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Abstract

Spontaneous collapse models use non-linear stochastic modifications of the
Schrédinger equation to suppress superpositions of eigenstates of the measured
observable and drive the state to an eigenstate. It was recently demonstrated
that the Born rule for transition probabilities can be modeled using the linear
Schrodinger equation with a Hamiltonian represented by a random matrix from
the Gaussian unitary ensemble. The matrices representing the Hamiltonian at
different time points throughout the observation period are assumed to be inde-
pendent. Instead of suppressing superpositions, such Schrédinger evolution
makes the state perform an isotropic random walk on the projective space of
states. The relative frequency of reaching different eigenstates of an arbitrary
observable in the random walk is shown to satisfy the Born rule. Here, we
apply this methodology to investigate the behavior of a particle in the context
of the double-slit experiment with measurement. Our analysis shows that, in
this basic case, the evolution of the particle’s state can be effectively captured
through a random walk on a two-dimensional submanifold of the state space.
This random walk reproduces the Born rule for the probability of finding the
particle near the slits, conditioned on its arrival at one of them. To ensure that
this condition is satisfied, we introduce a drift term representing a change in
the variance of the position observable for the state. It is argued that the drift
term accounts for the energy transfer and trapping incurred during the particle’s
interaction with the detector. A drift-free model, based on equivalence classes
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of states indistinguishable by the detector, is also considered. The resulting ran-
dom walk, with or without drift, serves as a suitable model for describing the
transition from the initial state to an eigenstate of the measured observable in
the experiment, offering new insights into its potential underlying mechanisms.

Keywords: dynamics, double-slit experiment, measurements,
random matrices

1. Popular summary

The superposition principle of Schrodinger mechanics is foreign to Newtonian mechanics.
Macroscopic objects are not observed in two different places, and the cat is not alive and
dead simultaneously. However, such states are commonplace in the microworld. The debate
on reconciling quantum and classical physics has continued since the early days of quantum
mechanics. Here, we propose a new approach to the problem that allows us to deduce the
Newtonian behavior of macroscopic particles and establish a connection between quantum and
classical measurements, starting from the Schrodinger equation with a random Hamiltonian.

In the proposed model, Newtonian motion emerges from Schrodinger evolution by con-
straining the state of the particle to a certain part of the space of all its possible states.
Mathematically, this part includes the usual 3-dimensional space of possible positions of the
particle. On this 3-space, the Born rule, which gives the probability of finding the particle at a
certain point in quantum theory, is equivalent to the classical probability law. Conversely, the
classical probability law on the 3-space implies the Born rule on the space of states. Moreover,
the Schrodinger evolution that accounts for random fluctuations of the state of the measured
particle becomes the Brownian motion of the particle, modeling the process of measurement in
classical physics. In this setting, the superposition principle does not create a problem because
superpositions of states follow the same evolution and satisfy the same Born rule.

It is important to emphasize at the outset that the approach presented here is fully consistent
with the well-established frameworks of quantum measurement and quantum decoherence
theories. Rather than conflicting with these theories, it proposes a novel mechanism for state
reduction, offering alternative methods for analyzing and describing quantum measurement
and the quantum-to-classical transition.

We provide details of the state evolution in the double-slit experiment, considering both
cases where the particle’s position by the slits is measured and where it is not. The wave and
corpuscular properties of the particle in the model are clarified, and their transition during
measurement is explained. It is shown that extending the classical 3-space of everyday exper-
ience to the space of states offers a promising route toward unifying classical and quantum
perspectives and provides an alternative interpretation of the famous double-slit experiment.

2. Prerequisites

The Newtonian dynamics of a mechanical system can be identified with Schrodinger dynamics
under a constraint. The latter bears resemblance to the dynamics of a constrained classical
system, like a bead on a wire. However, given that Schrodinger dynamics is the dynamics
of a quantum state, the constraint is now applied directly to the system’s state. For instance,
consider a single-particle system in R* described by the Hamiltonian h=— %A + IA/(X, t). The
variation of the functional
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S[e] = / 7 (x,1) {m; —E} o (x,1)d>xdr (1)

yields the Schrddinger equation for the state function ¢ of coordinates and time. Let MY ; be
the submanifold of the space of states CP™ of the particle formed by the states

©(X) = ga o (X) e/ 2)
Here
1 3/4 _(xfz)z
sao=(503) © = 3)

is the Gaussian function of a sufficiently small variance 0% centered at a point a in the Euclidean
space R3, and p is a vector in R3. For the states  constrained to the manifold M 5, the func-
tional (1) reduces to the classical action for the particle

S= / |:p((1;: - h(p,a,t)} dr. “)

Here h(p,a,t) = % + V(a,t) is the Hamiltonian function for the system. It follows that the
variation of the functional (1) subject to the constraint that the state function ¢ is in M5 5 yields
Newtonian equations of motion. The appropriate value of the parameter ¢ in the obtained
relationship is dictated by the resolution of the position measuring instruments used for the
particle to which this relationship is applied.

Furthermore, in the derivation of the classical action (4) for the particle, the Gaussian
states ga,» in (2) can be replaced by arbitrary states of the form r, ,(X) = a_%r(";—a). Here
r € L,(IR?) is any real-valued, twice-differentiable, unit-normalized function with finite vari-
ance (assumed to be 1). This substitution yields the same result because the sequence r;o, as
o decreases, for any such function converges to the delta function 7 [1]. Namely, through the
direct substitution of the functions ¢(x) = r, , (x)eP*/" with a = a(¢) and p = p(¢) into (1) and
noting that [ ra »(X)Vara - (X)dx = 0 due to the normalization of r, .-, one deduces that, under
these conditions, the convergence of rfw to the delta function is sufficient for deriving (4).
Consequently, the manifold M 5 can be defined in terms of the functions Fa.o (X)eP/"or in
terms of equivalence classes of sufficiently narrow such functions.

Itis well known that the Schrodinger evolution of coherent states provides an approximation
of the Newtonian dynamics of a particle. For a quadratic potential, this approximation remains
valid at all times. Furthermore, maintaining the Gaussian form of the state allows for a good
semiclassical approximation of Schrédinger evolution [2]. However, the idea that the coherent
form of the states (2) is solely responsible for the Newtonian behavior of particles confined
to the manifold M¥ ; has been refuted in the previous paragraph. At the same time, the result
is not unexpected, as it aligns with the predictions of the Ehrenfest theorem for sufficiently
narrow wave packets, provided this narrow form is preserved throughout the evolution.

By confining the state to the manifold M7 5, defined in terms of arbitrary sufficiently nar-

row functions 7, , (x)e'P*/”, we establish the relationship between Schrodinger and Newtonian
evolution, a connection that persists for all potentials and time intervals. In essence, by identi-
fying the source of the constraint on the state of macroscopic bodies, a goal we aim to pursue in
this paper, we can unify the dynamics of both microscopic and macroscopic entities. Note that,
for the sake of simplicity, we will continue using functions g, , throughout most of the paper.

3
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The convergence of the functions rfw to the delta function indicates that integral expressions
involving these functions should approach the same limit as the specific case where ry ¢ = ga -
Whenever a different function choice within the equivalence class becomes important, we will
address the matter.

The Fubini-Study metric on CPX provides a Riemannian metric on Mg 5. With an appro-
priate choice of units, the map Q2 : (a,p) — ga}geip"/ " serves as an isometry between the
Euclidean space R® x R* and the Riemannian manifold M3 5. If desired, a linear structure
on M5 5 can be induced by 2 from the one on R? x R3. The restricted map w:a — ga »
acts as an isometry between the Euclidean space R® and the Riemannian submanifold MJ
of CPE formed by the states ga » [3-5]. This remains true for the functions r, » in place of
8a,o- The relationship between action functionals (1) and (4) enables us to identify classical
particles, i.e. particles that satisfy Newtonian dynamics, with quantum systems whose state
is constrained to the manifold Mg ; with an appropriate value of o. The map (2 identifies the
Euclidean phase space R® x R? of positions and momenta (a, p) of a classical particle with the
manifold M¥ ; of states ¢ in (2). Imposing the constraint amounts to making the components

of the velocity of state %‘f = —%ﬁap orthogonal to the manifold M5 5 vanish. The compon-
ents tangent to Mg 5 correspond to the Newtonian velocity and acceleration of the particle.
Commutators of observables become Poisson brackets, transforming the Schrodinger dynam-
ics of the constrained state into the Newtonian dynamics of the particle [6].

The embedding of classical space and classical phase space into the space of states resulted
in a relationship between Schrodinger and Newtonian dynamics. This relationship enabled us
to identify classical particles with quantum systems whose state is constrained to the man-
ifold Mg ;. The value of the parameter o is determined by the resolution of the measuring
instruments used. Let us show that the embedding and identification also lie at the core of the
relationship between the normal probability distribution, typical for position measurements of
a particle in R?, and the Born rule governing the probability of transitions between states.

Let § denote the diameter of a small region W that contains the point b in R3. Suppose the
measured position of a classical particle is normally distributed and centered at a, so that the
probability of finding the particle in W is approximately the product of the normal probabil-
ity density function and the volume of the region. The isomorphism w identifies R3 with the
manifold M5 . The classical particle at a is represented by the state g, . Let us now show that
applying the Born rule to the state g, ,» yields the normal distribution for the classical particle’s
position on R3. Conversely, assuming a normal probability distribution for the particle’s posi-
tion in R3, and considering the corresponding probability of finding the particle within region
W, one recovers the Born rule for transitions between the associated states. If the transition
probabilities depend solely on the Fubini—Study distance between states, this result extends to
all transitions within the state space.

The first part of the claim follows from the fact that for states g, , in M5 or states ¢ in M3 5,
the probability density |ga ,|* in the Born rule is also the normal probability density function
on R3. Due to the identification of classical particles with quantum systems whose state is
constrained to the manifold MY 5, we conclude that the Born rule on CP™ implies the normal
probability distribution of the particle’s position on R = M.

To prove the second part, let p(ga,»,8b,5) denote the Fubini—Study distance between the
Gaussian states g, » and gy, 5. Through direct integration, we obtain:

206 \° @’
(M) e ) = cos”p(gac8n)- 5)
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If 6 = o, this equation establishes a relationship between the distances between states g, , and
gb,o in the Fubini-Study metric on CP and points a and b in the Euclidean metric on R*:

_ (a=b)?

e 402 :COSzp(ga,Uagb,U)‘ ©

Note that the distance p(ga,,8b,») is measured along a geodesic in the full state space,
whereas the Euclidean distance |a — b| corresponds to the distance between the same states
measured along a geodesic within the submanifold M5. The distance between the states
©(X) = ga(x)eP/" and 1 (x) = gp(x)e'/", measured using the Fubini-Study metric on CP!2,
is related to the Euclidean distance between the corresponding points in the classical phase
space R? x R? by a similar formula:

_@n?_ -9’

U _ o p(o1). "

On another hand, when § in (5) approaches 0, the left side of (5) yields the normal probab-
ility density function times the volume element (87) 363, Due to the identification of classical
particles with quantum systems whose states are constrained to the manifold Mg 5, the result
can be interpreted as the probability of finding the particle in the region W, assuming that the
distribution of the measured position is normal and centered at a. For instance, the paper mod-
els the measurement of a classical particle’s position in R* as a random walk from its initial
value a during the observation period, resulting in a normal distribution of the position. The
probability on the right side of (5) is the probability of transition between the corresponding
initial and end states, calculated by the Born rule.

The Fubini—Study distance between states g, » and gp s with a and b in R3 takes on all
possible values in CPX2, ranging from 0 to 7 /2. Let then ¢ and ¢ be any two states in CPX2,
and let g, » and gp 5 represent two states at the same Fubini—Study distance as the distance
between ¢ and 1. By assumption, the probability of transition between two states depends
only on the distance between them. The probability P(p,) of transition between ¢ and ® is
then given by:

P(,%) = P(8a,0:8b.5) = ¢08” p(8a,0,8b,6) = 08> p(, 1)) . ®)

So, P(¢,1) = cos? p(p,)), which is the Born rule. We conclude that under these conditions,
the normal probability distribution on R* implies the Born rule on the space of states. Note
that while the proof relies on the Gaussian form of the functions g, ., the result is general and
will be shown to originate from the connection between the dynamics of the state in the full
state space and the submanifold Mg ;.

The correspondence established between classical and quantum systems, and between nor-
mal probability distribution and the Born rule was leveraged in [6] to put measurements per-
formed on classical and quantum systems on an equal footing. To achieve this, the following
proposition, based on Wigner’s work [7] and the Bohigas—Giannoni—Schmit (BGS) conjecture
[8], and further expounded upon in [6], was introduced:

(RM) The dynamics of a particle’s state under position measurement can
be modeled as a random walk in the space of states. In the absence of
drift, the steps of this random walk satisfy the Schrodinger equation, where
the Hamiltonian at any given time is represented by a random matrix
from the Gaussian Unitary Ensemble (GUE). The matrices representing the
Hamiltonian at different times are statistically independent.

5
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Here, the abbreviation RM in (RM) refers to ‘random matrices’. Physically, the
Hamiltonian in (RM) may arise from a highly complex interaction between the measured
particle and the measuring device or environment, modeled as a complicated sum of one-
particle Hamiltonians with interaction terms. This is reminiscent of Wigner’s model for the
Hamiltonian of a heavy nucleus.

The Gaussian unitary ensemble consists of Hermitian matrices whose entries on and above
the diagonal are independent random variables. The entries above the diagonal are identically
distributed normal complex random variables, whose real and imaginary parts have mean 0 and
variance d”. The diagonal entries are real normal random variables with mean 0 and variance
2d*. Such matrices can be expressed in the form % (A4 A*), where A is a square matrix whose
entries are independent, identically distributed complex normal random variables, and A* is
the Hermitian conjugate of A. The central characteristic of the Gaussian unitary ensemble is
that the probability density function P on matrices & within the ensemble remains invariant
under unitary transformations: P(U*hU) = P(h) [9].

A small step in the walk of state driven by the Hamiltonian in (RM) is a random vector in
the tangent space to the space of states CP'2. As demonstrated in [6], the distribution of steps
in the walk is normal, homogeneous, and isotropic. In particular, the orthogonal components
of a step at any point are independent identically distributed normal random variables. From
these properties, it follows that the probability of transition between two states connected by
the walk may depend solely on the Fubini—Study distance between them. Under the condition
that the steps of the walk occur on M{, the probability of transition is determined by the normal
probability density function. In this case, the random walk of the state approximates Brownian
motion on R, making it suitable for modeling classical measurement. Since the probability
of transition P(p,1) between two states depends solely on the distance between them, and
because the probability density function for the states ¢ and ) in Mg is normal, we conclude,
based on the derivation culminating in (8), that P(p,1)) is governed by the Born rule [6].
Consequently, both the normal probability distribution valid for classical measurements and
the Born rule for the probability of transition between general quantum states arise from the
Schrodinger evolution with a Hamiltonian satisfying (RM).

Because Brownian motion is governed by the diffusion equation, the dynamic underpin-
ning of the Born rule and the normal probability distribution in the model can be expressed
as follows: the Schrodinger equation with the Hamiltonian in (RM) reduces to the diffusion
equation on R?. This assertion can be explicitly illustrated by introducing the density of states
functional on the state space. This approach also facilitates the derivation of the connection
between the Born rule and the probability distribution on R® in the presence of boundary
conditions, leading to a non-normal distribution. We will briefly outline this method closely
following [5]. A more straightforward derivation of this result is provided in [6].

In non-relativistic quantum mechanics, particles and their corresponding states in a single-
particle Hilbert space cannot vanish or be created. The unitary nature of evolution dictates
that states can only traverse the unit sphere in the space of states L,(IR?). The normalized
states resulting from a measurement also lie on the sphere. Let us introduce the density of
states functional R;[p;1)]. Here, we start with an ensemble of particles whose initial state lies
in a vicinity of the state ) in CP%2. The functional R;[¢;%)] quantifies the number of states
that, by time ¢, reside in a vicinity of a state ¢ € CP/2, It approximates the count of states
in a small region surrounding ¢ in CP*2, normalized by the volume of the region. Notably,
measuring devices occupy finite regions and possess finite resolutions, rendering the effective
space of states finite-dimensional, thereby allowing the existence of Lebesgue measure on the
space [5].
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Under the isometric embedding w : R® — M§ C CPL2, the state functions in Mg corres-
pond to Newtonian particle positions in R®. As a result, the functional R,[g,;%] can be con-
sidered as a functional on functions ) dependent on the position a. We can then normalize it
by the volume of the region in R?. The resulting density of state functional will be labeled as
p:a; 7). For the same reason, the density of states functional p,[a; 1] for ¢ in M$ must corres-
pond to the conventional particle density p,(a;b) for particles initially positioned at b in R?,
where their position is measured a short time later (mean observation period). In other words,
we must have p,(a;b) = p,[a; gb |-

Let us apply the density of states functional to the dynamics of macroscopic and micro-
scopic particles, with or without measurement. If p,(a;b) represents the density of an ensemble
of macroscopic particles at a point a € R? with an initial position near b, and j,(a;b) denotes
the current density of particles at a, then the conservation of the number of particles implies
the continuity equation:

dp: (a;b)

22V gk =0, ©)

We can assume that p,(a;b) and j,(a;b) are normalized per one particle, i.e. the densities are

divided by the number of particles. In this case, the particle density and the probability density

can be identified. R
The continuity equation resulting from Schrédinger dynamics with Hamiltonian /& =

EA4 ‘A/(x, t) matches equation (9) with the substitutions:

2m

pr=v[’ and .L=%(W%—EW). (10)

For states 1) € Mg 5, we derive:

io= 2wl =vp, (11
m

As we know, the Schrodinger evolution of a particle’s state constrained to the manifold M3 5
corresponds to Newtonian evolution. It is also known that, for states initially in M7 5, the impos-
ition of this constraint is equivalent to eliminating the spreading component of the state’s velo-
city (see (16) and [6]). As follows from (16), one way to achieve this is to consider the motion
of particles of sufficiently large mass over short time intervals. In particular, for such particles,
the continuity equation for the Schrodinger evolution remains valid, but must reduce to the
continuity equation (9) for Newtonian motion. Because this result depends solely on the fact
that the evolving state is constrained to M3 5, that is, the spreading component of the state’s
velocity vanishes, it holds regardless of the method used to enforce this constraint.

From (10) and (11), we see that for the continuity equation of the conventional Schrédinger
evolution to reduce to that of Newtonian motion, the density p, for states in M3 5 must represent
the particle density p,(a;b). This quantity represents the number of particles that originate
from a neighborhood of b and, by the time of observation, reach a neighborhood of a. The
relationship p,(a;b) = p,[a; gp | indicates that the general form of p, in (10) can be identified
with the density of states p,[a;1)]. It represents the number of particles initially in a state near 1)
that, at the time of observation, reside in a state close to g, », indicating their proximity to the
point a. With this identification accepted, the flow of states on the state space describes both
the flow of particles and the flow of probability on R? as special cases. Note that the probability
density in (10) indicates the likelihood of the initial state 1/ reaching a state in Mg, as opposed

7
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to any other state. Consequently, we examine the flow of states under the condition that, upon
measurement, they reach the classical space submanifold M5 .
The relation p,[a; 1] = p; together with (10) imply that

prlai] = v (a) (12)
which clarifies the association of |1/(a)|? with the probability density, a fundamental postulate
in quantum theory. Specifically, the probability density of finding the system in a state, across
an ensemble of states, is proportionate to the value of the density of states functional at that
state, as given by (12) for states g, , in M. Hence, |¢)(a)|? serves as the probability density of
locating the particle near a because it represents the density of quantum states near the point
8a,o at the time of observation. As the number of states near g, , increases, the likelihood of
observing the state near that point also increases.

Note that the flow of states during the measurement process should not be confused with
the probability flow under conventional Schrodinger evolution. Thus far, we have considered
the flow of states governed by standard Schrodinger evolution, where ¢ serves as the time para-
meter. Nevertheless, the continuity equation remains applicable during measurement governed
by (RM) as well, since the total probability of finding the particle is conserved. From experi-
ence, we know that the time 7 required for the initial state 1) to transition to the measured state
8a,o 18 extremely short. This justifies the approximation ¢+ 7 = ¢, which was implicitly used
in the interpretation of equation (12).

To prove the equality (12) and explain the Gaussian form of p,(a;b) during position meas-
urement in the model, let us analyze the dynamics of the flow of states generated by the
Schrodinger equation with the Hamiltonian in (RM). This equation dictates how the dens-
ity of states functional, initially concentrated at the point ¢, diffuses throughout the space of
states while adhering to the Born rule. Expressed in integral form, the conservation of states
in CP% takes the following form:

R [p30] = /Rt [ +m;9]~ [n] Dn, (13)

where 7[n] represents the probability functional of the variation 7 in the state ¢, and the integ-
ration is over all variations 7 such that ