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We discuss the quark mass matrices in the A4 modular symmetry, where the A4 triplet of Higgs is 
introduced for each up-quark and down-quark sectors, respectively. The model has six real parameters 
and two complex parameters in addition to the modulus τ . By inputting six quark masses and three CKM 
mixing angles, we can predict the CP violation phase δ and the Jarlskog invariant JC P . The predicted 
ranges of δ and JC P are consistent with the observed values. The absolute value of V ub is smaller than 
0.0043, while V cb is larger than 0.0436. In conclusion, our quark mass matrices with the A4 modular 
symmetry can reproduce the CKM mixing matrix completely with observed quark masses.
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(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The origin of three families of quarks and leptons remains most 
important problems of Standard model (SM). In order to under-
stand the flavor structure of quarks and leptons, considerable in-
terests in the discrete flavor symmetry [1–9] have been developed 
by the early models of quark masses and mixing angles [10,11], 
more recently, the large flavor mixing angles of the leptons.

Many models have been proposed by using S3, A4, S4, A5 and 
other groups with larger orders to explain the large neutrino mix-
ing angles. Among them, the A4 flavor model is attractive one 
because the A4 group is the minimal one including a triplet ir-
reducible representation, which allows for a natural explanation of 
the existence of three families of leptons [12–17]. However, vari-
ety of models is so wide that it is difficult to obtain clear clues of 
the A4 flavor symmetry. Indeed, symmetry breakings are required 
to reproduce realistic mixing angles [18]. The effective Lagrangian 
of a typical flavor model is given by introducing the gauge singlet 
scalars which are so-called flavons. Their vacuum expectation val-
ues (VEVs) determine the flavor structure of quarks and leptons. 
As a consequence, the breaking sector of flavor symmetry typically 
produces many unknown parameters.

Recently, new approach to the lepton flavor problem based on 
the invariance under the modular group [19], where the model of 
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the finite modular group �3 � A4 has been presented. This work 
inspired further studies of the modular invariance approach to the 
lepton flavor problem. It should be emphasized that there is a 
significant difference between the models based on the A4 mod-
ular symmetry and those based on the usual non-Abelian discrete 
A4 flavor symmetry. Yukawa couplings transform non-trivially un-
der the modular symmetry and are written in terms of modular 
forms which are holomorphic functions of a complex parameter, 
the modulus τ .

It is interesting that the modular group includes S3, A4, S4, and 
A5 as its finite subgroups [20]. Along the work of the A4 modu-
lar group [19], models of �2 � S3 [21], �4 � S4 [22] and �5 � A5

[23] have been proposed. Also numerical discussions of the neu-
trino flavor mixing have been done based on A4 [24,25] and S4

[26] modular groups respectively. In particular, the comprehensive 
analysis of the A4 modular group has provided a clear prediction 
of the neutrino mixing angles and the CP violating phase [25]. On 
the other hand, the A4 modular symmetry has been applied to the 
SU (5) grand unified theory of quarks and leptons [27], and also 
the residual symmetry of the A4 modular symmetry has been in-
vestigated [28]. Furthermore, modular forms for �(96) and �(384)

were constructed [29], and the extension of the traditional flavor 
group is discussed with modular symmetries [30].

In this work, we discuss the quark mixing angles and the CP 
violating phase, which were a main target of the early challenge 
for flavors [10,11]. Since the quark masses and mixing angles are 
remarkably distinguished from the leptonic ones, that is the hier-
archical structure of masses and mixing angles, it is challenging to 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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reproduce observed hierarchical three CKM mixing angles and the 
CP violating phase in the A4 modular symmetry.1

We can easily construct quark mass matrices by using the A4
modular symmetry. The up-quark and down-quark mass matri-
ces have the same structure as the charged lepton mass matrix 
in Ref. [25]. Then, parameters, apart from the modulus τ , are de-
termined by the observed quark masses. The remained parameter 
is only the modulus τ . However, it is very difficult to reproduce 
observed three CKM mixing angles by fixing τ since the observed 
mixing angles are considerably hierarchical angles, and moreover, 
precisely measured.

Therefore, we extend the Higgs sector in the A4 modular sym-
metry by introducing the A4 triplet for Higgs doublets in up-quark 
and down-quark sectors, respectively. Then, one complex parame-
ter related with the A4 tensor product appears in each quark mass 
matrix of the up- and down-quarks. The model has six real param-
eters and two complex parameters in addition to the modulus τ . It 
is remarked that those quark mass matrices can predict the mag-
nitude of the CP violation of the CKM mixing by inputting quark 
masses and three mixing angles.

The paper is organized as follows. In section 2, we give a brief 
review on the modular symmetry. In section 3, we present the 
model for quark mass matrices. In section 4, we present numer-
ical results. Section 5 is devoted to a summary. In Appendix A, 
the relevant multiplication rules of the A4 group is presented. In 
Appendix B, we show how to determine the coupling coefficients 
of quarks. In Appendix C, we discuss the Higgs potential in our 
model.

