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Abstract: In this work we present a generalization of the compensating method introduced by Utiyama for the
formulation of the fundamental interactions of Nature. After revising the main ideas of Utiyama’s theory, we focus
on the case of space-time symmetry Lie groups. The geometrical interpretation of the theory allows for the
construction of gauge theories of gravity that generalize Einstein’s theory of General Relativity by also
incorporating the torsion field. This framework permits the formulation of gravity and the rest of internal
interactions on the same footing. Therefore, it is natural to study the problem of the unification of gravitation and
the other fundamental interactions within this context. In particular, we present a non-trivial mixing of
electromagnetism and gravitation based on the gauge symmetry associated with the central extension of the
Poincaré group by the quantum mechanical phase invariance group U(1). As a consequence, a new
electromagnetic force of pure gravitational origin arises.

1. Introduction

Fundamental internal interactions (electromagnetic, weak and strong) are described
within the framework of gauge theory, the essence of which was introduced by Utiyama [1] in
1956. By resorting to the principle of gauge invariance, Grand Unification Models have been
developed too.

On the other hand, gravity is described by the Theory of General Relativity, which is based on
the principle of relativity and the principle of equivalence. In order to face the unification of
gravitation and the rest of interactions firstly one should formulate gravity as some sort of
gauge theory. Likewise, another additional difficulty is that, according to no-go theorems,
there is no finite-dimensional group containing any internal SU(n) symmetry Lie group and
the Poincaré group, acting as diffeomorphisms of Minkowski space-time, except for the direct
product.

Accordingly, the goals of the present work are the following: a) Clarify the prescription that
generalizes the compensating method of Utiyama for the case in which the symmetry Lie
group also acts on the space-time; b) Apply the previous generalization to formulate gravity
on the basis of a principle of local invariance; ¢) Construct a model accounting for the mixing
between gravity and electromagnetism. To this end we will bypass no-go theorems by
considering the central extension of the Poincaré group by U(1) (versus the supersymmetry
viewpoint).

2. Gauge Theory for Internal Symmetries

One of the most relevant principles of modern Physics is the principle of gauge (or local)
invariance, which states that if an elementary material physical system is invariant under a
certain group G of internal transformations with n parameters ¥ (a =1, ..., n = dimG) then,
this system must also be invariant under the same group of transformations but with
parameters f(x) depending on the position. The price to be paid is the introduction of
compensating or gauge fields A(a)u, with the following transformation law:

5 A(a)ll = C%. A(C)u_ 6Hf(a)’



where C’, are the structure constants of the symmetry group. Then, the new Lagrangian
describing the matter fields ¢” (a =1, ..., N) as well as their interaction with the
compensating fields A(a)u » Lina(0”, Dy @%), with

D, 9" =0, ¢"+ A(a)u X’ap @ b,

is invariant under the local (or gauge) group G(M). Note that X are constant matrices
satisfying the commutation relations of the symmetry group G.

In other words, the gauge invariant matter Lagrangian incorporating the interaction terms is
obtained from the original one by replacing all ordinary derivatives of the matter fields with
compensating derivatives:

0, 9" — Dy 9",

On the other hand, the Lagrangian density L, describing the dynamics of the free gauge fields
must be a scalar function of the specific combination

FO =0,A9 — 8, A~ 1/2 Ch(AD A ,— AP A© )
called the field strength of the field A® .

The following geometrical interpretation can be derived:
-Covariant derivative: D, ¢“ =8, 0"+ A® , X .5 0.
-Connection: [*3= A® , X5 .

-Curvature tensor: Rp= F®, X%

3. Gauge Theory for Space-Time Symmetries

When the symmetry group also acts on the points of the space-time manifold M, the gauge
algebra can be seen as the semi-direct product of the diffeomorphism algebra of M, diff(M),
and the vertical gauge algebra (which accounts for the action of the group on the internal
components of matter fields). As a consequence, the set of compensating fields is enlarged
with respect to the pure internal symmetry case, that is, apart from fields of the type A® L We
have to introduce new fields h®",, and their transformation rules read respectively:

3A®, = fPC% A, — 0, — AW 5,(f §p)x"),
8@, = 0,f98", + h®°, 05(f” 8x") — £ 8,(8px @', ,

where §(,x" is a linear realization of the symmetry group on the space-time points, that is, the
infinitesimal variation of the space-time points in the direction of the group generator (a).

In this case the new Lagrangian density invariant under the local algebra that describes the
dynamics of the matter fields and their interaction with the compensating fields presents the
following structure: /ma= A Liae (0*, Ay0”), with

A =det(q") ,



AG" =KD, 0" =k, (8, 9"+ AV X 0")

k) =8+ h(a)VHPS(a)Xp >

kuv q}lc — SVG , kuv qu — 8(5“ .

It is worth remarking that due to the structure of the generalized compensating derivative
A0, it is natural to consider the set {A®,,, k,’}as compensating fields, assuming the
following transformation law for k,":

8k ' =k ,“06(f* §@x") — £ 0,(8@x )k 6" .

Formulations of the theory in terms of the fields {A®,, h®",,} and {A®,, k,"} are equivalent

[2].

The principle of minimal coupling can be generalized by saying that the Lagrangian density
invariant under the local space-time transformations that contains the interaction terms can be
obtained from the original matter Lagrangian density by replacing all the ordinary derivatives
of matter fields by generalized compensating derivatives:

0u 0" — A"

and multiplying the result by the factor A = det(q",) to compensate the variation of the
integration volume due to the non-null divergence of the generators of the local space-time
symmetry group.

On the other hand, the Lagrangian density Lo(A®,,, ,A®,, k", d.k,") of the free
compensating fields invariant under the local space-time algebra has to be A (= det(q",))
times a scalar function /, of the objects ¢ °,, and f© ,, , i.e.

LoA®,, 8.A®, K, k) = Alo( 1%, f @ ),

where

t % = (0 kK - 0k k) — AW K 0u(8wx”) — k0, (Bwx )]

F9 =k kS FY e =k Pk [0AY - 0, AW o— 172 C(A® ) AQ o — AP G A )]

The gauge theory of space-time symmetries just presented leads to the following geometrical

interpretation. Fields k" and their inverse q°, can be interpreted as tetradic fields or tetrads,
in terms of which we can write the metric tensor:

g =q"uqv Nop

and the inverse g" = k"' k,' n° . We also arrive at the equality:
g p M q Yy

A = det(q",)=[—det(g,)]"* .

Apart from the metric, we can construct another important geometrical object: a space-time
connection I"°,, given by the expression:

I =q% [A?,6,(8x ) ke — 8, k] .



The covariant derivative of the metric tensor with respect to the connection I'°,, vanishes, i.e.
g0 = 0. We can also introduce the corresponding curvature and torsion tensors, R’ and
0°, , associated with I'°,,, given respectively by:

Rl = 0Py = Ol Py = TP Ty + TP Ty
O°W =T —T"%,.

The following relations can be obtained too:
Rl =k’ 06 44" /@ 10 0i(8wx") ,

» L0
O =k’ q"uq"vt .

4. Gauge Theories of Gravity

Depending on the chosen space-time symmetry group the structure of I'°,, incorporates
different compensating fields and the resulting connection defines different geometries.
Likewise, within each geometry it is possible to construct a gauge gravitational theory.

For example:

- Weitzenbock geometry is related to the gauge theory of the space-time translation group
(e.g. [3D.

- Riemann- Cartan geometry is associated with the gauge theory of the Poincaré group (e.g.
[4,5]).

- Weyl- Cartan geometry arises when considering the gauge theory of the Weyl group (e.g.
[6]).

It is remarkable that the formulation of gravity as a gauge theory allows for the interpretation
of the principle of equivalence as a principle of local invariance. Moreover, the gauge theory
of gravitation leads to generalizations of the theory of General Relativity by incorporating
also the torsion tensor. A relevant example is the Einstein-Cartan theory, which is
characterized by a Lagrangian density linear in the curvature and quadratic in the torsion.

The experimental detection of the torsion could be related to phenomena such as the
additional splitting of the spectral lines of the electron in the atom or the CP violation in
particles decays, but if the coupling constant of the torsion were equal to the gravitational
constant then all the laboratory effects would be very small and could not be verified
experimentally. However, the relevance of the torsion is more patent in certain cosmological
models in the sense that gravitational collapses can be avoided. In fact, in Einstein-Cartan
theory and in some models with dynamical torsion it is possible to obtain regular
cosmological solutions with respect to the metric.

