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Abstract

This thesis is devoted to the study of detector models in quantum field theory.
A detector model aims to describe a hypothetical physical situation, realistic or not,
in which a measurement is performed on a quantum field by means of a quantum
mechanical apparatus. The goal is to design a procedure by which one can analyze
local features of the field theory with a strong physical base. Within this context,
we will analyze the so-called Unruh effect, which states that accelerated observers
will experience the ordinary field’s vacuum fluctuations as thermal fluctuations at a
temperature proportional to their acceleration.

The text covers an adapted introduction to quantum field theory and the Unruh
effect, which contextualizes and links the original contents developed by the author.
These original works discuss the following topics:

• A particle detector-based measurement of the two-point function in quantum
fields.

• Causality issues and impossible measurements in general detector models in
QFT.

• The non-monotonic behavior of thermodynamic features of accelerated detec-
tors, also known as Anti-Unruh effect.

• Robustness of the Unruh effect against ultra-violet deformations of the corre-
lations.
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Chapter 1

Introduction

This thesis is devoted to the study of particle detector models, and the role they
have played and may have yet to play in our understanding of a variety of results
in quantum field theory, such as the Unruh effect. Roughly speaking, a particle
detector model aims to describe a situation in which a quantum mechanical device,
the “detector”, interacts locally with a quantum field. After the interaction, the
statistics of the detector will generally depend on the state of the quantum field
prior to the interaction “around” the spacetime region in which the interaction has
taken place. Hence, particle detector models provide a conceptual tool to study local
aspects of QFT.

When exposed to this prescription of what a detector model is and what it is
expected to achieve, the reader’s mind will possibly follow one of these streams of
thought:

• The reader that is, in some sense, more philosophically methodical will start
questioning the very concept, necessity or usefulness of such models for studying
local aspects of QFT.

• The reader with a more pragmatic attitude will wonder what realistic physical
systems could play such a role.

Indeed, the first kind of reader would request a model-independent justification for
the use of detector models. Conversely, the second kind reader could be interested
in detector protocols by themselves as physical processes, rather than as a tool to
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conceptualize QFT quantities. After all, one could argue that the experimental pro-
cedures that induce actual measurements of quantum fields necessarily pass through
some kind of detector system, e.g a photodetector.

It is legitimate to wonder why a particular quantum field theory would require
the introduction of “external” objects that do not belong to the field theory itself in
order to extract local information from the quantum field. The rough idea is that the
mathematical objects available from the field theory are difficult to interpret physi-
cally. Whereas at the level of the whole Hilbert space one can link the eigenstates of,
the number operator to the phenomenology associated with particles, as is custom-
ary in high energy physics, it is not immediate to link the mathematical objects to
physical quantities when considering local observables and local operations. In con-
trast, a device playing the role of a detector can be analyzed in more mundane terms
(at least as mundane as quantum mechanics allows). A typical question one may
find difficult to answer, e.g., is whether a field’s state resembles a thermal reservoir
when restricted to a spacetime wedge and in what sense. This is the central question
posed by the so-called Unruh effect, and constitutes an example of which an answer
is given by inquiring whether a detector undergoing an accelerated trajectory reaches
thermal equilibrium with the field, as it would with a thermal state.

What are the challenges in interpreting QFT quantities? We will tackle this in
due time, but first, let us recall some commonly accepted facts for finite-dimensional
quantum theory. According to quantum theory, physical systems can be represented
by Hilbert spaces. Mutually exclusive physical properties are then associated with
orthogonal closed subspaces of this Hilbert space, which can be represented by pro-
jectors. One-dimensional projectors represent properties that are elementary, and
these can be represented by rays of vectors in the Hilbert space. A set of subspaces
in which each subspace is given by the span of an element of an orthogonal basis
represents therefore an exclusive and exhaustive set of possibilities [5, 6].

More generally, one can have continuous properties, in which one has a countably
additive function that associates subsets of some Borel set to subspaces of the Hilbert
space, in such a way that whenever two sets are disjoint the associated projectors
are orthogonal, and that the projector associated with the whole set is the identity
in the Hilbert space. Such a function is known in mathematics as a projector-valued
measure (PVM). There is a one-to-one correspondence between self-adjoint operators
in the Hilbert space and PVM’s [7].

States of the system are represented by positive linear functionals over the space
of bounded operators in this Hilbert space, in such a way that for each exhaustive
and exclusive set of properties we have a probability distribution. It follows that
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states can also be represented by operators, at least in dimensions greater than two.
This result, known as Gleason’s theorem [8], states that any probability measure
over the closed subspaces of a Hilbert space of dimension greater than two can be
written as

〈·〉 = tr[·ρ̂] (1.1)

for some trace class, unit-trace, positive operator ρ̂, the so-called density matrix.
Note then that Gleason’s result can be understood as a first principles derivation of
the so-called Born’s rule. States that cannot be written as a convex combinations
of other states are called pure states. Importantly, pure states are represented by
rank-one projectors, therefore establishing a duality between states and properties.

Regarding quantum measurements, a pragmatic definition of measurement is just
some procedure that grants empirical access to the probabilities as calculated by
Born’s rule for a given preparation of the system. In this thesis we will remain
agnostic about the nature of the state of the system as either ontic or epistemic,
and we will not commit to particular interpretation of what happens to the system
whenever a property is measured. We will consider, however, the notion of non-
selective measurement, which does not require to introduce a state update rule in
the theory. Indeed, let ρ̂0 be the initial state before a measurement. Consider the
spectral decomposition of an observable Â, i.e., Â =

∑
a aP̂a. After a non-selective

measurement of Â the state of the system, denoted as ρ̂|a, is given by

ρ̂|a =
∑
a

P̂aρ̂0P̂a. (1.2)

This operation is considered a measurement because it transforms a state into a
probabilistic mixture of states P̂a associated with each outcome, with a weight given
by tr[P̂aρ̂0], i.e. Born’s rule. This map does not require the introduction of new
dynamics, since it can be implemented through environmental decoherence [9].

An important concept for our purposes is statistical independence of measure-
ments. Consider for example two commuting observables [Â, B̂] = 0 of a closed
quantum system. A non-selective measurement of observable Â does not affect the
expectation value of B̂. Since [Â, B̂] = 0, it holds that [P̂a, B̂] = 0 ∀a. Making use
of this, we can easily see that

tr(B̂ρ̂|a) = tr(B̂ρ̂0), (1.3)

which means that the expectation value of B̂ does not depend on a non-selective
measurement of observable Â.
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Finally, we mention that one can gain some insights with respect to measurements
by considering a more detailed account of how experiments are really carried out.
For instance, in quantum optics and high energy physics experiments measurements
are usually thought of as destructive. The system under consideration, say a photon,
is measured and after is discarded, and therefore the state of the system after the
measurement does not need to be specified. Although this line of thought in quantum
optics and high energy physics requires the conflicting notion of particle, it has had a
portentous success. More generally, one may have more confidence in how to measure
some systems than others, i.e., one may want to use an external device to measure
a target system. If one has two systems that share a common state, it is obvious
that one can gain information about the one by measuring the other, given that both
share some correlations. Moreover, these correlations can be thought of as created
dynamically through a controlled interaction between the detector and the system.

The general formalism that accounts for this type of measurement protocols, also
called Von Neumann measurements [6], is the one of the positive-operator valued
measures (POVM), for every PVM in the system plus detector Hilbert space induces a
countably additive, normalized function that takes values on positive operators acting
over the target system’s space. The opposite is also true, given such POVM one can
always find a PVM on an enlarged system that reproduces the POVM, although this
one is not unique, so interpreting a POVM in terms of physical properties generally
requires the actual PVM used to implement the measurement in the system plus
detector Hilbert space [10].

As we will discuss, the formalism of von Neumann measurements plays a rel-
evant role in relativistic quantum physics. The issues surrounding the notion of
measurement and the interpretation of quantum probabilities are most commonly
discussed in the context of non-relativistic quantum mechanics, and particularizing
these notions to relativistic systems, however, faces unique challenges [11].

A relativistic theory could be defined as a theory that makes explicit reference
to spacetime, and that respects its symmetries in such a way that its predictions are
not dependent on the reference frame. It can be concluded from the postulates of
special relativity [12] that nothing can travel faster than light (technically, nothing
can travel faster than light if at some point it travelled slower). This in turn induces
a causal structure, which determines whether two events in spacetime can be causally
related, either as a cause or an effect, and those that cannot. Events that can be
related by a causal relation are said to be timelike separated, whereas events that
cannot be related by causal relations are said to be spacelike separated. Given a
spacetime event, denoted by x, it causal future and its causal past are given by J+(x)
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and J−(x) respectively.

Regarding quantum theory, these assertions have crystallized into two indepen-
dent sets of assumptions about relativistic quantum theory. On the one hand, one
would like to enforce, given that the theory makes explicit reference to spacetime
regions, that properties associated with spacelike separated events are fully indepen-
dent, in the sense that the projectors associated with them commute. This general
idea is referred to as the microcausality condition, and it is a kinematic condition
in the sense that it does not depend on the underlying dynamics of the theory. The
second set of conditions make reference to the covariance of the theory, its symme-
tries and the spectrum of the operators associated with those symmetries. This is
somehow a dynamical condition in the sense that it imposes conditions over time-
like related events, i.e. over the time evolution of the system, propagation of initial
conditions etc.

It turns out that these two independent requirements, when applied together to
quantum theory, lead to a series of common-theme results. An example of such type
of result is the non-existence of a relativistic position operator. Indeed, one common
place in relativistic quantum physics is that a relativistic quantum theory requires
the use of fields. Perhaps the first indication that this should be the case stems
from the original efforts of Dirac for building a relativistic version of the Schrodinger
equation for the wavefunction [13], namely the Dirac equation, only to discover that
its solutions must include negative energy solutions. Negative energy solutions are
not acceptable for reasons that do not have to do with causality, namely that a system
that can take arbitrarily low energies will be unavoidably unstable. An exposition
more in-tune with measurement theory takes the form of a no-go theorem, due to
Malament [14], which deals with the existence of a projector valued measure from
subregions of a spacelike surface. Indeed, Schrodinger’s equation is nothing but
the position representation of the unitary evolution of the state of a particle, and
therefore specifiying a PVM for the position in a spacelike surface, or a position
operator, is equivalent to specifying a Schrodinger-type equation.

Such a PVM should be compatible with the causal structure of the theory by im-
posing that the statistics of the particle are independent in spacelike separation i.e.
the microcausality condition. This implies that the PVM could be split in spacelike
separated regions, and the sub-PVMs associated with these subregions should com-
mute [15]. Also, if the PVM is covariant, then it should carry a representation of the
Lorentz group, which is implemented unitarily. This unitary implementation should
fulfill the condition that the Hamiltonian that generates it has a spectrum bounded
from below, as explained before. In a few words, the no-go theorem expresses the
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impossibility of having such PVM, which implies that relativistic quantum physics
cannot rely on a quantum mechanical description.

This problem can be overcome when one resorts to a field theoretic description. As
we will see, the particle detector approach allows one to perform measurement of local
quantities which otherwise seem difficult to approach. Indeed, the usual approaches
in QFT, such as in high-energy physics, do not rely on local properties of the field
theory, but on the global notion of particle [16]. We will see that such objects cannot
exist locally, and further that the projectors that do exist locally are too complicated
to treat or to interpret. Moreover, we will see that phenomena predicted by QFT,
such as the Unruh effect, again rely on either particles or complicated mathematical
constructs, and that particle detectors again provide a nice balance between both
approaches.

In this thesis we present some of our results in the topic of particle detectors in
QFT and the Unruh effect. The organization of the chapters is as follows:

• Chapter 2 introduces the formalism of the Klein-Gordon field from the point
of view of both canonical quantization and covariant quantization, as well as a
discussion of some aspects of local measurement theory in QFT.

• Chapter 3 introduces a variety of (linear) particle detector models, most im-
portantly the point-like Unruh DeWitt model. It includes a detailed derivation
of the statistics of general detector models at the first orders in perturbation
theory.

• Chapter 4 is based on our work in [1]. There, a simple procedure to measure
the local correlations of a quantum field using detector models is discussed.

• Chapter 5 is based on our work in [2]. In there we analyze causality issues,
such as Sorkin’s impossible measurements, in the context of general detector
models.

• Chapter 6 focuses on the Unruh effect, and its traditional description through
different methods. It contains a detailed, yet simplified description of the Kubo-
Martin-Schwinger (KMS) condition, as well as some discussion on thermometry
within the framework of perturbation theory.

• Chapter 7 is based on our work in [3], in which we investigated aspects of
the so-called Anti-Unruh effect, which describes an unusual, non-monotonic
behavior of accelerated particle detectors with the acceleration.
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• Chapter 8 is based on our work in [4]. There, we discuss the robustness of the
Unruh effect in the presence of ultraviolet deformations of the field theory.

• Finally, we conclude and summarize in chapter 9.

Chapters 2, 3 and 6 include mostly standard contents that have not been devel-
oped by the author of this thesis, but that help to contextualize and link the original
results together. Some of the contents of these chapters, however, settle notation and
even contain partial original results. Regarding the original contents included in this
thesis, chapter 2 is not specially relevant aside from settling some notation regarding
QFT. Chapter 3 contains some important derivations regarding the point-like UDW
model, e.g. the relevant transition probabilities, but the reader that may take such
derivations for granted may safely skip most of it. However, it also presents some
original generalizations of particle detector models that are relevant for chapter 5,
and some unpublished derivations of the statistics of detector models in this general
context. Finally, chapter 6 describes the Unruh effect from different formalisms in
order to stress the relevance of the original work, but a full understanding of these
descriptions is not necessary in order to understand the results discussed in chapters
7 and 8. Nonetheless, it also contains some results regarding the KMS condition that
will be used in these chapters, but the relevant derivations are gathered within its
own subsection.
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Chapter 2

Quantum field theory

The framework of quantum field theory provides us with a conceptual machinery
and a mathematical formalism that accounts for quantum as well as relativistic
phenomena. It is considered to be the most complete theory of nature, since in
principle it can describe all physical phenomena in which quantum gravitational
effects are not relevant.

The most elementary example of a quantum field is perhaps given by the real,
scalar bosonic field in flat spacetime. For such theory, one wishes to describe a
quantum version of the so-called Klein-Gordon field, which is a classical field that
fulfills the Klein Gordon equation

(∂µ∂
µ −m2)φ(x) = 0 (2.1)

where ∂µ∂
µ stands for the D’Alambertian −∂2

t + ∆, where ∆ is the Laplacian in
the spatial coordinates, and m is the mass of the field. There are several ways
of describing a quantum version of this field theory. The most successful ones are
canonical quantization, the path integral quantization and the algebraic quantiza-
tion. While canonical quantization is the most straightforward method, and keeps a
close resemblance the usual quantization methods of quantum mechanics, the path
integral method is better suited to study gauge theories. The algebraic approach is
more sophisticated mathematically [17], and has the goals of describing field theory
axiomatically, but also to make sense of local observables [18], and to study QFT in
curved spacetimes [19].
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2.1 Canonical quantization

The most standard formulation of the Klein-Gordon field would resort to the so-
called canonical quantization [20]. The starting point is to acknowledge that the
classical Klein-Gordon field can be equivalently described by applying the principle
of stationary action to the functional

S =

∫
dV L(x) (2.2)

where dV = dtd3x, and the Lagrangian density L is given by

L(x) = −1

2
∂µφ(x)∂µφ(x)− m2

2
φ2(x). (2.3)

Since the process of extremizing the action does not make explicit reference to the
inertial reference frame, and the Lagrangian density is written in term of Lorentz
invariant quantities, this theory is explicitly Lorentz invariant.

Following the recipe for canonical quantization, one chooses a time parameter
representing the coordinate time for some inertial reference frame, and defines the
conjugate momentum field as

π(t,x) =
∂

∂∂tφ
L = ∂tφ(t,x), (2.4)

and defines the Hamiltonian density as the Legendre transform

H(t,x) = ∂tφ(t,x)π(t,x)− L(t,x) =
1

2
π2(t,x) +

1

2
∂iφ(t,x)∂iφ(t,x) +

m2

2
φ2(t,x),

(2.5)

where i ranges over the spatial coordinates, and the total Hamiltonian

H =

∫
d3xH(t,x). (2.6)

In canonical quantization, the fields φ and π are operators fulfilling the equal-time
canonical commutation relations

[φ̂(t,x), π̂(t,x′)] = iδ(x− x′)I, (2.7)

where I denoted the identity operator.
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The Hilbert space is constructed by defining implicitly the operators of creation
and annihilation as

φ̂(x) =

∫
d3k√
2ωk

(âke
ikx + â†ke

−ikx), (2.8)

where ωk =
√
m2 + k2 and k = (ωk,k). This is an expansion in modes of the

quantum field. Each of the creation and annihilation operators is labeled by an
index k that relates them to a solution of the Klein-Gordon equation with well-
defined wave number. The equal-time canonical commutation relations imply the
following commutation relations for the creation and annihilation operators

[âk, âk′ ] = 0, (2.9)

and

[âk, â
†
k′ ] = δ(k − k′)I. (2.10)

These canonical commutation relations are then used to define the Hilbert space
upon which this operators act. First, one defines the vacuum vector |0〉 and the so-
called one-particle Hilbert space H. Then, one constructs the second-quantization,
or Fock space of the Hilbert space H as

F =
∞⊕
n=0

Hn (2.11)

where

H0 = span{|0〉}, (2.12)

H1 = H (2.13)

and Hn is given by the n-times symmetrized tensor product, i.e.

Hn = H⊗S · · · ⊗S︸ ︷︷ ︸
n

H. (2.14)

The one particle Hilbert space is identified with vectors of the form

â†k |0〉 , (2.15)
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which implies, through the canonical commutation relations, that

âk |0〉 = 0. (2.16)

For our purposes, it is relevant to study the correlations of the field operator
evaluated in two spacetime points, that is, the so-called Wightman function

W (x, x′) = 〈0|φ̂(x)φ̂(x′)|0〉 . (2.17)

Given the expansion (2.8), the field operator acting over the vacuum state can be
written as

φ̂(x) |0〉 =

∫
d3k√
2ωk

(âke
ikx + â†ke

−ikx) |0〉 =

∫
d3k√
2ωk

e−ikxâ†k |0〉 , (2.18)

which allows to calculate

〈0|φ̂(x)φ̂(x′)|0〉 =

∫
d3k√
2ωk

eikx

∫
d3p√
2ωp

e−ipx′ 〈0|âkâ†p|0〉 =

∫
d3k

2ωk

eik(x−x′), (2.19)

where we have used the canonical commutation relations.

Moreover, one can write the Wightman function in terms of Lorentz invariant
scalars, for instance, consider the case in which x − x′ is a timelike vector (e.g. in
[21]).

Since x − x′ is a timelike vector, there is a reference frame in which x − x′ is at
rest, that is, its only non zero component is the time component. Moreover, since
the interval of a four vector is Lorentz invariant, the value of this component is

∆ = sgn(t− t′)
√
−(x− x′)2. (2.20)

Let Λ be the Lorentz transformation that takes us to that reference frame for each
τ, τ ′: ∫

d3k

2ωk

eik(x−x) =

∫
d3k

2ωk

eikΛ(∆,0) =

∫
d3k

2ωk

ei(Λtk)(∆,0). (2.21)

Now, since d3k
2ωk

is a Lorentz invariant measure, we can change variables from k to

k′ = Λtk leaving the measure untouched, i.e. d3k
2ωk

= d3k′

2ωk′
. Thus,∫

d3k

2ωk

ei(Λtk)(∆,0) =

∫
d3k′

2ωk′
eik′(∆,0) =

∫
d3k′

2ωk′
e−iωk′∆. (2.22)
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Now, since ωk =
√
m2 + k2, one can simplify the integral in spherical coordinates,

integrating the angular variables∫
d3k′

2ωk′
e−iωk′∆ = 2π

∫ ∞
0

k2dk√
m2 + k2

e−i
√
m2+k2∆. (2.23)

This integral can be performed in terms of modified Bessel functions of the second
kind

2π

∫ ∞
0

k2dk√
m2 + k2

e−i
√
m2+k2∆ =

m

2πi∆
K1(im∆). (2.24)

In particular, when m = 0 the integral simplifies to

2π

∫ ∞
0

dkk e−ik∆ = − 1

∆2
. (2.25)

The fact that the Wightman function depends on the points x, x′ through the
interval ∆ is not surprising, since the vacuum is Lorentz invariant. Note that the
integral expression is not absolutely convergent, which means that the expression
has to be understood in the sense of distributions.

2.1.1 Issues with canonical quantization

There are (at least) two features of quantum field theory that are not totally apparent
in this quantization scheme. One is the lack of definition of field operator itself, the
other is the arbitrariness of the mode expansion (2.8). The first problem is most
pertinent in the context of chapter 4 of this thesis, whereas the second becomes
relevant for the analysis of the Unruh effect, as we will see in chapter 6.

Regarding the first point, it is indeed part of the lore of quantum field theory
that, in contrast with classical field theory, the value of the field at a point is not
well defined. It is not difficult to illustrate this behavior from the point of view of
standard canonical quantization. Consider the norm of the vector φ̂(x) |0〉:

‖φ̂(x) |0〉‖2 =

∫
d3k

2ωk

, (2.26)

which does not converge. A way to interpret this fact in physical grounds is that the
value of the field’s amplitude at a point has infinite variance in the vacuum.
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In order to get operators with finite variance one has to “average” the field oper-
ator by smearing it with a spacetime function, say f(x), such that

φ̂(f) =

∫
dV φ̂(x)f(x) (2.27)

This leads to the conclusion that one should think of the field operator as an “operator
valued distribution”, that takes sufficiently well-behaved functions in space and time
to operators in the Hilbert space. Indeed, in that case it can be checked that

‖φ̂(f) |0〉‖2 =

∫
d3k

2ωk

|f̃(ωk,k)|2, (2.28)

where the symbol ·̃ denotes the Fourier transform.

Regarding the second point, note that in proceeding with canonical quantization
one makes a choice of mode expansion. One could, in principle, have chosen a
different set of modes to describe quantize the system, and wonder if the underlying
physics is any different.

A Bogoliubov transformation for a system that fulfills the canonical commutation
relations (CCR) is just a linear transformation acting over the creation and annihi-
lation operators that preserves the canonical commutation relations [22]. Consider
a generic expansion of the quantum field

φ̂ =
∑
k

ξkâk + ξ∗kâ
†
k, (2.29)

where we have substituted the integrals by sums in order to represent the calculation
schematically, since the pass to the continuum does not play a role for the mo-
ment. The elements ξk live in the space of solutions of the Klein Gordon equation.
The creation and annihilation operators fulfill the canonical commutation relations
[âk, â

†
k′ ] = δkk′ . Now, consider a second expansion

φ̂ =
∑
k

ζkb̂k + ζ∗k b̂
†
k. (2.30)

where {ζk, ζ∗k} is a different basis. Since they are both basis of the same vector space,
they can be related by a linear transformation

ζk =
∑

αklξl + βklξ
∗
l , (2.31)
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where α and β are two matrices. The preservation of the canonical commutation
relations implies the following relations

αα† − ββ† = I (2.32)

and

α∗β† − β∗α† = 0. (2.33)

Note that the creation and annihilation operators âi and b̂k are then linearly related.
Indeed,

b̂k = αklâi + βklâ
†
i . (2.34)

This implies that the state annihilated by a set of annihilation operators does not
need to be annihilated by the second set, concretely if the coefficients in β are not
zero. This further implies that the vacuum in one quantization contains particles
with respect to the other quantization.

Bogoliubov tranformations are just canonical transformations in the phase space
that describes the field theory at the classical level, which we shall describe more
thoroughly in next section.

At this point, it seems that the choice in (2.8) was arbitrary, and there is no reason
to not consider other choices as legitimate. Is this arbitrariness a problem? In finite
dimensional systems, von Neumann’s theorem [23] states that all representations
of the canonical commutation relations are unitarily equivalent. In our case, this
means that the vacuua associated with different decompositions are related through
unitary transformations. It can be argued that when describing two systems that
are unitarily equivalent, one is actually describing the same physical system, since
the unitary transformation is just a relabelling of the relevant physical quantities.

For infinite dimensional systems, such as quantum field theories, this is not always
the case. There are many instances in which two quantizations are not unitarily
equivalent. This is the case, for instance, when describing the Unruh effect from
the point of view of Bogoliubov transaformations, as we will discuss thoroughly in
chapter 6. In flat spacetime, despite phenomena like the Unruh effect, it is reasonable
to expect the ordinary canonical quantization to be the representation of quantum
fields, for it is the one that respects the symmetries of flat spacetime. In other
situations, such as quantum fields defined on curved spacetime backgrounds, the
symmetries do not single out a privileged quantization scheme.
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2.2 Covariant quantization of the Klein-Gordon

field

Canonical quantization makes use of the field amplitude and its canonically conjugate
momentum defined over a spacelike surface. Since theory is relativistic, the physics
should not depend on the choice of spacelike surface, and it would be desirable for
the quantization scheme to not make explicit reference to it.

Actually, it is possible to quantize a field theory using covariant relations that do
not make explicit reference to the canonical momentum or the Hamiltonian. More-
over, these relations are straightforwardly extendable to Lorentzian, globally hyper-
bolic curved backgrounds for linear fields fulfilling hyperbolic equation of motion.
In any representation, the field operator φ̂ should have the following properties as a
spacetime distribution [24]:

• φ̂†(f) = φ̂(f ?).

• The weak Klein-Gordon equation

φ̂
(
(∇a∇a +m2)f

)
= 0, (2.35)

for any compactly supported f .

• The covariant commutation relations

[φ̂(f), φ̂(h)] = i

∫
dV f(x)G[h](x)I, (2.36)

where G denotes the difference between the advanced and retarded propagators
of the classical equations of motion, i.e.

G = GA −GR. (2.37)

The advanced and retarded propagators are the unique propagators of the
Klein-Gordon equation such that the solutions are past and future compact
respectively [25]. Finally dV = dn+1x

√
−|g|(x) is the canonical element of

volume.

In addition, note that these properties do not depend on the quantization scheme
chosen; they constitute a set of algebraic relations for the field amplitude. Therefore,
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they constitute the starting point for most rigorous treatments of the Klein-Gordon
equation in curved spacetimes.

Before proceeding further with the quantization of the field, let us point out that
the space of solutions of the Klein Gordon equation

(∇a∇a −m2)ϕ = 0 (2.38)

is in one to one correspondence with the span of all the field operators φ̂(f). In-
deed, for any compactly supported spacetime function f , G[f ] is a solution of the
Klein-Gordon equation. G has a non-trivial kernel as a map, so there is not a one-
to one correspondence between spacetime functions and solutions. This is obvious
because not every spacetime function is a solution of the Klein Gordon equation.
However, the kernel of G is precisely the set of functions of the form (∇a∇a +m2)h
for some compactly supported function h, because for such functions the advanced
and retarded propagators act equally.

