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Abstract

A method of least squares fit using implicit functions is described.

1 Introduction

The standard approach of least squares fit to a line [1,2,3] (as described in textbooks and
written about in statistical journals) fails when the value of the slope is much larger than
one. My attempt to cure this problem has led me to a general approach of least squares fit
of implicit functions.

When applying the “standard least squares” to determine the parameters of a line, almost
exclusively the following form of line equations are used; y = mz + b or y = m(z — a) + b.
The advantage of the last equation is that the fit is done within the range of data. The
application of this method to the case where m = 0,b = 0, with ¢ = o, = oy, gives the
following results: < m >= 0 and < b >= 0. The scatter plot of a sample for this problem
is shown in figure la. But the application of this method to another sample, as shown in
figure 1b, gives also < m >= 0 and < b >= 0. This is incorrect. In both samples the data
is distributed uniformly along the axis of xy coordinate system; along the x axis in the first
sample and along the y axis in the second sample. Each entry of both samples is smeared
using Gaussian distributions with uncertainties ¢ = o, = 0.

The reader may point out that an inappropriate form of a line equation is used for the
second sample, see figure 1b. That the appropriate form to use is ¢ = ly + a. Thought
process such as this reveal that one has to choose a dependent or an independent variable
when using the standard Least Squares method. The only way to remove the ambiguity of
the state (dependent or independent) of a variable is to use implicit functions.

2 The General Method

The implicit function, F = ly + mz + b = 0, represents a line equation where both x and y
variables are treated equally without referring them as independent or dependent variables.
A detailed procedure that leads to solutions for ! and m is given below. The detailed steps
will help you to follow what is done to arrive at a general least squares expression of an
implicit function.



The least squares sum for a line equation is:
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The above expression also contains the case where both variables (x,y) have measurement
uncertainties; these uncertainties are o,; and o,,. The above expression is applicabls only
to the case where o, and oy; do not depend on parameters [,m, and b. The L
multipliers, A;, depend on the values of b,l, and m, but they do not contribute to the least
squares sum because the implicit function is identically equal to zero for all values of j. The
variables z7 and yJ are exact, these and the parameters (I,m,b) allow the implicit function
to be zero for any value of j.

An informative article on the least squares fit when both variables have uncertainties can
be found in reference [4]. A detailed description of the lagrange multiplier technique can be
found in reference [1]. Both sources have influenced the outcome of this note.

The parameters 23,37, A;;b,l,m are determined by minimizing the least squares sum S.
It is possible to solve for zJ,3?,); in terms of /,m,b, and hence be able to write the least
squares sum without the lagrange multipliers. The least squares sum S is minimized with
respect to 23,37, ;,
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and simultaneous solutions of the above expressions are:
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After substituting the above solutions in equation 1, the least squares sum is now expressed
in terms of I, m, and b:
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Note, the implicit function is symmetric under the exchange of | - m, m — [, and also under
the exchange of ¢ — ¥, y — z. This symmetric property is also present in the quadrature



sum (m?03 41?0}, ). Thisis the first indication that no singularity exists (the case | =m =0
is not a physical solution to a line equation) in this least squares sum.

Two parameters completely determine the behavior of a line in a flat plane. A location
parameter to carry out translation and a scale parameter to define an angular dependence
about the location parameter. In the least squares sum there are two scale parameters / and
m, where the location parameter is b. The procedure of finding eigenvalues and eigenvectors
are used to obtain the relationship between [ and m.

The problem of minimizing the least squares sum gets easier by adding an extra location
parameter. With an extra location parameter it is possible to assign to each variable (z,y)
o unique translation parameter. Now, the least squares sum is written as:
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In this form the line equation is symmetric under exchange of both the location and the
scale parameters. Also, the arbitrary choice of location parameter (¢ = 0) is removed from
the line equation. Minimization of S(a,b,l,m) with respect to b yields:
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The parameters @ and b are determined by setting each term in the numerator of 3
zero. Note that a and b are functions of the scale parameters (I,m). For the case where
Oo, # Opy # Oay # ... # 0p and 0y, # 0y, # 0y # ... # 0y, one begins an iterative
procedure (initially setting I = m) until the values of a and b converge. Usually one iteration
is sufficient to achieve convergence. When solving for ! and m, the parameters a and b are
treated as constants.

