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We discuss the quark mass matrices in the A4 modular symmetry, where the A4 triplet of Higgs is
introduced for each up-quark and down-quark sectors, respectively. The model has six real parameters
and two complex parameters in addition to the modulus 7. By inputting six quark masses and three CKM
mixing angles, we can predict the CP violation phase § and the Jarlskog invariant Jcp. The predicted
ranges of § and Jcp are consistent with the observed values. The absolute value of V; is smaller than

0.0043, while V., is larger than 0.0436. In conclusion, our quark mass matrices with the A4 modular

Keywords:

Modular group

A4 non-Abelian discrete symmetry
Quark sector

symmetry can reproduce the CKM mixing matrix completely with observed quark masses.
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1. Introduction

The origin of three families of quarks and leptons remains most
important problems of Standard model (SM). In order to under-
stand the flavor structure of quarks and leptons, considerable in-
terests in the discrete flavor symmetry [1-9] have been developed
by the early models of quark masses and mixing angles [10,11],
more recently, the large flavor mixing angles of the leptons.

Many models have been proposed by using S3, A4, S4, A5 and
other groups with larger orders to explain the large neutrino mix-
ing angles. Among them, the A4 flavor model is attractive one
because the A4 group is the minimal one including a triplet ir-
reducible representation, which allows for a natural explanation of
the existence of three families of leptons [12-17]. However, vari-
ety of models is so wide that it is difficult to obtain clear clues of
the A4 flavor symmetry. Indeed, symmetry breakings are required
to reproduce realistic mixing angles [18]. The effective Lagrangian
of a typical flavor model is given by introducing the gauge singlet
scalars which are so-called flavons. Their vacuum expectation val-
ues (VEVs) determine the flavor structure of quarks and leptons.
As a consequence, the breaking sector of flavor symmetry typically
produces many unknown parameters.

Recently, new approach to the lepton flavor problem based on
the invariance under the modular group [19], where the model of
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the finite modular group I's >~ A4 has been presented. This work
inspired further studies of the modular invariance approach to the
lepton flavor problem. It should be emphasized that there is a
significant difference between the models based on the A4 mod-
ular symmetry and those based on the usual non-Abelian discrete
Ay flavor symmetry. Yukawa couplings transform non-trivially un-
der the modular symmetry and are written in terms of modular
forms which are holomorphic functions of a complex parameter,
the modulus 7.

It is interesting that the modular group includes S3, A4, S4, and
As as its finite subgroups [20]. Along the work of the A4 modu-
lar group [19], models of I'y >~ S3 [21], T4 >~ S4 [22] and I's >~ A5
[23] have been proposed. Also numerical discussions of the neu-
trino flavor mixing have been done based on A4 [24,25] and S4
[26] modular groups respectively. In particular, the comprehensive
analysis of the A4 modular group has provided a clear prediction
of the neutrino mixing angles and the CP violating phase [25]. On
the other hand, the A4 modular symmetry has been applied to the
SU(5) grand unified theory of quarks and leptons [27], and also
the residual symmetry of the A4 modular symmetry has been in-
vestigated [28]. Furthermore, modular forms for A(96) and A(384)
were constructed [29], and the extension of the traditional flavor
group is discussed with modular symmetries [30].

In this work, we discuss the quark mixing angles and the CP
violating phase, which were a main target of the early challenge
for flavors [10,11]. Since the quark masses and mixing angles are
remarkably distinguished from the leptonic ones, that is the hier-
archical structure of masses and mixing angles, it is challenging to
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reproduce observed hierarchical three CKM mixing angles and the
CP violating phase in the A4 modular symmetry.'

We can easily construct quark mass matrices by using the Ay
modular symmetry. The up-quark and down-quark mass matri-
ces have the same structure as the charged lepton mass matrix
in Ref. [25]. Then, parameters, apart from the modulus t, are de-
termined by the observed quark masses. The remained parameter
is only the modulus 7. However, it is very difficult to reproduce
observed three CKM mixing angles by fixing T since the observed
mixing angles are considerably hierarchical angles, and moreover,
precisely measured.

