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Abstract: In this work we present a generalization of the compensating method introduced by Utiyama for the 
formulation of the fundamental interactions of Nature. After revising the main ideas of Utiyama’s theory, we focus 
on the case of space-time symmetry Lie groups. The geometrical interpretation of the theory allows for the 
construction of gauge theories of gravity that generalize Einstein’s theory of General Relativity by also 
incorporating the torsion field. This framework permits the formulation of gravity and the rest of internal 
interactions on the same footing. Therefore, it is natural to study the problem of the unification of gravitation and 
the other fundamental interactions within this context. In particular, we present a non-trivial mixing of 
electromagnetism and gravitation based on the gauge symmetry associated with the central extension of the 
Poincaré group by the quantum mechanical phase invariance group U(1). As a consequence, a new 
electromagnetic force of pure gravitational origin arises. 
 
 
1. Introduction 
 

Fundamental internal interactions (electromagnetic, weak and strong) are described 
within the framework of gauge theory, the essence of which was introduced by Utiyama [1] in 
1956. By resorting to the principle of gauge invariance, Grand Unification Models have been 
developed too. 
On the other hand, gravity is described by the Theory of General Relativity, which is based on 
the principle of relativity and the principle of equivalence. In order to face the unification of 
gravitation and the rest of interactions firstly one should formulate gravity as some sort of 
gauge theory. Likewise, another additional difficulty is that, according to no-go theorems, 
there is no finite-dimensional group containing any internal SU(n) symmetry Lie group and 
the Poincaré group, acting as diffeomorphisms of Minkowski space-time, except for the direct 
product. 
 
Accordingly, the goals of the present work are the following: a) Clarify the prescription that 
generalizes the compensating method of Utiyama for the case in which the symmetry Lie 
group also acts on the space-time; b) Apply the previous generalization to formulate gravity 
on the basis of a principle of local invariance; c) Construct a model accounting for the mixing 
between gravity and electromagnetism. To this end we will bypass no-go theorems by 
considering the central extension of the Poincaré group by U(1) (versus the supersymmetry 
viewpoint). 
 
 
 
 
2. Gauge Theory for Internal Symmetries 
 
One of  the most relevant principles of modern Physics is the principle of gauge (or local) 
invariance, which states that if an elementary material physical system is invariant under a 
certain group G of internal transformations with n parameters f(a) (a = 1 , ... , n = dimG) then, 
this system must also be invariant under the same group of transformations but with 
parameters f(a)(x) depending on the position. The price to be paid is the introduction of 
compensating or gauge fields A(a)

µ
 , with the following transformation law:  

 
δA(a)

µ = f(b) Ca
bc A(c)

µ – ∂µf(a),  



 
where Ca

bc are the structure constants of the symmetry group. Then, the new Lagrangian 
describing the matter fields φα  (α = 1, ... , N) as well as their interaction with the 
compensating fields A(a)

µ
 , Lmatt(φα , Dµ φα ), with  

 
Dµ φα  = ∂µ φα + A(a)

µ
  Xα

(a)β φ 
β ,  

 
is invariant under the local (or gauge) group G(M). Note that Xα

(a)β are constant matrices 
satisfying the commutation relations of the symmetry group G.  
In other words, the gauge invariant matter Lagrangian incorporating the interaction terms is 
obtained from the original one by replacing  all ordinary derivatives of the matter fields with 
compensating derivatives:  
 
∂µ φα → Dµ φα .  
 
On the other hand, the Lagrangian density L0 describing the dynamics of the free gauge fields 
must be a scalar function of the specific combination 
 
F(a)

µν ≡ ∂ νA(a) µ – ∂ µ A(a) ν – 1/2 Ca
bc(A(b) µA(c) ν – A(b) νA(c) µ), 

 
called the field strength of the field A(a) µ.  
 
The following geometrical interpretation can be derived: 
 
-Covariant derivative: Dµ φα  ≡ ∂µ φα + A(a) µ Xα

(a)β φ 
β . 

 
-Connection: Γαµβ ≡ A(a) µ Xα

(a)β . 
 
-Curvature tensor: Rαµνβ ≡ F(a)

µν Xα
(a)β . 

