrme parameterizations do not use the physical
nucleon masses but rather set mq to the average of the physical masses, rendering the kinetic energy an
isoscalar.
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1. The Hartree-Fock approach

1.4.3 The Skyrme contribution ESkyrme

The most general form of the Skyrme energy density ESkyrme that can be used in MOCCa is [22, 21, 23, 19, 10]

ESkyrme = EtSkyrme +
∑
q=p,n

EqSkyrme ,

EtSkyrme(r) = B1ρ
2
t +B3

(
ρtτt − j2t

)
+B5ρt∆ρt +B7aρ

2+αa
t +B7bρ

2+αb
t +B9 (ρt∇ · Jt + jt · ∇ × st)

+B10s
2
t +B12aρ

αa
t s2

t +B12bρ
αb
t s2

t +B14

( ∑
µ,ν=x,y,z

Jt,µνJt,µν − st ·Tt

)

+B16

( ∑
µ=x,y,z

Jt,µµ

)2

+
∑
µ,ν

Jt,µνJt,νµ − 2st · Ft

+B18st ·∆st +B20 (∇ · st)2
,

EqSkyrme(r) = B2ρ
2
q +B4

(
ρqτq − j2q

)
+B6ρq∆ρq +B8aρ

αa
t ρ2

q +B8bρ
αb
t ρ

2
q +B9q (ρq∇ · Jq + jq · ∇ × sq)

+B11s
2
q +B13aρ

αa
t s2

q +B13bρ
αb
t s2

q +B15

( ∑
µ,ν=x,y,z

Jq,µνJq,µν − sq ·Tq

)

+B17

( ∑
µ=x,y,z

Jq,µµ

)2

+
∑
µ,ν

Jq,µνJq,νµ − 2sq · Fq

+B19sq ·∆sq +B21 (∇ · sq)2
.

(1.20)

The coupling constants B1 through B21 and the density dependence parameters αa and αb are in principle
free parameters of the functional.

1.4.4 The Coulomb energy density ECoul

The energy density associated with the Coulomb field can be split into two parts, the direct term and the
exchange term, and is given by [10]

ECoul(r) = Edir.
Coul + Eexch.

Coul , (1.21a)

Edir.
Coul(r) =

e2

2

∫
dr′

ρp(r)ρp(r
′)

|r− r′| , (1.21b)

Eexch.
Coul (r) = −3e2

4

(
3

π

)1/3

ρ4/3
p (r) , (1.21c)

were e is the charge of the proton. The direct term is simply the classical electrostatic energy density of a
charge density given by ρp(r). The actual calculation of this contribution is not trivial. We will elaborate in
part II on how to do it in practice.
The exchange term is the quantum-mechanical correction due to the antisymmetrization of the many-body
wavefunction. The expression given here for the exchange term is in fact already an approximation usually
called the Slater approximation, as the full formula would be extremely costly to evaluate numerically. The
Slater approximation suffices for our purposes, and introduces an error on the order of few percent on the
Coulomb exchange energy [3, 24].
Using the local proton density to generate the Coulomb field is not completely rigorous and a more complete
calculation should take into account the finite charge radius of the proton. This is however not usually incor-
porated into mean-field theories but can in principle be done [3].

1.4.5 The correction term

Several authors impose extra phenomenological corrections to the functional in a term we will denote ECorr.
This term can encompass many different contributions that authors have wished to include. A rotational
correction [13] is a typical example, as is the Wigner energy [25, 26]. In general this term aims to approxim-
atively take into account the effect of restoring the symmetries broken in the calculation, see section 1.6.
The centre-of-mass correction [10] is one example that is very often incorporated and is implemented partially
in MOCCa. Since any computational method necessarily locates the wavefunction of the nucleus in space, the
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1.5. Advantages and disadvantages of the density functional method

resulting breaking of the translational invariance implies some admixture of finite momenta to the nuclear
ground state. To remove this effect one can add a term Ecm to the functional

Ecm = −
∑
q=n,p

1

2M
〈P̂2

q 〉 = Ecm,1 + Ecm,2 , (1.22)

where M = Zmp + Nmn is the total mass of all the nucleons and P̂q is the total momentum operator
of particle species q. One typically separates this into two contributions, called respectively one-body and
two-body centre-of-mass correction.

Ecm,1 =
~2

2M

∑
j

〈φj |∇2|φj〉 , (1.23)

Ecm,2 =
~2

2M

∑
j,k

|〈φk|∇|φj〉|2 , (1.24)

where the sums are again over the occupied states in a Hartree-Fock basis. Various parameterizations use
only Ecm,1, while others use the full Ecm (examples of both can be found in [17]), while still others prefer not
to use it at all [18]4. Note that MOCCa is currently equipped to deal with the one-body centre-of-mass term
only. The inclusion of Ecm,2 is straightforward to implement, and was simply omitted due to time constraints.

1.5 Advantages and disadvantages of the density functional method

The mean-field scheme and in particular the Hartree-Fock scheme are not new: they have been established in
a variety of fields with much success. The main interest of the approach is the numerical complexity or rather
the absence of it: the variational space of Slater determinants is enormously smaller than the full Hilbert
space of the many-body problem. It is not hard to see that Algorithm 1 is essentially linear in the number
of particles A: for every particle we need to find an occupied single-particle level by diagonalizing ĥ.5 The
locality of the Skyrme functional further helps to keep the computational cost limited.
For the nuclear many-body problem this translates to a large range of applicability. One can solve the Hartree-
Fock equations with reasonable computational effort from the lightest nuclei up to the super-heavy elements
A ≈ 250 and far beyond. This stands in strict contrast to other microscopic approaches. Among them are
the shell model (nuclei not too far from magic numbers for large A, like 208Pb and 210Bi [28]), and various ab
initio approaches such as in-medium similarity normalization group and coupled cluster theory (calculations
up to A ≈ 132[29, 30, 31]). Although all of them will enormously benefit from increases in computer power
in the future and will be able to severely extend their reach, the size of their variational space grows extremely
fast with increasing particle number and it will be a long time before they cover the entirety of the nuclear
chart.
The price to pay for this computational tractability is simplicity of the variational ansatz: the Slater Determ-
inant. It is very much the ultimate independent-particle wavefunction. Apart from the antisymmetrization
inherent for fermions, one can imagine every individual nucleon to occupy a definite orbital level. It is clear
that this is an enormous simplification of the picture, as this implies that Slater determinants cannot capture
any kind of additional correlations between the nucleons. For many nuclei, correlations play an important role
and it is clear that any Slater determinant will constitute a rather bad approximation to the exact nuclear
many-body wavefunction. We will partly remedy this situation by enlarging the variational space in chapters
2 and 3, but this will remain a weak point of the EDF method.

4Note that parameterizations that have been fitted with differing schemes have very different properties, see [27]. It is most
important when using a certain parameterization to use the corresponding correction.

5You might argue that the diagonalization of ĥ is not linear in the number of particles, but it is still polynomial. Most other
microscopic methods scale far worse than polynomial in the number of particles.
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1. The Hartree-Fock approach

1.6 Beyond-mean-field: Configuration mixing with the generator coordinate
method

A (formally) simple way of improving the mean-field wavefunctions obtained by solving the mean-field equa-
tions consists of allowing for superpositions of mean-field states [3]. Consider a collection of mean-field
many-body states |Ψ(θ)〉 that can be indexed by the variable θ, which is usually called the generator coordin-
ate. θ can in principle be any kind of quantity and primarily serves to distinguish the different mean-field
states.
One then proposes the ansatz

|ΨGCM〉 =

∫
dθf(θ)|Ψ(θ)〉 . (1.25)

Varying with respect to the weight function f(θ) then leads to the Hill-Wheeler equation∫
dθ′ [HGCM(θ′, θ)− E IGCM(θ′, θ)] f(θ′) = 0 , (1.26)

where HGCM (θ′, θ) and IGCM (θ′, θ) are called the Hamiltonian and norm matrix respectively and are given
by

HGCM(θ′, θ) = 〈Ψ(θ′)|Ĥ|Ψ(θ)〉 , (1.27a)

IGCM(θ′, θ) = 〈Ψ(θ′)|Ψ(θ)〉 . (1.27b)

Even attempting to sketch how to solve these equations is far beyond the aim of this text. Suffice it to say that
the |ΨGCM 〉 resulting from this procedure is far richer than the ingredient wavefunctions |Ψ(θ)〉: it contains
many more correlations as a consequence of being a superposition of a large number of comparatively simple
states.
There are no general restrictions on the choice of the generator coordinate q and the corresponding wave-
functions |Ψ(θ)〉, other than that they should be motivated by the physics that one wishes to study. Popular
choices for q include expectation values of multipole operators Q̂`m (especially the quadrupole moments
` = 2 [32, 33]), as well as a Cartesian projection of the angular momentum 〈Ĵµ〉 [34].
We will not make use of this framework in this dissertation and stay on the mean-field level, although it is
useful to keep in mind the possible extensions of the theory explained. In particular, MOCCa does not imple-
ment any kind of beyond-mean-field procedure to enrich the many-body wavefunctions, but it might serve to
generate the ingredient wavefunctions |Ψ(θ)〉 that can be used for more complete studies.
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Chapter 2

Symmetries: conservation and breaking

In the previous chapter we introduced the Hartree-Fock equations and the concept of a Skyrme energy dens-
ity functional, carefully avoiding any elements that would render the formulation less general. This chapter
concerns the possibilities that the conservation and breaking of symmetries of the Slater determinants afford
us. We are in particular interested in two groups of point symmetries, respectively denoted by DT2h and DTD2h ,
although rotational invariance will make frequent appearances. While this chapter is written solely for Slater
determinants, it is worth emphasizing that the entire discussion is valid for the more general Hartree-Fock-
Bogoliubov ansatz that will be introduced in chapter 3.
We will start by considering the consequences of conserved symmetries. Section 2.1 will introduce the general
framework of symmetries of both EDF and Slater determinants. Afterwards, section 2.2 introduces the point
symmetries we are interested in for single-particle wavefunctions, which will give rise to many-body symmetry
groups in 2.3. Z-isospin symmetry, as a possible addition to the group structure will be discussed in section
2.4. The classification of the various subgroups of DT2h and DTD2h will be formulated in section 2.5, and their
consequences for the possible sets of many-body symmetries that can simultaneously be conserved will be
discussed in section 2.6. The consequences of conserved symmetries for single-particle wavefunctions and the
mean-field densities and potentials will be introduced in sections 2.7 and 2.8. Afterwards, we will discuss
the motivation, as well as the advantages and disadvantages of breaking self-consistent symmetries in 2.9,
including a (non-exhaustive) list of physically relevant degrees of freedom that become accessible through
this mechanism. Although the framework will not be employed in this dissertation, we discuss symmetry
restoration and how it can improve the EDF formalism in section 2.10.

2.1 Many-body symmetry conservation

The many-body symmetry operators that interest us are all of the following form

Û =
A⊗
j=1

Ûj , (2.1)

where Û is the corresponding single-particle operator. They can either be linear operators Û , denoted with
a hat or antilinear operators, Ǔ , denoted by an inverted hat. All of the studied symmetry operators will be
unitary but they can be either hermitian or antihermitian. In what follows, we will frequently distinguish
between these four type of operators. Some results and clarification regarding this classification can be found
in Appendix B.
A many-body interaction given by a many-body Hamiltonian Ĥ is said to conserve a given symmetry if the
many-body Hamiltonian commutes with the symmetry operator Û .[

Û , Ĥ
]

= 0 . (2.2)

For linear operators, this means that Û and Ĥ can be diagonalized simultaneously: the eigenstates of the
many-body Hamiltonian have quantum numbers associated with the symmetry Û . When there are several
conserved symmetries Ûµ, the resulting quantum numbers can often be used to differentiate between the
different states of the quantum system.
The hydrogen atom is a good example of this: the eigenstates of the Hamiltonian can be indexed by the
well-known quantum numbers (n, l,m). A state |Ψnlm〉 can be chosen as an eigenstate of the Hamiltonian Ĥ,
the L2 operator and the Jz operator at the same time. The underlying reason is of course that the Coulomb
interaction is rotationally invariant. This is no different for the nuclear many-body problem: energy levels in
nuclei can be assigned angular momentum and parity in order to classify and interpret them. The interactions
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2. Symmetries

in a nuclear medium are rotation- as well as parity-invariant1.
Consider a Slater determinant |Ψ〉 that is an eigenstate of a many-body symmetry Û , that is to say

Û |Ψ〉 = u|Ψ〉 , (2.3)

Since the symmetry transformed Slater determinant is equal to the original |Ψ〉, up to a phase, the density
matrix ρ̂U corresponding to it must be equal to the original density matrix ρ̂. This leads us directly to the
condition that

ρ̂U = Û†ρ̂Û = ρ̂ . (2.4)

A Slater determinant is thus invariant if and only if its density matrix is invariant under the single-particle
symmetry operator Û . One can prove [11] that if ρ is symmetrical under a symmetry of the Hamiltonian that
the single-particle Hamiltonian is also symmetric, that is to say

Û†ĥ [ρ̂] Û = ĥ
[
Û†ρ̂Û

]
, (2.5)

where the brackets mean to emphasize that ĥ is a function of ρ̂. This is a rather important result: consider
again the solving of the Hartree-Fock equations in Algorithm 1. If the Slater determinant at iteration (i)
|Ψ(i)〉 is an eigenstate of Û , then the single-particle Hamiltonian will be symmetric, and consequently the
Slater determinant |Ψ(i+1)〉 at the next iteration will still be an eigenstate of Û , because of Eq. (2.5). Since
symmetries get propagated in this way throughout the self-consistent scheme, one talks about self-consistent
symmetries.
The Skyrme functional from last chapter is in general not related to a many-body Hamiltonian and one needs
to slightly modify the concept of a conserved symmetry. An EDF EHF is invariant with respect to a symmetry
Û if its associated energy density E(r̂) is symmetry covariant[20, 35], meaning that

E(Û†r̂Û) = Û†E(r̂)Û . (2.6)

It is easy to see that if this is the case the integral over the energy density is then invariant under the symmetry
transformation Û . Eq. (2.6) is thus the correct generalization of symmetry conservation for a functional, and
one can show that Eq. (2.5) still holds when the expectation value of a many-body Hamiltonian is replaced
by a functional.
All of these considerations are independent of whether the symmetry operator Û is linear or antilinear. In
the case of an antilinear and hermitian Û we only have to replace eigenstates by invariants in the discussion
above. The only exception are antilinear, antihermitian operators that don’t have eigenstates.
As a closing remark: we need to make a distinction between the symmetries of the functional EHF and those
of the corresponding single-particle Hamiltonian ĥ. While the considerations from the previous paragraph
indicate that symmetries of Ĥ can be kept throughout the self-consistent process, this does not have to be
the case. The ‘computational’ symmetries kept throughout the self-consistent process can be any subset of
the ‘physical’ symmetries of the functional EHF. The Skyrme functional introduced in chapter 1 respects a
great many symmetries (such as rotational invariance and parity), and the main objects of interest in this

chapter are the computational symmetries of ĥ and how they can help us describe nuclear structure.

2.2 The single-particle group DTD
2h

The easiest introduction to the symmetry group of interest is by first introducing the single-particle symmetry
operators, by defining their action on single-particle wavefunctions φ(x, y, z, σ, q)[36][

P̂ φ
]

(x, y, z, σ, q) = φ (−x,−y,−z, σ, q) , (2.7a)[
Ť φ
]

(x, y, z, σ, q) = σφ∗( x, y, z,−σ, q) , (2.7b)[
R̂xφ

]
(x, y, z, σ, q) = −i φ ( x,−y,−z,−σ, q) , (2.7c)[

R̂yφ
]

(x, y, z, σ, q) = σφ (−x, y,−z, σ, q) , (2.7d)[
R̂zφ

]
(x, y, z, σ, q) = −iσφ (−x,−y, z, σ, q) . (2.7e)

1Leaving aside the weak interaction.
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2.2. The single-particle group DTD
2h

The parity operator P̂ is unitary and hermitian, while the signature operators R̂µ are linear and antihermitian

and time reversal Ť is antilinear and antihermitian. One can check that this definition of R̂µ is equivalent to

R̂µ = exp
[
−iπ

~
Ĵµ

]
(2.8)

where Ĵµ is the single-particle angular momentum operator. It is interesting to note that the signature
operators are elements of SO(3), as they represent the rotation of the system with 180◦ around their corres-
ponding axis. They are special cases of the rotation operators of SO(3)

R̂(α, β, γ) = exp
[
−iα

~
Ĵx

]
exp

[
−iβ

~
Ĵy

]
exp

[
−iγ

~
Ĵz

]
. (2.9)

The group thus only represents specific rotations as symmetries (180◦ around the Cartesian axes) and not
general rotational invariance.
Starting from these operators, one can define the simplex operators Ŝµ, the time-simplex operators ŠTµ and

the time-parity operator P̌T as

P̌T = P̂ Ť , Ŝµ = P̂ R̂µ , ŠTµ = P̂ Ť R̂µ . (2.10)

P̌T is antihermitian and antilinear, the Ŝµ operators are antihermitian and linear and the ŠTµ are hermitian
and antilinear, see appendix B for definitions. The order of multiplications in these definitions do not matter,
as we have the following commutation relations2[

Ť , P̂
]

= 0 ,
[
R̂µ, P̂

]
= 0 ,

[
R̂µ, Ť

]
= 0 . (2.11)

The signature operators R̂µ don’t commute among each other and one can check using the alternative
definition in Eq. (2.8) that we have the following multiplication rules

R̂µR̂ν = εµνκR̂κ − δµν . (2.12)

If we introduce the operators 1̂ and −1̂ we recover a full group structure.3 We denote this group as DTD
2h

DTD
2h =

{
1̂,−1̂, P̂ ,−P̂ , Ť ,−Ť , R̂µ,−R̂µ, Ŝµ,−Ŝµ, ŠTµ ,−ŠTµ

}
, (2.13)

where µ ranges over the three Cartesian axes x, y and z. This group is not Abelian, since the signature
operators don’t commute among each other. In order to complete the multiplication table, we can write down
the following equations to identify the inverse elements

R̂†µR̂µ = −R̂µR̂µ= 1̂ , Ť †Ť = −Ť Ť = 1̂ , (2.14a)

ŠT,†µ ŠTµ = ŠTµ Š
T
µ= 1̂ , P̂ †P̂= P̂ P̂ = 1̂ . (2.14b)

The group DTD
2h can be interpreted starting from a subgroup called the classical point-group D2h

D2h =
{
1̂, P̂ , R̂µ, Ŝµ

}
. (2.15)

This is exactly the point group of interest, precisely because it contains the three plane symmetries denoted
by the simplex operators Ŝµ. It is the largest subgroup of SO(3) × {1̂, P̂} that is consistent with the most
general triaxial ellipsoid shapes4. As such, D2h has all of the purely spatial symmetries we are interested in.
We can form DTD

2h by taking the direct product with another simple group

DTD
2h = D2h ×

{
1̂,−1̂, Ť ,−Ť

}
. (2.16)

While the group D2h can be interpreted purely classically, the completion to DTD
2h cannot due to the multiplic-

ation table of Ť . This is the direct consequence of the fact that fermions do not haves classical counterparts.

2Commutation relations in this context are a complete abuse of notation, as there is no addition operation in the group
structure. Nevertheless it is compact and familiar notation.

3Note that we are severely abusing notation in this definition: multiplying by the number −1 is not a group element. The
elements 1̂ and −1̂ denote different group elements. This seemingly artificial construction is completely due to the problem of
mapping classical groups into quantum groups for fermions.

4Which is something we would like to be able to describe, see section 2.9.1.
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2. Symmetries

2.3 Many-body operators: DT2h and DTD2h

We can straightforwardly construct many-body operators from the single-particle operators defined in the
previous section. We denote the many-body operator Û as

Û =

A⊗
i=1

Ûi (2.17)

where Û is the corresponding single-particle operator. We will distinguish between single-particle and many-
body operators by way of the font. If we define the many-body operators in this way, the group structure
survives and we get the full many-body group DTD2h .

DTD2h =
{
1̂,−1̂, P̂,−P̂, Ť ,−Ť , R̂µ,−R̂µ, Ŝµ,−Ŝµ, ŠTµ ,−ŠTµ

}
(2.18)

However, the multiplication table does not carry over naively. Definition (2.17) poses no problem for hermitian,
linear operators like P̂ : P̂ is also hermitian and linear as a product of linear, hermitian operators. The case
is different for antihermitian operators like R̂µ. Depending if A is even or odd, R̂µ is respectively hermitian
or antihermitian. We have

R̂µR̂µ =

A∏
i=1

R̂µ,iR̂µ,i=

A∏
i=1

−1̂ =(−1̂)A (2.19)

The same applies also to antilinear and antihermitian operators like Ť . Depending if A is even or odd, Ť is
respectively hermitian or antihermitian.

Ť Ť = −1̂ when A is odd, (2.20a)

Ť Ť = 1̂ when A is even. (2.20b)

In the end, we end up with two groups instead of one, with different multiplication tables

DT2h =
{
1̂, P̂, Ť , P̌T , R̂µ, ŘTµ , Ŝµ, ŠTµ

}
, (2.21)

DTD2h =
{
1̂,−1̂, P̂,−P̂, Ť ,−Ť , R̂µ,−R̂µ, ŘTµ ,−ŘTµ ,

Ŝµ,−Ŝµ, ŠTµ ,−ŠTµ , P̌T ,−P̌T
}
.

(2.22)

Here we see the origin of the superscript D, standing for double, as DTD2h is essentially a doubling of DT2h with
the extra element −1̂. The fact that we have different groups will have far-reaching consequences for the
treatment of odd versus even nuclei. Note that DTD2h reduces to DTD

2h when A = 1, as of course it should.

2.4 Z-isospin symmetry: the silent bystander

We have not mentioned another important operator yet: the isospin Î and in particular its third component
Îz. The total isospin Î2 is in general not conserved by Slater determinants, similar to angular momentum.
In this dissertation, we will however assume that the third component of the single-particle symmetry Îz is
conserved, meaning that we only consider single-particle states that are definitely neutron or proton in nature.
For the single-particle operators this implies[

Îzφ
]

(x, y, z, σ, q) = qφ(x, y, z, σ, q) . (2.23)

It is linear and hermitian and thus permits eigenstates with real eigenvalues.
However, mean-field wavefunctions in general do not conserve the many-body operator Îz but rather its
exponential, denoted by R̂I for its similarity with the signature operators

R̂I = exp
(
−iπÎz

)
. (2.24)

R̂I commutes with both parity P̂ and the signature operators R̂µ on both the single-particle and many-body
level. It represents a rotation of 180◦ in isospin space and is in this sense the direct analog of the signature
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2.5. Generator sets: classifying subgroups of DT2h and DTD2h

operator R̂z, while Îz is the analog of Ĵz. Depending on the particle number, Îz commutes or anticommutes
with time-reversal [

R̂I , Ť
]

= 0 if A is even , (2.25a){
R̂I , Ť

}
= 0 if A is odd . (2.25b)

We could redo the entire discussion, multiplying the possible symmetry combinations in the entire chapter by
two, by including R̂I as a symmetry operator in the group structures

DD2h ×
{
1̂, R̂I

}
and DTD2h ×

{
1̂, R̂I

}
. (2.26)

Many textbooks assume that the many-body state describes a nucleus with a fixed number of protons and
neutrons and consequently that it is an eigenstate of R̂I , what we will call z-isospin symmetry. Conserving
this symmetry has the advantage of allowing every single-particle wavefunction to represent either a neutron
or a proton, instead of a iso-spinor with isospin-up and isospin-down components. This has the consequence
that the mean-field densities, mean-field potentials and the single-particle Hamiltonian can also be separated
in a proton- and neutron part, as was already implicitly assumed in chapter 1 and Appendix A.
Z-isospin symmetry is not fundamentally different from the other symmetries discussed in this chapter and
breaking it allows for a better description of many physical systems. See for example [37] for a recent over-
view. It is outside the scope of this text to treat the breaking of this symmetry and we will assume it to be
conserved for the rest of this dissertation.5 .

2.5 Generator sets: classifying subgroups of DT2h and DTD2h

A group is generated by a set of generator elements Ŝµ if every element Û of that group can be written as a

product of the Ŝµ. We use the following notation

DT2h = G
{
P̂, R̂z, ŠTy , Ť

}
, (2.27)

to denote that DT2h is generated by the set
{
P̂, R̂z, ŠTy , Ť

}
. For a given subgroup, the choice of generators

is far from unique and DT2h itself has many different generator sets.
The notion of generating sets allows us to explore the subgroups of DT2h and DTD2h . We can denote every
subgroup by specifying their generator sets. For DT2h the possible subgroups are listed in Table 2.1. One can
divide all possible subgroups in various classes following a classification scheme proposed in [36], using the
properties of the generating sets. A given subgroup is classified by two numbers and a letter, as follows

N1 −N2
X . (2.28)

The first number N1 is either 0, 1, 2, 3 or 4 and indicates the number of group elements in the generating
set of the subgroup. The second number N2 is either 0,1 or 3 and indicates the number of Cartesian axes
explicitly referenced by the group elements. Note that N2 cannot be equal to two: if the group includes two
operators referencing Cartesian axes (signature, simplex and time-simplex operators) the third is also part of
the group because of the commutation relations. The final letter X can be either A, B or D and denotes the
number of signature operators in the group, either 0, 1 or 3. Again, a group with X = C does not exist, as
once two are included the third is too.
Not all of the possible subgroups of DT2h are systematically different, there is a large degree of isomorphism

that corresponds to the freedom of labeling of the Cartesian axes. The subgroups G{R̂z} and G{R̂y} are
clearly isomorphous and can thus be treated as the same group. The number of unique groups per type of
subgroup is given in the third column of Table 2.1, while the total number of possible subgroups is given in
the fourth column.
DTD2h has more group elements, and thus an expanded subgroup structure, summarized in Table 2.2. Note
that Tables 2.2 and 2.1 share many groups on first inspection: while the notation for the generating sets is
identical, the subgroups they represent are not the same because the multiplication tables are different.

5Although the data layout in MOCCa was designed with an extension in this direction in mind.
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2. Symmetries

Subgroups Number Total
0− 0A ∅ 1 1

1− 0A G{P̂}, G{Ť }, G{P̌T } 3 3

1− 1A G{Ŝµ}, G{ŠTµ }, G{ŘTµ} 3 9

1− 1B G{R̂µ} 1 3

2− 0A G{P̂, Ť } 1 1

2− 1A G{Ť , Ŝµ}, G{P̂, ŠTµ }, G{P̌T , ŘTµ} 3 9

2− 1B G{P̂, R̂µ}, G{P̌T , R̂µ}, G{Ť , R̂µ} 3 9

2− 3A G{Ŝµ, ŠTν } 1 6

2− 3B G{R̂µ, ŘTν }, G{R̂µ, Ŝν}, G{R̂µ, ŠTν } 3 9

2− 3D G{R̂µ, R̂ν} 1 1

3− 1B G{R̂µ, Ť } 1 3

3− 3B G{R̂µ, Ŝν , Ť }, G{R̂µ, ŠTν , P̂}, G{R̂µ, ŘTν , P̌T } 3 9

3− 3D G{R̂µ, R̂ν , Ť }, G{R̂µ, R̂ν , P̂}, G{R̂µ, R̂ν , P̌T } 3 3
4− 3D DT2h 1 1

Table 2.1: Classification of subgroups of DT2h [36] with ν 6= µ. The third column gives the number of non-
isomorphous subgroups while the fourth column gives the total number of subgroups, including isomorphous
ones.

Subgroups Number Total
0− 0A ∅ 1 1

1− 0A G{P̂}, G{Ť }, G{P̌T } 3 3

1− 1A G{Ŝµ}, G{ŠTµ }, G{ŘTµ} 3 9

1− 1B G{R̂µ} 1 3

2− 0A G{P̂, Ť }, G{P̂,−1̂} 2 2

2− 1A G{Ť , Ŝµ}, G{P̂, ŠTµ }, G{P̌T , ŘTµ}, G{R̂µ,−1̂}, G{Ŝµ,−1̂} 5 15

2− 1B G{P̂, R̂µ}, G{P̌T , R̂µ}, G{Ť , R̂µ} 3 9

2− 3A G{Ŝµ, ŠTν } 1 6

2− 3B G{R̂µ, ŘTν }, G{R̂µ, Ŝν}, G{R̂µ, ŠTν } 3 9

2− 3D G{R̂µ, R̂ν} 1 1

3− 1A G{ŠTµ , P̂,−1̂}, G{Ŝµ, P̂,−1̂} 1 3

3− 1B G{R̂µ, Ť } 1 3

3− 3B G{R̂µ, Ŝν , Ť }, G{R̂µ, ŠTν , P̂}, G{R̂µ, ŘTν , P̌T } 3 9

3− 3D G{R̂µ, R̂ν , Ť }, G{R̂µ, R̂ν , P̂}, G{R̂µ, R̂ν , P̌T } 3 3
4− 3D DTD2h 1 1

Table 2.2: Classification of subgroups of DTD2h [36] with ν 6= µ. The third column gives the number of non-
isomorphous subgroups while the fourth column gives the total number of subgroups, including isomorphous
ones.
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2.6 Possible combinations of conserved symmetries

As in standard quantum mechanics textbooks, it is not possible to just pick any combination of symmetry
operators and suppose the many-body wavefunctions conserve all of them. Note that the conservation of R̂I
implies that we can split a Slater determinant in a proton and neutron part as

|ΨHF〉 = |ΨHF,n〉 ⊗ |ΨHF,p〉 . (2.29)

The many-body symmetry operators can also be separated into parts as

Û = Ûn ⊗ Ûp , (2.30)

While we have separated the possible nuclear systems as either being time-even or time-odd, this separation
implies that we have to make a slightly more involved separation of systems in the further discussion: either
an even number of both particle species (even-even), an odd number of either one of the species (even-odd)
or an odd number for both species (odd-odd).

2.6.1 Even-even systems

For even-even systems, the time-reversal operator Ť is hermitian, given that we have

Ť Ť = Ť 2
q1 ⊗ Ť 2

q2 = 1̂ , (2.31)

and the relevant group is DT2h. In order to make our point we write down the commutators as deduced from
the commutators of the single-particle operators[

Ť , P̂
]

=
[
R̂µ, P̂

]
= 0 ,

[
Ť , R̂µ

]
=
[
R̂µ, R̂ν

]
= 0 , (2.32)

and from this the commutation relations of the simplex Ŝµ and time-simplex ŠTµ operators can easily be de-

duced. In short, every element in DT2h commutes with all the rest and the group is Abelian. Because of this6

we know that we can construct Slater determinants |Ψ〉 that are eigenstates or invariants of any combination
of elements of DT2h. In fact, the mathematics of group theory starts to shine here: if a Slater determinant is

an eigenstate of Û1 and Û2, then it is automatically an eigenstate of Û1Û2 too.
Every possible generator set in Table 2.1 thus defines a subspace in the space of all Slater determinants:
the space of Hartree-Fock states that are eigenstates of all the generating operators. All of the operators in
the subgroup correspond to a conserved symmetry, while all of the symmetry operators that are not in the
subgroup correspond to broken symmetries.

2.6.2 Even-odd systems

For even-odd systems, the time-reversal operator is antihermitian, as we have

Ť Ť = Ť 2
q1 ⊗ Ť 2

q2 = −1̂ , (2.33)

The relevant group is thus DTD2h , which is not Abelian. Consider the following commutation relations[
Ť , R̂µ

]
=
[
Ť , P̂

]
=
[
R̂µ, P̂

]
= 0 ,

{
R̂µ, R̂ν

}
=
{
R̂Tµ , Řν

}
=
{
ŠTµ , R̂ν

}
= 0 for i 6= j . (2.34)

The commutation rules for the other operators can easily be deduced from these. The major difference
with the even case is the behavior of the signature operators. They no longer commute among each other
and render the group structure more complicated. In addition, Ť is in this case an antihermitian, antilinear
operator.
This already shows that finding a Slater determinant that is an eigenstate of every operator in the DTD2h group
is impossible: an antilinear, antihermitian operator does not admit eigenstates or invariants. Every subgroup in
Table 2.2 that contains Ť is not a subgroup that characterizes a subspace of many-body wavefunctions. The
subgroups containing more than one signature operator also do not generate possible symmetry combinations,
since the signature operators do not commute for odd systems. These considerations severely limit the possible

6And the fact that there are no antihermitian, antilinear operators in the group.
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Type Subgroups Number Total
0− 0A ∅ 1 1

1− 0A G{P̂}, G{P̌T } 2 2

1− 1A G{Ŝµ}, G{ŠTµ }, G{ŘTµ} 3 9

1− 1B G{R̂µ} 1 3

2− 0A G{P̂,−1̂} 1 1

2− 1A G{P̂, ŠTµ }, G{P̌T , ŘTµ}, G{R̂µ,−1̂}, G{Ŝµ,−1̂} 4 12

2− 1B G{P̂, R̂µ}, G{P̌T , R̂µ} 2 6

2− 3A G{Ŝµ, ŠTν } 1 6

2− 3B G{R̂µ, ŘTν }, G{R̂µ, Ŝν}, G{R̂µ, ŠTν } 3 9

3− 1A G{ŠTµ , P̂,−1̂}, G{Ŝµ,−1̂} 1 3

3− 3B G{R̂µ, ŠTν , P̂}, G{R̂µ, ŘTν , P̌T } 2 6

Table 2.3: Classification of subgroups of DTD2h that can be conserved by many-body states.

conserved symmetry combinations and the ones that survive are given in Table 2.3. While the group DTD2h

has more elements than its even counterpart, the actual number of possible symmetry combinations is smaller
for odd systems.
Note that these limitations do not apply to subgroups that contain a signature operator R̂µ and either a
time-signature operator ŘTν or a time-simplex operator ŠTν . While these also do not commute, as antilinear
hermitian operators they anticommute with the linear, antihermitian signature operators and thus can be
simultaneously conserved, see Appendix B.

2.6.3 Odd-odd systems

For odd-odd systems, the total number of nucleons is again even, so time-reversal is again hermitian. Note
that all of the commutation relations in Eq. (2.32) still hold because the total number of nucleons is even.
The relevant group governing the system is thus once again DT2h. At first sight the treatment of odd-odd
nuclei is thus very much similar to the one for even-even nuclei, as we can conserve any subgroup listed in
Table 2.1.
However, the situation is not as simple as that. While in general many-body states that are not Slater
determinants can conserve time-reversal and R̂I at the same time, there is no Slater determinant that can.
Indeed, consider

Ť |ΨHF〉 =
(
Ťn ⊗ Ťp

)
(|ΨHF,n〉 ⊗ |ΨHF,n〉) =

(
Ťn|ΨHF,n〉

)
⊗
(
Ťp|ΨHF,p〉

)
, (2.35)

and since both the proton and neutron number are odd, we know that

Ťn|ΨHF,n〉 6= |ΨHF,n〉 , Ťp|ΨHF,p〉 6= |ΨHF,p〉 . (2.36)

It is thus the very structure of Eq. (2.29) that forbids the conservation of time-reversal and R̂I at the same
time when the number of protons and neutrons is odd.
If we would allow for more general variational ansatzes that expand on the Slater determinants7, the relevant
group would thus be DT2h. But we will maintain a) the variational space of Slater determinants and b)
the assumption of z-isospin symmetry. We will not categorize the possible symmetry combinations as their
description is well outside the scope of this dissertation.

7Similar arguments hold for the HFB ansatz that will be introduced in the next chapter.
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2.7. Symmetries of the single-particle wavefunctions

2.7 Symmetries of the single-particle wavefunctions

A Slater determinant conserving a symmetry Û has consequences for the constituent single-particle wavefunc-
tions. We already know that the space spanned by the occupied single-particle states is invariant under the
action of Û in that case, as the density matrix is invariant (up to a phase).
For linear operators this means that one can diagonalize the symmetry operator Û in this subspace of the
one-body Hilbert space. In practice, this means that one can freely choose the single-particle wavefunctions
that make up the Slater determinant to be eigenstates of the symmetry operator Û . Since the diagonalization
is a unitary transformation that does not mix occupied with unoccupied states, this will leave the density
matrix invariant (up to a phase). Given a subgroup of conserved symmetries, we are thus free to only consider
eigenstates of the linear operators and invariants of the hermitian, antilinear operators in the subgroup. We
can even find a transformation that takes any antilinear, antihermitian operator into its normal form, see
Appendix B.
Considering the single-particle wavefunctions to be eigenstates of single-particle symmetries also has direct
consequences for the single-particle creation operators. If the single-particle states are eigenstates of a linear
single-particle symmetry Û with eigenvalues ul we have the following relations for the creation and annihilation
operators [32]

Û†â†l Û = ulâ
†
l , (2.37a)

Û†âlÛ = u∗l âl . (2.37b)

We have similar relations if the single-particle states are invariants of an antilinear, hermitian operator Ǔ

Ǔ†â†l Ǔ = â†l , (2.38a)

Ǔ†âlǓ = âl . (2.38b)

The single-particle states cannot be eigenstates of an antilinear, antihermitian operator Ǔ , but they can
assume to come in normal pairs (l, l̄), meaning that

Ǔ†â†l Ǔ = â†
l̄
, (2.39a)

Ǔ†âlǓ = âl̄ . (2.39b)

As a practical example, let us select the entire group DT2h, that corresponds to the case of the ev8 code.

Starting out, we can choose the single-particle wavefunctions as eigenstates of parity P̂ . We can now construct
a set of |φl〉 so that

P̂ |φl〉 = pl|φl〉 , (2.40)

where pl = ±1. Another operator in the conserved subgroup is the z-signature R̂z. It commutes with parity,
so we are free to assume that

R̂z|φl〉 = ηl|φl〉 , (2.41)

where ηl = ±i. There are no more linear operators in DT2h that commute with P̂ and R̂z, so we need to

start looking at antilinear operators. ŠTy commutes with P but anticommutes with R̂z, so that we again can
consider

ŠTy |φl〉 = |φl〉 . (2.42)

In addition, we can take Ť into its normal form, that is, we can assume that

Ť |φl〉 = |φl̄〉 , (2.43)

meaning that every single-particle wavefunction |φl〉 has a time-reversed partner |φl̄〉. In the end we have a
set of |φl〉 that are simultaneous eigenstates of P̂ , R̂z, are invariants of ŠTy and bring Ť into normal form.

This is the best we can do, as no remaining element of the single-particle group DTD
2h can fulfill the necessary

commutation relations to be added to the set.
ev8 makes extensive use of the simplification these relations bring, as do ev4, cr8 and MOCCa with some
modifications. This comes in handy for the interpretation of mean-field states as we can use these quantum
numbers to label single-particle states, similar to the spectroscopic notation of the states in in the hydrogen
atom. The (immensely) practical numerical consequences will be further discussed in chapter 4.
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2.8 Mean-field densities and mean-field potentials

Symmetries also impose relations on the mean-field densities. As example consider the parity operator P̂ and
the density ρ(r). We are free to assume that the single-particle wavefunctions |ψl〉 are eigenstates of the
single-particle parity operator P̂ 8. We can then derive

ρ(−x,−y,−z) =
∑

l,σ=±1

ψ∗l (−x,−y,−z, σ)ψl(−x,−y,−z, σ)

=
∑

l,σ=±1

p2
l ψ
∗
l (x, y, z, σ)ψl(x, y, z, σ)

= ρ(x, y, z) .

(2.44)

The spatial symmetries P̂, R̂µ, Ŝµ and ŠTµ all introduce similar spatial relations for the different mean-field
densities. In general we have a symmetry rule for a density d(x, y, z) as follows [38]

d(εxx, εyy, εzz) = εd(x, y, z) . (2.45)

These relations are summarised for all of the symmetries in Table 2.4. The signs (εx, εy, εz) are determined
by the second row of the table, while the sign ε is the one that is tabulated.9 The only exception is the time-
reversal operator Ť , which does not induce any spatial relation of the symmetries. Instead, if it is conserved,
several of the mean-field densities are zero. The column final in Table 2.4 thus tabulates the signs ε in the
following relation

ρ(x, y, z) = ερ(x, y, z) . (2.46)

The densities with a minus-sign in the final column are thus time-odd and are strictly zero when time-reversal
is conserved.
These relations directly transfer to the mean-field potentials, since they are sums of the mean-field densities
and their derivatives. We tabulate which ones are time-even and time-odd in Table 2.5, and the spatial
relations can be directly deduced from Table 2.4.

2.9 Breaking symmetries

As mentioned before, the space of all Slater determinants from chapter 1 represents only a tiny fraction of the
entire Hilbert space of the many-body problem. Conserved many-body symmetries impose specific relations
on these Slater determinants (as well as the single-particle wavefunctions in the Hartree-Fock basis). If more
symmetries are imposed, the space of Slater determinants that conserve them shrinks drastically. From a
variational point of view this is bad news, as the variational space becomes smaller and the upper bound we
can put on ground-state energies thus becomes less strict. From a computational point of view symmetries
are very welcome as they diminish the computational effort needed to find a solution of the Hartree-Fock
equations.
Enlarging the variational space by breaking symmetries is key to enrich the variational space of Slater determ-
inants. While the functional might be invariant under a given many-body symmetry, the Slater determinant
that minimizes the Hartree-Fock energy does not have to be. This kind of symmetry breaking reminds of
the spontaneous breaking of symmetries in particle physics: the simplified picture known as a ‘Mexican hat’-
potential is also very relevant here. Given a symmetry-broken solution, many different ones may be generated
by applying the corresponding symmetry to the solution, but all of these will be degenerate.
We can also approach this from the other side: the exact many-body wavefunction is an eigenstate of the
symmetries of the many-body Hamiltonian. However, this state is in general not a Slater determinant. While
we could approximate the many-body state by a Slater determinant that is an eigenstate of the given sym-
metries, this does not mean this state is the best approximation (in the sense of lowest energy) to the exact
many-body state. A Slater determinant that does not respect the given symmetries might have a lower energy
and be therefore preferable. From this point of view it becomes clear that breaking symmetries in this context
is not truly a physical phenomenon (the exact many-body state is an eigenstate of all relevant symmetries),
but rather a consequence of our choice of variational space.

8This assumption makes the derivation more intuitive and shorter to write down, but is not necessary. The only necessary
condition is that space of single-particle wavefunctions is closed under the action of P̂ , or equivalently that the density matrix ρ̂
is invariant under P̂ .

9The table does not contain derivatives of the densities, but these obey similar relations. The signs under the transformations
will of course not be the same, but it should be straightforward to further extend Table 2.4.
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R̂x R̂y R̂z Ŝx Ŝy Ŝz
(x, y, z)→ (x,−y,−z) (−x, y,−z) (−x,−y, z) (−x, y, z) (x,−y, z) (x, y,−z)
ρ, τ +1 +1 +1 +1 +1 +1
sx, Tx, Fx +1 −1 −1 −1 +1 −1
sy, Ty, Fy −1 +1 −1 +1 −1 −1
sz, Tz, Fz −1 −1 +1 +1 +1 +1
jx +1 −1 −1 +1 −1 +1
jy −1 +1 −1 −1 +1 +1
jz −1 −1 +1 −1 −1 −1
Jxx, Jyy, Jzz, J

(0) +1 +1 +1 −1 −1 −1

Jyz, Jzy, J
(1)
x +1 −1 −1 −1 +1 +1

Jxz, Jzx, J
(1)
y −1 +1 −1 +1 −1 +1

Jxy, Jyx, J
(1)
z −1 −1 +1 +1 +1 −1

ŠTx ŠTy ŠTz P̂ P̌T Ť
(x, y, z)→ (−x, y, z) (x,−y, z) (x, y,−z) (−x,−y,−z) (−x,−y,−z) N.A.
ρ, τ +1 +1 +1 +1 +1 +1
sx, Tx, Fx −1 +1 +1 +1 −1 −1
sy, Ty, Fy +1 −1 +1 +1 −1 −1
sz, Tz, Fz +1 +1 −1 +1 −1 −1
jx +1 −1 −1 −1 +1 −1
jy −1 +1 −1 −1 +1 −1
jz −1 −1 +1 −1 +1 −1
Jxx, Jyy, Jzz, J

(0) −1 −1 −1 −1 −1 +1

Jyz, Jzy, J
(1)
x −1 +1 +1 −1 −1 +1

Jxz, Jzx, J
(1)
y +1 −1 +1 −1 −1 +1

Jxy, Jyx, J
(1)
z +1 +1 −1 −1 −1 +1

Table 2.4: Densities and the spatial relations they have when symmetries are conserved. See the explanation
with Eqs. (2.45). and (2.46).

Time-even Bq, Uq,Wµν,q

Time-odd Aq,Sq,Cq,Dq

Table 2.5: Behavior under time-reversal of the mean-field potentials.

Since breaking symmetries is numerically costly, it is important to correctly identify the symmetry that adds
relevant degrees of freedom and which one doesn’t. Starting from either DT2h or DTD2h , the amount of freedom
to choose which symmetries to break and which to conserve is staggering. Every subgroup of both groups
of which the generators satisfy the appropriate commutation rules is a possible combination of conserved
symmetries (see Tables 2.1 and 2.2). The broken symmetries are then simply all of the elements in the parent
group that are not part of the subgroup of conserved symmetries10. Note that these do not form a group.

2.9.1 Order parameters

Breaking symmetries enlarges the set of allowed Slater determinants in the variational procedure, and it is
important to correctly identify and treat the new degrees of freedom this entails. When a given many-body
operator Ô obeys the following relation

Û†ÔÛ = −Ô (2.47)

for a given symmetry operator Û (that is possibly antilinear), then it follows that

〈ΨHF|Ô|ΨHF〉 = 0 , (2.48)

for a Slater determinant that is an eigenstate of Û . A nonzero value of 〈Ô〉 is thus a clear indicator that the
mean-field state is not symmetric. For this reason the value 〈Ô〉 can be regarded as an order parameter, in

10In addition to rotational symmetry, which is by default broken as SO(3) is not a subgroup of DT
2h or DTD

2h .
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Symmetry operator Order parameters

R̂(α, β, γ) 〈Q̂2m〉, 〈Q̂4m〉
P̂ 〈Q̂3m〉, 〈Ŝz〉
Ť 〈Ĵx〉, 〈Ĵy〉, 〈Ĵz〉, 〈D̂〉, 〈Ŝz〉
R̂x 〈Ĵy〉, 〈Ĵz〉, 〈Re Q̂21〉, 〈Im Q̂22〉
R̂y 〈Ĵx〉, 〈Ĵz〉, 〈Im Q̂21〉, 〈Im Q̂22〉
R̂z 〈Ĵx〉, 〈Ĵy〉, 〈Q̂21〉
Ŝx 〈Ĵy〉, 〈Ĵz〉, 〈Re Q̂21〉, 〈Im Q̂22〉
Ŝy 〈Ĵx〉, 〈Ĵz〉, 〈Im Q̂21〉, 〈Im Q̂22〉
Ŝz 〈Ĵx〉, 〈Ĵy〉, 〈Q̂21〉
ŠTx 〈Ĵx〉, 〈Re Q̂21〉, 〈Im Q̂22〉
ŠTy 〈Ĵy〉, 〈Im Q̂21〉, 〈Im Q̂22〉
ŠTz 〈Ĵz〉, 〈Q̂21〉

Table 2.6: Most relevant degrees of freedom mentioned that arise because of broken symmetries. Note that
this list is far from comprehensive and that degrees of freedom listed under two symmetries are restricted
by both. For the purpose of this list our choice of axes of the multipole moments is (x, y, z) following the
conventions of Appendix C.

analogy to the quantities in thermodynamics that indicate phase transitions. Care should be taken however,
as not every asymmetrical mean-field state gives rise to a nonzero value of 〈Ô〉, meaning that we should not
take the analogy too far.
In what follows, we will consider a list of examples of order parameters and the physical situations they are
relevant in. The first examples are the quadrupole deformation 〈Q20〉 and 〈ReQ22〉, octupole deformation
〈Q3m〉 and the three components of the angular momentum vector. Less widespread in the literature, but not
less interesting are the nuclear Schiff moment and the other quadrupole moments 〈Q21〉 and 〈ImQ21〉 that
characterize so-called scissor modes. We will go into detail briefly for all of these and try to give the reader
references to some relevant applications.
These degrees of freedom (and some others) and the symmetries that constrain them are summarized in
Table 2.6. The observables that can be considered as parameters are by no means limited to this table as
presented here, as one can imagine many operators whose expectation value is restricted to zero by conserved
symmetries. The main examples are of course the multipole moments with ` > 4.

Quadrupole deformation

The deformation associated with non-zero values of the quadrupole moments 〈Q̂20〉 and 〈Re Q̂22〉 is the
most prevalent order parameter in the literature. Both quantities are actually not constrained by any of the
discrete symmetries of DT2h or DTD2h . They are more specifically order parameters of the rotational invariance,
associated with SO(3) and the rotation operators of Eq. (2.9).
However, for many nuclei, the breaking of SO(3) is not complete and one of the cartesian axes can be
chosen as a rotational symmetry axis of the nucleus, effectively conserving SO(2) as a subgroup of SO(3).
Configurations that respect SO(2) are called axial and correspond, if the symmetry axis is the z-axis, to
〈Q̂22〉 = 0 and non-zero values of 〈Q̂20〉 11.
The mean-field minima for many nuclei are axial as was shown for light nuclei in the original application of
Skyrme forces [8]. Mean-field configurations of this type have been used to interpret the ground state of many
nuclei as either prolate or oblate and in many cases the rotational bands that correspond to the Bohr-Mottelson
model of rotation of deformed states have been experimentally observed. Many applications were already
performed in the ’90s [39] and nowadays such deformation can be included in fits of parameterizations [18].
A more comprehensive review can be found in [3].
Triaxial mean-field minima that no longer respect SO(2) are also prevalent across regions of the nuclear chart,
for instance the Mo isotopes [40] or more recently in the Ge isotopes [41]. Chiral doublet bands and wobbling
bands are usually cited as the experimental signature of triaxial deformation. A body of evidence exists for
this kind of deformation around A ∼ 130 [7] and A ∼ 160 [42] for excited triaxial rotational bands, but
experimental evidence for static ground-state triaxial deformation is still questionable.

11Different choices of symmetry axis correspond to different conditions on the quadrupole moments, see Appendix C
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Octupole deformation

For multipole moments with odd ` one has (see Appendix C)

P̂†Q̂`mP̂† = −Q̂`m . (2.49)

The lowest degree ` that is a physical degree of freedom is 3 and consequently the octupole deformations
〈Q̂3m〉 are widely used as order parameters for the breaking of parity P̂. Several nuclei show mean-field
minima that are octupole deformed, mostly in the A ∼ 230 region [43, 44, 45] but also in the rare earth
region [46] and at high spin in light nuclei [47].
The experimental smoking gun for octupole correlations are significant electric dipole and octupole transitions
E1, E3 between levels in the nucleus. A very clear experimental example are 220Rn and 240Ra [6]. But
lighter nuclei can exhibit octupole deformation too, as strong octupole correlations were recently discovered
in 144Ba [48]. Octupole deformations are also important for the mean-field descriptions of fission barriers. For
many actinide nuclei, the fission barrier height can be systematically lowered when one includes the octupole
deformation [49, 50].

Angular momentum

The angular momentum Ĵ is of course a very important observable of the nucleus. All of the projections Ĵµ
are restricted by the conservation of time-reversal and time-parity since

Ť †Ĵ Ť = P̌T,†Ĵ P̌T = −Ĵ , (2.50a)

(2.50b)

The conservation of every signature operator R̂µ restricts the values of the other two projections of the angular
momentum to zero. This is because of the following relations

R̂†µĴνR̂µ = +Ĵj if µ = ν , (2.51a)

R̂†µĴνR̂µ = −Ĵj if µ 6= ν . (2.51b)

The simplexes Ŝµ also restrict the other two components of the angular momentum. The time-simplexes
ŠTµ however restrict the angular momentum projection along the corresponding Cartesian axis, since one can
check that

ŠT,†µ ĴµŠTµ = −Ĵµ . (2.52)

In short, angular momentum is completely restricted by time-reversal conservation, but its orientation is heavily
restricted by conserved spatial symmetries.
The description of excited states along rotational bands (in both even and odd nuclei) using mean-field theory
is greatly improved by using mean-field states with non-zero expectation values of (at least) one Cartesian
projection of the angular momentum operator [51, 52]. A special mention goes to the wobbling bands in rare
earth nuclei that are subject to renewed interest like 138Nd [7] and 158Er [53]. A proper description of their
high-spin bands (also related to triaxial deformation) necessitates orientations of the angular momentum that
does not coincide with a principal axis of the nucleus [54].

Time-odd densities and terms in the functional

While not usually used as order parameters in the literature, the mean-field densities s, j,T and F are restricted
by time-reversal symmetry. Once it is broken, they take non-zero values and give rise to new terms in the
functional, often (improperly) called the time-odd terms12. These terms are the source of some problems when
constructing new Skyrme parameterizations. Either one takes the view that the Skyrme functional should be
strictly generated by a force, in which case the coupling coefficients of the time-odd terms are completely
determined by the force coefficients. If on the other hand one takes the view that the fundamental object
is the functional, then the coefficients of the time-odd terms can a priori be determined independently. In
either approach, the determination of the time-odd coefficients is rudimentary at best, since none of the fits
incorporate experimental data that depends strongly on time-reversal breaking, like binding energies of odd
nuclei. The usual strategy is thus to simply put the time-odd terms to zero or relate them in some way to
the time-even coefficients [3].13

12The actual terms are not themselves odd under time-reversal since the energy density has to be a time-reversal scalar. They
are merely built out of time-odd densities.

13Although studies that aim to improve this situation exist, as an example see [55].
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The nuclear Schiff moment

An observable of great interest to the physics community as a whole is the atomic electric dipole moment [56].
A non-zero value of this quantity can only be induced by parity- and time-reversal-violating contributions to
interactions in a nucleus, something that is not incorporated in the Standard Model. Detection of a non-zero
value of an atomic electric dipole moment would signal the existence of physics beyond the Standard model,
just like the detection of an electron or neutron electric dipole moment would.
The dipole operator D̂ is proportional to

D̂ ∼
∑
i

qir̂i , (2.53)

where qi is the charge of particle i. The expectation value of the dipole moment is restricted to zero if parity
is conserved. When parity is broken, D̂ can take finite values, and is directly proportional to the average
position of the proton density ρp(r) with respect to the centre-of-mass of the entire nucleus.
The electric dipole moment generated by a dipole deformation in the nucleus can not be detected due to the
Schiff theorem [57], as its effect would be completely screened by atomic electrons. However, another type
of deformation produces an interaction with the atomic electrons so that the end result is a non-zero atomic
electric dipole moment. This nuclear Schiff moment (or at least its z-component) is defined as [58]

Ŝz =
e

10

∑
protons

(
r̂2
i −

5

3
〈r̂2
p〉
)
ẑi . (2.54)

As with the dipole moment, the expectation values of this operator are constrained to zero when parity
is conserved. Mean-field studies [58, 59] suggest that the susceptibility of 225Ra to parity and time-reversal
violating interactions is much larger (and thus more easily measurable) due to its intrinsic octupole deformation
when compared to 199Hg, the system that at this point in time, provides the most stringent limit on the
observation of the atomic electric dipole moment.

