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Abstract
The nitrogen-vacancy (NV) centre in diamond is a premier solid-state defect for quantum
information processing and metrology. An integrated diamond quantum device harnesses the
collective properties of multiple NV centres, enabling room-temperature quantum computing and
sensing. While large-scale devices are poised to fill an important gap in the burgeoning quantum
technology landscape, their practical realisation has not been achieved using current top-down
fabrication techniques such as ion implantation. Consequently, this necessitates the development
of a bottom-up fabrication technique, which is scalable, deterministic, and possesses atomic-scale
precision. Informed by existing methods for fabricating phosphorous defect qubits in silicon, we
envision a hydrogen depassivation lithography technique for atomically-precise manufacturing of
nitrogen-vacancy centres in diamond. This perspective article outlines a viable multi-step
procedure for realising scalable fabrication of diamond quantum devices and identifies the key
challenges in its development.

The negatively-charged nitrogen-vacancy (NV−) centre is a point defect in diamond which possesses a
unique combination of optical and spin properties [1]. Diamond quantum devices leverage these remarkable
properties for compact and room-temperature quantum computation [2, 3] and sensing [4, 5]. This capacity
differentiates diamond from leading architectures in the quantum technology landscape, many of which
require bulky mainframes or are constrained within dilution fridges. Instead, diamond devices promise to
expand the scope of quantum advantage to on-demand computing and sensing in robust operational
environments. This vision is embodied through the concept of the diamond quantum accelerator; an
intermediate-scale quantum computer which seeks to out-compete classical computers of similar size,
weight, and power [6]. The ability to widely distribute and integrate quantum accelerators with classical
devices offers a potential pathway for long-term adoption in the technological ecosystem. Such devices could
be implemented in massively-parallelised quantum computing systems for high-performance computing
applications [7–9], and in offline and autonomous systems, such as vehicles, satellites, in medical
environments, and for edge computing applications [6, 10].

Unlocking the full capabilities of diamond quantum devices will require a method to fabricate NV
centres at scale. This is because the performance of both quantum computers and sensors increases with the
number of NV centres integrated within the device. Namely, the qubit volume of a quantum computer scales
with the number of entangled defects. While entanglement is not necessarily desirable for conventional
quantum sensors, their sensitivity is shot-noise limited and increases with the number of independent
defects operating in parallel. However, note that there also exist proposals for enhancing sensitivity through
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controlled entanglement schemes [11]. As discussed below, the optimal means for achieving scalability at
room-temperature is through an array of closely-spaced and identical NV centres with nanometre-scale
separation. Unfortunately, such an architecture cannot be reliably manufactured using existing top-down
fabrication techniques, as they do not possess the required spatial resolution or reproducibility. Overcoming
this scalability barrier therefore necessitates the development of a bottom-up fabrication process which is
both deterministic and possesses sub-nanometre spatial precision. This process is termed atom-scale
fabrication [12, 13]. Consequently, the aim of this perspective article is to introduce the major steps involved
in the atom-scale fabrication process and to critically consider the key engineering developments necessary
for its realisation.

Despite the limitations of current fabrication technology, small scale diamond-based quantum
computing is already an existing reality [2, 14–16]. The pivotal element of these computing devices is the
quantum processing node, comprised of an NV− centre (consisting of a substitutional N atom adjacent to a
vacancy) surrounded by a cluster of nearby nuclear spins (typically 13C nuclei). The nuclear spins act as the
qubits of the computer, whilst the NV− centre mediates qubit initialisation, readout, and intra-node
multi-qubit operations. Quantum computation is then controlled via radiofrequency, microwave, optical
and magnetic fields. Each processing node contains at minimum one qubit, realised through the nuclear spin
of the N which composes the NV itself. Whilst the number of qubits can be increased through the presence of
nearby 13C spins, a single NV centre can control at most 5–10 qubits; beyond this point, the nuclear
hyperfine levels of the satellite spins cannot be resolved spectrally. Existing devices are therefore limited by
small qubit volumes.