Therefore, we extend the Higgs sector in the A4 modular sym-
metry by introducing the A4 triplet for Higgs doublets in up-quark
and down-quark sectors, respectively. Then, one complex parame-
ter related with the A4 tensor product appears in each quark mass
matrix of the up- and down-quarks. The model has six real param-
eters and two complex parameters in addition to the modulus 7. It
is remarked that those quark mass matrices can predict the mag-
nitude of the CP violation of the CKM mixing by inputting quark
masses and three mixing angles.

The paper is organized as follows. In section 2, we give a brief
review on the modular symmetry. In section 3, we present the
model for quark mass matrices. In section 4, we present numer-
ical results. Section 5 is devoted to a summary. In Appendix A,
the relevant multiplication rules of the A4 group is presented. In
Appendix B, we show how to determine the coupling coefficients
of quarks. In Appendix C, we discuss the Higgs potential in our
model.

2. Modular group and modular forms
The modular group T is the group of linear fractional trans-

formation y acting on the complex variable 7, so called modulus,
belonging to the upper-half complex plane as:

. . at+b
N —
Y ct+d’
where a,b,c,deZ and ad —bc=1, Im[t]>0, (1)

which is isomorphic to PSL(2,Z) = SL(2,Z)/{I, —1} transforma-
tion. This modular transformation is generated by S and T,

1
S:r—>—?, T:t—1+1, (2)
which satisfy the following algebraic relations,

s2=1, (ST)’=I. (3)
We introduce the series of groups I'(N) (N=1,2,3,...) de-
fined by

F(N):{(‘z Z)eSL(Z,Z), (‘z Z):(é ?) (modN)}.

(4)

For N =2, we define T'(2) = I'(2)/{I, —I}, while, since the element
—1I does not belong to I'(N), for N > 2, we have ['(N) = I'(N),
which are infinite normal subgroup of T, called principal congru-
ence subgroups. The quotient groups defined as 'y = ['/T'(N) are
finite modular groups. In this finite groups 'y, TN =1 is imposed.
The groups I'y with N =2, 3,4, 5 are isomorphic to S3, A4, S4 and
As, respectively [20].

T Recently, the S3 modular symmetry is also applied to the quark sector [31].

Modular forms of level N are holomorphic functions f(t)
transforming under the action of I'(N) as:

fyny =t +dff(r), y e(N), (5)

where k is the so-called as the modular weight.

Superstring theory on the torus T2 or orbifold T2/Zy has the
modular symmetry [32-37]. Its low-energy effective field theory
is described in terms of supergravity theory, and string-derived
supergravity theory has also the modular symmetry. Under the
modular transformation of Eq. (1), chiral superfields ¢P transform
as [38],

¢ = et +d)1p Ve, (6)

where —k; is the modular weight and p"’(y) denotes an unitary
representation matrix of y € T'(N).
The kinetic terms of their scalar components are written by

9, 612
W LLad ™
1

—iT +iT)k

which is invariant under the modular transformation. Here, we use
the convention that the superfield and its scalar component are
denoted by the same letter. Also, the superpotential should be in-
variant under the modular symmetry. That is, the superpotential
should have vanishing modular weight in global supersymmetric
models, while the superpotential in supergravity should be invari-
ant under the modular symmetry up to the Kdhler transformation.
In the following sections, we study global supersymmetric mod-
els, e.g. minimal supersymmetric standard model (MSSM) and its
extension with Higgs A4 triplet. Thus, the superpotential has van-
ishing modular weight. The modular symmetry is broken by the
vacuum expectation value of 7, i.e. at the compactification scale,
which is of order of the planck scale or slightly lower scale.

For I'; >~ A4, the dimension of the linear space M;(I's) of
modular forms of weight k is k + 1 [39-41], i.e., there are three
linearly independent modular forms of the lowest non-trivial
weight 2. These forms have been explicitly obtained [19] in terms
of the Dedekind eta-function n(7):

=g JJa-q". (8)

n=1

where q = e*™iT and n(r) is a modular form of weight 1/2. In
what follows we will use the following basis of the A4 generators
S and T in the triplet representation:

1—122

S==—12 -1 2],
3\2 2 -1

0
0], (9)