2. Modular group and modular forms

The modular group �̄ is the group of linear fractional trans-
formation γ acting on the complex variable τ , so called modulus, 
belonging to the upper-half complex plane as:

τ −→ γ τ = aτ + b

cτ + d
,

where a,b, c,d ∈ Z and ad − bc = 1, Im[τ ] > 0 , (1)

which is isomorphic to P S L(2, Z) = S L(2, Z)/{I, −I} transforma-
tion. This modular transformation is generated by S and T ,

S : τ −→ − 1

τ
, T : τ −→ τ + 1 , (2)

which satisfy the following algebraic relations,

S2 = I , (ST )3 = I . (3)

We introduce the series of groups �(N) (N = 1, 2, 3, . . . ) de-
fined by

�(N) =
{(

a b
c d

)
∈ S L(2,Z) ,

(
a b
c d

)
=

(
1 0
0 1

)
(modN)

}
.

(4)

For N = 2, we define �̄(2) ≡ �(2)/{I, −I}, while, since the element 
−I does not belong to �(N), for N > 2, we have �̄(N) = �(N), 
which are infinite normal subgroup of �̄, called principal congru-
ence subgroups. The quotient groups defined as �N ≡ �̄/�̄(N) are 
finite modular groups. In this finite groups �N , T N = I is imposed. 
The groups �N with N = 2, 3, 4, 5 are isomorphic to S3, A4, S4 and 
A5, respectively [20].

1 Recently, the S3 modular symmetry is also applied to the quark sector [31].
Modular forms of level N are holomorphic functions f (τ )

transforming under the action of �(N) as:

f (γ τ ) = (cτ + d)k f (τ ) , γ ∈ �(N), (5)

where k is the so-called as the modular weight.
Superstring theory on the torus T 2 or orbifold T 2/Z N has the 

modular symmetry [32–37]. Its low-energy effective field theory 
is described in terms of supergravity theory, and string-derived 
supergravity theory has also the modular symmetry. Under the 
modular transformation of Eq. (1), chiral superfields φ(I) transform 
as [38],

φ(I) → (cτ + d)−kI ρ(I)(γ )φ(I), (6)

where −kI is the modular weight and ρ(I)(γ ) denotes an unitary 
representation matrix of γ ∈ �(N).

The kinetic terms of their scalar components are written by

∑
I

|∂μφ(I)|2
(−iτ + iτ̄ )kI

, (7)

which is invariant under the modular transformation. Here, we use 
the convention that the superfield and its scalar component are 
denoted by the same letter. Also, the superpotential should be in-
variant under the modular symmetry. That is, the superpotential 
should have vanishing modular weight in global supersymmetric 
models, while the superpotential in supergravity should be invari-
ant under the modular symmetry up to the Kähler transformation. 
In the following sections, we study global supersymmetric mod-
els, e.g. minimal supersymmetric standard model (MSSM) and its 
extension with Higgs A4 triplet. Thus, the superpotential has van-
ishing modular weight. The modular symmetry is broken by the 
vacuum expectation value of τ , i.e. at the compactification scale, 
which is of order of the planck scale or slightly lower scale.

For �3 � A4, the dimension of the linear space Mk(�3) of 
modular forms of weight k is k + 1 [39–41], i.e., there are three 
linearly independent modular forms of the lowest non-trivial 
weight 2. These forms have been explicitly obtained [19] in terms 
of the Dedekind eta-function η(τ ):

η(τ ) = q1/24
∞∏

n=1

(1 − qn) , (8)

where q = e2π iτ and η(τ ) is a modular form of weight 1/2. In 
what follows we will use the following basis of the A4 generators 
S and T in the triplet representation:

S = 1

3

⎛
⎝−1 2 2

2 −1 2
2 2 −1

⎞
⎠ , T =

⎛
⎝1 0 0

0 ω 0
0 0 ω2

⎞
⎠ , (9)

where ω = ei 2
3 π . The modular forms of weight 2 (Y1(τ ), Y2(τ ),

Y3(τ )) transforming as a triplet of A4 can be written in terms of 
η(τ ) and its derivative [19]:

Y1(τ ) = i

2π

(
η′(τ/3)

η(τ/3)
+ η′((τ + 1)/3)

η((τ + 1)/3)

+ η′((τ + 2)/3)

η((τ + 2)/3)
− 27η′(3τ )

η(3τ )

)
, (10)

Y2(τ ) = −i

π

(
η′(τ/3)

η(τ/3)
+ ω2 η′((τ + 1)/3)

η((τ + 1)/3)
+ ω

η′((τ + 2)/3)

η((τ + 2)/3)

)
,

Y3(τ ) = −i
(

η′(τ/3) + ω
η′((τ + 1)/3) + ω2 η′((τ + 2)/3)

)
.