Scaling a diamond quantum computer will therefore require fabrication of many quantum processing
nodes which are entangled through an on-chip quantum bus. Currently, the most promising means for
realising this bus at room temperature is through dipolar coupling of adjacent NV− electronic spins [17].
Constructing a scalable quantum device in this manner will require unprecedented control over NV
fabrication at the atomic scale. For example, consider the idealised device architecture in figure 1. It features
a homogeneous array of aligned NV centres which form a 2D layer of qubits. We estimate that adjacent NV−

centres must be separated by a distance of 5–10 nm for practical implementation of quantum computing.
This distance regime produces a dipolar coupling between adjacent NV centres which is strong enough to
achieve fast two-qubit gate operations, whilst simultaneously maintaining high stability of the NV centres’
negative charge states [18].

Additionally, we estimate that a placement accuracy of±1 nm is required for practical implementation of
quantum control at scale. Firstly, disorder in the position of each NV centre produces disorder in the
coupling strength between NV centres. This can cause control errors during two-qubit gate operations.
Secondly, selective control of each NV centre requires a means to differentiate their electron spin resonances
using microwave pulses. This is commonly achieved through a gradient magnetic field which precisely
adjusts each NV centre’s resonance [19]. Hence, inaccuracies in the NV placement produces disorder in this
magnetic interaction. Recent findings indicate that a placement accuracy of±1 nm would provide reliable
spectral differentiation of NV centres and minimise disorder in their dipolar coupling [18]. Finally, each NV
must be positioned relative to charged surface contacts, microwave lines, and an optical interface for qubit
initialisation, readout, and control. Note that an atom-scale fabrication technique would also enable
construction of alternative quantum bus architectures, for example entanglement using a chain of
substitutional nitrogen atoms (Ns) [20].

The performance of quantum sensors could also be enhanced through an atom-scale fabrication
technique. The next generation of NV-based magnetometers have unprecedented applications in high
precision macrosensing (e.g. navigation and spatial mapping) and nanosensing (e.g. chemical analysis and
nanoscopy of magnetic materials) [21, 22]. However, these capabilities cannot be fully realised at current
device sensitivities, which are limited by magnetic noise from paramagnetic defects produced as a
by-product of ensemble generation, low NV densities, difficulties fabricating near-surface NV centres, and
inhomogeneities in NV properties such as alignment [21, 23]. Note that depending on the application, NV
alignment may not be desirable such as in vector magnetometry. Similar to the quantum computing
architecture, an atom-scale fabrication process can overcome these limitations through scalable production
of a homogeneous array of identical NV centres in a low noise environment. Entanglement of adjacent NV−

spins is undesirable for conventional sensing, and therefore the optimum separation distance should be large
enough to minimise dipolar coupling (≳30 nm). Conversely, previous work has demonstrated
entanglement-enhanced sensitivity using quantum memory to extend coherence times, and hence smaller
separations may also be desirable [24].

Existing top-down fabrication techniques face fundamental challenges in realising these stringent design
requirements at scale. The current workhorse for NV fabrication with nanoscale precision is ion
implantation followed by thermal annealing [25]. While this method has been highly successfully for
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Figure 1. Idealised architecture for a scalable diamond quantum computer. This device could be realised through a bottom-up
fabrication technique for NV centres, thereby enabling large-scale quantum information processing at room-temperature. (a) The
integrated diamond chip consisting of a series of functional layers. A homogeneous array of NV− centres is embedded in an
ultra-pure diamond substrate (less than 1 ppb paramagnetic defects and low strain). High-fidelity initialisation and readout is
performed optically and electrically via nanoscale surface contacts positioned above each individual NV centre. Quantum control
is implemented through a microwave structure. (b) Zoomed-in view of the diamond layer. The NV− centre consists of a
substitutional N defect (blue sphere) adjacent to a vacant site (transparent sphere). Carbon atoms are depicted as black spheres.
Each NV− centre has uniform electronic spin properties (represented by the red arrow) and are aligned along a common axis
with the same orientation. Each NV− centre mediates initialisation, readout, and control of a spin qubit. This is the nuclear spin
of the substitutional N which composes the NV centre itself (depicted by the blue arrow). Entanglement between adjacent qubits
is realised through dipolar coupling of the NV− electron spins. For room-temperature operation, this requires that neighbouring
NV centres are separated by approximately 5–10 nm. Furthermore, optimal device performance requires homogeneity in this
separation distance to±1 nm. Reproduced from [32]. CC BY 4.0.