Scissor modes

Just like the proton and neutron centre-of-mass positions are physical degrees of freedom, while the total
centre-of-mass coordinate is not, the proton and neutron values of 〈Q̂21〉n,p and 〈Im Q̂22〉n,p are physical,

while the total values 〈Q̂21〉t, 〈Im Q̂22〉t simply represent the orientation of the nucleus in space (see Appendix
C).
A non-zero value of either 〈Q̂21〉p or 〈Im Q̂22〉n,p implies that the proton distribution is rotated with respect
to the neutron distribution. Given that the proton and neutron distribution are both ellipsoids, the image of
two ellipsoids that are rotated with respect to one another gave rise to the name of ‘scissors mode’. The
typical experimental signature associated with this kind of collective excitation are low-lying 1+ with a large
M1 transition strength to the ground state [60, 61].
The multipole moment operators Q̂21 and Im Q̂22 are proportional to

x̂ŷ , ŷẑ , x̂ẑ , (2.55)

where which Q`m get linked to which combination of Cartesian directions is dependent on our choice of axes.
If the expectation values of any of these needs to be non-zero, it is clear that at least two of the signature
operators R̂µ cannot be conserved, since

R̂†xx̂ŷR̂x = −x̂ŷ , R̂†yx̂ŷR̂y = −x̂ŷ , (2.56a)

R̂†xx̂ẑR̂x = −x̂ŷ , R̂†zx̂ẑR̂z = −x̂ŷ , (2.56b)

R̂†y ŷẑR̂y = −x̂ŷ , R̂†z ŷẑR̂z = −x̂ŷ . (2.56c)

And because parity and time-reversal commute with any of operators in Eq. (2.55), it follows that at most
one of the simplex operators Ŝµ and/or one of the time-simplex operators ŠTµ can be conserved.
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2.10 Symmetry restoration

There is an important disadvantage that we incur when breaking a symmetry Û : one can no longer assign
to the Slater determinants the quantum numbers of the broken symmetry. Slater determinants that do not
respect self-consistent symmetries are superpositions of eigenstates of the broken symmetry with different
quantum numbers. With every broken symmetry, results obtained by a mean-field calculation become harder
to interpret, as it is not clear a priori how to disentangle the information stored in a symmetry-broken Slater
determinant.
As an example consider a Slater determinant that conserves all of the symmetries of DT2h. This Slater de-
terminant can in general not be assigned an angular momentum quantum number J 2. If the configuration
is axial, the situation can be partly salvaged as at least the component of the angular momentum along the
symmetry axis of the nucleus (often denoted K) is conserved. But in many cases, the Slater determinant
will thus be a superposition of many-body states with different values of J 2 and on the mean-field level their
contributions are impossible to disentangle.
Comparison with experiment thus becomes systematically harder as more symmetries get broken. For rota-
tional symmetry this is most apparent, as experimental spectra of nuclei are often labeled by their angular
momentum quantum numbers. The experimental observables that suffer most from this problem are the
multipole transitions between different nuclear levels: they depend heavily on selection rules of the quantum
numbers of the states involved and are simply not accessible in a pure EDF context. Other quantities, such
as the binding energy and the rms radii are more easily comparable to experiment, but are still impacted.
The generator coordinate method described in chapter 1 offers a way out: by allowing for superpositions of
symmetry-broken Slater determinants one can build a new many-body state that is an eigenstate of the sym-
metries broken on mean-field level. This symmetry restoration scheme is therefore often called multi-reference
EDF while the formalism on the mean-field level as described here is called single-reference EDF. It is beyond
the aim of this text to introduce this procedure more generally, but the case of rotational symmetry breaking
as explained in [3] can serve as an educational example.
Consider a Slater determinant |Ψ〉 that breaks rotational symmetry. From it, one can then construct a
many-body wavefunction |ΨJM 〉 as

|ΨJM 〉 =

∑
K g

J
K P̂

J
MK |Ψ〉∑

K |gJK |2〈Ψ(q)|P̂ JKK |Ψ(q)〉
(2.57)

where the operator P̂ JMK is defined as in [11]

P̂ JMK =
2J + 1

16π2

∫
dα sin (β) dβ dγ DJ,∗

MK(α, β, γ)R̂(α, β, γ) , (2.58)

where (α, β, γ) are three Euler angles, DJ
MK(α, β, γ) is a Wigner rotation matrix and R̂ is as before a rotation

operator. |ΨJM 〉 is a state with angular momentum quantum numbers J and M , even though the original
Slater determinant |Ψ〉 was not rotationally invariant. The procedure is in fact a GCM on the set of states
obtained by rotations of the original |Ψ〉. By solving a corresponding Hill-Wheeler equation (see section 1.6)
the weights gK can be determined.
In a way, restoration of broken symmetries is similar in spirit to breaking the symmetries. Symmetry breaking
enlarged the variational space by allowing for many more different Slater determinants, while symmetry restor-
ation enlarges the variational space by allowing for superpositions of Slater determinants. An ideal calculation
would include the symmetry restoration in a variational scheme based on symmetry-breaking states. The
correct generalization of the Hartree-Fock energy could then be varied across the space of symmetry-restored
Slater determinants instead of only the Slater determinants. Such a scheme is often called ‘variation after
projection’ or VAP for short. This method is however extremely computationally intensive and is in many
cases not feasible14.
‘Projection after variation‘ (PAV) in contrast is feasible in many cases. Instead of varying the symmetry-
restored Slater determinants, the projection procedure is carried out with the solution of an EDF optimization.
The end result is of course less optimal from the viewpoint of enlarging the variational space, as the variation
is only carried out in the space of Slater determinants. The main motivation is still the same however: the
resulting many-body wavefunction can be assigned quantum numbers and observables such as the multipole
transition rates become accessible.

14Only for restoring particle number, as will be discussed in chapter 3, VAP has been carried out in some cases, see for
example [62, 63, 64, 65].
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Projection after variation is still numerically very costly compared to an EDF calculation without beyond-mean-
field procedures and many schemes to phenomenologically reintroduce quantum numbers have been devised.
These are either applied after the mean-field optimization or during it. In the latter case the philosophy of
an EDF is realized to its fullest extent: everything should be contained in the functional and correlations
that cannot be captured by Slater determinants should be simulated by terms and coupling constants of the
EDF. Rotational corrections [13] and Wigner energy terms [25, 26] are examples. Schemes applied after the
mean-field optimization take a different view and want to truly add correlations to the Slater determinants, in
the same spirit as exact projection. The Gaussian overlap approximation [3] for example, aims to approximate
exact projection by proposing a Gaussian form for the norm kernel ÎGCM. Other schemes map potential energy
surfaces on effective collective Hamiltonians, see for example [11] and more recently [44, 46].
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Chapter 3

Pairing

Any microscopic model of the nucleus needs to take into account pairing correlations. In this chapter, we
will describe the HFB ansatz that will replace the Slater determinants from chapter 1. We introduce the
Bogoliubov transformation in section 3.1 and explain how it generalizes the concept of a Slater determinant.
Section 3.2 will treat the modifications pairing brings to the EDF and section 3.3 will present the analog of
the Hartree-Fock equations. The pairing treatment in a HFB scheme can also be seen as a consequence of
a broken symmetry, this will be explained briefly in section 3.4. The consequences of symmetry conservation
and breaking are discussed in section 3.5. The HF+BCS ansatz will be introduced as a special case of the
HFB ansatz in section 3.6. We will also spend some time discussing the subtleties of the treatment of systems
with an odd number of particles in section 3.7. Section 3.8 briefly mentions an alternative representation of
HFB vacua that will be useful in chapter 6. The final section 3.9 specifies the details of the pairing interaction
and cutoff factors as it was employed in this dissertation.

3.1 The Hartree-Fock-Bogoliubov ansatz

The Hartree-Fock-Bogoliubov (HFB) ansatz is a more general ansatz than a Slater determinant. A typical
textbook introduction starts by introducing a Bogoliubov transformation, which is a unitary transformation
among the Hartree-Fock creation and annihilation operators in the Hartree-Fock basis, typically parametrized
by complex matrices U and V as

β†j =
∑
i=1

(
Uij â

†
i + Vij âi

)
. (3.1)

Combining this equation with its Hermitian conjugate we get the complete Bogoliubov transformation [11](
β̂

β̂†

)
=

(
U† V †

V T UT

)(
â
â†

)
(3.2)

In order to make sure that the β† operators create fermions, one needs to make sure that the Bogoliubov
transformation is unitary. This means that the columns vectors (UkVk)T form a set of orthonormal vectors
and translates to the following conditions on U and V

U†U + V †V = 1 , U†U + V ∗V T = 1 ,

UTV + V TU = 0 , UV † + V ∗UT = 0 .
(3.3)

The Bloch-Messiah-Zumino theorem [66, 67] states that one can decompose the transformation as(
U V ∗

V U∗

)
=

(
D 0
0 D∗

)(
Ū V̄
V̄ Ū

)(
C 0
0 C∗

)
. (3.4)

This transformation is thus composed out of three parts

1. A unitary transformation (â, â†)→ (ĉ, ĉ†) determined by the matrix D;

2. A Bogoliubov transformation using matrices Ū and V̄ with a very specific structure, transforming particle
operators (ĉ, ĉ†) into quasiparticle operators (α̂, α̂†);

3. A final unitary transformation among the quasiparticle operators (α̂, α̂†)→ (β̂, β̂†), determined by the
matrix C.
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3. Pairing

The first unitary transformation transforms the single-particle wave-functions |φl〉 into a set of |ψl〉 called
the canonical basis, for reasons to be explained below. The second transformation, in contrast to the first
one, does mix creation and annihilation operators and determines the pairing properties of the levels in the
canonical basis. In the canonical basis, a level i can be either fully occupied (V̄ll = 1), unoccupied (V̄ll = 0)
or paired with another level l̄ (V̄ll = 0, V̄ll̄ 6= 0). The level l̄ is called the canonical conjugate partner of l. If
we denote the number of empty orbits by Ne, the paired orbits by Np and the filled/occupied orbit by Nf ,
then the total size of the Hartree-Fock basis is Ω = Ne +Nf +Np. Using this notation, the matrices Ū and
V̄ have a very specific structure:

Ū =



0
. . .

0
uNf+1 0

0 uNf+1

. . .

uNf+Np
0

0 uNf+Np

1
. . .

1



,

V̄ =



1
. . .

1
0 vΩf+1

−vΩf+1 0
. . .

0 vΩf+Ωp

−vΩf+Ωp 0
0

. . .

0



,

(3.5)

where the filled, paired and empty orbitals give rise to very specific block structure in both matrices. Note
that the number of paired orbits is always even while there is no such restriction a priori on the number of
filled and empty orbitals.
In the canonical basis the quasiparticle operators (α̂l, α̂

†
l ) become(

α̂l
α̂†l

)
= ul

(
ĉ†l
ĉl

)
+ vl̄

(
ĉl̄
ĉ†
l̄

)
. (3.6)

The unitarity conditions imply that |ul|2 + |vl|2 = 1, ul = ul̄ and vl = −vl̄. It is important to note that one
cannot identify additional relations between canonical partners without imposing extra assumptions, such as
conserved symmetries.
Now that we have introduced the quasiparticle operators, we can introduce the HFB ansatz. We define
the physical many-body state |ΦHFB〉 as the vacuum state for all the quasiparticle annihilation operators βk,
meaning that

βk|ΨHFB〉 = 0 for all k=1, . . . ,Ω . (3.7)

Note that in the canonical basis, we can explicitly construct the HFB state by acting on the vacuum with
creation operators (in the canonical basis) as follows [11]

|ΨHFB〉 =

Nf∏
f=1

ĉ†f

Nf+Np∏
p=Nf

(
up + vpĉ

†
pĉ
†
p̄

)
|0〉 (3.8)

The density matrix ρ of a Slater determinant specified it completely, but this is no longer the case for a HFB
wavefunction. The anomalous density matrix κ is needed in addition, and is defined as

κij = 〈ΨHFB|âj âi|ΨHFB〉 . (3.9)
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3.2. The EDF with pairing

Together they form the generalized density matrix R

R =

(
ρ κ
−κ∗ 1− ρ∗

)
. (3.10)

For a HFB wavefunction, both the density matrix and anomalous density matrix are related to the U and V
matrices

ρ = V ∗V T , κ = V ∗UT . (3.11)

The U and V matrices take on special forms in the canonical basis: ρ becomes diagonal in this basis and κ
takes its canonical form, with the shorthand notation (uv)k = ukvk,

ρ =



1
. . .

1
v2
Nf+1 0

0 v2
Nf+1

. . .

v2
Nf+Np

0

0 v2
Nf+Np

0
. . .

0



,

κ =



0
. . .

0
0 (uv)Nf+1

−(uv)Nf+1 0
. . .

0 (uv)Nf+Np

−(uv)Nf+Np
0

1
. . .

1



.

(3.12)

3.2 The EDF with pairing

In the same way as the Slater determinants from chapter 1, the HFB wavefunctions form a subspace in the
Hilbert space of the many-body problem for some many-body Hamiltonian Ĥ. As in chapter 1, we can define
a HFB energy as

EHFB = 〈ΨHFB|Ĥ|ΨHFB〉 . (3.13)

The reasons why a functional was introduced in chapter 1 still apply and we will be replacing the expectation
value of the many-body Hamiltonian by a functional. We will add a term to the functional from section 1.4:

EHFB = EKin + ECoul + ESkyrme + ECorr + EPair . (3.14)

The pairing energy term is not the only change in the the functional, as the mean-field densities from section
1.4.1 need to be modified when dealing with HFB many-body wavefunctions [11]. The EKin, ECoul and ESkyrme

maintain identical forms as functions of the mean-field densities, but they get calculated differently
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3. Pairing

ρq(r) =
∑
j,σ

v2
jψ
∗
j (r, σ, q)ψj(r, σ, q) (3.15a)

τq(r) =
∑
j,σ

v2
j

[
∇ψ∗j (r, σ, q)

]
· [∇ψj(r, σ, q)] , (3.15b)

Jµν,q(r) =
1

2i

∑
σ1,σ2

σν,σ1,σ2

∑
j

v2
j

([
ψ∗j (r, σ1, q)

]
[∇µψj(r, σ2, q)]−

[
∇µψ∗j (r, σ1, q)

]
[ψi(r, σ2, q)]

)
,

(3.15c)

sµ,q(r) =
∑

j,σ1,σ2

v2
jσµ,σ1,σ2

ψ∗j (r, σ1, q)ψj(r, σ2, q) , (3.15d)

jµ,q(r) =
1

2i

∑
j,σ

v2
j

([
ψ∗j (r, σ, q)

]
[∇µψj(r, σ, q)]−

[
∇µψ∗j (r, σ, q)

]
[ψj(r, σ, q)]

)
, (3.15e)

Tµ,q(r) =
∑

j,σ1,σ2

v2
jσµ,σ1,σ2

[
∇ψ∗j (r, σ1, q)

]
· [∇ψj(r, σ2, q)] , (3.15f)

Fµ,q(r) =
1

2

∑
ν,σ1,σ2

σν,σ1,σ2

∑
j

v2
j

([
∇µψ∗j (r, σ1, q)

]
[∇νψj(r, σ2, q)] +

[
∇νψ∗j (r, σ1, q)

]
[∇µ ψj(r, σ2, q)]

)
.

(3.15g)

The main difference with the Hartree-Fock case is that the single-particle wavefunctions that enter the mean-
field densities are no longer the |φj〉 in the Hartree-Fock basis but rather the |ψj〉 from the canonical basis,
weighted with the diagonal elements of the HFB density matrix v2

l in the canonical basis.
The term centre-of-mass term changes slightly too

Ecm,1 =
~2

2M

∑
j

v2
j 〈ψj |∇2|ψj〉 , (3.16)

where the |ψj〉 are again single-particle wavefunctions in the canonical basis and the occupation factors v2
j

appear.
The truely new term EPair term takes the following form in the canonical basis

EPair =
∑
kl

ukvkulvlflfkv̄kk̄ll̄ , (3.17)

where the fkfl are cutoff factors and v̄kk̄mm̄ are the antisymmetrized matrix elements of a pairing interaction,
both of which we will specify later.
We can now obtain the analog of the Hartree-Fock equations for the HFB ansatz, by varying the HFB energy.
However, the HFB wavefunction is not an eigenstate of the neutron- and proton-particle number operators
N̂n and N̂p. In order to have some control over the number of particles, we introduce the Fermi energies λn,
λp as Lagrange multipliers in order for the variation to satisfy extra conditions on the number of protons and
neutrons.
The variation is now over the entire space of HFB wavefunctions instead of only over the Slater determinants

δ
(
EHFB − 〈ΨHFB|λnN̂n + λpN̂p|ΨHFB〉

)
= 0 , (3.18)

and needs to satisfy the subsidiary conditions

〈ΨHFB|N̂n|ΨHFB〉 = N , 〈ΨHFB|N̂p|ΨHFB〉 = Z . (3.19a)

3.3 The HFB equations

This variational problem leads to the HFB equations [11] for the matrices U and V . The column vectors built
out of the columns of U and V , denoted together by (UkVk)T , satisfy the following eigenvalue equations

HHFB,q

(
Uk,q
Vk,q

)
=

(
h− λq ∆q

−∆∗q −h∗ + λq

)(
Uk,q
Vk,q

)
= Eqpk

(
Uk,q
Vk,q

)
. (3.20)
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3.4. Gauge invariance: pairing as a broken symmetry

Here q is an isospin index and we have decoupled the problem into two separate subproblems for protons and
neutrons, since we assume z-isospin symmetry.
The numbers Eqpk are necessarily real and are called the quasiparticle energies. The matrix ĥ is the single-
particle Hamiltonian from chapter 1, the derivative of the functional with respect to the density matrix ρ.
The matrix ∆ is its analogue [32]

∆ij,q =
∂EHFB

∂κ∗ij,q
=

1

2

∑
kl

fkflv̄ijklκkl,q , (3.21)

where the cutoff factors and the pairing interaction are still left to be specified, and the sum is only over states
with isospin q. The HFB equations can be summarized, using the generalized density matrix, as (dropping
the isospin index for ease of notation) [

ĤHFB, R̂
]

= 0 , (3.22)

which is very reminiscent of the Hartree-Fock equations. As their analogs, the HFB equations also present a
self-consistent problem: ĤHFB depends on ρ and κ, which in turn can only be calculated starting from ĤHFB.
We therefore need an iterative method to solve these equations. The practical details we defer to chapter 6.
There is however an important subtlety to solving the HFB equations. They posses an innate symmetry, that
is most easily visible from Eq. (3.20): for every eigenvector (UkVk)T of the HFB Hamiltonian with eigenvalue
Eqpk , there exists another eigenvector with eigenvalue −Eqpk . One can easily check that

ĤHFB

(
V ∗k
U∗k

)
= −Eqpk

(
V ∗k
U∗k

)
. (3.23)

This symmetry is due to the inherent choice we make in assigning the transformation in Eq. (3.1) to the

creation operator β̂†k while we could just as easily have assigned it to the annihilation operator β̂k.
The HFB Hamiltonian has thus 2Ω eigenvectors, while we need only Ω of those eigenvectors to determine
the quasiparticle operators, and we are thus forced to make a choice. This choice, for every index k, boils
down to assigning the right-hand side of Eq. (3.1) to either a creation or annihilation operator. Note that
we can never choose both eigenvectors with eigenvalues Eqpk and −Eqpk as this would invalidate the unitarity
of the transformation. In the end, the HFB vacuum in Eq. (3.7) is thus far from uniquely defined, as there
are in fact 2n possible choices. How this choice should be made is only seldom discussed in detail but of vital
importance to select the configuration of interest. Notable exceptions are [68, 69, 70].
For most applications, it is usually silently assumed that the positive values of Eqpk [11] should be chosen to
have the configuration with minimal energy. This choice corresponds to the Hartree-Fock choice of groundstate
in the limit of vanishing pairing. Usually, one uses conserved symmetries to guide the choice in HFB vacuum,
and the choice of positive quasiparticle energies is usually a natural one. When one breaks symmetries however,
this choice is not necessarily sound. We will come back to this topic in more detail in chapter 6.

3.4 Gauge invariance: pairing as a broken symmetry

The aim of the HFB ansatz is to enlarge the variational space of the Slater determinants by including some
measure of correlations between particles. In chapter 2 we also enlarged the total variational space by breaking
symmetries. It should come as no surprise that pairing in a mean-field approach can thus be viewed as breaking
another symmetry. Consider the many-body particle number operator (of isospin q)

N̂q =
∑
i

â†i,qâi,q , (3.24)

One can define unitary gauge rotation operators R̂q(α) as a function of a real parameter α

R̂q(α) = exp
[
−iαN̂q

]
. (3.25)

A Slater determinant is always a an eigenstate of the number operators N̂q since it has a definite number of
protons and neutrons. This automatically makes any Slater determinant invariant (up to a complex phase)
under the action of the gauge rotation operators. The HFB states are in general no longer eigenstates of this
operator. We could thus have added another group structure to both DT2h and DTD2h in chapter 2.
Number parity, however is a conserved symmetry in the HFB scheme. Its associated unitary operator ΠN is

Π̂N,q = e−iπN̂q , (3.26)
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3. Pairing

Linear, hermitian Linear, antihermitian P̌T , Ť Antilinear

ρ =

(
ρ1 0
0 ρ2

) (
ρ1 0
0 ρ2

) (
ρ1 ρ2

ρ2 ρ1

)
ρ∗

h =

(
h1 0
0 h2

) (
h1 0
0 h2

) (
h1 h2

h2 h1

)
h∗

κ =

(
κ1 0
0 κ2

) (
0 −κ1

κ1 0

) (
κ1 −κ2

κ2 −κ1

)
κ∗

∆ =

(
∆1 0
0 ∆2

) (
0 −∆1

∆1 0

) (
∆1 −∆2

∆2 −∆1

)
∆∗

Table 3.1: Schematic representation of the structure imposed on the HFB and BCS pairing matrices due to
conservation of various types of symmetries.

which corresponds to gauge rotations of 180◦. If a HFB state is a superposition of many-body states with
even particle number, its number parity is equal to +1. If it is instead a super position of many-body states
with odd particle number, its quantum number of −1. In practical calculations, the number parity of a HFB
state can be determined by the number of eigenvalues v2

k of the density matrix ρ that are exactly equal to
one [68]. This is of course equal to the number of filled orbitals Nf in Eq. (3.5).
The most natural order parameter associated with this symmetry is the dispersion ∆N 2

q .

∆N 2
q = 〈N̂ 2

q 〉 − 〈N̂q〉2 . (3.27)

It is zero when the mean-field state is an eigenstate of N̂q but is non-zero when at least some pairing is
present. As with the other symmetry operators, gauge symmetry is subject to projection methods, either
exactly or approximately, examples are [33] and [71], respectively.

3.5 Symmetry conservation

Conservation of symmetries often entail a significant simplification of the pairing equations discussed above.
Just as isospin decouples the equations for neutrons and protons, conserved symmetries of D̂T2h and D̂TD2h

imply specific structure of ρ and κ (and consequently ∆). In what follows, we will distinguish between linear
and antilinear symmetry operators.
In Table 3.1 we summarize schematically the consequences that conserved symmetries have on the structure of
the pairing matrices depending on their classification. Note that the same line of arguments that we used for
ρ can be used for h, and the one for κ can be utilized for ∆, since these are closely related. While this section
might seem rather technical and abstract, we will detail at length in chapter 6 how these considerations can
be exploited in practice.

Linear operator Û
For any conserved linear symmetry Û , we are free to consider the single-particle states to be eigenstates of the
corresponding single-particle operator Û with eigenvalues uk with module one. We then find for the density
and anomalous density

ρij = 〈Ψ|â†j âi|Ψ〉 = 〈Ψ|Û†â†j âiÛ |Ψ〉 = u∗juiρij , (3.28a)

κij = 〈Ψ|âj âi|Ψ〉 = 〈Ψ|Û†âj âiÛ |Ψ〉 = ujuiρij . (3.28b)

It directly follows that if u∗jui = −1 that ρij is necessarily zero and similarly when ujui = −1 for κij . If Û
is hermitian, this happens when the |φi〉 and |φj〉 have different quantum numbers ui 6= uj . Thus, pairing

between both levels is forbidden, as both κij and ρij are zero. If Û is antihermitian however, ρij = 0 if
ui 6= uj while κij = 0 if ui = uj . The hermitian and antihermitian conserved linear operators thus give rise
to a different block structure in ρ, κ and ∆.
This block-structure is directly reflected in the Bogoliubov transformation. We have similar relations for the
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3.6. The HF+BCS approximation

β̂k as we had for the âk

Û†β̂†kÛ = ukβ̂k , (3.29a)

Û†β̂kÛ = u∗kβ̂k . (3.29b)

For hermitian symmetries, the Bogoliubov transformation does not mix creation and annihilation operators
of different eigenvalues. For antihermitian operators, the Bogoliubov mixes creation operators of levels with
eigenvalue +i with annihilation operators of levels with eigenvalue −i, and vice versa.

Antilinear operator Ǔ
Consider this time an antilinear, hermitian1 operator Ǔ . The HFB wavefunction |Ψ〉 can be chosen as an
invariant and we have then

ρij = 〈Ψ|â†j âi|Ψ〉 = 〈Ψ|Ǔ†â†j âiǓ |Ψ〉 = 〈Ψ|â†j âi|Ψ〉∗ = ρ∗ij , (3.30a)

κij = 〈Ψ|âj âi|Ψ〉 = 〈Ψ|Ǔ†â†j âiǓ |Ψ〉 = 〈Ψ|âj âi|Ψ〉∗ = κ∗ij . (3.30b)

Choosing the many-body state as an invariant of Ǔ does not introduce a block structure, but does imply ρ
and κ to be real.
There is however, a block structure that is induced if the corresponding single-particle operator is antihermitian
and antilinear2. In that case, we can assume the single-particle levels come in normal pairs (k, k̄)3 We have
then

ρij = 〈Ψ|â†j âi|Ψ〉 = 〈Ψ|Ǔ†â†j âiǓ |Ψ〉 = +ρīj̄ (3.31a)

κij = 〈Ψ|âj âi|Ψ〉 = 〈Ψ|Ǔ†âj âiǓ |Ψ〉 = −κīj̄ , (3.31b)

Note that this structure implies that the canonically conjugate states in the canonical basis form exactly the
normal pairs of the antilinear operator Ǔ .

3.6 The HF+BCS approximation

If time-reversal4 is conserved, we can impose an extra assumption: that the canonical basis is equal to the
Hartree-Fock basis. In that case, the density matrix is diagonal in the Hartree-Fock basis and directly offers
up the occupation factors v2

k, while κ is in its canonical form in the Hartree-Fock basis: κij is only non-zero
if j is the time-reversed partner of i. The quasiparticle operators can then simply be built out of the single-
particle operators and their time-reversed partners, as in Eq. (3.20). The Bardeen-Cooper-Schrieffer (BCS)
many-body state can then be written as [72, 11]

|ΨBCS〉 =
∏
k>0

(
uk + vkâ

†
kâ
†
k̄

)
|0〉 , (3.32)

where the notation k > 0 signifies that the product is only over half of the single-particle states. This simplifies
many equations considerably. One no longer needs to diagonalize the HFB Hamiltonian, and it is possible to
write down immediately the quasiparticle energies Eqpk

5

Eqpk =
√

(εk − λq)2
+ ∆2

kk̄
. (3.33)

where εk is the single-particle energy of the single-particle wavefunction |φk〉 in the Hartree-Fock basis. From
the quasiparticle energies, one can directly solve for the u2

k and v2
k [11]

v2
k =

1

2

[
1− εk − λq

Eqpk

]
, (3.34a)

u2
k =

1

2

[
1 +

εk − λq
Eqpk

]
. (3.34b)

1An antihermitian, antilinear operator can never be conserved and we omit this case.
2For the symmetry operators from the previous chapter, this is only the case for Ť and P̌T in even systems.
3Note that the notation of the conjugate state k̄ of k in the sense of the canonical basis and the normal partner k̄ of k is

the same, and these are not necessarily the same single-particle state. In the rest of this dissertation, the context should make
it clear what the notation k̄ means.

4Note that this implies that ρ and κ will always be real matrices when using the BCS ansatz, see the previous section.
5 Note that this formula differs slightly from Eq. (22) in [72], since our definition of ∆ includes another cutoff factor that

is not incorporated in Eq. (23) in the same paper.
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3. Pairing

While the HF+BCS equations are significantly easier to solve compared to the HFB equations, they still
represent a self-consistent problem. The gap equation [11] for the matrix ∆ will be instrumental for the
practical implementation in chapter 6.

∆kk̄ = −1

2

∑
l

flfkv̄kk̄ll̄
∆ll̄

Eqpl
. (3.35)

3.7 Quasiparticle excitations

The treatment of nuclei with an odd number of particles (either protons, neutrons or protons and neutrons)
merits some extra attention. Let us start by noting that the BCS approximation can never truly describe
such a nucleus: the BCS ansatz Eq. (3.32) is a superposition of many-body states with an even number of
particles. One can of course constrain the number of particles to be odd, using the Fermi energies as Lagrange
multipliers. Such a construction is called a false vacuum, since the many-body state has the correct number
of particles on average, but still conserves time-reversal.
In the case of full HFB treatment, one can also construct a false vacuum while still conserving time-reversal.
But time-reversal conservation is not a necessity and we can do better. The possibility of choosing the HFB
vacuum plays a fundamental role here. Consider an initial choice of eigenvectors of the HFB Hamiltonian that
corresponds to an even-even configuration, with a set of eigenvectors (UkVk)T . Let us now change from the
original vacuum |ΨHFB〉 to another one |Ψ′HFB〉 by making for one specific index k the following transformation(

βk
β†k

)
→
(
β†k
βk

)
. (3.36)

In terms of the eigenvectors of the HFB Hamiltonian this amounts to(
Uk
Vk

)
→
(
V ∗k
U∗k

)
. (3.37)

This is a valid transformation, as one can check that the fermion commutation relations are still satisfied.
Note that the following equation holds (with the original β̂†k)

β̂†kβ̂
†
k|ΨHFB〉 = 0 , (3.38)

simply because we are dealing with fermions. This means that β̂†k|ΨHFB〉 is in fact annihilated by β̂†k, so

β̂†k|ΨHFB〉 satisfies the conditions of the HFB vacuum to be annihilated by all of the quasiparticle annihilation
operators, after the transformation in Eq. (3.36). It is thus safe to say that (up to a complex phase)

|Ψ′HFB〉 = β†k|ΨHFB〉 . (3.39)

The HFB vacuum has changed dramatically by creating an extra quasiparticle, it is now an odd HFB state.
Since |ΨHFB〉 is a superposition of many-body wavefunctions with even particle number, |Ψ′HFB〉 is necessarily
a superposition of many-body states with odd particle number, with odd number parity.
The creation of a quasiparticle excitation also fundamentally changes the density ρ′ and anomalous density
matrix κ′. One can check that [73], in terms of the original (U, V )T ,

ρ′ij = ρij + UikU
∗
jk − V ∗ikVjk (3.40)

κ′ij = κij + UikV
∗
jk − V ∗ikUjk . (3.41)

Note that from this follows that ρ′kk = 1 in the canonical basis, since in this basis the V -matrices have no
diagonal elements and the conditions in Eqs. (3.3) ensure the other terms combine to one. The quasiparticle
with index k is thus fully occupied and does not engage in pairing correlations. This kind of HFB vacuum is
thus often called a blocked state.
We can keep acting with quasiparticle creation operators on |Ψ′HFB〉 to create even more quasiparticle ex-
citations, provided we don’t repeat creation operators, and in this way we can generate all of possible HFB
vacua. Depending on the number of quasiparticle creation operators we get either even or odd HFB states.
The practical challenge will be to identify the quasiparticles of interest and consistently block them in a
self-consistent procedure. This is already difficult with conserved symmetries and gets progressively harder as
more symmetries are broken. We will go more into detail about this in 6.
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3.8 The Thouless theorem

An alternative characterization of HFB states that we will use in chapter 6 is due to Thouless [11]. Starting

from a HFB state |ΨHFB〉, we can use the the Thouless’ operator θ̂(Z) to construct a new HFB state |Ψ′HFB〉
as follows

|Ψ′HFB〉 = θ̂(Z)|ΨHFB〉 = A exp

−1

2

∑
ij

Zijβ
†
i β
†
j

 |ΨHFB〉 , (3.42)

where A is a normalization constant and the matrix Zij are the Thouless coefficients. Since the Thouless
operator contains only products of even numbers of quasiparticle creation operators, it is impossible to change
the number parity of a state by using it: |Ψ′HFB〉 shares the number parity of |ΨHFB〉.
The Thouless theorem [74, 11], states that it is possible to construct any HFB wave-function |ΨHFB〉 using
an appropriate matrix Z, providing it is not orthogonal to the reference state |Ψ′HFB〉. In this sense, when a
reference state is fixed, all HFB states that are not orthogonal to the reference state can be characterized by
their corresponding matrix Z.

3.9 The pairing interaction

For all calculations that involve pairing in this dissertation we use the following pairing interaction, first
introduced in [75]:

v̂q(~r, ~r
′) = −Vq

[
1− α

ρs
ρ0(~R)

]
δ(~r − ~r′) , (3.43)

where q is an isospin index, Vq is the pairing strength per particle species, ρs is the saturation density we fix

at 0.16 fm−3 and ~R = ~r+~r′

2 . This interaction enters the pairing equations through the pairing energy term
in Eq. (3.14) and appears consequently in the matrix ∆.
Note that this interaction is purely phenomenological and has a priori nothing to do with the other terms
of the EDF. In this dissertation we treat the EDF as the fundamental object, and the pairing interaction
simply enters as an ingredient of an extra term of the functional that can be included in fits. If the relation
between the expectation value of a many-body Hamiltonian and the functional needs to be enforced the same
many-body Hamiltonian should be taken to generate pairing correlations [16].
Nevertheless, the parameters α, Vn and Vp

6 have historically only very rarely been incorporated in the fits of
functionals to experimental data. The UNEDF family of parameterizations [76, 77, 78] are recent exceptions
to this rule where the pairing interaction was included into the fits. Nevertheless, the effect of a given
pairing interaction used during the fit is very dependent on the type of single-particle basis used for the fitting
procedure, and it is in general very difficult to reproduce the calculations perfectly when using a different
numerical scheme. In the case of the UNEDF parameterizations, the optimization was performed using a
basis of harmonical oscillator wavefunctions and it is practically impossible for a method based on Lagrange
meshes can reproduce the effect of this pairing interaction. Because of these considerations, the parameters
Vn, Vp are usually adjusted ad-hoc to the mass region one wishes to study. This has historically been done to
the experimental three-point pairing gaps of nuclei [79] or to moments of inertia along rotational bands [80].
In contrast, α is usually just set to 1.
As the interaction in Eq. (3.43) is zero-range, it diverges when we take into account more and more single-
particle states. The cutoff functions in the pairing term in Eq. (3.14) are introduced precisely to combat
this divergence. All of the calculations in this dissertation employ a symmetric Fermi cutoff around the Fermi
energy fFermi

k , parametrized as [75]

fFermi
k =

[
1 + exp

[
µ−1 (εk − λq −∆eq)

]]− 1
2
[
1 + exp

[
µ−1 (εk − λq + ∆eq)

]]− 1
2 , (3.44)

where εk is the single-particle energy of the single-particle wavefunction |ψk〉 in the Hartree-Fock basis. This
cutoff effectively limits the pairing correlations to single-particle states within roughly ∆eq around the Fermi
energy λq. The parameters µ and ∆eq are input parameters of MOCCa, respectively denoted in chapter 11 by
PairingMu, CutProton and CutNeutron.
Another parameterization of the cutoff functions f cosine

k that is implemented in MOCCa (though not used in

6Or even more in general, the parameters of the pairing interaction, regardless of its prescription.
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this dissertation) is given by [81]

f cosine
k =

 1 if (εk − λq) ≤ Eq,−
1
2

(
cos
[
π
2 |εk − λ| − Eq,−

]
+ 1
)

if Eq,− ≤ (εk − λq) ≤ Eq,+
0 if (εk − λq) ≥ Eq,+

(3.45a)

Eq,± = ∆eq ±
µ

2
. (3.45b)

This type of cutoff is dependent on the same input parameters µ and ∆eq that correspond to the same
keywords. Switching between both can be achieved by the keyword Cutofftype: (1) for the Fermi cutoff
and (2) for the cosine cutoff.
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Chapter 4

Numerical Implementation

In this chapter, we will detail how MOCCa represents the single-particle wavefunctions in coordinate space, and
how this representation can use various assumptions of symmetries of the single-particle wavefunctions.
Section 4.1 introduces the concept of the cubic Lagrange mesh. The symmetry options of MOCCa are discussed
in section 4.2, while the properties of the single-particle wavefunctions are introduced in section 4.3. The
numerical optimization procedure, steepest descent, is introduced in section 4.4, while the difficulty of choosing
a step size is briefly described in section 4.5. We will also compare to a different numerical scheme, as used in
different mean-field codes in section 4.6. The calculation of the mean-field densities and the potentials, and
more specifically the numerical implementation of density mixing and the calculation of the Coulomb potential
is discussed in section 4.7. Particularly important is judging the convergence of the method, in section 4.8.
As a final part of this chapter, section 4.9 presents some promising possibilities of improving the numerical
scheme.

4.1 Coordinate space representation: The Lagrange mesh

In order to solve the Hartree-Fock equations from chapter 1 (and the pairing equations from chapter 3) we need
to represent the single-particle wavefunctions |φl〉 both in the Hartree-Fock and the canonical basis. A popular
choice made in several other programs is expanding them on a basis of harmonic oscillator wavefunctions.
Several different ways of doing this have been explored in the literature, see for instance [83, 84, 85].
MOCCa employs a cubic Cartesian mesh. Such a mesh is categorized by dx, the distance between nearest-
neighbour points in fm and (NX , NY , NZ) the number of points in every Cartesian direction. The coordinates
(xi, yj , zk) of the mesh point in the full box are given by

xi =

(
i− NX

2
− 1

)
dx i = 1, . . . , NX , (4.1a)

yj =

(
j − NY

2
− 1

)
dx j = 1, . . . , NY , (4.1b)

zk =

(
k − NZ

2
− 1

)
dx k = 1, . . . , NZ . (4.1c)

Note that the origin is not part of the cubic mesh, thereby avoiding possible numerical difficulties when dealing
with diverging potentials. Fig 4.1 offers a two-dimensional restriction of the point distribution of the points
on the mesh.
As it turns out, this simple grid structure is a realisation of a Lagrange mesh [86, 87]. This allows us to define
first and second derivatives of a function f on the mesh as follows [72]

∂Lf

∂x

∣∣∣∣
x=xi

=

j 6=i∑
j=1,NX

(−1)(i−j) π

NXdx

1

sin (π(i− j)/NX)
f(xj) , (4.2a)

∂2
Lf

∂2x

∣∣∣∣
x=xi

= − π2

3dx2

(
1− 1

N2
X

)
f(xi) +

j 6=i∑
j=1,NX

(−1)i−j
(

2π

NXdx

)2
cos [π(i− j)/NX ]

sin2 [π(i− j)/NX ]
f(xj) (4.2b)

with similar formulas for derivatives in the y- and z-directions. Thus, the calculation of a derivative on the
Lagrange mesh amounts in practice to a matrix multiplication. This matrix is a dense matrix, and the total
amount of operations to be done increases as N2

XN
2
YN

2
Z . Note that these definitions are internally consistent,

meaning more precisely that
∇L ·∇L 6= ∆L . (4.3)
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y

x

Figure 4.1: Two-dimensional representation of the point distribution on the Lagrange mesh.

Order a1 a2 a3 a4 b0 b1 b2 b3 b4

1 1
2 -2 1

2 2
3 − 1

12 − 5
2

4
3 − 1

12

3 3
4 − 3

20
1
60 − 49

18
3
2 − 3

20
1
90

4 4
5 − 1

5
4

105 − 1
280 − 205

75
8
5 − 1

5
8

315 − 1
560

Table 4.1: Finite difference coefficients for the first (aj) and second derivative (bj) on the mesh [82].

Since the cost of dense matrix multiplication becomes prohibitive for large meshes, MOCCa is also able to use
finite difference formula to approximate the derivatives. For completeness’ sake, we write the general formulas
for the finite difference scheme of order N

∂FDf

∂x

∣∣∣∣
x=xi

=dx−1

 ∑
j=1,N

aj [f(xi−j)− f(xi+j)]

 , (4.4a)

∂2
FDf

∂2x

∣∣∣∣
x=xi

=dx−2

b0f(xi) +
∑
j=1,N

bj [f(xi−j) + f(xi+j)]

 , (4.4b)

and similar for derivatives in the y- and z-directions. The coefficients aj and bj that are included with the
current version of MOCCa are shown in Table 4.1.
Calculating derivatives with finite difference formulas still amounts to a matrix multiplication, but for lower
orders N the matrix is sparse, resulting in a number of operations proportional to NXNYNZ . Compared to
the quadratic effort needed for Lagrange derivatives, this linear scaling is most welcome. The price to pay is
however is that finite differences do not share all qualities of exact derivatives: partial integration is not exact
and more importantly

∇FD ·∇FD 6= ∆FD . (4.5)

There is a an extra point of subtlety regarding the boundary conditions of both formulas. The Lagrange
derivatives reflect a configuration that is periodic in space [86], the derivatives reflect periodic boundary
conditions at the edges of the mesh. In contrast, the finite difference derivatives assume the nuclear density
to go to zero at the edges of the box and the terms in Eq. (4.4) for which i − j ≤ 1 or i + j ≥ N simply
get set to zero. For sufficiently large mesh sizes (depending on the mesh discretisation as well as the nucleus
under consideration) both effects are negligible.
All of these considerations mean that finite difference formulas imply a loss of accuracy compared to Lagrange

40



4.2. Symmetries in MOCCa

Generators Broken Equivalent code

P̂, ŠTy , R̂z, Ť None ev8

ŠTy , R̂z, Ť P̂ ev4

ŠTy , R̂z, P̂ Ť cr8

P̂, R̂z, Ť ŠTy None

P̂, ŠTy , Ť R̂z None

ŠTy , R̂z Ť , P̂ None

ŠTy , Ť R̂z, P̂ None

R̂z, Ť ŠTy , P̂ None

Generators Broken Equivalent code

P̂, Ť ŠTy , R̂z None

P̂, ŠTy Ť , R̂z None

P̂, R̂z Ť , ŠTy None

P̂ Ť , ŠTy , R̂z None

Ť P̂, ŠTy , R̂z None

ŠTy Ť , P̂, R̂z None

R̂z Ť , ŠTy , P̂ None

None P̂, ŠTy , R̂z, Ť None

Table 4.2: Possible choices for the generators of the conserved symmetry groups in MOCCa.

derivatives. We will study the accuracy of the Lagrange mesh representation in more detail in chapter 8.
Integrals on the other hand can be obtained by simple summation∫

dx dy dz f(x, y, z) = dx3
NX∑
i=1

NY∑
j=1

NZ∑
k=1

f(xi, yi, zi) . (4.6)

In fact, the Lagrange derivatives in Eq. (4.2) are constructed such that this special case of Gauss quadrature
is the exact inverse of the Lagrange derivative, meaning that∫

dx
∂Lf(x, y, z)

∂x
= f(x, y, z) , (4.7)

a property that again does not hold for finite difference derivatives.

4.2 Symmetries in MOCCa

The Cartesian Lagrange mesh presents a natural way of breaking spherical and axial symmetry: any possible
function f(r) is numerically never exactly invariant under rotations. The possible symmetry groups on the
mesh are thus the subgroups of either DT2h or DTD2h . MOCCa is unfortunately not constructed to be able to
solve the mean-field equations for every possible subgroup. As in chapter 2, we will index the options currently
implemented by their generator generators. The following four generators can either be conserved or broken

P̂, R̂z, Ť and ŠTy . (4.8)

The sixteen possible choices of subgroups this gives the user are listed in Table 4.2. Among them are the
three choices that can reproduce the old codes ev8, cr8 and ev4. Note that the full groups DT2h and DTD2h

are also represented, as well as the trivial group
{
1̂
}

that conserves no symmetries. These sixteen choices
do not represent all of the subgroups discussed in chapter 2, especially when we include z-isospin symmetry
breaking.
On the other hand, all of the physical cases discussed in section 2.9 can be studied using MOCCa. Table 4.3
lists all of these cases, and the corresponding set of symmetries to conserve and break in MOCCa. This list is
not comprehensive, as each of these degrees of freedom can be combined with the others.

4.3 Single-particle wavefunctions and their quantum numbers

In order to solve the mean-field equations, MOCCa needs to represent a number Nφ of single-particle wave-
functions on the Cartesian mesh. Any such single-particle wavefunction |φ〉 is represented on the Lagrange
mesh as four real functions for the real and imaginary parts of the spin-up and spin-down components of their
spinor structure

φ(r) =

(
Reφ(r, σ = +1) + i Imφ(r, σ = +1)
Reφ(r, σ = −1) + i Imφ(r, σ = −1)

)
. (4.9)

Note that we assume isospin symmetry, and all of the single-particle wavefunctions have a definite isospin,
explaining why there is no isospin index in Eq. (4.9). The advantage of storing four real functions instead
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Conserved symmetries Broken symmetries Equivalent code
Quadrupole deformation DT2h None ev8

Octupole deformation G
{
Ť , R̂z, ŠTy

}
P̂ ev4

Time-odd densities G
{
P̂, R̂z, ŠTy

}
Ť cr8

Angular momentum Ĵz G
{
P̂, R̂z, ŠTy

}
Ť cr8

Ĵx G
{
P̂, ŠTy

}
R̂z, Ť None

Ĵy G
{
P̂
}

Ť , ŠTy None

Nuclear Schiff Moment G
{
R̂z, ŠTy

}
Ť , P̂ None

Scissor modes G
{
P̂, Ť , ŠTy

}
R̂z None

Table 4.3: A list of the order parameters discussed in chapter 2 and the corresponding symmetry options in
MOCCa.

of two complex functions is that it allows the programmer to avoid wasteful processor instructions when
calculating properties that one knows will be either completely real or completely imaginary. This storage
scheme is almost identical to the way the original codes store single-particle wavefunctions. The case described
here stores the single-particle wavefunctions independently of their symmetries, while cr8 has a varying storage
pattern depending on the signature quantum number [22].
As discussed in Chapter 2, we can use the conserved symmetries to choose quantum numbers for our single-
particle wavefunctions. The generators P̂ and R̂z are respectively hermitian and antihermitian and give rise
to simple single-particle quantum numbers[

P̂ φ
]

(x, y, z, σ, q) = ±φ(x, y, z, σ, q) , (4.10a)[
R̂zφ

]
(x, y, z, σ, q) = ±i φ(x, y, z, σ, q) . (4.10b)

Conservation of the antilinear operator ŠTy implies that the single-particle wavefunctions can be considered
invariants, so that we have [

ŠTy φ
]

(x, y, z, σ, q) = φ(x, y, z, σ, q) . (4.11)

We can not demand a similar relation for the antilinear, antihermitian Ť , but we can demand that the single-
particle wavefunctions are come in normal pairs, i.e. that for every state φk there is also a time-reversed state
φk̄ so that [

Ť φk
]

(x, y, z, σ, q) = φk̄(x, y, z, σ, q) . (4.12)

When either of the symmetries R̂z, ŠTy or P̂ are conserved, we can use the spatial relations to significantly
limit the computational load by using relations (4.10) and (4.11). In each of these cases, the spatial extent
of the mesh can be reduced by a factor of two. For parity conservation we have[

P̂ φ
]

(x, y, z, σ, q) = φ(−x,−y,−z, σ, q) = ±φ(x, y, z, σ, q) . (4.13)

This allows us to only store half of the values of φ(r, σ, q) as we can apply P̂ to find the other half. MOCCa uses
this freedom to only calculate the single-particle wavefunctions on half of the z-axis when parity is conserved.
In this case we the number of points in the z-direction can be halved nz = NZ

2 .
The z-signature and y-timesimplex give rise to similar relations[

R̂zφ
]

(x, y, z, σ, q) = −iσφ(−x,−y, z, σ, q) = ±iφ(x, y, z, σ, q) , (4.14a)[
ŠTy φ

]
(x, y, z, σ, q) = φ∗(−x,−y, z, σ, q) = φ(x, y, z, σ, q) . (4.14b)

When y-timesimplex is conserved we can eliminate half of the y-axis ny = NY

2 , while z-signature conservation

can eliminate half of the x-axis nx = NX

2 . These choices are not unique, as a calculation with only conserved
z-signature could in principle use the symmetry to eliminate half of the y-axis. This particular choice is merely
the most practical, since each symmetry is related to one Cartesian axis.
Note that these relations for the single-particle wavefunctions directly transfer their features to the mean-field
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densities and potentials as described in section 2.8. The conservation of these spatial symmetries thus reduce
the total memory and computation time needed for a calculation by a factor of 21 by reducing the effective
number of mesh points in one Cartesian direction. Fig. 4.2 shows the part of the mesh that is numerically
represented in MOCCa for every combination of conservation of the three symmetries R̂z, ŠTy and P̂.
Time-reversal conservation does not give rise to a similar spatial relation for the single-particle wavefunctions.
The number of single-particle wavefunctions that actually is stored is nwt, and in the case of time-reversal
conservation is only half of Nφ. The half of single-particle wavefunctions that is stored is the set with signature
+1 in the case of z-signature conservation. When z-signature is conserved, there is no such particular practical
division of the single-particle wavefunctions in two sets and which half gets stored is arbitrary.
As a final remark note that we have already implicitly used z-isospin symmetry in Eq. (4.9). We suppose that
every single-particle wavefunction is an eigenstate of Îz and that they carry a definite isospin, they represent
either a proton or a neutron. Would we not have this symmetry, the structure in Eq. (4.9) would not be
enough and we would need eight real functions to properly represent the spinor and isospin-spinor structure.
In this way, z-isospin symmetry also hands us a factor of two in complexity2.

4.4 Optimizing the energy: steepest descent aka imaginary timestep

Let us now focus on how we could solve the Hartree-Fock equations when represented on a mesh. We will
leave aside the pairing equations for now and treat them in chapter 6. The clearest way of presenting the
problem is as an optimization problem. We would like to find a set of Nφ single-particle wavefunctions so
that the energy as calculated using the functional

EHF (B) =

∫
dr E [ρ(r), τ(r), . . .] (4.15)

is minimal.
The first thing to realize is that the relevant degrees of freedom are the single-particle wavefunctions and
more specifically their values at the mesh points

φl (xi, yj , zk, σ) with


l = 1, . . . , nwt
i = 1, . . . , nx
j = 1, . . . , ny
k = 1, . . . , nz
σ = −1, 1

(4.16)

where we have eliminated (for now) the isospin index, since we assume z-isospin symmetry in any case. One
should not forget that the optimization problem has a subsidiary condition that the single-particle wavefunc-
tions should be orthonormal

〈φi|φj〉 = δij . (4.17)

In computer science (and specifically AI learning) [88] the simplest solution for an optimization problem is
steepest descent. Given a scalar function f of some variable x, the steepest descent algorithm looks for the
direction in which the objective function f decreases the fastest. It then takes a small step in that direction
and looks again for the direction of steepest descent. More formally, starting from a guess x(i) at iteration i
the algorithm evaluates the derivative ∇f(x)|x=x(i) and proposes for the next iteration

x(i+1) = x(i) − α ∇f(x)|x=x(i) , (4.18)

where we call the real number α the stepsize. This stepsize variable is highly problem dependent and will
receive some attention later this chapter. That eventually this algorithm will find a local minimum of f is
intuitively very clear: −∇f(x)|x=x(i) is at every iteration a vector pointing in the direction in which f(x)
decreases the fastest. For this reason, this algorithm is also know as ‘gradient descent’.
This algorithm is also easily applied to our optimization of Eq. (4.15). Every mesh value of every single-particle
wavefunction φl (xi, yj , zk, σ) is one component of x, while f is the functional. The remaining challenge is
to evaluate ∇f(x). We can write

∂EHF (B)

∂φi
=
∑
ρ

∫
dr
∂E [ρ(r), τ(r), . . .]

∂ρ(r)

∂ρ(r)

∂φi
= [ĥφi](r, σ, τ) (4.19)

1This is of course only approximate in reality as different symmetry combinations have slightly different numerical require-
ments, but the factors two are very close to the actual factors.

2In combination with time-reversal symmetry and isospin symmetry ev8 should really have been called ev32.
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(a)
{
R̂z, ŠT

y , P̂
}

(b)
{
ŠT
y , P̂

}
(c)
{
R̂z, ŠT

y

}
(d)

{
R̂z, P̂

}

(e)
{
R̂z

}
(f)
{
ŠT
y

}
(g)

{
P̂
}

(h) ∅

Figure 4.2: Spatial degrees of freedom actually represented in MOCCa when using different generator sets.
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4.5. Choosing the time-step dt

1 Start from a set of |φ(0)
l 〉

2 for i → MaxIter do
3 Compute mean-field densities ρ, τ, . . .
4 Compute mean-field U,Wµν , . . .

5 Compute single-particle Hamiltonian ĥ(i)

6 Update single-particle wavefunctions |χ(i+1)
l 〉 = |φ(i)

l 〉 − αĥ(i)|φ(i)
l 〉

7 Gramm-Schmidt to orthogonalize |χ(i+1)
l 〉 → |φ(i+1)

l 〉
8 end

Algorithm 2: Gradient descent algorithm for some maximum number of iterations MaxIter.

where the sum is over all the different mean-field densities that appear in E [ρ(r), τ(r), . . .]. The derivative

of our objective function is obtained by applying ĥ on the single-particle wavefunction |φl〉. Our version of
Eq.(4.18) then becomes

φ
(i+1)
l (r, σ) = φ

(i)
l (r, σ)− α

[
ĥ(i)φ

(i)
l

]
(r, σ) , (4.20)

where we have added the superscript (i) to the single-particle Hamiltonian since it depends on the mean-field
potentials and thus the single-particle wavefunctions at iteration (i).
The subsidiary condition of orthonormality can not be guaranteed by an update scheme as in Eq. (4.20).
In practice, a simple Gram-Schmidt orthogonalization scheme is added as an extra update step3 after the
application of Eq. (4.20). With this addition the general steepest descent algorithm is complete; it is
summarised below in Algorithm 2.
It is rather interesting that the update formula, Eq. (4.20) can also be obtained from a more physical point

of view. Consider the time-dependent Schrödinger equation for the single-particle Hamiltonian ĥ

i~
∂|φl〉
∂t

= ĥ(t)|φl〉 . (4.21)

Discretizing time and considering small time-steps δt, we can write the solution at t = t0 + δt as

|φ(t+δt)
l 〉 ≈ exp

[
−i δt

~
ĥ(t)

]
|φ(t)
l 〉 . (4.22)

Schrödinger evolution conserves the energy of the system, but when we take δt = −idt with dt real we recover

|φ(t+dt)
l 〉 ≈ exp

[
−dt

~
ĥ(t)

]
|φ(t)
l 〉 ≈

(
1̂− dt

~
ĥ(t) +O(dt2)

)
|φ(t)
l 〉 . (4.23)

And to first order this is again Eq. (4.20) with α replaced by dt
~ and iteration number (i) by the time t.

Davies [89] took this approach to justify his first application of the steepest descent algorithm to the nuclear
many-body problem. In what follows we will use the notation dt for historical reasons, it is equal to α up to
a factor of ~.

4.5 Choosing the time-step dt

What value to pick for the time-step size in the update formula Eq. (4.23) is unfortunately non-trivial. Small
values of dt will greatly impact the number of iterations we need to reach convergence as the single-particle
wavefunctions will vary only slowly. Too big values unfortunately destroy convergence completely, as the
direction ĥ|φl〉 is only guaranteed to be a descent direction for infinitesimally small stepsizes. This situation
is illustrated for 40Ca in Fig. 4.3. Convergence is rather slow for small values of dt, but for values of dt higher
than ∼ 0.03× 10−22s the iterative scheme diverges.4

A handwaving argument is readily available when ĥ is independent of time in Eq. (4.23). In that case, the
solution is integrable from t = 0 to t = Ndt and we have

|φ(Ndt)
l 〉 =

(
1̂− dt

~
ĥ

)N
|φ(0)
l 〉 . (4.24)

3An alternative could also be to add Lagrange parameters to the problem of Eq. (4.15). In the end however, this is completely
equivalent in both result and computational effort.

4The kinks in Fig. 4.3 appear when the error changes sign and are an artifact of the presentation on a logarithmic scale.
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Figure 4.3: Absolute value of the relative error of the energy with respect to the converged value for a Hartree-
Fock calculation of 40Ca for various values of dt on a mesh with dx = 1.0 fm using the SLy4 parameterization.
Note that the calculation with dt = 0.035 × 10−22 s diverges. The dips in the figure are places where the
error changes sign.
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Figure 4.4: Maximal value of dt that results in a converging iterative scheme as a function of dx for a Hartree-
Fock calculation of 40Ca using the SLy4 parametrization, using the default finite difference derivatives.
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4.6. Comparing to the standard self-consistent scheme

1 Start from a set of |φ(0)
l 〉

2 for i → MaxIter do
3 Compute mean-field densities ρ, τ, . . .
4 Compute mean-field U,Wµ,ν , . . .

5 Compute single-particle Hamiltonian ĥ(i)

6 Diagonalise ĥ(i) to find new φ
(i)
l

7 end

Algorithm 3: Sketch of the algorithm from [84].

We immediately see that it is the largest eigenvalue of dt
~ ĥ that determines the behaviour of this series. If it

is too large (> 1), then this series will diverge as N grows. If it is small (< 1), this series will converge.

As eigenstates of ĥ climb in energy they become less and less bound and the very highest eigenstates will
resemble plane waves. As such, the highest eigenvalues of ĥ will be dominated by the kinetic energy which
we can approximate for a Skyrme functional by

ĥ ≈ −∇ ·Bq(r)∇ ≈ − ~2

2m
∆ , (4.25)

where m is the nucleon mass. On a mesh with spacing dx, the highest representable plane wave has a

momentum that is proportional to dx−1. Thus, the maximum eigenvalue of ĥ will be proportional to
(
dx2
)−1

.
From this we can immediately see that smaller mesh sizes need smaller values of dt in order to converge.
Fig. 4.4 show the dependence of dx of the maximal value of dt for a calculation of 40Ca. When decreasing
the mesh discretization from dx = 1 fm to dx ∼ 0.8 fm the maximal value of dt drops already by one third.
Calculations using small mesh discretisations are thus extra numerically burdened: they need more mesh
points and more iterations to converge because of the smaller values of dt.

4.6 Comparing to the standard self-consistent scheme

A different scheme to solve self-consistent equations is sketched in Algorithm 3. It is more proliferated
compared to the gradient descent scheme both in nuclear structure theory [84, 90, 83, 85], and computational

chemistry. The overall idea is exactly the same, calculating ĥ(i) at every mean-field iteration and using a
prescription to find a new set of single-particle wavefunctions in the Hartree-Fock base. Usually these are
obtained by completely diagonalizing ĥ(i) at every mean-field iteration.
Gradient descent of course also diagonalises ĥ(i), as at convergence the single-particle wavefunctions are
eigenstates of the single-particle Hamiltonian. One can regard update formula in Eq. (4.23) as the first

iteration of an iterative process to diagonalize ĥ(i) at iteration (i). This is the main difference: gradient
descent only performs a single iteration of the diagonalisation process of the single-particle Hamiltonian at
every mean-field iteration.
Where gradient descent prefers to use CPU cycles to update the information contained in ĥ(i), the standard
scheme prefers to capitalize on all of the information already contained in ĥ(i) at every iteration. Whether
one or the other scheme is more efficient is probably very dependent on the type of numerical representation
used, the number of single-particle wavefunctions taken into account and details of the implementation. It
is however important to realize the difference between the two schemes as they will impact some numerical
choices and more specifically why some numerical techniques that are in frequent use in other codes do not
work as well for MOCCa.

4.7 Computing the mean-field densities and potentials

In order to successfully optimize the energy, one needs to calculate the single-particle Hamiltonian ĥ(i) at
every mean-field iteration (i), using the mean-field potentials and the mean-field densities. The formulas in
chapter 3 are easily implemented and the formulas in appendix A for the mean-field potentials are maybe hard
to implement correctly but of no technical challenge.
However there are two points that merit some further attention. The first is the calculation of the Coulomb
potential, which is fundamentally different from the other Skyrme mean-field potentials. The second is that
without proper control and even with a well chosen parameter dt, a gradient descent step can produce quite
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brutal changes of mean-field densities from iteration (i) to (i + 1). This directly influences the mean-field

potentials and and in turn means that ĥ(i) has a rather different spectrum from one iteration to the next. In
order to combat this, we mix the densities at different iterations.