π η(τ/3) η((τ + 1)/3) η((τ + 2)/3)
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The overall coefficient in Eq. (11) is one possible choice; it cannot 
be uniquely determined. The triplet modular forms of weight 2 
have the following q-expansions:

Y =
⎛
⎝Y1(τ )

Y2(τ )

Y3(τ )

⎞
⎠ =

⎛
⎝ 1 + 12q + 36q2 + 12q3 + . . .

−6q1/3(1 + 7q + 8q2 + . . . )

−18q2/3(1 + 2q + 5q2 + . . . )

⎞
⎠ . (11)

They satisfy also the constraint [19]:

(Y2(τ ))2 + 2Y1(τ )Y3(τ ) = 0 . (12)

3. Quark mass matrices in the A4 triplet Higgs model

Let us consider a A4 modular invariant flavor model for quarks. 
In order to construct models with minimal number of parameters, 
we introduce no flavons. There are freedoms for the assignments 
of irreducible representations and modular weights to quarks and 
Higgs doublets. We take similar assignments of the left-handed 
quarks and right-handed one as seen in the charged lepton sec-
tor [25]: that is, three left-handed quark doublets are of a triplet 
of A4, and (uc, cc, tc) and (dc, sc, bc) are of three different sin-
glets (1,1′′,1′) of A4, respectively. For both left-handed quarks 
and right-handed quarks, the modular weights are assigned to be 
−1, while the modular weight is 0 for Higgs doublets. Then, there 
appear three independent couplings in the superpotential of the 
up-quark sector and down-quark sector, respectively:

wu = αuuc Hu Y Q + βucc Hu Y Q + γutc Hu Y Q , (13)

wd = αddc HdY Q + βdsc HdY Q + γdbc HdY Q , (14)

where Q is the left-handed A4 triplet quarks, and Hq is the Higgs 
doublets. The parameters αq , βq , γq (q = u, d) are constant coeffi-
cients. If the Higgs doublets Hq are singlet of A4, the quark mass 
matrices are simple form. By using the decomposition of the A4

tensor product in Appendix A, the superpotential in Eqs. (13) and 
(14) gives the mass matrix of quarks, which is written in terms of 
modular forms of weight 2:

Mq =
⎛
⎝αq 0 0

0 βq 0
0 0 γq

⎞
⎠

⎛
⎝Y1 Y3 Y2

Y2 Y1 Y3
Y3 Y2 Y1

⎞
⎠

RL

, (q = u,d) , (15)

where τ in the modular forms Yi(τ ) is omitted. Unknown cou-
plings αq , βq , γq can be adjusted to the observed quark masses. 
The remained parameter is only the modulus, τ . The numerical 
study of the quark mass matrix in Eq. (15) is rather easy. However, 
it is very difficult to reproduce observed three CKM mixing angles 
by fixing one complex parameter τ because the CKM mixing an-
gles are hierarchical ones and they have been precisely measured.

Therefore, we enlarge the Higgs sector. Let us consider the 
Higgs doublets to be one component of a A4 triplet [42–46] for 
each up-quark and down-quark, respectively as follows: We intro-
duce A4 triplets Higgs Hu and Hd , which are gauge doublets, as 
follows:

Hu =
⎛
⎝ Hu1

Hu2
Hu3

⎞
⎠ , Hd =

⎛
⎝ Hd1

Hd2
Hd3

⎞
⎠ . (16)

Including these A4 triplet Higgs, we summarize the assign-
ments of representations and modular weights −kI to the relevant 
fields in Table 1.

Now, the quark mass matrices are obtained by the tensor prod-
ucts among the A4 singlet right-handed quarks, the A4 triplet 
Table 1
The assignments of representations and modular weights −kI to the MSSM fields, 
where Higgs sector is extended to the non-trivial representation of A4, 3.

Q (uc(dc), cc(sc), tc(bc)) Hu Hd Y

SU (2) 2 1 2 2 1
A4 3 (1,1′′,1′) 3 3 3
−kI −1 (−1,−1,−1) 0 0 k = 2

modular forms Y (τ ), the A4 triplet Higgs Hq and the A4 triplet 
left-handed quarks Q . Since the tensor product of 3 ⊗ 3 is decom-
posed into the symmetric triplet and the antisymmetric triplet as 
seen in Appendix A, the A4 invariant superpotential in Eq. (13) is 
expressed by introducing additional two parameters gu1 and gu2

as:

wu = (αuuc(1) + βucc(1′′) + γutc(1′)) ⊗⎡
⎣gu1

⎛
⎝2Hu1Y1 − Hu2Y3 − Hu3Y2

2Hu3Y3 − Hu1Y2 − Hu2Y1
2Hu2Y2 − Hu3Y1 − Hu1Y3

⎞
⎠⊕ gu2

⎛
⎝ Hu2Y3 − Hu3Y2

Hu1Y2 − Hu2Y1
Hu3Y1 − Hu1Y3

⎞
⎠

⎤
⎦

⊗
⎛
⎝u

c
t

⎞
⎠ , (17)

where the neutral component of Hqi is taken, and the A4 sin-
glet component should be extracted in the tensor product. The 
up-quark mass matrix is given in terms of VEV’s of Hui , vui in 
Appendix C and modular forms Yi (i = 1, 2, 3) as follows:

