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Abstract: In this paper, we investigate the dynamics of a spin chain whose two end spins interact with
two independent non-Markovian baths by using the non-Markovian quantum state diffusion (QSD)
equation approach. Specifically, two issues about information scrambling in an open quantum system
are addressed. The first issue is that tripartite mutual information (TMI) can quantify information
scrambling properly via its negative value in a closed system, whether it is still suitable to indicate
information scrambling in an open quantum system. We find that negative TMI is not a suitable
quantifier of information scrambling in an open quantum system in some cases, while negative
tripartite logarithmic negativity (TLN) is an appropriate one. The second one is that up to now
almost all information scrambling in open quantum systems reported were focus on a Markovian
environment, while the effect of a non-Markovian environment on information scrambling is still
elusive. Our results show that the memory effect of an environment will be beneficial to information
scrambling. Moreover, it is found that the environment is generally detrimental for information
scrambling in the long-term, while in some cases it will be helpful for information scrambling in the
short-term.

Keywords: information scrambling; non-Markovianity; non-Markovian quantum state diffusion
(QSD) equation; tripartite mutual information (TMI); tripartite logarithmic negativity (TLN)

1. Introduction

Entanglement, as a key resource in quantum information processing, is believed to
give significant insights into physical mechanisms in a variety of fields [1-5]. How quantum
information, stored in local degrees of freedom in the initial state of a many-body system,
propagates and distributes over the global degrees of freedom of the system, which is
known as information scrambling, is an interesting topic from the fundamental point of
view [6], and it stimulates a broad range of research interest in various fields, for example,
quantum information [7,8], high energy physics [9,10], quantum-thermodynamics [11,12],
condensed matter physics [13,14], etc. Information scrambling is generically identified
as delocalization of quantum information [15-18] in a many-body system. A general
accepted measure of information scrambling is the so-called out-of-time-order correlator
(OTOC), which is associated with the growth of the square commutator between two
initially commuting observables [15,19-24].

In addition to OTOC, tripartite mutual information (TMI) can also be a probe of
information scrambling [7], which becomes negative if quantum information is delocalized,
i.e., information is shared globally rather than in a bipartite manner. A particular advantage
of TMI is that it does not rely on any selection of operators but only depends on the
partitioning of the Hilbert space [25]. It has been proven that TMI is essentially equivalent
to OTOC in capturing the feature of information scrambling by means of the channel-state
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duality [7], while it captures different aspects of quantum dynamics [26]. At first, TMI of
the evolution operator was used to investigate information scrambling in References [27,28].
Later, instantaneous TMI of a quantum state was also used to study information scrambling
in References [29-31]. The method used in this paper is instantaneous TMI of a quantum
state. When TMI is non-negative at some time, the information at that moment is localized,
while at some time when TMI is negative, the information is delocalized. If TMI is non-
negative at the beginning and becomes negative as time evolves, the information gradually
delocalizes, namely, information scrambling occurs. The definition of TMI is based on
the von Neumann entropy, whose important caveat is that it captures both quantum
and classical correlations. It is thus important to isolate the quantum contribution to the
entropy. To this end, tripartite logarithmic negativity (TLN) [32] is analogously proposed
to characterize the pure quantum information that is scrambled.

It is well-known that realistic quantum systems inevitably interact with their sur-
rounding environments, resulting in decoherence and dissipation. The time evolution of
such an open quantum system is usually characterized by a quantum master equation
through Markovian approximation [33], corresponding to a memoryless environment,
which leads to a monotonic information flow from the system of interest to the environ-
ment. When the environment’s memory cannot be ignored, a backflow of information
from the environment to the system occurs, and the non-Markovian description of the
system dynamics is required [34]. It has been found that non-Markovianity can lead to a
significant variety of phenomena in the dynamics of open quantum systems [35-41] and
can serve as a resource in information theory [42-46]. However, it is normally a hard task to
solve non-Markovian dynamics of the system, and many theoretical approaches have been
developed (see, e.g., References [47-62]). Among these approaches, the non-Markovian
quantum state diffusion (QSD) equation method [48-53] has been proven to be effective.

