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Chapter 1

Introduction

Cosmology, or the study of the universe at large, can be considered one of the great-
est accomplishments of the profound developments that the field of physics under-
went during the 20th century. It combines the physics of fundamental particles at
the tiniest length scales, governed by the rules of Quantum Mechanics, with that of
length scales as large as the entire universe, where gravity and General Relativity
reign supreme. It also aims to understand both the shortest and longest timescales,
from the tiniest fraction of a second after the Big Bang to the 13.7 billion years that is
the age of the universe. Over the past decades, remarkable progress has been made
in understanding the universe along almost its entire range of length and timescales.
This section aims to provide an accessible introduction to the standard model of cos-
mology and some of its open questions and challenges, some of which are the topics
of this thesis.

1.1 The standard model of cosmology

In 1964 Arno Penzias and Robert Wilson accidentally detected the Cosmic Microwave
Background (CMB) radiation [1], a relic afterglow of the Big Bang, that can be thought
of as a ’baby picture’ of the universe when it was only a few hundred thousand years
old. Their discovery laid the groundwork for our modern understanding of cosmol-
ogy. The existence of the CMB suggests that our universe must have started in a
dense, hot phase that cooled down by the expansion of space, a scenario that goes
by the name Hot Big Bang. Inhomogeneities in the distribution of matter present
at the time, started to grow and collapse under the influence of gravity, eventually
forming stars, galaxies, and all the other structures that we observe in the universe
today. Observations of these initial inhomogeneities (or anisotropies) in the CMB
radiation [2], together with previous measurements of galaxy rotation curves [3, 4]
and several other astrophysical phenomena, suggested that the well-known bary-
onic matter is outnumbered in mass about 5 to 1 by a form of matter that we are
unable to observe directly, and is hence referred to as (Cold) Dark Matter (CDM).
Finally, another key moment in the development of cosmology was the 1998 dis-
covery that the universe is expanding at an accelerating rate [5, 6], suggesting the
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existence of elusive vacuum energy (Λ), often referred to as a cosmological constant
or Dark Energy, that makes up about 68% of the total energy content of the uni-
verse. These developments culminated in the standard model of cosmology known
as Λ-CDM. Since then, ever more precise measurements of the CMB anisotropies,
by WMAP [7–12], Planck [13–15], ACT [16], SPT [17], and BICEP/Keck [18] among
others, have pinned down the parameters of this model with high precision. De-
spite this remarkable progress, several open problems remain, the most obvious of
which are as to what is the nature of Dark Matter and Dark Energy. Additionally, the
internal consistency of our cosmological models is in jeopardy because of disagree-
ment between different types of astronomical observations, for example about the
value of the expansion rate (or Hubble parameter). More specifically, direct distance
measurements of this expansion rate, such as supernovae measurements similar to
those used in the 1998 discovery [19–21], and indirect measurements, such as those
of CMB anisotropies [15], conclude different expansion rates that are in tension1.

Arguably the most fundamental question is what preceded the initial hot and
dense phase suggested by the CMB, and what physical mechanism generated the
initial anisotropies that allowed structure to form. In other words, what set the ini-
tial conditions of our universe? There are several reasons to expect that something
happened before the Hot Big Bang phase and set the initial conditions. For one, the
observation that the CMB temperature is a homogenous 2.73 Kelvin in every direc-
tion, with anisotropies of size around 1 part in 10000, is puzzling. Two points in
the CMB that are separated by more than about one degree in our sky were causally
disconnected at the time the CMB was emitted, meaning they had no means to equi-
librate their temperature. From this perspective, the homogeneity of the CMB seems
to be a case of severe fine-tuning, often referred to as the horizon problem. Another
such fine-tuning lies in the fact that CMB measurements suggest that our universe
today is geometrically flat. The equations of General Relativity that govern the evo-
lution of space, tell us that for an expanding universe filled with energy, matter, and
radiation, any geometrical curvature will grow over time. Hence, for the universe
to appear flat today, it must have been even flatter initially, again suggesting highly
fine-tuned initial conditions. Although such fine-tuning is not necessarily impossi-
ble, preferably one would like to explain these observations as a natural consequence
of some more fundamental theory.

1This is commonly referred to as the Hubble tension. Another such disagreement concerns the size of
matter fluctuations in the late universe, known as the S8 tension.
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1.2 Cosmic Inflation

Around 1980, Alan Guth and Alexei Starobinsky independently sought to solve
yet another puzzling fact about our universe. Theories of particle physics at the
time suggested that the extreme conditions early on during the Hot Big Bang phase
should have led to a significant production of magnetic monopoles [22], yet in our
universe we have observed none. They proposed a brief period of exponential ex-
pansion before the onset of the Hot Big Bang phase, which could dilute any such
exotic species, explaining why we never observe them. They realized that such a
period of expansion would also address the aforementioned horizon and flatness
problems [23, 24]. The former is solved because now our observable universe came
to be in a much smaller, causally connected, and therefore homogenous patch, that
rapidly expanded to cosmic scales. Furthermore, unlike the decelerating expansion
that the universe undergoes after the Hot Big Bang, exponential expansion drives the
universe’s geometry towards flatness. This initial period of accelerated expansion is
now known as cosmic inflation and has become an important pillar in the leading
paradigm of cosmology. Although first formulated as a theory of false-vacuum de-
cay, nowadays such a period of expansion is commonly thought to be realized by the
early presence of one or more quantum fields, often dubbed inflaton(s), that transfer
their potential energy to the spacetime in such a way as to cause exponential expan-
sion [25, 26] 2.

Another remarkable feature of inflation is that it provides a natural mechanism
for generating the tiny initial density fluctuations, that grew into the structures that
fill the universe today [28, 29]. They originate from quantum fluctuations of the
scalar field(s) responsible for driving the expansion. Whereas in a slowly- or non-
expanding spacetime such quantum fluctuations would only live briefly before anni-
hilating, the rapid expansion of inflation instead rips them apart over cosmic scales.
The ensemble of these quantum processes taking place, results in a Gaussian (i.e.
being fully described by a two-point correlation function) and nearly scale-invariant
(i.e. self-similar) distribution of density fluctuations throughout the universe at the
end of inflation. A visualization of this mechanism with additional explanation is
given in figure 1.1. If this mechanism is indeed responsible for setting the initial con-
ditions, then the existence of structure on cosmic scales is arguably the most macro-
scopic manifestation of a quantum process imaginable. Precise observations of CMB
fluctuations indeed tell us that the initial conditions of the universe must have been

2The accelerated expansion of inflation is very similar to the aforementioned Dark Energy that causes
our present-day universe to expand at an exponential pace. Although the energy scale, and thus the
amount of expansion involved during inflation, is many orders of magnitude higher, there exist models
of Dark Energy that draw inspiration from the inflationary mechanism [27].
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highly Gaussian and nearly scale-invariant [30].

Figure 1.1: Visual representation of how inflation generates anisotropic initial conditions. The
inflaton field ϕ that drives the cosmic expansion can spawn two quantum fluctuations δϕ that
get separated to cosmic scales by the rapid expansion. The energy density at the two points
of space where these fluctuations end up, become correlated. Fluctuations sourced at differ-
ent times correspond to different spatial separations in the initial conditions. The ensemble
of these processes induces a spatial two-point correlation, resulting in Gaussian initial condi-
tions. Furthermore, the nearly scale-invariant nature of an exponentially expanding spacetime
results in a similar (but not equal) amount of fluctuations sourced at different times, in turn
resulting in similar statistical power of fluctuations at different length-scales and thus nearly
scale-invariant initial conditions.

But, despite its ability to correctly predict the statistical properties of the initial
conditions, inflation is by no means a confirmed theory and more evidence is re-
quired to prove its validity. This evidence we hope to find by testing other predic-
tions of inflation. One such prediction is the existence of primordial tensor fluctuations.
Besides the aforementioned scalar density fluctuations, models of inflation typically
generate ripples in spacetime itself, more commonly known as gravitational waves.
Just as the ensemble of inflationary quantum fluctuations resulted in a distribution
of scalar density fluctuations, it is expected to also produce a background of gravita-
tional waves [23]. Although a direct detection of this background with gravitational
wave interferometry (i.e. what is used to detect gravitational waves from merging
black holes and neutron stars [31]) is likely out of reach for the time being 3, we hope

3At the time of writing there has been a recent detection of a gravitational wave background using
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to be able to detect its imprint in the CMB where it induces a particular type of polar-
ization of the CMB fluctuations, called B-modes, that we hope to be able to observe
in addition to the already routinely measured temperature and polarization E-mode
fluctuations [33].

Besides not being experimentally confirmed, inflationary models constitute a
vast landscape of viable mechanisms (still) compatible with observations. Never-
theless, even in the absence of conclusive evidence, we can constrain this landscape
through observational bounds on inflationary parameters. The strongest of such con-
straints come from bounds on a combination of the initial scalar density perturba-
tions’ deviation from scale-invariance (the scalar spectral tilt ns), and the relative size
of tensor perturbations to scalar perturbations (the tensor-to-scalar ratio r). Precise
CMB measurements (including B-mode searches), combined with measurements of
the distribution of galaxies in the late universe, have narrowed down the space of
possible models significantly [18], as shown in figure 1.2. The next generation of sur-
veys, Simons Observatory [34] and CMB-S4 [35], is poised to improve bounds on r
by about two orders of magnitude.

1.3 Primordial non-Gaussianity and the Cosmological
Collider

Another generic prediction and important probe of the physics of inflation, and the
main topic of this thesis, is a possible deviation of the initial conditions from per-
fect Gaussianity, dubbed primordial non-Gaussianity [36]. Just like quantum fluctua-
tions during inflation can give rise to Gaussian initial conditions as described previ-
ously and in figure 1.1, additional processes (i.e. interactions of fluctuations) can take
place, depending on what is allowed by the inflationary theory. As visualized and
explained in figure 1.3, such processes can induce three- or higher-N-point correla-
tion functions in the initial conditions, implying a deviation from Gaussianity. These
higher-N-point correlation functions are the higher-dimensional counterparts to for
example the skewness (three-point) and kurtosis (four-point) of a one-dimensional
probability density function (PDF). Different physical origins of such correlations
will result in statistical power in distinctly shaped correlation functions [37], encoding
valuable information about the physics at play during inflation. For example, self-
interactions of the inflaton induce correlations with shapes of similar side lengths
(e.g. equilateral triangles or rectangles) [38]. In contrast to this, the presence and

pulsar timing arrays [32]. Whether this background is due to inflation remains to be elucidated, with
other options including a background of binary merger events.
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Figure 1.2: Observational bounds on the scalar spectral tilt ns and tensor-to-scalar ratio r

from CMB (green region) and combined CMB and galaxy measurements (blue region). The
other lines and regions mark different inflationary mechanisms (e.g. a quadratic potential
ϕ2) and amounts of expansion (N = 50 meaning 50 e-folds of inflationary expansion, i.e.
physical length scales grow by 50 factors e.). Bounds on these two parameters translate into
constraints on the theory space. For example, quadratic inflation (upper red line) is ruled out
by these observations, since it lies well outside of the blue region. Figure taken from [18].

interaction of multiple inflaton fields imprint correlations between short and long
distances, resulting in unique shapes of non-Gaussianity, including squeezed trian-
gle configurations known as local non-Gaussianity [39, 40]. A schematic visualization
of this shape dependence is shown in Figure 1.4. Even in the simplest model of infla-
tion, with a single scalar field and no self-interactions, weak non-Gaussianity will be
induced by weak gravitational interaction, setting a lower limit or gravitational floor
for primordial non-Gaussianity [41–44]. Because of its sensitivity to the details of
inflation, a (non-)detection of primordial non-Gaussianity has the potential to dras-
tically improve our understanding of inflationary physics, and extensive searches
for these primordial signals are thus warranted [45–47]. For example, since multi-
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field inflationary models typically predict local non-Gaussianity with a magnitude
f localNL = O(1), whereas we expect f localNL ≪ 1 in single-field models, it is an important
scientific target to constrain or detect the local shape at this level.

Figure 1.3: Visual representation of the generation of primordial non-Gaussianity during the
inflationary expansion. Interactions of fluctuations sourced at different times and through
different mechanisms result in higher-order spatial correlation functions with different shapes.
For example, long-range correlations can be mediated by an additional field σ, which can
either be another light scalar (inflaton) or a more massive particle. Fluctuations sourced at the
same time during inflation, result in correlations in equilateral triangles.

More recently, it has been noted that interactions of the inflaton with additional
massive fields, with masses of the order of the energy scale of inflation, can leave yet
another distinct imprint in the initial conditions through primordial non-Gaussianity
[48–53]. For example, through the statistical power in triangles oscillating as a func-
tion of its squeezedness, as visualized in figure 1.4. The frequency, amplitude, and
phase of this oscillation are set by the mass and spin of these spectator fields, thereby
in principle allowing for spectroscopy of the particle content of the inflationary epoch.
In this sense, the inflationary expansion can be thought of as a particle collider exper-
iment, the results of which were encoded in the initial conditions, and therefore ev-
erywhere around us in the universe. The energy scale at which inflation took place,
however, is likely about eleven orders of magnitude higher than the energy scales
that we can probe with the Large Hadron Collider, and conceivably out of reach for
any terrestrial particle collider, ever. The cosmological collider therefore probes energy
scales vastly beyond that of the Standard Model of particle physics, but rather closer
to the Planck scale. There is indeed ample reason to expect the presence of massive
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fields during inflation [54]. For one, the exponential expansion of space raises the
mass of standard model particles to be close to the inflationary energy scale. Addi-
tionally, UV-complete theories of physics, such as string theory, generically predict
a tower of states with masses close to the Planck scale, that could have been briefly
excited during inflation, leaving their fingerprint in the initial conditions.

Figure 1.4: Schematic visualization of the strength of correlation between three points in the
initial conditions, for different types of primordial non-Gaussian signatures as a function of
the shape of the triangle that these three points form, from equilateral triangles on the right
to squeezed triangles on the left. In green, we show the long-range correlation that peaks
for squeezed triangles and is known as local primordial non-Gaussianity. In blue we show
the equilateral type that is typical for self-interactions of the inflaton. In red we show the
oscillatory behavior of primordial non-Gaussianity induced by the exchange of a massive state
as a function of the squeezedness of the triangle.

It is thus clear that primordial non-Gaussianity constitutes a powerful window
into the early universe, involving physics at energy scales that have yet to be ex-
plored. This thesis aims to contribute to the development of this intriguing and
promising field of cosmology and studies advancements, challenges, and prospects
in the hunt for primordial non-Gaussianity. Before we get there, in the next section
we explain how we can study the initial conditions set by inflation.
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1.4 Tracing the matter distribution

Unfortunately, since we are unable to look further into the past the CMB, i.e. some
300.000 years after the supposed end of inflation, we do not have direct access to
even a glimpse of the initial conditions set by inflation 4. But since the initial condi-
tions (or more concretely the initial matter distribution) are the seeds of all structure
throughout the cosmos, we can hope to learn about its properties, including pri-
mordial non-Gaussianity, by studying the observable matter distribution, or tracers
thereof, across space and time. In this section, we will go over several such tracers
that we can use as a probe for the initial conditions, and discuss their pros and cons.

1.4.1 The Cosmic Microwave Background

The CMB is an excellent probe for studying the initial conditions since at the time
it was emitted, the underlying matter distribution has not been strongly affected
by gravity, and therefore the CMB temperature fluctuations are linearly related to
the initial conditions, making the CMB a pristine tracer of the initial conditions and
therefore an indispensable source of information on the primordial universe. Since
the CMB anisotropies are observed to be highly Gaussian, all information can be
captured using the two-point correlation function, or power spectrum in momentum
or harmonic space. The power spectrum of CMB anisotropies matches the generic
prediction of inflation that the distribution of primordial fluctuations must be nearly
scale invariant. Any additional higher-order correlation function, such as a three-
point correlation function or bispectrum in momentum space, is therefore an immedi-
ate probe of primordial non-Gaussianity [55]. The relative simplicity of this analysis
has resulted in a precise determination of cosmological parameters, for example us-
ing data from the Planck satellite [15]. Although so far no conclusive evidence for
primordial non-Gaussianity has been found, surveys have put increasingly strong
constraints on its magnitude [56], the strongest of which is f localNL = −0.9 ± 5.1. Ad-
ditionally, the CMB data has been searched for cosmological collider signals as well
[57], again without detection.

By mapping the anisotropies of the CMB to increasing precision, the next genera-
tion of CMB experiments aims to improve sensitivity to primordial non -Gaussianity
by a factor of a few, possibly closing in on a detection. However, it could well be that
the amplitude of any primordial non-Gaussianity is still several orders of magni-
tude below the sensitivity of these experiments, down to the aforementioned gravi-

4Note that by initial conditions here we explicitly mean scalar density fluctuations. Other possible
relics of the early universe, such as primordial black holes or primordial gravitational waves, could in
principle be observed directly.
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tational floor, and any imprint due to massive states in the cosmological collider will
be very faint. Furthermore, it might not be sensitive enough to constrain the local
shape at the coveted threshold of one. Naively one might hope to simply keep in-
creasing the resolution of CMB measurements to improve sensitivity to primordial
non-Gaussianity. Unfortunately, the information content of the CMB is intrinsically
limited by its nature, as on small enough scales the photons that make up the CMB
have been able to equilibrate the temperature across the region, washing out any
anisotropies, an effect known as diffusion damping (or Silk damping) [58]. Hence, be-
low a certain scale, there are simply no anisotropic features to observe in the CMB,
and the next generation of CMB experiments already approaches this scale5. It is
thus clear that to increase our chances of detecting primordial non-Gaussianity and
accessing the cosmological collider, we need additional ways to probe the initial con-
ditions.

1.4.2 Large-scale structure of the Universe

We hope to obtain further information on the initial conditions by studying the mat-
ter distribution across the entirety of its history and 3-dimensional volume. Com-
pared to the CMB image that only constitutes the 2-dimensional boundary of this
volume, its bulk contains orders of magnitude more information. As illustrated in
figure 1.5, this volume covers different historical epochs of the universe as we look
further and further out into space. Right after the CMB is emitted, the universe is
permeated with neutral hydrogen (and some other light elements), and there are no
sources of radiation that allow us to directly observe this era, hence this era is re-
ferred to as the Dark Ages. As gravity collapses the initially overdense regions of
neutral hydrogen, after about 100 million years these regions become dense enough
to form the first galaxies, and with it the first luminous objects (i.e. stars), ushering
in a period known as Cosmic Dawn. These luminous objects emit ultraviolet (UV)
radiation, heating and even ionizing the remaining neutral hydrogen gas in the in-
terstellar medium. As more and more luminous objects form, even the gas in the
intergalactic medium starts to become ionized during a period called the Epoch of
Reionization. Meanwhile, matter continues to collapse and form structures for the
remainder of the cosmic time until now, resulting in the Large-scale structure of the
universe or Cosmic Web as visualized in figure 1.6.

For most of the cosmic volume, from today until the onset of Cosmic Dawn, there

5Let us emphasize that this does not imply that we cannot learn more from further CMB experiments.
As mentioned earlier, we still hope to detect primordial tensor perturbations through CMB B-mode po-
larization. Even in the context of primordial non-Gaussianity, possible spectral distortions of the CMB’s
perfect blackbody spectrum can probe the initial conditions at completely different length scales [59].
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Figure 1.5: The (cumulative) comoving volume from now (redshift z = 0) until redshift z,
relative to the total volume of the observable universe (up to the surface of last scattering at
redshift 1100). Different epochs of the universe are indicated, together with the percentage
of the total volume that this epoch spans. The top horizontal axis shows the age of the uni-
verse at the corresponding redshifts, in millions of years. This plot aims to give a schematic
visualization of the history of the universe and the approximate volume spanned by different
epochs, as the precise times of the onset and end of these epochs are disputed.

Figure 1.6: A slice out of a high-resolution simulation of the large-scale structure of the uni-
verse, clearly showing the filaments that make up the Cosmic Web. Source: Millenium Simu-
lations by Volker Springel.
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is a clear way for us to trace the distribution of matter: by mapping the position of
luminous galaxies across different redshifts, using telescopes in a multitude of fre-
quency ranges. Indeed this is the way to go at low redshifts, where ample such
structures exist. The Sloan Digital Sky Survey’s Baryon Oscillation Spectroscopic
Survey (BOSS) mapped approximately 1.5 million luminous red galaxies through-
out parts of the universe, as shown in figure 1.7, and many efforts are underway to
expand this number by many orders of magnitude by looking deeper into space and
further back in time [60–64].

Figure 1.7: A 2D slice through the 3D map of galaxies by Sloan Digital Sky Survey’s Baryon
Oscillation Spectroscopic Survey, clearly revealing Cosmic Web structures. Source: SDSS.

Compared to the CMB, at low redshifts where galaxies can be abundantly ob-
served, it is significantly more challenging to extract valuable information on cos-
mology, including the initial conditions. The universe at this age has become highly
non-linear except on the very largest scales, making it very hard to make theoretical
predictions to compare against the data. At redshifts close to z = 0, on scales larger



1

1.4. Tracing the matter distribution 13

than about 60 Mpc (or 2×108 light years), we can rely on the perturbative, analytical
machinery of the Effective Field Theory of Large-scale Structure (EFT of LSS) [65].
On smaller scales, matter overdensities are no longer perturbative and we have to
rely on fully numerical simulations of the evolution of the universe, that also incor-
porate the highly non-linear formation process of bound structures, such as galaxies
and clusters thereof (e.g [66]) 6. Such simulations are computationally expensive,
making them unsuitable for the Bayesian statistical methods (e.g. Markov Chain
Monte Carlo) that are used to determine the best-fit parameters of our cosmological
models since this requires many such simulation runs.

Additionally, the non-linear evolution of the matter density field has resulted in
a highly non-Gaussian distribution of matter at late times. Unlike for the CMB, all
the information encoded in the data can no longer be captured by just the power
spectrum (in the absence of any primordial non-Gaussianity, that is) but instead
requires also the inclusion of higher-order summary statistics, such as the bispec-
trum. Both measuring and modeling these higher-order correlation functions once
again become increasingly complicated and computationally complex as one goes
up in order and down to smaller scales. Nevertheless, it has been shown that strong
ΛCDM parameter constraints can be obtained from galaxy samples such as BOSS
by making use of only the power spectrum and bispectrum [67–71]. When it comes
to primordial non-Gaussianity, the additional gravitational contribution to higher-
order correlations also acts as confusion to any primordial signal, swamping it by
many orders of magnitude, so that we are now looking for a needle in a haystack.
Constraints on primordial non-Gaussianity from galaxy samples are therefore highly
sensitive to uncertainties in the modeling of these secondary contributions to higher-
order correlations. In part because of this, constraints on primordial non-Gaussianity
from current generation data such as BOSS have been significantly less constraining
than those from the CMB [72–75]. The next generation of galaxy surveys will yield
higher-density galaxy samples, promising exquisite constraints on cosmological pa-
rameters, including primordial non-Gaussianity [64, 76, 77].

To counter the effects of non-linearity, it seems tempting to extend galaxy sam-
ples out to higher redshift, where the universe is more linear at smaller scales and
thus easier to model. However, as we go to higher redshifts, these objects will be-
come increasingly rare (as most of them have not yet formed) and hard to observe,

6This is in some sense analogous to our inability to perturbatively study strongly coupled processes in
the theory of quarks and gluons, Quantum Chromodynamics (QCD), instead requiring numerical lattice
simulations. Contrary to N-body simulations, for QCD it is the low-energy regime that cannot be per-
turbatively modeled due to quark confinement, whereas the high-energy regime is perturbative due to
asymptotic freedom.
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so there are fewer observations to accurately resolve the underlying matter density
distribution, to the point where there are none at all, during the Dark Ages. Since
even the most futuristic survey only aims to map the distribution of galaxies out to
a redshift of about z ∼ 5 [78], there is still more than 80% of the local universe’s
total volume left to observe, that is also significantly more linear. But with a lack of
galaxies to trace the matter distribution, how to proceed?

1.4.3 The 21-centimeter spectral signature

Luckily, the neutral hydrogen that permeates the universe early on has a way of
conveying its presence to us. The electron of a neutral hydrogen atom can be either
aligned or anti-aligned with the spin of the nucleus. The energy gap between these
states, which is known as the hyperfine transition, is about 5.86 µeV, corresponding
to a photon wavelength of 21 centimeters. This hyperfine state can be excited by
collisions of neutral hydrogen atoms, or the absorption of radiation, and upon re-
laxation emits a 21-cm photon. Depending on the temperature of the hydrogen gas
relative to the temperature of the CMB radiation, an excess of these absorption or
emission processes results in a 21-cm spectral line that can be observed against the
black-body CMB radiation7. Additionally, regions of higher matter density contain
more hydrogen, so that more emission or absorption processes take place, resulting
in a brighter 21-cm spectral signature than that from lower-density regions. Hence,
21-cm brightness fluctuations trace the underlying matter density distribution.

During the first 6 million years of the universe, the temperature of the gas is
tightly coupled to the CMB temperature so there is no 21-cm signal, making this
period truly unobservable. As the universe expands further, the gas cools faster
than the CMB radiation so that the spectral line becomes visible in absorption to
the CMB spectrum. From this point onwards the spectral signal can be observed up
until the moment the neutral hydrogen gas becomes completely ionized at the end of
Reionization, thus not only making it a powerful probe of cosmology but also of the
physics of Cosmic Dawn and Reionization itself [79]. Figure 1.8 shows a theoretical
prediction for the brightness temperature of the volume-averaged (or global) 21-cm
signal across these epochs. Many ongoing and upcoming efforts aim to measure the
global 21-cm signal or its fluctuations at various redshifts [80–85], with a recent claim
of detection of the signal around redshift z = 17 by the EDGES experiment [86].

7Technically, whether the 21-cm signal can be observed in absorption or emission depends not on the
gas temperature but on the spin temperature, that quantifies the relative amount of excited versus non-
excited neutral hydrogen atoms. If the spin temperature is higher (lower) than the CMB temperature, the
21-cm spectral line can be observed in emission (absorption) against the CMB. If the spin temperature
equals the CMB temperature there is no observable spectral line.
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At later times, the only remaining neutral hydrogen resides inside galaxies where
it continues to emit its spectral signature, thus providing an additional probe of the
distribution and formation process of galaxies [87, 88]. On this front, there have been
multiple claims of detection of 21-cm fluctuations in cross-correlation with galaxy
data [89–93], and one of its auto-correlation [94].

Figure 1.8: Theoretical prediction for the brightness of the 21-cm spectral line in contrast to
the CMB temperature as a function of redshift (top horizontal axis). Positive (negative) bright-
ness temperature implies that the signal can be observed in emission (absorption) to the CMB
spectrum. The bottom horizontal axis shows the frequency that the 21-cm signal has today, as
a consequence of the redshift due to cosmic expansion as it travels towards us. Note that the
time direction is opposite to that in figure 1.5. Source: [95]

1.5 A light in the darkness

During the Dark Ages, the 21-cm spectral line can be observed in absorption to the
CMB spectrum, in principle giving us access to an additional 30% of the cosmic vol-
ume. Most importantly, it provides a window into the matter distribution when it
was still highly linear while also being clean of complicated astrophysics, making
it relatively easy to model with analytical methods. This suggests the Dark Ages
as the ultimate frontier for primordial non-Gaussianity, containing orders of magni-
tude more information than the CMB does [96]. The true challenge with doing 21-
cm cosmology during the Dark Ages is not theoretical, however, but observational.
First, the 21-cm signal from this era has since redshifted into the meter wavelength
range, to which earth’s ionosphere is opaque. We would thus have to measure it
from space, most preferably from the far side of the moon, where radio interference
from Earth is also minimized [97]. Secondly, the global 21-cm signal (i.e. the mean of
the signal across the sky) from the Dark Ages is expected to be very faint, and thus
hard to observe. Additionally, since fluctuations in the matter density field are still
small, the brightness anisotropies that we hope to observe to trace the matter distri-
bution are even weaker. To make matters worse, the signal is additionally covered
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in radiation from different foreground sources, both galactic and extragalactic. Nev-
ertheless, its promise to provide valuable insights into cosmology is tempting, and
extensive investigation into its true power is warranted. Over the past two decades
this has resulted in several studies aiming to provide accurate modeling of the 21-
cm signal and its spatial correlation functions [98], which were then used to forecast
the constraining power of the signal [99, 100], also in the context of primordial non-
Gaussianity [101–103].

In Chapter 2, which is based on [104], we further investigate and develop the 21-
cm signal from the Dark Ages as a probe of primordial non-Gaussianity. We establish
the most accurate model of Dark Ages’ 21-cm observables to date, including for the
first time its four-point function or trispectrum. Subsequently, we use this to investi-
gate the constraining power of the signal as a probe for primordial non-Gaussianity,
providing more accurate forecasts for constraints on primordial bispectra, including
cosmological collider signals. Additionally, we present the first forecasts for con-
straints on primordial trispectra, including collider signals. The results obtained in
that Chapter further establish the Dark Ages as the ultimate probe for primordial
non-Gaussianity.

1.6 A non-Gaussian hurdle

As non-linear evolution couples modes of different wavelengths, summary statistics
(e.g. powerspectrum and bispectrum) of the density field become correlated. This
implies that the data that we use to fit our cosmological models to, contains a re-
duced amount of unique information, thus lowering the precision of cosmological
parameter constraints. This correlation between data is usually captured by a co-
variance matrix, that accounts for the overlap in information content, and, just like
the summary statistics themselves, needs to be theoretically modeled. If the corre-
lation between data is neglected, the data are assumed to be independent Gaussian
random variables, whose distribution is parametrized by the entries of a diagonal
covariance matrix. Any correlation between data will be captured by off-diagonal
entries of the matrix, and are made up of higher-order (non-Gaussian) correlation
functions, hence referred to as non-Gaussian covariance. Failing to properly account
for data covariance can result in overconfident parameter constraints, and thus pos-
sibly false detection of new physics, such as primordial non-Gaussianity.

Covariance matrices are especially hard to compute for higher-order correlation
function data. Furthermore, at higher redshifts where the density field (or a tracer
thereof) is assumed to be linear to smaller scales, it is typically assumed that non-
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Gaussian contributions to the covariance are small. In the context of primordial non-
Gaussianity, it has therefore been common practice to neglect non-Gaussian covari-
ance in forecasts of the constraining power of cosmological surveys, in particular,
those at high redshifts, such as in Chapter 2. The impact of non-Gaussian covariance
of the bispectrum at low redshifts has been appreciated for some time (e.g [105–
107]), but only recently it was shown that non-Gaussian contributions to the covari-
ance of the bispectrum are especially large in squeezed triangle configurations [108].
This therefore significantly affects constraints on local primordial non-Gaussianity,
whose signal initially resides mostly in squeezed triangles. As we go to higher red-
shifts, such as the Dark Ages, we expect to be able to model increasingly smaller
(linear) scales and access its cosmological information. This also implies that we will
have access to increasingly squeezed triangles, which promises to yield strong con-
straints on local primordial non-Gaussianity [102, 103]. However, an investigation is
warranted into the importance of non-Gaussian covariance at these redshifts.

In Chapter 3, which is based on [109], we embark on this mission. We will show
that contrary to common belief and assumption, non-Gaussian covariance can sig-
nificantly impact constraints on local primordial non-Gaussianity even at high red-
shifts. We demonstrate the consequences of neglecting non-Gaussian covariance in
forecasts, and as a realistic example, we revise existing forecasts for the PUMA line-
intensity mapping experiment [110, 111]. Our results show that forecasts on pri-
mordial non-Gaussianity that do not include non-Gaussian covariance, including
those presented in Chapter 2 and elsewhere in the literature, need to be interpreted
with caution. Hence, any effort to study local primordial non-Gaussianity using the
highly redshifted 21-cm signal from the Dark Ages will additionally require new
methods for more optimal analysis. One such method is described and investigated
in the subsequent chapter.

1.7 Reconstructing primordial non-Gaussianity

The issue of non-Gaussian covariance is an issue of optimality of summary statistics
for capturing certain information. For example, the increased covariance of squeezed
triangle configuration tells us that whatever information starts in squeezed triangles
(e.g. local primordial non-Gaussianity), will no longer reside there after significant
non-linear evolution. Instead, the information has been moved into higher-order
correlations and smaller scales. Extracting the information using spatial correlation
functions therefore becomes an increasingly difficult and computationally expensive
task. Thus, new techniques and tools ought to be developed to optimize the extrac-
tion of information from non-linear, non-Gaussian data, both in the context of Chap-
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ter 3 and more generally. Recent work has shown that alternative summary statistics
can more efficiently capture certain information encoded in the density field, e.g.
[112–114].

In Chapter 4, which is based on [115], we investigate the possibility of improving
the extraction of information by first reconstructing the linear (near-Gaussian) den-
sity field, starting from the late-time matter distribution at the field level. Once the
field has been linearized (and Gaussianized) we expect that lower-order correlation
functions (i.e. powerspectrum and bispectrum) contain an increased amount of in-
formation. To this end, we train a neural network on the output density field and
initial conditions of a large set of numerical simulations [116]. To demonstrate that
this indeed results in an improved information content of these spatial correlation
functions, we show using a Fisher forecast that the resulting reconstruction can be
used to constrain cosmological parameters, including primordial non-Gaussianity,
with significantly increased accuracy, depending on the parameter.

1.8 Delensing the CMB with diffusion models

So far we have described the CMB as a pristine tracer of the initial conditions. In real-
ity, however, the observed CMB is affected by the non-linear evolution of the matter
distribution as well. As CMB photons travel towards us, their paths are deflected
by the intervening matter, an effect known as weak gravitational lensing [117–121].
This results in a distortion of the observed CMB temperature and polarization fluc-
tuations as compared to the true primary CMB and as a consequence, it is more
complicated to infer primordial information from the CMB directly. Most notably,
lensing induces strong secondary B-mode polarization, obfuscating the sought-after
primary B-modes that are due to primordial gravitational waves [122]. Additionally,
much like the non-linear evolution of the matter distribution that we have discussed
previously, lensing gives rise to higher-order correlations in CMB data, affecting the
extraction of primordial non-Gaussianity through both signal confusion (i.e. sec-
ondary non-Gaussianity) and non-Gaussian covariance [123, 124]. Therefore, to im-
prove sensitivity to the primordial component, analogous to the reconstruction of
the linear matter distribution discussed in Chapter 4, one can attempt to reconstruct
the true CMB by delensing observed CMB data, thereby improving constraints on the
tensor-to-scalar ratio as well as primordial non-Gaussianity [125].

In Chapter 5, we apply score-based generative models, more colloquially known
as diffusion models, to the task of reconstructing the CMB lensing potential. These
powerful machine-learning models can learn high-dimensional probability distribu-
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tions, and subsequently sample from them, which has made them particularly pow-
erful in the context of image generation, resulting most prominently in generative
models such as OpenAI’s DALL-E. In the context of CMB lensing reconstruction,
these models enable probabilistic sampling of the Bayesian posterior probability dis-
tribution, similar to the state-of-the-art approach of Ref. [126]. Since our method
learns the posterior entirely from the training data, we do not require an explicit
expression for it. This is unlike the approach of Ref. [126], which is practically lim-
ited to the case of Gaussian lensing potentials. The additional freedom allows us
to for the first time perform accurate CMB lensing reconstruction of more realistic
non-Gaussian lensing potentials, that are obtained by ray-tracing N-body simula-
tions [127]. This reconstruction provides an alternative approach to determining the
CMB lensing bispectrum, which is hard to do using traditional estimators (e.g. the
quadratic estimator), due to large, complicated noise biases [128].

1.9 A new connection for the Double Copy

The physical processes taking place during inflation, that give rise to primordial
fluctuations and non-Gaussianity, can be seen as the cosmological counterpart to
the scattering processes studied in particle accelerators. This analogy is most strik-
ing in the context of the cosmological collider. Although research on cosmological
correlators is relatively young, the study of scattering amplitudes goes back to the de-
velopment of Quantum Field Theory (QFT). Although such scattering amplitudes
can often be computed with a tedious calculation, starting from an explicit theory
(i.e. Lagrangian), the result of such a calculation can turn out to be remarkably sim-
ple. During the 1960s this observation led to an approach toward amplitudes that
aimed to bypass brute-force computation, by relying on the fundamental principles
of quantum field theories, such as causality, unitarity, analyticity, locality, and sym-
metry [129, 130]. This approach, known as the bootstrap program, indeed allows one
to correctly determine scattering amplitudes without the need for lengthy calcula-
tions or even an explicit theory. Additionally, it provides important insight into the
general properties of amplitudes [131].

Given the conceptual analogy between scattering amplitudes and cosmological
correlators, it is not surprising that there exist analogies of such general properties
too. A notable example is the existence of soft theorems due to spontaneous symme-
try breaking in both scattering amplitudes [132] and cosmological correlators (e.g.
[133–135]). Moreover, recent years have seen increasing efforts to study the boot-
strap of cosmological correlators, which has resulted in a host of new insights into
the properties of these correlators and the development of new analytical tools (e.g.
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[136–139]) as well as generic predictions for primordial non-Gaussianity [140, 141].
Thus, from an observational perspective, the cosmological bootstrap program im-
proves our understanding of the possible inflationary imprints to look out for.

Since the initial bootstrapping efforts, the scattering amplitudes community has
revealed intriguing connections between fundamental theories appearing in nature.
Such a connection was first observed in string theory [142], but turns out to be es-
pecially intriguing in the context of field theory. Most notably, it turns out that the
scattering amplitudes appearing in the field theory formulation of gravity (i.e. Gen-
eral Relativity) can be constructed from the amplitudes of the theory underlying
the weak and strong interactions, Yang-Mills theory [143]. Such constructions have
become known as the scattering amplitude double copy because in this sense gravity
amplitudes can be thought of as two copies of Yang-Mills amplitudes 8. The develop-
ment of the double copy program has since yielded important insights into aspects
of quantum field theory and quantum gravity [144] and has revealed an entire web
of related theories [145, 146]. Given the power of the double copy to simplify the
construction of amplitudes, it is also of considerable interest to investigate its exis-
tence and use in constructing cosmological correlators, although much remains to be
understood [147, 148].

Although not directly applicable to the cosmological context of the rest of this
thesis, In Chapter 6 we demonstrate, in the context of scattering amplitudes, that
two theories naturally appearing in the web of double copy theories are addition-
ally related. More generally, we show that the low-energy effective action of linear
electrodynamics (Maxwell theory) coupled to massive gravity (i.e. integrating out
the massive graviton), is that of all duality invariant theories of non-linear electrody-
namics. In the case of the only non-pathological (ghost-free) theory of massive grav-
ity (due to de Rham, Gabadadze and Tolley, i.e. dRGT theory [149]), this includes
the special non-linear completion of electrodynamics by Born and Infeld [150]. As
visualized in figure 1.9, both Maxwell theory coupled to gravity and Born-Infeld (BI)
theory appear in the web of double copy theories. From this perspective, our proce-
dure connects these theories (red arrow). This suggests a possible deeper connection
between integrating out massive degrees of freedom, and the double copy.

8The particular connection between General Relativity (GR) and Yang-Mills (YM) theory amplitudes
has become known under the name color-kinematics duality and the punchline equation GR = YM2
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Figure 1.9: Tetrahedron of theories related by double copy relations. Each theory is con-
structed out of a particular combination of four different factors (tensor-kinematics, scalar-
kinematics, color, and flavor). Theories on the vertices (green) are made up of a pair of the
same factors, whereas theories on the edges (orange) are made out of a combination of those
at their corresponding vertices. In Chapter 6 we demonstrate an additional connection be-
tween Maxwell theory coupled to gravity (Maxwellg) and Born-Infeld (BI), as visualized by
the red arrow. The other theories appearing in the web are General Relativity (GR), non-linear
sigma model (NLSM), Special Galileon (SG), Yang-Mills (YM), Yang-Mills Scalar (YMS), Dirac-
Born-Infeld (DBI) and Bi-adjoint Scalar (BAS). Figure adapted from [146].
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1.10 Definitions, notation and conventions

Before proceeding, let us define the most important physical quantities, notation,
and conventions, that will be used throughout the rest of this thesis.