10
T=10 w
0 0 w?

w
where @ = ef3™. The modular forms of weight 2 (Y1(7), Y2(7),

Y3(t)) transforming as a triplet of A4 can be written in terms of
n(t) and its derivative [19]:

i (n’(f/3) n'((t+1)/3)
Yi(7) = =—
2\ n(t/3)  nl(r+1)/3)
n'((t+2)/3) 27n’(3t)> (10)
n((t +2)/3) n3t) )’
Vo(T) = —i (n/(r/B) L0 (T +1)/3) n'((t +2)/3)>
2(T)=— W ,
T \n(t/3) n((t +1)/3) n((t +2)/3)
Ya(r)= — (77 @/3) @ +D/3) | on ((r+2)/3)> .
T \n(t/3) n((t +1)/3) n((t +2)/3)
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The overall coefficient in Eq. (11) is one possible choice; it cannot
be uniquely determined. The triplet modular forms of weight 2
have the following g-expansions:

Y1(1) 1+12q+36¢% +12¢% + ...
Y=|Yar) | =| -6¢"21+7q+8¢%+...) |. (11)
Y3(7) —18¢*2(1+2q+5¢*+...)

They satisfy also the constraint [19]:
(Y2(T)? +2Y1(D)Y3(1) =0. (12)
3. Quark mass matrices in the A4 triplet Higgs model

Let us consider a A4 modular invariant flavor model for quarks.
In order to construct models with minimal number of parameters,
we introduce no flavons. There are freedoms for the assignments
of irreducible representations and modular weights to quarks and
Higgs doublets. We take similar assignments of the left-handed
quarks and right-handed one as seen in the charged lepton sec-
tor [25]: that is, three left-handed quark doublets are of a triplet
of A4, and (u€,c%, t) and (dS, s, b°) are of three different sin-
glets (1,17,1") of A4, respectively. For both left-handed quarks
and right-handed quarks, the modular weights are assigned to be
—1, while the modular weight is 0 for Higgs doublets. Then, there
appear three independent couplings in the superpotential of the
up-quark sector and down-quark sector, respectively:

wy =auu‘H,YQ +,3uCCHuYQ+VutCHuYQ» (13)
wg =aqd“HgY Q + Bys*HaY Q + ygb*HqY Q , (14)

where Q is the left-handed A4 triplet quarks, and Hy is the Higgs
doublets. The parameters ¢, Bg, ¥4 (9 =u,d) are constant coeffi-
cients. If the Higgs doublets Hy are singlet of A4, the quark mass
matrices are simple form. By using the decomposition of the A4
tensor product in Appendix A, the superpotential in Eqs. (13) and
(14) gives the mass matrix of quarks, which is written in terms of
modular forms of weight 2:

g 0 0 Y1 Y3 Y2
0 By O Y Y1 Y3 ,
0 0 Yq Y; Y, Yq

Mg = (@=u,d), (15)

RL

where 7 in the modular forms Y;(tr) is omitted. Unknown cou-
plings agq, Bq, ¥4 can be adjusted to the observed quark masses.
The remained parameter is only the modulus, t. The numerical
study of the quark mass matrix in Eq. (15) is rather easy. However,
it is very difficult to reproduce observed three CKM mixing angles
by fixing one complex parameter T because the CKM mixing an-
gles are hierarchical ones and they have been precisely measured.

Therefore, we enlarge the Higgs sector. Let us consider the
Higgs doublets to be one component of a A4 triplet [42-46] for
each up-quark and down-quark, respectively as follows: We intro-
duce A4 triplets Higgs H, and Hg, which are gauge doublets, as
follows:

Hy1 Hgq
Hy=|Huw |, H¢=| Hap |- (16)
Hys Hgs

Including these A, triplet Higgs, we summarize the assign-
ments of representations and modular weights —k; to the relevant
fields in Table 1.

Now, the quark mass matrices are obtained by the tensor prod-
ucts among the A4 singlet right-handed quarks, the A4 triplet

Table 1
The assignments of representations and modular weights —k; to the MSSM fields,
where Higgs sector is extended to the non-trivial representation of Ay, 3.