5. Mixing of Gravitation and Electromagnetism

The present electro-gravity mixing (see [7]) is based on two important notions: the local
invariance and the central extension of a group. Let us introduce this last concept. Working at
the infinitesimal level, given the Lie algebra of a Lie group G, characterized by the
commutation relations



X » Xwy] = Cab Xy »

the new algebra of the central extension of the group G by the group U(1) is defined by
modifying the previous commutators by means of the incorporation of a new central
generator (which, therefore, commutes with the rest of generators) E associated with the
parameter { of U(1) and the introduction of new constant parameters C b

[Xe@ » Xyl = C X T C b E,

and [X¢ , X)) = 0 for all generators X, of the original algebra.

We are interested in the central extension of the Poincaré group by U(1). In this case, the
commutator of the Lorentz and translation generators is modified according to

[My s Pl = Couyp Po + C Sup B,
with

Co,p = Mup®u— Mupd

C Cuv,p = MM — MMvp

where A, is a vector in the Poincaré co-algebra belonging to a given co-adjoint orbit, and can
be related to the coupling constant, k , of the mixing.

When considering the gauge theory of the centrally extended Poincaré group, according to
Section 3, we remark the presence of the coupling constant k through the structure constant
C Cuv,p in the generalized field strength f © w associated with the parameter of U(1). Without
loss of generality we can select a preferred direction for A, ,
A=—xd,
so that we arrive at

- 0 0
C Ccp,u:K(T]pu‘S 6= MNoudp) -
In order to construct an electro-gravity theory in the most economical way, and bearing in
mind the results of the gauge theory of the Poincaré group, it is enough to consider only the
Lorentz and U(1) generalized curvatures, which respectively read:
F(MD)W =0, AO»P)H _ au A(KP)V_ Moo ( A(l@)u A(GP)V _ AO»@)V A(Gp)u) ,
F(C) = avA(C)H _ aHA(C)V ~12C Ck,ep (A(Mu A(OP)V _ A(l)v A(GD)H)

— 0,A9, — 0,A9, + ik (AD, A, AD ACD )

where 1; is the Minkowski metric and the Latin indices i, j run from 1 to 3. Likewise, we
assume the standard relation between translational and tetradic fields:

A(V)u — Svu _ qv}l .

The potentials A, can be decomposed as follows:



A(g)H _ A(ELEC)“ i B(GRAV)H,
where B(GRAV)ll is an “’electromagnetic’’ contribution of pure gravitational origin and A(ELEC)H
coincides with the electromagnetic potential when k—0, thus recovering the Einstein-
Maxwell theory associated with the gauging of the direct product of the Poincaré group and
the electromagnetic U(1).

Note that B(C’RAV)H must be a function of the gravitational potentials. For simplicity we will
assume the simplest case, that is, B(GRAV)u as a function of the tetrads (or the metric). It is
worth remarking that the theory can be developed working on first order in «. In fact, it is
expected that

|Ke|Smelectr0n_>KS6Xlo_lng/C,

Therefore, the maximum supposed value for k would correspond to the mass-charge relation
of the electron. In such a case, the physical content of the module of A, would be essentially
the quotient of coupling constants (gravitational and electromagnetic ones). This is in fact a
feature of unified (gauge) theories, for example, in the electro-weak theory the tangent of the
Weinberg angle gives precisely the relation between the isospin and hypercharge coupling
constants.

Taking into account that A©, = A®FO + 1« BO*Y) the field strength F© ,, admits the
following decomposition:

© _ R(ELEC) (GRAV)
F® =F wtKkF "

vs
With

F(ELEC) =0y A(ELEC)u ~ 8, A(ELEC)V ,

FORAY) | _ 5 BEORAY) 5 BGRAY) o (AD AOD A A©D )

As a consequence, the field B(GRAV)” could be responsible for some electromagnetic force

associated with very massive rotating systems, as A(Oi)H is somehow related to Coriolis-like
forces. A similar effect is the so-called Blackett effect or gravitational magnetism, which
consists in the generation of magnetic fields from electrically neutral rotating objects.