fabricating NV ensembles, the stochastic nature of ion implantation severely limits its viability for fabricating
next-generation devices. Firstly, there is no capability to align NV centres. Secondly, the spatial precision of
implanted defects is ultimately limited by ion straggling and channelling [26]. Thirdly, there is low
reproducibility in the number of implanted defects and the N-to-NV conversion yield is typically poor [25,
26]. Implantation therefore produces undesired magnetic noise which limits the performance of both
quantum computers and sensors [27]. Ongoing research seeks to alleviate these limitations through several
fronts, including the pursuit of deterministic single-ion implantation [28], high-resolution implantation
through masks or scanning probes, and defect reduction through controlled doping [25]. Consequently,
while there is considerable merit in pursuing ion implantation, it remains questionable whether the ultimate
limits of the technology can meet the demands for scalable NV fabrication.

Instead, the manufacture of scalable diamond quantum devices demands a bottom-up fabrication
technique which is deterministic, possesses sub-nanometre spatial precision, and preserves the purity of the
crystal environment. Despite the highly demanding nature of these specifications, they are routinely achieved
through hydrogen desorption lithography (HDL)-based fabrication of phosphorous defects in silicon
(Si)-based quantum technologies [13]. The centrepiece of this technique is a scanning tunnelling microscope
(STM) operated in both a conventional imaging mode and non-conventional desorption mode. The former
is used for visualising the surface and as a critical diagnostic tool, whereas the latter enables targeted removal
of hydrogen (H) termination from the Si surface with atomic-scale spatial precision [29].

Broadly speaking, the bottom-up fabrication process on Si consists of three steps. Firstly, several adjacent
H atoms are desorbed to produce an active adsorption site. This consists of a chemically reactive patch of
de-passivated Si surface atoms. Secondly, the surface is exposed to phosphine gas, which selectively
chemisorbs to the patch but not the surrounding H resist. Thirdly, the decorated Si surface is overgrown
using molecular beam homo-epitaxy to yield a bulk P defect. Importantly, no diffusion occurs during the
overgrowth process, and hence the position of the incorporated defect remains unchanged from the original
adsorption site. Through the de-passivation of multiple different sites in the first step, it is then possible to
incorporate an entire array of P defects concurrently [30]. As this method has already been translated to
germanium surfaces [31], it is likely that an analogous technique could be adapted for NV centres in
diamond.

Consequently, in this perspective we outline a similar multi-step procedure for HDL-based bottom-up
fabrication of NV centres. The proposed method can be implemented using existing experimental apparatus
operating in non-conventional regimes. For each step, the critical requirements and open questions are
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briefly summarised in light of the current state of the art and literature. It is our contention that while
HDL-based fabrication of NV centres requires significant engineering, there are no fundamental
impediments to its feasibility.

1. Bottom-up fabrication design

The multi-step proposal for atom-scale fabrication of NV centres is summarised in figure 2. The platform for
fabrication is a high-quality mono-crystalline substrate with a (100) or (111) surface geometry. Firstly, the
diamond substrate and surface is prepared for compatibility with later fabrication steps. This includes dopant
incorporation for electrical conduction during STM operation, and the creation of large, atomically-flat
plateaus with pristine H termination for the lithographic process [33]. Secondly, conventional STM imaging
is used to identify a suitable site for molecular chemisorption. This is then followed by the creation of active
adsorption sites using HDL. These sites consist of a chemically-reactive patch of de-passivated surface carbon
(C) atoms which can be positioned with atomic-scale precision. Currently, STM-based lithography is the
most established technique for fabricating these adsorption sites. It will therefore be the focus of this design
proposal. However, we note that extreme ultraviolet (EUV)-induced desorption has recently emerged as a
viable alternative to STM and may be more conducive to large-area lithography and fabrication [34].