 
 
 
 
3. Gauge Theory for Space-Time Symmetries 
 
When the symmetry group also acts on the points of the space-time manifold M, the gauge 
algebra can be seen as the semi-direct product of the diffeomorphism algebra of  M, diff(M), 
and the vertical gauge algebra (which accounts for the action of the group on the internal 
components of matter fields). As a consequence, the set of compensating fields is enlarged 
with respect to the pure internal symmetry case, that is, apart from fields of the type A(a) µ we 
have to introduce new fields h(a)ν

µρ and their transformation rules read respectively: 
 
δA(a)

µ = f(b)Ca
bcA(c)

µ – ∂µf(a) – A(a)
ν∂µ(f(b) δ(b)xν), 

 
δh(a)ν

µρ = ∂µf(a)δνρ + h(a)σ
µρ∂σ(f(b) δ(b)xν) – f(b) ∂µ(δ(b)xσ)h(a)ν

σρ , 
 
where δ(a)xµ is a linear realization of the symmetry group on the space-time points, that is, the 
infinitesimal variation of the space-time points in the direction of the group generator (a). 
In this case the new Lagrangian density invariant under the local algebra that describes the 
dynamics of the matter fields and their interaction with the compensating fields presents the 
following structure: lmatt ≡ Λ Lmatt (φα , Δµφα ), with  
 
Λ ≡ det(qµ

ν) ,  
 



Δµφα  ≡ kµ
νDν φα  ≡ kµ

ν (∂ν φα + A(a) νXα
(a)β φ 

β) , 
 
kµ
ν  ≡ δνµ + h(a)ν

µρδ(a)xρ , 
 
kµ
ν qµ

σ = δνσ , kµ
ν qσν = δσµ . 

 
It is worth remarking that due to the structure of the generalized compensating derivative  
Δµφα , it is natural to consider the set {A(a)

µ , kµ
ν}as compensating fields, assuming the 

following transformation law for kµ
ν:  

 
δk µ

ν
 = k µ

σ∂σ(f(a) δ(a)xν) – f(a) ∂µ(δ(a)xσ)k σ
ν
 . 

 
Formulations of the theory in terms of the fields {A(a)

µ , h(a)ν
µρ } and {A(a)

µ , kµ
ν} are equivalent 

[2]. 
 
The principle of minimal coupling can be generalized by saying that the Lagrangian density 
invariant under the local space-time transformations that contains the interaction terms can be 
obtained from the original matter Lagrangian density by replacing all the ordinary derivatives 
of matter fields by generalized compensating derivatives:   
 
∂µ φα → Δµφα  

 

and multiplying the result by the factor Λ ≡ det(qµ
ν) to compensate the variation of the 

integration volume due to the non-null divergence of the generators of the local space-time 
symmetry group. 
 
On the other hand, the Lagrangian density L0(A(a)

µ , ∂νA(a)
µ , kµ

ν, ∂σkµ
ν) of the free 

compensating fields invariant under the local space-time algebra has to be Λ (≡ det(qµ
ν)) 

times a scalar function l0 of the objects t σµν and  f (a) µν , i.e.  
 
L0(A(a)

µ , ∂νA(a)
µ , kµ

ν, ∂σ kµ
ν) = Λ l0( t σµν ,  f  (a) µν ) ,  

 
where 
 
t σµν ≡ qσρ(∂τ kνρ kµ

τ – ∂τ kµ
ρ kντ) – A(a)

ρ [kµ
ρ ∂ν(δ(a)xσ) – k ν

 ρ ∂µ (δ(a)xσ)] , 
 
f (a) µν ≡ kµ

ρ kνσ F(a)
ρσ ≡ kµ

ρ kνσ [∂σA(a) ρ– ∂ ρ A(a) σ – 1/2 Ca
bc(A(b) ρ A(c) σ – A(b) σ A(c) ρ )] . 

 
The gauge theory of space-time symmetries just presented leads to the following geometrical 
interpretation.  Fields k υ

 ρ and their inverse qσρ can be interpreted as tetradic fields or tetrads, 
in terms of which we can write the metric tensor:  
 
gµν ≡ qσµ qρν ησρ  
 
and the inverse gµν ≡ kσµ kρν ησρ . We also arrive at the equality:   
 
Λ ≡ det(qµ

ν)=[–det(gµν)]1/2 . 
 
Apart from the metric, we can construct another important geometrical object: a space-time 
connection Гσµυ given by the expression: 
 
Гσµν ≡ qρµ [A(a) ν ∂ρ(δ(a)xτ) kτσ – ∂ν kρσ] . 
 