It is noteworthy that information scrambling is rooted in the spread of entanglement,
which is hard to preserve in the presence of an environment. The influence of environment
noise on delocalization of information should not be neglected. Several works about open
quantum system dynamics by using different quantifiers of information scrambling, such
as corrected OTOC [63,64], a ratio of OTOC [65], mutual information [66], fidelity [67], etc.,
have been reported [63—72]. In Reference [64] it was found that taking an open bipartite
OTOC as a probe, one can differentiate the contribution of information scrambling from
decoherence and also distinguish integrable dynamics from chaotic ones. It was also found
that dissipation and decoherence always suppress information scrambling for a Markovian
environment [63,64]. It was shown in Reference [65] that one can distinguish informa-
tion scrambling from decoherence in strongly interacting quantum systems by utilizing a
teleportation-based decoding protocol. Touil and Deffner found that OTOC is not a good
quantifier of information scrambling for open quantum systems, and they related the com-
peting effects of information scrambling and decoherence to their respective contributions
to the entropy change [66]. Up to now, most of the works about information scrambling by
using TMI in the literature have focused on closed systems [3,25,26,29,30,73], while TMI
for an open quantum system has not been fully considered. To our knowledge, there are so
far three studies about information scrambling of open quantum systems by using TMIL
In References [31] and [74] Y. Li et al. proposed a collision model to simulate the informa-
tion dynamics in an all-optical system and found that non-Markovianity played dual roles
in affecting the dynamics of information. In Reference [75], Sur and Subrahmanyam found
that local quantum dynamical process can cause information scrambling even when the
unitary evolution dynamics is non-scrambling in nature. Similar to OTOC, whether TMI
is a suitable quantifier of information scrambling for an open quantum system is still an
open question. Up to now, most of the information scrambling reported in open quantum
systems have focused on a Markovian environment, the effect of non-Markovianity on
information scrambling still being elusive and requiring further study.

To address these questions, in this paper we focus on information scrambling in the
presence of an environment by using instantaneous TMI and TLN of a quantum state.
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The model we consider is a spin chain whose two end spins interact with two independent
non-Markovian baths. We obtain the system’s dynamics by using the QSD equation
approach. Interestingly, we find that in some cases, though TMI’s negative entanglement
might be zero and thus negative TMI is not an appropriate probe of information scrambling
in an open quantum system, negative TLN is. By comparing the dynamics of TLN with TMI,
we can distinguish information scrambling from the total information delocalization in an
open quantum system. Our results show that in general, environment is detrimental to
information scrambling in the long-term, while in some cases environment will be helpful
for the emergence of information scrambling in the short-term. More importantly, we find
that non-Markovianity plays a beneficial role in keeping information scrambling.

This paper is organized as follows: In Section 2, we introduce the model and QSD
equation approach which we use to solve non-Markovian dynamics of the system. In
Section 3, we study the effect of baths on information scrambling for two types of system-
bath interactions, i.e., dephasing and dissipation channels. In Section 4, we discuss the
effects of non-Markovianity on information scrambling. In Section 5, we summarize our
results. In the Appendices A-C, we show some supplemental results.

2. Model and Methods

The system we consider in this paper is a one-dimensional XXZ spin chain which
consists of N qubits, and the Hamiltonian is

N-1
Hs = Y Jiia (ofofyy +olol,y + Acfofy, ), M
i=1

where J; ;11 is the coupling strength between the nearest neighbor sites i and i + 1, and
ol (j = x,y,z) are the Pauli operators. Here, we take J;;,1 = —1 throughout. When A = 0,
it is the non-interacting XX chain, which can be mapped to a free fermion model [76],
and when A = 1, it is the interacting XXZ spin chain, i.e., the isotropic Heisenberg chain,
which is solvable by the Bethe ansatz [77]. The Hamiltonian Equation (1) is integrable,
and the dynamics of such an integrable system can be understood by the propagation of
quasi-particles, entangling different regions of the system as they propagate [78]. Informa-
tion that is initially localized in some region is spread by these quasi-particles, which move
at different velocities. Thus, information will disperse, leading in general to delocalized
information among subsystems.

We suppose that the two end spins of the chain interact with two baths H;;, and H,,,
respectively (see Figure 1). The total Hamiltonian can be written as

Hiot = Hs + ), Hj + Hint, )
=12

with the free Hamiltonian for the left and right bosonic bath H it (j=12)

Hjp = Lo ©)
and the interaction described by
Hine= ), ), (gjijb;‘rk + g;'FkL]J‘rbjk) (4)
j=12 k

Here, L; is the Lindblad operator, b;k (b jk) is the bosonic creation (annihilation) operator
of the kth mode of the jth bath with frequency wj, and gj; is the coupling strength be-
tween the system and the kth mode of the jth bath. A spin chain interacting with two
baths independently at two ends, is widely used in the investigation of spin chain with
open boundary condition, especially in the study of heat transport and quantum state
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transfer [79-84]. We assume that the baths are both at zero temperature, i.e., both baths are
in the ground states |0) [85].

A B C D

P |
$ 14 (4 % J[&%4

Entangled bath 1

bath 2

N
y
3
4

v

<

Figure 1. A schematic of the model considered in this paper. The spin chain is divided into three
parts B, C and D, where its two end spins interact with two baths, i.e., bath 1 and bath 2, respectively.
Qubit A is initially maximally entangled with qubit B, while C and D are not correlated with A and B
initially. It is noticed that A is an ancillary qubit, which does not interact with the chain BCD.