Q (), c°(s9), (b)) Hy Hqg Y
SU2) 2 1 2 2 1
As 3 1,17,1) 3 3 3
—k; -1 (-1,-1,-1) 0 0 k=2

modular forms Y(7), the A4 triplet Higgs Hy and the A4 triplet
left-handed quarks Q. Since the tensor product of 3 ® 3 is decom-
posed into the symmetric triplet and the antisymmetric triplet as
seen in Appendix A, the A4 invariant superpotential in Eq. (13) is
expressed by introducing additional two parameters g,1 and g,»
as:

wy = (U (1) + Buc (1) + yut (1) ®

2Hy1Y1 — HypY3 — Hy3Ys HyoY3 — HyszYa

gu1 | 2Hu3Y3 — Hy1Y2 — HiaYV1 | @ guz | HutY2 — HuaYq
2Hy2Y2 — HysY1 — Hyn Y3 Hy3Y1 — Hy1Ys
u
®lc], (17)
t

where the neutral component of Hg; is taken, and the A4 sin-
glet component should be extracted in the tensor product. The
up-quark mass matrix is given in terms of VEV's of Hy;, vy in
Appendix C and modular forms Y; (i=1, 2, 3) as follows:

ap 0 O
M= X[gm

0 By O
0 0 w V2

2vinY1—vu2Y3—vyu3Y2 2vipYo—vy3Y1—vu1 Y3 2vy3Yz—vur Yo —vya Y
2vy3Y3—vu1Ya—vuaY1 2vu1Y1—vu2Y3—vy3Y2 2viaYo—vy3Y1—vu1Ys
2V Yo —vyu3Y1—vu1Y3 2vy3Y3—vu1Ya—via Y1 2vin Y1—vu2Y3—vu3Ya

vusY1 —vinYs

VY3 —vy3Yo

vu1Y2 —vipYq

20 VuaY3 — vy3Y2
+== 1 vu1Y2 — vu2¥q

VY1 — v Y3
V2 VuzY1 —vu1Ys

Vu1Yz — vy Yy :|
VuaY3 — vy3Yo

(18)

where oy, By, and y, are taken to be real positive by rephasing
right-handed quark fields without loss of generality. The down-
quark mass matrix is also given by replacing u with d in Eq. (18).

The vacuum structure of our model is determined by the scalar
potential V (Hy, Hg), which is presented in Appendix C. Since the
modular forms Y;’s do not couple to the scalar potential due to the
modular weight of 0 for the Higgs doublets, the vacuum structure
of the scalar potential is independent of VEV of t. Therefore, the
scalar potential is similar to the one in MSSM. As discussed in the
non-SUSY model with the A4 triplet Higgs, there are some choices
of vg's to realize the vacuum [42-46], which is the global mini-
mum.”? In our work, we take the simplest one of (Hq) in our SUSY
framework as follows:

1 1
(Hu) = —= —
Y2 V2
in the basis of S and T in Eq. (9). Here v,1 and vg4; are taken to
be real and v2; + v, =2v% where vy = 174.1 GeV. The vacuum

(vLﬂvOs 0) ) (Hd): (vdls()’ O)a (19)

2 Other different types of the global minima coexist and are degenerate. For
example, (Hy) = % (Va, Vg, vg) and (Hy) = iz(vu, Vu, vy) lead to the global min-
imum. Upon small variation of the parameters around this special point, one min-
imum point becomes the global minimum while the other turns into a local one,
and it is clearly possible to make either of them the global minimum [43].
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alignment in Eq. (19) easily realizes the minimum of the scalar
potential by taking the condition

oV(H,,H
M:O, q=u,d; k=1,2,3), (20)
0Hgk
while the Hessian
32V (Hy, H
OV Ha) gk j=1.2,3), (21)
dHgdHg;j

is required to have non-negative eigenvalues, which correspond to
that all physical masses being positive except for vanishing masses
of the Goldstone bosons as seen in Appendix C.

Indeed, we have checked numerically for tan = vy1/vg; =10
that the extra scalars and pseudo-scalars could be O(10) TeV keep-
ing the light SM Higgs mass. This situation is achieved due to
some fine-tuning and rather large scalar self-couplings by taking
account of the radiative corrections of SUSY and ﬁlHq = O(10) TeV,
B = O(10) TeV and u = O(10) TeV. However, loop corrections
to the scalar masses become important as shown in two Higgs
doublet model [47,48]. Therefore, such high splittings of scalar
masses should be carefully examined in the context of the phe-
nomenology. Moreover, there could be unsuppressed flavor chang-
ing neutral current (FCNC) of quarks, which was discussed in the
Ay triplet Higgs model [42]. Indeed, the study of FCNC in Kaon and
B meson systems is important. However, we do not discussed the
phenomenology, which is out of scope in the present work.