4.7.1 Density mixing

At every mean-field iteration (i), we calculate all of the mean-field densities from the formulas in chapter 3
but then mix them in a simple linear way

ρ(r)(i) = DampingParam ρ(r)(i−1) + (1− DampingParam) ρ(r)(i) , (4.26)

where DampingParam is an input parameter of MOCCa. The other mean-field densities are mixed in sim-
ilar fashion, using the same coefficient. This type of damping is effective at ensuring convergence when
DampingParam is between 0.75 and 0.95, favoring the previous density and delaying new information to be
incorporated in ĥ(i).
The main reason why using small values of DampingParam does not result in stable convergence is because
the gradient descent scheme only performs a single update of the single particle wavefunctions at every mean-
field iteration. This update is guaranteed to be in the correct direction to diagonalize ĥ(i−1) but it is not
necessarily a proper descent direction for ĥ(i). The physical analog is that the time evolution in Eq. (4.21)

can give rise to erratic behaviour if the variation of ĥ(t) is too rapid compared to the timestep dt.
It is worth noting that one could achieve the same effect when mixing the mean-field potentials instead of the
mean-field densities. This is the approach taken in [91]. One might argue that this is a more natural quantity
to mix, but more study is needed to check whether this affects convergence (either positively or negatively).

4.7.2 Coulomb calculation

The exchange term in Slater approximation presents no technical challenge, as it is simply proportional to the
proton density ρp

5. The direct Coulomb energy density is generated by an interaction with infinite range and
is thus more difficult to numerically represent than the Skyrme energy density. The direct Coulomb energy
density is given by

Edir.
Coul(r) =

e2

2

∫
dr′

ρp(r)ρp(r
′)

|r− r′| . (4.27)

Directly calculating this integral for every mesh point (xi, yj , zk) by summing the integrand is both extremely
costly and numerically unstable since there is always a point where the denominator is exactly zero. The
numerically more sensible thing to do is to solve Poisson’s equation on the mesh for the electrostatic Coulomb
potential V (r) of the point proton density ρp(r)

∆V (r) = −4πe2ρp(r) , (4.28)

where e is the proton charge. The energy density can then be written as

Edirect
Coul (r) =

∫
drV (r)ρp(r) , (4.29)

which is numerically stable and not too resource-intensive to compute when V (r) is known.
There are currently several different numerical schemes to solve Eq. (4.28) implemented in MOCCa. Dependent
on the input parameter CoulombSolver one can use either a conjugate gradient scheme, a Gauss-Seidel solver
or a symmetric-over-relaxation solver [88]. They are all iterative schemes and are tested to give the same
solution. The interest of having different solvers was motivated by a search for a more efficient numerical
scheme for this purpose6. All three implementations have comparable performance to within a factor two,
but the relative importance of this part of the code is rather small on the mean-field level. For more details,
see F.
Specifying Eq.(4.28) is however not enough to determine V (r). We specify boundary conditions on the
extremes of the mesh to uniquely determine the solution to Eq.(4.28) as follows [72]

Ubound(r) = e2
`max∑
`=0

l∑
m=−l

〈Q̂`m,p〉∗
r2`+1

Y`m(r) . (4.30)

5Calculating the exact exchange energy density is a completely different story, but outside the scope of this text.
6A fourth solver based on a multigrid scheme was part of MOCCa, but was dropped because of subpar performance. This was

to be expected as the number of mesh points we have is rather small compared to the typical application domain of multigrid
methods [88].
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Figure 4.5: Accuracy of the direct Coulomb energy of an octupole deformed 226Ra state as a function of
`max and extra points added to the Coulomb mesh. The axial deformation parameters β`0,p are given in the
table below. The calculations adding extra points use Eq. (4.30) up to and including ` = 2. Reference is the
Coulomb energy calculated with 50 extra points and `max = 10. The non-augmented mesh parameters are
(NX , NY , NZ) = (30, 30, 50) and dx = 1.0 fm.

where the Y`m(r) are the spherical harmonics, see Appendix C. `max is an input parameter and determines
the highest degree ` of multipole moments that are taken into account in the calculation. These boundary
conditions correspond to the expansion of the Coulomb potential in spherical harmonics far from the source
charge. This approximation increases in quality as `max increases as the expansion gains more terms.
Another factor impacting the accuracy of this approximation is the size of the mesh. The denominator of
the terms increases quickly with increasing r at the boundary of the box and higher order terms become less
important. In addition, this expansion is only valid in regions where the charge density is zero, far enough
away from the proton density. It is thus vitally important that the proton density is well contained in the
mesh. MOCCa offers the option to take extra mesh points for the calculation of the Coulomb potential into
account, in addition to those of the normal mesh, via the keywords CEX, CEY and CEZ.
Both effects can be used to increase the reliability of the boundary conditions, but increasing `max is nu-
merically less costly than increasing the number of mesh points for the Coulomb solver. The calculation of
some extra multipole moments 〈Q̂`m,p〉 amounts to a few extra integrals over the mesh, while increasing the
number of points for the iterative Poisson solver amounts to several matrix multiplications at every iteration
over an enlarged mesh.
The accuracy of both approaches is shown in Figure 4.5 for a deformed mean-field state of 226Ra at β2 ≈ 0.8
and β3 ≈ 0.4. The error is calculated by comparing with a calculation with `max = 10 and 50 extra points
in the z-direction. The accuracy increases rapidly both with increased `max and number of mesh points. The
decrease in error by increasing `max is not a smooth function, as the different multipole moments are not all
of comparable size and thus importance. For both methods the error can easily be controlled and be brought
to acceptable levels. However, by increasing `max one does not incur any tangible numerical cost while this
cannot be said for increasing the number of mesh points.
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4.8 Judging convergence

When to stop iterating the procedure in Algorithm 4.20 is a valid question. Several checks are built into the
code, that judge the stability of the iterative scheme. At a given iteration (i), one checks that a number of
quantities have not varied too much over the past seven iterations (i), (i− 1), . . . (i− 7).

Mainly the total energy E
(i)
HF (B) is relevant: typically one stops the iteration when∣∣∣E(i−k+1)

HF (B) − E
(i−k)
HF (B)

∣∣∣∣∣∣E(i−k+1)
HFB

∣∣∣ ≤ EnergyPrec k = 1, . . . , 7 , (4.31)

The stability of the Fermi energy λq, for protons and neutrons alike, is also judged over the past seven
iterations ∣∣∣λ(i−k+1)

q − λ(i−k)
q

∣∣∣ ≤ PairingPrec k = 1, . . . , 7 , (4.32)

Other checks are in place when constraints are present [72]. If a multipole moment 〈Q̂`m〉 is constrained to
a value O, the code checks the values of the multipole moment at the previous seven iterations using either∣∣∣〈Q̂`m〉(i−k+1)

∣∣∣ ≤ MomentPrec k = 1, . . . , 7 (if O = 0) , (4.33a)∣∣∣〈Q̂`m〉(i−k+1) −O
∣∣∣

|O| ≤ MomentPrec k = 1, . . . , 7 (if O 6= 0) . (4.33b)

A similar check is placed on the projection µ = x, y, z of the angular momentum if it is constrained to a
non-zero value J ∣∣∣〈Ĵµ〉(i−k+1) − J

∣∣∣
|J | ≤ CrankPrec k = 1, . . . , 7 . (4.34a)

The parameters EnergyPrec,MomentPrec,PairingPrec and CrankPrec are all input parameters of MOCCa,
see chapter 11. While these are the check the code performs on its own, there are some other checks the
user can look at themselves. The first is an alternative way to calculate the energy [72]

Ealt =

nwt∑
k=1

v2
kεk +

EKin

2
+
Eexch.

Coul

3
+ Epair + E′corr + ESR (+ECon) . (4.35)

Here the terms EKin, E
exch.
Coul , Epair take the same form as defined in the previous chapters. E′Cor is slightly

different from the term ECor in the Skyrme functional: if the one-body centre-of-mass correction (see sec.
1.4.5 and chapter 11) is treated self-consistently, it is comprised in the single-particle energies εk and thus
should not be contribute to ECor. If it is added perturbatively, it is not part of the single-particle energies and
should be included in ECor.
ESR is an extra rearrangement term due to the density dependent terms in the Skyrme functional

ESR = −1

2

∫
d3r

∑
x=a,b

αx ρ
αx

[
b7x ρ

2 +
∑
q=n,p

(
b8x ρ

2
q

)]
. (4.36)

When constraints are added, an extra term needs to be added to EAlt

ECon =
∑
k

λ(i)〈Ôk〉(i) (4.37)

where the sum is over all constrained operators Ôk and the λ(i) are the Lagrange multipliers7. Note that this
term has to be included here, as the constraints contribute to the single-particle Hamiltonian and are thus
implicitly included in the sum in Eq. (4.35) and thus should be removed.
Theoretically, when convergence is reached EAlt should match the energy calculated using the functional
EHF(B). Because of the numerical approximations (mainly the use of finite-difference derivatives and the
limited size of the mesh) that do not act in the same way on both sums, this equality will in general only hold

7We are running ahead of ourselves: see chapter 5 for more info on the constraints.
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approximatively. Typical deviations between EAlt and EHF(B) are tabulated in Table 3 in [72]. At convergence,
using a sufficiently large mesh, the difference between EAlt and EHF(B) should not be larger than a few hundred
keV for dx = 1 fm and significantly smaller for smaller mesh discretisations.
Another indicator of convergence is the change in the change of all the mean-field densities. The output of
MOCCa at every mean-field iteration contains

δρ(i) = 1−

[∑
ρ

∫
drρ(i)(r)ρ(i−1)(r)

]
[∑

ρ

∫
drρ(i)(r)ρ(i)(r)

] (4.38)

where the sums range over all of the mean-field densities of Eq. (1.4.1). Note that this calculation is made
before any damping procedure, so that ρ(i) is calculated without any damping procedure. Convergence is
obviously better when δρ becomes smaller, and values around 10−8 should be reachable.

4.9 Points of possible improvement

The gradient descent algorithm as described in the previous sections (supplemented by a simple linear mixing
of the densities) was already employed in the ev8, cr8 and ev4 codes. The overall scheme is rather straight-
forward and it is not hard to come up with possible improvements. In this section, we will discuss some of
the possibilities that have been tried for MOCCa. In general, these alternatives show promise in decreasing
the number of iterations needed to converge the numerical scheme. However, for all of them there are extra
difficulties to make the schemes applicable to the most general problem we would like to solve or the numerical
cost offsets the gain in convergence speed.
We will discuss the second-order expansion of Eq. (4.23), preconditioning the optimization problem, the
Nesterov accelerated gradient scheme and the DIIS mixing of the mean-field densities. The properties of all of
these schemes will be illustrated with their application to a calculation of 40Ca using the SLy4 parameterization,
without pairing and with conservation of the full DT2h group. This in order to keep the calculation as simple
and straightforward as possible to clearly disentangle the effect of the different numerical schemes. All of the
calculations were started from Nilsson model wavefunctions generated by the nil8 [9] code, thereby granting
every scheme the same (rather bad) starting point.

4.9.1 Second order imaginary time-step

Näıvely exanding Eq. (4.9) to second order in dt
~ gives the following update formula for the single-particle

wavefunctions

|φ(i+1)
l 〉 =

[
1̂− dt

~
ĥ(i) +

1

2

(
dt

~
ĥ(i)

)2
]
|φ(i)
l 〉 . (4.39)

This change in update formula is quite costly: the application of ĥ(i),2 on the single-particle wavefunctions
|φl〉 involves the computation of numerical derivatives of ĥ(i)|φl〉. This almost doubles the computational
effort for a single update step since the calculation of derivatives is by far the most numerically most costly
part of every mean-field iteration. The gain of having a second order in dt on the other hand is meanwhile not
that significant, as ĥ(i) changes from one iteration to the next. Two iterations of a first-order expansion in dt
thus acquire more information than one iteration of a second-order expansion for roughly the same amount
of numerical effort. This effect is illustrated in Fig. 4.6. The difference between the first order and second
order expansion is negligible and the second order expansion does in fact slightly worse.
Another näıve improvement of the imaginary timestep, using a conjugate gradient algorithm (see Appendix

D) in this context would also not really improve the convergence. The reason is again the fact that ĥ(i) is
updated at the same speed as the single-particle wavefunctions: the conjugate direction that is constructed
at every iteration is conjugate to directions determined by ĥ(0), ĥ(1), . . . , ĥ(i−1) and is thus not very relevant
for ĥ(i). In fact, I have not succeeded in getting a functional conjugate algorithm working in MOCCa, for what
we suspect is this reason 8.

8Although any number of unsolved bugs might also be the cause, one can really never be sure.
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Figure 4.6: Energy difference with the converged value of a Hartree-Fock calculation for 40Ca as a function
of iteration number using the SLy4 parameterization for first or second order expansion of Eq. (4.23). The
calculation was started from Nilsson model wavefunctions generated by nil8.

4.9.2 Preconditioning

Preconditioning the single-particle Hamiltonian is a promising strategy that was already studied in the context
of the nuclear many-body problem several decades ago [92]9. The idea is to transform ĥ(i) to a modified

problem ĥ
(i)
P that is easier to solve, i.e. that has a smaller spread in eigenvalues [88]. For the nuclear

problem, this means that one tries to filter the components with high kinetic energy from ĥ(i)|φ(i)
l 〉 that slow

convergence.
The most promising way to do this from [92] has been implemented in MOCCa. The preconditioning operator
P̂ is defined as

P̂ =
(
T̂ + E0

)−1

=

(
~2

2m
∆ + E0

)−1

, (4.40)

where T̂ is the kinetic energy operator. Note that P̂ damps the eigenstates of the kinetic energy operator with
high kinetic energy and amplifies the kinetic energy eigenstates with low kinetic energy. E0 is a numerical
parameter, typically of the order of 100 MeV, that is incorporated in order to make the method stable for
components with very low kinetic energy. The modified single-particle Hamiltonian becomes

ĥ
(i)
P = P̂ ĥ(i) . (4.41)

The new update formula, replacing Eq. (4.20) becomes

|φ(i+1)
l 〉 =

[
1̂− dt

~
P̂
(
ĥ(i) − 〈φil|ĥ(i)|φil〉

)]
|φ(i)
l 〉 . (4.42)

Note that the extra term involving the expectation value of ĥ(i) is necessary in order not to filter the com-

ponents of ĥ(i) in the direction of |φ(i)
l 〉. These are of course the components of |φ(i)

l 〉 that we want to keep.
The main advantage of preconditioning is the increased maximum stepsize. The correct quantity to compare

9Although [92] does not use the term preconditioning.
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Figure 4.7: Maximum values of dt
E0

that do not diverge as a function of the mesh discretisation dx.

to dt in the original gradient descent is dt
E0

10. In Fig. 4.7 the maximum value of dt
E0

that does not produce
a divergent iterative scheme is shown as a function of dx. The typical size of stepsize is significantly larger
than the stepsizes for original gradient descent, compare with Fig. 4.4. Not only that, but the preconditioned
scheme only suffers slight reductions of maximal dt

E0
with decreasing dx compared to ordinary gradient des-

cent.
The price to pay is the numerical cost of applying P̂ to every single-particle wavefunction. While the applic-
ation of ∆ is essentially a sparse matrix multiplication (at least in the case of finite difference derivatives),
its inverse and by extension P̂ will in general be a matrix with the full dimension of the mesh. A conjugate
gradient algorithm (see Appendix D) is currently implemented to solve the inverse problem, i.e. solving the
following equation for χ,

P̂−1|χ〉 = ĥ(i)|ψ(i)
l 〉 . (4.43)

This is again an iterative process that has to be completed at every mean-field iteration, for every single-particle
wavefunction. The numerical cost of this process is consequently rather high. The current implementation

limits the computational cost by using ĥ(i)|ψ(i)
l 〉 as initial guess for χ instead of the zero-vector and using

only first order finite difference derivatives when applying P̂−1. The number of iterations to calculate the
action of P̂ is in general on the order of 10, though the actual number depends heavily on the details of
the calculation like the value of E0 and the single-particle wavefunction under consideration. Higher values
of dt will also increase the number of conjugate gradient applications necessary, as the high-kinetic energy
components gain importance with increasing dt.
Inverting the complete operator at the start of the iterations once and for all, and then applying the full
matrix-representation of P̂ at every iteration might decrease the numerical cost. This procedure avoids the
numerical cost of the iterative procedure of the conjugate gradient algorithm, but would incur a multiplication
with a matrix with the full dimensions of the mesh. Depending on the precise implementation, this might be
worth the effort, but it has not been implemented in the current version of MOCCa.

10Note that dt here does no longer have the dimensions of time, but this is not really relevant.
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4.9.3 Nesterov gradient descent

Another possible iteration scheme is due to Nesterov [93] and is usually called Nesterov (accelerated) gradient
descent. As a starting point, define a series of parameters α(i) as

α(0) = 0 ,

α(i) =
1

2

(
1 +

√
1 + 4

(
α(i−1)

)2)
.

(4.44)

Using these, we define a new updating scheme for the single-particle wavefunctions as

|φ(i+1)
l 〉 =

(
1− dt

~
ĥ

)
|χ(i)
l 〉 , (4.45)

|χ(i+1)
l 〉 =

α(i+1) + α(i) − 1

α(i+1)
|φ(i+1)〉+

1− α(i)

α(i+1)
|φ(i)〉 . (4.46)

The vectors |χ(i+1)
l 〉 are the result of a simple gradient descent step, but at every iteration this direction

gets mixed with the previous step |χ(i)
l 〉. This scheme is thus very reminiscent of so-called momentum

methods [94], where the momentum in phase-space from previous updates carries over to further updates.
There exist geometrical interpretations of this algorithm [95], and several elegant mathematical results, but
we will limit ourselves here to the application to the nuclear many-body problem.
The ordinary gradient descent scheme guarantees that the error on the optimized quantity (in our case the
energy of the many-body state11) decreases at least as t−1 with t the number of iterations. This is an upper
bound and the maximum achievable convergence rate is in fact proportional to t−2. Our main interest in
Nesterov accelerated gradient descent is due to the fact that this algorithm is provably optimal [93], in the
sense that it guarantees the maximum achievable error reduction, proportional to t−2.

As the iterations build-up, the information contained in the |χ(i)
l 〉 starts becoming irrelevant as ĥ(i) gets

updated. This results in temporary increases in the energy, hindering convergence [96]. For this reason we
augment the procedure by resetting the value of α(i) to zero every 20 iterations and thus resetting the memory
contained in the |χ(i)〉, in order to refresh the memory built into the scheme. This approach can probably
be improved tremendously if one incorporates a detection mechanism that intelligently resets α(i), instead of
näıvely choosing a fixed value of iterations.
The result of this scheme can be seen in Fig 4.8 for a Hartree-Fock calculation for 40Ca. Restarted Nesterov
is clearly significantly faster than both alternatives and maintains a rather steep slope despite a residual wavy
character of the convergence. Nesterov without restarts starts of strong, but as redundant information piles
up, one observes a lot of iterations were the convergence actually worsens. In the end, this method is still
roughly comparable to the ordinary gradient descent method.
The Nesterov scheme with restarts needs only mildly more computational power compared to ordinary gradient

descent: one does need to apply ĥ(i) to the |χ(i)
l 〉 vectors (involving derivatives), but one does not need to

apply ĥ(i) to the actual single-particle wavefunctions |φ(i)
l 〉. It is thus a very promising avenue for further

optimizing MOCCa.
At the moment however, it is not used as default iterative scheme (and in fact anywhere else in this dissertation)
due to two main disadvantages. The first is the issue of resetting α: the optimal resetting protocol seems
in general very much problem dependent and a bad choice destroys the attractive properties of the method.
A more intelligent resetting scheme is thus required. Secondly, it is at the moment unclear how predictor-
corrector constraints (see chapter 5) would fit into the update scheme in Eqs. (4.46). While these constraints
are not necessary for a well-functioning code, they are indeed very practical on a day-to-day basis and a very
attractive point of the current version of the code.

4.9.4 Direct Inversion of the subspace (DIIS) density mixing

The linear mixing of the densities in Eq. (4.26) is rather näıve in two ways. Firstly, at iteration (i) it only
uses the mean-field densities from the previous iteration (i− 1) and does not use any information that might
have been gathered at iteration (i − 2) and before. Secondly, it does not take into account any features of
ρ(i): if ρ(i) lowers the energy significantly one would like for it to make a significant contribution.
A method commonly employed in electronic structure calculations is called Direct Inversion in the Subspace

11Or in fact the Routhian, see chapter 5.
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Figure 4.8: Comparison between ordinary gradient descent, Nesterov accelerated gradient descent and Nes-
terov accelerated gradient with restarts every 30 iterations for a calculation without pairing for 40Ca using
the SLy4 parameterization.

(DIIS in short) or Pulay mixing, after its inventor [97]. This method aims to remedy both deficiencies of the
linear mixing scheme. For a given order n of the scheme, MOCCa mixes at iteration (i) the n values of all
the mean-field densities at iteration (i), (i − 1), (i − 2), . . . , and (i − n + 1). They all get mixed with real
coefficients ck as follows

ρ(i)(r) =

n∑
k=1

ckρ
(i−k+1)(r) (4.47)

and similar for the other mean-field densities. The coefficients ck satisfy the condition

n∑
k=1

ck = 1 . (4.48)

One then defines the residuals p(k)(r) as

p(k)(r) = ρ(k)(r)− ρ(k−1)(r) . (4.49)

The residual vector associated with the mixing in Eq. (4.47) is then

p(i)(r) =

n∑
k=1

ckp
(i−k+1)(r) . (4.50)

Our iterative scheme is converged when the density does not change from one iteration to the next, so one
would like p(i)(r) to be small. Therefore, we wish to minimize its norm, which translates to the following
objective function

|p(i)(r)|2 =

N∑
k,l=1

ckcl

∫
dr p(i−k+1)(r)p(i−l+1)(r)− λ

(
1−

N∑
k=1

ck

)
, (4.51)

with a Lagrange constraint on the sum of the coefficients ck. We define the overlap between two residuals as

Bkl =

∫
dr p(i−k+1)(r)p(i−l+1)(r) , (4.52)
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4. Numerical Implementation

and similar for the other mean-field densities. This leads us to an (n+1)-dimensional symmetric linear system
B11 B12 . . . B1n −1
B21 B22 . . . B2n −1

...
...

. . .
...

...
Bn1 Bn2 . . . Bnn −1
−1 −1 . . . −1 0




c1
c2
...
cn
λ

 =


0
0
...
0
−1

 . (4.53)

Unless this linear system is (almost) singular, the coefficients ck can be found rather easily and the mixing of
densities using Eq. (4.47) can be implemented. For modest values of n the numerical effort of calculating
the Bkl and solving the linear system is completely negligible.
When the linear system is close to singular however, the system becomes unstable and the values of the ck
numerically deduced become numerically less than optimal. This is the case if the p(k) become (almost)
linearly dependent, meaning that the gradient descent algorithm is exploring the same directions in phase-
space during consecutive iterations. This means that in practice the memory order n is best limited to small
values, typically 3 or 4.
Nevertheless, if the change in densities during the densities are not significant enough, the method in general
fails to improve convergence, as shown in Fig. 4.9. Applied directly to the gradient descent algorithm for
normal values of dt the overall trend of convergence is rather the same as with linear density mixing, only
with more rather erratic oscillatory behaviour on top of the overall trend. If we change the iteration scheme
to include preconditioning, the inclusion of DIIS significantly improves the convergence rate with respect to
the linear mixing. This is due to the fact that preconditioned gradient descent manages a greater rate of
change compared to ordinary descent, and therefore increases the stability of the DIIS scheme. Note that
even for the preconditioned scheme there is still some erratic behaviour to be observed, indicating that the
rate of change in the densities might not be large enough.
The DIIS method, applied to the mean-field potentials instead of the densities, is known in general as Broyden
mixing12. The behaviour of this method for the nuclear many-body problem, reported in [91], is more beneficial
to the convergence of the iterative scheme. This is primarily due to the fact that the code HFODD employs
the more standard iterative scheme as explained in section 4.6. During successive mean-field iterations, the
mean-field potentials change sufficiently due to the fact that the single-particle Hamiltonian is diagonalised
at every iteration. This evades potential singularities of the linear system in Eq. (4.53).

4.9.5 Relative timing and conclusions

We have seen several points of possible improvement on the basic gradient descent scheme. All of them
(except the expansion to higher order in dt) show some promise in speeding up the convergence of MOCCa.
The number of iterations needed to converge the energy to within a relative error of 10−9 MeV for the various
methods is given in Table 4.4.
For a mesh with dx = 1 fm, the CPU time is negligible for all of the methods and probably within the error
margin of CPU time measurements. Only a scheme that combines the preconditioned gradient and DIIS
density mixing does significantly better. For a finer mesh discretisation dx = 0.5 fm all schemes significantly
improve upon the ordinary gradient descent scheme, with the preconditioned scheme with DIIS again a clear
winner being almost five times as fast as ordinary gradient descent.
However, at this point in time ordinary gradient descent still takes precedence. Preconditioning is always
effective in terms of number of iterations, but only significantly wins out when dx is small in the CPU time
race. For most applications dx = 0.8 ∼ 1.0 fm is quite accurate (see 8) and preconditioning does not
bring appreciable benefit there. On the contrary, one should not forget that using preconditioning incurs the
cost of human time to optimize dt

E0
, since contrary to the gradient descent case, the largest stepsize is not

automatically the best in terms of CPU time.
Nesterov gradient descent is also very promising, but we need some further work in order to be able to reliable
use this in applications. The current implementation of MOCCa needs a more reliable and intelligent restarting
scheme and a way to incorporate the predictor corrector constraints into this method.
DIIS mixing also shows promise, but needs to be used in conjunction with preconditioning to have a beneficial
effect. In order to use this method for practical applications, we would need to find a way to get rid of
the erratic behaviour, as for example shown in Fig. 4.9, in order to be sure that activating the DIIS mixing
procedure is not detrimental to convergence. Again here, a clever restarting scheme to wipe the memory of

12Although there are small differences.
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Figure 4.9: Calculation for 40Ca using the SLy4 parameterization, using either ordinary gradient descent
(dt = 0.02 × 10−22s) or preconditioned gradient descent ( dtE0 = 0.1 × 10−22s) with linear mixing of the
densities (DampingParam = 0.75) or with DIIS mixing of the densities (n = 3).

dx=1.0 fm dx=0.5 fm
Iterations CPU time (s) Iterations CPU time(s)

Gradient descent 243 5.3 542 149.2
Preconditioned gradient descent 149 4.7 151 63.3
Nesterov gradient descent 108 3.9 235 70.8
Preconditioned gradient descent with DIIS 70 2.3 70 37.6

Table 4.4: Number of iterations and CPU time on a personal computer necessary to converge the energy
to within a relative error of 10−9 of the converged value for a Hartree-Fock calculation of 40Ca for different
iteration schemes. The two different meshes have respectively nx = ny = nz = 10 with dx = 1.0 fm and
nx = ny = nz = 20 with dx=0.5 fm.

the method might be useful.
Once the above issues have been addressed, the obvious next step would be to try to precondition the Nesterov
scheme while using DIIS mixing. This is not possible in the current version of MOCCa, but due to the modularity
of the code it would not be complicated to enable this possibility. Comparing the resulting method to the
results in this section might be very interesting.
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Chapter 5

Constraints

The point of breaking symmetries is of course moot if one can not generate symmetry-breaking configurations.
MOCCa needs to be able to explore the degrees of freedom that are opened by broken symmetries in a
controllable way. The problem we will explore in this chapter is: given a one-body operator1 Ô, we would like
to find a solution of the mean-field equations (either HF, BCS or HFB) that satisfies

〈Ψ|Ô|Ψ〉 = O , (5.1)

where O is a number that is fixed before the start of the mean-field process. One can then find different
solutions for different values of O and in this way explore the degrees of freedom associated with the operator
Ô. Finding these solutions in a controlled way becomes even more important when one wants to do a GCM
procedure afterward with O as the generator coordinate.
The obvious candidates for the operators Ô are the order parameters discussed in chapter 2. They are fine
examples (and often the most intuitive ones) of the degrees of freedom that broken symmetries imply and are
very well suited to become generator coordinates in a GCM scheme. Historically, constraints have often (if not
always) been put on the quadrupole deformation (〈Q̂20〉, 〈Re Q̂22〉) in order to generate oblate, prolate and
triaxial ellipsoid shapes. The octupole moments (particularly 〈Q̂30〉) have been constrained to generate what
one colloquially calls ‘pear’ or ‘strawberry’2 shapes. The interest of constraining various multipole moments
is thus the generation of a veritable zoo of shapes.
The angular momentum is another prime example of an order parameter. Constraining a projection of the
angular momentum to a certain value is also known as cranking. This model is widely spread in the literature
and is not only limited to mean-field theory [98]. A similar case is the isocranking method [99], where one
constrains the expectation value of isospin components. MOCCa is at the moment not able to do this, but the
mathematical framework is completely analogous to the one of regular angular momentum.
Constraints can be imposed too on quantities as the total particle number and the dispersion ∆N 2. These
are more related to the pairing subproblem than the mean-field iterations and will be dealt with separately in
chapter 6.

5.1 Lagrange multipliers

The problem of minimizing the energy of the mean-field state thus becomes a constrained optimization
problem. The most intuitive thing to do is to add a Lagrange multiplier λO to the energy [88].

EHF(B) → EHF(B) + ECon = EHF(B) − λO〈Ψ|Ô|Ψ〉 . (5.2)

For a functional that respects the link with a many-body Hamiltonian, this corresponds to creating a Routhian

Ĥ → R̂ = Ĥ − λOÔ . (5.3)

The single-particle Hamiltonian also gets modified into the single-particle Routhian

ĥ→ R̂ = ĥ+ ĥC = ĥ− λOÔ , (5.4)

The generalization to multiple constraints of the contributions to the energy and single-particle Hamiltonian
is straightforward

ECon = −
∑
k

λk〈Ψ|Ôk|Ψ〉 , (5.5a)

ĥC = −
∑
k

λkÔk . (5.5b)

1This problem can be generalized to more general many-body operators, but the problem becomes numerically much and
much harder.

2Thanks to V. Hellemans to point out the resemblance.
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Figure 5.1: Energy of 178Hg calculated with the SLy4 parameterization with HFB+LN pairing as a function
of deformation 〈Q̂20〉, superimposed with the Routhians with a quadratic penalty function for various values
of CO around 〈Q̂20〉 = 100 fm2. Note that the minimum of the Routhians coincides more and more with the
desired value of the quadrupole moment as CO increases. Meanwhile the slopes of the Routhians become
steeper and steeper, worsening the condition of the numerical problem.

When λO is taken as a constant, we refer to this type of constraint as linear. Note that this is a completely
natural way to introduce symmetry breaking into our self-consistent scheme. While ĥ might be symmetrical
with respect to a symmetry operator Û , the operator Ô need not be. The constrained optimization process
will thus in general have a symmetry-breaking solution for non-zero values of O.
The challenge is now to find a value of λO so that the expectation value of our constrained operator takes
the desired value. From Lagrangian mechanics we know that for the solution that minimizes Eq. (5.2) holds

λO =
∂EHF(B)

∂〈Ô〉
, (5.6)

meaning that λO determines the slope of the energy with respect to variations in the value of 〈Ô〉. This
determines the correct λO in hindsight, but is of no practical value when actually trying to calculate EHF(B).
The next sections will focus on how to choose λO in order to solve this problem. All of these suggestions vary
λO as a function of the many-body state at the current mean-field iteration.
For constant values of λO this has profound consequences on the accessibility of different parts of the energy
surface: where the second derivative of the energy is positive, the energy surface is convex and the minimization
of the Routhian will be unstable. In short, for constant values of λO the minimum of the Routhian will always
be in a concave region of the energy surface. The convex regions of the energy surface will thus be completely
inaccessible.
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5.2. Penalty function method

5.2 Penalty function method

A well known method from the constrained optimization literature is the penalty function method. In direct
generalization of a Lagrange multiplier, one adds a function f(〈Ô〉) to the energy that has a minimum at
〈Ô〉 = O. In this way, the energy rises at other values of 〈Ô〉 and is thus penalized. The simplest and most
widely used form of f is quadratic

ECon = CO

(
〈Ô〉 −O

)2

, (5.7)

where CO is (for the moment) a free parameter. The corresponding contribution to the single-particle Routhian
is

ĥC = 2CO

(
〈Ô〉 −O

)
Ô . (5.8)

In this expression −CO(〈Ô〉−O) has taken the role of the Lagrangian multiplier. Instead of the fixed number
λO in Eq. (5.5) the Lagrange multiplier is now dependent on the mean-field state and thus on the iteration
number (i).
The quadratic penalty functions suffers from a serious drawback: the minimum of Eq. (5.8) is only approxim-
ately at 〈Ô〉 = O for any finite value of CO. As CO grows in size, 〈Ô〉 for the minimizer of Eq. (5.8) becomes
closer and closer to O. This is illustrated in Fig. 5.1 for the energy of 178Hg as a function of the quadrupole
deformation. Only as CO grows does the minimum of the Routhian coincide with the desired deformation.
Any method using penalty functionals thus needs large enough penalties, which translates to large values
for CO in the case of the quadratic penalty function. Too large values of this parameter however severely
limit the practical feasibility of a numerical algorithm. As CO increases the conditioning of the problem be-
comes dramatically worse, as the penalty function completely dominates the nuclear part of the single-particle
Hamiltonian. Numerical schemes will thus easily diverge, as the directions in the solution space that improve
the constraint but are not physically feasible will be preferable to the algorithm.
In principle this problem is manageable, as one can take an iterative approach to this problem. First one

minimizes the energy for C
(1)
O = 0, corresponding to an unconstrained minimization. One then takes this as

an input for a minimization with CO equal to some small value3. The result is of this minimization does not
satisfy the desired constraint exactly, but can be used as a starting point for a calculation with an increased

value of C
(2)
O . This process continues for ever increasing C

(i)
O until the constraint is satisfied to the desired

precision. Since every calculation will start progressively closer to the desired point, the conditioning of the
problem can (hopefully) be controlled.
The quadratic form in Eq. (5.7) is the simplest and most widely spread form of penalty functions. Other
forms of the penalty function f(〈Ô〉) are possible. In modern applications, they are mainly used for problems
that are subject to inequality constraints, and are often called interior point or barrier methods. However, the
deficiency related to the choice of any parameters in the form of f(〈Ô〉) is a critical weakness of the entire
class of methods [88].

5.3 Augmented Lagrangian method and readjusting quadratic constraints

The augmented Lagrangian method is a well-known technique [88] that has also found its way into many
nuclear structure codes [100]. This method solves the problem that finite values of CO entail for quadratic
penalty functions. Consider again the quadratic penalty function addition to the single-particle Hamiltonian

ĥ
(i)
C = 2CO(〈Ô〉(i) −O(i))Ô , (5.9)

where we have now given the target value of 〈Ô〉 an explicit iteration index. The idea is to cleverly adjust
the target value O(i) during the mean-field iterations to obtain a Routhian with a minimum at 〈Ô〉 = O.
The addition of O(i) can also be interpreted as the addition of a linear constraint on top of the quadratic
constraint, meaning that

ĥ
(i)
C = −2CO(O −O(i))Ô + 2CO(〈Ô〉(i) −O)Ô , (5.10)

where there is now an extra linear constraint present with λO = 2CO(O − O(i))Ô. By changing the value
O(i) iteratively, one adjusts the parabola of the penalty function in order to get the minimum at the desired
value of 〈Ô〉. This means that O(i) gets adjusted so that CO(O − O(i)) will approach the correct Lagrange
multiplier. In contrast, the parameter CO remains fixed and determines the stiffness of the parabola, thus

3It is of course, problem dependent what a small value of C
(1)
O is and this is usually not that clear in practice.
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Figure 5.2: Energy of 178Hg calculated with the SLy4 parameterization and HFB+LN pairing as a function of
deformation 〈Q̂20〉, superimposed with the Routhians at different mean-field iterations using the augmented
Lagrangian method for CO = 10−3 MeV fm−2 and vreadjustment = 0.02. The targetted quadrupole deformation

is 〈Q̂20〉 = 300 fm2. The circle indicates the minimum of the parabolic constraint function of the corresponding
color, while the diamond indicates the minimum of the total Routhian of the corresponding color.

guaranteeing the stability of the optimum of the Routhian, even where the energy surface is convex.
The explicit dependence of O(i) on the iterations is best taken as [101]

O(i) = O(i−1) + 〈Ô〉(i) −O . (5.11)

and the initial value O(0) can either be taken as O (corresponding to a linear constraint with Lagrange
multiplier zero) or as some value obtained from a previous calculation that might constitute a better guess of
the slope of the energy surface.
Note that there is an intrinsic ambiguity in the definition of an iteration here. The original augmented
Lagrangian method inherently assumed that the minimization problem posed by Eq. (5.9) was solved for
fixed O(i). Then O(i) is updated to O(i+1) and the minimization can be done again. This idea is perfectly in
line with the spirit of ordinary mean-field algorithms, discussed in section 4.6. For the imaginary time-method
as employed in MOCCa, cr8, ev8 and ev4, this is absolutely not the case, as only a single iteration of the
minimization is performed at every mean-field iteration. In practice this means that it is unreliable to perform
the update in Eq. (5.11) every mean-field iteration, as 〈Ô〉(i) can vary wildly especially at the start of the
iterative process.
The practical and time-honored way [9] to remedy this problem is simply by introducing the readjustment
speed to the update formula in Eq. (5.11)

O(i) = O(i−1) + vreadjustment(〈Ô〉(i) −O) , (5.12)
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where vreadjustment is significantly smaller than one. For example, the default value in the case of quadrupole
constraints is 0.02, thereby splitting one full update like Eq. (5.11) over roughly of 50 to 100 mean-field
iterations. Remark that the method reduces to the straight-forward penalty function method when vreadjustment

is set to zero.
The application of the augmented Lagrangian method with CO = 10−3 MeV fm−2 and vreadjustment = 0.02
is shown in Fig. 5.2. The initial Routhian is simply the corresponding quadratic penalty function and as the
iterations progress the parabola gets adjusted to in order to put the minimum of the Routhian at 〈Q̂20〉 = 300
fm2. The circles indicate the minimum of the parabolic constraint function, while the diamonds indicate the
minimum of the total Routhian. Note that the diamonds approach the targeted deformation as the iterations
progress, while the circles maintain a finite distance.

5.4 Predictor-corrector constraints

The augmented Lagrangian method solves the need of penalty functions to have their parameter CO go to
infinity. The dependence on the parameter CO still remains in the sense that large values of CO still make the
problem numerically hard and too low values make convergence very slow4. Unfortunately, the optimal value
of CO is highly problem dependent, as constraints are imposed on different operators. For constraints on the
multipole moments this is readily apparent: centre-of-mass coordinates are on the scale of some fm, while
quadrupole deformations take values in the range of hundreds of fm2 and octupole deformations take values
in the several thousands of fm3. In addition, there is significant variation in the size of typical deformations
as a function of nuclear mass.
In the case of a single constraint, this problem is easily solved by a little human trial-and-error search for
a good parameter CO. When dealing with multiple constraints however, this becomes significantly harder.
A calculation that breaks parity has typically constraints on 〈Q̂20〉, 〈Re Q̂22〉, 〈Q̂30〉 and the centre-of-mass
coordinate 〈Q̂10〉. Finding a working combination of C10, C20, C22 and C30 is a four-dimensional search with
directions that are characterized by significantly different scales, and is in many cases if not impossible at
least very time-consuming.
A method that is very much less reliant on parameters was introduced in [102] and further explained in [103].
Since both authors did not introduce a specific name for this method, we take the freedom of proposing the
name predictor-corrector constraints.
Consider the imaginary-time step method with a linear constraint on an operator Ô. The single-particle
wavefunctions at iteration (i+ 1) are obtained from those at iteration (i) as5

|φ(i+1)
l 〉 =

[
1− dt

~

(
ĥ− λ(i)

O Ô
)]
|φ(i)
l 〉 . (5.13)

The expectation value of Ô at iteration (i) can easily be computed (up to linear order in dt
~ )

〈Ô〉(i+1) =
∑
l

v2,(i)〈φ(i+1)
l |Ô|φ(i+1)

l 〉

= 〈Ô(i)〉+ 2
dt

~

[∑
l

v
2,(i)
l 〈φ(i)

l |ĥÔ|φ
(i)
l 〉 − λ

(i)
O v

2,(i)
l 〈φ(i)

l |Ô2|φ(i)
l 〉〉

]
+O

(
dt2
)
,

(5.14)

where the v2
l are obtained by solving the pairing equations and the |φl〉 are the single-particle wavefunctions

in the case of the HF and BCS schemes, but the single-particle wavefunctions in the canonical basis in the

case of the HFB ansatz. If we require that 〈Ô〉(i+1) = O and solve for λ
(i)
O one gets

λ
(i)
O =

[∑
l

(
v

2,(i)
l 〈φ(i)

l |ĥ(i)Ô|φ(i)
l 〉
)
− ~
〈Ô(i)〉 −O

2dt

][∑
l

v
2,(i)
l 〈φ(i)

l |Ô2|φ(i)
l 〉
]−1

. (5.15)

4The dependence on the parameter vreadjustment is more benign and the default value seems to works most (if not all) of the
time.

5Note that this derivation can easily be performed for other iteration schemes like the preconditioned gradient descent too.
The only difficulty are two-step schemes, like the Nesterov iteration scheme, where the generalization is not immediately apparent.
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In the case of multiple constraints on several operators Ok, the formula is largely unchanged, except for the
denominator and one has for each multiplier λk

6

λ
(i)
k =

∑
k

(
K̂−1

)
kk′

[∑
l

(
v

2,(i)
l 〈φ(i)

l |ĥ(i)Ôk′ |φ(i)
l 〉
)
− ~
〈Ô(i)

k′ 〉 −Ok′
2dt

]
,

Kkk′ =
∑
l

v
2,(i)
l 〈φ(i)

l |ÔkÔk′ |φ
(i)
l 〉

(5.16)

In principle, this formula would allow one to calculate the values of all the Lagrange multipliers λ that one
would need to use to construct the Routhian that leads one to the desired expectation values of the constrained
operators. In an iterative mean-field procedure this would not lead to a direct satisfaction of the constraints
and Eq. (5.16) should be regarded as an update formula for the multipliers that will iteratively lead to the
satisfaction of the constraints.
The practical implementation of Eq. (5.16), especially the calculation and inversion of the matrix K, is rather
involved when many constraints are present. In practice, MOCCa does not calculate the value of λ(i) before
evolving the single-particle wavefunctions in imaginary time. We first execute the standard evolution step as
a trial step, denoted by iteration number (i+ 1

2 )

|φ(i+ 1
2 )

l 〉 =

[
1− dt

~

(
ĥ−

∑
k

λ
(i)
k Ôk

)]
|φ(i)
l 〉 . (5.17)

After orthonormalisation of the single-particle wavefunctions and solving the pairing equations for the occu-

pation numbers v
2,(i+ 1

2 )

l , the expectation values 〈Ô(i+ 1
2 )

k 〉 are calculated. Because the λk did not have the
proper values suggested by Eq. (5.16) we execute a corrective step

|φ(i+1)
l 〉 =

[
1− dt

~
∑
k

q̂kÔk

]
|φ(i+ 1

2 )

l 〉 . (5.18)

where the corrective potential q̂k is given by

q̂k = C0
〈Ô(i+ 1

2 )〉 −Ok∑
l v

2,(i+1/2)
l 〈φ(i+ 1

2 )|Ô2
k|φ(i+ 1

2 )〉〉+ d0

. (5.19)

and where C0 and d0 are numerical parameters. The value of d0 is rather unimportant and simply serves as
a safeguard for when the denominator is small. The value of C0 determines the strength of the corrective
potential and is by default taken to be 0.2 for constraints on multipole moments and 0.8 for constraints on
(projections of) the angular momentum. Note that C0 has different units depending on the operator Ok that
is constrained.
In addition, the Lagrange multipliers are updated as

λ
(i+1)
k = λ

(i)
k + ε

〈Ô(i+ 1
2 )

k 〉 − 〈Ô(i)
k 〉∑

l v
2,(i)
l 〈φ(i)|Ô2

k|φ(i)〉
, (5.20)

where ε is again a numerical parameter that defaults to 7.0 for constraints on multipole moments and to 1.0
for constraints on (projections of) angular momentum. Note that this update of the Lagrange multipliers can
not be easily related to formula for the total Routhian, as was the case for both quadratic penalty functions
and the augmented Lagrangian method. This is the reason why we started directly from the single-particle
Routhians in Eq. (5.13). The application of Eq. (5.20) concludes the iteration (i) and the scheme can
proceed to the next iteration (i+ 1). The entire algorithm is summarized in 4.
The predictor-corrector constraint scheme is an ad-hoc approximation to Eq. (5.16) and has (to the best of
our knowledge) never been rigorously derived. A first observation that one might make that is that the term∑
l v

2
l 〈ĥÔ〉l is approximated by 〈Ô(i+ 1

2 )〉. As this can only be calculated after the trial step, this update is
only taken into account afterwards, directly translating to the corrective potential q̂k. Another element is that

6Note that we conveniently forgot to include the orthonormalisation procedure in all of this as in [103]. Aside from this issue,

this formula also does not agree with the one in [102] where the single-particle Hamiltonian (Ŵ in their notation) is applied to
a many-body wavefunction in a fantastically vague confusion of notation. These issues will not play an important role, as this
formula mainly serves as a motivation for the iteration scheme presented below.
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1 for i → MaxIter do

2 Obtain trial wavefunctions |φ(i+ 1
2 )

l 〉
3 Orthonormalise the trial wavefunctions |φ(i+ 1

2 )

l 〉
4 Solve the pairing subproblem to obtain the occupation factors v

(i+ 1
2 )

l

5 Do the correction step to obtain the |φ(i+1)
l 〉

6 Orthonormalise the |φ(i+1)
l 〉

7 Solve the pairing subproblem to obtain the occupation factors v
(i+1)
l

8 Update the Lagrange multipliers to obtain λ
(i+1)
k

9 end

Algorithm 4: Schematic of the gradient descent algorithm with predictor-corrector constraints incor-
porated.

the matrix K is assumed to be diagonal, massively simplifying its calculation and inversion.
Even though the argumentation is rather flimsy, the algorithm converges easily and does not depend sensitively
on any numerical parameters like the augmented Lagrangian method. The default values of the numerical
parameters ε, c0 and d0 ensure good convergence in virtually all of the systems that we have ever tried7.
The numerical cost of this algorithm is however far from negligible. For every mean-field iteration the code
now needs to execute two updates for all of the single-particle wavefunctions, including two orthogonalisation
steps and solving the pairing subproblem twice. If the constrained operators Ô do not include derivatives
(as for example the multipole operators Q̂`m), the total cost per iteration is significantly less than twice the
cost of an iteration of the augmented Lagrangian method as MOCCa doesn’t need to derive the single-particle
wavefunctions at the intermediate iteration. When any of the constrained operators do include derivatives
(like the angular momentum operators Ĵx/y/z), we need to derive the intermediate single-particle wavefunc-
tions and the numerical cost compared to the augmented Lagrangian method effectively doubles. Luckily this
method does not scale with added constraints, as once the double-step scheme is used, the addition of extra
constraints does not significantly impact CPU time, as the quantities involved are all easily computable.
The advantage of predictor-corrector constraints over the augmented Lagrangian method is shown in Fig.
5.3. A calculation of 80Zr breaking parity is presented, that has four active constraints: one on the redund-
ant z-coordinate of the centre-of-mass, two on both physical components of the quadrupole deformation
〈Q̂20〉, 〈Q̂22〉 and one on the axial octupole moment 〈Q̂30〉. The predictor-corrector method has no troubles
whatsoever steadily converging on all fronts using the default parameters: the errors on the energy, quadru-
pole moment and octupole moment all steadily decrease as a function of the iteration count. The augmented
Lagrangian method is significantly slower in the case of all sets and is still far from converged after 4000
iterations especially for the first set of constraint intensities.
We emphasize that the augmented Lagrangian method is heavily dependent on the correct choice of its
parameters, and it is probably not impossible to find a set of constraint parameters that are competitive
with the predictor-corrector method. The third set for example, is only slightly slower compared to the
predictor-corrector constraints. The problem is finding this set of optimal parameters, which is a significant
investment of human time, while the predictor-corrector method can solve virtually any problem using the
default parameters, at the price of only a moderate CPU time cost.

5.5 Possible constraints in MOCCa

MOCCa is equipped to deal with constraints on different quantities in a rather general way. Several different
possibilities are implemented at the moment, but the system is easily extensible to accommodate constraints
that users may wish to code themselves. As a general remark: the default constraint type employed is
the predictor-corrector type, as it has shown to be easily the most easy to use and reliable of the methods
discussed.

7The only slight exception are constraints on angular momentum, where one might occasionally want to lower the corres-
ponding value of c0 from 0.8 to somewhere in the range 0.2− 0.8.
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Figure 5.3: Convergence of energy, quadrupole moment and octupole moment for a parity-breaking calculation
of 80Zr using the SLy4 parameterization with BCS pairing using either the augmented Lagrangian method
(red/green/blue) or predictor-corrector (black) constraints. The active constraints are the centre-of-mass
coordinate 〈Q̂10〉 (not shown), quadrupole constraints on 〈Q̂20〉 = 250 fm2 and 〈Q̂22〉 = 0 fm2 and on
〈Q̂30〉 = 100 fm3. The constraint intensities as used by the augmented Lagrangian method are tabulated in
the table below the figure, for their respective color. Sudden dips in the lines are associated with changes of
the sign of the error.

5.5.1 Multipole constraints

Most calculations are interested in constraining the expectation values of multipole operators Q̂`m, as has
been demonstrated in the examples given in this chapter and will be further shown in the applications in part
III of this dissertation.
The current code is capable of constraining any set combination of 〈Q̂`m〉 for any value of (`,m). The only
two limitations are imposed by the input parameter MaxMoment, which determines the maximum value of `
that is calculated and by the conserved symmetries requested by the user8. The user is thus free to specify
constraints on 〈Q̂87〉 or similar exotic deformations. The only caveat is that high-` multipole moments are not
very well represented on Cartesian meshes with limited number of points and one should take into account
that their computed values are not necessarily very reliable.
The constraints can all be put either on the multipole moments of the total density

〈Q̂`m〉t = 〈Q̂`m〉0 = O , (5.21)

8The other limitation is a constraint on Q00, which represents the number of particles. This constraint is in practice
automatically taken into account by the pairing subproblem solvers, see 6.
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as was demonstrated throughout this chapter or separately on proton and neutron values

〈Q̂`m〉p = Op ,

〈Q̂`m〉n = On .
(5.22)

The isovector density can also be constrained

〈Q̂`m〉1 = O1 , (5.23)

which can be useful when one is looking for the scissors mode for example.
It is worth noting that the code allows for all of these options to be set independently for different multipole
constraints, including the options described in the previous section regarding the type of constraints. One can
easily set a quadratic penalty constraint on 〈Q̂20〉1 with CO = 10−4 while also putting a predictor-corrector
constraint on 〈Q̂22〉0. The only thing fixed for all of the multipole moments commonly (although still input
parameters) are C0, ε and d0, since they are intrinsically linked to the two-step scheme.
When symmetries are broken, MOCCa selects itself which multipole constraints are redundant, following the
conventions from Appendix C. These constraints are by default predictor-corrector constraints, but if the user
so wishes he can override these settings for the redundant multipole moments by simply specifying input for
them.

5.5.2 Constraints on the total multipole moments Q`

Constraints on the total multipole moments of order ` are also possible. The definition of the total multipole
moment of degree ` Q` is (see Appendix C)

Q` =

√
16π

2`+ 1

∑
m=−`,..,`

|〈Q̂`m〉|2 . (5.24)

Constraints on this quantity merit their own little subsection since they differ in an important way from
constraints on ordinary multipole moments: the Q̂` are not expectation values of a one-body operator and
thus do not fit directly in the procedures explained above.
For augmented Lagrangian constraints that target Q` = O, MOCCa solves the problem by adding the following
term to the energy

ECon = C`(Q` −O)2 . (5.25)

This gives rise to a different contribution to the single-particle Hamiltonian at iteration (i)

ĥ
(i)
C = 2C`

√
16π

2`+ 1

(
1− O(i)

Ql

) ∑̀
m=−`

〈Q̂(i)
`m〉Q̂`m (5.26)

Readjusting O(i) as a function of the iterations is still performed using Eq. (5.11).
For the moment, only augmented Lagrangian constraints are allowed on the total multipole moments Q` as
we have not (yet) succeeded in finding an appropriate two-step scheme that is the analog of Eq. (5.20).

5.5.3 Cranking constraints

Constraints on the projections of the total angular momentum of the nucleus Ĵµ are very useful to probe the
structure of rotational bands. Note that historically, the Lagrange multipliers of the cranking constraints are
not denoted by λµ, but by frequencies ωµ, making the following equation the analog of Eq. (5.4)

ĥC = −ωµĴµ . (5.27)

MOCCa can constrain any combination of all three components with either a linear, quadratic, augmented
Lagrangian or predictor-corrector constraint. This, of course, under the condition of the symmetries of the
many-body state allowing for non-zero values. Note that this is also the case for symmetries that are ap-
proximately conserved. The main example is cranking an oblate or prolate configuration around its symmetry
axis: it is impossible to make quantum mechanical system rotate around a symmetry axis and the code will
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in general9 not converge when trying to do this10.
In the current version, it is only possible to constrain the total angular momentum of the nucleus and not
separately the neutron and proton contributions. This would be easy to implement, but has not been done
yet since the need did not yet arise.
Note that using predictor-corrector cranking constraints is significantly more costly than their multipole coun-
terparts, since Ĵ involves derivatives and we thus need to derive the single-particle wavefunctions one more
time per iteration compared to an unconstrained calculation. Nevertheless, they are still the constraining
method of choice, especially when dealing with simultaneous constraints on multiple components of Ĵ since
one does not need to spend time looking for appropriate constraint parameters.

5.5.4 Other constraints

There are currently two other quantities that can be constrained when using MOCCa. The root-mean-square
radius is physically speaking the most intuitive one. It is defined in MOCCa as

rrms,t =

√∫
dr ρt(r)r2∫
dr ρt(r)

, (5.28)

and similar for rrms,n, rrms,p and rrms,1. The practical implementation of the constraint needs an extra trick,

as there is no operator Ô of which rrms is the expectation value. For this reason we constrain in practice
the mean-square radius, which is r̂2

rms. The output is translated into terminology reflecting the rms radius,
but the contributions to the Routhian and single-particle Routhians are calculated in terms of the ms radius.
Other than this internal trick, constraints on the rms radius behave exactly like constraints on the multipole
moments and they can be given the same calculation options.
The operator Ŝz was defined in chapter 2 and can be used to constrain the nuclear Schiff moment of a parity
breaking configuration in MOCCa. It can be accessed by specifying the SchiffMoment input parameter in a
MOCCa run. No calculations using this feature will be reported in this dissertation, but the main aim of the
implementation is to serve as an example for future users wishing to constrain other operators that are at the
moment not implemented.

5.6 Damping and cutoffs

The constraints discussed in this chapter all contribute to the mean-field Hamiltonian and are thus subject to
the numerical difficulties described in chapter 4. The mean-field potential due to the constraints should thus
be damped. The contribution to the single-particle Hamiltonian at iteration (i) thus becomes

ĥ
(i)
C = (1− Damping)

∑
k

λ
(i)
k Ôk + Damping ĥ

(i−1)
C , (5.29)

where Damping is an input parameter of MOCCa, with a default value of 0.9. This mixing of the constraint
potential has exactly the same aim as the density mixing discussed in chapter 4. That we introduce a new
mixing parameter Damping instead of reusing DampingParam is a historical artifact.
The mean-field potentials discussed in chapter 1 are all more or less contained to the nuclear volume. They
are clearly small where the single-particle wavefunctions are negligible. In practice this means that the mean-
field potentials vanish at the edges of the Cartesian mesh, at least if the number of points (NX , NY , NZ) is
sufficiently large. This is not the case for many of the operators Ô one wants to constrain. The multipole
operators Q̂`m scale as r` at the edge of the box and are thus decidedly non-zero. Non-zero values of the
constraint potential close to the box edges are problematic. This modifies the boundary conditions of both
the mean-field and pairing problem, leading to non-physical bubbles in the density in the most extreme cases.
For this reason we modify Eq. (5.29) by adding a cutoff factor f̂ (i)

ĥ
(i)
C = (1− Damping)

∑
k

λ
(i)
k f̂ (i)Ôk + Damping ĥ

(i−1)
C . (5.30)

9Although it is possible to create quasi-particle excitations using such procedure.
10And I’ve tried many times by accident during my PhD.
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Using the keyword CutoffType the cutoff operator f̂can be chosen to be either spherical (CutoffType = 1)
or dependent on the nuclear density(CutoffType = 0). In the first case it is simply given by

f̂(r) =


exp (−d)

1 + exp (−d)
if d > 0 ,

1

1 + exp(d)
if d < 0

(5.31)

d =
|r| − radd

acut
. (5.32)

This cutoff function severely limits the contribution of constraints when r > radd and does so with an
exponential width of acut, both of which are input parameters of MOCCa. Since this cutoff is essentially
spherical in nature, it is not very suited to very deformed nuclear configurations. A density-dependent cutoff
was proposed in [104] and is implemented in MOCCa as

f̂(r) =

(
1 + exp

[
∆R(r)− radd

acut

])−1

. (5.33)

The function ∆R(r) is the distance to the equidensity surface where ρt(r) = ρtreshold, where ρtreshold is usually
fixed to one tenth of the maximum value of the total density. On the mesh, ∆R(r) at mesh point ri can
then be calculated as

∆R(ri) =

{
min {|ri − rj | where ρt(rj) ≥ ρtreshold} when ρt(ri) ≤ ρtreshold

−min {|ri − rj | where ρt(rj) < ρtreshold} when ρt(ri) > ρtreshold

. (5.34)

This cutoff restricts the components of the multipole operators at the edges of the box, again exponentially
with parameters radd and acut. The main difference is that the cutoff takes the nuclear density distribution
approximately into account, and thus restricts the operators Ô less in space along elongated directions while
restricting them more along shortened directions of the nuclear density.
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Chapter 6

Solving the pairing problem

While chapter 4 has dealt with the numerical aspects of the Hartree-Fock part of a mean-field calculation,
this chapter will detail how MOCCa approaches the pairing equations of either the HF, BCS or HFB ansatzes
from chapter 3. Finding a solution to the pairing equations, while maintaining the stability of the iterative
scheme, is not straightforward, in particular when dealing with symmetry broken HFB calculations.
Section 6.1 introduces the general framework of the pairing equations, while sections 6.2, 6.3 and 6.4 go more
into detail on the cases for respectively Hartree-Fock, HF+BCS and HFB calculations. In general, the Hartree-
Fock solution is not a desirable solution and section 6.5 details the options to evade solutions with vanishing
pairing when doing HF+BCS or HFB calculations. The problem of selecting the correct HFB vacuum will be
discussed in great length in section 6.6 at the hand of a toy model. The treatment of quasiparticle blocking
is the subject of section 6.8. The final section, section 6.9 details how the eigenvalues of ρ can be used to
characterize HFB configurations.