Mu =
⎛
⎝αu 0 0

0 βu 0
0 0 γu

⎞
⎠ ×

[
gu1√

2(
2vu1Y1−vu2Y3−vu3Y2 2vu2Y2−vu3Y1−vu1Y3 2vu3Y3−vu1Y2−vu2Y1
2vu3Y3−vu1Y2−vu2Y1 2vu1Y1−vu2Y3−vu3Y2 2vu2Y2−vu3Y1−vu1Y3
2vu2Y2−vu3Y1−vu1Y3 2vu3Y3−vu1Y2−vu2Y1 2vu1Y1−vu2Y3−vu3Y2

)

+ gu2√
2

⎛
⎝ vu2Y3 − vu3Y2 vu3Y1 − vu1Y3 vu1Y2 − vu2Y1

vu1Y2 − vu2Y1 vu2Y3 − vu3Y2 vu3Y1 − vu1Y3
vu3Y1 − vu1Y3 vu1Y2 − vu2Y1 vu2Y3 − vu3Y2

⎞
⎠]

,

(18)

where αu , βu , and γu are taken to be real positive by rephasing 
right-handed quark fields without loss of generality. The down-
quark mass matrix is also given by replacing u with d in Eq. (18).

The vacuum structure of our model is determined by the scalar 
potential V (Hu, Hd), which is presented in Appendix C. Since the 
modular forms Yi ’s do not couple to the scalar potential due to the 
modular weight of 0 for the Higgs doublets, the vacuum structure 
of the scalar potential is independent of VEV of τ . Therefore, the 
scalar potential is similar to the one in MSSM. As discussed in the 
non-SUSY model with the A4 triplet Higgs, there are some choices 
of vq ’s to realize the vacuum [42–46], which is the global mini-
mum.2 In our work, we take the simplest one of 〈Hq〉 in our SUSY 
framework as follows:

〈Hu〉 = 1√
2

(vu1,0,0) , 〈Hd〉 = 1√
2

(vd1,0,0) , (19)

in the basis of S and T in Eq. (9). Here vu1 and vd1 are taken to 
be real and v2

u1 + v2
d1 = 2v2

H where v H = 174.1 GeV. The vacuum 

2 Other different types of the global minima coexist and are degenerate. For 
example, 〈Hd〉 = 1√

2
(vd, vd, vd) and 〈Hu〉 = 1√

2
(vu , vu, vu) lead to the global min-

imum. Upon small variation of the parameters around this special point, one min-
imum point becomes the global minimum while the other turns into a local one, 
and it is clearly possible to make either of them the global minimum [43].
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alignment in Eq. (19) easily realizes the minimum of the scalar 
potential by taking the condition

∂V (Hu, Hd)

∂ Hqk
= 0 , (q = u,d ; k = 1,2,3) , (20)

while the Hessian

∂2 V (Hu, Hd)

∂ Hqk∂ Hqj
, (q = u,d ; k, j = 1,2,3) , (21)

is required to have non-negative eigenvalues, which correspond to 
that all physical masses being positive except for vanishing masses 
of the Goldstone bosons as seen in Appendix C.

Indeed, we have checked numerically for tan β = vu1/vd1 = 10
that the extra scalars and pseudo-scalars could be O(10) TeV keep-
ing the light SM Higgs mass. This situation is achieved due to 
some fine-tuning and rather large scalar self-couplings by taking 
account of the radiative corrections of SUSY and m̃Hq =O(10) TeV, 
B = O(10) TeV and μ = O(10) TeV. However, loop corrections 
to the scalar masses become important as shown in two Higgs 
doublet model [47,48]. Therefore, such high splittings of scalar 
masses should be carefully examined in the context of the phe-
nomenology. Moreover, there could be unsuppressed flavor chang-
ing neutral current (FCNC) of quarks, which was discussed in the 
A4 triplet Higgs model [42]. Indeed, the study of FCNC in Kaon and 
B meson systems is important. However, we do not discussed the 
phenomenology, which is out of scope in the present work.