In order to investigate the effect of non-Markovianity on information scrambling, we
use the QSD equation approach [49,53]. The basic idea is that the total wave function
[¥iot(t)) is projected into the coherent state of the bath mode |z), and we have [¥,«(t)) =
(z* | Yiot(t)), which is known as stochastic quantum trajectory. It obeys a linear QSD
equation [49,85]

2 1) = {zHﬁZ[”t 0j(t,2 >}}|Tz<>> ©)

where z]’.‘t = —i % gjkz]*kel“’ is a Gaussian stochastic process, O is an operator defined by
%H’Z*(t)) = Oj(t,s,2;,23) ¥+ (1)), and Oj( = [ia i(t,5)0;(t,s,27,23)ds. Assuming
the bath is at zero temperature, the correlation function is «;(t, s) Z ‘ g k‘ —iwjk(t=5) de-

scribing the effect of the bath, and M [z]’ftz is

According to the consistency condition, the O operator satisfies [85]

} = a;(t,s), where M[-] is the ensemble average.

d ) -
Eol(t,s,zi‘,zé) = l—sz + ) (szft - L;Oj(t,zi‘,zﬁ)),ol(t, s,zf,zﬁ)]
j=12

o =
— Lt —0i(t,s,21,23), (6)
]:21;2 Vozs,

9
—Os(t,s,27,25) = [—iHS
j=12

ot
_ZL;

=12

(L] it L O;(t, zl,zz)),Oz(t,s,zT,z;)]

O; i(t,8,21,23). (7)

ZZs

Instead of a direct numerical simulating the trajectories by the QSD equation above,
we can analytically take the ensemble average to obtain a non-Markovian master equation.
Based on Equations (6) and (7), the reduced density matrix of the system p; = M|[P;] can
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be obtained, where P; = ¥, (t)) (¥, (t)|. Using Novikov’s theorem [86-88], the general
non-Markovian master equation can be derived as [89]

%ps = —i[H;, ps] + -21:2 ({Lj,M[PtO]TH - [L} M[O;Pi]] ) ®)
j=1,

It is noticed that the above equation is still not a closed equation for ps. Generally, the opera-
tor O; contains noises z{, z5. When Oj(t, 2}, z3) is approximated by a noise-independent op-
erator, i.e., O; (t,25,23) = O;(t), Equation (8) becomes a form of a time-local non-Markovian
master equation [80]

d . ~ >
2 pe = —ilHy,p) + 212 ([Lie:0F (0] = [L].05(0p:] ) )
j=1,
In the following, we will consider the correlation function a;(t,s) = @e—%‘\t—st

which corresponds to the Ornstein—Uhlenbeck process [47,48,90,91]. Here, l"j denotes the
coupling strength between the system and the jth bath. 1/’Yj measures the correlation time
between two separate time instances t and s, which indicates the memory time of the jth
bath. When 1; is large enough, i.e., 1/7], is small enough, the dynamics can be approximately
regarded as Markovian. When the parameter <y, is small, non-Markovian properties can

be observed [85,92-95]. For the Ornstein—Uhlenbeck correlation, &;(t,s) = —7;a;(t,s),
the operator O;(t) satisfies [80]

201(6) = L —101(6) + [-iH — LIOW(E) ~130:(),00(0], (10
%Og(t) = %Lz — 1205(t) + [~iH; — L} 01 (1) ~L30(t), 02 (1)) (11)

In this paper, we use the Runge-Kutta method to solve coupled Equations (9)—(11) numeri-
cally and then obtain the non-Markovian dynamics of the spin chain.

Next, we introduce the initial state used in this paper. Firstly, a product state between
an ancillary qubit A and the system is prepared

1
V2

Here, |Z) g p is the initial state of system, which is divided into three parts B, C and D (see
Figure 1). In this paper, the initial state of the system is chosen as a product state with the
state of each qubit being |0) or |1) (e.g., the NEEL state |Z) -, = [0101...01), |Z)5cp =
|00...00), etc.). Then, a CNOT gate is applied on qubit A and qubit B, and in this way the
information about A is locally encoded in B through the entanglement between them.

In this paper, we will consider the following two types of Lindblad operators. The first
type corresponds to L; = (T]-Z (j = 1,2), which describes the dephasing process. For this
Lindblad operator, the z-component of the total spins in the system is a conserved quantity.
The second typeis L; = o; (j = 1,2), which describes the dissipative process, where ¢~

] ]
denotes the lowering operator.

(10)4 + 1) 4) ® |E) pcp- (12)

3. Effects of Baths on Information Scrambling

In this section, we discuss the effects of baths on information scrambling for both
dephasing and dissipation channels.
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3.1. Initial NEEL State
3.1.1. Tripartite Mutual Information

We first consider TMI in the presence of baths for the initial NEEL state. TMI among
the ancillary qubit A and the subsystems B, C is defined as

L(A:B:C)=5L(A:B)+L(A:C)—1h(A:BC). (13)

L(X:Y) = Sx+ Sy — Sxy is bipartite mutual information (BMI) between X and Y, which
measures the total correlation (quantum and classical) between two subsystems of a com-
posite system, and Sx = —Trx[0x Inpx] is the von Neumann entropy of the corresponding
reduced density matrix px.