Most of the thesis will be concerned with the study of fields. The inflaton field is
denoted by ϕ, whereas its fluctuations are given by δϕ. To study primordial scalar
perturbations we will use the comoving curvature perturbations ζ. The cold dark
matter (CDM) density field is denoted by δc, but shortened to simply δ when baryons
are neglected and cold dark matter is the only type of matter. The velocity field of
cold dark matter fluctuations is additionally given as δv . The baryonic density field
is denoted explicitly as δb. Any other fields, particularly in the context of 21-cm cos-
mology in Chapter 2, will be defined when necessary.

Fields can either be represented in real space coordinates x, i.e. δ(x), or in Fourier
space using wavevectors/momenta k as δ(k), which for brevity is more often de-
noted as δk . Momentum integrals such as the one appearing in the Fourier trans-
form, are written in the following condensed notation for readability and brevity:∫

ki

=

∫
d3ki

(2π)3
(1.1)

We will often be interested in n-point spatial correlation functions of fields in the
Fourier domain, where they are called spectra, e.g. powerspectrum, bispectrum, etc.
Such correlation functions are denoted using angled brackets, e.g. the powerspec-
trum of primordial fluctuations ζ: ⟨ζk1

ζk2
⟩. Due to spatial isotropy and homogeneity,

spectra will only be non-zero when the momenta of fields add up to zero. To com-
pactify our notation we therefore introduce primed (’) correlators, that exclude the
Dirac delta function for the momenta and conventional prefactor:

⟨ζk1
· · · ζkn

⟩ = (2π)3δD(k1 + · · ·+ kn)⟨ζk1
· · · ζkn

⟩′ (1.2)

Furthermore, the most commonly used primed correlators used in this work, that of
the powerspectrum (P), bispectrum (B), and trispectrum (T), are further shortened
to:

⟨ζk1ζ−k1⟩′ = Pζ(k1),

⟨ζk1
ζk2

ζk3
⟩′ = Bζ(k1,k2,k3),

⟨ζk1
ζk2

ζk3
ζk4

⟩′ = Tζ(k1,k2,k3,k4) (1.3)

The magnitude of a vector is denoted as k ≡ |k|. Hats denote unit vectors k̂ ≡ k/k.
We denote k1 + kj ≡ kij and ki + kj ≡ kij . Note that kij ̸= |kij |. We also define
Mandelstam-like variables s = k1 + k2, t = k1 + k4 and u = k1 + k3.
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Abstract

We investigate tomography of 21-cm brightness temperature fluctuations during the
Dark Ages as a probe for constraining primordial non-Gaussianity. We expand the 21-cm
brightness temperature effects and derive an improved secondary bispectrum and for the
first time derive the secondary trispectrum of 21-cm brightness temperature fluctuations.
We then forecast the amount of information available from the Dark Ages to constrain
primordial non-Gaussianity, including the imprints of massive particle exchange during
inflation and we determine how much signal is lost due to secondary non-Gaussianity.
We find that although secondary non-Gaussianity swamps the primordial signal, pri-
mordial non-Gaussianity can still be extracted with signal-to-noise ratios that surpass
current and future CMB experiments by several orders of magnitude, depending on the
experimental setup. Furthermore, we conclude that for the bi- and trispectra of massive
particle exchange marginalizing over other primordial shapes affects signal-to-noise ra-
tios more severely than secondary shapes. Baryonic pressure effects turn out to have a
negligible impact on our forecasts, even at scales close to the Jeans scale. The results of
this chapter reinforce the prospects of 21-cm brightness temperature fluctuations from the
Dark Ages as the ultimate probe for primordial non-Gaussianity.
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2.1 Introduction

Over the last few decades, inflation has become the leading paradigm for describ-
ing the early universe. Even the simplest models of inflation accurately predict the
nearly Gaussian initial conditions of the universe and match the precise observations
of the Cosmic Microwave Background (CMB) by the Planck satellite [1, 2]. Slight
deviations from these Gaussian initial conditions of the early universe, colloquially
known as primordial non-Gaussianity (pnG), may be used to further constrain the
vast space of inflationary theories [3]. Currently, bounds on the size of pnG by CMB
and Large Scale Structure (LSS) observations are consistent with a purely Gaussian
distribution of fluctuations, and therefore unable to favor a particular theory of in-
flation. However, upcoming CMB and LSS experiments are forecast to improve on
these bounds and might find a statistically significant deviation from Gaussianity.

The size of pnG can be probed through the higher statistical moments of the dis-
tribution of initial conditions. For a purely Gaussian distribution, all information is
then contained in the two-point correlation function of the primordial density field.
Generally, the size of pnG is determined by the interactions of the inflaton, the scalar
field driving the supposed inflationary expansion. However, even in the absence of
such direct interactions, one expects indirect interaction through gravity (i.e. through
coupling to the metric). This gravitational interaction sets the minimum amount of
pnG that is guaranteed to be present in the initial conditions sourced by inflation
and is commonly referred to as the gravitational floor. In the simplest theories such
as single-field slow-roll inflation, this is the only source of pnG [4, 5], whereas more
complicated models (i.e. inflaton self-interactions or multiple fields) could generate
considerably larger amounts of non-Gaussianity. Another powerful probe of infla-
tion is the famous Maldacena consistency condition [4, 6], which predicts the van-
ishing of the squeezed bispectrum for all single-field models of inflation. Hence a
non-zero measurement of the squeezed bispectrum would rule out all single-field
inflationary models and point toward multi-field dynamics.

Besides being a powerful probe of the physics driving the inflationary expansion,
pnG can also contain signatures of additional physics at play during the inflationary
era. Massive (spinning) extra fields could have been present, leaving their imprint
on the higher order statistics of the initial conditions [7–9]. More specifically, heavy
fields induce a characteristic oscillatory shape in the squeezed and collapsed limit of
the three- and four-point correlation function of fluctuations respectively. The am-
plitude and frequency of this oscillation are directly related to the mass, in principle
allowing one to probe the particle spectrum during inflation. Such extra fields are
naturally present in string theory in which one might ultimately aim to embed the
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theory of inflation as well. Hence, we are motivated to study the existence of these
extra fields and use inflation as a cosmological particle collider [7]. Although such
oscillatory behavior is a clean probe of the particle spectrum, its amplitude is un-
fortunately severely suppressed proportional to the mass, making it challenging for
CMB and LSS experiments to ever measure such an effect.

Clearly, in order to advance precision cosmology to measure pnG, new probes
and experiments are necessary. In this chapter, we will study the use of 21-cm fluctu-
ations during the cosmic Dark Ages as the ultimate probe of pnG. The Dark Ages re-
fer to the epoch between recombination (z ≈ 1100) when neutral hydrogen is formed
and the CMB photons are released to free stream and the formation of the first lumi-
nous objects (i.e. stars) at z < 30. Soon after the CMB photons have been released,
they redshift out of the visible wavelengths and the universe becomes truly dark.
During this time, a neutral hydrogen gas permeates the universe while occasionally
scattering with CMB photons, sometimes exciting the hyper-fine state of the elec-
trons in the neutral hydrogen atoms. When the electron relaxes to its ground state, a
photon with a wavelength of 21 centimeters is released. Once the hydrogen gas has
cooled sufficiently and its temperature is decoupled from the CMB temperature, this
21-cm signal can be observed in absorption or emission to the background of CMB
photons. Higher density regions containing more hydrogen have a brighter 21-cm
signal, thereby tracing the matter density field which in turn traces the primordial
fluctuations seeded by inflation. In this way, the 21-cm signal during 30 ≤ z ≤ 100

can be used as a probe of pnG [10, 11], containing an amount of information that is
estimated to be several magnitudes more than that of the CMB and LSS, making it
the ultimate probe of the early universe and possibly opening up the cosmological
collider [12]. However, several comments are in order. First, the small amplitude of
the 21-cm signal makes it hard to measure even the global (mean) brightness temper-
ature, let alone tiny fluctuations around it, making it a serious challenge from a tech-
nological and experimental point of view. Secondly, Earth’s ionosphere is opaque to
the red-shifted 21-cm signal emitted at z > 30. Hence, probing this era will require
an observatory in space or even on the far side of the moon, where also radio fre-
quency interference (RFI) is minimized [13]. Thirdly, although the 21-cm signal is
expected to be a rather pristine tracer of the primordial initial conditions compared
to the galaxy distributions that are the target of LSS experiments, it is nevertheless
affected by non-linearity (i.e. gravity and peculiar velocity). Both the non-linear
dependence of the 21-cm brightness temperature on the initial conditions as well as
gravitational effects, therefore, leave their imprint on the distribution of fluctuations,
inducing secondary non-Gaussianities that obscure the sought-after primordial non-
Gaussianity by several orders of magnitude [11, 14]. A detailed understanding of
the 21-cm signal as well as these non-linear effects is warranted in order to reliably
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and accurately extract the primordial contribution and learn about inflation.

Secondary non-Gaussianity of the 21-cm brightness temperature during the Dark
Ages was addressed previously in [14] for the case of the bispectrum, where it was
found to contribute significantly to the observed bispectrum of temperature fluctua-
tions, introducing it as a nuisance that should be marginalized over. In this chapter
we will improve on some of the assumptions and simplifications made in [14], in or-
der to more accurately model the 21-cm signal during the Dark Ages. Furthermore, it
was recently found that observational sensitivity to the primordial trispectrum can
receive an enhanced scaling with respect to the smallest observable scale kmax (or
ℓmax for CMB surveys) [15]. We will see that this also affects primordial trispectra
sourced by massive extra fields, possibly making it of prime observational interest
to the cosmological collider. Extracting the primordial trispectrum will require an
accurate modeling of the secondary trispectrum, which we derive here for the first
time. In an effort to motivate experiments targeted at measuring the 21-cm signal
from the Dark Ages, we will determine the total information content of the Dark
Ages that can be used to constrain primordial non-Gaussianity. Finally, we forecast
the sensitivity of a simple experimental setup, that might be realized in the future.

This chapter is organized as follows. In section 2.2 we review the physics of the
21-cm signal during the Dark Ages. Section 2.3 will cover the non-Gaussian contri-
butions to the statistics of 21-cm fluctuations. Then, in section 2.4, we present Fisher
forecasts on the amount of information available to constrain non-Gaussianity from
the Dark Ages, as well as the sensitivity of more realistic experimental scenarios. We
summarize our conclusions and outlook for future research in section 2.5.

Conventions

For numerical computations, we consider flat ΛCDM cosmology with parameters
from Planck [16], see Table 2.1.

ΛCDM parameters
H0 = 67.66 Ωbh

2 = 0.02242
∑

mν = 0.06

Ωk = 0 Ωch
2 = 0.11993 τ = 0.0561

ns = 0.9665 As = 2.1056× 10−9 r = 0

Table 2.1: Best-fit Planck parameters (specifically, Table 2 of Ref. [16] with TT , TE,
EE+lowE+lensing+BAO) used in our numerical computations.
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2.2 21-cm fluctuations during the Dark Ages

In this section, we review the physics that gave rise to the 21-cm brightness fluctu-
ations during the Dark Ages. First, we will restrict the analysis to the background
(or global) temperature. Subsequently we will discuss how 21-cm brightness tem-
perature fluctuations arise due to fluctuations in the underlying density fields. In
particular, the goal will be to derive how 21-cm fluctuations trace those of the bary-
onic density and velocity field.

2.2.1 Global 21-cm signal

We define the ratio of the abundance of Hydrogen in the hyperfine singlet (F = 0)
and triplet state (F = 1) via the spin temperature Ts as follows [17]:

n1
n0

≡ g1
g0

e−T∗/Ts , (2.1)

where T∗ ≡ E10/kB is the energy gap between the two hyperfine states and the
degeneracies of the levels are g0,1 = 1, 3. During the Dark Ages, the spin temper-
ature is determined by two processes: collision and radiative transitions between
the two states. These processes are described by the rates Cij and Rij , respectively.
Specifically,R10 encodes spontaneous and stimulated emission whereasR01 encodes
absorption. The rates C01 and C10 describe upward and downward transitions be-
tween the hyperfine states due to collisions between Hydrogen atoms. We are inter-
ested in the Dark Ages, before the first luminous objects are formed, and therefore
do not take transitions induced by Lyman-α photons into account (known as the
Wouthuysen-Field effect) [17].

During the Dark Ages, the steady-state approximation is very accurate, since
Cij +Rij ≫ H at all times [18], and the abundances are related via:

n0(C01 +R01) = n1(C10 +R10). (2.2)

Then, in the limit T∗ ≪ Tgas, Tγ , also valid at all times of interest [14], we can write
the spin temperature as:

Ts =
Tγ + YcTgas

1 + Yc
, (2.3)

where Yc ≡ T∗C10/TgasA10 and A10 the spontaneous decay rate. From the definition
of Yc, we find that atomic collisions drive Ts → Tgas, while radiative interactions
drive Ts → Tγ .
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In accordance with the standard convention in the literature, we define the bright-
ness temperature of 21-cm radiation as [14, 18, 19]:

T21 =
Ts − Tγ
1 + z

τ21, (2.4)

where the optical depth for the 21-cm transition, τ21, is given by:

τ21 =
3kB
32π

T∗
Ts
nHIλ

3
21

A10

H + ∂∥v∥
, (2.5)

with wavelength λ21 = hc/E10. Note that τ21 depends implicitly on the electron
fraction via nHI ≡ nH(1 − xe). During the Dark Ages, however, xe ∼ 10−4, so that
we may approximate nH = nHI and the optical depth τ21 becomes independent of
the free electron fraction. We denote by ∂∥v∥ the gradient of the component of the
peculiar velocity along the line-of-sight (v∥). We define the dimensionless velocity
gradient:1

δv ≡ −∂∥v∥
H

. (2.6)

Then, we may write the 21-cm brightness temperature in the following way:

T21(Ts, nH, δv) =
3kB
32π

T∗
Ts
nHλ

3
21

A10

H(1− δv)

Ts − Tγ
1 + z

. (2.7)

Notice that the brightness temperature depends explicitly on nH and δv and implic-
itly on Tgas via Ts, which in turn depends on nH, making the temperature a non-
linear tracer of the underlying density field. For later convenience, we define T̃21 as
the brightness temperature in which the dependence on the velocity gradient term
δv is factored out:

T̃21(Ts, nH) ≡ T21(Ts, nH, δv)× (1− δv). (2.8)

2.2.2 Fluctuations in the 21-cm signal

The final expression for the 21-cm brightness temperature in equation (2.7) shows
that it depends on the hydrogen density nH, velocity gradient δv , and gas tempera-
ture Tgas and the photon temperature Tγ . Therefore, fluctuations in the brightness
(δT21) are in principle sourced by those in the hydrogen density, velocity gradient,
gas, and photon temperature. However, following [14, 19], we will restrict the anal-
ysis to sub-horizon scales. On these scales, we assume the photon temperature to
be uniform, since their high sound speed (cs = c/

√
3) results in photon fluctuations

being suppressed relative to those in the other fields. In this section, we will find out
how 21-cm brightness fluctuations trace those in the hydrogen density, gas temper-
ature, and velocity gradient.

1In literature, this is sometimes defined without a minus sign (e.g. [19]).
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21-cm brightness temperature

We start by considering fluctuations in the density and gas temperature and only in-
clude the velocity gradient fluctuations δv once we transform to momentum space.2

That is, we effectively expand T̃21 in terms of fluctuations in nH and Tgas. We define
fluctuations in the latter by:

nH(t,x) = n̄H(t)
[
1 + δb(t,x)

]
, Tgas(t,x) ≡ T̄gas(t)

[
1 + δT(t,x)

]
, (2.9)

where we have used that δH = δb up to negligible corrections of order O(me/mp)

[19].

Taylor expanding δT21 around δT = δb = 0 up to cubic order in fluctuations, we
find:

δT̃21(t,x) = TTδT + Tbδb
+ TTTδ

2
T + TbTδbδT + Tbbδ2b

+ TTTTδ
3
T + TbTTδbδ

2
T + TbbTδ2b δT + Tbbbδ3b , (2.10)

where the coefficients TbiTj (t) depend only on time. We have numerically solved for
the coefficients T following [19] and show them in Figure 2.1.
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Figure 2.1: Coefficients T coupling brightness temperature fluctuations to the gas temperature
and baryon density fluctuations. The left, middle, and right panels show the coefficients and
linear, quadratic, and cubic order, respectively.

We can qualitatively understand the behavior of the coefficients T in the low and
high-redshift limits as follows.

2Since spatial operators such as the gradient transform to simple products in momentum space, it is
convenient to consider δv only once we have moved to momentum space.



2

40 2. The Dark Ages’ 21-cm Trispectrum

• Efficient Collisional Coupling.—At z ≳ 100, collisions between Hydrogen atoms
efficiently couple Ts = Tgas. The brightness temperature, in the absence of the
velocity gradient term, then depends on nH and Tgas as:

T21 ∝ nH

(
1− Tγ

Tgas

)
. (2.11)

Since T21 ∝ nH, we find that Tb → T̄21 and:

Tbb ≃ Tbbb ≃ TbbT → 0. (2.12)

Note also that T21 is proportional to the difference Tgas − Tγ in this regime,
which asymptotes to zero in the high redshift limit (z ≳ 200) where Compton
heating efficiently coupling the gas temperature to the photons, such that Tb →
0. For the coefficients TT, TTT and TbT we have:

TT, TbT, TTTT ∝ n̄H
T̄γ
T̄gas

, TTT, TbTT ∝ −n̄H
T̄γ
T̄gas

, (2.13)

which yields for z ≳ 100 the following relations between the coefficients:

TT ≃ TbT ≃ TTTT ≃ −TTT ≃ −TbTT. (2.14)

Note that these coefficients do not tend to zero, since they are not suppressed
by the factor Tgas − Tγ . Instead, they grow as:

T21 ∝ nH
H

∝ (1 + z)3/2, (2.15)

during matter domination via the dependence of the optical depth on the ratio
nH/H . The above behavior is indeed verified by the numerical solutions in
Figure 2.1.

• Ineffective Collisional Coupling.—For z ≲ 50, collisions become very inefficient
and Ts approaches Tγ again, which a small difference:

Ts − Tγ ∝ nHκ
HH
10 (Tgas). (2.16)

The brightness temperature then scales approximately as T21 ∝ n2H, implying:

Tb ≃ 2Tbb ≃ 2T̄21, Tbbb ≃ 0. (2.17)

As z → 0, the optical depth decreases rapidly and all coefficients tend to zero
quickly.
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Gas temperature

The evolution equation for the gas temperature Tgas can be obtained from the first
law of thermodynamics. Neglecting anything other than Compton heating, it reads
[19]:

Ṫgas −
2

3

ṅH
nH

Tgas = ΓC
xe
x̄e

(Tγ − Tgas), (2.18)

where we have defined the Compton heating rate ΓC as:

ΓC ≡ 8σTarT
4
γ

3(1 + xHe + xe)me
x̄e. (2.19)

In the above equation, σT is the Thomson cross section, ar is the radiation constant,
me is the electron mass, nH ≡ nHI + np is the total density of Hydrogen (both in
neutral and ionized form), xHe ≡ nHe/nH is the Helium fraction, xe ≡ ne/nH is the
free electron fraction (and x̄e its background value). Perturbing the above equation
allows us to find a direct relationship between gas temperature fluctuations δT and
baryon density fluctuations δb.

To obtain the evolution equation for δT, one should in principle consistently in-
clude the coupling to fluctuations in Tγ , nH, xe, and xHe. To simplify the analysis,
we will make the same assumptions as in [19]. As mentioned above, we consider
small scales deep inside the horizon (kmin > 0.01 Mpc−1), so that photon tempera-
ture fluctuations are negligible and we set Tγ = T̄γ . Secondly, we assume the Helium
fraction to be uniform, i.e. we take xHe = x̄He and neglect any fluctuations. Finally,
in the Compton heating rate ΓC, the free electron fraction only enters via the term
1 + xe + xHe. During the Dark Ages, xe ≪ 1, so that any electron fraction perturba-
tion of ΓC enters through x̄2eδxe

≪ δxe
≪ 1. Hence, we can neglect electron fraction

perturbations in ΓC such that it only depends on background values x̄e, x̄He, and T̄γ .

The full non-linear evolution of the gas temperature fluctuation δT(t,x) can be
obtained directly from equation (2.18) and reads [19]:

δ̇T − 2

3
δ̇b
1 + δT
1 + δb

+
T̄γ
T̄gas

ΓCδT = ΓC

[
(T̄γ/T̄gas − 1)δxe

+ δxe
δT
]
. (2.20)

We obtain the background evolution of T̄gas as well as the recombination history x̄e
from CAMB. Note that, as written in the form above, the right-hand side couples the
evolution of δT to the electron fraction fluctuation δxe . In [14], the coupling to δxe

is neglected (i.e. the right-hand side is taken to be zero), resulting in errors of order
10% at linear order during the Dark Ages. In this chapter, we will include the effect
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of electron fraction perturbations up to third order. To do so, we require an addi-
tional equation describing the evolution of δxe

.

However, before deriving this additional equation, let us find out when the effect
of δxe

on gas temperature fluctuations is substantial by examining the r.h.s. of equa-
tion (2.20). At high redshifts (z ≳ 500), Compton scattering efficiently couples the
gas and CMB temperature, rendering the term proportional to (T̄γ/T̄gas − 1) vanish-
ingly small. In addition, the strong coupling combined with the fact that we consider
scales on which Tγ = T̄γ implies δT = 0, and hence the second term (∝ δxe

δT) is neg-
ligibly as well. In the low redshift regime (z ≪ 200), the gas cools adiabatically as
ΓC ≪ H and fluctuations in the electron fraction also have no effect. However, at
intermediate stages, the effect is expected to be non-negligible.

Free electron fraction

Based on the discussion above, we only require an evolution equation for the free
electron fraction that is accurate at late times (z ≲ 500), and need not worry about
the detailed recombination history at early times [14, 20]. We adapt the effective
3-level model for recombination [21]:

ẋe = −CP(Tgas, nH, xe)
[
nHx

2
eαB(Tgas)− βB(Tgas)(1− xe) e

−E21/kBTgas

]
, (2.21)

where E21 = 10.2 eV is the energy difference of the Ly-α transition, αB is the case-
B effective recombination coefficient, βB the corresponding photo-ionization rate.
Finally, the Peebles factor CP gives the ratio of the effective downward transition
rate from the n = 2 states to their effective lifetime:

CP(Tgas, nH, xe) =
1 +KΛ2s→1snH(1− xe)

1 +KΛ2s→1snH(1− xe) +KβBnH(1− xe)
, (2.22)

where K ≡ λ3α/8πH and λα = 121.5 nm is the Ly-α rest wavelength.

Now, we simplify the evolution equation at late times. For z ≲ 500, the second
term in equation (2.21) describing the effect of photo-ionization, is completely negli-
gible compared to the recombination term proportional to αB. In addition, CP → 1

for z ≲ 900 [19], so that we obtain:

ẋe = −αBnHx
2
e, (2.23)

to excellent precision. For the recombination coefficient αB, we use the fit [22]:

αB(Tgas) = F
aαT

b
4

1 + cT d
4

, (2.24)
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where T4 ≡ Tgas/10
4 K, aα = 4.309 × 10−19 m3/s, b = −0.6166, c = 0.6703 and

d = 0.5300. The Fudge factor F = 1.14 is used to calibrate the effective 3-level result
to a multi-level atom calculation [20].

To obtain the evolution equation for δxe
, we perturb equation (2.23). Notice that

the evolution of fluctuations in the electron fraction is coupled to those in the gas
temperature and the baryon density via αB(Tgas) and nH, respectively. We expand
αB in terms of δT up to cubic order as follows:

αB(Tgas) = ᾱB

[
1 +

3∑
n=1

Anδ
n
T

]
, An ≡ 1

n!

T̄n
gas

ᾱB

∂nᾱB

∂T̄n
gas

, (2.25)

where ᾱB ≡ αB(T̄gas). Upon defining ΓR ≡ ᾱBn̄Hx̄e as the background recombina-
tion rate, we obtain the evolution of electron fraction perturbations up to terms of
cubic order in the baryon, gas temperature, and electron fraction fluctuations:

δ̇xe
= −ΓR

[
δxe

+A1δT + δb

+ δ2xe
+A2δ

2
T + 2A1δxe

δT +A1δTδb + 2δxe
δb

+A3δ
3
T + 2A2δxeδ

2
T +A1δ

2
xe
δT +A2δ

2
Tδb + δ2xe

δb + 2A1δxe
δTδb

]
. (2.26)

2.2.3 Perturbative analysis of fluctuations

Recall that the goal of this section is to find the relation between δT21 and the un-
derlying baryonic density and velocity field. At this point, δT21 is still a function of
fluctuations in the gas temperature as well. However, δT can be traded effectively for
δb by recognizing that gas temperature fluctuations trace fluctuations in the density
field. The physical mechanism behind this tracing relationship is simple and may be
explained as follows. Consider an overdense region in the gas (δb > 0). Due to the
higher density, the thermal motion of the particles in the gas is increased and hence
the temperature will increase as well: δT traces δb.

In order to find the tracing relationship between δT and δb, we start by writing
the baryonic density contrast perturbatively, up to cubic order:

δb =

3∑
n=1

δ
(n)
b ≡

3∑
n=1

δn, (2.27)

where we assume δ(n)b = O
[(
δ
(1)
b

)n]
. In the second equality, we defined δn ≡ δ

(n)
b

for notational brevity. We assume that the time-dependence of the baryons is iden-
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tical to that of CDM, i.e. δ(n)b ∝ a(n)(t), which implies δ̇(n)b = nHδ
(n)
b .3 Similarly, we

expand δT and δxe to cubic order as well:4

δxe
(t,x) =

3∑
n=1

δxn(t,x), δT(t,x) =

3∑
n=1

δTn (t,x). (2.28)

At each order, the evolution equations for the perturbations in the temperature
and electron fraction can be obtained by inserting the above expansions into equa-
tion (2.20) and equation (2.26), respectively. In Appendix 2.B we provide the result-
ing evolution equations and show how they can be used to solve for the coupling
coefficients, relating δT and δxe

to δb up to third order:

δT(z,x) = CT
1,1(z) δ1 + CT

2,1(z) δ
2
1 + CT

2,2(z) δ2 + CT
3,1(z) δ

3
1 + CT

3,2(z) δ1δ2 + CT
3,3(z) δ3,

(2.29)

δx(z,x) = Cx
1,1(z) δ1 + Cx

2,1(z) δ
2
1 + Cx

2,2(z) δ2 + Cx
3,1(z) δ

3
1 + Cx

3,2(z) δ1δ2 + Cx
3,3(z) δ3,

(2.30)

where the coupling coefficients are functions of redshift only. In the coefficients Cn,m,
n denotes the total order of the combination of density perturbations it multiplies,
and m = 1, . . . , n labels the different coefficients at each order n. Note that Cn,n
is the coefficient coupling to density perturbation δn, whereas Cn,m ̸=n couple to the
product of lower order density fields with combined order n. At first order, we will
often write C1 ≡ C1,1 for notational simplicity.

Evolution of Coupling Coefficients

In Figure 2.2, we show the numerical solutions for the gas coupling coefficients CT
n,m.

The solid lines show the solutions including the effect of electron fraction perturba-
tions. The dotted lines exclude their effect by setting Cx

n,m ≡ 0 in all evolution equa-
tions. It is insightful to examine the numerical results at early (high-z) and late times
(low-z), where the numerical analysis can be compared with analytic results:

• High redshift limit—At high redshifts, z ≳ 500, Compton heating is efficient
(ΓC/H ≫ 1) and keeps the matter and photons in equilibrium so that Tγ =

Tgas. Since we consider small scales on which we neglect photon temperature
fluctuations, we therefore expect no gas temperature fluctuations. This is in-
deed verified by the solutions for CT

n,m, which all tend to zero at high redshifts.

3Note that we do not assume the spatial dependence of baryons and CDM to be identical. In fact, we
will include the spatial dependence due to baryonic pressure, in contrast to [14].

4In the notation below, the superscripts T and x are labels, not powers.
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Figure 2.2: Left Panel: Coupling coefficients CT
n,m as a function of redshift. The dotted lines

show the result in case electron fraction fluctuations are neglected (i.e. Cx
n,m ≡ 0). Right Panel:

First-order coefficients as a function of redshift. Again, the dotted line shows CT
1 in the absence

of electron fraction fluctuations.

Only when the gas temperature starts to decouple from the photon tempera-
ture at z ≲ 500 due to adiabatic cooling, do fluctuations in the former start
growing.

• Low redshift limit—At low redshifts, Compton heating becomes completely in-
efficient, ΓC/H ≪ 1, and adiabatic cooling completely determines the gas tem-
perature:

Ṫgas =
2

3

ṅH
nH

Tgas, (2.31)

which is just equation (2.18) in the absence of the Compton heating term (pro-
portional to ΓC). From the above equation, we easily obtain:

Tgas ∝ n
2/3
H , (2.32)

characterizing a gas that is cooling adiabatically. The above relationship be-
tween the gas temperature and Hydrogen density yields the following rela-
tionship between δT and δb:

δT =
2

3
δb −

1

9
δ2b +

4

81
δ3b +O(δ4b )

=
2

3
(δ1 + δ2 + δ3)−

1

9
(δ21 + 2δ1δ2) +

4

81
δ31 +O(δ41), (2.33)

where we have expanded δb up the third order in the second line. Comparing
to equation (2.92), we find that the coefficients asymptote to constant values in
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the adiabatic or low redshift regime:

CT
1 = CT

2,2 = CT
3,3 → 2/3, CT

2,1 → −1/9, CT
3,1 → 4/81, CT

3,2 → −2/9,

(2.34)
which is indeed verified by the numerical solution.

Below, we will first discuss the case in which electron fraction perturbations are ne-
glected, and make contact with results obtained in literature. Then, we discuss the
effect of electron fluctuations and provide a physical interpretation of their effect at
first order.

As mentioned above, excluding the effect of electron fraction fluctuations leads to
the dotted curves for the gas temperature coefficients. Our results agree with those
of [14], in which the gas temperature coefficients were computed up to second order
and in the absence of electron fluctuations. We find excellent agreement for the co-
efficients CT

1 , CT
2,1 and CT

2,2, which are called C1, C2 and C ′
2 respectively in [14] and

shown in their Figure 1. In addition, the first-order coupling coefficient agrees with
the result obtained neglecting electron fraction fluctuations in [11], where it is called
g1 (see their Figure 4).

Comparing the solid and dotted curves in Figure 2.2, we find that the effect of
electron fraction perturbations is most pronounced at linear order, i.e. for CT

1 . At
z = 30, 50 and 100, the solution excluding electron fraction perturbations is larger
by 8%, 14% and 34%, respectively. Our results confirm previous claims that neglect-
ing δxe

leads to errors of order 10% for the linear evolution during the Dark Ages
[14]. However, we also note that the effect of δxe rapidly becomes more significant
at higher redshift during the Dark Ages, and should therefore be accounted for in a
detailed analysis. At second and third order, the effect of electron fraction perturba-
tions is smaller but still starts to exceed the 10% level at z ≳ 100, before decreasing
again as z → 1100.

In the low redshift limit, the solutions including and excluding δxe
agree again,

which can be understood as follows. Due to the expansion of the universe, the Hy-
drogen gas becomes diluted at low redshift, rendering the recombination rate small:
ΓR/H ≪ 1. The evolution equations for Cx

n,m then reduce to the form:

dCx
n,m

da
∝ −Cx

n,m

a
, (2.35)

implying that the electron fraction coefficients decay as Cx
n,m ∝ a−1 at low redshift.

In turn, the effect of electron fraction perturbations on the evolution of CT
n,m becomes

small at low redshifts, and the dotted and solid curves become identical. Below, we
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will discuss the effect of δxe
in more detail at first order.

At linear order, the effect of electron fraction fluctuations on the evolution of gas
temperature fluctuations can be understood in an intuitive way from the physical
principles at play [20]. Consider a region with a density that is higher than average,
so that δ1 > 0. In such a region, Hydrogen density is higher than average, so the
local recombination rate is slightly higher, and hence more recombinations occur. As
a consequence, the electron fraction will be lower than average, resulting in δx1 < 0

and reflected by Cx
1 < 0. In turn, this reduces the coupling of the gas temperature to

the photon temperature via Compton scattering, since there are fewer free electrons
available to sustain the coupling. At background level, Tgas is below Tγ during the
Dark Ages due to adiabatic cooling. In an overdense region, the reduced coupling
between Tγ and Tgas makes the latter even smaller relative to the background differ-
ence. This results in δT1 (or equivalently CT

1 ) being smaller than it would have been
if electron fraction fluctuations were neglected.

2.2.4 Coupling 21-cm fluctuations to density and velocity fluctua-
tions

At this point, we are in the position to expand 21-cm fluctuations into fluctuations δb
and δv , as we have uniquely related temperature fluctuations to density fluctuations.
We will make this expansion explicit in real space first. Subsequently, we transform
to momentum space, where we can relate δv to the velocity divergence θb.

Real Space

Now we have all the ingredients to compute the coupling between the 21-cm bright-
ness temperature and density fluctuations up to third order. We will denote these
couplings by αn,m, and they are defined in relation to δT̃21 as:

δT̃21(z,x) = α1,1(z)δ1 + α2,1(z)δ
2
1 + α2,2(z)δ2 + α3,1(z)δ

3
1 + α3,2(z)δ1δ2 + α3,3(z)δ3.

(2.36)

Using equation (2.29) and equation (2.30), we can write the couplings αn,m explicitly
in terms of the T coefficients and the couplings CT

n,m, yielding:

αn,n ≡ TTCT
n,n + Tb, (2.37)

α2,1 ≡ TTCT
2,1 + TTT[CT

1 ]
2 + TbTCT

1 + Tbb, (2.38)

α3,1 ≡ TTCT
3,1 + 2TTTCT

1 CT
2,1 + TbTCT

2,1 + TTTT[CT
1 ]

3 + TbTT[CT
1 ]

2 + TbbTCT
1 + Tbbb,

(2.39)

α3,2 ≡ TTCT
3,2 + 2TTTCT

1 CT
2,2 + TbT(CT

2,2 + CT
1 ) + 2Tbb. (2.40)
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We plot the couplings in Figure 2.3 over the redshift range 10 − 1000. Recall that in
the adiabatic limit CT

n,n → 2/3 so that the couplings αn,n become identical, which is
indeed the case for z ≲ 50. In addition, note that CT

3,2 ≃ 2CT
2,1 and CT

2,2 ≃ CT
1 in the

adiabatic limit, such that α3,2 ≃ 2α2,1, which is indeed the case for z ≲ 30. Note
that in the approach above, we have effectively traded the dependence on δT for
dependence on δb. Ultimately, we are able to do so by using the first law of thermo-
dynamics.

So far, we have worked with δT̃21, i.e. we ignored the fluctuations δv . To include
the perturbations in δv , we use the relation T21 = T̃21/(1− δv) and expand δv to third
order, i.e. δv = δ

(1)
v + δ

(2)
v + δ

(3)
v .5 Assuming |δv| ≪ 1 and using a geometric series

expansion, we obtain:

δT21(z,x) = T̄21(z)
[
δ(1)v +

[
δ(1)v

]2
+ δ(2)v +

[
δ(1)v

]3
+ 2δ(1)v δ(2)v + δ(3)v

]
(z,x)

+ α1,1(z)
[
1 + δ(1)v + δ(2)v +

[
δ(1)v

]2]
δ
(1)
b (z,x)

+ α2,1(z)
[
1 + δ(1)v

][
δ
(1)
b

]2
(z,x) + α2,2(z)

[
1 + δ(1)v

]
δ
(2)
b (z,x)

+ α3,1(z)
[
δ
(1)
b (z,x)

]3
+ α3,2(z)

[
δ
(1)
b δ

(2)
b

]
(z,x) + α3,3(z)δ

(3)
b (z,x).

(2.41)

Momentum Space

In the end, we wish to obtain correlation functions of 21-cm fluctuations in momen-
tum space. Therefore, we transform the above expression for δT21(z,x) to momen-
tum space. To do so we have to transform all different components separately. Prod-
ucts of perturbations in real space, e.g. the square of δ(1)b , become convolutions in
momentum space. In addition, the transform of δv can be related directly to the
transform of the velocity divergence θb ≡ ∇ · vb. The Fourier transform of δv is
written in terms of that of θb as:

δv(z,k) = −µ2(k)
θb(z,k)

H , (2.42)

where H = aH and µ(k) ≡ n̂ · k/k = k∥/k is the cosine of the angle between the
mode k and the line-of-sight n. At first order, this expression can be simplified even

5Although the fluctuations δv appear similar to redshift space distortions (RSD), they come from the
velocity dependence of the optical depth and hence are of a qualitative different nature. In principle one
should also include RSDs separately when fully modeling the 21-cm signal, introducing the linear growth
rate f = d lnD+/d ln a as an additional parameter to marginalize over. We have chosen to ignore RSDs
in our forecast as they do not introduce additional shape dependence and therefore overlap with the
primordial shapes.
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Figure 2.3: Coupling coefficients αn,n (left panel) and αn,m ̸=n (right panel) as function of
redshift. Again, the dotted lines exclude the effect of electron fluctuations.

further by invoking the continuity equation, to obtain

δ(1)v (z,k) = µ2(k)δ
(1)
b (z,k). (2.43)

Note that in transforming to momentum space, the angle between the line-of-sight
and the Fourier mode is encoded in µ2(k). This leads to a distinct difference between
coupling coefficients in momentum space and those in real space (T̄21 and αi,j); the
former depends on the mode k and time, whereas the latter depend on only on time
and not on x.

Now, we have all the relevant ingredients to compute the Fourier transform of the
brightness fluctuation δT21. At each order, we couple the brightness perturbations to
those in the baryon density and velocity divergence via the coefficients c(i)j (z,k,q),
of which some explicitly depend on the principal mode k and internal modes q re-
sulting from convolution integrals via the angle µ as explained above. The label i
denotes the total order of the quantity the coefficient couples to, and j labels all dif-
ferent couplings at order i. Up to third order, the expansion of δT21(z,k) is given
by:

δT21(z,k) = δT
(1)
21 (z,k) + δT

(2)
21 (z,k) + δT

(3)
21 (z,k), (2.44)



2

50 2. The Dark Ages’ 21-cm Trispectrum

with δT (i)
21 (z,k) given in terms of the coefficients c(i)j as:

δT
(1)
21 (z,k) = c

(1)
1 (z,k)δ

(1)
b (k)

δT
(2)
21 (z,k) = c

(2)
1 (z)δ

(2)
b (k)− 1

Hc
(2)
2 (z,k)θ

(2)
b (k)

+

∫
q1

c
(2)
3 (z,k,q1)δ

(1)
b (q1)δ

(1)
b (k − q1)

δT
(3)
21 (z,k) = c

(3)
1 (z)δ

(3)
b (k)− 1

Hc
(3)
2 (z,k)θ

(3)
b (k)

+

∫
q1q2

c
(3)
3 (z,k,q1,q2)δ

(1)
b (q1)δ

(1)
b (q2)δ

(1)
b (k − q12)

− 1

H

∫
q1

c
(3)
4 (k,q1)θ

(2)
b (q1)δ

(1)
b (k − q1)

+

∫
q1

c
(3)
5 (k,q1)δ

(2)
b (q1)δ

(1)
b (k − q1), (2.45)

where we have suppressed the time dependence in δ
(n)
b and θ

(n)
b for brevity. We

explicitly excluded the factors of 1/H from the definition of the couplings c(i)j , so
that the latter all have the dimension of temperature. The couplings are a function
of αi,j , T̄21 and µ(k) and read:

c
(1)
1 ≡ α1,1(z) + T̄21(z)µ

2(k),

c
(2)
1 ≡ α2,2(z),

c
(2)
2 ≡ T̄21µ

2(k),

c
(2)
3 ≡ T̄21(z)µ

2(q)µ2(k − q) + α1,1µ
2(q) + α2,1(z),

c
(3)
1 ≡ α3,3(z),

c
(3)
2 ≡ T̄21(z)µ

2(k),

c
(3)
3 ≡ T̄21(z)µ

2(q1)µ
2(q2)µ

2(k − q12) + α1,1(z)µ
2(q1)µ

2(q2) + α2,1(z)µ
2(q1)

+ α3,1(z),

c
(3)
4 ≡ 2T̄21(z)µ

2(q)µ2(k − q) + α1,1(z)µ
2(q),

c
(3)
5 ≡ α2,2(z)µ

2(k − q) + α3,2(z). (2.46)

Note that since µ(k) = µ(−k), all coefficients are symmetric under inverting all
momentum arguments, e.g. c(3)3 (k,q1,q2) = c

(3)
3 (−k,−q1,−q2). The first order cou-

pling, c(1)1 , actually comprises two couplings, to δ(1)b and θ(1)b , respectively. However,
using equation (2.43) allows us to write down one overall coefficient coupling to δ(1)b .
In summary, we have found a direct relationship between δT21 and δb to third order
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in perturbations.

