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Abstract 

A method of least squares fit using implicit fWlctions is described. 

1 Introduction 

The standard approach of least squares fit to a line [1,2,3] (as described in textbooks and 
written about in statistical journals) fails when the value of the slope is much la.rger than 
one. My attempt to cure this problem has led me to a. general approach of least squares fit 
of implicit functions. 

When applying the "standard least squares" to determine the parameters of aline, almost 
exclusively the following form of line equations are usedj Y = m:c + b or y = m(:c - a) + b. 
The adva.ntage of the last equation is that the fit is done within the range of da.ta. The 
applica.tion of this method to the case where m = 0, b = 0, with (1 =: (1= = (1", gives the 
following results: < m >= 0 and < b >= O. The scatter plot of a sample for this problem 
is shown in figure lao But the application of this method to another sample, as shown in 
figure Ib, gives also < m >= 0 and < b >= O. This is incorrect. In both samples the data 
is distributed uniformly along the axis of xy coordinate systemj along the x axis in the first 
sample and along the y axis in the second sample. Each entry of both samples is smeared 
using Gaussian distributions with uncertainties (1 == (1= = (1". 

The reader may point out that an inappropriate form of a line equation is used for the 
second sample, see figure lb. That the appropriate form to use is :z: = ly + a. Thought 
process such as this reveal that one has to choose a dependent or an independent variable 
when using the standard Least Squares method. The only way to remove the ambiguity of 
the state (dependent or independent) of a variable is to use implicit functions. 

2 The General Method 

The implicit function, F = ly + rna: + b == 0, represents a line equation where both x and y 
variables are treated equally without referring them as independent or dependent variables. 
A detailed procedure that leads to solutions for land m is given below. The detailed steps 
will help you to follow what is done to arrive at a general least squares expression of an 
implicit function. 
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The least squares sum for a line equa.tion is: 

S(':,VP;;b,l,m) ~ f [(·; -·j)' + (V; -Vj)' + 2.\; [/v1+m.1 +hl]. 
f;;r (J'Zj (IlIj 

(1) 

The above expression also contains the case where both variables (x,y) have measurement 
uncertainties; these uncertainties are <TzJ and U,,;' The above expression is applicable only 
to the case where U Zj a.nd (Tllj do not depend on parameters I, m, and b. The L. 
multipliers, Ail depend on the values of b, I, and m, but they do not contribute to the leas t 
squares sum because the implicit function is identically equal to zero for all values of j. The 
variables z1 and Y~ a.re exact, these and the parameters (l, m, b) allow the implicit function 
to be zero for any value of j. 

An informative article on the least squares fit when both va.ria.bles have uncertainties can 
be found in reference [4]. A detailed description of the lagrange multiplier technique can be 
found in reference [1]. Both sources have influenced the outcome of this note. 

The parameters xJ,yJ').i;b,l,m are determined by minimizing the least squares sum S. 
It is possible to solve for x~, yJ,).j in terms of I, m, b, and hence be able to write the least 
squares sum without the lagrange multipliers. The least squares sum S is minimized with 
respect to x~,VJ,).j, 

85 x - -xq 
-2 ' , + 2.\;m ~ 0 

8r.q - , , U~j 

85 
-2 Vi - vi + 2,\;1 ~ 0 

8y1 
- , 

(fIJi 

85 
2 [lvJ + m:z:~ + b) = 0 8.\; 

and simultaneous solutions of the above expressions are: 

r. - - r.~ , , 

Vi -VJ 

.\; ~ 

(2) 

(3) 

(4) 

(5) 

(u) 

(7) 

After substituting the above solutions in equation 1, the least squa.:res sum is now expressed 
in terms of I,m, and b: 

S(b I ) ~ ~N [IV; + m.; + hi' 
, , m (m2(f2 + 12(f2 ) • ,= zi IIi 

(8) 

Note, the implicit function is symmetric under the exchange of I _ m, m _ I, and also under 
the exchange of :z: _ V, V _ z. This symmetric property is also present in the quadrature 
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sum (mlU;j +l'u;j)' This is the first indication that no singularity exists (the case 1 = m == 0 
is not a. physical solution to aline equation) in this least squares sum~ 

Two parameters completely determine the behavior of a line in a fla.t plane. A location 
parameter to carry out translation a.nd a scale parameter to define an angular dependence 
about the location parameter. In ~he least squares sum there are two scale parameters 1 and 
m, where the location parameter is b. The procedure of finding eigenvalues and eigenvectors 
are used to obtain the relationship between 1 and m . 