In our model, only Hy; and Hyg; have VEVs, therefore, it is easy
to find that the couplings to the observed 125 GeV Higgs boson
are expected to be proportional to quark masses. This situation is
understandable since Hqq do not mix with Hgp and Hgs in the
Higgs potential as seen in Appendix C. The electromagnetism is
not broken: a minimum of the potential satisfying 9V /3H$< =0

gives (Hy;) =0.

It is also noticed that the VEV in Eq. (19) has a residual Z,
symmetry of A4. However, this Z, symmetry of the Higgs sector
is accidental since an obtained T of our result breaks completely
A4 symmetry. The choice of (vq,0,0) should be considered to re-
duce the number of free parameters. Indeed, the numerical fit of
experimental data of the CKM matrix is improved by using another
alignment of (vg, v;, 0), which has not the Z; symmetry.

Finally, we obtain the up-quark and down-quark mass matrices:

1 a 0 0
Mq = —Vq1 gq1 0 ﬂq 0
V2 0 0 ¥
2Yq —(1+8pYs —(1—gpVY2
x| —=(1—ggY2 2Y4 —(1+g9VY3 s
—(1+89¥s —(1—-gpY2 2Yq RL
(q=u,d), (22)

where gq = g42/8q1 (@ = u,d). There are six real parameters oy,
Bq» Vq (@ =1u,d), and the VEV of the modulus, 7. In addition, we
have two complex parameters g, and gg. It is noted that the factor
Vq1&q1 in front of the right hand side of Eq. (22) is absorbed into
ogq, Bq and yy. Thus, we have six real parameters and three com-
plex ones. That is to say, there are twelve free real parameters in
our mass matrices. It is also noticed that vq; does not appear ex-
plicitly in our calculations because it is absorbed in oq, By and yq.
Therefore, our numerical result is independent of tan 8 = vy1/v41.

The quark mass matrix in Eq. (22) has a specific flavor structure
due to the A4 symmetry. It is easily found relations among matrix
elements as follows:

My(1,1)  Mg(1,2)  M,y(1,3)
My(2.2)  Mg(2.3)  Mg2.1)°
Mg(2.2)  Mg(2,1)  Mg(2,3)

M;(3.3)  M;3.2)  M;G.1)°

(23)

Moreover, a constraint among Y1, Y, and Y3 in Eq. (12) provide a
relation

Mg(2.1) _ (g —1)* MgB. 1)
Mg(2,2)  gg+1 Mg(3.,2)°

These relations correlate CKM mixing angles each other. Thus, the
three CKM mixing angles are not independent in our quark mass
matrix. Indeed, parameter region of 7, g, and g4 are restricted to
be in rather narrow regions in order to reproduce the three CKM
mixing angles, as seen in numerical result. Then, the CP violating
phase is predicted in the restricted region in spite of the excess of
parameters compared with observed ones.

(24)

4. Numerical results

Let us begin with explaining how to get our prediction of the
CP violation in terms of twelve real parameters. At first, we take a
random point of t and g,, g4, which are scanned in the complex
plane by generating random numbers. The scanned ranges of Im[7]
are [0.5,10], in which the lower-cut 0.5 comes from the accuracy
of calculating modular functions, and the upper-cut 10 is enough
large for estimating Y; in practice. On the other hand, Re[7] is
scanned in the fundamental region of [—3/2,3/2] in Eq. (11) be-
cause the modular function Y; is given in terms of (7 /3). We also
scan in |gy| € [0, 1000] and |g4| € [0, 1000] while these phases are
scanned in [—7, 7).

Then, parameters og, Bq, ¥q (9 =u,d) are determined by com-
puting functions C?(i =1 —3) in Appendix B after inputting six
quark masses (see Appendix B). We use the six quark masses at
the My scale [49].