The simplest electro-gravitational gauge invariant Lagrangian density for the free
compensating fields in our model has the form:

Lo=—1/4 NSO fO™ +1/2 £ =-1/4 A g P F O F O o+ 12 Ak kS F
Where O = £© o N7'1" and we recall that g =k,° k,” n"""', A = det(q",) .

The corresponding Euler-Lagrange equations for the fields k", AP )u and A(QPL , up to first
order in the mixing constant k , respectively read:

a) A (¥ o128 % o) =— % k7,
b) A[ke" T 06—k T %+ ko' T %, + (k" k," — kM ko' ) AC ),

— (ko' ko' + ko'ks') AC )y 1= =2k 2y
¢) 0 (AF9,0) =0,

where



Ot = q)u(ELEC)G + ¢ @M MIXING)

(Dp(ELEC)G =1/4 A quc f(ELEC) 0 f(ELEC) 0 A qec f(ELEC) o f(ELEC) vy ,
(Dp(MIXlNG)G =12 A q“c f(ELEC) 0 f(GRAV) 0 A qec f(GRAV) o f(ELEC) vy

_A qeG f(ELEC) o f(GRAV) o A f(ELEC) [N Mo KM k' A(Oj)T

— 12 A YK K 0(8,BAY, — 0, BV yo k,°

+1/2 03[A fEFO Pk kT 60 BTV, — 6,B AV Y60k,
T °w=q%(0: k" k, - 0k k),
T = 12 A FEFOM (16T ke — koM ko) 8% mip AP

Using the curvature and torsion tensors, equations a) and b) can be written respectively in the
form:

ARy-12g,R)=T (ELEC)W +xT (MIXING)HV ,

A A (MIXING
A®uv:KS( )pv,

with
ELEC) _ ELEC
T )uv:_qcunpcq)p( )v’
T (MIXING) = @t PP MIXING)

N G B % s 0 A 0
g (MIXING) =20 g T — 8 @ @ o — 0% 9% a5 o) -

Note that in the k—0 limit the previous motion equations reproduce those of the gauge theory
of the direct product of Poincaré and U(1), thus recovering the standard Einstein-Maxwell
theory (without mixing).

Likewise, one can easily evaluate the geodesics with mixing terms for a spinless particle of
mass m, momentum p, (= m u, = m dx,/dt) and charge q:

(Levi-Civita) _ n p (ELEC) BGRAV) _ 5 B(GRAY) )
B Ny p— O o)

g du/dt=—u" u'T o g/mu +— kq/mu" (0
This is the equation for a particle in the presence of both gravitational and electromagnetic
fields, with an additional Lorentz-like force (proportional to kq) generated by the

gravitational compensating potentials.

6. Conclusions

The generalization of Utiyama’s theory to space-time symmetry Lie groups has been
revisited. The precise form of the Lagrangian density of the free compensating fields as well
as the Lagrangian density describing the interaction between matter fields and compensating
fields have been presented. In this process notions such as ‘compensating derivative’ and
‘strength tensor’ have also been generalized to the case of external symmetries. In our



approach we introduce, in contrast to the standard literature, compensating fields h® "up » thus
accounting for the presence of the local group index (a) instead of resorting from the starting
point to the usual tetradic fields k," . Likewise, our formulation allows for the introduction of
compensating fields associated with local space-time translations in spite of their trivial
realization on matter fields.

With respect to the mixing of interactions, a simple model of mixing between gravitation and
electromagnetism has been developed, accounting for electromagnetic forces of pure
gravitational origin. This model is associated with the gauging of a central extension of the
Poincaré group by U(1). An important point to obtain the electromagnetic curvature with
mixing terms, F© w » has been the possibility of introducing translational compensating fields
AV u » since the structure constant which contains the electro-gravity mixing constant
involves the translational indices. It is remarkable the appearance of an electromagnetic field
of pure gravitational origin, thus, in some sense, this model revives ideas such as the
gravitational magnetism. The field equations result to be of the Einstein-Maxwell type but
with additional terms involving torsion and the mixing constant. We have also pointed out the
modification of the geodesic equations of a spinless particle, obtaining an analog of the
Lorentz force but of gravitational origin.
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