In our model, only Hu1 and Hd1 have VEVs, therefore, it is easy 
to find that the couplings to the observed 125 GeV Higgs boson 
are expected to be proportional to quark masses. This situation is 
understandable since Hq1 do not mix with Hq2 and Hq3 in the 
Higgs potential as seen in Appendix C. The electromagnetism is 
not broken: a minimum of the potential satisfying ∂V /∂ H±

qk = 0

gives 〈H±
qk〉 = 0.

It is also noticed that the VEV in Eq. (19) has a residual Z2
symmetry of A4. However, this Z2 symmetry of the Higgs sector 
is accidental since an obtained τ of our result breaks completely 
A4 symmetry. The choice of (vq, 0, 0) should be considered to re-
duce the number of free parameters. Indeed, the numerical fit of 
experimental data of the CKM matrix is improved by using another 
alignment of (vq, v ′

q, 0), which has not the Z2 symmetry.
Finally, we obtain the up-quark and down-quark mass matrices:

Mq = 1√
2

vq1 gq1

⎛
⎝αq 0 0

0 βq 0
0 0 γq

⎞
⎠

×
⎛
⎝ 2Y1 −(1 + gq)Y3 −(1 − gq)Y2

−(1 − gq)Y2 2Y1 −(1 + gq)Y3
−(1 + gq)Y3 −(1 − gq)Y2 2Y1

⎞
⎠

RL

,

(q = u,d), (22)

where gq ≡ gq2/gq1 (q = u, d). There are six real parameters αq , 
βq , γq (q = u, d), and the VEV of the modulus, τ . In addition, we 
have two complex parameters gu and gd . It is noted that the factor 
vq1 gq1 in front of the right hand side of Eq. (22) is absorbed into 
αq , βq and γq . Thus, we have six real parameters and three com-
plex ones. That is to say, there are twelve free real parameters in 
our mass matrices. It is also noticed that vq1 does not appear ex-
plicitly in our calculations because it is absorbed in αq , βq and γq . 
Therefore, our numerical result is independent of tan β = vu1/vd1.

The quark mass matrix in Eq. (22) has a specific flavor structure 
due to the A4 symmetry. It is easily found relations among matrix 
elements as follows:
Mq(1,1)

Mq(2,2)
= Mq(1,2)

Mq(2,3)
= Mq(1,3)

Mq(2,1)
,

Mq(2,2)

Mq(3,3)
= Mq(2,1)

Mq(3,2)
= Mq(2,3)

Mq(3,1)
. (23)

Moreover, a constraint among Y1, Y2 and Y3 in Eq. (12) provide a 
relation

Mq(2,1)

Mq(2,2)
= (gq − 1)2

gq + 1

Mq(3,1)

Mq(3,2)
. (24)

These relations correlate CKM mixing angles each other. Thus, the 
three CKM mixing angles are not independent in our quark mass 
matrix. Indeed, parameter region of τ , gu and gd are restricted to 
be in rather narrow regions in order to reproduce the three CKM 
mixing angles, as seen in numerical result. Then, the CP violating 
phase is predicted in the restricted region in spite of the excess of 
parameters compared with observed ones.

4. Numerical results

Let us begin with explaining how to get our prediction of the 
CP violation in terms of twelve real parameters. At first, we take a 
random point of τ and gu , gd , which are scanned in the complex 
plane by generating random numbers. The scanned ranges of Im[τ ]
are [0.5, 10], in which the lower-cut 0.5 comes from the accuracy 
of calculating modular functions, and the upper-cut 10 is enough 
large for estimating Yi in practice. On the other hand, Re[τ ] is 
scanned in the fundamental region of [−3/2, 3/2] in Eq. (11) be-
cause the modular function Yi is given in terms of η(τ/3). We also 
scan in |gu | ∈ [0, 1000] and |gd| ∈ [0, 1000] while these phases are 
scanned in [−π, π ].

Then, parameters αq , βq , γq (q = u, d) are determined by com-
puting functions Cq

i (i = 1 − 3) in Appendix B after inputting six 
quark masses (see Appendix B). We use the six quark masses at 
the M Z scale [49].

Finally, we can calculate three CKM mixing angles in terms of 
the model parameters τ , gu and gd , while keeping the parameter 
sets leading to values allowed by the experimental data of the CKM 
mixing angles. We continue this procedure to obtain enough points 
for plotting allowed region.

We adopt the data of quark Yukawa couplings at the M Z scale 
as input in order to constraint the model parameters [49]:

yd = (1.58+0.23
−0.10) × 10−5, ys = (3.12+0.17

−0.16) × 10−4,

yb = (1.639 ± 0.015) × 10−2, yu = (7.4+1.5
−3.0) × 10−6,

yc = (3.60±0.11) × 10−3, yt = 0.9861+0.0086
−0.0087 , (25)

which give quark masses as mq = yq v H with v H = 174.1 GeV. We 
also take the absolute values of CKM elements V us , V cb and V ub

for input as follows [50]:

|V us| = 0.2243 ± 0.0005 , |V cb| = 0.0422 ± 0.0008 ,

|V ub| = (3.94 ± 0.36) × 10−3 . (26)

In Eqs. (25) and (26), the error-bars denote interval of 1σ , and 3σ
error-bars are used as input.