Thirdly, the surface is exposed to a N-containing precursor gas. The molecular composition of the gas is
chosen to selectively chemisorb to the reactive sites while remaining unreactive to the surrounding H
termination. Fourthly, the adsorption products are verified through STM imaging. Fifthly, the surface is
overgrown using chemical vapour deposition (CVD) to incorporate the adsorbed N into the diamond lattice
as an NV centre. As discussed later, this may require a pre-growth stage to enhance NV yield. Following
successful incorporation, the NV centre is integrated into the diamond quantum device through fabrication
of an electrical, magnetic, and optical interface. This may also include further surface preparation (such as
re-termination) to protect the NV centres’ coherence properties and negative charge state [35].

We note that in the event of Ns incorporation instead of an NV centre during step 5, controlled vacancy
production (e.g. through C-ion irradiation) and subsequent annealing to form an NV centre is a meaningful
addition for the design of high-precision quantum sensors. However, this strategy is not expected to
guarantee NV alignment and is therefore not viable for fabricating quantum processors.

While the qubit density can be further increased through a cluster of 13C nuclei local to each NV centre,
this is not essential for realising a large-scale device. Each NV centre hosts one qubit provided by its N
nuclear spin, and hence scalability can be achieved without additional satellite spins. The inclusion of 13C is
therefore not considered in this perspective paper. However, the atom-scale fabrication process can be
suitably adapted to introduce additional satellite spins if desired. For example, 13C nuclei can be strategically
positioned relative to each NV centre through isotopic engineering of the precursor gas.

2. Multi-step fabrication technique

Diamond preparation: Correct preparation of the diamond sample and surface is paramount before
beginning the process of atom-scale fabrication. Firstly, magnetic noise degrades the NV− coherence time
and hence the performance for computing and sensing. The NV− centres must therefore be fabricated in an
ultra-pure crystal environment with negligible concentration of paramagnetic defects (≲1 ppb) and low
strain. Diamond substrates of this quality are grown commercially using CVD. However, these are also
electrically insulating under ultra-high vacuum (UHV) conditions and therefore incompatible with
conventional STM imaging and HDL. Consequently, electrical conductivity must be introduced into the
sample while simultaneously maintaining a low-noise environment local to the NV− centres.

Conductivity in diamond is typically realised through thermal activation of boron dopants, which can be
introduced at high densities and spatial precision through ion implantation. Unfortunately, boron dopants
are also paramagnetic and will decohere nearby NV− centres. We therefore envisage the fabrication of doped
regions at a distance from an intrinsic region which hosts the NV centres. By optimising the separation
distance (estimated on the scale of hundreds of nanometres), carriers could be drawn from the dopant layer
to enable conductivity during imaging/lithography while mitigating unwanted magnetic noise in the final
device. Such device designs have been extensively studied in the context of diamond junctions [36], but not
yet adapted for STM.

Although B doping in diamond is now technologically mature, p-type conductivity is undesirable in
NV-based technologies because valence holes cause deleterious bleaching of the negative charge state [37].
The preferred option is n-type doping using phosphorous defects which are still paramagnetic but serve to
stabilise NV−. As with boron doping, phosphorous defects can be implanted at a distance from the intrinsic
region which hosts the NV centres. However, further development of phosphorus doping is required to
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Figure 2. Atom-scale fabrication of scalable diamond quantum devices. 0. The platform for fabrication is a mono-crystalline
(100) or (111) diamond substrate. 1. The substrate is prepared for fabrication. This entails ultra-pure CVD overgrowth of an
intrinsic diamond layer. The ideal surface is H-terminated with a low concentration of defects and low surface roughness.
Additionally, ion implantation is used to produce doped regions distant from the intrinsic fabrication region. These doped
regions provide bulk conductivity which is critical for performing STM under UHV conditions. 2. An array of active sites is
fabricated with atomic-scale precision through STM-based HDL. These sites are chemically reactive patches of de-passivated
surface C atoms. They possess a high density of dangling bonds which facilitate molecular chemisorption. 3. The surface is
exposed to a N-based precursor gas which preferentially adsorbs to the active sites. The surrounding H termination acts as a
molecular resist. 4. Adsorption of N is confirmed and analysed through conventional STM imaging. 5. The sample is relocated to
a CVD chamber for ultra-pure diamond overgrowth. The N adsorbates are incorporated into the diamond lattice to form bulk
NV centres. 6. The NV centres can now be integrated into the diamond quantum device through fabrication of an electrical,
magnetic, and optical interface.

achieve adequate conductivity at STM-compatible temperatures. For example, the reduction of
compensation ratios through improved doping techniques [38, 39]. Alternatively, STM imaging on purely
insulating samples is possible through an unconventional high-bias resonant tunnelling regime [40].

Regarding surface preparation, the H-terminated (100) and (111) facets are currently the most viable for
atom-scale fabrication. The (111) facet has several superior qualities compared to (100), chiefly the
preferential alignment of as-grown NV centres [41]. The ideal properties for both surfaces include low
roughness, with atomically-flat terraces large enough for practical implementation of HDL and subsequent
molecular chemisorption (on the scale of several nm2). It may also be beneficial for surfaces to possess a
small miscut angle to enhance the NV incorporation yield. For example, experimental studies find that the
incorporation of other dopants increases with step-edge density [42–44].

Reproducible fabrication of high-quality diamond surfaces presents a surmountable engineering
challenge. Existing surface preparation protocols, including a combination of CVD overgrowth, mechanical
polishing, cleaning, and re-passivation using H plasma, must be adapted for consistency of quality and scale.
Obtaining high-quality (111) surfaces is particularly challenging due to a larger density of as-grown defects,
obstacles associated with mechanical polishing, and the optimisation of CVD growth parameters. However,
there are no fundamental barriers to such surface preparation as evidenced by several works demonstrating
atomically-flat (111) surfaces [45–47]. As an additional example, figure 3(e) displays an STM image of a
high-quality H-terminated (111) surface produced by Quantum Brilliance. The surface possesses large and
atomically-flat regions (on the scale of µm2) which are suitable for atom-scale fabrication.

HDL: HDL is a surface patterning technique developed over the last three decades on semiconductor
surfaces, in particular Si [29, 48]. It entails the targeted removal of H termination to form chemically-reactive
patches of de-passivated C atoms on the diamond surface. Subsequently, these exposed C sites provide
anchor points for molecular adsorbates. Key considerations for developing room-temperature quantum
devices are the chemical reactivity of the patch to chemisorption, optimising the patch dimensions such that
only a single N may chemisorb per site (multiple N adsorbates per site are generally undesirable), and the
spatial positioning of the fabricated NV centres. As previously noted, the lateral spacing between adjacent
NV centres must be accurate to within±1 nm to maintain optimal dipolar interactions whilst avoiding
undesirable coupling disorder.

Presently, STM is the workhorse to perform at this level of spatial precision. Implementation of HDL
requires the use of conventional STM imaging followed by an unconventional desorption mode. Both must
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Figure 3. Imaging, visualisation, and manipulation of diamond surfaces. (a) Constant current STM image (−1.5 V, 0.2 nA)
demonstrating tip-based manipulation of the H–C(100):2× 1 surface. The STM tip has been dragged along a line during voltage
pulsing at 4 V and 6V. This produces bright features which indicate surface manipulation including possible H desorption. (b)
Zoomed-in STM image of the H–C(100):2× 1 surface displaying the characteristic dimer rows of the 2× 1 reconstruction
(−1.5 V, 1 nA). (c),(d) Visualisation of the H–C(100):2× 1 surface geometry. The surface C atoms (cyan) form characteristic
dimer rows terminated by H atoms (orange). The second layer of C atoms have been highlighted in blue, whereas deeper
subsurface C atoms are grey. (e) Constant current STM image of a H–C(111):1× 1 surface (−1V, 0.2 nA). This wide-area scan
displays atomically-flat regions with areas on the scale of µm2. The different regions are separated by step edges. (f) Zoomed-in
STM image of the H–C(111):1× 1 surface which displays an atomically-resolved hexagonal lattice (1.4 V, 1 nA). Note that FFT
filtering of the topography has been applied to reduce high-frequency spatial noise. (g),(h) Visualisation of the H–C(111):1× 1
surface geometry displaying a characteristic hexagonal structure. The colour scheme is the same as (c).

be performed under UHV conditions. Imaging is necessary to identify a suitable adsorption site prior to
lithography. Ideally, this is an atomically-flat plateau which is sufficiently large to accommodate the
molecular adsorbate (≳1 nm2). Although STM imaging of diamond surfaces is generally considered difficult,
it is routinely performed with conventional STM apparatus and enabled by p-type conductivity through
boron doping (see figure 3). Following imaging, targeted H desorption is realised through an inelastic
tunnelling mode. In this low voltage process, the C–H stretch mode is excited resonantly to induce
bond-breaking via the coupling between tunnelling electrons and local vibration modes [49]. Extrapolating
known results on Si, maintaining a voltage below the field emission regime is essential to maximising spatial
resolution of the lithographed region [50].

The capabilities of lithography on diamond are promising but underdeveloped. While Si HDL is now a
mature technique capable of near-deterministic removal of single H atoms [29], attention to diamond has
been sparse in the literature. Notably, a remarkable demonstration of feasibility has been achieved by Bobrov
and collaborators on diamond (100) surfaces [51]. Hydrogen desorption was achieved through application
of controlled voltage pulses. This produced bright features in the STM topography which were subsequently
identified as de-passivated surface C atoms using scanning tunnelling spectroscopy. However, the
demonstrated spatial precision was limited, with desorption events occurring within several nanometres of
the target C–H bond.

Quantum Brilliance has recently replicated the voltage pulsing technique to manipulate the diamond
(100) surface. Figure 3(a) presents an STM topography following application of voltage pulses along a
straight line. This produced bright features qualitatively similar to those observed in Bobrov et al’s work, and
are hypothesised to represent surface defects including de-passivated C atoms. Ultimately, further work is
needed to verify the defect chemical structure, improve the control of the lithographic process, and extend
these capabilities to other surfaces such as (111).

Another key challenge lies with the surface reconstruction of de-passivated patches following HDL.
Ideally, lithography produces a patch of highly-reactive C surface radicals, termed dangling bonds, which
facilitate molecular chemisorption at low temperatures and pressures. However, these dangling bonds can
self-passivate through surface reconstruction, thereby drastically reducing the chemical reactivity of the
patch. This could render chemisorption of the N-based molecule energetically unfavourable or require
temperatures and pressures which are practically unachievable (as defined in the following section). For
example, the H-terminated (100) surface possesses characteristic CH–CH dimer rows which are visible in
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figures 3(b)–(d). Each dimer contains a pair of σ-bonded surface C atoms, both of which are terminated
with a H atom. Desorption of a single H atom in a given dimer produces a reactive dangling bond localised
on one of the C sites. However, desorption of both H atoms causes the dangling bonds on the C atoms to
self-passivate through formation of a π bond [52, 53]. The resulting C–C dimer is termed as ‘bare’, and
exhibits substantially less reactivity to molecular chemisorption as discussed in more detail below [54].

Surface reconstruction on the (111) surface is substantially more complex. If the H-terminated surface is
fully de-passivated (e.g. through thermal annealing at temperatures greater than 1200K [55]), the surface C
atoms will reconstruct to form π-bonded Pandey chains. Unfortunately, these chains exhibit limited
reactivity to molecular chemisorption [52, 56, 57]. A similar reconstruction would be undesirable on the
lithographed patches, but the critical patch size required for this reconstruction to occur is currently
unknown. For example, desorption of a single H atom produces a reactive dangling bond. However,
desorption of a larger patch through HDL may induce local surface reconstruction to form chemically-inert
Pandey chains. This further motivates development of a lithographic technique with the highest possible
spatial resolution, ideally approaching the ultimate precision—deterministic removal of single H atoms.

Molecular chemisorption: The third step in the atom-scale fabrication process is chemisorption of N onto
the de-passivated patches produced using HDL. Although diamond is typically considered an inert material,
a diverse array of techniques exist for the chemical modification of its surface with N-containing species [58].
Unfortunately, established methods such as plasma treatment or photochemical functionalisation are much
too volatile and would invariably result in unwanted chemsiorption outside the lithographed region. The
successful chemisorption process must therefore balance reactivity with the de-passivated sites without
destroying the surrounding H resist. While thermal control can direct this balance, the temperature cannot
exceed the desorption temperature of the H termination (approximately 1200K [55, 59]). This implies that
practical reactions will be thermally-assisted chemisorption of neutrally charged and non-radical molecules.
Realistically, this precursor gas would be introduced in situ into the STM chamber post lithography.

The structure and chemistry of the adsorption site is paramount when evaluating candidate molecules
for chemisorption. Although dangling bonds are desirable for surface reactivity, other forms of
chemisorption appear to be possible on bare (100) dimers and Pandey chains. Experimental work on the
clean (100) surface suggests that alkenes and alkynes can adsorb via cycloaddition with π bonds of the C=C
dimer rows. For example, low reactivity is found with cyclopentene, 1,3-butadiene, allyl alcohol, acrylic acid,
allyl chloride [60], and notably acrylonitrile which contains a cyanide group [61]. Beyond these examples,
substantial reactivity with other small organic molecules has yet to be identified. While phosphine readily
adsorbs to the buckled dimers of Si(100), the molecular analogue for diamond, ammonia, does not appear to
adsorb to the symmetric C(100) dimers, nor the cleanly-terminated (111) or (110) surfaces [62]. The same
holds for nitrogen gas, N2. In general, thermally-driven chemisorption on the (111) surface has received little
experimental attention [57].

There are three simple heuristics which can guide the selection of candidate molecules for chemisorption.
Firstly, the molecule ought to consist only of C, H, and a single N atom as to avoid incorporation of
undesired defects and impurities during subsequent diamond overgrowth. Secondly, the adsorbate must be
extremely stable in order to withstand desorption or migration during CVD overgrowth. Finally, during
overgrowth the adsorbed N should preferentially incorporate as an NV centre with well-defined orientation.
First-principles calculations offer an efficient method for screening candidate molecules according to these
heuristics and is the subject of current and future work.

Potential molecules may include those with adsorbate structures that are compatible with overgrowth.
This is because adsorbates with a similar geometry to natural growth structures could be more resistant to
desorption during CVD. For example, nitriles possess a−C≡N functional group which has a bond length
comparable to the distance between C atoms on the (100) surface. If the nitrile chemisorbs along the dimer
row (forming an imine (−C=N−) bridge between two adjacent surface C atoms), the resulting adsorbate
resembles those occurring in new-layer nucleation [63]. Aromatic N heterocycles could be viable on the
(111) surface. For example, pyridine and indolizine possess similar geometries to the surface C atoms.
Covalent bonding between the molecules’ C atoms and the diamond surface could produce a structure
resembling the subsequent growth layer [64].