Finally, we can calculate three CKM mixing angles in terms of
the model parameters 7, g, and g4, while keeping the parameter
sets leading to values allowed by the experimental data of the CKM
mixing angles. We continue this procedure to obtain enough points
for plotting allowed region.

We adopt the data of quark Yukawa couplings at the M  scale
as input in order to constraint the model parameters [49]:

ya=(1.587023) %107, ys=3.121317) x 1074,
yb=(1.639£0.015) x 1072, y, = (7.4725) x 1075,
Ye=(3.60£0.11) x 1073, y, =0.986175.08% | (25)

which give quark masses as mg = yqvy with vy =174.1 GeV. We
also take the absolute values of CKM elements Vs, V¢, and Vy
for input as follows [50]:

|Vus| = 0.2243 £ 0.0005, |Vp| = 0.0422 4 0.0008 ,
|Vup| = (3.94+0.36) x 1073, (26)

In Egs. (25) and (26), the error-bars denote interval of 1o, and 3o
error-bars are used as input.
The obtained parameter region of t, g, and g4 are as follows:

Re[t]=—(1.49 - 1.50),
Im[t]=2.01-2.02,
Re[g,]=0.70-0.93,
Im[g,] = £(0.002 — 0.022) ,



58 H. Okada, M. Tanimoto / Physics Letters B 791 (2019) 54-61

150

100

o[deg]

50

Jopx10°

Fig. 1. Prediction of the magnitude of the CP violation on Jcp-é& plane, where black
lines denote observed central values of Jcp and &, and red dashed-lines denote
their upper-bounds and lower-bounds of 30 interval.
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Fig. 2. Predicted Jcp versus |V,p|, where black lines denote observed central val-
ues of |Vyp| and Jcp, and red dashed-lines denote their upper-bounds and lower-
bounds of 3¢ interval.
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Fig. 3. The allowed region on |V|-|Vyp| plane. Notations are same in Figs. 1 and 2.
1 -3

Re[—] ~ —(0.99 —1.03) x 107,
&d

lm[l] =—(0.052—-0.108) , (27)
8d

where the modulus t is almost fixed. By using these values, we
can predict the CP violation phase § and the Jarlskog invariant
Jcp [51]. Those are compared with the observed values at the
electroweak scale [50]:

§=(73.5T223)°, Jep=(3.184+0.15) x 107> . (28)

Our predictions are presented in Figs. 1-3. We show the pre-
dicted CP violating phase 8§ versus Jcp in Fig. 1. Here, the observed
CKM mixing elements |Vys|, |V¢y| and |Vyp| are input with 3o er-
ror interval. The predicted ranges of § and Jcp is (65°-140°) and
(2-4)x 1072, respectively. Those include the allowed regions of the
experimental data in Eq. (28), which are denoted by red dashed-
lines with 3o error interval. The predicted region of § is still broad.

It is remarked that § is more restricted if error-bars of inputting
quark masses are reduced, especially, the s-quark mass and the c-
quark mass are important to predict §.

We show the |V,;| dependence of predicted Jcp in Fig. 2. Al-
though observed |V ;| [0.0028, 0052] is input, our model does not
allow the region larger than 0.0043. The |V,;| is cut below the
lower-bound of experimental data. The predicted Jcp is approxi-
mately proportional to |V,p|. The upper hard cut of Jcp is due to
the maximal value of siné = 1.

In Fig. 3, we show the allowed region on |V |-|Vyp| plane. The
|Vep| is restricted in the very narrow range, which is larger than
0.0436, close to the 30 upper-bound of the observed one 0.0446.
This prediction provides us a crucial test of our model.

We can also discuss the ratio of CKM matrix elements of V,
and V¢, which is in the range of [0.065,0.098] from Fig. 3. It
should be compared with the observed values [52]:

Vaub

cb

= 0.083 £ 0.006 . (29)

Our prediction is inside of the observed 3¢ interval in Eq. (29).
This measurement was given in the semileptonic decays of Ap at
LHCb. This prediction provides another complementary test of our
model.

Finally, we show a typical set with twelve parameters as
one sample, which gives us successful CKM parameters as well

as Jcp:
T=-1.495+i2.011,
g4=-980—118.9,
oty /Yy =2.496 x 107>,

gu=0.918+1i0.0116,

Bu/Vu =5.995 x 1073,

og/yg =2.855 x 1073, (30)
1

Ba/vi=3.812x1072, y,= 72vugulyu =85.85 GeV,

1

Fa= —svagarva = 1.427 GeV.