We are now able to express the statistics of 21-cm temperature fluctuations in
terms of the underlying tracer field δb, which in turn traces primordial fluctuations,
e.g. the power spectrum:

PδT21
(k1) = ⟨δT21(k1)δT21(−k1)⟩′ =

(
c
(1)
1 (k1)

)2
⟨δb(k1)δb(−k1)⟩′

=
(
c
(1)
1 (k1)Mb(k1)

)2
Pζ(k1)

(2.47)

where Mb is the linear transfer function of baryon fluctuations (obtainable through
e.g. CAMB) and the time (redshift) dependence of the prefactor is implicit.

2.3 Non-Gaussianity of 21-cm brightness temperature
anisotropies

In this section, we review the non-Gaussian contributions to the statistics of 21-cm
brightness temperature fluctuations during the Dark Ages. First, we will go over the
details of primordial non-Gaussianity and present templates that can be used to ex-
tract imprints of inflation from 21-cm data. Subsequently, we discuss the generation
of secondary non-Gaussianity in the 21-cm signal due to the non-linear evolution of
fluctuations, such as gravitational collapse.

2.3.1 Primordial non-Gaussianity

As was mentioned in the introduction, inflation naturally seeds structure formation
through the generation of quantum fluctuations. Over time, higher-density regions
collapse under gravitational attraction, forming stars and eventually galaxies. The
statistics of the initial conditions set by inflation contain a wealth of information
about the physics driving the accelerated expansion, as well as any extra particles
present during this period. Primordial (scalar) fluctuations are captured by the
gauge invariant quantity ζ with mean zero. Generally, the N -point statistical cor-
relation function of primordial fluctuations is given by:6

⟨ζk1ζk2 ...ζkN
⟩ = (2π)3δD(k1 + k2 + ...+ kN )F

(N)
ζ (k1,k2, ...,kN ) (2.48)

6The number of degrees of freedom of the N -point correlation function is reduced by homogeneity
and isotropy to be 3(N − 2).
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where F (N)
ζ encodes the size and shape of the N -point correlation as a function of the

momentum configuration. The lowest order statistic is known as the power spec-
trum:7

⟨ζk1
ζk2

⟩′ = Pζ(k1) (2.49)

Moving beyond the power spectrum, in this chapter we will be concerned with the
first two non-Gaussian contributions N = 3 (bispectrum) and N = 4 (trispectrum):

⟨ζk1
ζk2

ζk3
⟩′ = Bζ(k1, k2, k3)

⟨ζk1ζk2ζk3ζk4⟩′ = Tζ(k1, k2, k3, s, t) (2.50)

where s and t are the Mandelstam-like variables as presented at the end of the intro-
duction section. We will now discuss some common shapes of non-Gaussianity that
arise in inflationary model building, first for the bispectrum, then the trispectrum.

Primordial bispectra

The simplest way to generate non-Gaussianity is by expanding fluctuations locally
in terms of Gaussian fields as follows:

ζ = ζg +
3

5
f loc

NLζ
2
g (2.51)

where the subscript g denotes Gaussian fields, that have vanishing (N > 2)-point
functions. Such an expansion gives rise to the so-called local shape of the primordial
bispectrum:

Bloc(k1, k2, k3) =
6

5
f loc

NL (Pζ(k1)Pζ(k2) + Pζ(k2)Pζ(k3) + Pζ(k1)Pζ(k3)) (2.52)

which peaks in the squeezed triangle configuration (e.g. k1 ≪ k2 ≈ k3). Local
non-Gaussianity naturally arises in multi-field models of inflation, where extra light
fields are present that modulate the dynamics. When the inflaton is able to inter-
act with itself, bispectra of the equilateral type are generated. Their shape is well
described by the template:

Bequil(k1, k2, k3) =
18

5
f

equil
NL

[
− (Pζ(k1)Pζ(k2) + 2 perms.)

− 2P
2/3
ζ (k1)P

2/3
ζ (k2)P

2/3
ζ (k3)

+
(
Pζ(k1)Pζ(k2)

1/3Pζ(k3)
2/3 + 5 perms.

) ]
(2.53)

7From here on out we will use the primed correlator notation to remove the usual factor (2π)3δD(...).
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and peaks in the equilateral momentum configuration (k1 ≈ k2 ≈ k3). All shapes
that are due to self-interactions can be systematically classified using the Effective
Field Theory of Inflation [23]. Finally, a third shape that is often encountered is the
orthogonal shape

Bortho(k1, k2, k3) =
18

5
fortho

NL

[
− 3 (Pζ(k1)Pζ(k2) + 2 perms.)

− 8P
2/3
ζ (k1)P

2/3
ζ (k2)P

2/3
ζ (k3)

+ 3
(
Pζ(k1)Pζ(k2)

1/3Pζ(k3)
2/3 + 5 perms.

) ]
(2.54)

which is generated by more exotic models such as Galileon inflation. These three pri-
mordial shapes are the most commonly encountered bispectra in inflationary model
building, hence in this chapter we will often refer to them together as the common
primordial bispectra.

One of the most exciting prospects of measuring non-Gaussianity is the possibil-
ity of probing the particle spectrum during inflation. Heavy particles can naturally
be present during this high energy phase, leaving a characteristic oscillatory shape
in the squeezed limit of the primordial bispectrum, with a frequency set by its mass
[7, 9]. More concretely, under exchange of a scalar particle with mass m2 > 3H/2

this oscillation is given by [7]:

lim
k3→0

⟨ζk1ζk2ζk3⟩′ ∝
1

k31k
3
2

π2

cosh2 πµ

(
k3
k1

) 3
2

×

[( k3
4k1

)−iµ (1− i sinhπµ)( 52 − iµ)( 32 − iµ)Γ(iµ)

Γ( 12 + iµ)
+ c.c

]
.

(2.55)

where µ =
√
m2/H2 − 9/4,8 clearly showing an oscillation in log(k3/k1) with am-

plitude, frequency, and phase set by the mass of the scalar particle. The oscillations
induced by these heavy fields could be used to follow the evolution of the scale fac-
tor, possibly providing additional information about inflation. For this reason, these
fields are often referred to as primordial standard clocks [24–27]. In [12] a template is

8In order to stick to conventions in literature we use µ for both the line-of-sight angle µ(k) and the mass
parameter µ(m). This is unfortunate but their meaning should be sufficiently clear from the context.
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proposed for capturing the oscillatory behavior of the bispectrum:

Bclock(k1, k2, k3) =
39/2

10

f clock
NL A2

ζ

(k1k2k3)2
α
−1/2
123 sin

(
µ log

(α123

2

)
+ δ
)
Θ(α123 − α0)

+2 perms.

(2.56)

where α123 = (k1+k2)/k3 and the Heaviside step function Θ is included since the os-
cillation is only present for α123 > 2 (or permutations). The authors consider a value
of α0 = 10 in order to cut off near-equilateral configurations such that overlap with
the equilateral shape is reduced. Such a cutoff also drastically reduces the amount of
triangle configurations available to measure the signal, thereby lowering its signal-
to-noise ratio (SNR). As we will see later in this chapter, the reduced overlap with
the equilateral shape does not make up for the loss of SNR and a cutoff α0 > 2 is
found to be optimal.

If the exchange particle has a mass 0 ≤ m2 ≤ 3H/2 the oscillatory behavior
turns into a power-law [28], called the intermediate shape. Although there exists no
analytical expression, the shape is captured well by the following template [12, 28]:

Bint(k1, k2, k3) =
6

5
A2

ζf
int
NL3

7
2−3ν k21 + k22 + k23

(k1 + k2 + k3)
7
2−3ν

(k1k2k3)
− 3

2−νΘ̃(k1, k2, k3, α0)

(2.57)

where ν =
√
9/4− (m/H)2 = −iµ and 0 < v < 3/2. This template interpolates

between the behavior of the local (ν > 3/2) and equilateral (ν < 1/2) shapes in the
squeezed limit, hence coining the name intermediate. In order to reduce overlap
with equilateral shapes, we introduce a cutoff similar to the clock template:

Θ̃(k1, k2, k3, α0) = Θ(α123 − α0) + Θ(α132 − α0) + Θ(α231 − α0) (2.58)

In [12] the cutoff was again set to α0 = 10 whereas in this chapter we will find α0 = 2

to maximize the SNR when marginalizing over the other primordial shapes.

Finally, a word about the normalization of the primordial bispectra. The common
primordial shapes and intermediate shapes are normalized such that B(k, k, k) =
18
5 Pζ(k)

2 in the equilateral configuration. The clock template is normalized such
that its amplitude matches that of the intermediate shape for the transition mass
ν = µ = 0 in the squeezed limit.
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Primordial trispectra

The next order of correlation functions known as the trispectrum, correlate four
fluctuations. As for the bispectrum, the simplest way of generating such a non-
Gaussianity is by expanding the primordial field in terms of Gaussian fields to third
order:

ζ = ζg +
3

5
f loc

NLζ
2
g +

9

25
gloc

NLζ
3
g (2.59)

in Fourier space, this expansion leads to two distinct local trispectra:

T
τ loc

NL
ζ = τ loc

NL

[
Pζ(k1)Pζ(k3)Pζ(s) + Pζ(k1)Pζ(k3)Pζ(t)

]
+ 6 perms. (2.60)

T
gloc

NL
ζ =

54

24
gloc

NLPζ(k1)Pζ(k2)Pζ(k3) + 3 perms. (2.61)

where s = |s| = |k1 + k2|, t = |t| = |k1 + k4| and u = |u| = |k1 + k3| are diagonal
momenta. For single-field models, the τ loc

NL is always generated in case of a nonzero
local bispectrum, such that τ loc

NL ≥ ( 65f
loc
NL)

2, known as the Suyama-Yamaguchi bound
[29]. Furthermore, this shape peaks in the collapsed limit, where one of the diago-
nals (e.g. s) becomes much smaller than the external momenta. The gloc

NL amplitude
is an independent variable and is characterized by a peak in the double squeezed
limit, in which two external momenta become small.

Quartic self-interactions of the inflaton field give rise to equilateral shapes, simi-
lar to the equilateral bispectrum. Such interactions can be studied systematically us-
ing the EFT of inflation [23]. This effective field theory approach allows one to study
the interactions of the Goldstone of time translations π = −ζ/H in the decoupling
limit (i.e. without gravity). Typically, quartic interactions for π will imply the exis-
tence of cubic interactions that give rise to bispectra that have a much stronger signal
than the corresponding trispectrum, unless some contrived mechanism is being con-
sidered [30]. Hence, such interactions will likely be detected already by observing
the bispectrum. In the presence of an additional light scalar σ, we instead study
the EFT of multifield inflation [31]. In this case, it is possible to write down quar-
tic interactions for σ that generate a trispectrum for ζ without generating a larger
bispectrum, making the trispectrum the leading order observable non-Gaussianity
in such theories [32]. At lowest order in derivatives one finds three interactions σ̇4,
σ̇2(∂σ)2 and (∂σ)4, which give rise to three distinct trispectra
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T σ̇4

ζ =
221184

25
gσ̇

4

NL
1

k1k2k3k4k5t
, (2.62)

T
σ̇2(∂σ)2

ζ = −27648

325
g
σ̇2(∂σ)2

NL
k2t + 3(k3 + k4)kt + 12k3k4

k1k2(k3k4)3k5t
(k3 · k4)

+5 perms, (2.63)

T
(∂σ)4

ζ =
165888

2575
g
(∂σ)4

NL
2k4t − 2k2t

∑
i k

2
i + kt

∑
i k

3
i + 12k1k2k3k4

(k1k2k3k4)3k5t
×

((k1 · k2)(k3 · k4) + 2 perms),

(2.64)

where kt = k1 + k2 + k3 + k4. The amplitudes are normalized such that they match
the amplitude of the local shape for gNL = 1 in the tetrahedral configuration where
ki = k and ki · kj = −k2/3: ⟨ζ4⟩′ = 216

25 Pζ(k)
3 [30]. As we will see, these shapes

have a significant overlap. Therefore, when searching for an equilateral trispectrum,
it suffices to start off with just one shape.

In [7] it was noted that the oscillatory signature of additional heavy particles is
also present in the collapsed limit of the trispectrum. For example, the exchange of
a heavy scalar gives rise to a signal:

lim
s→0

⟨ζk1
ζk2

ζk3
ζk4

⟩′ =
1

4k31k
3
2k

3
3k

3
4

1

128π
(k12k34)

3/2 ×

[( s2

4k12k34

)iµ

(1 + i sinhπµ)(
3

2
+ iµ)2(

5

2
+ iµ)2

×Γ(−iµ)2Γ(1
2
+ iµ)2 + c.c

]
(2.65)

where k12 = k1 + k2 (note that s ̸= k12). Again the frequency, amplitude, and phase
of the oscillation, are set by the mass through µ. In order to extract such an oscillation
from data, we propose the template:

T clock
ζ =

3
3
2

16
gclock

NL
1

k31k
3
2k

3
3k

3
4

(k12k34)
3
2Θ(α12 − α0)Θ(α34 − α0) sin(µ ln(α12,34) + δ)

+2 perms.

(2.66)

where α12,34 = s2

k12k34
and α12 = k12

s . For scalars with an intermediate-mass, the
oscillatory behavior in the collapsed limit again turns into a power law as found in
[33]:
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lim
s→0

⟨ζk1
ζk2

ζk3
ζk4

⟩′ = 4gint
NLPζ(k1)Pζ(k2)Pζ(s)

(
s√
k1k3

)3−2ν

(2.67)

To constrain this type of non-Gaussianity we propose the use of a template:

T int
ζ = 4 3

3
2−νgint

NL
1

(k1k2k3k4)
3
2

1

s3
α

3
2−ν
12,34Θ(α12 − α0)Θ(α34 − α0) + 2 perms. (2.68)

As for the bispectrum, we included the Heaviside step functions in order to restrict
to the collapsed limit. We will find α0 = 2 to be the cutoff value that optimizes
the signal-to-noise ratio for these templates. Furthermore, the intermediate template
is normalized to match the τ loc

NL shape in the tetrahedral configuration and the am-
plitude of the oscillatory shape in the collapsed limit is normalized to match the
intermediate shape for the mass limit ν = µ = 0.

2.3.2 Secondary non-Gaussianity

As mentioned before, by the time we enter the Dark Ages non-linear evolution of
the density field will generate non-Gaussianity even if we start out with a perfectly
Gaussian field. Furthermore, the fact that 21-cm temperature fluctuations depend
non-linearly on the underlying fields δb, δv and δT causes additional non-Gaussian
imprints in the 21-cm signal. Since we are primarily interested in extracting (pos-
sibly very weak) primordial non-Gaussianity from this signal, such secondary non-
Gaussianity can be considered to be a confusion signal that should be accurately
modeled and subtracted in order to adequately determine the primordial contribu-
tion. The magnitude and impact of these secondary non-Gaussianities were pre-
viously studied for the bispectrum in [11, 14]. There, it was found that the sec-
ondary contribution is several orders of magnitude stronger than the primordial
signal. Including the amplitude of the secondary bispectrum as nuisance parame-
ters and marginalizing over them reduces the signal-to-noise ratio of the primordial
amplitude. In this chapter, we improve upon some of the assumptions made in those
previous works, by including the effects of electron fraction fluctuations and bary-
onic pressure. The former has been studied in section 2.2.2 and its effect is captured
in the coefficients CT

i,j . The latter will be studied next. After having set up the frame-
work for higher-order perturbation theory with baryonic pressure, we will be able
to derive both the secondary bispectrum as well as for the first time the secondary
trispectrum of 21-cm temperature fluctuations during the Dark Ages.
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Perturbation theory including baryonic pressure

By means of equation (2.45), we have a direct perturbative relation between 21-cm
fluctuations and baryon density contrast and velocity divergence up to third order.
However, we have so far been agnostic about the functional form of δ(n)b and θ(n)b . In
earlier work [11, 14], two assumptions are made about the functional form. First, it
assumed that the time-dependence of the baryonic fluctuations is identical to that of
CDM fluctuations so that the n-th order perturbations can be written as [34]:

δ
(n)
b (z,k) = an(z)δn,b(k), θ

(n)
b (z,k) = H(z)an(z)θn,b(k). (2.69)

Note that the functional form is product separable in temporal and spatial (momen-
tum) dependence. The latter is contained in δn and θn, which in standard perturba-
tion theory read:

δn,b(k) =

∫
q1···qn

(2π)3δD(k − q1···n)Fn,b(q1, . . . ,qn)δ1,b(q1) · · · δ1,b(qn) (2.70)

θn,b(k) =

∫
q1···qn

(2π)3δD(k − q1···n)Gn,b(q1, . . . ,qn)δ1,b(q1) · · · δ1,b(qn), (2.71)

where q1···n ≡ q1 + · · · + qn and the baryonic momentum kernels Fn,b and Gn,b are
symmetric under interchanging the momenta. The second assumption made in pre-
vious works is that the baryonic kernels are equivalent to that of CDM so that they
can be replaced by the latter: Fn,b → Fn,c and Gn,b → Gn,c, which can trivially be
obtained from a simple recursion relation [34].

However, in reality, baryons are very different from CDM in their physical na-
ture. Where CDM is pressureless, baryons constitute pressure. In particular, on
scales comparable to the so-called baryonic Jeans scale λJ, the pressure becomes
considerable and suppresses the growth of fluctuations due to gravity. On scales
smaller than the Jeans scale, pressure competes with gravity to generate acoustic
sound waves and the notion of growing density fluctuations becomes ill-defined.

To take the first step in the direction of accounting for pressure effects, we use
the formalism for baryonic fluctuations constructed in [35].9 Within this formalism,
the Jeans scale is assumed to be constant, i.e. λJ ̸= λJ(z). Although strictly speak-
ing this assumption becomes incorrect once the gas temperature decouples from the
photon temperature, it has the convenient consequence that the time-dependence of
baryonic fluctuations is still equivalent to that of CDM, δ(n)b ∝ an, and the results of
section 2.2.3 are still applicable. Then, the baryonic fields δb and θb can be expanded

9We will only highlight the required essentials of the formalism, for details, we refer to [35].
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as:

δb(z,k) =

∞∑
n=1

an(z)gn(k)δn,c(k), θb(z,k) =

∞∑
n=1

H(z)an(z)hn(k)θn,c(k),

(2.72)
where we have defined the filtering functions:10

gn(k) =
δn,b(k)

δn,c(k)
, hn(k) =

θn,b(k)

θn,c(k)
. (2.73)

Note that while we solely require g1 at first order (as the linear density contrast and
velocity divergence are trivially related as θb = −Hδb), at higher order we require
different filtering functions for δb (i.e. gn) and θb (hn).

We expect the filtering functions to be strongly decreasing for scales around and
beyond the Jeans scale (k/kJ ≫ 1), as pressure suppresses the evolution of baryonic
density fluctuations relative to those in CDM on these scales. In addition, far away
from the Jeans scale (k/kJ ≪ 1), we assume the behavior of baryons and CDM to be
equivalent, i.e. gn, hn → 1. At first order, the filtering function is given by:

g1(k) =
1

1 + k2/k2J
, (2.74)

which indeed contains the limiting behavior described above. At second order, the
function g2 can be written in terms of g1 as:

g2(k) = σ(k)

[
1 +

7

3

δ′2,c(k)

δ2,c(k)

]
, σ(k) ≡ 1

10/3 + (k/kJ)2
, (2.75)

where δ′2,c is given by (the prime does not denote a time derivative):

δ′2,c(k) ≡
∫
q1q2

(2π)3δD(k − q12) F (s)
2 (q1,q2) δ1,c(q1)δ1,c(q2). (2.76)

The modified kernel F (s)
2 (q1,q2) (where the superscript (s) denote the symmetriza-

tion of the kernel) reads:

F (s)
2 (q1,q2) ≡

[
F

(s)
2 (q1,q2) +

3

14

k2

k2J

]
g1(q1)g1(q2), (2.77)

10In principle, these filtering functions depend on time. Therefore, they are often defined as: gn(z,k) =
δ
(n)
b (z,k)/δ

(n)
c (z,k), including time dependence. However, as shown in [35], when decaying modes are

omitted and the Jeans scale is taken to be constant, the filtering functions become time-independent as
well, justifying this definition.
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which reduces to the CDM kernel F (s)
2 (q1,q2) in the limit k/kJ ≪ 1. The function

h2(k) can be written as:

h2(k) =
1

θ2,c(k)

[ ∫
q1q2

(2π)3δD(k − q12)
[
1 + ϑ(q1,q2)

]
δ1,b(q1)δ1,b(q2)

]
− 2

δ2,b(k)

θ2,c(k)
,

(2.78)

where we have defined ϑ(q1,q2) ≡ (q1 · q2)(q
2
1 + q22)/2q

2
1q

2
2 . In the limit k/kJ → 0,

we obtain h2 → 1 as expected.

The higher order perturbations δ(3)b , θ
(3)
b that show up in the secondary trispec-

trum will also be modified as compared to the CDM expressions.11 However, as we
will see later when comparing forecasts of the bispectrum with and without bary-
onic pressure effects, the differences are small. Hence, for computational simplicity,
we will not include baryonic pressure in our forecasts for the trispectrum. With the
above perturbation expansions, we are now able to write down the secondary con-
tributions to the non-Gaussianity of the 21-cm signal.

Secondary bispectrum

The lowest order non-Gaussian statistic of 21-cm brightness temperature fluctua-
tions, i.e. the 21-cm bispectrum BδT , now consists of a primary, primordial contribu-
tion:

⟨δT (1)
21 (k1)δT

(1)
21 (k2)δT

(1)
21 (k3)⟩′ =

(
3∏

i=1

c
(1)
1 (ki)Mb(ki)

)
×Bζ(k1,k2,k3)

(2.79)

where Mb(k) is the linear transfer function for baryonic fluctuations. Moreover,
there is also a higher-order, secondary contribution:

⟨δT21(k1)δT21(k2)δT21(k3)⟩′sec. = ⟨δT (1)
21 (k1)δT

(1)
21 (k2)δT

(2)
21 (k3)⟩′ + 2 perms.

= c
(1)
1 (k1)c

(1)
1 (k2)c

(2)
1 (k3)× 2F̃ (s)

2 (k1,k2)Pc(k1)Pc(k2)

+ c
(1)
1 (k1)c

(1)
1 (k2)c

(2)
2 (k3)× 2G̃(s)

2 (k1,k2)Pc(k1)Pc(k2)

+ c
(1)
1 (k1)c

(1)
1 (k2)

[
c
(2)
3 (k3,−k1) + c

(2)
3 (k3,−k2)

]
g21(k1)g

2
1(k2)Pc(k1)Pc(k2)

+ 2 perms. (2.80)

11See Appendix B of [35], Eqs. B23 and B25.
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We have defined the modified kernels F̃ (s)
2 and G̃(s)

2 as:

F̃ (s)
2 (k1,k2) ≡ g1(k1)g1(k2)σ2(|k12|)

[
F

(s)
2 (k1,k2) +

7

3
F (s)

2 (k1,k2)

]
,

G̃(s)
2 (k1,k2) ≡ 2g1(k1)g1(k2)σ2(|k12|)

[
F

(s)
2 (k1,k2) +

7

3
F (s)

2 (k1,k2)

]
− g21(k1)g

2
1(k2)[1 + ϑ(k1,k2)], (2.81)

In the limit λJ → ∞ and Pc → Pb this restores to the previously derived secondary
bispectrum of 21-cm brightness temperature fluctuations [11, 14].

Secondary trispectrum

The secondary trispectrum is composed of 11 different contributions, which can be
summarized schematically as:

⟨δT21(k1)δT21(k2)δT21(k3)δT21(k4)⟩′sec. = Tδ1δ1δ2δ2 + Tδ1δ1θ2θ2 + Tδ1δ1δ2θ2

+ Tδ1δ1δ2[δ1]2 + Tδ1δ1θ2[δ1]2 + Tδ1δ1[δ1]2[δ1]2

+ Tδ1δ1δ1[δ1]3 + Tδ1δ1δ1[δ1δ2] + Tδ1δ1δ1[δ1θ2]

+ Tδ1δ1δ1δ3 + Tδ1δ1δ1θ3 , (2.82)

where for example

Tδ1δ1δ2θ2 = f(k1,k2,k3,k4)⟨δ(1)b (k1)δ
(1)
b (k2)δ

(2)
b (k3)θ

(2)
b (k4)⟩+ 11 perms. (2.83)

Here the function f is composed of the coefficients c(j)i introduced above. The ex-
plicit expressions for all 11 contributions can be found in Appendix 2.D.

2.4 The information content of the Dark Ages

In this section we will determine the amount of information in 21-cm brightness
temperature fluctuations during the Dark Ages available to constrain primordial
non-Gaussianity.12 First, we will determine the total amount of information avail-
able when neglecting any form of signal confusion (either instrumental, system-
atic, or secondary), giving an ultimate upper bound for the sensitivities that can
be achieved. Subsequently, using our improved model of the 21-cm signal, we deter-
mine the amount of information when including signal confusion due to secondary
non-Gaussianities. Finally, we will determine the sensitivity of different experimen-
tal scenarios.

12The code used to perform the numerical calculations is openly available on GitHub via this link.

https://github.com/tsfloss/21-cm-Dark-Ages-Fisher-Forecast
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2.4.1 Total primordial information content

In order to determine the total information content, we will assume a cosmic vari-
ance limited experiment of the Dark Ages between 30 ≤ z ≤ 100 and take the largest
scale to be kmin = 0.01 Mpc−1, since on larger scales one has to include fluctuations
in the CMB temperature and non-relativistic perturbation theory breaks down.13

When including the secondary bispectrum and trispectrum, following [36] we con-
sider 14 redshift bins (i.e. ∆z = 5), assuming that they are sufficiently uncorrelated
such that the covariance matrix can be taken to be diagonal in redshift space. For
more details about the Fisher analysis and how to evaluate the Fisher matrix for
both the bispectrum and trispectrum, we refer to Appendix 2.C.

The results for the common primordial bispectra are summarized in Table 2.2.
The sensitivity to the amplitude of the primordial bispectrum is given on the diago-
nal. The increased sensitivity to the local shape as compared to the other two com-
mon shapes, can be understood as due to a slightly enhanced scaling with kmax [15].
Furthermore, on the off-diagonal, we summarize the overlap coefficient between the
common primordial bispectra.

f loc
NL f

equil
NL fortho

NL
f loc

NL 4.22× 10−6 0.29 −0.33

f
equil
NL 2.88× 10−5 0.19

fortho
NL 2.10× 10−5

Table 2.2: Diagonal: sensitivity to the amplitude of the common primordial shapes. Off-
diagonal: cosine (2.111) between common primordial shapes. We assume a cosmic variance
limited experiment between 30 ≤ z ≤ 100 and 0.01 ≤ k ≤ 300 Mpc−1.

We now consider the massive scalar exchange template for m ≥ 3H/2 (i.e. equa-
tion (2.56)). As mentioned, the authors of [12] suggested the use of a cutoff α0 = 10

in order to remove overlap with the equilateral shape equation (2.53). Such a cutoff
also drastically reduces the amount of triangles available to observe, hence reduc-
ing the signal-to-noise ratio. Using the Fisher analysis we are able to determine the
amount of overlap between the clock template and the common primordial shapes
that we aim to look for in future experiments. In Figure 2.8a we present this overlap
as a function of µ for both the cutoff α0 = 10 and α0 = 2. We find that although
the overlap with the equilateral shape is almost completely removed for the former

13The survey volume sets the largest scale to be only slightly bigger at k = 0.005 Mpc−1. Hence, from
an observational perspective, one gains very little from going beyond our choice of kmin.
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τ loc
NL gloc

NL gσ̇
4

NL g
σ̇2(∂σ)2

NL g
(∂σ)4

NL
τ loc

NL 1.79× 10−7 0.00 0.00 0.00 0.00

gloc
NL 0.02 0.13 0.11 0.06

gσ̇
4

NL 0.229 0.95 0.65

g
σ̇2(∂σ)2

NL 0.254 0.82

g
(∂σ)4

NL 0.0609

Table 2.3: Diagonal: sensitivity σ to the amplitude of primordial trispectra. Off-diagonal:
cosine (2.111) between common primordial trispectra. We assume a cosmic variance limited
experiment between 30 ≤ z ≤ 100 and 0.01 ≤ k ≤ 300 Mpc−1.

case, the overlap with the other shapes is increased for some mass values compared
to the latter. In 2.7a we show the sensitivity to the amplitude of the clock template,
which clearly shows that a larger cutoff is favorable only for masses µ ≲ 1. A similar
observation can be made for the intermediate template (Figure 2.8b and 2.7b) where
we again find α0 = 2 to optimize the sensitivity except for some small improvement
with α0 = 10 when ν ≳ 1. Hence, in what follows we will take α0 = 2.

Proceeding to the trispectrum, in Table 2.3 (on the diagonal) we present the ulti-
mate sensitivity of 21-cm temperature fluctuations from the Dark Ages to the ampli-
tude of the local and equilateral trispectra. We find the τ loc

NL shape to be much better
constrained than the other shapes. This can again be understood as due to an en-
hanced scaling [15], which we will comment on later in this subsection. The overlap
between these primordial trispectra is given by the off diagonals, where we see that
the enhanced scaling of the τ loc

NL shape makes it completely orthogonal to the other
shapes, making it a very clean signal to look for.

The ultimate sensitivities for the massive exchange trispectra are given in Fig-
ure 2.9. Although it’s clear that the clock trispectrum does not outperform the clock
bispectrum, we see that the intermediate template enjoys an enhanced scaling for
masses ν > 3/4. Such a scaling can improve the sensitivity to the trispectrum past
the sensitivity to the bispectrum. However, for ν close to 3/2, the shape acquires
significant overlap with the τ loc

NL shape, which drastically reduces the sensitivity after
marginalization making the sensitivity on par with that of the bispectrum. The over-
lap of the exchange trispectra with the local and equilateral trispectra is summarized
in Figure 2.10, which shows how the intermediate template interpolates between the
local and equilateral shapes depending on the mass ν.

The results presented in this subsection give an indication of how well 21-cm
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brightness temperature fluctuations from the Dark Ages are able to constrain pri-
mordial cosmology if we were able to harvest all of its information down to the Jeans
scale kmax = 300 Mpc−1, demonstrating the ability of 21-cm cosmology to achieve
the exquisite sensitivity necessary to advance our understanding of the primordial
universe, possibly even paving a way towards the Cosmological Collider as noticed
previously by [12].

2.4.2 Including secondary non-Guassianity

Although 21-cm brightness temperature fluctuations are still a relatively pristine
tracer of the underlying density field sourced by inflation, non-linear evolution such
as due to gravitational collapse or velocity effects, will make even perfectly Gaus-
sian fluctuations non-Gaussian over time, and between the surface of last scattering
at z ≈ 1100 and the Dark Ages z ≈ 200 there is a considerable amount of time
for such secondary non-Gaussianities to be generated. When trying to extract pri-
mordial non-Gaussianity from 21-cm observations, such secondary effects enter as
confusion signals, introducing extra nuisance parameters that should be modeled
and accounted for when analyzing data. Secondary non-Gaussianity of the 21-cm
signal has already been studied in the context of the bispectrum before [11, 14]. In
the previous sections, we have improved upon some of the assumptions that went
into those works in order to more accurately model the secondary bispectrum, as
well as to extend this to the secondary trispectrum. In this subsection, we will study
the impact of secondary non-Gaussianity on the constraining power of the 21-cm
signal from the Dark Ages.

The amount of additional nuisance parameters depends on how accurately we
are able to model the secondary non-Gaussianity. Most optimally, we might be able
to model the internal parameters of secondary non-Gaussianity (T̄21 and αi,j in 2.2.4)
to such precision that the only free parameter of the secondary N -point function is
its amplitude. In that case, the secondary N -point function can be treated as a single
shape. More realistically, we obtain the best fit for the internal parameters such that
their residuals become the free parameters of the secondary correlation function [14]:

FδT (k1, ...,kN ) = F sec,0
δT (k1, ...,kN ) +

∑
i

∆Ai
∂F sec

δT

∂Ai
(2.84)

such that we end up with an individual shape ∂F sec
δT

∂Ai
for every internal parameter.

Most pessimistically, one could consider every independent shape present in the
secondary N -point function. Due to the large number of shapes (already 21 for the
bispectrum), calculating the full Fisher matrix quickly becomes intractable for higher
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N -point functions. In the following we will adopt the best-fit approach of [14], giv-
ing rise to a four-parameter secondary bispectrum and seven-parameter secondary
trispectrum. We have improved upon previous work by including free electron frac-
tion perturbations to model the internal parameters of secondary non-Gaussianity,
and we include baryonic pressure (in the bispectrum).

We quantify the impact of including secondary non-Gaussianity on the signal-to-
noise ratio using the signal-to-noise degradation factor (SND) defined in equation
(2.110). It’s interesting to note that although the signal-to-noise degradation at each
redshift might be relatively large when co-adding the redshifts the degradation is
significantly reduced. This can be understood due to the difference in how the sec-
ondary shapes scale with z as compared to the primordial shapes: going from equa-
tion (2.94) to equation (2.96), we see that the amount of signal from the primordial
shape does not depend on z whereas the secondary shapes (including off-diagonal
contributions to the Fisher matrix) do. Hence, when adding information from red-
shift slices, one can also start distinguishing the primordial and secondary shapes by
their redshift dependence.

In Figure 2.11 we plot the amount of degradation as a function of kmax for the
primordial bispectra. We find that including baryonic pressure slightly worsens the
signal-to-noise degradation as compared to the simplified approach of [14], but not
by much. We expect the same to be true for the trispectrum, so in order to keep the
trispectrum calculations more tractable and efficient, we neglect baryonic pressure
effects in the upcoming trispectrum analysis. Nevertheless, in an actual data anal-
ysis, one should model the bi- and trispectrum as accurately as possible, in order
to reliably extract the primordial signal. Furthermore, we find the four parameters
of the secondary bispectrum to contribute evenly to the signal-to-noise degradation
(meaning their cosine (2.111) with fNL is similar).

We summarize the sensitivity to the amplitude of the common primordial bis-
pectra as a function of kmax in Figure 2.4, clearly showing the small loss of signal-
to-noise due to the secondary bispectrum. Similar results are presented for the clock
and intermediate template in Figure 2.12 and Figure 2.13 respectively. In the top pan-
els of those figures, we see that once overlap with the common primordial shapes is
taken into account, the additional effect of the secondary bispectrum (difference be-
tween dotted and solid lines in the figures) becomes negligible. We thus conclude
that for the exchange templates, the overlap with other primordial shapes is more
severe than any overlap with secondary shapes.

We now investigate the impact of the secondary trispectrum on the previously
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Figure 2.4: The sensitivity to the amplitude of the common primordial bispectra as a function
of kmax before (dashed) and after (solid) marginalizing over the 4-parameter secondary bis-
pectrum including baryonic pressure effects. The solid green line coincides with the dashed
orange line.

obtained sensitivities to primordial trispectra. In Figure 2.14 we summarize the
signal-to-noise degradation after marginalizing over the seven residual parameters
of the secondary trispectrum. Due to the more complex shapes of the trispectra in k-
space as compared to the bispectra, we see little overlap with the secondary trispec-
tra, especially for higher values of kmax. The small overlap is reflected in the small
loss of sensitivity to the amplitude of the common shapes in Figure 2.5. As for the
bispectrum, we find similar overlap for all parameters. Results for the clock and
intermediate template are summarized in Figure 2.15 and Figure 2.16 respectively.
Similar to the case of the bispectrum, in the left figures we see that when including
the overlap of the common primordial trispectra, the additional effect of the sec-
ondary trispectra is negligible. What is different from the case of the bispectrum is
the enhanced scaling for the intermediate template at mass values ν > 0.75.

2.4.3 Forecasting experiments

Until now we have studied the signal-to-noise with which we can measure primor-
dial non-Gaussianity as a function of the maximum accessible momentum kmax. In
reality, however, there is a difference between the radial (or redshift) component of
the momenta along the line-of-sight k∥ and the perpendicular (or angular) compo-
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Figure 2.5: The sensitivity to the amplitude of the common primordial trispectra as a func-
tion of kmax before (dashed) and after (solid) marginalizing over the 7-parameter secondary
trispectrum. Green and red lines coincide. The enhanced scaling of the τ loc

NL shape is clearly
visible.

nent k⊥. The resolution along these components is set by different properties of the
experimental setup. The line-of-sight resolution is determined by our ability to dis-
tinguish redshift slices, which in practice corresponds to the size of the frequency
bins set by the window size δν [36]:

k
∥
max ≈

√
17

3

1

20δν
√
1 + z

(2.85)

with δν in units of MHz. Furthermore, the angular resolution R is set by the base-
line b (the distance between two receivers in an interferometer) of the experiment
through:

R =
λobs

b
(2.86)

which yields the maximum perpendicular mode

k⊥max ≈ 2πν0b

d(z)(1 + z)c
(2.87)

with b in units of km and where ν0 ≈ 1420 × 106 Hz is the frequency of the 21-cm
signal, c the speed of light in km/s and d(z) the comoving distance to redshift z in
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units of Mpc. In practice, it is much easier to improve on the window δν than it is
to increase the baseline. In Figure 2.6 we show kmax as a function of baseline and
window size at several redshifts.
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Figure 2.6: The maximal wavenumber kmax that can be probed in a certain direction for several
redshifts. Left: perpendicular k⊥

max as a function of baseline in kilometers. Right: parallel
(line-of-sight) k∥

max as a function of window size δν.

Figure 2.17 shows the forecast sensitivity to the amplitude of the three com-
mon primordial bispectra. We find that already for a reasonably sized array with
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a baseline of several kilometers 21-cm observations from the Dark Ages can im-
prove current as well as future CMB constraints by orders of magnitude. Notably,
σf loc

NL
∼ O(10−2) can in principle be achieved with a baseline smaller than 10 kilome-

ters, allowing for a test of the famous Maldacena consistency condition.

Figures 2.18 and 2.19 summarize the ability to detect primordial features due to
the exchange of massive particles during inflation for different baseline and window
size. Depending on the nature of the exchange coupling the size of the amplitude of
the non-Gaussian signal can be anywhere between fNL ≪ 10−2 and fNL > O(1) (see
section E. of [12] for a clear discussion on the different possibilities). We see that a
baseline of 100 − 1000 km could already provide a clear picture of the particle con-
tent of the early universe, opening up an entirely new window into the physics of
inflation.

In Figures 2.20 and 2.21 we present for the first time forecasts of the sensitivity of
different experimental setups to the amplitude of primordial trispectra, taking into
account the secondary trispectrum of 21-cm brightness temperature fluctuations. We
find that for most trispectra it proves hard to do better than σg ∼ O(1), a clear excep-
tion being the τ loc

NL local shape, which exhibits enhanced scaling with kmax resulting
in sensitivities on par with that of the bispectrum.

Moving on to the trispectrum of massive exchange, we show the results in Fig-
ures 2.22 and 2.23. We conclude that the oscillatory clock template can realistically
only be constrained up to a sensitivity of σg ∼ O(10), still many orders of magni-
tude better than CMB observations (likely ∼ O(104) in the future). However, the
intermediate trispectrum of massive exchange can reach sensitivities that are much
more similar to the bispectrum sensitivities, allowing one to probe the same masses
through both the bispectrum and trispectrum. Although we have not explicitly in-
cluded spinning particles in this chapter, having two independent probes of the same
mass could be used to break the degeneracy between the mass and spin of the parti-
cle, which both contribute to the amplitude of the signal [7].