This means that if for two spacetime smearings f and g it holds that G[f ] = G[g],
that is, f and g are associated with the same solution of the Klein Gordon equation,
then G[f − g] = (∇a∇a +m2)h, and hence φ̂(f) = φ̂(g). Therefore, the vector space
given by the span of spacetime smeared field operators is in one-to one correspondence
with the space of solutions of the Klein Gordon equation. Let us denote by ξ the
elements of the space.

In addition, the space of solutions is a symplectic space, since it possesses an
antisymmetric, non-degenerate bilinear form given by the commutator. Let ξ and ξ′

be two solutions and f, f ′ two smearings associated with them. Then we define the
symplectic form as

Ω(ξ, ξ′) =

∫
dV f(x)G[f ′](x). (2.39)

To proceed further with Fock quantization, one again has to make a choice of
creation and annihilation operators. The task in Fock quantization is to find the rele-
vant Hilbert space describing the one-particle states, and then to upgrade this Hilbert
space to a Fock space by performing direct sums and tensor products. The creation
and annihilation operators are then defined to implement transitions between the
different n-particle states. This can always be accomplished with a mathematical
object called a complex structure [26].

We define a linear complex structure J compatible with Ω as a linear map that
fulfills
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• J 2 = −I.

• (ξ, ξ′) = Ω(J ξ, ξ′) defines a positive, real inner product.

It can be shown that these imply that complex structures are canonical transforma-
tions, i.e. they preserve the

Ω(J ξ,J ξ′) = Ω(ξ, ξ′). (2.40)

Complex structures have only two distinct eigenvalues, i and −i, with two orthogonal
subspaces associated with those eigenvalues, πi and π−i:

π±i =
I∓ iJ

2
. (2.41)

The ranges of πi and π−i are called the spaces of positive and negative frequency
respectively.

With an abuse of notation, let us define φ̂(ξ) = φ̂(f) for any f associated with the
solution ξ. One can define the annihilation operators associated with the complex
structure as

âJ (ξ) = − i

~
φ̂(π−iξ) (2.42)

in such a way that

φ̂(ξ) = i~âJ (ξ) + (i~âJ (ξ′))†. (2.43)

The covariant commutaton relations then imply that

[âJ (ξ), âJ (ξ′)] = 0 (2.44)

and

[âJ (ξ), (âJ (ξ′))†] =
1

2~
((ξ, ξ′)− iΩ(ξ, ξ′))I. (2.45)

Since 1
2~((ξ, ξ′) − iΩ(ξ, ξ′)) defines a positive inner product, it can be used to

define the Hilbert space H of the one particle states , in which the state vectors are
given by linear combinations and limits in the (·, ·)-norm of the solutions ξ.

According to Fock quantization, we define |0〉J as the vacuum state, and the

elements of the one-particle Hilbert space are then labelled by |ξ〉 = (âJ (ξ))† |0〉J .
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Therefore, different Fock quantizations can be encoded in the choice of complex
structure J . Interestingly, consider the two-point function of a vacuum state is
determined by the choice of J

〈0J |φ̂(f)φ̂(f ′)|0〉
J

= ~2 〈0J |[âJ (G[f ]), (âJ (G[f ]′))†]|0〉
J

=
~
2

(Ω(JG[f ], Gf ′)− iΩ(G[f ], G[f ′])). (2.46)

Finally, given this state, one can associate to every local region a mathematical
object called von Neumann algebra [18]. Given a bounded region O, the local algebra
is the weak closure of the algebra of (bounded functions of) field operators such
that the smearing f has support in O [17]. These algebras are broadly regarded as
representing the set of possible local observables, or alternatively local operations.
Although we will not enter in much detail, we mention that the local algebras have
features that are intrinsic to infinite dimensional systems and that have striking
physical consequences. We discuss these characteristics below.

2.3 Measurement theory of quantum fields

Formulating a measurement theory that is consistent with relativity is not devoid of
problems. First, there are some issues regarding the description of local properties
in QFT. It turns out that under some mild assumptions [17], the local algebras are
type III von Neumann algebras. These algebras are not isomorphic to any algebra
of bounded operators acting over a Hilbert space. In particular, this implies that the
set of local observables/operations does not contain minimal projectors [27].

To get a grasp of the consequences of this, consider a bipartite system consisting
on two harmonic oscillators. The local algebra of all bounded operators acting only
over one of the oscillators does not contain any finite rank projectors, but is still
isomorphic to the space of bounded operators acting over the Hilbert space associated
with a single harmonic oscillator. Namely, we can identify elements of the form
|ψ〉〈ψ| ⊗ I which will play the role of minimal projectors.

This means, roughly speaking, that we can specify the subsystem independently
of the whole Hilbert space. This is the case assumed in quantum mechanics, as well
as in probability theory, when one first specifies the subsystems one one is interested
in and then “glues” them together to form composite systems. In particular, the
duality between states and properties alluded to in the introduction still holds. A von
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Neumann algebra (with trivial center) that is isomorphic to the algebra of bounded
operators is a type I von Neumann algebra. The fact that the local algebras in QFT
are type III has the consequence that the duality between states and properties of
the system does not hold locally [11].

Is this so dramatic? There is no immediate answer to this, for the question is
full of subtleties. In type III algebras, states can hold properties locally in some
sense [28, 17]. Projectors in type III have the property of being always equivalent to
each other, in the sense that they are all related through a partial isometry. Since
the identity is a projector, one gets that for any state of the form 〈·〉W = 〈Ŵ † · Ŵ 〉,
where Ŵ relates the projector P̂ to the identity, 〈P̂ 〉W = 〈Ŵ †P̂ Ŵ 〉 = 〈I〉 = 1, and

any projector P̂ ′ orthogonal to P̂ fulfills 〈P̂ ′〉W = 0.

The difference between the local algebras in QFT and the ones encountered in
quantum mechanics is that in QFT one cannot think of the properties associated
with the projectors in the local regions as properties of a subsystem independent
of the surroundings; one has to always consider the subsystem in the context of its
environment. But even this is a subtle statement, if the quantum field possesses
the so-called split property, or funnel property [29, 28]. If this is the case, then
whenever two local algebras associated with two regions are such that the closure of
one is contained in the other (consider, e.g. two concentric spacetime bubbles with
different radii), then there is a type I algebra that contains the algebra associated
with the small region and is contained in the algebra associated with the larger
region.

It is easy to see that then any algebra in the commutant of the large region, par-
ticularly any local algebra in the causal complement of the large region, is contained
in the commutant of the type I algebra, which will be again type I. Finally, since the
algebra generated by two commuting type I algebras is isomorphic to their tensor
product, the algebra associated with two spacelike separated regions is isomorphic
to the tensor product of the algebras, as far as the regions are not the causal com-
plement of each other. This means that, while we cannot think of the subsystems
associated with local regions independently of the global Hilbert space, we can think
of the algebras associated with two spacelike separated regions independently as far
as there is a safety region that separates them. Yet, many authors have pointed out
interpretational shortcomings when the local algebras are involved [30, 11].

Beyond the definition of local properties, there is also the problem of the instan-
taneous state update. This, obviously, becomes problematic since joint probability
distributions will depend on the order in which the measurements are performed,
which generally depends on the reference frame. Therefore, it becomes necessary to

19



modify the prescription of the state update for the extraction of frame-independent
probabilities of successive measurements. A covariant version of the state update
rule that gives rise to frame independent probability assignments was developed by
Hellwig and Kraus [31]. For more modern discussions of this topic, see [32, 33].

Finally, and most importantly for the purposes of this thesis, there is the pos-
sibility of superluminal signaling. Beyond the possibility of transmission of EPR
correlations (which are dependent on the interpretation of the result of the measure-
ment) an important challenge was posed by Sorkin’s work in [34] on the impossibility
of (idealized) measurements in QFT, based solely on relativistic considerations. This
poses the question, e.g., of whether one could measure non-local QFT quantities such
as Wilson loops [35]. Sorkin’s work demonstrates that signaling between two space-
like separated regions A and B can be ‘mediated’ by an operation on a third region
C that is partially in the causal future of A and partially in the causal past of B.

Since superluminal signaling is not compatible with the axioms of relativity,
Sorkin’s result proves that a naive ‘quantum-mechanical’ set of idealized measure-
ment rules would fail in relativistic QFT. Furthermore, the result raises the issue
of the consistent description of successive measurements when more than two mea-
surements in different spacetime regions are involved. The issue stems from the
fact that a partial causal order can be defined between pairs of extended (bounded)
regions, but cannot be naturally extended to multiple regions (unless they are point-
like). Sorkin suggests that a resolution can be given in the more ‘spacetime oriented’
formulation of sum-over histories approach (See, e.g., [36]).

Sorkin’s result was further analyzed in [37, 38], and more recently in [39], where
they studied what conditions can be imposed as requirements for local, field-valued
POVM measurements to avoid superluminal signalling. Finally, a formal resolution
of the Sorkin problem has been proposed recently in the context of Fewster and
Verch framework for measurements in algebraic QFT [40, 29]. This resolution is
given, precisely, in the context of (explicitly local) von Neumann measurements.

In summary, it is still an open problem to find a consistent description of mea-
surements in QFT, since it is unclear what are the consequences of measuring a
quantum field on a region. In this context, particle detector models provide us with
an alternative framework for the description of local measurements in QFT. On the
one hand, considering a finite dimensional system avoids many of the subtleties ex-
posed before in terms of properties and states. While the observables induced by
projective measurements in an external device still cannot be traced back to local
properties of the field in a clear way, one can apply all the principles of standard
measurement theory. On the other hand, as we will see, the violations of causality
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can be interpreted dynamically in terms of the non-relativistic nature of the detec-
tor, thereby bringing the Sorkin-type issues to a new stage in which one can identify
the situations in which these violations of causality are relevant as being outside the
regime validity of the detector model under consideration.
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Chapter 3

Particle detectors

3.1 Particle detectors and interaction Hamiltoni-

ans

Most analyses that use detector models as a conceptual tool are restricted to the
study of real scalar field theories, possibly in curved spacetimes. It is generally
argued that the study of local aspects of scalar bosonic fields captures the essence of
many aspects that apply to more general QFT’s.

It is customary to specify the detector coupling through an interaction Hamilto-
nian in the interaction picture. In most detector models the spacetime localization
of the detector is not specified in the detector’s free degrees of freedom, but precisely
in this interaction Hamiltonian. This allows one to keep a non-relativistic descrip-
tion of the detector, which admits a wider set of observables like, e.g. a position
representation.

Before giving an historical account of the detector models used in the past, we
present the most popular form of detector model, namely the point-like Unruh-
DeWitt model, which is given by a two level system equipped with a free Hamiltonian
and whose two eigenstates referred to as |g〉 and |e〉, the ground and the excited
state respectively. This two-level system interacts with the quantum field with the
following interaction Hamiltonian (in the interaction picture)

Ĥpt = λχ(τ)D̂(τ)⊗ φ̂(x(τ)). (3.1)

This interaction Hamiltonian contains the basic ingredients that are common to
all detector models. These are, in order of appearance
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• The coupling constant λ, which is necessary to justify the weak coupling of the
interaction, which ultimately allows to perform calculations.

• The switching function χ, which plays the role of effectively describing the
process of turning the interaction on and off.

• The proper time of the detector τ . The free evolution of the detector is assumed
to be given by the time experienced by an observer fiduciary to the detector.

• D̂(τ) is an observable of the detector in the interaction picture. In the UDW
model this is the operator that transitions between the two eigensates of the
Hamiltonian, i.e.

D̂(τ) = eiΩτ |e〉〈g|+ e−iΩτ |g〉〈e| (3.2)

• Finally, φ̂(x(τ)) is the field’s amplitude evaluated along the spacetime trajectory
of the detector x(τ).

The UDW model in this form is often dubbed the “point-like” UDW model, for
it describes a detector that interacts with the quantum field along a one-dimensional
curve. It is expected that in any reasonable detector model, that aims to portray
a localized device, there will be a regime of validity in which the point-like limit
captures the readings of the detector. Intuitively, whenever the relevant observables
are calculated, the dependence on the internal structure of the detector, as well as
effects related to its finite size, will be negligible if the relevant wave lenghts are much
larger than the effective interaction region between field and detector.

However, as it was noted in chapter 2, the field’s amplitude evaluated at a point
is not a real observable. This makes the Hamiltonian given by (3.1) also ill-defined
as a function of time. However, given that the field’s amplitude can be thought
of as an operator-valued distribution, one would like to think of the Hamiltonian
(3.1) as an operator-valued distribution when smeared over time with a sufficiently
smooth function. This is partially the motivation for the introduction of the switching
function χ. However, the existence of the dynamics for the point-like Unruh-DeWitt
model is not been shown rigorously as far as we are aware.

Of course, one can check that a Dyson expansion of the unitary dynamics gen-
erates well defined evolution maps order by order. One finds then that the unitary
evolution at the first two orders in perturbation theory is well defined whenever the
function χ fulfills some smoothness requirements, but higher orders become increas-
ingly cumbersome to deal with given the distributional nature of the Hamiltonian.
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The ill-definiteness of the Hamiltonian for, say, discontinuous switching functions
manifests itself with the appearance of divergences in relevant quantities, such as the
probability of the detector to transition from its ground state to its excited state.
Note that, remarkably, this implies that one can only describe scattering processes
since keeping active track of the evolution of the system will be forbidden.

It is possible to generalize the Unruh-DeWitt Hamiltonian in order to get a well-
defined interaction Hamiltonian. An effective description of a detector model that
couples to a smeared field operator is given by

Ĥsm = λχ(t)µ̂(t)⊗
∫

dnxF (x)φ̂(x, t). (3.3)

This model, the smeared Unruh-DeWitt model, describes a detector that couples to
the field in a space region with an intensity regulated by the function F . Note that in
the present we have not specified the number of spatial dimensions, which we denote
by n. This type of interaction Hamiltonian has become the starting point for many
regularization schemes for the point-like model [41, 42].

However, as we will thoroughly study in chapter 5, this way of proceeding comes
at the price of generating friction with relativistic causality, and therefore it requires
further justification to use smeared couplings.

Historically, the notion of particle detector was suggested by Unruh in his sem-
inal paper, [43], where the detector was already meant to play a clarifying role for
the thermality of what would come to be called the Unruh effect, a role that we
will explore in detail in chapter 6. In this work, the detector is envisioned in two
alternative forms, one is with a quantum particle in box and the other with another
quantum field.

Both have advantages and disadvantages. The main disadvantage of using a non-
relativistic detector model is that one comes across the aforementioned friction with
causality, whereas the main problem with using a quantum field as a detector is
the interpretation of the calculated quantities (understood as local observables), as
hinted in chapter 2.

The particle in a box-type detector was described through the Hamiltonian

Ĥuw(τ) = λχ(τ)

∫
dnx φ̂(x, τ)⊗ δ(x− x̂τ ). (3.4)

In this case the spectrum of the operator x̂t corresponds to the spatial manifold over
which the field interacts with the detector, so in the case of a particle in a box the
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spatial integrals run through the extension of the box. Indeed, formally, one can
think of this Hamiltonian as

Ĥuw(τ) = λχ(τ)φ̂(x̂τ , τ). (3.5)

Although Hamiltonian (3.4) is not explicitly written down in the original paper, it
was clearly formulated and analyzed in [44].

Later, in [45], DeWitt introduced the pointlike model previously discussed, which
since then became the most popular. It is unclear, to the best of my knowledge,
if DeWitt’s model was inspired by similar toy models in the context of the light-
matter interaction, but one can guess from the source that the point-like model was
formulated seeking a simpler description of the phenomenon first predicted by Unruh.

Crucially, one can recover a smeared version of the UDW model when consider-
ing only transitions between the detector’s energy levels. Indeed, by introducing a
decomposition of the identity in the eigenbasis of the detector’s free Hamiltonian,
say |Ei〉, on both sides of the operator δ(x− x̂τ ) in equation (3.4) we get

Ĥuw(τ) = λχ(τ)

∫
dnx φ̂(x, τ)⊗ δ(x− x̂τ ) (3.6)

=
∑
ij

λχ(τ)

∫
dnx e−i(Ei−Ej)τψ∗i (x)ψj(x)φ̂(x, τ)⊗ |Ei〉〈Ej| , (3.7)

where ψi is the ith eigenstate of the free Hamiltonian, which then acts as a complex
smearing. When the wave functions associated with a particular pair of eigenstates
i, j are localized in a small region compared to the other scales, the transitions
between them can be approximated with the pointlike UDW model.

This ihas provided material for much thought in the recent literature. For in-
stance, it has been shown that the interaction of a Hydrogen-like atom and the
electromagnetic field can be approximated by the UDW model when the exchange
of angular momentum between atom and the field is not relevant [46]. Indeed, the
dipole interaction Hamiltonian of an electron in an atom and the electric field is of
the form x̂ ·E(t,x). Moreover, the light matter interaction can be used to extend the
UDW model in meaningful ways, for instance the light-matter interaction contains
many terms that are related to the quantum character of the center of mass of the
atom [47].

In addition, a rather ecumenical way to treat detector models was proposed in the
context of the quantum temporal probabilities program [36], in which the interaction
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Hamiltonian is generally given by a current Ĵ

Ĥcurr(τ) =

∫
dnxĴ(x, τ)⊗ Ô(x, τ) (3.8)

and where Ô is a general composite operator for the field.

We conclude this historical review with a series of even more novel generalizations
related to particle detectors in curved spacetimes. The point-like model indeed has a
straightforward generalization to curved backgrounds [48], and it is been used as such
in many scenarios such as quantum field theory in black holes [49, 50], cosmology
[51, 52, 53], and Vaidya’s spacetime [54].

The extension to curved spacetimes of generalizations of the pointlike model,
however, is less trivial and continues to be an area of active research. In [55], the
authors discuss the covariance of smeared detector models in flat spacetime. More
concretely, they discuss if the transition probabilities predicted by the model vary
depending on the reference frame in which the detector model is defined. Their
method describes the detector in terms of a Hamiltonian weight

ĥ(x) = λΛ(x)µ̂(τ(x))⊗ φ̂(x), (3.9)

where τ(x) is a function whose level curves represent the surfaces of the simultaneity
of the center of mass of the detector. This formalism was further analysed in the
context of curved backgrounds in [56], and problems with relativistic covariance were
reported in [57]. From this scalar one can indeed construct a one-parameter family
of operators representing the time-dependent interaction Hamiltonian:

Ĥ(τ) =

∫
E(τ)

dE ĥ(x). (3.10)

where E(τ) is the family of space-like surfaces associated with τ(x).

Our contribution to this story, reported in [2], is a generalization of the former,
in which we consider scalars of the form

ĥ(x) = λΛ(x)Ĵ(x)⊗ φ̂(x). (3.11)

Despite the notation, Ĵ(x) does not need to be a current, in the sense that the
variation on space and time does not have to be given by the adjoint action of
operators on the Hilbert space of the detector. Here, Λ is a spacetime function of
compact support.
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As before,

Ĥ(τ) =

∫
E(τ)

dE ĥ(x). (3.12)

but in this case there is no explicit reference to the detector’s proper time, so given
any global time function T (x)

dE(τ) := dxn+1δ(T (x)− τ)
√
|g|(x) (3.13)

where then the parameter τ is associated with a time parameter that may or may
not have anything to do with observers fiduciary to the detector.

One advantage that the Hamiltonian scalar (3.11) possesses is that it allows one
to treat field-type, as well as nonrelativistic-type detectors in a unified language.
Indeed, in Unruh’s seminal paper the field-type detector is described as a complex
field pair ψ̂M and ϕ̂m with large, yet slightly different masses, and the Hamiltonian
weight was just given by

ĥ(x) = λΛ(x)
(
ψ̂†M(x)ϕ̂m(x) + ψ̂M(x)ϕ̂m(x)†

)
φ̂(x). (3.14)

An even simpler case is given in [29, 58], where the detector is just another real scalar
field ψ̂,

ĥ(x) = λΛ(x)ψ̂(x)φ̂(x), (3.15)

although of course the simplicity there was well motivated since the intention was to
give an example within a more general framework.

Note that, given a detector model that can be written in the form (3.11), i.e.
embedded in the background spacetime, one can unambiguously determine whether
the detector is relativistic or not through the microcausality of the dynamics, that is

[Ĵ(x), Ĵ(y)] = 0, (3.16)

if x and y are spacelike separated. Indeed, as we will see in chapter 5, this will play
a major role when discussing the causality of the measurements performed with the
detector.

For the rest of topics covered in this thesis, we will focus primarily on the point-
like model. We will use the full version of (3.11) in chapter 5, where we will discuss
friction with causality in particle detector models in a rather general fashion.
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3.2 Detectors, statistics and responses

This section is devoted to analyzing the statistics of general detector models in the
framework of perturbation theory. Other frameworks are possible, and in the liter-
ature of particle detectors it has been common to consider the formalism of open
quantum systems in the weak coupling regime [59, 60, 61, 62], or more sophisticated
considerations within the algebraic approach such in [63], or the Fewster-Verch frame-
work [29].

In the work presented in this thesis the calculations always describe some form
of scattering process. Namely, the interaction is switched on and off and is different
from zero only for a finite time (we may relax the assumption of compact support
when appropriate). The state of the detector is prepared before the interaction
and only the state of the detector is measured after, in such a way the it is never
assumed that that the there is any interplay between the measurement process and
the interaction theory between the detector and the field.

If the detector plus field system is prepared at τ = τ0 in a state described by the
density matrix ρ̂, then the state of the whole system at a later time τ is given by the
unitary evolution

ρ̂(τ) = Û(τ)ρ̂Û †(τ), (3.17)

where the unitary operator Û is given by

Û(τ) = Te−i
∫ τ
0 dτĤ(τ) =

∞∑
n=0

(−i)n

n!

∫ τ

τ0

...

∫ τ2

τ0

dnτ Ĥ(τn)...Ĥ(τ), (3.18)

the measure dnτ denoting dτ1 . . . dτn. Now, the dynamics is best described in the
interaction picture, which implements deviations of the interacting dynamics from
the free dynamics:

ρ̂(τ) = Ûfree(τ)ÛI(τ)ρ̂Û †I (τ)Û †free(τ). (3.19)

We assume that the function has compact support and we also assume that the
interaction starts at some time τ ≥ τ0. In other words, we say that there exists a τf
such that

supp{χ(τ)} ⊂ [τ0, τf ]. (3.20)
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Therefore, for all τ > τf , the integrals can be extended from their domain to
the whole real line without changing their value. Then it can be shown that the
evolution in the interaction picture takes the form

Ŝ = ÛI(τ > τ) = Te−i
∫

dτĤI(τ) =
∞∑
n=0

(−i)n

n!

∫
Rn

dnτ T
[
ĤI(τ1)...ĤI(τn)

]
, (3.21)

where T[·] denotes the time-ordered product and dnτ = dτ1 . . . dτn. Henceforth, we
will always assume that the time τ at which we evaluate the state is larger than the
time the interaction ends: τ > τf .

To compute the partial state of the detector, ρ̂d, we trace over the field degrees
of freedom:

ρ̂d = trφ

[
Ŝρ̂Ŝ†

]
. (3.22)

Finally, we assume that prior to τ = τ0 the detector and the field are completely
uncorrelated, i.e., the initial state has the form of the tensor product

ρ̂ = ρ̂0
d ⊗ ρ̂φ. (3.23)

This last assumption allows one to write the evolution in the interaction picture in
terms of a completely positive trace-preserving (CPTP) map, given by the quantum
channel

E[ρ̂0
d] = trφ

[
Ŝρ̂0

d ⊗ ρ̂φŜ†
]
. (3.24)

We shall consider the effect of the interaction up to some order in perturbation
theory. The perturbation parameter is encoded in the coupling constant λ. The
way to proceed is then to expand the unitary evolution in this parameter, i.e., Ŝ =
I+ Ŝ(1) + Ŝ(2) + . . . with Ŝ(k) the k-term of the Dyson expansion of S in the coupling
strength λ, which is defined as

Ŝ(k) = (−i)k
∫ ∞
−∞

∫ τk

−∞
...

∫ τ2

−∞
dτk...dτ1ĤI(τk)...ĤI(τ1)

=
(−i)k

k!

∫ ∞
−∞

...

∫ ∞
−∞

dτk...dτ1TĤI(τk)...ĤI(τ1). (3.25)

Therefore, the channel that describes the interaction with the detector at leading
and next to leading order in perturbation theory is given by

E[ρ̂d] = ρ̂d + λtrφ

(
Ŝ(1)ρ̂d ⊗ ρ̂φ + ρ̂d ⊗ ρ̂φŜ†(1)

)
+ λ2trφ

(
Ŝ(1)ρ̂d ⊗ ρ̂φŜ†(1) + Ŝ(2)ρ̂d ⊗ ρ̂φ + ρ̂d ⊗ ρ̂φŜ†(2)

)
+ O(λ3). (3.26)
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As explained before, the most general detector model, which linearly couples to
a real scalar field, can be specified through the Hamiltonian weight

ĥ(x) = λΛ(x)Ĵ(x)⊗ φ̂(x), (3.27)

together with a choice of folitation T such that

Ĥ(τ) =

∫
E(τ)

dE ĥ(x). (3.28)

For a general linear detector model, the map (3.26) can be written in terms of
spacetime integrals

E[ρ̂d] = ρ̂d − iλ

∫
dV Λ(x)[Ĵ(x), ρ̂d] 〈φ̂(x)〉

+ λ2

∫∫
dV dV ′Λ(x)Λ(x′)Ĵ(x′)ρ̂dĴ(x) 〈φ̂(x)φ̂(x′)〉

− λ2

2

∫∫
dV dV ′Λ(x)Λ(x′)TĴ(x)Ĵ(x′)ρ̂d 〈Tφ̂(x)φ̂(x′)〉

− λ2

2

∫∫
dV dV ′Λ(x)Λ(x′)

[
TĴ(x)Ĵ(x′)ρ̂d

]†
〈Tφ̂(x)φ̂(x′)〉∗ + O(λ3), (3.29)

where we have defined, for every operator F̂ acting over the field

〈F̂ 〉 = trφ

[
F̂ ρ̂φ

]
(3.30)

and we have used the fact that given two commuting, time-dependent observables
Â(τ) and B̂(τ),

T[Â(τ)Â(τ ′)B̂(τ)B̂(τ ′)] = T[Â(τ)Â(τ ′)]T[B̂(τ)B̂(τ ′)]. (3.31)

Also, in the following we will slightly abuse the notation by denoting the space-
time Heavy side function θ(T − T ′), and related functions, also by θ(τ − τ ′) when
integrated against the spacetime volume.