6.1 The pairing subproblem

We start by treating the common elements for the three ansatzes (HF, HF+BCS and HFB) and detail the
common solving strategy employed in MOCCa. That such a common strategy exists is of course due to the fact
that the Slater determinant is the zero-pairing limit of the BCS wavefunction, which is in turn a particular
HFB wavefunction. The general solving scheme is iterative and decoupled from the mean-field iterations:
the pairing problem is solved at every mean-field iteration, using the single-particle wavefunctions |φl〉 in the
Hartree-Fock basis at that particular mean-field iteration. There are three main steps that make up the pairing
solver, summarised in Algorithm 5: calculation of the pairing gaps ∆, finding suitable Fermi energies so that
the average number of protons and neutrons is correct and calculating the occupation factors v2

l .
While the overall idea is straightforward and one could naively implement the formulas from chapter 3, there
will be some nontrivial computational details to contend with. In particular the search for the Fermi energies
merits some attention, as it is rife with pitfalls. Every step for every type of pairing treatment will be discussed
separately for this reason.

1 for i← 1 to PairingIter do
2 for q ← −1, 1 do
3 Compute gaps ∆ij

4 Find correct λq and λ2,q

5 Compute occupation numbers v2
l

6 end
7 if Convergence then exit;

8 end

Algorithm 5: Schematic general algorithm for the pairing subproblem. PairingIter is an input para-
meter of MOCCa, with default value 50 in the case of BCS pairing and a default value of 1 in the case of
HFB pairing.

6.2 Hartree-Fock

The Hartree-Fock ansatz treats all particles as independent and there is no complicated pairing problem: the
pairing gaps are all strictly zero and one can simply set the occupation factors of the occupied levels to one,
while setting the others to zero. As ∂E

∂N is discontinuous, any value for the Fermi energy λ is not unambiguous:
MOCCa simply takes it as the single-particle energy of the highest-lying occupied state.
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6. Solving the pairing problem

As discussed in chapter 1 however, there is an inherent choice to be made for any practical Hartree-Fock
calculation: which single-particle wavefunctions to occupy. A completely traditional calculation will select at
each mean-field iteration the single-particle operations with lowest single-particle energies. For unconstrained
calculations that aim to reach the minimum of the energy surface this usually poses no problem, and calcu-
lations usually converge.
A way of identifying Hartree-Fock configurations is by counting the number of occupied single-particle wave-
functions with certain quantum numbers. When both z-signature and parity are conserved, MOCCa uses the
notation from [105] for both isospins to indicate the current Hartree-Fock configuration

[N++, N+−, N+−, N++] [Z++, Z+−, Z+−, Z++] , (6.1)

where N±± (Z±±) is the number of occupied neutron (proton) states in the corresponding (parity,z-signature)
block1.2 This notation is obviously dependent on the conservation of both parity and z-signature. When this
is not the case, the notation simplifies to

[N+, N−] [Z+, Z−] (6.2)

where N± (Z±) is now the number of occupied neutron (proton) levels in either the corresponding parity or
signature block.
This configuration labeling is far from unique, as counting the number of occupied single-particle wavefunctions
does not tell us which orbitals are occupied. This touches on the primary practical problem when doing sym-
metry broken Hartree-Fock calculations: single-particle wavefunctions are very hard to label/identify without
quantum numbers. A spherical Hartree-Fock calculation for example can label its single-particle wavefunctions
with angular momentum quantum numbers (both J2, Jz and L2) and parity quantum number resulting in an
(almost) unique identification of every configuration. For MOCCa this is not possible, as at the maximum only
parity, z-signature and isospin can be used to label Hartree-Fock configurations, corresponding to Eq. (6.2).
Theoretically the labeling problem is not severe: one can simply specify that the states with correct quantum
numbers with the lowest energy are occupied. In calculations however, this is not always ideal as during the
mean-field iterations single-particle energies might change ordering, making the mean-field states changes
abruptly from one iteration to the next, which makes the calculation very difficult to converge. MOCCa of-
fers the user three possibilities to perform Hartree-Fock calculations, depending on the input parameters
FreezeOccupation and HFConfig:

1. At every mean-field iteration, occupy the lowest orbitals,

2. The occupations are taken from the input file and don’t change during the mean-field iterations

3. The occupations are specified by the user at the start and don’t change during the mean-field iterations

All three have advantages and disadvantages. When using option 1) the user forfeits all control over the
particular configuration (and thus quantum numbers of the many-body state) but obtains the lowest state.
This might present a problem for constrained calculations, as the configuration might change from one data
point to the next. Convergence problems might show up due to crossings of the single-particle levels. Option
2) has the advantage of (almost) always converging, as no abrupt changes in the mean-field state are possible.
When the user has access to a starting point that has the desired Hartree-Fock configuration, this is the option
of choice. Option 3) offers the user more direct control on the Hartree-Fock configuration, at the price that
the user knows ahead of time what configuration he is interested in. Note that for both options 2) and 3) that
nothing guarantees that the converged solution has the lowest energy among all the possible configurations
corresponding to the quantum numbers specified (6.2).

6.3 BCS

The BCS pairing problem is in a certain sense the most straightforward of the three ansatzes. The single-
particle wavefunctions and their single-particle energies at every mean-field iteration present the inputs of
the BCS pairing equations from chapter 3. We can obtain the solution in a straightforward way without too
much technical complications by simple fixed-point iteration of these equations. This simplicity is of course
completely due to the conservation of time-reversal symmetry that allows for the direct identification of the
canonical partners.

1The ± does not indicate the signature quantum number, which is still ±i.
2If time-reversal is conserved, this constrains the number of positive and negative signature states to be equal in every parity

block.
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6.3.1 Computing the gaps

At every pairing iteration (i) one can use the gap equation to calculate the gaps from the values at the
previous iteration (i− 1).

∆
(i)

jj̄
= −1

2

∑
k

v̄jj̄kk̄
∆

(i−1)

kk̄

E
(i−1)
qp,k

, (6.3)

where the sum is over all of the single-particle wavefunctions. The pairing interaction matrix elements that
figure in this equation are not that computationally nor memory intensive to calculate as we do not need the
full matrix v̄ijkl. For future expansion and for analogy with the HFB case, we do however split the calculation
of these matrix elements somewhat. The pairing field ∆(i)(r) is defined as

∆(i)(r) = −v(r)
∑
k≥0,σ

u
(i−1)
k v

(i−1)
k |ψk(r, σ)|2 , (6.4)

where the sum is now over only half of the single-particle states of isospin q. This quantity is useful, as it
allows us to calculate the pairing gaps as

∆
(i)

jj̄
=

∫
dr∆(r)(i)

∑
σ

|ψj(r, σ)|2 . (6.5)

6.3.2 Finding a Fermi energy

The values of the pairing gaps at hand, we can now look for a Fermi energies λ
(i)
q so that the particle number

is on average correct. For the BCS ansatz, one can simply sum the occupation numbers calculated with the
new pairing gaps and demand that the result is the desired particle number, i.e.

Nq(λ
(i)) =

∑
k≥0

[
1− ε

(i)
k − λ

(i)
q

E
qp,(i− 1

2 )

k

]
, (6.6a)

E
qp,(i− 1

2 )

k =

√(
ε
(i)
k − λ

(i−1)
q

)2

+
(

∆
(i)

kk̄

)2

, (6.6b)

where the sum is only over half of the single-particle wavefunctions. The notation E
qp,(i− 1

2 )

k is a shorthand for
the BCS quasiparticle energy at iteration (i) but calculated with the Fermi energy from the previous iteration.
This allows us to easily solve for the new Fermi energy

λ(i)
q =

Nq −∑
k≥0

(
1− ε

(i)
k

E
qp,(i− 1

2 )

k

)[∑
k>0

(
E
qp,(i− 1

2 )

k

)−1
]−1

. (6.7)

With this we can then finally compute the individual occupation probabilities v
(i)
k .

v
(i)
k =

1

2

1−

(
ε
(i)
k − λ(i)

)
E
qp,(i)
k

 . (6.8)

Note that, for given non-zero values of the pairing gaps and single-particle energies, Nq(λq) is a continuous
and derivable function for all values of λq. This guarantees that MOCCa will without problem find a suitable
Fermi energy3. While this might seem trivial, this conclusion is not valid for HFB pairing as we will see in
section 6.6.

6.3.3 Judging convergence

The calculation of the occupation factors v
2,(i)
k is the end of iteration i and we can proceed to iteration (i+1).

The process completes when the Fermi energy λ(i) does not vary too much from iteration to iteration and

3At least for BCS ground states, which are the only ones that MOCCais currently equipped to handle.
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the occupation numbers and pairing gaps satisfy the self-consistent equations.
We judge the BCS iterations to be converged when

|λ(i)
q − λ(i−1)

q | < PairingPrec (6.9)

for every isospin and PairingPrec is an input variable that defaults to 10−6. The iteration scheme nearly
always converges without problems, mostly because the degrees of freedom are rather limited (there are only
nwt pairing gaps values and nwt occupation numbers to compute).

6.4 HFB

The HFB ansatz is the most general of the three ansatzes. The price to pay for this generality is the host
of technical problems that need to be tackled. As we will see, the solution method we employ involves
diagonalizing several (potentially large) matrices repeatedly and the iterative process can be time-consuming.
In order to gain time, the iterative process from algorithm 5 is only executed for one iteration at every
mean-field iteration.4

6.4.1 Structure of the HFB equations in MOCCa

Before we start however, it will be useful to discuss the structures of the HFB matrices, meaning that we will
apply the general considerations of section 3.5 to the specific symmetry combinations that are implemented
in MOCCa.

Y-time-simplex ŠTy
MOCCa is currently not capable of doing HFB calculations without conserving the y-time-simplex ŠTy symmetry.
Conserving this antilinear, hermitian symmetry implies that all of the relevant quantities U, V, ρHFB, κ,∆, . . .
are real instead of complex matrices. This is good news from a computational point of view, as this effectively
halves all of the computational effort required. Time-simplex breaking was originally included in the HFB
routines, but since no application was readily planned, we opted to remove it in favor of the CPU time gains
of working with real numbers instead of complex ones. We will assume it is conserved for the rest of this
chapter. A future implementation of time-simplex breaking will be straightforward, 5 as new routines that
differ only from the time-simplex conserving routines can almost be copy-pasted into the code.

Parity P̂ and z-isospin symmetry Îz
The parity symmetry introduce a simple block structure into the HFB Hamiltonian when it is conserved

ĤHFB =


h++ 0 ∆++ 0

0 h−− 0 ∆−−
∆++ 0 −h++ 0

0 ∆−− 0 −h−−

 . (6.10)

The block structure introduced by a conserved isospin symmetry is of course completely analogous, and it
suffices to replace (+,−) in Eq. (6.10) by (n, p) to obtain it.
Diagonalising the HFB Hamiltonian is thus remarkably easier if parity and/or isospin symmetry are conserved.
Each of them allows for the splitting of ĤHFB into two smaller matrices to diagonalise, again effectively halving
the numerical cost. These symmetries also affect the eigenvectors of the HFB Hamiltonian, which can be one
of either 

U+

0
V+

0

 or


0
U−
0
V−

 . (6.11)

4Users that do want to iterate the pairing problem can simply increase the value of PairingIter in MOCCa’s input.
5Of course, the job of finding the correct places to insert complex conjugates will be rather tedious.
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Z-signature R̂z
The case of the z-signature R̂z is slightly more complicated. This linear, antihermitian symmetry induces the
following block structure

ĤHFB =


h+ 0 0 ∆
0 h− −∆T 0
0 −∆T −h+ 0
∆ 0 0 −h−

 . (6.12)

As a consequence, the diagonalisation of ĤHFB can be split into two subproblems

ĤHFB,(1) =

(
h+ ∆
∆ −h−

)
ĤHFB,(2) =

(
h− −∆T

−∆T −h+

)
. (6.13)

The eigenvectors of the entire HFB matrix come in two types, depending if they belong to ĤHFB,(1) or

ĤHFB,(2). 
U+

0
0
V−

 or


0
U−
V+

0

 . (6.14)

As noted already in chapter 3, the Bogoliubov transformation mixes creation operators of levels with positive
signature with annihilation operators of negative signature and vice versa. We will denote the quasiparticles
by the signature of the creation operators, we will refer to the first (second) type in Eq. 6.14 as positive
(negative) signature quasiparticles. Conservation of signature symmetry thus also allows for gaining a factor
of two in the computational effort: it is sufficient to diagonalize two matrices of dimension nwt instead of a
single matrix of dimension nwt2.

Time-reversal Ť
Time-reversal conservation implies another totally different kind of structure of the HFB Hamiltonian. As-
suming the single-particle wavefunctions to come in time-reversed pairs (k, k̄) we have that

ĤHFB =


h1 h2 ∆1 −∆2

h2 h1 ∆2 −∆1

−∆1 ∆2 −h1 −h2

−∆2 ∆1 −h2 −h1

 . (6.15)

Given an eigenvector (U1,k, U2,k, V1,k, V2,k)T with eigenvalue Eqpk , one can check that (U2,k, U1,k,−V2,k,−V1,k)T

is also an eigenvector of ĤHFB with the same eigenvalue. This does not come as a surprise, as this is simply
a manifestation of the fact that the quasiparticles come in time-reversed pairs (βk, βk̄).
When z-signature is conserved, both symmetries conspire to further simplify the problem: the submatrices
ĤHFB,(1) and ĤHFB,(2) from Eq. (6.13) are equal up to a sign and a permutation of rows and columns. It is
thus sufficient to diagonalise just one of them and get half of the quasiparticles. The other half can then be
obtained by time-reversal.
Leveraging the structure implied by time-reversal into a numerical advantage without conservation of z-
signature symmetries is not straightforward: we would need a diagonalisation routine that is able to somehow
exploit the Kramers degeneracy of ĤHFB to reduce the amount of operations needed. Note that this is not
trivial, since ĤHFB is in general a full matrix and cannot easily be split into two sub-matrices as was the case
when z-signature was conserved. The straightforward diagonalisation routine in MOCCa cannot take this into
account and thus the full matrix ĤHFB is diagonalised6.

6.4.2 Calculating the gaps

The pairing gaps ∆kl now form a complete matrix, but we can still define a pairing field ∆(r) at iteration (i)

∆(i)(r) = −v(r)
∑
kl

κ
(i−1)
kl

[∑
σ

σψ∗l (r,−σ)ψk(r, σ)

]
, (6.16)

6Note that this is the only simplification not exploited: the symmetries of ∆ are exploited for its computation for example.
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and the pairing gaps can be calculated from that as

∆
(i)
kl =

∫
dr∆(i)(r, τ)

∑
σ

[σψ∗k(r,−σ)ψl(r, σ)] . (6.17)

Note that the anomalous density matrix κ has taken the role of the factors ukvk from the BCS case.
The advantage of introducing the pairing field ∆(r) is more clear here than in the BCS case: calculating all of
the v̄klmn matrix elements is more costly than calculating the pairing field and afterwards the pairing matrix.
However, this is still a quite a time-consuming calculation when dealing with heavy nuclei. Symmetries help in
this case, as isospin, z-signature, time-simplex and parity allow MOCCato reduce the numerical cost by bringing
the matrices to specific block structures, see 3.

6.4.3 Finding the Fermi energy

Given the pairing gaps and the single-particle energies εi from the mean-field iterations, we can build the HFB
Hamiltonian in the Hartree-Fock basis

Ĥq,HFB(λ(i−1)
q ) =

(
ε− λ(i−1)

q ∆

−∆ −ε+ λ
(i−1)
s

)
, (6.18)

where the matrix ∆ is as defined before, but the diagonal matrix ε−λ is an approximation to the single-particle
Hamiltonian ĥ that is given by [52]

ε− λ(i−1) =


ε1 − λ(i−1) 0 0 0

0 ε2 − λ(i−1) 0 0
...

...
. . . 0

0 0 0 εnwt − λ(i−1)

 . (6.19)

The next step is diagonalizing the HFB Hamiltonian Ĥq,HFB to obtain its eigenvectors and the corresponding
quasiparticle energies. This diagonalization gives us double the number of eigenvectors we need. The choice
we face is which of the possible HFB vacua we choose to construct, as already discussed in chapter 3. We
will defer how to make this choice to section 6.6, but this step is crucial for the construction of a working
algorithm.
Assuming for the moment we can reliably select the correct half of the quasiparticle spectrum we can then
proceed to calculate the number of particles by simply tracing the density matrix

Nq(λ
(i−1)
q ) = Trρq =

nwt∑
k=1

nwt∑
j=1

V ∗kjVjk . (6.20)

We have made the dependence on the Fermi energy explicit in this formula, since nothing guarantees us that

Nq(λ
(i−1)
q ) is close to the desired number of particles Nq. Now we are faced with the problem of finding a new

Fermi energy λ
(i)
q so that the number of particles is correct. Unfortunately Nq(λq) is not a simple function

that can be inverted as in the BCS case and neither can we assume a simple ‘level-occupying scheme’ as in
the HF case. We need to turn to numerical schemes in order to solve this problem.

MOCCa offers two algorithms to find a proper Fermi energy: a straight-forward bisection algorithm and a
more advanced Broyden scheme. Both are iterative schemes7 that probe Nq(λ) and slowly converge to the
desired number of particles.

The bisection algorithm

The aim of the bisection algorithm is to quickly find a good Fermi energy λ so that

f(λ) = N(λ)−N = 0 . (6.21)

Starting from an initial guess λ(i−1) MOCCa searches for a bracketing interval [λ<, λ>] so that

f(λ<) < 0 < f(λ>) . (6.22)

7Note that we arrive here at the third iterative level: we solve for a Fermi energy at every iteration of the pairing problem
which we solve at every iteration of the gradient-descent algorithm.
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When found, MOCCa takes as next guess λ(i)

λ(i) =
λ< + λ>

2
. (6.23)

Depending on the sign of f(λ(i)) we then select a new bracketing interval by either replacing λ< or λ>

λ< = λ(i) if f(λ(i)) < 0 (6.24)

λ> = λ(i) if f(λ(i)) > 0 . (6.25)

This process is repeated until |f(λ(i))| <PairingPrec.
The main advantage of the bisection method is that it is extremely reliable in finding a zero of f(λ). Finding
an initial bracketing interval is the only possible problem of the algorithm, but in nuclear applications several
rough guesses can easily work. The disadvantage is that this algorithm is quite costly computationally, as
every evaluation of f(λ) involves diagonalizing the HFB Hamiltonian, a matrix that can be rather large for
heavy nuclei when symmetries are broken. If the initial bracketing interval is large, the number of evaluations
of f(λ) can grow quickly.

The Broyden solver

The Broyden algorithm as presented here is a method to solve a problem of two variables λ and λ2. The use
of a second variable is not immediately clear at this point in the text, but will become clear in section 6.5.
Consider this time an objective function f(λq, λ2,q) = Nq(λq, λ2,q) and a second objective function g(λq, λ2q)
that we leave unspecified for now. We are interested in finding the zeros of both objective functions f and g.
From the value of the Fermi energies and λ2,q at iteration (i − 1), we construct new values at iteration (i)
as [88] (

λ(i)

λ
(i)
2

)
−
(
λ(i−1)

λ
(i−1)
2

)
=

1

2

(
G(i−1)

)−1
(
f(λ(i−1), λ

(i−1)
2 )

g(λ(i−1), λ
(i−1)
2 )

)
, (6.26)

where G is an iteratively constructed approximation to the Jacobian of the problem, i.e.

G(i−1) =

(
∂f
∂λ

∂f
∂λ2

∂g
∂λ

∂g
∂λ2

)∣∣∣∣∣
λq=λ

(i−1)
q ,λ2,q=λ

(i−1)
2,q

. (6.27)

After the update of (λ, λ2), one then updates the approximate Jacobian to G(i) using the following formula

G(i) = G(i−1) +G(i−1) δλ

δλT δλ
(6.28)

where

δλ =

(
λ(i)

λ
(i)
2

)
−
(
λ(i−1)

λ
(i−1)
2

)
. (6.29)

In order for this scheme to work, one needs an initial guess for G. We approximate the partial derivatives in Eq.

(6.27) with a simple second order finite difference formula between (λ(1), λ
(1)
2 ) and (λ(1) + 0.01, λ

(1)
2 + 0.01).

Note that in the case of a one-dimensional problem, finding a zero of f(λq), this method simply reduces to
a version of Newtons method, as the Jacobian G becomes a simple derivative [88].
The Broyden scheme works very well in almost all applications and in general needs only a few iterations
and evaluations of N(λ) to converge to a Fermi energy that fixes the average number of particles correctly,
in contrast to the bisection method. However, this performance is completely dependent on the quality of
the initial guess λ(0): if this guess is rather bad the number of necessary iterations will increase drastically.
In practice however, MOCCa uses the Fermi energy at the previous mean-field iteration as a starting point
and convergence is very quick. At the first mean-field iteration this is not possible, but MOCCa saves the
Fermi energy to files and so this value (resulting from a BCS calculation or HFB calculation of a similar
configuration) is usually sufficient.

When this algorithm fails however, it fails spectacularly. When at a certain iteration the vector (λ(i), λ
(i)
2 ) is a

rather bad approximation to the zeros of both objective functions f and g, the update to G(i) will not improve
the approximation to the true Jacobian. In a snowball effect the iterative process will diverge. Numerically,
this process will end up producing a singular Jacobian, leading Eq. (6.26) to be ill-defined. This kind of
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failure only happens when either one of the objective functions is discontinuous or otherwise irregular.8

The algorithm in cr8 that solves the same problem is somewhat less efficient. Instead of updating the
approximation of the Jacobian at every pairing iteration with Eq. (6.28) a new approximation is constructed
at every Fermi-iteration using the finite-difference formula. This results in double the evaluations of Nq(λq)
and thus double the amount of diagonalisations of the HFB Hamiltonian at every iteration of the pairing
problem except for the very first.

Summary

The above steps to find a proper Fermi energy that fixes the correct particle number on average are summarised
in Algorithm 6. As usual this seems deceptively simple.

1 for i← 1 to HFBIter do

2 Select half of the eigenvectors of Ĥ(λ(i)) to correctly identify the HFB vacuum

3 Compute 〈N̂ 〉 = TrρHFB
4 Get a new guess of λ(i+1) using the bisection or Broyden formula
5 if Convergence then exit;

6 end

Algorithm 6: Schematic algorithm to determine λ at every iteration in Algorithm 5 for the HFB problem.

6.5 Evading the Hartree-Fock solution

All of the numerical algorithms for both the BCS and HFB ansatz work quite well, but have a fundamental
flaw. Due to the iterative nature of our solution, the Hartree-Fock limit is an attractor of the pairing problem.
If at any mean-field iteration (i) the pairing gaps ∆(i) become zero (or small), the iterative nature of the
pairing solver guarantees that at the following iteration ∆(i) will stay zero. Once the many-body wavefunction
is sufficiently close to the Hartree-Fock solution, we can no longer sample possible solutions with non-zero
pairing at the following mean-field iterations.
This situation can be understood easily when looking at pairing as a broken symmetry. When ∆(i) is zero
(or close to it) at a given mean-field iteration and the many-body symmetry has a small particle number
dispersion, particle number symmetry is (approximately) conserved. Since the HFB Hamiltonian respects this
symmetry, the iterative mean-field process will not break this symmetry, similar to the case for the other
symmetries discussed in chapter 2.
This situation is however highly undesirable [52, 32]. If MOCCa insists on the Hartree-Fock solution when
there is a paired solution that is lower in energy, one would like to force MOCCa to break the symmetry. Even
when the non-paired solution has the lowest energy, one would like the many-body wavefunction to exhibit
some pairing. The reason is that after projection on particle number, the paired states in general gain enough
energy to overtake the non-paired solution and become the minimum after projection [106].
There is also a practical side to the discussion: a Hartree-Fock calculation is more tricky to converge in the
sense that one needs to identify the exact configuration one is interested in, especially when doing systematic
calculations of energy surfaces. Paired solutions vary much more smoothly in the solution space, since they
can use the occupation numbers v2

l to change occupation of single-particle levels gradually. Guaranteed
pairing is thus very useful to have a practical way of generating energy surfaces.

6.5.1 Resetting or fixing pairing gaps in BCS

In the BCS case it is Eq. (6.3) that is the culprit. If the pairing gaps ∆(i−1) vanish, the factors ukvk will be
zero, ensuring the pairing-field to be equal to zero which in turn makes the pairing gaps at the next iteration
vanish. Without extra intervention, MOCCa is unable to exit this cycle.
Two methods are used to combat this phenomenon. The first consists of simply re-initializing the pairing
gaps to

∆kk̄ = 1.0 MeV (6.30)

8An interesting historical observation is that I debugged and debugged this solver on and off over the course of about one
year, thinking there was something wrong with my implementation. It kept on failing spectacularly when doing time-reversal
broken calculations, but as it turned out, there was a more fundamental physical reason: N(λ) was discontinous in many cases
due to careless selection of HFB quasiparticles, see section 6.6.
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for all single-particle levels when MOCCa detects that the pairing (almost) vanishes. This method has the
property that it fixes very nicely the problem when there the minimum of the functional is a many-body state
with pairing but the solver has gotten stuck on a zero-pairing solution. By simply breaking the symmetry
in an arbitrary direction (setting ∆ to non-zero values), MOCCa will be able to find the correct minimum.
Another method implemented in MOCCa is simply keeping the pairing gaps constant. With the input parameter
ConstantGap users can choose the gaps ∆ to have constant values for all single-particle levels (per isospin),
fixed by the input parameters protongap and neutrongap [72].
Both of these methods can make sure that the pairing solver does not get stuck with the Hartree-Fock
solution, provided the actual minimum has non-vanishing pairing. Neither of these however can force the
many-body state to have pairing if the minimum of he functional has zero pairing, in which case the BCS
solver will (after some iterations) find the correct minimum again, without pairing.

6.5.2 Constraining the dispersion in HFB

Since the HFB ansatz makes the pairing gaps ∆ into matrices instead of numbers, a simple resetting scheme
or constant value scheme as proposed for BCS will not work. In order to break rotational symmetry, one
constrains the quadrupole moment9 and so in order to break global gauge symmetry, we add a constraint on
an order parameter related to the symmetry, the dispersion ∆N 2.
This constraint is intimately tied to the pairing subproblem and thus does not fall into the framework from
chapter 5. Instead, we modify the HFB Hamiltonian by adding some terms

Ĥq,HFB(λq)→ Ĥq,HFB(λq)− 2λ2,q

((
1̂− 2ρq

)
0

0
(
1̂− 2ρq

)) . (6.31)

As the Fermi energy was a constraint on the average particle number Nq, this term can be derived as a
constraint on the dispersion ∆N 2 with Lagrange multiplier λ2,q. MOCCa offers the user this constraint using
the input parameter ConstrainDispersion. Two further options are available, the first is keeping λ2,q fixed,
corresponding to a linear constraint from chapter 5, with values fixed by input parameter LNFixN and LNFixP,
for respectively the neutron and proton dispersion.
The other option is to fix the dispersion to a predetermined value fixed by input parameters DN2N (neutrons)
and DN2P (protons). This is achieved by the introduction of the objective function g(λ, λ2) for the Fermi
solvers of the previous section. We can now specify this function as

g(λq, λ2,q) =
(
∆N 2

)
(λq, λ2,q)− DN2N/P , (6.32)

where the notation
(

∆N̂ 2
)

(λq, λ2,q) highlights the dependency of the dispersion on the many-body state,

which in turn depends on the values of λq and λ2,q through the HFB Hamiltonian.

6.5.3 Lipkin-Nogami for HFB

Constraining the dispersion of a HFB state can avoid that the pairing solver gets stuck at the zero-pairing
solution, provided there exists a HFB state with non-vanishing pairing that is lower in energy. This is however
not always the case, and as argued above it can be preferable to construct HFB states that have guaranteed
non-zero pairing.
The Lipkin-Nogami method is a tried-and-true method of guaranteeing a non-zero pairing solution. In practice,
one modifies the HFB Hamiltonian in the same way as in Eq. (6.31), introducing the parameter λ2. This
parameter however is not held fixed or modified to satisfy a constraint, instead we calculate it from the
mean-field state using the following expression [52]

λLN2,q =

〈
Ĥ
(

∆N̂ 2
q − 〈∆N̂ 2〉

)〉
− 〈Ĥ∆N̂q〉〈∆N̂ 3

q 〉〈∆N̂ 2
q 〉−1

〈∆N̂ 4
q 〉 − 〈∆N̂ 2

q 〉2 − 〈∆N̂ 3
q 〉2〈∆N̂ 2

q 〉−1
. (6.33)

9Or any multipole moment with ` 6= 0 in fact.
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The following equations help to calculate this horrendous expression in practice

γ = 1− 2ρ , (6.34a)

χ = ρ(1− ρ) , (6.34b)

〈∆N̂ 2
q 〉 = 2 Trχ , (6.34c)

〈∆N̂ 3
q 〉 = 4 Tr γχ , (6.34d)

〈∆N̂ 4
q 〉 = 3〈∆N̂ 2

q 〉+ 8 Tr [χ(1− 6χ)] , (6.34e)

〈Ĥ∆N̂ 2
q 〉 = 2 Trhχ− Re Tr [∆κ∗γ] , (6.34f)〈

Ĥ
(

∆N̂ 2
q − 〈∆N2〉

)〉
= 4 Tr

[(
ĥγ +

∑
kl

v̄ijklχlk

)
χ

]
− 1

2
Tr

[∑
kl

v̄ijkl (γκ)kl

]
− Tr [∆κ∗ (1− 8χ)] .

(6.34g)

The addition of this constraint modifies the pairing energy term

EPair → EPair − λ2∆N 2 . (6.35)

Historically, the aim of this addition to the HFB Hamiltonian was to approximate the energy of the many-body
state after projection on particle number [107]. Following this idea the λ2,q variable becomes an expansion
parameter of a Kamlah expansion. The contribution to the energy of the system should thus be taken literally
as an energy and added to the functional, in contrast to ordinary constraints on the dispersion that contribute
to the Routhian, but not to the functional .
One can seriously doubt the validity of the Lipkin-Nogami method as a way to approximate projection on
particle number [32], especially in the form of Eq. (6.33) which contains many hidden assumptions compared
to the exact treatment [108]. In addition, this kind of modification of the many-body Hamiltonian makes
it state-dependent. It is unclear what the optimization of such an object over our variational space entails
exactly, and can in practice lead to pathologies [109].
For these reasons, we employ the Lipkin-Nogami method to ensure that pairing does not vanish as well
and add its contribution to the energy, but does not correct other one-body operators in the spirit of [110].
Further interpretation as an approximation of particle number will not be attempted in the remainder of this
document, and in general should be made with care.
A final note on the numerical implementation: the addition of the λLN2,q parameter is added in a rather peculiar

way to cr8 and MOCCa. At every pairing iteration (i), λLN2 is calculated from Eq. (6.33). The objective
function for the Fermi solver g is then

g(λq, λ2,q) = λ2,q − λLN2,q . (6.36)

In the code, the λ2 parameter is thus slowly varied and matched to the calculated λLN2 . The reason for
this peculiarity seems to be, as always, letting the mean-field process occur in a controlled way and direct
calculation of λ2 as λLN2 might lead to large changes in configurations from one iteration to the next.

6.5.4 Some remarks on the implementation of the λ2,q contribution

The contribution to the HFB Hamiltonian in Eq. (6.38) should be handled with care. First of all, the actual
calculation of it as presented is impossible to implement, since ρ is constructed from the diagonalisation of
ĤHFB. For this reason, the term is added using the density at the previous mean-field iteration and the more
practical version of Eq. (6.31) reads

Ĥ(i)(λ)− 2λ
(i)
2

((
1̂− 2ρ(i−1)

)
0

0
(
1̂− 2ρ(i−1)

)) , (6.37)

where the subscripts (i) for once in this chapter do not denote pairing iterations, but mean-field iterations.

Note that the value of λ
(i)
2 is adjusted within the pairing iterations using the value of ρ(i).

A second remark is related to structure of the extra term. The HFB equations are in fact invariant under a
set of transformations, as shown in Appendix G. We can use this freedom to alter the λ2 contribution to the
HFB Hamiltonian, with a free parameter α,

ĤHFB(λ) + 2λ2

[
(1− α)

(
−
(
1̂− ρ

)
0

0 −
(
1̂− ρ

))− α( 0 4κ
−4κ 0

)]
. (6.38)
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Ignoring the constant matrix

(
1̂ 0

0 −1̂

)
, this modification can be found by simply adding a multiple of the

generalized density matrix −αλ2R̂ to the expression. This modification does not change the eigenvectors of
the HFB Hamiltonian, and correspondingly it has no effect on the eventual many-body solution10. However,
numerically, the value of α can be used to improve convergence. This fact has been known for a long
time [52, 110] and has been argued to be due to the size of some off-diagonal elements of ρ. By (partially)
removing them by using positive values of α one could possibly improve the conditioning of the numerical
problem. It is however, also very much related to the possible crossings of quasiparticle energies and their
conjugate partners, as higher values of α increase the absolute value of the quasiparticle energies.

6.6 Choosing the correct HFB vacuum

Algorithm 6 is not usable in practice without a good way to select the HFB vacuum from all of the possibilities.
As was already discussed in chapter 3 this choice is related to the freedom in the Bogoliubov transformation.
We repeat it here (

β̂

β̂†

)
=

(
U† V †

V T UT

)(
â
â†

)
. (6.39)

For a given linear superposition of single-particle creation and annihilation operators we are in principle free
to assign to it either a quasiparticle creation operator β̂† or an annihilation operator β̂. For every index k, we
can thus assign the operators as

β†k =
∑
i=1

Uij â
†
i + Vij âi ,

βk =
∑
i=1

V ∗ij â
†
i + U∗ij âi ,

(6.40)

or the other way round

βk =
∑
i=1

Uij â
†
i + Vij âi ,

β†k =
∑
i=1

Uij â
†
i + Vij âi .

(6.41)

Notice that this is reminiscent of the treatment of odd nuclei with HFB pairing. By going from Eq. (6.40)

to Eq. (6.41) we have exchanged (β̂k, β̂
†
k) with (β̂†k, β̂k) (or equivalently (Uk, Vk)T with (V ∗k , U

∗
k )T ), thereby

creating a quasiparticle excitation on top of the original vacuum determined by Eq. (6.39).
This freedom of choice for the HFB vacuum is analogous to the choice of the Hartree-Fock vacuum. For every
single-particle level one can either occupy it or leave it unoccupied, resulting in a possible set of 2nwt Slater
determinants, or Hartree-Fock vacua in a rather suggestive wording. While this choice in the Hartree-Fock
case is rather intuitive and well-known, the HFB problem faces rather the same problem in a more obscure
way, formulated in terms of quasiparticles instead of particles.
We will use this analogy with the Hartree-Fock case in the next subsection to hazard a first guess at a practical
rule to make the choice between Eq. (6.40) and Eq. (6.41) for all quasiparticle indices k.
For future reference, we say that a quasiparticle eigenvector from a pair of eigenvectors of ĤHFB with
conjugate eigenvalues (Ek,−Ek) is ‘picked’ when we use it to define the (Uk, Vk)T eigenvector that will be
used to construct the density and anomalous density matrix. From a numerical point of view, we thus only
have to represent the ‘selected’ or ‘picked’ half of the eigenvectors of ĤHFB that determine the (U, V ) matrices.
The conjugate quasiparticle, that was not ‘picked’ is then simply given by (V ∗k , U

∗
k )T .

6.6.1 A first try: the lessons of the zero pairing limit

When the pairing gaps vanish, we would like the HFB vacuum to revert to a Slater determinant, the Hartree-
Fock solution. This solution is characterized by single-particle levels with single-particle energies εk that can
either be occupied or empty. One can see that in this case the eigenvectors of the HFB Hamiltonian come in
the following pairs

ĤHFB

(
δk
0

)
= (εk − λq)

(
δk
0

)
, ĤHFB

(
0
δk

)
= −(εk − λq)

(
0
δk

)
, (6.42)

10The only change is the quasiparticle spectrum, see Appendix G.
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where (δk)j = δjk and εk are the single-particle energies. We let the Fermi energy λq unspecified for the

moment. One is then free to choose which of the both eigenvectors to select for β†k. Choosing the left option
in Eq. (6.42) gives rise to

β̂†k = â†k , β̂k = âk , (6.43)

while the right-most option corresponds to

β̂†k = âk , β̂k = â†k . (6.44)

Suppose now that the level k is occupied in the Hartree-Fock solution: â†k annihilates the Hartree-Fock
state. For the HFB vacuum to match the Hartree-Fock state, Eq. (6.44) is the correct association between
quasi-particle and particle operators. For an empty single-particle level, Eq. (6.43) is the correct one, as the
Hartree-Fock state is instead annihilated by âk.
Supposing we make the correct choice for every level k, matching the HFB vacuum to the Hartree-Fock state.
The density matrix ρ has only diagonal elements equal to one or zero

ρkk =

{
1 if k is occupied ,

0 if k is empty .
(6.45)

The number of particles 〈N̂ 〉 = TrρHFB is then automatically fixed correctly.
In practice of course, we do not have the reference Hartree-Fock state and it is not clear whether we should
use Eq. (6.43) or Eq. (6.44) for a specific level k. The Fermi energy can come to our aid however. The
natural expectation for Hartree-Fock states is that the levels beneath the Fermi level should be occupied and
the ones above empty. We can use this rule in the HFB case too: we choose Eq. (6.44) for all εk ≤ λ and Eq.
(6.43) for all εk > λ. By then fixing the Fermi energy to be slightly larger than the Nq-th level (and smaller
than the Nq + 1-th level) we get a HFB vacuum with Nq particles that corresponds to the Hartree-Fock state
with the lowest Nq single-particle levels occupied.
The most commonly used ‘rule of thumb’ to pick quasiparticles is inspired by the zero-pairing limit [11, 68] and
is remarkably straightforward. One picks the eigenvectors of the HFB Hamiltonian with positive eigenvalues
(corresponding to εk − λ < 0 in the zero-pairing limit) to signify (Uk, Vk)T . The negative eigenvalues
(corresponding to εk − λ > 0 in the zero-pairing limit) are then taken to be (V ∗k , U

∗
k )T , meaning that they

do not get ‘picked’. This fixes the freedom of choice for every single-particle level k and uniquely determines
the annihilation and creation operators (β̂k, β̂

†
k).

6.6.2 A toy model

In further sections, we will demonstrate how the naive selection of quasiparticles with positive quasiparticle
energies can fail in different cases. In order to keep the discussion clear, we will make use of a simple four-level
toy model, inspired by B. Avez [81]. It is characterized by the following HFB Hamiltonian

ĤToy
HFB =


h− ω 0 ∆sig ∆

0 h+ ω −∆ ∆sig

−∆sig ∆ −h+ ω 0
−∆ −∆sig 0 −h− ω

 , (6.46)

where the real-valued (2x2) matrices h,∆sig and ∆ are given by

h =

(
−8 0

0 −7

)
,

∆ =

(
2α α
α 2α

)
,

∆sig =

(
0 γ
−γ 0

)
.

(6.47)

The model describes a system with four single-particle levels in the Hartree-Fock basis, which are two-by-
two degenerate with energies of −8 and −7 MeV. These levels are also characterized by quantum numbers
η = ±i that are generated by the z-signature operator R̂z. The precise symmetry is not important however
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Figure 6.1: Level scheme and numbering of the single-particle levels in the toy model of Eq. (6.46). η is the
z-signature quantum number and levels (1,2) and (3,4) form time-reversal normal pairs when ω = 0.

and everything that follows remains valid for different linear, antihermitian symmetry operators.
We consider the degenerated pairs of levels to be time-reversed partners. Again, this is the most practical case
for discussion centered on the application in MOCCa, but any antilinear, antihermitian conserved symmetry
operator would do.
The parameter ω then determines the amount of time-reversal breaking in the system by simulating a cranking
frequency, effectively lifting the Kramers degeneracy. The four-level system and numbering of the four states
(1,2,3,4) is illustrated in Fig. 6.1. The parameter α determines the strength of the pairing between levels of
different values of η, and due to the factor two on the diagonal of κ the pairing between time-reversed pairs
always dominates. In what follows we will always choose α = 0.1, as the strength of the pairing interaction
will not play a significant role11. The matrix ∆sig finally simulates pairing between levels with equal η. If γ
is non-zero, z-signature is thus not conserved.
The interest of the toy model is that we can investigate the behaviour of the system as a function of the
Fermi energy λ in controlled conditions, where an investigation of a typical system in MOCCa with rather large
numbers of single-particle levels would be difficult to understand. More precisely, we can study this system to
evaluate different methods of selecting quasiparticles after diagonalization of the HFB Hamiltonian.
The simplest case is the time-reversal conserving, signature conserving problem with ω = 0, and γ = 0.
Note that we are interested in even HFB vacua, since time-reversal is conserved, meaning that the selected
HFB vacua should always have positive number parity. This case is demonstrated in Fig. 6.2 where we
see N(λ), the number parity and the quasiparticle spectrum as a function of the Fermi energy. Notice that
the number parity is always positive, and N(λ) is a smooth function. Note that the energies of the picked
quasiparticles never actually reach zero, and their minimum value is about 0.19 MeV. This miminum value
is reached at λ = −8 MeV and λ = −7 MeV where the Fermi energy matches the single-particle energies in
the Hartree-Fock basis. Selecting the quasiparticles with positive quasiparticle energies is thus a sound (and
easy to implement) strategy in the case of time-reversal conservation.

6.6.3 Breaking time-reversal: quasiparticle crossings

Selecting the quasiparticles with positive quasiparticle energy is not reliable when time-reversal symmetry is
broken. To see why, consider Fig. 6.3, where the behaviour of the toy model for ω = 0.1 and ω = 0.4 MeV
is plotted. In a realistic calculation with MOCCa, this would correspond to a cranked calculation of an even
system, meaning that we would be interested in HFB vacua with even number parity.

11Provided it is non-zero of course.
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Figure 6.2: Number of particles, number parity and quasiparticle energies as a function of Fermi energy λ for
the toy model from Eq. (6.46) for ω = γ = 0 and α = 0.1, selecting quasiparticles with positive quasiparticle
energies. The toy Hamiltonian conserves time-reversal and z-signature in this case. ‘Selected’ quasiparticles
are drawn in solid lines, their conjugates in dashed lines. The quasiparticle spectrum is two-fold degenerate,
but this can not be seen on the figure.

For ω = 0.1, there is no problem. The Kramers degeneracy gets lifted as the single-particle levels are slightly
shifted by ±ω. Note that half of the quasiparticle energies move towards their conjugate partner by 2ω, while
the other half move away from their conjugate partner by the same amount. For this small value of ω, this
shift cannot overcome the distance between conjugate partners observed in the time-reversal invariant case.
This means that no selected quasiparticle crosses with a non-selected quasiparticle. For this case selecting on
the positive quasiparticle energies is still a valid strategy, as we obtain the correct particle number parity for
all values of λ and N(λ) is a smooth function.
The strategy fails however for ω = 0.4 MeV. The shift of quasiparticle energies is enough to overcome the
minimum distance between conjugate quasiparticles in the time-reversal invariant case. At λ = −8.4 MeV
a quasiparticle energy goes to zero and thus becomes degenerate with its conjugate, non-selected partner.
At higher values of λ quasiparticles have changed places. This change signals a transition to a completely
different HFB vacuum with a different number parity: the new selection of quasiparticles is in effect a one-
quasiparticle excitation with respect to the previous vacuum. At this point N(λ) is discontinuous as the
number of particles jumps up, as the density matrix ρ suddenly gets an extra eigenvalue equal to 1 due to
the blocking of the quasiparticle that made the crossing. At λ = −7.6 MeV, another quasiparticle energy
goes to zero and the HFB model creates an extra quasiparticle excitation to get to the vacuum. This gives
rise to another discontinuity in N(λ) and changes the number parity of the state again, reverting back to the
correct value. This situation repeats itself around λ = −7.0 when λ crosses the two remaining single-particle
energies and the quasiparticle energies of two selected quasiparticles go to zero.
Why does this problem not arise when time-reversal is conserved? This is equivalent to asking why the
selected quasiparticle levels in Fig. 6.2 never approach zero. The answer from many-body physics is that
only states with even number parity can arise when time-reversal is conserved, and thus no one-quasiparticle
excitations are allowed and no transitions of single quasiparticles can occur. Mathematically, this is encoded
in the Kramers degeneracy. The two lowest quasiparticle energies do tend to zero, but at the same location
of the Fermi energy λ. However, each of these two selected quasiparticles is free to mix with the non-selected
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Figure 6.3: Average number of particles, number parity and quasiparticle spectra as a function of Fermi
energy λ for the toy model from Eq. (6.46) for γ = 0, α = 0.1 for varying ω, when selecting quasiparticles
with positive quasiparticle energy. The toy Hamiltonian conserves z-signature, but breaks time-reversal in this
case. ‘Selected’ quasiparticles are drawn in solid lines, their conjugates in dashed lines. Note that for ω = 0.1
MeV no quasiparticle energies cross zero, while this does happen for ω = 0.4 MeV.

partner of the other selected quasiparticle due to the structure of the ∆ matrix that encodes the pairing.
Since these eigenvectors of the HFB Hamiltonian can mix pairwise, what is known in quantum mechanics as
an avoided crossing occurs and in the end no quasiparticle energies reach zero. In the time-reversal broken
case, the selected eigenvector cannot mix with its non-selected partner and thus a crossing cannot be avoided.

6.6.4 A new selection rule: using signature blocks

In order to find a selection rule that does not fail when time-reversal is broken we restrict ourselves first to
the case when z-signature is conserved. As seen before, the eigenvectors (Uk, Vk)T can be separated in two
categories, see Eq. (6.13), 

Uk
0
0
Vk

 or


0
Uk
Vk
0

 , (6.48)

where the left-hand side option corresponds to a positive signature quasiparticles and the righthand side to a
negative signature quasiparticle.
In the time-reversal invariant case, one would like to select all of the quasiparticle states (there are nwt total
of them ) with positive quasiparticle energies, ignoring categories. Due to the Kramers degeneracy, this would
result in taking half of the quasiparticles in every category. This suggests that taking half of the quasiparticles
in every category with the highest quasiparticle energy is a valid strategy.
When time-reversal is broken, this new strategy stays robust. The problem of quasiparticle energies crossing
zero is completely avoided: a quasiparticle will not change its signature and the quasiparticle will stay ‘picked’
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Figure 6.4: Average number of particles, number parity and quasiparticle spectra as a function of Fermi energy
λ for the toy model from Eq. (6.46) for γ = 0, α = 0.1 for varying ω, when selecting quasiparticles based on
their signature structure. The toy Hamiltonian conserves z-signature, but breaks time-reversal in this case.
‘Selected’ quasiparticles are drawn in solid lines, their conjugates in dashed lines. Note that for ω = 0.1 MeV
no quasiparticle energies cross zero, while this does happen for ω = 0.4 MeV.

even when its quasiparticle energy becomes negative. In this way we can ensure that the HFB configura-
tion evolves continuously with the Fermi energy. Fig. 6.4 is a revised version of Fig. 6.3, now selecting
quasiparticles on their signature structure instead of on their quasiparticle energies. Note that all of the
discontinuities in N(λ) have disappeared and the number parity is a constant over the entire range of λ.12

6.6.5 Quasiparticle selection without signature and time-reversal

Time-reversal and signature conservation both divided the quasiparticles in two groups, either through the
Kramers degeneracy or through the signature quantum number. Severe problems arise when neither of those
symmetries are conserved, as there is no natural way to divide the eigenvectors of the HFB Hamiltonian in
two groups. One could still select quasiparticles based on their positive quasiparticle energy, but one runs into
the same trouble as in section 6.6.3.
Possible remaining symmetries in MOCCa are parity and y-time-simplex, both of which do not offer any help.
Parity provides a completely different block structure than signature, and y-time-simplex simply makes all of
the relevant quantities real, see section 3.5. In short, there is no way of consistently choosing quasiparticles
from among the eigenvectors of the HFB Hamiltonian to allow for smooth behavior of N(λ) and avoiding
quasiparticle energies that cross zero.
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Figure 6.5: Negative parity quasiparticle spectrum of 24Mg in a HFB calculation as a function of cranking
frequency ω with z-signature conserved. The SLy4 parameterization was used with Vn = Vp = 750 MeV

fm3. The neutron and proton dispersion ∆N̂ 2 was constrained to 1.0 in order to enforce pairing. Selected
quasiparticles are in red, and their conjugate partners in black.

6.6.6 Why is quasiparticle selection crucial?

The gradient descent process in MOCCa is very sensitive to configuration changes when doing Hartree-Fock
calculations (see section 6.2) and the same is true for HFB calculations. Especially when looking for a Fermi
energy to fix the number of particles on average, discontinuities in N(λ) like we encountered in Fig. 6.3 will
destroy the convergence of either of the Fermi solvers. This is easily explained: there are values of N for
which there are no solutions, which is debilitating to the bisection solver, and there are locations where the
derivative of N(λ) becomes infinite which completely derails the Broyden solver.
As detailed above, when breaking time-reversal but conserving signature, this problem is solvable by selecting
quasiparticle using signature blocks. That the situation from Fig. 6.3 is not an artefact of our toy model
can be seen in Fig. 6.5. As a function of the cranking frequency ω, the negative parity proton and neutron
quasiparticles of 24Mg show one quasiparticle going to zero at ω ≈ 3 MeV ~−1. If MOCCa selected on positive
quasiparticle energy, the HFB configuration would have changed number parity and would rather be describing
23Mg or 25Mg than 24Mg. The selection of quasiparticles using signature blocks is thus essential for MOCCa to
be able to do time-reversal breaking calculations.
Changes in number parity are also destructive towards the iterative process: due to the mixing between mean-
field iterations traces from the wrong number parity 13 end up persisting throughout the mean-field process
and destroying convergence. We have never been able to converge a signature-broken and time-reversal broken
calculation with MOCCa while simply selecting quasiparticles based on their energy.

6.7 Solving the HFB problem with the Thouless theorem

Another way of solving the HFB equations has been in use for a quite long time [11, 111, 112] and is based on
the Thouless theorem, see section 3.8.We start by applying the Thouless operator on a reference HFB state

12Note that the curves of N(λ) for ω = 0.1 MeV and ω = 0.4 MeV are so similar because of the simplicity and symmetries
of the toy model.

13-1 or +1, depending on if we are looking for an even or odd solution
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|Ψ0〉

|Ψ(Z)〉 = θ̂(Z)|Ψ0〉 =

−1

2

∑
ij

Zijβ
†
i β
†
j

 |Ψ0〉 . (6.49)

The energy of this state is

E(Z,Ψ0) =
〈Ψ(Z)|ĤHFB|Ψ(Z)〉
〈Ψ(Z)|Ψ(Z)〉 . (6.50)

which is a function of the Z matrix, but also of the initial HFB state |Ψ0〉. Keeping |Ψ0〉 fixed as a reference
point, we can vary this energy with respect to the Thouless coefficients Zij and try to find the minimum
energy. One can calculate that [113]

∂E(Z)

∂Z∗ij
=
[
U†hV ∗ − V †hTU∗ − V †∆∗V ∗ + U†∆U∗

]
ij
. (6.51)

Using this expression, one can easily set-up an optimization algorithm for the value of the matrix Z. The
implementation in MOCCa is a conjugate gradient algorithm, based on [111], but with some practical modific-
ations. See Appendix E for details.
The nature of the ansatz |Ψ(Z)〉 is what makes this method special. Note that the Thouless operator θ̂(Z)
can only create two-quasiparticle excitations on top of |Ψ0〉. This means that the number parity of |Ψ(Z)〉
will in all cases be equal to the number parity of |Ψ0〉. This property also solves the problems of selecting the
proper quasiparticles at every diagonalisation of ĤHFB. The selected quasiparticles in the HFB state |Ψ0〉 can
be followed continuously through the iterative solution and in this way the selected quasiparticles of |Ψ(Z)〉
are the continous evolution of the selected quasiparticles in |Ψ0〉. Physically, this is due to the specific form of
the Thouless operator, since changing quasiparticle configuration would imply changing number parity, which
is forbidden. This method is thus not plagued by the problems of the preceding section, and can be applied
without modification to time-reversal breaking, signature breaking and time-reversal and signature breaking
calculations.
Figure 6.6 demonstrates the application of this method for our toy model when γ = 0.4 MeV, with a much
stronger pairing between levels with equal signature than opposite signature. No irregularities are present and
the selected quasiparticles stay the same for all values of λ.
The price to pay is the dependence on the initial guess |Ψ0〉. In order for this method to work, the initial wave-
function must have the correct quantum numbers, as the Thouless operator does not allow for changing any
of them. This is a direct consequence of the ansatz |Ψ(Z)〉, which results in significantly smaller variational
space than the one explored by direct diagonalisation of the HFB Hamiltonian. In practice, this means that
the user should take care that the initial wavefunction does have the desired number of completely occupied
orbitals, as it is impossible for the method to decrease this number.

6.8 Quasiparticle blocking

HFB theory for systems with an odd number of particles is more complicated compared to the theory for
even systems, due to the need to create quasiparticle excitations, see section 3.7. In practice this presents
a rather technical challenge for mean-field codes, as one needs to identify and evolve several quasiparticles
self-consistently, thereby multiplying the computational time. In addition, the description of one-quasiparticle
excitations implies the breaking of time-reversal symmetry. MOCCa is equipped for all of this, but several
remarks need to be made. We first explain how MOCCa identifies the quasiparticle to block and afterwards
split our discussion depending on which solution method is used.

6.8.1 Identification of quasiparticles

In a completely spherical calculation, the single-particle levels |φl〉 carry several quantum numbers. In that case
one could (almost) uniquely identify interesting quasiparticles by simply specifying J, Jz and parity quantum
numbers. In MOCCa, this is not the case at all and many quantum numbers are in general not available. Given
an initial HFB state |Ψ0〉, the user can indicate to MOCCa the index of a single-particle level in the Hartree-Fock
basis, say |φk〉, and MOCCa will then scan the U and V matrices of the Bogoliubov transformation. We then
select the column of these matrices, the eigenvector (Ul, Vl), that has the largest overlap with |φk〉, meaning
that

l = maximum {|Ujk||j = 1, . . . , nwt} . (6.52)
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Figure 6.6: Average number of particles, number parity and quasiparticle spectra as a function of Fermi
energy λ for the toy model from Eq. (6.46) for α = 0.1 MeV for varying ω, when using the Thouless method.
The toy Hamiltonian breaks z-signature strongly with γ = 0.4 MeV. ‘Selected’ quasiparticles are drawn in
solid lines, their conjugates in dashed lines, although no explicit selection is necessary in this case. Note that
quasiparticle crossings happen for every value of ω.

This can be interpreted as the quasiparticle that looks most like the single-particle level |φk〉. Upon identifying
this quasiparticle, MOCCa makes the switch

(
β̂l
β̂†l

)
→
(
β̂†l
β̂l

)
, (6.53)

which is equivalent to (
Ul
Vl

)
→
(
V ∗l
U∗l

)
. (6.54)

This is of course the practical implementation of applying the quasiparticle creation operator β̂†l (before the
switch) on the HFB state |Ψ0〉, that is to say the state numerically represented changes like

|Ψ0〉 → β̂†l |Ψ0〉 . (6.55)

Note that the selection of largest overlap automatically takes the quantum numbers that are present into
account. Indeed, if particles don’t share the same quantum numbers (parity, isospin, z-signature), the corres-
ponding entries in U will be zero. The quantum numbers that are broken however, do not enter anywhere
in this procedure and one simply cannot draw any conclusions without restoring symmetries by projection.
The direct diagonalization and Thouless methods will mainly differ in when they apply this blocking procedure.
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Figure 6.7: Same as Fig. 6.8 but with ω = 0.5 MeV and selection of quasiparticles based on quasiparticle
energies.

