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Abstract

Macroscopic bodies, such as surfaces, cavities or surrounding liquids and gasses, can
significantly influence and thus control microscopic processes. A suitable framework to
describe these effects is given by macroscopic quantum electrodynamics (QED). Inspired
by the success of this theory applied to the so-called resonance energy transfer (RET),
in this thesis the existing theory is on the one hand extended to related but more exotic
processes and systems, and on the other hand extended to deal with collective effects and

incoherent dynamics. The work is divided into three main parts.

In the first part, we investigate the competition between interatomic Coulombic decay
and Auger decay and how one can change the relation of their rates to each other through
their macroscopic environment, such as surfaces or cavities. In doing so, we develop a
new approximate model for Auger decay that allows the dipole approximation and pro-
vides a closed-form expression for the Auger decay rate that depends on tabulated atomic
data. It is shown how even a simple dielectric surface can significantly affect the compe-
tition between the two rates. The analysis is kept as general as possible, and analytical
expressions are provided that can be applied to arbitrary macroscopic environment well

described by its classical Green’s tensor.

In the second part of this thesis, we extend the theory of RET in the framework of
macroscopic QED to chiral molecules. Chiral molecules are optically active and may
interact with the electromagnetic field via their magnetic transition dipole moment in
addition to their electric one. As a result, new channels in the process of RET open
up. The interference of some of these channels is then sensitive to the handedness of
the chiral molecules: the RET rate differs between opposite-handed enantiomers and
same-handed enantiomers. This makes RET a candidate for the development of a chiral
discrimination technique. We show how the originally weak discriminatory power of the
process can be significantly enhanced by immersing the system in a solvent. We offer a
detailed discussion of a large parameter space for dielectric solvents. The importance of
local-field effects is discussed and appropriate corrections are included in the calculation.
We derive the local-field corrections for chiral solvents that turn out to be much more
complex than those for magneto-electric media. We predict that due to these local-field
effects the direction of the discrimination can be inverted inside chiral media depending
on the intermolecular distance. As an opposite limit to the case of a continuous and dense

macroscopic solvent, we consider possibly chiral particles surrounding the molecules



undergoing RET. We show that even a single mediating particle can have a significant

impact on the discrimination depending on its position.

In the last part of the thesis, we develop a new perturbation scheme based on the
master equation of the reduced atomic system in the Markov approximation and addi-
tionally extend Fermi’s golden rule to density matrices. We demonstrate the applicability
of Fermi’s golden rule to density matrices by studying superradiant RET as a function
of the initial entanglement in a collectively excited atomic pair. The new perturbation
scheme modifies the splitting between perturbation and bare evolution, such that the
bare evolution describes additionally incoherent dynamics such as decays. The scheme
can then be used, for example, to deal with poles in the frequency domain, which are

common when using perturbation theory, by a formally rigorous method.
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Zusammenfassung

Makroskopische Korper wie beispielsweise Oberflachen, Resonatoren oder auch um-
schliefSende Fliissigkeiten, konnen mikroskopische Prozesse signifikant beeinflussen und
dadurch steuern. Eine geeignete Theorie um diese Effekte zu beschreiben ist die ma-
kroskopische Quantenelektrodynamik. Inspiriert durch den Erfolg, den diese Theorie
angewendet auf den sogenannten Resonanzenergietransfer (RET) erbracht hat, wird in
dieser Arbeit die bestehende Theorie einerseits auf verwandte, aber exotischere Systeme
ausgedehnt, und andererseits erweitert um auch kollektive Effekte und inkohérente Dy-
namik behandeln zu kénnen. Die Arbeit ist in drei Hauptteile gegliedert.

Im ersten Teil untersuchen wir die Konkurrenz zwischen interatomarer Coulomb-
Zerfall und Auger-Zerfall und wie man das Verhiltnis ihrer Raten zueinander durch
ihre makroskopische Umgebung, wie Oberflichen oder Resonatoren, verdndern kann.
Dabei entwickeln wir ein neues Ndherungsmodell fiir den Auger-Zerfall, das die Dipol-
Néherung erlaubt und einen geschlossenen Ausdruck fiir die Auger-Zerfallsrate liefert,
welcher von tabellierten atomaren Daten abhidngt. Es wird gezeigt, wie selbst eine ein-
fache dielektrische Oberfliche die Konkurrenz zwischen den beiden Raten erheblich
beeinflussen kann. Die Analyse ist so allgemein wie moglich gehalten, und es wer-
den analytische Ausdriicke présentiert, die fiir beliebige makroskopische Umgebung, die
durch ihren klassischen Greenschen Tensor wohl beschrieben ist, angewendet werden

konnen.

Im zweiten Teil dieser Arbeit dehnen wir die Theorie des RET im Rahmen der ma-
kroskopischen QED auf chirale Molekiile aus. Chirale Molekiile sind optisch aktiv und
konnen mit dem elektromagnetischen Feld zusétzlich zu ihrem elektrischen auch tiber ihr
magnetisches Ubergangsdipolmoment wechselwirken. Infolgedessen erdffnen sich neue
Kanile fiir den RET-Prozess. Die Interferenz einiger dieser Kandle ist dann empfind-
lich fur die Handigkeit der chiralen Molekiile: Die Rate unterscheidet sich zwischen
verschieden-hdndigen und gleich-hdndigen Enantiomeren. Damit ist RET ein Kandi-
dat fiir die Entwicklung einer chiralen Diskriminierungstechnik. Wir zeigen, wie die
urspriinglich schwache Diskriminierungsstiarke des Prozesses durch Immersion des Sys-
tems in ein Losungsmittel verbessert werden kann. Wir bieten eine detaillierte Diskussion
eines grofien Parameterraums fiir dielektrische Losungsmittel. Die Bedeutung von soge-
nannten Lokalfeldeffekten wird diskutiert und entsprechende Korrekturen werden in die
Berechnung einbezogen. Wir leiten die Lokalfeldkorrekturen fiir chirale Losungsmittel
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her, die sich als sehr viel komplizierter herausstellen als die entsprechenden Korrek-
turen fiir magneto-elektrische Medien. Wir leiten ab, dass aufgrund dieser Korrekturen
die Richtung der Diskriminierung in einer chiralen Losung in Abhédngigkeit vom inter-
molekularen Abstand umgekehrt werden kann. Als entgegengesetzter Grenzfall zum
Fall eines kontinuierlichen, makroskopischen Losungsmittels betrachten wir (moglicher-
weise chirale) Teilchen, die das relevante System umgeben. Wir zeigen, dass selbst
ein einziges mediierendes Teilchen einen signifikanten Einfluss auf die Diskriminierung
haben kann.

Im letzten Teil der Arbeit entwickeln wir ein neues Schema fiir storungstheoretische
Rechnungen, das auf der Master-Gleichung des reduzierten atomaren Systems in der
Markov-Né&herung basiert und dehnen zusétzlich Fermis goldene Regel auf Dichtema-
trizen aus. Wir demonstrieren die Anwendbarkeit von Fermis goldener Regel auf Dich-
tematrizen, indem wir den Superradianz-Effekte in RET als Funktion der anfidnglichen
Verschrankung in einem kollektiv angeregten Atompaar untersuchen. Das entwickelte
Storungsschema modifiziert die Aufteilung zwischen Stérung und ungestorter Zeiten-
twicklung, so dass die ungestorte Zeitentwicklung auch inkohdrente Dynamiken wie
beispielsweise Zerfille beriicksichtigt. Das Schema kann dann z.B. dazu verwendet
werden, Pole im Frequenzbereich, die bei der Verwendung von Stérungstheorie haufig
auftreten, durch eine formal saubere Methode zu behandeln.
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INTRODUCTION

In 1946, Purcell proposed the modification of spontaneous emission by placing decaying
atoms inside an appropriate cavity [1]. Since then the study of controlling spontaneous
decay by means of the system’s environment has made great advances in theory [2—9] —
including for example controlled single-photon sources with applications in quantum
computing [10, 11] — and experiment [12-16].

In a multi-atom system, an alternative to spontaneous decay is given by excitation
energy transfer, where the excess energy is absorbed by a second particle. Inspired by
the success of the Purcell effect, excitation transfer has been subject to similar studies.
In this work, we extend the existing theory to a range of transfer processes not usually
studied in the context of the Purcell effect, namely the excitation exchange between chiral
molecules as well as interatomic Coulombic decay (ICD) and Auger decay. The aim
is hereby to gain control over energy transfer processes by means of their surrounding
environment as well as being able to account for the impact of realistic environments,
such as macroscopic bodies, other particles or when the system is immersed in a solvent,
on the process rates.

1.1. Excitation energy transfer processes of interest

Among the processes of excitation energy transfer, resonance energy transfer (RET) is the
most fundamental. In RET, an initially excited donor particle relaxes and transfers its
energy to an acceptor particle. For this process to take place, the emission and absorption

spectra of both involved transitions need to overlap and hence be in resonance.

Already in 1922 measurements by Cario and Frank indicated that energy had been
transferred between particles over a length scale exceeding the predictions of gas dynam-
ical theories. Building on the work of Perrin and others, Forster developed the theory
of what is known today as Forster or fluorescence resonance energy transfer (FRET) in

1946 [17, 18].
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Figure 1.1.: Distance regimes for energy transfer. The solid line shows the behaviour of
a typical energy transfer, the dashed lines show the respective asymptotic
nonretarded and retarded behaviour.

Forster did not account for retardation effects in his theory, which is hence only valid
for separation distances between donor and acceptor that are much smaller than the
wavelength A of the transferred energy E = h/cA. In 1966 Avery extended the theory of
Forster to larger separation distances by replacing the Coulomb potential used by Forster
with the relativistic Breit interaction [19]. This was later improved more formally in a
quantum theoretical way by Gomberoff and Power [20].

In general, the transfer can be dominantly radiative, nonradiative or a mixture of both,
depending of the distance between donor and acceptor. Separation distances r < A
smaller than the wavelength A of the transferred energy we refer to as the near-zone
or nonretarded limit where RET is described by FRET. The FRET rate I'ggzpy is famous
for being extremely sensitive to the separation distance r. Its dependency is given by
Trrer & 1/7°. In this limit, the transferred photon is virtual or “dressed”, i.e. it is bound
to the atoms during the process and does not exhibit well-defined physical properties.
Due to its virtual character, the transfer efficiency can exceed the one of spontaneous

emission, i.e. FRET can be faster than spontaneous decay.

In the opposite limit, r > A, the retarded energy transfer process can be correctly
described by spontaneous emission by the donor, propagation of a real photon and sub-
sequent absorption by the acceptor. In contrast to FRET, the retarded or far-zone transfer
is proportional to 1/ r*. The typically rate behaviour as a function of distance is schemat-

ically plotted in Fig. 1.1.



1.1. Excitation energy transfer processes of interest

Since its complete quantum theoretical description, Power, Craig and Thirunamachan-
dran as well as Andrews et al. published a series papers giving insight to some physical
aspects of the RET rate employing quantum electrodynamics (QED), such as reversibility
of the process, the role of overlap between emission and absorption spectra together with
the density of final states, the intermediate distance regime, and time-dependent analysis

of the process connected to causality [21-31].

Regarding fundamental debates on the theory of RET there had historically been a
long discussion on how to treat poles appearing in the frequency domain correctly which
resulted in slightly different rate predictions [32]. While this debate is regarded as settled,
there is still an ongoing discussion on the role of the local density of photon states [33].
Considering incoherent dynamics in the Markov approximation could give some insight

to both of these questions.

Resonance energy transfer is easily accessible via experiment. It can occur between
atoms, molecules, quantum dots, or even larger matter, such as nanotubes as well as
naturally in biochemical processes such as photosynthesis. In the nonretarded regime, its
distance sensitivity makes FRET the perfect mechanism to measure nanoscale distances
leading to the “spectroscopic ruler” [34, 35] and it finds many applications as nanosensor
[36]. Besides sensing, other applications have been developed based on RET; they include
photovoltaic, photodynamic therapy [37, 38], light sources [39, 40] as well as manipulation

of quantum information [41, 42].

The aim for control and enhancement of RET lead to the development of the field of
plasmonic RET, where surface plasmons of a close-by surface can mediate the transfer.
Macroscopic bodies mediating RET that have been studied include for instance nano-
waveguides, nanoresonators, nano-antennas, metallic surfaces, metamaterials, graphene,
Fabry-Perot-resonators and nanospheres [43-51]. A wide variety of applications using
plasmonic-RET have been developed, such as detection of ions [52], enhancement of pho-
tocatalytic activity [53], and solar energy conversion [54]. Besides macroscopic bodies,
the transfer can also be mediated by additional resonant particles close to the energy
exchanging system [55-60]. RET has also been studied in cavities, in theory and exper-
iment, where decoherence due to the coupling to the electromagnetic continuum can be

suppressed and the strong coupling regime can be studied [61-64].

The first quantum theoretical treatment of RET with external environment was carried
out microscopically via many-body QED [65]. Obviously a microscopic description of
any macroscopic environment becomes infeasible due to the large number of particle in-
volved. A solution for this problem is given by macroscopic quantum electrodynamics,
where absorbing and dispersing media can be taken into account in an effective man-

ner. In 2002 the rate for RET was first derived for general environment in the framework
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of macroscopic QED [66] and since has been used to derive RET in a multitude of spe-
cific set-ups, such as in nanocavities [67], dielectric layers and microspheres [66], near
wedges and wires [44], and in nonlocal media [68]. These predictions could be verified

in experiment, e.g. for different cavities and a nano-cube[13, 69].

For energetically higher initial excitations the transferred energy can be sufficient to not
only excite but ionise the acceptor atom. This process is called interatomic Coulombic
decay (ICD) and was first theoretically predicted only in 1997 and experimentally verified
6 years later [70, 71]. The necessity of high initial energy in ICD implies that the donor
atom requires an inner-valence vacancy. Such initial states are typically obtained after
inner-valence ionisation of the donor and ICD then produces a final state with two ions

in close proximity to each other, leading to a Coulomb explosion.

Although ICD and RET are equivalent processes, the difference in the amount of initial
and ergo exchanged energy for both processes makes them appear fundamentally differ-
ent. Compared to RET, ICD involves more complex preceding and posterior processes
and occurs on shorter length scales due to the higher energies involved. The characteris-
tic length scale of ICD makes it often essential to include wave function overlap between
donor and acceptor and the resulting electron correlations as well as nuclear motion to
obtain meaningful theoretical predictions. For separation distances in which the wave
function overlap between donor and acceptor atom is significant the energy between
donor and acceptor cannot only be transferred via a (virtual) photon but also via charge
transfer. Due to the indistinguishability of the involved electrons excitation and charge
transfers occur in coherence. While the photonic excitation transfer is proportional to 1/ r°
as it is equivalent to FRET, the charge transfer, once possible, will increase exponentially

with decreasing separation distance, see Fig. 1.1.

Because of the relevance of wave function overlaps in ICD as well as the scientific com-
munity in which the theory of ICD originated in, it was first treated in theory exclusively
via ab initio quantum chemistry methods. These methods are well suited to treat effects
by wave function overlap but exclude retardation effects and are not able to include the
impact of dispersing and absorbing environment. After ICD was first considered in the-
ory roughly 20 years ago and measured in experiment six years thereafter, it became
more and more evident that actually ICD is everywhere as Ouchi et al. state in their pub-
lication [72]: ICD was not only found to occur after inner-valence ionisation [73] but also
after resonant excitation [74, 75] as well as in satellite states [76—78]. In biology, it was
suggested that ICD is part of a DNA repair mechanism where ICD produces a slow elec-
tron for so-called photolyases [79, 80]. It was suggested that ICD might even occur in
biological tissue due to radiation therapy as it was predicted that ICD can occur in water
molecules [70, 81] as well as in solutions [82]. In quantum dots ICD has so far been only
considered theoretically [83-85].



1.1. Excitation energy transfer processes of interest

A process that often occurs together with ICD is Auger decay. ICD may occur as a com-
peting relaxation channel to Auger decay or as part of a decay cascade that is initialised
by Auger decay. In Auger decay the initial excitation is sufficiently high such that the
excess energy can be reabsorbed within the same donor atom by another electron. The
electron is then emitted to the continuum leaving the donor autoionised. Accordingly,
ICD is also known as interatomic Auger decay. Auger decay can involve energies even
higher than those found in ICD processes. The energies involved in Auger decay can go
up to the hard x-ray regime after core-shell ionisation of heavy atoms. In the overlapping
energy regime of both, Auger decay and ICD can occur as competing processes. Since
Auger decay requires a highly excited initial system a manifold of different processes is
available as alternative relaxation channel. This includes cascade-like events where the
initial inner-shell vacancy is filled not by an electron in the most outer valence shell but
from another one, leading to a less excited state. Depending on its energy this transition
can result in Auger or radiative decay. Following up on this further decays occur until
the system ends up in its ground state. In contrast to ICD, Auger decay has been known
and studied for roughly a century [86, 87].

Since its first observation the process gained importance in different fields. Auger de-
cay rates in isolated atoms are a crucial ingredient to calculate spectra of astrophysical
plasma [88]. These rates have been calculated for the past decades through elaborate ab
intio techniques and are available as tabulated data. Two distinct applications and their
respective research field based on Auger decay have developed over time: Auger elec-
tron spectroscopy and Auger decay in radiobiology. In Auger electron spectroscopy, the
properties of the emitted electron, known as Auger electron are measured. After ionisa-
tion of the material under investigation the kinetic energy of the emitted Auger electron
gives insight on the internal energies of the parent ion and hence on the material and
its chemical bonds. In radiobiology, the Auger electron is exploited to damage biological
tissue efficiently. The Auger electron typically possesses low kinetic energy and can thus
destroy cancerous cells in close proximity to the Auger-decaying atom.

In 2003 it was pointed out that ICD can occur as part and in particular as terminal
step of an Auger cascade. Since then, ICD as part of Auger cascades has been studied in
various systems theoretically as well as seen in measurements. These studies suggested
that ICD could be employed in radiobiology similar to Auger decay and is in many cases
already part of the various processes triggered by radiation therapy. Unwanted ICD
in the human body would lead to large damage of the surrounding tissue due to the
posterior Coulomb explosion. In 2014, Cederbaum et al. suggested that resonant Auger
decay, where the atom is initially excited instead of ionised can lead to a terminal ICD
step where the kinetic energy of the emitted electron is tunable via the initial resonant
excitation [89]. This was later verified by measurement[90—92] and subsequently fur-
ther studied in theory and experiment [93], potentially leading to a scheme for radiation
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therapy [94, 95].

In biological tissue and other real world systems, atoms undergoing ICD as well Auger
decay are not isolated from their complex and often macroscopic surroundings. The
need to study these processes in such environments is evident. Via methods of ab initio
quantum chemistry ICD has been investigated in small water cluster and the predictions
subsequently confirmed in experiment. Methods of ab initio quantum chemistry build up
the environment microscopically and can become soon infeasible for larger systems. The
framework of macroscopic QED approaches the problem from the opposite limit: it is a
powerful tool to account for macroscopic and continuous matter influencing microscopic
dynamics. Its predictions break partly down in the distance regime were wave function
overlaps and chemical bonds between donor and acceptor play a significant role. Only re-
cently the relation between ICD and RET has lead to the study of ICD via (macroscopic)
QED methods. Hemmerich et al. showed that a perfectly reflecting surface as well as
immersing the particles in a solvent such as water effects the ICD rate significantly by
employing the theory of macroscopic QED [96]. In a joint work both frameworks, macro-
scopic QED and ab inito quantum chemistry, were used to investigate the impact of a
third mediating particle on the ICD rate [97]. In contrast to ICD, Auger decay has never
been studied via macroscopic QED. As pointed out above, the interplay of ICD and Auger
decay with each other in particular in biological tissue is an important subject. The frame-
work of macroscopic QED has much to offer to the future predictions of ICD in biological
tissue and other environments. For significant progress of macroscopic QED studies in

this field, it is thus necessary to include Auger decay into the framework.

1.2. Chiral molecules and their discrimination

Chiral molecules are molecules whose mirror image cannot be brought in congruence
with the original by translation and rotation, see Fig. 1.2. The origin of the word chiral
is the Greek word xeip for hand. Hands are in fact a macroscopic example of chiral
objects, as they are mirror images of each other but not identical. The two mirrored chiral
molecules we thus refer to as left- and right-handed. They are different enantiomers of

the same molecule.

In the early 1800s multiple experiments showed that certain crystals and liquids ro-
tate the linear polarisation of transmitting light and that instances of the apparent same
matter rotate light in opposite directions [98-100]. The effect was called optical activity.
Finally in 1848 Pasteur separated crystals by hand under a magnifying glass into ones
that showed a specific structure and their mirror images. The separated crystals showed

opposite optical activity while the original racemic mixture was optically inactive [101,
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Figure 1.2.: Chiral molecules appear as different enatiomers that are nonidentical mirror
images of each other, comparable to a left and right hand.

102]. While hypothesized at its time, the relation of this macroscopic chirality to the three-
dimensional structure of the involved molecules was only understood decades later by
the work of Le Bel and van’t Hoff [103-105]. And so began the investigation of chiral
molecules which is just as active today, as it turned out that chirality plays a role in many

applications as well as fundamental questions across the sciences.

While different enantiomers possess identical physio-chemical properties, such as boil-
ing and melting points, solubility and absorption spectra, they can have very different bi-
ological properties when interacting with other chiral objects. An example is given by our
olfactory and gustatory system, both involving chiral receptors. Differently handed chi-
ral molecules can hence smell and taste differently to us. For instance, the right-handed
enantiomers of monoterpene carvone smells like caraway, its mirrored counterpart like
spearmint, limonene smells like orange or lemon depending on the enantiomer and left-
handed asparagine tastes bitter while its opposite handed version tastes sweet. As this
indicates, the human body itself is made up of specifically handed chiral molecules and
structures. Throughout nature one enantiomer usually appears much more often than
the other, this is true e.g. for amino acids and sugars. Although this has been known
since the end of the 19th century, the reason for the homochirality of nature and life is
still unknown to this day.

One theory on the origin of homochirality involves parity violation due to the elec-
troweak force. This fundamental interaction was unknown until mid 2oth century and
hence not considered in the study of chirality until then. The electroweak force breaks
space inversion symmetry and thus there exists an incredibly small energy difference
(~ 10" eV) in the internal energies of left- and right-handed chiral molecules [106].

This energy difference can be safely neglected for most purposes. However, it could be
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the cause for a small initial enantiomeric excess in the origin of our world. This small
imbalance then could have amplified itself by chiral catalysis, where an excess of certain
handed matter gives advantage to the formation of same-handed matter [107-109]. It is
to this day an open challenge to spectroscopically probe and quantify parity violation in

chiral molecules [110-115].

Apart from this very fundamental interest in chiral molecules, there is just as impor-
tant a reason to study them in applied science. In the pharmaceutical industry, 56% of all
drugs are chiral [116] and while one enantiomer might have the desired effect the other
can be either nonreactive or even harmful. For instance, is left-handed penicillamine an
anti-arthritic drug while its mirror image is highly toxic. Another famous example is
thalidomide, also known as Contergan, a drug that was prescribed to pregnant women
in Germany as a medicine against morning sickness, anxiety and insomnia in the 1950s.
While one enantiomer really acted as the desired medicine, the other was toxic and as
a result, thousands of children were born with birth defects. In view of such examples,
there is a high demand for measuring and controlling the excess of one handedness in
a mixture of enantiomers. Advances in this regard are of such importance that several
Nobel prizes have been awarded in chemistry related to the separation of different enan-
tiomers, including Prelog in 1975 and Knowles, Nozori and Sharpless in 2001. The latest
was the chemistry Nobel prize in 2021 for Benjamin List and David MacMillan for the
development of asymmetric organic catalysis, i.e. a method for synthesising molecules
with a preferred handedness.

Efforts to distinguish different enantiomers can be guided by the fundamental Curie
symmetry principle. It states: When certain effects show a certain asymmetry, this asymmetry
must be found in the causes which gave rise to them [117]. Applied to the task of distinguish-
ing different enantiomers, this implies that one needs to use some chiral ingredient with
known handedness in order to detect the handedness of an enantiomer. This is known
as chiral discrimination. An example of such a chiral ingredient is left- and right-handed
circularly polarised (LHCP/RHCP) light. And indeed one of the few differences in the
behaviour of enantiomers is their optical activity: opposite handed chiral molecules in-
teract differently with LHCP and RHCP light. This includes a difference in dispersion,
leading to optical rotation and a difference in absorption, leading to circular dichroism.
Many techniques for the measurement of the enantiomeric excess as well as the separa-
tion of different enantiomers have been developed based on this property [116].

Similarly, due to their optical activity, the resonance energy transfer between two chiral
molecules can in principle be used to discriminate enantiomers, assuming the handedness
of one of the participating molecules is known [60, 118, 119]. The discriminating effect is

rather small and needs to be amplified for practical applications.
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1.3. Aim and structure of the thesis

We have introduced the atomic processes of interest and outlined the current state of
their respective research. In this work, we study interatomic Coulombic decay and Auger
decay as decay channels appearing in the same system, and resonance energy transfer in
particular between chiral molecules. As introduced, the framework of macroscopic QED
was successfully used to study RET and reveal how to control the energy transfer via
macroscopic environment. Its close relation to RET inspires us to transfer the analysis
to the study of ICD. As discussed in the previous section, ICD might be an interesting
candidate to exploit in radiation therapy. In biological tissue, the atomic system is not
isolated from its macroscopic environment and studying ICD within macroscopic QED
has thus a lot to offer. The most promising proposal to utilise ICD in radiation therapy
involves Auger decay as well. In general, ICD and Auger decay often appear together,
either in competition to or succeeding each other. To offer further insight to the ongo-
ing research of ICD, we thus need to be able to describe Auger decay within the same

framework of macroscopic QED.

We have discussed the relevance of chiral discrimination. While there are many dis-
crimination techniques that have made their way from fundamental description to indus-
trial application, the discriminatory power of RET has to date only been introduced in
its most fundamental form in theory. It requires further investigation and the predicted
effect needs to be enhanced to be utilised. One way to achieve this is to gain control over
the effect by means of the macroscopic environment.

The aim of this work is two-fold. On one hand, we want to describe the introduced
processes within a unified framework, i.e. macroscopic QED, that allows us to then take
the impact of realistic macroscopic environments into account. On the other, we aim to
extend the existing theory to be able to treat collective effects and incoherent dynamics.
The latter may then be able to offer some new insights to the fundamental discussions
regarding RET, such as the treatment of frequency poles and the relevance of the local
density of photon states. While the resulting theory can be used to describe the in-
troduced processes in realistic environments, such as biological tissue, we additionally
study how the macroscopic environment can be used to gain control over the respective

processes.

Within this work we focus on controlling the balance between ICD and Auger decay as
competing processes as well as enhancing the discriminatory power of RET between chi-
ral molecules via macroscopic environment. To this end, we first integrate Auger decay
into the framework of macroscopic QED in a feasible manner, comparable to the treat-
ment of RET and ICD. We then investigate the competition between ICD and Auger decay
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in the presence of simple media. Subsequently, we look into the discrimination of chiral
molecules via RET and how the degree of discrimination can be enhanced and modified
by immersing the system into a solvent. By considering a solvent with chiral properties
itself we can gain even more control over the discrimination. Finally, we consider the
incoherent dynamics of decaying systems explicitly by developing a new perturbation
scheme based on an open quantum systems approach. We show how on the level of mas-
ter equations linewidths as well as energy shifts can be taken into account in perturbative

calculations.

The thesis is organised as follows. Chapter 2 is dedicated to laying the theoretical
groundwork which this thesis is based on. We introduce macroscopic QED and derive
some useful properties of the Green’s tensor and response functions in magneto-electric
and chiral media. We introduce perturbative methods for calculating rates, leading to
Fermi’s golden rule as well as the master equation for open quantum systems in Markov
approximation. We close the chapter by briefly presenting pre-existing results in free
space and macroscopic QED that serve as a useful reference point throughout this the-
sis.

In chapter 3 we derive a new formula for the Auger decay rate based on a heuristic
approximation that allows us to apply the dipole approximation to the Auger decay by
regularising the respective Green’s tensor. We then use this model to investigate Auger
decay and ICD in competition with each other. We first derive estimations based on
characteristic length scales to determine dominating decay channels in an highly excited
two-atom system. We provide analytical estimations as well for the rates inside a general
cavity based on its Q-factor. We then discuss in detail the modification of the balance
between ICD and Auger by a close-by dielectric surface. The analysis is finally applied to
the example of a HeNe-dimer.

In chapter 4 we derive the RET rate between chiral molecules in general macroscopic
media. We study the degree of discrimination via RET as a function of separation dis-
tance in free space, in magneto-electric and chiral solvents. We show that local-field and
screening effects should not be neglected and derive the local-field correction inside a
chiral medium. We show that a chiral solvent with known handedness can be used to
discriminate enantiomers. We finally study the dilute gas limit by considering a single

chiral mediator molecule in close realm to the energy exchanging system.

In chapter 5 we develop a new perturbation scheme, the incoherent perturbation scheme,
based on an open quantum systems approach in the Markov approximation. Here, we
first introduce the master equation of the reduced atomic system and from this rederive
the spontaneous decay rate as well as the RET rate via ordinary perturbation theory. We
then show how the homogenous, but incoherent dynamics of the reduced system, i.e. en-
ergy shifts and decay rates, can be treated in a way that yields an alternative perturbation

10
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scheme, we call the incoherent perturbation scheme. We show how this can be used
to correct quantities derived from ordinary perturbation theory on the example of the
atomic polarisability. The incoherent perturbation scheme may be used to find similar
corrections to quantities of arbitrary perturbation order analogously. A comparable anal-
ysis has been done in other works to study Van-der-Waals forces between excited and
ground-state atoms, yielding position-dependent oscillations only for the excited atom.
In close analogy, we derive that the full decay rate of the excited donor particle, including
RET, spontaneous emission and mediated emission shows position dependent oscilla-
tions. We close the chapter by extending Fermi’s golden rule to density matrices where

we can analyse collective effects on the rate, such as super-radiance.

Chapter 6 concludes the thesis by summarising the obtained results and outlining fu-

ture prospects of the developed theories.

11






THEORETICAL BACKGROUND

This chapter is dedicated to lay the groundwork for the thesis at hand. In the first section,
the framework of macroscopic quantum electrodynamics (QED) is derived. We quantise
the electromagnetic field in the presence of polarisable macroscopic media. We begin
by focussing on magnetodielectric and metallic media that react either with a magnetic
or electric linear response to external fields. We then extend the theory to chiral media
whose response mixes electric and magnetic fields. We discuss dual symmetry, that is
valid in free space but is partially broken in the presence of media. We then present two
different coupling schemes between fields and atoms and finally show how emission and
absorption inside a continuous medium needs to be corrected to account for screening
and local field effects.

The second section derives and discusses different calculation methods to solve the
atomic and molecular dynamics coupled to the electromagnetic field. We start by in-
troducing the basic ideas of scattering theory, which relies on perturbation theory, from
which we can derive Fermi’s golden rule in arbitrary order. We briefly discuss the dif-
ference to ab initio quantum chemistry methods, whose results are used for comparison
and as input parameters. We finish the section by introducing an open quantum systems
approach.

The last section is dedicated to introducing some previous results obtained in free
space or on the basis of macroscopic QED that either are useful throughout this thesis
or serve as a consistency check in special cases of the results obtained within this thesis.
We introduce the Moller scattering formula obtained from free-space QED that can be
applied to calculate Auger decay rates. We derive the polarisability tensor for a single
particle and show subsequently how it can be used to describe the particle as a dielectric
medium via the Green’s tensor. We briefly discuss a regularisation model developed for
Van-der-Waals forces between infinitesimally close atoms as it serves as a justification
and motivation for a similar regularisation model developed within this thesis. We then
briefly sketch the derivation of the spontaneous decay rate and resonance energy transfer
(RET) rate in the framework of macroscopic QED. Finally, we discuss the discriminatory
power of RET between chiral molecules as it was predicted in 1998.

13
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2.1. Macroscopic quantum electrodynamics

In this section, we will derive the fundamentals of macroscopic QED by first revisiting the
classical theory from which we can already derive some useful properties and relations
that also hold true in the respective quantum field theory. We then quantise the field in
media by demanding several things to hold for the resulting quantum theory. While for
a while this was regarded as the only way to derive macroscopic QED, field qunatisation
was recently achieved in the more common canonical way. In our derivation we will
mainly restrain ourselves to simple media. We subsequently extend the theory to chiral
media. Furthermore, we show that electromagnetism shows duality symmetry that is
useful for simplifying many results. We introduce the interaction between the field and
microscopic quantum systems in minimal and multipolar coupling. Finally, we introduce
a more specific concept concerning the interaction between fields and charges inside me-
dia that will be needed for the main part of the thesis, so-called local-field corrections.

2.1.1. Classical macroscopic electrodynamics

In the following, we revisit classical macroscopic electrodynamics. We derive the effect
of a macroscopic medium onto the electrodynamic fields via linear response theory. The
medium is characterised by means of its linear response to an applied field. We introduce
the macroscopic fields, their Maxwell and constitutive equations, as well as the classical

Green’s tensor.

A medium consists of many charges influencing the electromagnetic fields and there-

fore each other according to the Maxwell equations [120]:

eV - E(r,t)=p(r,t), (2.1)

eV - B(r,t) =0, (2.2)

V x E(r,t) — B(r,t) =0, (2.3)

;v < B(rt) — eoB3(m, ) = j(r1). (2.4)
0

Let us first consider N free charges at positions r; and with charge q;. The charge and

current density is then given by

, (2.5)
g(r,t) =) qimi6(r —ri(t)). (2.6)

14
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They are related to each other via the continuity equation,

p(r,t) = =V j(r,t). (2.7)

By introducing the scalar potential ¢ and vector potential A of the electromagnetic field,
such that

E(r,t) =—=V¢(r,t)— A(r,t), (2.8)
B(r,t) =V x A(r,t), (2.9)

and applying the Coulomb gauge V - A = 0, we find the Poisson equation:

—ggAp(r,t) =p. (2.10)

The Newton equations governed by the Lorentz force are then for each charge i given

by

m¥; = q; [E(r;,t) +7; X B(r;, t)] (2.11)
= EW — g A(r, t) + ;7 X [V x A(r;, t)] . (2.12)
i#]
Obviously, it is not feasible to solve these equations for all the bound and free charges in a
macroscopic medium. Instead we employ linear response theory to simplify the problem.
Let us consider some continuous charge and current density inside the medium. We first
have to define the response fields of the medium. Applying external fields to bound
charges causes them to rearrange and separates negative and positive charges. This can
be described by a polarisation field P which is a directional dipole moment density. For
any volume V the total charge inside can be related to the flux of polarisation through its

surface gy = — [ [, dA - P and the divergence theorem then gives
p(r,t) ==V -P(r,t). (2.13)

The polarisation field is therefore the response of the medium to the electric field. Sim-
ilarly, the magnetic field induces magnetic dipoles into the medium. Their directional
density gives the magnetisation field M. The charge current J; = [[;dA - j,, due to
these magnetic dipoles through any surface S is given by the integral over the magnetic
dipoles on the surface’s boundary Jg = [;sds - M and with Stoke’s theorem we find

Im =V X M. (2.14)

The continuity equation (2.7) together with Eq. (2.13) yields the full charge current den-

15
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sity
j=P+VxM. (2.15)

The magnetisation field is hence the response of the medium to the magnetic field. We can
now simplify the response fields by assuming linear and causal response of the medium.
With these assumptions the constitutive relations are given by the Langevin equations

as
P(r,t) = & / Y dr / & (', T) - E(rt— 1) + Py(r, 1), (2.16)
_ e 3./ N Y
Mir,t) = - /_oodr/d Ye (rr' T) - B(r t— 1)+ My(r, ), (2.17)

where the electric and magnetic susceptibility tensors ¢, and ¢, are retarded response
functions, i.e. |r — 7’| < ¢t — ¢, (r, 7', T) = ¢, (r, 7', T) = 0, ensuring causality and Py
and M)y are noise fields due to fluctuations inside the medium, hence their statistical
expectation value vanishes: (Py) = (My) = 0. For further simplification we assume

that the medium’s response is local and isotropic: ¢, (r,r',T) = ¢, (r, 7)é(r — )L

The constitutive equations take a simpler form in Fourier space,

P(r,w) = ¢ye(r,w)E(r,w) —egE(r,w) + Py(r,w), (2.18)
M(r,w) = ;OB(r,w) - V;OB(r,w) + My(r,w), (2.19)

where we have introduced the Fourier transformed quantities

flw) = FTIf0) = o [ dtf(pre (220

and the permittivity ¢ and permeability y defined by

1

e(r,w)=1+¢,(r,w), pir,w) = W

o) (2.21)

Unless otherwise noted all fields and quantities are given in Fourier space from here on
out . We can recast the Maxwell equations into a homogeneous form via these fields by
introducing electric and magnetic excitation fields D and H,

D =¢yE+ P =¢peE + Py, (2.22)
1 1

H=—B-M-=—B—-M,, (2.23)
Fo HoH

which are also commonly known as displacement and magnetizing fields. The macro-

16
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scopic Maxwell equations in Fourier space then read

eV-D =0, (2.24)
eV-B =0, (2.25)
VXxE—-—iwB =0, (2.26)
V X H+iwD =0, (2.27)

which are completed by the constitutive equations (2.22) and (2.23). From these equations

we can derive the inhomogeneous Helmholtz equation for the electric field, such that

1 w?
VX — VX ——¢r,w)| E(r,w) =iuywiy(r,w), 2.28
[ VX el 4 (1) = ipgi(r, ) (228
where jy = —iwPy 4+ V x My is the noise charge current density. If we additionally

consider free charges described by p and j that are not part of the medium the Gauss
and Ampere law (2.24), (2.27) become again inhomogeneous and the Helmholtz equation
reads

2

[V X ;4(1“1,w)v X —(;)Zs(r,w)] E(r,w) =ipgw(gy(r,w) + j(r,w)). (2.29)

Formally this is solved by

E = inw / &rG(r, v, w) Gy, w) + 5 (W), (2.30)

with the Green’s tensor given by [121]

2

[vaG;nVX_Zdnw)G@mhwzéw—ﬁh (231)

where we call ' and r the source and absorption point, respectively. Its explicit form
in free space as well as inside homogeneous media can be found in the appendix, see
section A.3. When considering an environment consisting of several volumes occupied
by different homogeneous media it is useful to decompose the Green’s tensor in a bulk
part G and scattering part G, such that

G=G"+¢gWV, (2.32)

where G is given by the solution of the Helmholtz equation inside the medium where
the source is situated without considering any additional media and can be interpreted
as the direct and uninfluenced propagation from source to an absorption point inside

(1)

the very same medium, while the scattering Green’s tensor G'"’/ gives additional con-

17



2. Theoretical Background

Figure 2.1.: The Green’s function G(r,, r,,w) can be interpreted as the propagator of an
field excitation from a source point 7, to an absorption point r,. It can be de-

composed into a bulk part G (r,, r,, w) that describes the direct propagation

through the same medium and a scattering part cW (r,, 7y, w) that takes any
scattering at or transmission through secondary media into account. If the ab-
sorption point is situated in a different medium as the source the Green'’s ten-

sor is given completely by the scattering part: G(r,, 7, w) = GV (7], 75, @).

tributions due to scattering at secondary media, see Fig. 2.1. In case of absorption in a

(1)

secondary media the full Green’s tensor is given by G'".

2.1.2. Necessary and useful properties of the medium and its fields

The macroscopic fields were derived from linear response theory in the previous section.
From this together with the fundamental equations for the fields we may derive some
useful properties for the medium’s properties, the Green’s tensor and the macroscopic
fields themselves.

As a consequence of causality, the response functions and hence permittivity and per-
meability obey the Schwarz-reflection principle [121],

£(w)=e(-w"), p(w)=p-w). (2:33)

The sign of the imaginary part of {,(w) and {,,(w) (w > 0) determines if the medium is
absorbing or amplifying. We will only consider absorbing media with Im¢,, Im¢,, > 0.
For media with finite {,(7) and {,,(7) that vanish for T — oo the permittivity and perme-
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ability e(w), p(w) are analytic functions on the upper half of the complex plane including
the real axis. This is true for magnetodielectrics, however metals feature a asymptotic be-
haviour of {,(T — c0) due to free charges which leads to an additional pole in e(w) at

w = 0. From these properties we can derive Kramers-Kronig relations as

m—1
Rege(w) =1+ 73/ dw 7Im£( ", (2.34)

Ime(w) =6 (Ree( N-1), (2:35)

where n = 2 for a magnetodielectric medium and n = 1 for a metal and ¢ is the conduc-
tivity at w = 0 of the metal’s free charges. The permeability fulfils the same relation as
the dielectric € for both, dielectrics and metals.

As a consequence of these properties we can state general properties of the classical
Green’s tensor: it must fulfil the Schwarz reflection principle as well as the Onsager
reciprocity, such that

G*(Tz,'f'l,CU) = G(Tz,'rl, —CU*) , (236)
G (rym,w) = G(ry,15,w), (2:37)

and we can show the very useful integral relation [121],

) /d3r Gy (ry, 7, w) -Gyl (ry, 7, w) = h;to W ImG (ry, 7, W), (2.38)

A=e,m

where we have defined:

hAlme(r,,

G,(rp, 7, w0) = T gﬁ(rm T,W), (2.39)
c Tt

G, (ry,r,w) = —i— Ay, @) G(ry,r,w) X V. (2.40)

2 2
¢ 7eg|p(ry, w)]

In linear response theory the fluctuation spectrum of a field can be related to the imagi-
nary part of its response function via the fluctuation—dissipation theorem [122, 123]. For
the polarisation and magnetisation fields the theorem yields

(APy(r, ) APL(r, o)) = gjfflmge(r,w)a(r oW —'),  (247)

kT

AN
<AMN<T,CU)AMN<T ,w )> = ],[Oﬁw

ImZ,,(r,w)é(r —r')é(w — '), (2.42)

where Af = f — (f). With this we can derive the fluctuations for the electric field as well
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to be

okpTw

(AEy(r,w)AEN(r, ")) = K ImG(r, ', w)é(w — '), (2.43)

where E) is the electric field caused by the noise charge current jy given by Eq. (2.28).
This is also in accordance with the fluctuation—dissipation theorem applied to the elec-
tric field directly with G as linear response tensor and E) as noise field. The classical

fluctuations vanish in the limit of zero temperature.

2.1.3. Quantisation in media

Instead of canonical quantisation, we construct a quantum theory such that we repro-
duce free-space QED in the absence of charges and that the behaviour in the presence
of charges resembles the behaviour of the classical field as close as possible. This can be
achieved by fulfilling three demands: the Maxwell and constitutive equations must hold
for the field operators, even inside a medium the free fields and the excitation fields have
to be distinguished and the operator fluctuations must fulfil the same relations as in the
classical case. However, while the fluctuations vanish for zero temperature in the classi-
cal theory we allow for ground state fluctuations of the electromagnetic quantum field.
The resulting quantum theory describes media and fields as one system via collective

polariton-like excitations.

We start by relating the noise polarisation and magnetisation to fundamental creation

and annihilation operators [121, 124-126],

A

Py(r,w) = iy Lime(r, @) f,(r, ), (2.44)

Ny (r,0) = iy “Dlme(r, ) f, (r,w) (2.45)

such that their fluctuation—dissipation theorem is fulfilled for operators f, that obey the

usual bosonic commutation relations,

[Falrs), £y, = [Flr), £6)] =0, 249
{f)\(ﬁw), f)t'(T/, W/)} = Oy 0(r — r)é(w—w'). (2.47)

Via the annihilation and creation operators we can define a Fock space for the field. Its

ground state [{0}) is given by

filr,w)|{0}) =0, VA rw, (2.48)
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and the field can be filled with excitations by applying the creation operator accord-
ingly,

1 4 a
1y, (r,@1) - 1y (rwy)) = —= 13, (ry 1) - ) (@) [{0)) (2.49)

Vn!

With this, we can now show the validity of the fluctuation—dissipation theorem in the
ground state, i.e. at zero temperature [127, 128]. We find

<S[A15(r,a))A15+(r/, w')} >0 = ;solmgg(r,w)é'(r —r)o(w— '), (2.50)
<S[AM(r,w)AM+(r/, w’)} >O - ;W&(r —)o(w — o), (2.51)

where S[ab] = 1/2(ab + ba) is the symmetrised operator product. By demanding that
the Maxwell and constitutive equation are still valid for the operators, i.e.

eV-D =0, (2.52)
eeV-B =0, (2.53)
VxE—-iwB=0, (2.54)
VxH+iwD =0, (2.55)
D =¢E+ P =¢cE + Py, (2.56)
aA='p-wr='p-m,, (257)

Ho HoH

we can derive the Helmholtz equation for the frequency components of the electric field
operator in analogy to the classical case,

2
[V X ;V X —wza?] E(r,w) = ipgwiy(r,w), (2.58)
c

with jy = —iwPy + V x My. The Helmholtz equation is formally solved by the classical

Green’s tensor and we find

Erw)= ¥ [ &6, w) fr,w), (2.59)

A=e,m

where G, given by Egs. (2.39) and (2.40) are the propagators for electric and magnetic
field excitations. With this we can verify the fluctuation—dissipation theorem for the
electric field in the ground state,

<S[AE(r,w)AE+(r/, w')} >0 = ;;Tyow2ImG(r, r,w)(w—w'). (2.60)

The remaining fields are then given by the Maxwell and constitutive equations, their
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explicit expressions in terms of the fundamental operators can be found in the appendix,
see section A.1. In Schrodinger picture each field operator F'(r) is expressed by its

frequency components via
ﬁ‘(r) = / dwﬁ’(r,w) +Hec.. (2.61)
0

By construction the frequency components of each field fulfils the fundamental equa-
tions. Demanding that the time dependent frequency components in Heisenberg pic-
ture Fy(r, w, t) correspond to the Fourier components e_i“’tﬁ‘(r, w) such that the Fourier

transformation holds,
A 0 A (o] iwt A
Fy(r,t) = / dwFy(r,w,t) + He. = / dwe ' F(r,w)+H.c., (2.62)
0 0

we can conclude the field’s Hamiltonian from Heisenberg equation of motion to be

i

o Fy(w, t) = 5 [Hr, Fy(w,1)] (2.63)
= e = ;/d?’r /O.OO dwhwfi(r,w) - fLlr,w). (2.64)

2.1.4. Extension to chiral media

So far, we have considered magnetodielectric as well as metallic media. The presented
theory can be extended to more general media. For the framework of this thesis it is
sufficient to extend the theory explicitly to reciprocal chiral media, also called Pasteur

media.

A chiral medium mixes electric and magnetic fields in its linear response, i.e. Eqs. (2.16)

and (2.17) now take the form (in Fourier space), such that

P(rw) = /d3r’ {eoxee(r, ', w) B, w) + /;(;Xem(r,r',w) -B(r',w)}

+ Py(r,w), (2.65)

N (r,w) = / & {‘uloxmm(r, ', w) - B(r',w) + ;(;xme(r, r,w) - E(r’,w)}

+ My (r,w). (2.66)

We are interested in the homogeneous, reciprocal case of a Pasteur medium where the
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response tensors are given by

2 2
Xeelr 7 0) = [¢e<w>—m s —1) = [1-el@) - ZE 5(r—r'), 26
X (7, @) = Lon()3(r — 1) = [1 - V(lw)} 5(r—v"), (2.68)
X7 0) = —3melr, 7 0) = i s _ 41y, (2.60)

n(w)

where x(w) is the chiral parameter and we recover the magnetodielectric relations given
by Egs. (2.21) for x(w) = 0. These definitions are not unique. Especially the alternative
but equivalent definitions ¢ = ¢ — x>/ uand X' = x/u are often found in the literature.
With our definition we can derive the constitutive equations for a Pasteur medium as

D =ee, B+ %ﬁ +Py+ %MN, (2.70)
B = upoH — i%CE + ppo My . (2.71)

Causality still requires that the Schwarz-reflection principle holds for each response func-
tion X, (w) = x,/(—w") which is directly passed on to ¢(w) and y(w) as in the mag-
netodielectric case, while we find the respective property for the chiral parameter to be:
X (w) = —x(—w"). These properties ensure that the respective Green’s tensor solv-
ing the chiral Helmholtz equation obeys the Schwarz-reflection principle. The chiral
Helmholtz equation can be derived via its constitutive equations (2.70), (2.71) and the
Maxwell equations (2.54) and (2.55). It reads

1 A wx LW Xz A A
—VXVXE-2—25VxFE—-—|e—2 | FE=iw , 2.72
i c 2 < i HoIN (2.72)
which yields for the Green’s tensor
lV><V>< 29y —w—z S—X—z G(r,v)=d(r—r")1 (2.73)
z ¢y ¢ L ’ ' '

Similarly, the theory can be extended to different media such as non-local or non-reciprocal
media that are not governed by the presented derivation, a general approach can be found
in Ref. [129].

2.1.5. Duality symmetry
In free space electric and magnetic fields obey very similar laws. In this section we intro-

duce the concept of duality symmetry to account for this similarity. Duality symmetry
and its transformation serves useful to obtain any magnetic results directly from known
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electric results and vice versa. In general, a duality symmetric notation is useful to derive

results in a more compact form.

We can formulate Maxwell’s and the constitutive equations in a more compact form by
introducing vectors of dual pairs for the fields, such that

WD) (0
V- ( B) = (()) , (2.74)
E\ . (0 1)\ (LD
V x (lOFI> =iw (_1 0> ( B ) , (2.75)
(20 DE () e
B c\-ix n) \bH 0 p) \HoMy

where Iy = \/€y/}o. Let us now consider the dual transformed fields ¥, meaning that

we rotate the dual space by some angle 6, such that

A @ A A
I.D [,D® I.D
(%) - () -e(3)

The remaining fields are given analogously and the transformation matrix is given by

D(0) = ( cosf sinf)) . (2.78)

—sinf® cos@

The Maxwell equations do not change for the transformed fields [130, 131]. However,
we find that for the constitutive relations to stay invariant under dual transformation the

response functions must transform as [121]

® s ® .
T L ——
X M —IX M

which leads to the requirement for duality symmetry: (¢ — u)sin(26) = 0. It is only
tulfilled for all 6 if ¢ = p. This includes free space where ¢ = y = 1. However, for
8 = nm/2 Eq. (2.79) is fulfilled for arbitrary choices of €, 4 and x. We conclude that arbi-
trary magneto-(di)electric and Pasteur media show so called discrete duality symmetry

0o 1Y)
D, = (_1 O) . (2.80)

transforming with

24



2.1. Macroscopic quantum electrodynamics

2.1.6. Atom-field coupling

We have quantised the electromagnetic field in the presence of macroscopic media. How-
ever, to be able to apply our theory we need to couple the fields to atomic systems. We
will employ two different coupling schemes, namely minimal and multipolar coupling
throughout this thesis. The total Hamiltonian for both schemes is the same, however, the
splitting into coupling and system Hamiltonian differs which can have consequences to
results obtained by perturbative methods.

In the uncoupled case we find for the atomic system,

qa4p

_— .8
87‘[80|ﬁ“ — ﬁ,B| (2 1)

L1 .2

}iA:: i'z:7nwra'+ z:

« aFp

where we have included the Coulomb interaction between the atomic system’s charges

into the atomic Hamiltonian. We divide the atomic Hamiltonian into two parts by split-
ting off the center of mass kinetic term,

. 1
H., =
AT

pa+t L Eqln) (n], (2.82)
m, -

where |n) are the eigenstates of an atom at rest with energy E,,. The field Hamiltonian is
given by Eq. (2.64). In the classical theory we can apply a minimal coupling scheme to
the system’s Lagrangian and derive its full Hamiltonian. The same result can be obtained
by replacing m, 7, in H, with p, — g, A(r,) and adding the Coulomb interaction with the
field [120, 121, 125]. An analogous procedure leads to the minimal coupling Hamiltonian
A, for the quantum field,

H: HA+HF+Hia/ (283)
2
& PN A Ala 22/ A
Ay = Y aub(r) - ¥ 2p, - A + 11 A7), (2:84)
4 24 o o

where the last term in F;, describes elastic scattering of the field at the atom and can
usually be neglected when interested in the change of internal atomic states. Equivalently,

we can write the minimal coupling Hamiltonian as

By = [ Qrp(r)p(r) = [ LrA)-5(r). (285)
In first order of long-wavelength or dipole approximation we then find

A

A, ~—d Bl(#,) —Z%ﬁ“.A(m). (2.86)
4

An alternative coupling Hamiltonian can be obtained by applying the Power—Zienau-Woolley
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2. Theoretical Background

transformation T = exp [ih_l i d3r15A . A} to all operators and expressing the minimal
coupling Hamiltonian in terms of the transformed operators [132-134]. Obviously, this
will not change the total Hamiltonian. The transformation leaves many relevant opera-
tors unchanged since they commute with P, and A. However, the electric field operator
and therefore the annihilation and creation operators change under this transformation,
such that

E =E+ S—PAL , (2.87)
0
filr,w) = fi(r,w) + % / &’sPy (s) Gi(s, 7 w), (2.88)

where the prime indicates the transformed operators, O’ = TOT*. In addition, the parti-

cle’s canonical momentum changes, such that

e

Do = Dy — G A(7,) — /dsrf\,x x B =m,7, — /dSrf\“ x B, (2.89)
where A, = f\; only depends on atomic operators, its lengthy expression can be found
in Ref. [121]. The transformation leads to a new splitting of the Hamiltonian into atomic,
field and coupling parts:

A 1 .2

Hp=5—Pa+ ZE; n'y (n'], (2.90)
ZmA n

Ar = Z/d%/dwhwff(r,w) . f)/\(r,w), (2.91)
A

Q

2
By~ —d- B (7g) =i B(7g) + 1 g [, x B(#y)]”
o 42
Tt o [dx B - —dxpy B, (292)
8m 4 N

where all operators have been transformed, while only the primed operators and quan-
tities change under this transformation, and we have applied the long-wavelength ap-
proximation to the coupling Hamiltonian. In multipolar coupling the long-wavelength
approximation is not identical with the dipole approximation but also contains magnetic
contributions. The first two terms in the coupling Hamiltonian (2.92) describe the elec-
tric and magnetic dipole couplings, the successive two terms the diamagnetic interactions
and the last term depending on the center of mass motion represents Rontgen interaction.
Neglecting the center of mass motion and the typically weak diamagnetic interaction we
find for the coupling Hamiltonian,

N N

Hiy~ —d-E'(f,) —m' - B(¢,), (2.93)

where the magnetic term vanishes for non-magnetic atoms. The interpretation of atomic
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Figure 2.2.: Flow chart like sketch of local field correction derivation via Onsager real
cavity model. 1.) The transmission Green'’s tensor from source point r inside
to absorption point 7, outside the sphere is found by solving the Helmholtz
equation and the boundary conditions at r = a. 2.) We apply the curl before
explictly setting the source point to zero (i.e. to the center of the sphere) to
receive the correction for magnetic type of excitations. 3.) We apply the limit
of vanishing sphere radius and end up with source corrected bulk Green’s
tensors for electric (left) and magnetic (right) excitations.

as well as field states differ in the two schemes and are rotated into each other compared
to the minimal coupling scheme, but are still orthogonal. However, in free space and

with electric atoms the two couplings and their respective H, and Hy coincide.

2.1.7. Local field correction

So far, we have quantised the fields in the presence of macroscopic media and derived the
coupling between the macroscopic fields and atoms. However, when we want to describe
atoms situated inside macroscopic media, we need to address an additional problem:
so-called local field effects must be taken into account. This can be motivated by several
considerations. When modelling an atom inside a macroscopic medium we should take
care of the fact that the atom is not permeated by the continuous charge density that
is used to describe the medium. Most importantly, any atom-field interaction should
in fact be modelled to take place in free space. Without this there is an ambiguity in
how to couple the field to the atomic dipoles and duality symmetry might be broken
without a physical reason [9]. There are several local field models that take this into
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2. Theoretical Background

consideration [135, 136]. While resulting in different corrections to the Green’s tensor,
they all restore duality symmetry. Here, we will focus on the so-called Onsager real
cavity model in order to take local field effects into account. The corresponding solution
for a chiral medium will be derived later as a new result within the scope of this thesis.
Since we will go into full detail of the derivation in the chiral case, we only give a rough
sketch of the derivation here.

To this end, we embed the source and absorption points r; and 7, of a field excitation
into a magnetodielectric medium. The propagation of excitations in a single medium
is described by the bulk Green’s tensor G0 given by Eq. (A.31). We now want to find
a correction that can be applied to G'9 to account for local fields around source and
absorption. Within the Onsager real cavity model we achieve this by simply placing
infinitesimal small free-space spheres around source and absorption points [137]. Because
of the geometry of the problem it is difficult to find the Green’s tensor for the arrangement

including both free-space spheres.

Instead we first place a free space sphere with finite radius a around the source point
r; only, while the absorption point r, is placed within the medium, see Fig. 2.2. We
then solve the fields boundary conditions at the spheres surface at |r| = a for the
transmitting Green’s tensor, Gi.,s and finally find the limit for vanishing sphere radius:
lim,_,0 Gians [138, 139]. This yields the source-point corrected Green’s function. For mag-
netic interactions at the source point we need the Green’s tensor’s curl at r,, see Eq. (2.40).
Applying the curl before performing the limit yields the source-corrected curled Green’s
tensor, lim,_,; [Gyans X V]. Comparison of both results with the original bulk Green’s

(0)

tensor G/ and its curl reveal the electric and magnetic local-field corrections. They are

given by simple factors applied to the bulk Green’s tensor, such that

GO (ryryw) S o (ry, 0)G (), (2.94)
G(O)(ra,rs,w) X V, sotree cott cm(rs,w)G(O)(ra,rs,w) x Vs, (2.95)
_ 3e(rg,w)
Ce(rSIw) - 1 +2€(TS,CU) 7 (2.96)
3
Cm(’l’s, CU) = W’ (297)

where because of the translation symmetry we can reintroduce a variable source point
r, into the result. The derivation steps for the source-point corrections are sketched in
Fig. 2.2. Similarly, we find for the correction solely around the absorption point r, the
same correction factors ¢,/ (7,,w). From this symmetry that is related to the Onsager
reciprocity we can conclude that the full local field correction for both points inside a
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medium is given by [139]

G¥ oy wle(r, @G,
G x Vv, LN ce(ra,w)cm(rs,w)G(O) x Vg,
0 __LiC 0 (2.98)
V,xG ——— ¢, (r,w)c,(r,w)V, x G,
V, % G x v, e, Cu(rg, w)ey, (ry, )V, X G x v,.

We will revisit this derivation in more detail for a chiral medium in chapter 4, where the
local-field correction turns out to be more involved.

2.2. Calculation methods

In this section, we provide the necessary tools for calculating the process rates of inter-
est. We start by introducing perturbative scattering theory and derive from it Fermi’s
Golden rule. Throughout this thesis, we will mainly used perturbation theory, includ-
ing Fermi’s golden rule in the dipole approximation. We then briefly compare QED in
dipole approximation with ab initio quantum chemistry methods. While we do not use ab
initio quantum chemistry methods throughout this thesis, we will often either compare
the results obtained by out methods with results obtained by ab initio methods or use ab
initio results as input parameters. Finally, we introduce open quantum systems and the
master equation of a reduced system, as we will use an open quantum system approach

in chapter 5.

2.2.1. Scattering theory and Dyson Series

Here, we derive the general rate of a second-order process via scattering theory, where
the perturbative treatment leads to the Dyson series. We then show its application to the
Auger rate in free-space QED without dipole approximation.

In scattering theory we assume that two subsystems are initially non-interactive, such
that their interaction Hamiltonian H;, vanishes for some time in the past, and after the
interaction over a small time interval the subsystems are again left in eigenstates of the
non-interacting Hamiltonian H,. Obviously, this is true for a scattering experiment were
the considered interaction is short-ranged and the two subsystems are initially separated,
collide and are separated again. We want to apply scattering theory to the interaction
between electrons via the electromagnetic field to describe internal atomic dynamics.
While scattering theory is wildly used to describe the interaction between charges via the
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electromagnetic field, the interaction is not short ranged and always present. We hence
offer some remarks here for the successful application of scattering theory to our case:
we assume that the atomic system is at some point in the past in an eigenstate of the
full Hamiltonian that is also an eigenstate of the non-interacting Hamiltonian Hj, (i.e. its
ground state). The interaction is then turned on by exciting the atomic system into a
state that is not an eigenstate of the full Hamiltonian. For weak coupling we may assume
that the excited system is initially in a definite stationary state of the non-interacting
Hamiltonian [140]. The interaction with the field then drives atomic dynamics and finally
the atomic system ends up again in a state that is approximately an eigenstates of H,,.

In the weak coupling regime we may apply time-dependent perturbation theory in the
interaction picture and thus derive the Dyson operator for time-evolution. Let us start in
Schrodinger picture where the time evolution operator Ug(t — t;) is uniquely defined by
the Schrodinger equation,

. o
0,Us(t) =~ AHTs() A Us(0) =1~ Ug(t—tg) = Te ™™, (o.g9)
where 7 is the time-ordering operator. When splitting the Hamiltonian into system
and interaction parts, H(t) = Hy + H;, (where we now assume for simplicity a time

independent Hamiltonian), the time evolution operator Ug(t) can alternatively be written

as:
Ts(t) = Uy () Uy (t), (2.100)
Ao(t) _ efiI:IOt/h , Uia(t) _ Tefi deV(T)/h , (2'101)
I4OEHG::RINGE (2.102)

This is easy to prove by taking the time derivative,

9t (0110 (1)) = — 3 U (1)L (1) — + 0y (60 (1)1 1)
= — (Ho + Bi) Uo () o (1) (2.103)
& Os(t) = Oy(H (), (2.104)

and obviously Uy(t = 0)U,(t = 0) = 1. It is therefore an equivalent solution to the
Schrodinger equation (2.99). This enables us to move to the interaction picture. Here,

any operator evolves with H, and the states evolve with V(t),

>

ia(t = 10) [$0)a » (2.105)
O(t) = Uy (t — to) Ol (t — to) (2.106)

such that any expectation value keeps its time dependence compared to the Schrodinger
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picture:

WOIOM[Y(1))ia = (ol TS (+)OoUs (8)[9y) - (2.107)

We may expand U, (t) in the Dyson series,

. 1 t t t N R .
U,(t) =Y —— [ dt,--- [ dt, [ AT [V(t,)... V(L) V(¢
o) = g . e [ iz [ 0T [0(0) . V(1) V(0]
1 t t3 ty N N N
=) —= dtn---/ dt, [ dHV(t,)...V(t,)V(t;). (2.108)
w (i) Ji, ty to

The full time evolution is then expanded by

u

Uy (Ui (1) =) a®
n

. Do 1t gt N
UO(t)_%/t dtlug(t)v(t1)+h2/t dtl/tldtzuo(t)V(tl)V(tz)-l-..., (2.100)
0 0 0

such that ¥ = U, and aqv = —4 [dtUy(t)V(t1), and so forth. By assuming weak
coupling we may use perturbation theory to truncate the series at the desired order.

The probability P¢(t) to find an initial state |,) = [¢;) after some interaction time ¢ in
the final state of interest [;) is given by

2
, (2.110)

Pr(t) = | (910 (1) ) > = [Spit)

where Sg;(t) is the scattering matrix element. Here, we are interested in the process rate,
which is given by the time derivative,

d
Iy= an(t). (2.111)

In scattering theory we usually obtain a time-independent result for the rate by assuming
that the interaction only occurs in a finite, small time interval during scattering and
taking the limit of t — t, — oco. If several final states are considered we can include them
by summing over all probabilities/rates: I' = } /¢ I'¢. For second order processes the rate

reads
_y 422
I'= ;dtysﬂ. (1))~ (2.112)
@_ _1 g " 710D
5S¢ = —hz/todfz /to dty <¢f |V(t2)V(t1)|1/Ji> : (2.113)
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2.2.2. Fermi Golden rule

Fermi’s Golden rule for transition rates serves as a starting point for many rate calcula-
tions. In this section we derive Fermi’s Golden rule for second order processes from the
rate expression (2.112) with help of the Dyson series.

In second order we find for the rate

2

dl1 rt ty R R ‘
I'= Za hz/t dtZ/t dty (f | V(2)V () | ) (2.114)
f 0 0
d 1 gt ty opty, it A o 2
- ;dt Zk:? /todtz to dhe ¢ <f ‘ Hi, ‘ k> <k | Hi, ‘ 1> , (2.115)

where we have introduced intermediate states |k). As we have discussed, the application
of scattering theory implies that the interaction is not present at ¢t = t;. We now need to
ensure explicitly that this condition holds. One way to do this is to introduce an adiabatic
switch into the coupling Hamiltonian V(t) — V'(t) = €'V (t) with an arbitrarily small
7 > 0, such that V'(t — —c0) = 0 and then perform the limit t, — —oco. With this the
rate yields

2
t t . .
r= Zhlzl Z/ dtz/ ’ dt, et miwihtih (f ] A, | k) (k ‘ A, ] i) (2.116)
f k J —00 J —00
. . 2
v 1d 2| ([ Hia | 5) (k| Hia | )
_;h‘ldt‘fﬂ(t)‘ ) sl I (2:117)
with

(2.118)

fit) = 2 +i(wp — wi)

where the limit 7 — 0 after time derivation reveals a function sequence (i.e. a Lorentzian)

that converges into the Dirac delta distribution for arbitrarily small 7,

. d 2. B _
11713}) T ‘fﬂ(t)’ = 11713% 7}2% @ 276(ws — w) - (2.119)
We hence obtain
N N 2
2 <f Hi, ’ k> <k ‘ Hi, ‘ i>
r p— 75 -_ ) .
Zf: h4 (“f wl) §k, w; — wy (2 120)

Fermi’s Golden rule is usually applied to irreversible transitions into continuum, i.e. at

least one final state’s degree of freedom belongs to a continuum. In this case the sum
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over these degrees of freedom is replaced by an integral: } . — } ¢ Ik dwyp(wy), where
p is the density of final states and ) ; sums over any remaining degrees of freedom. We

finally find Fermi’s Golden rule for second order transitions,

27
I'= Z?P(wi”MﬂFI (2.121)
f

with the transition matrix element,

A, k) (k|H,|i
NG DG EAD

k Wi — Wy

(2.122)

(A}f:(,()i
2.2.3. Comparison to ab initio quantum chemistry methods

An alternative approach for the calculation of atomic dynamics is given by ab initio quan-
tum chemistry methods. We will not employ these methods in this work. However, we
use results obtained via ab initio methods either as input parameters found as tabulated
data or for comparison to results obtained via our approach. In this section we discuss

the differences between these methods and (macroscopic) QED.

At the heart of all ab initio methods lies the Hartree-Fock method. It is used to solve the
Schrodinger equation in the Born—-Oppenheimer approximation numerically, iteratively
and self-consistently. In the Hartree-Fock method, the many-electron problem posed by
an atom or molecule is solved by identifying a dominant mean field function, the Hartree
function and correcting it by single electron wave functions that are expanded as a lin-
ear combination of a finite basis set. The choice of these single electron wave functions
and their finite basis set is then crucial for obtaining meaningful results. Since its inven-
tion, the Hartree-Fock method has been improved to take e.g. electron correlations and
dissociation of molecules into account. These Post-Hartree-Fock methods include the
Moller-Plesset perturbation theory, the configuration interaction method and the multi-
configurational self-consistent field method, to name just a few [141-143].

The results of ab initio methods are independent of empirical data, hence the name. In
contrast, macroscopic QED leads in many cases to expressions which depend on some
transition multipole moments that need to be determined either empirically or via ab
initio methods. Another advantage of ab initio methods is the treatment of wave function
overlap between atoms that are close to each other, e.g. in a molecule. However, ab initio
methods do not quantise the electromagnetic field. In the post-Hartree-Fock methods the
Coulomb interaction is taken into account only as an electron—electron correlation. The
ab initio methods can hence neither account for retardation effects as QED or for the im-
pact of macroscopic media modifying the electromagnetic vacuum as macroscopic QED
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can do. Furthermore, our framework yields closed expressions that can be analytically

studied, while ab initio methods need to be evaluated numerically.

In summary, our approach profits from ab initio results and for most precision calcula-
tions it would be the preferred choice to use an appropriate ab initio method. However, for
the study of general dependencies, the inclusion of retardation effects and environment
the framework of macroscopic QED is more suited.

2.2.4. Open quantum systems

Scattering theory as well as Fermi’s golden rule are based on perturbation theory. An
alternative treatment of weakly coupled systems is given by open quantum systems. In
open quantum systems the full system is divided into a relevant system part coupled to
a bath or environment. By assuming that the bath’s correlations decay on a short time
scale, we can find a dynamical map for the reduced system, describing its dynamics via
a master equation. Its most approximative form is the Markov approximation, where the
dynamics of the relevant system depend only on its state at equal times, the chosen order
of bath correlations kept in the description and the bath’s initial state. Within the scope
of this work the bath is given by the electromagnetic field and the relevant system by the

atomic system of interest.

We define the open quantum system S as a subsystem of a larger combined system
S + E, that we refer to as full system. We assume that the full system’s Hilbert space H
is given by the tensor product of the individual systems” Hilbert spaces, such that the
set of tensor products of the eigenstates of the individual Hilbert space form a basis of
#H. We can then extend any observable Og of the open system S to the full system as
O = Og ® 1. The expectation value of Og in a state given by the density matrix p(t) is
then given by

Os = Tr [Op(t)] = Trs [Osps(t)] , (2.123)

where Trg [] is the partial trace over the system’s basis set and pg(t) = Trg [p(t)] is the
reduced density matrix for the open quantum system. We hence find that the reduced
density matrix pg(t) contains all necessary information for the system’s observables. The
problem then boils down to finding a dynamical map for pg(t), such that we may evolve
ps in time without evolving the full state p(t).

The system’s evolution is governed by the Liouville-von Neumann equation. In inter-

action picture it reads

by = —1 [V(),p(1)] (2.124)

34



2.2. Calculation methods

where ¢ and V(t) denote the density matrix and the interaction Hamiltonian, see Eq. (2.102),
in interaction picture. Formal integration yields

. i t N
Pty =po— [ dn [V(n).p()], (2125)

where py = p(t;). Substituting this back into Eq. (2.124) gives the differential equation

B0 = =5 (90 p0] = o [ a [900), [0(00)p(10)]) (2126
and hence
o) = =5 T (VO pol} = o5 [ T ([0, V) 0TT} )

which is still exact. Next we treat the correlations building up in the environment per-
turbatively via the Born approximation. We assume that only correlations up to second
order are relevant to the evolution of the open system. We have already cast the master
equation (2.127) explicitly into a second-order form. We may hence apply the approx-
imation by factorising the full system’s density matrix inside the master equation as

p(t) = ps(t) ® pe(ty) and find
fs(t) = _%TIE {[V(#), po] / dty Trg { [V (1), [V(11), fs(h) @ pe(t)]] } - (2.128)

Let us additionally assume that odd moments of the interaction Hamiltonian with the
environment’s initial state vanishes. The Born-approximated master equation (2.128) can
then be simplified to read

/ dt; Trg { [V (1), [V(t1),0s(t1) @ p£(to)]]} - (2.129)

For an open system S weakly coupled to a large environment E whose excitations and
correlations decay quickly compared to the time scale in which the open system evolves
the Markov approximation is justified. In a Markov process the time evolution of the
system is independent of its past. We hence apply the replacement ps(t;) — Fs(t),
yielding

/ dt, ey {[V(5), [V(t1), Bs(£) @ pg (k)] } (2.130)

which still is not truly Markovian since it depends on the system’s state at time f,. It
is called the Redfield equation [144, 145]. Alternatively it can be derived via time-
convolutionless projection operator method in second order [146]. Assuming that the
time scale at which the open system varies is much larger than the time scale at which
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the environments correlations decay we may put t —t; — oo and obtain the Markov

master equation [146]

bol) =~ [ anTee ([P0, V) ps() @] ]} (230

2.3. Previous results within (macroscopic) quantum

electrodynamics

In this section, we will present and discuss some known results from the introduced
framework of macroscopic QED as well as free-space QED. We will use these results in
the main part of this thesis to either build new results upon or to compare our results
to. We start by presenting the Mpller formula for Auger decay, where we skip a full
derivation here since we will revisit its derivation in the framework of macroscopic QED
in chapter 3. We then derive the polarisability tensor for a non-polar atom as it serves
useful for many applications throughout this thesis and we will build upon this deriva-
tion in chapter 5. We also discuss a successful regularisation model for Van-der-Waals
forces between very close atoms. We will use this model as inspiration and its success
as justification to develop a similar model in chapter 3 for Auger decay. We then briefly
sketch the derivation of the spontaneous decay rate in the framework of macroscopic
QED as a fundamental process highly related to the processes studied in this work and
subsequently provide similarly the derivation of the resonance energy transfer rate, both
derivations are revisited in detail in chapter 5. Finally, we discuss the discriminatory
power of RET as it was studied theoretically within free-space QED.

2.3.1. Moller formula for Auger decay

We start by presenting the Moller formula for Auger decay obtained via scattering theory
as presented in section 2.2.1 in free-space QED. The resulting formula will be rederived
as a special case of our theory in chapter 3.

Let us consider two electrons bound in the same atom that scatter at each other. Each
electron is initially thought of in some eigenstate |i) = |n,m) of their non-interacting
Hamiltonian H, at time f,,. We are interested in the scattering process where the electrons
end up to be in a non-interacting final state |f) = |k, p), where k is an energetically lower
level than n and m and p denotes a continuum state. In the usual formalism of Auger
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decay we couple the electrons to the fields via minimal coupling, see Eq. (2.84),

= /d3rﬁ( /d?’rj )-A(r). (2.132)

Using the general rate formula for second order transitions obtained via scattering theory,
see Eq. (2.112), and the fields quantised via free-space QED, the derivation yields

: 2 2
im 5D = tim (SEH) ~ Sqn(®) (2.133)
n|7'1 T2|/C
; (2) 1 / / 3 ek
t,t(}l_rﬂm Sgn(t) = H 5 (Wkn — Wy &rdr,————— ]

x (pkn<r1>pmp<r2> —Gn(r)in(r)) . @134)

where Sg;. and S, label the direct and exchange term for the two indistinguishable
electrons and p,, = (a|p|b) and j,, = (a|j|b) are the transition charge and transition
charge current densities, respectively. The exchange term can be obtained from the direct
term by exchanging its labels n <+ m. This is known as Moller formula for electron-
electron-scattering that includes retardation effects. It will emerge from our framework

in the special case of free space, where we will revisit its derivation in detail.

2.3.2. Polarisability tensor

A helpful quantity for describing atom—field interactions within macroscopic quantum
electrodynamics that can be calculated via perturbative methods is the polarisability ten-
sor. The polarisability is classically known for many macroscopic objects. A variety of
results can be represented in compact form by using the polarisability tensor. Its micro-
scopical counterpart shall be briefly derived here. We present the derivation within in
the framework of macroscopic QED; note that free-space QED yields the same result.

The electric polarisability o of a macroscopic object is defined as the proportionality
between an external electric field E and its induced dipole in Fourier space, such that

FT [{d(1))] = a,(ra, w) - E(ry, w). (2.135)

Let us consider an atom at position 7, in one of its eigenstates |n) such that (n|d|n) = 0,
and let us consider for simplicity a coherent state |E(r,w)) as external field , such that
E(r,w)|E(r,w)) = E(r,w) |E(r,w)). The expectation value of the dipole operator then

gives the induced dipole moment. We can calculate this expectation value up to the first

37



2. Theoretical Background

order in the electric field by applying perturbation theory

(d(t)) = Zdij< > Zdl] <<n E ‘ aWt4) A, l:l(o)(t) ‘n> + <n

n)

where A, /) (j| are atomic flip operators and U™ is the nth order of the time evolution

ij — ‘
operator in Schrodinger picture in terms of the Dyson series, see Eq (2.109).

A

With this and the interaction in dipole approximation H;, = —d - E(r,) we find
FT [{d(t))] = % Zk:J-“T[/dtl{ei‘*’nk“l‘*o)dnk @ dyy - E(74, 1)
—e g @ dyy E(rah) }} . @137)
With the Fourier decomposition of the electric field,
E(ry,t) = /Oo dw (e_iw(t_tO)E(r,w) + ei“](t_tO)E*(r,w)) , (2.138)

0

we can carry out the t;-integration and with F7 [exp(iwt)] = §(w) we get for the polar-
isability tensor,

(2.139)

’I‘ 1 nk ® dkn dkn ® dnk
A’ h ; .

Wiy — W w,m—i—a)

The polarisability tensor derived in this way diverges in cases of resonance, where w = wy,,.
As we will show in chapter 5, by adopting results of an open quantum system approach
into the derivation, one can derive imaginary corrections to the resonance case, such that
the corrected polarisability reads

dnk ® dkn + dkn ® dnk
n 1,)/kn Win +w+ i,)/kn

1
anlrnw) =+ 1| (.140
k

with the damping constants -, given by the respective transition line width.

2.3.3. Mediator particle as dielectric environment

The polarisability tensor for a single atom or molecule derived in the previous section
serves useful in the framework of macroscopic QED. In close analogy to the permittivity
of a macroscopic dielectric, the polarisability acts as linear response of a particle to an
external field. In this section we include a single particle as dielectric media into the
Green’s tensor. We assume that the electric response of the particle is small and use a
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Born-series as well as the Clausius—Mossotti law to find the scattering Green’s tensor for

a mediating particle.
The Helmholtz equation in the presence of a dielectric reads
2

[V x V X —f—zs(r,w)

G(r,7') =6(r —r1, (2.141)

where € can be tensor-valued. Let us assume that the deviation of e(r,w) = I+ {(r, w)
from its vacuum value is small. The free space solution (i.e. ¢ = I ) is given by G, we

can hence formally solve Eq. (2.141) by

2

G(r,r') =G (r,r') + /d3s G, s)- (%C(r,w)) -G(s,r), (2.142)

c

and in lowest order of ¢ we find

2
G(r,r) =6V (r,r) + [ 56V (r,5) (cfzﬁ <r,w>) GO(s,m) 4+ O(P).  (2143)

We may apply the Clausius—-Mossotti law in the dilute gas limit to find the electric re-
sponse ¢ of a single particle in lowest order to be

a(w)

C(T/w):ﬂ(r) £ 7 (2-144)

where #(r) is the atom’s density distribution in position space and a(w) = ay(w) is the
ground state polarisability tensor, see Eq. (2.140). We assume further that the position dis-
tribution #(r) of the second atom at position 7y is well described by a delta distribution
and hence get

G(r,r') = G(O)(r, )+ GM(r, 7", (2.145)
2
M) = 560 (rmy) - 2 GO (ryy ), (2146
c 0

where GM is the mediator Green’s tensor.

2.3.4. Van-der-Waals force for infinitely close atoms of finite size

When deriving the rate of Auger decay, we will find that the approach involving dipole
approximation leads to a diverging result. A similar problem has previously been en-
countered when deriving Van-der-Waals forces between close atoms and energy shifts

in the presented framework of macroscopic QED. We hence revisit the problem and its
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solution here to prepare for an analogue regularisation model of the Auger decay rate.

Van-der-Waals forces between two atoms derived in the framework of macroscopic

QED are given via the Van-der-Waals potential [121],

Uy ) = 10 0 [ agg' T [ 68) - G(ry mi€) - 0®() - Glryymi0)] , (2147)

where the subscripts 1 and 2 label the two atoms and « is their respective polarisability
tensor. This potential diverges for r — 0, where r = |r; — r,| is the interatomic sep-
aration. In these calculations the atoms are modelled as point dipoles. While taking
higher multipoles into account can improve the results obtained for small separations,
the divergence remains. At very small distances, numerical ab initio quantum chemistry
methods may take wave function overlap between both atoms into account and electro-
static repulsion leads to a minimum potential at finite distances. Alternatively, Ninham
and Mahanty suggested in 1975 that the finite size of atoms can be taken into account
heuristically by introducing a finite size density profile to the atomic polarisability «,,
distributing it into a polarisability cloud. This then leads to a finite result for the force in
the limit of r — 0.

The polarisability tensor of an atom in state n is given by its transition dipole mo-

ments,

1\ ((kd]n) ® (n|d|k) _(n|d|k) ® (k|d]|n)
h;( — > , (2.148)

W + Wy W — Wy

which is proportional to the identity for isotropic transition dipole moments (k|d|n).
The polarisability’s position independence is a direct consequence of the assumption of
point-like atoms. We now introduce a Gaussian profile with size a,, to the polarisability

to reintroduce the spatial volume of the atom,

frz/az
e n
a,(r,w) = —Z5zo,(w), (2.149)

n

where a,, is the atom’s size in state |#). The Van-der-Waals potential between two ground
state atoms can then be written as

-
U(ry, ) = —ﬂ /d§§4 Tr [Fy (ry, 72,i8) - Fp(ra, 71,18)] (2.150)

IF;(ry,mp,i8) = /dar aé')(r/ —7,i¢) - G(r',75,18) . (2.151)

Alternatively, the regularisation can equivalently be applied to the Green’s tensor instead
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of the polarisability,
—(n—r'")/ag,
- 3 e 88,
G(l)(rl,rz,w) = /d 7 3723 G(r’, Ty, W), (2.152)
7T llgs,l'
where 4, ; is the ith atom’s ground state radius. IF; is then given by

F;(1,7,18) = ap(w) - G (1,7, i8) . (2.153)

This is similar to local field effects that can also either be accounted for by correcting
the respective Green’s tensor, see section 2.1.7 or the polarisability tensor [135]. By
using the regularised Green’s tensor G we obtain finite potentials even in the limit of
[ry =7 =0,

lim G(ry, 7y, w) — o0, (2.154)
T T

- c2
r}lirlzG(rl,rz,w) R R Ags K< w/c, (2.155)

gs

where we have assumed free space for simplicity. Ninham and Mahanty applied their
approach to the potential between two atoms at vanishing separation limit as well as
for the dispersion self-energy of a single atom. In the former case they derived energies
in the order of magnitude of the molecular binding energy of the two atoms while in
the latter case they obtained a self-energy of hydrogen in the order of magnitude of the
electrons binding energy. In chapter 3 we will use these ideas to regularise the Green’s
tensor in the calculation of transition probabilities instead of potentials.

2.3.5. Spontaneous decay rate from Fermi’s golden rule

We outline here the derivation of the spontaneous decay rate in the framework of macro-
scopic QED via Fermi’s golden rule. The resulting rate is given in terms of the Green’s
tensor for arbitrary environment. From this we then derive the isotropic free space decay

rate. A detailed derivation is presented in the main part of this thesis, see chapter 5.

Spontaneous decay is a first order process on the level of transition matrix elements
for a single excited particle, where we only consider electric coupling to the atom, such
that A, = —d - E, see Eq. (2.93). According to Fermi’s golden rule, see section 2.2.2 the
spontaneous decay rate can be calculated via

2

2

A, ‘ i) (2.156)
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where Mjg) is the transition matrix element in first order, and |i) and |f) are the initial

and final state, respectively. They are given by

i) = le)a {0} (2.157)
) = 18)a Ma(r, @))g (2.158)

where |- ), /p is the atomic/field state. Using the properties of the field’s fundamental op-

erators, see Egs. (2.46)—(2.48), the Onsager reciprocity (2.37) and the integral relation (2.38)

we find for the spontaneous emission rate
| — 2]’1 0

2
s = — Weepo " IMG (7, 7p, w

A ) ’ dgel (2-159)

24

where d,, = (e|d|g) is the transition dipole moment. Using the free space Green'’s tensor,
Eq. (A.32) we obtain

3 2
r(0) - weg’deg‘

= , 2.160
37Tsohc3 ( )

for the free space spontaneous decay rate. The free space spontaneous decay rate serves
as atomic parameter in many rate formulas. When we use it as such we will refer to
it as 7., It is known as tabulated atomic data for many systems from experiment and
numerical ab initio calculations.