This set gives

Vus| =0.224,  [Vp| =0.0443,  [Vyp| =3.20 x 1073,

Jep=2.98x107°,  §=74.9°, (31)

which are remarkably consistent with the observed values. It is
noticed that ratios of aq/yy and B4/y,4 (@ =u,d) in Eq. (30) corre-
spond to the observed quark mass hierarchy.

In conclusion, our quark mass matrix with the A; modular
symmetry can reproduce the CKM mixing matrix completely with
observed quark masses.

5. Summary

We have discussed the quark mass matrices in the A4 modular
symmetry, where the A4 triplet of Higgs doublets is introduced
for each up-quark and down-quark sectors, respectively. The model
has six real parameters and two complex parameters in addition to
the modulus 7. Then, we have constrained the model parameters
by inputting six quark masses and three CKM mixing angles at the
electroweak scale. We have predicted the CP violation phase § and
the Jarlskog invariant Jcp.

The predicted ranges of & and Jcp is (65°-140°) and
(2-4)x107>, respectively. Those include the allowed regions of
the experimental data. The absolute value of V,; is smaller than
0.0043. The magnitude of V., is larger than 0.0436, which is close
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to the 30 upper-bound of the observed one. Thus, our quark mass
matrices with the A4 modular symmetry can reproduce the CKM
mixing matrix completely with observed quark masses.

Our mass matrices have been analyzed at the electroweak scale
in this work. The renormalization-group evolution from the GUT
scale to the electroweak scale have been examined in some tex-
tures of the quark mass matrix [53]. The textures of the quark
mass matrix are essentially stable against the evolution. We expect
that the conclusions derived in this paper do not change much
even if we consider the mass matrix at the GUT scale.

We will also discuss the lepton mass matrices in the modular
A4 symmetry by introducing the A4 triplet of Higgs doublets else-
where.
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Appendix A. Multiplication rule of A4 group

We take
1 -1 2 2 1 0 O

S==-12 -1 2], T=|10 o 0 |, (32)
3\2 2 41 0 0 w?

-2
where w = e'3” for a triplet. In this base, the multiplication rule
of the Ay4 triplet is

aj b1
a | ®| b2
as 3 b3 3

= (a1b1 + azb3 +asby)q @ (azbs +aibz +azb1)y
@ (axby +aibz +asbq)yr

2a1b1 —axbs —azby axbs — asby
®3 2asbs —aiby —azb1 | @ = | a1b2 —azby ,
2(12b2 — albg — a3b1 3 a3b1 — a1b3 3
191=1, 1/®1/:1//, 1//®1//:1/’ 1/®1//:1.

(33)

More details are shown in the review [2,3].
Appendix B. aq/yq and Bq/yq in terms of quark masses

The coefficients g, B4, and y; in Eq. (22) are taken to be real
positive without loss of generality. These parameters are described
in terms of the modulus T and quark masses. The mass matrix is
written as

A

1 a 0 0
Mg=—=vq8qVq| O /§q 0
ﬁ 0 0 1
2Y4 —(1+gpYs —(1-gpY2
x| —(1—ggY2 2Yq —(1+g¢)Y3 , (34)
—(1+g9Y3s —(1-gpY2 2Yq RL

where &g = oq/yy and Bq = Bq/¥q- Then, we have three equations
as:

3

> om =TrM{Mgl =721+ 62 + B Cf (35)
i=1
3
[1m2, = DetiMimy) = 786242 c§ . (36)

i=1

Tar12 T2
Tr[MgMg]e — Tr[(MgMg)°]  _4 . oA A

X=——t— T =G + 6B + B €3
(37)

where x =m2 mZ, +mZm2 +mZm? and 75 = (vqgq1¥e)/V2.