The covariant derivative of the metric tensor with respect to the connection Гσµν vanishes, i.e. 
gµν;σ = 0. We can also introduce the corresponding curvature and torsion tensors, Rρσµν and 
Θσµν , associated with Гσµν , given respectively by: 
 
Rρσµν ≡ ∂νГρσµ – ∂µГρσν – ГρτµГτσν + ГρτνГτσµ ,  
 
Θσµν ≡ Гσµν – Гσνµ . 
 
The following relations can be obtained too: 
 
Rρσµν = kθρ qλσ qτµ qων f (a) τ ω ∂λ(δ(a)xθ) ,  
 
Θσµν = kθσ qρµ qλν t θρλ . 
 
 
 
 
4. Gauge Theories of Gravity 
 
Depending on the chosen space-time symmetry group the structure of  Гσµν incorporates 
different compensating fields and the resulting connection defines different geometries.  
Likewise, within each geometry it is possible to construct a gauge gravitational theory. 
For example: 
- Weitzenbock geometry is related to the gauge theory of the space-time translation group 
(e.g. [3]). 
- Riemann- Cartan geometry is associated with the gauge theory of the Poincaré group (e.g. 
[4,5]). 
- Weyl- Cartan geometry arises when considering the gauge theory of the Weyl group (e.g. 
[6]). 
 
It is remarkable that the formulation of gravity as a gauge theory allows for the interpretation 
of the principle of equivalence as a principle of local invariance. Moreover, the gauge theory 
of gravitation leads to generalizations of the theory of General Relativity by incorporating 
also the torsion tensor. A relevant example is the Einstein-Cartan theory, which is 
characterized by a Lagrangian density linear in the curvature and quadratic in the torsion.  
 
The experimental detection of the torsion could be related to phenomena such as the 
additional splitting of the spectral lines of the electron in the atom or the CP violation in 
particles decays, but if the coupling constant of the torsion were equal to the gravitational 
constant then all the laboratory effects would be very small and could not be verified 
experimentally. However, the relevance of the torsion is more patent in certain cosmological 
models in the sense that gravitational collapses can be avoided. In fact, in Einstein-Cartan 
theory and in some models with dynamical torsion it is possible to obtain regular 
cosmological solutions with respect to the metric.  
 
 
 
 
5. Mixing of Gravitation and Electromagnetism 
 
The present electro-gravity mixing (see [7]) is based on two important notions: the local 
invariance and the central extension of a group.  Let us introduce this last concept. Working at 
the infinitesimal level, given the Lie algebra of a Lie group G, characterized by the 
commutation relations 



 
[X(a) , X(b)] = Cc

ab X(c) , 
 
the new algebra of the central extension of the group G by the group U(1) is defined by 
modifying the previous commutators by means of the incorporation of a new central 
generator (which, therefore, commutes with the rest of generators) Ξ associated with the 
parameter ζ of  U(1) and the introduction of new constant parameters C ζab : 
 
[X(a) , X(b)] = Cc

ab X(c) + C ζab Ξ, 
 
and [Xζ , X(a)] = 0 for all generators X(a) of the original algebra. 
 
We are interested in the central extension of the Poincaré group by U(1). In this case, the 
commutator of the Lorentz and translation generators is modified according to 
 
[Mµν , Pρ] = Cσµν,ρ Pσ + C ζµν,ρ Ξ , 
 
with 
 
Cσµν, ρ ≡ ηνρδσµ – ηµρδσν , 
 
C ζµν,ρ ≡ λνηµρ – λµηνρ , 
 
where λµ is a vector in the Poincaré co-algebra belonging to a given co-adjoint orbit, and can 
be related to the coupling constant, κ , of the mixing. 
 
When considering the gauge theory of the centrally extended Poincaré group, according to 
Section 3, we remark the presence of the coupling constant κ through the structure constant  
C ζµν,ρ  in the generalized field strength  f (ζ) µυ  associated with the parameter of U(1). Without 
loss of generality we can select a preferred direction for λµ ,  
 
λµ = – κ δ0

µ  , 
 
so that we arrive at 
 
C ζσρ, µ ≡ κ (ηρµ δ0

σ – ησµ δ0
ρ) . 