2.5 Conclusions and Outlook

Measurements of primordial non-Gaussianity play a key role in unraveling the mys-
teries of the early universe. Until now, the most stringent constraints on the amount
of pnG come from observations of the cosmic microwave background radiation,
which are still consistent with zero. Future CMB experiments (e.g. SO and CMBS4)
could improve constraints by an order of magnitude, possibly zeroing in on non-zero
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pnG. However, in order to accurately distinguish different non-Gaussian signatures
such as the imprint of massive particles present during inflation, sensitivities are re-
quired that can simply not be achieved with CMB measurements, due to the limited
amount of modes available. To advance our understanding of the primordial uni-
verse, we ought to employ additional probes. Arguably the most promising avenue
to this end is the use of 21-cm brightness temperature fluctuations. During a part
of the cosmological Dark Ages (between 30 ≤ z ≤ 200), these tiny fluctuations can
in principle be observed in absorption to the CMB radiation. The result is a large
observable 3D volume of linear modes that trace the primordial initial conditions,
which could constrain primordial non-Gaussianity with unprecedented precision,
opening up an exciting new window into the physics of the early universe.

In order to extract such primordial information from the tracer field, it’s required
to accurately model the physics of the hydrogen gas. Furthermore, the non-linear
relation between the initial conditions and the 21-cm brightness temperature fluctu-
ations as well as the gravitational collapse of the matter field induce secondary non-
Gaussianity, swamping to primordial signal that we aim to observe. In this chapter,
we (re)addressed some of these aspects and made several advances. Specifically, we
have:

• improved analytical modeling of the hydrogen gas by including the effect of
free electron fraction perturbations, which turns out to be sizable (Figure 2.2)
and hence should be included in any detailed analysis of 21-cm observations
of the Dark Ages

• derived the perturbation expansion of the 21-cm tracer field up to third order
in the underlying matter field, while including baryonic pressure effects on
scales close to the Jeans scale

• thereby obtained an improved expression for the secondary bispectrum of 21-
cm brightness temperature fluctuations during the Dark Ages

• derived, for the first time, the secondary trispectrum of the 21-cm tracer field

With this improved modeling of the tracer field and the newly obtained sec-
ondary bi- and trispectrum, we asses the information content of 21-cm fluctuations to
constrain primordial physics, under the most optimal conditions. More specifically,
we perform a Fisher analysis to determine the error bars on the amplitude of various
primordial bi- and trispectra in a potential 21-cm Dark Ages experiment, marginaliz-
ing over the parameters of secondary non-Gaussianity. From this analysis, we draw
the following conclusions:
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• Although secondary non-Gaussianity swamps the primordial signal, the pri-
mordial signal can be extracted without a big loss of signal-to-noise both for
the bispectrum and the trispectrum

• tomography of 21-cm fluctuations can in principle improve constraints on pri-
mordial non-Gaussianity by several orders of magnitude, already for relatively
low kmax, as noted before in refs. [11, 12, 14]

• the enhanced scaling of some trispectra with kmax [15] indeed manifests itself
in 21-cm observations.

• our Fisher forecasts demonstrate the importance of marginalizing over primor-
dial shapes as compared to secondary shapes when considering the massive
particle exchange templates

Our results clearly show the potential of the 21-cm signal from the Dark Ages to
improve constraints on primordial non-Gaussianity and thereby our understanding
of the infant universe. Many interesting directions of research remain in order to
better understand the intricacies of the 21-cm Dark Ages signal. We would like to
reiterate some of the assumptions made in this chapter that can be improved upon
as well as some other possible directions for future research:

• we have included baryonic pressure effects to the secondary bispectrum along
the lines of [35]. One of the assumptions made there is the constancy of the
baryonic Jeans scale kJ . In reality, this scale depends on time (redshift) and
a more accurate modeling of secondary non-Gaussianity of the 21-cm signal
should include this time-dependence

• Our expression for the 21-cm trispectrum can be used to include non-Gaussian
covariance in an analysis of the 21-cm power spectrum such as [36] (see [37] for
a similar analysis in the context of LSS). In principle, non-Gaussian covariance
will also impact the forecasts presented in this chapter. We leave this to future
work.

• By modeling the effects of the first stars’ Lyman-α radiation on the 21-cm
brightness temperature, one could extend our analysis from the Dark Ages into
the epoch of Cosmic Dawn. Earth-based experiments measuring the 21-cm sig-
nal from this epoch are already being prepared and could provide constraints
on primordial non-Gaussianity in the near future [38, 39].

Finally, it’s imperative to once more mention the practical and technological chal-
lenges involved in measuring such a signal. Although the 21-cm signal from the
epoch of reionization can be observed from Earth, once we pass into the Dark Ages
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(z ≥ 30), the signal has redshifted into wavelengths that are largely blocked by
Earth’s ionosphere, requiring us to design and build a lunar or space-based observa-
tory. Nevertheless, serious efforts are being made to establish a lunar-based obser-
vatory with future NASA and ESA moon missions [13, 40, 41]. Furthermore, a host
of foreground sources obscure the pristine 21-cm signal, of which synchrotron emis-
sion in our galaxy is the most dominant, and the amplitude of these foregrounds
increases towards lower frequencies (higher redshifts). In theory, foregrounds can
be avoided when looking at fluctuations as the foreground mode appears initially as
a line of sight mode on large scales. Interferometers then introduce additional mode
coupling that leads to the famous wedge [42–45]. The future of 21-cm as a compet-
itive cosmological probe will rely critically on whether we are capable of extracting
the signal away from the wedge (although it might be possible to reconstruct some
of the modes in the wedge, see e.g. [46]). However, these challenges are part of
the ongoing efforts in this field, both at low redshifts [47–50], reionization redshifts
[38, 39, 51–53] and high redshift probes [38, 54, 55].14 Finally, we have ignored any
form of noise due to the experimental setup (e.g. thermal noise, systematics, etc.) as
well as any technical challenges such as integration time. We leave a more realistic
forecast including these considerations for future work. The main goal of this chap-
ter has been to show the potential of the 21-cm signal at high redshift and to establish
the importance of this probe as a way to explore the nature of the early universe in
the future. Reaching sensitivities that allow us to answer questions related to new
particles and new fields will be limited by the number of available modes [15] and
the epoch of the dark ages in principle contains the largest number of these pristine
modes.

14Besides challenges related to signal extraction for the very large interferometers there are also com-
putational challenges which will have to be addressed due to the sheer number of baselines that can be
correlated, see e.g. [50] and references therein.
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2.A Forecast Figures

This Appendix collects the results of the forecasts performed for this Chapter.
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Figure 2.7: Sensitivity to the amplitude of the massive exchange templates in a cosmic vari-
ance limited experiment between 30 ≤ z ≤ 100 and 0.01 ≤ k ≤ 300 Mpc−1, before (dashed)
and after (solid) marginalizing over the common primordial bispectra, for different cutoff val-
ues α0. Top: Clock template, equation (2.56). Bottom: Intermediate template, equation (2.57)
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Template overlap massive exchange bispectrum
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Figure 2.8: Cosine (2.111) between the massive exchange templates and common primordial
shapes for different mass in a cosmic variance limited experiment between 30 ≤ z ≤ 100

and 0.01 ≤ k ≤ 300 Mpc−1. Solid lines correspond to the template with α0 = 2. Dashed
lines correspond to the template with α0 = 10. Top: Clock template equation (2.56). Bottom:
Intermediate template equation (2.57)
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Total information massive exchange trispectrum
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Figure 2.9: Sensitivity to the amplitude of the exchange trispectrum templates in a cosmic
variance limited experiment between 30 ≤ z ≤ 100 and 0.01 ≤ k ≤ 300 Mpc−1, before
(dashed) and after (solid) marginalizing over the common primordial trispectra. Top: Clock
template equation (2.66). Bottom: Intermediate template equation (2.68), here the black line
indicates the mass value ν = 3/4 at which the enhanced scaling sets in [15].
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Figure 2.10: Cosine (2.111) between the exchange templates and the other primordial shapes
for different mass in a cosmic variance limited experiment between 30 ≤ z ≤ 100 and
0.01 ≤ k ≤ 300 Mpc−1. Top: Clock template equation (2.66). Bottom: Intermediate tem-
plate equation (2.68)
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Signal degradation due to secondary bispectrum
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Figure 2.11: The signal-to-noise degradation factor after marginalizing over the 4 parameter
secondary bispectrum as a function of kmax for different primordial bispectra. Note the differ-
ent scales of the vertical axes.
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Sensitivity to clock bispectra as function of kmax
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Figure 2.12: Top: sensitivity to the amplitude of the bispectrum clock template with µ = 0.25

as a function of kmax without marginalizing (dashed), after marginalizing over the 4 param-
eter secondary bispectrum (dashed-dotted), after marginalizing over the common primordial
bispectra (dotted) and after marginalizing over both secondary and common primordial bis-
pectra (solid). Bottom: sensitivity to the amplitude of the clock template for different µ as
function of kmax after marginalizing over both secondary and common primordial bispectra.
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Sensitivity to intermediate bispectra as function of kmax
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Figure 2.13: Top: sensitivity to the amplitude of the bispectrum intermediate template with
ν = 1.25 as a function of kmax without marginalizing (dashed), after marginalizing over the
4 parameters secondary bispectrum (dashed-dotted), after marginalizing over the common
primordial bispectra (dotted) and after marginalizing over both secondary and common pri-
mordial bispectra (solid). Bottom: sensitivity to the amplitude of the int template for different
ν as function of kmax after marginalizing over secondary and common primordial bispectra.
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Signal degradation due to secondary trispectrum

0.3 1 3 10 30 100 300
kmax

1.00

1.05

1.10

1.15

1.20

1.25

1.30
SN

D
loc
NL

gloc
NL

g 4
NL

g
2( )2

NL

g( )4
NL

0.3 1 3 10 30 100 300
kmax

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

SN
D

= 0.25
= 0.5
= 1
= 2
= 6

0.3 1 3 10 30 100 300
kmax

1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14
1.16
1.18

SN
D

= 0.1
= 0.5
= 1

= 1.25
= 1.4

Figure 2.14: The signal-to-noise degradation factor after marginalizing over the 7 parameter
secondary trispectrum as a function of kmax for different primordial trispectra. Note the dif-
ferent scales of the vertical axes.
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Sensitivity to clock trispectra as function of kmax
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Figure 2.15: Top: sensitivity to the amplitude of the trispectrum clock template with µ = 0.25

as a function of kmax without marginalizing (dashed), after marginalizing over the 7 param-
eter secondary trispectrum (dashed-dotted), after marginalizing over the common primor-
dial trispectra (dotted) and after marginalizing over both secondary and common primordial
trispectra (solid). Bottom: sensitivity to the amplitude of the clock template for different µ as
function of kmax after marginalizing over both secondary and common primordial trispectra.
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Sensitivity to intermediate trispectra as function of kmax
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Figure 2.16: Top: sensitivity to the amplitude of the trispectrum intermediate template with
ν = 0.1 as a function of kmax without marginalizing (dashed), after marginalizing over the
7 parameter secondary trispectrum (dashed-dotted), after marginalizing over the common
primordial trispectra (dotted) and after marginalizing over both secondary and common pri-
mordial trispectra (solid). Bottom: sensitivity to the amplitude of the intermediate template
for different ν as function of kmax after marginalizing over both secondary and common pri-
mordial trispectra.
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Sensitivity to common bispectra as function of baseline/window
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Figure 2.17: Forecast sensitivity to the amplitude of the common primordial bispectra for
different baseline and window size, before (dashed) and after (solid) marginalizing over the 4
parameter secondary bispectrum.
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Sensitivity to clock bispectra as function of baseline/window
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Figure 2.18: Forecast sensitivity to the amplitude of some massive clock exchange bispectra
for different baseline and window, before (dashed) and after (solid) marginalizing over the 4
parameter secondary bispectrum and common primordial bispectra.
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Sensitivity to intermediate bispectra as function of baseline/window
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Figure 2.19: Forecast sensitivity to the amplitude of some massive intermediate exchange
bispectra for different baseline and window, before (dashed) and after (solid) marginalizing
over the 4 parameter secondary bispectrum and common primordial bispectra.
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Sensitivity to equilateral trispectra as function of baseline/window
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Figure 2.20: Forecast sensitivity to the amplitude of the primordial trispectra for different
baseline and window size, before (dashed) and after (solid) marginalizing over the 7 parame-
ter secondary trispectrum.
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Sensitivity to local trispectra as function of baseline/window
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Figure 2.21: Forecast sensitivity to the amplitude of the primordial trispectra for different
baseline and window size, before (dashed) and after (solid) marginalizing over the 7 parame-
ter secondary trispectrum.
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Sensitivity to clock trispectra as function of baseline/window
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Figure 2.22: Forecast sensitivity to the amplitude of some clock exchange trispectra for dif-
ferent baseline and window size, before (dashed) and after (solid) marginalizing over the 7
parameter secondary trispectrum and local and equilateral trispectra.
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Sensitivity to intermediate trispectra as function of baseline/window
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Figure 2.23: Forecast sensitivity to the amplitude of intermediate massive exchange trispectra
for different baseline and window size, before (dashed) and after (solid) marginalizing over
the 7 parameter secondary trispectrum and local and equilateral trispectra.
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2.B Evolution of perturbations

In this appendix, we will provide the explicit evolution equations for perturbations
in the free electron fraction and gas temperature, used to numerically solve for the
coupling coefficients Cx,T

i,j (defined in equation (2.29) and equation (2.30)).

Free electron fraction

To obtain the evolution equations for δxn, we substitute the expansions for δxe and
δT (equation (2.28)) into the evolution equation for δxe (equation (2.26)). Order by
order, we then obtain the following evolution equations:

δ̇x1 = −ΓR(δ
x
1 +A1δ

T
1 + δ1),

δ̇x2 = −ΓR

[
δx2 +A2δ

T
2 + δ2 + (δx1 )

2 + 2δx1 δ1 +A1δ
T
1 (δ1 + δx1 ) +A2(δ

T
1 )

2
]
,

δ̇x3 = −ΓR

[
δx3 +A3δ

T
3 + δ3 + 2δx1 δ

x
2 + 2(δx2 δ1 + δx1 δ2) + (δx1 )

2δ1

+ 2A1(δ
x
1 δ

T
2 + δx2 δ

T
1 ) +A1δ

T
1 δ

x
1 (δ

x
1 + 2δ1) +A1(δ

T
1 δ2 + δT2 δ1)

+A2(δ
T
1 )

2(δ1 + 2δx1 ) + 2A2δ
T
1 δ

T
2 +A3(δ

T
1 )

3
]
. (2.88)

Gas temperature

Similarly, we obtain the evolution equations for δTn by substituting equation (2.28)
into equation (2.20) to get:

δ̇T1 = Θ1,

δ̇T2 = Θ2 +
2

3
Hδ1(δ

T
1 − δ1)− ΓCδ

x
1 δ

T
1 ,

δ̇T3 = Θ3 +
2

3
Hδ1

[
(δ1)

2 + δT2 − 3δ2
]
+

2

3
H
[
2δ2 − (δ1)

2
]
δT1 − ΓC[δ

x
2 δ

T
1 + δx1 δ

T
2 ],

(2.89)

where we have used that δ̇n = nHδn and defined Θn as:

Θn ≡ ΓC

[
(T̄γ/T̄gas − 1)δxn − (T̄γ/T̄gas)δ

T
n

]
+

2

3
Hnδn. (2.90)

Coupling coefficients

Note that the evolution equations for δan are coupled linear differential equations,
we can turn them into coupled differential equations for the coupling coefficients.
Compactly, the evolution equations for the couplings can be written as:

d

da
Ca
n,m = ∆a

n,m +Σa
n,m, (2.91)
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in terms a ≡ (1+z)−1 as evolution variable. In the compact notation above, ∆a
n,m de-

note all terms contributing to the evolution at the order n, whereas Σa
n,m encode the

(combined) contribution of lower order perturbations. Explicitly, ∆a
n,m are defined

as:

∆T
n,m ≡ −

[
n+

ΓC

H

T̄γ
T̄gas

]CT
n,m

a
+

ΓC

H

[
T̄γ
T̄gas

− 1

]Cx
n,m

a
+

2n

3a
δnm,

∆x
n,m ≡ −

[
n+

ΓR

H

]Cx
n,m

a
− 1

a

ΓR

H

[
A1CT

n,m + δnm
]
. (2.92)

By construction, the evolution of the coefficients Ca
n,n is only sourced by Ca

n,n, so that
Σa

n,n = 0. The cases n ̸= m are non-zero and read:

ΣT
2,1 ≡− 1

a

ΓC

H
CT
1,1Cx

1,1 +
2

3a

[
CT
1,1 − 1

]
,

ΣT
3,1 ≡− 1

a

ΓC

H

[
CT
1,1Cx

2,1 + CT
2,1Cx

1,1

]
+

2

3a

[
1− CT

1,1 + CT
2,1

]
,

ΣT
3,2 ≡− 1

a

ΓC

H

[
CT
1,1Cx

2,2 + CT
2,2Cx

1,1

]
+

2

3a

[
− 3 + 2CT

1,1 + CT
2,2

]
,

Σx
2,1 ≡− 1

a

ΓR

H

[
Cx
1,1(Cx

1,1 + 2) +A1CT
1,1(1 + 2Cx

1,1) +A2(CT
1,1)

2
]
,

Σx
3,1 ≡− 1

a

ΓR

H

[
2Cx

2,1(1 + Cx
1,1) + (Cx

1,1)
2 +A1CT

2,1(1 + 2Cx
1,1)

+A1CT
1,1([Cx

1,1]
2 + 2Cx

2,1 + 2Cx
1,1)
]

− 1

a

ΓR

H

[
A2(CT

1,1)
2(1 + 2Cx

1,1) + 2A2CT
1,1CT

2,1 +A3(CT
1,1)

3
]
,

Σx
3,2 ≡− 1

a

ΓR

H

[
2Cx

2,2(1 + Cx
1,1) + 2Cx

1,1 +A1CT
1,1(1 + 2Cx

2,2)

+A1CT
2,2(1 + 2Cx

1,1) + 2A2CT
1,1CT

2,2

]
. (2.93)

Initial conditions

To solve the above system of equations, we set the initial conditions following the
reasoning of [19]. At high redshifts (zi = 1000) we have Tgas = Tγ to high accu-
racy. Since we neglect fluctuations in the photon temperature, we conclude that at
zi gas temperature fluctuations must vanish as well, δT(zi,x) = 0, or equivalently
CT
n,m(zi) = 0. Regarding electron fraction fluctuations δxe

(or equivalently Cx
n,m), one

should in principle start computing the evolution at earlier times to get the appro-
priate initial conditions at the initial redshift zi. However, we are interested in the
effect of δxe

at late times (during the Dark Ages) on the 21-cm signal, which only
enters via the coupling to gas temperature fluctuations. At late times, this coupling
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is insensitive to the initial value δxe
(zi), since perturbations grow after recombina-

tion and the initial value is quickly forgotten [19]. Therefore, we may set δxe
(zi) = 0,

corresponding to Cx
n,m(zi) = 0.
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2.C Fisher information matrix

We summarize the relevant equations used to perform the forecasts in this chapter.
Following [36] consider a cosmic variance limited survey over 14 redshift bins be-
tween 30 ≤ z ≤ 100, assuming these are sufficiently uncorrelated. For the 21-cm
bispectrum, the (cosmic variance limited) Fisher information matrix for a redshift
bin zi is defined by [12, 56, 57]:

Fαβ(zi) =

∫
k1≥k2≥k3

∂BδT (k1,k2,k3, zi)

∂pα

(2π)6δ2D(k1 + k2 + k3)

PδT (k1, zi)PδT (k2, zi)PδT (k3, zi)

×∂BδT (k1,k2,k3, zi)

∂pβ

(2.94)

where pα, pβ are the bispectrum parameters of interest. The total Fisher information
is then simply given by the sum over redshift bins. When considering primordial
bispectra one sees that all z and line-of-sight momentum dependence in the numer-
ator cancel against the denominator and we find the simplified Fisher information
matrix:

Fαβ = Vtot

∫
k1≥k2≥k3

∂Bζ(k1,k2,k3)

∂pα

(2π)3δD(k1 + k2 + k3)

Pζ(k1)Pζ(k2)Pζ(k3)

∂Bζ(k1,k2,k3)

∂pβ

(2.95)

where we used δD(0) = V/(2π)3 where Vtot is the total comoving survey volume.
Now no binning of redshift is necessary. Furthermore, for (isotropic) primordial
bispectra, the fisher matrix can be further simplified by integrating out the delta
function, to read [58]

Fαβ =
Vtot

8π4

∫ kmax

kmin

dk1

∫ k1

k1/2

dk2

∫ k2

k∗
min

dk3
∂Bζ(k1, k2, k3)

∂pα

k1k2k3
Pζ(k1)Pζ(k2)Pζ(k3)

×∂Bζ(k1, k2, k3)

∂pβ

(2.96)

where k∗min = Max(kmin, k1 − k2). Using this expression we determine the total
amount of information in 2.4. Contrary to the primordial bispectrum, the 21-cm
secondary bispectrum (see e.g. (2.79)) depends explicitly on the line-of-sight mo-
mentum through the angles µ(k) = k∥/k. Furthermore, the redshift dependence
in the numerator and denominator of the Fisher matrix equation no longer cancel.
Starting from equation (2.94) and integrating out the delta function we find
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Fαβ(zi) =
1

3!

Vi
(2π)6

∫ kmax

kmin

d2k1⊥ d2k2⊥ dk1∥ dk2∥
∂BδT (k1,k2,k3, zi)

∂pα

×

 3∏
j=1

1

PδT (kj , zi)

 ∂BδT (k1,k2,k3, zi)

∂pβ

(2.97)

where now k3 = −k1−k2 and the factor 1/3! in front is there to count every triangle
configuration only once. Going to cylindrical coordinates, we can get rid of one
more (angular) degree of freedom by writing k23⊥ = k21⊥ + k22⊥ + 2k1⊥k2⊥ cos(ϕ12)

and invoking isotropy in the perpendicular direction:

Fαβ(zi) =
Vi

3!(2π)5

∫ 2π

0

dϕ12

∫ kmax

kmin

dk1⊥ dk2⊥ dk1∥ dk2∥ k1⊥k2⊥

×∂BδT (k1,k2,k3, zi)

∂pα

 3∏
j=1

1

PδT (kj , zi)

 ∂BδT (k1,k2,k3, zi)

∂pβ

(2.98)

We use this expression to evaluate the Fisher matrix for the 21-cm secondary bis-
pectrum. The integration ranges can be straightforwardly modified to distinguish
between k∥max and k⊥max as we do in section 2.4.3.

Analogous to the bispectrum, the Fisher matrix for the trispectrum is defined as:

Fαβ(zi) =

∫
k1≥k2≥k3≥k4

∂TδT (k1,k2,k3,k4, zi)

∂pα
×

(2π)6δ2D(k1 + k2 + k3 + k4)

PδT (k1, zi)PδT (k2, zi)PδT (k3, zi), PδT (k4, zi)

∂TδT (k1,k2,k3,k4, zi)

∂pβ

(2.99)

When considering only primordial trispectra, direction- and z-dependence again
drop out. The quadrilateral can then be parametrized by the length of four sides
and two diagonals and the Fisher matrix can be shown to take the following form
[58]:

Fαβ =
Vtot

4!(2π)32π4

∫
VT

dk1 dk2 dk3 dk4 ds dt
∂Tζ(k1, k2, k3, k4, s, t)

∂pα
×

k1k2k3k4st√
g1Pζ(k1)Pζ(k2)Pζ(k3)Pζ(k4)

∂Tζ(k1, k2, k3, k4, s, t)

∂pβ
(2.100)
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where VT is the tetrahedral region spanned by the quadrilateral, which can be en-
forced by triangle conditions on every side of the tetrahedron [59]. Furthermore, the
function g1 is given by [58]:

g1 = s2t2

(∑
i

k2i − s2 − t2

)
− s2κ23κ14 + t2κ12κ32 − (k21k

2
3 − k22k

2
4)(κ12 + κ34)

(2.101)

. Using equation (2.100) we forecast the amount of information available to constrain
the trispectrum from the Dark Ages in section 2.4. For the 21-cm secondary trispec-
trum, we again distinguish between perpendicular and line-of-sight momenta. One
way to parametrize these quadrilaterals is using three of its sides:

Fαβ(zi) =
1

4!

Vi
(2π)9

∫
d2k1⊥d

2k2⊥d
2k3⊥dk1∥dk2∥dk3∥

∂TδT (k1,k2,k3,k4, zi)

∂pα

 4∏
j=1

1

PδT (kj , zi)

 ∂TδT (k1,k2,k3,k4, zi)

∂pβ

(2.102)

where it is now understood that k4 = −k1 − k2 − k3. Furthermore, in cylindrical
coordinates we can write

k24⊥ = k21⊥ + k22⊥ + k23⊥ + 2k1⊥k2⊥ cos (ϕ1 − ϕ2) + 2k1⊥k3⊥ cos (ϕ1 − ϕ3)

+2k2⊥k3⊥ cos (ϕ2 − ϕ3) (2.103)

and we can get rid of one angular degree of freedom by isotropy, leading to the
following expression for the Fisher matrix:

Fαβ(zi) =
Vi

4!(2π)8

∫ 2π

0

dϕ2 dϕ3

∫ kmax

kmin

dk1⊥ dk2⊥ dk3⊥ dk1∥ dk2∥ dk3∥ k1⊥k2⊥k3⊥

×∂TδT (k1,k2,k3,k4, zi)

∂pα

 4∏
j=1

1

PδT (kj , zi)

 ∂TδT (k1,k2,k3,k4, zi)

∂pβ

(2.104)

Using this expression we evaluate the Fisher information matrix including the 21-cm
secondary trispectra. Note that the integration ranges can be modified to distinguish
between k∥max and k⊥max as we do in section 2.4.3.

Some of the trispectra considered in this work, such as the τ loc
NL and intermediate

shape, have a diverging behaviour in the collapsed limit, where one of the diagonals
becomes very small. In order for the VEGAS integration algorithm [60] to be able
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to properly evaluate the Fisher matrix for these trispectra, it is more favorable to
parametrize the quadrilateral in terms of one side and two diagonals instead, leading
to the alternative expression:

Fαβ(zi) =
Vi

4!(2π)8

∫ 2π

0

dϕs dϕt

∫ kmax

kmin

dk1⊥ ds⊥ dt⊥ dk1∥ ds∥ dt∥ k1⊥s⊥t⊥

×∂TδT (k1,k2,k3,k4, zi)

∂pα

 4∏
j=1

1

PδT (kj , zi)

 ∂TδT (k1,k2,k3,k4, zi)

∂pβ

(2.105)

where the sides of the quadrilateral now read:

k22⊥ = |s⊥ − k1⊥|2 = s2⊥ + k21⊥ − 2s⊥k1⊥ cos (ϕ1 − ϕs),

k2∥ = s∥ − k1∥

k23⊥ = |k1⊥ − s⊥ − t⊥|2 = k21⊥ + s2⊥ + t2⊥ − 2k1⊥s⊥ cos (ϕ1 − ϕs)

−2k1⊥s⊥ cos (ϕ1 − ϕs)− 2s⊥t⊥ cos (ϕs − ϕt)

k3∥ = k1∥ − s∥ − t∥

k24⊥ = |t− k1|2 = t2⊥ + k21⊥ − 2t⊥k1⊥ cos (ϕ1 − ϕt),

k2∥ = s∥ − k1∥ (2.106)

Once the Fisher information matrix has been evaluated, the error with which we
can determine the parameter pα is then given by:

σpα
= F−1/2

αα (2.107)

while the signal-to-noise is given by its inverse:(
S

N

)
pα

=
√
Fαα (2.108)

When trying to constrain multiple parameters the error for each parameters is in-
stead determined by marginalizing over the parameter space, which in practise means
inverting the Fisher information matrix to obtain the marginalised error:

σmarg
pα

=
√
(F−1)αα. (2.109)

The amount of signal that is lost due to the marginalisation can then be quantified
by the signal-to-noise degradation (SND) factor:15

SNDpα
=
σ

marg
pα

σpα

=
√
(F−1)ααFαα. (2.110)

15Note that we use a slightly different definition of the SND factor as compared to [12], where the SND
factor is defined as SND =

√
(F−1)ααFαα − 1.
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which depends on how much parameters are correlated. This correlation can be
quantified by the Fisher information matrix elements for the parameters considered:

Cαβ =
Fαβ√
FααFββ

. (2.111)

which will take a value between −1 and 1 and is often refered to as the overlap or
cosine between two parameters. As an example, for two parameters the SND factor
and correlation matrix are then simply related by:

SNDpα =

√
1

1− (Cαβ)2
. (2.112)

Hence, an overlap of about Cαβ = 0.995 is needed to reduce the sensitivity by a
factor of 10.
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2.D 21-cm secondary trispectrum

We present the explicit expressions of the 11 contributions to the secondary trispec-
trum of 21-cm brightness temperature fluctuations. The contributions from two sec-
ond order fluctuations are:

Tδ1δ1δ2δ2 = 4c
(1)
1 (k1)c

(1)
1 (k2)c

(2)
1 (k3)c

(2)
1 (k4)×[

F
(s)
2 (k1,k24)F

(s)
2 (−k2,k24)P1P2P24 + k1 ↔ k2

]
+ 5 p.

Tδ1δ1θ2θ2 = 4c
(1)
1 (k1)c

(1)
1 (k2)c

(2)
2 (k3)c

(2)
2 (k4)×[

G
(s)
2 (k1,k24)G

(s)
2 (−k2,k24)P1P2P24 + k1 ↔ k2

]
+ 5 p.

Tδ1δ1δ2θ2 = 4c
(1)
1 (k1)c

(1)
1 (k2)c

(2)
1 (k3)c

(2)
2 (k4)×[

F
(s)
2 (k1,k24)G

(s)
2 (−k2,k24)P1P2P24 + k1 ↔ k2

]
+ 11 p.

Tδ1δ1δ2[δ1]2 = 2c
(1)
1 (k1)c

(1)
1 (k2)c

(2)
1 (k3)×{[

c
(2)
3 (k3,k23) + c

(2)
3 (k3,−k2)

]
F

(s)
2 (k1,k23)P1P2P23 + k1 ↔ k2

}
+ 11 p.

Tδ1δ1θ2[δ1]2 = 2c
(1)
1 (k1)c

(1)
1 (k2)c

(2)
2 (k3)×{[

c
(2)
3 (k3,k23) + c

(2)
3 (k3,−k2)

]
G

(s)
2 (k1,k23)P1P2P23 + k1 ↔ k2

}
+ 11 p.

Tδ1δ1[δ1]2[δ1]2 = c
(1)
1 (k1)c

(1)
1 (k2)×{[

c
(2)
3 (k3,k13) + c

(2)
3 (k3,−k1)

][
c
(2)
3 (k4,k24) + c

(2)
3 (k4,−k2)

]
× P1P2P13 + k3 ↔ k4

}
+ 5 p. (2.113)
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The contributions from one third order fluctuation are:

Tδ1δ1δ1δ3 = 6c
(1)
1 (k1)c

(1)
1 (k2)c

(1)
1 (k3)c

(3)
1 (k4) F

(s)
3 (k1,k2,k3)P1P2P3 + 3 p.

Tδ1δ1δ1θ3 = 6c
(1)
1 (k1)c

(1)
1 (k2)c

(1)
1 (k3)c

(3)
2 (k4) G

(s)
3 (k1,k2,k3)P1P2P3 + 3 p.

Tδ1δ1δ1[δ1]3 = c
(1)
1 (k1)c

(1)
1 (k2)c

(1)
1 (k3)

{[
c
(3)
3 (k4,−k2,−k3) + k2 ↔ k3

]
+ 2 c.p.

}
× P1P2P3 + 3 p.

Tδ1δ1δ1[δ1δ2] = 2c
(1)
1 (k1)c

(1)
1 (k2)c

(1)
1 (k3)

[
c
(3)
5 (k4,k14)F

(s)
2 (k2,k3) + 2 c.p.

]
× P1P2P3 + 3 p.

Tδ1δ1δ1[δ1θ2] = 2c
(1)
1 (k1)c

(1)
1 (k2)c

(1)
1 (k3)

[
c
(3)
4 (k4,k14)G

(s)
2 (k2,k3) + 2 c.p.

]
× P1P2P3 + 3 p. (2.114)

where we used the condensed notation Pi = Pb(ki) for the baryonic power spectra,
c.p. denotes cyclic permutation.
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Abstract

In the pursuit of primordial non-Gaussianities, we hope to access smaller scales across
larger comoving volumes. At low redshift, the search for primordial non-Gaussianities
is hindered by gravitational collapse, to which we often associate a scale kNL. Beyond
these scales, it will be hard to reconstruct the modes sensitive to the primordial dis-
tribution. When forecasting future constraints on the amplitude of primordial non-
Gaussianity, fNL, off-diagonal components are usually neglected in the covariance be-
cause these are small compared to the diagonal. We show that the induced non-Gaussian
off-diagonal components in the covariance degrade forecast constraints on primordial
non-Gaussianity, even when all modes are well within what is usually considered the
linear regime. As a testing ground, we examine the effects of these off-diagonal compo-
nents on the constraining power of the matter bispectrum on fNL as a function of kmax

and redshift, confirming our results against N-body simulations out to redshift z = 10.
We then consider these effects on the hydrogen bispectrum as observed from a PUMA-like
21-cm intensity mapping survey at redshifts 2 < z < 6 and show that not including off-
diagonal covariance over-predicts the constraining power on fNL by up to a factor of 5.
For future surveys targeting even higher redshifts, such as Cosmic Dawn and the Dark
Ages, which are considered ultimate surveys for primordial non-Gaussianity, we predict
that non-Gaussian covariance would severely limit prospects to constrain fNL from the
bispectrum.
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3.1 Introduction

Over the past few decades, inflation has been established as the leading paradigm
for describing the early universe. It proposes a period of rapidly accelerated expan-
sion during the first fraction of a second after the universe came to be [1–3]. At the
classical level such an expansion can explain why the universe looks nearly identical
in every direction (i.e. is homogeneous and isotropic), while at the quantum level, it
gives rise to the tiny density fluctuations that we observe in the cosmic microwave
background radiation (CMB), which eventually grow into the large scale structure
of the universe (LSS). By precisely mapping the anisotropies in the CMB, we have
determined the fluctuations to be very close to Gaussian distributed, which matches
the predictions of even the simplest theories of inflation [4]. However, in order to sift
through the vast landscape of consistent inflationary theories we are required to look
beyond such general predictions. One avenue to discriminate theories of inflation is
through the study of primordial non-Gaussianities (pnGs) (see [5] and references
therein). Signatures of pnG would appear as non-zero higher n-point functions of
the initial conditions, where the 3-point function, the so-called bispectrum, is gener-
ally the most sensitive. A measurement of pnGs can tell us a great deal about the
dynamics driving the expansion (see [6] for a recent overview). To give an example,
a detection of a local-type pNG in future experiments would exclude single-field
models of inflation altogether [7, 8], while generic values of f locNL in multifield mod-
els are ≳ O(1) or higher. On the other hand, a detection of equilateral-type pnG of
order f eqNL ≥ 1 would imply strong coupling of the inflaton since it is typically gener-
ated by self-interactions of the inflaton field. Furthermore, particles (fields) present
in the primordial universe leave their unique imprint in the distribution of fluctu-
ations through pnGs, effectively making inflation a particle collider at the highest
conceivable energy scale [9]. Hence, a detailed study of primordial non-Gaussianity
is imperative in order to advance our understanding of the universe as a whole.

While the most stringent constraints on pnGs are derived from measurements of
the CMB bispectrum, future CMB experiments will be limited by its two-dimensional
nature and damping of primary fluctuations. In our search for signatures of pnGs,
we are therefore required to look for alternative probes. Surveys of the large-scale
structure of the universe provide us with a huge observable volume all the way into
the cosmological Dark Ages, by mapping the distribution of galaxies and neutral
hydrogen. While the anisotropies in the CMB are pristine (i.e. linearly related to the
primordial fluctuations), the density field has since evolved. Gravity, being intrinsi-
cally non-linear, breaks the linear relation between density fluctuations and primor-
dial initial conditions, giving rise to a number of complications. Firstly, even if the
primordial fluctuations are purely Gaussian, the non-linear gravitational evolution
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introduces secondary non-Gaussianities (snGs), typically many orders of magnitude
stronger than any primordial signal. Thus, accurate modeling of snG is required
in order to properly extract information about pnG. Furthermore, snGs introduce
non-Gaussian covariance in the measurements, reducing the amount of unique in-
formation present in the data. Although the impact of non-Gaussian covariance has
been appreciated at low redshifts [10–19], its relevance for high redshift surveys has
typically been neglected [20–26]. As upcoming surveys aim to close in on impor-
tant thresholds such as f locNL ∼ 1, it is important to assess the assumptions made in
forecasting their performance. In this chapter, we show that by not including non-
Gaussian covariance in forecasts of the constraining power of the hydrogen bispec-
trum observed by a PUMA-like 21-cm intensity mapping experiment [23, 27], one
can underestimate the uncertainty in the linear regime by up to a factor of ∼ 5 and
∼ 2 for the local and equilateral type non-Gaussianity, respectively.

Conventions

We employ the conventions presented at the end of Chapter 1 of this thesis. Addi-
tionally, in order to compare to simulations of the matter bispectrum, our cosmology
equals the fiducial cosmology of the QUIJOTE suite [28], which closely resembles the
2018 Planck constraints [29]. For the analysis of the PUMA survey, we use the 2015
Planck constraints [30] to match previous forecasts.
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3.2 Theoretical Framework and Setup

In order to estimate the signal-to-noise for high-redshift survey observables, we need
to introduce a few concepts. We are ultimately interested in constraining the early
universe through primordial non-Gaussianities, thus we start off by defining cor-
relations of primordial fluctuations, i.e. our signal of interest. Next, we introduce
density perturbations, whose correlations at different positions in the sky are the
building blocks of what we actually observe in high- (and low-) redshift surveys.
Their dynamics driven by gravity determine the noise we need to overcome.

3.2.1 Initial Conditions

Quantum fluctuations during the inflationary epoch cause the expansion to end at
slightly different times in different places, giving rise to tiny scalar density fluctua-
tions ζ that source linear perturbations in the matter density field. In this way, linear
fluctuations of the density field trace the primordial initial conditions of the universe.
Even a small non-Gaussianity in the distribution of primordial fluctuations serves as
an important way to discriminate between different models of inflation. Further-
more, it allows one to directly probe the particle content and interactions of the in-
flationary epoch [9, 31]. Since such non-Gaussianities are constrained to be small
by CMB observations [4], in this chapter we consider only the first non-Gaussian
statistic, which is the bispectrum. Hence, we require only the first two statistical mo-
ments of the primordial density distributions. In Fourier space, these are the power
spectrum Pζ(k) and bispectrum Bζ(k1, k2, k3), defined as

⟨ζk1ζk2⟩ = (2π)3δD(k12)Pζ(k1), (3.1)

⟨ζk1
ζk2

ζk3
⟩ = (2π)3δD(k123)Bζ(k1, k2, k3). (3.2)

Different inflationary mechanisms give rise to distinct sizes and shapes of bispectra.
It is customary to classify these bispectra into three main templates, the so-called lo-
cal, equilateral, and orthogonal templates, whose expressions are given in Appendix
3.A. The local shape typically arises in models of multi-field inflation and peaks in
squeezed triangle configurations k1 ≪ k2 ∼ k3, while the equilateral shape peaks for
equilateral configurations k1 = k2 = k3. Finally, the orthogonal shape, along with
the equilateral one, is a natural prediction of the Effective Field Theory (EFT) of (sin-
gle field) inflation [32] and peaks for both equilateral and flattened configurations
k1 = k2 + k3.
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3.2.2 Matter field and correlators

The primordial initial conditions serve as the seed for the distribution of matter in the
universe. We can therefore study the initial conditions of the universe by studying
fluctuations of the matter density field, ρ, defined as δ(t, x) = ρ(t, x)/ρ̄(t)− 1, with ρ̄
the mean density in a volume. Similar to the primordial case, we define correlations
of δ(x) in Fourier space as

⟨δk1
δk2

⟩ = (2π)3δD(k12)Pδ(k1); (3.3)

⟨δk1δk2δk3⟩ = (2π)3δD(k123)Bδ(k1,k2,k3), (3.4)

⟨δk1
δk2

δk3
δk4

⟩ = (2π)3δD(k1234)Tδ(k1,k2,k3,k4), (3.5)

where we assume all fluctuations to be at equal times. In this chapter, we also need
the 4-point correlation function in Fourier space, known as the trispectrum, for the
computation of the non-Gaussian covariance. Even in the absence of a primordial
bispectrum, or higher-order primordial correlators, fluctuations in the matter field
grow via gravitational instability and become non-linear, thereby sourcing the matter
bispectrum, trispectrum, and higher-order correlations. The dynamical equations for
δ describing this process can be solved perturbatively (see e.g. [33] for a review). This
allows one to compute correlators analytically up to a mildly non-linear scale kNL.
One way to estimate this scale is by computing

kNL(z) =

[
1

6π2

∫ ∞

0

dk PL
δ (k, z)

]−1/2

, (3.6)

where PL
δ is the linear matter power spectrum as defined in Eq. (3.23). We use this

scale to confine ourselves to the linear regime 1. The gravitationally induced bi- and
trispectrum in this framework are presented in Appendix 3.B.

To complement the perturbative approach, we resort to N-body simulations of
the universe at large scales solving the dynamical equations for δ numerically (see
[35] for a review). The advantage of N-body simulations is that they allow us to
directly measure correlations of δ even at non-linear scales and to test analytic pre-
dictions. The drawback is that they are computationally expensive to run. We make
use of publicly available QUIJOTE simulations [28] for our estimates of signal-to-
noise at low redshift (i.e. up to z = 3). For higher redshifts, as the non-linear scale is
pushed to very small scales, instead of fully solving dynamical equations we resort

1Other definitions have been considered in the literature, e.g. [34] studies the non-linear scale for the
bispectrum specifically. The precise definition of kNL does not qualitatively change the results of this
chapter.
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to Monofonic [36], which computes particle positions by solving third-order La-
grangian perturbation theory (3LPT) equations. Further details on how simulation
data is used can be found in Appendix 3.C.

3.2.3 Fisher information and estimated uncertainty

In this section, we introduce the quantities we use to estimate the uncertainty on the
amplitude of primordial non-Gaussianity, fNL, from observations of the bispectrum.

Fisher matrix

A common way to quantify the information content of an observable is through the
Fisher matrix. It encodes both the amount of information available from a measure-
ment to constrain a parameter, as well as the correlation between different param-
eters. Given N measurements of an observable, which for us will be the matter or
hydrogen bispectrum, and a set of parameters we want to constrain, p, the Fisher
matrix is defined as

Fab =
∑
TT ′

∂BT

∂pa
(C)

−1
TT ′

∂BT ′

∂pb
, (3.7)

where T are triangle configurations in which the bispectra are measured, or calcu-
lated, B is the data vector of bispectra, and CTT ′ is the covariance of B, defined
as

CTT ′ = ⟨BT BT ′⟩ − ⟨BT ⟩⟨BT ′⟩ . (3.8)

The estimated uncertainty on a parameter pa is then defined as

σpa
=
(
F−1

)1/2
a a

, (3.9)

where F−1 indicates the matrix inverse of F .

N-body measurements

When using numerical simulations, we measure the matter bispectrum on a finite
size box with periodic boundary conditions, such that in this case δk is a discrete
Fourier transform of the density contrast. The bispectrum estimator then is defined
as [37]

B̂(k1, k2, k3) ≡
k3F
Ntr

∑
q∈k

δK(q123) δq1
δq2

δq3
, (3.10)
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being kF = 2π/L the fundamental frequency in a cubic box of side L, Ntr gives the
number of “fundamental triangles” formed by the vectors qi satisfying the condi-
tion q123 = 0 that belong in the “triangle bin” defined by the triplet of bin centers
(k1, k2, k3) and bin width ∆k 2.

The advantage of using N-body simulations is that the full covariance can be es-
timated numerically from a sample of simulations using Eq. (3.8), where now the
average ⟨·⟩ is over different realizations of the same simulation. It is also straightfor-
ward to compute the Gaussian contribution only, i.e. the case where different modes
are uncorrelated. This contribution is given by the product of three power spectra 3

CG
TT ′ ≃ (2π)3 k3F

V123
s123 P̂ (k1)P̂ (k2)P̂ (k3) δTT ′ (3.12)

where T, T ′ denote triangle bins, V123 ≃ 8π2k1k2k3∆k
3 is the volume of the bin,

s123 = 1, 2, 6 for scalene, isosceles and equilateral triangles respectively and P̂ (ki)

are power spectrum measurements.

Limit of infinitely thin bins

At high redshifts, the non-linear scale kNL is pushed to smaller scales. At fixed bin
width ∆k, this implies a wider range of scales explored, and consequently a larger
data vector and covariance. In order to keep the calculations within reasonable com-
putational cost, one solution is to widen the range of bins and sample wavenumbers
in log space. Alternatively, we choose to go in the limit of infinitely thin bins and
promote the sums to integrals, such that the Fisher matrix becomes

Fab =

∫
TT ′

∂BT

∂pa
C−1

TT ′
∂B′

T

∂pb
, (3.13)

where now the matter, or hydrogen, bispectrum is estimated using perturbation the-
ory, as explained in the Appendix. Calculating Eq. (3.13) now implies knowledge
of the dependence on triangle configurations T, T ′ of the inverted full covariance
matrix, which is typically hard to compute. In Appendix 3.D we outline a strategy
that is based on splitting the covariance into Gaussian and non-Gaussian contribu-
tions, C = CG + CnG, and expanding the inverse as a Neumann series. We then

2We also measure the power spectrum, since, as we show below, it enters in the calculation of the
covariance. The estimator of the power spectrum is

P̂ (k) ≡
k3F
Nk

∑
q∈k

δq δ−q, (3.11)

where Nk gives the number of modes in each k-bin.
3The approximate equality indicates the thin shell approximation.
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approximate this series such that the Fisher matrix in the limit of thin bins becomes:

Fab =

(
FG
ab

)2
FG
ab + δF nG

ab

, (3.14)

where FG
ab is the Fisher matrix computed using only the Gaussian covariance CG to

compute the inverse covariance and δF nG
ab is the non-Gaussian correction computed

using as inverse the product of matrices −C−1
G CnGC

−1
G .

Model for non-Gaussian covariance

The goal of this chapter is to compute how σ varies for fNL whether we are con-
sidering only the Gaussian term CG or a more complete modeling of the covariance
including non-Gaussian terms. As explained above, when using N-body simula-
tions, the Gaussian and the full covariance are computed numerically. In the case
of thin bins, we need to introduce a model of the bispectrum covariance. Inserting
Eq. (3.10) into Eq. (3.8), the computation involves the correlator of 6 fields in Fourier
space, which can be combined in four different ways: the Gaussian term is the prod-
uct of three power spectra (‘PPP’ term), given by Eq. (3.12). Non-Gaussian terms
are represented by either the product of two bispectra (‘BB’ term), the product of a
power spectrum and a trispectrum (‘PT’ term), or finally the connected 6-point func-
tion, the so-called pentaspectrum. The pentaspectrum is negligible in most practical
cases (see [18] for a rough estimate). The key point of this chapter is to account for
the ‘BB’ and ‘PT’ terms in signal-to-noise estimates at high redshifts. The ‘BB’ term,
again assuming that correlators are slowly varying in the k-shells, can be written as

CBB
nG ≃ BTBT ′(Σ11

TT ′ + 8 perm), (3.15)

where Σij
TT ′ is a mode-counting factor that again depends on the shape of the tri-

angles. The ‘PT’ term is similarly written. We calculate these terms for the matter
bispectrum predictions using Eqs. (3.23), (3.22) and (3.24). For the hydrogen bispec-
trum, we use the following model for the covariance

C ≈ CG + 2CBB
nG , (3.16)

where the ‘PT’ term is approximated to be equal to the ‘BB’ term, which is a good
approximation for squeezed triangles for which the non-Gaussian terms are largest
[18].

3.3 Constraining fNL at high redshifts

The primary goal of this chapter is to show the importance of including non-Gaussian
terms in the covariance when estimating the uncertainty to the primordial non-
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Gaussian amplitude fNL in high-redshift surveys.

One could be tempted to neglect the non-Gaussian covariance at high redshifts
on scales larger than kNL at that redshift. In this linear regime, one might expect
modes of different wavelengths to be mostly uncorrelated, such that the covariance
is diagonal and Gaussian terms dominate. As we show in what follows, this intuition
fails: off-diagonal terms become important well within what is typically considered
the linear regime based on Eq. (3.6).

3.3.1 Uncertainty on fNL from the matter bispectrum

As a testing ground, we first consider the matter bispectrum in real space as our
observable and compute the estimated uncertainty of the primordial non-Gaussian
amplitude fNL for the primordial bispectra of the local, equilateral, and orthogonal
type as defined previously. In this setup, fNL is the only parameter. When using
finite-sized bins, we evaluate the derivative ∂B/∂fNL averaging over the bins (see
Eq. (3.27) of Appendix 3.C), while in the case of infinitely thin bins, the derivative is
analytically computed directly from the templates Eqs. (3.17), (3.18) and (3.19).

Figure 3.1 shows the ratio of the estimated uncertainty computed with non-Gaussian
over Gaussian covariance as a function of the maximum wavenumber kmax. The un-
certainty computed using the infinitely thin bin approximation is shown in solid
lines, while simulation measurements are shown as diamonds. Solid lines are com-
puted up to the non-linear scale kNL at that redshift. The uncertainty on local type
non-Gaussianity is most affected by the introduction of off-diagonal covariance, in-
creasing by a factor of ∼ 5 at kmax ≈ kNL for redshifts lower than z = 10 and even
higher at higher redshifts. This is because the off-diagonal covariance is largest for
squeezed triangle configurations where the local type non-Gaussianity has most of
its signal [18] 4. Equilateral non-Gaussianity is less affected, since most of its signal
comes from equilateral triangle configurations whose covariance is large only when
approaching non-linear scales. Still, the loss is almost a factor of 2 at z ≲ 10. For a
discussion and the results of the orthogonal bispectrum, we refer to Appendix 3.C.

It is important to note that these results do not imply that the uncertainty does
not improve overall, since we are still able to access more modes as we increase
kmax. Rather, our analysis shows that off-diagonal non-Gaussian covariance reduces
the amount of information gained by probing smaller scales, or in other words, the
signal-to-noise saturates. We show a clear representation of this fact in Figure 3.2,

4This is very similar to how lensing-induced covariance mostly affects measurements of the local bis-
pectrum in the CMB [38]



3

114 3. Primordial non-Gaussianity and non-Gaussian Covariance

where we directly plot the uncertainty of fNL including non-Gaussian terms as a
function of kmax at different redshifts for a fictitious matter field survey.

3.3.2 Uncertainty on fNL from the hydrogen bispectrum

To make contact with actual future observations, we consider a realistic PUMA-like
intensity mapping survey setup. PUMA is a proposed 21-cm intensity mapping ex-
periment aimed at measuring the distribution of neutral hydrogen through the 21-
cm hyperfine transition between redshift 2 and 6. One of the key science drivers for
PUMA is to provide better constraints on primordial non-Gaussianity with respect
to the CMB [27] (see also Figure 5 in [6] for a comparison to other future surveys).
As compared to the simplified scenario considered in Figure 3.1, the calculation of
the estimated uncertainty in this case involves several complications. First of all,
neutral hydrogen is a biased tracer of the matter field. This introduces additional
non-linearities and we need to define a set of nuisance (bias) parameters that are
fixed through observations (see [39] for a review). Secondly, we need to compute cor-
relators in redshift space, taking into account the survey geometry and foregrounds.
Lastly, the presence of primordial non-Gaussianity introduces additional bias pa-
rameters. This last effect famously appears already at the power spectrum level for
the local template, known as scale-dependent bias ([40–42] and [43] for a recent re-
view). For this reason, forecasts of σ(fNL) depend sensitively on many assump-
tions, and would need to include the tracer power spectrum in order to be realistic.
Here we limit ourselves to calculate the uncertainty using the tracer bispectrum only,
rather than performing a full forecast, since our goal is to show the loss of constrain-
ing power due to the inclusion of non-Gaussian covariance on the bispectrum 5. For
our computations, we follow the setup presented in [23]. 21-cm intensity mapping is
complicated by foregrounds, especially on large scales in the line-of-sight direction.
Therefore, the largest scale is effectively set by a foreground cut in the line-of-sight
direction (k∥,min = 0.01 h/Mpc). The analysis is limited to linear scales by choos-
ing kmax(z) to fractions of kNL(z), namely 0.5 kNL(z) and 0.75 kNL(z), where the non-
linear scale is given in Eq. (3.6). We also include the foreground wedge, further re-
ducing the number of modes. Besides fNL, the hydrogen bispectrum is a function of
7 parameters: three bias parameters, two shot-noise parameters, the dimensionless
linear growth rate f and the velocity dispersion σv . We compute the fiducial value
of these parameters as a function of redshift following [23, 45] and the expression
for the hydrogen bispectrum is found in the Appendix, Eq. (3.35). We also calculate
the hydrogen power spectrum, given in Eq. (3.34), as we use it to compute the Gaus-

5We have confirmed that our forecasts, using very similar assumption about the PUMA survey, result
in forecasts on σ(fNL) that are consistent with those presented in Refs. [23, 44] when neglecting non-
Gaussian covariance
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Figure 3.1: Estimate of relative increase in error on fNL due to non-Gaussian covariance as
a function of kmax. The diamonds present results obtained using the QUIJOTE simulations
(z = 0, 3) or 3LPT (z = 10). Note the different scales on the vertical axes. The local bispectrum
is expected to be significantly affected when accounting for non-diagonal covariance even at
very high redshifts. Solid lines are estimated up to the non-linear scale kNL at each redshift.
For z = 0 and 3 the simulation results are also shown up to the non-linear scale, while for
z = 10 they are shown up to the scale at which shot noise becomes a significant contribution
to the covariance.
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Figure 3.2: The estimated uncertainty on fNL as a function of kmax in the matter field at dif-
ferent redshifts, when including non-Gaussian covariance. The volume of the survey is taken
to be 1 (Gpc/h)3. Each redshift is shown up to the corresponding non-linear scale kNL. Solid
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sian covariance. To compute the non-Gaussian covariance, we use the model of Eq.
(3.16). We then proceed to compute the Fisher matrix, which is estimated in the thin
bins form of Eq. (3.14). We marginalize over all the 7 nuisance parameters entering
the bispectrum. For more details, we refer to Appendix 3.E.

Figure 3.3 shows the ratio of the estimated uncertainty computed using a non-
Gaussian covariance over a Gaussian approximation for the local and equilateral
type non-Gaussianities as a function of redshift for a PUMA-like experiment. We
compute the uncertainty for two different values of kmax, corresponding to 0.5 kNL

(dashed lines) and 0.75 kNL (solid lines), as we expect Eq. (3.6) to be less accurate for
tracers. Our results show that even for a more conservative choice of kmax = 0.5 kNL,
the effect is significant. The increase in uncertainty ranges from a factor of 2 to a
factor of 5 for local type non-Gaussianity. We conclude that previous forecasts on
constraining fNL at high-redshift are too optimistic [20, 22–25] and non-Gaussian
covariance will have to be considered in order to produce more realistic forecasts. A
similar estimation for a generic biased tracer was performed in [46] up to z = 10 and
shows qualitative agreement with Figure 3.3.
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Figure 3.3: Estimate of the relative increase in error on the non-Gaussian amplitude fNL due
to non-Gaussian covariance of the hydrogen bispectrum, as a function of redshift for a PUMA-
like experiment when marginalizing over the 7 additional parameters of the hydrogen bispec-
trum. We show the results for kmax = 0.75 kNL (solid lines) and kmax = 0.5 kNL (dashed lines).
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3.4 Discussion and Conclusions

We studied the impact of non-Gaussian terms in the covariance on measurements of
cosmological correlators. Specifically, we aim to quantify the effect on the estimated
uncertainty of the primordial non-Gaussian amplitude fNL when using the bispec-
trum at high redshift as an observable. Because off-diagonal components are small
compared to the diagonal, most studies have typically neglected this covariance. We
showed that, when looking at the information content, there is a significant impact
on the constraining power on primordial non-Gaussianity due to this non-Gaussian
mode coupling, even at high redshifts and well below the non-linear scale as defined
in Eq. (3.6).

We have first computed the effect of non-Gaussian covariance on σfNL
using the

matter bispectrum in real space and then performed a more realistic estimation us-
ing the hydrogen bispectrum as measured from a PUMA-like experiment. This
proposed 21-cm intensity mapping experiment has the potential to constrain pri-
mordial bispectra to reach beyond constraints set by the CMB. Yet, our analysis
shows that not accounting for the full covariance can overestimate the constraining
power of the hydrogen bispectrum measured by PUMA up to a factor of 5 for local
type non-Gaussianity and 2 for equilateral. For local-type non-Gaussianity, the pri-
mary observable is actually the tracer power spectrum, thanks to the so-called scale-
dependent bias, which we do not include in our analysis. Nevertheless, our results
imply that combining it with the bispectrum does not help as much as it is expected
to when considering a Gaussian covariance only. Moreover, they motivate including
the bispectrum-power spectrum cross-covariance in the joint analysis, which is also
a non-Gaussian contribution [18]. Overall, our result suggests we should reconsider
some of the existing forecasts and make sure the projected numbers are not overly
optimistic for future high redshift surveys such as PUMA, MegaMapper [47] and the
Maunakea Spectroscopic Explorer [48].

Future constraints on primordial non-Gaussianities will depend on our ability
to extract information from large-scale structures. Intuitively, the main obstacle to
constraining primordial spectra is set by the non-linear scale which estimates when
loop-corrections become important. Here we show that for the Fisher information
on fNL it is important to account for non-Gaussian bispectrum covariance, even for
modes that are still considered linear. The results are comparable to what was found
for measurements of the CMB bispectrum, where lensing-induced off-diagonal co-
variance is the main limitation as we start to measure smaller scales and increase the
number of accessible modes.
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For the CMB, it was shown that the lensing-induced covariance can be accounted
for by delensing the data before applying the standard estimators [38]. The analogy
here would be to “degravitate” the data, a technique that is well established in stud-
ies of the Baryon Acoustic Oscillations in galaxy surveys [49]. In fact, this approach
has been shown to improve constraints on primordial non-Gaussianity from the bis-
pectrum [50]. It might be possible to explore this option at high redshifts, where
the physics is still perturbatively tractable. At lower redshifts, however, it likely
suggests that existing estimators are sub-optimal or that we have adopted ineffi-
cient summary statistics that need to be revisited. Similar conclusions were drawn
in Ref. [51]. Applying reconstruction methods [52] or using simulations (e.g. through
simulation-based inference [53]) [54–58], both active fields of investigation, will cer-
tainly help to establish to what degree we have to modify our analysis tools in search
for signs of primordial non-Gaussianity.

The code used to produce the results in this chapter is publicly available 6.

6https://github.com/tsfloss/pyNG

https://github.com/tsfloss/pyNG
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3.A Primordial Bispectra

The local, equilateral, and orthogonal bispectrum templates are given by:

Bloc
ζ (k1, k2, k3) =

6

5
f loc

NL (Pζ,1Pζ,2 + Pζ,1Pζ,3 + Pζ,2Pζ,3)

(3.17)

B
equil
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18

5
f
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NL
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3(P
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2/3
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)
, (3.19)

where we introduced the shorthand notation Pζ,1 = Pζ(k1). Note that although
Eq. (3.2) demonstrates that the primordial bispectrum can in principle depend on the
full three-momenta, for the above primordial shapes there is no angular dependence
and they only depend on the magnitudes of the triangle’s momenta (i.e. the shape
of the triangle).

3.B Standard Perturbation Theory at Tree Level

Within the perturbative regime, gravitational interactions can be treated within the
framework of Standard Perturbation Theory (SPT). For an extensive review, we refer
to e.g. [33]. Here we will present only the results relevant to our work. Since we
require the gravitational trispectrum, we expand the density field to third order:

δk(z) = δ
(1)
k (z) + δ

(2)
k (z) + δ

(3)
k , (3.20)

where the superscript denotes the order of the perturbation. Solving the evolution
equations order by order in perturbations one finds (dropping the explicit time-
dependence):

δ
(2)
k =

∫
q

F2(q,k − q)δ(1)q δ
(1)
k−q ,

δ
(3)
k =

∫
q1,q2

F3(q1,q2,k − q12)δ
(1)
q1
δ(1)q2

δ
(1)
k−q12

. (3.21)

These higher-order perturbations will induce the gravitational correlations. At tree
level then, the bispectrum of the density field due to gravitational interactions, is
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found to be:

BsnG
δ (k1,k2,k3) = ⟨δ(1)k1

δ
(1)
k2
δ
(2)
k3

⟩+ 2 perms.

= 2F2(k1,k2)P
L
δ (k1)P

L
δ (k2) + 2 perms.,

(3.22)

where the linear power spectrum is defined as:

⟨δ(1)k1
δ
(1)
k2

⟩ = (2π)3δD(k12)P
L
δ (k1)

= (2π)3δD(k12)M(k1, z)Pζ(k1). (3.23)

Here M is the linear transfer function. The tree-level trispectrum consists of two
contributions:

T snG
δ (k1,k2,k3,k4) = T 1122

δ (k1,k2,k3,k4) + T 1113
δ (k1,k2,k3,k4) (3.24)

with the two contributions given by:

T 1113
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δ (k1)P
L
δ (k2) + 5 perms. (3.25)

The kernels F2, F3 determine how modes of different wavelengths are coupled by
gravity. For their explicit form, see e.g. [33]. Beyond tree-level, the higher-order
perturbations will also induce a correction to the power spectrum, known as the
1-loop power spectrum:

⟨δ(2)k1
δ
(2)
k2

⟩ = (2π)3δD(k12)P
1-loop
δ (k1). (3.26)

3.C Details on simulations

In order to verify our computations of non-Gaussian covariance, we compare our
results to simulations. For redshifts z = 0 and 3 we use the QUIJOTE simulation
suite [28]. QUIJOTE consists of 15000 N-body simulations using a fiducial cosmol-
ogy, enough to obtain an accurate covariance matrix up to the scales of interest in this
chapter. The simulations consist of 5123 particles in a box with sides 1000 Mpc/h,
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setting the fundamental mode to kF = (2π/1000) ≈ 0.0063 h/Mpc. To construct
the covariance matrix, we use the power spectrum and bispectrum measurements as
provided in the suite, which uses a binning of ∆k = 3 kF , kmin = 3

2kF and an inter-
polation grid of size 3603. For redshift z = 10 we use ∼ 4000 realizations of initial
conditions (ICs) generated using third-order Lagrangian perturbation theory (3LPT)
with the Monofonic code [36]. Since at higher redshifts, the power spectrum and
bispectrum are smaller, shot-noise becomes increasingly dominant. The z = 10 real-
izations are therefore generated with 5123 particles in a box of 250 Mpc/h, setting the
fundamental mode to kF = (2π/250) ≈ 0.025 h/Mpc. Measurements of the power
spectrum and bispectrum are done using the codes Pylians 7 and PySpectrum 8

respectively, with the same settings as used for the QUIJOTE measurements. Hav-
ing measured the power spectrum and bispectrum from many realizations of the
simulation, we obtain the covariance matrix through Eq. (3.8). When inverting the
covariance matrix from simulations, we include the Hartlap factor to unbias the nu-
merical matrix [59].

Evaluation of bin-averaged primordial bispectra

In order to compute the Fisher information for primordial bispectra from the sim-
ulations, we need the bin-averaged derivatives of the theoretical bispectrum with
respect to fNL that appear in Eq. (4.14):

∂B̂(k1, k2, k3)

∂fNL
=

1

V123

∫
k1

d3q1

∫
k2

d3q2

∫
k3

d3q3
∂B(q1,q2,q3)

∂fNL

=
1

V123

∫
k1

d3q1

∫
k2

d3q2

∫
k3

d3q3

(
3∏

i=1

M(qi, z)

)
Bζ(q1,q2,q3)|fNL=1,

(3.27)

where the hat denotes a bin-averaged quantity and the volume of the bin is given by

V123 =

∫
k1

d3q1

∫
k2

d3q2

∫
k3

d3q3 (3.28)

and the integrals denote a binning similar to that of the simulation measurements,
i.e. over spherical shells with centers ki and width [ki − 3kF /2, ki + 3kF /2].

Orthogonal shape

When computing the bin-averaged orthogonal shape bispectrum, one realizes that it
becomes negative for certain triangle configurations. For the coarse binning (∆k =

7https://github.com/franciscovillaescusa/Pylians
8https://github.com/changhoonhahn/pySpectrum

https://github.com/franciscovillaescusa/Pylians
https://github.com/changhoonhahn/pySpectrum
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Figure 3.4: Similar plots as Figure 3.1 and Figure 3.2 but now for orthogonal non-Gaussianity.

3kF ) of the simulation data we use, the bin-averaged bispectrum in Eq. (3.27) suffers
from cancellations within the bin, removing part of the signal. Since remeasuring the
bispectrum in QUIJOTE simulations with finer binning goes beyond the scope of this
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chapter, we decided to omit these results. Nonetheless, our predictions in the thin
bin approximation are presented in Figure 3.4 and for z = 0 agree well with the
simulation results presented in [51].

3.D Details on the Fisher matrix in the thin bins limit

To produce our theoretical predictions of the loss of constraining power due to non-
Gaussian covariance, we take the continuous limit of Eq. (4.14) while approximating
the inverse covariance matrix.

As explained in the main text, this allows us to probe a wide range of scales at low
computational cost. The main complication for Eq. (3.13) is to explicitly compute the
inverse covariance as a function of triangle configurations. To this end, we expand
the inverse using a Neumann series:

C−1 =

∞∑
n=0

(
−C−1

G CnG

)n
C−1

G , (3.29)

such that we never have to invert the non-Gaussian covariance matrix that contains
off-diagonal terms. Hence the Fisher matrix becomes the sum of infinitely many
terms:
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∑
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∂BT
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)
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∂BT

∂pb
. (3.30)

Since the terms in this sum are increasingly complicated to compute (in the contin-
uous limit, every matrix multiplication becomes an integral over triangle configura-
tions), we choose to approximate the expansion using:
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which can be recognized as the expansion of Eq. (3.14). The approximation of Eq.
(3.31) seems to work reasonably well in the range of kmax we compare with simula-
tion results (see Fig. 3.1 in the main text). On the other hand, our key result is that
these non-Gaussian terms are actually important, therefore we expect our approxi-
mation to break down. This motivates further work in defining a proper estimator
for primordial non-Gaussianity in the presence of non-Gaussian covariance terms.



3

3.E. Details on the PUMA analysis 125

3.E Details on the PUMA analysis

We perform the analysis of the impact of non-Gaussian covariance on the PUMA
survey along the lines of Ref. [23]. We use a binning of ∆z = 0.1 between 2 < z < 6.
The largest available scale is set by the volume Vs(z) of the redshift bin through
kmin(z) = kF (z) = 2π/L(z), where L(z) = Vs(z)

1/3, Vs(z) = 4π
3 (r(z + ∆z)3 − r(z −

∆z)3) and r(z) is the comoving distance to redshift z in units of Mpc/h.

Foregrounds

The largest scale is set by a foreground cut in the line-of-sight direction (k∥,min = 0.01

h/Mpc), removing much of the dependence on the choice of redshift binning. We
limit ourselves to linear scales by choosing kmax(z) to be 0.5 kNL(z) or 0.75 kNL(z).
We model the foreground wedge by excluding all modes for which

k∥ <
r(z)H(z)

c(1 + z)
sin (0.66NwθFOV(z))× k⊥. (3.32)

Here H(z) is the Hubble parameter, θFOV(z) = λ21(z)/Deff , λ21(z) is the redshifted
21-cm wavelength in meters and Deff = (

√
0.7 × 6 meters) is the effective dish size

of the PUMA setup. Nw determines the severity of the foreground wedge. We apply
a pessimistic wedge cut of Nw = 3 and a foreground cut k∥,min = 0.01 h/Mpc, in
order to show that the loss of constraining power as due to non-Gaussian covariance
persists in such a setup. Finally, the largest and smallest accessible scales in the
perpendicular direction are set by:

k⊥,max(z) =
2πDmax

λ21(z)r(z)
, k⊥,min(z) =

2π

r(z)θFOV(z)
,

(3.33)

where Dmax = 700 meters is the largest baseline of the PUMA setup. We show all
the relevant scales together in Figure 3.5.

The hydrogen power spectrum and bispectrum

The calculation of hydrogen correlation functions in redshift-space is significantly
more involved than the matter field case from the modeling point of view. Besides
non-linearities in the matter field, we need to account for the biased relation between
the hydrogen and matter distributions, redshift space distortions, and stochasticity
introduced by the discreteness effects and Poisson noise. A complete explanation
of these modeling efforts can be found in [23]. Here we quote the hydrogen power



3

126 3. Primordial non-Gaussianity and non-Gaussian Covariance

spectrum and bispectrum for reference, defined as

PHI(z,k) = PN (z,k) + Tb(z)
2DP

FOG(z,k)
[
Z1(z,k)

2PL
δ (z, k) + Pε(z)

]
,

(3.34)

and

BHI(z,k1,k2,k3) = Tb(z)
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pnG
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+2Z1(z,k1)Z1(z,k2)Z2(z,k1,k2)P
L
δ (z,k1)P

L
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+ 2 perm.

]

+Pεεδ(z)

[
3∑

i=1

Z1(z,ki)P
L
δ (z, ki)

]
+Bε(z), (3.35)

where PN is the instrumental noise, Tb(z) is the brightness temperature of the 21-
cm signal at a given redshift, Pε, Pεεδ, Bε are stochastic noise contributions, Z1, Z2 are
the first and second order redshift space kernels,BpnG

δ is the primordial contribution
to the matter bispectrum as used in Eq. (3.27) and DB

FOG models the Finger-Of-God
damping effect. For the explicit expressions of these quantities, we refer to [23]. The
redshift space kernels contain bias parameters {b1, b2, bs2 , bΨ, bΨδ} as well as the lin-
ear growth rate f due to redshift space distortions RSDs. The scale-dependent biases
{bΨ, bΨδ} can be modelled in terms of {b1, b2, fNL} (though see [60] for a study of this
approximation). This means primordial non-Gaussianity enters not only through
BpnG

δ but also through the terms involving Z1, Z2, that contain the scale-dependent
biases. Finally, the FOG factor is modeled using the velocity dispersion σv . In this
chapter we are only interested in signal-to-noise for fNL coming from the hydro-
gen bispectrum, hence the total number of parameters including the stochastic noise
contributions equals 8:

p = {fNL, b1, b2, bs2 , f, σv, Pεεδ, Bε} (3.36)

We calculate the Fisher matrix of the 8 parameters that enter the hydrogen bis-
pectrum, with and without non-Gaussian covariance at each redshift bin using the
weighted estimator approach described above [? ]. Contrary to [23] we do not ac-
count for theoretical errors on the bias parameters in our analysis, which adds ad-
ditional covariance (including off-diagonal) to account for uncertainties in the bias
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model along the lines of Ref. [61]. Once we have the Gaussian and non-Gaussian
Fisher matrices, we marginalize over the 7 nuisance parameters by inverting the
Fisher matrix at every redshift. The marginalised uncertainty for fNL is then given
by:

σfNL
(z) =

(
F−1(z)

)1/2
fNLfNL

(3.37)

The ratio of the estimated uncertainty including non-Gaussian covariance over Gaus-
sian covariance is shown in Figure 3.3.
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Figure 3.5: Smallest and largest accessible scales as a function of redshift for the PUMA survey.
The smallest overall scale kmax is determined by the non-linear scale. The largest overall scale
kmin is set by the volume of the redshift bin and hence depends on the choice of binning.
The smallest and largest scales in the perpendicular direction, k⊥,max and k⊥,min are set by
properties of the experiment. Finally, we apply a foreground cut k∥,min = 0.01 h/Mpc in the
line-of-sight direction, that effectively replaces kmin, removing most dependence on the choice
of binning.
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Reconstructing Primordial non-Gaussianity
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Abstract

We study the use of U-Nets in reconstructing the linear dark matter density field and
its consequences for constraining cosmological parameters, in particular primordial non-
Gaussianity. Our network is able to reconstruct the initial conditions of redshift z = 0

density fields from N-body simulations with 90% accuracy out to k ≤ 0.4 h/Mpc, com-
petitive with state-of-the-art reconstruction algorithms at a fraction of the computational
cost. We study the information content of the reconstructed z = 0 density field with
a Fisher analysis using the QUIJOTE simulation suite, including non-Gaussian initial
conditions. Combining the pre- and post-reconstructed power spectrum and bispectrum
data up to kmax = 0.52 h/Mpc, we find significant improvements in all parameters. Most
notably, we find a factor 3.65 (local), 3.54 (equilateral), and 2.90 (orthogonal) improve-
ment on the marginalized errors of fNL as compared to only using the pre-reconstructed
data. We show that these improvements can be attributed to a combination of reduced data
covariance and parameter degeneracy. The results constitute an important step towards
a more optimal inference of primordial non-Gaussianity from non-linear scales.
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4.1 Introduction

Primordial non-Gaussianity (pnG) provides an important window into the early uni-
verse and in particular the inflationary epoch [1]. It provides insight into the physics
at play during this epoch, from the fields responsible for the accelerated expansion
and their interactions [2] to that of auxiliary particles present during the epoch [3, 4].
So far, pnG has been most precisely constrained using the anisotropies of the cosmic
microwave background (CMB) [5–10]. These anisotropies, being linearly related to
the small density fluctuations sourced by inflation, provide an ideal probe for study-
ing pnG. Observations by the Planck satellite have therefore led to the most stringent
constraints on pnG to date which are consistent with Gaussian initial conditions [10].
Many models of inflation predict primordial non-Gaussianity below current upper
limits. Although upcoming experiments aim to improve constraints on pnG signif-
icantly [11, 12], the CMB is ultimately limited in the number of observable modes,
due to its 2D nature and diffusion (Silk) damping at small scales [13]. Advancing
our understanding of the primordial universe will therefore eventually depend on
our ability to constrain pnGs with additional probes.

The small anisotropies observed in the CMB evolve into the large-scale struc-
ture (LSS) of the universe. The three-dimensional comoving volume of the universe,
spanning all the way from the Dark Ages until now, contains exponentially more
modes than the CMB, making it a powerful probe for pnGs (see e.g. Refs. [14–18]
for forecasts). The underlying dark matter density distribution can be studied us-
ing biased tracers such as galaxies and atomic and molecular spectral lines [19, 20].
Except on the largest scales, contrary to the anisotropies in the CMB, anisotropies
in the LSS are intrinsically non-linear due to the non-linear nature of gravity, the
formation of virialized bound structures, and astrophysical processes. This natu-
rally results in a highly non-Gaussian density distribution. In order to improve over
constraints from the CMB, we need to be able to extract information from within this
non-linear regime, requiring an accurate model of the tracer. Over the past years, ma-
jor progress has been made to address this theoretical challenge [21–23]. Although
so far LSS surveys have put constraints on pnG that are not yet competitive with
CMB [24–32], these intermediate results provide confidence and motivation to fur-
ther pursue this avenue. Besides the complication of modeling the tracer field, recent
work has emphasized the additional complication of mode coupling or non-Gaussian
covariance [33], especially in the context of primordial non-Gaussianity [34–37]. Non-
linear evolution couples modes of different wavelengths, resulting in a reduction
of the amount of unique information contained in each mode. As a result, model-
ing modes deeper into the non-linear regime yields diminishing returns in terms of
information, saturating parameter constraints. In order to improve constraints, ad-
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ditional work needs to be done to undo this mode coupling. Put in another way,
non-linear evolution spreads the information content of the initial conditions into
all N-point statistics. Reconstructing the initial (linear) field thus brings informa-
tion from higher-order correlation functions back to the power spectrum and bis-
pectrum. This idea has been especially well tested in the context of reconstructing
the BAO peak [38]. It has also been shown that reconstruction indeed results in im-
proved parameter constraints [39, 40]. From this perspective, in this work we will
further investigate how much of the information on cosmological parameters that is
lost due to non-linear gravitational evolution can be recovered by reconstructing the
initial conditions at the field level.

Given the non-linear nature of gravitational evolution, it naturally lends itself
to machine learning applications. Previously, machine learning has been applied to
solve the forward problem of emulating the outcome of N-body simulations given
some initial condition [41, 42]. Moreover, it was shown that neural networks trained
to emulate N-body simulations learn general properties of gravitational evolution
[43]. Previous attempts at reconstructing the initial conditions using machine learn-
ing have shown promising results [44, 45].

Our work consists of two parts. First, we develop a neural network based ap-
proach to reconstructing the linear initial conditions of the late-time dark matter
density field that is competitive with state-of-the-art iterative reconstruction meth-
ods (i.e. Ref. [46]) at a fraction of the computational cost. Secondly, applying our
reconstruction methodology to the QUIJOTE simulation suite [35, 47], we are able
to determine the improvement of marginalized parameter constraints when using
pre- and post-reconstructed power spectrum and bispectrum measurements. As we
will see, our reconstruction method reduces mode coupling (covariance) as well as
degeneracy between cosmological parameters. This results in significant improve-
ments of parameter constraints, in particular for primordial bispectra (up to a factor
of 3.65). Such improvements are hard to realize by including more non-linear modes,
both because of the complications in modeling them (however, see e.g. [37, 48] for
ways around this issue) as well as the aforementioned saturation due to mode cou-
pling.

This chapter is organized as follows. In Section 5.6 we discuss the non-Gaussianity
of the dark matter density field and its implications for cosmological parameter in-
ference. Section 4.3 discusses reconstruction algorithms followed by an extensive
discussion of our neural network based reconstruction method. In Section 4.4 we
study the implications of our reconstruction methodology on parameter constraints.
We conclude in Section 4.5.
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4.2 Non-Gaussianity of the dark matter density field

4.2.1 Primordial non-Gaussianity

In this work, we will focus on the primordial three-point correlation function of the
primordial potential Φ(x), or its Fourier space equivalent, the primordial bispec-
trum:

⟨Φk1Φk2Φk3⟩ = (2π)
3
δ
(3)
D (k1 + k2 + k3)BΦ(k1,k2,k3) (4.1)

where spatial homogeneity forces the momentum space triangles to be closed. Dif-
ferent inflationary scenarios source bispectra with distinct functional dependence on
the triangle configuration, often referred to as the shape of the bispectrum [49]. In or-
der to look for primordial non-Gaussianity in data, bispectrum templates have been
developed that cover general features of classes of inflationary theories parameter-
ized only by their overall amplitude fNL. We will study three of these templates. The
first of them, known as the local shape is given by

Blocal
Φ (k1, k2, k3) = 2f localNL (PΦ(k1)PΦ(k2) + 2 perms.) , (4.2)

which peaks in the squeezed limit, i.e. when k1 ≪ k2 ∼ k3. This type of non-
Gaussianity is generically suppressed in inflationary models with only a single field
driving the accelerated expansion, such as slow-roll inflation [50, 51]. Detection
of a large bispectrum of this kind would be a strong hint toward inflationary sce-
narios with multiple fields. Cubic self-interactions of the inflaton, e.g. (∂Φ)3, give
rise to a bispectrum that is largest for equilateral triangle configurations, i.e. when
k1 = k2 = k3, captured by the template:

Bequil
Φ (k1, k2, k3) = 6f equilNL

(
− PΦ(k1)PΦ(k2) + 2 perms.− 2 (PΦ(k1)PΦ(k2)PΦ(k3))

2/3

+PΦ(k1)
1/3PΦ(k2)

2/3PΦ(k3) + 5 perms.
)
.

(4.3)

These types of interactions naturally arise in the Effective Field Theory (EFT) of In-
flation [52]. Another prediction of this EFT is the orthogonal shape, covered by the
template [53]:

Borth
Φ (k1, k2, k3) = 6forthNL

(
(1 + p)

∆123

k31k
3
2k

3
3

− p
Γ3
123

k41k
4
2k

4
3

)
,

∆123 = (kT − 2k1)(kT − 2k2)(kT − 2k3),

Γ123 =
2

3
(k1k2 + k2k3 + k3k1)−

1

3
(k21 + k22 + k23),

p =
27

−21 + 743
7(20π2−193)

(4.4)
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The imprint of primordial non-Gaussianity on the large-scale structure of the uni-
verse is an active field of research. When studied in perturbation theory, the lowest
order contribution of the primordial bispectrum to the dark matter density statistics
is through the linearly evolved bispectrum:

Bδ(k1, k2, k3) = M(k1)M(k2)M(k3)BΦ(k1, k2, k3), (4.5)

where M(k) is the linear transfer function for dark matter fluctuations. Additionally,
there are higher-order non-linear corrections to the dark matter power spectrum and
bispectrum that correspond to loop corrections in the perturbation theory.