From an information—theoretic point of view, TMI quantifies how the total (quantum
and classical) information is shared among the subsystems A, Band C. I3(A:B:C) is
negative when Ir(A : B) + (A : C) < I(A : BC), which implies that the sum of the total
information that is shared between A and B and A and C is smaller than that between A
and BC together. In this case, the information about A is nonlocally stored in B and C such
that measurements of B and C alone are not able to reconstruct A. Thus, a negative value
of TMI is associated with delocalization of the total information, or the total information
being scrambled. If TMI is non-negative at the beginning and becomes negative with time
evolution, it means that information turns into delocalized; namely, the total information
delocalization occurs.

We plot the time evolution of TMI for initial NEEL state in Figure 2b,c for two different
types of baths L = ¢~ and L = ¢* with I' = 0.5, respectively, while Figure 2a is in the
absence of baths (I' = 0) for comparison. It is shown in Figure 2a that TMI can be negative,
implying that the total information (quantum and classical) is scrambled inside BCD in
the absence of baths, which is consistent with the result of Reference [29]. Compared
with Figure 2a, Figure 2b shows that the maximum absolute value of the negative value
of TMI for L = ¢~ becomes smaller, and TMI gradually decays to zero in the presence
of baths. It means that the total information is totally lost at last, and delocalization
of the total information only lasts for a finite time. It can be seen from Figure 2c that
the maximum absolute value of the negative value of TMI for L = 0% becomes smaller,
and TMI decreases at first and finally arrives at a negative steady value. It is noted that
the result is different from that of L = c~. More specifically, for L = ¢* the information
is not totally lost, and there is residual information at last. We calculate the entanglement
between two arbitrary parts, i.e., A and B, A and C and A and BC by using bipartite
logarithmic negativity (detailed definition is given in Section 3.1.2) and find that the
entanglement has disappeared when TMI reaches its steady value, which means that in
this case there is no more quantum correlation, let alone quantum information scrambling.
As is known, information scrambling is related to quantum correlation, and from the above
results, we can learn that negative TMI does not always mean information scrambling
for an open quantum system because the residual information at last is purely classical
in this case. The different results for initial NEEL state between L = ¢~ and L = ¢ can
be understood as follows. For L = ¢7, the off-diagonal elements of the density matrix
of the system gradually decay with time evolution and disappear at last. In this case,
though entanglement disappears, classical correlations still can exist at last. Different from
L = 0% for L = 0~ the system gradually decays to ground state with time evolution. In this
case, both entanglement and classical correlations disappear at last, and thus TMI finally
decays to zero.

It is noticed that for a closed system with limited dimension, the dynamics of a system
usually show oscillatory behaviors. In this paper, we focus on the effects of baths on
information scrambling. As shown in Figure 2a, without the baths TMI exhibits oscillatory
behaviors as expected, while TMI will gradually decay in the presence of baths as shown
in Figure 2b,c. From Figure 2a—c, it can also be seen that the presence of baths does not
change the position of the peaks and valleys of TML
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Figure 2. TMI of XXZ chain as a function of time for initial NEEL state: (a) in the absence of bath
(T =0); (b) L =0;and (c) L = ¢*. For both (b,c), Iy =T, =T =0.5,and 71 = 72 = 7 = 5. Here
N=6n=2.

3.1.2. Tripartite Logarithmic Negativity

An important caveat of the von Neumann entropy is that it captures both quantum
and classical correlations. Then, it is necessary to isolate the quantum contribution. To this
end, we consider the bipartite logarithmic negativity (BLN), which is a proper measure of
entanglement in the mixed state, and its definition is [96]

gy = log(‘p)T(YY 1), (14)

where p)T(’g/ is the partial transpose of a density matrix, and ‘p?y

Ty vt Ty -
= Try/ (03 ) TpyY is the

trace norm of p)T(YY By replacing BMI on the right side of Equation (13) with BLN, analogous
to the quantity TMI, TLN is defined as [32]

e3(A:B:C) =¢(A:B)+e(A:C)—e(A:BC). (15)

A negative value of TLN implies delocalization of quantum information among A, Band C,
while a non-negative value of TLN indicates that in this case quantum information mostly
is stored in bipartite partitions and is not delocalized.

