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We propose a matrix regularization of vector bundles over a general closed Kdhler mani-
fold. This matrix regularization is given as a natural generalization of the Berezin—Toeplitz
quantization and gives a map from sections of a vector bundle to matrices. We examine
the asymptotic behaviors of the map in the large-N limit. For vector bundles with algebraic
structure, we derive a beautiful correspondence of the algebra of sections and the algebra
of corresponding matrices in the large-N limit. We give two explicit examples for monopole
bundles over a complex projective space CP" and a torus 77"

Subject Index B25

1. Introduction

The notion of noncommutative geometry appears in various studies of superstring theory and
M-theory [1-3] and it suggests that noncommutative geometry might be suitable to describe
space-time on the Planck scale rather than a smooth manifold. In noncommutative geometry,
we consider the space-time coordinates as a set of noncommutative operators on some Hilbert
space. A particular family of noncommutative geometry is called fuzzy geometry, which is the
case when the Hilbert space is finite-dimensional and the space-time coordinates are finite-
dimensional square matrices. This fuzzy geometry plays an important role in matrix models of
superstring theory and M-theory.

In order to describe physics on such fuzzy geometry, it is necessary to formulate various fields
on this geometry. For example, to describe the low-energy effective theories of D-branes, we
need a fuzzy description of the field theories in the matrix models. For this purpose, it is impor-
tant to find a description of a fuzzy version of vector bundles, since ordinary fields are described
as sections of some vector bundles. The motivation of this paper is to generalize a matrix regu-
larization [4], which is a map from functions on a smooth manifold to corresponding matrices
on a fuzzy geometry. More specifically, we establish matrix regularization of vector bundles
over a connected closed Kéhler manifold.

Conventionally, the matrix regularization of functions on a closed symplectic manifold is
described in the following manner. Let us consider a closed 2n-dimensional symplectic manifold
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(M, w). From the symplectic structure w, one can define a volume form u := »""/n! and a
Poisson bracket

{f.8)=W"0,fog (1)
where f, g are smooth functions and W"" is the Poisson tensor defined by w,, W"? = §. Let
{N,} be a sequence of strictly increasing integers satisfying N, — oo as p — oo. The matrix
regularization is defined as a sequence of linear maps 7, : C*(M) — My, (C) that satisfies [5]

,}Lngo | T,()Tp(8) — Tp(f9)I =0,

Jlim 10, '[T,(). Ty(@)] = T,({ . DI = 0,

lim b,y Te 1) = [ . ®)

Here, ), = (kp)~! for some constant k and | - | is a matrix norm. These conditions can be seen
as an analogue of the canonical quantization of classical mechanics where the phase space is
T*R" ~ R*". These relations are essential in deriving the action of the matrix model from the
worldvolume action of a membrane [4].

For a symplectic manifold M, it is known that there indeed exists a map 7, satisfying Eq.
(2). A systematic and beautiful construction of such a map is given by the Berezin—Toeplitz
quantization [6,7]. In this quantization, we first consider a suitable Dirac operator with N, zero
modes [7]. Then, one defines T),(f) by T, (f) = I1fTI, where IT is the projection operator onto the
Dirac zero modes. The map 7),, sometimes referred to as the Toeplitz operator, indeed satisfies
all the properties of Eq. (2).

The Toeplitz operators for more general fields than functions were proposed in Refs. [8—12].
In more recent studies [13,14], it is shown that the Toeplitz operator of general fields on a closed
Riemann surface enjoys beautiful properties, which are a natural generalization of Eq. (2).

In this paper, we investigate the Berezin—Toeplitz quantization of vector bundles over a gen-
eral closed Kdhler manifold. We show that the asymptotic properties of the Toeplitz operator
given in Refs. [13,14] also exist in higher-dimensional manifolds. We derive a large-p asymptotic
expansion of the product 7,(¢)7,(x) for arbitrary sections of vector bundles (general fields) ¢,
X, up to the second order in 1/p. From this asymptotic expansion, we obtain important relations
of the Toeplitz operator including generalization of Eq. (2). We also give explicit examples of
monopole bundles over a fuzzy CP" [15,16] and fuzzy 7> [11], where the Dirac operator zero
modes have relatively simple representations.!

This paper is organized as follows. In Sect. 2, we propose the Berezin—Toeplitz quantization
for general vector bundles and derive the asymptotic expansion. In Sects. 3 and 4, we con-
sider the Berezin—Toeplitz quantization of monopole bundles over CP" and T2, respectively.
In Sect. 5, we give a summary and a discussion.

2. Berezin—Toeplitz quantization

In this section, we consider the Berezin—Toeplitz quantization for vector bundles and derive an
asymptotic expansion of the quantization map. In Sect. 2.1, we define the Toeplitz operator for
vector bundles. In Sect. 2.2, we derive the asymptotic behaviors of the Toeplitz operators. In

ISee Ref. [17] for the analysis of Dirac operator zero modes of Riemann surfaces with higher genera,
where the zero modes have more complex representations than those of CP' = S? and 77.

2/38

€202 YoJe|\ GZ Uo Jasn AS3Q U00IyouAg usuoipe|g seyasineq Aq £89/869/109€20/2/€20z/e19e/da)d/woo dnoolwepeoe//:sdyy wol pspeojumoq



PTEP 2023, 023B01 H. Adachi et al.

Sect. 2.3, we show the relation between the trace of the Toeplitz operator and the integral of
the corresponding field in the large- limit. In Sect. 2.4, we construct the matrix Laplacian.

2.1 Berezin—Toeplitz quantization for vector bundles

We consider a closed connected 2n-dimensional Kahler manifold M with a Kéhler structure
(g, J, w), where g is a Riemannian metric, J is a complex structure, and w is a symplectic form
satisfying the compatibility condition:

w(-, ) =g/ ). (3)
The Kihler potential K is a function defined by the local relation w = id9d K where 9, § are Dol-
beault differential operators. A natural volume form is defined by u := @™"/n!. In terms of the
local real coordinates {x"}i”= 1» we have u = /gdx' Adx?> A --- Adx*". To define the quanti-
zation map, we will introduce three Hermitian vector bundles L, S., and E. L is a prequantum
line bundle, S, is a spin-c¢ bundle, and E is the target bundle that we want to quantize. L can be
defined for a quantizable manifold, which we will discuss below, and S, is known to exist for
any Kéhler manifold. For any vector bundle F, we will denote the connection and the curvature
of Fby VE=d+ AF and RY := (VF)?> = dA" + AT A AT respectively, where AT is the connection
one-form of F.
A prequantum line bundle L is a complex line bundle with a connection V such that its
curvature (field strength) R” is proportional to the symplectic form:

RY = —iko. “4)

Here, the constant factor k is chosen such that ﬁ s R € Z, where £CM is any two-cycle
of M. This condition is equivalent to the condition that the symplectic form %w is in the
second integer cohomology H>(M, 7). Manifolds that allow the existence of this prequantum
line bundle are called quantizable manifolds. For a 2D manifold M = X, we can take k =
27/ [ . The connection one-form A* is defined by the local expression of the connection V-

=d + A*. Using the Kéhler potential K, one can choose a connection one-form by

AL = —g(a — d)K. (5)
Let T'( - ) be a set of all the smooth sections of the vector bundle. Then, an element of T'(L) is
a smooth complex scalar field coupling to a U(1) background gauge field A”. For the 2D case,
the curvature is proportional to the volume form, which means that sections of L are complex
scalar fields coupling to uniform magnetic flux.

Next, we consider the spin-c¢ structure (see Refs. [18,19] for a more rigorous mathematical
treatment). The canonical spin-c bundle is defined by S, := EB;’,:O AYP(T*M); i.e., its fiber is a
sum of (0, p)-forms. This bundle is formally equal to S ® Ll/ 2 where Sis the canonical spin bun-
dle and L. is the determinant line bundle of the holomorphic tangent bundle L. := det 79 M.

In the case of a nonspin manifold, S and the square root bundle Li/ 2 themselves are not well

defined and only the tensor product S, = S ® LY? is well defined.? A connection of S, is lo-

cally given by V5 = d + 45 + %ALL'. The connection one-form of the canonical spin bundle S

ZPrecisely speaking, though both S and LY? can be locally defined, the cocycle conditions of the transi-
tion functions are not satisfied for nonspin manifolds. However, the violations of the cocycle conditions
cancel out for the formal tensor product S, = S ® LY, so that S, is globally well defined. CP*" (m € N)
is an example of nonspin manifold with the spin-c structure.
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is defined by

1
A% = ZV(%n)V(gn)Qab (6)
where {y&n)}i’; | 1s a set of gamma matrices satisfying the Clifford algebra {¥any y(gn)} = 28,515

discussed in Appendix A2 and Q. = Qg dx" is the spin connection one-form

Qabp = €a"gvp (Jues” +T5e7) . (7)
Here, {ea}ﬁ”: , 1s a set of the local orthonormal frame fields (vielbeins) satisfying g(eq, €5) = up-
The connection one-form of L, is given by A% = — > 1 i, where m and m are indices

of complexified orthonormal frame vector fields introduced in Eq. (A1). We can interpret the
sections of S, as complex spinor fields coupling to %ALC.

Now, we consider the target bundle £. We assume that F is a finite-rank Hermitian vector
bundle. We express £ as a homomorphism bundle (Hom-bundle) Hom(E,, E;), where E; (i =
1, 2) are some Hermitian vector bundles. Here, Hom(E», E;) is a vector bundle whose fiber at
a point x € M is a vector space of linear maps from the fiber of E; at x to the fiber of E; at
x. Note that any vector bundles can always be written as the Hom-bundle. The reason why we
introduce the Hom-bundle is to introduce an algebraic structure that we will quantize. Namely,
there is a natural product structure between I'(Hom(E», E)) x I'(Hom(E3, E;)) — T'(Hom(Ej3,
E))), following from the pointwise composition of the linear maps. This product is mapped to
the product of matrices in the quantization that we discuss below.

The description using the Hom-bundle is applicable to most fields appearing in physics. For
example, let L be a complex line bundle with a connection one-form A~L. Then, L8 can be
written as Hom(Z®", L®4t") for any integers ¢, r. This means that a section of &7, which is a
complex scalar field coupling to AL with charge ¢, can also be regarded as a linear map from
fields with charge r to those with charge ¢ + r. Another example is that adjoint matter fields
are regarded as linear maps from fundamental matter fields to themselves. Finally, tensor fields
can also be viewed as linear maps between tensor fields with various ranks. For instance, a
section of Hom((TM)®", (TM)®%) is a tensor field of (g, r) type:

()1t = (@) ha i, (@2) (8)
which corresponds to (TM)®/Q(T* M)®" ~ Hom((TM)®", (TM)%9).

As we have discussed, I'(Hom(E», E})) can be thought of a linear map T'(E») — T'(E;). We
can extend this linear structure to a map I'(S.QL*’QF,) — I'(S.QL®*’QE) by just acting as
an identity on fibers of the auxiliary bundle S.® L®” at each point x € M. Here, p is an integer.
Note that I'(S,® L®’®E;) are infinite-dimensional vector spaces. If we can restrict this linear
map to be a map between finite-dimensional subspaces, such a map can be regarded as a finite-
dimensional matrix. This is the main idea of the Berezin—Toeplitz quantization. In order to
realize such a scenario, let us consider Dirac operators on I'(S.Q L?’QE;) by

n
D; = iy, Vo * O = ey, (aﬂ i %Q“W&nﬂ’ém - % D S+ AL + AE) - O

m=1

We equip an inner product on I'(S.® L*’ Q E;) by
W) = fMu(w’)* W (v TS ® L% ® E) (10)

where (/)" - ¢ is a Hermitian inner product of a fiber S. L®’QE; at point x € M, which
is defined by a combination of Hermitian metrics of S., L, and E;. In the language of physi-
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cists, ¥ and - simply mean the Hermitian conjugation and the contractions of indices, respec-
tively. The norm is defined by |y| = /(v/, ¥). The space of normalizable zero modes Ker D; is
finite-dimensional. With the particular choice of the gamma matrices in Appendix A2, one can
compute its dimension N; := dim KerD; for sufficiently large p using the Atiyah—Singer index
theorem and the vanishing theorem as shown in Appendix A3. Here, p controls the dimension
N;, where N; plays the role of the matrix size of the matrix regularization map. Now, let IT;
be a projection from I'(S.® L¥’ ® E;) to KerD,. We define the Berezin-Toeplitz quantization of
I'(Hom(Ey, Ey)) by

Tp(El’EZ)@P) = Iipll, (¢ € T(Hom(E, Ey))). (h

Here, T, ,,(E : ’EZ)(go) is a map from KerD, to KerD; and therefore it can be represented as an Ny x
N, matrix. As we will see below, the Toeplitz operator (11) enjoys a nice asymptotic behavior,
which gives a generalization of Eq. (2).

2.2 Asymptotic expansion of Toeplitz operators

We can also consider another bundle Hom(E3, E3) and define a Toeplitz operator 7, p(Ez’E”( X) =
[T, x 15 for x € '(Hom(E3, E>)). Then, we can consider a product T],(EI’EZ)(¢)T,,(EZ’E3)(X). As
shown in Appendix A4, the Toeplitz operator (11) has the following asymptotic expansion in
h, = (kp)~":

LA T (0 = Y 0T (Cilg, ), (12)
i=0

where the symbols C; on the right-hand side are maps from I'(Hom(£», £1)) x I'(Hom(E3, E>))
to I'(Hom(E3, Ep)). We find that the first three C; are explicitly given by

Colp, x) = ox,

1
Ci(p, x) = _EGaﬁ(va‘P)(vﬁX),

1
Colp ) = GG | (Va) (iR W™ = 2R3 ) (V320 + (VaVy @) (Vs Vx) | (13)

Here, we have introduced a tensor G*# := g*# + iW®P where g% is the inverse of the metric
tensor and W*# is a Poisson tensor defined by w,,, W*? = §¢.In Eq. (13), Ryp,s is the Riemann
curvature tensor for the metric g and Rf;; = RP (8, ) 1s a component of the curvature of E».
The operator V,, is the covariant derivative on each field. For example, it acts on ¢ € I'(Hom(£>,
Ey))as Vop = d,0 + AL — 9 AE2 where A% is a connection one-form of E;. In Appendix A3,
we check that Eq. (13) is consistent with the associativity of the operator product.

We leave the proof of Eq. (12) to Appendix A4 and discuss here some important corollaries
of Eq. (13). From Eq. (13), it is easy to show the following relation:

lim | 7352 ) T30 = T2 ()| = 0. (14)

p—>00
Moreover, let us consider a function /'€ C*°(M) and identity operator 1z, € I'(End(E;)). Then,
we can consider the following commutator-like operation:

[T(f1), TS5 ()] = TP (f 1) TP () — TV (@) T (f 1), (19)
Using the asymptotic expansion to Eq. (15), one finds

lim ity [T(FD. T2 )| = A2 f o)) =0 (16)
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where the generalized (covariantized) Poisson bracket { , } is defined by

(. @) = WP(Bu /) (Vo). (17)
From this correspondence, one can express the covariant derivative on ¢ by this commutator-
like operation in matrix models.
For the trivial line bundle £; = M x C, i.e., for ordinary complex valued functions and for
simple pointwise products, the relations (14) and (16) reduce to the first two in Eq. (2).

2.3 Trace of the Toeplitz operator
Let us consider the case for an endomorphism bundle End(£,) = Hom(E), E}). Then, we can
consider the Toeplitz operator of ¢ € I'(End(E/)) given by

TE ) (@) = Tl (18)

In this case, we can define a trace of the Toeplitz operator. As shown in Appendix A6, we
obtained the following property:

lim (2, ' Te T 515D () = / Wt g, (19)
p—>00 M

Here, trg, is a trace in terms of vector space of the fiber of E). This result is a generalization of
the third equation in Eq. (2).

2.4 Bochner Laplacian and its matrix regularization
Let E be a Hermitian vector bundle over M and let V£: I'(E) — I'(EQ T* M) be a Hermitian
connection of E. Let us also consider the adjoint of the connection (V£)*: T'(EQT* M) — I'(E).
Then, the Bochner Laplacian A% is defined by
Afg = (VE) V. (20)
In terms of the local coordinate, we write
Afp = —g""V,V,0, 1)
where the first covariant derivative is simply equal to V,¢ = (3, + AZ)g but the second co-
variant derivative acts on V,¢ as V,V,¢ = (9, + Af YW — T V0. If a section of E has
an additional orthonormal index, the covariant derivative is assumed to be V,¢, = (9, +
Ag )Pu + Qupupp. In this notation, we have V,e) =0 and V, yén) = 0. Also, let us introduce
V,:=V,, = ¢,*V,. Then, we have useful identities AX = —V,V, and [V,, V,]p = RE(e,, e)p.?
In order to construct the matrix Laplacian, let us consider the following trick. Let
{X1} 4 1.2...a be isometric embedding coordinate functions satisfying
(8;/.XA)(81)XA) = 8guv, (22)

where the existence of such an embedding is ensured by the Nash embedding theorem for suffi-
ciently large d. As shown in Appendix A7, the Laplacian can be written by using the isometric
embedding functions and covariant Poisson bracket:

Afp = —{X1 (X", o}}. (23)

This expression is given in terms of the generalized Poisson bracket; it is easy to find the corre-
sponding matrix Laplacian.

.....

*There is also another expression A* = —(VZ)* + VL, and ([VZ, V1=V e = RE(eq, ep)p,

which we can find in the mathematical literature.
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From Eq. (23), it is natural to define the matrix Laplacian A by
ATEE @) = 1,2 [ T, [T, TE ()| (24)

for ¢ € T(Hom(E», E))). Here, [ , ] is the generalized commutator defined in Eq. (15). We can
see that A is a Hermitian operator that is positive semidefinite in terms of the Frobenius inner
product. In Ref. [13], it is shown that the spectra of the Bochner and the matrix Laplacians
agree in the large-p limit.*

3. Fuzzy CP"

In this section, we consider a Berezin—Toeplitz quantization of a monopole bundle over a com-
plex projective space CP". Other constructions of such quantization maps are given in Refs.
[15,16]. In Sect. 3.1, we define a complex projective space CP" and describe its basic properties.
In Sect. 3.2, we explicitly construct a complete orthonormal basis of the kernel of the Dirac
operator. In Sect. 3.3, we calculate Toeplitz operators of embedding functions. In Sects. 3.4 and

3.5, we discuss the continuum Laplacian and the matrix Laplacian, respectively, for a monopole
bundle.’

3.1 Geometry of CP"

Firstly, let us define CP", which is a closed connected 2n-dimensional Kéhler manifold. For
Z,Z' e C"1\ {0}, we will define a equivalence relation ~ by
Z~7 & FceC\{0}): Z=cZ. (25)
Then, CP" is defined by
CP" = (C"'\{0})/ ~ . (26)
This space can be covered by a set of n + 1 patches {UQ}ZJ:1 where U, := {[Z] € CP"|Z* # 0}.
Here, [Z] =[Z!, Z2,...,Z" + !]is a representative class with respect to the relation ~ and is called
the homogeneous coordinates. For a patch U,, one can define the inhomogeneous coordinates

(zza), z(za), e zZ’a)) such that
"/ 7a — —
Z/L — Z /IZ (I’L 1,2,...,“ 1) (27)
(@) Zntl 7z w=oa,a+1,...,n)

In order to define a Kédhler structure of CP", let us consider a local function K, on a patch
U, as

n n+1
Ko(p) :=log| 1+ Y 1z, (p)I* | =log| > 12"/Z* |. (28)
n=1 n=1
For x € U,NUg, we have
Ka(x) = Ky(x) + log(2# /2%) + 1og(Zﬁ /Za). (29)

4This is explicitly shown for the case dim M = 2 [13] and the proof can be easily generalized in the case
of the general Kidhler manifold that we are considering in this paper.

>The correspondence of matrices and (charged) fields was studied in Refs. [15,16], where they use the
projective module construction and the Fock space construction. In particular, the correspondence of
Laplacians is extensively studied in Ref. [16]. In our formalism, the underlying mechanism of these cor-
respondences is revealed based on the asymptotic expansion of the Toeplitz operators. Furthermore, our
formalism can be applied to any general Kdhler manifolds and any vector bundles.
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By acting the Dolbeault differentials 3, d, we have 39K, = d9Ks. Thus, we can define a closed
two-form w locally written as
= iddK. (30)
From now on, we will omit the subscripts of the patch. By using the local complex coordinates
z*, w 1s written as
(1 + |Z|2)8uv —zktzY
=i
(1+1z17)
Here and hereafter, the Einstein sum convention is assumed. Also, we have defined |z|* := z*Z*.
We can see that w is a nondegenerate form. Thus, w is a symplectic structure on CP" and the
local function K = log (1 + |z|?) satisfying Eq. (30) is called the Kiihler potential. We now define
a standard almost complex structure J by J(9,) = id,, J(d3) = —idz, where 9, = 9/0z" and
d; = 0/0z". Then, the compatible metric g( -, -) := (-, J - ) is of the form
g=gupdz" ® dz" + g, dZ" ® dz". (32)

dz" A dz". (31)

The components of the metric are given by
(041278 — 22"

8uv = & = (1 4 |Z|2)2 ' (33)
This metric is called the Fubini—Study metric. The volume element is given by
detg= (1 +|z[*)™"! (34)

and the inverse metric is given by
g =g" = (141218 + 22"). (35)
The triple (w, g, J) gives the Kahler structure of CP”".
Let us discuss the isometric embedding of CP”" into R"+2", Let us consider a particular repre-
sentative of the homogeneous coordinate ¢ = (¢!, ¢2,...,¢” + ) such that |¢|*> = 1. On the patch
U, 1 1, for instance, it is related to the inhomogeneous coordinate z by

1.2 T
R RE (36)
V1+z)?
where we fix the phase of ¢ so that ¢”*! is a positive real number. The rank-1 Hermitian
projection P, = ¢¢T can be expanded as

1
P, = ——1L —V2X4T,. 37
¢ n+ 1 n+l1 \/_ A ( )
Here, {T. A};’:f” are Hermitian generators of SU(n# + 1) in a fundamental representation satis-

fying

T Tp = 2(%_’_1)5/131%1 + %(dABC +ifasc)Tc. (38)
dspc and f4pc are completely symmetric and antisymmetric structure constants, respectively.
From the fact that P, is a projector, the real coefficients {X A}'jif” satisfy

Xx4= " g X XP V2 (” - 1) x€=o. (39)
n+1 n+1
A straightforward calculation shows that the Fubini—Study metric (32) can be written as
ds* = tr(dP,dP;) = 2tr(d X Tyd X B Tp) = dX1d X . (40)
Therefore, {X A}’j:f” are isometric embedding functions. X can also be written as
X4 =-V2eiTy¢. (41)
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Let us consider an action
¢ = U, (42)

for U € SU(n + 1). This transformation leaves the metric invariant and hence is an isometry of
CP". Since T is an invariant tensor of SU(n + 1), the embedding functions X* transform as
the adjoint representation of SU(n + 1).

Finally, let us consider the prequantum line bundle over CP”. One can construct L as a dual
bundle of the tautological line bundle over CP". The curvature of L is Eq. (4) with k = 1. One
can check that the integral of iRL/2 over any two-cycle is equal to 1 as follows. Since the rank
of the second homology group of CP" is 1, there is only one independent two-cycle. Let us take
a particular two-cycle CP' = {[Z!, Z2, 0,...,0]} CCP". The symplectic form in this two-cycle is

w=i ‘ffﬁjﬁ , where z = Z'/Z%. Then, it is easy to show that

i 1
T CPIRng CPla)zl. (43)
3.2 Zero modes of the Dirac operator on CP"
In this subsection, we construct a complete orthonormal basis of the Dirac zero modes on CP".
Let D be a twisted Dirac operator on I'(S,®L®"). We take a specific representation of the
gamma matrices given in Eq. (A6). As shown in Appendix A3, the Dirac operator zero mode
¥ e I'(S.®L®") has only one spinor component ) = () |4)®" Here, /) € I'(L®") and
|+) is a 2D spinor (1, 0)T. As shown in Appendix A8, the zero-mode equation D?y?) = 0 is
simplified to

(3 + pA%) f? = 0. (44)
Plugging K = log (1 + |z|?) and k = 1 into Eq. (5), one finds
P (45)
PO = a1+ 12P)
Thus, the zero-mode equation becomes
Pzt »)
0o+ ———5 [ =0, 46
(0 + 05 m)/ (40
and the general solution to this equation is
P =1+ 127 (2), (47)

where ¢(z) is an arbitrary holomorphic function.

Now, let us consider the norm of the zero modes. Since any holomorphic function
can be expanded in Taylor series around z = 0, let us consider a function ¢g(z) :=
(zH1(z%)2 - ("), where 5= (51,5, ...,8,) € (Z=0)", and check whether the zero mode

) — (1 + |22)"P2¢s |+)®" is normalizable or not. In Appendix B1, we show that the norm

20|25 (222 g 2

|2 _
WF = iy @

is convergent if and only if Y, s; < p + 1 is satisfied. It is shown in Appendix B that a com-
plete orthonormal basis of Ker D) can be chosen as

Y = (L) P+ 2P PPE)EYE - )

Vie(l,2,....n): s;e 7=y st Zs,-gp, (49)
i=1
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where I , is given in Eq. (B2).
There is another expression of Eq. (49) in terms of the normalized inhomogeneous coordinate
¢ given in Eq. (36). The orthonormal basis (49) can be written as

1po(lp) — o(ﬁ)félj) |+)®" (50)
where o
f(p) ST SRRRT (51)
and the collective index o, = (1, a2, ..., @) is an element of
¥, =1{1,2,...,n+ 1}?/permutation. (52)

(p ) is given by

(p+n)!
P — , 53
b \/(2” )y H:H_l] ni(ee)! (>3)

where n;(a;,) 1s the number of components of «, equal to i.
The dimension of Ker D) is

The normalization factor ¢4

(n+p)
nlp!
which is the number of independent symmetric polynomials of degree p with n variables. Equa-
tion (54) can also be understood from the representation theory of su(n + 1). Let Vig 4, a,)
be an irreducible representation of su(n + 1) with Dynkin index (di, d>,...,d,). From Eq. (42),
one can see that ¢ is in the representation space V. o, .. 0), which implies that the set of all sym-
0)- Thus,

dim Ker D) = , (54)

metric polynomials of ¢’ of degree p is isomorphic to the representation space ¥, o

.....

we have
Ker D) = V{,0....0)- (55)

According to the hook length formula, the dimension of Vip, 0.....0) 1s indeed equal to ("%p’?)!. This
viewpoint in terms of representation theory will also play a very important role in the following
discussions.

As calculated in Ref. [20], one can also obtain dim Ker D) from the index theorem. Since the
vanishing theorem holds, we have dim Ker D) = IndD”). Then, from the index theorem, we
obtain

dim Ker D) = f TAd(TTOCP") A ch(L®P), (56)
CP)I
where Td and ch stand for the Todd class and Chern character, respectively. For CP”, we have®
a)/zn_ n+1
Td(T"OCPY) = <1—/2) ., ch(L®?) = ere/?. (57)
_— e—w T

The coefficient of the term proportional to (w/27)™" in the integrand of Eq. (56) can be evalu-
ated using the residue theorem:

1 dz z ntl 1 er”
Copn=— P — = _— Qdz—m—, 58
P 2711'% Zntl (1 - e—") ¢ 2771'% Z(l — eyl e

where the integration contour is a counterclockwise loop enclosing the origin z = 0. By inte-
grating by parts, one can verify

c _p_—l—l _m_(n+p)!c _(n+p)

pn — n p+ln—1 — — I’Z'p' n+p,0 = n'p' .

%We sometimes write o” for o’ for any differential form «. The exponential of a differential form « is
defined as e* = ) ;2 “,%,k

(59)
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To obtain the last equality, we use

-1
1 e(n+p)z 1 e(n+p)z o (—Z)l
C, =—0@qd =—0@Qd =1. 60

+p0 2711'% e+ " 27 7 (; (I+ 1) (60)

Using the result of Appendix B1, we have /., (%)An = 1 and we therefore obtain

i (r) — PN _ = M
dim Ker DY) = /CP” Con <2n) =Cpn = L (61)
3.3 Matrix regularization of embedding functions
We will show that the embedding functions {X A}” +21 defined in Eq. (41) are mapped to
J2
T,(x) = ———LV. 62
p( ) P +n4+ 1 A ( )

Here, {L(p )}” +21 are generators of SU(n + 1) in the irreducible representation with Dynkin
index (p, 0,...,0) satisfying
2 1)
) <p>] ) < (p)> _npp+n+
Ly, L L, L = 1. 63
|2 if 18 y 1) (63)
Let «,, B, € £, be collective indices labeling the orthonormal basis of Ker D). From Eq.
(41), the Toeplitz operator 7,(X*) is given by

T
A . A, (p)
Ty (X" Yay 8, = /C n (v) x*wy

n+1

= V2 Y@y [ (1) s
i,j=1 cp
n+1
(») (p+1) (p+1)
= V2 ) (T)ycde /C (FaD) 1ia?. (64)
i,j=1
Here, we have introduced the notation o, @ y; = (a1, a2, ..., @p, Y1, V2, ..., Y1) € Xpyy for
o, = (a1, 02,...,ap,) € Zyand y; = (y1, ¥, ..., y1) € ;. Using the orthonormality condition,

we have

n+1 P 2 C;}”)
A
Tp(X )a[,,ﬂp = —\/_ Z(TA)IJ ( (er])) C(—;)(Sot,,@i,ﬂp@j

i,j=1 ot,,GBl op
\/5 (17) n+1
= m (p) Z(TA)Z/(n (etp) + 1), i @) (65)
The Kronecker delta d,, g, is defined by
1 (a,=Bp)
S B = P mr 66
rPr [0 (“p #* :Bp) (66)

and we have used

1
C&igi) p+n+1
» (67)
Cof; ni(‘xp) +1
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Secondly, let us define

+n+1 i
L9 =L xt), fOxP = (x4 x?, (68)
where the Poisson bracket {X“, X?} is given in Eq. (B14). From Eq. (95), they satisfy
[Lﬁ{”, T,,(XB)] =T, (zﬁ’)XB) . (69)

By using Eqgs. (69) and (B18), we find

+n+1 . p+n+1 -
(L. 1] = ])TT,; (£9x%) = ifapc P 5= ifapcLd. (70)

This shows that {L(p )}” 21 js SU(n + 1) generators in some representation. To identify the
representation, let us calculate the quadratic Casimir. From Eq. (65), we obtain

(17) n+1
<L(p))a 5 (1,) Z (ni(aey) + D(nj(ay) + 1+ 8i 7 — 8 7 N Ta)if(Ta) jirda, i 00 m)-
e Olp i,j,i',j'=1
(71)
Using the Fierz identity
1 1
T0Tye = 5 (3ue8y = gty ). (72)
we obtain
+n+1)
L(P) — np(p —805 . 73
( >a,, 8, 2n+1) b (73)

This is exactly the quadratic Casimir eigenvalue of the representation (p, 0,...,0) and therefore
{L(p )}" +21 s in the irreducible representation (p, 0. ...,0).

3.4  Laplace operator on T (L®1)
Consider a Laplace operator on I'(L®9),

AD = —g"v, v, = —(X4 (X1, [P}, (74)
for /@ e T'(L®%). Here, { -, -} is a generalized Poisson bracket defined in Eq. (17) and {X A}” +2n

are isometric embedding functions. Let us also define differential operators {L‘(q)}” +2” on
I'(L®7) by

Equ)f(q) — % (—i{XA, f(q)} + qXAf(t])> ) (75)

As shown in Appendix B2, they satisfy the commutation relations of the generator of SU(n +
1):

29,28 = ifaneL?. (76)
By a straightforward calculation, we can derive
2 2
@ _ @) _ 4"
A _2<£A) —— (77)

Thus, the eigenvalue of A is given by 2E — where FE is an eigenvalue of (,C(q))2

n+1 ?
Let us evaluate the eigenvalues of (Eif’))z. To do this, let us consider how one can write el-
ements of I'(L®Y) in terms of local coordinates. We remind ourselves that, in the overlapping

patch U,NUg, AL transforms as
A (z@) = AX(z(8)) — dA(z (), (78)
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1 « 7o
Mzp)) = ) [log(%) — 1og<%)] . (79)

Here, Z = (Z!, Z2,...,7Z" ™ 1) are the homogeneous coordinates of CP". Hence, any element /¢
€ I'(L®?) should transform as

where

f(q)(z ) = e*Cw) fD(7,) = (z)_g (i)g FD(z8) (80)
(@) ®) 7 > ®))-
Thus, we can choose a basis of I'(L®7) as
VA A B VALY AN ATy AV AN A (81)

where k € Z-(. With the normalized homogeneous coordinates ¢ given in Eq. (36), we define a
basis of I'(L®7) as

O S S A SRR (82)
From Eq. (37), one can see that ¢ and ¢ are in the representation spaces Vi,o....0 and V(T,o,... 0y
respectively, where V(T,O,--»,O) is the complex conjugate representation space of V(j o, o). This
implies that the set of all polynomials of ¢’, ¢/ of degree (k + ¢, k) denoted by Poly, (¢, ¢)
is isomorphic to Vx44.0,..0) ® V(Zo 0y because of the symmetric index structure of the poly-
nomials. Using the irreducible decomposition Viksg,0,.-.00® Vi .. o) = EBi-;O V(it¢,0,-,0,i)» WE
have

o oo o
P(L®) = P Poli k(2. 0) =P (I/(k+q,o,...,0) ® V;,;o,...,o)) =P Vikrgo.- 00 (83)
k=0 k=0 k=0

The eigenvalues of (/j(/j’))2 are those of the quadratic Casimir for the representations (k + ¢,

0,...,0, k), which are given by
2

Ek=%((k+q)(k+n)+k(k+q+n)+nnzl>. (84)

We can find eigenvectors of (E(Aq) ) from a similar group theoretic correspondence. The eigen-
vectors corresponding to Vix 14 0,...0, k) are

flgql)(Z) = Z 65[,1()7k+q,fkf¢£:c]4)rq’fk(2) = Z C(I(,I‘)Tkw,rk;m;m e §0k+q§_n 5f2 e gfk’ (85)

Ofetq>Thk Oktq Tk

(9) — (D) : ; ; P
Lowey e = (€1 )oy-op,pm7 18 @ coefficient tensor that is completely symmetric in o and

7, respectively, and traceless under any contraction between o, and 5. The index [ labels dif-

ferent weights of Vi 44 0,...0, k)_7 We also choose c(lq(),k+ o such that
) q- Yk

(B9 A0) = [ (79) A0y = bt 6)
cpr
In Appendix B3, we show a direct computation of Eq. (84).

where ¢

3.5 Matrix regularization of T'(L®?) and the Laplace operator
In this subsection, we explicitly evaluate the Toeplitz operator for a complete basis of I'(L®9)
given by the eigenfunctions of A and discuss the matrix Laplacian.

Let us consider a matrix regularization of I'(L®?) by

Tp(f(‘”) = [+ fOnw - (F@ ¢ p(L8)) (87)

"For example, for n = 1, we can take eigenvalues of ﬁg‘” as the index 1.
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where [T : I'(S, ® L®”) — Ker D7) is the projection. As discussed in the previous subsection,
we can choose a complete basis of T'(L%%) by

f;ﬁq Tk( )=;UIEUZ...é‘UkJrqET]gTz'._Efk‘ (88)

Then, the matrix regularization of f; (ZL 7, 1s given by
‘(xp+q) Cl(ﬂp)
._ ( ) _ p+e
7 (32, rk)aw b /C e (v ifqu)) Jol Ve, = 2o oo, (89)
(cup+(]®rk >
From Eq. (24) and h, = p~!, we define a Laplace operator acting on 7,(f?) by
A(T,(f9) = p[T (X, [T(X), T,(f ). (90)
Using Egs. (62) and (63), we have

2 p2

A (@Y — 2 ()
AT = e (ier - S TS B o

where we have defined L4 o T,(f @) := LY T,(f@) — T,(f@)L'?. The operation L 4o satis-
fies

[Lao, Lgo] = ifupcLco, 92)
and hence they are representations of the generators of SU(n + 1). Their representation space
is

?
Vip+4.0...0 ® Vipo. o) = @ Vik+4.0.....0.k)- 93)
k=0
This is a similar decomposition to Eq. (83) except for the cut-off p. From this, we see that the
eigenmatrices of A are in the irreducible representation Vik +q.0....0, k) and the eigenvalue of A

is given by
2p° ( q’n > q*n
Ey— ——— ) =2E, — + O 94

PrgtntDp+n+rH " 20+ 1) Lr1 Tow D ©4)

for k =1, 2,...,p, where Ej is given by Eq. (84). This shows that the spectrum of the matrix
Laplacian A is the truncated version of the spectrum of the Bochner Laplacian A up to a
correction of order O(1/p).

More explicitly, we can show the stronger identity

T, (£919) = Ly o T,(/) (95)

for any /@ e I'(L®%). This is shown in Appendix B4. From this identity, we can easily derive
the correspondence of eigenvalues or eigenvectors that we discussed above. Note that 7,( f; (q))
can be written as

(9) _ (p+q)> @)y, (D) — Ap+a) (p)( @) (q))
TP( k’l>°‘1>+qvﬂp /;Pn H < a”*‘/ f v/ “"*‘1 f"‘pw By ’ (96)

where ( -, -) is the inner product defined in Eq. (86). Since f (q) , can be expanded by the
orthonormal basis fk, p for k' < p, we find T,(f, (q)) =0fork > p For k < p, Eq. (95) implies

that /% @ and T (S (q)) both have exactly the same Casimir eigenvalues and weights. For the
quadratlc Casimir, we have

(Lao) T, (£19) = ((E((n) <q>) ET,(£9). ©7)

and we can see that the eigenvalues of (L0)> are {Er};_, as expected.
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To see the correspondence of the trace and the integral (19), let us calculate the Frobenius

inner product:
(7, (7)1 (15)) =1 7, (9) 7, (49| %)

For k, k' < p, Eq. (98) is nonvanishing only if 7),( f,fq,) ) and T,,(f, (,‘{)[,) belong to the same repre-
sentation having the same weights. Thus, we have

(7, (/9) . 1 (££)) ) o< Bewedrr 99)
More explicitly, we can show
. +qg+n)(p+n)
7(19), 1, (1)) = —2 Skxdrr. 100
( ”< kJ) ”( k”)) Qry'(p—k)N(p+ g +k+n)l E (100)
See Appendix B5 for the proof. For finite £ and k', we have the large-p expansion
@) @\) - 2 -1
<Tp < k?]) Iy ( kf{p» = Qry Skidrr +O(p" ), (101)

which is consistent with Eq. (86) through the correspondence for the trace and integral (19).

4. Fuzzy T*

In this section, we consider a Berezin—Toeplitz quantization of a monopole bundle over a torus
7" ~ (S')?" [11]. In Sect. 4.1, we define a torus 72" and describe its basic properties. In Sect.
4.2, we explicitly construct a complete orthonormal basis of the kernel of the Dirac operator.
In Sect. 4.3, we calculate Toeplitz operators of embedding functions. In Sects. 4.4 and 4.5,

we discuss the continuum Laplacian and the matrix Laplacian, respectively, for a monopole
bundle.?

4.1 Geometry of T*"

Let us consider the Euclidean space R*" equipped with a flat metric. We introduce an equivalent
relation

=Nt X eRY T X~ x4 27l (a=1,2,...,2n), (102)

where /, are some positive constants. Under this identification, we define a 2n-dimensional torus
T°" as a quotient space

T =R/ ~. (103)
The flat metric and its associated Kihler form on 72" are given by
2n n
g= Z dx‘ @ dx", w= Z dx*" N A dxP = idz* A dE (104)
a=1 m=1

Here, the real and complex coordinates are related by z# = (x>~ + ix**)//2foru =1, 2,....n.
T?" is isometrically embedded in R*" such that

X%V =1, cos(x?/l,), X* =I,sin(x*/L). (a=1,2,...,2n) (105)
Now, let us consider the bundle structures on 7%". Since 7% is a spin manifold, we can simply

use the spin bundle S. Since 77" is flat, the spin connection of S is flat as well. We also introduce
the prequantum line bundle L. The two-cycles of 72" are simply 72 and the curvature RF = —ikw

81n Ref. [11], the 2D case is studied. In this paper, we study its higher-dimensional extension.
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is nonvanishing on 7?2 spanned by (x?” ~ !, x?”) for m = 1, 2,...,n. Hence, the prequantization
condition for 72" is satisfied for k and /, such that

Yme (1,2, ....n): qni= — | RE =21kl 1bm € N. (106)
2.7'[ T2

[ 2m—1 [ 2m

=42 is rational for any m, m'.
2m' —152m"

The condition is satisfied if and only if the ratio of areas
4.2 Zero modes of the Dirac operator on T*"
In this subsection, we construct a complete orthonormal basis of the Dirac zero modes on 7%
[21].

Let D be a twisted Dirac operator on I'(S®L®?). By the same argument as in Sect. 3.2, the
zero-mode equation DV ®) = 0 for ¢ ?) = £ |+)®" is simplified to

(32 + pA%) f@ = 0. (107)
Here, A can be chosen as
Al = —ikmi;xzmwxzm =— g(z“ + ZM)(dz* — dzM). (108)
Thus, the zero-mode equation is
(8,; + l%(z‘* + E")) P =0o. (109)

We also have to pay attention to the boundary conditions. Since f?)(x) is a section of the
nontrivial bundle L&, f¥)(x) transforms under a coordinate change. For 7%, this property
is described in terms of the boundary conditions as follows. Consider the coordinate change
x?M—x?" 4 21 ly,,. Under this change, the connection one-form 4%(x) does not change and
correspondingly the element of I'(L®”) should be periodic under this coordinate shift for each
m. Similarly, under the coordinate change x*” ~ —x>"~1 + 2xl,, _1, A%(x) transforms as
AL(x)—~> AL (x) — di(x) where A(x) = 2 kls,, _ 1 x*". Correspondingly, /? should transform as
SO (x)eP*¥f®)(x) for each m. These boundary conditions and the differential equation (109)
are closed on each 72 with the coordinates (x*” ~ !, x*). Hence, we can separate the variables
and the general solution is

n

f(p)(x) — 1_[ <ef%(x2m71)2¢m(x2mfl + l-x2m)) ) (1 10)

m=1

The boundary conditions are now given by
G (" 4 P A 270 ly) = B (P i),
¢m(x2m—1 4ix? 4 27 lyy_1) = e—ipflmfmepqm(xz'""+ix2’")/12m¢m(x2th—l + ixz’”). (111)

Here, 7, := il — 1/l is the moduli parameter of the mth 72. From the first condition, one
can write

¢m (x2m—1 + ime) — Z dses(xln,l X2 /oy (1 12)

seZ

for some complex constants d;. The second condition gives

ds — eiT[ (25— pgm)Tm ds—pqm . (1 1 3)
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To solve this recursion equation, let us write s = pg,,/ + i,, for / € Z and i,, € {0, 1,...,pq,, —
1}. Then, the solution is

dpql7xl+l,,, = C(]p)el”(l+ 1";’;1) PYmTm (1 14)

for some complex constants cl(.f ), Hence, there are pg,, linearly independent solutions to Eq.
(111):
‘]m_l

lm im_\ P4m (2m—1 2m
G i) = Y P (1) (14 ) B ey (115)
im=0 leZ
Therefore, from Eq. (110), one can take a complete basis of the zero-mode solutions as
n
f;(p)(x) — 1_[ ]fiff)(xzm—l , XZM)’ (1 16)
m=1

where i = (iy, is,...,i,) and

kp ! /4 kp 2, 1\2 i m ! im Pam (2m—1_ :\.2m
f(P) 2m—1 x2m) — ( ) o3 (x2n=1) em( +Wm) PGdmTm ( +pqm) Ty (x +ix") (1 17)
i ) . E .

m 3 2
ar3ls,

lezZ

1/4
Here, we have fixed the constant c(”) ( ]‘3’}2 ) . Note that the index i, € {0, 1,...,pg,, — 1} is

rather considered to be an element of the additive group Z/ pq,Z because of the cyclic structure
fl fl(p ) This basis is not only complete but also orthonormal. In Appendix C1, we show

I7l+pq
27 byp—1 27T12m
/ dx2m1 / 2m < ll(flv)) f(]’) lm i (118)
0 0

the relation
which implies the orthonormality

/T ) ( f(p)) £ = 1—[ . 1)

m=1

m

Now, let us check that the number of zero modes is consistent with the index theorem and
the vanishing theorem. As we obtained in Eq. (116), the number of linearly independent zero
modes 18

dimKer D? = p" [ | gm- (120)
m=1
On the other hand, the index theorem and the vanishing theorem imply
ip pL kp)" “
dim Ker D”) = Ind D) = / ek = (kp) / w=7p" l_[ qm- (121)
T2n (27[ )n T2n Pt

4.3 Matrix regularization of embedding functions
Now, let us consider the following functions:

iv2m—1
ix" /12171—1
9

Y = X o (122)

By using these functions, an isometric embedding X4 : 7% — R* can be written as

Uy = €

_ lZn -1 - 12" —1 —
yé4m=3 1 * 4m=2 __ Tem—1 *
2 (um um) X 2i (um uIM) ’
Y4mfl 122”'” (Vm Vm) , X 4m = Ié—}:l (Vm - V:1) . (123)

We consider the matrix regularization of these functions.
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We define a matrix regularization of C*®(7%") by
T,(f) =0V nw,  (f e C(T™)) (124)

where TI?) : I'(S ® L®”) — Ker D”) is the Hermitian projection. Using the integral in Ap-
pendix C1 (or see Ref. [11]), we have

U(p) = T (um) = Ipql ® e ® Ipqul ® qum ® Ipqm+l ® T ® Ipqn’

VAP = Ty(vm) = Ipyy @ -+ ® Ipgy, @ Vg, ® Ipgsy @ -+ ® Iy, (125)
where
]
i om
% e pim
qum =e 4k1’/2m ! . )
1
e
Vogy = € “ 1 : (126)
1

. . . 2
These matrices satisfy the algebra of the noncommutative torus Uy, Vg, = €' Vyy Uy, .
Therefore, the matrix regularization of the embedding functions is

b b
T[,(X4m_3) 22 1 (U(p) + U(P)T) , TP(X4m—2) 22 1 (U(p) U,EP)T> ’

T (X4m 1) <V(p) + V(p)T) T (X4rn) <V(17) V,,(qp)T> ) (127)

2

4.4 Laplace operator on T (L®1)
Consider the Laplace operator on I'(L%7)

2m n
2
AW =% (Dgn) ==y ( DYDY 1 p& Dﬁ,‘{)) , (128)
a=1 m=1

where fo’) is the connection of I'(L®Y) in the real coordinates x“ and Di,?) and D,(;,’) are those in
the complex coordinates. Also let us define the inner product:

(f(q)’ g(q)) — / M(f(q))*g(q)_ (f(q), g(q) e I['(L%7)) (129)
T2n

Here, p = o™'/n! = dx' Adx* A+ Adx?".
First, let us examine the spectrum of the Laplacian A for g =0, i.e., the case for the ordinary
functions C*°(7%"). One can easily see that the normalized eigenfunctions of A® are

fox) =[@r)" by - )2 ]_[ it/ (130)

and the eigenvalues are given by

b 2
E;,:Z(f) , (131)
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where b = (b, by, ..., by,) € Z*". They satisfy

2n
(fps f1r) = Hab(,,b;~ (132)

a=1

Now, let us consider the spectrum of the Laplacian A for ¢ # 0. Since we have

[0, DY = kgsp. [P, DW] = [DY. DL] =0, (133)
we can define creation and annihilation operators
(@) (9)
40— P ot P (134)

m ° \/Fq’ l’ﬂ * \/Fq
(q) (q)T

satisfying [ay, , a,,'] = 8. Then, the Laplace operator can be written as

1
AW = 2kq2 (N@ 2) , (135)

where N := ¢?"a{? are the number operators. Note that the lowest eigenmodes of A
should Vanlsh under the action of ¢'? o D,(;’ ) for all m. This means that the lowest eigenmodes
are f;q) given in Eq. (117), which appeared in the discussion of the Dirac zero modes. The other
eigenmodes are obtained by acting the creation operators on the lowest eigenmodes f;q) . Thus,
the normalized eigenfunctions of A@ are

<a£g)_i.>cm

(@) _ (¢) (q) (q) ¢ m

S /e S = ——==—f"("), (136)
rnH_l CWI ./IVI Cﬂl ]m m Jm

and the corresponding eigenvalues are

2y <cm ) | (137)

m=1

Here ¢ = (c1, ¢2, ..., ¢n) € (Z50)". More explicitly, the eigenfunctions are given by
f(li) ( m) — < kq )1/4 (_l‘)cm e_/%l(xzm—l)z
Cims Jm 3122m \/ZCTCm'
% Z em +qfél"n (Iqum <l+,,j,;:;)qq":(\2m 1 pix2m)
lez
xH,, (v kq (xz’”‘l — 27 by (1 + qjc’]" ))) : (138)
m

Here, H,(x) is the Hermite polynomial satisfying the recursion H,1(x) = 2xH,(x) — H,(x).

4.5 Matrix regularization of T'(L®?) and the Laplace operator
In this subsection, we explicitly evaluate the Toeplitz operator for a complete basis of I'(L®9)
given by the eigenfunctions of A and discuss the matrix Laplacian.

The matrix regularization of I'(L®Y) is defined by

T,(f@) = P+ p@n®, (@ e r(L8)) (139)

where TT?) : T'(S ® L®”) — Ker D) is the Hermitian projection.
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For ¢ = 0, we have the eigenfunctions f; given in Eq. (130). Using the results of Appendix C1,

we have

»2

byl .2b b b3 b
1 n 2m—1""2m=1 | 2b2m—102m 2m_"2m
— 1 Do +i +
4kp m=1 ( 122)”71 Dim—11m l%m

Tp(f») = [Qr )"l - - - byl e
X(U(P‘]l))bl(V(qu))bZ ® (U(pqz))bz(V(pqz))m QR - ® (U(Pqn))b%—l(V(pqn))bz;z' (140)
For ¢ # 0, the Toeplitz operators of the eigenfunctions f c(i) given in Eq. (138) are

n 277 Ly 27 by
- f(‘!) B 1_[ b, 1dx2m_1 T A2 f(p+q) *f(LI) f(l’) (141)
P o i - 0 0 Im Cims Jm i;n ’
’ m=1

where i = (i1, i2,...,I,) and i’ = (7}, i}, - - - 1) are the labels of the Dirac zero modes. The integral
on the right-hand side of Eq. (141) is computed in Appendix C2 and the result is

27 b1 21 b *
j(; demfl /(; dx2m <fﬁp+q)) f(FfI) fl,gf)

lm Wl!jIVl
e 1/4 @4 L (p+)gm
_ ( kq > ( p ) Ty pmed (o
- ‘m 3 2 il71»jnz+i;,1+qqn1t
V2L Cm! 47T 12;11 p+q =1 leZ

2
o §
in (1 S T DLy ) (P+9)Pads,Tm
X e P+Oradim

m.m - + m ;n
< H, (2n12m1\/k<p+q)pqq3,, (l+” ntn — P+ D) ! )) (142)
(» + 9 pag;,

From Eq. (24), we define a Laplace operator acting on 7,(f?) by
ADT,(fP) = (kp’[T(X), [T(X), Tp(f )]

L1 (kP) &
= Bt EPD S (), 17 G T+ 17 [T ). ()

m=1

B, (kp)* &
4 2P ([0 (70 Ty O+ T 1T ), To( 7).

m=1

(143)

The second expression is obtained by using Eq. (127). For ¢ = 0, we can ecasily see that the
spectrum of A approaches that of A© as

R . bom, ) boy—
AOT, (fy) = 4(kp)* Y. (lz%n_l sin’ (’; ; ) +13,,sin” (”;q ‘)) T, (f3)

m=1

2n b 2
= (Z (,—) + 0(,,1)) To(fs). (144)

a=1

We can also see the correspondence between the trace and the integral. In fact, we have

2 - 2
_ 1 Z” Dom—1~P2m=1 +l-2b2m—lb2m n 53m=b2m
2kp m=1 [%m—l bin—1bm ]%m

Q7 by T Ty (fo) Tp(fo)] = Q) [Rm) hily -+ by e
n _ th—l _ hzm
« H e X131 03, DPm S;T’%ipqm)
m=1

=g+ 0(p™"), (145)
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which is consistent with Eq. (132). For ¢ # 0, the eigenvalue problem of the Laplace operator
A@ is related to the Hofstadter problem as noted in Ref. [11]. It is numerically shown in Ref.
[11] that the spectrum of A@ approaches that of A in the commutative limit.?

5. Conclusion and future problems

In this paper, we have studied the Berezin—Toeplitz quantization of vector bundles over a gen-
eral closed connected Kéhler manifold, which is a continuation of our previous studies of 2D
cases [13,14]. In our formalism, we treat a vector bundle as a homomorphism bundle and treat
its sections as some linear operator between suitable twisted spinor fields. By restricting the
vector spaces of each twisted spinor field to finite-dimensional kernels of Dirac operators, we
defined a quantization map from fields (sections of the vector bundle) to matrices. We obtained
a large-p asymptotic behavior of the product 7,(¢)7,(x) for arbitrary sections of vector bun-
dles ¢, x up to the second order in 1/p. This is a natural generalization of the relation of matrix
regularization (2). The matrix Laplacian acting on such matrices can be written in terms of a
commutator-like operation and its spectrum in the large-p limit is shown to be equal to that of
the usual Bochner Laplacian acting on continuum fields. Our result is a generalization of Refs.
[15,16], where fuzzy CP”" is considered, to the general Kidhler manifold. As explicit examples,
we considered monopole bundles over a fuzzy CP”" and fuzzy 72" and we confirmed that in the
case of CP" our formulation correctly reproduces the results in Refs. [15,16].

Our framework is applicable to a wide class of fields. For example, an (r, s) tensor field gives a
homomorphism from I'(TM®*) to I'(TM®"), and we can apply our formulation. It is interesting
to construct a fuzzy version of the higher spin theories [22,23] by using our method. It is also
possible to consider a matrix regularization of spinor fields. The spinor fields on the lattice
have the problems of doublers and chiral anomaly and we can consider similar problems on
fuzzy spaces [24-29]. Our method will enable us to deal with similar problems on a general
Kaéhler manifold. Our method can also be used to construct fuzzy field theories in arbitrary
background fields. It is important to understand how various background field configurations
such as instantons are realized on fuzzy spaces.

Let us comment on some possible generalizations of our study. Throughout this paper, we
assumed that the manifold M is Kdhler. In particular, we assumed that the manifold has an
integrable complex structure. However, it is possible to construct a quantization of functions
with almost complex structure that is not necessarily integrable (see, e.g., Ref. [7]). Moreover,
it is also possible to consider noncompact manifolds and orbifolds [7]. Therefore, the Berezin—
Toeplitz quantization of vector bundles might also be defined over more general manifolds
than the closed Kihler case (e.g., the fuzzy S* [30-33]). We can also consider more challeng-
ing problems such as a quantization of odd-dimensional manifolds [34-37] or manifolds with
boundaries. These studies are important to uncover the various branes of such geometries such
as odd-dimensional branes and orientifold planes [38] in the framework of matrix models [36].
Yet another possible generalization is the Berezin—Toeplitz quantization of nonlocal operators
such as Wilson lines. As a Wilson line sends a spinor at one point to a spinor at a different
point, it gives a linear map between twisted spinor spaces. The Wilson line or loop is an essen-

In Ref. [11], only the 2D case is considered, while we consider a higher-dimensional torus 7%". However,
T?" can be decomposed to the tensor product of 77 so that the results of Ref. [11] can also be applied to
our case.
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tial ingredient of gauge theories and the quantization of Wilson lines may shed light on studies
of gauge theories on fuzzy geometries.

Finally, another direction for the study of fuzzy spaces is the inverse problem of quantization.
While, in quantization, one constructs a quantum geometry from a given classical geometry, it is
also interesting to consider the problem of finding a classical geometry from a given quantum
geometry. See Refs. [39-47] for developments in this direction. We consider that the inverse
problem can be generalized for the case of vector bundles. The matrix counterparts of vector
bundles should contain various geometric information and finding a method for extracting such
information will bring great progress to the understanding of fuzzy geometry.
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Appendix A. Proofs and formulas for general Kéhler manifolds

Al. Useful choice of orthonormal frame fields

In this appendix, we will introduce particular orthonormal frame fields (vielbeins), which sim-
plify our argument.

Let us choose an element ¢; € I'(TM) such that g(ey, e;) = 1. Then, e, := Je| € I'(TM) satisfies
gleq, ep) = 84 for a, b = 1, 2, which follows from the Kéhler condition (3). Next, choose an
arbitrary e3 € I'(TM) such that g(e,, ep) = 84 for a, b =1, 2, 3. Then, e4 := Jes € T'(TM) also
satisfies g(e,, ep) = 84 fora, b =1, 2, 3, 4. By continuing the above argument, we can construct
a complete orthonormal field. This choice is useful because the symplectic form can be written
as

o= 0" A (A1)

m=1

where {6}, 1.2, 2, 15 the dual basis of {e,},—1.2. 20
It is also convenient to introduce complexified fields

1 . . 1 .
Wy 1= ﬁ(eZm—l —ieyn), Wy = E(QZm—l + iexn), (A2)
for m = 1, 2,...,n. Note that the properties Jw,, = iw,, and Jw,, = —iw,, imply that w,, and

w,, are holomorphic and antiholomorphic vector fields, respectively. In this frame, the metric
components are

g(Wma 1’T}l) = g("T}ma Wl) = Suis g(Wms Wl) = g(ﬂ}m’ II}l) =0. (A3)

A2. Gamma matrices in Weyl representation

In this appendix, we will consider the gamma matrices in the Weyl representation for a 2n-
dimensional manifold.
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Let {y&n)}azlyz,_“,gn be a set of square matrices with size 2”. They are called gamma matrices
when they satisfy the Clifford algebra for R*":

{J/(%n)’ V(gn)} = 26" L. (A4)

Here, {,} is the anticommutator and />« is the identity matrix with size 2". We can also define
a chirality matrix by

ven = (=" VomYam  Vom: (AS5)
This matrix is Hermitian and anticommutes with all of the gamma matrices {y(2,), y(”én)} = 0.
We can choose a representation such that y,) = 03 ® Lu-1, where {0}, — 1.2,3 are the Pauli
matrices and ® is the Kronecker product. The Weyl (chiral) representation can be constructed
by the recursion
V(lz) =a, V(zz) =a’,

y(l2}’l+2) == 02 ® y(tzn) (i = 1, 2, ceey 2”),

)’(22',11:12) =0'® Y@n)s

We extensively use these relations in proofs given in the following appendices.

Also, consider the gamma matrices in the complex orthonormal frame defined by
2m—1 ) 2m—1 . 9
mo Yo TG a Ve — W

m

Yoo =7 5 0 Yew T NG
These matrices satisfy {3, V(lzn)} = 28,lr, V3, yén)} = (V5 V(lzn)} =0, and (y3,)" =
Yoo Let %) be the normalized eigenvector of o with eigenvalue £1. Then, we can recursively

show the important properties,

(A7)

Cm)/&;’n) |+>®n =0 = =0,

Vi 1) = 0. ¥V 1) = 20 1H)*", (A8)

where ¢, is a complex number.

A3. Vanishing theorem and index theorem

Let D; be the Dirac operator on I'(S.Q L®?QE;). In this appendix, we will show that the zero
modes of D; have positive chirality and dimKer D; = rank(E;)(27h,)™ [ w i+ O( P~ for suf-
ficiently large p. The former is known as the vanishing theorem and the latter is a consequence
of the index theorem. We also show that nonzero eigenvalues of D; have a large gap of O(,/p).
For notational brevity, we will omit superscripts of covariant derivatives and simply write V;
we also omit the identity operators unless required.

The chirality operator y,) = L1 ® o anticommutes with D; and we find

D, = (1;).+ %'_) . (A9)

Here, + indicates the chirality of the space on which the operators are acting.
We first compute the square of D;, which is needed to show KerD;” = {0} for large enough p.

From Eq. (A9), we have
D; D} 0
(D;)? = ( lO i DfrD)' (A10)
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We also use the Weitzenbock formula,

i 1 QF
(Di)2 = _Vava + zhp ly(%n)y(gn)wab - Ey(%n)y(bZn)nggEl’ (Al 1)
where R§E®E" := R5®Ei(e,, e;). Let us introduce the differential operators
1 1
Vm = Vwm = E(VZm—l - inm)v Vf = Vﬂ/'m = E(VZm—l + inm)- (Alz)

Employing these operators, we have, for fixed m,
Vom-1Vom—1 + Vo Vo, = 2van'1 - [VWM Vrh]
=2V, Vi — b, = RY:2H (A13)

mm

Here, we have used Egs. () and (A2) in the last equality and RS®E .— RS®Ei(y, ). Using

mm

the above equation, the first term of Eq. (A11) can be written as

—VoVa= =2V, Vi + b, + Ry25, (A14)
where the repeated indices a and m are summed. Hence, we have
(D;)* = =2V, Vs + h,' 4, + R;, (A15)
where
i
An =n-+ Ey(%n)]/(gn)(!)ab,
1 : :
Ry — ey R + RESE. (A16
More explicitly, R5®%i is given by
_ 1 . 1 , .
R5®E — RS + ERL" + REI, be = ZRabcd y(CZn)y(‘én)’ szlly = —Rapmin (A17)
where R4 1s the Riemann curvature tensor. Then, we have
1 1 1 _ :
R; = ER + EV&n)V(gn)Rabmﬁz - z)’(%n)y(gn)Rfj, + R,i',;ls (A18)
where R is the scalar curvature and we have used y(‘én)y(gn)yén)yén) Ruped = —2Rand R, -7 =

—1R.

A 2" x 2" matrix 4, has the following properties if we use the Weyl representation discussed
in Appendix A2. The first property is that 4, is diagonal and positive semidefinite. This can be
shown recursively as follows. From Eq. (A6), one obtains 4,1 =5 ® A, + L1 — 0> ® Yn)
and it shows that if 4, is diagonal and positive semidefinite, so is 4, y 1. By checking 4; = I,
— o3, which is obviously diagonal and positive semidefinite, we proved the first property. The
second property of A4, is that its eigenvector with eigenvalue 0 is proportional to |+)®". This
can be shown by a similar recursive method.

Let us use Eq. (Al5) to prove KerD; = {0} for large enough p. For any v €
I'(S.QL®?QE;)\{0}, we have

1D =21V [P + b (Y An) + (Y, Rp) = ' (0, Agr) — [RillW . (A19)
For v that is not proportional to |+)®", (y, 4,V) is strictly positive. Therefore, for sufficiently
large p satisfying ' > |Ri|[Y/|*/ (¥, A, %), the right-hand side of Eq. (A19) becomes positive,
implying that D,y # 0. This means that the Dirac zero modes must be proportional to |+)®" for

sufficiently large p. Since |4)®" has positive chirality, we conclude that KerD; = {0} for large
enough p.

24/38

€202 YoJe|\ GZ Uo Jasn AS3Q U00IyouAg usuoipe|g seyasineq Aq £89/869/109€20/2/€20z/e19e/da)d/woo dnoolwepeoe//:sdyy wol pspeojumoq



PTEP 2023, 023B01 H. Adachi et al.

We next show that dimKer D; = rank(E;)(2h,)™ [,, w + O(p"""). Note that, when
KerD; = {0}, we have the following relations:

dim Ker D; = dimKer D} = Ind D,. (A20)

On the other hand, the Atiyah—Singer index theorem states that
IndD; = / TA(TTV M) A ch(L®? ® E)) (A21)
M

Here, Td( - ) and ch( - ) are the Todd class and the Chern character, respectively, and 719 M is
the holomorphic tangent bundle. By expanding in p, we find
rank(E;)
QCrhy)" Ju

Finally, we prove that nonzero eigenvalues of D; have a large gap of O(,/p). Let A be anonzero
eigenvalue of D;. Then, the eigenvalue equation for (D) is equivalent to

Dy Dfyt =32y,
DiDy Yy~ =22y,

dimKer D; = rank(E,-)/ eHR 4 o' = w+ o). (A22)
M

(A23)

for ¥ € I'(S,@L®PQE;)\{0}, where ¥ is the positive/negative chirality mode of . If ¥~ #
0, Eq. (A19) implies that A> > O(p). If ¥~ = 0, we have ¥ # 0 in order for ¥ to be nonzero.
By using the relation D D7 (Dfy) = A*(D ™), we again find that Eq. (A19) implies A* >
O(p). Thus, in any case, we have 1> > O(p). This shows that A is at least of O(p) and thus the
nonzero eigenvalues of D; indeed have a gap of at least O(,/p).

A4. Asymptotic expansion for Toeplitz operators
In this appendix, we compute the product Tp(El’EZ)(go)T Isz’E” (x) for ¢ € '(Hom(E,, E})) and
x € '(Hom(E3, E>)) and show that it can be expanded in a power series of 7, for sufficiently
large p. The computation technique used in this appendix is based on Ref. [10].

First, we compute

Ty B (@) T 5 () = Mgy Ty
= TF5) (@) — el — T)x M. (A24)
For the computation of 1 — II,, let us consider the following Hermitian operator on

['(S.QL*PQE,):

D; (DD7)”!
Pz._< +_O_1 N 2 (P2 D3) ) (A25)
(D3 D;) D5 0
Note that, since KerD; = KerD;Dz_ = {0} for sufficiently large p as shown in Appendix A3,
the inverse of D3 D5 always exists. Let us consider the following combination:

(A26)

— (nt =\
DuPs— PoDs — (Dz (p$D3)"' D3 o),

0 1

This gives the projection onto (KerD,)*, which should be equivalent to 1 — IT,. Thus, we find
that

1 — I, = D, P, = D>(P>)*D. (A27)
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By using Eqs. (A24) and (A27), for € KerD; and ¢ € KerD3, we obtain
(v 752 (o) T G0 8) = (. TEE () @) — (v 92 (P2)’ Dax @)

=(v. 755 (p0)0) + (V.0 (PP x9) . (A28)
Here, we have introduced the notation ¢ := 1Yoy Vap- We also used D1y = D3¢ = 0 and

VE (pp) = (VHOEED gy + 0(VE ), (A29)

for ¢, € T'(E,). Because yén)¢ has the chirality —1, x'¢ is in (KerD,)*. On (KerD,)", the pro-
jection 1 — I, = D, P; is the identity operator, which implies that P, is the inverse of D,. Thus,
Eq. (A28) can be written as

(v T @) T G0 ¢) = (v, TP () @) + (.0 (D)7 1'8) . (A30)
Let us then calculate (D,)~? acting on x’¢. By using A,,y(gn) |[4)®" = Zy(gn) |[+)®" which can be
obtained from Eq. (AS8), we have
-2 -1 -
(D2) 2 = (=2V,, V5 + 21, + Ry)
_
2
on x'¢. From D3¢ = 0, one can obtain V;¢ = 0 (see also Appendix AS8). Then, Eq. (A30)
becomes

h
- ?p(D2)_2R2 + hp(DZ)_ZVmVﬁn (A?’l)

h
(W, T2 T 00¢) = (0, T7 2 x)e) + 5 (0, ¢'x'9) + €, (A32)
where
€ =€ + €,
h
€ = —Ep(w, @' (D2) 2 Rox'$)
& = hy(V, ¢'(D2) (Vi Virx V@) + Bip(W, @' (D2) > (Vi x ) Vimdh). (A33)

Let us estimate the order of € with respect to h,,. If we set ¢, ¥, ¢, and x to 0(71?,), the nontrivial
p-dependences only appear in V,,¢ and (D,)~2. As we discussed in Appendix A3, all eigenvalues
of (D,)? arein the range [C) h;l — (4, 00), where C and C; are p-independent constants. Hence,
the eigenvalues of (D,)~? are in (0, (C, h;l — (5)7']. From this property and the fact that the
norm of a positive operator is equal to its maximum eigenvalues, we find that [(D2)~2| = O(y).
For V,,¢, we can calculate

IVl = — (&, ViVd) = (&, [Vin, Vinl) — (&, Vi Vi)
=119 — (9. R3:259)

=o(n"). (A34)
From these estimations, it follows that
al=0(m). lel=0(n?). (A35)

Then, we obtain

(v. T2 @) T () ¢

h

= (V. T2 (010 9) = = (V. (V) (Vo) vsnyvn®) + O (1) . (A36)
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From Eq. (A8), we have

W TEEADTEE(08) = (U T 0108) = iy, (Vg )(Vax @) + O(h2).
(A37)

From the asymptotic expansion of the Bergmann kernel [48], the products of the Toeplitz
operators also allow asymptotic expansion of integer power. Thus, the 0(7'1;/ 2) term is ac-
tually further bounded to O(hz) The expansion (A37) reproduces Cy(¢, x) and Ci(g, x) in
Eq. (13). This can be checked by noticing that the tensor G*> = g“> 4 iW* has components
Gml =2 3mla Gml Gml Gml 0.
One can also evaluate Cy(¢, x) by recursively using Eq. (A31). Applying Eq. (A31) to €;, one
finds
hyp
4
h129 / / 5/2
= —L (. ¢'Rax'e) + O (1?). (A38)

Applying Eq. (A31) to €,, one finds

(4.0 (Bp = By (D)2 Ry 20, (D2) > V,,93) Rox'8)

€] = —

h

&=L (.9 (hp =y (D2)7 Ry + 28, (D) ViV7) Vo (V) §)
2

£
2

(V. 0'Vr (Vix) #) + 1 (W, ¢/ (D2 ViV (V') ) + O (3)%)

h2
— _717 (w, (Vm(p/) (V,;IX/) ¢) (w @ (DZ) Vm ( mX/) ¢)

+ 12 (. ¢ (D)2 ViV, (ViViax) ¢) + O (1) (A39)
Note that the second term of the last expression is exactly equal to —e;. This implies

h2
== (V. (V) (Vax) 9) + &1+ 0 (1),

hZ
& ==L (v.¢/ (D) ViV (Vi¥ax ) 9) (A40)
Again using Eq. (A31) with €, we have
hZ
= 2 (4.9 (R = oy (D272 Ro o 20 (D) ViV ViV (Vi) 6
’ -2 _ Ry 3
Y, @ (D2)"" Vi ViV, Vy, (Vlvm)( )¢) + 0 (hp)

2

3 (
(19’ D22 V555, (V790 )0) = 2 (. (D2 2919, (99) #) + 0 (1)
7

‘u{t N‘*ﬁ”» N‘*c e

Y, @' (D2) 2 ViViVi (Vi ViVix) ¢) —2¢,+0 (hj,) . (A41)

Similar to Eq. (A34), we can find |V, V,V,,¢| = 0(71;3/2) and |V,V,,¢| = O(FLIjl). This implies
€ = O(hf,/ 2). Therefore, we obtain

2 hz
€ ==L (W ¢ Rx'®) = 2 (V. (V) (Vax) @) + O (2. (Ad2)
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From Egs. (A18) and (A8), one finds
2

h
€ =1 (V. (Vo0 (R = R ) (Vi) @) + 2 (v, (Vi) (VaVix) ) + O (13?)
(A43)
This gives the coefficient C»(¢, x) of the asymptotic expansion (13).

AS5. Consistency check of the asymptotic expansion

In this appendix, we check that the asymptotic expansion (12) with Eq. (13) derived in
Appendix A4 indeed satisfies the associativity of the Toeplitz operator product. For ¢ €
I'(Hom(E,, E)), x € T(Hom(E3, E»)), and ¢ € T'(Hom(E,, E3)), it should be true that

(7B 2O TP 00) TEE () = TEE) () (TER 0T ). (A4)

This imposes a condition

J
Z Cj*i (CI(QD, X)’ 1//) - Ci (‘P» Cj*i(X? W)) = 0’ (A45)

i=0
forall j € Zy.
We will check that the conditions (A45) for j = 0, 1, 2 are satisfied by Cy, Cy, C, given in Eq.
(13). The condition for j = 0 is satisfied from the associativity of the linear maps:
Co (Cole, x), ¥) — Go (@, Golx ¥)) = (@x)¥ —o(xy¥) = 0. (A46)

For j = 1, the left-hand side of Eq. (A45) is given by
1
Y Ci(Cle, X)) = Ci(g, Cioi(x, ¥)
i=0
= - m((pX)(VIﬁW) + <P(VmX)(VrhW) - (vm(p)(vlh)()w + (Vm(p)vﬂz(xw)- (A47)

This is vanishing because of the Leibniz rule of the covariant derivatives. Similarly, the condi-
tion for j = 2 is also satisfied:

2
Y G (Gl ), ¥) = Ci(g, Coi (X W)
i=0

= — (V) X RE (V1Y) + (V@) R2 % (V1Y) — (Vo) (Vi VIIX) Vi (A48)
=0.

Thus, the asymptotic expansion given in Eqgs. (12) and (13) is consistent with the associativity
condition (A44) up to 1.

A6. Trace of Toeplitz operators
In this appendix, we will show Eq. (19).
First, by using the Schwartz kernel representation, the trace of T, le 1E; l)(go) is expressed as

T ) = [ s or, (B X)) (A49)
where B(x, y) is the Bergman kernel defined by
(M) = [ uBEs ) (AS0)
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forany v € I'(S.Q L*’ QE}). In Ref. [48], it is shown that the Bergmann kernel has the following
large-p asymptotic expansion:

B(x, x) = 2h,) "Plg, + O(p" "), (A51)
where P is the projection onto the zero-mode component |+)®”" of the fiber of S. By plugging

Eq. (A51) into Eq. (A49), we obtain Eq. (19).

A7. General properties of the Laplace operator onT'(E)
In this appendix, we show that the Bochner Laplacian defined in Eq. (20) can be expressed as

ABlp = -V, V0 = (X1, (X", 0}}, (A52)

where { -, -} is the generalized Poisson bracket (17) and X is an isometric embedding function.
From the definition of the generalized Poisson bracket (17), we have

—(X X, ol = =W P W (0, X )V [(0y X ) (Vs9)]
= W PW (X D(Vpd, X ) (Vs9) + (3, X ) (V5 V50)]
= —WPW V(0 X )3, X)) (Vs90) — (Ve X *)(0, X *)(V500)
+ (0. X )3, X ) (V5 Vs0)]
= —WPW[(Vpgay )(Vs9) — (Vg X )3, X *)(V59) + Loy (V5 V500)]
= —WPW7"g,,(VsVsp)
= —gP(V5V50). (A53)

Here, we have used V W = 0, which follows from the general properties of the Kéhler structure,
Vg = VJ= Vo =0.In the last equality, we used W*# W"°g,, = g#°, which we can check using
the local orthonormal frame. Therefore, Eq. (23) holds for any Kdhler manifold M.

A8. Simplification of the zero-mode equation
In this appendix, we argue that the Dirac equation is reduced to a simpler differential equa-
tion of holomorphic sections.

The twisted spin-¢ Dirac operator I'(S.®Q L®”®E) over M is given by Eq. (9). From Q,,; =
Q.7 =0, we have

n
b ] I ]
Qabyén)y(zn) = sz')/('ﬁ’my(zn) + QZmV(zn)V('gn) = 29,;11'7/(%)7(2”) -2 Z Qi (A54)
m=1
where we have used Q, ; = —Q;,, and {y(’;n), yén)} = 28, in the last equality. As shown in

Appendix A3, the zero mode v is of the form ¢ = f|+)®", where f is a section of L’QE.
From Eq. (AS8), we then have

DY = iy 140" (8 + pAf + A7) f =0
= Yme(l,....n): W, (9 +pAi+4E) =0
= (0 +pAi+45) f=0. (A33)

This indicates that f'is a holomorphic section of L®”QE.

29/38

€202 YoJe|\ GZ Uo Jasn AS3Q U00IyouAg usuoipe|g seyasineq Aq £89/869/109€20/2/€20z/e19e/da)d/woo dnoolwepeoe//:sdyy wol pspeojumoq



PTEP 2023, 023B01 H. Adachi et al.

Appendix B. Proofs and formulas for CP”"
Bl. Integration formula for CP"
In this appendix, we calculate

@ e
e (I+]z2)P
which is a typical integral appearing in our discussion of CP". Here, s = (51,52, ..., ), t =
(t1,t2, ..., 1y) € (Z59)", and p € Z. The result is
_ Qo) (p = sl T T Gsi)
N (p+n) ’
Here, the Kronecker delta is defined as &, := []'_, &, , and the factor I; , is convergent if and
only if

(B1)

Ly =

Is,t,p = [s,pss,t’ Is,p (BZ)

dsi<p+l. (B3)
i=1

Now, let us begin the proof. First, since CP"\ U, has zero measure, the integral over CP" is
computed in a single patch:

1_[” (x2i71_mzl> i (XZi—l_H-xL') i
i=1
L., = V2 2 ) g dx e di, (B4)
SLp o X2 p+n+l1
R (1 + 2 )

Here, we are using real coordinates x = (x', x2,...,x>") defined by

) Ho__ Zi
le‘_l—z +z z Z

2n
, XM= ) (B5)
V2 V2i
We can employ the angular coordinates (p;, 8;) € [0, o0) x [0, 27r) such that
X1 = V2 picos 8, x¥ =2 p;isinb,. (B6)

This gives

n 00 27 n A0S (=0
zs,,,p=1_[(2 [ oo [ def) [ () (oe™) (B7)

n +n+1
i=1 (1 + Zi:l ’Olz)p !
The angular integrals give a factor &, ,. Then, we obtain I, ; , = I, ,8, , where

; dovdpr---don 11 2
Lip = (47) / no o oypintl l_['olz . (B8)
.oy (14370 47) =1

We can use the spherical coordinates (p, ¢1, ¢2,....¢,— 1) € [0, 00) x [0, 7/2]" ~ ! given by

p1 = pCosd, pr=psingcosdy, ...,

n—2 n—1
Pn—1 = P <1_[ sin ¢1) COS ¢n71 s Pn = P l_[ sin ¢z’a (B9)

i=1 i=1
and we obtain
00 23 (si+1)—1 1l /2
. n P S 23 (D1 25i+1
L,=4 dp—m——— do; j=1 i ) ). (B10
s.p = (47) /0 /0(1 + p2)ptnt] ll:! (/0 ¢isin (¢i) cos™ ™ (¢ )) (B10)
Note that the Beta function
/2 [
B(x,y) = 2/ desin® 1 ¢ cos? ¢ = 2/ d
0 0

p2x—1

SEva 1
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only converges for Re x, Rey > 0. Then, we can see that I, ,, is convergent if and only if Eq.
(B3) is satisfied and the value of I, , is

n n n—1 n
Iip=Q2n)"'B (Z(sl-+1),p+1—2s,~)]_[3 D+ Dsi+1]. (B12)
i=1 i=1 i=1

J=it+1
Using B(x, y) = T'(x)T(»)/T'(x + y) and T'(x + 1) = x!, we finally obtain Eq. (B2).
B2. Proof of Eq. (76)

Here, we will show that the operator (75) satisfies the commutation relation (76).
We first show

(X4, X8 = —V2fupcX€, (B13)

which is needed in the proof of Eq. (76). In the complex coordinates, the Poisson tensor is given
by WH = —W" = —jg"’ and it gives

(XL X7 = —ig""[(@, X )3 XF) = (4 < B)]. (B14)
From Egs. (41) and (36), the embedding function can be written as
Xt = 1 rlzle G (TH)uwz" + (Ta)pn1Z* + (Tans1 w2 + (Tadnsins1) - (B15)
By using this expression, we have
5, X4 = PXY N a o PXY VAT, (B16)

L+ Atz 1+ A+ 2R

Also using Eq. (35), we obtain
g7 X" =21+ 12P) (¢ T2 = €' Ta))
g0 X" = v2(1 +12) (TaOnr1 2" = (Tal)y) - (B17)

Thus, we have

A yBy _ t St X5 V2ATsE), B
(X1 X5 =i/2(1 4 127) (¢ T2 — (¢ TA)U)<1+|Z|2+ N (4 < B)

= 2¢1[Ty, Tsl¢. (B18)

Using Eqgs. (38) and (41), we obtain Eq. (B13).
Let us prove Eq. (76). From the definition (75), we have

1 1
(L. L1 = =S XX P SO+ X (XA SO —igx X 9. (B19)
Using the definition of the generalized Poisson bracket, we calculate as follows:
2[ L9, L] £ = =W E W 0, X )Vel(3, X B3 £ )

A WP (3 X )V [(3y X ) (Vs f)] — 2g{X 4, X P} @
= —ig{X", XBY @O — (wbwrs — wrbyedy
< (V[(3a X )3y X P))(Vs [1). (B20)
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Here, we have used [V, Vs]f? = —igwgsf? and w,,, W = §¢. By using W*F Wvé — Wb pes
= W™ WP% which we can check in the orthonormal coordinates, we obtain

[ggn, gg;n] @ = —%W"”’ WP (Vg (0, X )3, X EYN(Vs 119) — ig{XA, X2 @

1
= —S Ut X P, ) - ig{XA, X8y @, (B21)
Therefore, using Eqgs. (B13) and (75), we have shown the relation (76).

B3. Direct calculation of Eq. (84)
Let us evaluate A@ f,fq[) First, by the definition of A@, we have

AD = _gn? ( Dp@DY 4 p¥ D};ﬁ) , (B22)

q9)
Oletq> Tk

The covariant derivatives on fg ( defined in Eq. (82) are given by

k+q
)
L ,0q
DS e = O+ a40) 150 o = | DL — (k+ )

a=1

(q)
1+| 2P | oo

k
@) £(9) Ly £(q) YT ()
Doty = O+ 4ADLL e = (Z EN l2>f"z*" "
(B23)

Here, we set z”t! = 2"t = 1. Thus, we have
k

k+q -
5 é ZH Sy zv q
AW 7@ _Dglt? o _ (J Vo ke _ (k ,) 5 (9) .
f0/+,fk g‘ Z 70a ( +q)1 +|Z|2 ; ZT 1+ |Z|2 + 2 8 f"k+q~'k

a=1

(B24)
By using Egs. (35) and (85), we obtain
@ @) _ q (9)
A S —2(16(1€Jr4)+’7<k“L 2)) kil (B25)

(q)

Here, we have used the traceless property ZU 2 Clogn 86,.75
k+q >

Eq. (77), we find Eq. (84).