4.2.2 Gravitational non-Gaussianity

Although the universe at the time of last-scattering appears Gaussian, the late-time
universe does not. Limiting ourselves to the dark matter density field underlying the
large-scale structure of the universe, this non-Gaussianity is a consequence only of
the non-linear gravitational evolution. Any small amount of non-Gaussianity in the
initial conditions is therefore obscured by the strong gravitational non-Gaussianity.
To put reliable constraints on pnGs from LSS requires an accurate model of the gravi-
tationally induced non-Gaussianity. In addition, any uncertainties in the parameters
of the model need to be marginalized over to avoid bias in the primordial parameter
fNL that could result in a false detection.

The highly non-linear nature of gravity makes it challenging to model using stan-
dard perturbation theory (SPT, [21]). To improve predictability, modifications to SPT,
such as regPT [22] have been proposed. The Effective Field Theory of Large Scale
Structure (EFTofLSS) [23] is a self-consistent expansion of the fluctuations, and lim-
itations and corrections are well understood. EFTofLSS is currently considered the
most reliable analytical perturbation expansion and it can accurately model the dark
matter power spectrum and bispectrum out to scales k ≤ 0.6 h/Mpc at the cost of
having to marginalize over additional parameters [54, 55].

To push beyond these scales accessible with analytical methods, we rely on nu-
merical N-body simulations of the dark matter field, which evolve an initial distribu-
tion of dark matter particles in a periodic box under their gravitational interaction. In
principle, running many of these simulations and measuring their power spectrum
and bispectrum provide an accurate representation to deep within the non-linear
regime. The initial conditions can be generated assuming varying cosmological pa-
rameters, which allows studying the imprint of these parameters on the late-time
statistics of the dark matter field.
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4.2.3 Non-Gaussian covariance

Besides swamping any primordial signal, gravitational evolution can couple modes
of different wavelengths. In the absence of this mode coupling, every Fourier mode
in the density field is its own Gaussian random variable, independent of all the other
modes. This remains a good approximation when there is only a weak coupling,
such as a weak primordial bispectrum (e.g. in the CMB, however, see also [56]). In
the presence of strong mode coupling, the information contained in the initial den-
sity field is scrambled across N-point statistics at late times. Hence, even if we are
able to accurately model the power spectrum and bispectrum, the amount of infor-
mation available from just the power spectrum and bispectrum is limited by this
mode coupling. When inferring cosmological parameters from data, this mode cou-
pling is captured by off-diagonal components of the covariance matrix that enters
the likelihood function. These entries to the covariance matrix (together with higher
N-point contributions to the diagonal) are referred to as non-Gaussian covariance.
The covariance matrix can in principle be modeled analogous to the power spec-
trum and bispectrum signals itself, although the computation involves higher-order
correlation functions (see e.g. [33, 34]), which we can model analytically only on
large scales, or low k. Instead, using N-body simulations, the covariance matrix can
be determined numerically by taking the measurements of many simulation realiza-
tions.

The covariance matrix plays a vital part in a Fisher analysis that forecasts the ex-
pected error bars on cosmological parameters for a particular survey (e.g. galaxies or
intensity mapping). Forecasts derived by analytical calculations often assume only
the Gaussian (diagonal) contribution. In Ref. [33] it was shown that this assumption
is unwarranted as non-Gaussian covariance of the dark matter and halo power spec-
trum and bispectrum significantly reduce the signal-to-noise ratio already in what is
usually considered to be the linear regime. Recently, Refs. [34] showed that the bis-
pectrum covariance is dominated by squeezed triangle configurations, significantly
affecting constraints on local primordial non-Gaussianity. This finding was extended
to other shapes of non-Gaussianity using the recently released QUIJOTE simulations
with non-Gaussian initial conditions [35]. Finally, it was shown that the local shape
remains significantly affected even at higher redshifts, where the field is more linear
but where we also expect to access more squeezed triangle configurations [36]. In
order to improve constraints on pnGs from the power spectrum and bispectrum, we
need to find ways to reduce the effects of mode coupling. This is the topic of the rest
of this chapter.
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4.3 Reconstructing the initial conditions

Since the coupling of modes is a consequence of the non-linear gravitational evolu-
tion of the density field, we expect to be able to access more information by reversing
the gravitational collapse. This idea of reconstruction has been studied extensively in
the context of BAOs, where it is used to recover the BAO peak in the two-point
correlation function that is otherwise washed out due to the gravitational collapse
[38]. It has been shown that this BAO reconstruction method can aid in reducing
non-Gaussian covariance and improving parameter constraints [39], especially in
the context of primordial non-Gaussianity [40]. The latter work only considered the
tree-level primordial contribution (4.5) to the bispectrum, whereas in the non-linear
regime, we expect additional loop contributions to both the power spectrum and
bispectrum. Since reconstruction affects the loop contributions (and thereby the in-
formation contained in the power spectrum and bispectrum), any assessment of the
improvement due to reconstruction should include the full non-linear power spec-
trum and bispectrum. Furthermore, we expect to be able to improve constraints
using more sophisticated reconstruction methods than the standard reconstruction
algorithm.

4.3.1 Reconstruction Algorithms

Although a full review of existing reconstruction algorithms is beyond the scope of
this work (see e.g. [57]), we briefly summarize here several methods and their perfor-
mance for completeness and comparison. Standard reconstruction (or Lagrangian-
Growth-Shift), as originally developed for reconstructing the BAO feature in the
matter power spectrum, relies on approximating the linear displacement field in
order to move structure back to their initial positions [38]. When performed on a
redshift z = 0 N-body simulation snapshot, the reconstructed density field corre-
lates up to ∼ 37% with the initial conditions at k = 0.4 h/Mpc (see Figure 4.3). Since
this original proposal, more sophisticated methods have been developed both at the
level of the object (e.g. halo) catalog (Lagrangian space) [46] as well as the density
field directly (Eulerian space) [57]. The iterative reconstruction algorithm of Ref. [46]
can be considered the state-of-the-art non-machine learning approach, with a recon-
struction cross-correlation of ∼ 90% out to scales k ≤ 0.4 h/Mpc at redshift z = 0.

4.3.2 Reconstruction using U-Nets

In this work, we will focus on the application of neural networks in the context of
reconstruction. Previous work has shown that a combination of standard reconstruc-
tion and convolutional neural networks is able to reconstruct the initial density field
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significantly better than standard reconstruction alone [45]. Instead, we defer the
entire reconstruction to a neural network applied directly to the density field. In
particular, we will employ a U-Net, which was originally developed for medical im-
age segmentation [58]. Recently, there have been many successful applications of
U-Nets in cosmology and astrophysics addressing problems that involve the cou-
pling of different length scales (see e.g. [59, 60]). Ordinary convolutional neural
networks have a relatively small receptive field (depending on the size of the filter
and the number of convolutions), making them local models. U-Nets incorporate
down-sampling, effectively resulting in a larger receptive field, allowing them to
also access non-local (large-scale) information, which is essential for our application.

Network architecture

The architecture used in this work resembles the U-Net developed in Ref. [60]. The
network takes a density field on a 2563 grid. Inspired by grid-based perturbation
theory [61], we compute the following velocity fields on-the-fly:

u(x) =

∫
d3k

−ik
k2

δm(k)eik·x , (4.6)

∂i(u)j(x) =

∫
d3k

kikj
k2

δm(k)eik·x , (4.7)

yielding six additional input fields. Subsequently, we apply an ordinary convolu-
tional layer with a kernel of size 33, followed by a context block, consisting of two ad-
ditional convolutional layers of size 33, after which we add the output of the initial
convolution to the output of the context block, this is known as a residual connection.
We repeat this, only now employing a stride of two in the initial convolutional layer,
effectively down-sampling the feature maps by a factor of two in every spatial di-
mension. This is then repeated three more times until the feature maps have a size of
163 cells. We then upsample the feature maps by a factor of two and concatenate the
output of the residual connections in the down-sampling part of the network, form-
ing what is known as skip connections. The concatenated feature maps are fed into a
localization block, consisting of an ordinary convolutional layer of size 33 followed by
a convolutional layer of size 13. This is repeated until we have reached the input size
of 2563, after which we perform one more convolution of size 13, in order to output a
single feature map, representing the reconstructed density field. All but the last con-
volutional layer consists of the convolution, instance normalization, and a Leaky ReLU
activation. The complete architecture is visualized in Figure 4.1. The network has
roughly 2 million parameters implemented using Keras/Tensorflow and is publicly
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Figure 4.1: Diagrammatic representation of the neural network architecture used in this chap-
ter. The network is based on the one presented in Ref. [60].

Training

The training dataset consists of 48 pairs of initial (z = 127) and final (z = 0) density
fields of the fiducial cosmology QUIJOTE simulations, generated from the dark mat-
ter particle snapshots using a Piecewise Cubic Spline (PCS) mass assignment scheme
to a grid of 2563 cells.2 The aim of our network is to minimize the loss function that
is the mean squared error (MSE) between reconstructed and initial density fields:

LMSE =
1

Nsims

Nsims∑
i

1

Ncells

∑
x

(
δ(i)recon(x)− δ

(i)
init(x)

)2
, (4.8)

1https://github.com/tsfloss/URecon
2This might seem like a small dataset, but every simulation constitutes 2563 data points that need to

be mapped to equally as many outputs. Training can be done with an even smaller dataset than the one
considered here.

https://github.com/tsfloss/URecon
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where δ(i)recon and δ(i)init are the reconstructed and initial (z = 127) density field of sim-
ulation i. It can be shown that the Fourier transform of this loss function is the mean
squared error between different wavelength modes of the density field [45].

We will eventually be interested in determining the information content of cos-
mological parameters of the power spectrum and bispectrum of the reconstructed
density field. The FFT-based estimator used to compute the bispectrum can only be
used up to a scale of kmax = 2

3kNyquist ≈ 0.53 h/Mpc [62]. We have also explicitly
checked that the power spectrum and bispectrum measurements up to this scale do
not suffer from any aliasing effects, by comparing them to measurements made at
a higher resolution grid of 10243 cells. Since we are only interested in a sub-sample
of the modes present in our density field, we limit our target initial density fields
already to this same kmax using an isotropic cutoff in Fourier space. This has the
advantage that the network does not have to reconstruct modes that we will not use
in our final analysis, speeding up the training process. We train the network using 4
Nvidia A100 40GB GPUs until we see no more significant improvement in the vali-
dation loss, taking a bit under 4 hours.

Network performance

We assess the quality of the reconstruction by computing the cross-correlation be-
tween two fields:

CX,Y (k) =
⟨δX(k)δ∗Y(k)⟩√
PX(k)PY(k)

, (4.9)

where PX(k) is the power spectrum of the field X and X,Y can be either the recon-
structed, initial (z = 127) or final (z = 0) density fields. A perfect reconstruction
then corresponds to Crecon,init(k) = 1. In Figure 4.2 we show an example of the net-
work input and output and its corresponding cross-correlations are shown in Figure
4.3a, demonstrating the ability of our network to reconstruct the density field with
a cross-correlation of ∼ 75% up to the smallest scales of interest in this analysis. We
also show the results if we use lower resolution density fields of 1283 cells, demon-
strating that the main limitation to further improve the reconstruction is the resolu-
tion of the density fields, as the reconstruction benefits from having access to more
small-scale modes that are coupled to larger ones that are to be reconstructed. We
are currently limited to 2563 density fields due to memory limitations on our GPUs.3

3The approach taken in Ref. [45] circumvents this issue by first performing standard reconstruction on
a box of higher resolution and then reconstructing subboxes of smaller size. Since their analysis is per-
formed at z = 0.5, in Figure 4.3 we also plot our network’s performance at that redshift for comparison.
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Furthermore, we show the results for a similar network that does not use the veloc-
ity field information, demonstrating that including velocity is advantageous. Finally,
we show the performance of our network when the z = 0 density field contains an
increased amount of shot-noise (we have generated the same density field using an
8 times smaller subsample of the dark matter particles), which degrades the recon-
struction as expected [63]. Compared to the state-of-the-art iterative reconstruction
algorithm of Ref. [46], our network achieves a similar accuracy (cross-correlation) of
∼ 90% up to scales k ≤ 0.4 h/Mpc, while only having access to modes up to the
Nyquist frequency of the 2563 grid, kNyq ≈ 0.8 h/Mpc. To further assess the abil-
ity of our network to ‘linearize’ the density fields, we can consider the output power
spectra. In Figure 4.3b we show the mean power spectra over 12500 simulation boxes
before and after reconstruction. We see that the reconstructed power spectrum more
closely follows the linear power spectrum, especially recovering the BAO peaks. It
is worth emphasizing that once trained, our network is able to perform reconstruc-
tion in under a second of time per field. Furthermore, our method works directly
at the level of the density field, without having to perform computations on large
object catalogs. This allows us to quickly reconstruct the large dataset necessary for
our subsequent analysis of the information content of the pre and post-reconstructed
power spectrum and bispectrum.

4.4 Information content of the reconstructed field

In order to determine the merit of our reconstruction for cosmological parameter
inference, we perform a Fisher analysis of the information content of the power
spectrum and bispectrum using the QUIJOTE simulation suite. These simulations
allow us to work with the full non-linear power spectrum and bispectrum within
the non-linear regime, giving us a reliable estimate of the improvements of parame-
ter constraints, without the need for complicated models such as perturbation theory
or effective field theory.

4.4.1 Power spectrum and bispectrum estimators

We measure the binned power spectrum from density fields δ(x) according to:

P̂ (ki) =
1

Ni

∑
q∈ki

δ(q)δ∗(q), (4.10)

Note that these results have been obtained using different N-body simulations, fiducial cosmology, and
resolution and should therefore only be compared to ours qualitatively.
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Figure 4.2: Top: a validation pair of final (z = 0) and initial (z = 127) density field. Bottom
left: one of the velocity fields generated on the fly. Bottom right: the corresponding recon-
struction produced by our network. These are averaged along one entire spatial dimension
(1000 Mpc/h) for illustrative purposes, whereas the actual fields are three-dimensional.

where the sum runs over all momenta q that are within the shell [ki − ∆k/2, ki +

∆k/2) and Ni is a normalization factor that counts the number of modes that fall in
the bin. Similarly, for the bispectrum we compute

B̂(k1, k2, k3) =
1

N123

∑
q1∈k1

∑
q2∈k2

∑
q3∈k3

(2π)3δ
(3)
D (q1 + q2 + q3)δ(q1)δ(q2)δ(q3),

(4.11)
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Figure 4.3: Left: Cross correlations of various density fields. Blue shows the cross-correlation
of the final (z = 0) and initial (z = 127) density field. Solid orange shows the cross-correlation
of the reconstructed and initial density field. Green shows the cross-correlation of the density
field reconstructed using standard reconstruction with a smoothing scale of σ = 10 h/Mpc.
Red shows the cross-correlation that can be achieved with a similar network and density fields
of only 1283 cells. Dashed orange shows the performance of a network that only takes the
density field as an input, without velocity fields. Dotten orange shows the performance of our
network when the final density field contains increased shot noise (generated with 8 times
fewer dark matter particles). Transparent lines show the same results but for final density
fields at z = 0.5 and can therefore be compared to Ref. [45]. Right: mean power spectrum over
12500 simulations before and after reconstruction, compared to the linear power spectrum
(note that we multiplied by an additional factor of k to emphasize the BAO peaks).

where N123 counts the number of triangle configurations within the bin. The bispec-
trum can be efficiently computed using fast Fourier transforms (FFTs). For the power
spectrum, we use bins of width ∆k = kF starting at the fundamental mode kmin =

kF . The bispectrum is binned with width ∆k = 3kF , the first bin starting at kmin =

1.5kF . The smallest scale included in our analysis is kmax = 82.5kF ≈ 0.52 h/Mpc
resulting in 2276 triangle bins. We apply the usual compensation for the mass assign-
ment (PCS) window function in Fourier space before measuring our statistics [64].
Measuring the power spectrum and bispectrum of the pre and post-reconstructed
density fields, we obtain our data products D = {Ppre, Bpre, Ppost, Bpost}.4

4We have used our own code that was cross-validated with other bispectrum codes. Our code is
publicly available at https://github.com/tsfloss/DensityFieldTools

https://github.com/tsfloss/DensityFieldTools
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4.4.2 Covariance

An important quantity for determining the information content is the covariance
matrix, which encodes correlations between data points. The covariance matrix for
a data vector Dn (in our case the power spectrum and bispectrum measurements)
measured from simulation n, is given by:

Cij =
1

N − 1

N∑
n

(
Dn − D̄

)
i

(
Dn − D̄

)
j
, (4.12)

where N is the number of measurements/simulations and D̄ is the mean of the data
over allN simulations. We obtain the reconstructed covariance matrix by measuring
the power spectrum and bispectrum of 12500 reconstructed QUIJOTE fiducial cos-
mology density fields at z = 0, which we demonstrate to be sufficient in Appendix
4.B. In order to visualize the correlation between different power spectrum and bis-
pectrum bins, we use the correlation matrix:

rij =
Cij√
CiiCjj

. (4.13)

In Figure 4.4 we show the correlation matrices of the pre-and post-reconstructed
power spectrum and bispectrum. In this figure, the triangle bins have been ordered
with increasing smallest momenta (largest scale), which emphasizes the fact that be-
fore reconstruction, triangles sharing the same shortest side are severely correlated,
especially when very squeezed [34]. After reconstruction, modes have become sig-
nificantly less correlated, indicating that additional information from higher-order
correlation functions has been brought into the reconstructed power spectrum and
bispectrum. Since non-Gaussian covariance is responsible for the saturation of pa-
rameter constraints in the non-linear regime [34–36], we expect that the reduction of
covariance due to our reconstruction method will translate into improved parameter
constraints.
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Figure 4.4: Correlation matrix rij for the pre and post-reconstructed power spectrum and
bispectrum. Triangle configurations for the bispectrum are ordered with increasing smallest
momentum, visually creating blocks of triangles sharing the same shortest side in k-space.
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f locNL f equilNL forthNL h ns Ωm Ωb σ8
θfid 0 0 0 0.6711 0.9624 0.3175 0.049 0.834

δθ ±100 ±100 ±100 ±0.02 ±0.02 ±0.01 ±0.002 ±0.015

Table 4.1: Cosmological parameters of the QUIJOTE simulations used in this chapter. The
top row gives the fiducial cosmology used for training the neural network and computing the
covariance matrix. The bottom row gives the variation of the parameters in simulations used
to compute the derivatives in equation (4.15)

4.4.3 Fisher Analysis

We determine the constraining power of the reconstructed power spectrum and bis-
pectrum by performing a Fisher analysis. Under the assumption of a Gaussian like-
lihood, which we expect to be accurate enough for our purpose [65], the Fisher infor-
mation matrix for parameters θa and data D̄ (e.g. power spectrum and/or bispec-
trum) is given by:

Fab =
∂D̄

∂θa
·
(
C−1

)
· ∂D̄
∂θb

, (4.14)

where the dot product runs over the data points. The inverse covariance matrix or
precision matrix C−1, is obtained by numerically inverting the covariance matrix of
the previous section. The inversion of covariance matrices is biased by the limited
amount of realizations available to construct the covariance matrix. We unbias our
precision matrix by including the Hartlap factor [66]. In order to obtain the deriva-
tives with respect to the cosmological parameters that we would like to constrain, we
make use of the QUIJOTE simulations that vary {f localNL , f equilNL , forthNL , h, ns,Ωm,Ωb, σ8}
by a fixed amount around their fiducial values, i.e. θfida ± δθa as summarized in Table
4.1 [35, 47]. We reconstruct all these simulations (500 per varied parameter) and mea-
sure their power spectra and bispectra. We then compute the parameter derivatives
by central differencing:

∂D̄

∂θa
=

D̄θfid
a +δθa − D̄θfid

a −δθa

2δθa
. (4.15)

Here D̄θfid
a ±δθa presents the mean measured data from the simulations run with cos-

mological parameter θa = θfida ± δθa. The Fisher matrix allows us to compute the
marginalized error on model parameters:

σa =
√
(F−1)aa, (4.16)
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as well as their correlation coefficient, quantifying the amount of degeneracy be-
tween parameters:

ρab =
(F−1)ab√
σ2
aσ

2
b

. (4.17)

Furthermore, the Fisher matrix can be used to construct an unbiased, minimal-variance
marginalized estimator that estimates the parameter θa from the observed data Dobs

given a fiducial model D̄fid:

θ̂a − θfida =
∑
b

(F−1)ab
∂D̄

∂θb
·
(
C−1

)
·
(
Dobs − D̄fid

)
. (4.18)

The expected error of the estimate is equal to the Fisher error ⟨θ̂2a⟩ = σ2
a = (F−1)aa.

This estimator marginalizes over all parameters to make sure that parameter dis-
crepancies between our fiducial model and the real cosmology do not translate into
potentially large biases of the estimated parameter. Since our network is trained
only on the fiducial cosmology simulations, reconstructions of simulations with dif-
ferent parameters are biased. Since we use these biased reconstructions to compute
the derivatives in equation (4.15), this bias is thus included in the marginalization
process. We therefore expect estimates of primordial non-Gaussianity to be unbi-
ased and minimal-variance, even when the cosmology of the measured data does
not match the fiducial cosmology.

4.4.4 Results

From the calculation of the Fisher information matrix of the pre and post-reconstructed
power spectrum and bispectrum, Figure 4.5 shows the resulting confidence intervals
and marginalized errors of all 8 parameters when fitting for all of them simultane-
ously. The results are based on using both power spectrum and bispectrum data
(see Appendix 4.A for the results when using the power spectrum and bispectrum
separately). The results before reconstruction match those presented in Ref. [35].
Most notably, after reconstruction there is a significant improvement in the error of
all parameters when combining the pre- and post-reconstructed statistics as sum-
marized in Table 4.2. To understand the improvement of these constraints, Figure
4.6 shows the correlation coefficient between the parameter constraints, revealing
a drastic reduction in degeneracy model parameters. In Table 4.3, we present the
(un-)marginalized constraints on fNL. We conclude that our reconstruction method
improves marginalized constraints on fNL by a factor of 3.65, 3.54, and 2.90 for local,
equilateral, and orthogonal respectively. The improved constraints are attributed to
the reduced covariance and parameter degeneracy. Our results show that in order to
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f localNL f equilNL forthNL

P ∗
pre

Ppost

Ppre + Ppost

2884 (31.31)
1890 (69.11)
135.6 (29.06)

7888 (79.41)
3500 (165.5)
481.2 (76.94)

3478 (187.2)
572.8 (116.4)
175.4 (77.70)

Bpre

Bpost

Bpre +Bpost

101.8 (42.65)
18.35 (16.86)
16.94 (15.61)

187.7 (123.8)
72.63 (34.25)
60.65 (33.05)

83.39 (61.39)
26.76 (16.85)
22.03 (15.51)

(P +B)pre
(P +B)post
(P +B)pre + (P +B)post

51.64 (24.45)
17.10 (15.61)
14.14 (12.77)

159.3 (59.77)
64.73 (32.58)
45.01 (30.21)

49.08 (42.56)
22.58 (15.49)
16.93 (13.90)

Table 4.3: Marginalized (Unmarginalized) errors on fNL pre, post and pre+post reconstruc-
tion using different data products for a dark matter survey with volume V = 1 (Gpc/h)3 at
redshift z = 0 and kmax ≈ 0.52 h/Mpc. ∗ Note that the parameter constraints from the pre-
reconstructed power spectrum alone are likely too optimistic since the Fisher derivatives have
not converged, as discussed in Appendix 4.B and Ref. [35].

get an accurate estimate of the improvement on fNL it is important to include both
the power spectrum and bispectrum and to marginalize over other cosmological pa-
rameters. Naively, using only post-reconstructed bispectrum measurements (Bpost)
would lead to an improvement of marginalized constraints by a factor of 5.55 (local),
2.58 (equilateral) and 3.12 (orthogonal). Similarly, using only the tree-level primor-
dial bispectrum contribution in equation (4.5), as was done in Ref. [40], suggests im-
provements on marginalized constraints by a factor 11.69 (local), 4.76 (equilateral)
and 2.14 (orthogonal), demonstrating the necessity of including the full non-linear
power spectrum and bispectrum in order to arrive at realistic estimates. Finally, es-
timating fNL from the (reconstructed) QUIJOTE simulations using the estimator in
equation (4.18) with the different products, we confirm that the estimator is unbiased
and minimum-variance.

f localNL f equilNL forthNL h ns Ωm Ωb σ8
3.65 3.54 2.90 2.43 1.98 1.64 2.56 1.91

Table 4.2: Improvement factor of parameter constraints when using the full data product
(P +B)pre + (P +B)post as compared to just (P +B)pre
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Figure 4.5: 1 and 2-σ marginalized constraints when jointly fitting for all eight parameters
using the power spectrum and bispectrum pre, post and pre+post reconstruction.

4.5 Conclusions

In this work, we have studied the use of neural networks in reconstructing the ini-
tial conditions from the late-time density field, with the main goal of improving fu-
ture constraints on primordial non-Gaussianity. We have demonstrated that a U-
Net architecture is able to reconstruct the initial conditions with an accuracy (cross-
correlation) of ∼ 90% up to scales k ≤ 0.4 h/Mpc directly from the redshift z = 0

density field at a fraction of the computational time required by competitive meth-
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Figure 4.6: Correlation coefficients ρij ∈ [−1, 1] between the different cosmological parame-
ters when using the data products (P +B)pre (lower triangular) and (P +B)pre+(P +B)post
(upper triangular).

ods such as that of Ref. [46]. Furthermore, we have analyzed the information con-
tent of the dark matter density field after reconstruction by reconstructing a large
part of the QUIJOTE simulation suite. From a Fisher analysis, we find that marginal-
ized constraints on primordial non-Gaussianity from a joint analysis of power spec-
trum and bispectrum, are improved by a factor of 3.65, 3.54, 2.90 for local, equi-
lateral, and orthogonal non-Gaussianity respectively. Given the strong saturation
of these constraints in the non-linear regime due to non-Gaussian covariance [35],
these constitute valuable improvements that cannot be realized by just including
∼ 10 times more modes, as a naive mode-counting argument suggests. Hence, our
work marks important progress towards a more optimal estimation of primordial
non-Gaussianity.

It is important to note that we have not performed any extensive optimization of
our network architecture or its hyperparameters, thus it is conceivable that the re-
construction performance can be further improved. Furthermore, our reconstruction
is so far limited by the amount of memory available on GPUs.

This work can naturally be extended in a number of ways that we intend to explore
in a future work:
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1. In this work we have limited ourselves to the dark matter density field. In
reality, we only have access to a biased tracer thereof, such as galaxies or
atomic/molecular spectral lines (e.g. 21-cm). At low redshifts, these trace dark
matter halos. To further assess the realism of this method we need to apply our
methods to the dark matter halo field and eventually a real tracer.

2. In a real survey, we cannot observe the real position along the line-of-sight
direction. Instead, we determine their position in redshift space, which is un-
certain due to the unknown peculiar velocity of the objects. These redshift space
distortions are an additional source of non-linearity. Again, instead, we should
provide our network with late-time density fields in redshift space as input
and train this to reconstruct the real space initial conditions.

Future constraints on primordial non-Gaussianity coming from large-scale struc-
ture will rely on our ability to model the non-linear nature of the tracer field. Tradi-
tionally, the emphasis in this field has been on modeling the statistical properties of
the tracer field and trying to push these further into the non-linear regime in order to
access more modes that can be compared to observation. Only more recently it has
been shown that this approach shows diminishing returns as non-linear modes be-
come increasingly correlated, reducing their information content. This is essentially
a manifestation of the non-linear evolution scrambling the information of the linear
field into higher-order correlation functions and additional work needs to be done to
recover the information contained in the initial conditions. Therefore, it is important
to emphasize that the complications due to mode coupling encountered in this work
essentially turn N-point correlation functions into highly degenerate sub-optimal
statistics. Although correlation functions are the natural object to study from a the-
oretical perspective, especially when it comes to primordial non-Gaussianity, there
might be more optimal ways to compress survey data into statistics (see e.g. [67, 68]).
It would be interesting to study alternative statistics in the context of reconstruction
as well.
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4.A Information content of power spectrum and bispec-
trum separately

For completeness, we present in Figure 4.7 and Figure 4.8 the confidence intervals
when using only the power spectrum or the bispectrum, respectively. By combining
the pre and post-reconstructed power spectrum we gain significant information over
either one of them alone, as was pointed out also in Ref. [39].

f local
NL

50
0

0
50

0

feq
ui

l
NL

f local
NL

50
0

0
50

0

for
th

NL

fequil
NL

f local
NL

0

1h

fequil
NL forth

NL

f local
NL

0

1

2

n s

fequil
NL forth

NL h

f local
NL

0.2
0.3
0.4m

fequil
NL forth

NL h ns

f local
NL

0.0
0

0.0
5

0.1
0

b

fequil
NL forth

NL h ns m

50
0 0

50
0

f local
NL

0.8
00

0.8
25

0.8
50

0.8
75

8

50
0 0

50
0

fequil
NL

50
0 0

50
0

forth
NL

0 1
h

0 2
ns

0.2 0.4

m

0.0 0.1

b
0.8

0
0.8

5

8

Ppre

Ppost

Ppre + Ppost

Figure 4.7: 1 and 2-σ marginalized constraints when jointly fitting for all eight parameters
using the pre, post and pre+post reconstructed power spectrum. Note that the constraints
from only the pre-reconstructed power spectrum are likely too optimistic since the Fisher
derivatives have not fully converged, as discussed in Appendix 4.B and Ref. [35].
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Figure 4.8: 1 and 2-σ marginalized constraints when jointly fitting for all eight parameters
using the pre, post and pre+post reconstructed bispectrum.
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4.B Convergence of Fisher analysis

We present here tests of the convergence of the Fisher forecasts presented in the
main text. First, we assess whether the covariance matrix has converged sufficiently
to provide robust parameter constraints. In Figure 4.9, we plot the variation of the
marginalized parameter constraints from a Fisher analysis, as a function of the num-
ber of simulations included in the computation of the covariance matrix, while keep-
ing the number of simulations used to compute derivatives fixed at maximum (i.e.
500). As we can see, the parameter constraints from all data products are increasingly
stable as we include more simulations and appear to have converged well at 12500
simulations. We thus conclude that we have used a sufficient number of simulations
to compute the covariance matrix in our analysis.
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Figure 4.9: Variation of the marginalized parameter constraints as a function of the number
of simulations included in the computation of the covariance matrix, for all the different data
products. For this test, we keep the number of simulations used to compute derivatives fixed
at 500.

Next, we test whether the derivatives that enter the Fisher matrix computation
of equation (4.14), have converged. In Figure 4.10, we show the variation of the
marginalized parameters constraints, as a function of the number of simulations in-
cluded in the computation of the derivatives, while keeping the number of simu-
lations used to compute the covariance matrix fixed at maximum (i.e. 12500). As
was found in the original work of Ref. [35], the pre-reconstructed power spectrum
has not converged and hence the forecasts based on this data alone should not be
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trusted. However, the parameter constraints for all the other data products seem to
have converged well when using 500 simulations to compute the derivatives.
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Abstract

Optimal extraction of cosmological information from observations of the Cosmic Mi-
crowave Background critically relies on our ability to accurately undo the distortions
caused by weak gravitational lensing. In this work, we demonstrate the use of denoising
diffusion models in performing Bayesian lensing reconstruction. We show that score-
based generative models can produce accurate, uncorrelated samples from the CMB lens-
ing convergence map posterior, given noisy CMB observations. To validate our approach,
we compare the samples of our model to those obtained using established Hamiltonian
Monte Carlo methods, which assume a Gaussian lensing potential. We then go beyond
this assumption of Gaussianity, and train and validate our model on non-Gaussian lens-
ing data, obtained by ray-tracing N-body simulations. We demonstrate that in this case,
samples from our model have accurate non-Gaussian statistics beyond the power spec-
trum. The method provides an avenue towards more efficient and accurate lensing re-
construction, that does not rely on an approximate analytic description of the posterior
probability. The reconstructed lensing maps can be used as an unbiased tracer of the
matter distribution, and to improve delensing of the CMB, resulting in more precise cos-
mological parameter inference.
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5.1 Introduction

The deflection of photons of the Cosmic Microwave Background (CMB) by the large-
scale structure between today and the last-scattering surface, changes the CMB statis-
tics, leaving a characteristic imprint [1–5]. This effect, known as weak gravitational
lensing, affects our ability to infer properties of the early universe such as primor-
dial gravitational waves through B-mode polarization [6], or the presence of primor-
dial non-Gaussianity [7–9], both of which would constitute strong evidence for the
inflationary paradigm and are thus important targets for experimental endeavors
[10]. Furthermore, the gravitational potential that lenses the CMB is an unbiased
tracer (albeit projected) of the total matter distribution of the universe and thus con-
tains important cosmological information by itself. Accurately reconstructing the
CMB lensing potential is therefore of considerable interest [11–14], for example, to
constrain the mass of neutrinos [15], the late-time growth of structure (i.e σ8) and
local primordial non-Gaussianity, especially in cross-correlation with other tracers,
through cosmic-variance cancellation [16, 17].

Several methods have been developed to reconstruct the lensing potential from
observed CMB data, starting with the quadratic estimator by Seljak & Zaldarriaga
[18], and Hu & Okamoto [19, 20]. These estimators have been used in virtually all
CMB lensing analyses to date [21–26], for which they proved to be sufficiently op-
timal. The high resolution and low noise levels of current (South Pole Telescope
3G [27, 28]) and next generation (Simons Observatory [29] and CMB-S4 [30]) CMB
surveys, allow sub-percent level lensing reconstruction and an unprecedented sensi-
tivity to primordial B modes. At this point, however, the quadratic estimator ceases
to be nearly optimal, and more sophisticated techniques are required to achieve opti-
mal lensing reconstruction, such as iterative maximum a posteriori (MAP) estimators
[31–34] and gradient inversion techniques [35]. Besides these analytical approaches,
the use of machine learning methods in CMB lensing problems has been an active
topic of research in recent years as well [36–39]. Although the quality of the re-
constructed lensing potential with iterative or machine-learned estimators may be
statistically optimal, both methods yield point estimates that require expensive sim-
ulations to propagate uncertainty in the estimates when they are used in any subse-
quent analyses (e.g. to infer primordial non-Gaussianity from delensed CMB data).
Additionally, non-Gaussianity of the lensing potential has been shown to contain sig-
nificant amounts of information on e.g. neutrino mass and dark energy [40]. Recon-
structing the lensing convergence bispectrum is therefore of considerable interest.
However, determining non-Gaussian statistics of the lensing potential using con-
ventional estimators can be challenging, due to having to model complicated noise
biases [41], although this may be somewhat alleviated with alternative estimators
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[42].

More recently the problem of CMB delensing and lensing reconstruction has re-
ceived a fully Bayesian treatment by Millea, Anderes & Wandelt [34, 43], which we
will refer to as MAW (see also [44] for earlier work using only temperature modes).
Their approach to this high-dimensional statistical problem relies on having access
to the gradient of the CMB lensing posterior, allowing for the use of a Hamiltonian-
Monte-Carlo-within-Gibbs sampler that simultaneously samples cosmological pa-
rameters (the amplitude Aϕ of the lensing potential power spectrum, and the tensor-
to-scalar ratio r), the delensed CMB data and the lensing potential. The ability to
sample from the posterior enables the accurate determination of uncertainties when
working with the delensed data or the inferred lensing potential. This powerful
method has since been used to improve the analysis of data from SPT-3G [45].

One of the crucial assumptions for MAW being able to write down and evalu-
ate the posterior is that the lensing potential is Gaussian. However, in reality, this
assumption does not hold since the large-scale structure of the universe is non-
Gaussian. More accurate reconstruction of the lensing potential will thus require
going beyond this Gaussian prior assumption, but this is not straightforward with
existing methods. At the same time, the Hamiltonian Monte Carlo (HMC) method
typically requires long sampling chains to ensure convergence of the lensing maps,
which scales inefficiently with the size of the data. Although this issue can be par-
tially ameliorated with suitable approximations [46, 47], it is worth investigating
alternative simulation-based inference solutions [48, 49].

Here, we explore the use of probabilistic machine learning models in reconstruct-
ing the lensing potential, alleviating some of the limitations of the HMC approach.
Specifically, we consider the use of score-based generative models (SGM) [50], a vari-
ant of what is commonly referred to as diffusion models. Using techniques inspired
by the stochastic nature of diffusion, these models can draw uncorrelated samples
from complicated high-dimensional probability distributions, without requiring an
explicit expression for this distribution, making them particularly suitable for prob-
lems involving images [51]. Simply put, such models learn to map samples from
a simple distribution (i.e. a Gaussian) into samples of a more complicated distri-
bution, iteratively turning pure noise into meaningful data. Diffusion models have
been successfully applied to various problems in the context of astrophysics and
cosmology (e.g. [52? ? –57]). Here we will demonstrate the use of such models
in reconstructing the CMB lensing convergence map given noisy CMB observations,
enabling sampling of the Bayesian lensing posterior. While MAW solves the problem
with explicitly specified likelihood and priors, our method implements an implicit
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inference approach where likelihood and prior are represented in terms of pairs of
lensing and data maps. In our case these are generated through simulations, mak-
ing our work an example of simulation-based inference. Because of this, we are able
to reconstruct non-Gaussian lensing potentials with accurate non-Gaussian statis-
tics for the first time, requiring only a change in training data. Our model, trained
on non-Gaussian lensing maps from N-body simulations, generates samples with
the correct non-Gaussian statistics, as demonstrated by the one-point PDF and bis-
pectrum. On signal-dominated scales, the sampled maps show excellent agreement
with the true non-Gaussian lensing potential, while on noise-dominated scales, they
revert to the learned non-Gaussian prior. Notably, models trained only on Gaus-
sian lensing maps fail to capture the full non-Gaussian structure. Furthermore, our
method allows for fast and uncorrelated sampling of the lensing potential posterior,
circumventing the convergence issues and inefficiencies faced by traditional Markov
Chain Monte Carlo methods. These advancements open up new possibilities for effi-
cient delensing and precise constraints on large-scale structure from upcoming CMB
surveys.

The paper is organized as follows. In section 5.2 we go over the necessary basics
of CMB lensing. In section 5.3 we introduce the Bayesian approach to CMB delensing
by MAW. In section 5.4 we introduce some basic aspects of score-based generative
diffusion models. To validate the use of these models for Bayesian lensing recon-
struction tasks, we perform a detailed comparison against the method and code of
MAW in section 5.5. Finally, we demonstrate that our model can be used for the
accurate reconstruction of non-Gaussian lensing potentials in section 5.6.

5.2 CMB lensing basics

The intervening matter distribution gravitationally bends the paths of CMB pho-
tons that travel through it, such that we observe deflected photons. This induces a
remapping of the true CMB temperature (T ) and polarization (Stokes Q,U ) modes
to the observed, lensed quantities (T̃ , Q̃, Ũ) (for simplicity neglecting a small phase
correction [58]):

T̃ (n̂) = T (n̂+α(n̂))

(Q̃± iŨ)(n̂) = (Q± iU)(n̂+α(n̂)) (5.1)

where n̂ is the unit vector that denotes the position in the sky, and α is the deflection
angle that encodes the remapping. This deflection angle is given by the gradient of
the lensing potential ϕ:

α = ∇ϕ, (5.2)
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which itself is a two-dimensional projection of the three-dimensional gravitational
potential ψ:

ϕ(n̂) = −2

∫
dχ

χCMB − χ

χCMBχ
ψ(n̂χ, χ), (5.3)

where χ denotes the comoving distance, and χCMB is the comoving distance to the
last-scattering surface, where the CMB was emitted (at redshift z ≈ 1100). In the flat
sky approximation, these fields can also be written in Fourier space, parametrized
by wavevector ℓ. Another useful quantity is the the CMB lensing convergence κ:

κ(n̂) = −1

2
∇2ϕ(n̂), (5.4)

which is most easily obtained in Fourier space as:

κℓ =
|ℓ|2
2
ϕℓ. (5.5)

Using a Taylor expansion of Eq. (5.1) one can determine the lowest-order effect of
lensing on the CMB fluctuations. This can then be used to construct a quadratic
estimator for the CMB lensing convergence [18–20]. Additionally, iterating this esti-
mator yields the maximum-a-posteriori estimate of the lensing convergence [31–33].