In Figure 3, we plot the time evolution of TLN for the same initial NEEL state as
in Figure 2. Figure 3a shows the time evolution of TLN in the absence of baths (I' = 0)
for comparison, while Figure 3b,c are for L = ¢~ and L = ¢* with I' = 0.5, respectively.
The behavior of TLN shown in Figure 3 is similar to that in Figure 2. TLN in Figure 3a can
be negative, which indicates that the quantum information is also scrambled in the absence
of baths. Comparing Figure 3b,c with Figure 3a, we can see that the maximum absolute
value of the negative value of TLN becomes smaller,and the duration of delocalization of
quantum information is limited.

Unlike TMI for L = 07 saturating to a negative steady value after a long time evolution,
TLN (see Figure 3c) decreases to zero at last, which means that finally quantum information
is totally lost. Comparing Figure 2 with Figure 3, we can see that TMI lasts for a longer
time than TLN in the presence of baths. Especially for L = ¢, TMI saturates to a negative
value after TLN decays to zero. It implies that when entanglement is zero, TMI can still
be negative. Hence, negative TMI is not a good diagnosis of information scrambling for
open quantum systems. By comparing the dynamics of TLN and TMI, we can distinguish
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information scrambling from the total information delocalization in an open quantum
system. Therefore, in the following, we will focus on TLN.

The decay of TLN to zero at last in the presence of baths shown in Figure 3b,c implies
that information scrambling is suppressed by these two different types of baths. Information
scrambling can only occur in the short-term, and then disappears in a long-term. This
phenomenon can be understood as the interaction between the system and baths creating
entanglement between them, which in turn destroys the entanglement within the system,
and hence diminishes delocalization of quantum information. It is noticed that though the
environment has a negative impact on information scrambling, there are regimes in which
quantum information is still scrambled in the early period.

Comparing these two types of system-bath interactions, it can be seen that the time
interval that TLN stays negative in the case of L = ¢~ is larger than that in the case of
L = o* for the same values of I and <. For L = ¢7, the total number of excitations for
both ancillary qubit A and the system is conserved; thus, the effective Hilbert subspace for
quantum information is the same as that without baths. It is noticed that for L = ¢~ and
initial NEEL state, at the beginning due to partially decaying, the space belonging to each
excitation might be occupied, which means that the effective Hilbert subspace is enlarged
at the early time. As time evolves further, the number of excitations gradually decreases,
and at last, the system will evolve into the ground state completely, i.e., the size of effective
Hilbert subspace after a transient period of time is gradually decreased. Although the total
number of excitations is conserved in the case of L = ¢%, decoherence occurs, which means
that the coherence and quantum correlation gradually disappear as time evolves, in which
case L = 0% or L = ¢~ information scrambling lasts for a longer time, depending on which
one decays faster, the coherence or the excitation. For XXZ chain, the coherence decays
faster for L = ¢ than the excitation decays for L = o~

0.0l 0.0l
=] =]
<02 %02
(‘w)m (0"‘
o (a) N (b)
() 5 10 15 20 o 5 10 15 20
t t
0.0}
)
S
< 02
wfﬁ
c
—0.4 ©
0 5 10 15 20

t

Figure 3. TLN of XXZ chain as a function of time for initial NEEL state: (a) in the absence of bath
(I' =0); (b) L = 0~ ; and (c) L = o*. All the parameters are the same as those in Figure 2.

3.2. Initial State |00. . .00)

Next, we consider the initial state |00...00). Figure 4a shows the time evolution
of TLN in the absence of baths (I' = 0), while Figure 4b,c are for L = ¢ and L = ¢~,
respectively. As shown in Figure 4a, TLN is non-negative without baths for this initial state,
implying that quantum information is not scrambled. The reason quantum information
is not scrambled for this initial state in the unitary case is that there is only one excitation
for this initial state; thus, there are few quasi-particles [97], which confines the dynamics
and hence constrains the amount of entanglement that can emerge. Accordingly, quantum
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information is stored mostly in bipartite partitions and cannot spread properly over many
degrees of freedom.

In contrast, in Figure 4b, TLN in the presence of dephasing baths can become slightly
negative, which means that information scrambling takes place. On the other hand, after a
long time evolution, TLN decays to zero as shown in Figure 4b. It indicates that quantum
information is totally lost at last, and information scrambling can only exist for a short time.
Completely different from the results for channel L = 0%, TLN still stays non-negative for
channel L = ¢~ shown in Figure 4c, which means that information scrambling does not
occur. We will explain the reason in the following subsection.

0.15 0.10
~ (a) ~ (b)
S 0.10 <
3 5 0.05
< <
70.05 %0.00 AV
0.00
0 5 10 15 20 0.055 5 10 15 20
t t
0.15
5 ©
& 0.10
<
W .05
0.00
0 5 10 15 20

t

Figure 4. TLN of XXZ chain as a function of time for initial state |00. . .00): (a) in the absence of bath
(I'=0);(b) L =0% and (c) L = 0. Here, N = 7, n = 1 and the other parameters are the same as
those in Figure 2.