6.8.2 Blocking for direct diagonalization

The blocking procedure enters into the direct diagonalisation in a rather straightforward way. Every time
the selection of quasiparticles is made after the diagonalisation of the HFB Hamiltonian, it is supplemented
by blocking the desired quasiparticle. This way of implementing blocking has been used in cr8 since its
conception and has proven its worth in several applications [114, 115, 116, 117].
There are however some problems that are rather non-intuitive. In order to demonstrate these problems, let
us go back to the toy model of Eq. 6.46. In Fig. 6.8 we show the function N(λ) of the toy-model (without
breaking signature) when blocking the single-particle level labeled 1 in Fig. 6.1. ω was taken to be zero,
but the blocking procedure itself breaks time-reversal symmetry. For low values of λ, Nλ) is equal to one,
corresponding to a particle blocked in level 1. For high values of λ, the particle number is equal to three,
corresponding to a hole blocked in level 1 with levels 2-4 filled. The number parity is -1 for all configurations,
corresponding to an odd system.
There are two fundamental problems with Fig. 6.8. The first problem is the discontinuity of N(λ), which
spells death for any Fermi solver. This is due to the blocking procedure, since at that point the overlap of
level 1 with a different quasiparticle index becomes the largest and the HFB configuration changes drastically.
A second problem emerges around λ ≈ −7.5 MeV: another change in the index of the blocked quasiparticle
introduces another irregularity. N(λ) is still continuous here and this problem is thus less severe. However,
there is no longer a unique Fermi energy for some values of N , as N(λ) is no longer injective.
One can make these problems very severe if one is not careful, especially when selecting quasiparticles through
their quasiparticle energies. While we’ve already established the problems with this selection rule, Fig. 6.7
shows what happens if we add a non-zero value of ω on top of the blocking. The results are clearly disastrous
and any Fermi solver looking for a suitable Fermi energy would fail in this type of landscape. This is the
type of situation MOCCa encounters when breaking time-reversal and z-signature without using the Thouless
method.
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6.8. Quasiparticle blocking
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Figure 6.8: Average number of particles, number parity and quasiparticle spectra as a function of Fermi energy
λ for the toy model from Eq. (6.46) for γ = ω = 0 MeV and α = 0.1 MeV for varying ω, blocking the state
labeled 1. The toy Hamiltonian conserves z-signature but breaks time-reversal. Quasiparticle selection was
based on positive quasiparticle energies. Selected quasiparticles are drawn in solid lines, their conjugates in
dashed lines.

6.8.3 Blocking for the Thouless method

In principle the blocking procedure as described above has no place in the Thouless method. In order to
obtain a one-quasiparticle blocked state, one has to start from a one-quasiparticle blocked state, since the
number parity is among the symmetry quantum numbers that cannot be changed by the Thouless operator
θ̂(Z). In order to obtain a negative number parity state as a starting point, MOCCa offers the user to do the
blocking procedure once at the start of the iterative process. By selecting the appropriate quasiparticle, the
user can thus generate a starting state with the desired symmetries, which will remain fixed for the rest of
the iterative process.
The advantage of this method is that it is variational, meaning that it will find the lowest state with the
given quantum numbers determined by the initial blocking. If the initial quasiparticle blocked had positive
parity, the final state will have positive parity. The entire process depends continuously on the matrix Z and
nowhere does one have to do a selection procedure of quasiparticles. This is demonstrated in Fig. 6.9, which
shows again the results of blocking the quasiparticle with largest overlap with single-particle level 1 but this
time using the Thouless method. All of the pathologies of Fig. 6.9 have disappeared. Note that far from the
crossings of the quasiparticles the methods give identical results.

6.8.4 Comparing both methods

The differences between direct diagonalisation and the Thouless method when studying states with negative
number parity are subtle. The disadvantage of the direct diagonalisation method is obvious: the irregularities
are very serious and make it very hard for MOCCa (but also cr8!) to converge. This problem only becomes
more dramatic when one adds more single-particle levels and breaks more symmetries, thereby creating more
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Figure 6.9: Same as Fig. 6.8, but using the Thouless method for blocking the quasiparticle with the largest
overlap with level 1. Note that far from the crossings of the quasiparticles the methods give identical results.

quasiparticle crossings. States that originate from J = 1
2 spherical states for example, are notoriously hard to

converge, because their sheer number makes quasiparticle crossings plentiful.
The disadvantage of the Thouless method compared to direct diagonalisation is also that it is variational.
Given a set of quantum numbers of all conserved symmetries the Thouless method will always converge
towards the same many-body state with that set of quantum numbers, the lowest one in energy. For a
calculation that conserves signature and parity, this method can thus only build four different quasiparticle
states upon a given even reference state. This is a limitation that direct diagonalisation does not have, as in
general different indices of Hartree-Fock basis states give rise to different final many-body states.
From a mean-field point of view, the Thouless method makes the most sense, as it will automatically give the
quasiparticle configuration that is lowest energy for a given sets of quantum numbers14. From a beyond-mean-
field point of view, the direct diagonalisation can be seen as more preferable, since one is able to generate
more different states to include in a configuration-mixing calculation.
For heavy nuclei the difference between the lowest quasiparticle of a given set of quantum numbers obtained
by direct diagonalisation and the one obtained by the Thouless blocking method is very small. Consider Table
6.1 comparing results of both methods for a positive parity, positive signature state in 219Ac. The direct
diagonalisation method result is the lowest negative-parity positive-signature proton quasiparticle excitation15

on top of the even 218Ra. The results for the Thouless method were obtained by exciting two different proton,
negative parity, positive signature quasiparticle excitations on top of 218Ra at the start of the iterations using
the blocking procedure. The results are completely equivalent both between the different Thouless results
and the direct diagonalisation result.

14Although it is possible to calculate excited states using the Thouless method [111], several technical developments are still
needed.

15That I was able to converge, as it is by far not trivial to converge all possible selection of quasiparticles with direct
diagonalisation.
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6.9. Investigating the HFB configuration: eigenvalues of ρ

Direct diagonalisation Thouless (1) Thouless (2)
Energy (MeV ) −1672.165 −1672.166 −1672.166
Time-odd contribution to energy (MeV) −0.098 −0.098 −0.098

〈Ĵz〉(~) 0.056 0.000 −0.004
Proton Fermi energy (MeV) −2.710 −2.710 −2.710
Proton dispersion ∆N2 5.724 5.724 5.725
Proton Lipkin-Nogami parameter λ2 (MeV) 0.084 0.084 0.084
qt (fm2) 219.778 220.359 219.803
γt −60.652 −60.493 −60.550

Table 6.1: Properties of 219Ac, obtained by exciting a negative parity, positive signature proton quasiparticle
on top of axially deformed 218Ra, either the quasiparticle lowest in energy obtained by direct diagonalisation or
by the Thouless method started from two different quasiparticles (1) and (2). The Skyrme parameterization
was SLy5s1 [118], supplemented by HFB+LN pairing with Vn = Vp = 1100 MeV fm3.

6.9 Investigating the HFB configuration: eigenvalues of ρ

As a practical means of distinguishing one HFB configuration from another one, MOCCa prints at every iter-
ation summary the number of eigenvalues of the density matrix ρ that are equal to one. We denote these
numbers by Nblock. For every hermitian linear symmetry that is conserved, one can unambiguously define
a value Nblock for every quantum number combination of these symmetries. In MOCCa, the code will count
Nblock in every available parity-isospin block.
The interpretation of Nblock is rather straightforward: it is the number of single-particle states in the canonical
basis that do not partake in pairing, since their occupation factor v2 is equal to one. They are directly related
to the number parity of the many-body state: the number-parity of a given parity-isospin block is +1(-1) if
the corresponding Nblock of the parity-isospin block is even (odd).
The most practical use of quantity Nblock lies thus in the quantification of the number-parity per isospin-parity
block. In particular for the Thouless method: since this method can not induce any changes in the quasi-
particle configuration during the search for the Fermi energy, this method effectively conserves the number of
eigenvalues of ρ that are equal to one. If MOCCa can reliably identify the quasiparticle to be blocked in the
direct diagonalisation method, the values of Nblock should also be constant during the search for the Fermi
energy. Note that this does not completely preclude any changes in Nblock during the mean-field iterations.
As single-particle levels in the Hartree-Fock basis enter or exit the pairing window dictated by the pairing
cutoff (see section 3.9) they can decrease or raise the values of Nblock in the case of the direct diagonalisation
method. While at the start of a calculation the values of Nblock can change, they should stabilize rather fast
when approaching convergence. If these values change significantly, something is probably very wrong with
the calculation.
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Chapter 7

Numerical Tests

The aim of this chapter is to investigate the validity of MOCCa by comparing with the older codes where possible.
As system of choice, we will investigate the nucleus 64Ge because its energy surface has a simple triaxial
structure. In section 7.1 we will compare the full triaxial energy surface of 64Ge calculated by MOCCa with the
surfaces as calculated by ev8, cr8 and ev4 in different conditions that are indicative of the applicability of
all the codes. Section 7.2 details a number of checks on the internal consistency of MOCCa. Finally, 7.3 deals
with the CPU time needed by MOCCa for various symmetry combinations.

7.1 Comparison with ev8, cr8 and ev4: 64Ge

In order to have faith in any new results of MOCCa, we will demonstrate in this section that it is consistent
with the older codes for the cases where they can be used. For future reproduction purposes, the versions of
all the codes used are given in Table 7.1. All the calculations in this chapter were done on a (NX , NY , NZ) =
(32, 32, 32) Lagrange mesh with a mesh discretisation of dx = 1.0 fm. When all symmetries are conserved,
this corresponds to a (nx, ny, nz) = (16, 16, 16) mesh that is numerically represented. The derivatives used
were finite-difference formulas during the mean-field iterations (3rd order for the first and 4th order for the
second derivative1) with a recalculation with Lagrange energies at convergence for ev8 and ev4. The Coulomb
problem was solved with a second order discretization of the Laplacian, without extra mesh points. The pairing
interaction was characterized by a strength Vn = Vp = 1250 MeV fm3 with α = 1.0, supplemented by a
symmetric Fermi cutoff at 5 MeV around the Fermi energy. It is worth noting that where we show constrained
results the ev8, ev4 and cr8 results used readjusted quadratic constraints, while MOCCa employed predictor-
corrector constraints. In practice this means that some getting converged results from the old codes (and
specifically ev4) was significantly more human-time-consuming than with MOCCa.
Figure 7.1 shows the structure of the energy surface as a function of β2 and γ for the SLy4 parameterization
and HF+BCS pairing, obtained with ev8 and MOCCa. The minimum is convincingly triaxial, with γ ≈ 30◦.
The spherical configuration is a local minimum and a barrier of somewhat less than 2 MeV separates it from
the minimum. Any differences that are present between the two codes are not visible by eye. The energy
difference between the two codes is generally on the order of a few keV and for all calculated points is strictly
less than 10 keV.
Figure 7.2 shows the energy surface obtained with MOCCa and ev4. This time parity is broken in both cases
by a constraint on the octupole moment 〈Q̂30〉 = 250 fm3. The surface is significantly flatter compared to
the parity-conserved case. The same energy difference on the order of at most a few keV is observed. We
can conclude that MOCCa correctly treats breaking of the parity symmetry, at least in combination with BCS
pairing.
HFB+LN calculations by cr8 and MOCCa are shown in Figure 7.3. The conditions of the calculation are
identical to the conditions employed before, aside from the pairing treatment. Note that the configurations are
time-reversal conserving as time-reversal is not explicitly broken. The minimum is significantly more smeared
out, likely because of the Lipkin-Nogami contribution. The surfaces obtained with MOCCa and cr8 are again
not distinguishable by eye. The largest error among all of the calculated points was 5 keV. Finally, Fig. 7.4
shows again a comparison between MOCCa and cr8 with HFB+LN pairing, but this time explicitly breaking
time-reversal by including a cranking frequency around the z-axis of ωz = 0.25 MeV ~−1. The surface does
not change very much when this constraint is introduced, and both codes agree on the keV level. Two points

1This is only derivative option which is consistently present in all codes.

Code ev8 cr8 ev4

Version 1.4.0 1.8.3 1.3.6

Table 7.1: Version of the codes used for the comparisons.
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on the surface show an error of 11 keV, but this can likely be improved by further converging both codes.
These results evidence the fact that MOCCa is correctly coded, at least on the level of a few keV and at least
for the physics cases that ev8, ev4 and cr8 can access. As final evidence, consider Table 7.2 that directly
compares various terms of the energy between MOCCa and cr8 for the cranked case.
In general, it should be possible to demonstrate the equivalence of MOCCa and the older codes on levels below
on 1 keV. This is however very hard to do in practice because of the enormous control needed over all of
the ingredients of the code. The binding energy of 64Ge is on the order of 550 MeV, and 10 keV represents
one thousandth of a percent of the total binding energy. Any small discrepancy can have profound impacts.
Rounding errors on the values of the Skyrme parameterizations can easily have an impact on the order of 100

keV (see the appendix of [72]). The same applies to the numerical values of constants such as ~2

2mq
and e2,

which play the role of coupling constants for the kinetic energy and Coulomb term respectively.2

(a) ev8 (b) MOCCa

Figure 7.1: Energy surface of 64Ge as a function of (β2, γ) using the SLy4 interaction with BCS pairing with
a pairing strength of 1250 MeV fm3 obtained with ev8 and MOCCa. The largest difference observed over all
of the calculated points is 8 keV.

2The reason why the codes do not simply use the numerical values of these constants, as for instance provided by
CODATA [119] is because various Skyrme parameterizations have been fitted with different values.
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7.1. Comparison with ev8, cr8 and ev4: 64Ge

(a) ev4 (b) MOCCa

Figure 7.2: Energy potential surface of 64Ge using the SLy4 interaction with HFB+LN pairing with a pairing
strength of 1250 MeV fm3 obtained with ev4 and MOCCa. The configurations break parity, with 〈Q̂30〉
constrained to 250 fm3.

(a) cr8 (b) MOCCa

Figure 7.3: Energy potential surface of 64Ge using the SLy4 parameterization with HFB+LN pairing with a
pairing strength of 1250 MeV fm3 obtained with cr8 and MOCCa. Note that the configurations do not break
time-reversal.
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(a) cr8 (b) MOCCa

Figure 7.4: Cranked energy potential surface of 64Ge using the SLy4 interaction with HFB+LN pairing with
a pairing strength of 1250 MeV fm3 obtained with cr8 and MOCCa. The configurations break time-reversal
this time, with and angular frequency of ωz = 0.25 MeV ~−1. The largest difference between the codes at
the calculated points was 5 keV.

MOCCa cr8

Kinetic energy 1142.253 1142.250
Skyrme energy (time-even terms) −1830.942 −1830.942
Skyrme energy (time-odd terms) −0.028 −0.028
Coulomb energy (direct) 178.517 178.517
Coulomb energy (exchange) −12.379 −12.379
Pairing energy −6.381 −6.379
Lipkin-Nogami energy −2.175 −2.175
Total energy (from functional) −548.984 −548.984
Total energy (from single-particle energies) −549.105 −549.108

Table 7.2: Comparison of contribution of different terms of the functional to the energy compared between
cr8 and MOCCa for a calculation of 64Ge with the SLy4 parameterization and HFB+LN pairing, constrained
to (β2, γ) = (0.186, 27◦) and with a cranking frequency ωz = 0.25 MeV ~−1. All entries are in MeV. Note
that these energies were computed using finite-difference derivative formulas.

Conserved DT2h G{P̂, R̂z, ŠTy } G{R̂z, ŠTy } G{ŠTy } ∅
Broken None Ť P̂, Ť P̂, Ť , R̂z P̂, Ť , R̂z, ŠTy
nx× ny × nz (16× 16× 16) (16× 16× 16) (16× 16× 32) (32× 16× 32) (32× 32× 32)
nwt 64 128 128 128 128
Energy −542.9579 −542.9579 −542.9589 −542.9589 −542.9581
rrms,t(fm) 3.8858 3.8858 3.8858 3.8858 3.8858
β2 0.8104 0.8104 0.8105 0.8105 0.8105
β4 0.1387 0.1387 0.1387 0.1387 0.1387
β6 0.0474 0.0474 0.0474 0.0474 0.0474

Table 7.3: Comparison of various quantities of the Hartree-Fock minimum of 64Ge using the SLy4
parameterization. Energies are recalculated after convergence with Lagrange derivatives.
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7.2. Internal Consistency

Figure 7.5: Energy of 64Ge with q = 250 fm2 as a function of γ calculated with the SLy5s1 parametrization and
BCS pairing, conserving the entire DT2h group. The energy is symmetric around γ = n×60◦ for n = 0, 1, 2, . . ..

7.2 Internal Consistency

Several other checks are possible that allows us to test the internal consistency of MOCCa. A first test is
checking whether all the different symmetry combinations are represented in a consistent way. Table 7.3
summarizes the energy and shape quantities of the triaxial minimum in the energy surface of 64Ge, calculated
with the SLy5s1 parameterization. No constraints were added aside from the ones on redundant degrees of
freedom. Starting from a symmetric mean-field state that conserves the entire group DT2h, MOCCa should
converge to a solution respecting all symmetries of DT2h, regardless of the symmetry breaking the numerical
representation allows. That this is the case can be seen in Table 7.3 for calculations that progressively break
more symmetries. Energy differences are on the level of some tenths of keV while the shape parameters differ
only slightly.
A second test is if the orientation of the nucleus in the box does not matter, i.e. that interchanging the axis
labels (x, y, z) does not change the energy. As explained in Appendix C, the physically relevant values of γ
can be chosen in any sextant of the plane, e.g. [0◦, 60◦]. The other values of γ describe the same shapes
of the density distribution. Fig 7.5 show the energy of 64Ge as a function of the triaxiality γ for constant
total deformation Q2 = 250 fm2. As expected, the energy surface is completely symmetrical around integer
multiples of 60◦. Note that it is tempting from the shape of the surface to identify the triaxial minimum at
(γ ∼ 30◦ + n× 60◦) as another symmetry axis, but that this is not the case can be identified from the fact
that the prolate deformations (γ = 2n× 60◦) are favored energetically compared to the oblate deformations
(γ = (2n+ 1)× 60◦).
A third test is similar in nature, but more stringent. For a given triaxial shape, the energy should be invariant
under a change in its direction: - 〈Jµ〉 should give rise to the same energy as 〈Jµ〉. Figure 7.6 shows the
energy of 64Ge as a function of the angle θ between the angular momentum and the z-axis. The shape of the
nucleus was kept fixed by constraining all components of the quadrupole deformation while the total size of
the angular momentum was kept fixed at 4~. Only the orientation of the angular momentum was changed
in the x− z-plane: for θ = 0 the angular momentum points in the positive z-direction, while for θ = 90 the
angular momentum points in the positive x-direction. The energy clearly does not depend on the sign of both
the x and z component of the angular momentum. Note that this calculation needs to break z-signature in
order to accommodate non-zero values of 〈Ĵx〉. Since pairing was treated using the HFB+LN formalism, the
Thouless method was necessary to perform the calculation.
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Figure 7.6: Energy as a function of the angle θ between the 〈J 〉 and the z-axis for 64Ge at fixed quadrupole
deformation 〈Q̂20〉 = 5.97 fm2 and 〈Re Q̂22〉 = 56.90 fm2 and fixed total size of the angular momentum
〈Ĵx〉2 + 〈Ĵz〉2 = 16~2, using the SLy4 parameterization. At θ = 0◦ the angular momentum is parallel to the
z-axis, at θ = ±90◦ the angular momentum is parallel to the x-axis. HFB+LN was used as pairing treatment
using the Thouless method. Note that this calculation breaks both signature and time-reversal.

7.3 Timing

The CPU times demanded by MOCCa vary greatly depending on the calculation: the size of the numerical mesh,
the number of single-particle wavefunctions, the pairing option selected and most importantly the number of
conserved symmetries. Figure 7.7 shows the CPU time used by MOCCa on the HYDRA cluster at ULB for
1000 iterations for 64Ge in selected symmetry combinations. The mesh previously defined in this chapter was
used, as well as the same options for the finite difference derivatives. Predictor-corrector constraints were
imposed on both physical quadrupole degrees of freedom, and on the centre-of-mass coordinate when parity
is broken. Note that these numbers should be taken as indicative, as we have no precise control over the
resources allocated by the cluster nor over the precise optimization done by the compiler3.
Note that Hartree-Fock calculations are always cheaper in CPU time compared to both HF+BCS and HFB
options: the difference between HF and HF+BCS is mainly due to the calculation of the matrix elements of the
pairing interaction [10]. HFB is consistently the most costly of the pairing options, as the two-basis method
needs the numerical representation of both the Hartree-Fock basis as well as the canonical basis, resulting in
twice the numerical effort needed. The factor is slightly more than two compared to the Hartree-Fock case
however, mostly due again to the calculation of the matrix elements of the pairing interaction v̄.
The scaling with more broken symmetries in the Hartree-Fock case is almost exactly a factor of two: in
the case of parity breaking due to a doubling of the represented points on the z-axis, in the case of time-
reversal breaking due to the doubling of the number of single-particle wavefunctions represented. When both
symmetries are broken, the total factor in CPU time is of course roughly four.
A comparison with the CPU times needed by ev8, ev4 and cr8 is made in Table 7.4 for calculations on
the same mesh. The corresponding MOCCa calculation was performed in identical conditions. Note that it
concerns unconstrained calculations, as the predictor-corrector constraints add an extra factor to the CPU
time required. MOCCa is significantly slower than ev4 and ev8. The treatment of derivatives is the culprit,
as the data structures in ev8 and ev4 are significantly simpler and thus more straightforward to optimize for
a compiler. This can definitely be improved in future versions of MOCCa. It is however striking that cr8 and
MOCCa take almost the same time to do a calculation for this particular choice of parameters.

3All of the compilations for the calculations of this section were performed with the gfortran compiler, using the -O3
optimization option.

100



7.3. Timing

Figure 7.7: CPU time in seconds used by MOCCa on the HYDRA cluster for 1000 iterations on a
(NX , NY , NZ) = (32, 32, 32) mesh with dx = 1.0 using finite-difference derivatives for the three pairing op-
tions and either full symmetry conservation, parity broken, time-reversal-broken and parity and time-reversal
broken calculation.The Skyrme parameterization used was SLy5s1 [118]. Predictor-corrector constraints were
imposed of 〈Q̂20〉, 〈Q̂22〉 for all calculations, as well as on 〈Q̂10〉 in the case of parity breaking.

ev8 cr8 ev4

Time (s) 348 1380 840
Time by MOCCa (s) 820 1370 1930

Table 7.4: CPU time needed by ev8, cr8, ev4 and MOCCa for 1000 iterations of 64Ge with the SLy4
parameterization on a (NX , NY , NZ) = (32, 32, 32) mesh with dx = 1.0 using finite-difference derivat-
ives on the HYDRA cluster. In the case of ev8 and ev4 it concerns a HF+BCS calculation, while in the
case of cr8 it concerns a HFB calculation. The MOCCa calculation is identical to the one performed by the
corresponding older code.
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Chapter 8

Accuracy

In the view of the recent interest to quantify the statistical uncertainties associated with the readjustment
of EDF [120, 121], it is imperative that the numerical error due to the solution method of the mean-field
equations is well controlled.
The representation of the single-particle wavefunctions on the Lagrange mesh from chapter 4 offers a very
intuitive grasp over this numerical accuracy. The numerical accuracy is determined by three factors: the
treatment of derivatives, the size of the mesh and the discretisation length of the mesh dx. Attached is an
extensive study of all three factors on various quantities of interest as the total energy, rms radii, two-neutron
separation energies, density profiles as well as the fission barrier of 240Pu.
The main conclusion is that modest mesh discretisations dx ≈ 1 fm already give a rather accurate result
for the energy, provided the numerical mesh is large enough to accommodate the nucleus and provided the
Lagrange derivatives are used to reanalyze energies after convergence. The typical accuracy is on the order
of (in a worst-case scenario) a few hundred keV in absolute sense, but in general much smaller when dealing
with differences of energies such as two-neutron separation energies. Other quantities as the single-particle
spectrum, as well as the deformation parameters β` profit from a comparable accuracy, even though it is
only the total energy that is optimized. If further accuracy is required, the choice of dx ≈ 0.8 fm or 0.7 fm
shrinks the numerical error further down to levels that are far below the typical uncertainty associated with
the mean-field model.
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Background: Mean-field methods based on an energy density functional (EDF) are powerful tools used to
describe many properties of nuclei in the entirety of the nuclear chart. The accuracy required of energies for
nuclear physics and astrophysics applications is of the order of 500 keV and much effort is undertaken to build
EDFs that meet this requirement.
Purpose: Mean-field calculations have to be accurate enough to preserve the accuracy of the EDF. We study this
numerical accuracy in detail for a specific numerical choice of representation for mean-field equations that can
accommodate any kind of symmetry breaking.
Method: The method that we use is a particular implementation of three-dimensional mesh calculations. Its
numerical accuracy is governed by three main factors: the size of the box in which the nucleus is confined, the
way numerical derivatives are calculated, and the distance between the points on the mesh.
Results: We examine the dependence of the results on these three factors for spherical doubly magic nuclei,
neutron-rich 34Ne, the fission barrier of 240Pu, and isotopic chains around Z = 50.
Conclusions: Mesh calculations offer the user extensive control over the numerical accuracy of the solution
scheme. When appropriate choices for the numerical scheme are made the achievable accuracy is well below the
model uncertainties of mean-field methods.
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I. INTRODUCTION

The self-consistent mean-field approach, based on an
energy density functional (EDF), is a tool of choice to study
nuclei in any region of the nuclear chart [1]. It allows one
to calculate the properties of the ground state but also of
alternative configurations, like shape isomers, or to follow the
behavior of a nucleus along rotational bands or along fission
paths. Often, one is directly interested not in the total binding
energy of a specific nucleus but in its evolution along a series
of isotopes or isotones, which can signal structural changes for
given neutron or proton numbers.

Motivated by the needs of the nuclear physics and astro-
physics communities, major efforts are under way to push
the predictive power of nuclear mass models well below the
500-keV level. To reach this goal, the protocols used to adjust
the EDF parameters have been revisited. In particular, methods
are being developed [2–4] to quantify the statistical uncertainty
of these parameters. However, besides the errors in observables
due to these uncertainties, there is also a numerical error due
to the way the self-consistent mean-field equations are solved.
One needs to verify that the numerics does not introduce errors
that are larger than the maximum error tolerated for mass
models. More importantly, these errors should not vary too
rapidly from one nucleus to another, to avoid spurious behavior
of mass differences.

*wryssens@ulb.ac.be
†phheenen@ulb.ac.be

The numerical methods used to solve mean-field equations
can be classified according to the way the single-particle
wave functions are represented: by coordinate-space tech-
niques or by a basis expansion. Coordinate-space techniques
represent the single-particle wave functions in a discretized,
finite volume. Several discretization techniques exist, utilizing
finite-difference (FD) formulas [5], Fourier transformations
[6], B splines [7], wavelets [8,9], and the Lagrange-mesh (LM)
method [10–12].

The second family of numerical representations involves
expanding single-particle wave functions in some chosen
(finite) set of basis states. Usually these basis states are
harmonic oscillator (HO) eigenstates, although the details
often vary.

While the origin of numerical errors is quite different for
the two families of representations, the type of EDF does not
seem to influence the accuracy of the methods very much.
The three main families (relativistic EDFs, zero-range Skyrme
EDFs, and finite-range EDFs) require similar numbers of basis
states to achieve a similar precision (see, e.g., [13–17]). In what
follows, we limit ourselves to the study of zero-range Skyrme
EDFs.

It is the aim of this paper to study the numerical accuracy
of a specific implementation of coordinate-space techniques:
representation on a three-dimensional (3D) Cartesian mesh
of equidistant points. We focus on two specific techniques—
FD formulas and the LM method—which are the ones
implemented in our codes. As far as we can infer from the
tests published in the literature, the accuracy obtained with the
other techniques mentioned above is similar to that obtained
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within our LM scheme. Most of the information relative to
the tools that we have developed has been presented for the
particular implementation made in the EV8 code [18,19]. More
involved implementations have also been used, which differ
from EV8 only in that they impose fewer symmetries on the
nucleus. The presence of these symmetries in general allows
for a reduction of the dimension of the problem; e.g., in EV8 it
allows for the reduction of the space by a factor of 1/8.

The article is organized as follows: First, we define precisely
the quantities that are used to characterize the accuracy of
mean-field calculations. Next, we review the basic ingredients
needed to define wave functions on a Cartesian mesh and to
calculate derivatives and integrals in this representation. We
then discuss the main sources of numerical errors: the size of
the box in which the nucleus is confined and the step size of
the mesh. We discuss the numerical accuracy that can be
achieved by comparing energies and radii of doubly magic
nuclei with those obtained with a spherical code. Finally,
we check the convergence of energies, radii, and multipole
moments of deformed nuclei by comparing results obtained
with decreasing mesh discretization lengths.

II. DEFINITION OF USEFUL QUANTITIES

A mean-field configuration is characterized by its energy,
its root-mean-square (rms) radius, and multipole moments. In
this section we define these quantities, whose dependence on
the mesh parameters is studied.

A. Total energy

For a time-reversal-invariant system as assumed here, the
total (tot) energy is composed of the kinetic (kin) energy, the
Skyrme energy describing the strong interaction in the particle-
hole channel, the pairing (pair) energy, the Coulomb (Coul)
energy, and a center-of-mass (c.m.) correction [19]:

Etot = Ekin + ESkyrme + Epair + ECoul + Ec.m.. (1)

For the parametrizations used throughout this article, the
Skyrme EDF takes the form of the sum of various bilinear
combinations of the isoscalar (t = 0) and isovector (t = 1)
local densities ρt (r), kinetic densities τt (r), and spin-current
densities Jt,μν(r), where μ, ν = x, y, z,

ESkyrme = Eρ2 + Eρ2+α + Eρτ + Eρ�ρ + Eρ∇J + EJJ

=
∑
t=0,1

∫
d3r

(
C

ρ
t [ρ0] ρ2

t + C
ρα

t ρα
0 ρ2

t + Cτ
t ρt τt

+C
�ρ
t ρt �ρt+C∇·J

t ρt∇ · Jt −CT
t

∑
μ,ν

Jt,μν Jt,μν

)
,

(2)

with coupling constants as defined in Ref. [19]. The kinetic
energy just depends on the kinetic density

Ekin =
∑

q=n,p

∫
d3r

�2

2mq

τq(r) (3)

of protons and neutrons. While the Skyrme and kinetic energies
are local functionals of the densities, the direct Coulomb
energy is a nonlocal functional of the proton density ρp(r):

Ed
Coul = e2

2

∫∫
d3r d3r ′ ρp(r) ρp(r′)

|r − r′| . (4)

Compared to the other terms contributing to the total energy,
(1), the exact calculation of the Coulomb exchange energy
is orders of magnitude more costly, as it is a functional
of the complete nonlocal one-body density matrix. As a
consequence, the local Slater approximation, whose numerical
cost is similar to that of the Skyrme energy, (2), is used instead:

Ee
Coul = −3e2

4

(
3

π

)1/3 ∫
d3r ρ4/3

p (r). (5)

The pairing energy contribution to the energy is

Epair =
∑

k,m>0

fk ukvk fm umvm v̄
pair
kk̄mm̄

, (6)

where the v̄kk̄mm̄ are antisymmetrized matrix elements of the
pairing interaction and the fi are cutoff factors, both of which
are specified in Appendix B.

The expression for the cm correction, which is not relevant
for our discussion, can be found in Ref. [19].

B. Dimensionless multipole moments

As in [19], the dimensionless multipole moments β	m are
related to the matrix elements of the multipole operators
Q̂	m ≡ r	 Y	m(r) by

β	m = 4π

3R	
0A

〈Q̂	m〉, (7)

where R0 = 1.2A1/3 fm. When m is omitted we imply it to be
0.

C. Radii

Another set of observables, related to the density profile
of the nucleus, is the mean-square (ms) radii, rms radii, and
isotopic shifts. The ms radius of the proton (q = p), neutron
(q = n), and total density distribution is defined as

r2
q = 1

Nq

∫
d3r ρq(r) r2, (8)

r2
t = 1

A

∫
d3r [ρn(r) + ρp(r)] r2. (9)

The rms radii are then the square root of the corresponding ms
radius.

Similarly, we present results for the isotope shift of charge
radii, which are calculated as the difference between the proton
ms radius of an isotope with N neutrons and that of a reference
isotope with N0 neutrons,

δr2(N,Z) = r2
p(N,Z) − r2

p(N0,Z), (10)

without any corrections.

064318-2



NUMERICAL ACCURACY OF MEAN-FIELD CALCULATIONS . . . PHYSICAL REVIEW C 92, 064318 (2015)

III. COORDINATE-SPACE REPRESENTATION

Assuming a 3D Cartesian mesh, a function �(r) =
�(x,y,z) is represented by the tensor �pqs of its values at
the collocation points (xp,yq,zs):

�(r) = {�(xp,yq,zs)} = {�pqs}. (11)

A mesh can be defined in several ways, depending on the
choice of the collocation points. For example, the origin of
the coordinate system and the boundaries of the box can
be included as collocation points or not. Different choices
can also be made for the boundary conditions at the edge of
the box.

To set up self-consistent mean-field equations, one has to
vary the EDF with respect to �pqs . This requires defining the
prescriptions to calculate derivatives and integrals from the
values of �pqs on the mesh. Several choices for derivatives
have been explored over the years.

A. Derivatives on a mesh

The most straightforward possibility for setting up a
coordinate-space representation of self-consistent mean-field
equations is provided by the FD method, a widely used
tool for solving partial differential equations [20]. In this
scheme, the derivatives are calculated with n-point FD for-
mulas, and the integrals are obtained by summing up the
integrand at the mesh points multiplied by a suitable volume
element.

There are three factors that determine the accuracy that
can be achieved with the FD method. First is the overall
resolution scale provided by the mesh spacing; decreasing the
distance between mesh points improves the accuracy. Second,
the higher the order of the FD formulas used for a given
mesh spacing, the better the accuracy. In both cases, however,
a higher accuracy means also an increase in the numerical
cost. Third, there are internal inconsistencies introduced by
the method itself. For example, taking twice the numerical
first-order derivatives of a given function is not equivalent
to applying the numerical second-order derivatives. Also, the
numerical derivatives are not the inverse of the numerical
integrations. Only for very small step sizes, well below 0.1 fm,
do these internal inconsistencies become irrelevant. While
such small step sizes can be easily handled in spherical 1D
codes [21], the required storage is prohibitive in axial 2D
and Cartesian 3D codes. In addition, such step sizes are much
smaller than what can be expected to be the physically relevant
resolution scale; see, for example, the arguments brought
forward in Ref. [22].

Several other schemes have been developed in the past
with a better consistency between derivation and integra-
tion. For instance, derivatives have been defined through a
Fourier transformation to momentum space [6,23,24], which
is equivalent to the assumption that the functions on the mesh
can be developed into a set of plane waves. In this method,
the derivatives are quasiexact for a given resolution of the
mesh, and first- and second-order derivatives are internally
consistent. Similar ideas have been developed in quantum
chemistry under the label discrete variable representation

(DVR) [25–27]. A similar formalism that provides an internal
consistent scheme for derivatives and integrals is the LM
method, which we sketch in the following section.

B. Lagrange-mesh representation

The idea underlying the LM method is that for each
Gauss quadrature one can construct a set of basis func-
tions for which orthogonality and completeness relations are
exactly fulfilled when evaluated with the given quadrature
[10,28,29]. This additional condition makes the LM method
a special case of the slightly less rigorous concept of
DVR [26,29].

LMs have been constructed for a multitude of different
geometries and used for a wide range of applications (see [29]
and references therein). We use here the case of an equidistant
3D Cartesian mesh. Its three directions are separable in the
formalism, such that presentation of the principles of the
method for one dimension is sufficient.

The underlying basis of a 1D Cartesian equidistant LM is
constructed as the set of functions ϕk(x), whose orthogonality
relations are exact when evaluated by a simple 2N -point
rectangular quadrature rule, sometimes called the midpoint
rule [10],∫ b

a

dx ϕ∗
k (x) ϕk′(x) → dx

∑
r

ϕ∗
k (xr ) ϕk′(xr ) = δkk′, (12)

where dx is the distance between the collocation points located
at

xr = r dx = ±dx/2,±3 dx/2, . . . ,±(N − 1) dx/2 (13)

and where a and b are the boundaries of the numerical box
[a,b] = [−Ndx,+Ndx]. A convenient representation of the
2N basis functions ϕk(x) are plane waves of the form

ϕk(x) = 1√
L

exp

(
2πi

L
k x

)
, (14)

where L = 2Ndx is the length of the numerical box and where
k = ± 1

2 , ± 3
2 , . . . , ± (N − 1

2 ). The real part of the ϕk(x) is
symmetric and has nodes on the boundaries of the box and a
maximum at the origin, whereas their imaginary part is skew-
symmetric and, consequently, has a node at the origin and
maxima on the boundaries of the box. This also implies that
ϕ∗

k (x) = ϕ−k(x).
The ϕk(xr ) form a complete set of functions to describe any

function on the mesh points

dx
∑

k

ϕ∗
k (xr ) ϕk(xs) = δrs . (15)

Note that the box size L is not a multiple of the wavelength
of the basis functions. Instead, twice the box size is an odd
multiple of the wavelengths, which take the values 2L =
2L/1, 2L/3, 2L/5, . . . ,2L/(2N − 1). Both the real and the
imaginary parts of all plane waves in Eq. (14) are nonzero at
all mesh points.

As recalled in Ref. [22], in Cartesian DVR and LM
coordinate-space methods, where the derivatives are defined
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through an expansion in plane waves, the analysis of a
calculation’s infrared and ultraviolet cutoffs introduced by
the basis is straightforward. This has to be contrasted with
the much more involved analyses required when working
with an HO basis [30–32]. It is also argued in Ref. [22]
that a DVR or LM representation of the nuclear many-body
problem covers the relevant part of the phase space with a
much smaller number of basis states than required by an
HO basis. In practice, however, HO bases typically used for
self-consistent mean-field calculations are much smaller than
the typical number of mesh points used in the same kind of
calculation. For a box with 20 points in every direction the
number of linearly independent states is 64 000, compared
with an HO expansion with 20 shells, which contains 14 168
states.

While the basis functions ϕk(x) in Eq. (14) are useful to
discuss the mathematical properties of the LM method, the
actual coordinate representation then employs the set of 2N

Lagrange interpolation functions fi(x) obtained as [10,28,29]

fr (x) ≡ dx
∑

k

ϕ∗
k (xr ) ϕk(x) = 1

2N

sin
[

π
dx

(x − r dx)
]

sin
[

π
dx

x−r dx
2N

] .

(16)

By construction, the Lagrange interpolation functions have the
property of being equal to 1 at the mesh point, xr = r dx, and
0 at all others, fr (xs) = δrs [10,28,29]. When developed into
Lagrange functions, any function φ(x) on the mesh,

φ(x) =
∑

r

φ(xr ) fr (x) =
∑

r

φr fr (x), (17)

is then simply represented by its values φr ≡ φ(xr ) at 2N mesh
points.

The Lagrange functions are smooth and infinitely derivable.
They can be used to define matrices representing the first and
second derivatives of functions discretized through1 Eq. (17):

D
(1)
ji ≡ df (x)

dx

∣∣∣∣
x=xj

=
{

(−1)i−j π
(2N)dx

1
sin(π(i−j )/(2N)) for i 
= j ,

0 for i = j ;
(18)

D
(2)
ji ≡ d2fi(x)

dx2

∣∣∣∣
x=xj

=
{

(−1)i−j+1 2
(

π
(2N)dx

)2 cos [π(i−j )/(2N)]
sin2 [π(i−j )/(2N)] for i 
= j,

− π2

3dx2

(
1 − 1

(2N)2

)
for i = j .

(19)

The first derivative of any function φ(x) on the mesh is
obtained by multiplying the 2N × 2N matrix D(1)

rs by the
vector φr ,

φ′
r = φ′(xr ) =

∑
s

D(1)
rs φs, (20)

and similarly for the second derivatives. Note that the
derivative matrices have the property D(2) = D(1)D(1) by
construction [29], which is not the case for FD formulas. As the
derivatives of Eqs. (18) and (19) correspond to full 2N × 2N
matrices, their application is more time-consuming than that
of FD derivatives, which correspond to a sparse band matrix.

The full Cartesian 3D representation of a function �(r) is
then provided by

�(r) =
∑
pqs

�pqs fp(x) fq(y) fs(z), (21)

where the number of discretization points does not have to be
the same in each direction. In this case, the derivative matrices
in Eqs. (18) and (19) have to be set up separately for each
direction.

As pointed out in Refs. [26] and [33], a variational
calculation using DVR or LM derivatives delivers very precise

1Unfortunately, the corrections of these expressions as given in
the corrigendum to Ref. [19] still contain a typographical error: the
formula for the second derivative has a superfluous factor of 2 when
i 
= j .

values for the total energy in spite of the individual matrix
elements’ being much less accurate. In what follows, we
illustrate that this property implies very accurate total energies,
while separate terms of the Skyrme EDF are less well
represented. In addition, we show that using an LM results
in a variational calculation.

IV. NUMERICAL CONSIDERATIONS

A. Numerical parameters of parameterizations

Unless explicitly stated, we have used the SLy4
parametrization. To explore the dependence of the numerical
accuracy on the EDF, we have, in addition, tested a representa-
tive set of Skyrme parametrizations, as listed in Appendix A.

In the next two sections, we present calculations for the
doubly magic spherical nuclei 40Ca, 132Sn, and 208Pb; the
neutron-rich nucleus 34Ne; Cd, Sn, and Te isotope chains; and
the fission path of 240Pu. It is noteworthy that we only include
pairing for the isotopic chains and for 240Pu (see Appendix B
for details). In all other cases, pairing has been neglected. In
Appendix C we comment on the precise physical constants
used during our calculations.

B. Measuring accuracy

The accuracy of a coordinate-space calculation is limited
by the size of the box, the discretization length dx, and the way
derivatives and integrals are calculated. In order to properly
judge these effects we employ two ways of analyzing results.
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FIG. 1. (Color online) Comparison between the errors in the total
energy of 208Pb obtained in calculations using different combinations
of formulas for the derivatives (see text). Differences are taken with
respect to the total energy obtained with LENTEUR [21].

For spherical nuclei we can compare our 3D results with a
1D spherical code that also represents the single-particle wave
functions in coordinate space. Because of spherical symmetry,
we can use extremely fine discretizations and the results can
thus be considered exact to a very high precision. For this
purpose we use LENTEUR [21] as a reference.

For deformed nuclei, we no longer have access to such a
comparison. Here we have to resort to looking at 3D results
as a function of both box size and mesh spacing: we compare
results in small boxes with a large mesh spacing to results in
very large boxes with a very fine mesh spacing.

C. Use of derivatives and the variational principle

The numerical cost of using LM derivatives is much higher
than that of the FD alternative. To control the computational
time, three options have been considered: they differ in the way
derivatives are calculated during the mean-field iterations and
after convergence. The first option (FD + FD) has been used in
the first applications of the codes [5], where derivatives were
exclusively calculated by FD. The second one (FD + LM) has
been the most used for more than 20 years: FD derivatives
are used during the iterations but the energies are recalculated
after convergence by LM formulas. Finally, in the last option
(LM + LM), the LM formulas are used during the iterations
and after convergence.

In practice, we use a seven-point difference formula for
the first-order and a nine-point formula for the second-order
derivatives when employing FD formulas. It is shown in
Ref. [34] that this provides an efficient compromise in terms
of overall speed and precision.

Figure 1 illustrates the accuracy of the total energy obtained
using these three options. The LM + LM choice is by far the
most accurate. As reported in Table II, the result obtained
with a mesh size of 1.0 fm differs by only 25 keV from the
LENTEUR result. The FD + LM option is less accurate but
already sufficient for most applications, with an error of around
100 keV for dx = 0.8 fm. It is better by nearly an order of
magnitude than the FD + FD choice. Results presented in the

following were obtained with the FD + LM option, unless
otherwise stated.

Both the FD + LM and the LM + LM calculations
underestimate the binding energy, as it should be for a
variational calculation. This is due to the fact that the single-
particle wave functions are expanded on a complete and closed
basis for a given box size and mesh discretization length [see
Eq. (14)]. Increasing the box size and/or decreasing the mesh
discretization length enlarges the accessible subspace of the
Hilbert space [29] and leads to a monotonous convergence
of the energy. In contrast, such a basis cannot be defined for
the FD + FD option, for which the calculation systematically
overestimates the binding energy of 208Pb.

The same applies to mesh calculations with Fourier deriva-
tives, as can be deduced from the convergence analyses in
Refs. [6] and [23]. While for a given dx the overall accuracy
of the binding energy found there is very similar to that we
find for LM + LM calculations, the energy does not converge
monotonically with decreasing dx.

While the use of LM derivatives after having used FD ones
during the iterations (FD + LM) is sufficient to obtain an upper
bound of the total energy since any wave function discretized
on a mesh can be expanded on the LM basis, the errors in the
various individual terms of the Skyrme EDF can be very large,
as reported in Table I. While the total energy varies by slightly
less than 1 MeV when dx is decreased from 1.0 to 0.549 fm,
the variation in the kinetic energy is of the order of 40 MeV,
counterbalanced by a similar change in the Skyrme energy.
The situation for the LM + LM scheme is reported in Table II.
It indicates a similar effect, but on a much smaller scale: the
total energy varies by 20 keV, while the kinetic energy varies
by roughly 150 keV.

When performing symmetry restoration and configuration
mixing by the generator coordinate method, a high level of
accuracy is required to avoid buildup numerical noise while
solving the Hill-Wheeler-Griffin equation. This calls for the
use of LM derivatives in these calculations, as done since our
first applications [35].

FIG. 2. (Color online) Energy difference between a reference
calculation performed with 23 points and calculations performed with
N points for the three nuclei 40Ca, 132Sn, and 208Pb. In all cases, the
step size is equal to 1.0 fm.
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TABLE I. Decomposition of the total energy between the terms of the Skyrme parametrization SLy4 for 208Pb, using the FD + LM option.
All energies are in MeV. See Sec. II A fore definitions of terms. Values obtained with the spherical 1D code LENTEUR are given for comparison.

Energy (MeV)

dx = 1.0 fm dx = 0.83 fm dx = 0.71 fm dx = 0.549 fm LENTEUR

Kinetic + c.m. correction 3908.548 3880.647 3872.035 3867.506 3866.190
Direct Coulomb 831.801 829.241 828.433 828.004 827.876
Coulomb exchange −31.415 −31.319 −31.289 −31.273 −31.269
Eρ2 −22749.578 −22510.048 −22435.391 −22395.941 −22384.379
Eρτ 1368.924 1343.506 1335.611 1331.436 1330.206
Eρ2+α 14812.851 14631.848 14575.413 14545.584 14536.832
Eρ�ρ 323.771 318.147 316.431 315.539 315.287
Eρ∇J −99.730 −97.595 −96.917 −96.554 −96.445
Total Skyrme energy −6343.762 −6314.142 −6304.854 −6299.937 −6298.501
Total energy −1634.828 −1635.574 −1635.675 −1635.700 −1635.703

D. Determining box sizes and mesh spacings

The first requirement for a coordinate-space calculation is
that the box in which the nucleus is confined is large enough
to avoid any spurious effect due to the truncation of the wave
functions. The influence of the box size on the total energy for
three spherical nuclei is represented in Fig. 2. The same mesh
size, dx = 1.0 fm, is used in all calculations while the number
of discretization points is varied, thus changing the volume of
the box. The calculation in the largest box, using 23 points, is
taken as a reference. The errors decrease quickly when the box
size is enlarged. If one requires that the error is smaller than
1 keV, we see that taking boxes with half-sides of 11 fm for
40Ca, 15 fm for 132Sn, and 20 fm for 208Pb is sufficient. Since
the numerical effort required for 40Ca is very low we opted
to use the slightly larger half-side of 13 fm in order to further
increase our accuracy to about 0.1 keV.

Similar analyses have been performed for all nuclei
considered in this paper. Since several nuclei in the isotopic
chains around Z = 50 are deformed, we have performed all
calculations with the same box size as 208Pb. This choice
allows us to calculate all isotopes with the same numerical
conditions. The box dimensions are listed in Table III. The
columns Cx, Cy , and Cz indicate the size of the box in which
the Coulomb problem is solved. For every system, the box

size was varied for fixed dx until the energy did not change by
more than 0.1 keV, with the exception of 240Pu, for which this
limit was 1 keV.

A nonambiguous comparison between calculations per-
formed with different mesh discretizations dx can only be
achieved when the volume of the box is conserved. This
is realized by determining the value of dx in such a way
that the box has the same size for each number of mesh
points.

E. Convergence of the iterative procedure

Decreasing the mesh size improves the accuracy. However,
this has a price in computing time. First, keeping the same box
size requires increasing the number of discretization points.
Second, the time step of the imaginary-time-step method
[36,37] implemented in the codes [19] has to be decreased with
decreasing mesh size, thus increasing the number of iterations
necessary to reach convergence and, by consequence, also
the computing time. This considerably slows down the
convergence. In Fig. 3 we show the evolution of the error
in the total energy relative to LENTEUR during the iterations
for the 40Ca nucleus for different mesh discretizations dx.
The most accurate result after 100 iterations is obtained with
dx = 1.0 fm. Gaining an order of magnitude of accuracy after

TABLE II. Same as Table I, but for the LM + LM option.

Energy (MeV)

dx = 1.0 fm dx = 0.83 fm dx = 0.71 fm dx = 0.549 fm LENTEUR

Kinetic + c.m. correction 3866.323 3866.165 3866.182 3866.182 3866.190
Direct Coulomb 827.922 827.889 827.882 827.878 827.876
Coulomb exchange −31.269 −31.268 −31.268 −31.268 −31.269
Eρ2 −22384.936 −22384.188 −22384.322 −22384.320 −22384.379
Eρτ 1330.300 1330.193 1330.201 1330.200 1330.206
Eρ2+α 14537.174 14536.691 14536.789 14536.787 14536.832
Eρ�ρ 315.238 315.275 315.284 315.284 315.287
Eρ∇J −96.430 −96.444 −96.445 −96.445 −96.445
Total Skyrme energy −6298.657 −6298.473 −6298.493 −6298.494 −6298.501
Total energy −1635.678 −1635.687 −1635.696 −1635.700 −1635.703
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TABLE III. Edge lengths (in fm) of boxes used to solve self-
consistent mean-field equations (Lμ) and to determine the Coulomb
potential (Cμ) for nuclei studied in this paper. Depending on the
symmetries imposed on the nucleus, only half of of the length is
treated numerically in most cases.

Nucleus Lx = Ly Lz Cx = Cy Cz

40Ca 26 26 26 26
132Sn 30.8 30.8 46.8 46.8
208Pb 40 40 60 60
Z ≈ 50 40 40 60 60
240Pu 40 60 80 120

convergence requires carrying out roughly 100 more iterations
for the step sizes represented in the figure.

F. Treatment of the long-range Coulomb interaction

The direct Coulomb energy requires a special treatment
because of its long range. One of the spatial integrations
in Eq. (4) can be eliminated through the calculation of
the Coulomb potential of the protons, which satisfies the
electrostatic Poisson equation

�U (r) = −4πe2ρp(r), (22)

where e2 is the square of the elementary charge. When solving
this equation, boundary conditions need to be imposed at the
edge of the box. These can be easily constructed when recalling
that at large distances the potential is entirely determined by the
multipoles of the nuclear charge distribution 〈Q̂	m〉. Expanding
the Coulomb potential on spherical harmonics and keeping the
terms up to 	 = 2, the Coulomb potential outside the box is
approximated by

U (r) = e2Z

r
+ e2 〈Q̂20〉Y20(r) + 〈Q̂22〉 ReY22(r)

r3
, (23)

FIG. 3. (Color online) Error in the total energy using the FD +
LM option as a function of the number of mean-field iterations
for 40Ca for different values of dx. Calculations were initialized
with Nilsson-model single-particle wave functions. The box length
is 26 fm.

FIG. 4. (Color online) Differences between the total energy of
208Pb calculated on a 3D mesh with different approximations in the
calculation of the Coulomb energy and that obtained with LENTEUR.
The three lines correspond to the use of three-, five-, and seven-point
FD formulas for calculation of the Laplacian in the Poisson equation.

which provides the boundary condition for the numerical
solution of Eq. (22). The direct Coulomb energy is then
calculated as

Ed
Coul = 1

2

∫
d3r U (r) ρp(r). (24)

As for the nuclear part of the energy, the accuracy of the
electrostatic potential, obtained by solving Eq. (22), is limited
by three factors: the size of the box, the mesh discretization
length dx, and the way derivatives are calculated.

A suitable box size for the Coulomb problem has to be larger
than that for the Skyrme EDF. This is a direct consequence
of the long range of the Coulomb force. To make negligible
the contributions to the boundary conditions of terms higher
than 	 = 2 [see Eq. (23)], one has to calculate the Coulomb
potential in a box larger than the one used for the nuclear part
of the interaction. Typical values are listed in Table III. For
light nuclei such as 40Ca, no extra points for Coulomb need
to be added, while the box has to be significantly enlarged for
heavier systems in the 132Sn and 208Pb regions. For calculation
of the fission barrier of heavy nuclei such as 240Pu up to very
large deformations, the Coulomb box size has to be two times
larger than the one needed for the Skyrme EDF to obtain the
same nuclear accuracy in all the energies.

The Laplacian in Eq. (22) has to be approximated on the
mesh in such a way that the accuracy of the Coulomb energy is
similar to that of the other terms in the EDF. We show in Fig. 4
the gain in accuracy of the total energy of 208Pb obtained by
going from a three-point to a seven-point FD formula for the
Laplacian. Already a five-point formula provides the required
accuracy and is used in all other calculations reported here.
One can easily understand that a lower-order FD formula than
the one used to calculate the kinetic energy is sufficient for the
Laplacian in Eq. (22): the typical length scale of the variation
of the Coulomb potential is much larger than the scale on
which the wave functions vary.
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FIG. 5. (Color online) Differences between the total energy calculated with our 3D code and that calculated with the spherical code
LENTEUR for 40Ca (a), 132Sn (b), and 208Pb (c), as a function of the mesh distance dx. Results are plotted for a representative set of Skyrme
parametrizations, without pairing. Results for SLy5, T22, and T65 are not shown but are indistinguishable from the SLy4 results at the scale of
this graph.

The final factor for the accuracy of the Coulomb solution is
the mesh discretization length dx. As the effect of the Coulomb
term is already incorporated in all of the applications, we do
not discuss it separately.

V. DISCUSSION

A. Binding energies

Provided that the box size is large enough, the main factor
determining the accuracy of our implementation of mesh cal-
culations is the discretization length. In Fig. 5 the energy differ-
ence with respect to LENTEUR results is plotted for three doubly
magic spherical nuclei, as a function of the mesh discretization
dx for a representative set of Skyrme parametrizations. It is
remarkable that the interactions are grouped according to their
effective mass (see Appendix A for the actual values): interac-
tions with a larger effective mass m∗ give systematically more
accurate results than interactions with a smaller mass. This
property is related to the term Eρτ term of the Skyrme EDF in
Eq. (2), which, in our experience, is the least well represented
on a mesh. Since the magnitude of this term increases when
the effective mass decreases, the accuracy obtained for a given
mesh size deteriorates for a lower effective mass.

One can see that the accuracy obtained with a mesh
discretization as large as dx = 1.0 fm is less than 1.0 MeV
for 208Pb. The energy difference decreases to a few hundred
keV for dx = 0.8 fm and to a few keV for dx = 0.6 fm. Note
that a similar accuracy for dx = 0.6 fm was found for a 2D
code based on splines [8]. To obtain an agreement between the
spherical code LENTEUR and our 3D codes below the 1-keV
level would require increasing the box size but also making
the codes more similar. For a nucleus with a binding energy
higher than 1 GeV, this implies a relative discrepancy of better
than 10−7 and there are several sources of differences in the
codes that can play a role, none of which is easy to control.

B. Deformation energy curves

Let us now study the convergence properties of our
numerical scheme for the fission path of 240Pu. Our motivation

is twofold: 240Pu is a frequent benchmark for models that
describe fission [39–44] but also for numerical algorithms
[8,13]. The energy curve of this nucleus presents two minima
at prolate deformations, the ground state and a fission isomer.
In Fig. 6, we show the variation of the energy with deformation.

The box used for these calculations has the same size for all
discretizations, as indicated in Table III. When the left-right
symmetry is broken, the number of points along the z direction
is doubled. We have performed calculations with four mesh
discretizations, dx = 1.0, 0.82, 0.69 and 0.60 fm, and tested
the convergence as a function of dx by taking the difference
with respect to the results obtained with dx = 0.6 fm. For
each value of dx, the energy at each deformation is the energy
relative to the prolate ground state.

The energy curve obtained with dx = 0.6 fm is shown in
Fig. 6. The topography obtained for other values of dx is the
same. Shapes are triaxial in the vicinity of the first barrier,
whereas everywhere else they remain axial. At deformations

FIG. 6. (Color online) Energy curve for 240Pu calculated with
dx = 0.6 fm. Regions where the deformation is axial [(blue)
crosses], triaxial [small (green) filled circles], or axial and reflection
asymmetric [large (red) filled circles] are indicated.
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FIG. 7. (Color online) Energy differences between the results
obtained for 240Pu with dx = 1.0, 0.82, and 0.69 fm and those
corresponding to dx = 0.6 fm.

smaller than the one of the fission isomer the configurations
are reflection symmetric, whereas at larger deformations they
are increasingly asymmetric.

We use this curve as a reference to determine the accuracy
of the calculations carried out for other values of dx. For each
dx, the ground-state energy is taken as the 0 of the energy. The
results are shown in Fig. 7. The properties of the minimum
are listed in Table IV. The error decreases roughly by an order
of magnitude upon going from dx = 1.0 to dx = 0.82 fm
and from dx = 0.82 to dx = 0.69 fm. At dx = 1.0 fm the
error is of the order of a few hundred keV, with a rather
large oscillation. For a mesh discretization of 0.82 fm, the
error becomes lower than 100 keV (except in the vicinity
of the spherical configuration, where it reaches 150 keV, but
this configuration is very excited) and is quite acceptable for
the calculation of energy curves. Decreasing the discretization
further, to 0.69 fm, reduces the error to values of a few tens of
keV at most.