The problem of minimizing the least squares sum gets easier by adding an extra location 
parameter. With an extra location parameter it is possible to assign to each varia.ble (:t::,y) 
a unique translation parameter. Now, the least squares sum is written as: 

S(a b I m) = ~N [I(y; - b) + m(.; - a))' 
'" ("+1") J= m U Zj UIIl 

(9) 

In this form the line equation is symmetric under exchange of both the location and the 
scale parameters. Also, the arbitrary choice of location parameter (a = 0) is removed from 
the line equation. Minimization of S( a, h, l , m) with respect to b yields: 

as 
ab 

a 

b -

(10) 

(11) 

( 12) 

The parameters a and b are determined by setting each term in the numera.tor of ~! to 
zero. Note tha.t a and b are functions of the scale pa.rameters (l ,m). For the case where 
U Z! #- UZ1 #- UZ~ #- ... #- (lz a.nd U III #- O'VJ #- U IIl #- ... #- UI/I one begins an iterative 
procedure (initially setting I = m) until the values of a and b converge. Usually one iteration 
is sufficient to a.chieve convergence. When solving for I and m , the parameters a and bare 
treated as constants. 

The process of minimizing the least squares sum S( a,b,l,m) with respect to I and m leads 
to the following equations: 

as 
at 

as 
am 

N [I(y' - b) + m(.' - a)) [ ] 2 ~' 'm',,' (y' - b) - ml,,' (., - a) = 0 
( m2u2 + Pu2 )2 Zi J IIi J 

J= z; IIj 

( 13) 

_ 2~N [I(y;-b)+m(.;-a)) [f"'(. , -a)-ml"'(y,-b)] =0, 
( m20'2 + Pu2 )2 II; J "'I J 

1"''' Zj IIi 

(14) 
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After some algebraic manipulations the above equations reduce down to the following 
sum: 

( 

N N ) U2j :I C1;J; ' 
m I'\' - ,-(y; - b) +m'\'+(y;-b)(~;-a) 

fr((J'e/J {;;ruell 

-I (I ~ ":; (y; - b)(~; - a) + m ~ ":; (~; - a)') = 0 
{;duel! (=tCfelJ 

(15) 

Where the u:/J = (m 20';i + PO'~j) is the effective variance [4] of a line equation. The 
solutions for the following caseSj 1) (J"rtJ = 0, and 2) (fll; = 0, Me trivial. They can be read 
off of equation 15. The solutions for cases one and two can only be written down in terms of 
m / I or 11m. When the measurement uncertainties of both :c and y va.riables are greater tha "1 
zero, two equations are needed to solve for I and m. A pai r of equations, that are function:, 
of parameters I and m, is obtained by setting each term in equation 15 to zero. Below, these 
set of equations are expressed in matrix form. 

( 

;jL(~ . -a)' ;jL(~ . -a)(Y ' -b) ) ( ) fT." J IT.,," m_O 
~(~ . - a)(y· - b) ~(Y ' _ b)' 1 -IT.II ' J IT.II ' 

(16) 

Where the summation signs are not shown, but sums over j are to be carried out . The 
procedure of finding eigenvalues and eigenvectors is used to determine 1 and m . As in the 

• 

) 

case of determining parameters a and b, when 0'211 '# O'Zl2 ¥- 0'=3 '# ... ¥- O'ZI and 0'111 ¥- 0''Vl '# ) 
0'113 '# ... '# 0'11' one begins an iterative procedure (initially setting I = m in O'~il) until the 
values of parameters converge. The effective variance 0':/1 is treated as a constant to solve 
for 1 and m. The solutions are: 

1 
L 

(17) = ..jP + M') 
M 

(18) m - j<L' + M') 

L ~ (A - D) + V«A - D)' HBC) j + C (19) 

M - ~ (A- D) - j«A - D)' + 48C) - B (2'" 

N , 

A ~ O'IIJ :. (21) - -.-(~; - a) 
J= O'~/I 

N ,,' 
B - ~ +(~; - a)(y; - b) (22) 

J= 0',./1 

N ,,' 
C - ~ +(_; - a)(y; - b) (23) 

,= O'~/I 

) 
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N ,,' 
D = 'I :; (y; - b)' 

!=rUeJl 
(24) 

The above solutions are obtained using the eigenvalue with the ma.gnitude closest to zero. 
This choice allows for correct solutions when (J'gJ or (1l/ tend to zero. The quadrature sum of 
parameters I and m is equal to onc, m:l + 12 = 1. This relationship conveys a process that 
is fundamental when solving implicit functions. Details of writing down the correct form of 
least squares sum for implicit functions is given in the next section. 