The form of equation (3.29) suggests writing the action of the field over the
detector degrees of freedom as

E[ρ̂d] = ρ̂d + λΞ[ρ̂d] + λ2Θ[ρ̂d] + O(λ3), (3.32)
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where Ξ,Θ are linear maps defined as

Ξ[ρ̂d] = −i

[∫
dV Λ(x) 〈φ̂(x)〉 Ĵ(x), ρ̂d

]
(3.33)

and

Θ[ρ̂d] =

∫∫
dV dV ′Λ(x)Λ(x′)Ĵ(x′)ρ̂dĴ(x) 〈φ̂(x)φ̂(x′)〉

− 1

2

∫∫
dV dV ′Λ(x)Λ(x′)TĴ(x)Ĵ(x′)ρ̂d 〈Tφ̂(x)φ̂(x′)〉

− 1

2

∫∫
dV dV ′Λ(x)Λ(x′)

[
TĴ(x)Ĵ(x′)ρ̂d

]†
〈Tφ̂(x)φ̂(x′)〉∗ . (3.34)

We will often refer to the two-point function of the field as

W (x, x′) = 〈φ̂(x)φ̂(x′)〉 (3.35)

regardless of the two-point function being the vacuum two-point function or in a
different state.

Finally, one can use the following property of the time ordered product:∫∫
dτdτ ′T[Â(τ)Â(τ ′)] = 2

∫∫
dτdτ ′θ(τ − τ ′)Â(τ)Â(τ ′) (3.36)

=

∫∫
dτdτ ′Â(τ)Â(τ ′) +

∫∫
dτdτ ′sign(τ − τ ′)Â(τ)Â(τ ′), (3.37)

to write the second integral in (3.34) as

1

2

∫∫
dV dV ′Λ(x)Λ(x′)TĴ(x)Ĵ(x′)ρ̂d 〈Tφ̂(x)φ̂(x′)〉

=

∫∫
dV dV ′

1 + sgn(τ − τ ′)
2

Λ(x)Λ(x′)Ĵ(x)Ĵ(x′)ρ̂d 〈φ̂(x)φ̂(x′)〉 (3.38)

and the third as

1

2

∫∫
dV dV ′Λ(x)Λ(x′)

[
TĴ(x)Ĵ(x′)ρ̂d

]†
〈Tφ̂(x)φ̂(x′)〉∗

=

∫∫
dV dV ′

1− sgn(τ − τ ′)
2

Λ(x)Λ(x′)ρ̂dĴ(x)Ĵ(x′) 〈φ̂(x)φ̂(x′)〉 . (3.39)
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This allows one to decompose the map Θ in (3.34) as

Θ[ρ̂d] =

∫∫
dV dV ′Λ(x)Λ(x′)

(
Ĵ(x′)ρ̂dĴ(x)− 1

2
{Ĵ(x)Ĵ(x′), ρ̂d}

)
〈φ̂(x)φ̂(x′)〉

+

[
−1

2

∫∫
dV dV ′Λ(x)Λ(x′)sgn(τ − τ ′)Ĵ(x)Ĵ(x′) 〈φ̂(x)φ̂(x′)〉 , ρ̂d

]
. (3.40)

This splitting allows the identification of the dissipative part of the dynamics, given
by the first integral in (3.40), and a Hamiltonian part given by the second. Indeed,
the second integral can be written again as a nested integral

− 1

2

∫∫
dV dV ′Λ(x)Λ(x′)sgn(τ − τ ′)Ĵ(x)Ĵ(x′) 〈φ̂(x)φ̂(x′)〉

= − i

2

∫∫
dV dV ′Λ(x)Λ(x′)θ(τ − τ ′)(−i)

(
Ĵ(x)Ĵ(x′) 〈φ̂(x)φ̂(x′)〉 − Ĵ(x′)Ĵ(x) 〈φ̂(x′)φ̂(x)〉

)
(3.41)

which further indicates that it can be written as a single integral of an operator

− i

2

∫∫
dV dV ′Λ(x)Λ(x′)θ(τ − τ ′)(−i)

(
Ĵ(x)Ĵ(x′) 〈φ̂(x)φ̂(x′)〉 − Ĵ(x′)Ĵ(x) 〈φ̂(x′)φ̂(x)〉

)
= −i

∫
dV V̂ (x) (3.42)

where we have defined

V̂ (x) = − i

2

∫
dV ′Λ(x)Λ(x′)θ(τ − τ ′)

(
Ĵ(x)Ĵ(x′) 〈φ̂(x)φ̂(x′)〉 − Ĵ(x′)Ĵ(x) 〈φ̂(x′)φ̂(x)〉

)
.

(3.43)

Interestingly, one can further split this effective potential into two terms by noticing
that

〈φ̂(x)φ̂(x′)〉 =
1

2
〈[φ̂(x), φ̂(x′)]〉+

1

2
〈{φ̂(x), φ̂(x′)}〉

= K(x, x′) + iGR(x, x′)− iGA(x, x′) (3.44)

where we have defined

K(x, x′) =
1

2
〈{φ̂(x), φ̂(x′)}〉 (3.45)
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and decomposed the commutator of the field according to the covariant commutation
relations. If we multiply expression (3.44) by the step function θ(τ − τ ′), that is

θ(τ − τ ′) 〈φ̂(x)φ̂(x′)〉 = θ(τ − τ ′)K(x, x′) + iθ(τ − τ ′)GR(x, x′)− iθ(τ − τ ′)GA(x, x′)

we realize that the last two terms do not actually depend on the choice of time
function T , since they have support in the past and future lightcone. Indeed, if
x ∈ J+(x′), then T (x) ≥ T (x′) since T is a timelike folliation of the spacetime
under consideration. Similarly, if x ∈ J−(x′) then T (x) ≤ T (x′). But microcausality
enforces that 〈[φ̂(x′), φ̂(x′)]〉 is different form zero (is the distributional sense) if x ∈
J+(x)∪J−(x′), so the choice of T is irrelevant. Moreover, since GA has support only
in the past lightcone iθ(T −T ′)GA(x, x′) = 0, and since GR has only support in the
past lightcone iθ(T −T ′)GR(x, x′) = iGR(x, x′).

In summary, the effective potential induced by the interaction with the field takes
the form

V̂ (x) =
1

4
{Λ(x)Ĵ(x),

∫
dV ′GR(x, x′)Λ(x′)Ĵ(x′)}

− i

4

∫
dV ′Λ(x)Λ(x′)θ(τ − τ ′)[Ĵ(x), Ĵ(x′)]K(x, x′), (3.46)

and the map Θ takes the form

Θ[ρ̂d] =

∫∫
dV dV ′Λ(x)Λ(x′)

(
Ĵ(x′)ρ̂dĴ(x)− 1

2
{Ĵ(x)Ĵ(x′), ρ̂d}

)
〈φ̂(x)φ̂(x′)〉

− i

[∫
dV V̂ (x), ρ̂d

]
. (3.47)

Remarkably, we have isolated the contribution to second order in perturbation theory
that depends explicitly on the choice of proper time T . The dissipation term of the
map (3.47) does not depend of this choice, because it can be written in terms of
covariant integrals. The effective potential V̂ contains a contribution that potentially
depends on this choice, and another that does not. The figure of merit in this case
seems to be the strength of the field’s correlations evaluated in the interaction region,
that is, the support of Λ.

All the information that one can gather from any detector model at next to
leading order in perturbation theory is encoded in the maps Ξ, Θ. We notice that the
parameters that depend on the field theory are all given in terms of the mean value of
the field amplitude, 〈φ̂(x)〉 and the two-point correlator, or Wightman function 〈φ̂(x)〉
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evaluated in the support of the interaction of the field with the detector. Therefore,
assuming some level of control in the parameters of the interaction leads to measuring
different, possibly complex smearings of the one and two-point functions of the field
in the initial state ρ̂φ.

The basic quantities predicted by the detector model are the transition proba-
bilities between different states. Indeed, one can calculate the probability of tran-
sitioning from a state |i〉 to a state |f〉, after the detector has interacted with the
quantum field, with Born’s rule

Pi→f = 〈f |E[|i〉〈i|]|f〉 . (3.48)

Expanding this expression in perturbation theory, one can identify the contribu-
tions coming from the maps Ξ and Θ:

Pi→f = | 〈f |i〉 |2 + λ 〈f |Ξ[|i〉〈i|]|f〉+ λ2 〈f |Θ[|i〉〈i|]|f〉+ O(λ3). (3.49)

3.2.1 The point-like UDW model

The point-like UDW model is specially relevant for this thesis, since it is the model of
choice for most of the contents. Therefore, it is useful to particularize the quantities
defining the maps Ξ and Θ in the more general context, and define new quantities
that are particular to the UDW model. In this chapter, we will refer to the maps
Ξ and Θ and the current Ĵ particularized to the point-like UDW model as Ξpt and
Θpt. This notation will be dropped in later chapters whenever the model of choice
is obvious by context.

The Hamiltonian weight can be particularized to the point-like UDW model by
introducing the following distribution current:

Ĵpt(x) =

∫
ds

1√
−|g(s)|

δ(x− x(s))χ(s)µ̂(s) (3.50)

where

µ̂(τ) = eiΩτ |e〉〈g|+ e−iΩτ |g〉〈e| . (3.51)

Particularizing this expression for the leading order contribution in equation (3.33)
to the point-like current (3.50), it is immediate to check that

Ξpt[ρ̂d] = −i[Q(Ω) |e〉〈g|+ Q(−Ω) |g〉〈e| , ρ̂d], (3.52)
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where we have defined

Q(Ω, χ) =

∫
dτχ(τ) 〈φ̂(x(τ))〉 eiΩτ . (3.53)

On the other hand, the map Θpt takes the form

Θpt[ρ̂d] = −i[

∫
dτ V̂pt(τ), ρ̂d] +

∑
γab(Âaρ̂dÂ

†
b −

1

2
{Â†bÂa, ρ̂d}) (3.54)

where the operators Â are given by

Â1,2 = |e〉〈g| , |g〉〈e| . (3.55)

The Hamiltonian part of the map Θpt is given by

V̂pt(τ) = L(Ω, χ, τ) |e〉〈e| − L(−Ω, χ, τ) |g〉〈g| (3.56)

where we have defined

L(Ω, χ, τ) = −iχ(τ)

∫ τ

dτ ′χ(τ ′)
(
eiΩ(τ−τ ′) 〈φ̂(x(τ))φ̂(x(τ ′))〉 − e−iΩ(τ−τ ′) 〈φ̂(x(τ ′))φ̂(x(τ))〉

)
.

(3.57)

We find that the two-level system has the particular property that, for all χ

[V̂ , Ĥfree] = 0. (3.58)

This property is only an approximation for more general detectors, which works in
the long adiabatic limit [64].

Finally, the diffusion part of Θpt is specified by the matrix γ, which is given by

γab =

(
Fpt(Ω, χ) Rpt(Ω, χ)
R∗pt(Ω, χ) Fpt(−Ω, χ)

)
(3.59)

where we have defined the following functionals

Fpt(Ω, χ) =

∫∫
dτdτ ′χ(τ)χ(τ ′) 〈φ̂(x(τ))φ̂(x(τ ′))〉 e−iΩ(τ−τ ′) (3.60)

Rpt(Ω, χ) =

∫∫
dτdτ ′χ(τ)χ(τ ′) 〈φ̂(x(τ))φ̂(x(τ ′))〉 eiΩ(τ+τ ′). (3.61)
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During the thesis we will often abuse the notation and denote the pull-back of
the two-point function along the trajectory of the detector by

〈φ̂(x(τ))φ̂(x(τ ′))〉 = W (τ, τ ′). (3.62)

Moreover, we will often find that the pull-back of the correlations of certain two-
point functions are stationary, which means that

〈φ̂(x(τ))φ̂(x(τ ′))〉 = 〈φ̂(x(τ − τ ′))φ̂(x(0))〉 , (3.63)

or, again with a slight abusing notation

W (τ, τ ′) = W (τ − τ ′). (3.64)

The case of stationary correlations will play a major role in what follows, concretely
when calculating quantities in the context of the Unruh effect. As we will see, the
functionals involved in the detector’s next-to-leading order, dissipative statistics, F,R
are the figures of merit in that case, an therefore it is useful to further simplify them
as they take the simpler forms:

Fpt(Ω, χ) =

∫
dτ χ̄ ? χ(τ)W (τ)e−iΩτ (3.65)

Rpt(Ω, χ) =

∫
dτ ¯(e−iΩτχ) ? (eiΩτχ)(τ)W (τ), (3.66)

where we have defined the convolution in such a way that

f̄ ? g(τ) =

∫
f ∗(τ ′ − τ)g(τ ′)dτ ′. (3.67)

These expressions suggest that these quantities can be written in terms of the
Fourier transform of W (τ), and indeed

Fpt(Ω, χ) =

∫
dω|χ̃|2(ω)W̃ (ω + Ω) (3.68)

Rpt(Ω, χ) =

∫
dωχ̃(ω + Ω)χ̃(ω − Ω)W̃ (ω), (3.69)

For the point-like UDW model, the quantity that has played a major role in
the lliterature is the excitation probability of the detector of transitioning from its
ground state to its excited state, which by direct substitution is given by

Pg→e = λ2 〈e|Θ[|g〉〈g|]|e〉 = λ2Fpt(Ω, χ) + O(λ3). (3.70)
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where we have used that the leading order map and the Hamiltonian part of the next
to leading order map vanish when applied to the state |g〉〈g|.

The case most often studied in the literature is the case of a detector that interacts
for a long time with the field. The long time limit is achieved by choosing switching
function χ whose support is wide, in such a way that for all practical purposes the
statistics of the detector are indistinguishable from an always switched detector. One
could be tempted to simply substitute the switching function by a constant function,
e.g. χ(τ) = 1 for all τ , but this often leads to divergences in the statistics. Indeed, the
correlations of the field are not expected to be R2 integrable in τ, τ ′, since this would
imply that the field’s correlations vanish for pairs of events in the asymptotic future,
regardless of how close those events may be. This is specially true in situations in
which the correlations are stationary.

There are multiple ways of addressing this situation, but in this thesis we will
make use of asymptotic expansions of the relevant quantities in some time scale.
More concretely, it will be relevant the so-called adiabatic, long time limit. By
adiabatic, we mean that we take a limit in which the switching function reaches a
constant value and such that the derivatives of the switching function tend to zero
with the same scale, which we shall refer to as σ. If χ(s) is a smooth, compactly
supported function of s, then a function that fulfils the conditions exposed above
can be constructed as

χσ(τ) = χ
( τ
σ

)
. (3.71)

Indeed, the pointwise limit of χσ when σ →∞ is given by

lim
σ→∞

χσ(τ) = χ(0), (3.72)

a constant value, whereas

lim
σ→∞

d

dτ
χσ(τ) = 0. (3.73)

The statistics of the (dissipative part of the) UDW model in the presence of
stationary correlations, with adiabatic switching, are then given by

Fpt(Ω, χσ) =

∫
dω|χ̃σ|2(ω)W̃ (ω + Ω) (3.74)

Rpt(Ω, χσ) =

∫
dωχ̃σ(ω + Ω)χ̃σ(ω − Ω)W̃ (ω), (3.75)
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but using the properties of the Fourier transform

χ̃σ(ω) = σχ̃(σω), (3.76)

and with a change of variable of the form ω′ = σω, the expressions take the form

Fpt(Ω, χσ) = σ

∫
dω′|χ̃|2(ω′)W̃ (ω′/σ + Ω) (3.77)

Rpt(Ω, χσ) = σ

∫
dω′χ̃(ω′ + Ωσ)χ̃(ω′ − Ωσ)W̃ (ω). (3.78)

Finally, if we assume that we can take the limit inside the integrals, which will
depend on whether the Fourier transform decays faster than W̃ (ω) grows, F and R

take the following asymptotic expressions for large σ:

Fpt(Ω, χσ) ∼ σW̃ (Ω)

∫
dω′|χ̃|2(ω′) (3.79)

Rpt(Ω, χσ) ∼ 0, (3.80)

where we have assume that, given that χ̃ is integrable, the limit of χ̃(ω′+ Ωσ)χ̃(ω′−
Ωσ) for σ →∞ is zero.

Therefore, for stationary correlations, the asymptotic behavior of the excitation
probability for long times (and at leading order in the coupling constant λ) takes the
form

Pg→e ∼ σ × λ2W̃ (Ω). (3.81)

where we have reabsorbed the value of the integral in (3.79) in the coupling constant
without loss of generality.

Note that a similar calculation for the de-excitation probability leads to

Pe→g ∼ σ × λ2W̃ (−Ω). (3.82)

Similarly to the celebrated weak-coupling limit used in open quantum systems,
the dissipative part of the statistics is well defined in the long-time limit when keeping
scale λ2σ is finite.
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Chapter 4

From detecting particles to
measuring fluctuations

In this chapter we review the results from [1], in which some aspects of measurement
theory of quantum field with detectors models were investigated. In this chapter we
assume the point-like UDW model. This work was concerned with the possibility of
measuring the Wightman function of a quantum field between two spacetime events
by analyzing the statistics of a particle detector.

Most analyses in the UDW particle detector literature focus on long-time, adi-
abatic response of the detector to the quantum field, because of the ties of these
processes to the notion of “particle”. In this work we pointed out that, conceptu-
ally, the finite time response can answer complementary questions that drastically
depart form the notion of particle, such as the direct measurement of the Wightman
function between two spacetime points.

Waiting for equilibration formally requires taking the adiabatic interaction limit,
which makes the nature of the predictions non local. The response of the detector will
omit the details of the local structure of the field. Some questions, as how different
effects dominate at different time scales cannot be addressed with this setup. For
instance, an accelerated detector interacting with a broad class of states will finish
in a thermal state at the Unruh temperature [63]. To a large extent, everlasting
accelerated detectors can erase any non-Lorentz invariant effects in the theory, as
shown in [4], a fact that we will thoroughly discuss in 8 . In addition, the whole world
line of the detector is integrated in order to calculate the excitation probability, and
the response of the detector becomes highly dependent on the particular trajectory
of the detector, therefore yielding different predictions for different trajectories when

39



the detector crosses the same spacetime points. Whereas this fact is an advantage
for the analysis of the Unruh effect, as we will see in chapter 6, it poses a challenge to
direct measurements of the correlation functions of the field, since for a given detector
phenomenology, we cannot separate its dependence on the detector trajectory from
the dependence on the field state.

Analyzing the response of the detector for finite time interactions can address the
limitations of the analyses mentioned above. We will outline a plausible procedure
that in theory could lead to direct measure of the correlations of the quantum field
between two spacetime events, thus avoiding the ambiguity of whether the pull-back
on a particular trajectory or the actual Wightman function is being probed.

In order to do so, it will prove essential to study the time-correlations of a quan-
tum field from a detector-model perspective. This may be achieved by analyzing
aspects of measurement theory involving repeatedly switching the detector on and
off, and studying the deviations from uncorrelated statistics, as we illustrate in the
following sections.

In this chapter, we will introduce the following notation. If W (τ, τ ′) is the pull
back of the two-point correlator of the field, we denote the quadratic form

WΩ[f, g] =

∫∫
dτdτ ′f(τ)g(τ ′)e−iΩ(τ−τ ′)W (τ, τ ′) (4.1)

that is, the pullback in the sense of distributions of the Wightman function of the
field along the field’s trajectory.

4.1 Sequences of interactions

Consider a switching function composed of a sequence of N repetitions of a particular
time dependent function ξ(τ). Specifically,

χ(τ) =
N∑
l=0

ξτ0l (τ). (4.2)

Here the notation ξτ0l (τ) has to be understood as

ξτ0l (τ) = ξ(τ − τ0 − lζ), (4.3)

where ξ is a certain function, which we call “tooth” function, τ0 is the time at
which the first tooth is centered, and the rest of the teeth will be centred at τ0 + lζ
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for l = 1, 2, . . . , N . Hence, ζ is the constant lapse between each two consecutive
interactions. The excitation probability (up to leading order) in these conditions is
readily obtained by direct substitution the comb function χ in (3.70) by means of
expression (3.60):

F(Ω, χ) =
N∑
l=0

N∑
s=0

WΩ[ξτ0l , ξ
τ0
s ]. (4.4)

It is useful to separate this sum in two parts:

1. The sum of terms where the integrals only involve tooth functions centered at
the same time (local terms). These terms are proportional to W[ξτ0l , ξ

τ0
l ], and

therefore each one of them independently can be interpreted as the excitation
probability of the detector when only one switching process is implemented.

2. The sum of terms where the integrals involve tooth functions evaluated at
different times (non-local terms).

Now for the non-local terms we see that the sum runs for l, s from 1 to N , with
l 6= s. Equivalently, we can write this sum with the index l running from 1 to N and
separate the sum for s < l and for with s > l. After making this separation explicit,
we can write (4.4) as

N∑
{s 6=l}

WΩ[ξτ0l , ξ
τ0
s ] =

N∑
l=0

N∑
s=l+1

WΩ[ξτ0l , ξ
τ0
s ] +

N∑
l=0

l−1∑
s=0

WΩ[ξτ0l , ξ
τ0
s ]. (4.5)

Here the first sum can be rearranged by changing the name of the indices. We define
n = s and m = l − s, in such a way that we have

N∑
l=0

N∑
s=l+1

WΩ[ξτ0l , ξ
τ0
s ] =

N∑
m=1

N−m∑
n=0

WΩ[ξτ0n+m, ξ
τ0
n ]. (4.6)

Similarly, we can write the second sum as

N∑
l=0

l−1∑
s=0

WΩ[ξτ0l , ξ
τ0
s ] =

N∑
m=1

N−m∑
n=0

WΩ[ξτ0n , ξ
τ0
n+m]. (4.7)
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It is clear in this form that both sums in the r.h.s. of (4.5) are complex conjugate
of each other. Gathering these results together, we write the excitation probability
(4.4) as

F(χ,Ω) =
N∑
n=0

F(ξn,Ω) + 2Re [C(Ω, τ0)] . (4.8)

Here we have notated the local terms as

F(ξn,Ω) =WΩ[ξτ0n , ξ
τ0
n ] (4.9)

and the non-local terms are collected as

C(Ω,τ0) =
N∑
m=1

N−m∑
n=0

WΩ[ξτ0n+m, ξ
τ0
n ]. (4.10)

Note that if instead of a succession of N teeth the switching function were com-
posed of a single tooth ξ, the transition probability would be given by just F(ξ0,Ω).
In this form it can be readily seen that the local contribution to the total excitation
probability consists of the sum of the probability of excitation switched on only for
the duration of every individual tooth.

On the other hand C(Ω, τ0) gathers the contributions that come from the exis-
tence of time-correlations in the state ρ̂φ.

Note that equation (4.8) works for any general comb interactions even if the two-
point function is not stationary (i.e., even if it does not depend only on the difference
of times). We conclude this section with some remarks specific to the situation when
we impose stationarity.

4.1.1 Stationary correlations

We can consider situations in which the two-point function is stationary. We remind
the reader that with this we mean that

W (τ, τ ′) = W (τ − τ ′), (4.11)

i.e., the correlations between two events depend only on the difference of times be-
tween them. It is interesting to consider the stationarity condition as it is fulfilled
in paradigmatic scenarios in physics of detectors interacting with quantum fields,
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which is our main goal here. Such scenarios comprise, for instance, the interaction of
inertial detectors with vacuum and thermal baths, as well as the interaction of uni-
formly accelerated detectors with vacuum, as we will discuss in more detail chapters
6,7 and 8.

When the situation is stationary it is very easy to see how the information about
the target correlations is imprinted in the excitation probability. This allows us to
conceive a simple theoretical protocol to extract this information.

For stationary correlations we can see that neither (4.9) nor the different terms
in (4.10) depend on n or τ0. Indeed,

WΩ[ξτ0n+m, ξ
τ0
n ] =

∫ ∞
−∞

∫ ∞
−∞

dτdτ ′ξ(τ − τ0− (n+m)ζ)ξ(τ ′ − τ0 − nζ)e−iΩ(τ−τ ′)

=

∫ ∞
−∞

∫ ∞
−∞

dτdτ ′ξ(τ −mζ)ξ(τ ′)e−iΩ(τ−τ ′)W (τ − τ ′) = WΩ[ξ0
m, ξ

0
0 ].

Using the definition of stationarity we can see that (4.8) simplifies to

P+ = NP+
ξ,0 + 2λ2Re [C(Ω, 0)] , (4.12)

where
P+
ξ,0 = λ2W[ξ0

0 , ξ
0
0 ] (4.13)

is again the excitation probability associated with one single interaction and

C(Ω, 0) =
N∑
m=1

(N −m)WΩ[ξ0
m, ξ

0
0 ]. (4.14)

is the time-correlation term.

4.2 Strong and fast couplings

In this section we will consider that the comb of interactions consists of short and
intense interactions. We require the interactions to be intense in order to not vanish
in the limit where the interaction time is very short, which is the requirements
needed to study quantities related to the value of the correlations in a single point.
Note first that, as far as the quantities involved are all finite, the validity of the
perturbative regime is not in jeopardy if the coupling constant is smaller than any
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other scale of the problem. First, we will investigate the asymptotics of the detector’s
transition probabilities in the case of ultra-local interactions. We shall calculate the
excitation probability when the switching function is short and intense but with a
finite width, which we will call η. More concretely we are interested in the behavior
of the excitation probability when this parameter η is small. We can parametrize a
switching function with those characteristics in a sufficiently general form as:

χ = ϕη =
1

η
ϕ(τ/η), (4.15)

where ϕ is an integrable, positive and normalized function. Notice that in order to
avoid the introduction of additional timescales we must endow the switching func-
tions with dimensions of inverse time. The one-parameter characterization (4.15)
leads to families of nascent delta functions. If we smear a function f(τ) with any
member of this family and we take the limit η → 0, we have

lim
η→0

∫
dτ

η
ϕ(τ/η)f(τ) = lim

η→0

∫
dτ̄ϕ(τ̄)f(ητ̄) = f(0)

∫
dτ̄ϕ(τ̄) = f(0), (4.16)

where we have performed the change of variables τ̄ = τ/η and we have assumed that
ϕ(τ)f(ητ) is dominated by an integrable function for all η, in such a way that we
can take the limit inside the integral [65].

If we calculate the action of bi-functionals of the form (4.1) over members of these
families we get:

WΩ[ϕη, ϕ
′
η] =

∫ ∞
−∞

dτ̄

∫ ∞
−∞

dτ̄ ′ϕ(τ̄)ϕ′(τ̄ ′)e−iΩη(τ̄−τ̄ ′)W (ητ̄ , ητ̄ ′), (4.17)

but in this case one has to be careful when taking the limit η → 0, as W is not a
function (but a distribution) in general.

We analyze the excitation probability of a detector coupled to a scalar Klein-
Gordon field with a switching function of the form (4.15). In this context the excita-
tion probability will not be well defined in the limit η → 0. This will be caused, as we
will see, by the well-known ultra-violet divergent character of relativistic quantum
field theories [19].

It is clear that if the interaction time goes to zero without varying the intensity
of the interaction, then the excitation probability will vanish in the instantaneous
interaction limit. However, it is a very different case if we increase the intensity of
the interactions as they get shorter in a delta switching limit.
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It is well known [41, 42] that taking arbitrarily sudden interactions causes UV
divergences in the model. Regarding the ratio between the intensity of the interaction
and the interaction time we have three options. First as we mentioned above, the
interaction time decreases as the intensity increases, but at a slower rate, so we
remain in the case where the excitation probability vanishes as the interaction time
vanishes. Second, the intensity increases faster than the interaction time decreases.
In this case a divergence in the excitation probability is expected regardless of the
UV structure of the theory. We are interested in the third option: If the interaction
intensity increases at the same rate as the interaction time decreases, as in (4.15),
then the excitation probability has an UV divergence.

Indeed if we use χ = δτ0 as switching function in the excitation probability, we
obtain

P+ = λ2W(δτ0 , δτ0) = λ2W (τ0, τ0), (4.18)

which turns out to be divergent in the limit of coincidence, as we know from chapter
2. From the point of view of the detector, this means that the detector is interacting
with all frequencies of the field, as the change in the interaction happens in an
arbitrarily short time.

It is well known, however, that for any state ρ̂t fulfilling the so-called Hadamard
condition [19] we can write

〈φ̂(x)φ̂(y)〉ρ̂t = Fρ̂t(x, y) + 〈0|φ̂(x)φ̂(y)|0〉 , (4.19)

where Fρ̂t(x, y) is a regular function and 〈0|φ̂(x)φ̂(y)|0〉 is the Wightman function of
the scalar field in the Minkowski vacuum. As Fρ̂t(x, y) is regular, the second term
as η → 0 is going to dominate. Having clarified the importance of the vacuum
Wightman function in more general grounds, we will analyze the excitation prob-
ability of an UDW detector coupled to the Minkowski vacuum through a nascent
delta switching.

In those conditions, the Wightman function takes the form (see, for instance,
[21])

〈0|φ̂(x)φ̂(y)|0〉 =

∫ ∞
0

dω

(2π)d
Dd(ω,m)

2ω
e−iω∆(x−y), (4.20)

where
∆(x− y) =

√
−(x− y)2 sgn(x− y)0

is the spacetime interval between x and y, d is the spatial dimension of the theory
and Dd(ω,m) is the density of states of the field for a certain value of the energy ω
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in that dimension. The latter can be written in a closed form [21]:

Dd(ω,m) =
21−dπd/2

Γ(d/2)
|ω|(
√
ω2 −m2)d−2Θ(ω −m). (4.21)

We see that the Wightman function diverges for Klein-Gordon fields in the coinci-
dence limit, that is for x = y, as their density of states is unbounded.

Hence, we have that the functional (4.1) is

W0,d[ϕη, ϕη] =

∫ ∞
0

dω

(2π)d
Dd(ω)

2ω

∫ ∞
−∞

∫ ∞
−∞

dτdτ ′

× 1

η2
ϕ(τ/η)ϕ(τ ′/η)e

−i

(
ω∆
(
x(τ)−y(τ ′)

)
+Ω(τ−τ ′)

)
. (4.22)

In order to analyze the asymptotic behavior as η → 0, we perform the following
changes of variables:

ω̄ = ωη, τ̄ = τ/η, τ̄ ′ = τ ′/η, (4.23)

so (4.22) takes the form

WΩ
0,d[ϕη, ϕη] =

∫ ∞
0

dω̄

(2π)d
Dd(ω̄/η,m)

2ω̄

∫ ∞
−∞

∫ ∞
−∞

dτ̄dτ̄ ′

× ϕ(τ̄)ϕ(τ̄ ′)e
−i

(
ω̄∆
(
x(ητ̄)−y(ητ̄ ′)

)
/η+Ωη(τ̄−τ̄ ′)

)
. (4.24)

Now, it can be seen that the density of states from (4.21) fulfills the following:

Dd(ω̄/η,m) = η1−dDd(ω̄,mη). (4.25)

For d ≥ 1 we write

WΩ
0,d[ϕη, ϕη] = η1−d

∫ ∞
0

dω̄

(2π)d
Dd(ω̄,mη)

2ω̄

∫ ∞
−∞

∫ ∞
−∞

dτ̄dτ̄ ′

× ϕ(τ̄)ϕ(τ̄ ′)e
−i

(
ω̄∆
(
x(ητ̄)−y(ητ̄ ′)

)
/η+Ωη(τ̄−τ̄ ′)

)
. (4.26)

Finally, assuming that the conditions of the dominated convergence theorem [65] are
fulfilled in the integrals we can take the limit of the quantity ηd−1W0,d[ϕη, ϕη] (for
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d > 1) when η goes to zero inside the integral. This limit leads to the asymptotic
behavior of the excitation probability:

lim
η→0

ηd−1W0,d[ϕη, ϕη] =

∫ ∞
0

dω̄

(2π)d
Dd(ω̄, 0)

2ω̄

∫ ∞
−∞

∫ ∞
−∞

dτ̄dτ̄ ′ϕ(τ̄)ϕ(τ̄ ′)e−iω̄(τ−τ ′)

=

∫ ∞
0

dω̄

(2π)d
Dd(ω̄, 0)

2ω̄
|ϕ̃(ω̄)|2, (4.27)

where ϕ̃ is the Fourier transform of the function ϕ, which we assume that decays
faster than any polynomial. Also, we have taken into account that

lim
η→0

∆(ητ̄ , ητ̄ ′)

η
= lim

η→0

1

η

√
−(x(ητ̄)−x(ητ̄ ′))2 sgn (η(τ̄−τ̄ ′))

= |ẋ2(0)|(τ̄−τ̄ ′) = τ̄−τ̄ ′, (4.28)

where we have expanded the numerator at first order in η and we have taken into
account that any timelike trajectory fulfills ẋ2 = −1. Thus, we can write the leading
order behavior of the excitation probability as η → 0 as

P+ ∼ λ2η1−d
∫ ∞

0

dω̄

(2π)d
Dd(ω̄, 0)

2ω̄
|ϕ̃(ω̄)|2, (4.29)

with d > 1. The case d = 1 is special because the divergence is not only ultraviolet,
but also infrared, that is for m = 0 the spectral density D1(ω, 0)/2ω is not bounded
from below. We expect, however, a logarithmic divergence as m goes to zero (see, for
instance, [21]). We see from equation (4.25), that the massless limit and our delta
switching limit are the same in 1 + 1 dimensions.

We see from (4.29) that the response of the detector ignores both the mass of the
field and the energy gap of the detector for d > 1. Therefore the detector’s response
is asymptotically independent of its state of motion as the interaction time goes to
zero. We observe that the detector interacts with the field as if it were following an
inertial trajectory. Note that as the excitation probability has to be Lorentz invariant
[55], it does not depend on the velocity of the detector.

We have studied the structure of the divergences of an UDW detector when it
is coupled to a Klein-Gordon field for arbitrary mass and arbitrary dimensions, and
for arbitrary Hadamard states.

4.2.1 Comb of interactions

We will see that under those assumptions the behavior of the non-local terms and of
the individual excitation probabilities in (4.8) are, in principle, qualitatively different
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as the latter can diverge. Also the non-local terms are well defined in the limit η → 0
under some assumptions and, as we argue in section 4.3, can be used for probing the
two-point function.

In this subsection we apply a comb of interactions of the form (4.2), where this
time the teeth are nascent delta functions of the form (4.15). We restrict our study
here to the time-correlations involving the non-local terms given in equation (4.10).
Then the total switching function acquires the form:

χ(τ) =
N∑
l=0

ϕτ0l,η(τ), (4.30)

where

ϕτ0l,η(τ) =
1

η
ϕ

(
τ − lζ − τ0

η

)
. (4.31)

Substituting in (4.10) we get

C(Ω,τ0) =
N∑
m=1

N−m∑
n=0

WΩ[ϕτ0n+m,η, ϕ
τ0
n,η]. (4.32)

The expression of the action of the functionals WΩ over the nascent delta switch-
ings within the non-local terms is

WΩ[ϕτ0n+m,η, ϕ
τ0
n,η]

= e−iΩζm

∫ ∞
−∞

∫ ∞
−∞

dτdτ ′ϕ(τ̄)ϕ(τ̄ ′)e−iΩη(τ−τ ′)

×W (ητ̄ + τ0 + (n+m)ζ, ητ̄ ′ + τ0 + nζ) , (4.33)

where we have performed the following changes of the variables:

τ̄ =
τ − (n+m)ζ − τ0

η
, τ̄ ′ =

τ ′ − nζ − τ0

η
. (4.34)

In conclusion, we can take the limit η → 0 inside the integral sign, and write

lim
η→0

WΩ[ϕτ0n+m,η, ϕ
τ0
n,η] = W (τ0 + (n+m)ζ, τ0 + nζ) . (4.35)
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Therefore we conclude that the non-local contribution to the excitation probability
has a well defined behavior in the limit η → 0 and we write

lim
η→0

C(Ω, τ0)

=
N∑
m=1

e−iΩζm

N−m∑
n=0

W (τ0 + (n+m)ζ, τ0 + nζ) . (4.36)

This behavior with η is crucial. It means that, for series of fast and intense kicks the
deviations from statistical independence in the excitation probability of the detector
only depend on the correlations in the initial state ρ̂φ between the events when they
take place.

This result, which seems trivial, is what will allow us to reconstruct the Wightman
function from the excitation probability of the detector, as we will see in section 4.3.

To conclude this subsection we remark that, for simplicity in the expressions, we
have applied evenly distributed interactions in time. Nonetheless, it is easy to check
that the former statement remains true even when the interactions are not evenly
distributed.

4.3 Probing the two-point correlator with fast kicks

In this section we finally propose a method for probing the two-point function of
the state ρ̂φ. The method, as it has been advanced in previous sections, will consist
in predicting the value of the two-point correlator between two events by designing
interactions with the field that are sharp and intense with a nascent delta switching
centered in those two events and measuring their excitation probabilities. Repeated
probing of quantum fields has already proven useful to, for example, carry out mea-
surements of the generating functional in quantum simulations of interacting QFTs
[66].

A first characteristic of this method is that we have to be able to measure the
excitation probability with single kicks, and measure the excitation probability with
two kicks for the same couple of events. This requires being able to ensure that if we
repeat the experiment the two events, located at τ1, τ2, are equivalent to other two
events located at (τ1 + α, τ2 + α), where α is an arbitrary lapse of proper time.

Besides, the accurate measurement of an excitation probability requires a huge
amount of experiments. So if we want to predict the two-point correlator we need
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to repeat the experiment as many times as necessary and be sure that the quantities
that we are measuring do not change if we perform the experiment at two different
times.

All these considerations lead to the necessity of considering almost exclusively
stationary situations.

The theoretical protocol that can be used, in principle, for probing the two-point
correlator by applying two fast kicks requires the following assumptions:

• We can measure the excitation probability of the detector regardless of the
number of interactions we are applying. More concretely, this means that we
can measure the excitation probability when both a double-kick and a single-
kick interaction are implemented at any time of our choice. In our notation, we
have access to the quantities P+

ξ,0, P+
ξ,1 and P+. The indices 0, 1 denote that we

apply the same interaction, described by the tooth function ξ, at two different
times separated by a lapse ζ.

• We are free to change the parameters of the detector: the energy gap Ω and
the lapse between interactions ζ.

• Besides, we assume that we can shrink the tooth functions in the way we
studied in section 4.2, that is, we can choose tooth functions ξ in such a way
they act like nascent delta functions, ϕη.

• We also assume that we can kick the target with intense interactions but not
intense enough for coming out from the grounds of perturbation theory in the
coupling constant λ.

Under these conditions, we particularize the expression (4.2) for the switching
function for N = 2 and apply our results straightforwardly. First, the excitation
probability in (4.8) takes the form

P+ = P+
ξ1

+ P+
ξ0

+ 2λ2Re [C(Ω, ζ, 2, τ0)]

= P+
ξ1

+ P+
ξ0

+ 2λ2Re
[
WΩ[ξτ01 , ξ

τ0
0 ]
]
. (4.37)

We define now the following function:

S(Ω, τ0) :=
1

2λ2

(
P+ − P+

ξ1
− P+

ξ0

)
= Re

[
WΩ[ξτ01 , ξ

τ0
0 ]
]
, (4.38)
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which only involves measurable quantities as we have claimed. By doing so we
realize that we can obtain the value of Re

[
WΩ[ξτ01 , ξ

τ0
0 ]
]

just measuring the excitation
probability in several processes.

Finally, for tooth functions of the form (4.15) we calculate the delta-switching
limit of (4.38):

lim
η→0

Re
[
WΩ[ϕτ01,η, ϕ

τ0
0,η]
]

= Re[e−iΩζW (ζ + τ0, τ0)]

= cos(Ωζ)Re[W (ζ + τ0, τ0)] + sin(Ωζ)Im[W (ζ + τ0, τ0)]. (4.39)

Under these conditions we can build the whole two-point correlator by forcing the
quantity Ωζ to take some concrete values, that is, if we synchronize the detector with
the lapse between interactions. On the one hand, if Ωζ = 2πk where k is an integer,
then we have that

lim
η→0

S(2πkζ−1, τ0) = Re[W (ζ + τ0, τ0)]. (4.40)

On the other hand, if we synchronize the detector by choosing the energy gap to
fulfill Ωζ = 2πk′ + π/2, with k′ a different integer, we have that

lim
η→0

S
(
(2πk′+ π/2)ζ−1, τ0

)
= Im[W (ζ + τ0, τ0)]. (4.41)

Thus we can build the whole two-point correlator in terms of measurable quantities:

W (ζ + τ0, τ0) = lim
η→0

[
S(2πkζ−1, τ0) + iS

(
(2πk′+ π/2)ζ−1, τ0

)]
. (4.42)

In light of this result, we see that we can approximately measure the two-point cor-
relator between whatever two events by measuring the excitation probability of each
interaction separately, and the excitation probability of the joint interaction. Fur-
ther, as we pointed out at the beginning of this section the expression is completely
meaningful. In terms of stationary correlations the statistic S takes the form

S(Ω, 0) =
1

2λ2

(
P+ − 2P+

ξ1

)
. (4.43)

So, once we know P+
ξ1

, which can be measured in an independent experiment, we have
full information about the two point function by measuring the excitation probability
P+ with the comb of nascent deltas:

W (ζ) = lim
η→0

[
S(2πkζ−1, 0) + iS

(
(2πk′+ π/2)ζ−1, 0

)]
. (4.44)
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4.4 Discussion

In the context of a quantum field theory probed by a particle detector, we have shown
that we can use the detector response to time-separated interactions for measuring
the two-point correlator of the field. We have analyzed the general form of the
excitation probability of the detector from the ground state to any other state at
leading order in perturbation theory, focusing in the simplest case of UDW point-
like model.

We can write this excitation probability after two fast interactions as the sum of
the individual excitation probabilities plus deviations from statistical independence.
These deviations encode crucial information about the target two-point correlation
function smeared over the switching function that has two peaks centered at different
times. We have further analyzed the particularly relevant case where the correlations
are stationary, which corresponds to interesting cases such as thermalization or any
other equilibration process.

Next, we have taken the formal limit when the interactions are fast and intense,
thus resembling delta distributions. In this limit the correlations are only dependent
on the two-point correlator evaluated at the times where the interactions take place,
and we have discussed the asymptotics and scales associated with this.

We developed a detection scheme in which both the real and imaginary compo-
nents of the two-point correlator can be directly measured in two different times.
This protocol assumes that once the lapse of time between interactions ζ is fixed,
we can change the energy gap of the detector Ω. Both the real (imaginary) part of
the correlator can be measured if we synchronize the energy gap of the detector to
perform an even (odd) number of free cycles between interactions.

Among these, a particularly important technical aspect is that the value pre-
dicted cannot be thought as the value of a function overall, but as the outcome of a
distribution acting over narrow smearing functions. However, the point-like informa-
tion about the Wightman function can be made meaningful when it is understood
as a limit of regular finite-smearing distributions. However this does not present a
problem in this case as the non-local terms in (4.33) do not involve the coincidence
limit, so the limit of the switching functions to delta distributions is well defined.

Importantly, we recall that (4.38) involves the value of the difference of individual
excitation probabilities. Both the excitation probability of the combined process and
the individual excitation probabilities diverge in the delta-switching limit, but these
divergences are spurious and point-independent: the different excitation probabilities
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at different times diverge but their difference remains finite. This allows us to,
in principle, suggest possible experimental protocols that obtain the value of the
asymptotic expression Wρ̂t(ζ + τ0, τ0) as η → 0. We show that, provided that the
detector’s probability distributions after each interaction separately are known, we
can directly extract information from the two-point correlator of the field operator
in the state ρ̂φ. Further, we showed in section 4.2 that if the interactions are fast
enough, then they are completely determined by the correlator evaluated at the times
the interactions take place. We finished the general discussion in section 4.3, where
we proposed a procedure for evaluating the correlator at two different times directly.

Assuming the UDW model, this method allows one to measure the Wightman
function between two events that are timelike separated for a wide variety of states
and theories. For comparison, in quantum optics, there are well-known techniques
such as homodyne detection [67] that can probe the field quadratures of single par-
ticular modes. Notice that these results are limited to massless fields. In contrast the
methods we propose to probe the full two point function of a relativistic quantum
field along an arbitrary relativistic trajectory, and are easily generalizable to curved
backgrounds, whereas to the authors’ knowledge, all the methods in the literature
are restricted to non-relativistic setups for probing a single mode of a quantum field,
and not the full two point function along an arbitrary relativistic trajectory.

We have discussed the mathematical subtleties of evaluating an object of distri-
butional nature at a point, then seeing that this can be done as far as the Wightman
distribution does not diverge inside the light-cone. Of course, this is the case for the
most common theories that can be found in the literature.

We have also compared this method of measuring the Wightman distribution
with the more conventional way, that for a stationary state, consists in waiting for
the detector to reach equilibrium. This fast-interaction approach avoids taking the
long-time limit, leading thus to measurements that do not involve the non-local
character of equilibration. In summary, finite time interactions can be used to probe
the Wightman function of a quantum field. This has the advantage that we are able
to measure the correlation function in a spacetime localized manner at two points,
rather than its pullback over a full trajectory, which is the information one gets when
waiting for equilibration.

The measurement of the two-point function of a a quantum field between two
space-time points can be also motivated from a different point of view, based on
quantum field theory in curved space-times. Intuitively, given that the vacuum
two-point function of a quantum field depends on the background geometry, it is not
surprising that the metric between two events can be written in terms on the vacuum
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correlations between those two events. This observation was first made in [68], where
the concrete dependence was calculated. The fact that our work shows that the
correlations between time-like events can be written as the outcome of excitation
probabilities opens an interesting avenue to relate the geometry of space-time to the
outcome of measurement of particle detectors.
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Chapter 5

The price to pay: Violations of
causality in particle detector
physics

In this chapter we review some of the results from [2], which are concerned with
causality issues in the context of general detector models.

The main subject of this chapter is to deepen the analysis of the friction be-
tween smeared detector models and relativistic causality for general detector models
in curved spacetimes, with an emphasis in the problem of the so-called “impossible
measurements in QFT” [34, 39, 40]. Crucially, the causality issues we will tackle are
introduced by the very fundamental construction of the model per-se, and not by
extra approximations that introduce non-locality, such as the rotating-wave approx-
imation [69], or other a-posteriori non-relativistic approximations [70].

A fully relativistic measurement scheme for QFT in which the detector is another
quantum field (and the interactions have certain locality preserving properties) is of
course devoid from causality issues (e.g., the FV-framework [29],[40]). However it
is perhaps still reasonable to approach measurements in QFT from much simpler,
effective, non-relativsitic detector models e.g. the Unruh-DeWitt model. In this
chapter we will be concerned with structural aspects of UDW-type models related to
the interplay between their non-relativistic nature and their spacetime localization
through their smearing. We will pay especial attention to the possibility of super-
luminal signaling in smeared models, a phenomenon be unacceptable in relativistic
physics.
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This chapter is divided into the following sections. In section 5.1, we give general
(non-peturbative) arguments about signaling between two detectors, and show the
absence of faster-than-light signalling, that is, the absence of signalling when the
detectors’ couplings are constrained to spacelike separated regions.

5.1 Faster-than-light signaling in detector models

This section is devoted to providing a general argument concerning the existence of
faster-than-light signalling in measurement schemes with particle detector models.
In the underlying quantum field theory superluminal signalling is prevented through
the microcausality axiom, which states that the field operators commute in spacelike
separation, i.e.

[φ̂(x), φ̂(y)] = 0, (5.1)

if x and y are spacelike separated.

It is important to clarify that in the case of selective measurements microcausal-
ity does not guarantee statistical independence, i.e., the statistics of B̂ will generally
depend on the outcome of A . It is well known that quantum field theory permits
outcome-outcome correlations in spacelike separation [71]. It is also well understood
that outcome-outcome correlations do not lead to superluminal signaling. Rather,
they are a consequence of the fact that the state of the field (for example, a ther-
mal state, or the vacuum) can display entanglement and classical correlations even
between spacelike separated regions [72].

In this chapter we will make use of the most general possible (linear) detector
model of the family of models described by the Hamiltonian density (3.11), intro-
duced in chapter 3. Further, if we are to restrict our set of measurements of the field
to this kind of detector-based protocol, it is necessary to define signalling in terms
of interactions between several detectors.

Let us study then the dynamics of a set of independent detectors interacting
with the same quantum field. First, consider two detectors that couple to the same
quantum field undergoing an interaction generated by the Hamiltonian weight

ĥ(x) = ĥa(x) + ĥb(x) = λaΛa(x)Ĵa(x)⊗ Ib ⊗ φ̂(x)

+ λbΛb(x)Ia ⊗ Ĵb(x)⊗ φ̂(x). (5.2)
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This scalar generates a joint Hamiltonian for the joint system of the form

Ĥ(t) = Ĥa(t) + Ĥb(t) (5.3)

where

Ĥa,b(t) =

∫
E(t)

dE ĥa,b(x). (5.4)

Note that this Hamiltonian generates evolution with respect to the same parameter
t for both detectors. Although we will not concern ourselves with this in the present
chapter, since it has already been studied in [57], it is clear that one needs to properly
reparametrize the local Hamiltonians to generate time translations with respect to
the same parameter, which in general cannot correspond to the proper time of both
detectors.

In order to analyze causal relations between detectors, we need first to define
causal relations between (compact) subsets of spacetime. Given a globally hyperbolic
spacetime, the future lightcone of a region O, J+(O), is the set of all points that lay
in the causal future of some point of O. Similarly, J−(O), the causal past of a region
O, is the set of all points that lay in the causal past of O.

• We say that A and B are causally orderable if J−(Oa)∩Ob or J−(Ob)∩Oa are
empty. If two sets are not orderable, there is not reference frame in which one
comes after the other, see fig 5.1.

• We say that A and B are spacelike separated if (J+(Oa) ∪ J−(Oa)) ∩ Ob or
(J+(Ob) ∪ J−(Ob)) ∩ Oa are empty. Notice that this is a particular case of
causally orderable.

• Finally, we have that if Ob ⊂ J+(Oa)/Oa, and Oa ⊂ J−(Ob)/Ob, we say that A
causally precedes B. Notice that this is a particular case of causally orderable
since although J−(Ob) ∩ Oa = Oa 6= ∅, it holds that J−(Oa) ∩ Ob = ∅.

Specifically, we have defined Oa to precede Ob if for every observer all the events
in Oa precede any event in Ob, that is, Oa “comes first” for all observers.

These are covariant statements that are independent of the observer, but one can
also define causal relations with respect to a particular foliation T (x). We say that
A precedes B with respect to T (x) if T (x) < T (y) for all x ∈ Oa and for all y ∈ Ob.
The two notions are linked by the following facts:
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Figure 5.1: Causal relations between simply connected, non intersecting sets (grey
and white) in two spacetime dimensions. Black lines represent the future or past
lightcone of the sets or points between them. a), b): Examples of non causally
orderable sets. c), d): Examples of sets that are causally orderable, but that do not
causally precede each other according to our definition. e): Spacelike separated sets.
f): Example of a set causally preceding another set.
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• If A and B are causally orderable, one precedes the other with respect to some
foliation.

• If A and B are spacelike separated, then there are at least two foliations such
that A precedes B with respect to one and such that B precedes A with respect
to the other.

• If A causally precedes B, then A precedes B with respect to all foliations.

We will say that two detectors obey any of the causal order relations above if the
regions Oa = supp(Λa), Ob = supp(Λb) obey the respective causal relations described
above. See figure 5.1 for examples with simply connected sets.

Given these definitions of causal relations, we can analyze further the implications
of the microcausality axiom in detector physics. The Hamiltonians defined by (5.4)
are defined respect to some time function T (x), so the two detectors will naturally
have causal relations with respect to the foliation defined by its level curves. If the
underlying field theory were not relativistic, we would expect that different foliations
give rise to different dynamics for spacelike separated detectors, because in that case
the order in which the measurements are done would typically matter. This is exactly
what is to be avoided in a relativistic theory, and in the following we will examine
this condition in detector models departing from the microcausality condition of the
underlying QFT.

Now, recall that the microcausality axiom in curved spacetimes implies that, for
two compactly supported spacetime functions m(x) and l(x),∫

dV

∫
dV′ l(x)m(y)[φ̂(x), φ̂(y)] = 0 (5.5)

where dV = dxn
√
|g| and dV′ = dyn

√
|g′|, if the supports of l and m are spacelike

separated. Therefore, the microcausality axiom implies that[
ĥa(x), ĥb(y)

]
= 0 (5.6)

if Λa and Λb have spacelike separated supports. This in turn implies that[
Ĥa(t), Ĥb(t′)

]
= 0 (5.7)

for all t, t′.

The joint evolution in the of the detectors and the field can be described as a
unitary operator acting over the joint state of the system. That is, if ρ̂initial is the
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density operator describing the state of the field-detectors system before the inter-
actions are switched-on (respect to the parameter t). The notation A+B indicates
that the operator accounts for the interaction of the two detectors, whereas Ŝa,b will
denote the scattering matrices associated with the individual interactions generated
by the individual interaction Hamiltonians. The total state in the asymptotic future
will be given by the transformation

ρ̂final = Ŝa+b ρ̂initial Ŝ
†
a+b (5.8)

where Ŝa+b is the so-called scattering operator1. The scattering operator is unitary
and can be formally written as the Dyson series

Ŝa+b =
∑
n

(−i

~

)n
1

n!

∫ ∞
−∞
· · ·
∫ ∞
−∞

dtnT(Ĥa(t1) + Ĥb(t1) . . . Ĥa(tn) + Ĥb(tn)).

(5.9)

Intuitively, we would like to ensure that if two detectors A and B are coupled
to the field in spacelike separation, one cannot conclude whether the other one is
coupled to the field or not. Therefore, a minimum non-signaling requirement would
be that if A interacts first with the quantum field in any foliation, i.e. if B is not
in the causal future of A, then all expectation values of observables of detector B
should not depend on magnitudes of detector A, e.g. the coupling constant λa. If
the expectation values of observables of B depend on λa, then its value could be used
to encode, and then signal information.

It is not a priori obvious why the causal behaviour of the underlying QFT, e.g. the
microcausality axiom, would guarantee the causal behaviour of detectors. However,
we will see that this is guaranteed under some conditions [73]. As we will show below,
in the context of particle detector models, faster-than-light signalling is prevented if
the joint scattering matrix factorizes when the detectors are causally orderable. In
particular, if B does not intersect with the past of A, we would have

Ŝa+b = ŜbŜa. (5.10)

We will refer to this property as causal factorization.