The obtained parameter region of τ , gu and gd are as follows:

Re[τ ] = −(1.49 − 1.50) ,

Im[τ ] = 2.01 − 2.02 ,

Re[gu] = 0.70 − 0.93 ,

Im[gu] = ±(0.002 − 0.022) ,
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Fig. 1. Prediction of the magnitude of the CP violation on JC P –δ plane, where black 
lines denote observed central values of JC P and δ, and red dashed-lines denote 
their upper-bounds and lower-bounds of 3σ interval.

Fig. 2. Predicted J C P versus |V ub |, where black lines denote observed central val-
ues of |V ub | and J C P , and red dashed-lines denote their upper-bounds and lower-
bounds of 3σ interval.

Fig. 3. The allowed region on |Vcb|–|V ub | plane. Notations are same in Figs. 1 and 2.

Re[ 1

gd
] � −(0.99 − 1.03) × 10−3 ,

Im[ 1

gd
] = −(0.052 − 0.108) , (27)

where the modulus τ is almost fixed. By using these values, we 
can predict the CP violation phase δ and the Jarlskog invariant 
J C P [51]. Those are compared with the observed values at the 
electroweak scale [50]:

δ = (73.5+4.2
−5.1)

◦ , JC P = (3.18 ± 0.15) × 10−5 . (28)

Our predictions are presented in Figs. 1–3. We show the pre-
dicted CP violating phase δ versus J C P in Fig. 1. Here, the observed 
CKM mixing elements |V us|, |V cb| and |V ub| are input with 3σ er-
ror interval. The predicted ranges of δ and J C P is (65◦–140◦) and 
(2–4)×10−5, respectively. Those include the allowed regions of the 
experimental data in Eq. (28), which are denoted by red dashed-
lines with 3σ error interval. The predicted region of δ is still broad. 
It is remarked that δ is more restricted if error-bars of inputting 
quark masses are reduced, especially, the s-quark mass and the c-
quark mass are important to predict δ.

We show the |V ub| dependence of predicted J C P in Fig. 2. Al-
though observed |V ub| [0.0028, 0052] is input, our model does not 
allow the region larger than 0.0043. The |V ub| is cut below the 
lower-bound of experimental data. The predicted J C P is approxi-
mately proportional to |V ub|. The upper hard cut of J C P is due to 
the maximal value of sin δ = 1.

In Fig. 3, we show the allowed region on |V cb|–|V ub| plane. The 
|V cb| is restricted in the very narrow range, which is larger than
0.0436, close to the 3σ upper-bound of the observed one 0.0446. 
This prediction provides us a crucial test of our model.

We can also discuss the ratio of CKM matrix elements of V ub

and V cb , which is in the range of [0.065, 0.098] from Fig. 3. It 
should be compared with the observed values [52]:∣∣∣∣ V ub

V cb

∣∣∣∣ = 0.083 ± 0.006 . (29)

Our prediction is inside of the observed 3σ interval in Eq. (29). 
This measurement was given in the semileptonic decays of �b at 
LHCb. This prediction provides another complementary test of our 
model.

Finally, we show a typical set with twelve parameters as 
one sample, which gives us successful CKM parameters as well
as J C P :

τ = −1.495 + i 2.011 , gu = 0.918 + i 0.0116 ,

gd = −980 − i 18.9 ,

αu/γu = 2.496 × 10−5, βu/γu = 5.995 × 10−3,

αd/γd = 2.855 × 10−3, (30)

βd/γd = 3.812 × 10−2, γ̃u ≡ 1√
2

vu gu1γu = 85.85 GeV,

γ̃d ≡ 1√
2

vd gd1γd = 1.427 GeV.

This set gives

|V us| = 0.224 , |V cb| = 0.0443 , |V ub| = 3.20 × 10−3 ,

JC P = 2.98 × 10−5 , δ = 74.9◦ , (31)

which are remarkably consistent with the observed values. It is 
noticed that ratios of αq/γq and βq/γq (q = u, d) in Eq. (30) corre-
spond to the observed quark mass hierarchy.

In conclusion, our quark mass matrix with the A4 modular 
symmetry can reproduce the CKM mixing matrix completely with 
observed quark masses.

5. Summary

We have discussed the quark mass matrices in the A4 modular 
symmetry, where the A4 triplet of Higgs doublets is introduced 
for each up-quark and down-quark sectors, respectively. The model 
has six real parameters and two complex parameters in addition to 
the modulus τ . Then, we have constrained the model parameters 
by inputting six quark masses and three CKM mixing angles at the 
electroweak scale. We have predicted the CP violation phase δ and 
the Jarlskog invariant J C P .

