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We propose a matrix regularization of vector bundles over a general closed Kähler mani-
fold. This matrix regularization is given as a natural generalization of the Berezin–Toeplitz
quantization and gives a map from sections of a vector bundle to matrices. We examine
the asymptotic behaviors of the map in the large-N limit. For vector bundles with algebraic
structure, we derive a beautiful correspondence of the algebra of sections and the algebra
of corresponding matrices in the large-N limit. We give two explicit examples for monopole
bundles over a complex projective space CPn and a torus T2n.
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1. Introduction
The notion of noncommutative geometry appears in various studies of superstring theory and
M-theory [1–3] and it suggests that noncommutative geometry might be suitable to describe
space-time on the Planck scale rather than a smooth manifold. In noncommutative geometry,
we consider the space-time coordinates as a set of noncommutative operators on some Hilbert
space. A particular family of noncommutative geometry is called fuzzy geometry, which is the
case when the Hilbert space is finite-dimensional and the space-time coordinates are finite-
dimensional square matrices. This fuzzy geometry plays an important role in matrix models of
superstring theory and M-theory.

In order to describe physics on such fuzzy geometry, it is necessary to formulate various fields
on this geometry. For example, to describe the low-energy effective theories of D-branes, we
need a fuzzy description of the field theories in the matrix models. For this purpose, it is impor-
tant to find a description of a fuzzy version of vector bundles, since ordinary fields are described
as sections of some vector bundles. The motivation of this paper is to generalize a matrix regu-
larization [4], which is a map from functions on a smooth manifold to corresponding matrices
on a fuzzy geometry. More specifically, we establish matrix regularization of vector bundles
over a connected closed Kähler manifold.

Conventionally, the matrix regularization of functions on a closed symplectic manifold is
described in the following manner. Let us consider a closed 2n-dimensional symplectic manifold
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(M, ω). From the symplectic structure ω, one can define a volume form μ := ω∧n/n! and a
Poisson bracket

{ f , g} := W μν∂μ f ∂νg, (1)

where f, g are smooth functions and Wμν is the Poisson tensor defined by ωμνW μρ = δρ
ν . Let

{Np} be a sequence of strictly increasing integers satisfying Np → ∞ as p → ∞. The matrix
regularization is defined as a sequence of linear maps Tp : C∞(M ) → MNp (C) that satisfies [5]

lim
p→∞ |Tp( f )Tp(g) − Tp( f g)| = 0,

lim
p→∞ |i�−1

p [Tp( f ), Tp(g)] − Tp({ f , g})| = 0,

lim
p→∞(2π�p)nTr Tp( f ) =

∫
M

μ f . (2)

Here, �p = (kp)−1 for some constant k and | · | is a matrix norm. These conditions can be seen
as an analogue of the canonical quantization of classical mechanics where the phase space is
T ∗Rn � R2n. These relations are essential in deriving the action of the matrix model from the
worldvolume action of a membrane [4].

For a symplectic manifold M, it is known that there indeed exists a map Tp satisfying Eq.
(2). A systematic and beautiful construction of such a map is given by the Berezin–Toeplitz
quantization [6,7]. In this quantization, we first consider a suitable Dirac operator with Np zero
modes [7]. Then, one defines Tp(f) by Tp(f) = 	f	, where 	 is the projection operator onto the
Dirac zero modes. The map Tp, sometimes referred to as the Toeplitz operator, indeed satisfies
all the properties of Eq. (2).

The Toeplitz operators for more general fields than functions were proposed in Refs. [8–12].
In more recent studies [13,14], it is shown that the Toeplitz operator of general fields on a closed
Riemann surface enjoys beautiful properties, which are a natural generalization of Eq. (2).

In this paper, we investigate the Berezin–Toeplitz quantization of vector bundles over a gen-
eral closed Kähler manifold. We show that the asymptotic properties of the Toeplitz operator
given in Refs. [13,14] also exist in higher-dimensional manifolds. We derive a large-p asymptotic
expansion of the product Tp(ϕ)Tp(χ ) for arbitrary sections of vector bundles (general fields) ϕ,
χ , up to the second order in 1/p. From this asymptotic expansion, we obtain important relations
of the Toeplitz operator including generalization of Eq. (2). We also give explicit examples of
monopole bundles over a fuzzy CPn [15,16] and fuzzy T2n [11], where the Dirac operator zero
modes have relatively simple representations.1

This paper is organized as follows. In Sect. 2, we propose the Berezin–Toeplitz quantization
for general vector bundles and derive the asymptotic expansion. In Sects. 3 and 4, we con-
sider the Berezin–Toeplitz quantization of monopole bundles over CPn and T2n, respectively.
In Sect. 5, we give a summary and a discussion.

2. Berezin–Toeplitz quantization
In this section, we consider the Berezin–Toeplitz quantization for vector bundles and derive an
asymptotic expansion of the quantization map. In Sect. 2.1, we define the Toeplitz operator for
vector bundles. In Sect. 2.2, we derive the asymptotic behaviors of the Toeplitz operators. In

1See Ref. [17] for the analysis of Dirac operator zero modes of Riemann surfaces with higher genera,
where the zero modes have more complex representations than those of CP1 = S2 and T2.
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Sect. 2.3, we show the relation between the trace of the Toeplitz operator and the integral of
the corresponding field in the large-N limit. In Sect. 2.4, we construct the matrix Laplacian.

2.1 Berezin–Toeplitz quantization for vector bundles
We consider a closed connected 2n-dimensional Kähler manifold M with a Kähler structure
(g, J, ω), where g is a Riemannian metric, J is a complex structure, and ω is a symplectic form
satisfying the compatibility condition:

ω(·, ·) = g(J·, ·). (3)

The Kähler potential K is a function defined by the local relation ω = i∂∂̄K where ∂, ∂̄ are Dol-
beault differential operators. A natural volume form is defined by μ := ω∧n/n!. In terms of the
local real coordinates {xμ}2n

μ=1, we have μ = √
g dx1 ∧ dx2 ∧ · · · ∧ dx2n. To define the quanti-

zation map, we will introduce three Hermitian vector bundles L, Sc, and E. L is a prequantum
line bundle, Sc is a spin-c bundle, and E is the target bundle that we want to quantize. L can be
defined for a quantizable manifold, which we will discuss below, and Sc is known to exist for
any Kähler manifold. For any vector bundle F, we will denote the connection and the curvature
of F by ∇F = d + AF and RF := (∇F)2 = dAF + AF∧AF, respectively, where AF is the connection
one-form of F.

A prequantum line bundle L is a complex line bundle with a connection ∇L such that its
curvature (field strength) RL is proportional to the symplectic form:

RL = −ikω. (4)

Here, the constant factor k is chosen such that i
2π

∫
�

RL ∈ Z, where �⊆M is any two-cycle
of M. This condition is equivalent to the condition that the symplectic form k

2π
ω is in the

second integer cohomology H2(M, Z). Manifolds that allow the existence of this prequantum
line bundle are called quantizable manifolds. For a 2D manifold M = �, we can take k =
2π /
∫

Mω. The connection one-form AL is defined by the local expression of the connection ∇L

= d + AL. Using the Kähler potential K, one can choose a connection one-form by

AL = −k
2

(∂ − ∂̄ )K. (5)

Let 
( · ) be a set of all the smooth sections of the vector bundle. Then, an element of 
(L) is
a smooth complex scalar field coupling to a U(1) background gauge field AL. For the 2D case,
the curvature is proportional to the volume form, which means that sections of L are complex
scalar fields coupling to uniform magnetic flux.

Next, we consider the spin-c structure (see Refs. [18,19] for a more rigorous mathematical
treatment). The canonical spin-c bundle is defined by Sc :=⊕n

p=0 �0,p(T ∗M ); i.e., its fiber is a

sum of (0, p)-forms. This bundle is formally equal to S ⊗ L1/2
c , where S is the canonical spin bun-

dle and Lc is the determinant line bundle of the holomorphic tangent bundle Lc := det T (1,0)M.
In the case of a nonspin manifold, S and the square root bundle L1/2

c themselves are not well
defined and only the tensor product Sc = S ⊗ L1/2

c is well defined.2 A connection of Sc is lo-
cally given by ∇Sc = d + AS + 1

2 ALc . The connection one-form of the canonical spin bundle S

2Precisely speaking, though both S and L1/2
c can be locally defined, the cocycle conditions of the transi-

tion functions are not satisfied for nonspin manifolds. However, the violations of the cocycle conditions
cancel out for the formal tensor product Sc = S ⊗ L1/2

c , so that Sc is globally well defined. CP2m (m ∈ N)
is an example of nonspin manifold with the spin-c structure.
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is defined by

AS = 1
4
γ a

(2n)γ
b
(2n)�ab (6)

where {γ a
(2n)}2n

a=1 is a set of gamma matrices satisfying the Clifford algebra {γ a
(2n), γ

b
(2n)} = 2δabI2n

discussed in Appendix A2 and �ab = �abμdxμ is the spin connection one-form

�abμ = ea
νgνρ

(
∂μeb

ρ + 
ρ
μσ eb

σ
)
. (7)

Here, {ea}2n
a=1 is a set of the local orthonormal frame fields (vielbeins) satisfying g(ea, eb) = δab.

The connection one-form of Lc is given by ALc = −∑n
m=1 �mm̄, where m and m̄ are indices

of complexified orthonormal frame vector fields introduced in Eq. (A1). We can interpret the
sections of Sc as complex spinor fields coupling to 1

2 ALc .
Now, we consider the target bundle E. We assume that E is a finite-rank Hermitian vector

bundle. We express E as a homomorphism bundle (Hom-bundle) Hom(E2, E1), where Ei (i =
1, 2) are some Hermitian vector bundles. Here, Hom(E2, E1) is a vector bundle whose fiber at
a point x ∈ M is a vector space of linear maps from the fiber of E2 at x to the fiber of E1 at
x. Note that any vector bundles can always be written as the Hom-bundle. The reason why we
introduce the Hom-bundle is to introduce an algebraic structure that we will quantize. Namely,
there is a natural product structure between 
(Hom(E2, E1)) × 
(Hom(E3, E2)) → 
(Hom(E3,
E1)), following from the pointwise composition of the linear maps. This product is mapped to
the product of matrices in the quantization that we discuss below.

The description using the Hom-bundle is applicable to most fields appearing in physics. For
example, let L̃ be a complex line bundle with a connection one-form AL̃. Then, L̃⊗q can be
written as Hom(L̃⊗r, L̃⊗q+r) for any integers q, r. This means that a section of L̃⊗q, which is a
complex scalar field coupling to AL̃ with charge q, can also be regarded as a linear map from
fields with charge r to those with charge q + r. Another example is that adjoint matter fields
are regarded as linear maps from fundamental matter fields to themselves. Finally, tensor fields
can also be viewed as linear maps between tensor fields with various ranks. For instance, a
section of Hom((TM)⊗r, (TM)⊗q) is a tensor field of (q, r) type:

(ϕ1)μ1μ2···μq = (ϕ)μ1μ2···μq
ν1ν2···νr (ϕ2)ν1ν2···νr, (8)

which corresponds to (TM)⊗q⊗(T∗M)⊗r � Hom((TM)⊗r, (TM)⊗q).
As we have discussed, 
(Hom(E2, E1)) can be thought of a linear map 
(E2) → 
(E1). We

can extend this linear structure to a map 
(Sc⊗L⊗p⊗E2) → 
(Sc⊗L⊗p⊗E1) by just acting as
an identity on fibers of the auxiliary bundle Sc⊗L⊗p at each point x ∈ M. Here, p is an integer.
Note that 
(Sc⊗L⊗p⊗Ei) are infinite-dimensional vector spaces. If we can restrict this linear
map to be a map between finite-dimensional subspaces, such a map can be regarded as a finite-
dimensional matrix. This is the main idea of the Berezin–Toeplitz quantization. In order to
realize such a scenario, let us consider Dirac operators on 
(Sc⊗L⊗p⊗Ei) by

Di = iγ a
(2n)∇Sc⊗L⊗p⊗Ei

ea
= iea

μγ a
(2n)

(
∂μ + 1

4
�abμγ a

(2n)γ
b
(2n) − 1

2

n∑
m=1

�mm̄μ + pAL
μ + AE

μ

)
. (9)

We equip an inner product on 
(Sc⊗L⊗p⊗Ei) by

(ψ ′, ψ ) :=
∫

M
μ (ψ ′)† · ψ (ψ, ψ ′ ∈ 
(Sc ⊗ L⊗p ⊗ Ei)) (10)

where (ψ ′)† · ψ is a Hermitian inner product of a fiber Sc⊗L⊗p⊗Ei at point x ∈ M, which
is defined by a combination of Hermitian metrics of Sc, L, and Ei. In the language of physi-
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cists, † and · simply mean the Hermitian conjugation and the contractions of indices, respec-
tively. The norm is defined by |ψ | = √(ψ, ψ ). The space of normalizable zero modes Ker Di is
finite-dimensional. With the particular choice of the gamma matrices in Appendix A2, one can
compute its dimension Ni := dim KerDi for sufficiently large p using the Atiyah–Singer index
theorem and the vanishing theorem as shown in Appendix A3. Here, p controls the dimension
Ni, where Ni plays the role of the matrix size of the matrix regularization map. Now, let 	i

be a projection from 
(Sc⊗L⊗p⊗Ei) to KerDi. We define the Berezin–Toeplitz quantization of

(Hom(E2, E1)) by

T (E1,E2 )
p (ϕ) = 	1ϕ	2 (ϕ ∈ 
(Hom(E2, E1))). (11)

Here, T (E1,E2 )
p (ϕ) is a map from KerD2 to KerD1 and therefore it can be represented as an N1 ×

N2 matrix. As we will see below, the Toeplitz operator (11) enjoys a nice asymptotic behavior,
which gives a generalization of Eq. (2).