1It is common in the UDW literature to denote the evolution operator by Û . In this work,
however, we prefer to denote it with Ŝ to emphasize the fact that these maps represent scattering
operators and we adopt a notation analog to, e.g., [40] .
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To see that causal factorization prevents acausal signalling, consider the local
statistics of the detector A, given by the partial trace

ρ̂a = trb,φ(Ŝa+b ρ̂initial Ŝ
†
a+b). (5.11)

Now, if causal factorization holds, then

ρ̂a = trb,φ(ŜbŜa ρ̂initial Ŝ
†
aŜ
†
b). (5.12)

But Ŝb depends only on operators acting over the subspaces associated with the field
and the detector B, therefore it can be permuted within the partial trace:

ρ̂a = trb,φ(Ŝa ρ̂initial Ŝ
†
aŜ
†
bŜb)

= trb,φ(Ŝa ρ̂initial Ŝ
†
a). (5.13)

Therefore, we have shown that if causal factorization holds, there is no local (space-
time compact) measurement carried though a detector interaction that can be used
to receive signals from another detector outside the causal past of such interaction.

Note that in the particular case where A and B are spacelike separated, then
causal factorization implies

Ŝa+b = ŜbŜa = ŜaŜb, (5.14)

which implies that neither detector A can signal to detector B nor detector B can
signal to detector A, that is, it prevents faster than light signaling.

It is rather intuitive why condition (5.10) should hold if, e.g. A precedes B respect
to the concrete foliation in which the interaction has been defined, as the unitary
evolution factorizes by construction. This can be used to argue that the factorization
will be independent of the foliation if A causally precedes B in the sense given at the
beginning of this section. The proof is also simple if A and B are spacelike separated,
in which case the factorization also holds independently of the foliation. What is less
trivial, however, is that the factorization holds if the detectors are causally orderable,
which is a covariant statement that does not depend on the foliation either.

In conclusion, causal factorization prevents faster-than-light signalling, as far
as only two detectors are involved. The result can be extended to some limited
scenarios with many detectors. For example, if one has more than two detectors, say
A,B1, . . . ,BN , one can always define the collection of all the detectors that are not
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A as a single detector Ac. If all the detectors in Ac and A are causally orderable,
with A preceding the rest, then again causal factorization will hold and

ŜΣbi+a = ŜΣbiŜa = ŜacŜa (5.15)

and the measurements on A will not be affected by the other detectors.

It could be tempting to claim that this implies that the signals sent by a detector
can only reach other detectors in the causal future of its interaction region. Indeed,
causal factorization ensures this as long as we consider schemes involving two detec-
tors. Obviously, if a detector B can only receive signals from its causal past, then
another single detector A can only send signals to B if B is in the causal future of A.

However, if more than two detectors are involved, then causal factorization does
not solve all the possible frictions that the detector models can have with relativistic
causality.

5.2 “Impossible measurements” and superlumi-

nal propagation of initial data

We have defined signalling so far as the transmission of information between detec-
tors through their interaction with the field. We have seen that, in a two-detector
scenario, a detector localized in some region is irrelevant for another detector lo-
calized in its causal complement, which means that the detector only influences, in
some sense, its own causal future.

However, as pictured in Sorkin’s impossible measurements paper [34], there are
subtleties associated with the detectors not being in a definite causal ordering when
considering more than two measurements. Namely, even if the response of the de-
tector A cannot be influenced by the detector B, the influence of detector A over B
can still carry information about events that happened outside the causal past of B,
which is obviously not acceptable.

In order to understand how Sorkin’s problem can manifest in measurement’s
models with particle detectors, we shall first analyze a different kind of signalling in
which the information is not encoded in the interaction, but in the initial state of
the system.

Indeed, a detector can also be thought of as a repeater, that is, given some initial
state of the field (possibly coming from another interaction), the detector can register
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Figure 5.2: Two detectors A and B are coupled to the field over regions Oa,b. The
initial data are encoded in the field state through a unitary intervention over region
Oc. Notice that region Oa is partially invading the past and future lightcones of
regions Ob and Oc respectively.

the initial data and propagate it back to the field. In this case, one may fear that
a detector can re-emit information in a non-causal manner. In this subsection we
will prove that this is indeed a reasonable concern, since superluminal propagation of
initial data is a widespread phenomenon when considering non-relativistic systems.

For instance, one could imagine a scenario in which a detector A partially pre-
cedes and is partially spacelike separated from a second detector B (see figure 5.2).
Consider that the state of the system is initially given by

ρ̂initial = ρ̂a ⊗ ρ̂b ⊗ eiλf φ̂(f)ρ̂φe
−iλf φ̂(f) (5.16)

where ρ̂a,b,φ are arbitrary states of the detectors A, B and the quantum field respec-

tively, and φ̂(f) is a smeared field operator which is compactly supported in region2

Oc, spacelike separated from B, but not from A. If Oc is spaceilike separated from
B, the local statistics of B should not be affected by the value of the constant λf ,
otherwise detector A would be acting as an agent for superluminal signalling.

More generally, one can consider the case in which the initial state of the detectors
plus field has the form

ρ̂initial = Û ρ̂0Û
†, (5.17)

where ρ̂0 is an arbitrary reference state of the joint system, and Û = Ia ⊗ Ib ⊗ Ûφ is

an arbitrary unitary acting on the field’s Hilbert space, so that Ûφ is localized in Oc

(contained in the causal complement of the interaction region Ob). It is clear that

[Û , Ŝb] = 0. (5.18)

2One can think of this as a third party Charles encoding information in the field in region
through a spacetime localized unitary action in region Oc.
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Û can be thought of as encoding a set of initial data3. The statistics of detector
B can only depend on Û if detector A’s interaction region overlaps with the causal
past of B and Ŝa does not commute with Û (e.g., as shown in Fig. 5.2). To avoid
superluminal signalling, it should hold that the local statistics of B do not depend
on the choice of Û , i.e.

ρ̂b = tra,φ(Ŝa+bÛ ρ̂0 Û
†Ŝ†a+b) = tra,φ(Ŝa+b ρ̂0 Ŝ

†
a+b). (5.19)

Further, since B is localized (at least partially) in the future of A, and it is
spacelike separated from the set of initial data implemented by Û , B cannot be fully
contained in the causal past of A. We conclude that A does not causally precede B,
in the terminology of the last section.

Imposing condition (5.19) for all initial density operators is equivalent to

tra,φ(V̂ σ̂ V̂ †) = tra,φ(σ̂) (5.20)

for any arbitrary density operator σ̂, where V̂ is a unitary given by

V̂ = Ŝa+bÛ Ŝ
†
a+b. (5.21)

This implies that if D̂b is an operator acting on detector B (i.e. it commutes with
the field operators and with the operators acting on detector A) then

tr(V̂ †D̂bV̂ σ̂) = tr(D̂bσ̂) (5.22)

for all σ̂. For our purposes, this implies that

V̂ †D̂bV̂ = D̂b, (5.23)

or equivalently

[D̂b, V̂ ] = 0 (5.24)

for all operators acting over detector B. Assuming that A precedes B, the connection
with the propagation of initial data is more clear when one uses causal factorization.
Then, Ŝa+b = ŜbŜa and condition (5.24) can be written as

[Ŝ†bD̂bŜb, ŜaÛ Ŝ
†
a] = 0, (5.25)

3We can always thing without loss of generality that the action of Û is localized in a subset of
a Cauchy surface in the causal past of Oc
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for all unitaries in the causal complement of B. If we think of Ŝ†bD̂bŜb as an induced
operator acting on the field localized in region B and of ŜaÛ Ŝ

†
a as the evolution of the

initial data given by interaction A, we can interpret condition (5.24) as meaning that
the interaction A does not propagate initial data superluminally, since the propagated
data still lays within the causal complement of region B. This condition is related
to the unitary restriction of the condition discussed in [39], but more general in the
sense that allows for auxiliary degrees of freedom representing the devices used to
implement the measurement.

The relevant question now is whether condition (5.24) holds for general detector
models. Unfortunately the answer is generally negative. It is easy to corroborate
using perturbation theory that the localization region of ŜaÛ Ŝ

†
a is not the causal

future of Û , but the causal future of A. Indeed, using Dyson’s expansion

Ŝa Û Ŝ†a = Û − i

~

∫
dV [ĥa(x), Û ]

− 1

2~2

∫
dV

∫
dV ′T

[
ĥa(x), [ĥa(y), Û ]

]
+ O(λ3

a). (5.26)

If we pay attention to the first term, which is given by the density

[ĥa(x), Û ] = λaΛa(x)Ĵa(x)⊗ Ib ⊗ [φ̂(x), Û ], (5.27)

we realize that microcausality ensures that no x outside the lightcone of Û can
contribute to the integral. This means that regardless of the localization of region
B, the leading order propagation of initial data is still localized in the lightcone of Û
and the propagation is causal.

Now, at second order, the contribution will be given by the kernel[
ĥa(x), [ĥa(y), Û ]

]
(5.28)

where the time-ordering is implemented considering that y precedes x respect to the
foliation T (x). Because of microcausality, y will also be constrained to lie within
the lightcone of Oc, but x can be anywhere. One can use Jacobi’s identity to expand
this kernel as follows[

ĥa(x), [ĥa(y), Û ]
]

=
[
[ĥa(x), ĥa(y)], Û

]
+
[
ĥa(y), [ĥa(x), Û ]

]
, (5.29)
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such that x has to lie in the lightcone of the initial data for the second term not to
vanish, but the first one will not generally vanish when x is outside the lightcone of
Oc.

One can see that in general, unless [ĥa(x), ĥa(y)] = 0 when x and y are spacelike
separated, the propagation will not be causal anymore. Similar results were found
in [57] when addressing violations of relativistic covariance.

Indeed, one can further expand the commutator of the Hamiltonian densities as

[ĥa(x), ĥa(y)]

= λ2
aΛa(x)Λa(y)[Ĵa(x), Ĵa(y)]⊗ Ib ⊗ φ̂(x)φ̂(y)

+ λ2
aΛa(x)Λa(y)Ĵa(x)Ĵa(y)⊗ Ib ⊗ [φ̂(x), φ̂(y)]. (5.30)

Again, microcausality ensures that the second term in (5.30) vanishes in spacelike
separation, but the first one will not vanish, nor will commute with Û in general ,
unless [Ĵa(x), Ĵa(y)] = 0 in spacelike separation. In general it is not difficult to argue
(following a similar combinatoric procedure as in [57], together with a recursive use
of Jacobi’s identity) that if the interaction Hamiltoinan density of A is microcausal
(for example for a pointlike detector), the propagation of initial data is causal in all
orders in perturbation theory.

If this condition holds, it means that either all points in supp Λa are causally
connected (which is only possible for a pointlike detector) or that the detector is a
relativistic field. Since by assumption the system is non-relativistic and generally
smeared, we conclude that the detector’s dynamics carry superluminal propagation
of initial data at second order in perturbation theory.

Note that since for point-like detectors there is not superluminal propagation, one
can disregard this kind of faster-than-light signalling for “small enough” detectors.
Whether a detector is small or not will depend, of course, on the parameters of the
problem.

The preceding discussion provides a dynamical interpretation of the impossible
measurements problem, in the sense that it links superluminal signalling with su-
perluminal propagation within the device that is implementing the measurement. It
is clear then, that if the detector is a relativistic quantum field then there is not
superluminal propagation of initial data under some assumptions in the dynamics
of the coupling, as it is shown in full rigor in [40]. In our case, however, we have
to understand this kind of faster-than-light signalling as a fundamental feature of
non-relativistic particle detector models that restricts their usage to regimes where
these superluminal features are negligible or irrelevant for the results at hand.
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5.3 Impossible measurements with weakly coupled

detectors

We have seen that faster-than-light signalling is present in smeared non-relativistic
particle detector models. However, calculations involving particle detectors are most
commonly carried out in perturbation theory. Indeed, not only the justification of the
model is jeopardized for strong couplings, but also some of the most interesting phe-
nomenology, such emission and absorption of particles, can be described at quadratic
order in the coupling strengths. Not only that, this is also the leading order for most
phenomena in relativistic quantum information (e.g., detector’s responses [21], com-
munication [74], entanglement harvesting [75] and the Fermi Problem [76, 77, 78, 79],
etc..). This section is devoted to analyze the order in perturbation theory at which
superluminal propagation of initial data, described in last section, plays a role in
measurement schemes involving more than two detectors.

Let us slightly extend the set-up described in section 5.2 by assuming that the
unitary Û in (5.17) is implemented by a weakly coupled detector C, in such a way that
we can write Û = Ŝc. We can now determine at which order in perturbation theory
the dynamics exhibits superluminal signalling, that is, at which order in perturbation
theory condition (5.25) fails to hold.

In order to do so, we first define the operator

K̂ = [Ŝ†bD̂bŜb, ŜaŜcŜ
†
a]. (5.31)

If this operator vanished there would be no superluminal propagation of initial data.
We can determine the first order in the coupling strengths at which K̂ does not
trivially vanish.

We can expand K̂ in the coupling strengths by writing K̂ = K̂(0) + K̂(1) + ...,
where each K̂(j) contains integrals involving j Hamiltonians. Each term K̂(j) will
contain contributions from orders in the coupling constants of detectors C+A+B in
such a way that all the powers add up to j. It is easy to see that

K̂(0) = [D̂b, I] = 0, (5.32)
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and that the linear term will also vanish

K̂(1) =

[
i

~

∫ ∞
−∞

dt[Ĥb(t), D̂b], I
]

+ [D̂b,−
i

~

∫ ∞
−∞

dt[Ĥa(t), I]]

+ [D̂b,−
i

~

∫ ∞
−∞

dtĤc(t)] = 0. (5.33)

The fact that the first two terms in (5.33) vanish is obvious, while the third vanishes
because B and C are spacelike separated.

The higher order terms can be calculated similarly, but given the increasing com-
plexity of the calculations it is more practical to reason which terms will vanish based
on the following observations:

1. The zeroth order in the coupling constant of detector C cannot contribute to
any order in K̂, because at that order condition (5.25) is satisfied trivially.

2. The zeroth order in A cannot contribute at any order either, because B and C
are spacelike separated.

3. Finally, the zeroth order in B cannot contribute at any order because in that
case the induced observable Ŝ†bD̂bŜb acts trivially over the field.

Therefore, K̂ cannot have any contributions at quadratic order, because any
quadratic contribution will involve the zeroth order of at least one of the detectors.
Hence,

K̂(2) = 0. (5.34)

This is not surprising if we take into account the result of section 5.1, because at
quadratic order the detectors interact only pairwise. Since the detectors only influ-
ence each other pair-wise, the measurements cannot exhibit this type of superluminal
signalling that involves necessarily three detectors. It is expected that this argument
carries through in general calculations involving quadratic orders in perturbation
theory.

Interestingly, and perhaps less intuitively, the third order will also vanish. Indeed,
the only term that can contribute at third order in perturbation theory, given the
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observations made above, is the one that involves the linear order of each in the three
detectors.

K̂(3)

= − i

~3

[∫ ∞
−∞

dt[Ĥb(t), D̂b], [

∫ ∞
−∞

dtĤa(t),

∫ ∞
−∞

dtĤc(t)]

]
. (5.35)

The operator in the first entry of the nested commutator acts over the space of
detector B and over the quantum field, whereas the operator on the second entry is
given by ∫

dV

∫
dV ′[ĥa(x), ĥc(y)]. (5.36)

Following the reasoning of section 5.2, the microcausality condition forces this op-
erator to be localized in the causal future of C, and therefore commutes with field
operators localized in region B. We then conclude that

K̂(3) = 0. (5.37)

The interpretation in this case is that the superluminal propagation of initial data
happens only at quadratic order in the detector that may act as a repeater. Since
having a quadratic contribution in one of the detectors implies that at least one of
the others contributes at zeroth order, the arguments given above force K̂(3) = 0,
and no superluminal propagation can happen.

The moral is that, assuming that all the measurements are weakly performed
with detectors, impossible measurements are not present in most calculations done
in the literature. One should be careful, however, when handling non-pertubative
methods for smeared detectors.

5.4 Discussion

We have analyzed whether generalized Unruh-DeWitt-type detector models fulfill
minimum requirements regarding relativistic causality. In other words, we have dis-
cussed whether non-relativistic systems coupled to quantum fields can be used to
model repeatable measurements on quantum fields without incurring in incompati-
bilities with relativistic causality.
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In particular, we have investigated compatibility with relativistic causality in
detector-based measurements by demanding that the signals emitted by each of the
detectors should be constrained to lie within their associated future light-cones. Fur-
thermore, we have formulated Sorkin’s “impossible measurements” problem in terms
of particle detector-based measurements, linking in this context the “impossible mea-
surements” issues to the non-relativistic dynamics of the detector. The physical in-
tuition is that, when a detector is spatially extended, the information propagating
inside the detector is not constrained to travel subluminally since the detector is a
non-relativistic system.
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Chapter 6

The Unruh effect

What has come to be known as the Unruh effect [43] stands for a prediction of
quantum field theory involving the vacuum as seen by accelerated observers. Roughly
speaking, it asserts that an observer following a relativistic accelerated trajectory will
experience Minkowski’s vacuum as a thermal bath, with a temperature proportional
to their acceleration. The proportionality constant involves a combination of the
speed of light, Planck’s constant and Boltzman’s constant.

The fact that this effect is predicted to be measurable in the intersection of the
three most successful branches of physics, namely relativity, quantum mechanics and
thermodynamics, is partially what makes its study interesting. Actually, it is one of
the few predictions in physics that requires these three conceptual frameworks, other
examples including the closely related Hawking radiation, and other gravitational
effects. A particularly appealing feature of the Unruh effect is that is expected to
occur in flat spacetime backgrounds, and thereby it could be measured, in principle,
in an experimental setting on Earth [80]. However, the temperatures predicted for
ordinary accelerations achievable in a laboratory are extremely low, and therefore
this effect appears to be virtually out of reach for experimental probing.

The Unruh effect, as we have loosely defined above, can be considered uncontro-
versial. However, the fact that it is so far from experimental testing has led to a
whole field of study focused on finding effects that may reveal its signature indirectly.
In addition, much research has been dedicated to the study Unruh-like effects, that
is, physical phenomena that depart from the usual situation staged in the traditional
Unruh effect but that share some of its most defining features. Examples include,
for instance, the relation of the Unruh effect with Larmor radiation [81], simulation
in classical systems [82], or the relation of the Unruh effect with circular motion [83],
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and rapid repeated interactions [84], or the effect on the center of mass of atomic
systems [85]. These are some examples; it is not our goal to give a complete account
of these phenomena here for it would take us far from our of topic.

Another source of controversy involves the correct identification of the figure of
merit behind the traditional Unruh effect. Most approaches seem to identify the
origin of the Unruh effect with the existence of correlations between the degrees of
freedom of two causally separated regions, and the presence of an event horizon, but
some counterexamples [86] have led some authors to consider a more local rationale.

The link with Minkowski’s vacuum may be derived through several methods, each
with its own advantages and flaws, and that differ basically in how they define the
concepts involved in the statement. We follow the classification of these methods
suggested in [87]:

• The first method is to study the quantum field theory as a chain of harmonic
oscillators, and to make use of Bogoliubov transformations to relate inertial
and accelerated observers [43].

• Second, there is the fully rigorous approach of algebraic quantum field theory,
which makes use of modular theory and local algebras. The accelerated ob-
server in this case is associated with the automorphism group of the subalgebra
of operators constrained to a causal wedge [88].

• Finally, the approach taken in this thesis reaches the conclusion by introducing
a detector that follows an accelerated trajectory [45].

For the rest of the chapter we will briefly review these approaches, highlighting their
strengths and weaknesses, with a special stress in the use of detector models and
their relation to the Unruh effect.

6.1 The Unruh effect without detectors

Chronologically, the first attempts to describe the Unruh effect were done using
the first method, i.e. comparing the observable field states as perceived in inertial
versus accelerated frames. Different non-inertial observers may naturally understand
different states (with different particle content) as the vacuum state of the field.
More precisely, a comparison is performed between the different notions of “particle”
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encoded in the creation and annihilation operators that are naturally associated with
quanta for each observer.

For general bosonic systems, the creation and annihilation operators associated
with different observers are assumed to relate to each other by linear transformations
(the Bogoliubov transformations mentioned in chapter 2). Hence, the comparison
between different observers relies on being able to calculate such linear maps. When
one aims to export these methods to quantum field theory, which can be envisioned
as a set of infinitely many bosonic modes, one runs into some difficulties. It can
be shown that the Bogoliubov transformations are not well defined when different
vacuum states are not unitarily equivalent. Although not devoid of problems, some
important lessons may be learned from the Bogoliubov method, as we will illustrate
in what follows.

The Unruh effect, as derived from this method, has close analogies to chains of
harmonic oscillators. Indeed, consider the Hilbert space of a system of two harmonic
oscillators, given by the tensor product H1 ⊗H2. The Hamiltonian of the system is
given by

Ĥ12 = ω(â†1â1 ⊗ I1 + I2 ⊗ â†2â2 + I12). (6.1)

A two mode squeezing operator is defined as

Ŝ(ζ) = exp
(
ζâ†1 ⊗ â†2 − ζ∗â1 ⊗ â2

)
, (6.2)

where ζ = reiφ. The squeezing operator satisfies Ŝ(ζ)†Ŝ(ζ) = Ŝ(ζ)Ŝ(ζ)† = I12,
i.e. it is a unitary operator. Further, it can be shown that the adjoint action of
the squeezing operator over the creation and annihilation operators is a Bogoliubov
transformation i.e.

b̂i = Ŝ†(ζ)âiŜ(ζ) = cosh(r)â1 + eiφ sinh (r)â†2, (6.3)

which obviously fulfills the properties of a Bogoliubov transformation.

A two-mode vacuum squeezed state is given by

|ζ〉 = Ŝ(ζ) |0〉1 ⊗ |0〉2 =
1

cosh (r)

∞∑
n=0

(
eiφ tanh (r)

)n |n〉1 ⊗ |n〉2 , (6.4)

which we have expressed in the Fock basis. Clearly, this is an entangled state, since
it cannot be written as a product of states. The partial state of the system when
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tracing out the second oscillator turns out to be a thermal state, i.e.

ρ̂(ζ) =
1

cosh2 (r)

∞∑
n=0

(tanh (r))2n |n〉1 〈n|1 =
1

cosh2 (r)
exp

[
2 log tanh (r)â†1â1

]
. (6.5)

Therefore the partial state is thermal with temperature

β(ζ) =
2

ω
log tanh (r). (6.6)

What is the analogy between this simple system and the Unruh effect? First, for
the sake of the argument, let us write the field operator (schematically) as the sum
over modes

φ̂(t, x1,x) =
∑
k

e−iωkt+ik1x1+ikx

√
2ωk

âk +
eiωkt−ik1x1−ikx

√
2ωk

â†k. (6.7)

Here the sum runs through all the possible values of k1 and k and ωk =
√
m2 + k2

1 + |k|2,
where k1 is associated with the coordinate x1 and k is a two-dimensional vector as-
sociated with the components perpendicular to such x1.

For the full calculation, the sum should be understood as an integral. However,
the pass to the continuum in this method requires some technical detail, such ex-
pansions in wave packets [21], that does not contribute to the general understanding
of the Unruh effect. Moreover, even if done as fairly as possible this method cannot
be carried out fully rigorously for reasons we will see. Hence, we restrict ourselves
to working with this schematic expression.

Now, the Minkowski vacuum is the state that is annihilated by all the âk, i.e.

âk |0〉 = 0. (6.8)

Note that time translating the modes generated by ∂t, as functions over the Minkoswski
spacetime, induces a unitary evolution in the Hilbert space, given by the formula

e−iωktâk = eiĤM tâke
−iĤM t, (6.9)

where it is clear that ĤM has to be given by

ĤM =
∑
k

ωk
2

(
â†kâk + âkâ

†
k

)
. (6.10)
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III

t

x1

Figure 6.1: Here we represent the Minkowski diagram. Regions I and II are char-
acterized by t ≤ |x1| and are commonly known as Rindler wedges. The blue lines
represent surfaces of constant Rindler coordinate η, whereas the red lines represent
surfaces of constant Rindler coordinate ξ. For positive values of η the surfaces are
straight lines of positive slope, whereas positive values of ξ represent the red curves
that lay in region I.

Therefore, time translations in the field are generated by

φ̂(t,x) = eiĤM tφ̂(0,x)e−iĤM t. (6.11)

However, as we mentioned in chapter 2, the quantization procedure in quantum
field theory allows for different choices. Indeed, the field expansion may be writ-
ten also in terms of the so-called Rindler coordinates [22], which are the suitable
coordinates for accelerated observers. These coordinates are given, implicitly, by

t = ξ sinh(η), x1 = ξ cosh(η), (6.12)

see figure 6.1 for a graphical representation of these coordinates.

Indeed, we can write the field operator as

φ̂(η, ξ,x) = φ̂I(η, ξ,x) + φ̂II(η, ξ,x) =∑
k

uIk(η, ξ,x)b̂Ik + u∗Ik(η, ξ,x)b̂†Ik +
∑
k

uIIk(η, ξ,x)b̂IIk + u∗IIk(η, ξ,x)b̂†IIk, (6.13)
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where uIk and uIIk are a basis of solutions of the Klein Gordon equation in the
coordinates, η, ξ and x. These functions are indexed by k = (Ω,k). Also, these
functions are supported in regions I and II of the Minkowski diagram respectively
and fulfill

uIk(η, ξ,x) = u∗
II k̃

(η,−ξ,x), (6.14)

where k̃ = (Ω,−k), with Ω > 0.

Further, they fulfill

uIk(η, ξ,x) = e−iΩηuIk(0, ξ,x) (6.15)

and

uIIk(η, ξ,x) = eiΩηuIIk(0, ξ,x). (6.16)

In other words, they are the positive energy solution of the Klein Gordon with
respect to the time evolution generated by the vector

∂η = x1∂t − t∂x1 , (6.17)

which is the generator of Lorentz boosts [20].

Mimicking the technique used to find the Hamiltonian of time translations, we
see that ∂η can be represented as the unitary action of the the operators b̂Ik, which
will given by

eiK̂η b̂Ike
−iK̂η = e−iΩη b̂Ik. (6.18)

Since the creation and annihilation operators commute for the two regions, we
get that the generator of boost can be written for region II as for region I but with
an extra minus sign for region II, that is

K̂ =
∑
k

Ω

2

(
b̂†Ikb̂Ik + b̂Ikb̂

†
Ik

)
−
∑
k

Ω

2

(
b̂†IIkb̂IIk + b̂IIkb̂

†
IIk

)
. (6.19)

Then, K̂, the generator of boosts, generates future oriented evolution in region I
respect to the parameter η, whereas in region II, the generator of boosts generates
past oriented evolution.
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The evolution of the field has to be future oriented. Further, η cannot be associ-
ated with a trajectory since it is dimensionless, and ∂η is not a normalized timelike
vector. Accelerated observers (with positive acceleration) will evolve with proper
time given by

∂τ = a∂η. (6.20)

Thus, the appropriate Hamiltonian is given by the boost times a in region I and
minus the boost times a in region II:

Ĥ =
∑
k

aΩ

2

(
b̂†Ikb̂Ik + b̂Ikb̂

†
Ik

)
+
∑
k

aΩ

2

(
b̂†IIkb̂IIk + b̂IIkb̂

†
IIk

)
. (6.21)

This operator generates quantum evolution

eiĤτ b̂ike
−iĤτ = e−iEikτ b̂ik, (6.22)

where i = I, II and Eik is the (positive) energy of each mode. This justifies the fact
that these are the modes that are seen by an accelerated observer.

Now, one could calculate the Bogoliubov coefficients that relate Minkowski’s plane
wave modes with the Rindler modes directly, but there is a much more elegant way
of proceeding that makes use of a theorem by Bisognano and Wichmann [89]. In a
restricted version, this theorem states the following:

Let φ̂ be a real scalar quantum field in the Minkowski spacetime. Then(
e−πK̂ φ̂eπK̂ − J[φ̂]

)
|0〉 = 0 (6.23)

where J denotes CPT operation (in the Heisenberg picture) plus a reflection of the
2-dimensional space perpendicular to the Rindler wedges. Its action may be written
for a real scalar field in Rindler coordinates as

J[φ̂(η, ξ,x)] = φ̂(η,−ξ,x). (6.24)

This theorem is actually much more general; it applies to complex fields with tensor
and spinor structures and even to interacting fields. From this, one can derive that
the CPT operation times a reflection (CRT) acts over the creation and annihilation
operators associated with the Rindler modes as

J[b̂Ik] = b̂II k̃. (6.25)
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Note that, for each mode, we assume that we can analytically extend the evolution
of the creation and annihilation operators [90] the evolution generated by η:

e−πK̂ b̂Ike
πK̂ = eπΩb̂Ik (6.26)

and its Hermitian conjugate

e−πK̂ b̂†Ike
πK̂ = e−πΩb̂†Ik. (6.27)

Applying this and substituting in the expression given by Bisognano’s theorem,
(6.23), we get(

e−πK̂ φ̂eπK̂ − Jφ̂J†
)
|0〉M = (6.28)(∑

k

uIk(η, ξ,x)[eπΩb̂Ik − b̂†II k̃] +
∑
k

u∗Ik(η, ξ,x)[e−πΩb̂†Ik − b̂II k̃]+

∑
k

uIIk(η, ξ,x)[eπΩb̂IIk − b̂†I k̃] +
∑
k

u∗IIk(η, ξ,x)[e−πΩb̂†IIk − b̂I k̃]
)
|0〉M = 0. (6.29)

These four terms are modulated by independent functions, thereby they all have to
vanish as Hilbert space-valued functions.

We will show now that realize that the first and the fourth vanishing terms de-
termine annihilation operators for Minkowki’s vacuum, and that they are supported
in regions I and II respectively. Indeed, if we define the following operators (up to a
proportionality constant),

d̂Ik ∝ eπΩb̂Ik − b̂†II k̃, (6.30)

and

d̂IIk ∝ eπΩb̂IIk − b̂†I k̃, (6.31)

we find a set operators associated with the functions uI,IIk that annihilate Minkowski’s
vacuum. These annihilation operators can be written as combination of the usual
creation and annihilation operators, but the definition of d̂Ik and d̂IIk does not involve
â†k, otherwise their action over Minkowski’s vacuum would be nonzero.

It is easy to see that d̂Ik and d̂IIk commute. The proportionality constants are
found by imposing the canonical commutation relations, i.e

[d̂ik, d̂
†
ik] = 1, (6.32)
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which forces the proportionality constant to be

1√
e2πΩ − 1

(6.33)

Therefore, we have that these Minkowki’s creation and annihilation operators are
related to Rindler’s creation and annihilation operators by

d̂Ik =
1√

e2πΩ − 1
eπΩb̂Ik −

1√
e2πΩ − 1

b̂†
II k̃
, (6.34)

and

d̂IIk =
1√

e2πΩ − 1
eπΩb̂IIk −

1√
e2πΩ − 1

b̂†
I k̃
. (6.35)

Schematically, we can write(
dIk
dII k̃

)
=

(
cosh(r) 0

0 cosh(r)

)(
b̂Ik
b̂II k̃

)
+

(
0 − sinh (r)

− sinh (r) 0

)(
b†Ik
b†
II k̃
,

)
(6.36)

where we have defined r as

cosh(r) =
eπΩ

√
e2πΩ − 1

. (6.37)

We conclude that, mode by mode, Minkowski’s vacuum behaves like a two-mode
squeezed state with respect to the Rindler modes. The temperature associated with
the restriction to one of the regions is proportional to a geometrical factor over the
energy of each mode.

β ∝ − 1

Ek
log tanh2(r) = 2π

Ω

Ek
. (6.38)

But the energy of each mode is observer dependent. For accelerated observers, the
energy of each mode is Ek = aΩ. Then for such observers the associated temperature
is

β =
2π

a
. (6.39)

The conclusion is therefore reached, since an accelerated observer will interact
only with the modes associated with region I, and their notion of particle will stem
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from the one associated with the operators b̂Ik. Therefore they will measure observ-
ables that are combinations of these creation and annihilation operators, and all the
averages involving these operators in Minkowki’s vacuum are equivalently given by
a thermal ensemble.

The Unruh effect, as described by this method, relies on the entanglement present
in the vacuum when understood as a chain of harmonic oscillators. The thermal
behavior in this case is associated with the ignorance of accelerated observers of
the observables that lay in their causal complement, and therefore to the formation
of a horizon. It also puts special emphasis on the two different notions of particle
possessed by inertial and accelerated observers. This is an important conceptual
point of this method, for the Unruh effect is usually claimed to reveal that the
notion of particle is not fundamental, as it is observer dependent.

The Bogoliubov method is problematic in the sense that faces apparently techni-
cal difficulties that hide deep truths. Note that all sums over modes that have been
written in this section are merely schematic. When written properly, one realizes
that one cannot write Minkowski’s vacuum as a unitary operator times the Rindler
vacuum, which makes the Bogoliubov transformation ill defined. Indeed, the two
quantizations, namely the one associated with the Minkowski modes and the one
associated with the Rindler modes, are not unitarily equivalent. This implies that
the partial trace over the region II of the vacuum does not lead to a trace-class
operator, and that there is not a density matrix describing the partial state seen by
an accelerated observer. This puts into question the claim that accelerated observers
experience the vacuum as a thermal reservoir, for thermal reservoirs in quantum
mechanics are given by Gibbs states.

6.1.1 The KMS condition

To claim that Minkowski’s vacuum is seen as a thermal bath by accelerated observers
can be made mathematically rigorous through the concept of Kubo-Martin-Schwinger
(KMS) states. Indeed, thermal states in quantum statistical mechanics [91, 92] are
described by Gibbs’ distribution. This distribution is well defined for systems in
which the Hamiltonian has a point spectrum, for instance when considering systems
with finite degrees of freedom. However, for quantum fields, the Gibbs distribution
is not always well defined [93]. In those cases, it is still possible to define thermal
states by considering large, but finite systems and then taking the thermodynamic
limit.
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KMS states have been thoroughly studied in analysis and C∗-algebras, as well
as modular theory [94], and including here a detailed account of the mathematical
subtleties involved in their definition would take us too much afar. However, we will
show in the following how the KMS condition, which defines KMS states, captures
many of the characteristics demanded from thermal states. In this spirit, the results
and derivations presented here are meant to illustrate a simplified version of the the
ones regarding KMS states that have been rigorously derived in the literature, and
they should not be taken as a reference.

The definition that can be found in AQFT texts, for instance, makes explicit
reference to the algebra of observables of the theory, and a one parameter group of
automorphisms ατ (·) representing the time evolution of the system. It involves the
average of products of any two observables, say Â and B̂. A state is said to be a
KMS state, with inverse temperature β, if

FAB(τ) := 〈ατ (Â)B̂〉β (6.40)

is a holomorphic function of τ in the lower strip, {−β ≤ Imτ ≤ 0} that fulfills

FAB(τ − iβ) = 〈B̂ατ (Â)〉β = F ∗A†B†(τ). (6.41)

After some manipulations it can be checked that Gibbs states are KMS states,
but the KMS condition can hold in more general scenarios where Gibbs states may
not be available.

KMS states are stationary, that is 〈ατ (Â)〉β = 〈Â〉β, for all τ and all Â. It is

easy to see that this is the case by choosing Â self-adjoint, so that 〈ατ (Â)〉β is a real,
bounded function of τ . Then, using Schwarz’s reflection principle, and the KMS
condition particularized to FAI, we find that we can analytically extend 〈ατ (Â)〉β
to an imaginary periodic function, which hence is a bounded function on the whole
complex plane. Finally, by Liouville’s theorem, this implies that the function is
constant [90].

Moreover, condition (6.41) has implications for the Fourier transform

F̃AB(ω) =
1√
2π

∫
dτe−iωτFAB(τ). (6.42)

The fact that FAB is analytic in the strip allows us to lower the integration contour
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down the imaginary axis by an amount β:

F̃AB(ω) =
1√
2π

∫
dτe−iωτFAB(τ) =

1√
2π

∫
dτe−iω(τ−iβ)FAB(τ − iβ)

=
e−βω√

2π

∫
dτe−iωτF ∗A†B†(τ) =

e−βω√
2π

(∫
dτeiωτFA†B†(τ)

)∗
= e−βωF̃ ∗A†B†(−ω).

(6.43)

The relation given by (6.43) is sometimes called the detailed balance condition.

Note that for any stationary state, in particular KMS states, and any operator
Â, it holds that

0 ≤ 〈
(∫

dτf(τ)ατ (Â)

)†(∫
dτf(τ)ατ (Â)

)
〉
β

=

∫∫
dτdτ ′f ∗(τ)f(τ ′) 〈ατ (Â†)ατ ′(Â)〉β

=

∫∫
dτdτ ′f ∗(τ)f(τ ′) 〈ατ−τ ′(Â†)Â〉β =

∫∫
dτdτ ′f ∗(τ)f(τ ′)FA†A(τ − τ ′) (6.44)

=

∫
dτ f̄ ? f(τ)FA†A(τ). (6.45)

But this means, given the definition of the Fourier transform, that∫
dω|f̃ |2(ω)F̃A†A(ω) ≥ 0. (6.46)

Given that |f̃ |2 is positive and arbitrary, this further implies that F̃A†A(ω) is a
real, positive function. Therefore, equation (6.43) can be particularized to

F̃A†A(ω) = e−βωF̃AA†(−ω). (6.47)

Equation (6.47) can be used to further prove that states KMS states fulfill the
following inequality [95], which states that

iβ 〈δ(Â)Â†〉β ≥ 〈ÂÂ†〉β ln

(
〈ÂÂ†〉β
〈Â†Â〉β

)
, (6.48)

where we have defined the operator

δ(Â) :=
d

dτ
ατ (Â)

∣∣∣∣
τ=0

. (6.49)
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This is a consequence of Jensen’s inequality [96] which, in an adapted version,
states that given a positive, integrable function g(ω), and a convex function f(ω), it
holds that

f

(∫
ωg(ω)dω∫
g(ω)dω

)
≤
∫
f(ω)g(ω)dω∫
g(ω)dω

. (6.50)

Substituting g with F̃AA†(−ω), and f with e−βω, we get

e
−β

∫
dωωF̃

AA† (−ω)∫
dωF̃

AA† (−ω) ≤
∫

dωe−βωF̃AA†(−ω)∫
dωF̃AA†(−ω)

=

∫
dωF̃A†A(ω)∫

dωF̃AA†(−ω)
(6.51)

where we have used the detailed balance condition (6.47) in the last equality. But∫
dωF̃A†A(ω) = FA†A(0) = 〈Â†Â〉β , (6.52)

∫
dωF̃AA†(−ω) = FAA†(0) = 〈ÂÂ†〉β , (6.53)

and

−
∫

dωωF̃AA†(−ω) = −i
d

dτ
FAA†(0) = −i 〈δ(Â)Â†〉β . (6.54)

Taking into account that the logarithm is a monotonically increasing function, it is
immediate to arrive at the entropy-energy inequality from (6.51) by taking logarithms
on both sides and changing a sign.

The entropy-energy inequality may seem rather abstract, but has the important
consequence that KMS states are passive. A state is passive if i 〈δ(Û)Û †〉 ≥ 0 for
all unitary operators Û . Taking into account that Û †Û = Û Û † = I, one can check
that KMS states are passive by direct substitution in (6.48), with Â = Û . The
interpretation of passivity can be made more transparent when considering that Û
is implementing an operation on the state of the system, in such a way that the
averages transform as

〈·〉 → 〈·〉U = 〈Û · Û †〉 . (6.55)

Taking into account that

δ(Û) = i[Ĥ, Û ], (6.56)
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where Ĥ is the Hamiltonian associated with ατ ,

i 〈δ(Û)Û †〉 = −〈[Ĥ, Û ]Û †〉 = 〈ÛĤÛ †〉 − 〈Ĥ〉 = 〈Ĥ〉U − 〈Ĥ〉 ≥ 0. (6.57)

One concludes from here that perturbations acting over the system always increase
the energy on average. This is related to thermality in the sense that thermal states
are defined, at least in finite dimensions, as minimizers of the free energy. For a
detailed account of these facts related to passivity, see [97].

Finally, one characteristic of thermal baths is that observables fulfill fluctuation-
dissipation relations [98]. Consider a self-adjoint operator Â, from equation (6.47)
and some manipulations one can relate the symmetric part and the antisymmetric
part of F̃AA as

F̃AA(ω) + F̃AA(−ω) = ctgh(βω/2)(F̃AA(ω)− F̃AA(−ω)). (6.58)

A fluctuation dissipation relation is a concept from linear response theory, which
is concerned with the response of, say, materials at a certain temperature to weak
external fields. The name alludes to the fact that, through the Fourier transform of
the expressions in (6.58), one can relate the function

〈{ατ (Â), Â}〉β , (6.59)

i.e. the fluctuations of the observable Â over time, to the function

−i 〈[ατ (Â), Â]〉β , (6.60)

that is, the variation of the observable Â when introducing a small interaction term
of the form Ĥ(τ) = λÂ(τ)χ(τ), which corresponds to dissipation.

Further, the fluctuation dissipation relation can be used to determine the depen-
dence with temperature of some relevant functions, like the two-point function of a
quantum field. Indeed, if [ατ (Â), Â] ∝ I, as happens e.g. with the field’s amplitude
(see chapter 1),

C̃(ω) =
1√
2π

∫
dτe−iωτ 〈[ατ (Â), Â]〉 , (6.61)

then for a KMS state,

C̃(ω) = F̃AA(ω)− F̃AA(−ω) = (1− eβω)F̃AA(ω), (6.62)
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which implies

F̃AA(ω) = − C̃(ω)

eβω − 1
. (6.63)

This will play a role in chapter 7, where we will investigate some aspect of the
Unruh effect that have to do with the dependence of field’s fluctuations with the
acceleration.

6.1.2 Some comments on the algebraic derivation of the Un-
ruh effect

We now return our attention the Unruh effect. When discussing accelerated observers
from the point of view of von Neumann algebras, one can derive the predictions of
the Unruh effect in a fully rigorous manner. This approach shares many of the
conclusions of the analysis performed with the Bogoliubov method. Nonetheless, it
introduces new concepts that help to avoid the problematic notion of particle, that
as we pointed out earlier, admits no comparison between inertial and accelerated
observers.

It can be shown that the restriction of Minkowki’s vacuum to the algebra of
observables localized in the Rindler wedge II is a KMS state with respect to the
generator of boosts, with temperature 2π. When rescaled with the acceleration,
this result reaches the conclusion that Minkowski’s vacuum is a thermal bath for
accelerated observers, where thermal has to be understood as a KMS state. This is
true as far as we associate accelerated observers with the evolution generated by the
boosts and the subalgebra of operators localized in the Rindler wedge.

The relation of this result with entanglement is still present, yet in a more ob-
scure form than the one obtained with Bogoliubov transformations. The idea is that
Minkowski’s vacuum is a cyclic and separating vector for the local algebras, a result
known as Reeh-Schlieder theorem [94]. Cyclic vectors are those such that the action
of the subalgebra acting over the vector is dense in the Hilbert space, whereas sepa-
rating means that there is no element in the subalgebra that annihilates the vector.
For instance, when considering a finite dimensional bipartite system, a pure state
is cyclic and separating with respect to the subalgebra of operators acting over one
of the parties if the state has full-rank entanglement [94], and therefore, cyclic and
separating vectors constitute the analog of full-rank entangled states in field theory.
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Tomita-Takesaki’s modular theory [88] is precisely the theory that studies this
type of state in general von Neumann algebras. One of the central theorems in mod-
ular theory is Tomita-Takesaki’s theorem, which states that, under some conditions,
a state that is cyclic and separating with respect to a subalgebra is KMS with respect
to the modular group associated with that state and that subalgebra. The modular
group is a one-parameter group of isomorphisms of the subalgebra (e.g. in the case of
a bipartite system these would be given by local unitaries), which can be calculated
with a mathematical object called modular operator. It turns out that the modular
group associated with Minkowki’s vacuum (and with respect to the Rindler wedge) is
precisely the group of boosts, a result stemming from the aforementioned Bisognano-
Wichmann’s theorem. In the same way that KMS states extend the notion of Gibbs
state to situations in which it is not possible to define density matrices, this pro-
cedure generalizes the scheme followed with the Bogolioubov method to relate the
correlations in Minkoswki’s vacuum to the emergence of a thermal reduced state.
However, this method does not rely in any notion of particle. Moreover, this method
can be extended to curved spacetimes and allows one to collect a series of effects
under the umbrella of the Unruh effect. This method points out that the presence
of the thermal bath is related to a bifurcate Killing horizon [26] in spacetime, in a
theory that has the CRT symmetry in the appropriate coordinates [99].

6.2 The Unruh effect and the response of particle

detectors

In this section we describe the Unruh effect from the perspective of Unruh-DeWitt
detectors. We shall analyze the problem within the point-like UDW model exclu-
sively. Particle detectors provide us with a way to characterize the Unruh effect
through the physical process of thermalization of accelerated particle detectors. If
the accelerating detector reaches a thermal state after its characteristic thermaliza-
tion time scale at a temperature proportional to its acceleration, it is claimed that
the detector has experienced the Unruh effect.

Within the formalism developed in section 3, we want to study a detector interact-
ing with Minkowki’s vacuum through an accelerated trajectory in 3 + 1 dimensions,
which takes the form

x(τ) = (t(τ),x(τ)) =

(
1

a
sinh(aτ),

1

a
cosh(aτ),x⊥

)
(6.64)
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where a is the magnitude of the acceleration, which we will consider positive without
loss of generality, and x⊥ is a constant 2-dimensional vector representing the coordi-
nates perpendicular to the acceleration. Further, we shall consider the paradigmatic
case of the massless field.

following chapter 3, the statistics of the detector are determined by the pull-back
of the one and two-point functions of the field in Minkowki’s vacuum, i.e.

〈0|φ̂(x(τ))|0〉 = 0, (6.65)

and, from (2.17),

W (τ, τ ′) =
1

4π
〈0|φ̂(x(τ))φ̂(x(τ ′))|0〉 =

1

(x(τ)− x(τ ′))2
. (6.66)

Further, the pull-back on the accelerated trajectory gives

(x(τ)− x(τ ′))2 = − 1

a2
(sinh (aτ)− sinh (aτ ′))2 +

1

a2
(cosh (aτ)− cosh (aτ ′))2

= − 4

a2
(sinh(a(τ − τ ′)/2) cosh(a(τ + τ ′)/2))2 +

4

a2
(sinh(a(τ − τ ′)/2) sinh(a(τ + τ ′)/2))2

=
4 sinh2(a(τ − τ ′)/2)

a2
(− cosh2(a(τ + τ ′)/2))2 + sinh2(a(τ + τ ′)/2))

= −4 sinh2(a(τ − τ ′)/2)

a2
, (6.67)

where we have used basic properties of the hyperbolic functions.

Therefore, the pull-back of the Wightman function will be given by

W (τ, τ ′) = − a2

16π sinh2(a(τ − τ ′)/2)
= W (τ − τ ′). (6.68)

Note that, perhaps unsurprisingly in the light of previous sections, the pullback
of the Wightman function is stationary. Moreover, since sinh(z), with z ∈ C, is
an analytic function with no zeroes in the strip −iπ < Im(z) < 0, the function
W (z) can be extended analytically to the strip −i2π

a
< Im(z) < 0. Finally, since

sinh(x− iπ) = sinh(−x) for x ∈ R, we get that

W

(
τ − i

2π

a

)
= W (−τ) = W ∗(τ), (6.69)

so W (τ) fulfills the KMS condition with temperature β = 2π
a

.
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This fact does not imply that the whole state is KMS, because the condition
has only been verified for a single observable, namely φ̂(x(0)). However, and most
importantly, the detailed balance condition (6.47) still holds

W̃ (ω) = e−
2πω
a W̃ (−ω) (6.70)

Remember from chapter 3 that the response of a detector can always be expanded
as

E[ρ̂d] = ρ̂d + λΞ[ρ̂d] + λ2Θ[ρ̂d] + O(λ3). (6.71)

Since the field’s mean value vanishes, Ξ = 0. Regarding the second-order contribu-
tion, the map Θpt takes the form

Θpt[ρ̂d]

= −i[

∫
dτ V̂pt(τ), ρ̂d] +

∑
γab(Âaρ̂dÂ

†
b −

1

2
{Â†bÂa, ρ̂d}). (6.72)

where the operators Â are given by

Â1,2 = |e〉〈g| , |g〉〈e| , (6.73)

and the coefficients γab

γab =

(
F(Ω, χ) R(Ω, χ)
R∗(Ω, χ) F(−Ω, χ)

)
(6.74)

which, since W is stationary, has entries

Fpt(Ω, χ) =

∫
dω|χ̃|2(ω)W̃ (ω + Ω) (6.75)

Rpt(Ω, χ) =

∫
dωχ̃(ω + Ω)χ̃(ω − Ω)W̃ (ω), (6.76)

Consider now the adiabatic limit, as described in chapter 3. In this limit the matrix
γ becomes asymptotically diagonal

γab ∼ σ

(
W̃ (Ω) 0

0 W̃ (−Ω))

)
= σW̃ (Ω)

(
1 0

0 e−
2πΩ
a

)
(6.77)
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where σ is the adiabatic interaction time, and where we have used the detailed
balance condition. The map thus behaves asymptotically as

Θpt[ρ̂d] ∼ −i[

∫
dτ V̂pt(τ), ρ̂d]+σW̃ (Ω)

(
(〈g|ρ̂d|g〉 − e−

2πΩ
a 〈e|ρ̂d|e〉)(|e〉〈e| − |g〉〈g|)

−1 + e−
2πΩ
a

2
(〈e|ρ̂d|g〉 |e〉〈g|+ 〈g|ρ̂d|e〉 |g〉〈e|)

)
.

(6.78)

We are not interested in the form of V̂pt(τ) as σ →∞, only on the fact that it remains
diagonal in the basis of the free Hamiltonian. This allows us to find the states for
which of the map Θ vanishes. Indeed, if the state of the detector is diagonal, it
follows that

−i[

∫
dτ V̂pt(τ), ρ̂d] = 0, (6.79)

which implies

Θpt[ρ̂d] ∼ σW̃ (Ω)
(
〈g|ρ̂d|g〉 − e−

2πΩ
a 〈e|ρ̂d|e〉

)
(|e〉〈e| − |g〉〈g|),

i.e. only the diagonal elements change under the interaction. Moreover, if

〈g|ρ̂d|g〉 = e−
2πΩ
a 〈e|ρ̂d|e〉 , (6.80)

then Θpt[ρ̂d] = 0. This singles out the state of the detector as the thermal state at
inverse temperature 2π

a
.

Therefore, in the long adiabatic limit, the detector’s state is invariant up second
order in perturbation theory if and only if the state is a thermal state at the Unruh
temperature TU = a

2π
independently of its characteristic energy gap Ω.

Although it is not possible to show that the detector reaches a thermal state using
perturbation theory, this result strongly suggests that the detector is undergoing a
thermal interaction with the quantum field at a temperature TU . There are methods
that allow one to better characterize the thermalization process, such as master
equations [62] or the return to the equilibrium described in more mathematically
sophisticated grounds, which is based on the stability of KMS states [63].

The perturbative calculation, while not being well-suited for analyzing the ther-
malization of a single particle detector, can nonetheless be used to reach the conclu-
sion for ensembles of detectors. After the interaction, the probability of the detector

89



to transition from its ground state to its excited state is given by

Pg→e ∼ σλ2W̃ (Ω) (6.81)

and the opposite process, the decay from the excited state to the ground state

Pe→g ∼ σλ2W̃ (−Ω). (6.82)

These processes have a relatively low probability that justifies the use of pertur-
bation theory, but they are balanced

Pg→e
Pe→g

∼ W̃ (Ω)

W̃ (−Ω)
= e−

2πΩ
a . (6.83)

This implies that as the interaction time increases the populations of excited and
ground detectors in a given ensemble will balance too, which we can associate to
macroscopic thermal equilibrium.
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Chapter 7

The Anti-Unruh effect

This chapter is devoted to reviewing the results in [3], a work concerned with non
trivial behavior of the response of accelerated detectors that departs from standard
thermal behavior.

What was first referred as Anti-Unruh corresponds to the phenomenology first
reported in [100] under the name of Anti-Unruh phenomena. There, the surprising
result was that, in the context of accelerated, point-like detectors, “the transition
probability can actually decrease with acceleration”. Besides finding these results, the
authors of [100] further discussed that if one were to define an effective temperature
using the Excitation-to-Deexcitation Ratio (EDR) Tedr = −Ω[log(Pg→e/Pe→g)]

−1,
Tedr was effectively independent of the detector’s energy gap when the Anti-Unruh
effect is present, a behaviour usually associated with stationarity. From the results
of [100], two lines of thought arise naturally:

• Is the finite time interaction thermal? How can one characterize thermality for
finite time physics? Can one interpret this phenomenon as a process in which
the detector cools down as the acceleration increases?

• Is the adiabatic limit thermal in general? Given that the state should be
asymptotically thermal, it would be cumbersome if the behavior with acceler-
ation were not thermal in this limit.

In [3] we analyzed the Anti-Unruh effect, studied its relationship with the KMS
condition [91, 92, 64], and further discussed implications for the thermality of the
Unruh effect in the adiabatic limit.
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The Anti-Unruh phenomena appeared in [100] when studying situations that
depart from the usual analysis of the Unruh effect as presented in chapter 6. Namely,
they studied accelerated detectors coupled to a massless scalar field in two scenarios:
a) Under a hard-IR momentum cutoff in free 1+1D flat spacetime, and b) for a
detector in a periodic cavity from which the zero mode is removed. In those cases
the Wightman function is not stationary, thus, strictly speaking, the Wightman
function is not KMS.

In order to distill the origin of this phenomenology, we wanted to study situations
in which the field’s correlations are stationary with respect to accelerated observers,
and further, fulfil the KMS condition. This implies that we needed to study the
vacuum of a Lorentz invariant theory, but to maintain the similarities with the pre-
ceding results we studied the case of 1+1 dimensional fields with an extra infrared
scale, namely massive Klein-Gordon fields. We will see that, for small interaction
times, the response function decreases as the acceleration increases. Moreover, we
showed the existence of regimes where the effective EDR temperature decreases as
the KMS temperature increases. The non-monotonicity of Tedr as a function of
the KMS temperature disappears for long interaction times or large temperatures.
Surprisingly, the observation that the transition probability can decrease as the de-
tector’s acceleration increases with the detector’s acceleration survives even in the
limit of infinitely long times under KMS. Therefore this modality of Anti-Unruh
effect cannot be associated with transient behaviour in any way.

Interestingly, we will show that under the KMS condition and when the trajectory
of the detector does not depend on the KMS temperature (e.g. when the temperature
is not related to the dynamics of the observer, such as in ordinary thermal baths), the
Anti-Unruh effect cannot appear at all. We will therefore show that the perception
of the Anti-Unruh effect is linked to accelerated observers and it is not present for
inertial observers coupled to generic thermal baths. In this chapter, we constrain our
analysis to the point-like UDW model.

7.1 The Anti-Unruh effect and the KMS condition

To shed some light on this Anti-Unruh effect, let us introduce the following two
definitions. One is concerned with the excitation probability of the detector, encoded
in the function F(Ω, χ), the other other one is concerned with the excitation-to-decay
ratio:
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• Weak Anti-Unruh: We define the weak Anti-Unruh regime as the set of
values of the detector gap Ω, interaction times σ, and field’s (KMS) temperature
Tkms = 1/β, for which the detector’s response function decreases as the KMS
temperature increases, i.e.

∂βFβ(Ω, χσ) > 0. (7.1)

In plain words: the detector detects fewer field excitations when the tempera-
ture increases.

• Strong Anti-Unruh: We define the strong Anti-Unruh regime as the set
of values of the detector gap Ω, interaction times σ, and KMS temperatures
Tkms = 1/β for which the effective EDR temperature

Tedr = −Ω[log(Pg→e/Pe→g)]
−1 (7.2)

decreases as the KMS temperature increases, i.e.

∂ββedr < 0. (7.3)

It is possible to have weak Anti-Unruh phenomena and yet not observe strong
Anti-Unruh phenomena. It is unclear, however, if losing the monotonicity of the
effective temperature will always lead to a decrease of the excitation probability
with the KMS temperature.

Given that the excitation probability for finite time interactions is

Fpt(Ω, χ) =

∫
dω|χ̃|2(ω)W̃ (ω + Ω), (7.4)

it is clear a necessary condition for the weak Anti-Unruh condition (7.1) to hold is
that the Fourier transform of the Wightman function W̃ has to grow as β increases
somewhere in its domain.

As we discussed in chapter 6, if the KMS condition is satisfied, W̃ is the product
(6.63) of the Planckian distribution and the Fourier transform of the commutator.
Therefore, the necessary condition for having weak Anti-Unruh phenomena when the
KMS condition is satisfied can be simply written as

∂β
(
C̃(ω, β)P (ω, β)

)
< 0, (7.5)

where

P (ω, β) =
1

eβω − 1
(7.6)
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is the Planckian factor.

Let us analyze the relationship between the KMS condition and the presence of
Anti-Unruh phenomena in two different scenarios: a) when the commutator is inde-
pendent of the KMS parameter (e.g., inertial detectors in a thermal background), and
b) when the commutator depends explicitly on the KMS parameter (e.g., accelerated
detectors coupled to the vacuum of a massive field).

7.1.1 C̃ does not depend on the KMS parameter

If C̃ does not depend on the KMS parameter, we see from (7.5) that the necessary
condition for weak Anti-Unruh effect is

C̃(ω)∂βP(ω, β) < 0. (7.7)

But it can checked that
sgn
(
∂βP(ω, β)

)
= −sgn(ω). (7.8)

This implies that the necessary condition for weak Anti-Unruh (7.5) can be simplified
in this case as

ωC̃(ω) > 0. (7.9)

Because the commutator is pure imaginary, it is clear that C̃(−ω) = −C̃(ω), which
means that ωC̃(ω) is even. On the other hand, since W̃ is positive [64], from (6.63)
we see that sgn C̃(ω) = −sgnω. Therefore ωC̃(ω) < 0 for all ω ∈ R and the condition
(7.9) will never be satisfied.

This leads to the following general result: For KMS states with respect to a time-
like vector ∂τ generating trajectories for which the commutator is independent of the
KMS temperature there is no weak Anti-Unruh effect. In other words, the proba-
bility of detector excitation is monotonically increasing with the KMS temperature.
This is the case of the following examples:

• An inertial detector coupled to a thermal state of a scalar field of mass m ≥ 0 in
arbitrary spatial dimensions, even in the presence of an IR cutoff Λ. Explicitly,
in this case the commutator is

C̃(ω)=−π
2−d

2 sgn(ω)

2d−1Γ(d/2)
(ω2 −m2)

d−2
2 Θ(|ω| −m)Θ(|ω| − Λ), (7.10)

where we recall m is the field mass, d is the number of spatial dimensions and
Λ is an IR cutoff.
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• Uniformly accelerated detectors coupled to the vacuum state of a massless
scalar field in d = 1 or d = 3 spatial dimensions. In these cases it can be shown
[21] that for m = 0, Λ = 0, the commutator is the same as in the inertial case
thus leading to the same conclusion.

Since in these cases the commutator is independent of the KMS temperature, the
fact that there is no weak Anti-Unruh effect implies that there is no strong Anti-
Unruh effect either. In other words, the EDR temperature increases monotonically
with the KMS temperature.

7.1.2 C̃ depends on the KMS parameter

Although the commutator is independent of the field state, it may still depend on the
KMS temperature through the trajectory x(τ). In this case it is not straightforward
to derive a general result as in the previous case. Let us consider some critical
examples. If the field state is the Minkowski vacuum of a scalar field, trajectories
with constant acceleration a ≥ 0, yield Wightman functions that satisfy the KMS
condition with KMS temperature a/(2π).

For the massive case, however, the commutator depends explicitly on the acceler-
ation [21]. Indeed, the Wightman function has a nontrivial dependence on β = 2π/a:

W̃d(ω, β) =
βe−

βω
2

2π2

∫
dd−1k

(2π)d−1

∣∣∣∣Kiβω
2π

(
β

2π

√
m2 + k2

)∣∣∣∣2 , (7.11)

which, for d ≥ 2 becomes

W̃d(ω, β) =
βe−

βω
2

2d−1π
d+3

2 Γ(d−1
2

)
(7.12)

×
∫

d|k| |k|d−2

∣∣∣∣Kiβω
2π

(
β

2π

√
m2 + k2

)∣∣∣∣2,
while for d = 1 the expression (7.11) reduces to

W̃1(ω, β) =
βe−

βω
2

2π2

∣∣∣∣Kiβω
2π

(
βm

2π

)∣∣∣∣2 . (7.13)

In these cases the necessary condition (7.5) for weak Anti-Unruh can be fulfilled.
In fact it is easy to check explicitly that this condition can actually be satisfied both
in the 1 + 1D and 3 + 1D cases. Let us first focus on the 1+1D case.
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Figure 7.1: Weak Anti-Unruh effect : Derivative of the response function with respect
to the KMS temperature Tkms = 1/β for 1+1D, m = 1. The different lines correspond
to values of Ω = 15 (inverted purple triangles), Ω = 10 (red triangles), Ω = 5 (green
rhombi), Ω = 2 (orange squares), Ω = 0.5 (blue circles). The two plots represent the
short and the long time regimes. Namely Right. σ = 1 with a Gaussian switching
χ(τ/σ) = π−1/4e−τ

2/(2σ2), and Left. σ →∞, independently of the switching. We see
that for a broad range of the parameters this derivative is negative (i.e., the response
function decreases as the KMS temperature increases), even for adiabatic (eternal)
switching.

In the massive 1+1D case we can see (along the same lines as in the massless
1+1D case with an IR cutoff studied in [100]) that the accelerated detector expe-
riences the weak Anti-Unruh effect: That is, the detector’s response function can
decrease as the KMS temperature Tkms = 1/β increases, as illustrated in Fig. 7.1a
for a Gaussian switching χ(τ/σ) = π−1/4e−τ

2/(2σ2), and in Fig. 7.1b for any square
integrable switching χ(τ/σ) in the infinitely adiabatic limit σ →∞.

Remarkably, this voids one of the major possible criticisms that could have been
raised against the relevance of the Anti-Unruh phenomena reported in [100]. Namely,
it could have been argued that in [100], the introduction of a hard IR cutoff, which,
rigorously speaking, yields non-stationary Wightman functions, was the responsible
for the appearance of transients that give rise to the Anti-Unruh effect. However, we
see that we do not require a breakdown of the KMS condition to see the Anti-Unruh
effect. Specifically, an accelerated detector coupled to a massive field vacuum will
experience the weak Anti-Unruh effect in spite of the fact that the KMS condition is
satisfied in this case. In other words, we can have a detector that, when switched on
for finite times, can decrease its transition rate as the KMS temperature increases.

More so, this weak Anti-Unruh behaviour also shows up even in the limit of
detectors adiabatically switched on for an infinite amount of time. Indeed, in this
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Figure 7.2: Strong Anti-Unruh effect : Figure a) shows the EDR temperature Tkms =
1/β as a function of the KMS temperature for 1+1D, m = 1, σ = 0.04, and Ω = 1.
For large KMS temperatures, Tedr ' Tkms, while for small ones the EDR temperature
actually decreases, as seen in the zoomed Fig. b). Figure c) displays (for m = 1,
σ = 0.04, and Tkms = 8) the apparent linearity of Ω/Tedr with Ω and hence the
almost independence of the EDR temperature with Ω. Figure d) shows (for the
same parameters as Fig. c)) that this dependence is actually present although it is
extremely weak.

limit, we know that the expression of the response function is particularly simple.
We show in Fig. 7.1b that the weak Anti-Unruh effect is present in the strict limit
σ → ∞, independently of the particular form of the switching function χ (even
including non-adiabatic switchings for which the transition rate is well defined).
Therefore the weak Anti-Unruh effect cannot be associated with transient behaviour.

The strong Anti-Unruh behaviour, on the other hand, is confined to short inter-
action times and small accelerations (i.e. KMS temperatures), as shown in Fig. 7.2.
In the figure we see that in the regime of small KMS temperatures, the EDR tem-
perature decreases as the KMS temperature increases. We also see that for larger
KMS temperatures, the EDR temperature approaches the KMS temperature. Fi-
nally, this figure also shows that the EDR temperature depends very weakly on the
gap frequency Ω, despite the detector not being in equilibrium with the field. This
behaviour is entirely the same as that found in [100]. There, a hard-IR cutoff (either
removing the zero mode in a periodic cavity, or imposing a cutoff Λ in the contin-
uum case) causes the Wightman function to not satisfy the KMS condition, but βedr
as defined in (7.2) behaves as a function of acceleration exactly in the same way
described above.
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In particular, we have proven that this is a genuine effect of the acceleration
of the detector, even when KMS is satisfied, and that it would not be seen by an
inertial detector interacting for a finite timescale with a thermal bath regardless of
the number of spacetime dimensions and the presence of cutoffs.

7.2 Parameter space dependence of the Anti-Unruh

phenomena

In this section we analyze in more detail in what region of the parameter space we
can find Anti-Unruh phenomena.

One legitimate question that one may ask is whether this effect may be related
with the fact that even though the response of a static detector in a thermal bath and
the response of an accelerated detector coupled to the field vacuum are statistically
identical, the two responses come from fundamentally different physical effects.

In the inertial thermal case, the main contribution to the detector’s excitation
rate for sufficiently long times comes from rotating-wave contributions (those involv-
ing processes where the detector gets excited by emitting a field quantum [101]).
However, in the Unruh effect, the contribution of the rotating-wave and counter-
rotating wave terms are comparable. This is the fundamental difference in the two
processes and this is ultimately the reason why the two scenarios are different despite
the fact that in both cases the detectors display a thermal response.

To answer this question, let us first consider the response function of an accel-
erated detector coupled to a massive field prepared in the vacuum state in the long
time limit (σ → ∞). The response function is given by the Wightman function
evaluated at ω = Ω. Specifically, for the 1+1D case the response function is given
by (7.13) evaluated at ω = Ω.

Let us consider two different asymptotic limits of this equation, the large mass
limit and the small mass limit. Let us begin with the the large mass limit. Using
the leading order of the asymptotic expansion of the Bessel function for large values
of its argument

KiβΩ
2π

(
βm

2π

)
∼ π√

βm
e−

βΩ
2π , (7.14)

which is valid under the condition(
βΩ

2π

)2

+
1

4
� βm

2π
, (7.15)
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Figure 7.3: Anti-Unruh effect dependence on the mass : For any switching function
shape, in the limit of infinite interaction time σ → ∞, we show the derivative of
the response function with respect to the KMS temperature Tkms = 1/β for 1+1D
and for m = 0.1 (Left) and m = 10 (Right). The different lines correspond again to
values of Ω = 15 (inverted purple triangles), Ω = 10 (red triangles), Ω = 5 (green
rhombi), Ω = 2 (orange squares), Ω = 0.5 (blue circles). The right figure shows how
for m� Tkms the oscillations of the derivative generate Anti-Unruh effect in the low
temperature zone, whereas the left shows that when the KMS temperature drops
below tha mass scale (in this case m = 10), the AntiUnruh effect disappears. We see
in both figures that the Anti-Unruh effect can exist for values of Ω below and above
the mass scale m.

we get the following response function in the limit σ →∞ [21]:

F(Ω, β) ≈ σe−β(Ω/2+m/π)

4πm
. (7.16)

The response function (7.16) is a monotonically increasing function of the temper-
ature, and thus does not exhibit any kind of Anti-Unruh phenomena. This allows us
to reach to the conclusion that in the asymptotic limit of field mass much larger than
the detector gap for constant KMS temperature, there cannot be any Anti-Unruh
phenomena.

On the other hand, as shown in [21], the asymptotic behaviour of the response
function in the limit of small mass is given by

F(Ω, β)∼ σ

Ω(eβΩ − 1)

[
1 + cos

(
βΩ

π
log

βm

4π
+φ

[
βΩ

2π

])]
, (7.17)
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with φ(z) = 2 Arg Γ(iz), in the regime where(
βΩ

2π

)2

+ 1�
(
βm

2π

)4

(7.18)

is satisfied.

In the light of (7.17), we see that the response function in the limit of small
βm, where βΩ is kept constant, is not a monotonically increasing function of β. In
fact, (7.17) becomes highly oscillatory as βm goes to zero and, as such, its derivative
with respect to the KMS temperature will take negative values. The Anti-Unruh
phenomena will appear therefore for sufficiently small βm regardless of the constant
value of β and Ω.

The conclusion that we extract is that although there may be some relationship
between the Anti-Unruh phenomena and the ratio between Ω and m, the existence
of the Anti-Unruh effect is independent of the scale of Ω, since, for sufficiently small
mass, we can find Anti-Unruh phenomena regardless of the value detector gap. In-
stead the relevant figure of merit ruling the appearance of the phenomena is the ratio
between the field mass and the acceleration.

We illustrate this in Fig. 7.3, where we show that the Anti-Unruh phenomena
for detectors interacting for long times (σ → ∞) can exist for a diverse range of
parameters. In particular, it can exist when m is more than an order of magnitude
larger than Ω (Fig. 7.3a) and also when m is more than an order of magnitude
below Ω (Fig. 7.3b). In both cases it can be seen that the Anti-Unruh effect ceases
to appear when βm & 1,

7.3 Discussion

To shed light into the Anti-Unruh phenomena [100], we analyzed the role of the
interaction time in the thermalization of an Unruh-DeWitt particle detector. In par-
ticular, it is well-known that, for infinitely long interaction times and if the Wightman
function satisfies the KMS condition, the Excitation-to-Deexcitation Ratio (EDR) is
determined by the detailed balance condition.

The Anti-Unruh effect can be characterized in terms of the behaviour of the
response function and the effective EDR temperature with the KMS temperature
Tkms. On the one hand, we have called weak Anti-Unruh effect those situations
in which the excitation probability decreases as Tkms increases (a detector clicks
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less often as the KMS temperature of the field increases). On the other hand, we
have called strong Anti-Unruh effect situations where the effective EDR temperature
almost independent of the gap frequency decreases as Tkms increases.

We have seen that the weak and strong Anti-Unruh effects do not appear at
all under some general conditions. Namely, that the Wightman function satisfies
the KMS condition with respect to translations along the proper time of a detector
whose trajectory does not depend on the KMS temperature. In particular, this
implies that the Anti-Unruh effects (both weak and strong) are absent for inertial
detectors coupled to massless or massive scalar fields in a KMS state (for example, a
thermal state) with or without a momentum cutoff and for any spatial dimensions.
It is also absent for accelerated detectors in the Minkowski vacuum of a massless
scalar field for one and three spatial dimensions.

The situation is entirely different for an accelerated detector coupled to the
Minkowski vacuum in two different but related cases, namely, there can be Anti-
Unruh phenomena for a massive scalar field or when an IR cutoff is in operation.
We showed that in these cases there appear clear signatures of both weak and strong
Anti-Unruh behaviour in 1+1 spacetime dimensions.

For the massive case, for small interaction times, and well within the regime of
validity of perturbation theory, we see that i) the response function decreases as the
acceleration (the KMS temperature) increases, and ii) the effective EDR temperature
decreases with the KMS temperature, depends also on the interaction time, but is
almost independent of the gap frequency. Furthermore, for long interaction times or
large KMS temperatures, the strong Anti-Unruh effect disappears but, remarkably,
the weak version of it is still at work, i.e. the derivative of the response function with
respect to the KMS temperature is negative. This is true even in the strict limit of
infinitely long adiabatic switching for any square integrable switching function.

The massless case with an IR momentum cutoff was studied in [100] with the
same results. It must be stressed that although in [100] the Wightman function was
not stationary and hence was not KMS, the Anti-Unruh effect cannot be associated
with this fact because it is also present in the massive case, which certainly is KMS.
This effect cannot be dismissed as a transient either since, as we have discussed the
(weak) Anti-Unruh effect (i.e., a detector ‘seeing less particles’ as the temperature
of the medium increases) is present even for infinitely long times.

Finally, let us note that the fact that the Anti-Unruh effect can be seen by rela-
tivistic accelerated observers but not by inertial observers coupled to a thermal bath
is a distinctive signature of perceived particle creation by accelerated observers, that
can be singled out from the behaviour of detectors coupled to thermal backgrounds.
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As a final comment, we note that Anti-Unruh effect has been further studied in
the context of gravitational physics, such as BTZ blackholes [102].
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Chapter 8

The Unruh effect without
thermality

This chapter reviews the results published in [4], which contains a detailed analysis
about the preservation of the Unruh effect in scenarios that deviate from the the
usual situation described in chapter 6. Therefore, we will examine the question of
robustness in the Unruh effect, by which the detector approach will play an essential
role.

8.1 Motivation

Quantum field theory is considered to be an effective theory that is valid above the
quantum gravity scale, typically introduced in terms of a length scale ` [103]. It is
therefore expected that QFT will become less precise as this scale is approached,
perhaps eventually failing completely as a correct description of nature. In most
cases, a hierarchy of scales prevents deep UV physics from playing a crucial role for
physics at scales below `. Interestingly, this is not always the case and it is also
expected that ultraviolet deformations of the structure of quantum field theory can
actually have an effect at lower scales [104, 105, 106, 107, 108]. The study of these
phenomena becomes relevant as they can set the ground for experimental predictions
of deep UV physics, such as, e.g. quantum gravitational effects.

When considering detector models, examples of this behavior that have been
discussed in the literature include the response of particle detectors along inertial
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trajectories in the framework of polymer quantization [109, 110, 111] and in non-
local field theories [112], or the transmission of information through non-local fields
[113]. Determining the deformations that lead to this “intrussion”, and finding the
predictions that are affected, is of clear importance for quantum gravity phenomenol-
ogy.

With respect to the Unruh effect, the analysis of UV deformations can be made
even more concise. There have been multiple discussions on how deformations of the
UV structure of QFT can affect the Unruh effect, [114, 115, 116, 117, 118, 119, 120,
121, 122]. These pieces of research, however, focus in concrete deformations, which
besides cannot be compared since the authors of the different works use different
mathematical formalisms. In contrast, we studied this problem with a unified ap-
proach. Our starting point is the definition of the Unruh effect as the thermalization
of accelerated particle detectors. Setting universality issues for the detector model
aside, we further claim that the Unruh effect is present provided the thermalization
of UDW, point-like accelerated particle detectors, and we understand thermalization
as the thermal balance of excitations and deexcitations.

8.1.1 Deformations of the two-point correlator

As we saw in chapter 6, the Unruh effect only requires the two-point correlator,
or Wightman function of the field, which determines the excitation and deexcita-
tion probabilities of particle detectors. On general grounds, the introduction of an
additional length scale will lead to deformations of the functional form of the Wight-
man function. These deformations encode the leading modifications arising from
the particular ultraviolet completion chosen. Let us make the following technical
assumptions:

1. There is an effective continuum description of flat spacetime in which deformed
Wightman functions can be written as functions of the spacetime coordinates
x.

2. The deformed Wightman functions reduce to their standard Poincaré invariant
form W0(x, x′) in the formal limit `→ 0.

3. The functional form of deformed Wightman functions may break explicitly the
invariance under Lorentz transformations, while keeping spacetime translations
and spatial rotations as symmetries.
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4. The deformed Wightman functions are polynomially bounded in |∆t| and |∆x|
when these absolute values tend to infinity.

Note that condition 1 above permits us to include in our analysis discrete or
quantum-mechanical features of the spacetime structure. On the other hand, we
can exploit conditions 2 and 3 in order to write the deformed Wightman function
W`(x, x

′) as

W`(x, x
′) = W0(x, x′) +D`(t− t′, ‖x− x′‖). (8.1)

Condition 3 imposes, first, translation invariance, which implies that 2-point
Wightman functions are functions of the differences t′′ − t′ and x′′ − x′. Invariance
under rotations further implies that the Wightman function can only depend on the
spacial coordinates through the norm ‖x− x′‖. Moreover,

lim
`→0

D`(t− t′, ‖x− x′‖) = 0. (8.2)

The function D` has been introduced on phenomenological grounds, and its specific
form will depend on the origin of the deformations.

Note that we have also implicitly assumed that the one point function of the
field is zero, since the Unruh effect, the phenomenon our interest, has to do with the
fluctuations of the field rather that with its mean value.

8.2 Infinitely adiabatic limit for uniformly accel-

erated detectors

The excitation probability of a UDW detector following an accelerated trajectory has
certain characteristics that, together with our assumptions about the deformations of
the Wightman function, allow us to perform a detailed analysis of the adiabatically
switched, uniformly accelerated detector.

Since the excitation probability is linear in the Wightman function of the field,
we can distill the contributions to the excitation probability coming form the defor-
mations D`:

F`(Ω, χ) = F0(Ω, χ) +

∫∫
dτdτ ′χ(τ)χ(τ ′)D` (t(τ)− t(τ ′), ‖x(τ)− x(τ ′)‖) e−iΩ(τ−τ ′).

(8.3)
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Henceforth we will slightly abuse the notation by defining

D`(τ, τ
′) = D` (t(τ)− t(τ ′), ‖x(τ)− x(τ ′)‖) . (8.4)

Expression (8.2) actually should be understood as

lim
`→0

F`(Ω, χ) = F0(Ω, χ) (8.5)

for all test functions χ, whenever the pointwise limit is not well defined.

In order to discuss the existence of the Unruh effect, it is necessary to analyse
the adiabatically switched statistics of the detector. Note that we are not analyzing
stationary correlations in general, so the adiabatically switched statistics cannot be
written as simply as in chapter 3.

Some simplifications can be made, however, when particularizing the switching
function used to perform the adiabatic limit. First, note that the excitation prob-
ability (3.70) can be written as a double integral of the difference of proper times,
z = τ − τ ′, and the sum of proper times w = τ + τ ′, by means of a simple change of
variables

F`(Ω, χ) =

∫∫
dτdτ ′χ(τ)χ(τ ′)W`(τ, τ

′)e−iΩ(τ−τ ′)

=
1

2

∫∫
dwdzχ ((w + z)/2)χ ((w − z)/2)W`(z, w)e−iΩz, (8.6)

where again we have abused the notation by writingW`(z, w) = W` ((w + z)/2, (w − z)/2).

Now, we would like to separate the part of the switching function that regulates
the duration of the interaction. In order to do so, we choose the switching function
to be a Gaussian,

χ(τ)σ =
1

π1/4
e−τ

2/2σ2

, (8.7)

since then

χ ((w + z)/2)χ ((w − z)/2) =
e−w

2/σ2

√
π

e−z
2/σ2

. (8.8)

With this choice, we get

F`(Ω, χσ) =
1

2

∫ ∞
−∞

dw
e−w

2/σ2

√
π

∫ ∞
−∞

dz e−z
2/σ2

W`(w, z)e
−iΩz. (8.9)
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Although this choice of switching function is in conflict with the assumption that the
interaction region between detector and field is spacetime compact, the calculations
are more apparent due to the algebraic characteristics of Gaussian functions, and
we assume that the physical content of the predictions does not differ substantially
when performing the calculations with compact switching functions. We will assume
that the Gaussians lie in the distributional domain of the Wightman function (and
its deformations), since failing to do so is related to the infrared characteristics of
the theory that do not concern us here.

What makes equation (8.9) so appealing is that, as σ increases beyond any other
scale of the problem, it represents the response function F as a time-average of, ba-
sically, the Fourier transform of the Wightman function for each w. This Fourier
transform can be fully characterized by the behavior of the poles of the two-point
function on the complex plane, and indeed that is what allows one to discuss defor-
mations of different nature within a single formalism. But that is not the end of the
story, the particular set of assumptions that we have taken allows one to conclude
further that the adiabatic response of accelerated observers depends not on the poles
located on the whole complex plane, but on a finite-width strip of the upper complex
plane. We develop this argument in what follows.

8.2.1 Accelerated trajectories

Consider indeed the trajectory followed by an accelerated observer

t(τ) =
1

a
sinh(aτ), x(τ) =

1

a
cosh(aτ). (8.10)

One has then, using the relevant identities involving hyperbolic functions, that

∆t(τ ′′, τ ′) =
sinh(aτ ′′)− sinh(aτ ′)

a
=

2

a
sinh(az/2) cosh(aw/2) (8.11)

and, for τ ′′ ≥ τ ′,√
∆x(τ ′′, τ ′)2 =

cosh(aτ ′′)− cosh(aτ ′)

a
=

2

a
sinh(az/2) sinh(aw/2). (8.12)

It follows that,

−∆t2 + ∆x2 = − 4

a2
sinh2(az/2). (8.13)

107



We are going to exploit the fact that hyperbolic functions are periodic in the
complex plane. The transformation that is useful for our purposes is

z −→ z +
4πi

a
, (8.14)

because under this transformation both hyperbolic functions sinh(az/2) and cosh(az/2)
are invariant. Taking into account equations (8.11) and (8.12), this implies that any
deformations D` that are a function of the difference of the coordinates only are
invariant under the transformation (8.14).