Some published results allow for a comparison between the
accuracy of mesh calculations and that of calculations using

FIG. 8. (Color online) Absolute difference in neutron rms radius
for different Skyrme parametrizations for 34Ne at dx = 0.8 fm. The
reference calculation was performed in a box with N = 20.

an expansion on an HO basis. Pei et al. [8] have performed
calculations on an axial mesh using B splines and on HO bases,
either spherical or deformed, with 20 oscillator shells in both
cases. The accuracy obtained in [8] on a mesh of dx = 0.65 fm
seems very similar to the one we obtain. The use of a spherical
HO basis is rather unreliable, with an error larger than 1 MeV
already for the excitation energy of the fission isomer and that
quickly increases to several MeV at larger deformations. For
an axial oscillator basis, the results are similar to those we
obtain with a mesh size of 0.82 fm up to the first barrier but the
accuracy deteriorates rapidly for larger deformations, being
several hundred keV at the deformation corresponding to the
fission isomer. Similar results can be found in [46] for 194Hg
and in [47] for 256Fm.

As a number of shells significantly larger than 20 is
numerically prohibitive, either one has to resort to a two-center
oscillator basis or one has to construct a suitable subspace
within a much larger one-center HO basis by carefully select-
ing the low-lying single-particle states. The former option is
developed in Ref. [48], whereas the latter has been used during
the construction of the unedf1 parametrization [49], where the
lowest 1771 basis states of a basis of 50 HO shells have been
kept. The accuracy obtained in this way for the excitation
energy of the fission isomer is of the order of 100 keV. As
a comparison, the experimental excitation energies of the
fission isomer found in the literature are 2.4 ± 0.3 MeV
[50], approximately 2.8 MeV [51], and 2.25 ± 0.20 MeV
[52]. In the light of these error bars, a numerical accuracy
of 100 keV is sufficient for the adjustment of an EDF. However,
from the published results of Pei et al. [8], it can be estimated
that the numerical error in the fission barrier height is a few
times these 100 keV. Similar results have been obtained in the
case of the relativistic mean-field method [13,53].

C. Radial density distribution

The rms radius is intimately linked to the radial density
distribution of a nucleus. One can expect that it is particularly
sensitive to the box size for nuclei with a large excess of
neutrons. Tests have been performed for the very neutron-

FIG. 9. (Color online) Radial density profile of 34Ne in different
box sizes with dx = 0.8 fm.
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FIG. 10. (Color online) Absolute difference between the total rms radii calculated on a 3D mesh with respect to those of LENTEUR as a
function of the step size dx for the spherical nuclei 40Ca (a), 132Sn (b), and 208Pb (c) and those calculated with the Skyrme parametrizations as
indicated.

rich nucleus 34Ne by varying the box size for a fixed mesh
discretization dx = 0.8 fm. To avoid any ambiguity in the
calculation, pairing has been omitted. The results are presented
in Fig. 8, where we show the difference in total rms radius as
a function of the box size for a representative set of EDF
parametrizations. For the size of the box recommended for
40Ca in Table III, the number of points is 16 for a mesh size
of 0.8 fm. It leads to an error of the order of 10−2 fm for
most interactions, the results being slightly less accurate for
SV-min. For smaller boxes, the accuracy of radii is lower and
depends on the interaction.

In Fig. 9 the radial profile of the total density of 34Ne is
plotted as a function of the box size. The distortion of the
density in the smallest box is large and demonstrates that half
the box size must be larger than 8.0 fm. In all other boxes, the
exponential tail of the density distribution is well described,
up to the point before the last one. For a box size of around
12 fm, the density is well described up to a decrease in the
central density by six orders of magnitude.

The confinement in a volume is less evident in an expansion
on a basis than in a mesh calculation, but it is also present.
While oscillator basis functions extend to infinity, they are in
practice strongly localized by their Gaussian form factor. If one
takes its classical turning point as a measure of the extension
of an HO state, one obtains, for 208Pb and 20 oscillator shells,
a value for the turning point that varies from 14 fm for 	 = 0 to
16 fm for 	 = 20�. To increase the value of this turning point to
20 fm would require using 28 oscillator shells for 	 = 0. This
effect of confinement by an oscillator basis has been reported
in Ref. [54] for the case of 112Zr.

For comparison, the experimental uncertainty in rms charge
radii for the Ne isotopes (up to A = 28) varies from 0.002 fm
close to stability to 0.02 fm for exotic isotopes [55]. It is
interesting to note that the numerical accuracy of a mesh mean-
field calculation has a similar level (provided the box is large
enough) but that the model already introduces uncertainties in
the rms radii that are at least one order of magnitude larger [2].

In Fig. 10, we compare the total rms radii calculated with
decreasing mesh sizes to those obtained with LENTEUR for
three spherical nuclei: 40Ca, 132Sn, and 208Pb. The agreement is

already very satisfactory for the large mesh size of 1.0 fm, with
one order of magnitude gained in accuracy upon decreasing
the mesh size to 0.8 fm, which is the usual value of production
calculations. An interesting feature that cannot be deduced
from Fig. 10 is that all of the parametrizations, with the
exception of unedf0, always produce an rms radius that is
smaller than the LENTEUR result.

In Fig. 11, we present the isotopic shifts δr2(N,Z) for
a range of even-even Sn nuclei, the reference being 132Sn.
All curves almost exactly coincide. This demonstrates that
the isotopic shifts are quite reliable even with coarse meshes.
Similar results are obtained for Cd, Xe, and Te isotopes.

D. Two-neutron separation energies

To put into evidence changes in nuclear structure with
nucleon number, one often uses mass filters that are computed
by taking specific differences between the binding energies
of neighboring nuclei. The simplest filter is the two-nucleon
separation energy, which is defined as the energy difference
between two isotopes (or isotones) whose nucleon numbers
differ by 2. In Fig. 12, we show the evolution of the
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FIG. 11. (Color online) Isotopic shifts δr2(N,Z) with respect to
132Sn for different Sn isotopes and different mesh sizes.
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FIG. 12. (Color online) Absolute differences of two-neutron sep-
aration energies between four mesh discretizations and a calculation
with a mesh size of dx = 0.63 fm for Cd (a), Sn (b), and Te (c)
isotopes. (d) Plot of the two-neutron separation energies of all of
these isotope chains as a reference.

FIG. 13. (Color online) Mass β2 quadrupole moment as a func-
tion of neutron number for a series of Te isotopes.

two-neutron separation energies, S2n, of even-even nuclei for
three neighboring isotopic chains when the mesh size dx
is decreased. For each discretization dx we have plotted
the difference in the S2n values from the one obtained at
dx = 0.63 fm. Even with a mesh size as large as dx = 1.0 fm,
the accuracy of the S2n is already better than 100 keV, which
is small enough for most applications. The mesh size used in
most of our published applications, dx = 0.8 fm, leads to an
accuracy better than 10 keV. In Fig. 12(d), the two-neutron
separation energies of the three isotope chains are plotted for
four values of dx. The curves cannot be distinguished using a
scale adapted to the variation of S2n as a function of the neutron
number. This result is in strong contrast with respect to some
published calculations using an expansion on an oscillator
basis [56], where special algorithms have to be devised to
smooth numerical irregularities, which can be of the order of
a few hundred keV.

E. Multipole moments

The dimensionless ground-state quadrupole moments β2

of even-even Te isotopes are shown in Fig. 13. Differences

FIG. 14. (Color online) Mass octupole moment β3 along the
fission path for 240Pu.
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TABLE IV. Properties of the ground state of 240Pu as obtained
from nonconstrained calculations.

dx (fm) E (MeV) β2 β4 β6 β8 β10

1.0 −1801.909 0.288 0.160 0.043 −0.002 −0.003
0.849 −1802.770 0.289 0.163 0.045 0.001 0.001
0.739 −1802.929 0.292 0.164 0.046 0.002 0.002
0.653 −1802.969 0.290 0.165 0.046 0.002 0.001

between the curves corresponding to different values of dx are
tiny and not significant. Similar results were obtained for the
Cd and Sn isotopes.

We now examine how the multipole moments of 240Pu along
the fission path are affected by the mesh size. In Figs. 14
and 15 we show the octupole and hexadecapole moments,
respectively, in the region of the fission path where parity
is broken. Similar results obtained for the axial and triaxial
cases are not shown. In Tables IV and V we list the multipole
moments of the ground state and fission isomer of 240Pu for
the different mesh discretizations as obtained by unconstrained
calculations.

From Figs. 14 and 15 we see that the overall sequence of
shapes along the fission path is robust with respect to the mesh
spacing. The fission path is already precisely defined at the
coarsest mesh (dx = 1.0 fm) we used. A single exception can
be seen at the onset of octupole deformation; in the vicinity
of this point, however, the energy surface is very flat in the β3

direction.
On a smaller scale, the multipole moments do vary as a

function of the mesh discretization. This is clearly shown in
Tables IV and V. Since our method hinges on the variation of
the total energy in Eq. (1), there is no guarantee that the values
of the multipole moments converge in a predictable way. It is,
however, reassuring to see that the typical variation of these
moments is of the order of a few percent to, at most, about 10%.
The larger variations present themselves in the higher-order
β6, β8, and β10 moments. These are more difficult to resolve
on coarse meshes because of the high number of nodes their
associated Legendre polynomials have.

FIG. 15. (Color online) Mass hexadecapole moment β4 for the
parity-breaking configurations along part of the fission path for 240Pu.

TABLE V. Properties of the superdeformed fission isomer ob-
tained from nonconstrained calculations.

dx (fm) E (MeV) β2 β4 β6 β8 β10

1.0 −1796.929 0.832 0.494 0.344 0.279 0.255
0.849 −1797.950 0.840 0.510 0.367 0.303 0.278
0.739 −1798.099 0.847 0.528 0.388 0.319 0.268
0.653 −1798.123 0.841 0.516 0.375 0.312 0.259

F. Single-particle levels

In Fig. 16 we show the evolution of the neutron single-
particle levels within 1.5 MeV of the Fermi energy in the
ground state of 240Pu as a function of the mesh spacing dx.
While slight shifts in the position of the levels are observed
as a function of the mesh size, the largest error at dx = 1.0
fm is of the order of 100 keV. One can also note that the level
ordering within the parity subspaces is the same for all values
of dx. A similar dependence on box parameters is found for
the proton states and the lighter nuclei studied here.

VI. CONCLUSION

The aim of this paper was to study the numerical accuracy
of the solution of self-consistent mean-field equations using a
discretization on a 3D Cartesian coordinate-space mesh. Three
elements permit control of its numerical accuracy. The first
one is the method used to calculate derivatives. Using LM
derivatives leads to much more accurate results than using
FD formulas for derivatives. In addition, a Cartesian LM
corresponds to a representation in a closed subspace of the
Hilbert space, such that it always provides an upper bound to
the binding energy that becomes tighter when adding points
outside a given box or when decreasing the distance of mesh
points in a given box. Neither is the case for FD derivatives.
However, we have shown quantitatively that the accuracy
of a calculation that uses FD formulas during the iterations

FIG. 16. (Color online) Eigenvalues of the single-particle Hamil-
tonian for the ground state of 240Pu as a function of the mesh
discretization dx. Only neutron single-particle levels within 1.5 MeV
of the Fermi energy are shown.
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can be significantly improved upon by recalculating the EDF
at convergence with LM derivatives. Again, this procedure
provides us with an upper bound of the energy, thus restoring
the variational character of the calculation. Using Lagrange
derivatives during the iterations allows us to improve the
accuracy in energies further, but at the cost of at least doubling
the computing time.

The second element on which mesh calculations depend
is the size of the box in which the nucleus is confined.
The examples of doubly magic nuclei and neutron-rich 34Ne
illustrate that results for energies and densities are already
stable at small box sizes.

The third element is that the quality of the results depends
on the mesh size, with errors in energies that are almost
independent of the number of neutrons and protons and of
the shape of the nucleus. A mesh size dx = 0.8 fm guarantees
an accuracy that is, in general, better than 100 keV, which
corresponds to a relative accuracy of less than 0.1%, even for
lighter nuclei. Decreasing the mesh size to 0.7 fm permits one
to gain nearly an order of magnitude and to reach an accuracy
that is well below all the uncertainties of the mean-field model.

One can summarize these results by concluding that a
mesh technique as implemented in our codes is flexible (it
can accommodate any kind of symmetry breaking), is robust
(the accuracy can be controlled by an adequate choice of the
three elements mentioned above), and can be very accurate
if necessary. The positive aspect of our numerical scheme is
that using a mesh size of 0.8 fm, as used in most of our past
applications, ensures an accuracy of better than 100 keV in
energies and reliable shape properties for nuclei of any mass.

Our study has focused on the solution of mean-field
equations and we have not touched on the description of
pairing correlations. There has already been a study of this
problem by Terasaki et al. [57]. It should be revisited to take
into account new developments. However, the problem is not
related exclusively to the way the mean-field equations are
solved. The description of single-particle states well above
the Fermi energy is probably very different when using a
discretization on a mesh or an expansion on an oscillator basis.
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APPENDIX A: PARAMETRIZATIONS USED

We make some remarks here on the interactions used
throughout the text.

TABLE VI. Value of the isoscalar effective mass in units of the
nucleon mass m∗/m of the interactions used throughout this paper.

Parametrization Ref. No. m∗/m

SLy4 & SLy5 [58] 0.68
T22 & T65 [59] 0.7
SkI3 [60] 0.577
SV-min [61] 0.95
unedf0 [62] 0.9

(i) SLy4 and SLy5 [58]: These parametrizations were
used as intended.

(ii) T22 and T65 [59]: These parametrizations were used
as intended.

(iii) unedf0 [62]: While this parametrization was adjusted
with a nonzero pairing interaction, we used it without
any pairing.

(iv) SV-min [61]: This parametrization was adjusted with
unequal nucleon masses mn 
= mp. LENTEUR does not
handle this option, so we used instead the average
value mn+mp

2 as the nucleon mass.
(v) SkI3 [60]: This parameteriation was adjusted with the

inclusion of a perturbative two-body c.m. correction,
an option not included in LENTEUR.

The values of their isoscalar effective masses are listed in
Table VI.

APPENDIX B: PAIRING INTERACTION

The density-dependent pairing interaction we used for the
isotope chains and the fission path of 240Pu is defined by [45]

v̂pair(r,r′) = −V0

2
(1 − P̂σ )

[
1 − α

ρ0(R)

ρs

]
δ(r − r′), (B1)

where ρ0(R) is the isoscalar density at R = 1
2 (r + r′). The

parameters take the values α = 1, ρs = 0.16 fm−3, and V0 =
1250 MeV fm−3. In addition, this interaction was supple-
mented by two cutoffs, one above and the other below the
Fermi energy, in order to eliminate the basis-size dependence
of the total energy. They are defined by two Fermi functions,

fk = [1 + e(εk−λq−�εq )/μq ]−1/2[1 + e(εk−λq+�εq )/μq ]−1/2,
(B2)

where λq is the Fermi energy, εk is the single-particle energy
of the single-particle state k, and we chose μq = 0.5 MeV and
�εq = 5.0 MeV for protons and neutrons.

APPENDIX C: ROLE OF THE PHYSICAL CONSTANT
WHEN USING SKYRME EDFS

By default, the physical constants used in our calculations
are the following [38]:

e2 = 1.43996446 MeV fm, (C1)

m = mn + mp

2
= 938.9187125 MeV c−2, (C2)

�2/(2m) = 20.735519104 MeV fm2. (C3)
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FIG. 17. (Color online) Energy difference for the spherical nuclei
40Ca, 132Sn, and 208Pb for calculations with LENTEUR using SLy4
with a modified value of �2/(2m). The reference calculation is that
obtained using the value used during the adjustment of SLy4.

Whenever possible, we have used the value of �2/(2m) that
was used during the adjustment of the parametrization. It might
seem superfluous to completely specify the physical constant
used, but the results of our calculations depend on the precise
values of these constants. In particular, the level of agreement
between EV8 and LENTEUR described in Sec. V A is only
attainable when these codes use exactly the same numerical
values for the physical constants.

In fact, significant errors can be introduced when the values
of the physical constants are changed slightly. The seemingly
innocuous value of �2/(2m) in fact plays a very important
role. Figure 17 shows LENTEUR calculations for the spherical
nuclei 40Ca, 132Sn, and 208Pb with SLy4. Every point was
calculated by slightly changing the value of �2/(2m) from
20.73553 MeV fm2, the SLy4 value. We see that using a value
for �2/(2m) that is not consistent with the value used during
the fit of the EDF can lead to an error of several MeV in the
total energy. �2/(2m) is, after all, the proportionality constant
of the kinetic energy in Eq. (1). Typical values that have
been used over the years vary at least between 20.73 and
20.7363 MeV fm2. If the exact values of the physical constants
used during the adjustment of a given parametrization are not
available, then one cannot reliably compare the results with
experimental data. In this case, one cannot judge the predictive
power of this parametrization.

FIG. 18. Difference in the total energy obtained with LENTEUR

for 40Ca using a rounded value for the density dependence parameter
α in Eq. (2) vs using the full double-precision value α = 1/6 of the
SLy4 parametrization.

Similar concerns arise for the parameters of the Skyrme
interactions. The energy obtained in our calculations is more
sensitive to some Skyrme parameters than to others, but the
close agreement observed in Sec. V A is not obtainable without
carefully checking that the Skyrme parameters are completely
consistent across codes. That this is not trivial can be concluded
from examination of Fig. 18. There we plot the relative
difference in energy found by LENTEUR between modified
versions of the SLy4 functional and the correct SLy4. The
interaction parameters are the same for every point, save for
the density dependence parameter α in Eq. (2). There are very
few parametrizations for which the value of α corresponds
to a terminating decimal, for example, SV-min, for which
α = 0.255368. For the large majority of parametrizations the
value of α is either 1/3 or, as in the case of SLy4, 1/6. Both
of these correspond to a repeating decimal number, whose
numerical representation might differ from code to code.
Using α = 0.1667 in a calculation with SLy4 corresponds to
a rounding error of α − 1/6 � 3.33 × 10−5, which introduces
an error in the total binding energy of 40Ca of a few tens of keV.

It is clearly shown that a limited representation of α implies
a roundoff error that has a visible effect on the energy. This
kind of error shows up when comparing LENTEUR and EV8

results, and for this reason we conclude that relative errors of
less than 10−5 become meaningless. Similar analyses can be
made for the other interaction parameters, including the values
of physical constants used to fit the interaction.
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Kerman, Self-consistent calculation of the fission barrier of
240Pu, Nucl. Phys. A 231, 176 (1974).

[40] J. F. Berger, M. Girod, and D. Gogny, Microscopic analysis of
collective dynamics in low energy fission, Nucl. Phys. A 428,
23 (1984).

[41] V. Blum, J. A. Maruhn, P.-G. Reinhard, and W. Greiner, The
fission barrier of 240Pu in the relativistic mean field theory, Phys.
Lett. B 323, 262 (1994).

[42] K. Rutz, J. A. Maruhn, P.-G. Reinhard, and W. Greiner, Fission
barriers and asymmetric ground states in the relativistic mean-
field theory, Nucl. Phys. A 590, 680 (1995).

[43] N. Schunck, D. Duke, H. Carr and, A. Knoll, Description of
induced nuclear fission with Skyrme energy functionals: Static
potential energy surfaces and fission fragment properties, Phys.
Rev. C 90, 054305 (2014).

[44] W. Younes and D. Gogny, Microscopic calculation of 240Pu
scission with a finite-range effective force, Phys. Rev. C 80,
054313 (2009).

[45] C. Rigollet, P. Bonche, H. Flocard, and P.-H. Heenen,
Microscopic study of the properties of identical bands
in the A = 150 mass region, Phys. Rev. C 59, 3120
(1999).

064318-15



W. RYSSENS, P.-H. HEENEN, AND M. BENDER PHYSICAL REVIEW C 92, 064318 (2015)
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Chapter 9

Shape transitions of the Radium isotopes

It has been known for a long time [45] that the mean-field minimum of several neutron-rich Radium (A ≥ 220)
isotopes exhibit octupole deformation on the mean-field level. They (and the neighboring even-even nuclei)
have garnered considerable theoretical attention, both historically [45, 122] and more recently [43, 123, 44],
and can be considered a testing ground for (beyond-)mean-field models featuring octupole degrees of freedom.
Experimentally the E3 transition moments of 220Rn and 224Rn were recently measured [6], confirming a stable
octupole deformation for the latter. This information is to be joined to the measured E3 transition moments
of 226Ra that were measured earlier [124]. A major motivation to experimentally understand octupole de-
formation in the region is the detection of atomic electric dipole moments to test the Standard Model. Stable
octupole deformation would give rise to enhanced nuclear Schiff moments [57, 59], which in turn would en-
hance any CP-violating effect as discussed in chapter 2.
For all of these reasons, the region is very well suited to perform some proof-of-concept calculations with
MOCCa, focusing especially on calculations that are not accessible with the ensemble of ev8, cr8 and ev4.
In particular, this concerns calculations with full HFB pairing when parity is not a self-consistent symmetry,
to be compared with either ev4 which is able to perform HF+BCS calculations with the same symmetries or
cr8 which allows the user to perform HFB calculations but only when conserving parity. The major interest
of the HFB pairing ansatz for these nuclei is the extension to time-reversal-broken calculations, such as for
rotational bands and odd nuclei in the region. Although for time-reversal conserving calculations of not-too
exotic nuclei the difference between HF+BCS and HFB results is not important, even along the entire length
of a fission barrier [125, 50], we will consistently use HFB+LN pairing for all the calculations of this chapter.
Section 9.1 deals with the details of the calculations, specifically focusing on the choice of the pairing strength.
In section 9.3 we will look at the appearance of octupole deformation for the neutron-rich radium isotopes.
We will investigate the fission barrier of 226Ra and 227Ra in section 9.4. Finally, we will briefly describe
rotational bands in 224Ra and 226Ra in section 9.5.

9.1 Details of the calculations

In order to reduce the CPU time demanded by these calculations, especially for the ones combining parity-
and time-reversal breaking, we have opted to use a rather modest mesh with (Nx, Ny, Nz) = (30, 30, 50)
using a mesh discretisation of dx = 1.0 fm. The large asymmetry in the z-direction was chosen in order to
accommodate large deformations in that direction, in order to be able to accurately describe fission paths. All
multipole moments up to ` = 8 were added to the boundary conditions of the Poisson problem so no extra
points were added to the Coulomb box. This choice of mesh configuration is somewhat more modest than the
mesh used to describe the fission of 240Pu in [72] (see chapter 8) and is therefore less accurate. The overall
picture however, such as multipole moments and the fission paths are not expected to deviate significantly
from a more accurate result. As such this mesh size presents a suitable compromise for a proof-of-concept
calculations with MOCCa. Any further study however, would probably benefit by taking somewhat larger box
sizes and smaller mesh discretisations, comparable to the ones used for 240Pu in [10].
As Skyrme parameterization of choice we have used mainly SLy5s1 [118] (and to lesser extent Sly5S2-7). This
choice was mainly motivated by the surface properties of these interactions and the possibility of investigating
their influence on the fission path of nuclei in this region.
Pairing was treated on the full HFB+LN level, using the pairing interaction from chapter 3 with α = 1.0.
This interaction was supplemented by a symmetric Fermi cutoff at a distance of 5 MeV around the Fermi
energy. It is important to note that all of the calculations for the odd nuclei were performed using the Thouless
method1.

1This proved to be an invaluable tool in the region to converge the calculations. Direct diagonalisation often had problems
to converge specific choices of quasiparticle excitations when parity was broken due to the sheer number of quasiparticle levels
with identical quantum numbers.
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Figure 9.1: Absolute values of the three-point proton and neutron gaps around 216Ra, using the SLy5s1
parameterization with full HFB+LN pairing with Vn = 1000 MeV fm3 and Vp = 1450 MeV fm3. Nuc-
lei included in the calculation are 214,215,216,217,218Ra, 213,215,217Fr, 212,213,214,215,216Rn , 215,217,219Ac and
216,217,218,219,220Th. Circles indicate calculated values, diamonds experimental values taken from [126].

Since the SLy5sX parameterizations were not adjusted with the inclusion of pairing, the pairing strengths
Vn, Vp are in principle free parameters. They were fixed by adjusting the pairing strength to the three-point
gaps in the region around 216Ra. We used the following definitions for the proton and neutron three-point
gaps [127, 128]

∆(3)
n (N,Z) =

(−1)N

2
[E(N − 1, Z) + E(N + 1, Z)− 2E(N,Z)] ,

∆(3)
p (N,Z) =

(−1)Z

2
[E(N,Z − 1) + E(N,Z + 1)− 2E(N,Z)] .

(9.1)

where E(N,Z) is the binding energy of the nucleus with N neutrons and Z protons. The quasiparticles blocked
in the calculations for the even-odd isotopes were chosen to match as well as possible the experimental ground
state.2.
The choice of the vicinity of 216Ra was made for mainly practical reasons. The first is that the nuclei are close
to the magic number for neutrons N = 126, and are thus (close to) spherical. This avoids any ambiguity
in making a choice among different mean-field minima. Secondly, the even-odd nuclei in the region, exhibit

2Although, using the Thouless method for blocking them guarantees nothing about the nature of the blocked quasiparticles
after convergence except for conserved quantum numbers, in this case parity and z-signature only.

124



9.2. Quadrupole deformation

J = 9
2 ground states. For the neutron-odd nuclei 215,217Ra and 213,215,217Rn, this is a 9

2

+
ground state

while for the proton-odd nuclei 213,215,217Fr, 215,217,219Ac this is a 9
2

−
ground state. These states are more

easily identified than states of lower J in MOCCa, as they will stay significantly more pure than states of
lower J . Thirdly, octupole correlations are not expected to be important (on a mean-field level) in these
lighter isotopes, meaning that the calculations could conserve parity. This again significantly helps with the
identification of the quasiparticles for the odd nuclei, as we can use the parity quantum number to identify
quasiparticles.
These considerations are especially valid when doing calculations with the direct diagonalisation method. For
the Thouless method as used here, the situation is more subtle. While these arguments help to identify the
initial quasiparticle to be blocked, they do not tell us anything about the nature of the quasiparticle after
self-consistency has been achieved. To this end the parity conservation for these calculations is valuable: it
guarantees correct parity at convergence. No such guarantee is possible for the angular momentum however.
Nevertheless, we checked that the odd configurations calculated by MOCCa are all consistent with 9

2 ground
states.
The adjusted values (to a precision of 50 MeV fm3) used for Vn and Vp were

(Vn, Vp) = (1000, 1450) MeV fm3 . (9.2)

The three-point proton gaps for these values for N = 128 and N = 130 are shown on the left side of Fig.
9.1 while the three-point neutron gaps for Z = 86 and Z = 88 and Z = 90 are shown on the right side.
Experimental data were taken from the NNDC compilation [126].
For the proton gaps, the agreement is good, though not spectacular. The value Vp = 1450 MeV fm3

corresponds to a compromise between the gap of 216Ra and 218Ra. Increasing the proton pairing strength
might lead to a better agreement for 218Ra but a worse agreement for 216Ra, and vice versa with a smaller
pairing strength. The value of the neutron pairing strength corresponds to the three-point gap of 216Ra and
slightly overshoots the gap in 214Rn while undershooting the gap of 218Th. The agreement with experiment for
N = 128 is stunningly good, while for N = 129 the gaps are all significantly less in agreement with experiment,
especially for 220Th. It is not clear what the source of the mismatch between theory and experiment is here,
as the pairing gaps are an intricate interplay of the Skyrme parameterization and our specific choice of pairing
interaction.
The neutron and proton pairing strengths are somewhat small compared to the ones recently used to study
nuclei in the Nobelium region [79]. The difference can likely be attributed to the absence of Lipkin-Nogami
treatment in [79]. The proton pairing strength however, is significantly larger than the one used to describe
very heavy nuclei in past publications [3], while the neutron strength is rather smaller. In a perfect world,
the proton pairing strength should be less strong than the neutron pairing strength, since the pairing effect
of the Coulomb force is not included in our calculations. This asymmetry is due to the form of the pairing
interaction in Eq. 3.43 as discussed in [129]. When α = 1.0, the pairing has a surface character, but the
proton density at the surface of the nucleus is significantly smaller compared to the neutron density, simply
because of the neutron number is larger than the proton number. A term in the pairing interaction dependent
on isovector density ρ1 would alleviate this problem [129].

9.2 Quadrupole deformation

A first quantity that is accessible to MOCCa, without breaking any symmetries of the DT2h group, is the de-
formation energy surface as a function of quadrupole deformation. Fig. 9.2 shows the energy surface of
the isotopes 216Ra,218Ra,220Ra,222Ra,224Ra and 226Ra using the SLy5s1 parameterization. Note that the
configurations are all axial and no triaxial degrees of freedom were taken into account.
The development from spherical configuration is the first phase transition of these isotopes: 216Ra is clearly
spherical, with a very flat energy surface directly surrounding the minimum. From 218Ra onwards an increas-
ingly pronounce prolate minimum develops at ever increasing values of β2. A similar oblate minimum at
comparable absolute values of β20 develops, but remains shallow for all isotopes. Several other minima de-
velop with increasing mass. On the oblate side a shallow minimum forms that can be found at systematically
higher absolute values of β20 and from 222Ra is joined by a second shallow oblate minimum. The situation
is different on the prolate side, where for all of the isotopes considered a shallow second prolate minimum at
β20 ≈ 0.6 can be seen. Beyond the barrier, the energy surface is very flat, in particular for 226Ra.
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Figure 9.2: Energy surface of the even isotopes 216Ra,218Ra,220Ra,222Ra,224Ra and 226Ra with the SLy5s1
parameterization as a function of quadrupole deformation β20, where positive values of β20 correspond to
prolate configurations and negative values to oblate configurations with the same absolute value of β20. The
minima are indicated by black diamonds.

9.3 Octupole deformation

As was indicated before, octupole degrees of freedom are very relevant in the region. Fig. 9.3 shows the energy
surface as a function of quadrupole deformation parameter β20 and the octupole deformation parameter β30

for the even-even Radium isotopes from A = 216 to A = 226. Every surface is symmetric about β30 = 0,
as changing the direction of the z-axis for a given nuclear density changes the sign of β30. Note that this
type of plot is outside of the range of both ev4 and cr8, as the calculation combines the HFB+LN pairing
treatment with parity breaking.
This is the second shape transition in the region: 216Ra is spherical, while the minimum of 218Ra develops
a lightly octupole deformed ground state. As the mass increases, the minimum becomes more and more
octupole deformed at β30 ≈ 0.14. The features of the parity-conserving calculation from the previous section
are also clearly visible for all isotopes: the axial prolate minimum from the previous section becomes a saddle-
point. It is interesting to see that on the oblate side octupole degrees of freedom do not lower the energy
and the minimum does not become a saddle-point. The densities of the prolate saddle point and the global
minimum for 226Ra are shown in Fig. 9.4.
The deformation energy surfaces compare very well with the energy surface of 228Th (two protons more) in
[44]. The calculations therein were performed using the relativistic energy density functional DD-PC1 with
HFB pairing. The prolate minimum is located at very comparable quadrupole and octupole deformation. No
oblate axial minimum is visible for their figure of 228Th, but it might simply be located at β20 values that are
located beyond the limits of the figure. The surface of 222Ra is also in good qualitative agreement with the
original result of [45], which was calculated on a comparable Lagrange mesh with dx = 1.0 fm, although in
the HF+BCS approximation with a constant gap pairing interaction and the SIII Skyrme parameterization.
The non-axial quadrupole deformation parameter β22 is not explored in Fig. 9.3 and was found not to lower
the energy of the minimum: the prolate, octupole deformed minimum is still the global minimum. It can
however play a role in lowering the axial barrier in the lower right of each every surface, as we will see in the
next section for 226Ra. The non-axial octupole deformation degree of freedom β32 was free to take non-zero
values but did not lower the energy on any point of the energy surface.
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9.3. Octupole deformation

Figure 9.3: Energy of axial mean-field configurations as a function of β20 and β30 for 216Ra, 218Ra, 220Ra,
222Ra, 224 and 226Ra calculated using the SLy5s1 Skyrme parameterization. The global minimum is marked
with a black diamond. The energies are all with respect to this minimum.

Figure 9.4: Density contours along the x- and z-axes for the respectively the axial prolate saddle-point and
the octupole deformed minimum of 226Ra.
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Figure 9.5: Fission barrier of 226Ra as a function of β20 for axial, parity conserving (black), triaxial, parity
conserving (red) and axial, parity breaking (blue) configurations for the SLy5s1 parameterization. Energy is
relative to the spherical configuration. Density contour plots (along the y-axis) indicate the type of deformation
at particular points on the curve.

9.4 Fission

Energy density functionals theory offers a fully microscopic model for the study of fission properties over
the entire range of the nuclear chart [50]. Using constraints on collective parameters such as the multipole
moments, one can generate fission barriers as a function of these collective parameters. The main quantity to
be extracted from the calculations is the height of the fission barrier, which can be related to fission half-lives
through a variety of models chief among which is the WKB approximation for transmission probabilities [130,
50]. We will not endeavour to compare in detail with experiment, as we are mainly interested in demonstrating
the possibilities of MOCCa. In particular, we will use 〈Q̂20〉 as a collective coordinate3 to study the fission
barriers of 226Ra and 227Ra using the SLy5s1 parameterization. We will only briefly compare barrier heights
to the RIPL-3 [131] recommended values.

9.4.1 Fission of 226Ra

The fission path, as a function of the deformation parameter β20, is shown in Fig. 9.5 for the SLy5s1
parameterization with HFB+LN pairing as described before. The different colors represent calculations with
a different set of imposed symmetries: the black curve is calculated while imposing both axial and reflection
(parity) symmetry. The red curve corresponds to lower solutions that are found around the first barrier when
relaxing the constraint on axial symmetry. All of these conserve parity. The blue curve indicates lower solutions
that are found when relaxing parity. Density contours in the x-z plane are included along the barrier to give
the reader a visual representation of the type of shapes encountered.
The absolute minimum found at β20 ≈ 0.2 is octupole deformed, a particularity of nuclei in this mass region,
while the parity-conserving minimum of the black curve is actually a saddle point. These minima are the
configurations for which Fig. 9.4 shows the density distribution in the x-z plane. However, the energy surface

3This is the most traditional choice, but certainly not the only possible one as both the octupole and hexadecupole multipole
moments as well as so called neck-operators can be used [50].
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Figure 9.6: Energy, β22, β30 and β40 along the fission barrier of 226Ra as a function of β20. The SLy5s1
parameterization was used together with HFB+LN pairing. Energy is relative to the spherical configuration.

is rather flat in this region and octupole deformation lowers the energy by slightly more than one MeV. At
the first barrier at β20 ≈ 0.4 226Ra, gradually loses its octupole deformation. Nevertheless, as mentioned
before, triaxial degrees of freedom significantly lower the barrier height. The configuration corresponding to
the broad second minimum at β20 ≈ 0.7 takes an axial and parity conserving shape. If octupole deformations
are not allowed at larger deformations, one finds a broad and very high second barrier around β20 ≈ 1.5 that
is followed by a third barrier at about β20 ≈ 3.0 before the calculation jumps to a solution with two separate
identical fragments. The two outer barriers are substantially lowered when allowing reflection asymmetric
shapes as indicated by the blue path in Fig. 9.5 . The resulting height of the asymmetric barrier of 8.55
MeV agrees well with the experimental value of 8.5 MeV as reported in the RIPL-3 database [131]. This
fission path leads to an asymmetric split-up, with the larger fragment being near-spherical and the smaller one
remaining deformed. We have not found any solution that is non-axial with finite octupole moments, as was
recently reported for actinide nuclei in [49, 132, 133]. All calculations initialized with such shapes converged
to states for which one or the other of these symmetries is reestablished.
It is interesting to compare to previous results of [104], obtained within the framework of relativistic mean-field
theory and incorporating HF+BCS pairing. Note that the older calculation does not include triaxial degrees
of freedom. Both calculations are in rather good qualitative agreement obtaining minima at comparable
quadrupole and octupole deformations. One notable difference is the alternative branch along the symmetric
fission path reported in [104], differing mainly in hexadecapole deformations, that we have not found. A second
difference concerns the relative energy of the symmetric and asymmetric fission paths at large deformations
(β20 ≈ 2.5): while the asymmetric path is preferred by the calculation shown here, the symmetric path is
favoured in [104] in a small deformation region before the onset of the third barrier. These differences between
the energy landscapes can be attributed to slight differences in the properties of the effective interactions used
in both cases, in particular concerning shell structure and its change with deformation. There is however no
fundamental difference between both approaches.
Note that it cannot be assumed that the symmetry restricted energy curve (the black line in Fig. 9.5)
corresponds to a physical fission path with higher symmetries, i.e. that it is a local minimum in all non-
constrained multipole degrees of freedom. In general, only the much more time-consuming calculation of
a multi-dimensional energy surface can answer this question. Similarly, multi-dimensional calculations are
sometimes needed to find the correct height of saddle points when the calculated fission path jumps from
one valley to another, which is signaled by discontinuities in the non-constrained multipole moments. The
calculation of deformation energy curves as presented here, however, is sufficient to analyze the overall
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Figure 9.7: Fission barrier of 226Ra as a function of β20 for the SLy5sX functionals with X = 1, . . . , 8 with
HFB+LN pairing. Energy is relative to minimum of the deformation surface.

structure of a fission barrier and to identify the relevant shape degrees of freedom for such more detailed
studies. Such multi-dimensional studies are planned for the near future, and MOCCa is already capable carry
them out.

9.4.2 Influence of the surface properties of the SLy5sX functionals

For the excellent reproduction of the barrier height of 226Ra reported above it is not sufficient to have
numerical codes that cover all relevant degrees of freedom. First and foremost it requires a properly fine-
tuned parameterization of the energy density functional. As already mentioned, the SLy5s1 parameterization
is one out of a series of eight fits that differ in the value of their surface energy coefficient asurf [118]. This
quantity provides a measure of the surface tension of symmetric nuclear matter. While the complex topography
of an energy surface such as the one displayed in Fig. 9.5 is determined by changes of shell structure with
deformation, the surface tension provides the smooth backdrop on which these shell effects generate valleys
and ridges. In a simple liquid-drop picture of the nucleus, deforming a spherical nucleus leads to an energy
loss that equals asurf times the change of the nucleus’ surface. The balance of this effect with the gain in
energy from reducing the Coulomb repulsion by deforming the nucleus then leads to a broad singly-humped
macroscopic barrier. The systematic variation of asurf in steps of 0.2 MeV provided by the SLy5sX family of
fits can be used to illustrate the interplay of these microscopic and macroscopic effects.
Figure 9.7 shows the deformation energy curve of 226Ra for all eight parameterizations from the SLy5sX series.
Pairing correlations are treated as before for all of them. Strikingly, all curves have the same overall shape,
which indicates that the shell effects do not significantly change when going from one parameterization
to another. This is also corroborated by the fission path being the same for all parameterizations: all
multipole deformations of degree ` = 2, 3, and 4 are virtually identical along the entire energy curve. What
does dramatically change is the overall slope of the energy curves. Indeed, with increasing deformation the
contribution of the surface energy grows quickly, such that, when going from the energy curve obtained
for SLy5s1 to the one for SLy5s8, each is systematically higher than the previous one. Comparing the two
extremes, SLy5s1 and SLy5s8, the height of the first barrier is already affected at a level of 1.5 MeV, while
the excitation energy of the second minimum increases by about 3 MeV. Even more dramatically, the height
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Functional Barrier height(MeV) Barrier location β20

SLy5s1 8.552 1.21
SLy5s2 9.527 2.16
SLy5s3 10.771 2.18
SLy5s4 12.300 2.20
SLy5s5 13.288 2.21
SLy5s6 14.553 2.22
SLy5s7 15.805 2.24
SLy5s8 17.052 2.25

Table 9.1: Highest energy and its location along the fission barrier for the SLy5sX functionals. These were
obtained by a cubic spline interpolation starting from the calculated points.

of the second barrier grows by about 6 MeV, and the third barrier by even more than 9 MeV. Most strikingly,
the third barrier, relatively unpronounced for SLy5s1, becomes the dominant one for the other fits as its height
increases much more quickly with asurf than the one of the second barrier, see Table 9.1.
The same qualitative and quantitative variation of barrier heights and excitation energies of shape isomers
is also found in similar calculations for other nuclei [118], indicating that the surface tension of SLy5s1 is
more realistic than the one of the other fits from the same series when, as done here, one aims at mean-field
calculations of energy surfaces without any quantum corrections related to deformation degrees of freedom.
The most relevant one of these for the present discussion is projection of angular momentum, either exactly
in a multi-reference framework [134], or in an approximate way through a rotational correction. Its effect
tends to increase with deformation [3]. In order to reproduce data, calculations with such correction require
parameterizations with larger surface tension than calculations without it. Thus, the possibility of achieving
a parameter fit of an EDF that describes fission barriers at any level of modeling is very unlikely. Still, with
the protocol suggested in [118] it is possible to construct parameterizations with controlled surface properties
that can be adapted to the context of their use without any difficulty.

9.4.3 Fission of 227Ra

MOCCa now opens the way to a complete new realm of describing fission processes: the application to even-
odd systems such as 227Ra. To the best of my knowledge there is currently no published result available on
the mean-field fission barriers of systems that break time-reversal invariance, especially in combination with
the breaking of reflection and axial symmetry. Ref. [135] reported axially-symmetric, reflection-asymmetric
calculations for 235U, but employed the equal-filling approximation, effectively approximating the even-odd
nucleus by a time-reversal invariant mean-field state, similar in concept to a false vacuum. Ref. [136]
reported calculations for several actinide nuclei in the region, also employing the equal-filling approximation
and assuming axial symmetry.
The fission barrier of 227Ra is shown in Fig. 9.8. The red and blue lines correspond to axial configurations with
conserved parity, with a blocked quasiparticle with respectively positive and negative parity. The black line
corresponds to configuration that are no longer limited by axial symmetry and parity. The overall structure
of the fission barrier is identical to the one of 226Ra. Octupole deformation is important for the minimum,
as well at the onset of the second barrier. Triaxiality is important in lowering the first barrier significantly.
Note that the barrier height when breaking parity is 8.1 MeV, in rather good agreement with the RIPL-3
recommended value [131] of 8.2 MeV.
It is interesting to look at the projection of the angular momentum along the symmetry axis for the axial

calculation. For most of the curve, the positive parity quasiparticle has Kπ = 1
2

+
while the negative parity

quasiparticle has Kπ = 1
2

−
. This is however not true for the entirety of the curve: the Thouless method in

principle conserves the quantum numbers of the quasiparticle and we should be able to follow one particular
value of K along the entirety of the curve. This is difficult in practice however, as no representation on
a 3D mesh is ever truly axial and mixing of K values can build up during the iterations, especially when
using predictor-corrector constraints, since their use implies solving the pairing equations twice per mean-field
iteration. More experience with the Thouless method is needed to better control this numerical problem.4.
While we therefore refrain from making any strong statement on the K of the blocked quasiparticles, it is

4Note that the direct diagonalisation suffers less from this defect since this method selects a quasiparticle at every mean-field
iteration thereby inhibiting mixing between different K, while the Thouless method only selects a quasiparticle at the start of
the iterations and small triaxial contributions to the mean-field potentials can slowly mix different K values.

131



9. Shape transitions of the Radium isotopes

0.0 0.5 1.0 1.5 2.0 2.5
0

5

10

15

20

En
er

gy
 (M

eV
)

Parity broken
Positive parity
Negative parity

Figure 9.8: Fission barrier of 227Ra calculated using the SLy5s1 parameterization either by conserving parity
and blocking a quasiparticle of positive or negative parity and conserving axial symmetry, or by breaking parity
and axial symmetry.

nevertheless interesting to notice that the positive parity quasiparticle is lower in energy than the negative
quasiparticle at the minimum, while the situation is reversed after the first barrier.

9.5 Rotational bands

Breaking time-reversal invariance allows us not only to study odd nuclei in the region, but also rotational
bands constructed by constraining one projection of the angular momentum 〈J 〉. We will conserve both
z-signature and y-time-simplex, so 〈Ĵz〉 is the only projection that can take non-zero values.
While a deformed mean-field calculation cannot generate many-body wavefunctions with an angular mo-
mentum quantum number, we can associate a phenomenological value J to a mean-field state with a given
z-projection of the angular momentum through [11]

〈Ĵz〉2 = J(J + 1) . (9.3)

Solving this equation for J , and calculating the mean-field states constrained to a range of values of 〈Ĵz〉 by
using cranking constraints we obtain a function E(J). Since 〈Ĵz〉 is not restricted to (half-)integer values, J
will be in general a real number and our function E(J) is thus continuous. We can then simply calculate γ
energies as

Eγ(J) = E(J)− E(J − 2) , (9.4)

which is again a continuous function.
Note that, in order to be able to constrain 〈Ĵz〉 to non-zero values, the z-axis cannot be a rotational symmetry
axis. One thus has to take care on how to orient the nuclear density on the Lagrange mesh, and put the axial
symmetry axis in the y- or x-direction, see Appendix C.
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Figure 9.9: Gamma transition energy of the rotational bands constructed on the prolate saddle-point for 224Ra
and 226Ra, for the adjusted pairing strengths (Vn, Vp) = (1000, 1450) MeV fm3 and alternative adjustment
Vn = Vp = 1100 MeV fm3. Experimental data correspond to the positive-parity rotational band based on the
groundstate and is taken from [126].

Parity conserved calculations Orienting the nuclear density along the x-axis is no problem when parity is
conserved. The function Eγ(J) for the rotational band constructed on top of the prolate saddle-point for
224Ra and 226Ra is plotted in Fig. 9.9 for two sets of pairing strengths. The agreement with experiment is
rather good for the adjusted pairing strength (Vn, Vp) = (1000, 1450) MeV fm3, up to J ≈ 10~ for both
nuclei, after which the calculated curve underestimates the experimental values.
The pairing strengths were readjusted to the three-point gaps of 216Ra and its neighbours. It interesting to
see the effect when the pairing strengths get adjusted to the rotational band itself. The pairing strengths
(Vn, Vp) = (1100, 1100) MeV fm3 result from a limited readjustment of the pairing, restricted to Vn = Vp,
on the rotational band of 226Ra. While these values are very different compared to the ones readjusted on
the three-point gaps, the agreement with experiment is very comparable.

Parity-broken calculations In principle, we could improve the description of the rotational bands by con-
straining 〈Ĵz〉 starting from the octupole deformed minimum. There are however two problems at this point
in time that prevent us from presenting results here. The first, purely practical problem is related to signature
symmetry. The octupole deformed minimum is still axial. If we want to orient the symmetry along the x-axis,
the axial octupole deformation breaks the reflection symmetry through the y-z plane. In short, in addition to
parity and time-reversal, a calculation that takes into account octupole deformation and non-zero values of
〈Ĵz〉 needs to break signature symmetry5. This leaves only the y-time-simplex as conserved symmetry. While
MOCCa is able to do this calculation, it adds another factor two to the computational effort required, and

5One could of course also do the opposite: orient the symmetry axis in the z-direction, and constrain the x-projection of the
angular momentum instead of the z-projection.
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9. Shape transitions of the Radium isotopes

we were unable to perform this calculation in time for this dissertation. Note that this is partly due to the
design of MOCCa: one could do the calculation when conserving z-simplex Ŝx and y-time-simplex ŠTy . This
combination of symmetries allows for orienting the axial symmetry axis along the x-axis, while not restricting
the octupole deformations. Unfortunately, this option is not included in the possibilities of MOCCa and we are
forced to do the calculation without the simplification that conserved x-simplex could bring.
A second problem is more related to the interpretation of the results. If parity is broken, the HFB wavefunc-
tions obtained by cranking will mix positive and negative parity many-body states and it is not a priori clear
how to compare the experimental data that is split into a positive-parity and a negative-parity band with
transitions between both. Projection on parity solves this problem, but adds another layer of complexity.
It is worth noting that the literature on octupole deformed rotational bands is very limited: [137] is the
only published self-consistent calculation we have been able to find and the presentation of results is lack-
ing in many ways. Calculations using Wood-Saxon potentials exist [138, 139], and show a shape transition
to octupole deformed shapes for increasing 〈Ĵz〉 for the spherical minima in the Radium region. Investigat-
ing how the inclusion of octupole deformation would change the results from Fig. 9.9 is thus definitely needed.
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Chapter 10

Charge radii of Hg isotopes

This chapter will detail some calculations performed using the mean-field framework described in parts 1 and
2 of this dissertation. In particular, we will focus on the charge radii of the mercury isotopes, as a direct
extension to the beyond-mean-field study from [140] that used the SLy6[17] functional to study even-even
nuclei in the neutron-deficient lead region. Due to the presence of a two-body centre-of-mass contribution
(see section 1.4.5) these calculations were carried out using cr8 instead of MOCCa, which cannot handle this
type of contribution to the energy density functional1.
In particular, we are interested to look with more detail into the charge radii of the neutron-deficient mercury
isotopes, a quantity that has a long history of experimental interest [141, 142]. The odd-even staggering in
the charge radii of the mercury isotopes with mass numbers A = 181 through A = 186 specifically has been
a subject of considerable interest, also on the theoretical side. Currently data is available from A = 180 up
to A = 206, mainly through the application of optical pumping techniques [143]. In the near future, the
measurements at ISOLDE using laser spectroscopy are planned to extend the available data on charge radii to
more neutron deficient isotopes down to 177Hg. The main motivation is to determine whether the odd-even
staggering continues for nuclei lighter than 181Hg.
For reasons of presentation we will divide the isotopic chain of the mercury isotopes into two: the isotopes
ranging from A = 192 up to A = 208 on one hand and the isotopes from A = 176 up to A = 190 on the
other. We will first look at the trends of the rms radii in both parts of the region (sections 10.2 and 10.3.),
after which we will focus in more detail on the odd-even staggering in section 10.5.

10.1 Details of the calculations

The calculations were performed on a mesh of (NX , NY , NZ) = (40, 40, 40) and dx = 1.0 fm. The box size
has been shown to be large enough to accommodate 208Pb and this mesh discretization length has been shown
in chapter 8 to be accurate to a few percent of a fm on absolute rms-radii, an accuracy that is comparable
to the error on the rms radius of 208Pb of the original SLy6 fit [17]. The isotopic shifts, as differences of rms
radii, are even significantly more accurate than the rms radii themselves, see Fig. 11 in [10].
As already discussed above, the SLy6 functional was employed in the calculations in order to be able to
compare with the original beyond-mean-field results, and was originally selected for its ability to describe the
low-lying level structure in neutron-deficient lead isotopes [144, 145]. We used the pairing interaction from
chapter 3 using Vn = Vp = 1250 MeV fm3 with α = 1.0 and a symmetric Fermi cutoff at 5 MeV around
the Fermi energy as described in section 3.9, as used in [140]. Note that the original study used HF+BCS
pairing while we will use HFB+LN pairing in order to be able to treat odd-A nuclei on the same footing as
the even-even ones. For most of the even-even nuclei the difference between HF+BCS and HFB is expected
to be rather small, since the nuclei considered here are sufficiently far away from the dripline in order for the
BCS approximation to hold [3].
As we are interested in the charge radii of even-even and odd-A nuclei in the region alike, we have to
be able to break time-reversal symmetry. Both this prerequisite and the HFB pairing can be delivered by
the cr8 code, also because we will not be breaking any additional point symmetries. Unfortunately the
breaking of time-reversal symmetry precludes any possibility2 of restoring rotational symmetry and mixing
mean-field configurations as done in [140]. We will thus limit ourselves to interpret mean-field results, which
will unfortunately limit our ability to compare to experiment.
The mean-square (ms) charge radius is a simple one-body operator and can thus be easily evaluated for

1Though this is mainly a consequence of time constraints and the implementation of this contribution into MOCCa would be
straightforward, though time-consuming.

2At least at the moment. Beyond-mean-field studies of odd nuclei have recently been demonstrated to be feasible for light
nuclei as 25Mg [32], but at tremendous computational cost.
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mean-field states. For a mean-field state characterized by a density ρ(r) it can be calculated as

r2
p =

∫
dr ρp(r)r2∫
dr ρp(r)

, (10.1)

and the root-mean-square (rms) radius is simply the square root of the ms radius. The isotopic shift with
respect to a reference isotope in the chain with N0 = A− Z neutrons is

δr2
A(N,Z) = r2

p(N,Z)− r2
p(N0, Z) . (10.2)

The results shown naively apply these formulas to calculate the isotopic shifts. These definitions assume
however that the proton in the nuclear medium is point-like. Taking into account a charge distribution of a
proton that is distributed over a finite region is possible but not employed here. In any case, this effect will
cancel to first order when dealing with isotopic shifts [3].
A major problem of dealing with mean-field results without any symmetry restoration and/or configuration
mixing procedures is the difficulty of interpreting results. This is especially true for this region on the nuclear
chart, as shape coexistence plays a significant role and the beyond-mean-field results are often superpositions
of different mean-field configurations of very different deformations [140, 145, 144, 146]. The isotopic shifts
present an additional difficulty on the mean-field level, as it is not immediately clear what the reference value
r2
p(N0, Z) should be. Given different minima that one is interested on a given energy surface, what should be

the reference value for every minimum? Given a beyond-mean-field calculation there is a clear answer: the rms
charge radius of the ground-state obtained for an arbitrary nucleus. On the mean-field level however, no such
clear-cut definition is possible and we are faced with a choice. In what follows we will (where possible) refer
to isotopic shifts with respect to the mean-square charge radius as obtained by theory 206Hg, but rescaled to
match the experimental isotopic shift of this nucleus with respect to 198Hg. The quantity we will be plotting
is

δr2
p,Theory(N, 80) = r2

p,Th.(N, 80)− r2
p,Th.(118, 80) + δr2

p,Exp.(118, 80) . (10.3)

The experimental shift of 206Hg with respect 198Hg needed in this formula was taken from [142]. The main
motivation of choosing 206Hg as a reference nucleus is that the nucleus is neutron-magic and exhibits a clear
spherical minimum on the mean-field level, leaving no doubt as to the correct interpretation of the structure
of the nucleus.

10.2 The less neutron-deficient Hg isotopes: from A = 192 up to A = 208

We have limited ourselves to the even-even mercury isotopes between A=192 and A=208. The deformation
energy surfaces as a function of β20 are shown in Fig. 10.1. No triaxial degrees of freedom were considered,
and consequently β22 = 0 along the curves. The location of the local minima for prolate and oblate minima
are explicitly shown by respectively red and blue diamonds. The overall structure of the energy surface is
rather comparable for all of these isotopes. A profound oblate minimum is found for all of the isotopes up
to 204Hg with a less pronounced prolate minimum to accompany it. As the neutron number increases, both
minima get less pronounced and move to smaller absolute values of β20, culminating in a single spherical
minimum at the neutron magic number N = 126 for 206Hg and N = 208 for 208Hg.
The isotopic shift with respect to 206Hg for these isotopes is shown in Fig. 10.2, either calculated from the
prolate or oblate minima shown in Fig. 10.1, as well as the experimental values. The linear trend is rather
well reproduced with more or less correct slope by both the prolate and oblate minima, although both get the
offset quite wrong. Nevertheless the prolate minima show a closer agreement with experiment than the oblate
minima. It is interesting to note that choosing a difference reference point (e.g. 194Hg as in [140]) that
includes a different reference value for the oblate and prolate minima can change the offset quite significantly,
either improving or deteriorating the agreement with experiment.
The fact that the prolate minimum is the best candidate to reproduce the rms radii, but is not the mean-field
minimum in 192Hg to 206Hg is clearly a deficiency of the model. The exact balance between the different
mean-field minima is often very precarious in the sense that it depends sensitively on many details of the
interaction, both in the particle-particle and particle-hole channel. Consequently, it is hard to point out any
single element that is lacking in the model.
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Figure 10.1: Deformation energy surface of the even 192−208Hg isotopes for SLy6 with HFB+LN pairing
with Vn = Vp = 1250 MeV fm3. All energies are with respect to the minimum of the deformation energy
surface, but with an additional shift of 1 MeV between neighbouring isotopes for demonstration purposes.
Blue diamonds denote oblate minima and red diamonds prolate minima. The numbers indicate the mass
number of the even-even isotopes.
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Figure 10.2: Isotopic shifts of the even neutron rich mercury isotopes 192−208Hg with respect to 206Hg,
calculated with the SLy6 parametrization complemented by HFB+LN pairing with Vp = Vn = 1250 MeV
fm3. Experimental data was taken from [142].

10.3 The more neutron-deficient Hg isotopes: from A = 176 up to A = 191

The deformation energy surfaces of the more neutron-deficient Hg isotopes are shown in Fig. 10.3. Again,
the configurations considered are all axial, such that β22 = 0 along the entire curve. Note that the energy
surfaces for the odd isotopes are false HFB vacua, meaning that they represent many-body states that are
strictly even in nature (and conserve time-reversal) but the expectation value of N̂ is odd. The three heaviest
isotopes 189−190−191Hg exhibit essentially the same structure as the heavier isotopes with a pronounced oblate
minimum and a prolate minimum at slightly higher energy at roughly the same absolute value of β20. From
188Hg and downwards in mass number a more deformed minimum develops that is lower in energy than the
oblate minimum for 179Hg, 180Hg, 181Hg and 182Hg. The balance between for these four isotopes is rather
precarious as the energy difference between minima is about 100 keV for 180Hg and 181Hg while it is only
roughly 10 keV for 179Hg and 183Hg. 178Hg reverts back to the previous configuration of two prolate minima
and a deeper oblate one, while 177Hg and 176Hg exhibit again the same structure as the heavier isotopes.