Overgrowth, incorporation, and NV formation: The final stage of the atom-scale fabrication process
involves incorporation of the N adsorbate into the diamond structure to form a bulk NV centre. This is a key
challenge which necessitates overgrowth of the decorated surface while simultaneously maintaining high NV
yields. While formation of single crystals is possible through high-pressure-high-temperature growth
methods, CVD is the only method capable of reliable homo-epitaxial diamond overgrowth with low defect
concentrations. The volatility of the standard CVD growth environment—including substrate temperatures
up to 1100K and H fluxes reaching 1023 cm−2s−1—has great potential for N desorption or surface migration
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[65]. Despite this, recent research suggests that N adsorbates are capable of withstanding both high
temperatures and H flux, and incorporate with low but promising yields during CVD overgrowth [66, 67].

Perhaps most relevant to atom-scale fabrication is the N retention rate following diamond overgrowth.
This has been the focus of several experimental studies involving a pre-growth N-based plasma treatment to
partially terminate the diamond surface with N adsorbates. Using a combination of measurement
techniques, the pre-growth N surface concentration is compared to the post-growth density of bulk N defects
and NV centres. For example, Kuntumalla et al considered (100) surfaces terminated using a variety of
N-based plasma treatments and overgrown using conventional CVD [66]. Depending on the type of plasma
treatment (and therefore the bonding chemistry of the N adsorbates with the surface), between 5% and 34%
of the N termination was retained and incorporated into the bulk diamond crystal. A similar study was
recently performed by Tatsuishi et al [67] on the (111) surface, which revealed N retention rates of
approximately 2.5%.

These promising results indicate that N incorporation is possible despite the volatility of the CVD plasma
environment. Moreover, there exist multiple avenues for increasing N retention. Firstly, as demonstrated by
Kuntumalla et al’s study, the retention rate is critically determined by the bonding configuration of the N
adsorbate [66]. Maximising retention therefore requires engineering the adsorption reaction through
considered choice of the N-containing molecule in the precursor gas and design of the adsorption site.
Secondly, it may also be possible to further protect the N adsorbate from the CVD environment through
depositing a protective C layer prior to overgrowth.

Beyond N retention, a further challenge lies in maximising the N-to-NV conversion yield during
overgrowth. Currently, the formation of as-grown NV centres is a stochastic process, and little research has
focused on improving efficiency in a controlled manner. In addition to optimising the CVD reactor
conditions, we propose that the adsorbate chemistry is key to promoting V formation. Recall that the N
adsorbate ideally forms an as-grown NV centre, and that a major benefit of the (111) surface is that as-grown
NV centres are aligned predominately along the [111] axis (i.e. the growth direction)[41]. First-principles
studies suggest that this alignment is due to the chemical stability of the N lone pair [68, 69]. Nitrogen atoms
at the (111) surface resist forming bonds with other C atoms during overgrowth of the next layer, thereby
producing an adjacent vacancy and subsequent NV centre. Hence, one pathway to deterministic NV
formation may be to replicate this bonding environment in the N adsorbate. This would require engineering
the adsorption chemistry such that the N lone pair aligns with the [111] axis. However, further
experimentation is required to validate the feasibility of this approach.

3. Conclusion

Realising the ultimate potential of diamond quantum technologies will require development of a bottom-up
NV fabrication technique which is scalable, deterministic, and possesses nanoscale spatial precision. In this
perspective article we have outlined a method for atomically-precise manufacturing of NV centres using
HDL. The efficacy of similar techniques has already been demonstrated on silicon and germanium, and we
believe that there are no fundamental reasons why these cannot be adapted to diamond.

Success will require experimental and theoretical progress on several fronts. For example, diamond HDL
must achieve higher spatial accuracy (ideally reaching single-site precision), a suitable N-based molecule
must be identified and its adsorption chemistry optimised, and the rates of N retention and N-to-NV
conversion during overgrowth must be improved. Hence, while bottom-up fabrication on diamond surfaces
presents significant engineering and technical challenges, these are quantifiable and can be overcome
through sustained community effort. Recent progress in the fields of nano-electronics, NV physics,
atomic-scale microscopy and C deposition techniques all provide a timely opportunity for cross-discipline
collaboration. We therefore anticipate and welcome forthcoming developments in the burgeoning field of
atom-scale NV fabrication.
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