5.3 Bayesian delensing

In Refs. [34, 43], MAW present a Bayesian approach to lensing reconstruction and
delensing of the CMB fluctuations. The approach takes as a starting point the pos-
terior probability distribution of the true CMB f (i.e. T,Q,U ), the lensing potential
ϕ and cosmological parameters θ (the amplitude of the lensing power spectrum Aϕ

and the tensor-to-scalar ratio r), given observed data d (i.e. T̃ , Q̃, Ũ ): P(f, ϕ, θ|d).
This data constitutes lensed, noised, and masked CMB data:

d = AL(ϕ)f + n (5.6)

where L(ϕ) denotes the lensing operation, n is the noise, and A is a linear trans-
formation that includes instrumental effects such as the beam and sky mask. Using
Bayes’ theorem, this posterior can be expressed in terms of the likelihood of the data,
and a prior (following the concise notation of MAW):

P(f, ϕ, θ|d) ∝ P(d|f, ϕ, θ)P(f, ϕ, θ). (5.7)

Under the assumption that the noise is a Gaussian random field with covariance Cn,
the likelihood is proportional to:

P(d|f, ϕ, θ) ∝ exp

(
− (d− AL(ϕ)f)2

2Cn

)
, (5.8)
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and the priors on the f and ϕ fields are taken to be Gaussian:

P(f, ϕ, θ) ∝ exp

(
− f2

2Cf

)
exp

(
− ϕ2

2Cϕ

)
P(θ). (5.9)

Since we are after the pixels of the fields f and ϕ, this constitutes a high-dimensional
posterior distribution that is intractable with conventional Metropolis-Hastings Monte
Carlo methods. MAW overcome this challenge by numerically implementing the
posterior in a fully differentiable fashion (see CMBLENSING.JL 1), providing access
to the derivatives of the posterior with respect to all parameters (i.e. field pixels and
θ). This enables both MAP estimation through gradient-based optimization [34] and
Hamiltonian Monte Carlo sampling [43] of the posterior. Crucially, even if one is
only after the lensing potential, they find that it is easier to sample the full posterior
P(f, ϕ, θ|d), rather than the marginalized posterior P(ϕ, θ|d).

Although the Gaussian prior on the lensing potential does not imply that the pos-
terior samples are necessarily Gaussian, it is not the maximally informative prior for
data that have been lensed with a non-Gaussian potential, and we expect samples in
this case to have inaccurate non-Gaussian statistics. Including such a non-Gaussian
prior in the approach of MAW would require forward modeling and evaluation
of the posterior, which is expensive and hard to implement. Additionally, HMC
methods can be inefficient, due to subsequent samples being correlated. In practice,
the sample chains of the large-scale modes of the lensing potential have long auto-
correlation lengths, resulting in a low yield of independent samples of these scales,
especially when a mask is included [33, 43].

In the rest of this work, we will demonstrate the use of generative machine learn-
ing models in reconstructing the CMB lensing convergence to overcome both of these
limitations of the HMC approach, albeit at the expense of losing provable long-run
convergence to the true posterior.

5.4 Score-based generative models

For our probabilistic machine learning approach, we adopt score-based generative
models [50]. These models can produce samples of a learned data distribution p(x)
through a reverse-diffusion process. Starting from data x, we incrementally perturb
the data using Gaussian noise with an increasing variance schedule σ2(t) over many
timesteps t ∈ [0, 1], until it is pure noise. This diffusion process is described by a

1https://github.com/marius311/CMBLensing.jl

https://github.com/marius311/CMBLensing.jl
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stochastic differential equation (SDE) [50]:

dx = f(x, t)dt+ g(t)dw, (5.10)

where f is called the drift coefficient, g is the diffusion coefficient, and dw denotes a
Wiener (noising) process. Remarkably, the diffusion process has a reverse SDE that
turns pure Gaussian noise into a sample of p(x) by reversing the noising process at
each timestep; the denoising process [59]:

dx =
[
f(x, t)− g(t)2∇xpt(x)

]
dt+ g(t)dw̄. (5.11)

This requires access to the score ∇xpt(x), where pt(x) is the probability distribution
of x at time t. Furthermore, if we are after the conditional distribution p(x|y) (i.e.
the posterior of parameters x given data y), we instead need the conditional score
∇xpt(x|y). In our case x represents the lensing convergence map, while y repre-
sents observed lensed CMB data (e.g. Q and U maps). We use a neural network,
more specifically a U-Net, to approximate this conditional score by training it to pre-
dict random noise added to an image x at a random timestep, given conditioning
data y(x) [60].

Typically in diffusion models, the noising process dw uses white noise

zw ∼ N (0, I), (5.12)

but we find that both training and sampling are faster and more accurate when using
reddened Gaussian noise with a power spectrum similar to the target κ maps:

zκ(zw) = Σ1/2
κ zw, (5.13)

where Σκ is the theory covariance matrix of the lensing convergence maps, and the
multiplication is performed in Fourier space, where this covariance matrix is diago-
nal (i.e. the power spectrum Cκκ

ℓ ). This type of noise allows the model to affect all
scales of the data at every timestep, instead of different scales at different timesteps,
resulting in higher-quality samples with fewer diffusion steps. Furthermore, we em-
ploy the Variance Exploding variant of the algorithm [50]:

f(x,t) = 0, g(t) =

√
dσ2(t)

dt
, σ(t) = σmin

(
σmax

σmin

)t

, (5.14)

where σmin and σmax set the lowest and highest noise scales of the noising process.
Given this setup, we use the noise schedule σmin = 0.01 and σmax = 100. This
provides sufficient noise to properly swamp the image, as well as sufficient low-
noise steps to fine-tune the sample. Finally, to not underemphasize small scales in the
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model’s training objective, the score-matching loss to be optimized by the network
is still defined at the level of the white noise:

L = Et,x0,zw
||zw − sθ(x0 + σ(t)zκ(zw), t)||2 (5.15)

where sθ(xt, t) is the U-Net’s noise prediction at time t, given the noisy image xt.

After training, we sample from the learned conditional distribution by discretiz-
ing the reverse SDE with the Euler-Maruyama method:

xt−∆t = xt − g(t)2
(
Σ1/2

κ sθ(xt, t)
)
∆t+ g(t)

√
∆t zκ, (5.16)

and applying this equation iteratively starting from pure noise at time t = 1. We use
1000 timesteps to draw samples, but good results can be achieved with fewer steps.

More details on the implementation of the model and U-Net can be found in
Appendix 5.A.

5.5 Gaussian lensing reconstruction

To validate our method, we first perform a benchmark comparison against the HMC
algorithm, using CMBLENSING.JL. As noted, this algorithm can be used to simulta-
neously sample the true CMB, the lensing potential ϕ, and parameters Aϕ (the am-
plitude of the lensing potential power spectrum) and r (the tensor-to-scalar ratio).
In this work, we will only focus on reconstructing the lensing potential, thus implic-
itly marginalizing over the true CMB. Ideally, we would marginalize over both the
amplitude and tensor-to-scalar ratio. However, we found that the score-based gen-
erative algorithm, as well as variants thereof (e.g. Denoising Diffusion Probabilistic
Models), struggle to yield samples with the correct amplitude if we vary the lensing
amplitude. We comment more on this in Appendix 5.B. For now, we limit our setup
to fixed amplitude Aϕ = 1, but we do marginalize over r.

We mimic one of the survey configurations in MAW’s work and use CMBLENS-
ING.JL to generate training data, consisting of 32768 pairs of Gaussian κ and lensed
(Q,U)-maps, including masks and noise with specifications given in Table 5.1 and
random r ∈ [10−6, 10−1] (quadratically spaced). The (Q,U, κ)-maps are each normal-
ized by the mean and standard deviation over the entire dataset. Furthermore, we
apply a cutoff ℓ < 3000 to the κ maps during training, so the network only learns
to reconstruct modes below this cutoff (the (Q,U) maps still have ℓ < 5000). In our
setup, modes beyond this cutoff are severely noise-dominated in the reconstruction
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Parameter Configuration
CMB data Q,U
Map size (pixels) 256× 256

Pixel width 2 arcmin
Total area 73 deg2

White noise level in P 1 µK-arcmin
(ℓknee, αknee) (100, 3)

Beam FWHM 2 arcmin
Fourier masking 2 < ℓ < 5000

Pixel masking 0.4◦ border +0.6◦ apod

Table 5.1: Configuration used in our experiments. The setup follows that of the 2PARAM
setup of [43].

samples and therefore not informative. Finally, since these maps have been gener-
ated with periodic boundary conditions, we apply periodic padding in our U-Net.

We validate our generative model by comparing 2048 samples of our model and
a CMBLENSING.JL chain of 17000 samples (we drop the first 1000 samples and keep
every fifth sample, leaving us with 3200 samples from the chain), for a validation
case with parameters (Aϕ = 1, r = 0.04), shown in Fig. 5.1. In Fig. 5.2 we show the
mean and standard deviation over posterior samples drawn using the two methods,
while in Fig. 5.3 we show the mean power spectrum of the samples. Addition-
ally, we show the mean power spectrum of the reconstruction residual of samples
(κsamples − κtrue) in dashed lines, which quantifies the signal-to-noise ratio of the re-
construction on different scales. We see that for this configuration the reconstruction
is signal-dominated up to ℓ ≈ 800. As a consequence, on small, noise-dominated
scales the power spectrum of samples becomes increasingly prior driven, and the
mean power spectrum of samples reduces to the theory spectrum, as observed in the
bottom panel. We can further investigate the quality of our samples by comparing
the correlation coefficient between samples and the true lensing convergence map as
a function of scale:

Cℓ =
C

κsamplesκtrue

ℓ√
Cκtrueκtrue

ℓ C
κsamplesκsamples

ℓ

, (5.17)

shown in Figure 5.4. The various metrics demonstrate good agreement between the
CMBLENSING.JL chain samples and SGM samples.

We conclude that our score-based generative model has learned an accurate ap-
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Figure 5.1: Validation data used in the CMBLENSING.JL benchmark following the configura-
tion presented in Table 5.1. Top: the lensed (Q,U) observation. Bottom left: the true lensing
convergence map κ that lensed the (Q,U) observation. Bottom right: the maximum a pos-
teriori (MAP) estimate of the lensing convergence given the (Q,U) observation, using the
optimization algorithm of CMBLENSING.JL.

proximation of the lensing posterior, and can therefore be used to draw samples of
the reconstructed lensing convergence. Our SGM model has the additional advan-
tage that samples are uncorrelated, resulting in a more effective sampling of large
angular scales compared to the CMBLENSING.JL chains, that struggle to converge
here for masked data. In fact, for the CMBLENSING.JL chain presented here, the
largest scale has not yet converged, explaining the large discrepancy of the largest
scale bandpower with our SGM result, which more closely follows the truth.
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Figure 5.2: Results for the validation sample of the CMBLENSING.JL benchmark. Top: mean
over 2048 posterior samples from the SGM (left) and the CMBLENSING.JL chain (right). Bot-
tom: standard deviation of posterior samples from 1024 diffusion samples (left) and the CM-
BLENSING.JL chain (right).

5.6 Non-Gaussian Lensing reconstruction

Contrary to the MAW approach based on an explicitly specified posterior, our ap-
proach is based on a posterior that is implicitly specified through the training data.
Our generative model therefore allows for a straightforward extension to non-Gaussian
lensing potentials; we simply need to train our model on data consisting of non-
Gaussian lensing maps and lensed CMB data. To demonstrate this, we train it us-
ing a set of simulated non-Gaussian lensing potentials provided by the authors of
Ref. [61]. This dataset consists of 108 high-resolution full-sky lensing convergence
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Figure 5.3: Top: Mean power spectrum of SGM samples (blue), CMBLENSING.JL samples
(red), and the true validation κ-map (gray). The reconstruction noise curves give the mean
power spectrum of reconstruction residuals (κsample − κtrue). The shaded regions and error
bars demark the 1σ spread of the power spectra. Bottom: mean power spectrum of samples
divided by the theory power spectrum (at Aϕ = 1).

maps generated by ray tracing dark matter N-body simulations.

We use 100 of their full-sky κ maps to lens 100 independent full-sky (Q,U)-maps
using the lensing algorithm implemented in the lenspyx code [62]. We generate 256
flat-sky observations (and the corresponding patches of the lensing convergence) per
full-sky map, with the same properties as before (i.e. Table 5.1). These 25600 flat-sky
patches serve as training data for our model, while one of the remaining 8 full-sky
maps is used to generate independent validation data. We keep cosmological pa-
rameters fixed (Aϕ = 1, r = 0) for all data for simplicity, but in principle, r can be
varied in the training data as in the previous section.

Once trained, we draw 4096 samples from our model for a validation case, the
results of which are shown in Figure 5.5. Both the samples and the mean over poste-
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Figure 5.4: Cross-correlations (Eq. (5.17)) of validation samples with the true lensing conver-
gence map. Solid lines denote cross-correlation of the mean of posterior samples from the
SGM (blue) and CMBLENSING.JL chain (red). Dashed lines denote the mean of individual
cross-correlations of samples.

rior samples show a clear correlation with the true non-Gaussian κ map. The power
spectrum and cross-correlation coefficient for the non-Gaussian validation case are
shown in Figure 5.6 and Figure 5.7.

Different from the Gaussian case of the previous section, the non-Gaussian lens-
ing convergence maps contain information beyond the power spectrum. Such non-
Gaussian statistics of the lensing field have been studied previously in [63], in partic-
ular the one-point probability distribution function and peak counts. Additionally,
we can study higher-order correlation functions, such as the bispectrum [40].

In Figure 5.8 we show the one-point PDF of validation κ samples, and that of
both Gaussian and Non-Gaussian κ maps, clearly showing that our model produces
one-point statistics that are consistent with the mean over many non-Gaussian maps,
but slightly shifted towards the statistics of the true κ map.

Next, we investigate the bispectrum of the samples. We compute the bispectrum
using 17 bins with a width of four times the largest mode, ℓmin ≈ 43, of the flat-sky
patches, resulting in 597 triangle configurations up to ℓmax ≈ 2911. Figure 5.9a shows
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Figure 5.5: Results for the validation case in the N-body non-Gaussian setup. Top left: mean
over 4096 posterior samples. Top right: the true lensing convergence. Bottom: two indepen-
dent samples of the convergence map.

the mean bispectrum of samples and many N-body non-Gaussian maps. We plot the
triangle configurations logarithmically to emphasize triangles on large scales, where
the reconstruction is signal-dominated (as in Figure 5.6). On large scales (low trian-
gle index), the mean bispectrum of samples (blue) follows the bispectrum of the true
lensing convergence map (gray) more closely than it follows the theory bispectrum
of non-Gaussian maps (green). On smaller scales, where the reconstruction is noise-
dominated, the bispectrum of samples more closely follows the theory bispectrum
(i.e. falls back to the learned non-Gaussian prior). These results show that our model
has indeed learned a non-Gaussian posterior and prior and generates accurate sam-
ples of the non-Gaussian lensing convergence map.
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Figure 5.6: Top: Mean power spectrum of SGM samples for the N-body validation case pre-
sented in Figure 5.5. The reconstruction noise curve gives the mean power spectrum of recon-
struction residuals κsample − κtrue. Bottom: mean power spectrum of samples divided by the
theory power spectrum (at Aϕ = 1).

To demonstrate the error induced by drawing samples from the less informed
posterior (with Gaussian lensing prior) we show the bispectrum for samples of the
validation case drawn from a model that was trained using only Gaussian lensing
maps (with the same power spectrum as the non-Gaussian N-body lensing maps).
In Figure 5.9b we show the mean bispectrum of 4096 validation samples from this
Gaussian model. We expect such a model to be able to capture non-Gaussian in-
formation only on highly signal-dominated regions where the posterior is not dom-
inated by the Gaussian prior (that is implicitly learned from the Gaussian training
data). Indeed the top panel shows that on the largest, signal-dominated scales, the
model produces a bispectrum that follows the true validation map and is similar
to that of the SGM trained on non-Gaussian maps. However, on smaller, noise-
dominated scales the bispectrum vanishes, as the model falls back on the internally
learned Gaussian prior, unlike our non-Gaussian model. Furthermore, in the bot-
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Figure 5.7: Cross-correlations of validation samples with the true lensing convergence map
for the non-Gaussian case. Solid lines denote the cross-correlation of the mean of posterior
samples from the SGM. Dashed lines denote the mean of individual cross-correlations of sam-
ples.

tom panel, we see that the mean bispectrum over 4096 samples of different lensing
realizations, does not closely follow the theory bispectrum.

5.7 Conclusion & Outlook

In this work, we demonstrated the use of score-based generative models in CMB
lensing reconstruction tasks. We have shown that such models can effectively learn
the conditional posterior distribution of the lensing convergence map given observed
CMB data, by training on corresponding pairs of these. The trained model can be
used to rapidly draw lensing posterior samples. For the case of Gaussian lensing
convergence maps, we have validated our methodology by comparing the results
of our model against the established Hamiltonian Monte Carlo methods of Millea,
Anderes and Wandelt [45].

Since our model learns the posterior distribution entirely from simulated data,
and the prior and likelihood are modeled through the processes encoded in the sim-
ulations, it can be used in situations where the analytic form of the posterior is not
known, such as in the case of non-Gaussian lensing convergence maps. Using re-
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Figure 5.8: One-point probability distribution function of κ, using 15 linear bins between
κ ∈ (−0.05, 0.05). In green, we show the PDF of a set of the N-body non-Gaussian κ maps. In
black, we show the PDF of a set of Gaussian κ maps generated with the same power spectrum
as the non-Gaussian maps. In blue, we show the PDF of a set of samples using our generative
model, and the error bars denote its standard deviation per bin. Gray dots denote the one-
point PDF of the true validation κ map.

alistic non-Gaussian lensing maps obtained by ray-tracing N-body simulations, we
demonstrate that our model can indeed be trained to yield samples with the correct
non-Gaussian statistics (i.e. one-point probability distribution and bispectrum). As
we have shown, the resulting samples of our model can be used to estimate the CMB
lensing bispectrum, which is a difficult task using traditional estimators such as the
quadratic estimator, because of large noise biases [41].

Another important advantage of our model as compared to the HMC method is
speed and efficiency. Our model, with neural network configuration as described
in Appendix 5.A and using 1000 denoising steps, generates a single sample in 12
seconds, which can be vectorized up to 128 simultaneous samples in about 225 sec-
onds (∼ 1.75 seconds per sample) on an A100 GPU, and can be easily parallelized
over multiple GPUs. Significant speed improvements can be expected from opti-
mizing neural network complexity and noise schedule (i.e. number of denoising
steps), which is beyond the scope of this chapter. Notably, the samples of our model
are completely uncorrelated. Meanwhile, drawing a single sample with CMBLENS-
ING.JL (in the configuration used in this chapter, varying only r) takes ∼ 1.6 seconds



5

180 5. Denoising Diffusion Delensing Delight

2

1

0

1

2

1
2

3B
( 1

,
2,

3)
×

10
6

True 
SGM samples of true 
Non-Gaussian  maps

100 101 102

triangle #

0.0

0.1

0.2

0.3

0.4

1
2

3B
( 1

,
2,

3)
×

10
6 SGM samples of different 

2

1

0

1

2

1
2

3B
( 1

,
2,

3)
×

10
6

True 
SGM samples of true 
Non-Gaussian  maps

100 101 102

triangle #

0.0

0.1

0.2

0.3

0.4

1
2

3B
( 1

,
2,

3)
×

10
6 SGM samples of different 

Figure 5.9: Bispectrum results for an SGM trained on non-Gaussian (left) or Gaussian (right)
lensing data. Top: bispectrum of the true validation lensing convergence κ map (gray), and
mean bispectrum of many different non-Gaussian κ maps (green), and SGM samples of the
true κ map (blue). Bottom: mean bispectrum of SGM samples of many different κ maps (red).
The green line is an approximation to the theory bispectrum.

on an A100 GPU. However, HMC samples are correlated. Taking the autocorrelation
length of the bandpower on the least efficiently sampled scale of the chain (which
is found to be about 290), shows that the effective independent sample size of the
chain is more than two orders of magnitude smaller. It should be noted that improv-
ing the HMC analysis with suitable approximations used in real lensing analyses, is
likely to again yield an order of magnitude improvement in speed for the configu-
ration considered in this work [46, 47]. Finally, for larger maps, the HMC analysis
requires more samples to converge, thus scaling inefficiently with problem size. For
our model, besides the obvious increase in training and sampling time due to the
larger data size, there is no such chain convergence issue, thus promising more ef-
ficient scaling to larger problems. We conclude that generative models allow for a
more efficient approach to Bayesian CMB lensing reconstruction, which translates to
faster convergence of analysis pipelines.

The methods described in this paper, as well as those in [34, 43, 45], are so far lim-
ited to only using a small and flat patch of the sky at a time. Although adaptation of
our methods to curved-sky geometry using spherical convolutional neural networks



5

5.A. Neural Network Specifics 181

(e.g. [64, 65]) is in principle straightforward, such an analysis is likely to be computa-
tionally prohibitive at present. Nevertheless, we can expect ongoing advancements
in machine learning and computational technology to make such analyses more fea-
sible. Additionally, it is worth noting that validation of conventional methods, such
as the quadratic or iterative estimator, also requires many evaluations on simulated
data to determine the uncertainty. In our methods, as well as the HMC method, this
is inherently included in the analysis.

Looking ahead, ideally, the model would include the amplitude of the CMB lens-
ing power spectrum as well. As mentioned earlier, we have been unsuccessful at
this so far. Nevertheless, we are optimistic that with an appropriate modification of
the model or algorithm, this can be overcome. We share some of our thoughts on
this issue in Appendix 5.B. Alternatively, sampling the cosmological parameters can
also be left as a seperate Gibbs-like steps using another simulation-based inference
pipeline conditioned on the data and our model’s lensing samples. We leave an in-
vestigation into this for future work.

Though in this work we have focused on the non-Gaussianity of the lensing
potential, our model’s flexibility straightforwardly allows for other extensions that
would similarly complicate the posterior evaluation, such as the inclusion of inho-
mogeneous and anisotropic noise in the data [66]. Once again, this would require
only a modification of the simulated data that the model is trained on. Along these
lines, obvious directions for future work are to assess biases due to foregrounds
[22, 67, 68] and correlated point-source masks [69] that complicate the reconstruc-
tion of the lensing potential, and reconstruction of lensing curl modes [70–74].

The results of this work pave the way for more efficient, accurate, and realistic
lensing reconstruction. The resulting samples of our model can be used in subse-
quent analyses of the CMB, or as an unbiased tracer of the total matter density dis-
tribution while being able to appropriately propagate errors due to uncertainty in
the lensing reconstruction.

Our model and the code used to generate the results of this chapter is publicly avail-
able at https://github.com/tsfloss/CMBLensingDiffusion

5.A Neural Network Specifics

The U-Net used in our score-based generative model employs double convolution
blocks, each of which consists of a 3 × 3 convolution with 64 channels, a sinu-

https://github.com/tsfloss/CMBLensingDiffusion
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soidal time embedding, group normalization, and SiLU activation, followed (pre-
ceded) by a Fourier pooling (upsampling) layer in the encoding (decoding) pro-
cess. The Fourier pooling layer performs the downsampling of the image in the
Fourier domain, conserving the data’s frequency content more accurately than typ-
ical pooling or stride convolutions. Similarly, the Fourier upsampling (or interpo-
lation) layer upsamples the data in the Fourier domain, by filling up the modes of
a higher-resolution image with the modes of the lower-resolution image, again ex-
actly preserving the frequency content. We furthermore employ residual connections
(rescaled with

√
2) and skip-connections. At the network bottleneck, the data has a

size of 82 pixels. The network input is a channel-wise concatenation of the noised
image xi and conditioning data y [60]. The model is trained using the AdamW opti-
mizer with gradient norms clipped to 1, and a batch size of 128. We first train with
a learning rate of 0.0002, followed by a learning rate of 10−5 to ensure convergence.
Additionally, we use exponential moving average (EMA) weights, with a decay rate
of 0.9999, to further stabilize the model during inference. Each model is trained for a
total of around 200000 steps, taking around 16 hours on two A100 GPUs. Our model
is implemented using JAX [75].

5.B Varying the lensing amplitude

In Section 5.5, we only varied the tensor-to-scalar ratio r. Ideally, we would like to
be able to marginalize over the amplitude Aϕ of the lensing power spectrum too.
However, we found that the diffusion algorithm as is, is unable to yield samples
with the correct amplitude on small scales in this case, even though the phases of the
samples are accurate (as quantified by the cross-correlation coefficient in equation
(5.17), that does not contain the amplitude). We find that distinct models converge
to different results. An example of this is visualized in Figure 5.10, where we show
results of the mean power spectrum of samples for three different realizations and
parameters, from two models (solid and dotted) trained on data that simultaneously
vary Aϕ and r, compared to those of CMBLENSING.JL chains. These two models
have also been trained for a significantly longer time than the models presented in
the main text, to ensure convergence of their EMA weights.

Although we are uncertain as to what exactly causes this issue, we think that it
could be related to the nature of the diffusion sampling algorithm. The algorithm as-
sumes that the signal-to-noise ratio of the noised image at different timesteps follows
the noise schedule σ(t) in equation (5.14). However, when varying the amplitude of
the underlying data, at a fixed time this ratio varies significantly among the data,
especially at lower noise levels. Meanwhile, during the sampling process, at every
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denoising step, the network makes a guess for the amplitude that will not be perfect.
Thus, at the next timestep, there is a mismatch between the actual signal-to-noise ra-
tio and that expected by the model. The accumulation of many of these mismatches
could the wrong amplitude, especially on noise-dominated scales (where the value
of the amplitude is most relevant), even though the phase structure is accurately re-
solved. From this perspective, a blind denoising approach, such as that presented in
[76], might prove useful.
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Figure 5.10: Mean power spectrum, normalized by the theory power spectrum at Aϕ = 1, of
samples from different models (solid and dotted blue) and CMBLENSING.JL chains (red). for
three different realizations and parameters.
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Abstract

As a counterpart to the four-fermion interaction, which describes massive vector exchange
at low energies, we investigate the low-energy effective action of photons under exchange
of a massive graviton. We show how integrating out a massive graviton leads to the most
general duality-invariant vector interactions in 4D or, vice versa, how any such inter-
actions have a natural interpretation within massive gravity. Moreover, we demonstrate
how the special case of Born-Infeld theory arises from arguably the simplest graviton po-
tential within ghost-free dRGT massive gravity.
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6.1 Introduction

Effective field theories are ubiquitous throughout physics. Perhaps the most famous
example is the low-energy description of β-decay in terms of four-fermion interac-
tions [1]. With the development of the electroweak theory and the Higgs mechanism
[2, 3], it became clear that at a more fundamental level, this physical process is me-
diated by the W± and Z0 vector bosons. Fermi’s theory then arises as a low-energy
description of this process, valid below the electroweak scale of ∼ 100 GeV, in terms
of effective contact interactions for the fermions.

This top-down approach to effective field theories can be more broadly applied
to any theory with a separation of scales between lighter and heavier degrees of free-
dom: at energies well below the heavy mass, there is insufficient energy available to
excite the heavier modes. These can therefore be integrated out, resulting in effective
interactions between the lighter degrees of freedom. This philosophy is independent
of the nature of the heavier degrees of freedom and can also be applied to massive
gravitons.

Massive gravity (MG), originally formulated with an eye towards the cosmo-
logical constant problem, is a highly non-trivial and interesting construction from
a purely theoretical perspective. Remarkably, ensuring the absence of ghosts al-
lows for two free parameters (besides the graviton mass) in 4D [4, 5]; in contrast to
the electroweak theory, no Higgs-like mechanism is known to connect the massive
and massless phases. Moreover, the parameter space of MG is subject to positivity
bounds [6], with a very recent claim that these do not allow for a parametric separa-
tion of graviton mass well below the cut-off scale [7].

In this chapter, we will consider effective theories emerging from integrating out
massive gravitons (and thus the opposite limit of [7]). For simplicity we will take
the lighter degrees of freedom to be massless, and focus on the case of a Maxwell
vector that only interacts gravitationally. The resulting low-energy description, with
effective self-interactions of the Maxwell vector, spans an interesting set of theories:
it consists of all non-linear completions that preserve the electromagnetic duality in-
variance of the original Maxwell theory1 (in contrast to e.g. the Euler-Heisenberg
theory [10] that follows from integrating out massive electrons at one-loop). All of
these effective theories are expected to be fully compatible with positivity bounds;
see Ref. [11, 12] for such bounds for 2 → 2 scattering.

1Duality invariance also plays an important role in supersymmetric theories, where e.g. the E7(7)

duality invariance features prominently in the discussion of possible finiteness of N = 8 supergravity
[8, 9].
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In the second half of this chapter, we will restrict ourselves to the ghost-free dRGT
theory of massive gravity [4, 5]. We demonstrate how, starting from a particularly
simple element of dRGT, one can generate the most important example of non-linear
electrodynamics: Born-Infeld theory. This theory describes the world-volume of D-
branes in string theory [13] and has numerous special amplitude properties, see
e.g. [14, 15]. It is therefore interesting that BI arises as an effective description of
graviton exchange. Moreover, Born-Infeld and gravity-coupled Maxwell theories
both appear in the double copy framework of [16], as illustrated in the tetrahedron
of [17]; it thus appears that moving to massive exchange particles corresponds to a
particular operation in the double copy web of relations, similar to [14, 18].

We comment on further links and implications and future extensions in the con-
cluding section. Amongst these is the analogon of our discussion in 2D space-time,
where the idea of integrating out massive gravity was worked out in 2D in Ref. [19].
It was shown that coupling dRGT gravity to a generic field theory is equivalent to
performing a T T̄ -deformation of said theory. Our work can thus be seen as the
extension of this procedure to the case of conformally-coupled Maxwell theory in
4D, suggesting a close connection to T T̄ -deformations of this theory, as studied in
Refs. [20–24].

Notation. We work in 4D spacetime throughout and employ matrix notation, with
e.g. F ≡ Fµν and F 2 ≡ Fαγη

γδFδβ (note the ordering of indices). Traces taken with
the flat metric η are written using square brackets, e.g. [F 2] = Fαβη

βγFγδη
δα. Angled

brackets instead denote traces where all tensors are contracted with the full metric g,
e.g. ⟨F 2⟩ = Fαβg

βγFγδg
δα (following the conventions of [25]).
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6.2 Integrating out gravity

We start by integrating out the massive graviton perturbatively, obtaining the effec-
tive vector contact interactions order by order. Our set-up consists of a Maxwell field
minimally coupled to massive gravity:

LgF 2 + Lg =
√−g

[
1

4
⟨F 2⟩+ 1

2
R− 1

8
m2
∑
i

V (i)(h)

]
. (6.1)

where g = η+h. The most general graviton potential terms are given at lowest order
by [25]

V (2) =⟨h2⟩+ b2⟨h⟩2 ,
V (3) =c1⟨h3⟩+ c2⟨h⟩⟨h2⟩+ c3⟨h⟩3 ,
V (4) =d1⟨h4⟩+ d2⟨h3⟩⟨h⟩+ d3⟨h2⟩2 + d4⟨h2⟩⟨h⟩2 + d5⟨h⟩4 . (6.2)

At energies well below the mass scale of the graviton, we can neglect the Einstein-
Hilbert term so the massive graviton becomes an auxiliary field and can be inte-
grated out through its algebraic equation of motion2,

1√−g
δ
√−gV (g)

δg−1
= T (Maxwell) , (6.3)

in matrix notation.

Proceeding perturbatively, we expand the metric as h = h(1) + h(2) + . . . and
solve the above equation of motion order by order, resulting in effective contact in-
teractions for the vector field. At lowest order, the graviton field equation is solved
by

h(1) = − 2

m2
F 2 +

1

2m2
[F 2]η . (6.4)

When plugged back into the action, it gives rise to the following effective four-point
contact interactions (setting m2 = 1 for brevity):

LF 4 =
1

2
[F 4]− 1

8
[F 2]2 . (6.5)

Note that b2 drops out at this order due to the tracelessness of the lowest-order solu-
tion. Moving to the next order, the solution reads

h(2) = −2[F 2]F 2 + f1[F
4]η + f2[F

2]2η , (6.6)

2Theories of massive gravity typically suffer from ghosts, for which it is inconsistent to neglect the
Einstein-Hilbert term. We will return to this issue in section 6.4.
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for functions f1,2 of the parameters (b2, c1, c2) whose specific forms are not relevant
for our purposes. We have rewritten an F 4 term using the following recursive matrix
identity:

Xn =
1

2
Xn−1[X] +

1

4
Xn−2[X2]− 1

8
Xn−2[X]2, n ≥ 2 ,

(6.7)

for X = F 2. Moreover, it is also valid for X = h due to the fact that h is solved for in
terms of F 2. Upon plugging the solution back into the action, we obtain the six-point
contact interactions:

LF 6 =
1

2
[F 4][F 2]− 1

8
[F 2]3 . (6.8)

Remarkably, all MG coefficients again drop out at this order; ultimately this can
again be traced back to the tracelessness of the lowest-order solution h(1), such that
the new coefficients only appear in the trace part of h(2) - which drops out at the F 6

order.

The parametric freedom in the MG potential therefore only comes in at octic or-
der: the coefficients of the three terms [F 4]2, [F 4][F 2]2 and [F 2]4 will depend on the
first five parameters (b2, c1, c2, d1, d3). Moreover, the ten-point interactions are fixed
in terms of the eight-point interactions and hence depend on the same combination
of these five parameters. Once we move to the twelve- and fourteen-point interac-
tions, four new combinations of nine additional parameters of the graviton potential
appear.

We therefore find that massive gravity leads to a very specific non-linear modi-
fication of Maxwell’s free theory: the massive gravity potential induces a new inter-
action at every order in F 4, with corresponding terms at higher orders in F 2. As we
will see below, these are precisely those theories of non-linear electrodynamics that
are invariant under electromagnetic duality.

6.3 Duality-invariant non-linear electrodynamics

Maxwell’s equations for a free photon are famously invariant under transformations
that rotate the electric and magnetic fields into each other:

Fµν → cosα Fµν + sinα F̃µν . (6.9)

These transformations are often referred to as ’duality’ rotations between the field
strength and its Hodge dual F̃µν ≡ 1

2εµνρσF
ρσ . Given the central role of symmetries
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in high energy physics, a natural question is whether there are non-linear extensions
of Maxwell theory that preserve this duality invariance.

The most general theory of this type was constructed by Gibbons and Rasheed3

[28] and is most conveniently written in terms of two invariants

p± =
1

8

(
[F 2]±

√
4[F 4]− [F 2]2

)
. (6.10)

Duality invariance imposes the following constraint on the Lagrangian:

L−L+ = 1 , (6.11)

where L± denotes the derivative of L with respect to p±. The most general solu-
tion to this requirement was subsequently given by Gaillard and Zumino [29] and
involves the freedom to specify an arbitrary function v(s). Its argument is solved for
in terms of p± via

p+ = v′2(p− − s) , (6.12)

after which the Lagrangian takes the form

L =
2p+
v′

+ v . (6.13)

There are two well-known closed-form solutions to (6.12). As a simple generalisation
of Maxwell (v = s), one can take v = s exp(c) for some constant c. This leads to the
so-called ModMax theory,

L =
1

4
cosh(c)[F 2] +

1

4
sinh(c)

√
4[F 4]− [F 2]2 (6.14)

with the special property of being the only modification that, on top of duality in-
variance, also preserves conformal symmetry [30]. This Lagrangian is not analytic
when expanded around an F = 0 vacuum, however, and hence can only be used for
non-trivial electromagnetic backgrounds. To ensure analyticity around F = 0, the
Lagrangian has to be even under the interchange of p±; we will restrict to this class
from now onwards. The second closed form solution, with analyticity, is Born-Infeld
theory [31], to which we will turn in the next section. Further generalisations were
found in [32].

3A somewhat similar construction was already presented in [26]. Further details on the history of this
theory can be found in [27].



6

6.3. Duality-invariant non-linear electrodynamics 195

In order to connect to massive gravity, one should first note that the above system
of equations (6.12), (6.13) allows for an interpretation of s as an auxiliary field: at the
solution for s, the Lagrangian can be written as

L =
1

v′
p+ + v′p− − Vs , Vs = sv′ − v . (6.15)

Provided v′′ ̸= 0, the constraint (6.12) is then actually equivalent to the field equation
for s. In this new formulation, the duality requirement (6.11) is moreover manifestly
satisfied. It thus follows that the construction of the most general non-linear duality-
invariant electrodynamics corresponds to integrating out an auxiliary field4 [32, 36];
however, what remains to be explained are the very specific couplings v′±1 of s to
the two components p± of the Maxwell field.

Remarkably, these follow exactly from integrating out massive gravity, and thus
are determined by diffeomorphism invariance and minimal coupling. To show this,
we will proceed in three steps. First observe that solving the metric, g, in terms of the
field strength, F 2, and a background metric η via the constraint equation (6.3) implies
that the matrices corresponding to g and F 2 must commute. In other words, the two
are simultaneously diagonalizable and, as a consequence, the eigenvalues of g come
in two pairs with distinct values, i.e. λ1,2. This confirms the intuition one obtains
from the perturbative approach of the previous section, where the metric is derived
in terms of a polynomial in the field strength; its most general, non-perturbative
expression is

g = c1(g, F )η + c2(g, F )F
2, (6.16)

where c1,2 are scalar functions of the metric and field-strength traces. We can fix
these in terms of traces as

g =
1

4
[g]η +

√
[g]2 − 4[g2]

[F 2]2 − 4[F 4]

(
F 2 − 1

4
[F 2]η

)
, (6.17)

to ensure that the metric obeys the correct relation to the eigenvalues [gi] = 2(λi1 +

λi2).

Secondly, since the Maxwell term in the Lagrangian is conformally invariant, it
can only depend on the ratio of these two eigenvalues. The specific expression fol-
lows from plugging (6.17) into (6.1) and turns out to be particularly simple:

LgF 2 = c+p+ + c−p− , c± = (λ1/λ2)
±1 . (6.18)

4This approach can be extended to supersymmetric systems, see e.g. [33–35].
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Note the close similarity to the auxiliary field formulation (6.15); however, we have
now derived, instead of postulated, the specific couplings to p± from massive gravity.

Finally, in contrast to the Maxwell part, the graviton potential in equation (6.1) is
not conformally invariant and therefore depends more generally on the two eigen-
values rather than their ratio only. A convenient approach is to separate off a con-
formal factor, g = ρ2g̃. This factor contributes via the MG potential to the trace
(taken with the inverse metric) of the graviton field equation (6.3). Solving for it
via this trace equation (or, alternatively, extremising with respect to the conformal
factor itself) yields a ’reduced’ MG potential with conformal invariance, which only
depends on the ratio of eigenvalues (of either g or g̃). Moreover, its dependence has
to be invariant under relabelling of the eigenvalues. The simplest quantity with this
property is:

f2 ≡ λ1
λ2

+
λ2
λ1

− 2 . (6.19)

Crucially, this is small if the auxiliary metric is close to flat-space, with the first con-
tributions coming in at quadratic order: f2 = [h2] − 1

4 [h]
2 + O(h3); note that odd

powers of f are not analytic around h = 0. Without loss of generality, the most
general EFT can thus be generated by a reduced MG potential,

Vf =
∑
n

anf
2n , (6.20)

where the coefficients, ai, are generated by the original MG potential in the process
of integrating out ρ. Expressing (6.18) in the same combination yields

c± = 1 +
1

2
f2 ± 1

2

√
f2(4 + f2) . (6.21)

which preserves duality invariance according to (6.11), since c−c+ = 1.