= 0. By comparing Eq. (B25) with

B4. Proof of Eq. (95)
In this appendix, we give a proof of the important identity (95).
Using Eqgs. (B17) and (B23), we have

p+q
(@ r(9) N (TAé‘)o-a (C TA)rb (q)
£ fo'k+q L7 ( Z L% bzl § fb okﬂ[ T

a=1

n+1 n+1
=— > (T0ini01i)fs? iwie + 2 Tin(T) ol jer  (B26)
i,j=1 i,j=1

Here, n;(e,) 1s the number of components of «, equal to i and © is the inverse operation of @,
namely, 7, © j = (71, ..., Tp_1, Tha1, - - - » Tx) fOTr j = 7. We calculate the Toeplitz operator of
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the above object as
T, (L‘(q)féfiq rk)otp+,,,ﬂ,,

n+1 n+1

== Z (T);; ni ("k+q) <fak+q91®j rk) + Z (Ta)ijn; (Tie) Tp (félﬁq rk9j€9i>

i, j=1 +q>Pp i g By
LIV A '

(p+q) C(p) n+l1

g Cp, nj(Ti) (e ® ) + 1)
=" " E ni(o + )
(C(p+q+k))2 1( A)l] o,y DT DI,y DO) D) |: l( k+1]) I’l_,'(ap+q ® Tk) ¥ 8[,/'
o)y DTk -

(B27)

where we have used Eqgs. (89) and (53). On the other hand, L4 o T),( f orro7) 18 given by
P+ (P) pt1

@) _ B
(LA o Ty <faz+fl TA)>ap+g b (C(T‘*‘k);z Z(TA)’J g DTDI By DO+ D]
ap+q@7k
« (_ (nj(“p+q) + 8i,j)(”i(“p+q ®t)+ 1)
nj(@prq ® Tr) +8i,j

+ ni(Bp) + 51‘,]‘) -

(B28)
Here, we have used Eqgs. (89), (53), and the following expression of L(A” ).
c}(gp) n+1
<L£f)>a 5 = " 2o Tad(na(er) + Dba,cupyo (B29)
pPp ocp i, j=1

which follows from Egs. (65) and (62). Comparing Eq. (B27) with Eq. (B28), we find
Ty (LD 19 )= Ly o Ty(fs), +,), which implies Eq. (95).

B5. Proof of Eq. (100)

In this appendix, we prove Eq. (100).

Let us start with Eq. (99) for k, K’ < p. For fixed k < p, we first show that the proportional fac-
tor does not depend on 7 labeling the different weights of the eigenstates. Let {H,}"_, be a basis
of Cartan subalgebra of su(n + 1), i.e., a set of mutually commuting elements in {7}~ +2”.
Then, there exists a complete basis of su(n + 1) called the Cartan—Weyl basis {H,, E,} satlsfy—
ing

[Ha Hy) =0,  [Hy, Exo] = *0uEsa,  [Ea Eo]l =Y 0uHa Ej=E_,.  (B30)

Here, @ runs over all roots of su(n 4+ 1). Now, let us consider its irreducible representations
p1:su(n+ 1) — End(V)) and p; : su(n + 1) — End(}3), where

Vi = Spanc({fi.1}), p1(Ty) =LY, (B31)

Vo = Spanc({T,(fr.1)}),  p2(Ta) = Lo (B32)
Here, k is fixed and V; and V), shall be generated by running the subscript / over all weights.
We take the label 7 as the n-dimensional vector I = ({;, b»,...,1,) such that

p1(Ho) fi.r = Lafi1- (B33)
In this notation, the correspondence (95) implies
2T (fie.r) = Tp(pr1(v) fie.r), (B34)
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for any v € su(n + 1). Note that from Eq. (B30) we have

P1(Ee) fr.r = No1 fr1+a (B35)

for a complex constant number N, ;. We again act p;(E_,) on both sides of Eq. (B35) and
obtain

P1(E—oEy) fr1 = Co1 fr1» (B36)
where C,_ is given by

Cot = (fi1, PIE—Eo) fi.1) = (01(Eo) fre.1, P1(Ea) fi1) = I No 1| (B37)

Here, we have assumed that f; ; and fi ;4 , are both normalized. From Egs. (B34), (B35), and
(B36), we have

(Tp(fk,IJra)» Tp(fk,[+ot)) = |Na,l|72(:02(Ea)TP(fk,I+a)v :OZ(Eot)Tp(fk,IJra))
= |Na,1|_2(Tp(fk,I+a)’ :OZ(EfotEot)Tp(fk,I+a))
= |Na,1|_2(Tp(fk,I+a)’ Tp(pl(E—aEa)fk,I-‘ra))

= (Tp(fi.0)s Tp(fi.1))- (B38)
Since this holds for any 7 and «, we find
(Tp(Ji.0)s Tp(fie.)) = (Tp(fier)s Tp(frer)), (B39)

for general weights 7, I'.
From the above argument, we only have to compute (7),(f%, 1), T,(f%, 1)) for a specific I. Let us
consider a particular element

W) = (B40)

Here, we have introduced 1,4, = (1,1,...,1) and 2, = (2,2, ..., 2). From Eq. (53), the nor-
malization constant is given by cﬁf;g;k =,/ % By using Eq. (89), we have

(r+q) (p)
(q)) _ kg e By o B41
P < I = O 02 o)1 D2, BpD1 ( )
k. g By rg®2 C(P+k+11) 2 re
piq 2
and the only nonvanishing components are
ax) (p)
ity ®0p 1 200,
(q) — c(2k+q) k+qDPp—k 2 DPp ko (B42)
kI 1k+q@2k 2
Ly @ Pp—1> 2D Py c(p+k+q)
1+ @2k Dpp—k

For p — k < 0, we see that such matrices should vanish. Using Eq. (53), we find

(5) (1)

_ Cktg+mip+qg+nip+n) ) (n1(pp-1) + k + @)t (n2(pp—1) + K)!
Qr Yy ki k + (P + g+ k +n)!)? o= n1(pp—r)! n(0p—i)!
Let us set a := ni(p,—) and b := ny(p,—1), which satisfy 0 < a + b < p — k. Here, for fixed a
and b, the number of possible configurations of p,_j is % for n > 1. Thus, we have
5 00 (2r-0) + K-+ 0t 02 (0p-2) +4)
P n (Pp—k)! () (Pp—k)!

. (B43)

p—k p—k—a

(a+k+q)'(b+k)'(p k—a—b+n—2)
B m—-2)(p—k—a—b)’

M»

(B44)

a=0

>
Il

0
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for n > 1. Let us use the Chu—Vandermonde identity,

m

Z(a—i—i)!(j—i—m—a)! i+ j+m+ 1)
al(m — a)  ((+j+DHim!

(B45)
a=0
for any non-negative integers m, i, and j. By applying this identity to Eq. (B44), we find

(m(pp—1) +k+ ! (ma(pp—i) +5)!  kl(k+ @) (p+q+k+n)! 46
L el med T Ghrgrmo-kr (54
For n =1, we have
3 (11 (pp-i) + k + @)} (2(ppi) +K)! pik (a+k+q)! (p—a)
— ni(pp-i)! n2(pp—k)! s al (p—k—a)
_ KK+ @ p+ g+ k+ 1! B4

Qk+q+D(p—k)! ~°
and thus Eq. (B46) holds for any n € N. By plugging Eq. (B46) into Eq. (B43), we obtain Eq.
(100).

Appendix C. Proofs and formulas for 7%"
CI. Integration formula for T°"
In this appendix, we explicitly calculate

2m

(a.) Tt et [T A\ 2 )
s N m— m Y
In’l,innjm T ‘/\0 dx \/0\ dx (f > e am-1 e am f ° (Cl)

I m

Here, a, b € 7 and J’iff) is defined in Eq. (117).
By plugging Eq. (117) into Eq. (C1), we have

1/2 SN2 RN
k i Im i ! Jm
Ir(n”vlb)l 3102 E e”T (1+ .I)t[m) PdmTm e”T (l +]7f[m) PdmTm
stms Jm 47.[ 12
m 1,I'eZ

27 by i\ paa2L g2
x / (i1 gk 1 P e
0

2l : 1 im—im=b') pamx*"
X / a’xzme_l(l_lJr Pam ) b (C2)
0

2m

Then, performing the integral of x“” and taking the summation of /', we obtain

1/2 _ 1 a2 i 2ab ﬁ .
I(a'b) — (@) 8(m0d Pm) 4k1’(1§m_1 il 112 )eim

L. . . 2m pgm
M, I, fim T im—Jm—b,0

27712»1—1 2m—1 im i a ;b 2
% Z/ dxzm_lefkp<x 72”12’”"(1+%)7Tp<712m,1 +l%)> ‘ (C3)
leZ 0
Here, we have defined

(mod n) __
811 b

(C4)

{1 (a—benZ)

0 (otherwise)

By shifting the coordinate x*” ~ '+ x>" ~ ! 4 275, _ |/, we can convert the summation of /into
extending the integration range to R. This yields the usual Gaussian integral and we obtain

i (—”2 i 2 ) 2rai
N 2 7 n
=e 4ep /%m—l Lam—1om [2_171 el Pqm S(mOd qu) (CS)

(a.b)
I - lm*jmfbso :

Myl Jm
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For a = b = 0, we can see that

I(O’O) _ 8(m0d DP4m) (C6)

Mo jmn — Cip—jm.0
which means the orthonormality (118). For (a, b) = (1, 0) and (0,1), we can see that Eq. (C5)
can be written in terms of the clock and shift matrices (126) as

1r§11 z(,,),) Jm (qul1z)iln>jnl’ If510 t,l,,) Jm (qum )inlsjn1' (C7)
Similarly, for general ¢ and b, we have
(a,b) n ﬁ (1%2 ~ +i12m2—“1b D +%) a b
Ly = € et 2/ ((Upgo)* Vo) i jn- (CB)

C2. Proof of Eq. (142)
In this appendix, we give a derivation of Eq. (142).
To show Eq. (142), we introduce the Jacobi theta function

9 |:Z:| (v, 7) = Z o (+aye 2 (Fa)v+b) (C9)

leZ

and rewrite the zero mode (117) as

k 1/4 P (2m— j "
fl(I?)(x2m—l’ x2m) _ ( 14 ) e—/‘{(.x 1)219 Im/ PGm ( DPdm (x2m _ l-x2m—1) aPQnﬂm) )

" 4r32 0 27 by

2m

(C10)

There is the following identity of the theta function [49]:

9 { /Nl} (Niz1, Ni7) 9 [S/ } (Naza, No)

NN, rs+Ni
= Z 124 |: NIJ(;NZ j| (N1z1 + Nazo, (N1 + N2)1)
=1

Nor—Nis+N Nat
x ¥ |: NINZ(SIIJFNZ) } (N1N2(z1 — 22), NiN2(Ny + No)T). (CI1)

This implies

(P+q)gm

FONSP) =P+ Panl 2 Y FI0 @ L (G),(C12)
t=1

P Jm—qGmiy+Paqat

where

a

X = —qxa + pli= o .
P+aq (2 + 9)gm

a

(C13)

Now, let us calculate the combination fc(q) () £P(y), which appears in the integrand of Eq.

(142). To do this, we act aﬁ,’{ﬁ(x) on Eq. (C12) ¢, times. Here, amﬁ(x) is the creation operator
(134). From the chain rule of the covariant derivative, we have

(q)T (X) / (p+q)T (X) [ ((P+‘1)P‘1‘1nz)T(J}) (C14)
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By using Eqgs. (136) and (C14), we find
(9) ()
fc,Z ]m( )ﬁ’p ()))

P+ qm  cm qc/ pcm_cr « ) y
m m + + m ~
Z Z / 1 fcfp /qirt +4qmt ( )fc p_cq i i+ Zz(y)'
— ' (Cm — Cm)'C ' (p + q)cm+ mThy m m— Cpps PC[mjm 49mly, P49
(C1%)
By setting x* = y“, the above equation becomes
S, 01 @)
(pg):qm “ Cm! g pnCn f(p+q) (x) f((p+q)pqqm 0).
1 o\ (em — )l (p+ q )T,y I GGnt X Cn= p Jin=4mE+P4
= C;”=
(C16)
By using Egs. (C16) and (118), we find
271'12»1—1 5 1 277[2171 5 ( + ) ( ) ( )
[ et [ ey g,
pon P+ gm (s s
_ P+a)Pady,) mod (p+¢)qm
(]7 4 q)cm-H Z fcm Phmjm— qq,y,lm—&-pqqZ,t(O) iy JmF i, +qqmt * (C17)

By plugging Eq. (138) into the above equatlon, we finally obtain Eq. (142).
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