The predicted ranges of δ and J C P is (65◦–140◦) and
(2–4)×10−5, respectively. Those include the allowed regions of 
the experimental data. The absolute value of V ub is smaller than 
0.0043. The magnitude of V cb is larger than 0.0436, which is close 
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to the 3σ upper-bound of the observed one. Thus, our quark mass 
matrices with the A4 modular symmetry can reproduce the CKM 
mixing matrix completely with observed quark masses.

Our mass matrices have been analyzed at the electroweak scale 
in this work. The renormalization-group evolution from the GUT 
scale to the electroweak scale have been examined in some tex-
tures of the quark mass matrix [53]. The textures of the quark 
mass matrix are essentially stable against the evolution. We expect 
that the conclusions derived in this paper do not change much 
even if we consider the mass matrix at the GUT scale.

We will also discuss the lepton mass matrices in the modular 
A4 symmetry by introducing the A4 triplet of Higgs doublets else-
where.
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Appendix A. Multiplication rule of A4 group

We take

S = 1

3

⎛
⎝−1 2 2

2 −1 2
2 2 −1

⎞
⎠ , T =

⎛
⎝1 0 0

0 ω 0
0 0 ω2

⎞
⎠ , (32)

where ω = ei 2
3 π for a triplet. In this base, the multiplication rule 

of the A4 triplet is⎛
⎝a1

a2
a3

⎞
⎠

3

⊗
⎛
⎝b1

b2
b3

⎞
⎠

3

= (a1b1 + a2b3 + a3b2)1 ⊕ (a3b3 + a1b2 + a2b1)1′

⊕ (a2b2 + a1b3 + a3b1)1′′

⊕ 1

3

⎛
⎝2a1b1 − a2b3 − a3b2

2a3b3 − a1b2 − a2b1
2a2b2 − a1b3 − a3b1

⎞
⎠

3

⊕ 1

2

⎛
⎝a2b3 − a3b2

a1b2 − a2b1
a3b1 − a1b3

⎞
⎠

3

,

1 ⊗ 1 = 1 , 1′ ⊗ 1′ = 1′′ , 1′′ ⊗ 1′′ = 1′ , 1′ ⊗ 1′′ = 1 .

(33)

More details are shown in the review [2,3].

Appendix B. αq/γq and βq/γq in terms of quark masses

The coefficients αq , βq , and γq in Eq. (22) are taken to be real 
positive without loss of generality. These parameters are described 
in terms of the modulus τ and quark masses. The mass matrix is 
written as

Mq = 1√
2

vq gq1γq

⎛
⎝ α̂q 0 0

0 β̂q 0
0 0 1

⎞
⎠

×
⎛
⎝ 2Y1 −(1 + gq)Y3 −(1 − gq)Y2

−(1 − gq)Y2 2Y1 −(1 + gq)Y3
−(1 + gq)Y3 −(1 − gq)Y2 2Y1

⎞
⎠

RL

, (34)
where α̂q ≡ αq/γq and β̂q ≡ βq/γq . Then, we have three equations 
as:

3∑
i=1

m2
qi

= Tr[M†
q Mq] = γ̃ 2

q (1 + α̂2
q + β̂2

q ) Cq
1 , (35)

3∏
i=1

m2
qi

= Det[M†
q Mq] = γ̃ 6

q α̂2
q β̂2

q Cq
2 , (36)

χ = Tr[M†
q Mq]2 − Tr[(M†

q Mq)
2]

2
= γ̃ 4

q (α̂2
q + α̂2

q β̂2
q + β̂2

q ) Cq
3 ,

(37)

where χ ≡ m2
q1

m2
q2

+ m2
q2

m2
q3

+ m2
q3

m2
q1

and γ̃q = (vq gq1γq)/
√

2. 
The coefficients Cq

1, Cq
2, and Cq

3 depend only on Yi and gq , where 
Yi ’s are determined if the value of modulus τ is fixed, and gq is an 
arbitrary complex coefficient. Those are given explicitly as follows:

Cq
1 = 4|Y1|2 + |gq − 1|2|Y2|2 + |gq + 1|2|Y3|2 ,

Cq
2 = 2 Re

[
8Y 3

1 + (gq − 1)3Y 3
2 − (gq + 1)3Y 3

3

+ 6(g2
q − 1)Y1Y2Y3

]
,

Cq
3 = 16|Y1|4 + |gq − 1|2|Y2|4 + |gq + 1|2|Y3|4

+ 4|gq − 1|2|Y1Y2|2 + 4|gq + 1|2|Y1Y3|2
+ |g2

q − 1|2|Y2Y3|2 + 4 Re
[
(gq − 1)2(g∗

q + 1)Y ∗
1 Y 2

2 Y ∗
3

+ 2(g∗2
q − 1)Y 2

1 Y ∗
2 Y ∗

3 − (gq + 1)2(g∗
q − 1)Y ∗

1 Y ∗
2 Y 2

3

]
.