The process of minimizing the least squares sum S(a,b,l,m) with respect to ! and m leads
to the following equations:
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After some algebraic manipulations the above equations reduce down to the following
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Where the o2;; = (m?c], + %0} ) is the effective variance [4] of a line equation. The
solutions for the following cases; 1) 0,; = 0, and 2) oy, = 0, are trivial. They can be read
off of equation 15. The solutions for cases one and two can only be written down in terins of
m/l or [/m. When the measurement uncertainties of both z and y variables are greater t}::
zero, two equations are needed to solve for [ and m. A pair of equations, that are function:
of parameters ! and m, is obtained by setting each term in equation 15 to zero. Below, these
set of equations are expressed in matrix form.
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Where the summation signs are not shown, but sums over j are to be carried out. The
procedure of finding eigenvalues and eigenvectors is used to determine [ and m. As in the
case of determining parameters e and b, when o,, # 05, # 05y, # ... # 0 and 0y, # 0y, #
Oy # ... # Oy, one begins an iterative procedure (initially setting [ = m in o.s;) until the
values of parameters converge. The effective variance o2, is treated as a constant to solve
for [ and m. The solutions are:
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The above solutions are obtained using the eigenvalue with the magnitude closest to zero.
This choice allows for correct solutions when o, or o, tend to zero. The quadrature sum of
parameters | and m is equal to one, m? + [* = 1. This relationship conveys a process that
is fundamental when solving implicit functions. Details of writing down the correct form of
least squares sum for implicit functions is given in the next section.

A few comments on the solution of a line equation. 1) A line equation can also be
written in terms of sine and cosine functions, ycos$ + zsing = 0. A comparison of this
equation with ly + maz = 0, and y = m'z, shows that the problem of solving m' = tan¢
is turned into solving m = sin¢g and | = cosp. Hence [ and m have the same properties
that of sing and cos¢ functions. 2) In the standard procedure the values of either / or m
is set to one. Where in the general method, as described in this note, the quadrature sum
(m? 4 12) is set to one. 3) To obtain an optimum minimization it is better to solve equation
9 with location parameters defined as in equations 11 and 12. The iterative solutions give
an excellent approximate results for most practical problems, but for a puritan the solution
of equation 9 is the correct result. 4) Depending on whetter A is larger than D or vice versa,
it is possible to rewrite equations 19 and 20 to avoid roundoff errors. 5) Before starting an
iterative procedure, set o.; = 1, 0y, = 1, and 0esy = 1, and solve for a,b,l, and m. Next
start iterating until the values of parameters converge. 6) Uncertainties on the parameters
using parabolic [3] approximation has a complicated form, and are not given. 7) Also the
least squares sum can be written in terms of already calculated quantities A, B,C, and D,
thus saving computing time.

3 Implicit Functions and Least Squares

The solution described in the previous section can be applied to any implicit function that
is differentiable. The required differentiation is of first order and it is with respect to the
measured variables. If z is considered a measured quantity, it is always possible (but not
necessarily desirable) to write an implicit function using the following form, g(z — ¢). In this
form ‘c’ is the location parameter and ‘q’ is the scale parameter. When fitting an implicit

function always set the quadrature sum of scale parameters to one, I + m? + p* +... = 1.
Given an implicit function F(z,y,2,...;l,m,q,...,a) =0, the least squares sum is:
- [F(2j,Yj, 2jy -3 1,0y .. .y a))?
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The derivatives are evaluated by using measured values, z;,y;, 2;,.... This is a very good
approximation compared to evaluating with ideal values; 23,y?,2},.... In the above sum the

measurement uncertainties are treated as having no dependence on parameters whatsoever.



The above sum can be minimized with respect to parameters a,l,m,q,... using a well es-

tablished minimization software package. Without the constraint I + m? +p* +... =1, the
least squares sum will not converge.
The advantage of using the general form of effective variance, o%;; = ( g)’oﬁj +

(%{-)20'3,_ + (%)263,. + ...). can be appreciated by considering a case where the first partial
derivative with respect to a variable is quite large compared to others. Since the measure-
ment uncertainty of that particular variable dominates, the scale parameter associated with
that variable will have the largest magnitude. Thus, the above form of effective variance
allows an easy transition among variables.

The above statements can be easily verified using implicit polynomial functions of any
order. By using orthonormal polynomials [2,3] and the procedures in section 2, one can
derive the constraint 12 + m? 4+ p* + ... = 1 in a straight forward fashion. Other implicit
functions (with linear parameters) can also be used to verify the above conjecture.

In cases where one has to deal with more than one implicit function, the procedure of
writing down the least squares sum is not as straight forward as given above. The least
squares sum will contain cross products of implicit functions. In addition, each term in the
sum is multiplied by weights which depend on the functional forms of implicit functions.
Also, each term in the effective variance contains products of partial derivatives. Least
squares problems that make use of more than one implicit functions occur naturally in three
or higher dimensions. An example is fitling a curve in three or higher dimensions. When
there are more than one implicit functions, then there are more than one constraint. The
quadrature sum of scale parameters for each implicit sum is set to one. The steps given
in section 2 can be used (highly tedious) to solve problems with more than one implicit
functions. There is no choice but to expand each implicit functions about the known values
of parameters to obtain effective variance of a problem.