A few comments on the solution of a. line equation. 1) A line equation can also be 
written in terms of sine and cosine functions, ycos¢ + ~sinl/J = O. A comparison of this 
equation with Iy + mz = 0, and y = m'x, shows that the problem of solving m' = tanrfJ 
is turned into solving m = sin¢ and I = cos¢. Hence I and m have the same properties 
that of 3int/> and e03t/> functions. 2) In the standard procedure the values of either 1 or m 
is set to one. Where in the general method, as described in this note, the quadrature sum 
(ml + 12) is set to one. 3) To obtain an optimum minimization it is better to solve equation 
9 with location parameters defined as in equations 11 and 12. The iterative solutions give 
an excellent approximate results for most practical problems, but for a puritan the solution 
of equation 9 is the correct result. 4) Depending on wheUer A is larger than D or vice versa, 
it is possible to rewrite equations 19 and 20 to avoid roundoff errors. 5) Before starting an 
iterative procedure, set crfllli == I, crill == 1, and crall == I, and solve for 4, h, I, and m. Next 
start iterating until the values of parameters converge. 6) Uncertainties on the parameters 
using parabolic [3J approximation has a complicated form, and are not given. 7) Also the 
least squares sum can be written in terms of already calculated quantities A, B, C, and D, 
thus saving computing time. 

3 Implicit Functions and Least Squares 

The solution described in the previous section can be applied to any implicit function that 
is differentiable. The required differentiation is of first order and it is with respect to the 
measured variables. If z is considered a measured quantity, it is always possible (but not 
necessarily desirable) to write a.n implicit function using the following form, q(z - c). In this 
form Ie' is the location parameter and 'q' is the scale parameter. When fitting an implicit 
function always set the quadrature sum of scale parameters to one, 12 + m 2 + p2 + ... = 1. 

Given an implicit function F(z, y, z, ... j I, m,q, ... , a) == 0, the least squares sum is: 

~
N [F(z;,y;,z;, ... jI,m,q, . . . ,a)J2 

S(a,l,m,q, . .. ) = ((OF),,,, + (!!L)'", + (!!L)'", + ... )' 
J= 8111 "Ij 81/ IIj 8~ 'i 

(25) 

The derivatives are evaluated by using measured values, X;, Yh Zj, ••• . This is a very good 
approximation compared to evaluating with ideal values; X~, yJ, zJ I ' . .. In the above sum the 
measurement uncertainties are treated as having no dependence on parameters whatsoever. 
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The above sum can be minimized with respect to parameters a,I,m,q, .. . using a well es­
tablished minimization software package. Without the constraint [2 + m 2 + p2 + ... = I, the 
least' squares sum will not converge. 

The advantage of using the general form of effective variance, q:" = ((~~)2q;j + 
(~:)2q;j + (~~)2q!J + ... ). can be appreciated by considering a case where the first partial 
derivative with respect to a variable is quite large compared to others. Since the measure­
ment uncertainty of that particular variable dominates, the scale parameter associated with 
t hat variable will have the largest magnitude. Thus, the above form of effective variance 
allows an easy transition among variables. 

The above statements can be easily verified using implicit polynomial functions of any 
order. By using orthonormal polynomials [2,31 and the procedures in section 2, one can 
derive the constraint [2 + m 2 + p2 + ... = 1 in a straight forward fashion. Other implicit 
functions (with linear parameters) can also be used to verify the above conjecture. 

In cases where one has to deal with more than one implicit function, the procedure of 
writing down the least squares sum is not as straight forward as given above. The least 
squares sum will contain cross products of implicit functions. In addition, each term in the 
sum is multiplied by weights which depend on the functional forms of implicit functions. 
Also, each term in the effective variance contains products of partial derivatives. Least 
squares problems that make use of more than one implicit {unctions occur naturally in three 
or higher dimensions. An example is fitti ng a curve in three or higher dimensions. When 
there are more than one implicit functions, then there are more than one constraint. The 
quadrature sum of scale parameters for each implicit sum is set to one. The steps given 
in section 2 can be used (highly tedious) to solve problems with more than one implicit 
functions. There is no choice but to expand each implicit functions about the known values 
of parameters to obtain effective variance of a problem. 

Uncertainties on the parameters using parabolic approximation has a complicated form, 
and is misleading for a general implicit function . An efficient thing to do is to use uncertain­
ties given by a minimization package, such as MINUIT [5J. In case of MINUIT, the results 
do reliably agree with theoretical definition. 

The constraint 12 + m 2 + p2 + ... = 1 is also valid when carrying out minimization 
using other than least squares method. For example, the quadrature sum of sine and co­
sine functions is independent of any fitting procedure. Above, it was presupposed that the 
measurement uncertainties belong to Gaussian distributions. The constraint does not de­
pend on the distribution of measurement uncertainties. The distribution of measurement 
uncertainties do AFFECT the functional form of effective variance. 

4 Examples and Applications 

Example 1) A plane in zyz coordinates. The implicit function is F(z,y,zjb,m,l,p) = 
mz + ly + pz + b == O. Hence, the constraint is 12 + m 2 + p~ = I, and the effective variance 

'-'1'+"+" qeJJ - ql/j q~jm q~JP· 
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Example 2) A second degree polynomial in xy plane. The general form of implicit function 
is G(X,YiA,B,C,D,E , F) = Ax] + Bxy + Cy] + Dx + Ey + F == O. The constraint is 
A] + Bl + Cl + Dl + El = I, and the effective variance cr;" = cr~ . (2Ax; + By; + D)] + 
cr;/2CYi + Bx; + E)l. J 

Example 3) The function of interest is Y = aem~. The implicit function for this problem 
is G(x,Yi I,m, b,a) = l(y - b) + em(z-Cl) == O. The constraint is P + m l = I, and the effective 
variance cr:" = cr!j (mem(z-o»] + cr;jP. Note that the transition to two extreme situations, 
(x - a) --+ -00 and (::c - a) --+ 00 is achieved smoothly via the effective variance. 

Application 1) Relative offset of two electronic channels. This can be a time offset or a 
charge offset among channels. When each channel behavior is linear then, the solution in 
section 1 is applicable. But if the response of each channel is none linear, then a consistent 
way to obtain relative offsets is to carry out implicit function fit. 

Suppose the response of each channel is of the following form: y = b + m::c + k::c l . The 
implicit function of interest than is: k::c l + mx + lz + qzl + d == 0, where the relative offset 
is d. 

Application 2) Fitting of two curves that intersect one another in xy plane. A straight 
forward case is when two line segments intersect. The implicit functions are: F = .l(y - b) + 
m(z - a) '" 0 and G = p(y- b) +q(z - a) '" 0, with the following the constraints: l'+m' = 1 
andpl+ql=1. 

5 Conclusion 

) A method to fit the parameters in implicit functions is shown to have no singularities. A 
straight line equation is used to demonstrate the advantage of this method. In this method 
each variable has a corresponding scale parameter. The standard least squares method has 
one less scale parameter compared to the number of variables. In the standard least squares 
method one of the scale parameters is set to one, where in the general method the quadrature 
sum of scale parameters is set to one. Since this note covers only the overall properties of an 
implicit function fit, the interested reader may come across features that are not mentioned 
in this note. It is intellectually worth the time of an individual to to use the general least 
squares method to explore problems and compare the results with that of the standard least 
squares method. 

) 

6 Inquiry 

If you recall reading about such a method elsewhere, please let me know. Please send your 
comments to 

FNALD::HK, FNAL::HK 
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Figure 1: These scatter plots ('a' and 'h') are prepared using fifty events in each sample. 
The Least squares fits (using a line equation y = b + mx) for many such samples lead to 
average values of slope m = O and intercept b=O. These values are correct for samples such 
as shown in plot 'a', and incorrect for distributions such as shown in plot 'b', The General 
Least Squares Method does give correct fit results for the above distributions. Details of this 
method are given in section 2 of this note. 
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