2.2 Asymptotic expansion of Toeplitz operators
We can also consider another bundle Hom(E3, E2) and define a Toeplitz operator T (E2,E3 )

p (χ ) =
	2χ	3 for χ ∈ 
(Hom(E3, E2)). Then, we can consider a product T (E1,E2 )

p (ϕ)T (E2,E3 )
p (χ ). As

shown in Appendix A4, the Toeplitz operator (11) has the following asymptotic expansion in
�p = (kp)−1:

T (E1,E2 )
p (ϕ)T (E2,E3 )

p (χ ) =
∞∑

i=0

�
i
pT (E1,E3 )

p (Ci(ϕ, χ )), (12)

where the symbols Ci on the right-hand side are maps from 
(Hom(E2, E1)) × 
(Hom(E3, E2))
to 
(Hom(E3, E1)). We find that the first three Ci are explicitly given by

C0(ϕ, χ ) = ϕχ,

C1(ϕ, χ ) = −1
2

Gαβ (∇αϕ)(∇βχ ),

C2(ϕ, χ ) = 1
8

GαβGγ δ
[
(∇αϕ)

(
iRβγμνW μν − 2RE2

βγ

)
(∇δχ ) + (∇α∇γ ϕ)(∇β∇δχ )

]
. (13)

Here, we have introduced a tensor Gαβ := gαβ + iWαβ , where gαβ is the inverse of the metric
tensor and Wαβ is a Poisson tensor defined by ωμνW μρ = δρ

ν . In Eq. (13), Rαβγ δ is the Riemann
curvature tensor for the metric g and RE2

αβ := RE2 (∂α, ∂β ) is a component of the curvature of E2.
The operator ∇α is the covariant derivative on each field. For example, it acts on ϕ ∈ 
(Hom(E2,
E1)) as ∇αϕ = ∂αϕ + AE1

α ϕ − ϕAE2
α , where AEi is a connection one-form of Ei. In Appendix A5,

we check that Eq. (13) is consistent with the associativity of the operator product.
We leave the proof of Eq. (12) to Appendix A4 and discuss here some important corollaries

of Eq. (13). From Eq. (13), it is easy to show the following relation:

lim
p→∞

∣∣∣T (E1,E2 )
p (ϕ)T (E2,E3 )

p (χ ) − T (E1,E3 )
p (ϕχ )

∣∣∣ = 0. (14)

Moreover, let us consider a function f ∈ C∞(M) and identity operator 1Ei ∈ 
(End(Ei)). Then,
we can consider the following commutator-like operation:

[T ( f 1), T (E1,E2 )
p (ϕ)] := T (E1,E1 )

p ( f 1E1 )T (E1,E2 )
p (ϕ) − T (E1,E2 )

p (ϕ)T (E2,E2 )
p ( f 1E2 ). (15)

Using the asymptotic expansion to Eq. (15), one finds

lim
p→∞

∣∣∣i�−1
p

[
T ( f 1), T (E1,E2 )

p (ϕ)
]

− T (E1,E2 )
p ({ f , ϕ})

∣∣∣ = 0, (16)

5/38

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2023/2/023B01/6987687 by D

eutsches Elektronen Synchrotron D
ESY user on 25 M

arch 2023



PTEP 2023, 023B01 H. Adachi et al.

where the generalized (covariantized) Poisson bracket { , } is defined by

{ f , ϕ} := W αβ (∂α f )(∇βϕ). (17)

From this correspondence, one can express the covariant derivative on ϕ by this commutator-
like operation in matrix models.

For the trivial line bundle Ei = M × C, i.e., for ordinary complex valued functions and for
simple pointwise products, the relations (14) and (16) reduce to the first two in Eq. (2).

2.3 Trace of the Toeplitz operator
Let us consider the case for an endomorphism bundle End(E1) = Hom(E1, E1). Then, we can
consider the Toeplitz operator of ϕ ∈ 
(End(E1)) given by

T (E1,E1 )
p (ϕ) = 	1ϕ	1. (18)

In this case, we can define a trace of the Toeplitz operator. As shown in Appendix A6, we
obtained the following property:

lim
p→∞(2π�p)nTrT (E1,E1 )

p (ϕ) =
∫

M
μ trE1ϕ. (19)

Here, trE1 is a trace in terms of vector space of the fiber of E1. This result is a generalization of
the third equation in Eq. (2).

2.4 Bochner Laplacian and its matrix regularization
Let E be a Hermitian vector bundle over M and let ∇E: 
(E) → 
(E⊗T∗M) be a Hermitian
connection of E. Let us also consider the adjoint of the connection (∇E)∗: 
(E⊗T∗M) → 
(E).
Then, the Bochner Laplacian �E is defined by

�Eϕ := (∇E )∗∇Eϕ. (20)

In terms of the local coordinate, we write

�Eϕ = −gμν∇μ∇νϕ, (21)

where the first covariant derivative is simply equal to ∇νϕ = (∂ν + AE
ν )ϕ but the second co-

variant derivative acts on ∇νϕ as ∇μ∇νϕ = (∂μ + AE
μ )∇νϕ − 
ρ

μν∇ρϕ. If a section of E has
an additional orthonormal index, the covariant derivative is assumed to be ∇μϕa = (∂μ +
AE

μ )ϕa + �abμϕb. In this notation, we have ∇μeν
a = 0 and ∇μγ a

(2n) = 0. Also, let us introduce
∇a := ∇ea = ea

μ∇μ. Then, we have useful identities �E = −∇a∇a and [∇a, ∇b]ϕ = RE(ea, eb)ϕ.3

In order to construct the matrix Laplacian, let us consider the following trick. Let
{XA}A = 1, 2,…,d be isometric embedding coordinate functions satisfying

(∂μX A)(∂νX A) = gμν, (22)

where the existence of such an embedding is ensured by the Nash embedding theorem for suffi-
ciently large d. As shown in Appendix A7, the Laplacian can be written by using the isometric
embedding functions and covariant Poisson bracket:

�Eϕ = −{X A, {X A, ϕ}}. (23)

This expression is given in terms of the generalized Poisson bracket; it is easy to find the corre-
sponding matrix Laplacian.

3There is also another expression �E = −(∇E
ea

)2 + ∇E
∇T M

ea ea
and ([∇E

ea
,∇E

eb
] − ∇E

[ea,eb] )ϕ = RE (ea, eb)ϕ,

which we can find in the mathematical literature.

6/38

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2023/2/023B01/6987687 by D

eutsches Elektronen Synchrotron D
ESY user on 25 M

arch 2023



PTEP 2023, 023B01 H. Adachi et al.

From Eq. (23), it is natural to define the matrix Laplacian �̂ by

�̂T (E1,E2 )
p (ϕ) := �

−2
p

[
T (X A1),

[
T (X A1), T (E1,E2 )

p (ϕ)
]]

, (24)

for ϕ ∈ 
(Hom(E2, E1)). Here, [ , ] is the generalized commutator defined in Eq. (15). We can
see that �̂ is a Hermitian operator that is positive semidefinite in terms of the Frobenius inner
product. In Ref. [13], it is shown that the spectra of the Bochner and the matrix Laplacians
agree in the large-p limit.4

3. Fuzzy CPn

In this section, we consider a Berezin–Toeplitz quantization of a monopole bundle over a com-
plex projective space CPn. Other constructions of such quantization maps are given in Refs.
[15,16]. In Sect. 3.1, we define a complex projective space CPn and describe its basic properties.
In Sect. 3.2, we explicitly construct a complete orthonormal basis of the kernel of the Dirac
operator. In Sect. 3.3, we calculate Toeplitz operators of embedding functions. In Sects. 3.4 and
3.5, we discuss the continuum Laplacian and the matrix Laplacian, respectively, for a monopole
bundle.5

3.1 Geometry of CPn

Firstly, let us define CPn, which is a closed connected 2n-dimensional Kähler manifold. For
Z, Z′ ∈ Cn+1 \ {0}, we will define a equivalence relation ∼ by

Z ∼ Z′ :⇔ ∃ c ∈ C \ {0} : Z = cZ′. (25)

Then, CPn is defined by

CPn = (Cn+1 \ {0})/ ∼ . (26)

This space can be covered by a set of n + 1 patches {Uα}n+1
α=1 where Uα := {[Z] ∈ CPn|Zα �= 0}.

Here, [Z] = [Z1, Z2,…,Zn + 1] is a representative class with respect to the relation ∼ and is called
the homogeneous coordinates. For a patch Uα, one can define the inhomogeneous coordinates
(z1

(α), z2
(α), · · · , zn

(α) ) such that

zμ

(α) =
{

Zμ/Zα (μ = 1, 2, . . . , α − 1)
Zμ+1/Zα (μ = α, α + 1, . . . , n)

. (27)

In order to define a Kähler structure of CPn, let us consider a local function Kα on a patch
Uα as

Kα(p) := log

⎛
⎝1 +

n∑
μ=1

|zμ

(α)(p)|2
⎞
⎠ = log

⎛
⎝n+1∑

μ=1

|Zμ/Zα|2
⎞
⎠. (28)

For x ∈ Uα∩Uβ , we have

Kα(x) = Kβ (x) + log
(
Zβ/Zα

)+ log
(

Zβ/Zα

)
. (29)

4This is explicitly shown for the case dim M = 2 [13] and the proof can be easily generalized in the case
of the general Kähler manifold that we are considering in this paper.

5The correspondence of matrices and (charged) fields was studied in Refs. [15,16], where they use the
projective module construction and the Fock space construction. In particular, the correspondence of
Laplacians is extensively studied in Ref. [16]. In our formalism, the underlying mechanism of these cor-
respondences is revealed based on the asymptotic expansion of the Toeplitz operators. Furthermore, our
formalism can be applied to any general Kähler manifolds and any vector bundles.
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By acting the Dolbeault differentials ∂, ∂̄, we have ∂∂̄Kα = ∂∂̄Kβ . Thus, we can define a closed
two-form ω locally written as

ω = i∂∂̄K. (30)

From now on, we will omit the subscripts of the patch. By using the local complex coordinates
zμ, ω is written as

ω = i
(1 + |z|2)δμν − z̄μzν

(1 + |z|2)2
dzμ ∧ dz̄ν. (31)

Here and hereafter, the Einstein sum convention is assumed. Also, we have defined |z|2 := zμz̄μ.
We can see that ω is a nondegenerate form. Thus, ω is a symplectic structure on CPn and the
local function K = log (1 + |z|2) satisfying Eq. (30) is called the Kähler potential. We now define
a standard almost complex structure J by J(∂μ) = i∂μ, J(∂μ̄) = −i∂μ̄, where ∂μ = ∂/∂zμ and
∂μ̄ = ∂/∂ z̄μ. Then, the compatible metric g( ·, ·) := ω( ·, J · ) is of the form

g = gμν̄dzμ ⊗ dz̄ν + gν̄μdz̄ν ⊗ dzμ. (32)

The components of the metric are given by

gμν̄ = gν̄μ = (1 + |z|2)δμν − z̄μzν

(1 + |z|2)2
. (33)

This metric is called the Fubini–Study metric. The volume element is given by√
det g = (1 + |z|2)−n−1 (34)

and the inverse metric is given by

gμν̄ = gν̄μ = (1 + |z|2)(δμν + zμz̄ν ). (35)

The triple (ω, g, J) gives the Kähler structure of CPn.
Let us discuss the isometric embedding of CPn into Rn2+2n. Let us consider a particular repre-

sentative of the homogeneous coordinate ζ = (ζ 1, ζ 2,…,ζ n + 1) such that |ζ |2 = 1. On the patch
Un + 1, for instance, it is related to the inhomogeneous coordinate z by

ζ = (z1, z2, . . . , zn, 1)T√
1 + |z|2

∈ Cn+1, (36)

where we fix the phase of ζ so that ζ n + 1 is a positive real number. The rank-1 Hermitian
projection Pζ = ζ ζ † can be expanded as

Pζ = 1
n + 1

In+1 −
√

2X ATA. (37)

Here, {TA}n2+2n
I=1 are Hermitian generators of SU(n + 1) in a fundamental representation satis-

fying

TATB = 1
2(n + 1)

δABIn+1 + 1
2

(dABC + i fABC )TC. (38)

dABC and fABC are completely symmetric and antisymmetric structure constants, respectively.
From the fact that Pζ is a projector, the real coefficients {X A}n2+2n

A=1 satisfy

X AX A = n
n + 1

, dABCX AX B +
√

2
(

n − 1
n + 1

)
X C = 0. (39)

A straightforward calculation shows that the Fubini–Study metric (32) can be written as

ds2 = tr(dPζ dPζ ) = 2tr(dX ATAdX BTB) = dX AdX A. (40)

Therefore, {X A}n2+2n
A=1 are isometric embedding functions. XA can also be written as

X A = −
√

2ζ †TAζ . (41)
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Let us consider an action

ζ �→ U ζ , (42)

for U ∈ SU(n + 1). This transformation leaves the metric invariant and hence is an isometry of
CPn. Since TA is an invariant tensor of SU(n + 1), the embedding functions XA transform as
the adjoint representation of SU(n + 1).

Finally, let us consider the prequantum line bundle over CPn. One can construct L as a dual
bundle of the tautological line bundle over CPn. The curvature of L is Eq. (4) with k = 1. One
can check that the integral of iRL/2π over any two-cycle is equal to 1 as follows. Since the rank
of the second homology group of CPn is 1, there is only one independent two-cycle. Let us take
a particular two-cycle CP1 = {[Z1, Z2, 0,…,0]}⊂CPn. The symplectic form in this two-cycle is
ω= i dz∧dz̄

1+|z|2 , where z = Z1/Z2. Then, it is easy to show that

i
2π

∫
CP1

RL = 1
2π

∫
CP1

ω = 1. (43)

3.2 Zero modes of the Dirac operator on CPn

In this subsection, we construct a complete orthonormal basis of the Dirac zero modes on CPn.
Let D(p) be a twisted Dirac operator on 
(Sc⊗L⊗p). We take a specific representation of the

gamma matrices given in Eq. (A6). As shown in Appendix A3, the Dirac operator zero mode
ψ (p) ∈ 
(Sc⊗L⊗p) has only one spinor component ψ (p) = f (p) |+〉⊗n. Here, f (p) ∈ 
(L⊗p) and
|+〉 is a 2D spinor (1, 0)T. As shown in Appendix A8, the zero-mode equation D(p)ψ (p) = 0 is
simplified to (

∂μ̄ + pAL
μ̄

)
f (p) = 0. (44)

Plugging K = log (1 + |z|2) and k = 1 into Eq. (5), one finds

pAL
μ̄ = pzμ

2(1 + |z|2)
. (45)

Thus, the zero-mode equation becomes(
∂μ̄ + pzμ

2(1 + |z|2)

)
f (p) = 0, (46)

and the general solution to this equation is

f (p) = (1 + |z|2)−p/2φ(z), (47)

where φ(z) is an arbitrary holomorphic function.
Now, let us consider the norm of the zero modes. Since any holomorphic function

can be expanded in Taylor series around z = 0, let us consider a function φs(z) :=
(z1)s1 (z2)s2 · · · (zn)sn , where s = (s1, s2, . . . , sn) ∈ (Z≥0)n, and check whether the zero mode
ψ

(p)
s = (1 + |z|2)−p/2φs |+〉⊗n is normalizable or not. In Appendix B1, we show that the norm∣∣ψ (p)

s

∣∣2 =
∫

CPn
μ

|z1|2s1 |z2|2s2 · · · |zn|2sn

(1 + |z|2)p
(48)

is convergent if and only if
∑n

i=1 si < p + 1 is satisfied. It is shown in Appendix B1 that a com-
plete orthonormal basis of Ker D(p) can be chosen as

ψ (p)
s = (Is,p)−1/2(1 + |z|2)−p/2(z1)s1 (z2)s2 · · · (zn)sn |+〉⊗n ,

∀i ∈ {1, 2, . . . , n} : si ∈ Z≥0 s.t.
n∑

i=1

si ≤ p, (49)
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where Is, p is given in Eq. (B2).
There is another expression of Eq. (49) in terms of the normalized inhomogeneous coordinate

ζ given in Eq. (36). The orthonormal basis (49) can be written as

ψ (p)
αp

= c(p)
αp

f (p)
αp

|+〉⊗n , (50)

where

f (p)
αp

= ζ α1ζ α2 · · · ζ αp, (51)

and the collective index αp = (α1, α2, . . . , αp) is an element of

�p = {1, 2, . . . , n + 1}p/permutation. (52)

The normalization factor c(p)
αp is given by

c(p)
αp

=
√

(p + n)!