The corresponding isotopic shifts are shown in Fig. 10.4, calculated from either the prolate or oblate
minima and compared with experimental data. For the heaviest isotopes, 191Hg, 190Hg and 189Hg the prolate
minimum agrees rather well with experiment, even though these values are based on false vacuum many-body
states. Starting at 188Hg, the second more deformed prolate minimum develops around β20 ≈ 0.3 and the
rms radii of the prolate minimum skyrockets. For even masses lower than A = 188 the oblate minimum in
general is the best candidate to explain the experimental data. The available experimental data stops beneath
181Hg, but our calculations continue in the same trend. The main feature is of the disappearance of the
second prolate minimum for 177Hg and 176Hg, what induces the rms radii of the prolate minima to revert to
the original trend at A = 177.
The masses between A=180 and A=186 exhibit the odd-even staggering already mentioned in the introduction
of this chapter. While the even masses 180Hg, 182Hg, 184Hg and 186Hg are qualitatively explained by the
oblate minimum, the odd masses in between exhibit significantly larger charge radii that correspond better to
the second prolate minimum. The agreement is qualitative at best however for these isotopes and it is clear
that the false vacuum does not correctly describe the charge radii for these odd nuclei. Note that this is not
the case for 187Hg where the experimental data for both the ground state and isomeric state agree rather well
with the oblate minimum of the false vacuum. A special mention goes out to the isomeric state of 185Hg
which does not participate in the odd-even staggering and coincides rather well with the theoretical value of
the oblate minimum.
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Figure 10.3: Energy surfaces of the neutron deficient mercury isotopes from A=176 up to and including
A=191,using the SLy6 parameterization with HFB+LN pairing with Vn = Vp = 1250 MeV fm−3. All
energies are with respect to the minimum of the deformation surface, but with an additional shift of 1 MeV
between neighbouring isotopes for demonstration purposes. Full lines denote even isotopes, dashed lines
denote false vacua for odd isotopes. Blue diamonds denote oblate minima and red diamonds prolate minima.
The numbers indicate the mass number of the even-even isotopes.
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Figure 10.4: Isotopic shifts of the even neutron rich mercury isotopes 176−191Hg with respect to 194Hg,
calculated with the SLy6 parametrization complemented by HFB+LN pairing with Vp = Vn = 1250 MeV
fm−3. Note that the values shown for the odd-A nuclei are based on time-reversal invariant false-vacuum
many-body states. Experimental data was taken from [142].

From these results one can naively expect the odd-even staggering to stop for 177Hg, as there the first prolate
minimum is lower in energy than the second one by almost 200 keV, giving rise to a reduced value of the
charge rms radius for that nucleus. This is however not more than a naive expectation, as the energy difference
between the two prolate minima of 179Hg is only on the order of 10 keV. Any tiny change in the calculation
(either in the functional, pairing interaction or other parameters) could upset this balance and change this
prediction. In addition, we must not forget that we are dealing with false-vacuum states and the effects of
including a quasiparticle excitation will surely have an effect significantly larger than 10 keV.

10.4 Comparing to the beyond-mean-field results

It is instructive to compare to the beyond-mean-field results from [140] for the even-even isotopes. These
were unfortunately only available up to A = 194 and so we cannot present the isotopic shift with respect
to 206Hg. For the mean-field calculations, we have instead picked as reference the charge rms radius of the
prolate minimum of 194Hg. The experimental results were rescaled to the same nucleus and the error bars were
removed. The combination of mean-field results obtained here, beyond-mean-field results and experimental
data are shown in Fig. 10.5.
It was already noted in [140] that the isotopic shifts are rather well described for isotopes with A > 184, as the
ground state isotopic shift is in rather good agreement with the data, only slightly underestimating the shifts
of 188Hg, 190Hg and 192Hg. The beyond-mean-field ground state for these A > 184 are dominated by prolate
mean-field configurations while the 0+

2 is dominated by oblate mean-field configurations. At 184Hg however,
an inversion takes place and 0+

1 is dominated by oblate configurations. This is reflected in the isotopic shifts
of the 0+

1 state in 184Hg, 182Hg and 180Hg: isotopic shift exhibits a jump to higher values while it is rather
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Figure 10.5: Mean-field, beyond-mean-field and experimental results for the isotopic shifts of 176Hg up to
194Hg. The beyond-mean-field results are plotted for the ground state, 0+

1 and the first excited 0+ state,
0+

2 . Note that the mean-field results take as a reference rms radius the rms radius of the prolate minimum
of 194Hg, while the beyond-mean-field results refer to the rms radius of the calculated ground state of 194Hg.
Beyond-mean-field results were taken from [140], while experimental data was taken from [142].

0+
2 that describes the data. This inversion seems to mimic the behavior of the odd-A nuclei in the region.

[140] takes this as indication that both 0+
1 and 0+

2 are indeed predominantly based on relative prolate and
oblate mean-field configurations, but that the method gets the ordering of both levels wrong.
Interestingly, the beyond-mean-field results go back to ordinary ordering for 176Hg and 178Hg. Both ground
states are superpositions of both prolate and oblate mean-field states [140] while the 0+

2 states are based
on prolate configurations. Note that the isotopic shift of the 0+

2 state in both nuclei is still large compared
to the experimental trend, while the mean-field results of the prolate minimum revert to the smaller values.
This can be explained by the fact that the beyond-mean-field mixes several configurations that are even more
deformed than the prolate mean-field minimum.
Unfortunately, no beyond-mean-field results are available for the odd-A mercury isotopes. It is thus very
difficult to make meaningful statements about the odd-even staggering of 181Hg, 183Hg and 185Hg starting
from these results. Making a prediction on the possible staggering of the isotopic shift of more neutron
deficient isotopes such as 179Hg is likely also stretching the method beyond its limits.

10.5 Odd-even staggering: a more in-depth look at 181Hg, 183Hg and 185Hg

In the previous section we considered only time-reversal invariant mean-field states. We can do better by
creating quasiparticle excitations on top of the false vacuum, breaking time-reversal symmetry and changing
the particle-number parity of the HFB vacuum to −1 as described in chapter 3. It is worth noting that the
blocking procedure used was direct diagonalisation as described in chapter 6 as this is the only option available
in cr8.
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Experimentally, these three nuclei all have ground states with Jπ = 1
2

−
with low-lying 13

2

+
excited states3. We

are thus looking for quasiparticle excitations with these particular Jπ quantum numbers. However, calculations
presented in the previous sections had non-zero quadrupole deformations and thus break rotational invariance.
The many-body state and the single-particle states therefore have no longer good angular momentum J , and
a straightforward identification of quasiparticles is impossible. The projection of angular momentum on the
axis of symmetry is still conserved, but will be of limited practical use. Parity however, is conserved and the
parity quantum number can directly be used to identify quasiparticles.

Identifying the 13
2

+
states is comparatively easy: since their J value is rather high, these states tend to stay

relatively pure. Consequently, for these single-particle states

〈J2〉 ≈
(

13

2

)2

. (10.4)

Note that this equality never exactly holds in practice and these kinds of arguments are only approximative
as these single-particle states are in general superpositions of states with many different values of angular
momenta. Adding the parity quantum number to the mix, we identified fourteen (seven in each mean-field
minimum4) in every nucleus, close to the Fermi energy, that we used for blocking purposes. The case for the
1
2

−
is less clear-cut since their low value of J implies that they will in general mix quite strongly with other

levels, and the value of 〈J2〉 will be polluted. As such, we have simply selected four(two in every mean-field
minimum) K = 1

2 quasiparticles with negative parity to block that were located close to the Fermi energy.
The positive and negative parity states with lowest energy in every mean-field minimum obtained by blocking
are plotted in Fig. 10.6. Note that the labels 1

2 and 13
2 do not directly denote the angular momentum of

the mean-field state, but rather the identification of the blocked quasiparticle and thus should be taken as
tentative assignments.

For 185Hg the oblate minimum delivers a spectrum that can be considered in rather good agreement with
experiment: blocking a quasiparticle with negative parity gives us the lowest energy and the relative energy

of the closest positive parity candidate is comparable to the excitation energy of the experimental 13
2

+
state.

Purely based on the quasiparticle spectrum, the oblate well is a better match to explain experiment than the
prolate well for 185Hg. The situation is less clear for 183Hg: the overall lowest quasiparticle is located in the
prolate well, but has positive parity. The oblate well again gets the states in correct order and with an energy
difference that is in the right ballpark. For 181Hg the prolate well gives rise to the wrong ordering of states,
but this time with an almost perfect energy difference. The oblate well gets the order correct again, with an
energy difference between the states that is again in the right ballpark.
The isotopic shifts of these blocked HFB states, together with the values of the false vacuum states are shown
together in Table 10.1. For 181Hg the prolate well produces isotopic shifts that are significantly closer to the
experimental result than the oblate well. Creating a quasiparticle excitation also brings theory closer to the

experimental result for the 1
2

−
state. The same is observed for 183Hg, the prolate well produces isotopic shifts

in the right ballpark while the oblate well is far off. Creating a quasiparticle excitation on top of the false

vacuum also brings the theoretical value closer to the experimental value for the 1
2

−
state. For 185Hg the

experimental isotopic shift of both the ground state and the isomeric state is available. The isotopic shift 1
2

−

state matches most closely the negative parity quasiparticle in the prolate well, while the 13
2

+
matches most

closely the positive-parity quasiparticle in the oblate well. The blocked HFB wavefunctions in the prolate well
provide an improvement of the agreement with experiment compared to the false vacuum, but this is not the
case for the oblate well.
We are now faced with a rather interesting dichotomy: on one hand the spectrum generated by the oblate
well is in rather better agreement with the experimental data, but on the other hand the isotopic shifts of
the ground state configurations are in better agreement with the prolate minimum. The correct answer is of
course that limiting ourselves to either one or the other of the different mean-field minima is not a sufficient
description for these nuclei. Beyond-mean-field results for even-even nuclei in the region [140] clearly indicate
that the beyond-mean-field wavefunctions are complicated superpositions of both prolate and oblate mean-
field states. The same can be expected of these odd-A nuclei, only with an added degree of complexity:
while we only have shown the lowest lying states obtained by blocking, several different choices for blocking
of quasiparticles are possible. In principle, all of these should be mixed in a beyond-mean-field procedure.

3Note that this excitation is rather long-lived in 185Hg and its rms radius was also measured.
4Note that for J = 13

2
K can take 14 values, but K and −K are degenerate in this case.
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Figure 10.6: Spectrum of 181Hg, 183Hg and 185Hg as obtained by blocking quasiparticles as described in the
text. Note that the indices 13

2 and 1
2 for the theoretical results indicate the identification of the blocked

quasiparticle as described in the text, and is not equal to the angular momentum of the HFB state. Only
parity is a good quantum number. Energies are with respect to the overall lowest blocked HFB state studied.
Experimental data was taken from [126].

Oblate Prolate Experiment

181Hg
False vacuum -1.191 -0.368
1
2

−
-1.121 -0.471 -0.526 ± 0.018

13
2

+
-1.120 -0.397

183Hg
False vacuum -1.024 -0.291
1
2

−
-0.939 -0.424 -0.481 ± 0.013

13
2

+
-0.958 -0.357

185Hg
False vacuum -0.891 -0.221
1
2

−
-0.828 -0.328 -0.488 ± 0.011

13
2

+
-0.820 -0.349 -0.955 ± 0.045

Table 10.1: Comparison between isotopic shifts relative to 206Hg calculated with either false vacua and by
creating quasiparticle excitations. Note that the angular momentum values for the theoretical results in this
table are only tentative and indicate in fact the identification of the blocked quasiparticle as explained in the
text. Experimental data was taken from [142].
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10.6 Conclusion

We have extended the mean-field calculations of [140] to mercury isotopes with higher neutron number, as
well as the odd-A isotopes between A = 176 and A = 192. Isotopic shifts of the even-even isotopes are in
general in good qualitative agreement with the data. One has however to take into account that we have
made the choice to consider both the isotopic shifts of the oblate and prolate minima, without consideration
which one was lower in energy. Taking only the lowest-energy minimum would have resulted in less good
agreement with the experimental data.
For the 187Hg, 189Hg, 191Hg the isotopic shifts of the time-reversal invariant false vacuum wavefunctions
already provides agreement with the data on the same quantitative level of the even-even isotopes. The
shifts of the isotopes that exhibit the odd-even staggering, 181Hg, 183Hg and 185Hg, can also be more or less
understood in the spirit of the second prolate minimum that becomes important for these nuclei.
Quasiparticle excitations on top of the quasiparticle vacua of 181Hg, 183Hg and 185Hg were created. The
resulting spectrum was compared to experiment, through a tentative identification of the quasiparticles. The
isotopic shifts of the blocked wavefunctions in general agreed better with the data compared to the shifts
obtained from the false vacua.
It remains very difficult to make definite statements about the neutron-deficient mercury isotopes on a mean-
field level. The beyond-mean-field wavefunctions of the even-even isotopes indicate that strong mixing between
prolate and oblate configurations is relevant across the entire isotopic chain, rendering an interpretation on
the basis of single mean-field configurations rather dubious. The possible odd-even staggering of the isotopic
shifts of the nuclei that are yet to be measured (179Hg and 177Hg mainly) in particular is hard to predict.
Naively one could argue that the second prolate minimum (almost) disappears for the false vacuum of 177Hg,
which makes the isotopic shifts in Fig. 10.4 of the prolate minimum come down. The disappearance of this
minimum would then make the a staggering unlikely as very deformed prolate configurations rise in energy.
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A cup of MOCCa
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Chapter 11

A cup of MOCCa: a users manual

MOCCa is a rather complex program with many input parameters. This chapter has as aim to teach the users
how to use MOCCa in practice and how to utilize the options described in the rest of this thesis. Where possible
in previous chapters we explicitly mentioned the relevant keywords in the hope to make interacting with the
program intuitive. The code was designed in a what is hopefully a clear way and extensive documentation is
present in the source code. Nevertheless, as always with large software projects, there are still many possible
improvements: I hope the reader will forgive me the occasional irrational choice or bit of spaghetti code.
The chapter details how to compile the code in section 11.1. The requirements for a run are explained in
section 11.2, followed by an example and an explicit list of all the input keywords. The chapter concludes
with a list of the source code files in section 11.3 and a short description of their function with a reference to
the rest of the dissertation for quick indexing. For a general overview of the structure of the code, the reader
is referred to appendix H, where a schematic diagram of the workflow of the program is drawn.

11.1 Compilation

Most of MOCCa is written in FORTRAN-90, but it uses some features of the FORTRAN-03 and FORTRAN-08
standards. Specifically, it uses procedure pointers throughout the whole code, and should be compiled with
compilers that support this FORTRAN-03 feature. A list of tested compiler versions is given in Table 11.1.
A special mention goes out to gfortran v4.9, which refuses to compile the code correctly, even though both
v4.8 and v5.3 do.
The code is completely independent of any compile-time parameters, meaning that a single compilation
suffices to treat all nuclei, light or heavy, in all possible symmetry combinations with any of the other runtime
options. This ‘one compilation to end them all‘ can easily be achieved by issuing the make command in the
MOCCa directory, using the accompanying Makefile. By default, this will compile with the currently installed
version of gfortran, with maximum optimization. Users wishing to change compiler and/or compilation options
can easily do so using the Makefile. Note however that the makefile is configured to use directories /mod/
and /obj/ in the MOCCa directory.
If the GNU Make tool is not available on your platform1, one can compile MOCCa using the following command

gfortran -O3 -o MOCCa.exe

CompilationInfo.f90 GenInfo.f90 Force.f90 OptimizedDerivatives.f90 Derivatives.f90

CoulombDerivatives.f90 Mesh.f90 Spinor.f90 Spwf.f90 SpwfStorage.f90 Damping.f90

Densities.f90 Moments.f90 SpecialMoments.f90 Coulomb.f90 PairingInteraction.f90

HartreeFock.f90 HFB.f90 GradientHFB.f90 BCS.f90 Pairing.f90 Cranking.f90

MeanFields.f90 ImaginaryTime.f90 Energy.f90 DensityMixing.f90 Transform.f90

Interfaces.f90 InOut.f90 Main.f90 -llapack -lblas

The order of files in the command is strict and cannot be changed. The line breaks should be omitted, and
the linking to the LAPACK library should be adapted to your system. MOCCa uses the LAPACK library to
solve the linear system involved in the DIIS procedure for density mixing, see section 4.9.4). This is far from
necessary however, and disabling the DIIS option would result in a completely self-sufficient code.

11.2 Running MOCCa

For a successful run, MOCCa needs three things: an input file containing a set of single-particle wavefunctions,
another file named ‘forces.param’ containing a set parameters of Skyrme parameterizations and runtime input
on STDIN. In turn, MOCCa will produce an output file containing the single-particle wavefunctions (and various

1A very rare occurrence indeed on a what I imagine would be a scientific computation platform.
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Compiler Version Comments
gfortran 4.7.2
gfortran 4.8.1
gfortran 4.8.2
gfortran 4.8.3
gfortran 5.3.0

ifort 13.1.3 Needs -assume realloc-lhs flag
ifort 14.02 Needs -assume realloc-lhs flag
ifort 15.01 Needs -assume realloc-lhs flag
ifort 15.03 Needs -assume realloc-lhs flag
ifort 16.01 Needs -assume realloc-lhs flag

Table 11.1: Tested compilers that compile MOCCa correctly.

details of the calculation) and print output to STDOUT. The most practical way to run the code is then,
with the runtime input located in a file ‘MOCCa.data’,

./MOCCa.exe < MOCCa.data > MOCCa.out

where one has to take care that MOCCa can find the input file and the ‘forces.param’ file. The use of the
wavefunction input and output files, the runtime input and the ‘forces.param’ file is detailed in the following
subsections.

11.2.1 Wavefunction files

The gradient descent algorithm needs a starting guess. This starting point can be generated either by a
previous run of MOCCa itself, or by the older mean-field codes ev8, cr8 or ev4. The output of NIL8, the code
generating Nilsson model wavefunctions, can also be used as input [9].
The code needs the filename of the input wavefunction file as runtime input on STDIN, using the keyword
InputFileName. In order to determine the format of the wavefunction file, meaning by which mean-field code
it was generated, MOCCa looks at the starting letters of the InputFileName string. If these match either ‘EV8’,
‘NIL8’, ‘CR8’, ‘EV4’ or ‘MOCCA’2 the code will select the correct reading routines. If no match is found,
MOCCa will assume it is a wavefunction file generated by MOCCa itself. Wrongly signalling the type of file to
the code will result in severe errors, as the input information will be completely garbled.
When input from either ev8, cr8 or ev4 is used, one should not expect MOCCa to give identical results before
the start of the iterations. Neither of these codes writes all of the data that is needed to completely replicate
a calculation to file and MOCCa is thus obliged to recalculate some quantities at the start of the iterations.
For a calculation that was well-converged, this effect will be on the level of a few keV, provided the user took
extreme care to replicate the conditions of the run of the original mean-field code.
Breaking of symmetries is also handled completely automatically withing MOCCa. The code can read symmetry-
conserved files and explicitly break the symmetry before the start of iterations3. Simply specifying the broken
symmetries in the runtime input will make MOCCa apply the necessary transforms. Note however that this
is only possible when starting from wavefunction files generated by MOCCa, input from the older mean-field
codes cannot be used directly in symmetry-breaking calculations.

11.2.2 Runtime Input

The runtime options are organized in a number of FORTRAN namelists, which are a rather human-readable
way of specifying input. A certain number of namelists needs to be present in every input datafile, while others
are optional. The possible namelists are shown in Table 11.2. Note that the order is important and cannot be
changed. The various keywords that MOCCa recognizes are grouped by namelist in Tables 11.3 through 11.16.
Fig. 11.1 shows the minimal input MOCCa requires to function, corresponding to a Hartree-Fock calculation
of 64Ge for the parameters of chapter 7.
Most of the input parameters are fairly straightforward in usage, although it is useful to know that the input of

2This matching is not case-sensitive.
3For obvious reasons, MOCCa can not be expected to read symmetry-broken files and then try to re-conserve them.
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Namelist Comments Concerns
/GenInfo/ Required Mesh parameters, iteration scheme, nucleus
/SpwfStorage/ Required Single-particle wavefunctions
/Densit/ Required Mean-field densities
/Pairing/ Required Type of pairing, pairing interaction
/HFConfig/ Optional Hartree-Fock configuration
/Derivatives/ Required Usage of derivatives
/MomentParam/ Required General options for multipole constraints
/MomentConstraint/ Optional, repeatable Specific input for single multipole constraints
/SpecialMoments/ Optional For user-defined quantities to constrain
/InAndOutput/ Required In- and output of wavefunction files
/Force/ Required Skyrme parameterization options
/Coulomb/ Required Coulomb solver options
/Cranking/ Required General options for cranking constraints

Table 11.2: List of the namefiles of a MOCCa runtime input.

MOCCa is insensitive to case in all respects. Three namelists merit some additional attention: the /HFConfig/,
/SpecialMoments/ and /MomentConstraint/.
The first, /HFConfig/ needs to be announced to the code by setting HFConfig to .true. in the /Pairing/
namelist. As it details the Hartree-Fock configuration desired (see sec 6.2) based on both parity and signature
quantum numbers, it can presently only be used when both symmetries are conserved.
The second namelist /SpecialMoments/ deals with the addition of constraints on quantities that are not
included by default in MOCCa. Its presence should be announced to the code by putting SpecialInput to .true.
The final namelist /MomentConstraint/ is not only optional, but repeatable, as for every time it is mentioned
MOCCa adds a constraint on the corresponding multipole moment. The first presence of /MomentConstraint/
should be announced by setting MoreConstraints to .true. in the obligatory /MomentParam/ namelist.
Further constraints can be added by including /MomentConstraint/ again, and setting MoreConstraints

to .true. in the preceding namelist. As example, Fig. 11.2a shows the necessary input in order to impose
constraints on 〈Q̂20〉 and 〈Re Q̂22〉, when the user references the expected values of the multipole moments.
A special case is the (q1, q2) representation of the quadrupole moments, see appendix C. Constraints on both
quadrupole degrees of freedom need to be declare, but the reference to the (iq1, iq2) variables should only
be made once. Fig 11.2a shows valid runtime input for this case.
Further examples of runtime input are provided with the MOCCa code itself in the folder Examples/.
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&geninfo

protons=32, neutrons=32

nx=16,ny=16,nz=16,dx=1.0

MaxIter=1000, dt=0.02/

&SpwfStorage

nwt=64/

&Densit/

&Pairing/

&Derivatives/

&MomentParam/

&InAndOutput

OutputFileName="MOCCa.Ge64"

InputFileName="MOCCa.Ge64"/

&Force

afor="Sly4"/

&Coulomb/

&Cranking/

Figure 11.1: Minimal input for a calculation with MOCCa.

&MomentParam

MoreConstraints=.true./

&MomentConstraint

l=2,m=0,

Constraint=100,

MoreConstraints=.true./

&MomentConstraint

l=2,m=2,Constraint=0/

(a) Using the multipole values.

&MomentParam

MoreConstraints=.true./

&MomentConstraint

l=2,m=0,

iq1=100.0, iq2=0.0,

MoreConstraints=.true./

&MomentConstraint

l=2,m=2/

(b) Using iq1 and iq2.

Figure 11.2: Runtime input corresponding to constraints on 〈Q̂20〉 and 〈Q̂22〉.
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/GenInfo/
Mesh options nx, ny, nz, dx Sec. 4.1
Nucleus Neutrons, Protons
Iteration dt, MaxIter, PrintIter, KineticDamping, E0, TaylorOrder Sec. 4.1, 4.9

IterType, Restart
Symmetries TimeReversal, Parity, Signature, TimeSimplex, Isospin Sec. 4.2
Convergence MomentPrec, EnergyPrec, PairingPrec, CrankPrec Sec. 4.8
Error ErrorFileName
nx, ny, nz integer Default: N.A.

Number of mesh points represented by MOCCa in every
Cartesian direction.

dx real Default: N.A.
Mesh discretisation size in Fermi.

Neutrons, Protons real Default: N.A.
Number of neutrons, resp.protons for the many-body state
to have on average. Needs to be integer in case of Hartree-
Fock pairing.

dt real Default: 0.012
Size of time-step of the iterative algorithm.

MaxIter integer Default: 0
Maximum number of mean-field iterations to perform.

PrintIter integer Default: 0.1×MaxIter
Number of iterations between printouts.

KineticDamping logical Default: .false.
If .true. precondition the gradient descent steps.

E0 real Default: 100

E0 parameter of the preconditioning operator P̂ .
IterType character Default: ‘ImTS’

Use imaginary time-step algorithm (’ImTs’) or Nesterov it-
erations (’Nest’).

Restart integer Default: 25
Number of iterations after which to restart when using Nes-
terov Iterations.

ErrorFileName character(len=256) Default:
‘MOCCa.error’

File to write error messages to.
MomentPrec real Default: 10−4

Convergence criterion for multipole moments.
EnergyPrec real Default: 10−9

Convergence criterion for the energy calculated from the
functional.

PairingPrec real Default: 10−6

Convergence criterion for the quantities related to pairing.
CrankPrec real Default: 10−4

Convergence criterion on (projections of) angular mo-
mentum.

TimeReversal integer Default: 1
Conserve(1) or break(0) time-reversal symmetry.

Parity integer Default: 1
Conserve(1) or break(0) parity symmetry.

Signature integer Default: 1
Conserve(1) or break(0) signature symmetry.

TimeSimplex integer Default: 1
Conserve(1) or break(0) y-time-simplex symmetry.

Isospin integer Default: 1
Conserve(1) or break(0) isospin symmetry. Note that the
second option is not implemented yet.

Table 11.3: Namelist GenInfo, its input parameters and the relevant sections in this dissertation.
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/SpwfStorage/
General nwt, PrintingWindow Sec. 4.4

nwt integer Default: N.A.

Total number of single-particle wavefunctions. Needs to
match the number of wavefunctions on the input file.

PrintingWindow real Default: 10.0

MOCCa prints only single-particle states within this distance
from the Fermi energy, both in the Hartree-Fock and ca-
nonical basis.

Table 11.4: Namelist SpwfStorage, its input parameters and the relevant sections in this dissertation.

/Densit/
General DampingParam, MixingScheme, PulayOrder, Recalc Sec. 4.7.1

DampingParam real Default: 0.85

Damping parameter for the linear density mixing.

MixingScheme integer Default: 0

Use linear mixing(0) or DIIS mixing(1).

PulayOrder integer Default: 0

Number of previous iterations to include in the DIIS mix-
ing.

Recalc logical Default: .false.

Recalculate mean-field densities at the start of equations
(.true.) or us the densities from file (.false.).

Table 11.5: Namelist densit, its input parameters and the relevant sections in this dissertation.
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/Pairing/
General options Type, SolvePairingStart, PairingIter Sec .6.1

Pairing Interaction PairingNeutron, PairingProton,AlphaProton, AlphaNeutron,
Rhosat

Sec. 3.9

CutNeutron, CutProton, PairingMu, CutType

Hartree-Fock HFConfig, FreezeOccupation Sec. 6.2

BCS ConstantGap,NeutronGap, ProtonGap Sec. 6.3, 6.5

Type character(len=3) Default: ’HF ’

Do a Hartree-Fock (’HF’), HF+BCS (’BCS’) or HFB (’HFB’)
calculation.

SolvePairingStart logical Default: .true.

Solve the pairing equations at the start of the iterations
(.true.) or not (.false.). Cannot be de-activated in the case
of HFB.

PairingIter integer Default: 50

Maximum number of iterations for the pairing solver. Note
that the default value is 1 when doing HFB calculations.

PairingNeutron,

PairingProton

real Default: 0.0

Pairing strength Vn, Vp in MeV fm3. Note that if the user
specifies one, but not the other, MOCCa takes Vn = Vp.

alphaneutron,

alphaproton

real Default: 0.0

Density dependence parameter αq of the pairing interac-
tion. Note that if the user specifies one, but not the other,
MOCCa takes αn = αp.

rhosat real Default: 0.16

Saturation value of the nuclear density to be used in the
pairing interaction.

CutNeutron,

CutProton

real Default: 0.0

Cutoff-lenght ∆eq for neutrons and protons. Note that if the
user specifies one, but not the other, MOCCa takes ∆en =
∆ep.

PairingMu real Default: 0.5

Value of the pairing-cutoff dispersion µ.

CutType integer Default: 1

Use a symmetric Fermi pairing cutoff (1) or a piece-wise co-
sine cutoff (2).

HFConfig logical Default: .false.

If .true. signals the presence of a HFConfig namelist in the
input. Only to be activated for Hartree-Fock calculations.

FreezeOccupation logical Default: .false.

If .true. MOCCa will not change the occupation numbers in
the case of a Hartree-Fock calculation.

ConstantGap logical Default: .false.

If .true., keep the pairing gaps constant when doing a BCS
calculation.

NeutronGap,ProtonGapreal Default: 0.0

When ConstantGap is .true., these are the values for ∆p and
∆n. Note that if the user specifies one, but not the other,
MOCCa takes ∆n = ∆p.

Table 11.6: First part of the Pairing Namelist: general, pairing interaction, Hartree-Fock and BCS options.
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/Pairing/
HFB FermiSolver, HFBIter, QPPrintWindow, Lipkin, LNFraction,

LNFixN, LNFixP
Sec. 6.4.3

ConstrainDispersion, DN2P, DN2N Sec. 6.5

Block, GuessKappa Sec. 6.8

HFBgauge App. G

FermiSolver character(len=9) Default: ’BROYDEN’

In the case of HFB pairing, use the bisection solver (’BISEC-
TION’), the Broyden solver (’BROYDEN’) or the Thouless
method (’GRADIENT’). Note that the Thouless method can
only be started from a MOCCa wavefunction file that contains
a HFB state.

HFBIter integer Default: 50

Maximum number iterations for the Fermi solver in case of
HFB pairing. Note the default value is clearly insufficient
when using the Thouless method to solve the HFB equations,
values of 100 500 are more appropriate in that case.

GuessKappa logical Default: .false.

Use the values of the anomalous density matrix κ from the
wavefunction file(.false.) or reinitialize κ (.true.).

QPPrintWindow real Default: 100.0

Print only quasiparticles for which |Eqp| is smaller than this
value.

Block integer Default: 0

Non-zero values signal the presence of a Blocking namel-
ist further down the runtime input and the number of quasi-
particle indices to block.

HFBGauge real Default: 0.0

Gauge parameter α to use in the HFB Hamiltonian.

Lipkin logical Default: .false.

If .true. use the Lipkin-Nogami prescription for λ2 when doing
a HFB calculation.

LNFraction real Default: 1.0

Portion of the λ2 contribution to the HFB Hamiltonian to be
added to the single-particle Hamiltonian ĥ. (1 - LNFraction)
will then be added to the pairing matrix ∆.

LNFixN,LNFixP real Default: 0.0

Values of the λ2 parameter constraining the dispersion for
neutrons and protons.

ConstrainDispersion logical Default: .false.

If .true., constrain the values of the neutron and proton dis-
persion.

DN2N,DN2P real Default: 0.0

If ConstrainDispersion is .true. constrain the values of the
neutron and proton dispersion to these values. Note that if
the user specifies one, but not the other, MOCCa takes ∆N2

p =
∆N2

n.

Table 11.7: Second part of the Pairing namelist: HFB options.
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/HFConfig/
General Npp,Npm,Nmp,Nmm,Ppp,Ppm,Pmp,Pmm Sec. 6.2

Npp,Ppp integer Default: 0

Number of positive signature, positive parity occupied
neutron/proton states.

Nmp,Pmp integer Default: 0

Number of negative signature, positive parity occupied
neutron/proton states.

Npm,Ppm integer Default: 0

Number of positive signature, negative parity occupied
neutron/proton states.

Nmm,Pmm integer Default: 0

Number of negative signature, negative parity occupied
neutron/proton states.

Table 11.8: Namelist HFConfig, its input parameters and its relevant sections.

/Derivatives/
General MaxFDOrder, MaxFDLapOrder, CoulombLapOrder, OptDer,

BStack
Sec.4.1

MaxFDOrder integer Default: 3

Order of finite difference formula for the first order deriv-
ative. Possible values: 1,2,3,4 or -1 for Lagrange derivat-
ives.

MaxFDLapOrder integer Default: 4

Order of finite difference formula for the second order
derivative. Possible values: 1,2,3,4 or -1 for Lagrange
derivatives.

CoulombLapOrder integer Default: 2

Order of finite difference formula for the second order de-
rivative in the Coulomb routines. Possible values: 1,2,3,4
or -1 for Lagrange derivatives.

OptDer logical Default: .true.

If .true., allow MOCCa to use optimized derivation routines
for the derivatives, leading to significantly reduced CPU
time. Note that the availability of these routines depend
on the choices of symmetries and the parameters MaxF-
DOrder and MaxFDLapOrder.

BStack logical Default: .true.

Calculate the action of the B mean-field potential through
the chain-rule for derivatives (.false.) or by stacking de-
rivatives (.true.).

Table 11.9: Namelist Derivatives and its input parameters.
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/MomentParam/
General QuantisationAxis,SecondaryAxis Sec. C.3.2

Constraints ContinueMoment,MoreConstraints,SpecialInput Chapter 5

Predictor-corrector c0,d0,epsilon Sec .5.4

Cut-off CutoffType,radd, acut Sec. 5.6

QuantisationAxis integer Default: 3

Quantisation axis of the multipole moments: x(1), y(2)
or z(3).

SecondaryAxis integer Default: 1

Alphabetical order (1) of the two other axes or anti-
alphabetical order(2).

ContinueMoment logical Default: .false.

If .true. take the values of the Lagrange multipliers of the
constraints from the wavefunction file. If .false. initialize
the Lagrange multipliers from the runtime input.

MoreConstraints logical Default: .false.

Signals the presence of a namelist MomentConstraint

after this one.

SpecialInput logical Default: .false.

If .true. signals that a namelist SpecialInput will follow.

c0,d0,epsilon real Default: 0.2,0.01,7

C0, d0 and ε parameters for the predictor-corrector con-
straints.

CutoffType integer Default: 0

Type of cutoff for the constraints. Spherical(1) or density-
dependent(0).

radd real Default: 4.0

Radius parameter for the cutoff.

acut real Default: 0.4

Diffusion length parameter for the cutoff.

Table 11.10: Namelist MomentParam and its input parameters.
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/MomentConstraint/

General l,m,Impart,MoreConstraints Sec. 5

Constraint values Constraint, ConstraintNeutrons,ConstraintProtons,iq1,iq2 App. C

Constraint options Isoswitch, Intensity,Total,ConstraintType,Intensity Sec. 5.5

l,m integer Default: 0,0

Values of (l,m) of the multipole moment to constrain.
Must be smaller than MaxMoment. ` = −1 corresponds
to the rms radius.

Impart logical Default: false

Constrains the real(.false.) or the imaginary part(.true.)
of the multipole moment.

MoreConstraints logical Default: .false.

Signals the presence of another namelist
MomentConstraint after this one.

Constraint real Default: 0.0

Desired value of the multipole moment, either isoscalar
or isovector, depending on the value of isoswitch.

ConstraintNeutrons/Protonsreal Default: 0.0

Desired value of the multipole for neutrons, respectively
protons.

iq1,iq2 real Default: 0.0

Legacy option only valid for 〈Q̂20〉 and 〈Q̂22〉. Corres-
ponds to the constraint options of cr8.

Isoswitch integer Default: 1

Constraint on the total(isoscalar) multipole moment(1),
neutrons and protons separately(2) or the difference of
protons and neutrons(3).

Total logical Default: .false.

Constraint on 〈Q̂`m〉 or on the total multipole moment
Q`.

ConstraintType integer Default: 0

Type of constraint: no constraint(0), predictor-
corrector(1) or augmented Lagrangian(2).

Intensity real Default: 0.0

Intensity CO of the constraint in the case of the augmen-
ted Lagrangian algorithm.

Table 11.11: Namelist MomentConstraint and its input parameters.
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/SpecialMoments/
General SchiffMoment,Constraint,ConstraintType Sec. 5.5.4

SchiffMoment integer Default: 0

When equal to 1, MOCCa calculates and prints the Schiff-
moment.

ConstrainType integer Default: 0

Type of constraint to place on the Schiff moment. No
constraint(0), predictor-corrector constraints(1) or aug-
mented Lagrangian (2).

Constraint real Default: 0.0

Desired value of the Schiff moment.

Intensity real Default: 0.0

Intensity CO of the augmented Lagrangian constraint, if
ConstraintType is equal to 2.

Table 11.12: Namelist SpecialMoments and its input parameters.

/InAndOutput/
Filenames InputFileName,OutputFileName

General PromOutput,LegacyInput

InputFileName character(len=256) Default: ‘fort.12’

Name of the input wavefunction file. See the section on
wavefunction files for the naming convention.

OutputFileName character(len=256) Default: ‘fort.13’

Name of the output wavefunction file.

PromOutput logical Default: .false.

If .true. MOCCa writes an additional output file with
the name of OutputFileName, but with extension .prom’.
This can be used as input by the projection codes
Promesse and Prom4.

LegacyInput logical Default: .false.

When .true. MOCCa assumes the wavefunction file is in an
older MOCCa format.

Table 11.13: Namelist InAndOutput and its input parameters.

/Force/
General afor, SkyrmeTreatment App. A

afor character(len=200) Default: ‘’

Name of Skyrme parameterisation to use, must be located
of ‘forces.param’.

SkyrmeTreatment character(len=200) Default: ’DEFAULT’

Print the contribution to the function either term by
term (’DEFAULT’) or grouped per coupling constant
(’BTERMS’).

Table 11.14: Namelist Force and its input parameters.
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/Coulomb/
General CoulombMax,CoulombSolver, CEX/Y/Z, MaxLCoul Sec. 4.7.2, App F

CoulombMax integer Default: 500

Maximum number of iterations for the Coulomb solver.

CoulombSolver integer Default: 1

Choice of the algorithm for solving the Poisson equa-
tion. No contribution from Coulomb(0), Conjugate Gradi-
ent(1), Red-black Gauss-Seidel(2) or Symmetric overre-
laxation (3).

CEX/Y/Z integer Default: 0

Number of points to add to boundary of the Cartesian
mesh for the solution of the Coulomb problem. Note that
this is the number of points on every side, and physical
number of extra points is double this number.

MaxLCoul integer Default: 0

Value of the highest order ` multipole moment to include
in the boundary conditions of the Coulomb problem.

Table 11.15: Namelist Coulomb and its input parameters.

/Cranking/
Cranking values OmegaX/Y/Z,CrankX/Y/Z,ContinueCrank Sec. 5.5.3

Algorithm options CrankDamp,CrankReadj,CrankTypeX/Y/Z,CrankC0 Chapter 5

OmegaX/Y/Z real Default: 0.0

Value of the cranking frequency ω in the three Cartesian
directions at the start of the iterations.

CrankX/Y/Z real Default: 0.0

Desired value of the (projections) of the angular mo-
mentum.

ContinueCrank logical Default: .false.

Use the values of ωx/y/z read from file to start the itera-
tions.

CrankDamp real Default: 0.95

Slowdown factor for the contribution of the cranking con-
tribution to the mean-field potentials.

CrankReadj real Default: 1.0

Readjustment speed of the cranking constraint, takes the
role of ε when using predictor-corrector constraints.

CrankTypeX/Y/Z integer Default: 0

Type of constraint to use for the three Cartesian dir-
ections: no constraint (0), predictor-corrector(1) or
augmented Lagrangian(2). Linear constraint can be
used by using the predictor-corrector constraints with
CrankReadj=0.

CrankC0 real Default: 0.8

Value of the C0 parameter of predictor-corrector con-
straints for the cranking constraints.

Table 11.16: Namelist Cranking and its input parameters.
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11.2.3 The ‘forces.param’ file

The forces.param file contains the details of parameterizations and is based on the design of the file of same
name of the LENTEUR code. It is a practical way of maintaining a database of parameterizations for use in
MOCCa. The disadvantage is that this file should be present in the current directory whenever MOCCa is run.
The file itself is a list of namelists, al of the same type named /skf/. MOCCa will scan this file for a
parameterization whose name matches the input parameter ‘afor’ from the /Force/ namelist. If found,
the parameters of the corresponding parameterization are then used in the calculation. The details of the
namelist /skf/ can be found in Table 11.17 and can be crossreferenced with Appendix A, which also contains
a representative list of Skyrme parameterizations already defined.

/skf/
Coupling constants t0,x0,t1,x1,t2,x2,x3a,x3b,t3a,t3b App. A

te,to,wso,wsoq

Natural constants hbm,e2,hbar,nucleonmass,averagemass App. A

Other options COM1Body,J2Terms Sec. 1.4.5

t0,t1,t2,t3a,t3b real Default: 0.0

The t0, t1, t2, t3a, t3b coupling constants of the Skyrme
force.

x0,x1,x2,x3a,x3b real Default: 0.0

The x0, x1, x2, x3a, x3b coupling constants of the Skyrme
force.

yt3a,yt3b real Default: 0.0

The αa, αb density dependence parameters of the Skyrme
force.

te,to,wso,wsoq real Default: 0.0

The te, to and W,Wq coupling constants of the Skyrme
force.

hbm real(x2) Default:

The value of ~2

2mq
in units of MeV fm2. By default ~2

2mn
=

~2

2mp
= 20.73551910 MeV fm2.

e2 real Default:

The value of the proton electric charge squared, e2, in
units of MeV fm. By default e2 = 1.43996446 MeV fm.

nucleonmass real(x2) Default:

The value of the nucleon masses in MeV c−2, by default
(mn,mp) = (939.565379, 938.272046)

averagemass logical Default: .true.

If .true. set the nucleon masses mq to the average of the
values in the array nucleonmass.

COM1Body integer(x2) Default: (2,0)

Usage of the one-body centre-of-mass correction: no cor-
rection (0), perturbatively(1) or self-consistently(2).

J2Terms logical Default: .false.

If .true., calculate the coupling constants B14, B15, B18

and B19 and use the corresponding terms in the func-
tional. If .false., set them to zero.

Table 11.17: Namelist skf and its input parameters that forms the ‘forces.param’ file.
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11.3 List of source code files

Included here is also a list of files included in the present MOCCa distribution with a brief description of its
functions, in order to give readers a first idea. Where possible a reference point is given to the relevant
definitions and equations in this dissertation.

BCS.f90 Section 6.3
All specific code for solving the BCS pairing equations.

CompilationInfo.f90

Contains the definition of the precision of real nubers used in MOCCa.

Coulomb.f90 Section 4.7.2, Appendix F
Contains all of the routines to solve the Coulomb problem, with the exception of derivation routines to
represent the Laplacian in the Poisson equation.

CoulombDerivatives.f90 Section 4.7.2, Appendix F
Contains the routines to represent the Laplacian of the Poisson equation in the enlarged Coulomb box.

Cranking.f90, Chapter 5
Contains the variables related to constraining the components of the angular momentum and calculates
the contribution of these constraints to the mean-fields.

Damping.f90 Section 4.9.2
Contains the routines to apply the preconditioning operator from Eq. (4.40), in practice applying Eq.
(4.43).

Densities.f90, Sections 1.4.1, 3.2 and 4.7
Contains the routines that calculate the mean-field densities, Eqs. (1.16), either using the Hartree-Fock
basis or from the canonical basis.

DensityMixing.f90, Section 4.9.4
Contains the routines to perform the DIIS mixing of the mean-field densities.

Derivatives.f90, Section 4.1 and chapter 8
Routines that perform finite difference and lagrange derivatives on the Lagrange mesh. These are
general versions that work for all symmetry combinations and are rather slow.

Energy.f90, Section 1.4 and Appendix A
Contains routines to calculate (and print) all the terms of the Skyrme functional.

Force.f90 Section 1.4 and A
Manages all of the coupling constants of the Skyrme functional.

GenInfo.f90 Chapter 4
Manages the parameters of the Lagrange mesh and other general parameters.

GradientHFB.f90 Section 6.7 and Appendix E
Contains all of the routines to solve the HFB using the gradient HFB algorithm.

HartreeFock.f90 Section 6.2
Contains the routines to pick the desired Hartree-Fock configuration.

HFB.f90 Section 6.4
Contains all of the routines to solve the HFB pairing equations. Delegates the solving to GradientHFB.f90

if the user requests the gradient algorithm to solve the HFB equations.

ImaginaryTime.f90 Sections 4.4, 4.9.2 and 4.9.3
Contains the routines that execute the gradient descent algorithm, as well as the preconditioned gradient
descent and the Nesterov iterations.

InOut.f90 Section 11.2
Routines that regulate the input (both runtime and wavefunction files) and the output.
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Interfaces.f90

Contains routines that allow MOCCa to read wavefunction files generated by ev8, cr8 and ev4. Also
contains an (experimental) routine that writes output that can be read by the projection codes.

Main.f90 Chapter 4
Definition of the main program and iterative loop and judges convergence. Calls routines from the
various modules.

MeanFields.f90 Section 1.4 and Appendix A
Contains the routines to calculate the mean-field potentials from the mean-field densities. Also contains
the routines to calculate the actions of the potentials on the single-particle wavefunctions.

Mesh.f90 Section 1.4 and Appendix A
Determines the coordinates of the mesh points of the Lagrange mesh for the different symmetry com-
binations.

Moments.f90 Chapter 5 and Appendix C
Regulates the expressions, calculation and constraints on multipole moments (including the rms-radius).

OptimizedDerivatives.f90 Section 4.1
Contains optimized derivation routines for specific spatial symmetry combinations, that are generally
significantly faster than the routines in Derivatives.f90.

Pairing.f90 Chapter 6
General module that delegates between PairingInteraction.f90, BCS.f90 and HFB.f90 to solve
the pairing equations.

PairingInteraction.f90 Chapter 6
Module able to calculate the contribution of the pairing interaction to the pairing field in Eqs. 6.4 and
6.17.

SpecialMoments.f90 Section 2.9.1 and chapter 5
Contains the definition of the Schiff nuclear moment and the routines to calculate its contribution to
the Routhian when constrained. New constraints on other operators that are not yet implemented can
easily be included here.

Spinor.f90 Section 4.3
Contains the definition of the Spinor derived type, representing a spinor on the Lagrange mesh.

Spwf.f90 Section 4.3
Contains the definition of the Spwf derived type, representing a single-particle wavefunction with isospin,
parity, z-signature and y-time-simplex quantum numbers. It consists of five Spinor derived types
representing the single-particle wavefunction itself, three first order derivatives of it and one being the
laplacian of the wavefunction.

SpwfStorage.f90 Chapters 3and Chapter 4
Contains the Hartree-Fock and canonical basis and the routines to perform the Gram-Schmidt ortho-
gonalization.

Transform.f90 Chapter 11.2
Contains all of the routines to transform the input from one combination of symmetries to a different
set.
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Chapter 12

Conclusion

In this dissertation we have presented a new framework to study nuclei in a mean-field model using Skyrme
functionals. This framework, called MOCCa, is a direct generalisation of the methods pioneered by the Brussels-
Saclay-Orsay collaboration, that have proven their worth in numerous applications [9, 72, 22]. By representing
the single-particle wavefunctions on a Lagrange mesh [86, 87], this framework offers the user simple and com-
plete control over the numerical accuracy of the solution and a large degree of flexibility to impose or relax
symmetry constraints on the many-body wavefunction.
Part I of this thesis introduced the theoretical background of self-consistent calculations employing Skyrme
functionals, paying special attention to the consequences of conserved symmetries as well as the opportun-
ities of symmetry breaking. The more practical aspects of solving the equations were introduced in part II.
Since a piece of software on the scale of MOCCa rapidly becomes very complex, we attempted to describe the
algorithms behind the solving process in the most complete way possible. The description of the algorithm(s)
for solving the mean-field equations, the treatment of constraints and the solution methods for the pairing
equations should (in principle) put the reader in the position of constructing a functionally equivalent code.
In addition, an extensive study was made of the factors that govern the numerical accuracy of the framework.
Two new numerical additions compared to the predecessors ev8, cr8 and ev4 merit extra attention: the
predictor-corrector constraints and the Thouless method for solving the HFB equations. Predictor-corrector
constraints allow for a more automatic constraint handling, especially in the context of symmetry-broken
calculations. The Thouless method allows for solving the HFB equations when one no longer imposes a
signature symmetry, which turned out to be impossible in practice using the direct diagonalisation method.
Part III of this dissertation focused on two applications: a proof-of-concept study of shape transitions in a
series of Radium isotopes, notably describing the fission barriers of 226Ra and 227Ra using the recent SLy5sX
family of functionals [118]. A second application concerned the rms charge radii of the Hg isotopes, specific-
ally focusing on the more neutron-deficient ones A = 176 − 190 and the experimentally observed odd-even
staggering between A = 180 and A = 186. A complete manual of MOCCa forms the final part of this text.
While a manual is not part of a traditional dissertation (or research article), it is a too often neglected part
of scientific software packages. It is my personal hope that this manual will help users that want to employ
MOCCa on a day-to-day basis.
Some further comments on subjects that did not make into this dissertation are in order. Firstly, the number
of applications of MOCCa in this document is not large. The unfortunate reality is that the development (and
debugging) of the code took a very long time. In addition, the number of use-cases of the code is enormous,
with more than 100 different input parameters, all of which need to be tested and cross-checked where pos-
sible with the older codes. In particular calculations of the type dubbed ‘tilted axis cranking’ (see chapter 2)
turned out to be significantly more challenging than first thought. While tilted-axis cranking is by now often
performed in Nilson-Strutinsky calculations and similar models [98], the literature on the subject in mean-field
calculations is basically limited to [53, 147]. Other signature breaking calculations have been reported in [60],
though not related to tilted-axis-cranking. While we attempted many times to recreate the results from [53] in
particular, it is not clear how one can reliably occupy the correct Hartree-Fock configuration in our framework.
Calculations with pairing included as in [60, 147] turned out to be even more problematic, as one needs a way
to discern between HFB quasiparticles, as detailed in chapter 6. While [60] briefly comments on this issue
no practical solution is presented and [147] does not mention any problems at all1. With the development
of the Thouless method however, applying the machinery of MOCCa to a tilted axis calculation is within the
possibilities, as was demonstrated for 64Ge in chapter 7.

1This might be explained by the different representation schemes (both are based on a representation in a spherical oscillator
basis) and/or a difference in the solution algorithms, but this is to be investigated further.
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12. Conclusion

Looking to the future, the existence of MOCCa opens up an enormous amount of possibilities. Direct com-
parisons to experiment are now feasible in a significantly larger amount of cases. Examples that will be first
choices in the future include tilted-axis cranking, scissor modes and octupole deformation in the Ra region. In
particular for odd-A nuclei, the reach of framework is now significantly larger, mostly by virtue of the breaking
of parity and signature symmetries. The description of fission of odd-A nuclei, as well as applications to the
Schiff moment can be performed in the near future. Note that not only the reach of the mean-field framework
of the Brussels-Lyon collaboration has been enriched, as already now MOCCa has been interfaced with the
existing beyond-mean-field codes.
Beyond what is already possible now, the modular aspect of the code opens a window on even more applic-
ations. With moderate effort, several extensions can be envisioned. First is the inclusion of the new type of
functionals that correspond to a many-body Hamiltonian [16], to bring the code up to par with the latest
developments of cr8. The development of projection techniques for both signature and parity restoration to
complement the current suite of beyond-mean-field techniques is a second very promising avenue. A third
extension would be the breaking of z-isospin symmetry, allowing MOCCa to really probe virtually every com-
bination of symmetries ever explored in the literature.

164



Part V

Appendices

165





Appendix A

The Skyrme Functional in MOCCa

A.1 The Skyrme part of the functional

The most general Skyrme energy density [22, 21, 23, 19, 10] that MOCCa can handle is given by

ESkyrme = EtSkyrme + EpSkyrme + EnSkyrme ,
EtSkyrme(r) = B1ρ

2
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(A.1)

A.2 Isospin representation of the Skyrme energy density

Instead of the representation in proton-neutron densities, the Skyrme energy density can also be written down
as a function of isoscalar and isovector densities. We define

ρ0(r) = ρn(r) + ρp(r) ,

ρ1(r) = ρn(r)− ρp(r) ,
(A.2)

and similar for the other mean-field densities. In isospin representation the Skyrme energy density becomes

ESkyrme =
∑
t=0,1

EtSk (A.3a)

EtSkyrme = Cρt [ρ0] ρ2
t + C∆ρ

t ρt∆ρt + Cτt ρtτt + C∇·Jρt∇ · J (1)
t − CTt

∑
µ,ν=x,y,z

Jt,µνJt,µν (A.3b)

+ Cst [ρ0]s2
t + C∇·st (∇ · st)2

+ C∆s
t st ·∆st − Cτt j2t + CTt st ·Tt + C∇·Jt st ·∇× jt

+ CFt st · Ft −
1

2
CFt

( ∑
µ=x,y,z

Jt,µµ

)2

+
∑

µ,ν=x,y,z

Jt,µνJt,νµ

 ,
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and the coefficients Cρt and Cst are defined as

Cρt [ρ0] = Cρt [0] + (Cρt [ρsat]− Cρt [0])

[(
ρ0

ρsat

)αa

+

(
ρ0

ρsat

)αb
]
, (A.4a)

Cst [ρ0] = Cst [0] + (Cst [ρsat]− Cst [0])

[(
ρ0

ρsat

)αa

+

(
ρ0

ρsat

)αb
]
, (A.4b)

and ρsat is the value of the isoscalar density ρ0 in saturated infinite nuclear matter.

A.3 Coupling constants

The coupling constants B1 through B21 are determined in MOCCa by input from the forces.param file. The
relevant keywords are described in section 11.2.3, and in general refer to the following variables

t0, t1, t2, t3a, t3b, x0, x1, x2, x3a, x3b, te, to,W,Wq, αa, αb . (A.5)

These relate to the B coupling constants as follows

B1 =
t0
2

(
1 +

1

2
x0

)
, B2 = − t0

2

(
1

2
+ x0

)
, (A.6a)

B3 =
1

4

[
t1

(
1 +

1

2
x1

)
+ t2

(
1 +

1

2
x2

)]
, B4 = −1

4

[
t1

(
1

2
+ x1

)
− t2

(
1

2
+ x2

)]
, (A.6b)

B5 = − 3

16

[
t1

(
1 +

1

2
x1

)
− t2

(
1 +

1

2
x2

)]
, B6 =

3

16

[
t1

(
1

2
+ x1

)
+ t2

(
1

2
+ x2

)]
, (A.6c)

B7a =
t3a
12

(
1 +

1

2
x3a

)
, B8a = − t3a

12

(
x3a +

1

2

)
, (A.6d)

B7b =
t3b
12

(
1 +

1

2
x3b

)
, B8b = − t3b

12

(
x3b +

1

2

)
, (A.6e)

B9 = −W
2
, B9q = −Wq

2
, (A.6f)

B10 =
1

4
t0x0 , B11 = − t0

4
, (A.6g)

B12a =
t3ax3a

24
, B13a = −x3a

24
, (A.6h)

B12b =
t3bx3b

24
, B13b = −x3b

24
, (A.6i)

B14 = −1

8
(t1x1 + t2x2) +

1

4
(te + to) , B15 =

1

8
(t1 − t2)− 1

4
(te − to) , (A.6j)

B16 = −3

8
(te + to) , B17 =

3

8
(te − to) , (A.6k)

B18 = − 1

32
(3t1x1 − t2x2) +

1

16
(3te − to) , B19 =

1

32
(3t1 + t2)− 1

16
(3te + to) , (A.6l)

B20 =
3

16
(3te − to) , B21 = − 3

16
(3te + to) . (A.6m)

The coupling constants of the isospin representation of the functional can be obtained as linear combinations
of the B coupling constants, see e.g. [19]. MOCCa does print the values of these, but does not use them
internally to compute the energy.

A.4 The single-particle Hamiltonian ĥ

The single-particle Hamiltonian ĥq due to the complete functional can be split into three contributions

ĥq = ĥqSkyrme + ĥqCoul + ĥqCorr . (A.7)
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The Skyrme contribution is given by

ĥqSkyrme = −∇ ·Bq∇ + Uq + Sq · σ̂ +
1

2i

∑
µ,ν=x,y,z

[Wq,µν∇µσ̂ν +∇µσ̂νWq,µν ]

+
1

2i
[Aq ·∇ + ∇ ·Aq]−∇ · [σ̂ ·Cq]∇−

1

2
∇ ·Dqσ̂ ·∇

− 1

2

∑
µ,ν=x,y,z

(∇νDµσν∇µ +Dµσν∇µ∇ν) ,

(A.8)

where the mean-field potentials B,U,Wµν ,A,S,C and D are given by

Bq =
~2

2mq
+B3ρt +B4ρq , (A.9)

Uq = 2B1ρt + 2B2ρq +B3 (τt + i∇ · jt) +B4 (τq + i∇ · jq) + 2B5∆ρt + 2B6∆ρq

+B7a (2 + αa) ρ1+αa
t +B7b (2 + αb) ρ

1+αb
t +B8

(
αρα−1

t

[
ρ2
q + ρ2

q′
]

+ 2ραρq
)

+B9∇ · Jt +B9q∇ · Jq + αaρ
αa−1
t

(
B12as

2
t +B13a

(
s2
q + s2

q′
))

+ αbρ
αb−1
t

(
B12bs

2
t +B13b

(
s2
q + s2

q′
)
,

(A.10)

Wµν,q =
∑

j=x,y,z

εjµν (B9∇jρt +B9q∇jρq) + 2B15Jq,µν + 2B16

(
Jt,νµ +

∑
j=x,y,z

Jt,jjδµν

)

+ 2B17

(
Jq,νµ +

∑
j=x,y,z

Jq,jjδµν

)
,

(A.11)

Aq = − 2B3 jt − 2B4jq +B9∇× st +B9q∇× sq , (A.12)

Sq = B9∇× jt +B9q∇× jq + 2B10st + 2B11sq + 2B12aρ
αast + 2B13aρ

αa
t sq

+ 2B12bρ
αbst + 2B13bρ

αb
t sq −B14Tt −B15Tq − 2B16Ft − 2B17Fq

+ 2B18∆st + 2B19∆sq − 2B20∇ (∇ · st)− 2B21∇ (∇ · sq) ,
(A.13)

Cq =−B14st −B15sq , (A.14)

Dq =− 2B16st − 2B17sq . (A.15)

Note that the contribution of the kinetic energy to the single-particle Hamiltonian is contained in the action
of the Bq potential, which is why we did not split ĥq into four parts.
Compared to [22] and cr8 some conventions have changed, the potential C corresponds to −A and our
S potential corresponds to V from the same paper. Note also that the formula given in Eq. (25) of [19]
contains two errors. First, the sign of the B9 and B9q terms in the Wµν potential is opposite the correct
sign used in the mean-field codes. A second more insidious error is that the action of the D-potential is not
hermitian [148], as it does not contain the final term involving the D potential of Eq. A.8. While this was
wrongly implemented at the time of [19] this error has meanwhile been corrected in cr8 and MOCCa1.
A third error is (at the time of writing) still affecting cr8 and ev8: the B16 and B17 terms in the energy
density and the single-particle Hamiltonian erroneously did not include the contribution of J (0), although they
are included in Eq. (25) of [19]. These terms are correctly included in MOCCa.
The Coulomb contribution for protons is simply

ĥpCoul = V (r)−
(

3

π

) 1
3

e2ρ
1
3
p (r) , (A.16)

where V (r) is the Coulomb potential of the proton charge density. The neutron contribution is of course

zero. Depending on what is incorporated in ECorr, ĥCorrq can take many different forms. In MOCCa only the
one-body centre-of-mass correction can be included. The corresponding contribution to the single-particle
Hamiltonian becomes

ĥqCorr =
~2

2(Nmn + Zmp)
∆ . (A.17)

1Since the D-potential is time-odd this error did not affect ev8 and ev4.
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A.5 Details of the numerical implementation

We will here list some specifics of the implementation in MOCCa, since not all terms are of the single-particle
Hamiltonian are trivial to implement.