Uncertainties on the parameters using parabolic approximation has a complicated form,
and is misleading for a general implicit function. An efficient thing to do is to use uncertain-
ties given by a minimization package, such as MINUIT [5]. In case of MINUIT, the results
do reliably agree with theoretical definition.

The constraint 2 + m? 4+ p? + ... = 1 is also valid when carrying out minimization
using other than least squares method. For example, the quadrature sum of sine and co-
sine functions is independent of any fitting procedure. Above, it was presupposed that the
measurement uncertainties belong to Gaussian distributions. The constraint does not de-
pend on the distribution of measurement uncertainties. The distribution of measurement
uncertainties do AFFECT the functional form of effective variance.

4 Examples and Applications
Example 1) A plane in zyz coordinates. The implicit function is F(z,y,z;b,m,l,p) =

me + ly + pz + b = 0. Hence, the constraint is I + m? + p? = 1, and the effective variance
02y = oy, 2+ olm? + ol p*.



Example 2) A second degree polynomial in xy plane. The general form of implicit function
is G(z,y;A,B,C,D,E,F) = Az* + Bzy + Cy* + Dz + Ey + F = 0. The constraint is
A’ + B? + C? + D? + E? = 1, and the effective variance 0?;; = 02,(2Az; + By; + D)* +
o;.(2Cy; + Bz; + E)*.

Example 3) The function of interest is y = ae™®. The implicit function for this problem
is G(z,y;l,m,b,a) = I(y — b) + e™=-9) = 0. The constraint is [2 +m? = 1, and the effective
variance o2 = :}_(me'“(’“‘“J)’ + 0y,1%. Note that the transition to two extreme situations,
(z — a) = —oo and (2 — a) — oo is achieved smoothly via the effective variance.

Application 1) Relative offset of two electronic channels. This can be a time offset or a
charge offset among channels. When each channel behavior is linear then, the solution in
section 1 is applicable. But if the response of each channel is none linear, then a consistent
way to obtain relative offsets is to carry out implicit function fit.

Suppose the response of each channel is of the following form: y = b+ ma + ka?. The
implicit function of interest than is: kz? + maz + lz + q2z? + d = 0, where the relative offset
is d.

Application 2) Fitting of two curves that intersect one another in xy plane. A straight
forward case is when two line segments intersect. The implicit functions are: F = [(y —b) +
m(z—a) =0 and G = p(y—b)+g(z—a) = 0, with the following the constraints: I*4+m? =1
and p? +¢* = 1.

5 Conclusion

A method to fit the parameters in implicit functions is shown to have no singularities. A
straight line equation is used to demonstrate the advantage of this method. In this method
each variable has a corresponding scale parameter. The standard least squares method has
one less scale parameter compared to the number of variables. In the standard least squares
method one of the scale parameters is set to one, where in the general method the quadrature
sum of scale parameters is set to one. Since this note covers only the overall properties of an
implicit function fit, the interested reader may come across features that are not mentioned
in this note. It is intellectually worth the time of an individual to to use the general least
squares method to explore problems and compare the results with that of the standard least
squares method.

6 Inquiry

If you recall reading about such a method elsewhere, please let me know. Please send your

comments to
FNALD::HK, FNAL::HK
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Figure 1: These scatter plots (‘a’ and ‘b’) are prepared using fifty events in each sample.
The Least squares fits (using a line equation y = b + mz) for many such samples lead to
average values of slope m=0 and intercept b=0. These values are correct for samples such
as shown in plot ‘a’, and incorrect for distributions such as shown in plot ‘b’. The General
Least Squares Method does give correct fit results for the above distributions. Details of this
method are given in section 2 of this note.



References

(1] A. G. Frodesen, O. Skjeggestad, H. Téfte. Probability and Statistics in Particle
Physics. UNIVERSITETSFORLAGET 1979.

(2, W.T.Eadie, D. Drijard, F. E. James, M. Roos, B. Sadoulet. STATISTICAL METH-
ODS in Experimental Physics. North-Holland Publishing Company, 1971.

(3] P.R. Bevington, Data Reduction and Error Analysis for the Physical Sciences.
McGraw-Hill, New York, 1969.

[4] Jay Orear. Least Squares When Both Variables Have Uncertainties. American
Journal of Physics. 50, 912(1982).

(5] F.James, M. Roos. MINUIT, Function Minimization and Error Analysis. CERN
Computer Center, 1983.