 
In order to construct an electro-gravity theory in the most economical way, and bearing in 
mind the results of the gauge theory of the Poincaré group, it is enough to consider only the 
Lorentz and U(1) generalized curvatures, which respectively read: 
 
F(λρ)

µν = ∂νA(λρ)
µ – ∂µA(λρ)

ν – ηθσ (A(λθ)
µ A(σρ)

ν – A(λθ)
ν A(σρ)

µ) , 
 
F(ζ) µν = ∂νA(ζ)

µ – ∂µA(ζ)
ν –1/2 C ζ λ,θρ (A(λ)

µ A(θρ)
ν – A(λ)

ν A(θρ)
µ)  

 
          = ∂νA(ζ)

µ – ∂µA(ζ)
ν + κ ηij (A(j)

µ A(0i)
ν – A(j)

ν A(0i)
µ) , 

 
where ηij is the Minkowski metric and the Latin indices i, j run from 1 to 3. Likewise, we 
assume the standard relation between translational and tetradic fields:  
 
A(ν)

µ = δνµ – qνµ . 
 
The potentials A(ζ)

µ  can be decomposed as follows: 
 



A(ζ)
µ = A(ELEC)

µ + κ B(GRAV)
µ , 

 
where B(GRAV)

µ  is an ‘’electromagnetic’’ contribution of pure gravitational origin and A(ELEC)
µ 

coincides with the electromagnetic potential when κ→0, thus recovering the Einstein-
Maxwell theory associated with the gauging of the direct product of the Poincaré group and 
the electromagnetic U(1). 
Note that B(GRAV)

µ  must be a function of the gravitational potentials. For simplicity we will 
assume the simplest case, that is, B(GRAV)

µ  as a function of the tetrads (or the metric). It is 
worth remarking that the theory can be developed working on first order in κ. In fact, it is 
expected that 
 
| κ e| ≤ m electron → κ ≤ 6 x 10 –12 Kg/C . 
 
Therefore, the maximum supposed value for κ would correspond to the mass-charge relation 
of the electron. In such a case, the physical content of the module of  λµ would be essentially 
the quotient of coupling constants (gravitational and electromagnetic ones). This is in fact a 
feature of unified (gauge) theories, for example, in the electro-weak theory the tangent of the 
Weinberg angle gives precisely the relation between the isospin and hypercharge coupling 
constants. 
 
Taking into account that A(ζ)

µ = A(ELEC)
µ + κ B(GRAV)

µ , the field strength F(ζ) µν admits the 
following decomposition: 
 
F(ζ) µν = F(ELEC) µν + κ F(GRAV) µν , 
 
With 
 
F(ELEC) µν = ∂νA(ELEC)

µ – ∂µA(ELEC)
ν , 

 
F(GRAV) µν = ∂νB(GRAV)

µ – ∂µB(GRAV)
ν + ηij (A(j)

µ A(0i)
ν – A(j)

ν A(0i)
µ) . 

 
As a consequence, the field B(GRAV)

µ could be responsible for some electromagnetic force 
associated with very massive rotating systems, as A(0i)

µ is somehow related to Coriolis-like 
forces. A similar effect is the so-called Blackett effect or gravitational magnetism, which 
consists in the generation of magnetic fields from electrically neutral rotating objects. 
 
The simplest electro-gravitational gauge invariant Lagrangian density for the free 
compensating fields in our model has the form: 
 
L0 = –1/4 Λ f (ζ) µν  f (ζ) µν  + 1/2  f (µν) µν  = –1/4 Λ gµσ gνρ F (ζ) µν F (ζ) σρ + 1/2 Λ kµ

σ kνρ F(µν)
σρ , 

 
Where f (ζ) µν  ≡ f (ζ) σρ  ησµ ηρν and we recall that gσρ = kµ

σ kνρ ηµν , Λ ≡ det(qµ
ν) . 

 
The corresponding Euler-Lagrange equations for the fields kµ

ν , A(σρ)
µ and A(ζ)

µ  , up to first 
order in the mixing constant κ , respectively read: 
 
a)  Λ ( f (µσ) νσ – 1/2 δµ

ν f (ρσ) ρσ ) = – Φµ
σ kνσ , 

 
b)  Λ [ kθµ T θρσ – kρµ T θθσ + kσµ T θθρ + (kθµ kρν – kρµ kθν ) A(θ 

σ) ν  
 

     – (kσµ kθν + kθµ kσν) A(θ ρ) ν ] = – 2 κ Σµ
(σρ)  , 

 
c)  ∂σ (Λ F(ζ)

µσ) = 0 , 
 
where 



 
Φµ

σ ≡ Φµ (ELEC) 
σ + κ Φµ (MIXING)

σ , 
 
Φµ (ELEC) 