3.3. A Class of Initial Product States

We have studied the effects of baths on information scrambling for two specific initial
states. Now, we consider a class of initial product states. We consider all of the 2N
permutations on each qubit state being |0) or |1) as initial states, |Z) 5y, and label these 2N
product states by bit sequences from [11...11) to |00...00). We investigate the initial-state
dependence of information scrambling by using minimum values of TLN. The reason
why we choose minimum values of TLN is that they can be used to describe how strong
information scrambling is. Figure 5 displays the initial-state dependence of minimum
values of TLN, written as ¢, for (a) dephasing channel and (b) dissipation channel,
respectively. The horizontal axis shows the labels of |Z) -, in a decimal. From Figure 5, we
can see that for L = ¢? information scrambling occurs (¢ < 0) for all these initial product
states, including the four initial states for which information scrambling cannot occur in
the absence of baths, i.e., |00...00), [10...00), [01...11) and |11...11) [29]. Similar to the
case for |00...00), because the size of effective Hilbert subspace is too small, quantum
information cannot be scrambled for initial states |10...00), [01...11) and |11...11) in
the absence of baths. Information scrambling can occur for these four initial states in the
presence of dephasing baths, which can be understood as the system-bath interaction
destroys the quasi-particle and thus changes the localized dynamics to a delocalized one.

It can also be seen from Figure 5 that for L = ¢, except for |00...00) and |10...00),
information scrambling can occur for all the other initial states. The different results for
|00...00) and |10...00) between L = ¢* and L = ¢~ can be understood as the different
sizes of their corresponding effective Hilbert subspaces. It is noticed that due to the use of
CNOT gate, for these two initial states, the total number of excitations for both ancillary
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qubit A and the system is one. For L = 0%, as mentioned above, the total number of
excitations is conserved; thus, the effective Hilbert subspace for quantum information is not
decreased. However, for L = ¢, the total number of excitations for both ancillary qubit
A and the system is gradually decreased from 1 to 0; thus, the effective Hilbert subspace
for quantum information is always decreased. Hence, the amount of entanglement that
can emerge is severely limited, and information scrambling cannot occur for L = c~. We
also notice that similar to the case for L = ¢~ with initial NEEL state, for |01...11) and
|11...11), the effective Hilbert subspace is enlarged for a while before it starts to decrease;
thus, information scrambling occurs for these two states. In a word, information scrambling
can occur for all these 2N initial product states in the case of L = ¢%, while in the case of
L = ¢~, information scrambling can still occur for all these initial product states except

|00...00) and |10...00).

0.0 N " 1 0.0 =
(a) (b)

= s A4 pa Ay = N N ~
é 02 “ AA Au “ AA = 0.2 ‘A‘A AA“ ‘:A ‘A‘. ‘A“ ‘:AA‘

P AA A A A 'S '

) A A PN W - -
AA AA Al a4
04 20 40 60 04 20 40 60
initial state initial state

Figure 5. Initial-state dependence of minimum values of TLN in the case of: (a) L = ¢*and (b) L = 0~
respectively. The horizontal axis shows the labels of initial states in a decimal. All the parameters are
the same as those in Figure 2.

4. Effects of Non-Markovianity on Information Scrambling

In the following, we will investigate the effects of non-Markovianity on information
scrambling. As discussed above for our model, information scrambling can occur for most
of these initial product states in the absence of baths. We first consider the initial states with
which information scrambling can occur in the absence of baths. Our investigation shows
that the effects of non-Markovianity on information scrambling for these initial states are
qualitatively the same. In the following, we take initial NEEL state as an example.

For L = ¢%, we plot the time evolution of TLN for initial NEEL state and different v in
Figure 6, for (a) vy = 1, (b) ¥ = 2 and (c) ¥ — oo, respectively. Clearly, the presence of the
baths will suppress information scrambling. However, it can be seen from Figure 6 that
with the decrease of v, i.e., the increase of non-Markovianity, the maximum absolute value
of the negative value of TLN increases, and it takes more time for TLN to decay to zero.

It is known that 7y indicates a memory effect of the environment, and the smaller the
7, the longer the environmental memory time. When y is small enough, non-Markovian
properties can be observed. It has been shown that non-Markovianity due to the informa-
tion backflow can be traced back to the establishment of correlations between the system
and the environment as well as the change in the state of the environment [98-100]. In the
Markovian case, information of the system flows completely into the environment. While in
the non-Markovian case, information flowing from the system is partially preserved during
the transient period in the correlation between the system and the environment as well as
in the environment and will subsequently flow back to the system. From Figure 6, we can
find that with the decrease of 7, the oscillation lasts longer and decays more slowly for TLN.
Thus, information scrambling lasts for a longer time in non-a case than in a Markovian case.
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Figure 6. TLN of XXZ chain versus time t in the case of L = ¢~ for initial NEEL state and different v:
(@) vy =1; (b) ¥ = 2; and (c) v — co. The other parameters areI' = 0.5, N = 6 and n = 2.

To make the results for the effects of non-Markovianity on information scrambling
more quantitative, we plot the time interval TLN staying negative and the minimum value
of TLN as functions of log <y in Figure 7a,b, respectively. It is shown in Figure 7a that the
time interval TLN staying negative decreases to a steady value with the increase of v,
and it is longer for non-Markovian baths than that for Markovian ones. On the other hand,
from Figure 7b we can find that the minimum value of TLN increases as -y increases, and it
is smaller for non-Markovian baths than that for Markovian baths. These results suggest
that baths with memory will be beneficial to the emergence of information scrambling.

N —-0.20
F 60} & (a) (b)
% \A\ .E AAAAAAAAAAAAAAAAAAA
40t 4 £ -0.25 A
@ A ] AL
E oM S
=20 =y anat
AMAAAAAAAAAAAAAAAAAAA .
-0.30
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log y log v

Figure 7. (a) The time interval TLN staying negative as a function of log 7; (b) The minimum value of
TLN as a function of log y. The initial state and the other parameters are the same as those in Figure 6.

Now, we consider L = ¢~ . In Figure 8, we plot the time evolution of TLN for different
7 for the same initial NEEL state as in Figure 6. From numerical calculation, we find that
the memory effect of the baths is helpful for information scrambling in the case of L = o~
also, which is qualitatively the same as that for L = ¢* shown in Figure 6.
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Figure 8. TLN of XXZ chain versus time ¢ in the case of L = ¢~ for initial NEEL state and different
7: (@) y =1; (b) ¥ = 2; and (c) v — oo. The other parameters are the same as those in Figure 6.

We then consider the initial states with which information scrambling cannot occur
in the absence of baths. For these states, it is found that the effects of non-Markovianity
on information scrambling are similar, so we take |00...00) as an example. As mentioned
above, for this initial state in the case of L = ¢?, system-bath interaction can change the
localized dynamics to a delocalized one in the early period, while information scrambling
cannot occur for this initial state in the case of L = ¢~ whether in Markovian or non-
Markovian regimes. Figure 9 shows the time evolution of TLN for L = ¢* and different
. It can be seen from Figure 9 that the time interval TLN stays negative decreases with
the increase of v, and it is longer for non-Markovian baths than that for Markovian ones,
which are similar to those for initial NEEL state. This indicates that baths with memory can
also enhance information scrambling for these initial states.
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Figure 9. TLN of XXZ chain versus time ¢ in the case of L = ¢* for initial state |00. . .00) and different
y: (@) vy =1 (b) ¥y =2;(c) ¥y — co. The other parametersare' = 0.5, N =7and n = 1.
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5. Conclusions

In this paper, we have studied information scrambling by using tripartite mutual
information and tripartite logarithmic negativity. We have considered a spin chain with
two ends interacting with two separate baths and used the non-Markovian quantum state
diffusion equation approach to obtain the time evolutions of TMI and TLN. We have
considered two types of system-bath interactions, i.e., dephasing and dissipation channels
as well as various initial product states.

It has been found that TMI can still be negative when there is no entanglement at
all, which means that negative TMI might not be a suitable quantifier of information
scrambling for an open quantum system anymore, but negative TLN is an appropriate one.
By comparing the dynamics of TLN with TMI, we can distinguish information scrambling
from the total information delocalization in an open quantum system.

Our results have shown that generally the existence of baths suppresses information
scrambling in the long-term. However, in some cases environment can play a beneficial role.
For example, for the initial state |00. .. 00), information is not scrambled in the absence of
baths, while information scrambling can occur in the early period with dephasing baths.
These phenomena can be understood as that the system-bath interaction destroys the quasi-
particle and thus changes the localized dynamics to a delocalized one. More importantly, it
has been found that non-Markovianity can be helpful for keeping information scrambling.
Concretely, information scrambling lasts longer in non-Markovian regime than that in
Markovian regime, and with the increase of non-Markovianity, information scrambling
lasts longer and longer.