Then, we obtain two equations which describe α̂ and β̂ as func-
tions of quark masses, τ and gq:

(1 + s)(s + t)

t
= (

∑
m2

i /Cq
1)(χ/Cq

3)∏
m2

i /Cq
2

,

(1 + s)2

s + t
= (

∑
m2

i /Cq
1)2

χ/Cq
3

, (38)

where we redefine the parameters α̂2
q + β̂2

q = s and α̂2
q β̂2

q = t . They 
are related as follows,

α̂2
q = s ± √

s2 − 4t

2
, β̂2

q = s ∓ √
s2 − 4t

2
. (39)

Appendix C. Scalar potential of A4 triplet Higgs

The A4 triplets Higgs, which are SU(2) gauge doublets, Hu and 
Hd are expressed as:

Hu =
⎛
⎝ Hu1

Hu2
Hu3

⎞
⎠ , Hd =

⎛
⎝ Hd1

Hd2
Hd3

⎞
⎠ . (40)

Since each component is SU(2) doublet, it is written as:

Huk =
(

h+
uk

1√
2
(vuk + ruk + izuk)

)
,

Hdk =
(

1√
2
(vdk + rdk + izdk)

h−
dk

)
, (41)

where vuk and vdk are VEV’s of Huk and Hdk , respectively.
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The A4 invariant superpotential of Higgs sector is written by

w H = μ(Hu1 Hd1 + Hu2 Hd3 + Hu3 Hd2). (42)

The scalar potential of the D-term is given as

V D = g2
2

8
(H†

u1σa Hu1 + H†
u2σa Hu3 + H†

u3σa Hu2 + H†
d1

σa Hd1

+ H†
d2

σa Hd3 + H†
d3

σa Hd2)
2 + g2

Y

8
(H†

u1 Hu1 + H†
u2 Hu3

+ H†
u3 Hu2 − H†

d1
Hd1 − H†

d2
Hd3 − H†

d3
Hd2)

2 , (43)

where g2 and gY are gauge couplings of SU(2) and U(1), respec-
tively, and σa (a=1-3) denote the Pauli matrix.

On the other hand, the soft breaking term under A4 invariance 
is also given by

V sof t = m̃2
Hu(H†

u1 Hu1 + H†
u2 Hu3 + H†

u3 Hu2)

+ m̃2
Hd(H†

d1
Hd1 + H†

d2
Hd3 + H†

d3
Hd2)

+ Bμ(Hu1 iσ2 Hd1 + Hu2 iσ2 Hd3 + Hu3 iσ2 Hd2 + h.c.).
(44)

The resulting Higgs potential is then given by:

V (Hu, Hd) = m2
Hu H†

u1 Hu1 + |μ|2(|Hu2 |2 + |Hu3 |2)
+ m̃2

Hu(H†
u2 Hu3 + H†

u3 Hu2)

+ m2
Hd H†

d1
Hd1 + |μ|2(|Hd2 |2 + |Hd3 |2)

+ m̃2
Hd(H†

d2
Hd3 + H†

d3
Hd2)

+ g2
2

8
(H†

u1σa Hu1 + H†
u2σa Hu3 + H†

u3σa Hu2

+ H†
d1

σa Hd1 + H†
d2

σa Hd3 + H†
d3

σa Hd2)
2

+ g2
Y

8
(H†

u1 Hu1 + H†
u2 Hu3 + H†

u3 Hu2

− H†
d1

Hd1 − H†
d2

Hd3 − H†
d3

Hd2)
2

+ Bμ(Hu1 iσ2 Hd1 + Hu2 iσ2 Hd3

+ Hu3 iσ2 Hd2 + h.c.), (45)

where m2
u ≡ |μ|2 + m̃2

Hu , m2
d ≡ |μ|2 + m̃2

Hd .
We can study the minima in the potential V (Hu, Hd) of Eq. (45)

by taking the first derivative system

∂V (Hu, Hd)

∂ Hqk
= 0 , (q = u,d ; k = 1,2,3) (46)

where Hqk is of the field h+
uk , h−

dk , ruk , zuk , rdk and zdk . Here, the 
Hessian

∂2 V (Hu, Hd)

∂ Hqk∂ Hqj
, (q = u,d ; k, j = 1,2,3) (47)

is required to have non-negative eigenvalues, which correspond to 
that all physical masses being positive except for vanishing masses 
of the Goldstone bosons.

Our Higgs potential analysis is same as in MSSM. Indeed, we 
have checked numerically by taking tan β = vu1/vd1 = 10 that the 
extra scalar and pseudo-scalar masses are larger than in O(1) TeV 
keeping the light SM Higgs mass.
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