σ ≡ 1/4 Λ qµ
σ f (ELEC) λθ  f (ELEC) λθ  – Λ qθσ f (ELEC) θλ  f (ELEC) µλ  , 

 
Φµ (MIXING)

σ ≡ 1/2 Λ qµ
σ f (ELEC) λθ  f (GRAV) λθ  – Λ qθσ f (GRAV) θλ  f (ELEC) µλ   

 
– Λ qθσ f (ELEC) θλ  f (GRAV) µλ   – Λ  f (ELEC) θλ  ησj kλµ kθτ A(0j) 

τ 
 
– 1/2 Λ  f (ELEC) λθ kλν kθρ ∂ (∂ρB(GRAV)

ν – ∂νB(GRAV)
ρ)/∂ kµ

σ 
 
+ 1/2  ∂ λ[Λ  f (ELEC) θρ kθω kρτ ∂(∂τB(GRAV)

ω – ∂ωB(GRAV)
τ)/∂(∂λkµ

σ)] , 
 
T σνµ ≡ qσρ(∂τ kνρ kµ

τ – ∂τ kµ
ρ kντ) , 

 
Σµ

(σρ)  ≡ 1/2 Λ  f (ELEC) λθ (kλτ kθµ – kλµ kθτ) δ0
σ ηiρ A(i) 

τ . 
 
Using the curvature and torsion tensors, equations a) and b) can be written respectively in the 
form: 
 
Λ (Rµν – 1/2 gµν R) = T (ELEC)

µν + κ T (MIXING)
µν , 

 
Λ Θλµν = κ Sλ (MIXING) µν , 
 
with 
 
T (ELEC) 

µν ≡ – qσµ ηρσ Φρ (ELEC) 
ν , 

 
T (MIXING) 

µν ≡ – qσµ ηρσ Φρ (MIXING) 
ν , 

 
Sλ (MIXING) µν ≡ 2 qσµ qρν Σλ(σρ)  – δλµ qθρ qτν Σρ(θτ)  – δλν qθµ qτρ Σρ(θτ)  . 
 
Note that in the κ→0 limit the previous motion equations reproduce those of the gauge theory 
of the direct product of Poincaré and U(1), thus recovering the standard Einstein-Maxwell 
theory (without mixing). 
 
Likewise, one can easily evaluate the geodesics with mixing terms for a spinless particle of 
mass m, momentum pµ (= m uµ = m dxµ/dτ) and charge q: 
 
gµσ duµ/dτ = – uµ uνГµνσ (Levi-Civita) – q/m uµ F (ELEC) 

µσ – κq/m uµ (∂σB(GRAV)
µ – ∂µB(GRAV)

σ). 
 
This is the equation for a particle in the presence of both gravitational and electromagnetic 
fields, with an additional Lorentz-like force (proportional to κq) generated by the 
gravitational compensating potentials. 
 
 
 
 
6. Conclusions 
 

The generalization of Utiyama’s theory to space-time symmetry Lie groups has been 
revisited. The precise form of the Lagrangian density of the free compensating fields as well 
as the Lagrangian density describing the interaction between matter fields and compensating 
fields have been presented. In this process notions such as ‘compensating derivative’ and 
‘strength tensor’ have also been generalized to the case of external symmetries. In our 



approach we introduce, in contrast to the standard literature, compensating fields h(a) ν
µρ , thus 

accounting for the presence of the local group index (a) instead of resorting from the starting 
point to the usual tetradic fields kνµ . Likewise, our formulation allows for the introduction of 
compensating fields associated with local space-time translations in spite of their trivial 
realization on matter fields. 
 
With respect to the mixing of interactions, a simple model of mixing between gravitation and 
electromagnetism has been developed, accounting for electromagnetic forces of pure 
gravitational origin. This model is associated with the gauging of a central extension of the 
Poincaré group by U(1). An important point to obtain the electromagnetic curvature with 
mixing terms, F(ζ) µν , has been the possibility of introducing translational compensating fields 
A(ν) 

µ , since the structure constant which contains the electro-gravity mixing constant 
involves the translational indices. It is remarkable the appearance of an electromagnetic field 
of pure gravitational origin, thus, in some sense, this model revives ideas such as the 
gravitational magnetism. The field equations result to be of the Einstein-Maxwell type but 
with additional terms involving torsion and the mixing constant. We have also pointed out the 
modification of the geodesic equations of a spinless particle, obtaining an analog of the 
Lorentz force but of gravitational origin. 
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