A.5.1 The effective mass term

The term proportional to Bq(r) in the single-particle Hamiltonian needs some care. Indeed, we can write the
action on a single-particle wavefunction of isospin q as

[∇ · (Bq(r)∇φq)] (r, σ) = Bq(r) [∆Ψq] (r, σ) + [∇Ψq] (r, σ) [∇Bq] (r) . (A.18)

Mathematically the left-hand side and the right-hand side are equivalent. When the derivatives are imple-
mented numerically with finite difference formulas, this is no longer the case.
One can easily check that

∆FD 6= ∇FD ·∇FD . (A.19)

The default derivatives in MOCCa and the older codes all employ the left-hand side of Eq. (A.18). In addition,
the FD formula is of the fourth order for the second order derivative, while the first order derivative only
has a third order FD formula. This further increases the inconsistency between calculations using the left- or
right-hand side of Eq. (A.18). Note that MOCCa can use either side of Eq. (A.18), depending on the keyword
BStack. If it is set to ‘.true.’ the left-hand side of Eq. (A.19) is used, while if it ‘.false.’ the right-hand side
is used.
The typical difference is not that big however, for a HF-calculation for 20Ne with a mesh discretisation of
dx = 1 fm the difference is typically about 50 keV. Since this difference is quite consistent across calculations
it is usually of no importance. This inconsistency of course disappears when using Lagrange derivatives self-
consistently, as Eq. (A.19) is a strict equality for that implementation of derivatives.
Similar concerns affect also the actions of the C and D potentials: the only option currently implemented is
by using the equivalent of the left-hand side of Eq. (A.19).

A.5.2 The action of mean-field potentials A and W

The action of the mean-field potential Aq can be rewritten as

1

2i
[Aq ·∇ + ∇ ·Aq] = −iAq ·∇ , (A.20)

because the curl of the divergence of s is zero and the divergence of the current j current can be related to
the time-derivative of the density

∇ · j = −∂ρ
∂t

, (A.21)

under the condition of local gauge invariance of the functional [149]. This is the case for all of the functionals
described in this dissertation and we can thus safely drop this term for the static calculations of MOCCa.
The action of the mean-field potential Wµν is also simplified as

1

2i

∑
µ,ν=x,y,z

[Wq,µν∇µσ̂ν +∇µσ̂νWq,µν ] = −i
∑

µ,ν=x,y,z

Wq,µν∇µσ̂ν . (A.22)

The contribution of the B9 term to Wµν in Eq. (A.12) allows for this simplification, as the divergence of the
curl of j is zero. It is unclear if this holds for the other contributions to Wµν . Nevertheless, both MOCCa and
cr8 implement the right-hand side of Eq.(A.22)[19].

A.5.3 The Coulomb contribution

As detailed in chapter 4, the direct Coulomb energy term is calculated by solving the Poisson equation and the
exchange term is calculated using the Slater approximation. They also contribute to the proton single-particle
Hamiltonian as described above. Since ĥpCoul is local in coordinate space, these terms are in MOCCa simply
incorporated into the U mean-field potential.
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A.6. Functionals included with the code

SLy4,SLy5 [17]

SLy4T [150]

SLy5s1/2/3/4/5/6/7/8 [118]

Skm* [151]

T44, T46, T66 [21]

UNEDF0 [76]

UNEDF1 [18]

UNEDF2 [78]

Table A.1: Predefined functionals on the forces.param file shipped with MOCCa.

A.5.4 The contribution of the centre-of-mass correction

The contribution of Ecorr to the single-particle Hamiltonian takes the same form as the action of the Bq
potential. In MOCCa, it is taken into account by modifying this potential as follows

Bq =
~2

2mq
+B3ρt +B4ρq →

~2

2mq

(
1−mq

1

Nmn + Zmp

)
+B3ρt +B4ρq . (A.23)

A.5.5 Contribution from constraints

Constraints on multipole moments or on projections of the angular momentum also contribute to the single-
particle Hamiltonian, as described in chapter 5. For the multipole moments (whose operators are local in
coordinate space) this contribution is incorporated in the U mean-field potential. They always take the
following simple form

U → U −
∑
`,m

λ
(i)
`mQ`m(r, θ, φ)f(r) , (A.24)

where the multipliers λ(i) are determined by the various recipes described in chapter 5. The factor f(r) is a
cutoff function, as described in section 5.6.
The case is not that simple for cranking constraints, as the operators Ĵ involve derivatives and are thus not
local in coordinate space. The contribution to the single-particle Hamiltonian is always of the following form

ĥSkq → ĥSkq − ω(i)
µ Ĵµ , (A.25)

where again the ω
(i)
µ are determined on the basis of the type of constraint. MOCCa takes this contribution into

account in the same way as the original paper on cr8 [22]: by modifying the potentials A and S as follows

A(r)→ A(r)− f(r) (ω × r) , (A.26a)

S(r)→ S(r)− f(r)
1

2
ω , (A.26b)

where the vector ω is simply the vector (ωx, ωy, ωz) and the cutoff function f(r) is identical to the one used
for the multipole constraints.
In addition, the reader should not forget that the contribution of these constraints to the U,S and A potentials
are subject to a damping procedure from one mean-field iteration to the next, see Eq. (5.30).

A.6 Functionals included with the code

The current version of MOCCa is completed by a forces.param file with a set of predefined functionals,
ready to use. This set is summarized in Table A.1. A special remark is in order for the UNEDF0/1/2
parameterizations: the fits were performed with a finite pairing strength using a code that represents the
single-particle wavefunctions in a harmonic-oscillator basis [76, 18, 78]. The pairing properties of this type of
basis are unfortunately impossible to reproduce on a Lagrange mesh because of the differences between the
bases. The recommended values of the pairing strength are thus not implemented and an exact replication
of the features of these functionals is impossible.
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Appendix B

Symmetry Operators

This appendix is dedicated to the classification and some not-so-trivial results on symmetry operator. Antilin-
ear operators can be severely counterintuitive and are in many cases not standard fare in quantum mechanics
textbooks. While we will be using the notation of single-particle operators and states, these considerations
are perfectly applicable to many-body states and in fact to general Hilbert spaces.

B.1 Classification

Consider a symmetry operator Â. All of the symmetry operators we will encounter conserve probability
amplitudes, that is to say

|〈ψ|φ〉|2 = |〈Âψ|Âφ〉|2 . (B.1)

Following Wigners arguments [152, 153], one can conclude that Â should be either unitary or antiunitary

〈ψ|φ〉 = 〈Âψ|Âφ〉 or 〈ψ|φ〉∗= 〈Âψ|Âφ〉 . (B.2)

Unitary operators Â, denoted with a hat, are linear, meaning that for states |ψ〉, |φ〉 and complex numbers
a, b the following holds

Â (aψ + bφ) = aÂψ + bÂφ . (B.3)

An antiunitary operator B̌, denoted with an inverted hat, is antilinear, meaning that for states |ψ〉, |φ〉 and
complex numbers a, b we have the following

B̌ (aψ + bφ) = a∗B̌ψ + b∗B̌φ . (B.4)

The inverse of both unitary and antiunitary operators are given by their hermitian conjugates, meaning that
for Â and B̌ we have

Â†Â = ÂÂ† = 1̂ , (B.5a)

B̌†B̌ = B̌B̌† = 1̂ . (B.5b)

One can further separate both the unitary and antiunitary operators into hermitian and antihermitian operators,
respectively obeying

Â† = +Â , (hermitian) (B.6a)

Â† = −Â . (antihermitian) (B.6b)

B.2 Eigenstates, invariants and normal pairs

An eigenstate of a linear, unitary operator Â is a state |φ〉 so that

Â|φ〉 = a|φ〉 . (B.7)

for some value a. Because of unitarity, we have |a| = 1. It is also well known that hermitian operators
have real eigenvalues while antihermitian operators have purely imaginary eigenvalues. In both cases, the
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eigenstates of linear operators form a complete basis of the Hilbert space.
The concept of eigenstate does not trivially generalize to antiunitary operators. Let us first limit ourselves to
a hermitian, antiunitary operator B̌. Suppose we can find some state |φ〉 so that

B̌|φ〉 = b|φ〉 . (B.8)

Multiplying by a complex phase a produces a state that is still an eigenstate of B̌ but with a different
eigenvalue, a∗b

a .

B̌a|φ〉 = a∗b|φ〉 =
a∗b

a
a|φ〉. (B.9)

If we hold on to the notion of a Hilbert space as a vector space, where the overall phase of a wavefunction
does not matter, this means we are free to actually choose eigenvalues of B̌ by multiplying the states with a
well chosen complex phase a.
The notion of eigenvalue for an antilinear hermitian operator is thus not very well defined in a physical sense1.
We will refrain from using the terminology. Instead, we introduce an invariant state |Φ〉 for an antilinear,
hermitian operators as

B̌|φ〉 = |φ〉 , (B.10)

which automatically fixes the phase of the state2.
The situation for antiunitary, antihermitian operators is even more counterintuitive: an antilinear, antihermitian
operator Č does not admit either eigenstates or invariants. Suppose that we have an eigenstate |φ〉 with some
eigenvalue c which is necessarily purely imaginary. Then we have immediately

c∗c|Φ〉 = Čc|Φ〉 = ČČ|Φ〉 = −|Φ〉 , (B.11)

which is strictly impossible. Wigner showed however that every antiunitary operator [152] could be brought
into what he called ‘normal form’. We will repeat here a slightly less general argument that is heavily inspired
by Wigners argument, although slightly modernized. Since Č is antihermitian and antilinear, Č2 is necessarily
hermitian and linear. We can diagonalize this operator to obtain eigenstates |φi〉. We have thus

Č2|φi〉 = −|φi〉 . (B.12)

Notice that Č|φi〉 is also an eigenvector of Č2 with eigenvalue −1, since

Č2Č|φi〉 = ČČ2|φi〉 = −Č|φi〉 . (B.13)

In addition Č|φi〉 is orthogonal to |φi〉 since

〈φi|Č|φi〉 = 〈φi|Č†ČČ|φi〉 = −〈φi|Č|φi〉 . (B.14)

This means that the set of |φi〉 is a complete orthonormal set of states in the Hilbert space that consists of
pairs of vectors that are linked by the action of Č. In direct analog of Wigners ‘normal form’ we will call two
conjugate states (|φi〉, Č|φi〉) a normal pair.
An often used notation (also in this dissertation) for a normal pair is (|φi〉, |φi〉). Note that this notation
hides a counterintuitive feature of a normal pair, as we have the following equations

Č|φi〉 = |φī〉 , (B.15)

Č|φī〉 = −|φi〉 . (B.16)

B.3 Simultaneous eigenstates

Let us look at the possibilities of having wavefunctions that are simultaneous eigenstates of two operators
Â and B̂. There are different relevant cases: when Â and B̂ are both linear operators, when Â and B̌ are
respectively hermitian linear and hermitian antilinear and when Â and B̌ are respectively hermitian linear and
antihermitian antilinear. Note that we do not have to treat the cases where either operator is antihermitian,
antilinear, as these operators do not have eigenstates.

1Mathematically speaking, |φ〉 and a|φ〉 are different vectors in the Hilbert space and there is no problem at all. It is the
physical requirement that what we observe are actually rays of vectors in Hilbert spaces rather than vectors in Hilbert space.

2In the language of Wigner [152, 153]: we have selected a particular element of the ray of |φ〉
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B.3. Simultaneous eigenstates

B.3.1 Â and B̂ are both linear

This is the classic textbook case. Consider an eigenstate |Ψ〉 of both Â and B̂ with eigenvalues a and b
respectively. In that case we have

ÂB̂|Ψ〉 = bÂ|Ψ〉 = ba|Ψ〉 = B̂a|Ψ〉 = B̂Â|Ψ〉 , (B.17)

from which it follows that [
Â, B̂

]
= 0 . (B.18)

The condition for the existence of simultaneous eigenstates of Â and B̂ is thus that Â and B̂ commute.

B.3.2 Â is hermitian linear and B̌ is hermitian antilinear

Consider again an eigenstate |Ψ〉 of both Â and B̌ with eigenvalues a and b respectively. Note that both a
and b are necessarily real. We have again

ÂB̌|Ψ〉 = bÂ|Ψ〉 = ba|Ψ〉 = B̂a∗|Ψ〉 = B̂a|Ψ〉 = B̂Â|Ψ〉 , (B.19)

from which it follows that [
Â, B̂

]
= 0 . (B.20)

The condition for the existence of simultaneous eigenstates of Â and B̂ is thus that Â and B̌ commute.

B.3.3 Â is antihermitian linear and B̌ is hermitian antilinear

Consider again an eigenstate |Ψ〉 of both Â and B̌ with eigenvalues a and b respectively. Note that both a
is purely imaginary and that b is real. We have again

ÂB̌|Ψ〉 = Âb|Ψ〉 = bÂ|Ψ〉 = ba|Ψ〉 = ab|Ψ〉 = aB̌|Ψ〉 = B̌a∗|Ψ〉 = −B̌a|Ψ〉 = −B̌Â|Ψ〉 , (B.21)

and we conclude that if we want Â and B̌ to have simultaneous eigenstates, they need to anticommute, i.e.{
Â, B̌

}
= 0 . (B.22)
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Appendix C

Multipole moments

The expectation values of multipole operators Q̂`m, or multipole moments for short, characterize the shape
of the nuclear density. They are primarily used to study the dependence of the energy (or other observables)
as a function of nuclear shape, and can easily serve as good candidates for a GCM generator coordinate. In
addition, they are intrinsically linked to the breaking of self-consistent symmetries, as many of them can be
considered as order parameters of various spatial symmetries.

C.1 Definition

The single-particle multipole operators as used in this dissertation and as implemented in MOCCa are defined
in spherical coordinates (r, θ, φ) as

Q̂`m(r, θ, φ) = r̂`Ŷ`m(θ, φ) with ` > 0 and − ` ≤ m ≤ ` (C.1)

where ` is a positive integer and m is an integer between−` and `. We take the following convention [154]
for the spherical harmonics Ŷ`m(θ, φ)

Ŷ`m(θ, φ) = (−1)m

√
(2`+ 1)

4π

(`−m)!

(`+m)!
Pm` (cos(θ))eimφ . (C.2)

In this equation Pml is an associated Legendre polynomial. It is interesting to note that the Q̂`m are sometimes
called regular solid harmonics and form half of the solid harmonics [155]. The irregular solid harmonics are
obtained by scaling the Ŷ`m with negative powers of r, but since they are singular at the origin they are not
relevant for nuclear wavefunctions.
This definition makes the matrix elements of the multipole operators complex. The real and imaginary parts
of the multipole operators of positive and negative m are related by the following equation

Q̂†`−m = (−1)mQ̂`m . (C.3)

It is thus possible for the implementation and printouts of MOCCa to forget about the multipole moments of
negative m but rather refer to the real and imaginary parts of the Q̂`m with m ≥ 0.
The one-particle operators Q̂`m have straightforward many-body counterparts

Q̂`m =

A∑
i=1

Q̂`m(ri, θi, φi) . (C.4)

For the expectation value in a many-body state of the many-body operator we have

〈Q̂`m〉 =
∑
i,j

ρij〈φj |Q̂`m,i|φi〉 =
∑
ij

ρij

∫
drφ∗j (r)Q̂`m(r)φi(r) =

∫
drQ`m(r)ρ(r) , (C.5)

where we have dropped the hat on the Q`m in the last equality to emphasize that this is now simply a function
of r and no longer an operator. Using this equality we can easily see that the expectation values of the Q̂`m
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C. Multipole moments

are the in fact the coefficients of the expansion of ρ(r) in solid harmonics.1

One can also look separately at the multipole expansion of the proton and neutron, or isoscalar and isovector
densities

〈Q̂`m,n〉 =

∫
drQ`m(r)ρn(r) , (C.6a)

〈Q̂`m,p〉 =

∫
drQ`m(r)ρp(r) , (C.6b)

〈Q̂`m,0〉 =

∫
drQ`m(r)ρ0(r) , (C.6c)

〈Q̂`m,1〉 =

∫
drQ`m(r)ρ1(r) . (C.6d)

When a subscript is not explicitly indicated, the implied reference is to the multipole moment of the total
density ρt, which coincides with ρ0.
In order to meaningfully compare multipole moments of nuclei with different mass numbers A we define the
dimensionless quantities β`m as

β`m =
4π

3R`0A
〈Q̂`m〉 , (C.7)

where we take R0 = 1.2A1/3 fm.
Another derived quantity is the total multipole moment of degree `, defined as

Q` =

√
16π

2`+ 1

∑
m=−`,..,`

|〈Q̂`m〉|2 =

√
16π

2`+ 1
〈Q̂`0〉2 +

32π

2`+ 1

∑
m=1,..,`

〈Re Q̂`m〉2 + 〈Im Q̂`m〉2 , (C.8)

which is a real quantity. This can also be transformed to a dimensionless quantity

β` =
4π

3R`0A
Q` , (C.9)

where R0 is taken as before. The interest of the total multipole moments Q̂` is the simplified picture they
represent: it is the quantity that determines the total deformation of the nuclear density combined across the
multipole moments of given ` but different values of m. For ` = 2 this corresponds to the total ‘size’ of the
quadrupole moment, and the degree of freedom not considered is the triaxiality angle γ, see section C.2. For
` = 3, this again measures the total deformation, but this time leaving 6 relevant angles free [157, 158].
Figures C.1 and C.2 give the reader an idea of the deformation non-zero values of these multipole moments
imply up to ` = 4. What is plotted is either of the following surfaces

R(θ, φ) = (1 + ε ReQ`m(θ, φ)) , (C.10a)

R(θ, φ) = (1 + ε ImQ`m(θ, φ)) , (C.10b)

parametrized in spherical coordinates.

C.2 Quadrupole deformation

The quadrupole deformation parameters merit some extra attention, as they are by far the most widely used
shape parameters of nuclear densities. Other parametrizations, specific to the quadrupole moments ` = 2
are widely spread [10]. One of these is the Cartesian representation (Q̂x, Q̂y, Q̂z), which are related to the
multipole operators by the following relations

Q̂x = −
√

4π

5

(
Q̂20 −

√
6Q̂22

)
= 2x̂2 − ŷ2 − ẑ2 , (C.11)

Q̂y = −
√

4π

5

(
Q̂20 +

√
6Q̂22

)
= 2ŷ2 − x̂2 − ẑ2 , (C.12)

Q̂z =

√
16π

5
Q̂20 = 2ẑ2 − x̂2 − ŷ2 . (C.13)

1Note that the calculation of magnetic multipole moments [156] is significantly more involved, as they depend on derivatives
of the single-particle wavefunctions. They are currently not implemented in MOCCa and do not figure in this dissertation.
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C.2. Quadrupole deformation
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Figure C.3: Depiction of the (q, γ) and (〈Q̂20〉, 〈Q̂22〉) parameterization for the quadrupole moments. The
Q20 and Q22 axes are drawn as full lines. Axial configurations lie either on the Q20 axis or on the drawn
dotted lines. All other configurations are triaxial.

A third parametrization can be given in terms of the numbers (q, γ) which are related to the spherical
harmonics and Cartesian representation by the following identities. Note the error in Eq. (68) in [10].

q =

√
16π

5

(〈
Q̂20

〉2

+ 2
〈
Q̂22

〉2
)

=

√
2

3

(〈
Q̂x
〉2

+
〈
Q̂y
〉2

+
〈
Q̂z
〉2
)
, (C.14)

γ = atan2
(√

2 〈Q̂22〉, 〈Q̂20〉
)

=atan2
(
〈Q̂x − Q̂y〉,

√
3〈Q̂z〉

)
, (C.15)

Note that this definition of q matches exactly the one for the total quadrupole moment β2. This parameterization
and its relation to the quadrupole moments (〈Q̂20〉, 〈Q̂22〉) are depicted in Fig. C.3.
We can again create a dimensionless parameter βq for this parameterization,

βq =
4π

3R2
0A

q . (C.16)

A final parametrization of the quadrupole moments is defined in terms of (q, γ)

q1 = q cos(γ)− 1√
3
q sin(γ) , (C.17)

q2 =
2√
3
q sin(γ) . (C.18)

This parameterization is the one used in the old codes ev8, cr8 and ev4 and can be used in MOCCa using
the keywords iq1 and iq2.
Let us finally remark on the words ‘prolate’, ‘oblate’ and ‘triaxial’ which are in extremely common usage in
nuclear physics. Both ‘prolate’ and ‘oblate’ indicate axial configurations, meaning that the nucleus still has
one rotational axis of symmetry. A configuration is prolate if the deformation along the symmetry axis is
larger than the deformation along the two other axes and oblate if it is shorter. Any quadrupole configuration
is triaxial if there is no longer a rotational symmetry axis present. A practical parameterization of prolate
and oblate configurations is simply given by the sign of 〈Q̂20〉: if it is positive the configuration is ‘prolate’,
otherwise it is ‘oblate’.2 Other combinations of multipole moments can characterize the axial configurations,
but they are related to this parameterization by a permutation of axes, see subsection C.3. The location of
the prolate and oblate configurations in the (q, γ) plane is also depicted in Fig. C.3.

2This only works if all of the non-axial multipole moments (m 6= 0) vanish, as otherwise we have no symmetry axis and the
configuration is triaxial.
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C. Multipole moments

C.3 Redundant multipole moments

A certain nuclear density ρ(r) is uniquely determined by the complete set of values of 〈Q̂`m〉 for all ` and m.
The reverse statement is also true: given all of the values of〈Q̂`m〉 one can reconstruct ρ(r) at every point in
space. There is a high degree of redundancy in the solid harmonics as a basis though: consider a density ρ
and a rotated and displaced density ρ′. They are physically equivalent, but the multipole expansion of ρ′ will
be different from the one for ρ.
These redundant degrees of freedom are related to the choice of a Cartesian system of three axes (x,y,z). The
three coordinates of the origin and three Euler angles of the orientation of the axes together constitute six
continuous degrees of freedom. Even after choosing a Cartesian system of axes, there is still the degree of
freedom related to the labeling of axes. We will investigate the consequences for both here.

C.3.1 The choice of Cartesian axes

The continuous degrees of freedom of the origin of the axes and their orientation in space all give rise to a
corresponding degree of freedom for the multipole moments. The coordinates of the origin of the axes system
are the most straightforward. Note that the multipole moments of degree one are proportional to the position
operators x̂, ŷ and ẑ3.

Q̂10 ∼ ẑ ,Re Q̂11 ∼ x̂ , Im Q̂11 ∼ ŷ . (C.19)

We will make the choice of origin in such a way that

〈Q̂10〉 = 〈Q̂11〉 = 0 . (C.20)

In other words, we put the origin of the axes in the centre-of-mass of the nucleus. Different choices of the
other origin are of course possible, but it is clear that this simply changes the localization of the nucleus in
space. Differing values of the multipole moments of degree one are not linked to different shapes of ρ(r).
There is another, more practical, reason to fix this particular choice of origin. If the nucleus would not
have its centre-of-mass at the origin, the single-particle wavefunctions might have appreciable values near the
boundary of the box, and thus deteriorating the accuracy of a calculation.
After fixing the origin, we are still left with the freedom of orienting our axes. We need two free parameters to
fix a unit vector ex that indicates the x-direction and one free parameter to choose a unit vector ey, orthogonal
to ex. The z-direction is then fixed by requiring a right-handed Cartesian axis system. The convention used
in this text and in MOCCa is to use these three degrees of freedom to eliminate the following three quadrupole
moments.

〈Im Q̂22〉 = 〈Q̂21〉 = 0 . (C.21)

This is equivalent to requiring that
〈x̂ŷ〉 = 〈x̂ẑ〉 = 〈ŷẑ〉 = 0 , (C.22)

or requiring that the following tensor (often called the inertia tensor I) is diagonal

I =

x̂2 x̂ŷ x̂ẑ

x̂ŷ ŷ2 ŷẑ

x̂ẑ ŷẑ ẑ2

 , (C.23)

which can always be enforced by rotating the axes. As such, non-zero values of 〈Im Q̂22〉 or 〈Q̂21〉 represent
a rotation of the nucleus in space and as such do not indicate a physically different shape of ρ(r).
While this choice is the one used in this dissertation and in MOCCa, one can use the six inherent degrees of
freedom to eliminate other (combinations of) multipole moments as redundant degrees of freedom. See for
instance [159], where specific combinations of octupole moments are eliminated.
As a concluding remark, note that the centre-of-mass coordinates and the three rotational degrees of freedom
are only redundant when they pertain to the total mass distribution. The degrees of freedom regarding the
isovector multipole moments 〈Q̂10,1〉, 〈Q̂11,1〉, 〈Q̂21,1〉 and 〈Im Q̂22,1〉 are real physical degrees of freedom
and represent respectively relative displacements and rotations of the proton and neutron density.

3Note that this specific matching in fact already implies a choice of axes: nevertheless for every choice the vector
(Q̂10,Re Q̂11, Im Q̂11) corresponds to a permutation of (x̂, ŷ, ẑ).
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C.4. Consequences of the symmetries of MOCCa

C.3.2 Labelling Cartesian axes

A second degeneracy arises due to the labelling of axes. The traditional way to associate (r, θ, φ) to (x, y, z)
is

x = r sin θ cosφ , (C.24a)

y = r sin θ sinφ , (C.24b)

z = r cos θ . (C.24c)

However, in a Cartesian coordinate system we have the freedom to interchange axes. In abusive notation, we
have six possibilities of axis system

(x, y, z), (y, x, z),

(z, x, y), (x, z, y),

(y, z, x), (z, y, x).

This translates to a freedom of choice in the definition of θ and φ. For each of these six combinations
(x1, x2, x3) the corresponding transform to spherical coordinates is given by

x1 = r sin θ cosφ , (C.25a)

x2 = r sin θ sinφ , (C.25b)

x3 = r cos θ . (C.25c)

While a nuclear density obviously is invariant under the specific choice of axes we choose to describe it, the
multipole expansion of the nuclear density clearly is not. A given density ρ(r) will give rise to different values
of 〈Q̂`m〉 in different choices for the axes.
When all of the symmetries in MOCCa4 are conserved all of these six choices are indeed completely equivalent.
The six possible permutations of (x,y,z) imply that we can describe the same density ρ(r) with six different
sets of values of the 〈Q̂`m〉. Thus, when investigating different shapes of the nuclear densities, we need not
investigate all of the possibilities: every shape can be represented in six different ways. This degeneracy can
be seen on Fig. C.3 for the quadrupole moments, indicated by the dashed lines. Every sextant contains all
of the possible shapes and corresponding shapes in different sextants are related by a permutation of the
axes. The sextants are best categorized in terms of the angle γ, taking values in either [0◦, 60◦], [60◦, 120◦],
[120◦, 180◦], [180◦, 240◦], [240◦, 300◦] or [300◦, 360◦].
However, it is very important to realize that this degeneracy breaks down whenever one introduces a preferred
direction in space. With a preferred direction in space, the different sextants are no longer all equivalent as
reorienting the nucleus in space will not result in the same configuration. When such a preferred direction is
present, the six-fold degeneracy is lifted and a two-fold degeneracy takes its place, related to the labelling of
the two non-preferred directions in space. Of course, when one adds another preferential direction (different
from the first) this degeneracy is again lifted and all six sextants describe different physical configurations.
This is of great practical importance for MOCCa, as cranking constraints introduce such preferred directions.
Once one cranking frequency ωxi is non-zero, a given triaxial shape with a long, medium and short axis will
have a different energy depending on the orientation of the shape with respect to the preferred direction xi.

C.4 Consequences of the symmetries of MOCCa

The conservation of parity, z-signature and y-time-simplex introduce symmetries into the nuclear density ρ,
see section 2.8, which in turn are reflected by the multipole moments of this density. Some β`m are restricted
to be zero when these symmetries are conserved and consequently form natural order parameters for these
symmetries.
Since the radial coordinate r is not affected by either P̂ , R̂z or ŠTy , it is sufficient to look at the effect of
those operators on cos θ, sinφ and cosφ. This effect depends of course on the choice of axes we have made.
The signs that cos θ, sinφ and cosφ receive under the action of the symmetries are summarized in Table C.1.
The signs can be straightforwardly derived from Eqs. (C.25). Given the signs in Table C.1 and the fact that
Pm` (−x) = (−1)`+mPm` (x) one can deduce for every choice of axes (x1, x2, x3) the multipole moments that
are restricted by symmetries. As example, we detail up to ` = 3 the multipole moments that are constrained
by symmetry for the traditional choice (x1, x2, x3) = (x, y, z) in Table C.2.

4The same considerations are valid for ev8, ev4 and cr8.

183



C. Multipole moments

Symmetry (x, y, z) (y, x, z) (z, x, y) (x, z, y) (y, z, x) (z, y, x)

cos θ

P̂ - - - - - -

R̂z + + - - - -

ŠTy + + - - + +

cos [(2n+ 1)φ]

P̂ - - - - - -

R̂z + - + - - +

ŠTy + - + + - +

sin [(2n+ 1)φ]

P̂ - - - - - -

R̂z - - - + + -

ŠTy - + + + + -

cos [(2n)φ]

P̂ + + + - + +

R̂z + + + - + +

ŠTy + + + + + +

sin [(2n)φ]

P̂ + + + + + +

R̂z + + - - - -

ŠTy - - + + - -

Table C.1: Behavior of cos θ̂, sinmφ̂ and cosmφ̂ (m 6= 0) under the symmetry operators for odd and even m.

` = 1 ` = 2 ` = 3

P̂ 〈Q̂10〉, 〈Q̂11〉 〈Q̂30〉,〈Q̂31〉, 〈Q̂32〉,〈Q̂33〉
R̂z 〈Q̂11〉 〈Q̂21〉 〈Q̂31〉,〈Q̂33〉
ŠTy Im〈Q̂11〉 Im〈Q̂21〉, Im〈Q̂22〉 Im〈Q̂31〉,Im〈Q̂32〉,Im〈Q̂33〉

Table C.2: Multipole moments up to ` = 3 constrained by symmetries of MOCCa for the choice of axes
(x1, x2, x3) = (x, y, z).

C.5 Redundant degrees of freedom in MOCCa

The redundant degrees of freedom have practical consequences when representing ρ(r) on a Lagrange mesh
in MOCCa, particularly when symmetries are broken.
The freedom of permutation of axes implies that we need only calculate one sextant of the entire (〈Q̂20〉, 〈Q̂22〉)
plane when calculating energy surfaces. A user of MOCCa can either use directly the values of (〈Q̂20〉, 〈Q̂22〉)
to constrain the code to particular orientations of the nuclear density or use the keyword Quantisationaxis

to choose the permutation of the axes used and thus the sextant.5

Enforcing the redundant degrees of freedom in 〈Q̂21〉, 〈Im Q̂22〉 and the centre-of mass coordinates to be zero
in a mean-field procedure is another matter. The only feasible way to control these degrees of freedom is by
introducing constraints on them. If one would leave these degrees of freedom unconstrained, the imaginary
time-step would in general have troubles converging, as there would be infinitely many competing configura-
tions would be either displaced or rotated compared to our convention.
Conserved symmetries do however limit the number of redundant degrees of freedom severely. Table C.4 shows
the redundant degrees of freedom that MOCCa constrains automatically when breaking certain combinations of
spatial symmetries. Note that these depend on the permutation of axes that was chosen, as the symmetries
in MOCCa carry explicit references to the axis names.
As a side-remark: breaking symmetries is not only costly in terms of number of represented points on the mesh
but also indirectly costly due to the added number of constraints. This severely impacts the effort needed
to find the mean-field solution as simultaneously satisfying several constraints is rather difficult. When all of
the spatial symmetries are broken MOCCa needs to satisfy six constraints on redundant degrees of freedom, in
addition to any constraints imposed by the user.

5This might seem of academic interest, as the physics is generally independent of the choice of axes but this is not always
the case. When introducing a cranking constraint on Jz for example, this creates a preferred direction in space and thus destroys
the six-fold symmetry. In that case, a user might need MOCCa to generate shapes in a certain sextant.
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Broken Cartesian Multipole

(x, y, z) (x, z, y) (y, x, z) (y, z, x) (z, x, y) (z, y, x)

P̂ 〈ẑ〉 〈Q̂10〉 〈Im Q̂11〉 〈Q̂10〉 〈Re Q̂11〉 〈Im Q̂11〉 〈Re Q̂11〉
R̂z 〈x̂ẑ〉 〈Re Q̂21〉 〈Im Q̂22〉 〈Im Q̂21〉 〈Im Q̂21〉 〈Im Q̂22〉 〈Re Q̂21〉
ŠTy 〈x̂ŷ〉 〈Im Q̂22〉 〈Re Q̂21〉 〈Im Q̂22〉 〈Re Q̂21〉 〈Im Q̂21〉 〈Im Q̂21〉
P̂, R̂z 〈x̂〉 〈Re Q̂11〉 〈Re Q̂11〉 〈Im Q̂11〉 〈Q̂10〉 〈Im Q̂11〉 〈Q̂10〉
P̂, ŠTy 〈ŷ〉 〈Im Q̂11〉 〈Q̂10〉 〈Re Q̂11〉 〈Re Q̂11〉 〈Q̂10〉 〈Im Q̂11〉
ŠTy , R̂z 〈ŷẑ〉 〈Im Q̂21〉 〈Im Q̂21〉 〈Re Q̂21〉 〈Im Q̂22〉 〈Re Q̂21〉 〈Im Q̂22〉

Table C.3: Redundant degrees of freedom constrained in MOCCa, depending on the choice of broken symmetries
and permutation of axes. The corresponding operators in Cartesian operators are also given (up to constant
factors).
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Appendix D

An introduction to the conjugate gradients
numerical algorithm

The conjugate gradient algorithm is a very well-known iterative method to solve linear equations. Since it
figures quite often in the entirety of MOCCa, we add this short appendix detailing where and how it is used in
the code. This will be a small introduction on a rather intuitive level and we refer to the reader to some of
the many excellent texts on the subject.

D.1 Conjugate gradients for linear problems

Consider a linear equation of the form
Ax− b = 0 , (D.1)

where x and b are vectors in a certain vector space and A is a symmetric matrix. Consider the following
quadratic form on the vector space of interest

f(x) =
1

2
xTAx− bTx . (D.2)

Note that the solution of Eq. D.1 is a minimum(or maximum) of this quadratic form since

[∇f ] (x) = Ax− b . (D.3)

One could simply use a gradient descent scheme (see chapter 4) to solve the linear equation: starting from a
vector x(i) at iteration i, one can construct a new vector x(i) by stepping in the direction of steepest descent
with some suitable step-size α.

δx(i+1) = x(i+1) − x(i) = −α [∇f ] (x(i)) . (D.4)

The conjugate gradient however improves on this step by making sure the update δx(i+1) is conjugate to the
previous update δx(i), meaning that if i 6= j then

δx(i)TAδx(j) = 0 , (D.5)

which is equivalent to the update directions being orthogonal with respect to the inproduct induced by A. In
practical applications, one introduces a second vector sequence y(i) (with y(0) = x(0)) and updates the pair
(x,y) at every iteration

x(i+1) = x(i) − α(i)Ay(i) (D.6a)

y(i+1) = x(i+1) + γ(i)Ay(i) (D.6b)

where the coefficients (αi, γi) are given by

α(i) =
x(i)Txi
y(i)TAy(i)

, γ(i) =
x(i+1)Tx(i+1)

x(i)Tx(i)
. (D.7)

This scheme ensures that all the updates δx(i+1) = −αiAy(i) are conjugate to the other updates δx(j). It
really is quite practical that the step-sizes α(i) are in fact dictated by the scheme, instead of relying on the
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user to supply a suitable value, as is the case for the gradient descent method. Note that we recover ordinary
gradient descent with stepsize α(i) if one puts the γ(i) to zero.
There are many nice results that (in provable way) detail how exactly conjugate gradient has better conver-
gence properties than simple gradient descent. The intuition is however rather simple: the conjugate gradient
method picks a direction to update Ay(i) and determines a step in that direction in an optimal way by cal-
culating α(i). Afterwards the method looks for another direction to optimize in: in order not to destroy the
work of the previous step, this new direction needs to be conjugate to the previous one. Compared to this
procedure, ordinary gradient descent simply picks a direction and advances with a certain step-size α in that
direction. If this step is not optimal, further iterations will be needed to improve the solution in that direction.
In summary, for a simple linear problem, it is really rather hard to conceive an algorithm that is better suited
for practical applications. It is rather straightforward to implement and converges significantly faster than
gradient descent [160]. This comes at only a very modest cost, that is simply the storage of one additional
vector (y(i)) and one additional matrix multiplication per iteration. The only often used improvement to the
method is by incorporating a preconditioner for the problem, which in many ways can be seen as remedying
the problems of the matrix A instead of the problems of the iterative algorithm.

D.2 Conjugate gradient for the optimization of non-linear problems

Consider (positive-definite) f(x), that does no longer have to be linear. We can still calculate ∇f(x) and
look for an optimum of the function, that is to say

[∇f ](x) = 0 . (D.8)

One can still implement an analog of Eq.D.6 as an iterative solution to the problem with an auxiliary vector
sequence y(i)

x(i+1) = x(i) − α(i)∇f(y(i)) ,

y(i+1) = x(i+1) + γ(i)∇f(y(i)) .
(D.9)

The catch is that there is no longer an ‘optimal’ choice for α(i). Usually one resorts to a line-search at every
iteration to search for a more or less optimal value, i.e. one picks a value of α(i) that (approximatively)
minimizes f(x(i) − α(i)∇f(y(i))) through some one-dimensional optimization algorithm. If the evaluation of
f is costly, one can however just take the α(i) to be constants throughout the process. The user needs to
supply a value for α in analogy to ordinary gradient descent.
The value of γ(i) is also rather hard to choose, but many choices have been studied in the literature. Two of
them are

γ
(i)
FR =

x(i+1)Tx(i+1)

x(i)Tx(i)
, (D.10)

γ
(i)
PR =

x(i+1)T [x(i+1) − x(i)]

x(i+1)Tx(i+1)
. (D.11)

The first of these corresponds to the formula for the linear case and is usually called the ‘Fletcher-Reeves‘
formula. The second one is usually called the ‘Polak-Ribiere’ formula. Note that they are equivalent when f
is linear, but for non-linear problems the Polak-Ribiere formula is in many cases observed to be superior.

D.3 Conjugate gradients in MOCCa

The conjugate gradient technique is mainly used in three different parts of MOCCa. They are listed below.
Note that the main mean-field iteration scheme could in principle also be a conjugate gradient solver, but I as
it turns out the problem is too non-linear to gain any actual CPU time compared to simple gradient descent.

Coulomb solver

The Poisson equation 4.28 is a linear equation on the mesh, and so we can use the method here. The matrix A
corresponds to the Laplacian ∆, the vector space is the space of functions on the mesh of which the Coulomb
potential V (r) is an element, and the proton density (with a factor 4π2) is the vector b.
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Kinetic preconditioner

Eq. 4.43 constitutes again a linear equation on the Lagrange mesh. The vector space is this time the space of
the single-particle spinors on the mesh, the matrix A is P̂−1 and the vector b is the single-particle wavefunction
|ψl〉.

Thouless method for the HFB equations

The energy E(Z, λ) from Eq. 6.50 is a quadratic form that can be optimized with the conjugate gradient
method. The matrix A is in this case the HFB Hamiltonian Ĥ and the vector space the space of the matrices
(U, V )T . A linear or quadratic constraint involving λ2 do not change the character of the problem, but the
Lipkin-Nogami system does: when it is added the problem is no longer linear. It is for this reason that
MOCCa implements the non-linear version of conjugate gradients for this problem.
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Appendix E

The conjugate gradient method to solve the
Thouless-HFB equations

We will delve into the details of the optimization process discussed in section 6.7, using the Thouless theorem
as a variational ansatz. The entire appendix is based on [112, 113].

E.1 The gradient method

Starting from a reference HFB state |Ψ0〉, one introduces the ansatz |Ψ(Z)〉

|Ψ(Z)〉 = θ̂(Z)|Ψ0〉 =

−1

2

∑
ij

Zijβ
†
i β
†
j

 |Ψ0〉 . (E.1)

which is a function of the matrix Z. The energy of this state is given by

E(Z,Ψ0) =
〈Ψ(Z)|ĤHFB|Ψ(Z)〉
〈Ψ(Z)|Ψ(Z)〉 . (E.2)

We would now like to construct a numerical algorithm to minimize this energy as a function of Z. However,
as before in ordinary HFB calculations, we need to introduce a Fermi energies λ to constrain the average
particle number. The quantity we want to minimize is thus

E(Z,Ψ0, λ) =
〈Ψ(Z)|ĤHFB − λnN̂n − λpN̂p|Ψ(Z)〉

〈Ψ(Z)|Ψ(Z)〉 , (E.3)

with subsidiary conditions

fn(λ) = 〈Nn〉 −N = 0 , (E.4a)

fp(λ) = 〈Np〉 − Z = 0 . (E.4b)

In what follows, we drop the index Ψ0 in the function of the energy as it is intricately linked to the variational
space spanned by the expression in Eq. (E.1). It is important to note that the optimization of Eq. (E.3) is
done against the background of the Hartree-Fock basis, that is to say at a specific mean-field iteration that
delivers single-particle energies and pairing gaps to put into the HFB Hamiltonian. The matrices U and V
are thus coordinates of the HFB state in the space of all possible HFB states that one can construct using
the specific Hartree-Fock basis at this specific mean-field iteration. The natural variational quantities are thus
the the entries in the matrices U and V.
Starting from the matrices U0 and V0 associated with |Ψ0〉, we want to find the matrices U and V that
characterize the minimal energy state |Ψ(Z)〉. In what follows we will drop the isospin q as subscript to
lighten the notation and focus on one particle species. The variation of Eq. E.3 with respect to the elements
of the matrix Z is

∂E(Z, λ)

∂Z
= H20

HFB − λN 20 , (E.5)

where H20 and N 20 are given by

H20 =U†hV ∗ + U†∆U∗ − V †hTU∗ − V †∆∗V ∗ , (E.6a)

N 20 =U†V ∗ − V †U∗ . (E.6b)
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E. The conjugate gradient method to solve the Thouless-HFB equations

Note that both these matrices are antisymmetric.
Starting from the initial matrices U0 and V0, we can now construct new matrices U1 and V1 by simply stepping
in the direction of steepest descent, cf. section 4.4. The gradient step is

U1 =U0 − εV ∗0
(
H20

HFB − λN 20
)∗
, (E.7a)

V1 =V0 − εU∗0
(
H20

HFB − λN 20
)∗
, (E.7b)

where ε is some small step parameter, currently fixed by experience in MOCCa as 0.02. Note that this
transformation does not conserve the Fermionic anticommutation relations of the quasiparticle operators:
in order to enforce them an additional Gram-Schmidt orthonormalisation of the columns of (U1, V1)T is
performed.
From (U1, V1)T one can construct the gradient again and construct a new update (U2, V2)T . This process
will converge to a stationary point1, and MOCCa judges convergence based on the norm of the gradient∣∣∣∣∂E(Z, λ)

∂Z

∣∣∣∣ =

√√√√∑
ij

(
∂E(Z, λ)

∂Z

∗∣∣∣∣
ij

∂E(Z, λ)

∂Z

∣∣∣∣
ji

)
≤ PairingPrec , (E.8)

where PairingPrec is an input parameter of MOCCa and typically on the order of 10−6.
This process is not complete however, as minimizing the energy is not enough: we have to also fix the Fermi
energy λ to have the correct particle number on average. From the initial λ(0) we construct λ(1) as follows

λ(1) = λ(0) +

(
N −N(λ(0))

)∣∣∣N̂ 20
∣∣∣ , (E.9)

where |N̂ 20| is the norm of the N̂ 20 matrix, defined similarly to Eq. (E.8). This corresponds to the setting
N(λ(1)) = N and solving to first order in (λ(1)−λ(0)). This is also rather reminiscent of a an augmented Lag-
rangian constraint, see chapter 5. After some iterations, λ(i) will tend to the correct value, and MOCCa checks
also the number of particles for convergence:

|N(λ)−N | ≤ PairingPrec . (E.10)

A similar addition to the scheme can be made in the case of a constraint on λ2. We take the practical route
and simply add the constraint term −λ2∆N2 to the HFB Hamiltonian, resulting in a slightly different Ĥ20.

In the case of the Lipkin-Nogami method, the parameter λ
(i)
2 is also varied in a rather straightforward way

λ
(i+1)
2 = λ

(i)
2 + 0.1

(
λ

(i)
2 − λLN2

)
, (E.11)

where λLN2 is calculated from the current HFB state via Eq. 6.33. When λ2 is constrained to a user-defined
value, the code could in principle use a similar update principle as for the Fermi energy, but this is at the
moment not implemented2.

E.2 The conjugate gradient method

The speed of this algorithm can be greatly improved by changing the update formula in Eq. (E.7) to a
conjugate gradient scheme as described in Appendix D. For completeness’ sake, we write down the update
formula

U (i+1) = U (i) − εV (i),∗G(i),∗ + γ(i)
[
U (i) − U (i−1)

]
, (E.12a)

V (i+1) = V (i) − εU (i),∗G(i),∗ + γ(i)
[
V (i) − V (i−1)

]
, (E.12b)

with the following auxiliary definitions

G(i) =
(
H(i)20

HFB − λN (i),20
)
, (E.13)

γ(i) =
|G(i)|
|G(i−1)| −

〈G(i)|G(i−1)〉
|G(i−1)| , (E.14)

〈G(i)|G(i−1)〉 =

√∑
kl

(
G

(i),∗
lk G

(i−1)
kl

)
, (E.15)

1Provided ε is not too large. An adaptive scheme for this parameter would be most welcome.
2Strictly because of time limitations, as the implementation would be straightforward.
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E.2. The conjugate gradient method

where the formula employed for γ is the Polak-Ribière one. Note that we kept the stepsize in the algorithm,
instead of taking the ‘optimal’ stepsize α as is possible for a linear problem. This is motivated by the fact
that the problem becomes nonlinear the moment the Lipkin-Nogami approach is activate, and in this way the
algorithm works in all cases.
It is worth mentioning that the entire algorithm is a rather recent addition to MOCCa and many optimizations
and simplifications can still be envisioned, as we have not a lot of experience with it at the moment.
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Appendix F

Coulomb Solvers

This appendix has as aim to document very briefly the various Coulomb solvers included with MOCCa. All
of them are tested to give the same result. The user can choose between various options using the input
parameter CoulombSolver:

0. No Coulomb contribution

1. Conjugate gradient

2. Red-black Gauss-Seidel

3. Symmetric overrelaxation

The first option simply disables all contribution from the electrostatic interaction to the functional. As
discussed in chapter 4 the three other methods are iterative methods to solve Poisson’s equation Eq. (4.28)
with suitable boundary conditions Eq. (4.30). On the Lagrange mesh this differential equation is simply a
system of linear equations. The conjugate gradient method we will not discuss separately, as it is a simple
implementation of the scheme discussed in Appendix D. The Gauss-Seidel and Symmetric overrelaxation will
be briefly discussed, but the interested reader can find a much more educative and exhaustive treatment in
[88].
Three general remarks are in order: the system of linear equations is of course dependent on the chosen
representation of the Laplacian ∆ on the mesh. This can be controlled by the CoulombLapOrder input
parameter. Its default value is 2, corresponding to a second order finite difference scheme, that has been
shown to be accurate enough for all applications [72].
The Coulomb potential from previous mean-field iterations is saved and used as a starting point for the iterative
solvers. While at the start of the iterations the Coulomb solver may take several iterations to converge, as
convergence sets in on the mean-field level the proton density becomes stationary and the numerical effort
needed to solve for the Coulomb potential is close to zero.
A final remark is on the imposed accuracy of the solver. MOCCa judges convergence on equal footing for all
of the solvers using the following inequality∫

dr
([

∆ + 4πe2ρp(r)
]
V (r)

)2 ≤ V −1
box × CoulombPrec , (F.1)

where CoulombPrec is an input parameter and defaults to 10−9 and VBox is the volume of the Lagrange mesh,
possibly extended with extra points compared to the standard mesh.
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F. Coulomb Solvers

Finite Difference order 1 2 3 4

optimal ω 1.91 1.5 1.45 1.39

Table F.1: Optimal value of ω for the symmetric overrelaxation method as determined for a uniformly charged
sphere with an equivalent charge of 82 protons.

F.1 Red-black Gauss-Seidel

A Gauss-Seidel scheme [88]solves the Poisson equation by applying the following update formula

V (i)(r) = V (i−1)(r) +
[
∆ + 4πe2ρp(r)

]
V (i−1)(r) . (F.2)

Just applying Eq. (F.4) iteratively is a simple gradient-descent scheme, but the Gauss-Seidel method augments
this by applying a special rule for computing ∆ on the mesh. The discretisation of the Lagrange mesh makes
that ∆ becomes a linear operator [

∆V (i)
]

(ri) =
∑
j

∆ijV
(i)(rj) , (F.3)

where the coefficients ∆ij depends on our specific choice of representation. The naive update formula thus
becomes, at every point ri,

V (i)(ri) =
∑
j

∆ijV
(i−1)(rj) + 4πe2ρp(ri)V

(i−1)(ri) . (F.4)

For the first point computed r1, we can do no better. But already for r2 we can use the updated value
V (i)(r1) in the update formula, instead of the old value V (i−1)(r1). The actual update thus uses as much
information as is available at the moment of update, so that we get

V (i)(ri) =
∑
j<i

∆ijV
(i)(rj) +

∑
j>i

∆ijV
(i−1)(rj) + 4πe2ρp(ri)V

(i−1)(ri) . (F.5)

where the notation j < i means that rj comes before ri in our calculation.
The implementation becomes ‘red-black’ the moment we choose a specific ordering for the points on the
Lagrange mesh, in order to optimize the inclusion of as much new information as possible. Recalling the
coordinates on the Lagrange mesh of chapter 4, a point on the Lagrange mesh is determined by its Cartesian
coordinates (xi, yj , zk). The mesh points are then divided into two groups: those for who i+ j + k is even,
and those that have odd i + j + k. The second group is first updated using Eq. (F.5), in lexicographical
order of (i, j, k). The first group is then updated in lexicographical order afterwards, profiting from the new
information that is already contained in the values of V on the first group of mesh points. This ordering is
known as ‘red-black’ since the division of mesh in two submeshes in two-dimensions is exactly the division of
a checkers-board into red and black tiles.

F.2 Symmetric Overrelaxation

A symmetric overrelaxation solver generalizes Eq. (F.4) by introducing a new constant ω to the update
formula [88]

V (i)(r) = V (i−1)(r) + ω
[
∆ + 4πe2ρp(r)

]
V (i−1)(r) . (F.6)

When ω > 1 this method updates strictly faster compared to the ordinary Gauss-Seidel method. The optimal
value of ω is however heavily dependent on the problem under consideration. Table F.1 contains the optimal
values of ω as determined for a uniformly charged sphere with a charge equivalent of 82 protons for different
representations of the Laplacian with finite difference derivatives. When ω is not optimal however, the method
performs very comparably to ordinary Gauss-Seidel. The cost in human time for searching for an optimal value
of ω is however not worth it in general.
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Appendix G

A peculiar feature of the HFB equations

Recall that the HFB Hamiltonian ĤHFB and the generalized density matrix R̂ commute, and thus share
eigenvectors. This fact has been used in chapter 3 to construct the canonical basis. However, this means
that one has an extra degree of freedom to work with. Consider the following matrix, for a real parameter α

ĤHFB + αR̂ =

(
h ∆

−∆ −h

)
+ α

(
ρ κ

−κ 1− ρ

)
. (G.1)

One can diagonalize this matrix instead of the HFB Hamiltonian in order to obtain the (Uk, Vk)T vectors.
Only the eigenvalues, the quasiparticle energies, change. Since R has eigenvalues equal to one or zero,
whether or not a quasiparticle is ‘picked’ (see the discussion in chapter 6 and [11]), this operation breaks the
symmetry between a quasiparticle and its conjugate, as they will no longer have opposite energies Ek and
−Ek but rather Ek and −Ek +α. Because this transformation leaves the HFB solution invariant, we will call
the parameter α the HFB gauge parameter.
Fig. G.1 shows part of the quasiparticle spectrum of 64Ge, for negative parity proton quasiparticles as a function
of the gauge parameter α. The picked quasiparticle energies are unaffected, but the distance between canon-
ical partners can be controlled by the gauge parameter. Depending on the choice of selected quasiparticles,
non-zero values of α can either be chosen to enlarge or shrink the gap between selected and non-selected
quasiparticles.
As example, let us look at the ground state of a time-reversal invariant system. All of the picked quasiparticles
have positive quasiparticle energies Ek > 0 and the unselected ones have Ek < 0. For positive values of α the
non-selected states rise in energy, closer to the selected quasiparticles. When they cross zero, naively selecting
the positive energy quasiparticles leads to an invalid choice, since we will have too many quasiparticles. Even
when carefully selecting along signature blocks, we encounter trouble when an originally unselected quasi-
particle rises past an originally picked level, the picking algorithm will select the wrong quasiparticle. In a
time-reversal case, this results in a two-quasiparticle excitation on the ground state. This will lead to numer-
ical instability very quickly, as of course the quasiparticle spectrum will vary from one mean-field iteration to
the next and MOCCa will start mixing different configurations and in general not converge.
The gauge parameter α can also be used to stabilize convergence. If α is taken to be negative, the unselected
states go down in energy, which means that in a time-reversal conserved case the gap between selected and
not selected quasiparticles enlarges. While not particularly helpful in this case, in a cranked calculation this
might help stave off crossings of quasiparticles and their conjugates, greatly stabilizing convergence.
For blocked calculations, the situation is hard to analyze in general, as the quasiparticle spectrum can vary
greatly depending on the blocked state under investigation. However, a clever choice of the gauge parameter
α can help keep the blocked quasiparticle away from other quasiparticles, avoiding crossings and changes
in the nature of the quasiparticle. This freedom has been in use for a long time in cr8 (at least when the
Lipkin-Nogami method was used) to promote convergence of quasiparticles [32], but was always used rather
ad-hoc.
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Figure G.1: Lowest negative parity proton quasiparticle energies and their conjugate partners of 64Ge as a
function of the HFBGauge parameter. Red lines are picked quasiparticles, black dashed lines are the conjugate
partners that are not picked.
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Appendix H

Structure of the code
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H. Structure of the code

MOCCa

Read user input

Read wavefunction input

Solve pairing iterations

Calculate pairing field ∆(r)

Calculate pairing gaps ∆

Calculate pairing cutoffs

Search for Fermi energy

HF: Get the correct configuration

BCS: Iterate the gap equation

HFB

Bisection solver

Broyden solver

Thouless solver

Compute occupation factors v2

Construct single-particle Hamiltonian ĥ

Calculate new mean-field densities

Mix the new mean-field densities

Update constraints

Calculate mean-field potentials

Evolve single-particle wavefunctions

Take a gradient step

Orthonormalize

Apply derivatives on the wavefunctions

Calculate Energy

Check for convergence

If not converged

Reanalysis

Derive using Langrange derivatives

Calculate mean-field densities

Calculate energy

Write wavefunction output
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2000.

[61] K. Heyde, P. von Neumann-Cosel, and A. Richter, Magnetic dipole excitations in nuclei: Elementary
modes of nucleonic motion, Rev. Mod. Phys. 82 (2010) 2365–2419.

[62] M. Anguiano, J. Egido, and L. Robledo, Mean-field based approaches to pairing correlations in atomic
nuclei, Phys. Lett. B545 (2002) 62 – 72.

[63] J. A. Sheikh, P. Ring, E. Lopes, and R. Rossignoli, Pairing correlations and particle-number projection
methods, Phys. Rev. C 66 (2002) 044318.

[64] M. V. Stoitsov, J. Dobaczewski, R. Kirchner, W. Nazarewicz, and J. Terasaki, Variation after
particle-number projection for the Hartree-Fock-Bogoliubov method with the Skyrme energy density
functional, Phys. Rev. C 76 (2007) 014308.
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