2.3.6. Resonance energy transfer rate from Fermi’s golden rule

Here, we outline the derivation of the RET rate in the framework of macroscopic QED.
We provide the rate in terms of the Green’s tensor, in general as well as in the isotropic
case and the free space rate. We waive a detailed derivation at this point, since we will
revisit it in detail in chapter 5. We discuss the approach via Fermi’s golden rule and

interpret its result.

Resonance energy transfer is a second order process, involving the emission and ab-
sorption of field excitation at two different particles. Coupling the atomic system and the
field via the electric multipolar coupling H,, = —d - E, see Eq. (2.93) and using Fermi’s
golden rule we find for the RET rate

27
f

(2)
M fi

2 A, k) (k| H,|i

w; — Wy !

where szci is the second order transition matrix element and |i), |f) and |k) are the initial,
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final and intermediate state, respectively. They are given by

|i) =le,0,{0}) , (2.162)
f) =lg.1,{0}), (2.163)
k) € {18,0,1,(r,w)) ,|e,1,1,(r,w)) VA, 7, w} , (2.164)

where [n,m,1) = |n)p, |m) 5 |I) is the product state of donor, acceptor and field state. Us-
ing the properties of the field’s fundamental operators, see Egs. (2.46)—(2.48), the Onsager
reciprocity (2.37), the integral relation Eq. (2.38) and applying some algebra we find for
the rate:

27w 2
Fret = 25(%g - wlo)% dy - G(7a, ™D, wyg) - de| (2.165)
f

where d;; = (i|d|j) are transition dipole moments. We may further simplify this result
by assuming isotropic dipole moments. The isotropy can be either the result from so
called isotropic averaging, where we assume that the two interacting particle do not have
a specific orientation to each other or from isotropic degenerate states in the sum over all
final states. In both cases we find that isotropic transition dipoles can be approximated
by d ® d = |d|*1/3. With this we can simplify the RET rate further, such that

2 2 2
27TVOW10|deg| |dy
> Tr
9h

Lot = ;5(%37 — wyp) [G(7a, D, W1g) - G (rp, Tp, w10)] , (2.166)
where we used the cyclic property of the trace and the Onsager reciprocity (2.37). The
derived rate expression (2.166) is proportional to the delta-distribution, i.e. the rate either
vanishes completely for w,, # w;, or diverges in case of resonance. Fermi’s golden rule is
applicable to irreversible processes. Considering the assumed system, its Hamiltonian as
well as the final state of the process, there is no reason to assume irreversibility. However,
this is only true in isolated systems that are truly described by the assumed Hamiltonian.
Usually, RET is not observed between two isolated atoms in free space but atoms that are
bound within a larger molecular compound. The resulting splitting of each energy level
into e.g. several vibrational levels can then be regarded as a level broadening, since the
splitting is very small compared to the transition energy. We may approximately take this
into account by introducing an integral over the possible final states } r — i dwgp(wy),
where p(wy) is the density of final states at energy hwy. Its width is related to the
linewidth of the transition. With this we find the finite result:

2 2 2
Zﬂﬂowlo‘deg‘ |dyo T

T 972 r [G(’"ArTDr wyg) -G (rp, T, wlo)} . (2.167)

ret — P(weg

43



2. Theoretical Background

Using Eq. (A.32) for the Green’s tensor, this yields in free space

0) YegU01 (‘%g) 4 4 22
It = BT (k v+ kr +3> , (2.168)
where r = |rp — rp| is the donor—acceptor separation distance and we introduced the

free spontaneous decay rate 7,, = Fgo) for the donor, see Eq. (2.160) as well as the pho-
toabsorption cross section ¢y for the acceptor’s ground state. The photoabsorption cross

section is given in terms of transition dipole moments by [147]

Twqn|d 2
o (w) = p(w>3lz»:00‘c;zn" (2.169)

2.3.7. Discrimination of chiral molecules via resonance energy transfer

In principle, resonance energy transfer between chiral molecules may be used to distin-
guish left- and right-handed molecules. In this section we briefly present and discuss
the discriminatory part of the RET rate involving chiral molecules as it was suggested in
free-space QED [118].

Let us consider the exchange of a photon between two optically active chiral molecules,
i.e. resonance energy transfer between a donor D and an acceptor molecule A. Assuming
that the chiral molecules at hand are indeed optical active we may use the multipolar

expanded interaction Hamiltonian (2.93) to take magnetic interactions into account,

H, = — Z (ci”‘ -E(r,) +m"- B(r,)) , (2.170)
«=D,A

where we have neglected diamagnetic interactions as well as center of mass velocities.
The rate can be calculated via Fermi’s golden rule in second order (2.121). The initial,
final and intermediate state for RET are given by Egs. (2.162)—(2.164). In contrast to the
purely electric coupled RET rate discussed in section 2.3.6, we gain additional process
channels as a consequence of the possible magnetic interaction between molecules and
tield. Each channel consists of two interactions with the field and each interaction might
either be electric or magnetic. We can hence label each transition matrix element by
the type of interactions that are involved in emission and absorption of the respective
channel,

Mfi = Mee + Mem + M, - (2.171)
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In free-space QED the transition matrix elements are then given by [118]

ik
iy

1 A 4D 2
Mee = 47180di d] [V 51] - VIV]] 7, (2.172)
_ ik DA DA ek
Mem - 47T€0C (dz T}’l] — m; d] ) eijkva , (2173)
1 A D [o2 ek
Mo = e @ V26— ViV = (2.174)

where r is the intermolecular distance and k = w/c with fiw is the transition energy.
When considering the interference between different transition matrix elements we find
that some contributions are proportional to d* - m" for « = D, A. For chiral molecules
this scalar product is related to the so-called rotatory strength,

R = Im [(gldle) - (elm]g)] - (2.175)

Its sign depends on the handedness and hence may be used to discriminate left- and
right-handed enantiomers. The total rate given by Fermi’s golden rule can then be split
into two parts, one whose sign is insensitive to handedness and one that is handedness-
depend and hence potentially discriminatory, I'y;,.. In free-space QED the discriminatory
part associated with terms M,,, and M,,, is then given by

[ isc = p(iw)zéRARD (3 + 2K + 2k4r4) , (2.176)
187mteghcr

which is proportional to the product of the donor’s and acceptor’s rotatory strength.
In conclusion the sign of I'y. is actually not determined by individual left- or right-
handedness but by same or opposite handedness of donor and acceptor. In agreement
with the Curie symmetry principle one of the participant’s handedness needs to be
known to determine the other’s and if one of the participants is achiral, i.e. its rotatory
strength is zero, the discriminatory part of the rate vanishes.
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AUGER AND INTERATOMIC COULOMBIC
DEecAY

In this chapter, we study Auger decay and interatomic Coulombic decay (ICD) as two
competing relaxation processes and show how macroscopic media can modify their ratio.
We start by deriving the rates of Auger decay and ICD as special cases of electron—
electron scattering where the two electrons are initially in some bound states and scatter
into an unbound continuum state and an energetically lower state. As an intermediate
result we obtain a rate formula where macroscopic effects could be introduced into ab
initio calculation methods. We prove consistency with free-space QED by deriving the
Moller formula for Auger decay. Subsequently, we introduce the dipole approximation
to obtain a closed expression circumventing numerical integration. For Auger decay we
develop a novel regularisation method to regain a finite result in the form of a closed
expression in dipole approximation. This requires to introduce a new quantity, namely
the Auger radius into the Auger decay rate. We provide a model for the Auger radius
and compare the rate obtained by our model to results from ab initio methods, where we
find good agreement. We then study both competing processes, ICD and Auger decay
in the presence of dispersing and absorbing media. In doing so, we first give a general
estimation for the relative magnitude of all possible decay channels in free space. We then
show that the ratio of the rates to each other can be modified by the environment. We
study the presence of a surface quantitatively, while giving a qualitative estimation for
the rates inside a cavity. We finally apply the derived theory to the example of a He-Ne
dimer. The results of this chapter were partly published in Refs. [JF1, JF2].

3.1. General rate in the presence of a macroscopic environment

In this section, we derive the general rate formulas for Auger decay and ICD from scat-
tering theory. Both processes are second-order transitions, where two bound electrons
scatter into an unbound continuum state and an energetically lower state. Their main
difference is that in ICD the two involved electrons belong to different atoms while in
Auger they belong to the same atom.
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We derive a rate formula beyond dipole approximation in the framework of macro-
scopic QED that could be used to consider macroscopic environments while still treating
the atoms as complex many-electron systems via involved numerical methods. From this
rate formula we show consistency with free-space QED by recovering the Moller formula
for electron—electron scattering. Finally we apply the dipole approximation to circumvent
numerical integration and many-electron methods.

3.1.1. Derivation from scattering theory

A Direkt term: Exchange term:

n m n m

(/2N i /) n-r-- -7~ m

Figure 3.1.: Feynman diagrams for electron—electron scattering. Because of their indistin-
guishability we need to include the exchange term. The direct and exchange
term can be each divided into two Feynman diagrams where the main differ-
ence are the intermediate states.

We start by deriving the general rate formula for a second-order transition beyond
dipole approximation. We couple the atomic system to the electromagnetic field via the
coupling Hamiltonian (2.85),

Ay = [ drp(r)g(r) - [ drd(r)-5(r). (1)

The electron—electron scattering involves two interactions with the electromagnetic field,
that is assumed to be initially excitation-less. The possible second-order channels are

displayed in the form of Feynman diagrams in Fig. 3.1. The transition is described by the
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scattering matrix in second order, see Eq. (2.113) and the rate is given by Eq. (2.112),

S UELIOL 6:2)
f

with the product states |i) = |n,m), [{0})p and |f) = |k, p), [{0})g, where |-), g are
eigenstates of the respective uncoupled Hamiltonian H, /Hg. From this point forward,
we will drop the index notations A and F for the atomic and field states. The product
state |n,m) = |n),|m), labels two bound states n and m for the two electrons involved
in the transition, while the product state |k, p) labels an energetically lower and initially
vacant state k and a continuum state p for each electron. The scattering operator can be
divided into three contributions that are treated separately,

1

$Et) = =5 (A() + B(t) +C(1), (33)
A = [, [at, [, [ 5.0, o, G4
B(t) = ttdfa /ttﬂdth /dara /d37b3a‘Aa I Ay, (3-5)

St
e = - [at, ["an, [, [ (b G A+ icAipd), 6o

where we have introduced the shorthand notation O, = O(r,,t,) for any operator O.
Additionally, because of the indistinguishability of the involved electrons the transition
involves a direct term n — k, m — p and an exchange term m — k, n — p, see Fig. 3.1,
such that

&(2 . 2 2
(18P (i) = = SZ,(1) = S0 G7)

e’ | S

direct term  exchange term
where the sign is a consequence of the antisymmetric nature of the fermionic electrons
under exchange. We focus on the direct term for the derivation and obtain the exchange
term in the end by simply exchanging the respective state labels. We start by deriving the
first contribution (3.4) of the direct term

An—>k(t) = /tAta[tatb dsra/d3rb{pnk<ral ta) <{O}| @a(f)b ‘{O}> pmp<rb' tb)
+ pmp(rul tu) <{0}’ (lsa(i)b ‘{0}> pnk(rb/ tb)} ’ (3-8)

where the two summands represent different ordering of emission and absorption, ac-
cording to the lower Feynman diagrams in Fig. 3.1, and we have introduced the transition
quantities p,,, = (n|p|m) and j,, = (n|j|m). Formally, both processes (first emission,
then absorption and vice versa) need to be taken into account even though one of them
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violates energy conservation. We will see later that the latter term does not appear in
the resulting rate. The time evolution for the transition charge and current densities in

interaction picture are given by

iwknt

o(ra), (3.9)
P(’f’a) ’ (3.10)

pnk(rw ta) =e

jnk(raf ta) =e

i(’Jknt
where fiwy, = Ep — E, is the energy difference between the involved orbitals. As a
consequence we can write the continuity equation (2.7) as

!
Win

0(rg) = ——T - (). (3:11)
To simplify the following calculation, we will already take into account the different
signs of the transition frequencies. For the downward transition from |n) to |k) one finds
hwy, = Ep — E, < 0, we therefore define the positive frequency w,; = (E, — E)/h =
—Wy, > 0. In case of the second transition (|m) — |p)) the transition energy is positive,
Wy = (E, — E,;) /1 > 0. Combining Egs. (3.8) - (3.11) we obtain

t t, 1 .
An%k(t) = ‘/tdta/t dtb dSra/dsrb {V'jnk(rm ta) <{0}| Pay ‘{0}> V'jmp(’rbf tb)

wnkwpm

Gy (s £2) ({0} by [{O}) V(s m}

t t, 1 . TN .
= [dt, [db, [a’r, [dr, {12 (0} BLEL HOD) (1)
-00 J-00 wnkwpm

Ty t)- ({0} BLE) {0}) -jnm,tb)} ,
(3.12)

where we have integrated by parts in the last step and used that in Coulomb gauge

El = —V¢, see Eq. (A.7). We introduce the Green’s tensor into the equation by evaluating
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the vacuum fluctuations, see Egs. (A.15)

A /dt /dtb d3r /d ry [dw 1 hw o iw(ta—ty)
nkwpm 7TC €p

X {jnk(raf ta) 'ImHGH (ral Tbs w) 'jmp (rb/ tb)

+%¢wnnmcwmeHmuMm@ﬁ
2

= [ar, [ faw T (t,0)ue(ry) TG (i 0) ()
wnkwpm TIC €

(3-13)
toot, . .
h(t,w) — /dta/dtb e_lw(ta_th) (e—lwnktaelwpmfb + elwpmtue lwnktb) , (3.14)
-0 J-00
where we have used the Onsager reciprocity (2.37) and the fact that the position integra-
tions are symmetric in r, and r,. The superscripts denote transverse and longitudinal

parts of the respective vector or tensor and are defined by Egs. (A.8)—(A.13). The second
and third contributions can be treated similarly, such that

Base (1) = [ty [ o7, [or, s t) - (O} Ay Ay 11O Gy (7, 1)
+Mwwmwmﬂ&w%mwjama&

h . ,
= /d3ra/d37b dwEh(tlw)Jnk<ra) ’ ImJ_GJ_<Ta/ Tb w) 'Jmp(rb) ’ (3-15)
0

o) ({0} Blo Ay [{0}) Gy (7 1)

as

Coilt /dt /dtb &,

- wlpmjmp(ra/ tu) ' <{0}| E’L‘ ®Ab |{0}>'j”k(rb' tb)

s ta)- ({0} Ay By [{0)) - iy (o, 1)
pm

() (O} Ay By [103) - dialr 1)}

n

h w . .
- /dSVﬂ/Cprb dw zh(t1w>{ Ink(Ta) - Im”GL(ra,rb,w) 'Jmp(rb)
TTE)C Wik

w .
+ 7Jnk(ra) ’ ImJ_GH (ral rb,w) ) Jmp(rb>} ! (316)
Wom

where we have expressed the vacuum fluctuations in terms of the Green’s tensor, see
Egs. (A.14)-(A.17), and used the time dependency (3.10) as well as the continuity equa-
tion (3.11).

The time integration inside %(t, w) can be carried out, yielding poles in the frequency
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3. Auger and Interatomic Coulombic Decay

domain. As in the derivation of Fermi’s golden rule, see section 2.2.2, we need to ensure
that the coupling vanishes at t; — —oo. We analogously include an infinitesimal parame-
ter 7 > 0 into the coupling Hamiltonian to ensure this, V(t) — V'(t) = "' V(t). The time

integrations of the three contributions then leads to

t t . . . . .
h(t w) — /dt /datb eﬂ(ttl""tb)elw(tb_ttz) {elwpmtae_lwnktb =+ e_lwnktaelwpmtb}
’ a
-c0 J-00

1 1
- f”(t){i(w — Wy — i) + i(w + Wy — in) } » 317)
with f, (t) defined by Eq. (2.118),

ei(wnk_wpm)tezﬂt

t) = . : (3.18)
fr]( ) 277 + l(wnk - wpm)
Analogously to Eq. (2.119), we obtain for the rate
I« d/dt|f,7(t)|2 — 2700(Wpy — W), (3.19)

n—0

which ensures energy conservation. As a consequence, we use w,,, = w, explicitly from

pm
here on. The time integration has introduced poles in the frequency domain. The com-
plex frequency integral can be performed in general for all terms. Due to the resonance

constraint, Eq. (3.19), they yield the same result

[T plw) p(-w) } .
i d ImG(w) = —inG ) _
1/0 w{w—(wnk+iiy) +w+¢unk—i,7 mG(w) inG (wyy) (3.20)
with
© for A,k
Wk
plw) =11 for B,_,x (3.21)
wwk for Cn%k

and p(w,;) = 1. The contour integration is carried out in detail in the appendix, see sec-
tion A.4. The second (positive) pole is due to the second summand of Eq. 3.8, i.e. results
from the energy-violating term. It is cancelled out by a contribution of the first pole, see
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3.1. General rate in the presence of a macroscopic environment

section A.4. With this the contributions simplify to

A”%k( 2 fﬂ /d3 /d RV k HGH(rarTb/w) 'jmp(rb)} ’ (3-22)
Bn—)k( 2 f17 /d3 /d p Jnk GL('rwrb/w)'jmp(Tb)} ’ (3'23)

Cuosk(t) e f11 /d 7’/d 59 Ik (7 ”GL(ra,rb,a)) 'jmp(rh)
(3-24)
. 1 .
+ Juk(ra): G‘l(rarrb/w) 'Jmp(rh)

where we have omitted the redundant phase factor 1/i. The sum over all contributions
then simply yields

n—>k( ) f77( n—>k/ (325)
n—>k - /ds /dSrb Jnk ral Ty, W ) jmp(rb) ’ (3-26)

where we have used that by definition G = };;_ | 'G/. The exchange term follows
directly by exchanging the respective state labels

Snop(t) = fy () My, (327)
Mnﬁp = % /dara/d?)rb jmk(’I‘u)'G(TW Ty, (U) -jnp(rb) . (3.28)

The rate is then given by
v A a@ ey 1 2
F—ZEUB(MM
f
2
= 227'[5(me - wnk) ‘Mn—>k - Mn—>p)
f
2
=2r Z /dwpp(wp)(s(wpm - C‘)nk) ‘Mnﬁk - Mnﬁp‘
‘2

=2n Zp(wp) ’Mnﬁk - Mnﬁp ’ (3-29)
mn

where we have replaced the sum over all final continuum states |p) by an integral and
introduced the density of final states for the continuum electron p(w,) at energy ficw,,.
The same result can be obtained by applying Fermi’s golden rule. The calculation of the
process rate has now boiled down to the calculation of the transition matrix elements

M, = /d3 /d3”b Ik (1) G(@Wyi) - Gp (1) - (3-30)

This formula can serve as a new starting point including macroscopic media into ab initio
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3. Auger and Interatomic Coulombic Decay

quantum chemistry methods that are suited to deal with many-electron problems and
wave-function overlaps between different atoms.

3.1.2. Recovering the Meller formula in free space

To prove consistency with free-space QED, we briefly rederive the Meller-formula for

Auger decay here, see section 2.3.1 from the macroscopic QED result (3.29).

The Green’s tensor consists of a bulk part and scattering part. In free space the bulk
part corresponds to the well-known photon propagator and one can rederive the famous
Moller-formula for electron—electron scattering. The free-space Green’s tensor is given
by
2

1+ CZVuwu]
Whk

1 o WnklTa—Ty] /€

0

G (ry, 1, ) = in Pp— (3.31)
a

We hence find in free space that the transition matrix element (3.30) is given by

2
l 3 3 e
M, = ]/lo /d /d Ty Jnkc (7 [ —V ®Vb]
k
1wnkl"' Tb|/c

o Jatr e, & G g (1) = om0 | (332

iwnk‘ra_rb‘/c

|Tg _Tb| 'Jmp(rb)

where we have integrated by parts and used the continuity equation (3.11). Using the
rate formular (3.29) this results in the free space rate

iw|r,—ryl/c

e . .
dgi’ d31’b T T ]nk(ra)'Jmp(Tb) - Czpnk(Tu)pmp(rb)
’Ira rb|

87th2
2

7

[y (ra) () = oy (r ot |

where w = w,; = w This is the generalised Moller formula for electron—electron

pm:
scattering as introduced in section 2.3.1 [148, 149].

3.2. Rates in dipole approximation and regularisation of Auger
decay

While the derived rate formula (3.29) can be used directly to calculate ICD and Auger

decay rates in the presence of media, we circumvent the numerical effort to solve the
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3.2. Rates in dipole approximation and reqularisation of Auger decay

many-electron problem in this section by applying the dipole approximation and focus
on the influence of macroscopic media. For the ICD rate this immediately yields a closed
expression in the presence of macroscopic media. However, for Auger decay a more
involved treatment is necessary: The dipole approximation is justified if the electromag-
netic field does not change significantly on the length scale of the atom. Even though this
is valid for our cases of interest, we find that the Auger decay rate diverges in the dipole
approximation. We identify the root of the divergence in the dipole approximation and
develop a regularisation model based on a successful approach that was originally devel-
oped for Van-der-Waals forces, see section 2.3.4. In this model, we reintroduce the finite
spatial distribution of the electrons in their respective state. We apply the regularisation
model to find a closed expression for the Auger decay rate in free space. We estimate
the size of the electron distribution via Slater’s rule for orbital radii and compare the ob-
tained result with known rates, finding good agreement when accounting for a missing

overall factor.

3.2.1. Interatomic Coulombic decay rate in dipole approximation

In this section we apply the dipole approximation to our derived rate formula (3.29). This
yields the transfer rate as it is well-known in the resonance energy transfer community.
We then apply the approximation to ICD. We obtain from this a rate for ICD that in-
cludes retardation effects as well as the impact of surrounding dispersing and absorbing
macroscopic bodies, but excludes effects from wave function overlap.

In the dipole approximation the transition charge current densities can be simplified,
such that

I(r) = LA (Kpydo(r = R)|n) = ¥ 1= (k|p,|n) o(r - R), (3:33)

where p, is the momentum operator, m, the mass of electron « and R, is the center of
mass/nucleus position belonging to electron « for all «. Using both expressions for the
atomic Hamiltonian, Egs. (2.82) and (2.81) with the usual commutation relation [#,, pg| =
iné,g, we find for the commutator with d=Y,cdu|n) (k| = Ly qufs:

A s 9 .2 .
[Aa,d] = Y (e~ Edye k) (n] = Y5 2 |6, 7
nk «,B &
= Y hewpdyelk) (n] = —in Y p, (3:34)
n,k o o
= iy = Y1 (K|pyln) (3:35)
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3. Auger and Interatomic Coulombic Decay

such that in dipole approximation we get the relations

jnk<ra) = _iwnkdnk§<ra - Ra)/ jmp<rb> = iwpmdmp§<rb - Rb) . (336)

These are related to the Thomas—Reiche-Kuhn sum rule [150-152]. Introducing this into
Eq. (3.30), we obtain the transition matrix element in dipole approximation,

2
w
M, = ‘uoh & dyy - G(Ral Ry, wnk) ’ dmp : (337)

For electrons that belong to different atoms, R, # R, we may calculate the transition
rate from this formula. However, in Auger decay both electrons belong to the same atom
and hence R, = R,,. The propagator G diverges in this case. To be able to use the dipole

approximation we need to find a regularisation model.

Assuming that donor and acceptor are well separated, such that wave function overlaps
are negligible, the dipole approximation is an appropriate simplification for the rate of
ICD. Applying the dipole approximation (3.37) to the derived rate equation (3.29) leads
then to the ICD rate,

27143 2
Iiep = Z h;JOID(wp)wﬁk dmp 'G(TA/ D, wnk) | - (3-38)

where 7, ,p is the acceptor’s/donor’s position. The exchange term vanishes here,
M,_, = 0, since the two atoms are well separated, i.e. (k|d|m) = 0. Alternatively,
this expression can be derived from multipolar coupling in dipole approximation and
Fermi’s golden rule [96]. Assuming that the involved atoms are not aligned to each other
in any specific way we may use the isotropic average, i.e. d; ® d;; = %]dij|2]l [153]. This
yields for the isotropic ICD rate

272 "
Ticp = ﬁp(w»wikwnuﬂdwuzn [Gap (@) - Ghalw)]

= 2n7nkUm (wnk) Tr [G(TA/ D, wnk) : G*T(TAI TD, wnk)} s (3-39)

where we have related the respective transition dipole moments to the photoionisation
cross section 0, (w,;), see Eq. (2.169) and similarly replaced the transition dipole mo-
ments of the bound states with the respective spontaneous decay rate vy, see Eq. (2.160).
They are related via

3 2
_ wnk|dnk|
2
7 () [y |
Um(wpm = 3eych . (3-41)
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3.2. Rates in dipole approximation and reqularisation of Auger decay

To obtain the ICD rate I'icp  in free space we use the free space Green’s tensor (A.32) in
Eq. (3.39). The free-space ICD rate is then given by

4 2 2 4 4
Yk (Wnk )€ Wnk"DA | Wnk"DA
Tiepo = = 4% 3+ 5+ ’ (3-42)
471w, DA c c
where rpy = |rp — rp|. For separation distances that are smaller than the wavelength

of the transition energy, i.e. w, rps/c <K 1 the rate is dominated by its nonretarded
contribution and yields

3’7nkgm (wnk>c4 )

(3-43)
47Twﬁkr]63A 343

Ticpyo ~
The nonretarded free-space rate (3.43) is known in the ICD community as asymptotic
formula [154]. It is valid for the distance regime, where wave function overlap and
hence charge transfer are negligible. While this denotes a long-distance limit for said
community it is also the short-distance limit (near-zone) for the RET community and
neglects retardation effects. Interatomic Coulombic decay in dipole approximation has
been recently studied in the framework of macroscopic QED [96].

3.2.2. Regularisation of the Green’s tensor and Auger decay rate

We have introduced the dipole approximation into the transition matrix element. As
a consequence, the Green’s tensor in Eq. (3.37) describes a propagation from the posi-
tion of the nucleus binding electron b to that binding electron a. In the case of Auger
decay the participating electrons however belong to the same nucleus and we find that
the propagator diverges in the limit of same—point-propagation. In this section we first
develop a regularisation model for Auger decay by reintroducing the finite size of the
atom on the level of the Green’s tensor in a similar manner as it was already successfully
done for Van-der-Waals forces, recall section 2.3.4. With the regularised Green’s tensor
we then obtain a simple closed expression for the Auger decay rate, similarly to the ICD
rate. We finally show how to evaluate the sum over final degenerate states by use of the
Wigner—Eckart theorem. We apply the Wigner-Eckart theorem to obtain some general

rate formulas for the special cases of free space and isotropic transitions.

The propagation of electromagnetic fields is described by the Green’s tensor. It consists
of a bulk part G and scattering part G". While the bulk part contains the direct
propagation from source to absorption point, the scattering part describes the scattering
at secondary media. As a consequence the divergence of the Green’s tensor only stems
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3. Auger and Interatomic Coulombic Decay

from the bulk part

. 0
Rll—I;an G( )(Ral Rb/w) — 00, (344)
while the scattering part stays finite in this limit. We assume the bulk medium to be free
space throughout the chapter for simplicity. We want to find a regularised free space
Green’s tensor that stays finite in this limit. Let us replace the delta-distributions in
Eq. (3.33) by Gaussian distributions gy ,(r) for electron a and b. This leads to

2
Wy
Mn—>k = /dSra / d3rb ‘uoh kdnk ’ G(O)(rarrbrwnk) ) dmpgl (ra - Ra)gZ(rb - Rb) . (3-45)

In free space as well as in isotropic media the Green’s tensor only depends on the relative
position of the two electrons, G(O)(ru,rb, W) = G(O)(rab, wy) with r, = r, —r,. We
hence find

2
w
M, = /d3rab Ploh K g - GO (1, ) dyp812(Tay — Rap) (3-46)
where g, is the convolution of two Gaussians, yielding another Gaussian

1 rz/Zu2
§u2(r) =—555¢ """, (3-47)
(2”)3/251%2

ap = \/ai +a;. (3-48)

The atomic property of finite spatial distribution can then be defined into a regularised

(0)

free space Green’s tensor G'". It is given by

GO (wy) = /d3rabG(O)(Tabr Wk ) 812 (Tap — Ryp)
1 2,2 33—1a2k2< ,(ak) >}
=120k +V2ma’k’e 2 erfi|] — | —1
o2 2K {
R o
ov2 2K 3-49

where k = w,;/c is the wave number, a = a;, is the size of the convoluted Gaussian,
erfi(z) = —ierf(iz) is the imaginary error function and we approximated ak < 1 in
the last step. The Gaussian size a is an atomic property that depends on the involved
transitions. From here on out we will call this new parameter Auger radius. The transition

matrix element can now be recast into the familiar dipole approximated form (3.37) using
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3.2. Rates in dipole approximation and reqularisation of Auger decay

the regularised Green’s tensor

wn
My = PR, Gy - (3.50)
Gwu) = G (wu) + GV (R, R,w,y), (3:51)

where R is the position of the atom and GY is the scattering Green's tensor.

We can now return to the Auger rate in the dipole approximation. The Auger rate (3.29)

can written as

I'= 1—‘clir + 1—‘exch + rintf ’ (352)

Ty = 27 Zp o) M, i (3.53)
2

Texch = 270 Zp ‘Mnﬁp’ , (3-54)

Tingg = =270 Z p(w,)2Re [ M, i M;_, | . (3-55)

with the transition element M;_,; given in dipole approximation by Eq. (3.50). Let us
focus on the direct term first,

2Tpgwy, - 2
1—'dir = Z %p(w;ﬂ) dy - G(wnk) ’ dmp ’ (356)
mn

which has the same form as the ICD rate (3.38) except for the replacement of G with G.
The sum over all final states includes possible degeneracies. The sum over any degenerate

levels can be evaluated via the Wigner—Eckart theorem:

Let an electron state be denoted as [NLM) where N is the principal quantum number,
L denotes the angular momentum, M its projection onto the quantisation axis and let Tq
denote the gth component of a spherical tensor operator T with rank «, i.e. ge {-1,0,1}.
The Wigner-Eckart theorem then yields the relation

<NLM ’ T, ) N’L’M’> = (L'x; M'q|LM) <NL H T, H N’L’> , (3.57)

where <NL H Tq H N/L/> is the reduced matrix element and (L'x; M'g|LM) denotes a
Clebsch-Gordan coefficient. Assuming that there exists no directional preference, i.e. a
definite M, for either electronic state in the transition, the Wigner-Eckart theorem effec-

tively results in isotropic averaging.

In most cases it is advisable to evaluate the rate given by Eq. (3.56) via the Wigner—
Eckart theorem for the specific system directly. For some special cases the Wigner—Eckart
theorem yields general results, such as free space and isotropic transitions. In free space
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3. Auger and Interatomic Coulombic Decay

G = G « I and we thus may perform the sum over the M-degeneracy to obtain in

general
Lgir = 27W0wnk %P { ok @ dg, - GO (w,) @ dyy, 'G(O)*(wnk)}]
=2 Wp(cup)cdir\dnkﬁdmﬁ T { G (@) - 6 (wu) | (3.58)
Foen = 1 2”’fj‘”ﬁmp(w,»cmh|dlmk\2\czn,g|2Tr {6V (@m) - E" (@)}, G59)
Fiow == 1 ‘”T:é‘”ikp(wp)lze {D: (69 (wn) @ G (wu)| } (3.60)

where the remaining sum excludes these evaluated degeneracies, we have introduced the
fourth rank tensor D = d = d,,, © dyy dnp,
Wigner—Eckart theorem. The spec1f1c prefactors c4i; /excn Of the pure terms I'y;p/excn as well

and the factors cg;, and c,,, stem from the

as the dipole tensor ID can then be determined for the specific transitions.

In general these expressions only hold for free space. An exception to this is given
by isotropic transitions. Here we find that cg;, = cocn = 1/9, as expected for isotropic
averaging and that Eqs. (3.58) and (3.59) still hold for arbitrary Green’s tensors G # G
We may hence write the isotropic direct rate in arbitrary macroscopic media as

1—‘dir = 27T’)/nk0-m(wnk) Tr {G(wnk) : C*T(wnk)} ’ (361)

where we have introduced again the photoionisation cross section ¢,,(w,;) and the spon-
taneous decay rate 7,;, see Egs. (3.41) and (3.40). The rate is completely governed by
Eq. (3.61) for vanishing exchange terms, e.g. for dipole forbidden transitions m — k.

3.2.3. Determination of the Auger radius

So far, we have regularised the free space Green’s tensor for Auger decay by introducing a
new quantity, the Auger radius. In this section we first discuss how to estimate the Auger
radius for a given system. By comparison with free-space Auger decay rates obtained in
other works we discuss the quality of our estimation. The Auger radius plays a significant
role in the determination of the correct rate. While we demonstrate that the Auger radius
can be roughly estimated by the size of the vacancy orbital, even small derivations from
the correct Auger radius leads to large errors in the rate. We hence present a more general

model for the Auger radius based on Slater rules and fit it to the available data.

We want to compare our model to known Auger rates. We choose the KLL-Auger
decay in the isoelectronic sequence of F-like ions, i.e. Ne®™, N a2+, Mg3+, cee, Zn2T. They
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Figure 3.2.: Comparison of our model to numerically obtained rates from tabulated data
[155, 156] as function of the number of protons Z. Using the first four data
points (red circled) to fit an additional prefactor onto the vacancy orbital
radius a = cga,¢ (blue dots) gives already good agreement with the numerical
values (black crosses) with cg; = 1.8. Fitting additionally the screening factor
of the radius model gives almost perfect agreement to the numerical data
with a = 1.77a,/(Z — 0.77)(yellow squares).

are ions with nine bound electrons where the vacancy is in the 1s-orbital. Their electronic
structure is then given by: 152522p6. Since we are interested in the total shell KLL-Auger
rate we may neglect coupling effects [157]. The vacant state |k), bound states |n) and |m)

and the continuum state |p) are then given by

k) = [1smg 1), ms =0, (3.62)
[n) = |2pm, ), m, € {-1,0,1}, (3.63)
m) € {I2pm, 1), Psm, 1)}, (3.64)
lp) = [Eplom 1), E, = hw,, 1. €{0,1,2}, m. € [-1.,1]. (3.65)

The vacancy state is determined by the initial state. The transition 2s — 1s is dipole
forbidden, hence only electrons from state |2p) can fill the vacancy. The possible decay

channels are then:

direct channel: n) = 2pm, 1) — |k) = [1sm; 1),
im) € {[2pm, W), |[2sms 1)} — [p) = [Eplemc N) - (3.66)

exchange channel: im) = 2pm, W) — |k) = [1sm; 1) ,
) = [2pm, W) — |p) = |Eplemc 1) . (3.67)

Since in free space the regularised Green’s tensor G (3.49) is proportional to the iden-
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Z fit factor fit screening data
a=184a,/(Z—03) | a=177ay/(Z—0.77)
in THz (%) in THz (%) in THz

10 423 (110) 391 (102) 385
11 494 (110) 469 (104) 450
12 508 (100) 493 (97) 506
14 609 (99) 614 (100) 613
15 652 (99) 667 (101) 660
16 676 (97) 700 (100) 699
17 709 (96) 742 (101) 736
18 727 (95) 768 (100) 769
19 752 (94) 802 (100) 802
20 774 (92) 832 (99) 837
21 792 (93) 857 (100) 853
22 806 (92) 878 (100) 877
23 820 (91) 898 (100) 900
24 834 (91) 919 (100) 919
25 846 (90) 937 (100) 938
27 864 (89) 965 (99) 972
29 880 (88) 989 (99) 1000
30 888 (88) 1002 (99) 1010

Table 3.1.: Comparison of the Auger rate calculated by the analytic formula (3.73) with
two different Auger radius models for a and the numerically calculated rates
found in [155]. The obtained rate is additionally given in percentage relative
to the numerical value in braces.

tity Egs. (3.58)—(3.60) hold. Additionally the transitions are isotropic, i.e. for each state
|p) we find thp mg = 0 for its degenerate states. Because of this the coefficients in
Egs. (3.58) and (3.59) are given by cg;, = Ceyen = 1/9. For the chosen system the interfer-
ence term (3.60) yields similarly

Z Re {]D : [G(O) ® @(O)*} }

m,,m

prifp e

= % \<2p L [d[E, L. MZ |2p 1 ||d]]1s 1) |* Te {@(0) .@(0)*} (368)

with

D = [ (2pm,, 1 |d|1sm, 1) © (2pm), 1L |d|E,Lm, 1)
® (2pni, 1 |d1sm, 1) © 2pm,, 1 |dIE,Lm. 1)"]. (3.60)

Using the Wigner—Eckart theorem for the m-degeneracies in this way, summing over the
remaining degrees of freedom, taking selection rules into account and normalising the
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initial state classically, we find for the Auger rate (3.52)

2rpgwn . o, o,
r = 2B )l 2p) Y 2p(c0,) (| el o)+ [yt )]
lC

x Tr {G(O)(wnk) : G(O)*(wnk>} . (3'70)

We can relate the remaining reduced transition dipoles to the spontaneous decay rate
Yuk = Y2p—1s S€€ Eq. (3.40) and the photoionisation cross section ¢;,, given by
(@p) | wpleldlzs)|
W 0 (W ‘ wyl, s ‘
pm p p
=2 , :
U2 (wp) IZ 3€0Ch (3 71)

R 2
(@) |(ylelldl|2p),
2 IZ 36,0 , (3-72)

C

UZp (wp)

where the additional factor compared to Eq. (3.41) stems from the spin degree of freedom.
With this the KLL-Auger rate for F-like ions finally yields

= 2”72p—>150t0t(wnk) Tr {C(O) (wnk) ' G(O)*(wnk)}

C2

= W’hp—nsgmt(wnk) ’ (3-73)
where 0y = 0y + 03, is the total L-shell photoionisation cross section and we have
evaluated the trace with G given by Eq. (3.49). Here, we made use of the fact that
the transition probability of the total shell is independent of the chosen coupling scheme
(e.g. LS-coupling, jj-coupling or no coupling) [157].

When we want to estimate the spatial distribution of transition charge current densities
of two electron states, see Eq. (3.33), it is easy to see that the overlap between two wave
functions is dominated by the smallest orbital. However, the dominant term in G and
hence in G is given by a delta-distribution, see Eq. (A.32). In this case we find that the
transition element M does not depend on the overlap of two wave functions but rather
on the overlap of all four involved wave functions, i.e.

M, & /d?)rjnk(r - Ra)jmp(r - Rb) : (374)

We hence assume that the Auger radius a behaves itself like an orbital radius and its
magnitude is dominated by the vacancy orbital’s radius. We can approximate the size of
an electron’s orbital with main quantum number 7 by its Slater radius

W= 78y (3.75)
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where q is the Bohr radius, Z is the number of protons in the nucleus and S is the
screening due to other electrons in the atom. For the vacancy orbital |k) = |1s) in our
example Slater’s rules yield n = 1 and S = 0.3. Using this as Auger radius in our formula
overestimates the rates in comparison to the ones reported by Palmeri et al. [155, 156] by
a factor of roughly 40. However, if we allow for an additional factor cg;, such that

a
a4 = Ceplyg, g = 7 _00‘3 . (376)

We find good agreement with the numerically calculated KLL-Auger rates for cg; = 1.80.
This additional factor can stem from several uncertainties in our model: the chosen Gaus-
sian distribution is not unique and other distributions would lead to the same result as
obtained for awy, /c < 1 but with a different prefactor. Additionally, we approximated
the four wave function overlap with only the smallest orbital size. It is expected that the

remaining wave functions broaden the distribution.

The Auger rates obtained by Eq. (3.76) together with Eq. (3.73) in comparison with the
rates reported by Palmeri et al. [155, 156] for the different ions are plotted in Fig. 3.2
as a function of their proton number Z as well as given in table 3.1. To demonstrate
the predictive power of our model we only used four reported numerical rates with the
lowest Z € {10,11,12,14} to fit our model. The fit was done by using the reported KLL-
Auger decay rates for F-like ions by Palmeri et al. [155, 156] together with our formula,
Eq. (3.73) as well as tabulated data for the spontaneous decay rates [155, 156] and the
respective photoionisation cross sections [158, 159] to calculate the Auger radii predicted
by the rate data. We then used these radii as fitting data to optimise the respective model

for a.

The Auger radius given by the vacancy orbital but adjusted with a factor yields rates
that fit the data quite well. However, as we can see in Fig. 3.2 the slope of the two
curves do not fit perfectly with each other. The deviation is very small on the level of the
Auger radius, but the strong sensitivity of the rate to 4,i.e. I' x1/ a° leads to a magnified
relative error on the rate itself. If we allow for the screening to be fitted as well, i.e. we
use a general radius model for the Auger radius given by

Ceitdo
a= "=, (3.77)
Z — St

we find almost perfect agreement with cg = 1.77 and S, = 0.77. The rates obtained
by using Eq. (3.77) for the Auger radius are plotted as well in Fig. 3.2 and are given in
table 3.1.

With this we conclude that the Auger rate indeed depends on an Auger radius a in the
predicted way. The derived formulas can be used in three different ways. Firstly, one can

use the provided model for the Auger radius together with tabulated radiative decay rates
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and cross sections to calculate Auger decay rates directly. For this the provided Auger
radius model should be further studied and improved. Secondly, one can use the derived
Auger rate formula to estimate free-space Auger rates from known and related Auger
rates, e.g. Auger rates with varied proton number, different cross section or different
vacancy orbital from known rates. And most importantly, we can use known free-space
Auger rates, conclude from them the appropriate Auger radius and apply our framework
to take the impact of macroscopic environment into account. By simply introducing the
respective scattering Green’s tensor into the calculation, we may now study the effects
of surrounding media, such as surfaces or cavities. With this we are now able to study
Auger decay together with other competing processes, such as the spontaneous emission

or ICD in a joint framework and in arbitrary environment.

3.3. Competing processes in an excited two-atom system

Now that ICD and Auger decay can be described within the same framework we consider
in this section an excited two-atom system where both processes appear as competing re-
laxation channels. We first compare all possible relaxation channels in the bare two-atom
system by relating them to their characteristic length scales. In this comparison we also
consider the effect of a second atom on single-particle decay rates. The length scale com-
parison reveals the dominating channels. As we will see, Auger decay usually dominates
the relaxation process. We then show in the framework of macroscopic QED how nearby
surfaces may influence the ratio between the competing rates. We will focus on the en-
hancement of the weaker ICD process compared to the dominant Auger decay. We derive
analytical expressions for the rate in the case of isotropic transitions close to a dielectric
surface. We discuss the surface’s influence onto the competition between the rates for
general systems and show the impact of anisotropic transition dipoles onto the surface-
modified rate. Subsequently, we offer a discussion on the expected enhancement inside
an appropriate cavity and derive a simple analytical formula to estimate the necessary
properties of such a cavity for a given molecular system. Finally, we demonstrate appli-
cability of the provided expressions by applying our results to the example of a doubly
excited He-Ne dimer. We compare our results in free space with ab initio data reported

in other works.

3.3.1. Comparison of decay channels

In this section we compare the possible relaxation channels of an excited two-atom system

in free space to each other, namely spontaneous decay, Auger decay and ICD. They are
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Figure 3.3.: Possible decay channels shown schematically including the chosen labelling
scheme. Spontaneous decay and Auger decay are single-atom processes,
while ICD is only possible with a nearby acceptor atom. The spontaneous
decay rate 7, in the rate formulas, Eq. (3.39) and Eq. (3.81) are hence the
same, while the photoionisation cross section 0,,(w,;) € {oa, oicp} refers to
different transitions in ICD and Auger decay.

schematically shown in Fig. 3.3. Even for single-atom processes, the presence of a second
atom can have an impact onto the rate. In these cases we include the second atom into
the rate via its polarisability tensor. We determine characteristic length scales for each
rate and discuss their typical order of magnitude. By comparison of the respective length

scales to each other we can determine the most and least dominant relaxation channels.

The most fundamental relaxation channel of a single atom is spontaneous or radiative

decay. In terms of the Green’s tensor it is given by Eq. (2.159)[3]
=20y w24, ImG d 8
s — 7 ank nk ~ 1M (’I‘, r, wnk) " @kn s (3'7 )

where the sum runs over all degeneracies. We assume for simplicity that the process is
isotropic and focus on relaxation via a single transition, such that

2
T, = %unkﬁwﬁk TrIm G(r, 7, W) - (3-79)

In free space this gives the spontaneous decay rate, see Eq. (2.160),

3 2
Whk ’ dnk ’

3megh (3-80)

1_‘s,O = Yuk =

where we have used G = G

, see Eq. (A.32). For a sufficiently high initial excitation
Auger decay becomes available as an additional decay channel. For simplicity we assume
that the exchange term m — k is dipole forbidden and that the process is isotropic.

Following the derivation of section 3.2.2, the Auger rate is then given by Eq. (3.61),

1—‘A = 27Tr)/nk0-A(°‘)nk) Tr {G(wnk) : G(wnk)} s (381)
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where we relabelled ¢,, — 0, and by using the regularised free-space Green’s tensor
G, see Eq. (3.49) we find the free space rate to be

C2

Thg= — Y : (3.82)
A0 127'(260%]( 6 I'nk A( nk) 3

Typically, once the Auger decay is energetically allowed it is much faster than the spon-

taneous decay rate by a factor of

TA,O 27'(2 /\nk 4 a; 2
Lo B 3 <47r3/2a 8 272 ’ (5:83)

where A, = 27tc/w,,; is the wavelength of the downward transition and we have defined

the photoionisation radius a2 = '(w,y).

The two ratios in Eq. (3.83) determine how much the Auger decay dominates over
spontaneous decay. Let us discuss their magnitude. The photoionisation cross section
op(w) = 0,(w) decreases with some order of w, depending on the orbital quantum
number [ of state |m) (e.g. for an s-state o decreases with w 2 fora p-state with w 2
[160]) and is typically in the order of ~ 1072 — 10" Mb. The photoionisation radius a,, is
hence in a regime of a, ~ 1072 —10"" A, which is comparable to the regime covered by
the Auger radius a ( 27t ~102-107" A, see sec. 3.2.3). The ratio of these length scales
could hence be either in favour of Auger or spontaneous decay. However, the transition
wavelength A, can be found somewhere in the xray to XUV regime, and it holds that

Ak > 47‘[%51, which decides the ratio (3.83) in favour of Auger decay.

The presence of a second atom may influence these rates. Even at interatomic distances
where the wave function overlap may be neglected the second atom passively manipu-
lates the electromagnetic vacuum and serves as a mediator for the radiative rate as well
as the Auger decay rate. The mediator Green’s tensor is given by Eq. (2.146) and reads

a(w)

2
GM(r, v, w) = W—ZG(O)(T, VW) - 'G(O)(’I‘M, v, w), (3-84)

c €0

where 7 is the mediator atom’s position and « is its polarisabilty tensor, see section 2.3.2.

We assume an isotropic polarisability, such that a = «l. It is given by

2
1|dzn |
. V4
W - wnk Wk Yi

nk 3h Z

(3-85)

with resonances at w; each with a width of ; and we used that 7; < w; to simplify the
expression. Let us introduce the polarisability volume & = a/47ey. Depending on w,
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the polarisability volume & can be estimated in three different regimes:

2
o d;
for w,; < w; : Ecm4nioocz|$|
1
2
for w,;, = w: : i '7‘di”|
k= W; & o i Y (3.86)
i
2 2
w; d:
for w,; > w; : 5co<2<wl> ><|;’;
i nk i

where « is known as static polarisability and & only possesses a significant imaginary
part when close to a resonance. Considering the energy regime we are interested in,
we will exclude cases w,; < w; from the discussion. Using the mediator Green’s ten-
sor, Eq. (3.84) as scattering Green’s tensor together with the respective rate formulas,
Egs. (3.81) and (3.79) we obtain the rates in the presence of a second atom. In the nonre-
tarded limit of small interatomic distances they are given by

rs = FS,O + AFs s (387)
/\ k 3 Imﬁc
AT, ~ 3T, <2;r> 5 (3.88)
Fpo=Tap+ ALy, (3-89)
R a®|af?

ek
AT\ ~ —24y/1T 5 5 91 | (3.90)

where 7 is the separation distance between the decaying atom and the second, mediating
one. Only for a resonance in the mediator atom, i.e. w,; ~ w; the spontaneous decay rate
is significantly enhanced. The magnitude of & on a resonance is determined by its line
width 7; and can be of several orders of magnitude. For transition energies w,, larger
than the mediator’s resonances w; the polarisability & decreases with w,;, see Eq. (3.86).
In this energy regime we find that typically & < 10" A®. We define a length scale a, for
the polarisability volume & = +4>. With this we find for the Auger rate in lowest order

3
Al T4 (L/fa) X (@)3 , (3.91)

r A0 r

which is usually much smaller than one and negative for w,; > w;.

By introducing a second atom into the system we also open up another relaxation
channel, i.e. ICD. The isotropic free-space ICD rate in the nonretarded limit is given by
Eq. (3.43) and reads

39,10 w )t
rICD ~ ’Ynk IC]z( 6nk) , (392)
47w, DA
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Table 3.2.: Comparison of different relaxation rates for an excited atom in close proximity
to a second atom (via one-photon-exchange). In the presence of a second atom,
the one-atom decay rates I';, 5 gain a contribution ATy, 5. The ratios are defined
by the ratio of the length scales: transition wavelength A, atom separation
r, Auger-radius a, photoionisation radius ma> = o and polarisability radius
az = &. The ratio between the two involved photoionisation cross sections o

and oycp typically range from 102 to 10% and there is no general preference in

favour of either process. If the involved length scales obey their typical relation
to each other, we can sort the rates by their magnitude. For the given hierarchy
we have excluded the case of w,; ~ w;, which would lead to a significantly

high Ima and hence large AT, AT 4.

where we relabelled ¢,, — ojcp which is not the same photoionsation cross section as o
in the Auger decay, see the process schemes in Fig. 3.3. The ratio between ICD and Auger

rate is given by

| Faog AT,

N , (3.93)
Iep Twep Thep
AT, 321 [ 04 ) < a, )3
Tiep 9 (‘TICD 2y/ma) ’ Go4)
TA,O . 87'L'2 (N ) < r 6 ( )
Tieo 9 \owep/ \2yma) >

The ratio of the different photoionisation cross sections ¢, /0ycp can vary around unity
typically from 1072 to 10°. The free-space ratio I'y o /Tcp is usually much larger than
unity as a result of r/a > 1. The different ratios are given in a compact form in table 3.2,
together with an estimation of the typical hierarchy of the rates, where we have assumed
that w,; > w;, i.e. that Ima < 1.
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Assuming that the transition frequency w,; is much larger than the atomic resonances
of the system, the hierarchy of the characteristic length scales is typically given by

A /2T > 1 > 2mia ~ a, 2 a,, (3.96)
and Im& = 0, from which we may conclude the hierarchy of the rates to be
Tpo>Tiep £ ATA 2 Ts9 > Al ~ 0. (3.97)

Auger decay, once energetically allowed will dominate the decay process and sponta-
neous decay is usually negligible in comparison to other decay channels. From this
analysis it becomes evident that it is rather impossible to find a system, where ICD dom-
inates over Auger decay in free space. For an acceptor polarisability a(w,;) > 2+/ma,
where a ~ 107" A is the Auger radius, the Auger rate can be suppressed by the presence
of the second atom. A system where ICD is similarly fast as Auger should chosen such
that ojcp > 0, the donor-acceptor distance r should be as small as possible, w,,; should
be small and rather close to the atomic transition frequencies w; such that the acceptor’s
polarisability at this frequency is non negligible and the vacancy orbital should be chosen
as large as possible, e.g. small proton number Z of the donor.

The presented treatment can easily be adapted to account for multiple atoms. For the
single atomic relaxation channels, spontaneous decay and Auger decay, additional neigh-
bouring atoms passively influence the rates, similar as shown for the single neighbouring
atom. This can be easily taken into account by introducing multiple polarisability tensors
«; for the respective neighbouring atom at position r;. The Born series for N mediators
simply yields a sum, such that

G"M(r, v, w) = Y GMi(r, 7, w), (3.98)

N.MZ

a;(w)

GMi(r, v, w) = G(O)(r,ri,w)- e -G(O)(ri,r',w). (3.99)

ol €

Each mediator Green'’s tensor G™ highly depends on the respective distance between the
mediating neighbour and the decaying atom. Close mediators have a larger impact onto
the rates than farther ones. Assuming that the distances as well as the polarisabilities
are comparable to each other, such that GM ~ GM for all i,j, the scattering Green'’s
tensor scales linearly with the number of mediators: G™™ ~ NGM. The rate depends
quadratically on the sum of the free space Green’s tensor and the mediator one. It hence
scales linearly with the number of mediators in first order of a« and quadratically in its
second order. The same holds for ICD, however here we have to account for only N — 1
mediators since the process itself occurs between two atoms already.
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3.3. Competing processes in an excited two-atom system

Furthermore, in ICD the rate scales linearly with the number of possible acceptors.
This can be taken into account via the sum over final states in the rate (3.38). Explicitly
in the isotropic case this would lead to an additional sum in the ICD rate (3.39), where
the positions r;, of the acceptors and their respective photoionisation cross section ¢, are
summed over. This discussion neglects superradiance effects where the initial state must
include shared excitations between several donor atoms.

3.3.2. Impact of a surface onto decay channels

So far, we have shown that Auger decay typically dominates over ICD, while in the
donor-acceptor distance regime we are interested in the spontaneous decay rate is neg-
ligible compared to ICD. In this section we determine the impact of a close-by surface
onto the excitation-propagation for the two dominating process rates, ICD and Auger
decay. We show that even a simple dielectric surface can alter the ratio between the two
rates. General analytic formulas to describe the modification of their ratio are provided.
We show that ICD is in general more strongly effected by macroscopic bodies due to its
larger characteristic length scale introduced in the previous section and we further con-
sider anisotropic transitions and show that anisotropy can have large effect on the impact
of the surface.

As before, we limit ourselves for the discussion to cases were the relaxing electron
transitions from the same energy level for both processes, Auger and ICD. In this case
wy as well as 7, are the same for each process, while the photoionisation cross section
0 (wyy) differs for the two rates, see Fig. 3.3. We will refer to the photoionisation cross

section appearing in the Auger decay rate and ICD rate as 0, and ojcp, respectively.

Let us consider a macroscopic surface close to the atomic system. The influence of
the second atom on the Auger decay rate as it was considered in the previous section
will be neglected in this section, such that we concentrate the following study on the
modification of the rates via the surface. The scattering Green’s tensor GY for a mag-

netodielectric half space is given in the appendix, see Eq. (A.48). For non cavity-like

index | reflection coeff. permittivity refraction index
"NR € ny

1 -2 —0.33 0.581

2 2i —0.60 + 0.80i 0.45 + 0.90i

3 1.41 + 1.41i —-1.38 +1.30i 0.51 +1.281

4 2 -3 1.73i

Table 3.3.: Chosen values for the material parameters at w = w,;. The parameters are
related by: g = (e —1)/(e +1) and n, = \/e.

71
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geometries the nonretarded regime of very small distances Ar < c¢/w,; to the surface
achieves the strongest effects. Let us consider a homogeneous dielectric surface with
permittivity ¢ and a nonretarded reflection coefficient of ryg = (¢ —1)/(e+1). In the

nonretarded limit the scattering Green’s tensor can be approximated by Eq. (A.55) and

reads
(1) rNRCZ
Gsurface(rb’ rﬂ’w) = 2.3 <]I - Béah ® éab) -M 7
4w Ty,

M=1-2e, ®e,,, (3-100)

Pop =M1y, — 207, €y = Top/Typ,
where r,, = r, — r, and 7, is its mirror point, behind the surface and e, = r,/|r,| is the

respective unit vector. The full Green’s tensor for Auger decay and ICD close to a surface

is then given by

Ga = GV (W) + G (7D, D, W) S (3.101)
Gicp = G(O)(TA/ D, Wy) + Gglll)rface(rA/ ™D, Wat) , (3.102)

where rp, 5 are the positions of the excited (donor) atom D and the ground-state (ac-
ceptor) atom A. Using these Green’s tensors in the respective rate equation for isotropic
transitions, see Eq. (3.39) for ICD and Eq. (3.61) for Auger decay, yields the rates in the
presence of a surface as a function of the atoms’” positions. For the isotropic Auger decay

rate we find

AP 8Ar° (3-103)

In =g <1 _ 2y/7Re [r\g] s n 97T|rNR\2a6> ,
where I'y ; is given by the isotropic free space Auger rate, Eq. (3.82). Although we have
restricted ourselves so far to isotropic processes, ICD still possesses a preferred direction
due to the atoms’ position relative to each other. Depending on the orientation of the
donor—acceptor separation vector relative to the surface, the effect onto the process rate
varies. The two extremes are given by perpendicular and parallel separation vector rp, =

T — Tp to the surface, see the inset schemes in Fig. 3.4. The ICD rates for these extreme

cases read
2,2
I Re [rg] (Ar /Toa+ 4) rng )’
Tiep = Tiepo | 1 - S 572 S, 3|/ (3.104)
3 (Ar /rab+1> (Ar /rDA+1>

2R 3 2.6

Ty = Tiepo |1+ e [rnr] VDA3 + NRI DA . (3.105)
3 <2Ar+7’DA) (2A7’+1’DA>

where I'icp( is the isotropic free space ICD rate in the nonretarded limit given by
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Figure 3.4.: The relative Auger rate I'y /I’ ¢ and the relative ICD rate I'ycp /T 1cp close
to a surface as a function of surface distance Ar. For ICD two geometries

i . . .
are presented: I'icp with a donor-acceptor-separation rp, perpendicular to

the surface and F‘ICD with rp, parallel to the surface. Each rate is given for
four different reflection coefficients ryg € {—2,2i,1.4 + 1.4i,2} indicated in
the curves by their respective index, see Table 3.3.

Eq. (3.43)-

In Fig. 3.4 these rates are plotted relatively to their free-space rate for different complex
values of ryg € {—2,2i,1.4 + 1.4i,2}, such that |ryg| = 2. In Table 3.3 the respective
permittivity and complex refractive index n, = /¢ for these values are given. The length
scale that determines how much the surface influences the process is the interatomic
separation rp, in ICD, while in Auger this length scale is given by the Auger-radius a.
The Auger-radius can be determined via known free-space Auger rates or be roughly
estimated by using Slater rules for the vacancy orbital as shown in section 3.2.3 and is of
the order of the Bohr radius 4, ~ 0.5 A. Therefore a < rp, and as a consequence there is
a large range of surface-atom distances Ar, at which the Auger rate is effectively the free-
space rate, while the ICD rate is modified by the surface. For the chosen permittivities
the nonretarded effect of the surface vanishes in case of ICD for separations Ar > 2rp,,
while the effect onto the Auger rate vanishes for separations Ar > 4a.

The parallel geometry for the ICD rate is influenced more strongly by the surface.
This can be easily understood. In the nonretarded limit the impact of the surface is

comparable to that of an mirrored acceptor-dipole. For a donor distance Ar the distance
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to the mirrored acceptor dipole is larger in the perpendicular case than for the parallel
case, its impact hence smaller. From the point of view of surface polaritons it is also clear
that the parallel geometry profits from surface waves mediating the energy transfer. The
two real reflection coefficients ryg € {—2,2}, i.e. the extreme cases of complex phases of
rNR give the most different behaviour per process and geometry. Every curve belonging
to a reflection coefficient with |ryr| = 2 is between these two extremes. For larger values
of |ryr| the respective impact of the surface onto the rate would be amplified.

Since ICD is often studied inside of a dimer or larger molecule, the sum in Eq. (3.38)
over the involved transition dipoles d,, = (k|d|n), with |n) = |E,, L,, M,,) is not nec-
essarily isotropic. If we introduce transition dipole orientations, we find that specific
orientations are stronger influenced by a simple close-by surface than others, depend-
ing on the geometry. We illustrate this in the example, where the initial |n)-state of the
donor only involves angular momentum L, with L, = |L,| = 1 that are either parallel
(M, € {-L,,L,} ) or perpendicular (M,, = 0) to the quantisation axes, i.e. the separation
axes between donor and acceptor, see Fig. 3.5¢).

We want to focus on the modification of the competition between Auger and ICD rate.
For this we define the ratio between the competing rates as a branching ratio:

B =Ticp/Ta (3-106)

and the free-space branching ratio By = I'icpo/I's o, that is constant in Ar. The larger the
branching ratio, the faster ICD becomes compared to Auger. As discussed in section 3.3.1,
Auger is typically faster than ICD, and we expect By < 1. The branching ratio itself
depends on the ratio of the photoionisation cross sections ¢jcp/0s, which can be of
several orders of magnitude. The environment’s impact onto the branching ratio, given
by B/B, however depends only on the surface properties and the geometry, including
the relation between rp, and a.

In Fig. 3.5, the branching ratio B is given for a = 7rp, compared to the free space
branching ratio B as a function of the donor’s distance to the surface Ar. Both extreme
complex phases of the reflection coefficient r\g € {—2,2} are presented for each intro-
duced dipole orientation as well as for the isotropic case. For the perpendicular geometry
the branching ratio B' = Tjep/T4 shows a simple behaviour as function of the surface
distance Ar, see Fig. 3.5a: for M, € {—1,1} as well as for the isotropic case a positive
reflection coefficient r\r > 0 enhances the branching ratio in favour of ICD for all dis-
tances, while r\g < 0 suppresses the ICD compared to the Auger decay. For M,, = 0 the
situation is roughly inversed. In the parallel geometry, see Fig. 3.5b a negative reflection
coefficient ryg < 0 leads in all cases to an enhanced branching ratio Bl/ By > 1. While a
positive reflection coefficient can shift the branching ratio in either direction and achieves
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Figure 3.5.: The relative branching ratio B/ B, (see Eq. 3.106) close to a surface in the a)
perpendicular and b) parallel ICD-geometries (see Fig. 3.4) and for the two
extreme complex phases of the reflection coefficient r\g € {—2,2}. ¢ In
addition to the isotropic case, we also considered specific orientations of the
transition dipole as a consequence of specific angular momentum projections
M,, of the initial state |n). For the plots we chose the characteristic length
scale ratio of the two processes to be rp, /a =7.

in very small surface distances an higher enhancement than the negative reflection co-
efficient. For each geometry the isotropic case plotted in Fig. 3.5 is always given by a
weighted average of the respective two anisotropic results.

In Fig. 3.6, the distance between the two atoms is not fixed. Instead we fix the position
of the acceptor atom at the origin with a distance to the surface of Ar = 3.5a, where a is
again the Auger-radius and hence the fundamental scale for Auger decay. The donor’s
position is varied. We choose a refractive index of ryg = —2, since this choice revealed
itself to be most favourable for enhancing ICD compared to Auger decay in the geometries
considered so far. The contours give the branching ratio B (3.106) between ICD and Auger
for a donor at the respective position in terms of the photoionisation cross section ratio,
if e.g. the ratio of the respective photoionisation cross sections is given by cjcp /0, = 100
then the contour at B/ (cicp/0s) = 0.01 yields the donor position at which Auger and
ICD are equally fast. The dashed contours give the respective branching ratio B in
free space. The colormap shows the modification of the branching ratio by the surface,
i.e. B/ By. The surface has a stronger impact onto the branching ratio the larger the donor-
acceptor distance rp, is. However, the larger rp, the lower is the free space branching
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Figure 3.6.: Contour plots for the two different non-isotropic cases as well as the isotropic
case for a surface reflection coefficient r\g = —2. The acceptor atom’s position
is fixed at the origin while we vary the position of the donor. The surface is
considered at z = 3.5a. The black contours show the absolute branching ratio
in terms of the cross section ratio B/ (0jcp/ ) in the presence of the surface,
while the dashed contours show the respective value for the branching ratio
in free space B,/ (0jcp/ 0 ). The color plot shows the comparison B/ B of the
branching ratios with and without the surface.

ratio By. A system were the photoionsiation cross section of the ICD process is much
larger than the one of Auger gives hence a preferable initial condition, since it yields a
higher free space branching ratio By. The impact of the surface becomes stronger with
larger |rygr|- The strongest effect can be achieved if the involved transition dipoles are
parallel to the surface. In case of M,, = 0 we find suppression of ICD compared to Auger
(i.e. B/By < 1) for the surface—parallel transition dipole moment and for M, € {—1,1}
we find enhancement of ICD compared to Auger (i.e. B/B, > 1) for the surface—parallel
transition dipole moments.

With the simple dielectric surface chosen here we can already achieve an enhancement
of ICD compared to Auger by a factor of roughly 3.5. However, depending on the mag-
nitude of its reflection coefficient |ryg| the distances at which a surface shows significant
influence onto the rates can become quite small compared to the atomic size. At such
distances there may occur additional effects, due to the breakdown of the dipole approx-
imation, possible wave function overlap and the possible breakdown of the surface being
experienced by the atomic system as a continuum. The discussed results should still

serve as a good approximation.

3.3.3. Impact of a cavity onto decay channels

The impact of a surface was discussed in detail in the previous section. As shown a
surface only has an impact onto rates in the nonretarded limit of very small distances. In
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3.3. Competing processes in an excited two-atom system

cavities, this restriction does not apply. For specific set ups the rates of interest can be
calculated explicitly by solving for the respective cavity Green’s tensor. Here however, we
want to keep the analysis as general as possible. Based on the cavity’s Q-factor and some
general properties of the cavity Green’s tensor in the retarded limit, we may estimate
the general effect of a cavity on ICD and Auger decay. This can then be used to either
predict the maximum enhancement one can expect inside a given cavity or to determine
the required properties of an appropriate cavity for a given atomic system.

The Q-factor of a cavity is defined by the relation between the spontaneous decay rate

in free space I'; ; and the one enhanced by the cavity I'; via

T, , 3A°
=, with: s = .10
Q T, -z (3.107)
ImG®
= sQ—1= M, (3.108)
ImG 9 (r,r)|

where r is the position of the atom. Cavity QED usually assumes the opposite dis-
tance limit of the one applied in the previous section, namely the retarded limit in the
surface-system distance Arw,;/c > 1. In the retarded limit the scattering Green’s ten-
sor describes propagating waves and we may approximate: IGY(r,7)| = ImGY (r, 7).
This can be seen in the example of a spherical cavity analytically, see the appendix A.3.2.
We assume that a system undergoing ICD in the cavity has a donor-acceptor separation
rpa that is much smaller than the surface-system separation Ar. The scattering Green’s
tensor for ICD, can hence be approximated by: G(l)(rA, rp) A G(l)(rA = rp), i.e. the
same scattering Green’s tensor as for spontaneous decay appearing in Eq. (3.108). We
also use that the nonretarded bulk Green’s tensor G'*) (ra,p) and the regularised bulk
G are real. Let us summarise these approximations and assumptions:

rpa KL Ar = G(l)(rA, rp) & G(l)(rD, D) (3.109a)
wyAr/c>1 = G(l)(rD, rp) & ImG(l)(rD, D)

~ Re G(l)(rD, D) (3.109b)

Wytppa/c < 1 = GOy, rp) ~Re G(O)(rA, ) (3.109¢)

wya/c<1l = G ~ ReG (3.109d)

In addition, we define the ratio between the imaginary part of the free space Green’s

tensor and the real part of the free space Green’s tensor for ICD and Auger, respectively:
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3. Auger and Interatomic Coulombic Decay

ImG ’ 3 3
'“;“G § o= e 1, (3.1100)
e
ImG 3 3
b, = ‘m‘R ( )| )’—4\F <1, (3.110b)
e

By using Egs. (3.109a)—(3.109¢) and the definitions of b;.4, Eq. (3.110a) and Q, Eq. (3.108)
we can estimate the maximum possible enhancement for ICD in a cavity,

pew) _ (167 (ra, rp) + GV (ra )/’
ICD — 2
ICD,0 ‘G T ‘

/(ra,Tp)
ReG (rD, rD)
ReG" (rA, rD)
) (

- 1—‘ICDO (1 + Z(SQ 1 blCd + SQ ) 1cd>

~ I—‘ICDO (1 + 2Sb1ch +s blCdQ2> s (3-111)

=~ FICD,O (1 + 2

where we have approximated b < 1, while sbQ ~ 1. Similarly, by using Eq. (3.109d) and
Eq. (3.110b) we find for the maximum enhanced Auger decay rate in a cavity

Fgfav) ~Tap (1 +2sb,Q + szbﬁQz) : (3.112)

The estimation is based on the assumption that sbQ ~ 1, i.e. an appropriate cavity has
to have a Q-factor, such that sQ > 1/b for the respective process, where s is a factor
determined by the cavities geometry, see Eq. (3.107). We have discussed the maximum
enhancement possible in a cavity for both, ICD and Auger decay. To achieve maximum
difference between ICD and Auger decay, i.e. to modify their ratio by a cavity most effi-
ciently, one would need to take advantage of the maximum enhancement and maximum
suppression inside the cavity simultaneously. Depending on the acceptor’s position rela-
tive to the donor it should possible to enhance ICD while suppressing Auger. However, it
is easier to enhance ICD than Auger due to b;.4 > b,, i.e. Auger requires a larger Q factor
to obtain the same enhancement as ICD. Therefore even if both processes are maximally
enhanced by the same cavity their ratio is modified in favour of ICD.

3.3.4. Application to He-Ne dimer

So far, we have discussed the modification of ICD and Auger decay as competing pro-
cesses via macroscopic environment in general. In this section, we offer an example
system and evaluate the derived formulas to demonstrate their applicability to specific
systems. A doubly excited He-Ne dimer, with both He electrons excited may undergo
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3.3. Competing processes in an excited two-atom system

Auger decay or ICD to relax. This system has been treated in free space theoretically
via ab initio calculation methods by Jabbari et al. [161]. We use their results to verify
our free-space limit and extract the correct Auger radius before predicting the possible
influence of a macroscopic environment. We first introduce the system and determine
its parameters as they appear in our formulas. We then calculate the free space rate for
ICD and compare it for verification with the one reported by Jabbari et al. We then use
their Auger decay rates to determine the Auger radius. We finally apply the results of

the previous sections to the system.

In their ground state (before excitation), the two atoms in the dimer have an equilibrium
separation of rp, = 3 A[161]. The dimer exists in two possible molecular state, ¥ and IT.
For sufficiently large separation distances each molecule state maps to the product of the
atomic ground state of neon and the My = 0 and Mp; € {—1,1} doubly excited state for
helium, respectively. We will consider the system in this limit and compare our results
with the results obtained by Jabbari et al.

When exciting helium, there are several possible doubly excited states. The two domi-
nating ones are 2s2p and 23sp+, with |23sp+) = 272 (|2p3s) + |2s3p))[161]. We choose
to apply our formalism to the dimer consisting of 23sp+ helium. We therefore need to
determine the involved single atom properties w,;, v,x and o, /0ycp appearing in the rate

formulas of the respective process:
ICD: He™ (23sp+) He" (1538) + hicw,

—
s

Ne+hw,, — Ne' +e”
J1cD
—

Auger: He™ (23sp+) . He" (1538) + hiw,,
nk
He" (153s) + hw,, — He' +e”
A

as in the general discussion of previous sections we find that 7, is the same in both
processes, while the photoionisation cross sections refer to different transitions. The pho-
toionisation cross section o, in the Auger decay describes an emission of the 3s-electron
of the double excited helium, while the one for ICD, oycp describes the emission of an
electron in the most outer shell of neon. Furthermore, we find that alternative transitions

are dipole forbidden, such that the exchange term in the Auger decay vanishes.

From tabulated data, we find the atomic properties to be given by: w,; = 40.94 eV
[161], 03cp = 9.28 M [158], 04 = 0.35 Mb [162], 9, = 5.65 x 10° s~ [163]. According
to the model suggested in section 3.2.3 the Auger-radius would be given by a,,,qe1 =~
1.80a,,. = 0.45 A with the vacancy orbital given by a,,. = a,/2 according to Slater
rules. Unfortunately, this yields an Auger decay rate that differs from reported data from

numerical calculations [163—-165]. The additional factor of 1.8 was found in section 3.2.3
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Figure 3.7.: The free-space Auger decay rate (upper plot) and ICD rate (lower plot) as

8o

function of dimer separation distance r for both molecule states ¥ and II.
Neglecting wave function overlap, Auger decay rates are constant as a func-
tion of separation distance r, while ICD rates decrease with r® (asymptotic
behaviour). We compare the ICD decay obtained in our framework (solid
lines) with ones calculated by Jabbari et al. [161]. The dashed lines illustrate
the asymptotic behaviour of the ab initio ICD rates. The discrepancy to our
result is discussed in the main text. The deviation from constant lines in the
ab initio Auger decay rates and from the r~®-behaviour in the ab initio ICD
rates is negligible at the equilibrium distance of r = 3 A.



3.3. Competing processes in an excited two-atom system

by a fit to available data of the isoelectronic sequence of Fluor-like ions. This electronic
structure differs from the one in doubly excited helium. It was hence to be expected that
the found model parameters cannot be transferred without adjustment to doubly excited
helium. Using the known Auger rate from Jabbari et al. we may calculate the appropriate

Auger radius. The Auger decay rate in free space in our model is given by

I—‘A = 2n72p—>15(7A Tr {G(wnk) : G(wnk)} (3'113)

for both molecule state, X and Il. Using the regularised free-space Green'’s tensor (3.49)
and demanding that Eq. (3.82) yields the Auger rate of 8.1 meV reported by Jabbari et
al. we obtain an Auger radius of 2 = 0.65 A. While the Auger radius obtained from the
fitted parameters (0.45 A) is as expected not sufficiently exact to use for the He-Ne dimer,

it still possesses the correct order of magnitude.

Let us first discuss the possible impact of neon onto the spontaneous decay rate and
Auger decay rate and the characteristic length scale hierarchy according to the results
of section 3.3.1. The polarisability ay,. of neon itself is negligible at w,;, = 43.84 eV
(Ane(43.84 V) ~ O(107°)) and hence neither mediates the radiative nor Auger decay
[166]. The characteristic length scales are given by

Age/2m = 48A > r~3A > 2ta ~23A > a(ITCD ~017A > a? =0.03A. (3.114)

It immediately follows from A, > r > 27!/

a that the spontaneous decay rate is neg-
ligible as a decay channel compared to Auger. The chosen system shows many features
that favours ICD as a competing processes: the photoionisation cross section for ICD
Oicp = n(aéCD)z is larger than the one for Auger, o, = n(aaA)z and the Auger radius a is
too small compared to the donor—acceptor distance r ~ 5a. We hence expect that in the

chosen system — albeit slower — ICD is not negligible compared to Auger decay.

For ICD the two different molecular states, determining directions of the involved
transition dipole moments yield different free space rates. In the nonretarded limit we
find

4
3¢ 712p15%1cD
ieon=——3+¢ (3.115)
87Twnk1’DA
4
3¢y, o
. p—1sYICD
Ieps=—75 ¢ = 4o - (3.116)
27TW, DA

When comparing the resulting ICD rates as a function of the separation distance rpu
with the ones reported by Jabbari et al.,, we find that the relative magnitude between
the two ICD rates matches the ones obtained in Ref. [161] but their overall magnitude

is smaller by a factor of roughly 7 for all distances and both considered molecule states,
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3. Auger and Interatomic Coulombic Decay

see Fig. 3.7. The ab initio quantum chemistry method used by Jabbari et al. goes beyond
the dipole approximation and includes wave function overlaps between donor and ac-
ceptor. However, this cannot be the source of the observed discrepancy: in the limit of
larger distances the rates obtained by ab initio methods converge to the ones obtained
in dipole approximation, i.e. our formalism. An indicator of when this limit is reached
is the behaviour of the obtained rate as a function of the donor—acceptor distance rp,:
At distances where the rate shows a rpa behaviour the asymptotic limit which is well
described by the dipole approximation is achieved. As one can see in Fig. 3.7 the dis-
crepancy between the ab initio rates and the one obtained in the dipole approximation is
independent of the distance.

We have reached out to the authors of Ref [161] to discuss the discrepancy obtained
by the different frameworks. It can in fact be traced back to a less accurate represen-
tation of the transition dipoles in the method employed by Jabbari et al. as compared
with the values used in our approach [167]. A discussion of the behaviour of the ab initio
decay widths at large interatomic separations can be found for Ne-H,O clusters in ref-
erence [168]. While we conclude that the reported ICD rates by Jabbari et al. are off by
a factor of 7, the source of this error does not affect their Auger rate calculation. Their
Auger rates are in good agreement with measurement and numerical rates obtained in
other works [163-165].

Even at the equilibrium distance of 3 A, the r~°- behaviour of the ab initio ICD rate
implies that wave function overlap between neon and helium do not play a significant
role for the rates, instead we may use atomic data to approximate the rates at the equi-
librium distance in our framework. We conclude that our approach, including the dipole
approximation is suited to treat ICD at the equilibrium distance of rp, = 3 A. The free
space ratio between ICD and Auger decay at the equilibrium distance is hence By, ~ 0.15
and By ~ 0.04.

Next we apply the results of our study of a close-by surface obtained in section 3.3.2
to the example of the He-Ne dimer. At the equilibrium distance we find a ratio of
rpa/a = 4.64 between the characteristic length scales of ICD and Auger decay, which
is smaller than the one we assumed for the plot given in Fig. 3.5. Adapting the ratio
accordingly and replotting the graph for the case of the He-Ne dimer gives the plot
shown in Fig. 3.8, where the two molecular states, > and Pi correspond to the angular
momentum projection numbers My = 0 and My € {—1,1}, respectively. The strongest
influence of the plate in favour of ICD can be found for the Il-dimer. For a negative
reflection coefficient ryg = —2 one can reach an enhancement of the branching ratio
B/By=2ataz2 A distance from the surface, while a positive reflection coefficient shifts
the ratio in favour of Auger to B/By ~ 1/2 at the same surface distance. At very close
distances the ICD process can be enhanced for ryg = —2 significantly. In this realm

however, it would be appropriate to exploit local field methods that resolve the structure

82



3.4. Conclusion

of the specific material by using its density and the polarisability of its constituents as
well as take effects from wave function overlap into account.

At arbitrary donor—acceptor distances in the presence of the considered surface with a
nonretarded reflection coefficient ryg = —2 we can use the known photoionisation cross
section ratio ojcp/0s = 26.76 to label the contours in Fig. 3.6 accordingly, e.g. when
placing the donor at the B/ (oycp/0a) = 10~ contour we expect a branching ratio of
B = 0.27, i.e. the ICD rate with a donor at this position is roughly a quarter of the Auger
rate. Depending on the molecule state the 10~ contour can be found closer to or farther

from the acceptor’s position, see Fig. 3.6.

Lastly, we consider the possible enhancement inside a cavity using the estimation ob-
tained in section 3.3.3. We can determine the necessary Q-factor for each process by
determining the defined b-factors, see Egs. (3.110a) and (3.110b). We find for the He-Ne

dimer
big=799%x10°, b, =578x10"°. (3.117)

To achieve a significant effect via a cavity its Q-factor for a transition frequency of w,; =
40.94 eV hence needs to be at least of the order of sQ ~ O(10*) and ~ ©(10°) for ICD
and Auger decay, respectively. For a Q-factor of sQ = 6.25 x 10%, ICD can be enhanced
by a factor of 2.25 inside the cavity, while Auger decay would experience a maximum
enhancement of only additional 7%, such that B/ B, ~ 2.25.

3.4. Conclusion

We have presented a novel model for the Auger decay rate based on the dipole approx-
imation by regularising the free space Green’s tensor via the size of the involved atomic
orbitals. The derived rate formula is a closed expression where tabulated atomic data can
be used to evaluate the rate for a given process including the impact of surrounding me-
dia via the Green’s tensor. We have been able to verify that the introduced Auger radius
is dominated by the vacancy orbital size and behaves in fact like an atomic radius. As
presented here, our model can be used to include the effects of surrounding macroscopic
media if the free-space Auger rate is known. We demonstrated this for the example of
Auger decay in doubly excited helium. Free-space Auger rates are available as tabulated

data, numerical as well as experimental, for several systems and atoms.

By including Auger decay in this manner into our framework of macroscopic QED we
were able to treat ICD and Auger decay simultaneously in systems were they compete

with each other. We identified characteristic length scales for each possible decay of an
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3. Auger and Interatomic Coulombic Decay

Figure 3.8.: The relative branching ratio when placing a He-Ne dimer with a donor-
acceptor distance of 3 A in front of a surface with a reflection coefficient of
rnr € {—2,2}. The He-Ne dimer can either be in a IT- or X-state, leading to
different branching ratios in the presence of a surface. The chosen initial state
of the doubly-excited helium corresponds to the 23sp+ single-atom state. The
characteristic length-scale for the Auger decay in 23sp+ helium is a = 0.431A.
We chose rp, to be parallel to the surface.

excited two-atom system, including radiative decay and by comparison of these length
scales deduced the least and most dominant process. We showed that typically Auger
decay dominates over ICD.

We have studied the impact of a close-by surface in detail and showed that ICD can
be modified more easily by the macroscopic environment compared to Auger due to
its larger characteristic length scale. The presented formulas can be used to generally
include the impact of a dielectric surface onto each rate. As shown, even such a sim-
ple environment may enhance ICD compared to Auger decay significantly. We demon-
strated that anisotropic transitions have a significant effect on the environment’s influ-
ence: for surface-dimer separation and transition dipoles parallel to each other we find
the strongest surface induced effect. Furthermore, we have presented a general estima-
tion of the expected enhancement of Auger decay and ICD, respectively in a cavity based
on the cavity’s Q-factor.

We finally applied the derived formulas to the example of a doubly excited He-Ne
dimer. We compared our free space result with rates obtained by ab initio methods and
illustrated how the derived general formulas may be applied to obtain results for specific
systems in the studied environments.

Our framework can alternatively be used to consider cascades of several decays includ-
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ing the individual decay channel’s interferences with each other. Further studies could
lead to a more precise model for the Auger radius. The presented treatment of a cavity
was kept general and only based on the cavity’s Q-factor. For a specific cavity, the ex-
ploited framework can be used to offer a quantitative rate calculation. Additionally, as
a side product of our fundamental derivation we obtained a rate equation that might be
used with usual ab initio methods to go beyond dipole approximation, account for wave

function overlap and also include the scattering at macroscopic media.






CHIRAL RESONANCE ENERGY TRANSFER

In this chapter, we derive the RET rate between two chiral molecules. We focus on its
power to discriminate between different enantiomers and introduce a degree of discrim-
ination that quantifies this effect. We show that in order to discriminate chiral molecules
of unknown handedness one needs to use a chiral object with known handedness. In the
first part of this chapter, we focus on the donor molecule to be said object. We show that
an appropriate medium that surrounds the system may enhance the degree of discrimina-
tion and demonstrate the importance of local field effects for the quantitative prediction
of discrimination. The enhancement can lead in theory to optimum discrimination. We
derive the necessary requirements for optimum discrimination. In the second part, we
introduce a new chiral object, namely a chiral medium. In preparation of this study
we derive the local-field correction (LFC) inside a chiral medium, which proves to be
more involved than in its achiral counterpart. We derive the degree of discrimination in
this conceptionally different setup and discuss the impact of local-field effects. Its name,
local-field correction is misleading as LFC does not result in a minor correction of quan-
tities obtained without LFC, but may change them significantly. In the case of a chiral
medium LFC even results in new terms to the degree of discrimination that dominate the
discrimination in certain regimes. We close the study by considering the limit of dilute
gases as surrounding medium, where the gas is more appropriately described as individ-
ual mediator molecules surrounding donor and acceptor. We consider the transfer and
its degree of discrimination in the presence of a single mediator that may itself be chiral.
The results presented in this chapter are partially published in Ref. [JF3].

4.1. General chiral resonance energy transfer rate

As shown in section 2.3.7 resonance energy transfer between chiral molecules depends
on the relative handedness of donor and acceptor molecule. The discriminatory rate
contribution results either in constructive (same handedness) or destructive (opposite
handedness) interference terms to the total rate. We first derive the rate for a general

setup involving chiral molecules in the framework of macroscopic QED.
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k *
b A D A @ Relaxation via d-E or m-B

© Excitation via d-E or m-B

D* A D* A

Figure 4.1.: Feynman diagrams for RET between chiral donor (D) and acceptor (A)
molecule: the donor is initially excited, its energy is transferred via the field
to the acceptor. Each interaction (vertex) can either be carried out via electric
or magnetic coupling. The possible intermediate states consist of two concep-
tionally different states.

The multipolar coupling Hamiltonian (2.170) in long-wavelength approximation is
given by

Hia == Z Z d\u/{ ’ E)\(Ttx) - = /dwlz (d\a)c\ : E/\<C(J,, rzx) + d‘u/{ : E;\(w,/ ra)) ’ (41)
a=D,A A=e,m oA

where we have introduced the dual symmetric notation: E, = cB and d, = m/c
while E, = E and d, = d and D/A label the donor/acceptor molecule. The rate can be

calculated via Fermi’s golden rule (2.121) with the transition matrix element in second
order,

(f1Hial¢) (@] Hig i)
M=) , (4-2)
with an initially excited donor, ground-state acceptor and the field in its vacuum state,
liy = le,0,{0}) and a final state where the excitation was transferred to the acceptor,
|f) = 1g,1,{0}), with weso < Wes1- We use here e, g to label the donor’s excited and
ground state and 0, 1 for the states of the acceptor. The intermediate states are given by
¢1) = 18,0,1, (v, &) and |¢,) = |e,1,1 (', ")) with energies Ey, ,, = hwg o+ hewy 1 +
hw'. The feynman diagrams of the process are given in Fig. 4.1. The transition matrix
element then reads

(eldy,|g) ,

5y ({0} E), (rp) (1) (1 By, (r4) [{O})
/dcu/d {A} 1|e>D' hw/j—hwlo

C{OHE), (ra) V) (V1B (rp)[{0})

hw' — hew,,

+ (elds Ig) gldRler, | @)

where [1') = [1,/(«',7")) and Wy, = w, — w, and because of w; = wy it follows that
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4.1. General chiral resonance energy transfer rate

Wee = wyg. With the relation (see proof in appendix A.2.1),

foud [ g LB 318y ) 0)
.

hw/ + hwlo

(E), (wy,r )EL(aJZ, Tg))
// dwl de th + hwlo ! (44)

we find

<E/\ (wler)EA}; (wa,TA)) A
- L //dwld“’z T R 7 dy,
A Ay 2 Wi

(E, (wlrrA)E‘/J{ (w2, mp)) b
dy -4 2 -d .
Ty, hiw, — hwqg o 45

1 1
_/ dende; (h — hwyg " hew, + ha’lo)

<}, - |( <w1,rA>E (3,70)) + (By(wr, ) By (w3, 70) | - b,

E
/ dw,dw, !
! hwlo w4 hwyg

xdy, [<E (errA)EJr (wWy,mp)) + (B (wr,70) B (03, TD)>} dy, , (46)

where we have defined the transition dipole moment for the acceptor dy = (1|d4]0),
which describes an upward transition and the donor dy = (g|d5 |e), which describes a
downward transition and we used that for any tensor M one has v - M - w = w - M- v
and

(E\(r)EL(ry)) = (Ey(ry)E}(r))) (47)
(E\(r)E(r,)) = — (By(ry)EL(ry)), forA# A’ (4.8)

to summarize the terms. The vacuum correlation functions are calculated and given

explicitly in the appendix, see Egs. (A.18)—(A.21). Inserting them into Eq. (4.6) leads to

P‘OC 1 A D
M = Z /dw <w o + w+w10> dy, - [ImG(rp, rp,w)]) 5, - di, (4-9)

where the positive sign applies for A; = A, terms, while the negative sign applies for
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A1 # A, and we have used the shorthand notation:

2
—‘;’—zlmG(rA, rp, W) (MAy) = (e e
igImG(’f’A, ’I"D,(U) X VD ()\1,)\2) = (e,m)
[ImG(ry, TD,W)]/\MZ = ; (4.10)
iV x ImG(7p, rp, w) (A, Ay) = (m,e)
VA X ImG(T’A, 'I"D,CL)) X VD ()\1, /\2) = (m,m)

The frequency pole-integrals in Eq. (4.9) are of the form:

flw) | f(zw) > . .
dw + ImG with: w)=w", ne{01,2}. 11
[ o (J1 4 =) flw) 012}, (g
The first term of the integrand contains a pole on the real axis and hence divergences.
However, the pole stems from the time-independent perturbation treatment, revisiting its
derivation one can regularise the pole and finds (see proof in appendix A.4):

' flw) f(-w)
I = . .
/dw (w ~(wp +i€) + W+ wg mG = 7f(wy9)G(wy) (4.12)
This finally leads to the dual transition matrix elements
M=) M, (4.13)
Al/\Z
My, = P‘oczdjf1 Gy 0, (Pa, D, W) - dl)?z , (4-14)

with the dual Green’s tensor defined as:

2
_(:TG(TAITDIW> (M1Az) = (e e)

G _ JiPG(ra, rp,w) X Vp (A1,A;) = (e,m)
AlAZ(TA/ Tp, W) = o (4.15)

12V X G(rp, rp, W) (A1, Az) = (m,e)

\VA X G(’I‘A,TD,(U) X VD ()\1,/\2) = (m,m)

The total rate is hence given by
=) Tian, (4.16)
27l *
Daprsn, = % (dffl -Gy 0, (Ta, ™D, W) 'di> (dﬁ; Gy, 2, (Ta, 7D, W) 'dZ) ,

(4.17)

where p = p(w;q) is the density of final states. For isotropic transition dipoles we may
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use that on average: d; » d, = d; - d,1/3. This simplifies the rate to

27 5 A Asx Dx D *T
Ly, = Vop(d)\l ~dy) ) (dy, - dy,) Tr [G)\IM(TA/ Tp, wig) - Gy, (Tas D, wlo)}

on?
27ct A D T
= 1T, Tr [GA1A4(TA/ D, Wig) - Gy, (Ta, D, Wm)} , (4.18)
10
with
WP ;A A wi’o Dx ;D
= dy - di d = —=_d;"-dy, .
Tp 0, Begch s an Yah, 3 A da, (4-19)

which give for A; = A, the (electric/magnetic) photoabsorption cross section and sponta-
neous decay rate, respectively. For chiral molecules the mixed electric-magnetic quantities
with A; # A, contain the so-called rotatory strength,

Ryp = Im([(0]d|1) - (1]r72|0)] . (4.20)

In our notational convention, where dy = (g|d, |e) describes a downward transition and

dy = (1|d,|0) an excitation, the respective rotatory strengths are given by
Rp/c =Im[d>-d>] = —id?-d>* and  R,/c=id%-d2", (4.21)

where we have assumed that the electric transition dipoles are purely real while the
magnetic ones are purely imaginary. The sign of the rotatory strength depends on the
molecule’s handedness.

Here, we adapted a dual notation to simplify the expressions. The notation mirrors the
discrete duality symmetry that is fulfilled in dielectric media as well as reciprocal, chiral
media, as shown in section 2.1.5. When coupling the fields to a magnetic dipole inside
a medium, duality symmetry appears to be broken without physical reasons [9]. The
symmetry can be restored by considering local-field corrections via one of the available
models, for example the Onsager real cavity model that was introduced in section 2.1.7.

With this we have derived the total RET rate (4.16) between two chiral molecules in
arbitrary absorbing and dispersing media, given by the sum over its dual rate contribu-
tions (4.18). We may now apply the theory to different set-ups, including the case of an
acceptor with unknown handedness in free space, magentodielectric and chiral media.
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4. Chiral Resonance Energy Transfer

4.2. Local-field corrected Green’s tensor in a chiral medium

As preparation for section 4.3.3, we need to work out the LFC for a chiral medium. There
exist several models for LFC. We choose here the Onsager real cavity model. All available
models have in common that the interaction points are placed inside free space instead of
the macroscopic medium. In Onsager real cavity model both, source and absorption point
are modelled inside infinitesimal vacuum spheres. The geometry of this problem does
not allow for an analytical derivation for both points at once. In magneto-electric media
this obstacle is circumvented by the convenient result that the correction of a single point
leads to a mere correction factor, which is different for electric and magnetic interactions.
Hence one can conclude that the product of the respective factors results in the correct
LFC for magneto-electrics, see section 2.1.7. For chiral media we start with correcting
one interaction point as well and will see that the necessary correction for a single point
will not result into a factor but is more involved. We present a method for constructing
the Green’s tensor based on the multiplication of transmission and reflection matrices.
This method helps us then to obtain the correction of both, source and absorption point
simultaneously. We finally show its validity for a special example, where the specific
geometry allows for an exact calculation for comparison.

source point 7/ absorption point r

X
2
I |
| +> LHCP and RHCP |
: —lp. proPagate with :
" different k i
___________________ 3 e(w), u(w), x

Figure 4.2.: Scheme for local-field correction of the source point. The source point 7’
is placed inside a free space sphere with radius a (region 1), surrounded
by chiral medium (region 2). We solve the transmitting Green’s tensor for
magnetic and electric interactions inside the free-space sphere. Inside the chi-
ral medium left- and right-handed circularly polarised (LHCP/RHCP) light
propagates differently.
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4.2. Local-field corrected Green’s tensor in a chiral medium

4.2.1. Correction of a single point

We first derive the Green’s tensor for a vacuum sphere in a chiral bulk medium, where
the source point sits in the center of said sphere, see Fig. 4.2, analogously to the derivation
in Ref. [169]. The referenced paper uses slightly different conventions: ¢, = x/u, ¢ =
e—x*/ u and the propagator I'. = G/pu. The limit of infinitesimal free-space sphere
radius reveals then the Green’s tensor including LFC of the source point. The derivation
hence follows the same steps as the derivation of LFC for a magneto-electric medium, see
section 2.1.7.

In our chosen convention the constitutive relations in a chiral medium are given by
Egs. (2.70) and (2.71) which lead to the Helmholtz equation (2.73) for a chiral medium.
To solve it we choose as a basis set a symmetric and antisymmetric combination of the
spherical vector wave functions M(e)mn (r) and Ngmn (r), which read

Me,,(r) + Ne,,(7)

NG , (4.22)
Memn (7’) — Nemn(’r’)
We,, (k) = —2 7 2 / (4-23)

where e, 0 denote here even and odd vector wave functions, and should not be confused

Ve, (. k) =

with A € {e,m} when denoting electric and magnetic components when using dual
symmetric notations. Their full expressions are given in the appendix A.3.2. They form

an orthogonal basis set and by construction fulfil
V x Vce)mn(r, k) = ngmn (r, k), V X We,, (r,k) = —ngmn(r, k). (4-24)

With this, we find for the chiral bulk Green’s tensor,

G(O)(r,r/) _ i : ii [(2 5.0 (2n+1)(n —m)!

2r(ky + k. - nn+1)(n+m)!
(K Vi (1 k )Vey, () + EW ) (K )W, () )|
(4.25)

where |r| > |r'| and the superscript (1) on the vector functions indicates the substitution
of the spherical Bessel functions j, with the spherical Hankel functions of the first kind
h,(f) inside the vector wave functions definitions (A.57) and (A.59) and we have defined

ki =./enwEtwy. (4.26)
Note that the free-space Green’s tensor (A.32) can be obtained by setting x to 0.

The chiral bulk Green’s tensor is invariant under translation. We may hence assume
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4. Chiral Resonance Energy Transfer

the source to be at the origin ' = 0 without loss of generality to obtain a more compact

result,
GO, 7 =0) =G (r) + G (r), (4.27)
G (r) = M(kf’;k) mi_o K Vi (7 ) Ve (0) (4.28)
G = 20 BWL (r,k ) Wey (0), (4:29)

where we used that V' / ngn(r’ = 0) = 0,Vn > 1 and introduced the Green’s tensors

for left- and right-handed circularly polarised light G and G, In this form of the
Green’s tensor it is obvious that inside the medium, differently circularly polarised light

exhibits different wave numbers k. .

We may give the chiral bulk Green’s tensor in a dual notation. According to the defini-

tion given by Eq. (4.15) we find

Gl (v’ = 0) =G () + G (), (430)
with A, AN oe {e,m} and
W?
_?G(vv)/(ww) ()\1)\2) _ (e’ e)
ki o)/ (ww
(v0)/ (ww) :FliTG( ) (A, Ay) = (e,m)
G/\1)\2 - , (431)

iikich(w)/(ww) (A1, Az) = (mye)

kiG(w)/(ww) ()\1,)\2) = (m' m)

where we omitted the position argument for readability and evaluated the curls with
Egs. (4.24).

Next, we introduce a free-space sphere around the origin with radius a. We are then
interested in the propagation from a source situated at ' inside the sphere to a point r
outside of the sphere, i.e. into the chiral medium, see Fig. 4.2. The Green’s tensor has to
fulfil the boundary conditions:

e, xG(r —a,r)=e xG(r—at,r), (4-32)
e, xVxG(r—a,r')= —X:Je, xG(r —a”, )+ ;e, xVxG(r—a',r), (133)

where a is an arbitrary vector pointing to the sphere’s surface, i.e. |a| = a. For the source
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4.2. Local-field corrected Green’s tensor in a chiral medium

point r’ inside the sphere we choose the ansatz:

o 2n+1)( —m)!
r<a: G (r,r)= Vac 4k0;; n(n+1)(n+m)!

x{[che S (1K) + W, (7, K0)] Ve, (', Ky)

+ [d”v< ) (r, k) + de§m>n(r, ko) We,,, (", ko)},

(4-34)
P PN S - @n+1)(n—m).
r>as G(rr) = e Y Y 2= b)),

< {[aVa (k) + BT W) (1K )] Ve, (1, Ko)
[PV (k) + BEWE) (k)] Wy, (' ko) |
(4.35)

where ky = w/c is the field’s vacuum wave number, GS;)C is the free-space Green’s tensor
and the superscripts in G” denote the region of the source (j) and region of the absorption
(1) point as labelled in Fig. 4.2. The full solution of these boundary conditions is given in
the appendix, see section A.3.2. We obtain the local-field correction for the source point
by considering the limit of vanishing sphere radius, i.e. 2 — 0. In this limit the coefficients

for the transmitting Green'’s tensor (4.35) become

ima — g — 313

ﬂlg%av =a, = D, 3k (2k_+k)(1+1), (4.36)
limay, = a, = —3k3(k 2k )(1-1), (4-37)
a—0 Dk

. n__ _ 1 a3 - -

lim by = b, = Dk3k+(k 2k )(I-1), (4-38)
limb! = b, = 1 (2k, +k)(1+1), (4-39)
a—0 Dk

D = 2(dk k 1+ K1+ (k, +k k(1 +12), 1= VI (4.40)

H

Comparing the transmitting Green’s tensor to the chiral bulk Green’s tensor (4.27) and
casting it into a similar form yields

- 1
iy 3 2 v (1 257 (1
G*'(r,0) = ik, 7K mX_:O > <Cevk+‘/g(m)1 (r, k+)V('e)m1 (0) + Cewk_chfm)1 (r, k_)ng1 (O)) ,
(4.41)
where we have exploited that for 7' = 0 = W (') = —V(¢'). The introduced correction

95



4. Chiral Resonance Energy Transfer

factors are given by

la, — by (k. +k)  3(n, +x)(—2ux +2un, +n,)

Cop = = ’ (4-42)
’ 2k, i (20— 40 +1) + (42
. [bw - aw](k+ +k7) .
Cow = 2k = Ceol sy 7 (4-43)

with n, =, /eji being the refractive index. These give the known corrections for a dielec-
tric medium, see section 2.1.7 when setting x = 0,

3e

Ceo| yy0 = Cew|yy0 = e = 7 T (4-44)

Magnetic interactions at the source point are governed by the curl of G acting on 7, see
Eq. (4.15). The source point curl of the transmitting Green’s tensor G*(r,7') at the source
point ' = 0 is given by

G2 (r, r’) x V'

i &3
o 4rn Z 2 ( - Cmvkiv(l)(""r k )V (0) + mek%W(l)(r, k,)W(O)) ,
m=0

r =

(4-45)

where we have used Egs. (4.24) and again made use of V(0) = —W (0) to reorder the
terms and recast the expression into a similar form as the chiral bulk Green’s tensor. The

introduced magnetic correcting factors are given by

2
(s +b)k++k’— 3(y+2nr—2nr7(> (1.46)
mov 14 [ 3 - 5 57 4.4
20 (2p =4 +1) + (4 +2)m;
ki +k
Cmw = (aw + bW)ZyT? - Cmv‘xﬁ,)c/ (4-47)

where we can again find the known magentic correction, see section 2.1.7 for achiral

media,

In the limit of small xy we can write the correction terms as

C

Cev & Ce + XCey s Cew =~ Ce = XCey s Cex = n (1 —T—Zy) ’ (4-49)
r
o~ N . 2ney
Cmo =~ Cm Xcmx ’ Cmw ~ Cm + Xcm)( 7 Cm)( - 2 (450)
pt+2m,

where it is interesting to note that the terms linear in x are almost the same for ¢, and
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4.2. Local-field corrected Green’s tensor in a chiral medium

are closely related to the product of the nonchiral corrections,

1 1

Cex = Ecm)( = Tmcecm . (451)

In dual notation the single-point corrected Green’s tensor can now be given by

G;Séngle) = Ceng\Z;v) + CewG/(\ZZW) ’ (452)
ingl
Gim® = cnoGlm + CmuGiim (4.53)

with A € {e,m} and the GSXJ,)/ (@) are defined by Egs. (4.31). The same corrections
are found when correcting solely around the absorption point analogously. This is in

agreement with G (r,7') = G(+/,7) for any Green’s tensor in reciprocal media.

We have followed the analogous steps as were done for magneto-electric media, see
section 2.1.7. For achiral media we find c¢,, = c,,, = ¢, and hence obtain one overall
correction factor applied to the bulk Green’s tensor. The simplicity of this result enables
one then to conclude the simultaneous correction of source and absorption point. In
contrast, for chiral media we have a more complicated situation, since we have to divide
the bulk Green’s tensor into two different parts G'°”) and G that are then differently
corrected. We can conclude that as a consequence of their different k-vectors inside chiral
media the propagator for left- and right-handed circularly polarised light needs to be
differently local-field corrected.

4.2.2. Complete local-field correction of source and absorption point

We have derived the local-field correction of a single point inside chiral media, obtain-
ing different correction factors for the propagation of left- and right-handed circularly
polarised light. As a consequence, the simultaneous correction of both points is not ob-
vious. In this section, we introduce a new notation and formalism for the Green’s tensor,
where each boundary is represented by a transmission and reflection matrix in the ba-
sis of spherical vector wave functions. Similarly, any Green’s tensor and operation on a
Green’s tensor can be cast into this matrix form. In this formalism, the full Green’s tensor
can be obtained by multiplying the appropriate reflection, transmission and other matri-
ces with each other. From this formalism we can conclude the full local-field correction

of source and absorption points inside a chiral medium.

We may expand any Green’s tensor via tensor products of Va(nlq)n(r, ky)/ Wg(;)n(r,k,)
and V.., (', k) /W, (1, k), with ¢ € {e,0}. In this basis we adapt a matrix notation
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4. Chiral Resonance Energy Transfer

and write any Green’s tensor as

Glr) = @ (gvv<n,m> ng<n,m>> , 050

nome \wo (M) Guro(m,m) )

where

1 0
(0) = ‘/amn(T,r k+) ’ <1> = Womn (’l‘/, kf) ’ (455)
nmo nmo

(1 0) =V (r, k), (0 1) = Wih(rk), (4.56)
nmo nmo
with o € {e,0} and m < n. The chiral bulk Green’s tensor is then given by the diagonal
matrix,
. 2
0) N i3u B 2n+1)(n—m)! (k5 O
G (’I",’!’ ) - 47T(k+ i k_) ngr?a(z 5m0)n(n ¥+ 1)(1’1 + Wl)' 0 k% s (457)

where we have omitted the subscript nmo on the matrix-notation for better readability.
The Green’s tensor for an achiral bulk medium (k, = k_) is hence proportional to the
identity. The bulk Green’s tensor is invariant under translation transformation. We may
therefore choose to put 7' = 0 without loss of generality. We also adapt a dual notation,
see Eq. (4.15). The dual bulk Green’s tensor’s are then given by

K 0 K0
G(O) — + , G(O) _ + , =8
ee (7’) fee < 0 kz) em(r) fem 0 k? (45 )
(0) Koo (0) K. 0
Gme(r) = fem 0 —k? 7 Gmm(r) = fmm 0 kz} ’ (459)

where we have omitted the direct sum over m < n = 1 and ¢ € {e, 0} in our notation
and the prefactors are given by

i3;4w2 3uw i3u
- _ , = —— = ——————— - .6
fee 47'L'C2(k+ +k) Je dre(ky +k_) ) dr(ky + k) (460)

The derived transmission Green’s tensor (4.35) for a source situated inside a vacuum
sphere with radius 4 is given in the new notation by

2, iky a, b, o (2n+1)(n —m)!
Gee(rf'r ) - annm (a;u b?) s fnm - (2 (SMO)YZ(VI—}—])(VI—FWL)! s (4~61)

21 N a, b, —ko 0
Gem(rlr ) - znfﬂm ([,ZZ) bz} < 0 kO ’ (4.62)

where ky = w/c, the coefficients are given by Egs. (A.65)-(A.68), the matrix product on
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4.2. Local-field corrected Green’s tensor in a chiral medium

level of the introduced matrices is denoted by ¢ and the diagonal matrix in (4.62) results

from the curl from the right.

From the non-vanishing off-diagonal elements in Egs. (4.61) and (4.62) we can see that
transmission through the surface mixes left- and right-handed circularly polarised light.
However, when performing the limit of 2 — 0, we implicitly force the source to sit at
the origin, 7' — 0. We can then map Eq. (4.61) onto a diagonal matrix without loss of
generality, such that

i3ky (a,—D 0
G2 0 _ Ko [ v ) 6
ee(T )ﬂ*)() 477: 0 —ﬂw—f—bw (4 3)
3 (a,+D 0 —ky O
GZl ,O - _ = v 0 0 , .6
T B 1Y G

where the coefficients are given by Egs. (4.36) — (4.39). Finally, we can extract a local-field
correction matrix C, that, when applied to the chiral bulk, yields the Green’s tensor with

single-point correction,

correction of source point: G(AOA), (r)oCy (4.65)
. . . 0
correction of absorption point: Cyro (G(A A)/ (r) (4.66)

with the LFC-matrix,

0
Ci= (C“ ) . (+67)
0 Chrw
From this we may conclude the simultaneous correction of both points,
GY5/(r) = CL oG (r) o Cy (4.68)
= cMcA/ng\T,) (r) + cchA/ngfoU) (r). (4.69)

This is the fully local-field corrected bulk Green’s tensor. The correction matrix becomes
proportional to the identity in the limit of x — 0 and hence reproduces the known
solution for a magneto-electric medium, see Eqs. (4.48) and (4.44).

The introduced formalism also proves useful when solving transmission and reflection
at several interfaces. For this some additional normalisations need to be considered and
we do not present its general application here. The resulting method however is compa-
rable to the on developed in Ref. [170] for planar-layered systems. In the next section we
use this formalism only to verify the local-field correction method given by Eq. (4.68) in
a specific example that allows for an analytical derivation of the local-field correction.
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Figure 4.3.: Scheme of the validity check: we apply our method for LFC inside a chiral
medium to the reflecting Green’s tensor inside a chiral sphere (left) and we
derive the Green’s tensor for reflection at the outer boundary in a three-layer
system (right). In the limit of vanishing inner free-space sphere, a — 0,
this yields the exact local-field corrected Green’s tensor. We verify that both
derivations give the same result.

4.2.3. Consistency check for a spherical three-layer system

We want to verify our method for LFC in a chiral medium, given by Eq. (4.68) for an
example where we can calculate the simultaneous correction of source and absorption
exactly. For this we consider spherically layered systems, where the special case of source
and absorption at the origin allows for an exact calculation of the local-field corrected
Green’s tensor. We start by outlining the necessary calculations in detail, where we in-
troduce the special spherical layered case that is then local-field correct via our method,
and next introduce the system that yields the exact local-field corrected Green’s tensor
via an analytical calculation. Then follow the respective calculations and finally we show
that the analytically obtained result for this special case is the same as the one obtained
by our LFC method given by Eq. (4.68).

The special case that allows to be treated by both, our LFC method as well as an
analytical and exact approach is the two-layer system where the inner layer is filled with
chiral medium and source and absorption are placed at the origin. We hence consider
such a spherical two-layer system where the inner layer with radius R is filled with a
chiral medium and the outer layer is considered to be free space. Neglecting multiple
scattering, the Green’s tensor G for source and absorption inside the inner layer then
consists of the known chiral bulk Green’s tensor Géo) (4.25) and the Green’s tensor GR
resulting from single reflection at the interface at r = R, see Fig. 4.3. We are here only
interested in the latter part GX. We then first obtain the local-field corrected version of
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4.2. Local-field corrected Green’s tensor in a chiral medium

this Green’s tensor by applying our method, i.e. the derived LFC-matrices (4.68) to G~

As a second ingredient we need the exact local-field corrected Green’s tensor for this
system. For this we consider a three-layer system, were we added an inner layer with its
boundary at r = a < R that is filled with free space compared to the two-layer system,
see Fig. 4.3. Neglecting again multiple scattering events, the Green’s tensor G'! for source
and absorption inside the inner layer consists now of three parts: G'' = G +G"+Gk,

where G(O)

is the known free space Green’s tensor that describes the direct propagation
from source to absorption, G” results from a single reflection at the boundary at r = a and
G® from a single reflection at the most outer boundary at r = R. These Green'’s tensors
are sketched in Fig. 4.4. We are again only interested in the latter part Gk, resulting from
a single reflection at the outer interface. We may then perform the limit of vanishing inner
layer radius lim,,_,, GR (r,7"). This result is then the exact local-field corrected version G*.
After we calculated then both, GR with the local-field correction via our method and the
analytically derived local-field corrected result lim,_, GR(’I‘, r’), we can verify that they

yield the same result. This comparison is schematically sketched in Fig. 4.3.

Solution for a three-layer chiral system

We start by solving the more involved three-layer system. The derivation for the two-
layer system then follows similar steps. For a source inside the inner layer we choose the

ansatz:

(2n+1)(n —m)!
nn+1)(n+m)!

O<r<a: G'(r7)= G(O)(r,r/) v YY) (2= 6,0)
m

(4.70)
' N, o 7 (2n+1)(n —m)!
a<r<R: G (T’T)_E;;(Z_(SMO)YL(TZ—}—D(TZ—FW)!

< { (Vi) (r k) + aywil) (k)] W

e
Omn

mn

BV () + 0 W) (k)]
+ (@, Ve, (r Ky ) + &, Wey,, (v, k)] Ve
]

+ [EZ‘/Smn(T/ k+) + EZUngn (’l“, kf)
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(2n+1)(n —m)!

R: 31 ! :Loo Y 2 —
r> Gl (r,7) 47‘ck;;( Omo)

n(n+1)(n+m)!
x { [ehVar) (k) + ey W) (r,K)] Ve,,, (' )

Ve () + W8 (0 We, (1,0 | (4.72)

where G is here the free space bulk Green’s tensor (A.32). We find the coefficients
by solving the boundary conditions at each interface, see Egs. (4.32) and (4.33) where we
find that a2/“ and b’ " are given by the same expressions as in the single-point correction
derivation, see Eq. (4.35).

When neglecting multiple scattering, the Green’s tensor G consists of three parts:
(1) the direct propagation from source to absorption G, (2) the reflection at the inner
interface at r = a, G” and (3) the reflection at the outer interface r = R and transmission
through the inner interface, GF, see Fig. 4.4. For our comparison we are only interested
in this latter part of the Green’s tensor. It is easy to identify this term: (1) is already
explicitly known and (2) consists only of terms that diverge in the limit of inner radius
a — 0. So by using G''-G©, dismissing any term that diverges with 2 — 0 and keeping
only the lowest order in R (such that higher order scattering at » = R are neglected), we
end up with the desired propagator GR Itis given by
7, k) ngn(r’, k) + CoWeyy (r, k) Ve, (v, k)

7111’1(
(1K) Wy (1) + dy We (1, ) We,,, (7)), (473)
or in matrix notation, see Egs. (4.55)—(4.56),

. R _ Aéi, Ev ;
IimG™ = @ 8k ( g ) , (4.74)
nmo

a—0
n=1m<l,0 w

!}

with

&y = — (27in( =1 (4 (427 +2) + u(dx* — 8" + 32" + 4x —2)
—2x(1 = 2x)*(x* = 3x +2)) — iy (—8p* (x — 3) + 44
+ y(—SXZ +8x —3) +4x* + 2)+ ynf(yz(sz —8x +3) +4y3
—2u(8x° — 287 + 21y — 9) — 4x* + 8’ — 3" — 4x +2) —4(p — )nf) /D,
(4.75)
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Figure 4.4.: Scheme for the considered three-layer system: the second layer consists of
chiral medium, while the other two are considered to be free space. For source
and absorption inside the inner layer, the Green’s tensor consists of three
parts: direct propagation in free space G, reflection at the inner surface G
and finally reflection at the outer surface GX.

& = 27ip(p = m)) (= p(p(ax* —2) +4x* +212° +2)
+ (44 + (8 +21) —4x° +2) —4(u — 1)} ) /D, (4.76)

D = 2kR® (p (20 = 4% +1) + (4 + 2)n3)2 (r(2n=2+4) + (+2m7) . 477)

and d, = ¢, d,=¢

%

(4.78)

, .
X—=—X X—=—X

The result lim GR is the exact local-field corrected Green’s tensor in a chiral sphere for
a—0 p

a single reflection at a the boundary and with source and absorption at r = 7’ = 0.

Solution for a chiral sphere in free space

Next, we derive the Green'’s tensor for a similar system, without the inner free space layer,
see Fig. 4.3. As the derivation follows exactly the same steps as the more complicated
preceding three-layer version we do without a detailed calculation here. Analogously
as before, we may form an ansatz for a source inside the chiral sphere and absorption
in the two different layers, then solve the boundary conditions and neglect higher order
scattering at R by keeping only its lowest order. With this we obtain the Green’s tensor
for single reflection at R as

~ R i3u c, d,
G = 2 / / . (4-79)
n=1m<1,0 4re (k+ + k—) Cw dw nmo
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The remaining coefficients are given by

/ I (Byzx+(2y+1)n3+3n‘3‘x+ynr (y—z ()(2+2>))
Cy = — ’ (480)
167, R>w* (n, + x)° ((y +2)n + pn, (2;1 — X+ 4))

27y (1} — 1)

Coo = , (4.81)
1670m Rw* (n, = ) (n, +x) (1 (20— 1* +4) + (4 +2)7)
d;/w = C;v/v . (482)

X=X

The Green’s tensor GX describes a single reflection at a the boundary inside a chiral
sphere and with source and absorption at r = r' = 0.

Comparison

We may correct the two-layer solution Gf)\’ via C, and find that this results into the same
local-field corrected Green’s tensor as the analytical calculation given by Eq. (4.74), i.e.
we find that

CroGrioCy =1imGY,, VA A € {em} (4-83)
a—0

where the subscripts A, A" denote the respective dual Green’s tensor, defined by Eq. (4.15).
This verifies the suggested method for local-field correction in a chiral medium in this
special case. At the same time, when applying the LFC matrices to the bulk Green’s
tensor we find the known megneto-electric corrections in the limit of y — 0. While
there exist alternative suggestions for LFC matrices that seem intuitive from the way we
derived them in this section, none of them passes all the validity checks that one can do.
Summarised, these validity checks are: hold for all A,A" € {e,m} when applied to the
bulk Green’s tensor in the limit of x — 0 and hold for all A, ANoe {e,m} when applied
to the special case of a chiral spherical layered system. We conclude that the diagonal
correction matrices can be interpreted as transmission matrices through infinitesimal free-
space spheres which can be applied to any Green’s tensor with source and/or absorption
inside a chiral medium to find its local-field corrected version.

4.3. Discrimination inside a medium

We are now equipped to look into the RET rate involving chiral molecules inside different
media, including chiral materials. We restrict ourselves to the task of distinguishing left-

and right-handed acceptors. All considered schemes are illustrated in Fig. 4.5. We first
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Figure 4.5.: Schemes of the considered setups for discrimination: a) We consider a donor
molecule D with known handedness and an acceptor A with unknown hand-
edness in free space. b) We consider a local-field corrected magneto-electric
medium surrounding the system of a). ¢) We introduce chirality into the
medium itself. The medium can hence actively discriminate the acceptor’s
enantiomers and the donor may be achiral. d) Finally, we model a very dilute
medium by just considering a single, possibly chiral mediator molecule M as
environment.
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4. Chiral Resonance Energy Transfer

revisit the free-space case, where we introduce a measure for the degree of discrimination
and discuss what is necessary to distinguish the acceptor’s enantiomers in general. We
then place our system into a magneto-electric medium and derive the medium’s proper-
ties necessary to enhance the degree of discrimination. We derive analytic functions for
the rates inside different media, which enables us to predict properties leading to maxi-
mum discrimination. We analyse absorbing dielectric media with complex permittivity in
detail. Next a LFC-corrected chiral medium that surrounds the system is considered. The
chiral property of the medium can be used to actively discriminate unknown enantiomers
and we discuss the most beneficial set-up for successful discrimination of the acceptor’s
enantiomers. We conclude by considering a single chiral molecule in close proximity to
the donor and acceptor pair as a limit of very dilute gases surrounding the system.

4.3.1. Discrimination in free space

We first revisit the RET process in free space, see Fig. 4.5a. We demonstrate consistency
between our framework and free-space QED. We then characterise the degree of discrimi-
nation of RET by determining the discriminatory and nondiscriminatory contributions to
the total rate. In free space this degree is completely determined by the involved molec-
ular transition dipoles. We show that in contrast to the overall rate the discrimination
benefits from large separation distance. We then introduce a suitable concrete example

of chiral molecules to apply our theory.

Let us start by verifying the consistency of our framework with the rates derived in

[118], see section 2.3.7. In free space the Green’s tensor is given by

with p = |r, — 7| and k = wy, /c. Inserting this into the derived matrix elements (4.14)
and using the definition of the dual Green’s tensor (4.15) yields

ikp ikp
a2V s s g L A [v2s. v ] Cn
Mee = —tigc? Y d! [k 51]+vlv,] = 4mozd1 d! [v 5 v,v]} S sy
With V x VV = 0, we find for the magnetic contributions:
ikp
mm = —Ho Y mim VXHXVL]4 -
ikp
e
m -V,V .86
47rsoc Z [ ] p (450)
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4.3. Discrimination inside a medium

And with
ikp ikp
(BA)| _ _ v £ (BA) — R vaRa
[VB x G }1] = ;el]kvk47'[p and |:G X VA} i ;el]ka47Tp , (487)
we find
ik P
Mem + Mme = Z 47‘[806' (d?m]A — TF’ZPEI]A> eijkaT . (488)

The matrix elements (4.85), (4.86) and (4.88) for free space are the same as the ones derived
in [118] from free-space QED, recall section 2.3.7.

The total rate for an isotropic system is given by Eq. (4.18). The only quantity that is
sensitive to the acceptor’s handedness is its rotatory strength R,. Its sign depends on
the enantiomer. We hence find that in principle any rate contributions I',_ ,,» & R, and
[ hear &« Ry are sensitive to the acceptor’s handedness as well. These contributions are
of two different forms,

Fem/\)\ & RA|dl)?‘2 Tr {Ge)x : G:;l];\} ’ (489)
rem)\l/\z & RARD Tr [Ge/\l ’ G:nj;\z} ’ (4-90)

with Ay # A, and analogously for I'_, .

In agreement with the Curie symmetry principle [117] contributions of the first kind
vanish in free space, Tr [Ge A anﬂ =Tr {Gm e GZﬂ = 0, YA. Only contributions that
emerge from the chiral properties of both, donor and acceptor, i.e. that are proportional to
RARp, can discriminate the acceptor’s enantiomers. We hence do not distinguish between
left- and right-handed acceptors but between same- and opposite-handed acceptors rela-
tive to the donor. In conclusion we need to know the donor’s handedness (i.e. the sign of
Rp) to distinguish between left- and right-handed acceptors.

We assume from here on out that the donor’s handedness is known and without loss of
generality we assume that the donor is left-handed. The total discriminatory contribution
is given by

rdiSC = remme + rmeme + Femem + rmeem 4 (491)

and the remaining non-vanishing terms add up the nondiscriminatory rate contribu-

tion,

Toa = Y T, - (4-92)
A

yielding the total rate for left- and right-handed acceptor’s via I't ;g = I'ng & |Tgisc|-
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4. Chiral Resonance Energy Transfer

By using the free-space Green’s tensor (A.32), we find for the rate contributions

RpRy r2w? ot
Fgise =Pp—552 (3 +2—+2— |, (4-93)
dise p187'cc2€(2)h2r6 ( ¢ ¢t +93
_ Y A2 D2 A2 4D |2
Moa = Jtorns {3 (1a2Pld2 + i P o)

2.2 4 4
A2 A2 D2 D2\ |WT w'r
+ (1a2 P+ |dnl?) (1d0 P + |dnl )[ s ” (4:94)

where r = |rp —rp| and w = wy. We define the degree of discrimination S as the
relative difference between the two rates,

1-‘L - 1_‘R o 1_‘disc

S = = .
I'p+Ir Tha

(4.95)

The rotatory strength is given by |R,|/c = Im [d; - dy,] = cos(6,)|d.]||dy,|- The contribu-
tions relative to each other are hence determined by the angle 6, and the ratio |dy,|/|d;|,
x € {A,D}. Let us for simplicity assume that donor and acceptor are the same molecule,
such that

del'p 2 ldm|® rot | rtet
ljie = ——5—5—-cos 0 342 +2——1, (4.96)
dise 187eln*r® |d,|* ¢ ¢t +9
2
de[*p | |* || [wzrz w4r4}
Tg=-—1elf Ia(14 + {1+ + . (4.97)
4 367‘[6%7121’6{ \d, |* \d, | 2 ¢t } +97

Usually the magnetic transition dipole moment is much smaller than the electric one,

|dn| < |d,|. We may use this to approximate the degree of discrimination,

|y |* 3 + 2377 + 2k*
d,)* 3+K ikt

|de

S~ 2cos’ 0

(4-98)

where we can identify that S assumes its lower bound in the nonretarded and its upper

one in the retarded limit. They are given by

2RpRy 2 o ldm?
= DA .S, 0”25, . (4.99)
2, D2 A2 2 r—00 r—0
c’lde |[*|de | d.|

r—0

Although the absolute rates rapidly decrease with the separation distance (~ %) the
discrimination is stronger by a factor of approximately 2 in the retarded regime, see
Fig. 4.6.

To provide plots for the presented analysis of chiral discrimination via resonance en-
ergy transfer, we choose the example of 3-methylcyclopentanone (3MCP) [171-174]. It
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Figure 4.6.: a) The nondiscriminatory and discriminatory rate contributions for the exam-
ple of 3MCP in free space as a function of separation distance r. In 3MCP the
transition frequency is given by w/c = 2.15 x 1077 m™". The rates rapidly
decrease as a function of the separation distance. b) The free space degree
of discrimination as a function of the separation distance r in the example
of 3MCP. While the rate itself decreases with distance, the discrimination in-
creases. The dashed lines mark the nonretarded and retarded asymptotes.

features a transition with a rather large magnetic transition dipole (|d,,| = 3.31 x 1077
Cm) compared to its electric transition dipole (|d,| = 7.9|d,,| = 2.44 x 10! Cm). This
leads to a relatively large rotatory strength R/c = cos6|d,||d,,|, where cos@ = 0.98 ~ 1.
The transition frequency is at wy; = 6.44 x 10" s™!, which corresponds to a wave number
in free space of ky = w/c = 2.15 x 10’ m ™' In this example we find that the asymptotes
are given by S, .y =~ 3.7% and S,_,, =~ 7.4%. This means that the relative difference
between left- and right-handed excited acceptors after RET took place is only roughly 4%
to 8%, depending on the separation distance. The RET rates as well as the full degree of
discrimination as functions of separation distance are shown in Fig. (4.6).

4.3.2. Discrimination in a magneto-electric medium

We have seen that in free space RET can in principle be used to discriminate chiral
molecules. However, the effect is quite small and in free space completely determined by
the involved molecules. We want to enhance and gain control over the degree of discrim-
ination by considering a medium surrounding the system, see Fig. 4.5b. We show the
impact of the LFC on an example to demonstrate its importance. The optimal dielectric
property of the medium for discrimination is derived, additionally we show that even
commercially available liquids may improve the degree of discrimination significantly.
The general theory is applied to the introduced example of 3MCP.

Placing the system inside a magneto-electric medium with a relative permittivity e and

permeability y, the discriminatory and nondiscriminatory rate contributions consist of
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4. Chiral Resonance Energy Transfer

the same terms as in free space,

I—‘disc = remme + I—‘meme + 1-‘emem + I—‘meem 7 (4-100)
Tha = Y Taan, - (4.101)
Ay

By using the appropriate local-field corrected Green’s tensor for a source and absorption

point inside a magneto-electric medium, see Eq. (2.98) we find the rate contributions to

be given by
|]/l|2|deA|2|dD|2 ZkT(Imn,){ . 414 29
I 4= c n| k" + |n |7k (2Imn kr + 1
nd Framcereimy e 01 (I [*4#* + [, I (20mn e + 1)
+ 4lmnrk*r® +6Imnrkr—|—3>
dP d> |2
2 2 4,4 4 2,22
+ el el (‘ g‘z 4 fg‘z)(zynr| K+ P (ZImnrkr—{—l))
de|* |de|
s|dpl’|dal? 22 4,4 4 2,22
+ 1,00 |dD2]dA| |, |27 (2Imm, kr + 1) + |, | *k*r* + 4lmns k2 r? + 6Imn,kr +3) &,
e e
(4.102)
RARDWZW\ZE_ZIM’M{ 2221, 21 4 (12,21, 12
— kKrle.|"|c n kKro|n,.|” + 2krImn, + 1
disc 187'(C4k27’6€%h2‘1’l,,|4 ‘ e| | m‘ ‘ r’ ( ‘ r’ r )

+ Re [c*zc2 nz} (k2r2|nr|2(2kr1mnr +1) + kY, |* + K Imn? + 6krImn, + 3) } ,
(4.103)

where n, = , /et and c, are the LFC-factors given by Egs. (2.96) and (2.97). They read

Ce = ’ Cm = 7 5. - (4'104)
The rates without LFC can be obtained by setting c. = c,, = 1, the free-space case can be
obtained by additionally setting n, = u = 1.

From this we can calculate the degree of discrimination S in the presence of a medium.
In the nonretarded and retarded limits, they are given by

6RARDRe[c;2c3nnﬂ
550 = 3 4 A2 D2 4 A2, D2y (4.105)
¢ (Blee|"|de || de |” + 3[n,cm " |din | [dim| )
2 2 22 2
2RARD (‘Ce‘ ‘nrcm’ +Re|:ce Cm”r})
Sr oo = (4'106)

2 21 A2 2 3A 2 21 4D2 2, 4012\ °
& (leeP 1 + [mem*ldal) (lecl*d2 + meml*|dnl)
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Figure 4.7.: The degree of discrimination in a surrounding medium as a function of the
separation distance r in the example of 3MCP with and without LFC: Without
local-field corrections the degree of discrimination is overestimated. We chose
u=1lande = 3,ie. n, ~ 1.7 for the medium. The separation distance is given
in units of ¢/ wy = Ay /27 ~ 47 nm.

Assuming that |d,,| < |d,| and that the medium is nonabsorbing (¢, # € R) the local-
field corrected degree of discrimination, see Eq. (4.105) differs by a factor of roughly
Ci / cﬁ to the uncorrected result, see Eq. (4.105) with ¢, = c;;, = 1. For y = 1 the following
applies: 6%1 / cg <1< |e] > 1. In conclusion in most cases the medium’s impact onto the

degree of discrimination would be overestimated without LFC.

This is illustrated for the example of 3MCP in Fig. 4.7, where the degree of discrimina-
tion is plotted with and without correction for a dielectric medium with real permittivity
¢(w) = 3 and trivial permeability u(w) = 1. The impact by local-field correction is of
similar magnitude as the impact of the medium itself compared to its free-space case, see

Fig. 4.6.

However, despite local-field effects an appropriate medium can enhance the degree

of discrimination in general up to S = [], Im[m, - d,]|/(|m,||d,|) = T],cosb, < 100%,
. 2

ropt at which § = cos™ 6

for any two chiral molecules of the same type as a function of the ratio |d.|/|d,,|. If we

where x =A,D. We can predict the optimum refractive indices n

limit ourselves to positive real permittivities ¢ > 0 and trivial permeabilities y = 1, we

find that S = cos” @ for
A |d,|?
=32 4+4/9—2 —8]. .
et = Pl 107)

The optimum refractive indices as functions of the transition dipole moments ratio are

plotted in Fig. 4.8. They each diverge from unity with increasing ratio |d,|/|d,|.

111



4. Chiral Resonance Energy Transfer

100} ! ! ) ife 1 T T T ‘
ol S(l)oo ]
60k 1. /
40} ]
0.10

20p

N max
=y

E|

bounds of S (in %)

E|

(U
0.01 0.10 1 10 100 5 10 50 100

ny, d./d,,

Figure 4.8.: Left: The two asymptotes for the degree of discrimination are plotted as a
function of the refractive index n, = /¢ of a dielectric medium for the ex-
ample of 3MCP. One can identify two maxima where the discrimination is
100% independent of the separation distance. Right: For arbitrary but identi-
cal donor and acceptor molecules we can predict the real refractive indices at
which the degree of discrimination is maximal, they diverge further and fur-
ther from the free space refractive index n, = 1 for increasing ratio |d.|/|d,,|.
The vertical line shows the ratio |d,|/|d,,| for the example of 3MCP.

A maximum degree of discrimination of 100% can only be achieved if the angle 6
between magnetic and electric transition dipole is zero. It corresponds to vanishing ex-
citation transfer to the right-handed acceptor (I'y = 0) independent of the separation
distance. The angle 6 is approximately zero in the case of 3MCP. For sMCP complete
discrimination, S = 100% can then be achieved at ¢(wp) ~ 121.5 (i.e. n, ~ 11) and al-
ternatively but less relevantly for a permittivity of e(wp) = 0.002 (i.e. n, ~ 0.045), see
Fig. 4.8.

In Fig. 4.9 we present the nonretarded and retarded degree of discrimination S, (/e
as functions of a complex refractive index with trivial permeability 4 = 1. In theory,
one may achieve a complete inversion of the discriminatory effect in the nonretarded
limit for Imn, > Ren,. In the chosen example of 3MCP the same-handed rate vanishes,
I'n =0« 5,0 = —100%, for Imn, = 11 and Imn, = 0.045. However, the retarded
limit does not experience such an inversion of the effect. Here the discrimination simply
vanishes with increasing Imn,. In conclusion, it is in theory possible to find a medium
where the direction of discrimination is distance dependent.

Most conventional media may be found around 1 < Ren, < 2 and 0 < Imn, < 1.
Depending on the transition wavelength liquid solutions with 1.5 < Ren, < 2 are known
and commercially available [175-177]. At the transition frequency of 3MCP (wp = 6.44 x
10" s = 4.3 V) some example media are given in table 4.1. If possible, their refractive
indices were marked in Fig. 4.9. An interesting and simple, albeit rather academical
medium example is mercury where the discrimination is inverted in the nonretarded

limit compared to the free-space case. Liquid solutions with resonances at the desired
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4.3. Discrimination inside a medium

frequency as well as fluids based on metamaterials may be engineered to cover a larger
range of the presented parameter space [178]. The choice of an appropriate medium

depends highly on the transition frequency of the chiral molecules of interest.

4.3.3. Discrimination in chiral medium

A medium may enhance the degree of discrimination as shown in the previous section.
However, it can also participate actively in the discrimination assuming the medium itself
has chiral properties. In this section, the system is placed inside a chiral medium with
known handedness, see Fig. 4.5c. We show that the medium can actively discriminate the
acceptor and hence we may even choose an achiral donor and still be able to distinguish
the acceptor’s enantiomers. As shown in the previous section LFCs prove to have a
significant effect on the degree of discrimination. The LFC for a chiral medium has been
derived in section 4.2 and depends on the chiral property of the medium. In this section,
we derive a contribution to the degree of discrimination that stems solely from LFC,
i.e. vanishes completely when disregarding LFC effects and show that this contribution

even dominates in the nonretarded limit of small donor-acceptor distances.

In case of a surrounding medium with known chirality, the discriminatory part of the
rate gains contributions, due to the chiral Green’s tensor (4.69). Terms that vanished in

the achiral medium as well as in free space lead now to a new finite contribution,

1—‘disc?. = 1—‘emee + 1—‘meee + 1—‘emmm + 1—‘memm ’ (4-108)

which is proportional to the product of the chiral parameters of the medium and the ac-
ceptor, I'g;s0 o xR 4, and hence changes its sign depending on the acceptor’s handedness.
As we will see, the sign conventions for the respective chiral parameter for molecules (R )
and media (x) do not match each other in the intuitive way: a negative x corresponds
to an enhanced energy transfer for a positive R,. We hence switch here to a convention
where the signs correspond to each other and define ¥ = —x. We first consider an achiral
donor Rp = 0, such that the discriminatory contributions from the achiral medium study

considered in section 4.3.2 vanish,
D
1—‘discl = 1qemme + I‘meme + 1_‘emem + I—'meem x R™ =0. (4'109)

The remaining non-vanishing terms give the nondiscriminatory contribution, which are
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medium refractive index S, 0 S) e
water 14+10% 5% 10%
biodisel 1.56 +8 x 10 % 6% 11%
ethanol 1.39 +3 x 105 5% 10%
methane 1.44 + 0.071 5% 10%
mercury 0.52 +2.39 ~7% 1%

Table 4.1.: The asymptotes of the degree of discrimination in simple media. The refractive
indices were obtained from [1779]. All considered media but mercury show a
similar refractive index at A = 27tc/wgy; = 292 nm.
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Figure 4.9.: Nonretarded (left plot) and retarded (right plot) degree of discrimination as
a function of real and imaginary part of the refractive index (with y = 1) for
the example of 3MCP. We marked simple media with complex n,: methane
at n, = 1.44 + 0.04i and mercury at n, = 0.52 + 2.39i.
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the same terms as in the previously discussed cases,

Toa = X Than, - (4.110)
Ay
With this we can calculate the rate contributions in a chiral bulk medium as well as the
degree of discrimination analytically. The chiral bulk Green’s tensor including local-field
corrections is given by Eq. (4.69). Using this Green’s tensor to evaluate the rate contribu-
tions I'y »,1,, We can calculate the degree of discrimination inside a chiral medium,

S = @. (4.111)
Iﬂnd

The loacl-field correction for chiral media, derived in section 4.2 introduces differ-
ent correction factors for Gg:;:f) and ng,w) in the orginal chiral bulk Green’s tensor, see
Eq. (4.69). As a consequence they alter the structure of the Green’s tensor and the local-
tield correction does not only give correcting factors to the degree of discrimination but
leads to an additional contribution . Let us only keep the first order of xy < 1, such

that the local-field correction factors are given by Egs. (4.49)—(4.50) and read

Cev/w = Ce T Xcex (4.112)

Como/w = Cm T XCrmy - (4.113)

We may then divide the resulting local-field corrected degree of discrimination S inside

a chiral medium into two contributions:

s =W 4 gl (4.114)
s =5

Cox=Cmy=0" (4'115)

The two contribution are chosen, such that S stays invariant and the degree of dis-

1fc

crimination due to local-field effects S™ vanishes when neglecting the chiral property of

local-field correction, i.e. for c), = cy, = C,.

In first order of x, the degrees of discrimination are given in their nonretarded and
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distance limit achiral medium chiral medium
D discriminates A medium discriminates A
nonretarded 0
without LFC n,S£ _30 /oo
3cx|dy | ot
retarded TDGSLS)‘”
n,c|d>)*x% f
nonretarded R —ﬁ (CeCmy — CmCey) S;i)o
N m
with LFC 155,200 /00 e™D
Ce d° %%
retarded C2’c2e]’Q a4 (3CeCm — MyCimyCe + 1M,CorCrm) st
e™D

Table 4.2.: Asymptotic degree of discrimination S, .,/ for an achiral medium and a chi-

ral medium relative to the free space degree of discrimination S 5 in the

r—0/c0

respective limit, see Egs. (4.99). We approximated |d,,| < |d.|, X < 1 and

assumed that ¢, y, n, € R.

retarded limit by

1
s, =0, (4.116)
* * D,2
g _p 2Re [11; (Cor Cm — CmyC )( 2dD)? + nrck | dn |)]
r—0 = XRA ~7 D2 0o (4.117)
¢ (leel* |2 1?1d7* + |eml* |l din [, | *
D2 x % * D2, * *
0 2Re|leed? Peccin; (2n, +m)) + nyemdy Peecin; (3n, + 27|
5 %00 = XRA P ]2D ,  (4.118)
r e
2|d, |* . .
sie = )(RA{‘DeRe [11,¢5 (CoxCalm — 2CayCoC myCeCe)]
2|n d ‘ * * *
T@Re (11,6 (Cox CmCm — 2CmyCaCm — CmyCalm) ] }, (4.119)
A2 A2 D2 D2
Day = ¢ (Jeed | + nyemdiy*) (leedg | + nyemdpn ) - (4.120)

In the nonretarded regime the discrimination is entirely due to local-field effects, i.e.

S0 = = glfe r—0- The sign of glfe depends on the relative magnitude of the correction factors

and has for most parameter choices a sign opposite to that of SW. This is conceptionally

different to the behaviour derived in achiral media: which handedness is favoured by RET

depends here generally on the intermolecular distance. In an achiral medium we found a

similar behaviour only when considering exotic refractive indices n,, where Imn, > Ren,,
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Figure 4.10.: The asymptotes of S = S M 4 s inside a chiral medium including local-

field correction. The contribution " which is due to the local-field correc-
tion has usually an opposite to the main contribution s and even domi-
nates in the nonretarded regime.

see Fig. 4.9. This is also shown in table 4.2, here we give the asymptotes of the respective
degree of discrimination for real material parameters and in an approximate form in the
different limits, with and without local-field corrections and in achiral and chiral media
in table 4.2. Within these assumptions, i.e. |d,| > |d,|, x < 1 and ¢, i € R, the degree of
discrimination inside achiral media takes a quite simple form, while the expression stays
quite involved for the chiral medium.

Let us restrict ourselves to simple cases of chiral media, where the permeability is
trivial, = 1 and the permittivity is real and positive, ¢ > 0 = n, = /ey > 0. The
asymptotes of the degree of discrimination S, ,j/o, = 5520 /oot Sifio /oo inside a local-
field corrected chiral medium are plotted for the example of 3MCP in Fig. 4.10. The
nonretarded limit S,_,, is then proportional to Sifio & —4xR,(4n7 — 1) and is hence
negative for n, > 1/2. While there are choices of parameter where in the retarded limit
Sie . < 0 the total retarded asymptote is given by thesum S, _,, = Sie o+ sﬁﬂw which is
usually positive. This means that in this parameter regime if I'y (¥ — 00) > I'y(r — ) in

one limit of distances then I'y(r — 0) > I';(r — 0) in the other due to local-field effects.

An even stronger discrimination may be achieved by additionally considering a chiral
donor with known handedness. Then we find a second contribution to the discriminatory
rate g1 < RpRp given by Eq. (4.103) and the nondiscriminatory rate gains a negligible
contribution that is proportional to XRp . The degree of discrimination for known chiral
donor and chiral medium behaves therefore approximately additive. This can also be
seen in Fig. 4.11, where the degrees of discrimination for all these cases are shown in
comparison to each other for the example of 3MCP.

117
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Figure 4.11.: Degree of discrimination in comparison to each other for all cases as a func-
tion of the the separation distance. A dielectric medium with conventional
properties may enhance the discrimination between chiral donor and accep-
tor. A chiral medium can actively discriminate the acceptor molecule, even
when considering an achiral donor. If both, medium and donor, are chiral
the resulting discrimination is approximately given by the sum of the latter

two cases.
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4.3. Discrimination inside a medium

4.3.4. Discrimination in the presence of a chiral mediator

So far, we have considered dense continuous media surrounding the system that are well
described by their macroscopic properties. This model fails in very dilute gaseous media.
The environment in the dilute-gas limit is rather modelled by single molecules surround-
ing the system. In this section, we study chiral discrimination in the presence of a single
ground state mediator, see Fig. 4.5d. We consider the mediator to be possibly chiral. On
the derived expressions we discuss the results for different combinations of chiral and
achiral participants for the degree of discrimination. We show that even a single media-
tor may have an impact onto the discrimination. The effect is highly position dependent
and we show the mediator’s impact on the total rate as well as on the discrimination as
function of its position for the example of 3MCP.

In the limit of dilute gases the medium is rather modelled by N mediator molecules.
Electric mediators can be treated by including them into the Green’s tensor, see sec-
tion 2.3.3 via their electric polarisability. Here, we extend the theory to chiral mediators.
We apply from the start some useful assumptions: (1) isotropic transitions of the media-
tor molecule, (2) the molecule’s separation distances larger than their size, such that we
may approximate the mediator as point-like and (3) the dilute-gas limit of the Clausius—
Mosotti relation as a good approximation.

To find the Green’s tensor in the presence of a single chiral mediator we employ the
Born-Oppenheimer approximation, see section 2.3.3. The Helmholtz equation inside a
chiral medium is given by Eq. (2.72) and reads

1 w X w X w? Xz ! /
VX -VX+—=2VXx+-Vx=——e-"||G(r,r)=06r—-r)1. (4121)
K CH ¢ Booc H

Let us assume that the deviation of ¢ = 1+ {..(r), 1/p = 14, (r) and x/p =
ilem(r) from their free space values are small, but at this point we allow them to be
tensor valued. In free space the solution of the Helmholtz equation is given by the free-

space Green’s tensor (A.32), such that

5 GO, vy =5(r— 1. (4.122)

2
[VxVx—w
c
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4. Chiral Resonance Energy Transfer

We hence can construct the solution to (4.121) via
G(r,7) =G (r,r) - /d3s GO, 8) [V, X L (8)V,x] G(s,7)

G(s,r')

2
+ /dBS G(O)(TIS) ’ [C;ngee(s) + O(gi)\')

1 [ @560 (r,8) - [Leum() V0 % + 0V, % G ()] Gl 7).
(4.123)

In first order of {, ,/ this can be calculated as a closed expression,
G(r,r') = GO(r,+') — / EsGO(r,8) - [V, X L (8)V.x] GO (s, 7))
2
w
+ [ &6 (r,s). ch;ee@) + @@im] G (s,7")
i [ @560 (r,8) - [Clum() Vs % + 0V % G (5)] 6 (5,7)
= G(O)(r, r') + /das G(O)(r,s) X Vs Cmm(8) - Vg x G(O)(s, ')
2
w
+ /dss ?G(O)(TI 8) ’ Cee(s) ’ G(O)(Sl T/)
“/ d’s 26" (r,5) - Lem(s) - Vo x 6 (s,7")
—i / d’s SG"(r,5) x V- Lam(s) - G (s,7"). (4-124)
The Clausius-Mosotti law in the dilute-gas limit reads

Lo () = ”(:’M (4.125)
where a, ,/ is the dual polarisability tensor and 7 () the number of density of atoms in the
gas. We now introduce the remaining assumptions into the expression: the polarisability
tensor is isotropic and hence proportional to the identity and each surrounding molecule
is at a sharp position that is well approximated by a delta-distribution. We then find in

lowest order of the Born-expansion the dual Green’s tensor for N mediators to be

N
0 M.
GAl/\z (TAI TD) = G/(\l))\z (TA/ T‘D) — ZGMI/\Z (TA, ’I‘D) , (4,126)
1
0( ! 0 0
GI}Y{AZ(TA, Tp) = Z %Ggl))‘(m, M) -CG(A,)AZ (s D) (4.127)
AN

where G is the free-space Green’s tensor and the dual polarisability at the donor’s
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4.3. Discrimination inside a medium

transition frequency is in analogy to its pure electric version, see Eq. (2.140) given by

(0ld, k) - (k|d, !0>+<0\dﬂk>'<k\dﬂ0>>
Wi + wp + 17 wy —wp+iy

oy (w 128
w(wp) = = Z ( (4.128)
where w; are the respective transition frequencies and 1/, the respective lifetimes. Let
us additionally assume that the mediator possesses a transition in resonance with wp,

such that there exists a k with w; = wp. The resonance then dominates the polarisabil-

ity:

1 <(0]dA]k> - (kld,[0) . {Old[k) - <k’d2\’0>), (4.129)

T 2wp + ik Yk

such that a.;, = —a. < Ry. The linewidth <, is given by the decay rate of state k: 7, =
Y, woldy|?/ (3¢ wegh). The decay rate 7y, is much smaller than the eigenfrequency wy =
wp, hence Rex  ,» < Ima,,,. We focus on the case of only one mediator molecule. Using
the general rate equation (4.17) together with the Green’s tensor given by Eq. (4.126) we
can calculate the rate and divide it into three different parts, such that

I' =Tpa +I'pa-pma +I'pma (4.130)

Tpoa =Y Th i, - (4.131)
I'pa-pma = Fﬁfﬁz% A (4.132)
Toma = LTXAAA, (4-133)

where I'p, and I'pya are the rates from direct and mediated transfer, respectively, and
I'ba_pma is their interference term. The individual contributions are given by

270G, A Awr, Ds gD 0 0)+T
Dy, = %(dh ~dy))(dy, -dy,) Tr [Gﬁl)h(m Tp) - GE\z)/\s (Tas TD)} , (4.134)

AA 27 Ax Dx D
DA, = gzy 0 (d ~dy) ) (dy; - dy,)an a,
0 0)xT 0)*T
x Tr [Gg\])M(rA, rp) .Gga)M (rvy D) - GE\Z)M (ra, rM)] +c.c., (4.135)

2
/\a/\b/\f/\d — 27-[]0]’[0
AMAyAsAy o2

A JAsy, 4D 4D
(dy, - dy,) ) (dy] - dy,)ay 2 @2,

« Tr [G&?Ad(rA, ) -6, (ryr o) - GO (g ) - G (s TM)} .

(4.136)
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4. Chiral Resonance Energy Transfer

We find that several contributions vanish. As in the free-space case, we find that

rem)u\ = I—‘me/\/\ = FA)\em = r)\/\me =0 (4137)
in agreement with the Curie symmetry principle.

In principle we might expect terms that depend on all three handednesses. However,
these contributions vanish. This may again be explained via the Curie symmetry prin-
ciple. We prove this by contradiction: Let us assume that contributions proportional to
RARpRy do not vanish and let us assume we do not know any participant’s handedness.
Then we would find that the rate involving only left-handed molecules I';;; contains a
positive term proportional to Ry RpRy;, while I'ggg contains the same term with opposite
sign. Hence one could measure I';;; > I'rrr and would be able to distinguish these two
cases without prior knowledge of any handedness. This would be in contradiction to the
Curie symmetry principle and we can conclude that these contributions need to vanish
for any system.

In case of an unknown acceptor enantiomer we hence obtain two different discrimina-
tory rates, one where the donor discriminates the acceptor I’Eisc & RpRp and one where
the mediator discriminates the acceptor Fg/{sc & RpRys. They are given by

D
I_‘disc = 2 [remem + 1—'meem + 1—‘meme + 1—'emme
AA AA AA AA
+ 1—‘emem + 1—‘meem + l—‘meme + 1—‘emme

AN A AN A AN A AN A A A A A A Ay A, A
+ remem + rmeem + rmeme + remme + rm]en2161 2 + reI]nI%GZ 1] 4 (4138)

Wlth Al ?é )\2 and

M
Tise = ) [Temar + Temar & Fmean + Imean

+ I—-gm)xl/\/ I—-Lne)xl/\’ + I—-em/\//\’ I—-me/\’/\’

mir T Lemad meAd T LmeAr
AN em A'A'me A'A em A'A'me
+ rem)x)x + rem)\)\ + 1—‘me)\/\ + 1_‘me/\/\ ] . (4139)

The remaining non-vanishing contributions form the nondiscriminatory rate, I' 4.

In the nonretarded regime (r;w/c < 1 for all intermolecular distances) the discrimina-
tory and nondiscriminatory rate contributions are dominated by terms of I'py,, that are

of the form of Eq. (4.136). The degree of discrimination in the this limit is independent
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4.3. Discrimination inside a medium

of the specific geometry and reads

Sr50 = 5150+ S0 (4-140)
w 2RaRy (1d0 P + [dn Pl )
St = 5 : (4-141)
2RuR (|2 + R/ )
550 = D ’ (4-142)

2, A 12 4D2) M4 A2) M2 A2 sD12p2
D=c ‘de‘ ‘de’ ’de ‘ +2’de’ ’de ‘ RpRy + ’de’ ‘dm’ Ry
D2 ;A 12p2 A2 M2 21 A 21 4D 12 M |4
+ ‘de| |dm‘ RM—|—2’dm| ’dm‘ RDRM+C ‘dm’ ’dm |dm ’ (4143)

where we defined SM/ b

as the degree of discrimination due to the active discrimination
by the mediator/donor. Even with an achiral donor molecule (Rp = 0 = SP = 0) the
acceptor can be discriminated by the mediator and in the nonretarded limit the degree
of discrimination due to the mediator SKO(RD = 0) is the same as the free space de-
gree of discrimination with a chiral donor, see Eq. (4.99). Since usually |d,| > |d,,| the
mediator’s discrimination s?io dominates even if the donor is chiral itself. Hence, the
degree of discrimination in the nonretarded limit S,_,; ~ SEA ", is approximately not af-
fected by the mediator’s presence in the nonretarded limit. When the mediator is achiral
Ry = 0 = M = 0) the degree of discrimination is even suppressed by the mediator
in the nonretarded limit as the nondiscriminatory rate is more enhanced than the dis-
criminatory rate. In contrast, in the retarded limit (applied to all distances) the rate is
dominated by I'p,. The degree of discrimination in this limit is therefore approximately
the same as without the mediator, see Eq. (4.99).

Between these two distance limits, applied to all intermolecular distances, the impact
of the additional mediator onto the system depends on the specific geometry. In general
the presence of the mediator has two effects. It influences the total rate of RET as well
as the degree of discrimination. In Fig. 4.12 and Fig. 4.13 the impact of the mediator on
both are shown for the example of 3MCP. In Fig. 4.12 donor and acceptor are placed at a
nonretarded distance to each other, rpywp/c = 0.1 while in the Fig. 4.13 they are placed
at a retarded distance rppw/c = 5. While in the nonretarded geometry any mediator po-
sition enhances the total RET rate significantly, the degree of discrimination only changes
up to £3% compared to the free space rate. However, in the retarded geometry a single
mediator molecule may enhance the degree of discrimination significantly. A preferable
position would be in between donor and acceptor, where the total rate may be enhanced
by a factor of 2 while the degree of discrimination gains around 50% compared to the
free-space case.

In this section we focussed on the process where the excitation is transferred to the
acceptor within the considered order of perturbation. Especially when considering a me-
diator that is in resonance with the transferred energy, the mediator itself can become

123



4. Chiral Resonance Energy Transfer

1.0] §

0.5

0.0

y/pa

-0.5

-1.0

y/TDA

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
x/tpa
[ S T
104 108 1014 1016 -2 -1 0 1 2 3

Figure 4.12.: Influence of the mediator in the nonretarded regime as a function of its po-
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sition for the example of donor, acceptor and mediator being 3MCP. Donor
and acceptor are placed on the x-axis at xp = 0 and x5, = 0.1c/w ~ 5 nm.
Left: The rate I in the presence of the mediator relative to the rate I'y without
the mediator as a function of the mediators position. Right: The change in
the the degree of discrimination AS = S — S, in the presence of the mediator
relative to the degree of discrimination S, without the mediator.
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Figure 4.13.: Influence of the mediator in the retarded regime as a function of its position
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for the example of donor, acceptor and mediator being 3MCP. Donor and
acceptor are placed on the x-axis at xp = 0 and x4, = 5c¢/w =~ 230 nm.
Left: The rate I in the presence of the mediator relative to the rate I'y without
the mediator as a function of the mediators position. Right: The change in
the the degree of discrimination AS = S — §; in the presence of the mediator
relative to the degree of discrimination S, without the mediator.



4.4. Conclusion

the acceptor. Additional processes and higher multipoles (such as quadrupoles) have

been considered in (chiral) resonance energy transfer in the presence of an achiral medi-

ator [55].

4.4. Conclusion

Resonance energy transfer can be used to discriminate between left- and right-handed
molecules, provided that an object with known handedness participates in the process.
In our framework, we have recovered the known result that a chiral donor with known
handedness can discriminate a chiral acceptor in free space. RET between same-handed
molecules is more probable than that between opposite-handed ones. The magnitude
of the degree of discrimination depends entirely on the involved electric and magnetic
transition dipoles and the intermolecular distance. While the rate itself rapidly decreases
with distance, the discrimination itself roughly doubles in the retarded regime of large
distances. We derived analytical expressions to consider a continuous medium surround-
ing the system. We showed that an appropriate medium may enhance the discrimination
significantly and discussed the importance of local-field effects onto the correct predic-
tion of the discrimination. We showed that in theory a suitable medium may lead to
maximum discrimination, where RET only takes place between same-handed molecules,
but also that an appropriate medium can inverse the discriminatory effect in the non-
retarded limit, such that the opposite-handed rate is larger than the same-handed one.
Since this is only the case for small distances, the discrimination changes its direction
as a function of separation distances in such a medium. We worked out the local-field
correction in the Onsager real-cavity model for chiral media, in which left- and right-
circularly polarised light propagates differently. We showed that a chiral medium with
known handedness can itself be used to actively discriminate chiral acceptors, even for
achiral donor molecules. The local-field correction of a chiral medium was shown to have
a nontrivial impact on the degree of discrimination. The discrimination may change its
direction as a function of the separation distance solely because of local-field effects. A
similar effect was studied in 2017 by Barcellona et al., where a chiral surface is consid-
ered to assist the discriminating Van-der-Waals force between two chiral molecules [180].
Also here, depending on the system—surface distance the chiral medium could result in
an either additional attractive or repulsive force, while the sign of the free-space force
between the chiral molecules is distance-independent. We discussed a large parameter
space of media properties, where recent advances in designing different exotic media
based on metamaterials might provide applications with interesting properties in the
future [178].
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4. Chiral Resonance Energy Transfer

Finally, we have considered the limit of dilute gases where the medium is instead
modelled as N surrounding mediator molecules. We calculated the discrimination in the
presence of a single chiral mediator molecule as a function of the molecule’s positions. In
the nonretarded limit, the rate is completely dominated by the mediated transfer. Assum-
ing that donor and mediator are the same chiral molecule with known handedness, the
discrimination is approximately unaffected in the nonretarded limit. An achiral mediator
even suppresses the discrimination in this limit. In the retarded limit, the mediated trans-
fer becomes negligible and the discrimination is the same as in free space. In between
these two limits the discrimination is given by nontrivial position dependent functions.
In general, in the distance-regime close to the retarded limit the discrimination is much
more affected by the mediator as in its counter regime of small distances. For the exam-
ple of 3MCP we found that in the regime close to the retarded limit, the discrimination
can be roughly doubled by a single mediator, when placing the mediator in the center
between the donor and the acceptor molecule.

We have used the Onsager model of the real cavity here to account for local-field ef-
fects in chiral media. The effects of the resulting corrections on the discrimination are
nontrivial. Future work should investigate other models for local-field correction, such
as the virtual cavity model. It would be interesting to see if they lead to similar con-
sequences for the discrimination. While here we have studied the effects of a solvent
permeating the molecules, the analysis can be extended to solids separating donor and
acceptor molecules. Thanks to metamaterials, such a system, where the solid can have

exotic properties, could be quite easily accessible experimentally.
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OPEN QUANTUM SYSTEMS APPROACH TO
RESONANCE ENERGY TRANSFER

While Fermi’s golden rule offers a simple way of obtaining the rate of a given process in
its lowest order via perturbation theory, an open quantum systems approach allows in
principle for an nonperturbative analysis of the system’s dynamics. In this chapter, we
derive the transfer rate via open quantum system methods as an alternative to Fermi’s
golden rule and show how the mixture of both, perturbative methods and open quantum
systems, can lead to new insights into the studied dynamics. The work presented here
marks the starting point of a study where both frameworks shall be used in conjunction
with each other, exploiting each framework’s strength, to study energy transfer processes

in the presence of macroscopic media.

We start by deriving the elementary spontaneous decay rate and resonance energy
transfer (RET) rate first from Fermi’s golden rule in section 5.1, then from an open quan-
tum systems approach in section 5.2, where we also employ perturbative calculations for
the RET rate. We show that both approaches yield the same result, although based on
slightly different assumptions.

In section 5.3.1, we develop an alternative perturbation scheme from the master equa-
tion by splitting the master equation in an alternative way into homogeneous and inho-
mogeneous parts. The incoherent but homogeneous part of the master equation in this
scheme is then solved nonperturbatively. We hence call the scheme incoherent pertur-
bation scheme. The incoherent perturbation scheme can then lead to corrections to a
variety of quantities by means of energy shifts and damping constants in comparison to

the ordinary perturbation scheme.

As an important but simple example, we show in section 5.3.2 the impact of the inco-
herent perturbation scheme on the polarisability tensor. Similarly, other quantities have
been shown to be corrected by the system’s incoherent dynamics as well. In particular in
the calculation of Van-der-Waals forces between an excited and a ground state particle,
it was shown that two different results can be obtained depending on whether damp-
ing constants are included or not. These two complementary results derived in several
works can be interpreted as one being the force acting on the ground state particle, while

one acts on the excited one [181-187]. Due to the additional recoil the excited particle
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5. Open quantum systems approach to resonance energy transfer

experiences when spontaneously emitting a photon the force on the two particles is not
necessarily symmetric. We show in section 5.3.3 that the full decay rate of a two-particle
resonant system shows an analogous behaviour: when considering spontaneous decay
explicitly as part of the decay the full decay rate of the donor oscillates as a function of
the donor—acceptor distance while the full transition rate of the acceptor behaves mono-

tonically as a function of distance.

To be able to describe incoherent dynamics of the system’s state, the open quantum
systems approach requires the use of density matrices. Fermi’s golden rule however is
usually formulated for pure states. In the last section of this chapter we extend Fermi’s
golden rule to density matrices and hence mixed states and derive from this as an ap-
plication example superradiant resonance energy transfer as a function of the degree of
entanglement between two donor particles sharing one excitation.

5.1. Fermi’s golden rule approach

We start this chapter by deriving the RET rate and spontaneous decay rate via Fermi’s
golden rule. Fermi’s golden rule is most commonly used for transition rates of various
kinds due to its simplicity and is based on perturbation theory. Its compact form is its
strength but also its weakness. It does not allow for a lot of adjustment. As we will see in
comparison to the open quantum systems approach that follows thereafter, the method
via Fermi’s golden rule is much faster. The calculation shown in this section in detail has
been outlined in the theoretical background in section 2.3.5 and 2.3.6. In section 5.2, we
use the rate expressions obtained here for comparison with the ones obtained via an open
quantum systems approach and in section 5.4 we extent Fermi’s golden rule to density
matrices and employ the results of this section to derive superradiant RET.

A process rate via Fermi’s golden rule, see section 2.2.2, is given by

2
, (5.1)

2

where My; is the transition matrix element. Using perturbation theory, see section 2.2.2

we can calculate My; in different orders. In first and second order it is given by

M = (F] A ), (52)
A, | k) (k| Hy,|i
p - p Ul C1Aul)

with |i), |f) and |k) being the initial, final and intermediate states, respectively.
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5.1. Fermi’s golden rule approach

We first revisit the derivation of the spontaneous decay rate I'y in vacuum in detail, see
section 2.3.5. Spontaneous decay is a first-order process on the level of transition matrix

elements for a single excited particle. Its initial and final states are given by

1) = le)a {O})g (5-4)
f) =18)a [1a(r, w))g , (5-5)

where | ), /g is the atomic/field state. We only consider electric coupling of the multi-
polar coupling Hamiltonian in the long-wavelength approximation,

A

Hia - —d . E . (5.6)

In our decomposition the single Fock state |1, (r, w)) is vector-valued in position space.
Each vector component of the transition element then reads

(FIHli), = — (gldle) - (1) (7, ) | B (r4)|{0})
-y / &7 / dw'dl) G (rp, 7', 0') (O} £ (r,0)) F0 (0, 0 {O})
.

= Z/d3r' / dw/dge) Gf\i/j)*(rA, v, ') 66(r —r')6(w — w')s)
/\/
== {dge 'G}:* (r, TAIW)]I , (5.7)

where we have used the properties of the field’s fundamental operators, see Eqs. (2.46)-
(2.48) and the Onsager reciprocity (2.37). This yields for the spontaneous emission rate

2 *
rs = ;;;Z/dBT/ dw&(w _weg)dgg . G('I”A,’r,w) ®GT <’I",’I°A,a)> ) dgg
A

_ 2o

7 wfgdeg IMG(rp, o, Weg) + doe (5.8)

where we have used the Green'’s tensor’s integral relation (2.38). In free space, we recover
the usual result, see Eq. (2.160) by substitutiting the free-space Green’s tensor (A.32) into

the equation,

3 2
1_.(0) o o weg‘deg|

s Yeg = 37‘££Ohc3 : (5.9)

Next, we revisit the derivation of the RET rate T, in detail, see section 2.3.6. RET is a

second-order process on the level of transition matrix elements and requires two particles
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5. Open quantum systems approach to resonance energy transfer

in the field. Its initial, final and intermediate states are given by

i) = le,0,{0}) , (5.10)
f) =1g1,{0}), (5.11)
k) € {|g,0,1,(r,w)) ,le,1,1,(r,w)) VA, 7, w} , (5.12)

where |n,m,l) = |n)p |m) 5 |I)g is the product state of donor, acceptor and field state. The

transition element then reads in second order

—— fa o[t ey UDIBDI e IBRON 5 gy,
e
+ 1d0), - OB (V1B ) {0

/
w —w

(gld”le)p |, (513)
eg

where |1') = |1,/(«w',7")) and w,, = w, — wj;, and because of the resonance constraint
w; = wy in Fermi’s golden rule (5.1) it follows that w,, = wyg. With the relation (see

proof in appendix A.2)

/dw//dsrlz ({0} E(r,) 1) (1| E(rp)[{0})
>

/
w +CU10

.I.
E(wy,r) E' (w2, mp)) .
N // dwldwz (%)) + wlo :

_/ - w+wloImG<r”"rﬁ'w) (5.14)

we find
1 1
Wy —wyy Wy + Wy
; At
xdy - (B (wy,TA)E, (W), rD)>vac ’ dge (5.15)
——r%/dw o @ )y MG (74, 1, @) - d (5.16)
o7 w—wy wHwyg) P A TDr 8¢’ >

where we have introduced the transition dipole moments dy, = (1|d*|0), and dg, =
(g|d"|e), and used the Onsager reciprocity of the fields correlation, i.e. of the Green’s
tensor. The first term in M; contains a pole on the real axis and hence diverges, which
stems from the time-independent perturbation treatment. Revisiting its derivation, see

section 2.2.2, one can regularise the pole accordingly via adiabatic switching and finds
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5.2. Open quantum systems approach

(see proof in appendix A.4)

2 2
. w w 2
1 d I = . .
sgr(l) @ (CU — (wlo + i€> + w + ww) mG 7'[(4]10@((010) (5 17)

And this finally results in the transition matrix element

2
MJ(‘i) - _hVOW%OdA -G(rp, mp,wyg) - d”, (5.18)
and hence the rate:
27T W2 2
Iﬂret = ;‘%weg - wlO)% le ’ G(TA/ D, wlO) ) dge : (519)

We may further simplify this result by assuming isotropic dipole moments. The isotropy
can be either the result of so-called isotropic averaging, where we assume that the two
interacting particle do not have a specific orientation to each other or from isotropic
degenerate states in the sum over all final states. In both cases we find that isotropic
transition dipoles can be approximated by d ® d = |d|*I/3. With this we can simplify
the RET rate further

27w *
Fret = 25(weg - wlo)% Tr [dlo - G(rp, Tp, W) - do, @ d,g - G (rp,Ta, wig) - dm}
f

2 21, 2
27t pgwig|deg || dyo|
9n?

= 25(weg — wyp) Ir [G(TA: T, wyg) - G (Tp, T, ‘010)} , (5.20)
f

where we have used the cyclic property of the trace and Onsager reciprocity for the

Green’s tensor, see Eq. (2.37). Substituting the free-space Green’s tensor (A.32) into the

equation, yields in free space

I_.(o) _ 'Yega<weg>

4.4 122
ret PN (k r+kr —|—3) , (5.21)

where r = |rp — rp| is the donor-acceptor separation distance, ¢ is here the photoabsorp-
tion cross section for the acceptor’s ground state, given by Eq. (2.169) and 7, is the free
space spontaneous decay rate (5.85).

5.2. Open quantum systems approach

The goal of this section is the determination of the RET rate via an open quantum sys-
tems approach. We employ the Born-Markov approximation, keeping only second-order
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5. Open quantum systems approach to resonance energy transfer

correlations of the field and end up with a non-unitary evolution of the reduced atomic
system. While the methods of open quantum systems in general enables one to consider
the time evolution of a system in a nonperturbative manner, we still apply perturbation
theory to determine the RET rate in its lowest order from the master equation. We start by
introducing the perturbative ansatz for process rates for an open quantum system. This
results into a rate expression that can be determined by the system’s Lindblad operator.
In the second part of this section we determine this Lindblad operator for our system. We
then derive from this the spontaneous decay rate for an isolated atom nonperturbatively
and the RET rate from the introduced perturbative ansatz in its lowest order.

5.2.1. General perturbative ansatz

We start by relating the time derivative of the system’s density matrix to the process rate.
We then derive the master equation for the system in Markov approximation, where we
only retain field correlations up to second order. We introduce the Fock-Liouville space
for the density matrix to write the master equation in terms of a linear (super)operator.
We finally apply perturbation theory to find the transition probability in second order.

The probability to find the reduced atomic system pg(t) = Trg [p(¢)] in an (atomic) state
py at time f can be calculated by

Pe(t) =Tr {prs(f>} - (5.22)
Its process rate I' can then be determined by the time derivative, such that

d .
L= 2P0 =T {psis(t) } - (523)

We use an open quantum systems approach where we only consider field correlations up

to second order via the Born approximation, see section 2.2.4. The system’s density matrix

in interaction picture pg(t) = eiﬂotpse_iﬁot is then given by the Redfield equation (2.130)
as
- 1/t " 5 ~
folt) =~ [ anTee {[0(0), [V(t),ps(t) @ pe]]} (524
0

where pg = pg(t) is the environment’s initial state and the limit t — t; — oo yields the
full Markov approximation. For a coupling Hamiltonian in interaction picture V(t) =
Y. S,(t)B,(t), where S, are system operators and B, act only on the environment, we
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5.2. Open quantum systems approach

obtain for the master equation (5.24) the more explicit form

7 5 4 1810 8u0s0)] Calt ) + 3015000, $,01) Cntt) |
(5.25)

where Cyy(t,t;) = (B, (t)By(t;)); are the environment’s correlation functions. For equi-
librium states, where [Hg, pg] = 0 we may simplify them by C,, (¢, t;) = Cp(t — 1) =
(B,(t — t1)By)g. Next, we transform the equation back to Schrédinger picture and find

ps(t) = —ﬁ [Ha, ps(t) 2 Z/ dtl{ 1S40, S5 (—T)ps(t)] Cap(T)

T ps(H80(—1), 8] cyx<—r>}, (5.26)

where T = t — t;. In the limit t — f; — oo of true Markov processes the master equation
can be cast into the form

0s(t)) = Do - los()) + L - los (1)) , (5-27)

where D, and £ are time-independent superoperators acting on the Fock-Liouville vec-
tors of density matrices |p)) and Dy is the diagonal superoperator belonging to the un-
coupled system. We can write the vectorised density matrix as

Z Paﬁ'ye :B|D ® ’7> < |A - |pS Z pzxﬁ’ye |06ﬁ’)/€ (5-28)
apye aPye

where |afye)) denotes a vector in Fock-Liouville space. In this basis the diagonal super-
operator D, is given by

Dy - los) = —% [Haps) = Dy=—i(w+w,p) lapre) (apre|,  (5.29)

with w;; = w; — w;. We can formally solve the differential equation

t
Ios(0)) = ™0 Jos) 4+ [ ane™ ) Lo Jos(t)) (5:30)

Using this iteratively by substituting Eq. (5.30) back into Eq. (5.27), we find the second
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5. Open quantum systems approach to resonance energy transfer

order of perturbation to be

os()) & ™) fpg) + [ dtye™ WO 1) - foy)

+ [P WO ) o), (530
W(l)(tl) — . ePolti—t) , (5.32)
W(Z)(tl) _ /dtzﬁ .ePolti=t) |y (Doltr—to) , (5.33)

where we defined the superoperators WW and W, such that we may write the time
derivative of the density matrix as

10s(5)) = Dy - los(5)) + W - Jos(te)) + W - Jos(ty)) (5.34)

which will be a convenient notation for the upcoming derivations. Please note, that we
did not replace |ps(t))) in the first term of Eq. (5.34) with its approximated form. In the
basis of the vectorised density matrix, we can rewrite the master equation, such that

‘ps(t)» = —i Z(wst + wuv)f)stuv(t) |StMU>>
+)° <<stuv|W(1) |oc/3'ye>> Papre(to) [stuv)
+ L (stuel W@ lapre)) pugneto) lstuv) . (535)

w = x dtle it 1) (stuo| L]ijkl) (ijkl| C|aBrye) |stuv) (aBre| , (5.36)

where the sum runs over all state labels.

5.2.2. Determination of the explicit Lindblad operator

In this section we derive the explicit Lindblad operator £ introduced in the master
equation (5.27). In Markov approximation the Lindblad operator turns out to be time-
independent. We divide the operator £ into three different parts and find a common
structure for each coefficient in the Lindblad operator. These coefficients are then evalu-
ated in general in terms of the Green'’s tensor.

In our case, the coupling Hamiltonian reads

Vity=—= Y d,(t) - E,(r,1) (5.37)
ac{D,A}
() =Y Al (hdy), (5.38)
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5.2. Open quantum systems approach

where A,Sf,{ = |m) (n|, denote the atomic flip operators of atom a € {D,A}. Hence, the
correlation functions C,, = C,, are tensor valued and the system operators S, = S, are

vector valued in position space. They are given by:

A A o —i h CUZ
Cat) = Te [B(r, 1) @ B(r, O)pr] = [ dewe ™ 0 tmGlrymw) (539
8,(t) = L dim Al (®). (5.40)

From this we can conclude some useful properties of C,,, namely Onsager reciprocity
and the Schwarz reflection principle:

Cap(—1) = Cap(1), Cop(t) = Cpa(t) - (5.41)

By considering the operators’ correct contractions with each other in position space we

find the fundamental master equation (5.24) to take the form

ps(t) = —i[Ha,ps(H)] + Y. Lu-ps, (5-42)
a,be{D,A}
i 2 ~(b b
Lu-lps) == ¥ [detts t>{ A, A ps()] dity - €y (1) - )
m,n,i,j "0

+ [ps0AY, 4] di)- i)}, Ga)

where we have introduced the explicit time evolution of A that is left after transforming
back to Schrodinger picture and used the correlation tensor’s properties as given by

Egs. (5.41).

Evaluating the commutators and using Eq. (5.28), we can write the Lindblad operator
in the basis of the vectorised density matrix as

1 t iw —
Lop=—13), tdh{e DR, - Cop(T) - iy [Brve) (mpPrye
0
n eiwnm(tl—t)dzﬁ - Chp(T) - d>, |apye) (anye|

+ [eiw“"(tlt)dgﬁ -Cpp(7) - diy

+ et =0gD . Chp(7) - dD |g¢ﬁ'ye>)(<nm'y€\}, (5-44)
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5. Open quantum systems approach to resonance energy transfer

Lan—— L /dtl{ Nl - Can(T) - iy [aPrye) (wpme]
+ elwnm(tl t)dﬁe . CZA(T) . d;?m |[XIB’)/€>> <<lxﬁ')/7’l|
T

+ [eiw7"(tlt)dﬁe -CanlT) -y,

e, (o) b e (opn |, a9

Lpa = Lpa+ Lap
_ hl2 y /t: at, { [eiwmm—o _|_ei“’vm(t1_t)} duy - Cpa(T) - diy |aBye) (nPmel
+ [eiw”ﬁ(“*t) + eiw"”’(tlit)} dlnjﬁ -Cpal(T) - dﬁm |#Boye) (anmel
n [eiwme(tl—t) 4 eiwme(tl_t):| dEﬁ - Cha(T) - din, |apye) (anyml|

+ [l g el gD Cpa(7) - die |aBre) (nym] } (546)

The structure of the integrands appearing in Lpp, Laa and Lpa + Lap are similar to
each other. They can always be cast into a similar form and hence be evaluated in general
to become

1t .
—? /t dtlelwi(t_tl)dl(( ) . Cab(T) . dl(b)
0

— Mgyl .ImG<ra,rb,wi) -d”

—|—1—P/dw ImG(ra,rb, ) d,({b)

- 1%9(@)@ d® -G(ra,rh,w-) -dY

— 1—73/ dw

where 6(w) is the Heaviside step function and we have used the long-time limit f — f; — co

-ImG (Ira/ Ty, CU) : d]((b) ’ (547)

explicitly to evaluate the time integration

t

P
dt —i(w—wy)(t—t) / i(w—wi)T _ 5 i .
f 1€ - dre =Tt (w wl]) CU — wz‘j ’ (5 48)
as well as Kramers-Kronig relation, given by
® 4o Mf (W) _
7’[ dw - w Ref(w;), (5.49)

for any analytic function f(w) that vanishes sufficiently fast in the upper half of the
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complex plane. For the complex conjugate, we then get

t .
—hlz /t dhe it g ¢ (1) - al”)
0

— —I%G(w-)wzd@ 'G*(rarrbrwi) -d”

+1—/dw

where it is important to note that the real part vanishes in Egs. (5.47) and (5.50) for

ImG(Ta, Ty, W) - d,Eb) , (5.50)

w; < 0. Each integral hence yields the time-independent result given either by Eq. (5.47)
or Eq. (5.50). We waive giving the full Lindblad operator evaluated in this form, but will
use Egs. (5.47) and (5.50) for explicit derivations later on.

5.2.3. Recovering the spontaneous decay rate

In this section we reduce the derived master equation to the treatment of a single particle
in the field and from this derive the spontaneous decay rate. We show that the sponta-
neous decay rate can be derived nonperturbatively and yields the same result as the one
from Fermi’s golden rule, see section 5.1.

We have derived the master equation (5.30) for two particles in the field. For the spon-
taneous decay rate we only need a single particle interacting with the electromagnetic
vacuum. We can reduce the master equation to the single-particle case by simply replac-
ing £ with £; = Tra{Lpp} in the master equation. The single-particle Lindblad operator
is then given by

hzz dtl{ Cmlt=0 G . Cpp(T) - diy |aB) (mB]
+emgD . Chp (1) - doy |#B) (an]
+ [eiw“”(tlt)dmﬁ -Cpp(7) 'dEn

+ eiwmﬁ(tl—t)daDn 'C]*DD(T) . dgﬁ] |aﬁ>> <(nm| } , (5-51)

where |af)) corresponds to |«) (B|p. The spontaneous decay rate can be found in the
decay of each state’s population p,,(t), such that

pzxa(t) & _rspowz(t)l (552)

with I'y € R. It can hence be found as a loss term in the diagonal part of the single
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5. Open quantum systems approach to resonance energy transfer

particle Lindblad superoperator. The diagonal part of £, is given by (see Eq. (5.51))

(o] €1 o) = =5 3 [ a0, - Con(r) -
e wnltTh gl (1) - dfn} , (5.53)

where we used wj; = —w;;. Using Egs. (5-47) and (5.50) we get

Re [(aa| Ly [aa)] = = Y Yan (5.54)
n<wa
2
Yan = ‘;:0 win dom -ImG (TDI TD) : dmx ’ (555)

which for an excited state |&) = |e) and an unpopulated ground state |n) = |g) yields the
spontaneous decay rate

1_‘s = <<€€| ‘Cl |€€ ’)/eg 50 2 d ImG(TD/ TD) ’ dge : (556)

This is the same result as obtained by Fermi’s golden rule, see Eq. (5.8).

5.2.4. Recovering the resonance energy transfer rate

So far, we have derived the master equation, approximated it within second-order per-
turbation theory and derived the explicit form of the Lindblad operator for our system.
From this, we next recover the rate for RET obtained via Fermi’s golden rule in section
5.1. Although the approximations and assumptions going into both approaches are not
equivalent, the resulting rate expression is. We briefly discuss the reason for this at the
end of the section.

We are interested in the RET rate in its lowest order, see Eq. (5.58). The rate of a
second-order process in its lowest order is given by Eq. (5.23),

Tree = Tr [05(1)] ~ (o] - Do - os(t)) + <<pfr W o) (557)
= (o7 Dolog) (orlos(t)) + <<.0f| wi |Po>> (5.58)

where we have used Eq. (5.34) and that D, is a diagonal matrix. Introducing the appro-
priate initial and final states of interest, this gives the RET rate formula from an open

quantum systems approach. In RET the final and initial states are given by ‘ Of ) = lgg11)
and |pg) = |ee00). With (o Dylos)) = i(wgq + wy1) = 0, we find for the rate

Tree = (2811 W™? Jec00)) . (5:59)
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5.2. Open quantum systems approach

Next, we can determine the intermediate states |ijkI)) in Eq. (5.36) that may contribute
to the rate. Each superoperator £ in W@ can change two state labels of the vectorised

density matrix. The intermediate states are hence given by

|ijkl) € {|ee11)),|gg00), [ge10), leg01), [eg10)), |ge01)} . (5.60)

As we will see later, only two of them contribute to the rate. The rate is given by the sum
over the intermediate states,

Fret = ZW;EZ) ’ (5.61)
I3
with
t .
Wi = [ dpye 0] (11| Lop (£)eell) (eell|Lan(t)]ec00),  (5.62)
t
‘ last term in (5.44) last term in (5.45)

t .
W = [ die et @)1 (0011| £, 4 (H)|9900) (8800 Lpp(t)|ee00),  (5.63)

)

last term in (5.45) last term in (5.44)

¢ .
Wéz) = dtle_l(“’g‘*+w1°)(t_t1) <<8811|£D,A(t) |g610>> <<gelO|L’D,A(t1) |eeOO>> , (5.64)

to

third term in (5.46) first term in (5.46)

t .
W = [ dte @t o) t=h) ((0011| £ 4 (£)|eg01) (€901 Lpa(t)|ec00),  (5.65)

to

first term in (5.46) third term in (5.46)

t .
W = [ dte i@t @) t=h) ((0011| £ 4 (1) |eg10) (eg10] L a(t)|ec00),  (5.66)

Jtg

last term in (5.46) second term in (5.46)

t .
W = [ dte i@t )=t (0o11| £\ (£)|ge01) (01| Lpa(t)|ec00),  (5.67)

to

second term in (5.46) last term in (5.46)

where we determined which terms of the respective £, are involved for each interme-
diate state of interest. By using the general evaluation of the coefficients of £, see Egs.
(5.47) and (5.50), we can easily show that the contributions of the first two intermediate

states, W1(2) and Wz(z) vanish. Each of them is proportional to
{(nn11| Laa [nn00) = 2Re [/dh{eiwm(ttl)dwCDde} o 0(wp) =0, (5.68)

for n = ¢,g. This is a direct consequence of the Markov approximation, where we only
take field correlations of lowest order into account. The third and fourth contribution and
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5. Open quantum systems approach to resonance energy transfer

the fifth and sixth are complex conjugates of each other, such that

Wi + i = 2re W], (5.69)

W + W = 2Re [WiV] (5.70)

We can calculate the transition elements in WS(Z) explicitly, using Egs. (5.47) and (5.50),

and find

1 t . _ . _
(3610]Loalec00) = — [ dty [esl" ) el W] - Cop - dig
0

. VOng
= lege ’ G(TD/ TAs weg) ~dyg + f(weg) - f(wlo) ’ (5.71)

ot ) .
(8811|Lpalgel0) = _h12 / dty [T el g Gy - dy
ty
= ((ge10]Lpa [ee00)” , (5.72)
and hence

t .
Wi + Wi = [ b 2Re [o 0] [(5010]£pae00)
0

sin {(wlo - weg)At}

_ . 2
=2 lim —-— E— |{(ge10[ Lpaee00))|
= 2718(w,y — wio) |(8€10| Lpa lec00) |, (5.73)

where At =t — t; and we have recovered the resonance constraint of the long-time limit
found in Fermi’s golden rule, see Eq. (2.119). With the resonance constraint and the
integrated expressions of L, see Egs. (5.47) and (5.50), we can simplify Eq. (5.73) to be

2 4
2 2 How 2
W?S ) + Wzi ) =2n zegé(weg - wlO) ‘dge ’ G(TD/ TAs weg) “dyg| . (5.74)

Similarly we find that
2 2
WS( ) + Wé( ) x 5(weg + wlO) ’ (5-75)

and since w,q, wyg > 0 conclude that these transition elements vanish. With this we
have finally derived the RET rate in its lowest order from an open quantum systems
approach:

pow
hZ

4 2
2 2 e
1—‘ret = W?E ) + WAE ) =2r gé(weg - wlO) ‘dge ) G<TD/ TAs weg) ) le) (576)

This is the same result as the one derived from Fermi’s golden rule, see Eq. (5.19).
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In both approaches, we apply the long-time limit, which leads to the appearance of the
delta distribution. We also use perturbation theory in both approaches to obtain the rate
in its lowest order. The main difference between the approaches is the treatment of the
environment. In the open quantum systems approach we explicitly neglect any higher-
order correlations in the Markov approximation. While we do not explicitly exclude
higher-order correlations in the approach via Fermi’s golden rule, we implicitly neglected
them by determining the initial and final states completely, leading to a result which
also only includes second-order correlations. In general, RET also depends on fourth-
order correlation functions of the field. However, it has been shown that the neglected
correlations only play a role for times smaller than r/c, where r is the separation distance
between donor and acceptor [31].

5.3. Incoherent perturbation scheme in the open quantum systems

approach

We have shown that an open quantum systems approach where only field correlations
of lowest order are taken into account leads to the same result as Fermi’s golden rule.
The obvious advantage of Fermi’s golden rule is its simplicity. However, the open quan-
tum systems approach offers some advantages as well. By approximating the order of
field correlations independently of the order of system—field interactions the open quan-
tum systems approach is in general able to treat the dynamics due to the system-field
interaction nonperturbatively.

In this section, we show that on the level of the master equation there exists dynamics
from the system—field interaction that effectively acts as homogeneous evolution of the
system’s density matrix. Splitting the master equation into homogeneous and inhomoge-
neous coupling then leads to an alternative perturbation scheme where the homogeneous
evolution includes incoherent dynamics, leading to effective energy-level shifts and decay
rates.

Revisiting perturbative calculations in this alternative perturbation scheme then adds
self-consistent corrections to them. As an important but simple example we derive the
corrections to the polarisability tensor. It was shown in previous works that the inclusion
of damping constants in the calculation of Van-der-Waals forces between an excited and
a ground state particle lead to an interesting result. The force acting on the ground state
particle monotonically decreases with increasing separation distance r, while the force
on the excited particle additionally oscillates as a function of r. While we do not revisit
its derivation, we derive an analogous behaviour for the transition rates of donor and
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acceptor in RET by including the spontaneous emission rate in the presence of a second
particle explicitly.

5.3.1. Incoherent perturbation scheme

In this section, we introduce the incoherent perturbation scheme. We identify any ho-
mogenous evolution in our master equation, split it off the Lindblad superoperator that is
treated perturbatively and redefine them into the bare evolution. The full master equation

is not altered by this process, however the perturbation scheme differs in this splitting.

The Lindblad operator given by Egs. (5.44)—(5.46) still includes diagonal terms that
couple an element of the reduced density matrix pg to itself via the master equation (5.27),
describing homogeneous dynamics. We can identify these terms and split £L = D + M
into its diagonal part D and its hollow part M. We may then write

6(t)) = (Do + D) - lps(t)) + M - |ps (), (5.77)

which leads to a new splitting into homogeneous and inhomogeneous solution of the
differential equation compared to Eq. (5.34), such that

t
pu(t) = e PP gy 4 | eI M ps(n). (5:78)
0

We may use this new splitting to redefine the perturbative expansion in section 5.2.1.
Using Eq. (5.78) iteratively, we find the second order of perturbation to be

ps(D)) & PPN Jgg) 4 [ eI WO (1) )
+ / dt PP W (1) og) ,  (579)
W (1) = M- PotP)10), (5:80)
W) = [ M- ePor Pt pg PP ), (5.81)

where we defined the superoperators W and W in analogy to W and W of
section 5.2.1. The time derivative of the density matrix is then given by

10s(£)) = (Dg + D) - [ps (1)) + WO (#) - |ps(te)) + W (1) - |os(te)) - (5.82)

Again, we did not replace |pg(t))) in the first term of Eq. (5.82) with its approximated
form. We call this alternative perturbation scheme incoherent perturbation scheme, since
the additional homogeneous evolution, given by exp[Dt| includes incoherent dynamics
of the reduced system. Thus, the incoherent perturbation scheme may be obtained from
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5.3. Incoherent perturbation scheme in the open quantum systems approach

the ordinary perturbation scheme introduced in section 5.2.1 by replacing Dy, — D, + D
and £ — M.

Next, we determine the diagonal part D of our explicit Lindblad operator. We have
already derived the explicit expression of the Lindblad operator, £L = Lpp + Laa + Lpa
in section 5.2.2. Only Lpp and L4, contain diagonal elements in Fock-Liouvillespace.
They are given by

XZ/Vﬂl{lw“ttldD Con(7) - dyy + el - Cop (1) - i,
+ eiw’yn(t_tl)dﬁn ' CAA(T) ' dﬁ’y + e_iwem(t_tl)dﬁe ' CZA(T) ' deAm}
x |apye) (aBrel, (5-83)

where we have used w;; = —w;;. The superoperator M is then simply given by the

remaining terms of the Lindblad operator, M = £ — D. Using Egs. (5.47) and (5.50), we
get

D-|ps(t)) = !12 (&um — 5‘0/5;1) -y 'an -y '7511

iz (50‘)7” o (50‘)6”) B Z 7’7” Z 75n pocﬁ'ye( ) ’“:B'Ye “ﬁ7€|

n n<vy n<e
(584)
2
Yij = ZOde ImG(ra,ra,w]) d;, (5.85)
] = ﬂ dw ImG(ra, ra,w]) dji/ (586)

where we have introduced the decay rates 7;;, see section 5.2.3 and Lamb shifts dw;; and
used that for all j < i one has w;; > 0. It should be noted that the symbol v is used
for the decay rates as well as for level labelling, their respective meaning however is
unambiguous in the context of each instance. Here, we are not interested in the Lamb
shifts. They lead to small corrections of the bare atomic eigenfrequencies which are
typically negligible: ), (0w,, — dwpg, ) < w,g. However, the decay rates -y;; may influence
the calculation significantly, despite being small compared to the eigenfrequencies. The

diagonal part of the Lindblad superoperator can then be written as

= — Y i lifk0) ikl (5:87)

with vy = %('yi +vi+ 7+ 7v;) and 7y; = i< 7ij and we neglected the Lamb shifts. And
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the homogeneous solution of the master equation is given by
(D0+D )(t=to) Ze i(wijtwp)+rim] (B=to) ‘Z]kl (ijkl| , (5.88)

which now includes the incoherent dynamics of the reduced system.

Using the definition of the diagonal matrices D, and D, see Egs. (5.29) and (5.88), we
may give the approximated master equation (5.82) in the basis of the vectorised density
matrix as

‘ps(t)» = - [l Z(wst + wuv) + ’Ystuv] pstuv(t) ’Stuv»
+ Z <<stuv|VNV(1) |a/3’ye>> Papre(to) [stuv)
+ L (stuel VP e ) pugneto) Istuv) . (5.89)

Z dtle 1“’1/+lwkl+71]k1)(t tl)ef(iwaﬁ+iw'ye+’)’aﬁye)(tlft)
x (stuo| M]ijkl) (ijkl| M|apre) [stuv) (apre| , (5.90)

where the sum runs over all state labels.

5.3.2. Polarisability tensor with finite linewidth

We have derived the homogeneous incoherent evolution of an atomic system in the elec-
tromagnetic vacuum and based on this introduced an incoherent perturbation scheme.
As we will see here, the incoherent perturbation scheme introduces linewidths explicitly
into perturbative calculations and may be used to derive corrections to various quantities
derived from the ordinary perturbation scheme introduced in section 5.2.1. A rather im-
portant example for such corrections is the polarisability tensor, see section 2.3.2. Here,
we apply the incoherent perturbation scheme on the example of the polarisability tensor
to find corrections due to the finite linewidths of the atomic transitions. The calculation
of the polarisability requires only a single atom and first-order perturbation. In addi-
tion, we need to consider an external field. Thus, we need to adapt the master equation

accordingly.

The polarisability tensor «,, of a particle in state n is defined via the induced dipole
moment by an external field in Fourier space:

FT [(d(1),] = (d(w)), = a,(r,w) - E(r,w), (5.91)
d=) djA; (5.92)
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where E(r,w) = (E(r,w)) is the Fourier component of the external electric field, Aij
are again the atomic flip operators and we assumed that the particle does not possess
an intrinsic polarisation, i.e. d;; = 0. In section 2.3.2 we derived the polarisability ten-
sor via ordinary perturbation theory. Here, we repeat the calculation in the incoherent

perturbation scheme. For simplicity, we focus on the ground state polarisability c.

The system that needs to be considered for deriving o is given by a single atom in an
external field. For only one particle in the field, we find that £ = £; = Tra{Lpp}, see
Eq. (5.51). The diagonal part of the Lindblad operator is then given by

D=—- Z/dtl{eiWM(ttl)dEn : CDD(T) : dEﬂc
et gD Ch (7). dg’m} @B} (Bl
= — (i6wy — 10w + 7, +75) 2B) (B, (5:93)

where the decay rates 1, and the Lamb shifts éw, /5 < w,g are given by Egs. (5.85) and
(5.86). We will neglect the Lamb shifts here again. The full homogeneous evolution, see
Eq. (5.88) is then governed by

ePortP)t=to) — Y= o~liwaptra sl (0=10) |4 gy () (5-94)

Additionally, in the presence of an external field our master equation (5.24) needs to
be adapted accordingly. We assumed in our derivation for Eq. (5.27) that Trg{[H, pspr] }
vanishes, which is not true for an external electric field. The master equation (5.77) hence
gains an extra term, such that

6s(1)) = (Do + D) - |ps (1)) + (M + M) - [ps(1)) (5.95)

1

Mexe - [ps(1)) = —%TrF {[V(t)ps(t) @ pp] } = £ [d- E(r,1),p5(t)] , (5.96)

where M, is linear in E(r, t), while M depends on the correlation function C, i.e. de-
pends on quadratic expressions of the external field, see Eq. (5.39). Using the incoherent
perturbation scheme for the density matrix up to first order, see Eq. (5.79), we then find

ps(t) = PPN og (1)) + /dtle(pﬁp)(htl) - M- PPN o (44))

+ / dtye PPNt eI ) o (1)), (5.97)

where only the last term is proportional to E(r,t). The ground state expectation value
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5. Open quantum systems approach to resonance energy transfer

of the induced dipole in its lowest order is then given only by the last term:

(d(t))g = Tr{dps(t)} ~ Tr{dpS"(t)}, (5.98)
st (t)) = / dtye PP A PP o (1) (5.99)

So let us hence focus on calculating pg* (t). We first derive M., as a superoperator:

d-E(r, t),ps(t)] (5.100)
{diac B(r 1) [K) (Blpup(t) — dse - B(r, 1) |a) (Kl pup(H)}  (5.101)

diy - E(r,t) [kB) (ap| — dgy. - E(r,t) |ak)) (ap] } Pup(t) |aB)
(5.102)

where p.4(t) [2) = [ps(t)) «p are the components of the density matrix vector. The
superoperator M., is thus given by

Moo = 3 ¥ {diy - B(r,t) ) (ap| — - Blr, 1) ak) (af]} (5109)

with this and |pg(ty)) = |00), we may calculate p$*(t) via Eq. (5.99),

£ 0) = 3 X fan{e o a, B o)
k
el WO g B(r, 1) [06) . (500

ext

We can translate the Fock-Liouville vector |pg (t)>> back into a usual density matrix,

(1) = 5 1 [ e P e (e, ) ) (0
k
el WO g B(r, 1) [0) (| (5:105)
Substituting this into Eq. (5.98) yields
<‘i(t)>o - %Z/dtleﬂk(titl) {eiWOk(ttl)dOk ® dy - E(r, ty)
k
— el g @ dy - E(r, tl)} . (5.106)

This is almost the same expression for the expectation value of the dipole moment as

we have derived in section 2.3.2, see Eq. (2.137) but includes now an additional expo-
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Figure 5.1.: Feynman diagrams for emission rate: In lowest order spontaneous decay is
a first order process on the level of transition matrix elements (left diagram).
Hence, the transition matrix element is proportional to a single dipole mo-
ment d,. The next higher order for the process includes three dipoles and is
displayed on the right. Each wavy line represents a field excitation and each
intersection represents a transition dipole moment. By introducing the me-
diator Green’s tensor G™ we can include the higher order Feynman diagram
directly into the first order calculation.

nential decay e (1) in the integrand. The remaining calculation follows the same
steps as that in section 2.3.2: we substitute the decomposition of the electric field in its
Fourier components, perform the integration over t;, perform the Fourier transform of
the expectation value and finally find:

]-'T[(d} | = a(w)-E(r,w)

with  a( 1Z(kld|0 <0|d|k>_<0|d|k>®<k|fi|0>>’
hE N Wt W+ i W — Wi + 17k

(5.107)

which in contrast to the polarisability derived in section 2.3.2 does not diverge for w = wy,,
but each transition resonance exhibits a finite width governed by their spontaneous decay
rate 7, = 7. They are given by the usual expression Eq. (5.85) when considering the
electromagnetic gorund state.

5.3.3. Oscillating transfer rate

When calculating the Van-der-Waals force between an excited and a ground state parti-
cle, two different results can be obtained depending on the treatment of the frequency
poles appearing in the perturbative calculation. Using an approach comparable to the
developed incoherent perturbation scheme, it was shown that both results are legitimate,
but have different interpretations. Since the excited particle additionally decays, it expe-
riences a recoil by the emitted photon. In this section we derive an analogous behaviour
for the full decay rate of the excited donor atom in contrast to the excitation rate of the
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5. Open quantum systems approach to resonance energy transfer

acceptor in RET. We achieve this here by careful consideration of all decay channels via
Fermi’s golden rule up to the leading perturbation order of RET.

We consider an excited atom in the presence of a second ground state atom. As dis-
played in Fig. 5.1, the spontaneous decay of the excited atom is in lowest order a first
order process. The next correction that has to be taken into account is of third order. In
third order we find a correction term to the spontaneous decay rate due to the coupling
to the second particle. We circumvent higher-order perturbation theory by including the
second atom’s interaction with the field into the Green’s tensor as a perturbation of the

free-space environment.

The Green’s tensor in the presence of a mediating atom is given by Eq. (2.146), see

section 2.3.3 and reads

G(r,r') = GO (r,v") + GM(r, "), (5.108)
2
w [ AN,
GV (r,r') = CTG(O)(T/ M) - io ! G (ry, 7, (5.109)

where GM is the mediator Green’s tensor and the polarisability is given by

(k|d|0) ® (0ld]k)  (0|d]k) ® <k|d|0>> (5.110)

hz( w + Wi +1i7x W — Wiy + 1%

where 7, are the damping constants of the k-th level. The damping constant is given by
the decay width of the respective level and the damped polarisability tensor is a result

obtained from the open quantum systems approach, see section 5.3.2.

By modifying the Green’s tensor in this way, we effectively consider the third-order
Feynman diagram depicted in Fig. 5.1 as one single order of perturbation. The process
is hence included in the first-order rate expression derived via Fermi’s golden, see sec-

tion 5.1,

T = 2Vozd

7 IMG(rp, o, Weg) + doe - (5.111)

For the Green'’s tensor including the mediation by a second particle, see Eq. (5.108) we

hence get
Ir= F(O) +m™, (5.112)
™ = ZO w? o deg ImGM (7, 7a, Weg) * ge (5.113)

where r§°> = 7. is the free space spontaneous decay rate given by Eq. (5.9) and ™
depends on four dipole moments and results from the interference of both decay channels
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5.3. Incoherent perturbation scheme in the open quantum systems approach

depicted in Fig. 5.1. Please note that the absolute squared of the third-order diagram was
already implicitly neglected by applying the integral relation for the Born-approximated
Green’s tensor to obtain Eq. (5.111). The mediator-contribution to the rate ™ is then

given in terms of the polarisability by

™ — hzyozwjgdeg. {ImG(O)(rA, M) (Rea + ReaT) -ReG(O)(TM, TA)
‘C’OC

+ReG (ra, myv) - Ima - ReG” (rps7a)

— ImG(O)(rA, rv) - Imo - ImG(O)(rM, rA)} “dg, . (5.114)

Next, let us apply some assumptions to the polarisability tensor to simplify the deriva-
tion. Firstly, we assume that the mediator particle M and the decaying particle A are

identical. We then find that there exists a transition such that wyy = w,, in the polaris-

2
ability (5.107). In this case the resonant transition dominates and we can approximate

1 d,, @d d,,®d
a(weg) Rz E € & — id s , (5.115)
h degen. weg + (w6g + l’yeg) weg - (weg - I’Yeg)
g

where the sum now only includes degeneracies. Secondly, We assume that the transition

is isotropic when summing over all its degeneracies, such that d,, ® d,, = |deg|211 /3. We
then get
2 2
2 ’deg’ Weg i ‘deg‘
(W) X o~ — I, (5.116)
“ 3h ’Y?g - leeg'}/eg 3h ’)/eg

where we have used that the eigen-oscillations are much faster than the decay, w,, > 7.,
to approximate a(w,,) further. Within these approximations the polarisability tensor at
the resonance a(w,g) is hence purely imaginary. With the damping constant given by the

spontaneous decay rate in free space, v,, = W |d,,|*/3me hc® we finally get
% y P eg eg | %eg 0 y 8

: 3
17TeC
a(weg) N3 (5-117)
Weg

Substituting this back into Eq. (5.109) we find for the mediated rate (5.113)

pIT 0 0
™ ~ gohcgg {eg - ReG (weg) - Tmax(@eg) - ReGi) (weg) - e
0
— dyg - IMG(weg) - IMx(wgg) - IMG) (weg) - de b, (5.118)

where we have used the shorthand notation Gyy(w) = G(7a, 7y, w). We can again

employ our assumption that the transition dipole moments are isotropic, i.e. d,; ® dg, =
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5. Open quantum systems approach to resonance energy transfer

|d |
find

’I/3. With v-T-w = Tr[w ® v - T] for any vectors v, w and tensor T. We then

27TW, |y, |

M 2TTWeg|deg (0) (0) (0) (0)
~ Teoc{ Tr [ReG Qi(weg) -ReGMA(weg)} CTr [Imc Qi (weg) -ImGMA(weg)] }
(5.119)

With the free space Green’s tensor (A.32) we finally obtain the rate oscillating as a function
of the separation distance,

d 2

™ % { (3 — 5k°r* + k4r4> cos(2kr) + 2kr (3 - k2r2) sin(2kr)} ,  (5.120)
127teohik’r

where k = w,,/c and r = |ry — ra[. In the nonretarded limit rk < 1 the mediator

contribution T™ is proportional to 1/ 1°, see Fig. 5.2. Note that ™ itself can be negative,

since it stems from the interference between two decay channels. The decay rate I' =

'Y 4 ™ however is positive.
The full decay rate of an excited (donor) atom in the presence of a ground state (accep-
tor) atom is hence given up to fourth order by

Tp =T + ™ + 1)

ret
= Fgo) [1 + 4k16r6 { <3 — 5k + k4r4> cos(2kr) + 2kr (3 - k2r2> sin(Zkr)}

U(weg) 44 122
+47Tk41‘6 (kr +k°r —1—3) ,

(5.121)

(0)

where we have used the explicit form of the isotropic free-space RET rate I'y,;, see
Eq. (5.21). In contrast, the excitation rate, i.e. the rate at which the acceptor transitions to

its excited state is solely given by I' .,

o(w

[\ = 1"583 = rgo)(ijgz <k4r4 + K + 3) . (5.122)
artk’r

In conclusion, we find that the excited donor exhibits a decay rate that oscillates as a

function of the donor—acceptor distance, while the rate at which the acceptor is excited

follows the monotonic behaviour predicted by the usual resonance energy transfer rate

0

ret*

The difference between these both rates I'y — I'y is given by the spontaneous decay
rate modified by the presence of the acceptor, I'y = 1“5(;0) +T™. It is plotted in Fig. 5.2
in the nonretarded and retarded distance regimes. The oscillations are only present in

the retarded regime of separations distances larger than the transition wavelength and
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Figure 5.2.: The spontaneous decay rate I' in the presence of a second identical ground

state particle relative to the free space rate I In the retarded regime we
can verify the oscillation as a function of the separation distance r due to the
second particle.

are very small in amplitude. This is in analogy with the Van-der-Waals force prediction
between an excited and ground state particle [187].

5.4. Superradiance effects via Fermi’s golden rule for mixed states

As demonstrated so far in this chapter the open quantum systems approach offers some
advantages over purely perturbative methods. However, the respective calculations are
much more involved in comparison to calculations via Fermi’s golden rule, see section
5.1. So far, we have either considered pure states with the Fermi’s golden rule approach
or density matrices in the open quantum systems approach. It is however not necessary
to discard Fermi’s golden rule when considering mixed states. In this last section, we
extend Fermi’s golden rule to density matrices and thus mixed states. We apply this to
show how superradiance effects may emerge when transitioning from a purely mixed
state to a purely entangled state of two donors. We show that superradiance emerges
due to interference effects and that any deviation from maximum entanglement leads to

a decrease of the interference effect.

Fermi’s golden rule is derived by calculating the projection of the time-evolved state
lp(t)) = U(t) |i) onto some final state of interest |f) and taking the time derivative in the
limit of long process times to receive a time-independent rate I'f, such that

d
Ty = lim 2| (Flp(6) [ (5123)

Depending on the process we may then expand |¢(t)) = U(t)|i) in the perturbation
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5. Open quantum systems approach to resonance energy transfer
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Figure 5.3.: Superradiance effect for two entangled donors with equal distance to the ac-
ceptor. The geometry is schematically explained on the left: The acceptor is
fixed at the origin. We vary the position of one donor D, freely to any posi-
tion (x,y). The other donor D; is fixed at the positive x-axes at (x;,0) with

X =r=/x"+ y2. Varying the geometry of the three particles in such a way
then leads to the respective relative superradiance rate I';./I';, plotted on
the right as a function position of D, (x,y) for maximum entanglement with
complex phase ¢ = 0.

order of interest which yields the respective transition matrix elements for the process,

see section 2.121. Generalising this idea to density matrices yields

. d
Iy = lim 7 Tr [pfp(t)] , (5.124)

t—oo dt

with p(t) = U( t)piUJr(t). It is easy to see how pure initial and final states then lead again
to the known version of Fermi’s golden rule:

r = lim & [1f) (100 i) (10 (0]

t—oo dt
= lim A0 ) G001 = m THAAO D (azs)

We consider one acceptor A and two donor molecules D; and D,, assuming that the
acceptor is initially in its ground state p, = |0) (0], the field in its vacuum state pp =
|{0}) ({0}| and that there are no correlations between field and atomic systems. We first

consider the two donors to be in a classical mixture pp = pgix, such that they share one
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5.4. Superradiance effects via Fermi's golden rule for mixed states

excitation classically. Their density matrix then reads

i 1
D" = 5(leg) (egl + Ige) (gel), (5-126)
where we have used the notation |ij) = |i) |j), for the product state of the two donor
states. Since we assumed the systems A, D and F to be initially uncorrelated we can write
the initial state as

Pi = PAPDPF = Pmix s (5.127)

1
Pmix = §(|¢1> (a] + [12) (), (5.128)
1) = leg0,{0}) , (5.129)
[¥,) = |ge0,{0}) , (5.130)

with notations |ijk, F) = |i); |j), |k) 5 |F) for the product state of the respective states of
first donor, second donor, acceptor and field. The final state of interest p¢ is given by the

pure state

pr = 1) {fI = 1881,{0}) (881, {0}[4 , (5.131)
where the excitation has been transferred to the acceptor.

In the case of such a classical mixture we can show that the respective RET rate I';;, is
given by the average of two rates, one where only the first donor D; is excited and the
other where only the second one D, is excited:

[hix = lim 4 Tr {pfp(t)}

t—oo dt
= 2 tim ST 6 ) (U O + U ) (o U 0)11)]
— % (T, +1,), (5.132)
Ly = lim 51U f) P (5133)
L = lim 1 U@ (1) fo) P, (5134)

as one would classically expect. The weight of each rate in the average is determined by
the weights between ; and 1, in the mixed initial state (5.127) and there are no additional
interference effects. We should mention here that in general the second-order evolution
for a density matrix is given by p'?(t) « [H, [H,po]] which leads to more terms than
a® (t)pol:l(z) (t). However, in our specific case of initial and final states of interest, these
additional terms do not contribute and we chose to simplify the derivation to account for
this directly. We can calculate the two rates with the help of the Dyson series, Eq. (2.108)
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5. Open quantum systems approach to resonance energy transfer

and the subsequent derivation shown in section (2.2.2). The rates are given by

27
Ly = ¥5(wf—wi)|Mf¢l/2|2/ (5.135)

2 A
Mgy, = —hpowigd™ - G(ra,Tp, ,, wio) - d"v2, (5.136)

where the matrix element was derived in section 5.1, see Eq. (5.18). The non-excited
donor does not affect the transition to the acceptor in the considered order.

The classical additivity for the total rate, see Eq. (5.132) breaks down if we consider the
opposite scenario where the donors are highly entangled and share an excitation. In this
case the initial state is again a pure state, given by

i) = éuw +e ), (5.137)

with |¢; ,) given by Egs. (5.129) and (5.130) and where we left the complex phase ¢ € R
between the super imposed states arbitrary. The rate according to Fermi’s golden rule is

then given by
P = fim 22 AU 1) (191) + 92 P
= %(Fl +T15) + Ty (5.138)
i = lim T Re [e (71 U (1) [9y) (| U (1) 1)) (5139)

where Iy, are given by Eq. (5.135) and we now find an additional interference term
contributing to the rate compared to the RET rate with a mixed initial state, see Eq. (5.132).
The interference depends on the particles’ positions relative to each other and the complex
phase ¢. Following again the derivation of section 2.2.2 with the Dyson series for the time
evolution operator Eq. (2.108), we find for the interference term

27 *
Tinge = gé(a)f — w;)Re [MflPlele} . (5.140)

Let us assume that the involved dipoles have no preferred direction, such that isotropic
averaging yields d; ® d, = d; - d,11/3. With this we may simplify the rates further

27 *

1j2 = = B0 (wy — w)eiold* Fd° T {Gap, , (@10) - Gy o (w) } (5.141)
2muw —i 0 0)x

Tt = =g 7 00w = wp)ld* Pla® FRe [e T {GL, (wno) - GRA(wn) }] + (5:142)

where we used the Onsager reciprocity for the Green’s tensor and that the donors’ tran-
sition dipoles are the same d” = d” = d°.
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5.4. Superradiance effects via Fermi's golden rule for mixed states

In isotropic environment, in particular free space, the Green’s tensor and hence the
rates I'; , only depend on the distance between the respective donor and acceptor. Let us
assume for simplicity that both donors have the same separation distance to the acceptor

in free space, such that I'; = I',. The free-space Green’s tensor (A.32) can be written as

0

GO (ry, 1y @) = —filra)L = fr(rap)ea © ea,, (5.143)

2 iwry/c 2.2

ce wr w'r

() = — (1 — i L laby (5.144)
fz( ub) 47'[6021’2;]( C CZ ) 5.144

2 iwry,/c 2.2

ce wr w'r

ry) = ———(3—3i—4 — ab , 1

fr( ab) 47'[6021’2;7( c C2 ) (5 45)

where r,, = r, —r, and e,, = r,,/1,, and we excluded the case of r, = r,. With this we
find for the pure and interference rate contributions,

_ Dix _ |d*2|d”? wlpr® | wior*
rl/z = T = (S(C(]f — (Ui) 47-[€2h2r6 9— C2 +3 C4 s
0

(5.146)

27 2(02 —i %
Tingt = — 3 2126(w; — wp)|d* Pl PRe[e ¥ Te {| fi() T+ £,(r) filr) "er @ ey
+i(Nf(r) @ er + I, (1) (er - er)e; @ ey}
. 94 317K + 'K
= cos ¢pI' iy 1—sin®6 1
Phmi [ 18 — 2r°k* + 61°k* (5147
where r = |ry 5| = [ry —7Tp,/p,|, €12 = T1/2/7, ¢ is the complex phase between the

super imposed product states, see Eq. (5.137), we have introduced 6 as the angle between
ry and r, and I',;, is given by Eq. (5.132). Substituting this back into Eq. (5.138) yields,

9+ 37°k” + r'k*
Iy, = Thix [ 1+ cos 1—sin®0 (5.148)
oo < (P[ 18 — 27K + 6r°k" >
where k = wyy/c. For ¢ = 0 and 6 = 7 we find maximum superradiance for the
entangled pair
Ta™ = 2T 5 = 2Ty . (5.149)

Varying the phase ¢ or the donors’ relative position to each other can diminish the su-
perradiant effect and even invert it up to complete suppression of the energy transfer
Mt —0atg =6 =

Next, we want to study systems between these two extreme cases of fully mixed and
fully entangled donors. Again we will consider two different cases. First, we only con-
sider mixed states where both possible donor states are equally probable, i.e. (eg|p;|eg) =

(gelpi|ge) = 1/2, while the correlations can be varied. Such a state can always be com-
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5. Open quantum systems approach to resonance energy transfer

posed as a classical mixture of a fully entangled and a fully mixed state:

Pp = (1 - P)pmix + PPent (5'150)

with 0 < p < 1. Our considerations from before then reveal instantly the RET rate I as a
classical average of the previously obtained rates:

I'= (1 - P)rmix + plg
= Iﬁmix + pr'mtf

=T

(5.151)

mix

18 — 21°k* + 6r°k*

2.2 | 44
1+pcos¢<1—sin29 93k +rk )]

Next, we do not restrict ourselves to equally probable preparation for the excitation.
However, for simplicity we keep the restriction that each donor has the same separation
distance r to the acceptor. We then may just consider a completely arbitrary mixed initial

donor state with one excitation. Such a state can always be written as

pp = aleg) (eg| + (1 —a) |ge) (ge| +ebeg) (ge| +e b |ge) (eg] , (5.152)

with 0 <a < 1and 0 < b < 1/2, such that the eigenvalues of pp are positive. The full
initial state hence reads

pi = alpy) (1] + (1 —a) [y) (o] + € [3p1) (o] +e b1p,) (1] . (5.153)

Substituting this into Eq. (5.124) yields the rate

_ o4 @) 1y (D
['=lim = Te{p U~ (), (1)}
=al'y + (1 — a)Ty + 2bT (5-154)

2,2 | 44
= Tk <1+2bcosgb ll—sinze S+3rk +rk ]) . (5.155)

18 — 2/%K% + 6r°k*

The two scenarios described by Eq. (5.151) and Eq. (5.155) yield the same rate for 2b =
p. This is partially due to the chosen simplification of r; = r, =r = I'; = I',. Even more
so, when comparing the fully entangled result Eq. (5.148), the equal-probability restricted
mixed state result Eq. (5.151) and finally the arbitrary mixed state result Eq. (5.155), we
see that the rate formulas all have the same structure and by measuring the rate we would

not be able to distinguish these three cases.

For the rate (5.155) with arbitrary initial donor state, the complex phase ¢ as well as
the absolute value of the donors’ initial correlations b can again be chosen to either obtain
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maximum superradiance, ¢ = 2n7 and b = 1/2, maximum suppression ¢ = (2n + 1)1
and b = 1/2 or anything in between, including no interference effects despite correlations
at ¢ = nPi/2. The interference effect as a function of the donors’ relative angle 6 and
their distance r; = r, = r to the acceptor is shown in Fig. 5.3. While we have restricted
ourselves here for simplification to cases where 7| = r, = 7, it is straightforward to apply

the presented formulas to study any geometries of the three particles.

5.5. Conclusion

In this chapter, we studied the advantages of mixing an open quantum systems approach
with perturbation theory. We have derived the spontaneous decay rate from Fermi’s
golden rule, i.e. via perturbation theory as well as nonperturbatively from open quan-
tum systems approach. Considering only second-order field correlations in the Markov-
approximation for open quantum systems we obtained the same result as via second-
order Fermi’s golden rule. Similarly, the RET rate was derived, first from Fermi’s golden
rule and second from an open quantum systems approach including perturbation the-

ory.

In the second part of this chapter, we have developed an alternative perturbation
scheme in the open quantum systems approach, the incoherent perturbation scheme. In
this scheme the homogeneous but incoherent dynamics of the reduced system is solved
nonperturbatively. This potentially yields corrections to results obtained from the or-
dinary perturbation scheme. We derived these corrections for the polarisability tensor
explicitly. In a similar way corrections to the Van-der-Waals forces between excited and
ground state particles were obtained in other works that suggested an interesting inter-
pretation: the excited particle experiences an additional net force due to the recoil of the
emitted photon during spontaneous decay. We have shown an analogous behaviour for
the RET rate, where when additionally considering spontaneous decay the donor’s decay
rate shows an oscillating behaviour as a function of donor-acceptor distance, while the

acceptor’s transition rate behaves monotonically.

Lastly, we have shown that also Fermi’s golden rule is able to take mixed states into
consideration and derived as an example superradiant RET for two identical donor par-
ticles as a function of their entanglement. It was shown that any deviation of the initial
state from the fully entangled one with optimal phase difference leads to a decreased
superradiant effect and while entanglement is a necessary condition to observe superra-
diant RET, it is not a sufficient one. In conclusion superradiant RET may not serve as an

entanglement witness.
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5. Open quantum systems approach to resonance energy transfer

The groundwork done in this chapter will enable us to treat various problems in the
future. By understanding the limitations of the different approaches and their connec-
tions to each other we will be able to revisit some previous results and correct them
analogously to the polarisability tensor as well as tackle new problems where we need
to consider mixed states and incoherent decay while applying perturbation theory in the
framework of macroscopic QED.
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CONCLUSION AND OUTLOOK

The goal of this work was on the one hand the modelling of different excitation energy
transfer processes in realistic macroscopic environments and on the other to gain con-
trol over these atomic processes by modifying their environment. Established methods
to investigate excitation transfer were extended to more exotic systems, including high-
energy and inner-atomic processes and chiral molecules. In addition we developed an
alternative perturbation scheme based on an open quantum systems approach to account
for finite linewidths. The obtained results were in all cases presented in a general form
that may be applied to various set-ups of interest and were discussed in detail on some
carefully chosen examples. In particular, we used the framework of macroscopic quan-
tum electrodynamics (QED) to study Auger decay, interatomic Coulombic decay (ICD),
their competition with each other and resonance energy transfer (RET) between chiral
molecules with a focus on its discriminatory power. These transfer processes are closely
related to each other in view of the underlying quantum mechanical processes but differ
in their energy and hence time and length scale regimes. This makes them appear in
nature as well as in the lab as very different processes. We conclude the thesis here with
a summary of the most important results and by outlining possible future projects built

upon the presented results and theory.

In chapter 3 we have studied Auger and interatomic Coulombic decay as competing
processes. For this purpose, we developed a novel model for Auger decay that allows the
dipole approximation and results in a closed expression for the process rate. In doing
so, we introduced a new parameter for the characterisation of a given Auger process, the
Auger radius. Via comparison with available numerical data, we verified that the Auger
radius behaves like a radius as a function of proton number, that its magnitude can be
estimated by that of the vacancy orbital and that the Auger decay rate itself depends
on the introduced Auger radius a as predicted with 1/ a®. This dependency is compara-
ble to the usual dependency of an excitation transfer rate to the transfer distance, as is
known for example for ICD and RET. The developed model for Auger decay allowed us
to study Auger decay and ICD in a joint framework, namely macroscopic QED in dipole

approximation, with the focus on the impact of macroscopic environments.

The introduced Auger radius determines the characteristic length scale of Auger decay
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6. Conclusion and outlook

and is usually of the order of the Bohr radius and as such much smaller than the charac-
teristic length scale of the competing ICD process (which is given by the donor-acceptor
separation distance). This is in agreement with the fact, that Auger decay is the fastest of
the decays studied here and governs the highest energy regime. In a two-atom system,
such as a dimer, there exists an energy regime where Auger decay as well as ICD need
to be considered as decay channels. We have shown by comparison of the characteristic
length scales of each process that in this overlapping energy regime, Auger decay usually
dominates over ICD and spontaneous or radiative decay may be neglected as a decay
channel. In this comparison we additionally considered the modification of the single-
atomic decays, i.e. Auger decay and spontaneous decay, by the presence of the second
atom. As it turns out, the additional contribution to the Auger decay rate due to the pres-
ence of the second particle may be on the same order of magnitude as the spontaneous
decay rate, depending on the properties of the second atom.

As in free space, ICD is usually dominated by Auger decay, we focussed on the goal
of enhancing ICD relative to Auger decay via their macroscopic environment. We illus-
trated how a simple close-by surface may have a significant impact onto the competition
of Auger decay and ICD. Depending on the geometry of the system, a surface with a
nonretarded reflection coefficient of |r\r(E)| = 2 at the transition energy E may enhance
the ICD rate compared to the Auger decay rate already by a factor of roughly 3.5. We
have kept the presented study as general as possible and offered a detailed discussion on
what kind of enhancement can be expected in which atomic system: for successful en-
hancement of ICD in comparison to Auger decay via a close-by surface, it is preferrable
to use a system where (1) the photoionisation cross section that plays a part in the Auger
decay rate is much smaller than the one that is part of the ICD rate, (2) the Auger radius
is rather large compared to the Bohr radius, (3) the surface is parallel to the interatomic
separation, (4) the involved transitions are anisotropic, and (5) the nonretarded reflection
coefficient of the surface at the transition energy is large. Conditions (1) and (2) lead to a
small Auger decay rate compared to the ICD rate already in free space, while conditions
(3), (4) and (5) optimise the impact of the surface.

The applied framework of macroscopic QED is also suited to consider atomic processes
inside a cavity. As cavities for the high energy regime become more and more available,
we have studied the impact of a cavity onto Auger decay and ICD. A general estimation
was given for the expected enhancement of the Auger decay rate and ICD rate, respec-
tively, in a given cavity as characterised by its Q-factor. The derived expressions can vice
versa be used to predict the properties of an appropriate cavity for a specific atomic sys-
tem. We have shown that a cavity which is suited to enhance ICD will have only little
impact on the Auger decay rate. Such a cavity hence supports ICD compared to Auger
decay. While we have kept the cavity estimation general by only referring to its Q-factor,
the presented formalism is in general able to quantitatively analyse the decay rates inside
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specific cavities.

We closed the chapter by demonstrating the applicability of the presented theory to a
specific system by considering a He-Ne dimer. Here, we could verify the consistency of
our formalism with the results from established ab initio quantum chemistry methods by

comparison of the free-space limit of our results to rates reported in other works.

The presented study makes it clear that further investigation of Auger decay and ICD
would profit from a collaboration with the ab initio quantum chemistry community. The
distances at which a macroscopic surface has the most impact usually overlap with the
distance regime where wave function overlap needs to be considered. For instance, ICD
in the presence of a third close-by atom was successfully analysed in such a collaboration
and the different frameworks were able to carefully consider different effects due to the
third atom in a joint work [97]. The novel treatment of Auger decay should be further
investigated. A predictive model for the Auger radius has yet to be developed. We
successfully fitted a radius model to a specific isoelectronic sequence of Auger decay
undergoing ions. The model works well, but for quantitative predictions in unrelated
atomic systems the two parameters of the Auger radius model (namely an overall factor
and a screening parameter) need to be related to the electronic structure at hand. For
such a study a collaboration with the ab initio quantum chemistry community would also
be fruitful.

The presented formalism can be used to predict Auger decay and ICD in biological
tissue, where the atomic system is not isolated from its macroscopic environment. An
additional advantage of our formalism, aside from the possible treatment of macroscopic
environment, is its simplicity: each process is described by a closed expression that can be
evaluated via tabulated data or data obtained from standard ab initio calculations. Hence,
the complexity of the formalism scales well for more complex systems and events, such
as cascade-like events. In such cascades, ICD decay possibly follows Auger decay and
vice-versa and all available decay channels quantum-mechanically interfere with each
other. These events play a significant role in the aim for development of radiation therapy
techniques based on the emitted electron in the ICD process.

In chapter 4 we studied excitation transfer via RET between two chiral molecules. The
transfer rate is sensitive to the handedness of the involved molecules and can hence be
used in principle to discriminate between different enantiomers. To this end, the hand-
edness of one participating molecule needs to be known in general. We assumed without
loss generality that the donor molecule is known to be left-handed and the acceptor
molecule could be either enantiomer. The donor molecule then actively discriminates
the different acceptor enantiomers via the transfer. The transfer rate is larger for donor—

acceptor pairs with same handedness than for opposite handed pairs. We have studied
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6. Conclusion and outlook

the resulting degree of discrimination due to RET in free space, immersed in magneto-
electric medium, chiral medium and in the presence of a single chiral mediator molecule.
In general, we could show that while the rate itself decreases as a function of the inter-
molecular distance, the discrimination increases and is largest in the far zone or retarded

limit.

The discrimination in free space is usually expected to be small and its magnitude
is entirely determined by the involved molecules. We have shown that immersing the
molecules inside some medium, such as a liquid or gas, which is well described by its
macroscopic properties, can enhance the discrimination. While commercially available
solutions may already have a significant impact onto the discrimination, we have pre-
dicted that an appropriate medium can even lead to complete discrimination, where the
excitation transfer to one of the enantiomers vanishes entirely. We have discussed a large
parameter space of dielectric media, finding that dielectrics that are highly absorbing
compared to their refraction, i.e. the imaginary part of their refractive index is larger than
its real part, result in an interesting effect on the discrimination: in such media, the degree
of discrimination does not only change its magnitude as a function of the intermolecular
distance but changes its direction. This means that if one enantiomer is favoured by RET

in one distance regime, the opposite enantiomer is favoured in the complimentary one.

Starting with the case of magneto-electric media, we have demonstrated the signifi-
cance of so-called local-field effects for the correct predictions of the degree of discrimi-
nation. These can be taken into account by different models leading to local-field correc-
tions. We have used in this work the Onsager real cavity model to describe these effects
and subsequently worked out the local-field corrections for chiral media which proved to
be much more involved than those for magneto-electric media. The complexity of these
corrections stems from the different propagation of left- and right-circularly polarised
light inside the chiral medium. For the derivation of the local-field corrections of a chi-
ral medium via the Onsager real cavity model we have developed a matrix-method for

dealing with Green’s tensors transmitting through and reflecting at different interfaces.

The derived local-field correction was then used to treat chiral RET inside a chiral
medium. We have shown that a chiral medium can actively discriminate the different
acceptor enantiomers, such that it is sufficient to know the handedness of the medium
and the donor molecule could even be achiral. Surprisingly, the local-field correction
itself did not only change the magnitude of the derived degree of discrimination but
also lead to an additional contribution, which completely vanishes when chiral local-
tield effects are dismissed. The contribution due to local-field effects to the degree of
discrimination even dominates in general in the nonretarded regime or near-zone and its
sign is usually opposite to the degree of discrimination due to the bulk medium. This

means that in a chiral medium the discrimination due to the medium in general changes
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its direction when going from the nonretarded to the retarded distance regime, entirely
due to local-field effects.

We closed the chapter by considering the dilute gas limit as a medium. In this limit we
may model the system-surrounding gas by its individual molecular constituents. We fo-
cussed on the impact of a single close-by molecule onto the degree of discrimination due
to RET between two chiral molecules, the extension to several molecules is then straight-
forward in the presented framework. This additional mediator molecule was considered
to be possibly chiral itself. A chiral mediator can again induce the discrimination while
an achiral mediator can only passively enhance or suppress the discrimination due to the
donor molecule. We have shown that taking the nonretarded limit for all intermolecu-
lar distances the degree of discrimination is unchanged by the presence of an identical
chiral mediator molecule and usually suppressed in the presence of an achiral mediator.
When fixing the donor—acceptor distance at either a nonretarded or retarded distance and
varying the position of an identical mediator we found that in the nonretarded geometry
the rate itself can be strongly enhanced, while the discrimination is approximately un-
changed by the mediator. In the retarded geometry on the other hand we could show
that while the RET rate is less modified by the mediator’s presence, the discrimination

can be significantly enhanced depending on the mediator’s position.

The expressions presented for the chiral discrimination via RET are valid for general
set-ups and can be hence applied to different systems and problems. A collaboration
with an appropriate experimental group could verify the presented predictions, espe-
cially concerning the predicted distance-dependent discrimination direction in chiral me-
dia and strongly absorbing dielectrics, such that complete discrimination via RET might
be accomplished in the lab. While we focussed here on the liquid or gaseous phase of
media, the presented analysis can be easily extended in future works to solids, where
various metamaterials can be designed to fulfil specific properties, which makes the pro-
cess more experimentally accessible. In solids, we would expect a similar behaviour as

presented here for liquid media.

The developed matrix-method for calculating Green’s tensors in the presence of differ-
ent polarisation-mixing boundaries can be further exploited to not only derive local-field
correction via the Onsager real cavity model but also via alternative models, such as the
virtual cavity one. The local-field correction via Onsager real cavity model showed a sur-
prising influence on the discrimination. A natural next step is to verify whether this is a
model-independent behaviour, i.e. the discrimination direction change due to local-field

effects sustains even when using alternative local-field models.

Chapter 5 presents the first step to studying atomic dynamics in a joint framework
of open quantum systems and perturbation theory where macroscopic QED is applica-
ble. We verified the consistency between the predictions from open quantum system in
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Markov approximation and the standard approach based on Fermi’s golden rule within
the framework of macroscopic QED. From the master equation of the reduced system,
we have developed an alternative to the ordinary perturbation scheme, the incoherent
perturbation scheme. In the incoherent perturbation scheme the incoherent but homo-
geneous evolution of the system is treated nonperturbatively. This is in contrast to the

ordinary perturbation scheme.

Using the example of the polarisability tensor, we showed how the incoherent pertur-
bation scheme can be used to derive corrections to quantities originally derived from
the ordinary perturbation scheme. Similar methods were used to derive the asymmet-
ric Van-der-Waals forces between an excited and ground-state particle. We have shown
via ordinary perturbation theory that in RET, an analogous asymmetric behaviour can
be derived for the donor and acceptor rates: while the decay rate of the donor oscil-
lates as a function of the donor-acceptor distance, the transition rate of the acceptor only

monotonically decreases with the distance.

Lastly, we considered Fermi’s golden rule for mixed states. The extension to mixed
states allowed us to study superradiant RET arising from entanglement of two donor
particles. The study presented on superradiance is mainly meant to demonstrate the
applicability of Fermi’s golden rule to density matrices. However, we could demonstrate
that superradiance arises from interference effects that vanish in a similar manner for any
deviation from the fully entangled initial state with optimum phase. As a consequence,

we have shown that superradiant RET cannot serve as an entanglement witness.

With the work done in this last chapter we have closed some gaps when considering
collective effects and incoherent dynamics of an atomic system via its reduced density
matrix by carefully studying the interplay between perturbation theory and master equa-
tions. The developed incoherent perturbation scheme in the framework of macroscopic
QED can be applied to a variety of problems and might offer some new insight on one
hand to the as closed regarded discussion concerning the correct treatment of the fre-
quency poles in the RET rate calculation and on the other hand to the ongoing discussion
on the role of the local density of photon states in RET. For consistency, the asymmetric
Van-der-Waals forces as well as the asymmetric RET rate should be rederived from the

developed perturbation scheme.
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APPENDIX

The appendix includes some technical derivations that were left out in the main text to
optimise the reading flow. We start by relating the electromagnetic fields as well as their
correlation functions of interest to the Green’s tensor. We then show that some algebraic
manipulation reveal the vacuum correlation function in Fermi’s golden rule in second
order. The Green’s function or bulk media, in particular free space, is then derived, as
well as the scattering Green’s function. The scattering Green’s function is then given
analytically for some special cases of interest. Especially spherical layered systems play a
major role in the derivations presented in chapter 4. Some more involved expressions and
derivation steps of this chapter were moved into the appendix. Finally, all second order
rate derivations presented in this work involved some complex contour integration in the
frequency domain. The evaluation of these integrals are presented in the last section of

the appendix.

A.1. Electromagnetic fields in terms of the Green’s tensor

In this section, we relate the electromagnetic fields to the Green’s tensor. We introduce
shorthand notations for the magnetic and electric Green’s tensor as well as define longi-

tudinal and transverse components of vector and tensor fields.

As derived in section 2.1the electric field in terms of the Green’s tensor is given by

Eq. (2.59)[121],

E(r) = /O " dwE(r,w) + he. (A1)
E(r,w)=Y_ /d3r/GA(r, r,w)- fL(r,w), (A.2)
A=e,m
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with the electric and magnetic Green’s tensor given by

. hlme(r,, w
G (rp, 7, W) = 1— g‘s(?‘z/ T,W), (A.3)
c TTEy

G, (1,11, W) = —i% Ilmp(ry, w)

G(r,,r,w) x V;. A.
CZ 7TSO|‘M(1’1,CU)’2 (2 1 ) 1 ( 4)

The magnetic field is then given by the Faraday law (2.54),

B(r) = /oo dwB(r,w) +h.c. (A.5)
B(rw)= Y /d3 'L G, w) fu(F,w). (A.6)
A=e,m

In Coulomb gauge, V - A = 0 the scalar and vector potential (in Fourier space) are given

by

A,

Vo(r,w) = —El(r,w),  Alr,w)=—E"(r,0). (A7)

1
w
The superscripts denote the longitudinal and transverse part of the electric field, defined
by

FI/ () = / d%’&”“(r’ — ) F(r), (A8)
[ —
s VeV 4 — (A.9)
1 1
= — I-— A.

0 V x (V x )4m, (A.10)
such that 6* + 6| = 6. And the vector potential can be decomposed in terms of the
Green’s tensor,

A(r,w) = /d3 11G (@) - Fr ). (A.11)

A=e,m
Similarly the longitudinal component of the electric field is simply given by

Elrw) = ¥ [&r16 0, 0) A,w). (A12)
A=e,m

The transverse and longitudinal superscript for a tensor T(r, r,) can be either on its left
or right and is defined by

L/H”II"L/H // d3r /darﬂéL/” r)-T(r',r") -(5L/H(r/ —7p). (A.13)
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A.2. Correlation functions in terms of the Green’s tensor

Throughout this thesis we relate several quantities to different correlation functions of
the field. By using the respective field’s expansion in terms of the fundamental creation
an annihilation operators it is straightforward to calculate them.

The correlation functions appearing in the derivation of Auger decay are given by
(Al ) Al 1) = [ [ dwdane ™ e (A(ry, @) A" (ry )

eiiwatﬂeiwbtb
_ Z /d3r'd3 / dw dwb{J—GA(rarr;/wa)

Aol F ) -G ()
5, [, e W) / Ly
:Z/dr / dwi2 Gy(r,r,w) -Gy (v, 1y, w)

_/ dw Fé e Wt m LGt (1, 7y, w), (A.14)
o

(B ) B (ry 1) = [ dogdeone™ e (B (ry, 00 BV ()

= Y // d*r d’r, / dw dwb{ Tiwala glyty HGA(ra,r;,wa)

M =e,

(F(rwp)e fH o)) -Gl wb>}

:/ dw haz] efiw(t"ftb)lm HGH(T,Z,Tb,CU), (A.15)
0 mce

(B (o 1) Al 1) = [ dwadw e ettt (Bl (r,, 0,) o A (ry, @)

= 1/ dw e W=ty ”GL(ra,rb,w) , (A.16)
mc? £
A ol n (g A T
(Arg t) B (ry, 1)) = ([ BV (10, t,)= Ay, )] ) = (B (ry, )0 Alr 1))
= —i/ dw h(; e Wt m LGl (r,, 7, w). (A.17)
0 TIC €y

The correlation functions of the dual fields appearing in the derivation of the chiral

187



A. Appendix

RET rate in chapter 4 are given by
P At Ny hywy o /
<E€(T1’ C(J) & Ee (7’2,6(] )> = 70.7 (S(CU — W )ImG('f‘l,T2,w> , (A18)

(B (r1, @) ® By (ry, ")) = & (B(ry,w0) @ B (ry, o))

2
= _h]/l;)cc 5((4) — CU/>VA X ImG(T’1,2,(U) X VB, (A19)

<Em(r11w> ® E’;(Tz, ‘UI)> =c (B(rl,w) ® E+(7°21W/)>
_ _ihﬂocw

= - S(w — ')V x ImG(ry, 1y, w), (A.20)

(B (r, @) @ Bl (ry, o)) = (B, (ry, ) @ B (ry, ')

_fpoew

S(w — IMG(ry, 15, w) X V,. (A.21)

We should mention how to evaluate the curl from the right, since there exist multiple

conventions. Here we define:
T(ry, ) X V= =V, x T' (ry,15) (A.22)

and the subscript on the nabla denotes with respect to which which position argument
the derivative is taken.

A.2.1. Relating the Fermi’s golden rule approach to correlation functions

While the correlation functions in the derivation of Auger decay emerge naturally, the
derivation of the RET rate via Fermi’s golden rule as done in chapter 4 and 5 needs some

algebraic manipulation to reveal its relation to the vacuum correlation functions.

We can show the relation by introducing the projection onto the frequency subspace,
P@) = & [ @rlm (@) (mlr )] (A23)
n,
such that
P(w)EY (r,0') = 6(w — Y ED (r, ), (A.24)
and [ dwP(w) is the identity on the fields Hilbert space. Since the fields expectation

value is executed in its vacuum state we may introduce the projector into the expression
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without changing it,

© s, {OME (r)[1) (1| By () [{0})
/0 dw/dr; hw’—i—hw%

_ /Owdw//&/zz ({0} By, (r)|n) (/| By, (rp) | {O})

hw'+hw§,
—/d ({0} E,) (ry)P(w )EAZ(T5)|{0}>
ho' +hw
(E), ”’wwl)EA (rg, ws))
— d VaC’ .
/ W / dw, T (A.25)

where we have now related the transition matrix element appearing via FGR to (dual)

correlation functions.

A.3. The Green’s tensor

In this section, we derive the Green’s tensor in free space as well as in the presence of
different media. The Green’s tensor is an essential tool in macroscopic QED and can
be separated into two parts, the bulk and scattering Green’s tensor. It is defined via its
respective Helmholtz equation and can be interpreted as propagator for field excitations.

The presented derivations follow the ones found in Ref. [121].
For magnetoelectric media the Helmholtz equation is given by
2

1 w ! . /
V x WVX —C2e(r,w)] G(r,r,w)=468(r—1"), (A.26)

and the Green’s tensor needs to fulfil the boundary condition G(r,7’,w) — 0 for |r —
7’| — oo. Let us first consider a homogenous isotropic magnetoelectric medium, i.e. . Its
Helmholtz equation takes the simplified form

[v X V x —kﬂ G(r v, w) = p(w)d(r—r'), (A.27)

where k* = e(w)p(w)w?/c* is the square of the wave vector inside the medium. It can be
solved by

G(r, v, w) = u(w) []I + I;v ® V] g(r, v, w) (A.28)
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with the scalar Green’s function g fulfilling the scalar Helmholtz equation

[A + kz} g(r,r,w)=—=6(r—7'). (A.29)
It is given by
, eik‘rafrb|
glr,r,w)=———-. (A.30)
4rt|r — 7’|

This underlines the fact that in an isotropic bulk medium the scalar Helmholtz equation
is sufficient and hence the scalar Green’s function is sufficient to describe the excitation’s
propagation. The bulk Green’s tensor can then be explcitily calculated to be

ik|ra_rb|
0) _ pw) 1o e
G (ramy ) 41 <]I * K2 Va© Vo |70 — 7|
ikr,
w(w) p(w)e “"{ : 22
= 6(r..) — 1 —ikry, —kry | 1
3k2 ( ab) 47(](21’51, [ ab ab]
- [3 — Bikrgy — erib} €qp © eab} , (A.31)

where V, is the Nabla-operator with respect to r,, v, = r, — 1y, o, = |7y| and e, =
T/ .- In the special case of free space, e = u = 1, the free space Green’s tensor is then
given by

1 2 iw|r,—mry|/c
G (r,,mpw) = — <]I + %va ® Va> SR—
w

4r ’ra - 'rb‘
e el Wran/c wry, Wi
= 50rw) — s |1 T |
3w 47w Ty, ¢ c

2.2
WTyy W Ty
— 3 -3i—% — z

] €ap ® eab} : (A-32)
The Green'’s tensor G(r, r, w) is related to the probability of a field excitation with energy
hw to propagate from a source point ' to an absorption point , thus we may call the
Green’s tensor the propagator for field excitations.

Next, let us consider a secondary homogeneous medium with a definite boundary
to the first. We assume that the first homogeneous medium with permittivity e; and
permeability p; occupies a volume V; and the second medium with permittivity e, and
permeability y, the complementary volume V,. From the boundary conditions that must
hold for the electromagnetic field, we can deduce the boundary conditions for the Green’s
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tensor. The electric field E and magnetic excitation field H must fulfil

el [E(r+s)—E(r—s)]=0, (A.33)
e, [B(r+s)—B(r—s) =0, (A34)
ey - [D(r+s)—D(r—s)] =p(r) (A.35)
e\ [H(r+s)~H(r—s)] = e, xe-j(r), (436)

where €|/, denotes a unit vector parallel/perpendicular to the boundary surface, r is a
position on the boundary surface and s = se | is a vector perpendicular to the boundary
surface, such that r + s lies in Volume V;/V, and p(r), j(r) are the surface charge and

surface current densities, respectively.

In the limit lim, ,o(r £ s) = r,,_ we then find for the Green’s tensor

6” . [G(m,r’,w) —G(T_/T// )}

w (A-37)
e,  [VxG(r,r,w)—V xG(r_r, w)]

0
0, (A.38)

from the homogenous boundary conditions, Egs. (A.33) and (A.34). The inhomogeneous
boundary conditions Egs. (A.35) and (A.36) yields for the Green’s tensor,

e, - [e)(w)G(r,, 7, w) — &) (w)G(r_ 7', w)]

2 s/2
= —C—z lim ds'Vé(r — ' +5'e)), (A.39)
w s—0 —s/2

e - ‘ulgw)v x G(r,, 7, w) — yz(lw)V x G(r_, r/,w)]
o . 5/2 / !/ !/
_eLerlg% /sté(r—'r +s'e,), (A.40)
—S

where the right hand side of each equation vanishes for all positions but = . Using
these boundary conditions together with the respective Helmholtz equation enables us
to find the Green’s tensor.

Let us first assume that source and absorption are located within the same medium,
i.e. within the same volume V;. The bulk Green’s tensor (A.31) gives then a particular
solution to the inhomogeneous Helmholtz equation, such that

[v XV x _kﬂ GO (r, ', w) = uy(w)d(r — '), (A1)

with 7' € V; and k; = ,/g1fi;w/c. And we define the scattering Green’s tensor GY as
a solution for the homogeneous Helmholtz equation,

[V x V x —kﬂ G(l)(r, r,w)=0. (A.42)
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Figure A.1.: Scheme of a planar two-layer system.

For the source and absorption point in different volumes, i.e. » € V, and r' € V;, the
respective Helmholtz equation is homogeneous and the Green’s tensor is solely given by
the scattering Green’s tensor. The scattering Green’s tensor is then determined by the
boundary conditions.

A.3.1. Planar two-layer system

Let us consider a planar two-layer system, see Fig. A.1 where the boundary surface is
in the z = 0 plane. A basis set of vector wave functions fulfilling the homogeneous
Helmholtz equation is then given by

; N
alL(k,r) = eflel® T, (A43)

where kjL = kjl (k“) =4/ ka —Kk? e {s, p} and the unit vectors depend on the direction

of k!l and are defined as

(-
=

el = e x e, (A.44)
' 1
6;]:2: = k— (k”ez :ijj_eu) ’ (A45)

]

We may expand the bulk Green’s tensor in this basis set. We assume that the source is
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located at ' inside volume V;, i.e. z' > 0 and that the absorption point is at a position =,
such that z < z’ and find for the bulk

GO _ wl /dk” Dl ey @ ekl ), (A.46)
with
N (A47)

Similarly we can expand the scattering Green’s tensor in this basis. For absorption within
volume Vy, i.e. z > 0 we get

I
GV (r v, w) 1”1 /dk Zr k!, w)all) (K, 7) @ M (K1, 7Y, (A.48)
and for absorption within volume V), i.e. z < 0,
I
GY(r, v, w) 1”1 /dk Zt kI, w)aP (kl,r)y 0 M El,r).  (Ag9)

Solving the boundary conditions Egs. (A.33)-(A.36) with this ansatz for the Green’s tensor

then yields for the reflection and transmission coefficients r, and ¢,

ki — uiky
”s(kufw) =B hn lL - i, (A.50)
poki + pik;
€2le - 51k2L

r k“,w = , (A.51)
P( ) €2k1L + €1k2L >
2u ki
¢ k“,w — M (A.52)
. ) poki + piky ’
k 2e ki
t (K, w) = 72 271 (A.53)

ky 82k1l + slkzl .

In general the respective integral, Eq. (A.48) or Eq. (A.49) must be solved numerically for
each position r and frequency w. However, in many cases it is sufficient to know the
Green’s tensor in the extreme distance limits of non-retarded and retarded limit. In these
limits the k-integral can be evaluated and the Green’s tensor may be given as a closed

expression.

Let us consider the reflection at a dielectric half space, i.e. ¢, = yy =1 and p, =1
in the nonretarded limit, such that wz/c < 1 and wz' /c < 1. In the integral over k” in
Eq. (A.48) the limit of 2" <« c¢/w leads then effectively to k*c/w > 1. In this limit the
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reflection coefficients (A.50) and (A.51) assume a simpler form,

82—1

2 - A.
& 1 (A.54)

re =0, 'p =7 I'NR =
Using this together with a Taylor expansion for the z-components of the source and
absorption point, we may evaluate the k-integral in Eq. (A.48) analytically and find for
the scattering Green'’s tensor close to a dielectric half space:

2
'NRC
G(l)(rb/ Talw) = - NR2_3 (]I - 3éab ® éab) M,
4w Ty,

A.
M:H—ZeAr®eAr, ( 55)

Top = M- Tap — 2Ar, € = _ab/?ab 7

where r,, = r, — r, and 7, is its mirror point, behind the surface and e, = r,/|r,| is the

respective unit vector.

A.3.2. Spherical layer system

For a spherically layered system the approach for solving the Green’s tensor is compa-
rable to the planar layered system. However the geometry shows much more symmetry
and the problem is hence easier, as a consequence the scattering Green’s tensor can be
given as a closed expression for all distances. In the main text, see chapter 4 we derive the
Green’s tensor for a spherical two-layer system involving chiral media. Magneto-electric
medium is then a special case of the Green’s tensors derived for the chiral medium. In
this section we offer some additional derivations and expressions that are useful to follow
the derivations in chapter 4 and finally use the special case of achiral media to derive the
scattering Green’s tensor for a spherical cavity as we use it as a reference in chapter 3.

Spherical vector wave functions

In chapter 4 we use spherical wave vector functions as a basis to form an ansatz for the

Green’s tensor inside spherical layered chiral media.
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They are given by
Ve k) = Mgm”(r) + Ngmn<r) R
e (7, k) = 75 (As6)
1 m_, 0 sin  ( 19, .
= 72 + m nm(COS( )) oS (m(,b) <]n( 7’)69 + H5[1/]71( r)]e¢>
oP 0 19 . ‘
* (ae()) in W"”(waﬂ”n(’“ﬂee—Jn<kr>e¢) (A.57)
+n(n+1)P,,(cos(9)) C?S (m(p)j”(kr)er] )
sin kr
Memn(T‘) B Nemn (T)
ngn(r/ k) = = \/E o (A58)
1 m p 0 sin -k 19. )
= \7@ + m nm(COS( )) cos (mqb) (]n( 1’)69 — H§[r]”( V)]e¢>

n aan(ggs(G)) ::: (m¢><

n(n41)P, , (cos(@)) O (mep) 2k er] .

Full solution of a vacuum sphere in a chiral medium

In chapter 4, we derive the Green’s tensor for a spherically layered system involving

chiral media. Here, we give the solution to the boundary problem posed by the set up.

The two boundary conditions, Egs. (4.32) and (4.33) result in eight different equations
that are given by:

a’ k5oh b? —k3on
w 2 w 2
|| = kgah , T b,; _ kgah (A60)
¢ k3o d° k5oh
it k3oh dv —k3on
with kg = w/c and
oh, —oh. —dj 9j
he b =)o where | = \/f (A.61)

1oh, 1oh. -3 —0j
h, —lh —j +4j
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and the shorthand notation:

i = ju(koe) 0] = o ar i), (A62)

h=h1 (ko) oh = oo st ()|, (A63)

he = b0 (ksa) o = o el (A64)

By inverting matrix T we find for the coefficients of G

o = g (R3(1-+ 1) ajh— 2h) @y ) (A.65)

o= Sﬂ (2K3(1 — 1)(3jh — ohj) (3l + h,j) (A.66)

b — Di (2K3(1 — 1)(3jh — ohj) (3jh_ + 9h.j)) (A.67)

b = 5 (2301 + 1) @l — 3mj) @y, — . ) (A.68)

D, = 2(dh_j(20h_jl — h_9j(1 + %)) + h,9j(2h_jl — oh_j(1 +1%))) (A.69)

Retarded Green's tensor inside spherical cavity

Let us consider a free space sphere with radius R inside a magneto-electric medium with
g, € R. This can be interpreted as a spherical cavity with infinitely thick walls. Using
the scattering Green’s tensor defined by Eq. (4.34) of the analogue chiral case and setting
X = 0 we find the solution inside magneto-electric media.

In the case of source and absorption point at the center of the sphere, the coefficients
for the Green’s tensor (4.34) for x = 0 are given by

& =dl = Dl{ (17 +1) 9 (kyR)y (ky R) (3l (koR) o (KoR) + s (ko R) 1, (ko))
cd
— 210h,, (kgR)dj,, (kgR)h, (K R)? — zzahi(hR)hn(koR)jn(koR)} ,
(A.70)
=gt = L {(12—1)3;1 (k) (k1) [9), (kR )y, (ko R) — 0, (ko R (K R)}} (A.71)
w v Dcd n n\"M n\"0 n\"0 n\"0 n\"0 s

Deg = =2 (17 +1) 3, (ky R)jy (ko R) 1y (k1 R) o (koR)
+ 21015 (ky R) 5 (koR) + 21075 (koR)I (k1R),  (A72)
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Figure A.2.: Scattering Green’s tensor for a cavity in the retarded limit with n, = 1.6. The

real part of G (A.74) is given by the blue curve, the imaginary part by the
orange one and the green curve shows the absolute value of G.

with ky = | /epiw/c and ky = w/c and we used again the shorthand notation,
10 . 190 .
Oy (r) = = [y (k)] 3G (k) = =2 [, (k)] (A73)

Substituting this into the scattering Green’s tensor defined by Eq. (4.34) and assuming
the retarded limit of wR/c > 1 where R is the cavity radius, we find for the scattering

Green'’s tensor:

koR(n —n,) +i (nf - 1)
D(koR)

D(koR) = 671 [(ikOR(nr —n2) 4+ n? —1) cos(kyR) (A.74)

I

G (0,0,w) = — kR

+ik0Rn$efik°R} ,
where ky = w/c and n, = /ey is the refractive index that we assumed to be real here for
simplicity.

The retarded scattering Green’s tensor (A.74) for a spherical cavity shows oscillations
as a function of the radius R. The imaginary and real part of the scattering Green’s tensor
have then similar amplitudes as shown on the example of n, = 1.6 in Fig. A.2 and we
may approximate

]G(1)| ~ ImGY ~ ReG? . (A.75)
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A.4. Complex contour integration

In several derivations throughout this thesis we need to evaluate the same complex con-

tour integration in the frequency domain including a pole. We evaluate this integral here
in general.

For 7 > 0, w, > 0 and p(w) = w", with n € {0,1,2}, we find

/ dw&ImG( )

W — Wy — 11

1
z{ (o 1) O (o i) O
1
SR A e reee 0
A L o).
(A.76)

Where we used that the Green’s tensor is holomorphic (complex-analytical) in the up-
per half of the complex plane and we might therefore use the residual theorem. The
tirst closed integral fv dw encloses a pole at w = w,; + iy, while the second does not.
The Green'’s tensor vanishes fast enough on the upper complex plane, so that for radius
Ry — oo the integral vanishes. The residue theorem then yields:

Sl f Lot [ - leatatime)

2{27t1p( we T 11)G(wy + 1) — /d (w)G(w)) /Ooodwp(_w)G(a.))}

( nk+1’7 w+wnk+177
RS PCw)Gw) 7y, PCw)Glw)
=3 {Zﬂlp(wnk‘f'lW) ( nk+177 +/ dw w+wnk+l77 /0 dww+wnk+i77
0 @)ImG ()
-3 {27‘(1p(wnk+177)G( ak +177) 21/ deo? w—|—wnk—|—111 }
- p(—w)ImG(w)
= —inp(w, / de W+ Wy 7
In the limit of # — 0 we hence find
/oo do(— Pl PEO) N LGlw) = p(w,)Glw,y) (A.78)
0 W— Wy — 1 W+ Wy ! '
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