In addition, we also considered the non-interacting spin chain (A = 0, XX chain).
From numerical calculations, we found that the results for TMI and TLN are only slightly
different from those for the XXZ chain (for detail see Appendix A). In addition, we
considered the influences of the size of subsystem C and the system-bath interaction
strength I on information scrambling in the presence of baths. We found that with the
increase in size of C, information scrambling lasts a longer time for the XXZ chain (see
Appendix B), and we found that the maximum absolute value of the negative value for
TLN as well as the time duration before it decays to zero decrease with the increase of
I', which implies that a stronger system-bath interaction corresponds to less information
scrambling (see Appendix C).
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Appendix A. The Numerical Results for XX Chain

In this Appendix, we show the numerical results for the XX non-interacting spin chain
(A = 0). For the XX chain, the results for TMI and TLN are only slightly different from
those for the XXZ chain. From Figures Al and A2, we can see that TMI and TLN for the
initial NEEL state are both suppressed in the presence of baths, which are qualitatively
the same as those for the XXZ chain. However, for two different types of system-bath
interactions, the result is different from that for the XXZ chain. From Figure A2b,c, we
can see that the time interval that TLN stays negative in the case of L = ¢* is longer than
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that in the case of L = 0, which is different from the result for the XXZ chain shown in
Figure 3b,c. It indicates that for the XX chain, the excitation decays faster for L = ¢~ than
the coherence decays for L = ¢0*. The detrimental effect of the dephasing channel is weaker
than that of the dissipation channel for the XX chain for keeping information scrambling.
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< -0.25 < -0.25
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Figure A1. TMI of XX chain as a function of time for initial NEEL state: (a) in the absence of bath
T =0);b)L=0c";(c)L=0% Forboth (b,c), Ty =T, =T =05and y; = 7 =y =>5. Here, N = 6,
n=2.
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Figure A2. TLN of XX chain as a function of time for initial NEEL state: (a) in the absence of bath
(I'=0); (b) L = 07;(c) L = o*. All the parameters are the same as those in Figure Al.

In Figure A3, we plot TLN as a function of time ¢ for initial state [00...00). The results
show that information scrambling can also occur for L = ¢%, while for this initial state it
cannot occur for L = ¢~, which are the same as those for the XXZ chain shown in Figure 4.

Taking the initial NEEL state as an example, the benefits of the memory effect of
L = ¢* on the emergence of information scrambling can also be seen in Figure A4, which
is consistent with the result shown in Figure 6. In the case of L = ¢, the effect of non-
Markovianity is also helpful for keeping information scrambling, which is also consistent
with the result for the XXZ chain.
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For the initial state |00...00), from numerical calculation it is found that the effect
of non-Markovianity is also beneficial for keeping information scrambling in the case of
L = ¢*. While for L = ¢~, information scrambling cannot occur whether in Markovian
or non-Markovian regimes. These results are qualitatively the same as those for the

XXZ chain.
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Figure A3. TLN of XX chain as a function of time for initial state |00...00): (a) in the absence of bath
I'=0);(M®)L=0%(c)L=0".Here, N=7,n=1,and the other parameters are the same as those

in Figure AT.
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Figure A4. TLN of XX chain versus time f in the case of L = ¢~ for initial NEEL state and different v:
(@) v =1;(b) ¥ = 2; (c) v — co. The other parametersareI' = 0.5, N = 6 and n = 2.

Appendix B. The Influence of the Size of C on TLN for the XXZ Chain

Then, we consider the influence of the size of C on TLN for the XXZ chain. In
Figure A5, we plot TLN as a function of time f for different n and initial state |00...00) in
the case of L = ¢*. It can be seen from Figure A5 that with the increase of the spin number
of subsystem C, the maximum absolute value of the negative value for TLN becomes larger,
and it takes more time for TLN to decay to zero. In a word, with the increase in size of
C, information scrambling can last for a longer time, and more information is scrambled.
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For the initial NEEL state, the results are qualitatively the same as those for initial state
|00...00).

In the case of L = ¢~, as mentioned above information scrambling cannot occur for
the initial state [00...00) or |10...00) and except for these two states, it also takes more
time for TLN to decay to zero for the XXZ chain with the increase of the spin number n of
subsystem C.
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Figure A5. TLN of XXZ chain versus time ¢ in the case of L = ¢ for initial state |00...00) and
different n: (a) n = 1; (b) n = 2; (c) n = 3. The other parametersare N =7,I' = 0.5 and ¢y = 5.

Appendix C. The Effects of I' on TLN for XXZ Chain

In this Appendix, we investigate the effects of I' on TLN. In Figure A6, we plot TLN
versus time ¢ for initial NEEL state and different I in the case of L = o%. From Figure A6,
it can be seen that the maximum absolute value of the negative value for TLN as well as
the time duration before it reaches zero decreases with increasing I', which implies that
a stronger system-bath interaction corresponds to less quantum information scrambling.
The effect of I' on TLN for L = ¢~ is similar to that for L = ¢*.

_0.00 0.00
Q Q
5 &
<-0.15 <-0.15
w w"’
-0.30 @) -0.30 (b)
0 10 20 30 40 0 10 20 30 40
t t
_0.00
<
Q
<-0.15
w
(©)
-0.30
0 10 20 30 40
t

Figure A6. TLN of XXZ chain versus time t in the case of L = ¢~ for initial NEEL state and different
I'(@I' =0.1; (b) ' = 0.2; (c) I' = 0.5. The other parameters are N =6,y =5and n = 2.
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