The coefficients C{, C1, and C7 depend only on Y; and gg, where
Y;'s are determined if the value of modulus 7 is fixed, and gq is an
arbitrary complex coefficient. Those are given explicitly as follows:

Cl=alY11* + 1gg — 121V * + |gg + 1P21Y3)%
=2 Re[syi" +(gg— 133 — (g +1)°Y3
+6(g2 — DY1Y2Y3],
C3=16[Y1]* +gg — 111Ya|* + lgg + 1P| Y3/*
+4|gg — 121Y1Y2)> +4lgg + 12Y1Y3)
+ 182 = 1P1Y2Y3 P + 4 Re[ (g — (g + DYV
+2(g}% — DYTY3YE — (g + V(g — 1)Y{Y§Y32] :

Then, we obtain two equations which describe & and 8 as func-
tions of quark masses, 7 and gg:

A+s)s+t)  Cm2/ChH(x/Ch
t - [Imi/g

A+5)?%  (XCm?/c))?

s+t x/Cd

)

(38)

where we redefine the parameters &g + ﬁg =sand &7 35 =t. They

are related as follows,

st /s? —4t Bz_sq: s2 — 4t
2 bl q - .

> (39)

62 =
Appendix C. Scalar potential of A4 triplet Higgs

The Ay4 triplets Higgs, which are SU(2) gauge doublets, H, and
H, are expressed as:

Hyy Hgq
Hy=|Huw |, He=|Hagp |- (40)
Hys Hgs

Since each component is SU(2) doublet, it is written as:

uk = %(Vuk +ru +izye) |

L .

Hy = ﬁ(de +idl< +izar) 7 (41)

h
dk

where v, and vy, are VEV's of Hy, and Hgy, respectively.
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The A4 invariant superpotential of Higgs sector is written by

wh = u(Hy, Hg, + Hy, Hg, + Hys Hg,). (42)

The scalar potential of the D-term is given as
8 ot T T T
Vp = EZ(HuloaHu] + Hu,0aHus + Hyy0aHu, + Hy, 0aHy,

2
g
+ Hy,0aHa, + H}, 0aHa,)? + S (Y, Hu, + Hi Hu,
+HZ3Hu2 _H;Hm _HZZHds_HLHdZ)Z’ (43)

where g, and gy are gauge couplings of SU(2) and U(1), respec-
tively, and o, (a=1-3) denote the Pauli matrix.
On the other hand, the soft breaking term under A4 invariance
is also given by
Veofe = M2, (HY. Hy, + Hl Hy, + HLH
soft =miy, ( uyHuy + Hy, Hu; + Hyy uy)
+ 1y (HY Ha, + HY, Hg, + HY, Hg,)

+ B/,L(Hu] l'O'2Hd] + Hu2i0'2Hd3 + Hu3iO’2Hd2 + h.c.).
(44)

The resulting Higgs potential is then given by:

V (Hy, Hg) = m?, Hl) Hyy + 101> (Huy | + [Hus %)
+ m%—lu(H:rleus + HZ3Hu2)
+mgHY H, + |l (Ha > + |Ha, )

+ gy (HY, Ha, + HY Ha,)

8t t T
- §2<HulaaHu1 + Hy,0qHy; + Hy,0aHu,
+H' o,Hy +H' o,Hy. + H' 64Hy,)?

d;%ad; + d,%atds + d;%a dy)

& i i i
+ ?Y(Hul Hy, + Hjp, Hu; + Hiy Hu,
— H} Hg, — H}} Hg, — H}, Hg,)?
+ Bu(Hy,iozHg, + Hy,iozHg,
+Hu3i02Hd2 +h.c), (45)

— = 2 _ =2
where m2 = |u|? + m?,, m2 = |l +m?,.
We can study the minima in the potential V (H,, Hyg) of Eq. (45)
by taking the first derivative system

3V (Hy,Hy) _

0, (@=u,d;k=1273) (46)
dHgi

where Hg is of the field hu+k, haes Tuks Zuks Tax and zg. Here, the
Hessian

92V (Hy, Ha)

, =u,d; k,j=1,2,3 47
3Hod Hy G=u k, j ) (47)

is required to have non-negative eigenvalues, which correspond to
that all physical masses being positive except for vanishing masses
of the Goldstone bosons.

Our Higgs potential analysis is same as in MSSM. Indeed, we
have checked numerically by taking tan 8 = vy1/v41 = 10 that the
extra scalar and pseudo-scalar masses are larger than in O(1) TeV
keeping the light SM Higgs mass.
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