At this point it is simple to identify the mapping between the formulations with
auxiliary fields s and f2. For a given v(s), one can relate the two auxiliary fields
by c− = v′, which can be plugged into the potential to determine to which Vf this
corresponds. Conversely, for a given Vf , the same two equations allow one to solve
for v′ in terms of v and s, which can then be solved. There is thus a one-to-one
mapping between the auxilary field formulations in terms of v(s) and in terms of Vf .
We will provide an explicit example of this in the next section.
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6.4 dRGT & Born-Infeld

So far we have considered the most general graviton potential in equation (6.1).
However, MG theories typically suffer from negative energy states known as ghosts,
see e.g. Ref. [37]. In order for our theories to be physical, we therefore have to restrict
ourselves to ghost-free theories, requiring a very specific tuning of the coefficients of
the general MG potential in equation (6.1), known as dRGT gravity [4, 5].

At the linearised level this amounts to the Fierz-Pauli tuning b2 = −1 [38], while
its non-linear extension is defined in terms of a new tensor quantity [5]:

Kµ
ν = δµν −

√
δµν − gµαhαν , (6.22)

or, in matrix notation, K = I −
√
g−1η. MG in 4D is then ghost-free for a two

parameter family of potentials

LΛ3
= −1

8
m2√−g

4∑
n=2

αnL(n)
K ,

L(2)
K = [K]

2 −
[
K2
]
,

L(3)
K = [K]

3 − 3 [K]
[
K2
]
+ 2

[
K3
]
,

L(4)
K = [K]

4 − 6
[
K2
]
[K]

2
+ 8

[
K3
]
[K] + 3

[
K2
]2 − 6

[
K4
]
, (6.23)

where αi = (−4, 23c3, 2
4d5) and we will explicitly include the graviton mass m in

this section. Another important consequence of this tuning is the fact that the UV-
cutoff of the theory is raised from Λ5 = (MPm

4)1/5 to Λ3 = (MPm
2)1/3. This theory

is therefore also referred to as Λ3-theory.

We will demonstrate how dRGT gravity is connected to a very specific non-linear
completion due to Born and Infeld [31], which has the remarkable property that it
can be formulated geometrically:

LBI = −m
2

4

((
−det(η − 4

m2
F 2)

)1/4

− 1

)
. (6.24)

It arises in a variety of contexts, including string theory (as the world-volume theory
of D-branes [13]), the double copy (allowing for a CHY formulation of its amplitudes
[14]) and soft limits (under a multi-chiral soft limit [15]). This prompts the question
whether it follows from the ghost-free dRGT theory and, if so, what its graviton po-
tential is.
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To this end, we will first derive the reduced graviton potential corresponding to
Born-Infeld theory. Following the example of Ref. [29], the auxiliary field formula-
tion of Born-Infeld in terms of s is5

v(s) = −m
2

4

(√
1− 8

m2
s− 1

)
. (6.25)

Following the general procedure outlined in the previous section, this can be mapped
onto the following auxiliary field formulation in terms of f2:

Vf =
m2

8

(v′ − 1)2

v′
=
m2

8
f2 , (6.26)

where in the last equality we have made use of the relation (6.21). Hence, we con-
clude that the simplest possible reduced MG potential, that is only linear in f2, leads
to Born-Infeld.

It remains to see whether this fits within dRGT. Following the perturbative ap-
proach of section 6.2 and matching order by order, we find that Born-Infeld theory
requires the dRGT parameters c3 = 1

6 and d5 = 0. For these values, the full potential
can be written as

1

m2
LΛ3

= 1 +
√−g

(
[K]− det(K)− 1

)
, (6.27)

where we have used det(I − K) = det(g)−1/2. To integrate out the graviton, we
follow the procedure described in section 6.3. First, we rewrite the above Lagrangian
in terms of the metric,

1

m2
LΛ3

=1 +
√−g

(
2 + [g−1/2]2(−1

2
+

1

8
[g−1/2]− 1

64
[g−1/2]2) + [g−1](

1

2
− 1

4
[g−1/2]

+
1

16
[g−1/2]2 − 1

16
[g−1])

)
, (6.28)

where g−1/2 ≡
√
g−1η. We then pull out a conformal factor from the metric, g = ρ2g̃

and solve for it using the trace of (6.3), or alternatively simply vary with respect to
ρ itself. For the specific potential of (6.28) this yields the particularly simple solution
ρ = [g̃−1/2]. It follows naturally that the resulting reduced MG potential is confor-
mally invariant which allows us to work with the original metric g again. After this
substitution, the full Lagrangian can be compactly written as

L =
1

4

√−g⟨F 2⟩ − m2

16

√−g⟨η2⟩+ m2

4
, (6.29)

5Notice a sign difference compared to Ref. [29], which is due to their p, q corresponding to −p−,−p+
in our notation.
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where ⟨η2⟩ = [g−2] in our notation. Upon varying and solving (6.29) for g, with the
simple solution

g = η

√
I− 4

m2
F · η · F , (6.30)

this results precisely in Born-Infeld theory with the coupling scale set by the mass of
the graviton as given in equation (6.24).

We thus find that Born-Infeld follows from integrating out the massive gravi-
ton in a specific dRGT theory. Moreover, the relevant part of the MG potential in
(6.29) indeed takes the simple form (6.26) predicted by the auxiliary field prescrip-
tion. From this perspective, Born-Infeld corresponds to the leading non-linear com-
pletion of Maxwell theory, with the simplest possible conformally invariant potential
f2. Higher-order terms of f2 in the reduced graviton potential encode the other pa-
rameter choices of dRGT.

As a corollary remark, we note that for the choice of parameters c3 = 1
6 and

d5 = 0, the helicity-0 component of the theory in the decoupling limit, generally
given by the cubic, quartic and quintic Galileon terms, now reduce to the quartic
special Galileon (see e.g. equation (9.27) in Ref. [39]).

6.5 Conclusions

In this chapter we have studied the low energy effective action of Maxwell theory
coupled to massive gravity by integrating out the massive graviton. The invariance
of Maxwell theory under duality rotations is retained in this scenario, as gravity
is unaffected by such transformations. Hence, we have found a reformulation of
the previous classification of duality invariant non-linear electrodynamics [28, 29] in
terms of an auxiliary graviton field6. The conformal invariance of Maxwell plays an
important role in this approach, and allows the MG potential to be truncated to a
conformal section of it. Remarkably, it turns out that one can generate all non-linear,
analytic completions of Maxwell7 in this manner. Although an auxiliary field formu-
lation of non-linear electrodynamics is not new (e.g. [32, 36]), the specific couplings
that are needed now follow from minimal coupling and thus diffeomorphism invari-
ance, instead of being included ad hoc. Therefore, our approach naturally preserves

6Note that auxiliary metrics have also been introduced in the construction of self-dual p-form actions
[40, 41]; it would be interesting to investigate possible connections.

7Perhaps the same applies to ModMax, such that its non-linear Born-Infeld completion [42] can be
derived by coupling it to a massive graviton. We leave this for future work.
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principles such as locality and, moreover, has an obvious generalization to include
derivative interactions.

Restricting ourselves to the subset of ghost-free massive gravity theories known
as dRGT gravity, we identified a particular theory whose conformal MG potential
takes a simple quadratic form in terms of the relabeling-invariant combination (6.19)
of the graviton’s eigenvalues. Integrating out the remaining graviton components
leads to the geometric Born-Infeld action to all orders. Given the latter’s special
properties in terms of amplitudes, it would be interesting to investigate what the
current perspective implies. For instance, we have restricted ourselves to the lowest
order in the expansion of scattering energy over graviton mass; keeping sublead-
ing terms would correspond to higher-derivative terms, e.g. of the form ∂4F 4. Can
these be formulated in terms of curvature invariants of the metric η + F ? Similarly,
do these higher-derivative corrections fit in the CHY formalism [14, 43]?

Furthermore, one can wonder whether there is something special about non-
linear completions obtained from dRGT massive gravity, since these follow from
integrating out a well defined physical graviton field, compared to theories obtained
from non-dRGT massive gravity, where one naively integrates out an auxiliary field
that propagates ghosts. For example, it would be interesting to see whether the ad-
ditional dRGT parameters (beyond the specific point with the MG potential (6.28))
fit in the double copy framework, and moreover whether there is a connection to
positivity bounds on these theories [11, 12] as well.

On a different note, given the crucial role of conformal invariance in our ap-
proach, it is natural to ask whether a similar construction can be applied to a scalar
field in 2D. In fact, this case is even more special: massive gravity does not propa-
gate any physical degrees of freedom in two dimensions and is therefore a genuine
auxiliary field. Moreover, the dRGT graviton potential has no free parameters in 2D.
Indeed it has been found that it maps uniquely to the (multi-field) Dirac-Born-Infeld
(DBI) theory by eliminating the non-dynamical degrees of freedom [19]. One can
view the above as the massive extension of the usual transition from the Polyakov
to the Nambu-Goto form of the string world-sheet action. In the massless case, the
auxiliary world-sheet metric is only determined up to an overall factor, due to the
conformal symmetry. The introduction of the dRGT potential in 2D breaks this sym-
metry and can be seen as a gauge fixing term. Integrating out the world-sheet metric
now also fixes its overall factor, but this does not change the resulting expressions:
the overall factor drops out of the massless part, and moreover the dRGT potential
exactly vanishes for this choice (as it acts as a gauge fixing term for the conformal
symmetry).
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DBI is special: it describes the longitudinal modes of D-branes and non-linearly
realises a higher-dimensional version of Poincaré; as a consequence, its amplitudes
display a generalised Adler zero in their soft limit [44]. It would be interesting to see
whether one can also generate the unique Volkov-Akulov fermionic interactions [45]
with these properties in this way.

Given the connection between integrating out dRGT gravity and T T̄ -deformations
in 2D [19], it would be interesting to investigate the possible relation of our approach
to T T̄ -deformations in 4D, see e.g. [20, 21] for Maxwell and [22–24] for ModMax.

In contrast to the special cases discussed here, one loses conformal invariance in
generic dimensions. One can easily check (e.g. by a perturbative approach at low
orders) that naively integrating out a massive graviton in such cases does not lead to
the specific turning of Born-Infeld for a vector field (or DBI for a scalar field), again
underlining the importance of conformal invariance. In order to move into other
dimensions and theories, it might be necessary to include dilaton interactions, on top
of gravity; this combination is natural from e.g. the common sector of string theory,
as well as the double copy [16, 43]. However, these set-ups are normally massless;
our approach would require an extension of massive gravity to also include a dilaton.
We leave these considerations for future work.
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Chapter 7

Discussion and Outlook

Cosmology is about to enter an era of unprecedented amounts of observational data,
using a variety of probes, such as the relic Cosmic Microwave Background, the dis-
tribution of galaxies across the low-redshift universe, and the 21-cm neutral hydro-
gen line across the universe’s entire history. This wealth of data is poised to lead to
transformative insights into the physics governing the universe at the largest scales,
thereby hopefully resolving some of the open questions and tensions in cosmology,
including the mysterious nature of Dark Matter and Dark Energy. We also hope to
gain insight into the fundamental physics on the very smallest length scales and time
scales too, possibly shedding light on already existing hints of physics beyond the
standard model, such as massive neutrinos [1]. Additionally, we will be able to per-
form the most stringent test of the inflationary paradigm so far, including a possible
detection of CMB B-modes.

Among these tests of inflation, primordial non-Gaussianity constitutes one of the
most promising and exciting windows into the early universe. Its ability to discern
physical mechanisms that drive the exponential expansion of inflation, as well as its
sensitivity to the particle content of this epoch, make it a unique probe of fundamen-
tal physics at an unprecedented energy scale. So far, extensive efforts to map the
CMB to ever-increasing precision, have not resulted in conclusive evidence for the
existence of these non-Gaussian features, but have led to tight constraints as to what
their magnitude can be, and we will have another shot at a detection with the up-
coming next generation of surveys. Soon though, the lack of anisotropies on the very
smallest scales of the CMB will force us to look beyond this otherwise rich source of
data.

The large-scale structure of the universe spans a vast three-dimensional volume
covering different epochs from the present up to the CMB surface, containing orders
of magnitude more information than the two-dimensional CMB image. The most
recent of these epochs we will be able to probe by studying the spatial distribution
of galaxies across the universe as a tracer of the matter distribution. Although this
will provide us with a vast amount of data, the non-linear evolution of the mat-
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ter distribution and the relatively unknown process of structure formation severely
complicate the extraction of valuable cosmological information as compared to the
analysis of the CMB, which is both highly Gaussian and linearly related to the ini-
tial conditions seeded by inflation. Since only the largest scales of our present-day
universe can currently be modeled with sufficient accuracy, state-of-the-art cosmo-
logical analysis of galaxy data uses only a subset of the total information present in
the data. The tools to perform such analyses, both analytical or based on numerical
simulations, are under active development and it remains yet to be seen how much
of the data can be used to constrain further our cosmological models, including pri-
mordial non-Gaussianity.

The problem of non-linearity is naturally less severe at earlier times, i.e. higher
redshifts, before the complicated physics of forming bound structures took place. For
these earlier epochs, we hope to map the distribution of neutral hydrogen through
its 21-cm spectral line as a tracer of the underlying matter distribution. In partic-
ular, the earliest of these epochs, the Dark Ages, stands out both since it is highly
linear and virtually free of any unknown astrophysics, in principle making it the
cleanest probe for cosmology after the CMB. This therefore promises the Dark Ages’
21-cm signal to also be an excellent probe of primordial non-Gaussianity. In Chap-
ter 2, we have investigated this claim quantitatively. After having established the
most accurate analytical model of the 21-cm signal from the Dark Ages, we use it to
forecast constraints on primordial non-Gaussianity, for the first time including the
primordial trispectrum, while carefully accounting for the confusion of the primor-
dial signal with intrinsic non-Gaussianity of the tracer through marginalization. We
confirm the probe’s unprecedented sensitivity to primordial non-Gaussianity and its
potential to provide a new window into fundamental physics at the highest energy
scales, paving the way for cosmological collider physics.

As already outlined in Chapter 1, the challenge that a measurement of the 21-
cm signal from the Dark Ages poses, is daunting. Strong foreground contamination
(including Earth’s ionosphere) severely complicates the detection of the minute 21-
cm signal, let alone its even smaller fluctuations that allow us to trace the matter
distribution and learn about the initial conditions of the universe. Nevertheless,
there has been serious effort by the scientific community to propose future space- or
lunar-based missions with a focus on exploring the cosmic Dark Ages [2–6], some of
which are being actively considered by international space agencies [7, 8]. Given the
extraordinary capacity and perseverance of scientists, the author is hopeful that the
futuristic science described in Chapter 2 will eventually become a reality.

Meanwhile, even if we can model highly linear tracers such as the 21-cm sig-
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nal from the Dark Ages accurately out to very small scales, this does not set us free
from the consequences of non-linearity. Fourier modes of different wavelengths are
inevitably coupled by the non-linear evolution that they undergo. Hence, also the
summary statistics of these modes that we hope to analyze (the data), are correlated.
This non-Gaussian covariance results in a reduced amount of unique information
contained in the data and needs to be properly accounted for both during infer-
ence, as well as when making experimental forecasts. Failure to do so will result in
overconfident constraints and overly optimistic expectations of future experimental
endeavors. However, many of the existing forecasts on primordial non-Gaussianity
using high-redshift tracers tend to neglect its effects, assuming that it is small.

In Chapter 3, we investigated the validity of this assumption and we study the
impact of non-Gaussian covariance on forecast constraints on primordial non-Gaussianity.
We confirm the recent finding that non-Gaussian contributions to the bispectrum co-
variance are largest for highly squeezed triangles, thus significantly impacting the
constraining power of the bispectrum for local (squeezed) primordial non-Gaussianity
1. Additionally, we show for the first time that as we go to higher redshift, where we
expect to be able to access smaller scales and thus increasingly squeezed triangles,
the impact on local primordial non-Gaussianity increases, and causes the constrain-
ing power of the bispectrum to saturate. This goes against the naïve expectation
that for more linear tracers, non-Gaussian covariance is by definition a smaller ef-
fect. To demonstrate how this affects observational constraints, we revised the origi-
nal forecast of the PUMA 21-cm line-intensity-mapping experiment, which neglects
non-Gaussian covariance. Most importantly, we find that accounting for this addi-
tional covariance increases forecast error bars on local primordial non-Gaussianity
using the hydrogen bispectrum, by a factor of 2 to 5 depending on the redshift con-
sidered. The results of the chapter reveal a previously overlooked complication in
using high redshift (z > 2) tracers to constrain local primordial non-Gaussianity, and
hence careful interpretation of forecasts such as those presented in Chapter 2 is war-
ranted.

A recent work that the author of this thesis has contributed to, explores an al-
ternative way of using the 21-cm signal from the Dark Ages [10]. Since the scales
accessed in the CMB are of a much larger physical size than those accessed with the
21-cm signal from the Dark Ages, one can combine the two tracers to probe highly
squeezed triangle configurations, making it an attractive setup for measuring lo-
cal primordial non-Gaussianity. Furthermore, at the time of CMB emission, and on

1It has furthermore been shown that even if one can model the matter bispectrum to far within the
non-linear regime using consistency relations, non-Gaussian covariance of the bispectrum quickly satures
constraints on local primordial non-Gaussianity beyond the non-linear scale [9].
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scales as large as the lowest CMB multipoles, the size of matter fluctuations is small.
This reduces the strength of non-Gaussian covariance on these squeezed triangles,
and it is shown that using cross-correlations of CMB and 21-cm from the Dark Ages
can yield exquisite constraints on local primordial non-Gaussianity. This provides
additional motivation for future efforts to map the 21-cm signal from the Dark Ages.

Non-Gaussian covariance of summary statistics is a manifestation of the fact that
non-linear evolution has moved information from its starting point (e.g. in squeezed
triangles) to smaller scales and higher-order spatial correlation functions. Thus cap-
turing all information in the data requires computation of such correlation functions,
which can quickly become more expensive. This is in part because for a larger data
vector, one requires significantly more simulations to obtain an accurate covariance
matrix, and the inclusion of higher-order correlations makes theoretical covariance
matrix computation infeasible too. In Chapter 4, we investigated to which extent
this problem can be alleviated by reconstructing the linear matter distribution at
the field level. The goal of the reconstruction is to move information back into the
lower-order correlation functions, whose information content is then analyzed. We
find that a reconstructive approach using convolutional neural networks can indeed
improve constraints on cosmological parameters. In particular, constraints on pri-
mordial non-Gaussianity are greatly improved, as the information content of mainly
the bispectrum is significantly increased. Our results show that cosmological analy-
sis of data from the late-time non-linear universe can be enhanced by going beyond
the direct use of summary statistics.

Instead, our approach can be regarded as a form of field-level inference, as our
network employs the unsummarized data of the matter density field (thus limited
only by pixel resolution). Over recent years this type of inference has gained at-
tention, which is in part due to rapid developments in the field of artificial intelli-
gence (AI), that allow the handling of such high-dimensional data without the need
for summary statistics. For example, graph neural networks enable extraction of
cosmological parameters directly from simulated galaxy (or halo) catalogs [11, 12].
Another approach, that is particularly interesting in the context of primordial non-
Gaussianity, is that of simultaneously inferring (i.e. reconstructing) the initial con-
ditions and other cosmological parameters from non-linear data (e.g. the late-time
matter distribution) using a (Bayesian) posterior probability distribution and a for-
ward model that simulates this non-linear data given some initial conditions and
cosmological parameters. With traditional Bayesian methods, such as Markov Chain
Monte Carlo, this high-dimensional problem is intractable, due to the sheer size of
the parameter space that needs to be explored. However, if we were to have access to
gradients (i.e. derivatives) of the posterior, it would allow for both efficient optimiza-
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tion of the most likely initial conditions and cosmological parameters (maximizing
the posterior), as well as the use of gradient-based Bayesian sampling techniques,
such as Hybrid (Hamiltonian) Monte Carlo, that can handle such high-dimensional
problems. In the case of an analytical (but approximate) forward model for the non-
linear evolution, one can obtain this gradient analytically and use it to efficiently
sample initial conditions [13]. Such a setup can then also be used to simultaneously
infer cosmological parameters [14], including the amplitude of local primordial non-
Gaussianity [15]. For more sophisticated forward models, like approximate N-body
simulators (e.g. particle-mesh), this gradient cannot be obtained analytically in a
straightforward way. Nevertheless, recent advances in AI have led to the devel-
opment of software that can perform exact differentiation (i.e. not based on finite-
difference methods) of such models, and thus the posterior distribution [16, 17]. This
again enables Bayesian inference of cosmological initial conditions and cosmologi-
cal parameters [18]. Given the already significant gains in cosmological parameter
constraints achievable with neural network based reconstruction, as described in
Chapter 4, it would be interesting to investigate to what extent a Bayesian forward
modeling approach can improve upon this. As previous investigations have shown,
such an approach can perform optimal reconstruction [16], and thus provides an-
other promising avenue for more optimal extraction of primordial non-Gaussianity
from large-scale structure data that deserves further exploration.

In the years to come, the CMB will remain an important source of cosmologi-
cal information. The fidelity of upcoming CMB experiments such as Simons Ob-
servatory and CMB-S4, are poised to determine cosmological parameters with un-
precedented accuracy. One complication in analyzing the CMB is that its observed
fluctuations are lensed by the late-time matter distribution. This affects our ability to
infer the existence of primordial tensor fluctuations and primordial non-Gaussianity,
among others. The next generation of CMB surveys will reach noise levels at which
conventional analysis techniques become suboptimal. To extract the maximum amount
of information, more sophisticated analyses are thus required. To this end, in Chap-
ter 5, we developed a score-based generative model for performing Bayesian recon-
struction of the CMB lensing potential. Most importantly, our model bypasses the
need for analytical expressions of the lensing posterior distribution, allowing us to
for the first time perform accurate reconstruction of non-Gaussian potentials. The
developed methods pave the way for more optimal analysis of future CMB data, as
well as the use of the lensing potential as an unbiased tracer of the total matter den-
sity distribution.

The aforementioned developments are promising and, combined with rapid ad-
vancements in computational technology, will eventually enable the optimal extrac-
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tion of all cosmological information from the observable universe. This will in turn
drastically improve our understanding of the cosmos and the fundamental princi-
ples that govern it, possibly revealing hints, or even evidence, for new and un-
explored physics. The hunt for primordial non-Gaussianity provides a promising
avenue for such discoveries, and it is only a matter of time until we unravel how
skewed the universe really is.
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Summary

Some of the most fundamental open questions in physics pertain to what happened
during the first moments after the Big Bang when the universe came into existence.
One of the most well-established theories is that the universe underwent a period of
rapidly accelerated (exponential) expansion for a tiny fraction of a second, expand-
ing space by upwards of twenty orders of magnitude. This period goes by the name
of cosmic inflation. The most compelling hints for such an expansion having oc-
curred come from the Cosmic Microwave Background (CMB) radiation. This relic
light, emitted only 300.000 years after the Big Bang, provides us with an early snap-
shot of the state of the early universe. The inflationary expansion helps to explain
the observational fact that two causally disconnected regions in the CMB today (e.g.
two polar opposite directions in the sky) have a nearly identical temperature. This
apparent fine-tuning of the universe can instead be explained if the observable uni-
verse started out much smaller, such that all of it was in causal contact early on and
thus able to reach a thermal equilibrium. The CMB is not perfectly homogeneous
and isotropic though, and we have measured tiny temperature fluctuations of 1 part
in 10000, that appear to be Gaussian distributed. Strikingly, cosmic inflation also
provides a mechanism for generating these tiny anisotropies that we see in the CMB,
and that serve as the seeds of structure formation and can thus be thought of as the
initial conditions of the universe, by means of quantum fluctuations.

Inflationary expansion can be physically realized in a myriad of ways, many of
which are compatible with our precise observations of the CMB to date. To advance
our understanding of the early universe, we thus need to look for additional ways
to discriminate different inflationary scenarios. One such way is through what is
known as primordial non-Gaussianity. Although so far our measurements of the
CMB tell us that the initial conditions appear to be Gaussian, models of inflation
generically predict some amount of deviation from this. Non-Gaussianity of the
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initial condition implies the presence of higher-order correlation functions beyond
the two-point correlation that characterizes a Gaussian distribution. Contrary to the
two-point correlation (or power spectrum in Fourier space), which only depends
on the distance between two points (or wavelength in Fourier space), correlations
between more than two points, are captured by polygons. Remarkably, different in-
flationary mechanisms induce correlations in distinctly shaped polygons, thus pro-
viding a direct probe of inflation. Focussing on the lowest order of non-Gaussian
correlations, a three-point function (or bispectrum in Fourier space), we are led to
study correlations in various shapes of triangles, as visualized in Figure 7.2.

Figure 7.1: The distribution of primordial density fluctuations, that serve as the initial con-
ditions of our universe, can include higher-order correlation functions, such as three-point
correlations. Different inflationary mechanisms induce correlations in distinctly shaped trian-
gles, such as the squeezed, equilateral, and flattened shapes visualized here.

The simplest theoretical model of cosmic inflation requires the presence of a sin-
gle scalar field with a suitably shaped potential energy curve, minimally interacting
with gravity. The quantum fluctuations of this scalar field translate into the primor-
dial density perturbations at the end of inflation. In this scenario, the amount of pri-
mordial non-Gaussianity is predicted to be small. However, direct self-interactions
of this scalar field can generate a sizable bispectrum in equilateral triangle config-
urations. On the contrary, the presence of additional scalar fields contributing to
the inflationary expansion is likely to induce a large bispectrum in squeezed trian-
gle configurations. It is thus clear that primordial non-Gaussianity could provide
valuable insights into the dynamics of inflation. Besides being a direct probe of the
inflationary mechanism, primordial non-Gaussianity is also sensitive to the interac-
tions of the scalar field(s) with additional fields present during (but not contributing
to) inflation, the presence of which induces a striking oscillatory feature in the afore-
mentioned squeezed triangles, the amplitude and frequency of which is related to
the mass and spin of the spectator field. It is for this reason that inflation can be
regarded as a cosmological particle collider, the outcome of which has set the ini-
tial conditions of the universe, and the energy scale of which is orders of magnitude
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larger than that achieved with any terrestrial particle collider experiment. In this
way, primordial non-Gaussianity provides a unique and powerful window into the
physics at play during the inflationary epoch.

Since we do not have direct access to the initial conditions, we need to infer its
properties from the observable universe that these initial conditions gave rise to. As
previously mentioned, the CMB provides a pristine tracer of the primordial den-
sity fluctuations and has therefore been an indispensable source of information on
the early universe. The next generation of CMB surveys aims to provide an even
higher resolution view of the early universe, improving constraints on primordial
non-Gaussianity in the process. In doing so, these surveys will approach the limit
of what the CMB can tell us about primordial non-Gaussianity. Thus we are forced
to move our attention toward the distribution of matter throughout the universe,
known as the large-scale structure of the universe. Although in principle the three-
dimensional distribution of matter contains many times more information than the
two-dimensional CMB, its relation to the initial conditions becomes more non-linear
over time, due to the gravitational collapse of the matter into bound structures (e.g.
galaxies). Extracting primordial non-Gaussianity from the matter distribution there-
fore comes with substantial difficulties. This thesis presents several advancements,
challenges and prospects in the hunt for primordial non-Gaussianity using the large-
scale structure of the universe.

In Chapter 2 we investigate the use of the 21-centimeter hyperfine transition of
the neutral hydrogen gas that permeates the universe during the Cosmic Dark Ages,
as a probe of primordial non-Gaussianity. We find that this pristine tracer of primor-
dial fluctuations, together with its vast three-dimensional volume, yields unparal-
leled precision to detect or constrain primordial non-Gaussianity, providing access
to the cosmological collider.

In Chapter 3 we study the impact of the non-linear evolution of cosmic struc-
ture on constraints on primordial non-Gaussianity. Contrary to naive expectations,
we reveal that even at very high redshift, where the matter density field is deemed
to be highly linear, non-Gaussian covariance of the bispectrum triangle configura-
tions significantly degrades sensitivity to local-type primordial non-Gaussianity. As
an example, we demonstrate that failure to account for this additional covariance
significantly overestimates the constraining power of a hydrogen intensity mapping
survey (PUMA) at moderately high redshift.

The large non-Gaussian covariance of the bispectrum triangle configurations es-
sentially states that the information that is present in these triangles in the linear den-
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sity field, has been moved to higher-order correlation functions and smaller scales
by non-linear evolution. In an attempt to recover the information, in Chapter 4 we
study the use of artificial neural networks (ANNs) in reconstructing the linear den-
sity field from its late-time counterpart. Using a large suite of cosmological N-body
simulations, we demonstrate that ANNs are indeed able to accurately reconstruct
the linear density field. Furthermore, we show that the lowest-order statistics of the
reconstructed density field contain significantly more information on cosmological
parameters, including primordial non-Gaussianity, thus recovering valuable infor-
mation present in the late-time density field.

In Chapter 5 we focus on the effect of the large-scale structure of the universe on
observations of the CMB. As the light of the CMB travels throughout the universe,
its path is deflected by the intervening matter distribution, an effect known as weak
gravitational lensing. This effect slightly alters the statistics of the observed CMB
from that of the emitted CMB, in particular obfuscating signatures of primordial
non-Gaussianity. We develop a novel approach to reconstruct the CMB lensing po-
tential, given lensed CMB observations, using state-of-the-art generative machine
learning models, known as denoising diffusion models. Our method allows for a
fully Bayesian treatment of the CMB lensing problem while being faster and more
flexible than existing Bayesian methods.

Finally, in Chapter 6 we take a break from cosmology and study flat-space scatter-
ing amplitudes in effective field theories. We expose an intriguing relation between
theories of massive gravity and non-linear electrodynamics. In particular, this in-
volves theories that naturally appear in the scattering amplitude Double Copy web
of theories, hinting at a possible role of massive gravity within this context.



Samenvatting

Enkele van de meest fundamentele open vragen in de natuurkunde hebben betrekking
op wat er gebeurde tijdens de eerste momenten na de oerknal toen het universum
ontstond. Een van de meest gevestigde theorieën is dat het heelal een periode van
versnelde (exponentiële) uitdijing onderging gedurende een fractie van een seconde,
waarbij de ruimte met meer dan twintig orden van grootte uitdijde. Deze periode
wordt ook wel de kosmische inflatie genoemd. De meest overtuigende aanwijzin-
gen dat zo’n uitdijing heeft plaatsgevonden, komen van de kosmische microgolf
achtergrondstraling (Cosmic Microwave Background, CMB). Dit overgebleven licht,
dat slechts 300.000 jaar na de oerknal werd uitgezonden, geeft ons een vroege mo-
mentopname van de staat van het vroege heelal. De exponentiële uitdijing helpt
bij het verklaren van de waarneming dat twee causaal onverbonden gebieden in de
CMB (bijv. twee tegenovergestelde richtingen aan de hemel) een bijna identieke tem-
peratuur hebben. Deze schijnbare fijnafstemming van het universum kan in plaats
daarvan worden verklaard als het waarneembare universum veel kleiner begon, zo-
dat het geheel vroeg in causaal contact stond en zo een thermisch evenwicht kon
bereiken. De CMB is echter niet perfect homogeen en isotroop en we hebben mi-
nuscule temperatuurschommelingen van 1 deel op 10000 gemeten, die Gaussisch
verdeeld lijken te zijn. Opvallend genoeg biedt de kosmische inflatie theorie ook
een mechanisme voor het genereren van deze kleine anisotropieën die we zien in
de CMB, en die dienen als de zaden van structuurvorming en dus kunnen worden
gezien als de begincondities van het universum, door middel van kwantumfluctu-
aties.

Inflatoire uitdijing kan op een groot aantal manieren fysisch worden gerealiseerd,
waarvan vele verenigbaar zijn met onze nauwkeurige waarnemingen van de CMB
tot nu toe. Om ons begrip van het vroege heelal te bevorderen, moeten we dus
op zoek naar aanvullende manieren om verschillende inflatiescenario’s te onder-
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scheiden. Eén zo’n manier is via niet-Gaussische begincondities (primordial non-
Gaussianity). Hoewel onze metingen van de CMB ons tot nu toe vertellen dat de
begincondities Gaussisch lijken te zijn, voorspellen inflatiemodellen over het alge-
meen enige afwijking hiervan. Niet-Gaussische begincondities impliceren de aan-
wezigheid van correlatiefuncties van hogere orde dan de tweepuntscorrelatie die
kenmerkend is voor een Gaussische verdeling. In tegenstelling tot de tweepuntscor-
relatie (of het vermogensspectrum in de Fourier-ruimte), die alleen afhangt van de
afstand tussen twee punten (of golflengte in de Fourier-ruimte), worden correlaties
tussen meer dan twee punten weergegeven door veelhoeken. Opmerkelijk is dat
verschillende inflatiemechanismen correlaties in verschillend gevormde veelhoeken
teweegbrengen, waardoor deze als directe probe van inflatie gezien kunnen worden.
Door ons bijvoorbeeld te richten op de laagste orde van niet-Gaussische correlaties,
een driepuntsfunctie (of bispectrum in de Fourier-ruimte), kunnen we correlaties in
verschillende vormen van driehoeken bestuderen, zoals gevisualiseerd in figuur 7.2.

.

Figure 7.2: De verdeling van primordiale dichtheidsfluctuaties, die dienen als de begincondi-
ties van ons universum, kan correlatiefuncties van hogere orde bevatten, zoals driepuntscor-
relaties. Verschillende inflatiemechanismen induceren correlaties in verschillend gevormde
driehoeken, zoals de samengeknepen, gelijkzijdige en platte vormen die hier worden gevisu-
aliseerd.

Het eenvoudigste theoretische model van kosmische inflatie vereist de aanwezigheid
van een enkel scalair veld met een passend gevormde potentiële energiecurve, met
minimale interactie met de zwaartekracht. De kwantumfluctuaties van dit scalaire
veld vertalen zich in de primordiale dichtheidsveranderingen aan het einde van de
inflatie. In dit scenario wordt voorspeld dat de afwijking van Gaussische begincon-
dities klein is. Directe zelfinteracties van dit scalaire veld kunnen echter een aanzien-
lijk bispectrum genereren in gelijkzijdige driehoeksconfiguraties. Daarentegen zal
de aanwezigheid van extra scalaire velden die bijdragen aan de inflatie-expansie
waarschijnlijk een groot bispectrum in geknepen driehoeksconfiguraties veroorza-
ken. Het is dus duidelijk dat niet-Gaussische begincondities waardevolle inzichten
kunnen geven in de dynamica van inflatie. Niet-Gaussische begincondities zijn niet
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alleen een directe probe van het inflatiemechanisme, maar zijn ook gevoelig voor de
interacties van het scalaire veld met andere velden die aanwezig zijn tijdens (maar
niet bijdragen aan) inflatie, en waarvan de aanwezigheid een opvallende oscillatoire
eigenschap induceert in de eerder genoemde geknepen driehoeken, waarvan de am-
plitude en frequentie gerelateerd is aan de massa en spin van het spectatorveld.
Om deze reden kan inflatie worden beschouwd als een kosmologische deeltjesver-
sneller, waarvan de uitkomst de begincondities van het universum heeft bepaald en
waarvan de energieschaal ordes van grootte groter is dan die van welk terrestrisch
deeltjesversnellerexperiment dan ook. Op deze manier bieden niet-Gaussische be-
gincondities een uniek en krachtig inzicht in de fysica tijdens het inflatoire tijdperk.

Omdat we geen directe toegang hebben tot de begincondities, moeten we de
eigenschappen afleiden uit het waarneembare universum dat uit deze begincondi-
ties voortkwam. Zoals eerder vermeld, levert de CMB een vrijwel onaangetaste blik
op de primordiale dichtheidsfluctuaties en is daarom een onmisbare bron van in-
formatie over het vroege heelal. De volgende generatie CMB-observaties heeft als
doel om een nog hoger resolutiebeeld te krijgen van het vroege heelal, waarmee ons
inzicht in niet-Gaussische begincondities zal worden verbeterd. Daarmee naderen
deze onderzoeken echter de grens van wat de CMB ons kan vertellen over niet-
Gaussische begincondities. We zijn dus gedwongen om onze aandacht te verleggen
naar de verdeling van materie door het heelal, bekend als de groteschaalstructuur
van het universum. Hoewel de driedimensionale verdeling van materie in principe
vele malen meer informatie bevat dan de tweedimensionale CMB, wordt de relatie
met de begincondities in de loop van de tijd niet-lineair door de gravitationele in-
eenstorting van de materie in gebonden structuren (zoals sterrenstelsels). Het ex-
traheren van information over niet-Gaussische begincondities uit de materieverdel-
ing gaat daarom gepaard met aanzienlijke moeilijkheden. Dit proefschrift presen-
teert verschillende vorderingen, uitdagingen en vooruitzichten in de jacht op niet-
Gaussische begincondities in de groteschaalstructuur van het universum.

In hoofdstuk 2 onderzoeken we het gebruik van de 21-centimeter hyperfijne tran-
sitie van het neutrale waterstofgas dat het heelal vult tijdens de kosmische donkere
eeuwen, als een probe van niet-Gaussische begincondities. We vinden dat deze vri-
jwel onaangetaste volger van primordiale fluctuaties, samen met zijn enorme driedi-
mensionale volume, een ongeëvenaarde precisie oplevert om niet-Gaussische begin-
condities te detecteren of te beperken, hetgeen toegang geeft tot de kosmologische
deeltjesversneller.

In hoofdstuk 3 bestuderen we de invloed van de niet-lineaire evolutie van kos-
mische structuren op het bepalen van niet-Gaussische begincondities. In tegen-
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stelling tot naïeve verwachtingen, onthullen we dat zelfs op zeer hoge roodver-
schuiving, waar het materiedichtheidsveld geacht wordt zeer lineair te zijn, de niet-
Gaussische covariantie van het bispectrum driehoeksconfiguraties de gevoeligheid
voor niet-Gaussische begincondities van het lokale type aanzienlijk vermindert. Als
voorbeeld laten we zien dat het niet in rekening brengen van deze extra covari-
antie de bepalende kracht van een waterstofspectrum intensiteitsmeting (PUMA)
bij matig hoge roodverschuiving aanzienlijk overschat.

De grote niet-Gaussische covariantie van de driehoeksconfiguraties van het bis-
pectrum geeft in wezen aan dat de informatie die in deze driehoeken aanwezig is
in het lineaire dichtheidsveld, door niet-lineaire evolutie is verplaatst naar corre-
latiefuncties van hogere orde alsmede naar kleinere schalen. In een poging om de
informatie terug te krijgen, bestuderen we in hoofdstuk 4 het gebruik van kunst-
matige neurale netwerken (KNN’s) om het lineaire dichtheidsveld te reconstrueren
vanuit zijn latere niet-lineare tegenhanger. Met behulp van een groot aantal kosmol-
ogische simulaties tonen we aan dat KNN’s inderdaad in staat zijn om nauwkeurig
het lineaire dichtheidsveld te reconstrueren. Verder laten we zien dat de laagste-orde
statistiek van het gereconstrueerde dichtheidsveld significant meer informatie bevat
over kosmologische parameters, inclusief niet-Gaussische begincondities, waardoor
waardevolle informatie uit het niet-lineare dichtheidsveld wordt teruggewonnen.

In hoofdstuk 5 richten we ons op het effect van de grootschalige structuur van
het heelal op waarnemingen van de CMB. Als het licht van de CMB door het hee-
lal reist, wordt zijn pad afgebogen door de tussenliggende materiedistributie, een
effect dat bekend staat als zwakke gravitationele lensing. Dit effect verandert de
statistiek van de waargenomen CMB enigszins ten opzichte van die van de uitgezon-
den CMB, waardoor met name tekenen van niet-Gaussische begincondities worden
verdoezeld. We ontwikkelen een nieuwe methode om het CMB lenspotentiaalveld
te reconstrueren, gegeven CMB-waarnemingen, met behulp van geavanceerde gen-
eratieve modellen, bekend als ontruizings diffusiemodellen. Onze methode maakt
een volledig Bayesiaanse behandeling van het CMB lensing probleem mogelijk, ter-
wijl het sneller en flexibeler is dan bestaande Bayesiaanse methoden.

Tenslotte nemen we in hoofdstuk 6 een pauze van de kosmologie en bestuderen
we verstrooiingsamplitudes in effectieve veldentheorieën in vlakke ruimte-tijd. We
leggen een intrigerende relatie bloot tussen theorieën van massieve zwaartekracht
en niet-lineaire elektrodynamica. In het bijzonder gaat het om theorieën die van
nature voorkomen in de verstrooiingsamplitude dubbel-kopie web van theorieën,
wat wijst op een mogelijke rol van massieve zwaartekracht binnen deze context.
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