Now, consider the following integral∫ ∞
−∞

dz e−z
2/σ2

W`(w, z)e
−iΩz, (8.15)

and define

f`(z, w) = e−z
2/σ2

W`(w, z)e
−iΩz. (8.16)

Under the transformation (8.14), the integrand f` transforms as

f`(z, w) −→ e16π2/a2σ2

e4πΩ/af`(z, w)e−8πiz/aσ2

. (8.17)

This identity can be exploited in order to evaluate the real integral in z in equation
(8.15). Let us consider the following complex integral on the contour γ defined as
the rectangle with horizontal sides on the real line and z = 4πi/a, and vertical sides
at ±ζ ∈ R: ∮

γ

f`(z, w) = 2πi
∑
k∈I

Res[f`(z, w), zk]. (8.18)

In this expression, we have used the residue theorem, so that {zk}k∈I is the finite set
of poles enclosed by γ. The integral on the left-hand side can be decomposed in four
integrals and, using equation (8.17), one has∮

γ

f`(z, w) =

∫ ζ

−ζ
dz f`(z, w)− e16π2/a2σ2

e4πΩ/a

∫ ζ

−ζ
dz f`(z, w)e−8πiz/aσ2

+ i

∫ 4π/a

0

dx f`(ζ + ix)− i

∫ 4π/a

0

dx f`(−ζ + ix). (8.19)

Our next step will be showing that the two integrals on the second line vanish in the
ζ →∞ limit. It is enough to consider explicitly one of them, for instance∫ 4π/a

0

dx f`(ζ + ix) = e−ζ
2/σ2

e−iΩζ

∫ 4π/a

0

dx e−2iζx/σ2

ex
2/σ2

eΩxW`(w, ζ + ix). (8.20)
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Now let us restrict our attention to Wightman functions that, in the large |∆t| or
|∆x| limits, display a polynomial dependence on these variables i.e. that satisfy the
condition 4. Recalling equations (8.11) and (8.12) this would imply that the behavior
of W`(w, z) satisfies

W`(w, z) ≤ c(w) sinhm(az/2), (8.21)

for some value of m ∈ Z and a function c(w). The worst-case scenarios are those for
which m ≥ 0; using | sinh(α + iβ)| ≤ cosh(α) for α, β ∈ R, one has∣∣∣∣∣i

∫ 4π/a

0

dx f`(ζ + ix)

∣∣∣∣∣ ≤ 4πc(w)

a
e−ζ

2/σ2

e16π2/a2σ2

e4πΩ/a coshm(aζ/2). (8.22)

Hence, this integral vanishes for ζ → ∞. The sum of the residues of f` in the strip
equals the two first integrals in (8.19),

2πi
∑
k∈I

Res[f`(z, w), zk] =

∫
dz f`(z, w)− e16π2/a2σ2

e4πΩ/a

∫
dz f`(z, w)e−8πiz/aσ2

(8.23)

Integrals of these terms, weighted appropriately with a Gaussian function, are
precisely related to the excitation probability. Indeed,∫

dw
e−w

2/σ2

√
π

∫
dz f`(z, w) = 2F`(Ω, χσ) (8.24)

and similarly

− e16π2/a2σ2

e4πΩ/a 1

2σ

∫
dw

e−w
2/σ2

√
π

∫
dz e−z

2/σ2

W`(w, z)e
−iΩze−4πiz/aσ2

= −2e16π2/a2σ2

e4πΩ/aF`(Ω + 8π/aσ2, χσ). (8.25)

This implies the following relation

iπ

∫
dw

e−w
2/σ2

√
π

∑
k∈I

Res[f`(z, w), zk]

= F`(Ω, χσ)− e16π2/a2σ2

e4πΩ/aF`(Ω + 8π/aσ2, χσ). (8.26)

Finally, in the long-time adiabatic limit, the second expression (8.26) is asymp-
totically equivalent1 to

F`(Ω, χσ)− e16π2/a2σ2

e4πΩ/aF`(Ω + 8π/aσ2, χσ) ∼ (1− e4πΩ/a)F`(Ω, χσ), (8.27)

1Two functions depending on a parameter λ are asymptotically equivalent in the limit λ → λ0
if the limit of their quotient is 1.
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which allows one to identify the leading asymptotic behavior of the transition prob-
abilities, in terms of the residues of f`, as

F`(Ω, χσ) ∼ iπ

1− e4πΩ/a

∫
dw

e−w
2/σ2

√
π

∑
k∈I

Res[f`(z, w), zk] (8.28)

for large σ. In expression (8.28) the residues are to be located in the strip S := {0 <
Im(z) < 4π

a
}.

This is the main result of this section. We have found that for general deforma-
tions satisfying the conditions 1-4, the adiabatic, long-time statistics of the detectors
can be written in terms of integrals of the poles of the deformed Wightman function.

We just mention a last technical point. We have implicitly assumed that the
integrals can be manipulated as if the Wightman function were a common function,
rather than a distribution, but this is not completely general. In relativistic quantum
field theory, and for ordinary, non-pathological states, the two-point function is the
boundary value of an ordinary function, a fact that is related to the spectrum con-
dition [123]. This is not generally the case, and in what follows we will assume that
the deformed Wightman function is also the boundary value of a regular function.

8.3 Preservation of the Unruh effect

In standard Lorentz-invariant quantum field theory, the thermal behavior of the
response function holds exactly under the KMS condition. However, demanding
that the KMS condition is strictly satisfied is, arguably, unnecessarily restrictive
from a physical perspective, an observation that has attracted much attention. In the
presence of a deformation with typical length scale `, it is reasonable to expect that
small deviations from exact thermal behavior, involving this new scale, would appear.
This broader set of scenarios cannot be characterized by the KMS condition, which
will be generally violated. Taking this into account, in the following we determine
the minimal requirements that single out the scenarios in which this violation is
mild enough so that the Unruh effect is preserved. The relation between the KMS
condition and the preservation of the Unruh effect is detailed in Sec. 8.4.4.

On general grounds, we consider that the Unruh effect is preserved if the statistics
of the detector along uniformly accelerated trajectories has the right `→ 0 limit, in
the adiabatic regime, namely if lim`→0 F`(Ω, χσ) = F0(Ω, χσ) for the leading asymp-
totic terms as σ →∞. This can be alternatively defined in terms of a commutative
diagram involving the double integration in w and z and the `→ 0 limit.
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F`(Ω, χσ)

F0(Ω, χσ) Adiabatic limit

Thermal behavior

`→0 σ→∞

σ→∞ `→0

Note that, in the adiabatic limit, the only possible dimensionless combinations of
the physical quantities involved are `a and `Ω. Hence, if this condition is satisfied,
the ` = 0 expressions for the response functions are recovered up to small corrections
when `a � 1 and `Ω � 1. In other words, appreciable deviations from the Unruh
effect would only exist for accelerations or frequencies that are of the same scale of
the parameter of the deformation `. This realizes the decoupling of scales that we
alluded to in the introductory discussion.

γi

z0
i z̄j

z̄k

z̄l

Figure 8.1: The contour γi encloses all the poles {z̄j, z̄k, z̄l} that are originated from
the isolated pole z0

i of the undeformed Wightman function.

Let us define the set of poles {z̄l}l∈K that are obtained as a continuous defor-
mation of the original set of poles {z0

m}m∈K originally in S ⊂ C, with the possible
addition or splitting of poles.

A. Local uniform convergence: The integral along each of the contours γi contain-
ing all the deformed poles that stem from each of the poles z0 of the undeformed
Wightman function, but not from other poles of the latter, recovers the unde-
formed contribution in the `→ 0 limit.

B. All the poles {z̄l}l∈K must remain in the horizontal strip.
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C. The sum of the residues of the poles of the Wightman function in z, times

e−
w2

σ2 , must be integrable with respect to x in the adiabatic limit, σ →∞.

These three necessary conditions (A,B,C) are, in fact, sufficient when holding simul-
taneously in order to preserve the Unruh effect.

Let us sketch the proof of this statement. Condition B implies that the right-hand
side of equation (8.28) is finite in the σ →∞ limit. On the other hand, condition C
implies that all the deformed poles that stem from undeformed poles z0

i inside the
horizontal strip S ⊂ C remain in S. Therefore, the corresponding residues are all
taken into account in the right-hand side of equation (8.28). Finally, condition A
ensures that the sum of these residues has the right `→ 0 limit.

8.4 Examples

8.4.1 No deformation

As a consistency check of equation (8.28) let us show that we obtain the usual results
for the undeformed Wightman function

W0(z) = − 1

4π2

a2

4 sinh2 [a (z − iε) /2]
, (8.29)

with ε > 0. There is an infinite set of second-order poles in the imaginary axis,
namely

z0
k = iε+ i

2πk

a
, k ∈ Z. (8.30)

Im[z] = 4πi/a
z0

2 = iε+ 4πi/a

z0
1 = iε+ 2πi/a

z0
0 = iε

Figure 8.2: Complex poles of the undeformed Wightman function.
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From all these poles, we just need the two first ones, namely k = 0 and k = 1
(the remaining ones are outside the horizontal strip S ⊂ C; see Fig. 8.2). The
corresponding residues are

Res[f0,σ(z), z0
0 ] =

ieεΩ+ε2/σ2
(Ω + 2ε/σ2)

4π2
,

Res[f0,σ(z), z0
1 ] = e2πΩ/a ieεΩ+ε2/σ2+4πε/aσ2+4π2/a2σ2

(Ω + 2ε/σ2 + 4π/aσ2)

4π2
. (8.31)

Application of equation (8.28) leads then to

1

σ
F0(Ω, χσ) = − Ω

4π

1 + e2πΩ/a

1− e4πΩ/a
=

Ω

4π

1

e2πΩ/a − 1
, (8.32)

which is the usual expression for 1
σ
F0(Ω, χσ). This expression satisfies

1

σ
F0(−Ω, χσ) = e2πΩ/a 1

σ
F0(Ω, χσ) (8.33)

for large σ. In physical terms, this implies that the quotient between the probabilities
of excitation and de-excitation of the Unruh-DeWitt detector satisfies the detailed
balance condition.

8.4.2 Lorentz-invariant deformations

For deformations that are invariant under Lorentz transformations, equation (8.28)
simplifies further. In these cases, the pull-back of the Wightman function to uni-
formly accelerated trajectories is a function of the variable z only. The necessary
condition B of integrability with respect to w is therefore trivially satisfied. The
integral in equation (8.28) can be directly evaluated, leading to

1

σ
F`(Ω, χσ) =

πi

1− e4πΩ/a

∑
k∈I

Res[f`(z), zk], (8.34)

where
f`(z) = W`(z)e−iΩz. (8.35)

Let us consider several examples that illustrate different aspects:
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(a) Splitting the poles along the real axis: The deformationD`(∆t,∆x) = −`2/((∆x)2+
`2) leads to the Wightman function

W`(z) = − 1

4π2

a2

4 sinh2 [a (z − iε) /2]− (`a)2
. (8.36)

This is one of the minimal natural options for the introduction of the length
scale ` [124, 117]. This deformation splits the poles and displaces each of them
along the real axis (see Fig. 8.3), so that each second-order pole is split into
two first-order poles. This deformation satisfies the sufficient conditions for
the preservation of the Unruh effect. An explicit calculation of the response
function, using equation (8.28), shows that

1

σ
F`(Ω, χσ) =

sin [2Ω argsinh(`a/2)/a]

4π`
√

1 + (`a/2)2

1

e2πΩ/a − 1
. (8.37)

It is then straightforward to show that equation (8.32) is recovered at lead-
ing order for `a � 1 and `Ω � 1, in agreement with our previous general
discussion, so that the Unruh effect is preserved.

Im[z] = 4πi/a

Figure 8.3: Displacement of the poles for the deformation in equation (8.36).

(b) Adding new poles: The more general deformation D`(∆t,∆x) = −β`2/(∆x2 +
`2) creates new poles when β ∈ R \ {1}. These deformations can arise from,
e.g. considering a conformally coupled detector in AdS [125]. The sufficient
conditions are still satisfied, and the response function is given by

1

σ
F`(Ω, χσ) =

Ω

4π

1− β
e2πΩ/a − 1

+ β
sin[2Ωargsinh(`a/2)/a]

4π`
√

1 + (`a/2)2

1

e2πΩ/a − 1
. (8.38)

This expression leads to equation (8.32) in the `→ 0 limit, as expected. As in
the previous case, the Unruh effect is preserved.
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(c) Splitting the poles along the imaginary axis: A seemingly innocent change of
sign D`(∆t,∆x) = −`2/(∆x2−`2) leads however to completely different physics
(see [114, 117] for a complementary discussion). This deformation splits the
poles along the imaginary axis, and therefore fails to satisfy the necessary
condition C. An explicit calculation shows that, for `a < 2,

1

σ
F`(Ω, χσ) =

sinh [2Ω arcsin(`a/2)/a]

4π`
√

1− (`a/2)2

1

e2πΩ/a − 1
+

e−2Ω arcsin(`a/2)/a

8π`
√

1− (`a/2)2
. (8.39)

It is straightforward to check that this response function does not reduce to
equation (8.32) for `a � 1 and `Ω � 1, which can be anticipated graphically
(Fig. 8.4). As a consequence, the Unruh effect is not preserved in this case.

Im[z] = 4πi/a

Figure 8.4: Displacement of the poles for the deformation that is obtained by chang-
ing the sign in front of `2 in equation (8.36).

(d) Non-polynomial decay: It is interesting to mention a deformation that does not
satisfy the condition 4 given above, for instance D`(∆t,∆x) = −e−∆x2/`2/∆x2

(see [116, 126] for a motivation of this deformation). The decay of this de-
formation in |∆x| is not always polynomial (take, for instance, Im[z] = iπ/a).
As condition 4 above is not satisfied, equation (8.28) does not apply, and this
example cannot be included in our analysis.

8.4.3 Lorentz-violating deformations

In the same spirit of the previous section, let us consider several distinct examples:

(e) Changing the order of the poles: The first example is given by D`(∆t,∆x) =

115



`2/∆x2∆t2, which leads to

W`(w, z) = − 1

4π2

a2

4 sinh2 [a(z − iε)/2]

{
1 +

(`a)2

4 cosh2(aw/2) sinh2 [a(z − iε)/2]

}
.

(8.40)
In this case the poles in z are at the same location, but these are now of
fourth order. As a consequence, it can be shown by direct calculation that the
sufficient conditions are met (note that the only relevant conditions are A and
B, as C is trivially satisfied). Using equation (8.28), it follows that the response
function in the adiabatic limit reduces to equation (8.32) identically (even for
` 6= 0). The Unruh effect is therefore preserved.

(f) Adding new poles: This has been discussed in the Lorentz-invariant case, but
deformations such as D`(∆t,∆x) = `/∆x2(∆t − `) also add new poles, the
position of which is not Lorentz invariant. It can be shown that the necessary
condition A is not satisfied by this deformation (in particular, around the pole
z̄1 = iε+ 2πi/a), so that the Unruh effect is not preserved.

(g) Adding poles in w: This kind of behavior is associated with inverse powers
of ∆x occurring in the deformed Wightman function, such as D`(∆t,∆x) =
`2/∆x2∆x2. For this particular case, one has

W`(w, z) = − 1

4π2

a2

4 sinh2 [a(z − iε)/2]

{
1 +

(`a)2

4 sinh2[a(w ± iε)/2] sinh2 [a(z − iε)/2]

}
.

(8.41)
For both signs of the regulator in the integral over the variable w, the additional
piece vanishes due to the fact that the residues on the poles on w vanish
identically, so that

1

σ

∫ ∞
−∞

dw e−w
2/σ2

sinh2[a(w ± iε)/2]
≤ 1

σ

∫ ∞
−∞

dw

sinh2[a(w ± iε)/2]
= 0. (8.42)

This deformation satisfies the three sufficient conditions for the preservation of
the Unruh effect.

(h) Non-integrability in w: We have discussed examples that violate conditions A
and C. Let us now consider an example that does not satisfy the condition B
above, for instance, D`(∆t,∆x) = i`∆t/∆x2. The imaginary unit i in front of
∆t implies that this deformation is invariant under time reversal, which is an
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anti-unitary transformation. In this case,

W`(w, z) = − 1

4π2

a2

4 sinh [a (z − iε) /2]2

{
1− i`a

2

cosh(aw/2)

sinh [a (z − iε) /2]

}
. (8.43)

It is straightforward to show that the sum of the residues of the poles in z is
not integrable with respect to w. Hence, the Unruh effect is not preserved in
this case.

Note that a similar expression has appeared in recent explorations of polymer
quantization [121]. However, it is crucial to keep in mind that the equation
above is valid for arbitrary values of w and z, which in general is a requirement
in order to be able to determine unambiguously whether or not the Unruh effect
is preserved. The expressions obtained in [121] are valid only for restricted
values of w, and therefore the question of preservation of the Unruh effect in
that particular scenario is still open.

(i) Violating the imaginary periodicity: In the next section just below, we discuss
the relation between the preservation of the Unruh effect and the KMS condi-
tion, which involves the imaginary periodicity of the Wightman function. The
example above violates both condition B for the preservation of the Unruh effect
and this imaginary periodicity (which will be defined in precise terms later).
In order to break the degeneracy of the example above, and clarify the role of
these two conditions, it is convenient to provide an example that only violates
the imaginary periodicity. This is given for instance by D`(∆t,∆x) = `/i∆t,
which satisfies all the conditions for the preservation of the Unruh effect.

8.4.4 Regarding the KMS condition

These are all the ingredients that are needed in order to compare the KMS condition
with the definition for the preservation of the Unruh effect given in this paper. This
is summarized in Table 8.1 below.
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Example KMS Preservation
Imaginary periodicity Stationarity Holomorphicity Polynomial

a 3 3 3 3 3

b 3 3 3 3 3

c 3 3 7 3 7

d 3 3 3 7 ?
e 3 7 3 3 3

f 7 7 3 3 7

g 3 7 3 3 3

h 7 7 3 7 7

i 7 7 3 3 3

Table 8.1: Comparison of the KMS condition and the sufficient conditions for the
preservation of the Unruh effect in the adiabatic limit. Note that “Imaginary peri-
odicity” refers to the property of the Wightman function, not its pull-back

.

Whether or not the Unruh effect can be sensitive to the short-distance structure
of quantum field theory is a question that has been asked recently in several scenar-
ios, typically associated with quantum gravity. However, a strict determination of
the conditions that guarantee that the Unruh effect is preserved (or is, otherwise,
washed away) in deformations of quantum field theory was lacking. In [4], we gave a
detailed justification and description of the conditions that guarantee that the adi-
abatic response function of uniformly accelerated detectors reduces to the standard
Lorentz-invariant result in the limit in which the deformation scale ` vanishes. We
have shown that these can be formulated in terms of the analytic structure of the
deformed Wightman functions and their asymptotic behavior. We have kept the
discussion fairly general, in order to encompass the examples considered previously
in the literature and to ensure the broad applicability of our results.

Moreover, we analyzed the interplay between the preservation of the Unruh effect
and the more traditional KMS condition. We have illustrated that the latter is more
restrictive, as it is a sufficient, but not necessary, condition to ensure that the response
function displays a thermal behavior. In order to illustrate that the latter approach
is not adequate, we have provided explicit examples in which the KMS condition
is violated in different ways, with the response function in the adiabatic limit still
displaying a thermal behavior. This provides further insight on the meaning of the
KMS condition and its relation to the Unruh effect.
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Chapter 9

Conclusions

Detectors are a useful conceptual framework that allows us to interpret some math-
ematical objects in QFT, and discuss some facts derived from the formalism in a
physically motivated fashion. From the purely interpretational side, the absence of
minimal projectors in the local algebras in QFT may be seen as problematic, as
discussed by Ruetsche and Earman in [11]. This can be seen as a consequence of the
universal divergence of the entanglement entropy, or equivalently, from the fact that
the local algebras are type III Von Neumann algebras. The fact that states cannot
be disentangled with a finite energy cost prevents the existence of states holding
properties locally, in the sense that there will be no state vectors that can be written
as a combination of operators belonging to local regions.

This is in stark contrast to non relativistic quantum mechanics where entangle-
ment is a resource usually thought of as the exception to the norm. Therefore, the
intuitive notion of detector, which is an object that is localized and with well-defined
properties, e.g. with a ground state that the detector transitions away as a result of
the interaction with the field, seems to be doomed to fail in a purely relativistic QFT
scenario, and can be only reached through an approximation. The lack of minimal
projectors in the local algebras and the intepretational challenge this supposes have
been discussed in [15], and we are not in a position to say that non-relativistic de-
tectors models offer the only alternative to tackle this issue, although they definitely
offer one.

When resorting to local, non-relativistic probes that couple locally to the quantum
field, seeking to have well-defined properties of an (arguably) local object, one faces
the dichotomy of singularity v.s. non-locality of the detector. Namely, one has to
choose between interactions that are singular, because the detector interacts with the
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field on a world line and interactions that are nonlocal because the detector undergoes
nonrelativistic dynamics over an extended region of spacetime. We addressed the first
point in chapter 4, in which we dealt with the UV divergences of the UDW model
in the case of the pointlike model with delta-like interactions. The second point was
fully addressed in chapter 5.

One can still take the approach of modelling the detector with other quantum
fields, as done e.g. by Fewster and Verch in [29]. This approach, however, seems
to become redundant regarding the interpretation of the local operators, as far as
they restrict to local measurements of the probe. Of course, their approach has
many other qualities that make it desirable. For instance, they give a dynamical
interpretation to a whole class of operations that can be performed on a quantum
field without violating causality.

When resorting to field-theoretic probes, one does not need to restrict the anal-
ysis to local operations on the probe, so one can actually enjoy the interpretational
advantages of the projectors acting over the probe’s global algebra, e.g the eigen-
states of the number operator. One may very well be interested in interpreting local
quantities of the system field in terms of global properties of the probe field given by
one-rank projectors; this is legitimate. However, although in some cases the actual
experimental setting may resemble this situation, e.g. in particle physics where one
claims to have found a photon with a certain momentum k, it does not account for
all types of experimental situations involving, say, atomic transitions, which cannot
be described within QFT.

These considerations lead to a rich and interesting debate, because they are re-
lated to separation of scales and universality considerations. Indeed, according to
our ordinary experience, all detectors should be point-like when probing long enough
wavelenghts. More concretely, the pointlike model should be able to reproduce
model-independent results depending on the energy scale of interest, for instance
the energy gap. If one is looking at energies such that the wavelengths involved are
comparable to the interaction region, one will have to specify the spacial structure
of the detector. It is true that the set-up will have to resort to a QFT description
eventually, but it is an open question how to transition from a fully relativistic de-
scription of nature to, say, the type of protocols appearing in quantum information
processing. The field description can thus become very cumbersome. As the energy
scale increases, it may not even make sense to distinguish a system-field and a probe-
field, and the very notion of measurement (in the Von Neumann measurement sense,
in which one requires system and probe to statr uncorrelated) may not be available.

With respect to the Unruh effect, the first methods exposed at the beginning of
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6, namely Bogoliubov transformations and modular theory, depart from each other
in technical details and also some conceptual gaps. However, they share the notion
that an accelerated observer is associated with a set of operations constrained to
the Rindler wedge, and that this observer’s evolution is represented in the Hilbert
space through Lorentz boosts. Also, they stress that the Unruh effect has its origin
in the correlations exhibited by Minkowki’s vacuum between the Rindler wedge and
its causal complement.

The particle detector approach departs from these ideas, as it puts all interpre-
tational weight on the detector’s physics. Indeed, particle detector models were first
introduced to shed some light over the problematic concept of particle as revealed
by the Unruh effect. Indeed, particles are not only observer-dependent, but different
observers cannot compare their notions of particle due to unitary inequivalence. Be-
yond the claim, which may seem circular to some, it makes sense to turn the burden
of the conclusion on a detector, thereby switching from claiming that “Minkowski’s
vacuum is experienced as a thermal bath by accelerated observers” to “an acceler-
ated detector interacting with a quantum field in its vacuum state responds in the
same way as in a thermal reservoir”.

Regarding the more mathematical analysis of the Unruh effect, which also avoids
the notion of particle, it becomes unclear what the elements of the local algebra
represent. Indeed, the statistics of a particle detector have a clear interpretation
in terms of transition probabilities. Beyond interpretational problems, perhaps the
main issue of the approach that uses modular theory is its lack of robustness. One
would like to define the Unruh effect in a way that does not depend drastically on
the KMS condition, because this one cannot be tested in any realistic experiment.
The only way to test the KMS condition, actually, is through the detailed balance
condition, which involves the spectral analysis of the all the correlation functions of
the field.

The type of observables that one may be able to test are, first, finite in space and
time, and second they cannot be arbitrarily complex. This means that the detailed
balance condition, which involves the correlation functions at all times, and for all
observables, becomes untestable on it own. Moreover, one could imagine situations
in which one does not expect the KMS condition to happen, but such that the scales
involved are so that the relevant physical quantities are indistinguishable from the
ones associated with an accelerated observer. We addressed this point in chapter 7,
where we wondered whether a detector sensing the Anti-Unruh effect was actually
probing some sort of time-dependent Unruh effect.

Generally speaking, detectors provide a very solid ground to discuss questions
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of robustness in the context of the Unruh effect. For instance, one can have an
experiment setting in an optical cavity, in which an accelerated detector travels
within a small distance compared to the size of the cavity. Since the cavity is not
Lorentz invariant, the vacuum fluctuations associated with the field in the cavity
cannot be stationary with respect to the the evolution associated with accelerated
observers, and hereby the state cannot be KMS. Still, one would expect the detector
to react to the cavity’s vacuum in the same way it would to free space’s vacuum.

Further, one would expect the Unruh effect to be preserved in situations in which
the state is not globally KMS, but it is asymptotically for long times. An example
of this would be a coherent state that is localized in some region of space. If one
has an accelerating detector, one can conclude that as the detector’s speed increases
the state of the field will red-shift and blue-shift, and all non Lorentz invariant
contributions will eventually be out of the band of frequencies that the device can
probe. Therefore, the detector will eventually interact with this non-KMS state as if
it was Minkowski’s vacuum. Another example would be a detector that accelerates
away from a reflecting mirror, in this case, even though the vacuum is not KMS with
respect to Lorentz boosts, one would expect the detector to be insensitive to the
presence of the mirror as it moves away. We investigated this problem in chapter 8,
where we studied the effect of UV deformations in the Unruh effect.
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[4] Raúl Carballo-Rubio, Luis J. Garay, Eduardo Mart́ın-Mart́ınez, and José
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