(2π )n
∏n+1

i=1 ni(αp)!
, (53)

where ni(αp) is the number of components of αp equal to i.
The dimension of Ker D(p) is

dim Ker D(p) = (n + p)!
n!p!

, (54)

which is the number of independent symmetric polynomials of degree p with n variables. Equa-
tion (54) can also be understood from the representation theory of su(n + 1). Let V(d1,d2,...,dn )

be an irreducible representation of su(n + 1) with Dynkin index (d1, d2,…,dn). From Eq. (42),
one can see that ζ is in the representation space V(1, 0,…,0), which implies that the set of all sym-
metric polynomials of ζ i of degree p is isomorphic to the representation space V(p, 0,…,0). Thus,
we have

Ker D(p) = V(p,0,...,0). (55)

According to the hook length formula, the dimension of V(p, 0,…,0) is indeed equal to (n+p)!
n!p! . This

viewpoint in terms of representation theory will also play a very important role in the following
discussions.

As calculated in Ref. [20], one can also obtain dim Ker D(p) from the index theorem. Since the
vanishing theorem holds, we have dim Ker D(p) = IndD(p). Then, from the index theorem, we
obtain

dim Ker D(p) =
∫

CPn
Td(T (1,0)CPn) ∧ ch(L⊗p), (56)

where Td and ch stand for the Todd class and Chern character, respectively. For CPn, we have6

Td(T (1,0)CPn) =
(

ω/2π

1 − e−ω/2π

)n+1

, ch(L⊗p) = epω/2π . (57)

The coefficient of the term proportional to (ω/2π )∧n in the integrand of Eq. (56) can be evalu-
ated using the residue theorem:

Cp,n := 1
2π i

∮
dz

zn+1

(
z

1 − e−z

)n+1

epz = 1
2π i

∮
dz

epz

(1 − e−z)n+1
, (58)

where the integration contour is a counterclockwise loop enclosing the origin z = 0. By inte-
grating by parts, one can verify

Cp,n = p + 1
n

Cp+1,n−1 = · · · = (n + p)!
n!p!

Cn+p,0 = (n + p)!
n!p!

. (59)

6We sometimes write αn for α∧n for any differential form α. The exponential of a differential form α is
defined as eα =∑∞

k=0
α∧k

k! .
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To obtain the last equality, we use

Cn+p,0 = 1
2π i

∮
dz

e(n+p)z

1 − e−z
= 1

2π i

∮
dz

e(n+p)z

z

( ∞∑
l=0

(−z)l

(l + 1)!

)−1

= 1. (60)

Using the result of Appendix B1, we have
∫

CPn

(
ω

2π

)∧n = 1 and we therefore obtain

dim Ker D(p) =
∫

CPn
Cp,n

( ω

2π

)∧n
= Cp,n = (n + p)!

n!p!
. (61)

3.3 Matrix regularization of embedding functions
We will show that the embedding functions {X A}n2+2n

A=1 defined in Eq. (41) are mapped to

Tp(X A) =
√

2
p + n + 1

L(p)
A . (62)

Here, {L(p)
A }n2+2n

A=1 are generators of SU(n + 1) in the irreducible representation with Dynkin
index (p, 0,…,0) satisfying[

L(p)
A , L(p)

B

]
= i fABCL(p)

C ,
(

L(p)
A

)2
= np(p + n + 1)

2(n + 1)
I . (63)

Let αp, βp ∈ �p be collective indices labeling the orthonormal basis of Ker D(p). From Eq.
(41), the Toeplitz operator Tp(XA) is given by

Tp(X A)αp,βp :=
∫

CPn
μ
(
ψ (p)

αp

)†
X Aψ

(p)
βp

= −
√

2
n+1∑

i, j=1

(TA)i jc(p)
αp

c(p)
βp

∫
CPn

μ
(

f (p)
αp

)∗
f (p)
βp

ζ j ζ̄ i

= −
√

2
n+1∑

i, j=1

(TA)i jc(p)
αp

c(p)
βp

∫
CPn

μ
(

f (p+1)
αp⊕i

)∗
f (p+1)
βp⊕ j . (64)

Here, we have introduced the notation αp ⊕ γ l = (α1, α2, . . . , αp, γ1, γ2, . . . , γl ) ∈ �p+l for
αp = (α1, α2, . . . , αp) ∈ �p and γ l = (γ1, γ2, . . . , γl ) ∈ �l . Using the orthonormality condition,
we have

Tp(X A)αp,βp = −
√

2
n+1∑

i, j=1

(TA)i j

(
c(p)
αp

c(p+1)
αp⊕i

)2 c(p)
βp

c(p)
αp

δαp⊕i,βp⊕ j

= −
√

2
p + n + 1

c(p)
βp

c(p)
αp

n+1∑
i, j=1

(TA)i j (ni(αp) + 1)δαp⊕i,βp⊕ j . (65)

The Kronecker delta δαp,βp is defined by

δαp,βp =
{

1 (αp = βp)
0 (αp �= βp)

, (66)

and we have used

c(p+1)
αp⊕i

c(p)
αp

=
√

p + n + 1
ni(αp) + 1

(67)

in the second equality.
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Secondly, let us define

L(p)
A := p + n + 1√

2
Tp(X A), L(0)

A X B := − i√
2
{X A, X B}, (68)

where the Poisson bracket {XA, XB} is given in Eq. (B14). From Eq. (95), they satisfy[
L(p)

A , Tp(X B)
]

= Tp

(
L(0)

A X B
)

. (69)

By using Eqs. (69) and (B18), we find[
L(p)

A , L(p)
B

]
= p + n + 1√

2
Tp

(
L(0)

A X B
)

= i fABC
p + n + 1√

2
Tp(X C ) = i fABCL(p)

C . (70)

This shows that {L(p)
A }n2+2n

A=1 is SU(n + 1) generators in some representation. To identify the
representation, let us calculate the quadratic Casimir. From Eq. (65), we obtain(

L(p)
A

)2

αp,βp

=
c(p)
βp

c(p)
αp

n+1∑
i, j,i′, j′=1

(ni(αp) + 1)(n j′ (αp) + 1 + δi, j′ − δ j, j′ )(TA)i j (TA) j′i′δαp⊕i⊕ j′,βp⊕i′⊕ j .

(71)

Using the Fierz identity

(TA)i j (TA) j′i′ = 1
2

(
δi,i′δ j, j′ − 1

n + 1
δi jδi′ j′

)
, (72)

we obtain (
L(p)

A

)2

αp,βp

= np(p + n + 1)
2(n + 1)

δαp,βp. (73)

This is exactly the quadratic Casimir eigenvalue of the representation (p, 0,…,0) and therefore
{L(p)

A }n2+2n
A=1 is in the irreducible representation (p, 0,…,0).

3.4 Laplace operator on 
(L⊗q)
Consider a Laplace operator on 
(L⊗q),

�(q) = −gμν∇μ∇ν = −{X A, {X A, f (q)}}, (74)

for f (q) ∈ 
(L⊗q). Here, { ·, ·} is a generalized Poisson bracket defined in Eq. (17) and {X A}n2+2n
A=1

are isometric embedding functions. Let us also define differential operators {L(q)
A }n2+2n

A=1 on

(L⊗q) by

L(q)
A f (q) := 1√

2

(
−i{X A, f (q)} + qX A f (q)

)
. (75)

As shown in Appendix B2, they satisfy the commutation relations of the generator of SU(n +
1): [

L(q)
A ,L(q)

B

]
= i fABCL(q)

C . (76)

By a straightforward calculation, we can derive

�(q) = 2
(
L(q)

A

)2
− q2n

n + 1
. (77)

Thus, the eigenvalue of �(q) is given by 2E − q2n
n+1 , where E is an eigenvalue of (L(q)

A )2.

Let us evaluate the eigenvalues of (L(q)
A )2. To do this, let us consider how one can write el-

ements of 
(L⊗q) in terms of local coordinates. We remind ourselves that, in the overlapping
patch Uα∩Uβ , AL transforms as

AL(z(α) ) = AL(z(β ) ) − dλ(z(β ) ), (78)
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where

λ(z(β ) ) = −1
2

[
log
(

Zα

Zβ

)
− log

(
Z̄α

Z̄β

)]
. (79)

Here, Z = (Z1, Z2,…,Zn + 1) are the homogeneous coordinates of CPn. Hence, any element f (q)

∈ 
(L⊗q) should transform as

f (q)(z(α) ) = eqλ(z(β ) ) f (q)(z(β ) ) =
(

Zα

Zβ

)− q
2
(

Z̄α

Z̄β

) q
2

f (q)(z(β ) ). (80)

Thus, we can choose a basis of 
(L⊗q) as

(ZμZ̄μ)−k− q
2 Zσ1Zσ2 · · · Zσk+q Z̄τ1Z̄τ2 · · · Z̄τk, (81)

where k ∈ Z≥0. With the normalized homogeneous coordinates ζ given in Eq. (36), we define a
basis of 
(L⊗q) as

f (q)
σk+q,τk

(z) := ζ σ1ζ σ2 · · · ζ σk+q ζ̄ τ1 ζ̄ τ2 · · · ζ̄ τk, (82)

From Eq. (37), one can see that ζ and ζ̄ are in the representation spaces V(1, 0,…,0) and V ∗
(1,0,··· ,0),

respectively, where V ∗
(1,0,··· ,0) is the complex conjugate representation space of V(1, 0,…,0). This

implies that the set of all polynomials of ζ i, ζ̄ j of degree (k + q, k) denoted by Polk+q,k(ζ , ζ̄ )
is isomorphic to V(k+q,0,··· ,0) ⊗ V ∗

(k,0,··· ,0), because of the symmetric index structure of the poly-

nomials. Using the irreducible decomposition V(k+q,0,··· ,0) ⊗ V ∗
(k,0,··· ,0) =⊕k

i=0 V(i+q,0,··· ,0,i), we
have


(L⊗q) =
∞⊕

k=0

Polk+q,k(ζ , ζ̄ ) =
∞⊕

k=0

(
V(k+q,0,··· ,0) ⊗ V ∗

(k,0,··· ,0)

)
=

∞⊕
k=0

V(k+q,0,··· ,0,k). (83)

The eigenvalues of (L(q)
A )2 are those of the quadratic Casimir for the representations (k + q,

0,…,0, k), which are given by

Ek = 1
2

(
(k + q)(k + n) + k(k + q + n) + nq2

n + 1

)
. (84)

We can find eigenvectors of (L(q)
A )2 from a similar group theoretic correspondence. The eigen-

vectors corresponding to V(k + q, 0,…,0, k) are

f (q)
k,I (z) =

∑
σk+q,τk

c(q)
I,σk+q,τk

f (q)
σk+q,τk

(z) =
∑

σk+q,τk

c(q)
I,σk+q,τk

ζ σ1ζ σ2 · · · ζ σk+q ζ̄ τ1 ζ̄ τ2 · · · ζ̄ τk, (85)

where c(q)
I,σk+q,τk

:= (c(q)
I )σ1···σk+q,τ1···τk is a coefficient tensor that is completely symmetric in σ and

τ , respectively, and traceless under any contraction between σ a and τ b. The index I labels dif-
ferent weights of V(k + q, 0,…,0, k).

7 We also choose c(q)
I,σk+q,τk

such that(
f (q)

k,I , f (q)
k′,I ′

)
:=
∫

CPn
μ
(

f (q)
k,I

)∗
f (q)

k′,I ′ = δk,k′δI,I ′ . (86)

In Appendix B3, we show a direct computation of Eq. (84).

3.5 Matrix regularization of 
(L⊗q) and the Laplace operator
In this subsection, we explicitly evaluate the Toeplitz operator for a complete basis of 
(L⊗q)
given by the eigenfunctions of �(q) and discuss the matrix Laplacian.

Let us consider a matrix regularization of 
(L⊗q) by

Tp( f (q) ) = 	(p+q) f (q)	(p), ( f (q) ∈ 
(L⊗q)) (87)

7For example, for n = 1, we can take eigenvalues of L(q)
3 as the index I.
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where 	(p) : 
(Sc ⊗ L⊗p) → Ker D(p) is the projection. As discussed in the previous subsection,
we can choose a complete basis of 
(L⊗q) by

f (q)
σk+q,τk

(z) = ζ σ1ζ σ2 · · · ζ σk+q ζ̄ τ1 ζ̄ τ2 · · · ζ̄ τk . (88)

Then, the matrix regularization of f (q)
σk+q,τk is given by

Tp

(
f (q)
σk+q,τk

)
αp+q,βp

:=
∫

CPn
μ
(
ψ (p+q)

αp+q

)†
f (q)
σk+q,τk

ψ
(p)
βp

=
c(p+q)
αp+q c(p)

βp(
c(p+q+k)
αp+q⊕τk

)2 δαp+q⊕τk,βp⊕σk+q . (89)

From Eq. (24) and �p = p−1, we define a Laplace operator acting on Tp(f (q)) by

�̂(Tp( f (q) )) = p2[T (X A), [T (X A), Tp( f (q) )]]. (90)

Using Eqs. (62) and (63), we have

�̂(Tp( f (q) )) = 2p2

(p + q + n + 1)(p + n + 1)

(
(LA◦)2 − q2n

2(n + 1)

)
Tp( f (q) ), (91)

where we have defined LA ◦ Tp( f (q) ) := L(p+q)
A Tp( f (q) ) − Tp( f (q) )L(p)

A . The operation LA◦ satis-
fies

[LA◦, LB◦] = i fABCLC◦, (92)

and hence they are representations of the generators of SU(n + 1). Their representation space
is

V(p+q,0,...,0) ⊗ V ∗
(p,0,...,0) =

p⊕
k=0

V(k+q,0,...,0,k). (93)

This is a similar decomposition to Eq. (83) except for the cut-off p. From this, we see that the
eigenmatrices of �̂ are in the irreducible representation V(k + q, 0,…,0, k) and the eigenvalue of �̂

is given by

2p2

(p + q + n + 1)(p + n + 1)

(
Ek − q2n

2(n + 1)

)
= 2Ek − q2n

n + 1
+ O(p−1) (94)

for k = 1, 2,…,p, where Ek is given by Eq. (84). This shows that the spectrum of the matrix
Laplacian �̂ is the truncated version of the spectrum of the Bochner Laplacian � up to a
correction of order O(1/p).

More explicitly, we can show the stronger identity

Tp

(
L(q)

A f (q)
)

= LA ◦ Tp( f (q) ) (95)

for any f (q) ∈ 
(L⊗q). This is shown in Appendix B4. From this identity, we can easily derive
the correspondence of eigenvalues or eigenvectors that we discussed above. Note that Tp( f (q)

k,I )
can be written as

Tp

(
f (q)

k,I

)
αp+q,βp

=
∫

CPn
μ
(
ψ (p+q)

αp+q

)†
f (q)

k,I ψ
(p)
βp

= c(p+q)
αp+q

c(p)
βp

(
f (q)
αp+q,βp

, f (q)
k,I

)
, (96)

where ( ·, ·) is the inner product defined in Eq. (86). Since f (q)
αp+q,βp

can be expanded by the

orthonormal basis f (q)
k′,I ′ for k′ ≤ p, we find Tp( f (q)

k,I ) = 0 for k > p. For k ≤ p, Eq. (95) implies

that f (q)
k,I and Tp( f (q)

k,I ) both have exactly the same Casimir eigenvalues and weights. For the
quadratic Casimir, we have

(LA◦)2 Tp

(
f (q)

k,I

)
= Tp

((
L(q)

A

)2
f (q)

k,I

)
= EkTp

(
f (q)

k,I

)
, (97)

and we can see that the eigenvalues of (LA◦)2 are {Ek}p
k=0 as expected.
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To see the correspondence of the trace and the integral (19), let us calculate the Frobenius
inner product: (

Tp

(
f (q)

k,I

)
, Tp

(
f (q)

k′,I ′

))
:= Tr

[
Tp

(
f (q)

k,I

)†
Tp

(
f (q)

k′,I ′

)]
. (98)

For k, k′ ≤ p, Eq. (98) is nonvanishing only if Tp( f (q)
k,I ) and Tp( f (q)

k′,I ′ ) belong to the same repre-
sentation having the same weights. Thus, we have(

Tp

(
f (q)

k,I

)
, Tp

(
f (q)

k′,I ′

))
∝ δk,k′δI,I ′ . (99)

More explicitly, we can show(
Tp

(
f (q)

k,I

)
, Tp

(
f (q)

k′,I ′

))
= (p + q + n)!(p + n)!

(2π )n(p − k)!(p + q + k + n)!
δk,k′δI,I ′ . (100)

See Appendix B5 for the proof. For finite k and k′, we have the large-p expansion(
Tp

(
f (q)

k,I

)
, Tp

(
f (q)

k′,I ′

))
= pn

(2π )n
δk,k′δI,I ′ + O(pn−1), (101)

which is consistent with Eq. (86) through the correspondence for the trace and integral (19).

4. Fuzzy T2n

In this section, we consider a Berezin–Toeplitz quantization of a monopole bundle over a torus
T2n � (S1)2n [11]. In Sect. 4.1, we define a torus T2n and describe its basic properties. In Sect.
4.2, we explicitly construct a complete orthonormal basis of the kernel of the Dirac operator.
In Sect. 4.3, we calculate Toeplitz operators of embedding functions. In Sects. 4.4 and 4.5,
we discuss the continuum Laplacian and the matrix Laplacian, respectively, for a monopole
bundle.8

4.1 Geometry of T2n

Let us consider the Euclidean space R2n equipped with a flat metric. We introduce an equivalent
relation

∀x = (x1, x2, . . . , x2n) ∈ R2n : xa ∼ xa + 2π la (a = 1, 2, . . . , 2n), (102)

where la are some positive constants. Under this identification, we define a 2n-dimensional torus
T2n as a quotient space

T 2n = R2n/ ∼ . (103)

The flat metric and its associated Kähler form on T2n are given by

g =
2n∑

a=1

dxa ⊗ dxa, ω =
n∑

m=1

dx2m−1 ∧ dx2m = i dzμ ∧ dz̄μ. (104)

Here, the real and complex coordinates are related by zμ = (x2μ−1 + ix2μ)/
√

2 for μ = 1, 2,…,n.
T2n is isometrically embedded in R4n such that

X 2a−1 = la cos(xa/la), X 2a = la sin(xa/la). (a = 1, 2, . . . , 2n) (105)

Now, let us consider the bundle structures on T2n. Since T2n is a spin manifold, we can simply
use the spin bundle S. Since T2n is flat, the spin connection of S is flat as well. We also introduce
the prequantum line bundle L. The two-cycles of T2n are simply T2 and the curvature RL = −ikω

8In Ref. [11], the 2D case is studied. In this paper, we study its higher-dimensional extension.
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is nonvanishing on T2 spanned by (x2m − 1, x2m) for m = 1, 2,…,n. Hence, the prequantization
condition for T2n is satisfied for k and la such that

∀m ∈ {1, 2, . . . , n} : qm := i
2π

∫
T 2

RL = 2πkl2m−1l2m ∈ N. (106)

The condition is satisfied if and only if the ratio of areas l2m−1l2m
l2m′−1l2m′ is rational for any m, m′.

4.2 Zero modes of the Dirac operator on T2n

In this subsection, we construct a complete orthonormal basis of the Dirac zero modes on T2n

[21].
Let D(p) be a twisted Dirac operator on 
(S⊗L⊗p). By the same argument as in Sect. 3.2, the

zero-mode equation D(p)ψ (p) = 0 for ψ (p) = f (p) |+〉⊗n is simplified to(
∂μ̄ + pAL

μ̄

)
f (p) = 0. (107)

Here, AL can be chosen as

AL = −ik
n∑

m=1

x2m−1dx2m = − k
2

(zμ + z̄μ)(dzμ − dz̄μ). (108)

Thus, the zero-mode equation is(
∂μ̄ + kp

2
(zμ + z̄μ)

)
f (p) = 0. (109)

We also have to pay attention to the boundary conditions. Since f (p)(x) is a section of the
nontrivial bundle L⊗p, f (p)(x) transforms under a coordinate change. For T2n, this property
is described in terms of the boundary conditions as follows. Consider the coordinate change
x2m �→x2m + 2π l2m. Under this change, the connection one-form AL(x) does not change and
correspondingly the element of 
(L⊗p) should be periodic under this coordinate shift for each
m. Similarly, under the coordinate change x2m − 1 �→x2m − 1 + 2π l2m − 1, AL(x) transforms as
AL(x)�→AL(x) − dλ(x) where λ(x) = i2πkl2m − 1x2m. Correspondingly, f (p) should transform as
f (p)(x)�→epλ(x)f (p)(x) for each m. These boundary conditions and the differential equation (109)
are closed on each T2 with the coordinates (x2m − 1, x2m). Hence, we can separate the variables
and the general solution is

f (p)(x) =
n∏

m=1

(
e− kp

2 (x2m−1 )2
φm(x2m−1 + ix2m)

)
. (110)

The boundary conditions are now given by

φm(x2m−1 + ix2m + i2π l2m) = φm(x2m−1 + ix2m),

φm(x2m−1 + ix2m + 2π l2m−1) = e−ipqmτmepqm(x2m−1+ix2m )/l2mφm(x2m−1 + ix2m). (111)

Here, τm := il2m − 1/l2m is the moduli parameter of the mth T2. From the first condition, one
can write

φm(x2m−1 + ix2m) =
∑
s∈Z

dses(x2m−1+ix2m )/l2m (112)

for some complex constants ds. The second condition gives

ds = eiπ (2s−pqm )τmds−pqm . (113)
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To solve this recursion equation, let us write s = pqml + im for l ∈ Z and im ∈ {0, 1,…,pqm −
1}. Then, the solution is

dpqml+im = c(p)
im eiπ

(
l+ im

pqm

)2
pqmτm (114)

for some complex constants c(p)
im . Hence, there are pqm linearly independent solutions to Eq.

(111):

φm(x2m−1 + ix2m) =
pqm−1∑
im=0

c(p)
im

∑
l∈Z

eiπ
(

l+ im
pqm

)2
pqmτme

(
l+ im

pqm

)
pqm
l2m

(x2m−1+ix2m )
. (115)

Therefore, from Eq. (110), one can take a complete basis of the zero-mode solutions as

f (p)
i (x) =

n∏
m=1

f (p)
im (x2m−1, x2m), (116)

where i = (i1, i2,…,in) and

f (p)
im (x2m−1, x2m) :=

(
kp

4π3l2
2m

)1/4

e− kp
2 (x2m−1 )2 ∑

l∈Z

eiπ
(

l+ im
pqm

)2
pqmτme

(
l+ im

pqm

)
pqm
l2m

(x2m−1+ix2m )
. (117)

Here, we have fixed the constant c(p)
im =

(
kp

4π3l2
2m

)1/4
. Note that the index im ∈ {0, 1,…,pqm − 1} is

rather considered to be an element of the additive group Z/pqmZ because of the cyclic structure
f (p)

im = f (p)
im+pqm

. This basis is not only complete but also orthonormal. In Appendix C1, we show
the relation ∫ 2π l2m−1

0
dx2m−1

∫ 2π l2m

0
dx2m

(
f (p)

im

)∗
f (p)

jm = δim, jm, (118)

which implies the orthonormality∫
T 2n

μ
(

f (p)
i

)∗
f (p)

j =
n∏

m=1

δim, jm . (119)

Now, let us check that the number of zero modes is consistent with the index theorem and
the vanishing theorem. As we obtained in Eq. (116), the number of linearly independent zero
modes is

dim Ker D(p) = pn
n∏

m=1

qm. (120)

On the other hand, the index theorem and the vanishing theorem imply

dim Ker D(p) = Ind D(p) =
∫

T 2n
e

ip
2π

RL = (kp)n

(2π )n

∫
T 2n

μ = pn
n∏

m=1

qm. (121)

4.3 Matrix regularization of embedding functions
Now, let us consider the following functions:

um = eix2m−1/l2m−1, vm = eix2m/l2m . (122)

By using these functions, an isometric embedding X A : T 2n → R4n can be written as

X 4m−3 = l2m−1

2

(
um + u∗

m

)
, X 4m−2 = l2m−1

2i

(
um − u∗

m

)
,

X 4m−1 = l2m

2

(
vm + v∗

m

)
, X 4m = l2m

2i

(
vm − v∗

m

)
. (123)

We consider the matrix regularization of these functions.
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We define a matrix regularization of C∞(T2n) by

Tp( f ) = 	(p) f 	(p), ( f ∈ C∞(T 2n)) (124)

where 	(p) : 
(S ⊗ L⊗p) → Ker D(p) is the Hermitian projection. Using the integral in Ap-
pendix C1 (or see Ref. [11]), we have

U (p)
m := Tp(um) = Ipq1 ⊗ · · · ⊗ Ipqm−1 ⊗ Upqm ⊗ Ipqm+1 ⊗ · · · ⊗ Ipqn,

V (p)
m := Tp(vm) = Ipq1 ⊗ · · · ⊗ Ipqm−1 ⊗ Vpqm ⊗ Ipqm+1 ⊗ · · · ⊗ Ipqn, (125)

where

Upqm = e
− 1

4kpl22m−1

⎛
⎜⎜⎜⎜⎝

1

ei 2π
pqm

. . .

ei 2(pqm−1)π
pqm

⎞
⎟⎟⎟⎟⎠ ,

Vpqm = e
− 1

4kpl22m

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1

1
. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (126)

These matrices satisfy the algebra of the noncommutative torus UpqmVpqm = ei 2π
pqm VpqmUpqm .

Therefore, the matrix regularization of the embedding functions is

Tp(X 4m−3) = l2m−1

2

(
U (p)

m + U (p)†
m

)
, Tp(X 4m−2) = l2m−1

2i

(
U (p)

m − U (p)†
m

)
,

Tp(X 4m−1) = l2m

2

(
V (p)

m + V (p)†
m

)
, Tp(X 4m) = l2m

2i

(
V (p)

m − V (p)†
m

)
. (127)

4.4 Laplace operator on 
(L⊗q)
Consider the Laplace operator on 
(L⊗q)

�(q) = −
2m∑

a=1

(
D(q)

a

)2
= −

n∑
m=1

(
D(q)

m D(q)
m̄ + D(q)

m̄ D(q)
m

)
, (128)

where D(q)
a is the connection of 
(L⊗q) in the real coordinates xa and D(q)

m and D(q)
m̄ are those in

the complex coordinates. Also let us define the inner product:

( f (q), g(q)) :=
∫

T 2n
μ( f (q) )∗g(q). ( f (q), g(q) ∈ 
(L⊗q)) (129)

Here, μ = ω∧n/n! = dx1∧dx2∧···∧dx2n.
First, let us examine the spectrum of the Laplacian �(q) for q = 0, i.e., the case for the ordinary

functions C∞(T2n). One can easily see that the normalized eigenfunctions of �(0) are

fb(x) = [(2π )2nl1l2 · · · l2n]−1/2
2n∏

a=1

eibaxa/la, (130)

and the eigenvalues are given by

Eb =
2n∑

a=1

(
ba

la

)2

, (131)
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where b = (b1, b2, . . . , b2n) ∈ Z2n. They satisfy

( fb, fb′ ) =
2n∏

a=1

δba,b′
a
. (132)

Now, let us consider the spectrum of the Laplacian �(q) for q �= 0. Since we have[
D(q)

m , D(q)
m̄′

]
= kqδm,m′,

[
D(q)

m , D(q)
m′

]
=
[
D(q)

m̄ , D(q)
m̄′

]
= 0, (133)

we can define creation and annihilation operators

a(q)
m := i

D(q)
m̄√
kq

, a(q)†
m := i

D(q)
m√
kq

, (134)

satisfying [a(q)
m , a(q)†

m′ ] = δm,m′ . Then, the Laplace operator can be written as

�(q) = 2kq
n∑

m=1

(
N (q)

m + 1
2

)
, (135)

where N (q)
m := a(q)†

m a(q)
m are the number operators. Note that the lowest eigenmodes of �(q)

should vanish under the action of a(q)
m ∝ D(q)

m̄ for all m. This means that the lowest eigenmodes
are f (q)

j given in Eq. (117), which appeared in the discussion of the Dirac zero modes. The other

eigenmodes are obtained by acting the creation operators on the lowest eigenmodes f (q)
j . Thus,

the normalized eigenfunctions of �(q) are

f (q)
c, j =

n∏
m=1

f (q)
cm, jm, f (q)

cm, jm =
(

a(q)†
m

)cm

√
cm!

f (q)
jm (zm), (136)

and the corresponding eigenvalues are

Ec = 2kq
n∑

m=1

(
cm + 1

2

)
. (137)

Here c = (c1, c2, . . . , cn) ∈ (Z≥0)n. More explicitly, the eigenfunctions are given by

f (q)
cm, jm (zm) =

(
kq

4π3l2
2m

)1/4 (−i)cm

√
2cmcm!

e− kq
2 (x2m−1 )2

×
∑
l∈Z

eiπ
(

l+ jm
qqm

)2
qqmτme

(
l+ jm

qqm

)
qqm
l2m

(x2m−1+ix2m )

×Hcm

(√
kq
(

x2m−1 − 2π l2m−1

(
l + jm

qqm

)))
. (138)

Here, Hn(x) is the Hermite polynomial satisfying the recursion Hn+1(x) = 2xHn(x) − H ′
n(x).

4.5 Matrix regularization of 
(L⊗q) and the Laplace operator
In this subsection, we explicitly evaluate the Toeplitz operator for a complete basis of 
(L⊗q)
given by the eigenfunctions of �(q) and discuss the matrix Laplacian.

The matrix regularization of 
(L⊗q) is defined by

Tp( f (q) ) = 	(p+q) f (q)	(p), ( f (q) ∈ 
(L⊗q)) (139)

where 	(p) : 
(S ⊗ L⊗p) → Ker D(p) is the Hermitian projection.
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For q = 0, we have the eigenfunctions fb given in Eq. (130). Using the results of Appendix C1,
we have

Tp( fb) = [(2π )2nl1l2 · · · l2n]−1/2e
− 1

4kp

∑n
m=1

(
b2
2m−1−b2m−1

l22m−1
+i

2b2m−1b2m
l2m−1 l2m

+ b2
2m−b2m

l22m

)

×(U (pq1 ))b1 (V (pq1 ))b2 ⊗ (U (pq2 ) )b3 (V (pq2 ) )b4 ⊗ · · · ⊗ (U (pqn ) )b2n−1 (V (pqn ) )b2n . (140)

For q �= 0, the Toeplitz operators of the eigenfunctions f (q)
c, j given in Eq. (138) are

Tp

(
f (q)

c, j

)
i,i′

=
n∏

m=1

∫ 2π l2m−1

0
dx2m−1

∫ 2π l2m

0
dx2m

(
f (p+q)

im

)∗
f (q)

cm, jm f (p)
i′m

, (141)

where i = (i1, i2,…,in) and i′ = (i′1, i′2, · · · i′n) are the labels of the Dirac zero modes. The integral
on the right-hand side of Eq. (141) is computed in Appendix C2 and the result is∫ 2π l2m−1

0
dx2m−1

∫ 2π l2m

0
dx2m

(
f (p+q)

im

)∗
f (q)

cm, jm f (p)
i′m

= icm

√
2cmcm!

(
kq

4π3l2
2m

)1/4 ( p
p + q

) cm
2 + 1

4
(p+q)qm∑

t=1

δ
(mod (p+q)qm )
im, jm+i′m+qqmt

∑
l∈Z

×e
iπ
(

l+ pqmim−(p+q)qmi′m
(p+q)pqq3

m

)2

(p+q)pqq3
mτm

×Hcm

(
2π l2m−1

√
k (p + q) pqq2

m

(
l + pqmim − (p + q) qmi′m

(p + q) pqq3
m

))
. (142)

From Eq. (24), we define a Laplace operator acting on Tp(f (q)) by

�̂(q)Tp( f (q) ) = (kp)2[T (X A), [T (X A), Tp( f (q) )]]

= l2
2m−1(kp)2

2

n∑
m=1

(
[T (um), [T (um)†, Tp( f (q) )]] + [T (um)†, [T (um), Tp( f (q) )]]

)

+ l2
2m(kp)2

2

n∑
m=1

(
[T (vm), [T (vm)†, Tp( f (q) )]] + [T (vm)†, [T (vm), Tp( f (q) )]]

)
.

(143)

The second expression is obtained by using Eq. (127). For q = 0, we can easily see that the
spectrum of �̂(0) approaches that of �(0) as

�̂(0)Tp ( fb) = 4 (kp)2
n∑

m=1

(
l2
2m−1 sin2

(
πb2m

pqm

)
+ l2

2m sin2
(

πb2m−1

pqm

))
Tp ( fb)

=
(

2n∑
a=1

(
ba

la

)2

+ O(p−1)

)
Tp( fb). (144)

We can also see the correspondence between the trace and the integral. In fact, we have

(2π�p)nTr[Tp( fb)†Tp( fb′ )] = (2π�p)n[(2π )2nl1l2 · · · l2n]−1e
− 1

2kp

∑n
m=1

(
b2
2m−1−b2m−1

l22m−1
+i

2b2m−1b2m
l2m−1 l2m

+ b2
2m−b2m

l22m

)

×
n∏

m=1

(
e
− b2m−1

2kpl22m−1 e
− b2m

2kpl22m pqm

)
δ

(mod pqm )
bm,b′

m

= δ
(mod pqm )
bm,b′

m
+ O(p−1), (145)
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which is consistent with Eq. (132). For q �= 0, the eigenvalue problem of the Laplace operator
�̂(q) is related to the Hofstadter problem as noted in Ref. [11]. It is numerically shown in Ref.
[11] that the spectrum of �̂(q) approaches that of �(q) in the commutative limit.9

5. Conclusion and future problems
In this paper, we have studied the Berezin–Toeplitz quantization of vector bundles over a gen-
eral closed connected Kähler manifold, which is a continuation of our previous studies of 2D
cases [13,14]. In our formalism, we treat a vector bundle as a homomorphism bundle and treat
its sections as some linear operator between suitable twisted spinor fields. By restricting the
vector spaces of each twisted spinor field to finite-dimensional kernels of Dirac operators, we
defined a quantization map from fields (sections of the vector bundle) to matrices. We obtained
a large-p asymptotic behavior of the product Tp(ϕ)Tp(χ ) for arbitrary sections of vector bun-
dles ϕ, χ up to the second order in 1/p. This is a natural generalization of the relation of matrix
regularization (2). The matrix Laplacian acting on such matrices can be written in terms of a
commutator-like operation and its spectrum in the large-p limit is shown to be equal to that of
the usual Bochner Laplacian acting on continuum fields. Our result is a generalization of Refs.
[15,16], where fuzzy CPn is considered, to the general Kähler manifold. As explicit examples,
we considered monopole bundles over a fuzzy CPn and fuzzy T2n and we confirmed that in the
case of CPn our formulation correctly reproduces the results in Refs. [15,16].

Our framework is applicable to a wide class of fields. For example, an (r, s) tensor field gives a
homomorphism from 
(TM⊗s) to 
(TM⊗r), and we can apply our formulation. It is interesting
to construct a fuzzy version of the higher spin theories [22,23] by using our method. It is also
possible to consider a matrix regularization of spinor fields. The spinor fields on the lattice
have the problems of doublers and chiral anomaly and we can consider similar problems on
fuzzy spaces [24–29]. Our method will enable us to deal with similar problems on a general
Kähler manifold. Our method can also be used to construct fuzzy field theories in arbitrary
background fields. It is important to understand how various background field configurations
such as instantons are realized on fuzzy spaces.

Let us comment on some possible generalizations of our study. Throughout this paper, we
assumed that the manifold M is Kähler. In particular, we assumed that the manifold has an
integrable complex structure. However, it is possible to construct a quantization of functions
with almost complex structure that is not necessarily integrable (see, e.g., Ref. [7]). Moreover,
it is also possible to consider noncompact manifolds and orbifolds [7]. Therefore, the Berezin–
Toeplitz quantization of vector bundles might also be defined over more general manifolds
than the closed Kähler case (e.g., the fuzzy S4 [30–33]). We can also consider more challeng-
ing problems such as a quantization of odd-dimensional manifolds [34–37] or manifolds with
boundaries. These studies are important to uncover the various branes of such geometries such
as odd-dimensional branes and orientifold planes [38] in the framework of matrix models [36].
Yet another possible generalization is the Berezin–Toeplitz quantization of nonlocal operators
such as Wilson lines. As a Wilson line sends a spinor at one point to a spinor at a different
point, it gives a linear map between twisted spinor spaces. The Wilson line or loop is an essen-

9In Ref. [11], only the 2D case is considered, while we consider a higher-dimensional torus T2n. However,
T2n can be decomposed to the tensor product of T2 so that the results of Ref. [11] can also be applied to
our case.
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tial ingredient of gauge theories and the quantization of Wilson lines may shed light on studies
of gauge theories on fuzzy geometries.

Finally, another direction for the study of fuzzy spaces is the inverse problem of quantization.
While, in quantization, one constructs a quantum geometry from a given classical geometry, it is
also interesting to consider the problem of finding a classical geometry from a given quantum
geometry. See Refs. [39–47] for developments in this direction. We consider that the inverse
problem can be generalized for the case of vector bundles. The matrix counterparts of vector
bundles should contain various geometric information and finding a method for extracting such
information will bring great progress to the understanding of fuzzy geometry.
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Appendix A. Proofs and formulas for general Kähler manifolds
A1. Useful choice of orthonormal frame fields
In this appendix, we will introduce particular orthonormal frame fields (vielbeins), which sim-
plify our argument.

Let us choose an element e1 ∈ 
(TM) such that g(e1, e1) = 1. Then, e2 := Je1 ∈ 
(TM) satisfies
g(ea, eb) = δab for a, b = 1, 2, which follows from the Kähler condition (3). Next, choose an
arbitrary e3 ∈ 
(TM) such that g(ea, eb) = δab for a, b = 1, 2, 3. Then, e4 := Je3 ∈ 
(TM) also
satisfies g(ea, eb) = δab for a, b = 1, 2, 3, 4. By continuing the above argument, we can construct
a complete orthonormal field. This choice is useful because the symplectic form can be written
as

ω =
n∑

m=1

θ2m−1 ∧ θ2m (A1)

where {θa}a = 1, 2,…,2n is the dual basis of {ea}a = 1, 2,…,2n.
It is also convenient to introduce complexified fields

wm := 1√
2

(e2m−1 − ie2m), w̄m := 1√
2

(e2m−1 + ie2m), (A2)

for m = 1, 2,…,n. Note that the properties Jwm = iwm and Jw̄m = −iw̄m imply that wm and
w̄m are holomorphic and antiholomorphic vector fields, respectively. In this frame, the metric
components are

g(wm, w̄l ) = g(w̄m, wl ) = δml , g(wm, wl ) = g(w̄m, w̄l ) = 0. (A3)

A2. Gamma matrices in Weyl representation
In this appendix, we will consider the gamma matrices in the Weyl representation for a 2n-
dimensional manifold.
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Let {γ a
(2n)}a=1,2,...,2n be a set of square matrices with size 2n. They are called gamma matrices

when they satisfy the Clifford algebra for R2n:{
γ a

(2n), γ
b
(2n)

}
= 2δabI2n . (A4)

Here, { , } is the anticommutator and I2n is the identity matrix with size 2n. We can also define
a chirality matrix by

γ(2n) := (−i)nγ 1
(2n)γ

2
(2n) · · · γ 2n

(2n). (A5)

This matrix is Hermitian and anticommutes with all of the gamma matrices {γ(2n), γ
a
(2n)} = 0.

We can choose a representation such that γ(2n) = σ 3 ⊗ I2n−1 , where {σ a}a = 1, 2, 3 are the Pauli
matrices and ⊗ is the Kronecker product. The Weyl (chiral) representation can be constructed
by the recursion

γ 1
(2) = σ 1, γ 2

(2) = σ 2,

γ i
(2n+2) = σ 2 ⊗ γ i

(2n) (i = 1, 2, . . . , 2n),

γ 2n+1
(2n+2) = σ 2 ⊗ γ(2n),

γ 2n+2
(2n+2) = −σ 1 ⊗ I2n . (A6)

We extensively use these relations in proofs given in the following appendices.
Also, consider the gamma matrices in the complex orthonormal frame defined by

γ m
(2n) :=

γ 2m−1
(2n) + iγ 2m

(2n)√
2

, γ m̄
(2n) :=

γ 2m−1
(2n) − iγ 2m

(2n)√
2

. (A7)

These matrices satisfy {γ m
(2n), γ

l̄
(2n)} = 2δml I2n, {γ m

(2n), γ
l
(2n)} = {γ m̄

(2n), γ
l̄
(2n)} = 0, and (γ m

(2n) )
† =

γ m̄
(2n). Let |±〉 be the normalized eigenvector of σ 3 with eigenvalue ±1. Then, we can recursively

show the important properties,

cmγ m̄
(2n) |+〉⊗n = 0 ⇒ cm = 0,

γ m
(2n) |+〉⊗n = 0, γ m

(2n)γ
l̄
(2n) |+〉⊗n = 2δml |+〉⊗n , (A8)

where cm is a complex number.

A3. Vanishing theorem and index theorem
Let Di be the Dirac operator on 
(Sc⊗L⊗p⊗Ei). In this appendix, we will show that the zero
modes of Di have positive chirality and dimKer Di = rank(Ei)(2π�p)−n

∫
M μ + O(pn−1) for suf-

ficiently large p. The former is known as the vanishing theorem and the latter is a consequence
of the index theorem. We also show that nonzero eigenvalues of Di have a large gap of O(

√
p).

For notational brevity, we will omit superscripts of covariant derivatives and simply write ∇;
we also omit the identity operators unless required.

The chirality operator γ(2n) = I2n−1 ⊗ σ 3 anticommutes with Di and we find

Di =
(

0 D−
i

D+
i 0

)
. (A9)

Here, ± indicates the chirality of the space on which the operators are acting.
We first compute the square of Di, which is needed to show KerD−

i = {0} for large enough p.
From Eq. (A9), we have

(Di)2 =
(

D−
i D+

i 0
0 D+

i D−
i

)
. (A10)
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We also use the Weitzenböck formula,

(Di)2 = −∇a∇a + i
2
�

−1
p γ a

(2n)γ
b
(2n)ωab − 1

2
γ a

(2n)γ
b
(2n)R

Sc⊗Ei
ab , (A11)

where RSc⊗Ei
ab := RSc⊗Ei (ea, eb). Let us introduce the differential operators

∇m := ∇wm = 1√
2

(∇2m−1 − i∇2m), ∇m̄ := ∇w̄m = 1√
2

(∇2m−1 + i∇2m). (A12)

Employing these operators, we have, for fixed m,

∇2m−1∇2m−1 + ∇2m∇2m = 2∇m∇m̄ − [∇m, ∇m̄]

= 2∇m∇m̄ − �
−1
p − RSc⊗Ei

mm̄ . (A13)

Here, we have used Eqs. () and (A2) in the last equality and RSc⊗Ei
mm̄ := RSc⊗Ei (wm, w̄m). Using

the above equation, the first term of Eq. (A11) can be written as

−∇a∇a = −2∇m∇m̄ + n�−1
p + RSc⊗Ei

mm̄ , (A14)

where the repeated indices a and m are summed. Hence, we have

(Di)2 = −2∇m∇m̄ + �
−1
p An + Ri, (A15)

where

An := n + i
2
γ a

(2n)γ
b
(2n)ωab,

Ri := −1
2
γ a

(2n)γ
b
(2n)R

Sc⊗Ei
ab + RSc⊗Ei

mm̄ . (A16)

More explicitly, RSc⊗Ei is given by

RSc⊗Ei = RS + 1
2

RLc + REi , RS
ab = 1

4
Rabcdγ

c
(2n)γ

d
(2n), RLc

ab = −Rabmm̄, (A17)

where Rabcd is the Riemann curvature tensor. Then, we have

Ri = 1
2

R + 1
2
γ a

(2n)γ
b
(2n)Rabmm̄ − 1

2
γ a

(2n)γ
b
(2n)R

Ei
ab + REi

mm̄, (A18)

where R is the scalar curvature and we have used γ a
(2n)γ

b
(2n)γ

c
(2n)γ

d
(2n)Rabcd = −2R and Rmm̄l l̄ =

− 1
2 R.
A 2n × 2n matrix An has the following properties if we use the Weyl representation discussed

in Appendix A2. The first property is that An is diagonal and positive semidefinite. This can be
shown recursively as follows. From Eq. (A6), one obtains An+1 = I2 ⊗ An + I2n+1 − σ 3 ⊗ γ(2n)

and it shows that if An is diagonal and positive semidefinite, so is An + 1. By checking A1 = I2

− σ 3, which is obviously diagonal and positive semidefinite, we proved the first property. The
second property of An is that its eigenvector with eigenvalue 0 is proportional to |+〉⊗n. This
can be shown by a similar recursive method.

Let us use Eq. (A15) to prove KerD−
i = {0} for large enough p. For any ψ ∈


(Sc⊗L⊗p⊗Ei)\{0}, we have

|Diψ |2 = 2|∇m̄ψ |2 + �
−1
p (ψ, Anψ ) + (ψ, Riψ ) ≥ �

−1
p (ψ, Anψ ) − |Ri||ψ |2. (A19)

For ψ that is not proportional to |+〉⊗n, (ψ , Anψ) is strictly positive. Therefore, for sufficiently
large p satisfying �

−1
p > |Ri||ψ |2/(ψ, Anψ ), the right-hand side of Eq. (A19) becomes positive,

implying that Diψ �= 0. This means that the Dirac zero modes must be proportional to |+〉⊗n for
sufficiently large p. Since |+〉⊗n has positive chirality, we conclude that KerD−

i = {0} for large
enough p.
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We next show that dim Ker Di = rank(Ei)(2π�p)−n
∫

M μ + O(pn−1). Note that, when
KerD−

i = {0}, we have the following relations:

dim Ker Di = dim Ker D+
i = Ind Di. (A20)

On the other hand, the Atiyah–Singer index theorem states that

IndDi =
∫

M
Td(T (1,0)M ) ∧ ch(L⊗p ⊗ Ei) (A21)

Here, Td( · ) and ch( · ) are the Todd class and the Chern character, respectively, and T(1, 0)M is
the holomorphic tangent bundle. By expanding in p, we find

dim Ker Di = rank(Ei)
∫

M
e

ip
2π

RL + O(pn−1) = rank(Ei)
(2π�p)n

∫
M

μ + O(pn−1). (A22)

Finally, we prove that nonzero eigenvalues of Di have a large gap of O(
√

p). Let λ be a nonzero
eigenvalue of Di. Then, the eigenvalue equation for (Di)2 is equivalent to{

D−
i D+

i ψ+ = λ2ψ+,

D+
i D−

i ψ− = λ2ψ−,
(A23)

for ψ ∈ 
(Sc⊗L⊗p⊗Ei)\{0}, where ψ± is the positive/negative chirality mode of ψ . If ψ− �=
0, Eq. (A19) implies that λ2 ≥ O(p). If ψ− = 0, we have ψ+ �= 0 in order for ψ to be nonzero.
By using the relation D+

i D−
i (D+

i ψ+) = λ2(D+
i ψ+), we again find that Eq. (A19) implies λ2 ≥

O(p). Thus, in any case, we have λ2 ≥ O(p). This shows that λ2 is at least of O(p) and thus the
nonzero eigenvalues of Di indeed have a gap of at least O(

√
p).

A4. Asymptotic expansion for Toeplitz operators
In this appendix, we compute the product T (E1,E2 )

p (ϕ)T (E2,E3 )
p (χ ) for ϕ ∈ 
(Hom(E2, E1)) and

χ ∈ 
(Hom(E3, E2)) and show that it can be expanded in a power series of �p for sufficiently
large p. The computation technique used in this appendix is based on Ref. [10].

First, we compute

T (E1,E2 )
p (ϕ)T (E2,E3 )

p (χ ) = 	1ϕ	2χ	3

= T (E1,E3 )
p (ϕχ ) − 	1ϕ(1 − 	2)χ	3. (A24)

For the computation of 1 − 	2, let us consider the following Hermitian operator on

(Sc⊗L⊗p⊗E2):

P2 :=
(

0 D−
2

(
D+

2 D−
2

)−1(
D+

2 D−
2

)−1
D+

2 0

)
. (A25)

Note that, since KerD−
2 = KerD+

2 D−
2 = {0} for sufficiently large p as shown in Appendix A3,

the inverse of D+
2 D−

2 always exists. Let us consider the following combination:

D2P2 = P2D2 =
(

D−
2

(
D+

2 D−
2

)−1
D+

2 0
0 1

)
. (A26)

This gives the projection onto (KerD2)⊥, which should be equivalent to 1 − 	2. Thus, we find
that

1 − 	2 = D2P2 = D2(P2)2D2. (A27)
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By using Eqs. (A24) and (A27), for ψ ∈ KerD1 and φ ∈ KerD3, we obtain(
ψ, T (E1,E2 )

p (ϕ) T (E2,E3 )
p (χ ) φ

)
=
(
ψ, T (E1,E3 )

p (ϕχ ) φ
)

−
(
ψ, ϕD2 (P2)2 D2χφ

)
=
(
ψ, T (E1,E3 )

p (ϕχ ) φ
)

+
(
ψ, ϕ′ (P2)2

χ ′φ
)

. (A28)

Here, we have introduced the notation ϕ′ := iγ a
(2n)∇aϕ. We also used D1ψ = D3φ = 0 and

∇E1 (ϕϕ2) = (∇Hom(E2,E1 )ϕ)ϕ2 + ϕ(∇E2ϕ2), (A29)

for ϕ2 ∈ 
(E2). Because γ b
(2n)φ has the chirality −1, χ ′φ is in (KerD2)⊥. On (KerD2)⊥, the pro-

jection 1 − 	2 = D2P2 is the identity operator, which implies that P2 is the inverse of D2. Thus,
Eq. (A28) can be written as(

ψ, T (E1,E2 )
p (ϕ) T (E2,E3 )

p (χ ) φ
)

=
(
ψ, T (E1,E3 )

p (ϕχ ) φ
)

+
(
ψ, ϕ′ (D2)−2

χ ′φ
)

. (A30)

Let us then calculate (D2)−2 acting on χ ′φ. By using Anγ
b
(2n) |+〉⊗n = 2γ b

(2n) |+〉⊗n, which can be
obtained from Eq. (A8), we have

(D2)−2 =
(
−2∇m∇m̄ + 2�−1

p + R2

)−1

= �p

2
− �p

2
(D2)−2R2 + �p(D2)−2∇m∇m̄, (A31)

on χ ′φ. From D3φ = 0, one can obtain ∇m̄φ = 0 (see also Appendix A8). Then, Eq. (A30)
becomes

(ψ, T (E1,E2 )
p (ϕ)T (E2,E3 )

p (χ )φ) = (ψ, T (E1,E3 )
p (ϕχ )φ) + �p

2
(ψ, ϕ′χ ′φ) + ε, (A32)

where

ε = ε1 + ε2,

ε1 = −�p

2
(ψ, ϕ′(D2)−2R2χ

′φ)

ε2 = �p(ψ, ϕ′(D2)−2(∇m∇m̄χ ′)φ) + �p(ψ, ϕ′(D2)−2(∇m̄χ ′)∇mφ). (A33)

Let us estimate the order of ε with respect to �p. If we set φ, ψ , ϕ, and χ to O(�0
p), the nontrivial

p-dependences only appear in ∇mφ and (D2)−2. As we discussed in Appendix A3, all eigenvalues
of (D2)2 are in the range [C1�

−1
p − C2, ∞), where C1 and C2 are p-independent constants. Hence,

the eigenvalues of (D2)−2 are in (0, (C1�
−1
p − C2)−1]. From this property and the fact that the

norm of a positive operator is equal to its maximum eigenvalues, we find that |(D2)−2| = O(�p).
For ∇mφ, we can calculate

|∇mφ|2 = − (φ, ∇m̄∇mφ) = (φ, [∇m, ∇m̄]φ) − (φ, ∇m∇m̄φ)

= �
−1
p |φ|2 −

(
φ, RSc⊗E3

mm̄ φ
)

= O
(
�

−1
p

)
. (A34)

From these estimations, it follows that

|ε1| = O
(
�

2
p

)
, |ε2| = O

(
�

3/2
p

)
. (A35)

Then, we obtain(
ψ, T (E1,E2 )

p (ϕ) T (E2,E3 )
p (χ ) φ

)

=
(
ψ, T (E1,E3 )

p (ϕχ ) φ
)

− �p

2

(
ψ, (∇aϕ) (∇bχ ) γ a

(2n)γ
b
(2n)φ

)
+ O

(
�

3/2
p

)
. (A36)
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From Eq. (A8), we have

(ψ, T (E1,E2 )
p (ϕ)T (E2,E3 )

p (χ )φ) = (ψ, T (E1,E3 )
p (ϕχ )φ) − �p(ψ, (∇mϕ)(∇m̄χ )φ) + O(�3/2

p ).

(A37)

From the asymptotic expansion of the Bergmann kernel [48], the products of the Toeplitz
operators also allow asymptotic expansion of integer power. Thus, the O(�3/2

p ) term is ac-
tually further bounded to O(�2

p). The expansion (A37) reproduces C0(ϕ, χ ) and C1(ϕ, χ ) in
Eq. (13). This can be checked by noticing that the tensor Gab = gab + iWab has components
Gml̄ = 2δml , Gm̄l = Gml = Gm̄l̄ = 0.

One can also evaluate C2(ϕ, χ ) by recursively using Eq. (A31). Applying Eq. (A31) to ε1, one
finds

ε1 = −�p

4

(
ψ, ϕ′

(
�p − �p (D2)−2 R2 + 2�p (D2)−2 ∇m∇m̄

)
R2χ

′φ
)

= −�
2
p

4

(
ψ, ϕ′R2χ

′φ
)+ O

(
�

5/2
p

)
. (A38)

Applying Eq. (A31) to ε2, one finds

ε2 = �p

2

(
ψ, ϕ′

(
�p − �p (D2)−2 R2 + 2�p (D2)−2 ∇l∇l̄

)
∇m
(∇m̄χ ′)φ)

= �
2
p

2

(
ψ, ϕ′∇m

(∇m̄χ ′)φ)+ �
2
p

(
ψ, ϕ′ (D2)−2 ∇l∇l̄∇m

(∇m̄χ ′)φ)+ O
(
�

5/2
p

)

= −�
2
p

2

(
ψ,
(∇mϕ′) (∇m̄χ ′)φ)− �p

(
ψ, ϕ′ (D2)−2 ∇m

(∇m̄χ ′)φ)
+ �

2
p

(
ψ, ϕ′ (D2)−2 ∇l∇m

(∇l̄∇m̄χ ′)φ)+ O
(
�

5/2
p

)
. (A39)

Note that the second term of the last expression is exactly equal to −ε2. This implies

ε2 = −�
2
p

4

(
ψ,
(∇mϕ′) (∇m̄χ ′)φ)+ ε′

2 + O
(
�

5/2
p

)
,

ε′
2 = �

2
p

2

(
ψ, ϕ′ (D2)−2 ∇l∇m

(∇l̄∇m̄χ ′)φ) . (A40)

Again using Eq. (A31) with ε′
2, we have

ε′
2 = �

2
p

4

(
ψ, ϕ′

(
�p − �p (D2)−2 R2 + 2�p (D2)−2 ∇k∇k̄

)
∇l∇m

(∇l̄∇m̄χ ′)φ)

= �
3
p

2

(
ψ, ϕ′ (D2)−2 ∇k∇k̄∇l∇m

(∇l̄∇m̄χ ′)φ)+ O
(
�

3
p

)

= �
3
p

2

(
ψ, ϕ′ (D2)−2 ∇k∇l∇k̄∇m

(∇l̄∇m̄χ ′)φ)− �
2
p

2

(
ψ, ϕ′ (D2)−2 ∇l∇m

(∇l̄∇m̄χ ′)φ)+ O
(
�

3
p

)

= �
3
p

2

(
ψ, ϕ′ (D2)−2 ∇k∇l∇m

(∇k̄∇l̄∇m̄χ ′)φ)− 2ε′
2 + O

(
�

3
p

)
. (A41)

Similar to Eq. (A34), we can find |∇k∇l∇mφ| = O(�−3/2
p ) and |∇l∇mφ| = O(�−1

p ). This implies

ε′
2 = O(�5/2

p ). Therefore, we obtain

ε = −�
2
p

4

(
ψ, ϕ′R2χ

′φ
)− �

2
p

4

(
ψ,
(∇mϕ′) (∇m̄χ ′)φ)+ O

(
�

5/2
p

)
. (A42)
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From Eqs. (A18) and (A8), one finds

ε = �
2
p

(
ψ, (∇mϕ)

(
Rm̄lkk̄ − RE2

m̄l

) (∇l̄χ
)
φ
)

+ �
2
p

2

(
ψ, (∇m∇lϕ)

(∇m̄∇l̄χ
)
φ
)+ O

(
�

5/2
p

)
.

(A43)

This gives the coefficient C2(ϕ, χ ) of the asymptotic expansion (13).

A5. Consistency check of the asymptotic expansion
In this appendix, we check that the asymptotic expansion (12) with Eq. (13) derived in
Appendix A4 indeed satisfies the associativity of the Toeplitz operator product. For ϕ ∈

(Hom(E2, E1)), χ ∈ 
(Hom(E3, E2)), and ψ ∈ 
(Hom(E4, E3)), it should be true that(

T (E1,E2 )
p (ϕ)T (E2,E3 )

p (χ )
)

T (E3,E4 )
p (ψ ) = T (E1,E2 )

p (ϕ)
(

T (E2,E3 )
p (χ )T (E3,E4 )

p (ψ )
)

. (A44)

This imposes a condition
j∑

i=0

Cj−i (Ci(ϕ, χ ), ψ ) − Ci
(
ϕ,Cj−i(χ, ψ )

) = 0, (A45)

for all j ∈ Z≥0.
We will check that the conditions (A45) for j = 0, 1, 2 are satisfied by C0, C1, C2 given in Eq.

(13). The condition for j = 0 is satisfied from the associativity of the linear maps:

C0 (C0(ϕ, χ ), ψ ) − C0 (ϕ,C0(χ, ψ )) = (ϕχ )ψ − ϕ(χψ ) = 0. (A46)

For j = 1, the left-hand side of Eq. (A45) is given by
1∑

i=0

C1−i (Ci(ϕ, χ ), ψ ) − Ci (ϕ,C1−i(χ, ψ ))

= −∇m(ϕχ )(∇m̄ψ ) + ϕ(∇mχ )(∇m̄ψ ) − (∇mϕ)(∇m̄χ )ψ + (∇mϕ)∇m̄(χψ ). (A47)

This is vanishing because of the Leibniz rule of the covariant derivatives. Similarly, the condi-
tion for j = 2 is also satisfied:

2∑
i=0

C2−i (Ci (ϕ, χ ) , ψ ) − Ci (ϕ,C2−i (χ, ψ ))

= − (∇mϕ) χRE3
m̄l

(∇l̄ψ
)+ (∇mϕ) RE2

m̄lχ
(∇l̄ψ

)− (∇mϕ) ([∇m̄, ∇l ]χ ) ∇l̄ψ (A48)

= 0.

Thus, the asymptotic expansion given in Eqs. (12) and (13) is consistent with the associativity
condition (A44) up to �

2
p.

A6. Trace of Toeplitz operators
In this appendix, we will show Eq. (19).

First, by using the Schwartz kernel representation, the trace of T (E1,E1 )
p (ϕ) is expressed as

TrT (E1,E1 )
p (ϕ) =

∫
M

μ(x)trSc⊗E1 (B(x, x)ϕ(x)) (A49)

where B(x, y) is the Bergman kernel defined by

(	1ψ )(x) =
∫

M
μ(y)B(x, y)ψ (y) (A50)
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for any ψ ∈ 
(Sc⊗L⊗p⊗E1). In Ref. [48], it is shown that the Bergmann kernel has the following
large-p asymptotic expansion:

B(x, x) = (2π�p)−nP1E1 + O(pn−1), (A51)

where P is the projection onto the zero-mode component |+〉⊗n of the fiber of S. By plugging
Eq. (A51) into Eq. (A49), we obtain Eq. (19).

A7. General properties of the Laplace operator on 
(E)
In this appendix, we show that the Bochner Laplacian defined in Eq. (20) can be expressed as

�(E )ϕ = −gμν∇μ∇νϕ = −{X A, {X A, ϕ}}, (A52)

where { ·, ·} is the generalized Poisson bracket (17) and XA is an isometric embedding function.
From the definition of the generalized Poisson bracket (17), we have

−{X A, {X A, ϕ}} = −W αβW γ δ(∂αX A)∇β [(∂γ X A)(∇δϕ)]

= −W αβW γ δ(∂αX A)[(∇β∂γ X A)(∇δϕ) + (∂γ X A)(∇β∇δϕ)]

= −W αβW γ δ[∇β ((∂αX A)(∂γ X A))(∇δϕ) − (∇β∂αX A)(∂γ X A)(∇δϕ)

+ (∂αX A)(∂γ X A)(∇β∇δϕ)]

= −W αβW γ δ[(∇βgαγ )(∇δϕ) − (∇β∂αX A)(∂γ X A)(∇δϕ) + gαγ (∇β∇δϕ)]

= −W αβW γ δgαγ (∇β∇δϕ)

= −gβδ(∇β∇δϕ). (A53)

Here, we have used ∇W = 0, which follows from the general properties of the Kähler structure,
∇g = ∇J = ∇ω = 0. In the last equality, we used WαβWγ δgαγ = gβδ, which we can check using
the local orthonormal frame. Therefore, Eq. (23) holds for any Kähler manifold M.

A8. Simplification of the zero-mode equation
In this appendix, we argue that the Dirac equation is reduced to a simpler differential equa-
tion of holomorphic sections.

The twisted spin-c Dirac operator 
(Sc⊗L⊗p⊗E) over M is given by Eq. (9). From �ml =
�m̄l̄ = 0, we have

�abγ
a
(2n)γ

b
(2n) = �ml̄γ

m
(2n)γ

l̄
(2n) + �l̄mγ l̄

(2n)γ
m
(2n) = 2�ml̄γ

m
(2n)γ

l̄
(2n) − 2

n∑
m=1

�mm̄, (A54)

where we have used �ml̄ = −�l̄m and {γ m
(2n), γ

l̄
(2n)} = 2δml I2n in the last equality. As shown in

Appendix A3, the zero mode ψ is of the form ψ = f |+〉⊗n, where f is a section of L⊗p⊗E.
From Eq. (A8), we then have

Dψ = iw̄m
μ̄γ m̄

(2n) |+〉⊗n (∂μ̄ + pAL
μ̄ + AE

μ̄

)
f = 0

⇒ ∀m ∈ {1, . . . , n} : w̄m
μ̄
(
∂μ̄ + pAL

μ̄ + AE
μ̄

)
f = 0

⇒ (
∂μ̄ + pAL

μ̄ + AE
μ̄

)
f = 0. (A55)

This indicates that f is a holomorphic section of L⊗p⊗E.
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Appendix B. Proofs and formulas for CPn

B1. Integration formula for CPn

In this appendix, we calculate

Is,t,p :=
∫

CPn
μ

∏n
i=1(z̄i)si (zi)ti

(1 + |z|2)p
, (B1)

which is a typical integral appearing in our discussion of CPn. Here, s = (s1, s2, . . . , sn), t =
(t1, t2, . . . , tn) ∈ (Z≥0)n, and p ∈ Z. The result is

Is,t,p = Is,pδs,t, Is,p = (2π )n(p −∑n
i=1 si)!

∏n
i=1(si!)

(p + n)!
. (B2)

Here, the Kronecker delta is defined as δs,t :=∏n
i=1 δsi,ti and the factor Is, p is convergent if and

only if
n∑

i=1

si < p + 1. (B3)

Now, let us begin the proof. First, since CPn\Uα has zero measure, the integral over CPn is
computed in a single patch:

Is,t,p =
∫

R2n

∏n
i=1

(
x2i−1−ix2i√

2

)si
(

x2i−1+ix2i√
2

)ti

(
1 + |x|2

2

)p+n+1 dx1dx2 · · · dx2n. (B4)

Here, we are using real coordinates x = (x1, x2,…,x2n) defined by

x2μ−1 = zμ + z̄μ

√
2

, x2μ = zμ − z̄μ

√
2i

. (B5)

We can employ the angular coordinates (ρ i, θ i) ∈ [0, ∞) × [0, 2π ) such that

x2i−1 =
√

2 ρi cos θi, x2i =
√

2 ρi sin θi. (B6)

This gives

Is,t,p =
n∏

i=1

(
2
∫ ∞

0
ρidρi

∫ 2π

0
dθi

) ∏n
i=1

(
ρieiθi

)si
(
ρie−iθi

)ti(
1 +∑n

i=1 ρ2
i

)p+n+1 . (B7)

The angular integrals give a factor δs, t. Then, we obtain Is, t, p = Is, pδs, t where

Is,p = (4π )n
∫

[0,∞)n

dρ1dρ2 · · · dρn(
1 +∑n

i=1 ρ2
i

)p+n+1

n∏
i=1

ρ
2si+1
i . (B8)

We can use the spherical coordinates (ρ, φ1, φ2,…,φn − 1) ∈ [0, ∞) × [0, π /2]n − 1 given by

ρ1 = ρ cos φ1, ρ2 = ρ sin φ1 cos φ2, . . . ,

ρn−1 = ρ

(
n−2∏
i=1

sin φi

)
cos φn−1, ρn = ρ

n−1∏
i=1

sin φi, (B9)

and we obtain

Is,p = (4π )n
∫ ∞

0
dρ

ρ2
∑n

i=1(si+1)−1

(1 + ρ2)p+n+1

n−1∏
i=1

(∫ π/2

0
dφi sin2

∑n
j=i+1(s j+1)−1(φi) cos2si+1(φi)

)
. (B10)

Note that the Beta function

B(x, y) = 2
∫ π/2

0
dφ sin2x−1

φ cos2y−1 φ = 2
∫ ∞

0
dρ

ρ2x−1

(1 + ρ2)x+y
(B11)
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only converges for Re x, Re y > 0. Then, we can see that Ir, w is convergent if and only if Eq.
(B3) is satisfied and the value of Is, p is

Is,p = (2π )nB

(
n∑

i=1

(si + 1), p + 1 −
n∑

i=1

si

)
n−1∏
i=1

B

⎛
⎝ n∑

j=i+1

(s j + 1), si + 1

⎞
⎠ . (B12)

Using B(x, y) = 
(x)
(y)/
(x + y) and 
(x + 1) = x!, we finally obtain Eq. (B2).

B2. Proof of Eq. (76)
Here, we will show that the operator (75) satisfies the commutation relation (76).

We first show

{X A, X B} = −
√

2 fABCX C, (B13)

which is needed in the proof of Eq. (76). In the complex coordinates, the Poisson tensor is given
by W μν̄ = −W ν̄μ = −igμν̄ and it gives

{X A, X B} = −igμν̄ [(∂μX A)(∂ν̄X B) − (A ↔ B)]. (B14)

From Eqs. (41) and (36), the embedding function can be written as

X A = −
√

2
1 + |z|2

(
z̄μ(TA)μνzν + (TA)μ n+1z̄μ + (TA)n+1 μzμ + (TA)n+1 n+1

)
. (B15)

By using this expression, we have

∂μX A = − z̄μX A

1 + |z|2 −
√

2(ζ †TA)μ√
1 + |z|2

, ∂ν̄X A = − zνX A

1 + |z|2 −
√

2(TAζ )ν√
1 + |z|2

. (B16)

Also using Eq. (35), we obtain

gμν̄∂μX A =
√

2(1 + |z|2)
(
(ζ †TA)n+1z̄ν − (ζ †TA)ν

)
,

gν̄μ∂ν̄X A =
√

2(1 + |z|2)
(
(TAζ )n+1zμ − (TAζ )μ

)
. (B17)

Thus, we have

{X A, X B} = i
√

2(1 + |z|2)
(
(ζ †TA)n+1z̄ν − (ζ †TA)ν

) ( zνX B

1 + |z|2 +
√

2(TBζ )ν√
1 + |z|2

)
− (A ↔ B)

= i2ζ †[TA, TB]ζ . (B18)

Using Eqs. (38) and (41), we obtain Eq. (B13).
Let us prove Eq. (76). From the definition (75), we have

[L(q)
A ,L(q)

B ] f (q) = −1
2
{X A, {X B, f (q)}} + 1

2
{X B, {X A, f (q)}} − iq{X A, X B} f (q). (B19)

Using the definition of the generalized Poisson bracket, we calculate as follows:

2
[
L(q)

A ,L(q)
B

]
f (q) = −W αβW γ δ(∂αX A)∇β [(∂γ X B)(∇δ f (q) )]

+W αβW γ δ(∂αX B)∇β [(∂γ X A)(∇δ f (q) )] − i2q{X A, X B} f (q)

= −iq{X A, X B} f (q) − (W αβW γ δ − W γβW αδ )

×(∇β [(∂αX A)(∂γ X B)])(∇δ f (q) ). (B20)
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Here, we have used [∇β , ∇δ]f (q) = −iqωβδf (q) and ωμνW μρ = δρ
ν . By using WαβWγ δ − WγβWαδ

= Wαγ Wβδ, which we can check in the orthonormal coordinates, we obtain[
L(q)

A ,L(q)
B

]
f (q) = −1

2
W αγW βδ(∇β [(∂αX A)(∂γ X B)])(∇δ f (q) ) − i

q
2
{X A, X B} f (q)

= −1
2
{{X A, X B}, f (q)} − i

q
2
{X A, X B} f (q). (B21)

Therefore, using Eqs. (B13) and (75), we have shown the relation (76).

B3. Direct calculation of Eq. (84)
Let us evaluate �(q) f (q)

k,I . First, by the definition of �(q), we have

�(q) = −gμν̄
(

D(q)
μ D(q)

ν̄ + D(q)
ν̄ D(q)

μ

)
, (B22)

The covariant derivatives on f (q)
σk+q,τk defined in Eq. (82) are given by

D(q)
μ f (q)

σk+q,τk
= (∂μ + qAL

μ

)
f (q)
σk+q,τk

=
⎛
⎝k+q∑

a=1

δμ,σa

zσa
− (k + q)

z̄μ

1 + |z|2

⎞
⎠ f (q)

σk+q,τk
,

D(q)
ν̄ f (q)

σk+q,τk
= (∂ν̄ + qAL

ν̄ ) f (q)
σk+q,τk

=
(

k∑
b=1

δν,τb

z̄τb
− k

zν

1 + |z|2
)

f (q)
σk+q,τk

.

(B23)

Here, we set zn+1 = z̄n+1 = 1. Thus, we have

�(q) f (q)
σk+q,τk

= −2gμν̄

[(
k+q∑
a=1

δμ,σa

zσa
− (k + q)

z̄μ

1 + |z|2
)(

k∑
b=1

δν,τb

z̄τb
− k

zν

1 + |z|2
)

−
(

k + q
2

)
gμν̄

]
f (q)
σk+q,τk

.

(B24)

By using Eqs. (35) and (85), we obtain

�(q) f (q)
k,I = 2

(
k(k + q) + n

(
k + q

2

))
f (q)

k,I . (B25)

Here, we have used the traceless property
∑

σa,τb
c(q)

I,σk+q,τk
δσa,τb = 0. By comparing Eq. (B25) with

Eq. (77), we find Eq. (84).

B4. Proof of Eq. (95)
In this appendix, we give a proof of the important identity (95).

Using Eqs. (B17) and (B23), we have

L(q)
A f (q)

σk+q,τk
=
(

−
p+q∑
a=1

(TAζ )σa

ζ σa
+

p∑
b=1

(ζ †TA)τb

ζ̄ τb

)
f (q)
σk+q,τk

= −
n+1∑

i, j=1

(TA)i jni(σk+q) f (q)
σk+q�i⊕ j,τk

+
n+1∑

i, j=1

(TA)i jn j (τk) f (q)
σk+q,τk� j⊕i. (B26)

Here, ni(αp) is the number of components of αp equal to i and � is the inverse operation of ⊕,
namely, τk � j = (τ1, . . . , τb−1, τb+1, . . . , τk) for j = τ b. We calculate the Toeplitz operator of
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the above object as

Tp(L(q)
A f (q)

σk+q,τk
)αp+q,βp

= −
n+1∑

i, j=1

(TA)i j ni
(
σk+q

)
Tp

(
f (q)
σk+q�i⊕ j,τk

)
αp+q,βp

+
n+1∑

i, j=1

(TA)i j n j (τk) Tp

(
f (q)
σk+q,τk� j⊕i

)
αp+q,βp

=
c(p+q)
αp+q c(p)

βp(
c(p+q+k)
αp+q⊕τk

)2

n+1∑
i, j=1

(TA)i jδαp+q⊕τk⊕i,βp⊕σk+q⊕ j

[
−ni(σk+q) + n j (τk)(ni(αp+q ⊕ τk) + 1)

n j (αp+q ⊕ τk) + δi, j

]
,

(B27)

where we have used Eqs. (89) and (53). On the other hand, LA ◦ Tp( f (q)
σk+q,τk ) is given by

(
LA ◦ Tp

(
f (q)
σk+q,τk

))
αp+q,βp

=
c(p+q)
αp+q c(p)

βp(
c(p+q+k)
αp+q⊕τk

)2

n+1∑
i, j=1

(TA)i jδαp+q⊕τk⊕i,βp⊕σk+q⊕ j

×
(

− (n j (αp+q) + δi, j )(ni(αp+q ⊕ τk) + 1)
n j (αp+q ⊕ τk) + δi, j

+ ni(βp) + δi, j

)
.

(B28)

Here, we have used Eqs. (89), (53), and the following expression of L(p)
A :

(
L(p)

A

)
αp,βp

= −
c(p)
βp

c(p)
αp

n+1∑
i, j=1

(TA)i j (ni(αp) + 1)δαp⊕i,βp⊕ j, (B29)

which follows from Eqs. (65) and (62). Comparing Eq. (B27) with Eq. (B28), we find
Tp(L(q)

A f (q)
σk+q,τk ) = LA ◦ Tp( f (q)

σk+q,τk ), which implies Eq. (95).

B5. Proof of Eq. (100)
In this appendix, we prove Eq. (100).

Let us start with Eq. (99) for k, k′ ≤ p. For fixed k ≤ p, we first show that the proportional fac-
tor does not depend on I labeling the different weights of the eigenstates. Let {Ha}n

a=1 be a basis
of Cartan subalgebra of su(n + 1), i.e., a set of mutually commuting elements in {TA}n2+2n

A=1 .
Then, there exists a complete basis of su(n + 1) called the Cartan–Weyl basis {Ha, Eα} satisfy-
ing

[Ha, Hb] = 0, [Ha, E±α] = ±αaE±α, [Eα, E−α] =
∑

a

αaHa, E †
α = E−α. (B30)

Here, α runs over all roots of su(n + 1). Now, let us consider its irreducible representations
ρ1 : su(n + 1) → End(V1) and ρ2 : su(n + 1) → End(V2), where

V1 = SpanC({ fk,I}), ρ1(TA) = L(q)
A , (B31)

V2 = SpanC({Tp( fk,I )}), ρ2(TA) = LA ◦ . (B32)

Here, k is fixed and V1 and V2 shall be generated by running the subscript I over all weights.
We take the label I as the n-dimensional vector I = (I1, I2,…,In) such that

ρ1(Ha) fk,I = Ia fk,I . (B33)

In this notation, the correspondence (95) implies

ρ2(v)Tp( fk,I ) = Tp(ρ1(v) fk,I ), (B34)
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for any v ∈ su(n + 1). Note that from Eq. (B30) we have

ρ1(Eα ) fk,I = Nα,I fk,I+α (B35)

for a complex constant number Nα, I. We again act ρ1(E−α) on both sides of Eq. (B35) and
obtain

ρ1(E−αEα ) fk,I = Cα,I fk,I , (B36)

where Cα, I is given by

Cα,I = ( fk,I , ρ1(E−αEα ) fk,I ) = (ρ1(Eα ) fk,I , ρ1(Eα ) fk,I ) = |Nα,I |2. (B37)

Here, we have assumed that fk, I and fk, I + α are both normalized. From Eqs. (B34), (B35), and
(B36), we have

(Tp( fk,I+α ), Tp( fk,I+α )) = |Nα,I |−2(ρ2(Eα )Tp( fk,I+α ), ρ2(Eα )Tp( fk,I+α ))

= |Nα,I |−2(Tp( fk,I+α ), ρ2(E−αEα )Tp( fk,I+α ))

= |Nα,I |−2(Tp( fk,I+α ), Tp(ρ1(E−αEα ) fk,I+α ))

= (Tp( fk,I ), Tp( fk,I )). (B38)

Since this holds for any I and α, we find

(Tp( fk,I ), Tp( fk,I )) = (Tp( fk,I ′ ), Tp( fk,I ′ )), (B39)

for general weights I, I′.
From the above argument, we only have to compute (Tp(fk, I), Tp(fk, I)) for a specific I. Let us

consider a particular element

f (q)
k,I := c(2k+q)

1k+q⊕2k
(ζ 1)k+q(ζ̄ 2)k. (B40)

Here, we have introduced 1k+q = (1, 1, . . . , 1) and 2k = (2, 2, . . . , 2). From Eq. (53), the nor-

malization constant is given by c(2k+q)
1k+q⊕2k

:=
√

(2k+q+n)!
(2π )nk!(k+q)! . By using Eq. (89), we have

Tp

(
f (q)

k,I

)
αp+q,βp

= c(2k+q)
1k+q⊕2k

c(p+q)
αp+q c(p)

βp(
c(p+k+q)
αp+q⊕2k

)2 δαp+q⊕2k,βp⊕1k+q (B41)

and the only nonvanishing components are

Tp

(
f (q)

k,I

)
1k+q⊕ρp−k,2k⊕ρp−k

= c(2k+q)
1k+q⊕2k

c(p+q)
1k+q⊕ρp−k

c(p)
2k⊕ρp−k(

c(p+k+q)
1k+q⊕2k⊕ρp−k

)2 . (B42)

For p − k < 0, we see that such matrices should vanish. Using Eq. (53), we find(
Tp

(
f (q)

k,I

)
, Tp

(
f (q)

k,I

))

= (2k + q + n)!(p + q + n)!(p + n)!
(2π )nk!(k + q)!((p + q + k + n)!)2

∑
ρp−k

(n1(ρp−k) + k + q)!
n1(ρp−k)!

(n2(ρp−k) + k)!
n2(ρp−k)!

. (B43)

Let us set a := n1(ρp−k) and b := n2(ρp−k), which satisfy 0 ≤ a + b ≤ p − k. Here, for fixed a
and b, the number of possible configurations of ρp−k is (p−k−a−b+n−2)!

(n−2)!(p−k−a−b)! for n > 1. Thus, we have

∑
ρp−k

(
n1
(
ρp−k

)+ k + q
)
!

n1
(
ρp−k

)
!

(
n2
(
ρp−k

)+ k
)
!

n2
(
ρp−k

)
!

=
p−k∑
a=0

p−k−a∑
b=0

(a + k + q)!
a!

(b + k)!
b!

(p − k − a − b + n − 2)!
(n − 2)! (p − k − a − b)!

, (B44)
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for n > 1. Let us use the Chu–Vandermonde identity,
m∑

a=0

(a + i)!( j + m − a)!
a!(m − a)!

= i! j!(i + j + m + 1)!
(i + j + 1)!m!

, (B45)

for any non-negative integers m, i, and j. By applying this identity to Eq. (B44), we find∑
ρp−k

(n1(ρp−k) + k + q)!
n1(ρp−k)!

(n2(ρp−k) + k)!
n2(ρp−k)!

= k!(k + q)!(p + q + k + n)!
(2k + q + n)!(p − k)!

. (B46)

For n = 1, we have

∑
ρp−k

(n1(ρp−k) + k + q)!
n1(ρp−k)!

(n2(ρp−k) + k)!
n2(ρp−k)!

=
p−k∑
a=0

(a + k + q)!
a!

(p − a)!
(p − k − a)!

= k!(k + q)!(p + q + k + 1)!
(2k + q + 1)!(p − k)!

, (B47)

and thus Eq. (B46) holds for any n ∈ N. By plugging Eq. (B46) into Eq. (B43), we obtain Eq.
(100).

Appendix C. Proofs and formulas for T2n

C1. Integration formula for T2n

In this appendix, we explicitly calculate

I (a,b)
m,im, jm :=

∫ 2π l2m−1

0
dx2m−1

∫ 2π l2m

0
dx2m

(
f (p)

im

)∗
ei ax2m−1

l2m−1 ei bx2m
l2m f (p)

jm . (C1)

Here, a, b ∈ Z and f (p)
im is defined in Eq. (117).

By plugging Eq. (117) into Eq. (C1), we have

I (a,b)
m,im, jm =

(
kp

4π3l2
2m

)1/2 ∑
l,l ′∈Z

eiπ
(

l+ im
pqm

)2
pqmτmeiπ

(
l ′+ jm

pqm

)2
pqmτm

×
∫ 2π l2m−1

0
dx2m−1e−kp(x2m−1 )2

e
(

l+l ′+ im+ jm
pqm

)
pqmx2m−1

l2m ei ax2m−1
l2m−1

×
∫ 2π l2m

0
dx2me−i

(
l−l ′+ im− jm−b

pqm

)
pqmx2m

l2m . (C2)

Then, performing the integral of x2m and taking the summation of l′, we obtain

I (a,b)
m,im, jm =

(
kp
π

)1/2

δ
(mod pqm )
im− jm−b,0 e

− 1
4kp

(
a2

l22m−1
+i 2ab

l2m−1 l2m
+ b2

l22m

)
ei 2πaim

pqm

×
∑
l∈Z

∫ 2π l2m−1

0
dx2m−1e−kp

(
x2m−1−2π l2m−1

(
l+ im

pqm

)
− i

2kp

(
a

l2m−1
+i b

l2m

))2

. (C3)

Here, we have defined

δ
(mod n)
a,b =

{
1 (a − b ∈ nZ)
0 (otherwise)

. (C4)

By shifting the coordinate x2m − 1 �→x2m − 1 + 2π l2m − 1l, we can convert the summation of l into
extending the integration range to R. This yields the usual Gaussian integral and we obtain

I (a,b)
m,im, jm = e

− 1
4kp

(
a2

l22m−1
+i 2ab

l2m−1 l2m
+ b2

l22m

)
ei 2πaim

pqm δ
(mod pqm )
im− jm−b,0. (C5)
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For a = b = 0, we can see that

I (0,0)
m,im, jm = δ

(mod pqm )
im− jm,0 , (C6)

which means the orthonormality (118). For (a, b) = (1, 0) and (0,1), we can see that Eq. (C5)
can be written in terms of the clock and shift matrices (126) as

I (1,0)
m,im, jm = (Upqm )im, jm, I (0,1)

m,im, jm = (Vpqm )im, jm . (C7)

Similarly, for general a and b, we have

I (a,b)
m,im, jm = e

− 1
4kp

(
a2−a

l22m−1
+i 2ab

l2m−1 l2m
+ b2−b

l22m

)
((Upqm )a(Vpqm )b)im, jm . (C8)

C2. Proof of Eq. (142)
In this appendix, we give a derivation of Eq. (142).

To show Eq. (142), we introduce the Jacobi theta function

ϑ

[
a
b

]
(ν, τ ) =

∑
l∈Z

eiπ (l+a)2τ ei2π (l+a)(ν+b), (C9)

and rewrite the zero mode (117) as

f (p)
im (x2m−1, x2m) =

(
kp

4π3l2
2m

)1/4

e− kp
2 (x2m−1 )2

ϑ

[
im/pqm

0

](
pqm

2π l2m

(
x2m − ix2m−1) , pqmτm

)
.

(C10)

There is the following identity of the theta function [49]:

ϑ

[
r/N1

0

]
(N1z1, N1τ ) ϑ

[
s/N2

0

]
(N2z2, N2τ )

=
N1+N2∑

t=1

ϑ

[
r+s+N1t
N1+N2

0

]
(N1z1 + N2z2, (N1 + N2)τ )

× ϑ

[
N2r−N1s+N1N2t

N1N2(N1+N2 )

0

]
(N1N2(z1 − z2), N1N2(N1 + N2)τ ). (C11)

This implies

f (q)
jm (x) f (p)

i′m
(y) = [(p + q)qm]−1/2

(p+q)qm∑
t=1

f (p+q)
jm+i′m+qqmt (x̃) f ((p+q)pqq2

m )
pqm jm−qqmi′m+pqq2

mt (ỹ), (C12)

where

x̃a := qxa + pya

p + q
, ỹa := xa − ya

(p + q)qm
. (C13)

Now, let us calculate the combination f (q)
cm, jm (x) f (p)

i′m
(y), which appears in the integrand of Eq.

(142). To do this, we act a(q)†
m (x) on Eq. (C12) cm times. Here, a(q)†

m (x) is the creation operator
(134). From the chain rule of the covariant derivative, we have

a(q)†
m (x) =

√
q

p + q
a(p+q)†

m (x̃) +
√

p
p + q

a((p+q)pqq2
m )†

m (ỹ). (C14)
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By using Eqs. (136) and (C14), we find

f (q)
cm, jm (x) f (p)

i′m
(y)

=
(p+q)qm∑

t=1

cm∑
c′

m=0

√
cm!

(cm − c′
m)!c′

m!
qc′

m pcm−c′
m

(p + q)cm+1qm
f (p+q)

c′
m, jm+i′m+qqmt (x̃) f ((p+q)pqq2

m )
cm−c′

m,pqm jm−qqmi′m+pqq2
mt (ỹ).

(C15)

By setting xa = ya, the above equation becomes

f (q)
cm, jm (x) f (p)

i′m
(x)

=
(p+q)qm∑

t=1

cm∑
c′

m=0

√
cm!

(cm − c′
m)!c′

m!
qc′

m pcm−c′
m

(p + q)cm+1qm
f (p+q)

c′
m, jm+i′m+qqmt (x) f ((p+q)pqq2

m )
cm−c′

m,pqm jm−qqmi′m+pqq2
mt (0).

(C16)

By using Eqs. (C16) and (118), we find∫ 2π l2m−1

0
dx2m−1

∫ 2π l2m

0
dx2m( f (p+q)

im )∗ f (q)
cm, jm f (p)

i′m

=
√

pcm

(p + q)cm+1qm

(p+q)qm∑
t=1

f ((p+q)pqq2
m )

cm,pqm jm−qqmi′m+pqq2
mt (0) δ

(mod (p+q)qm )
im, jm+i′m+qqmt . (C17)

By plugging Eq. (138) into the above equation, we finally obtain Eq. (142).
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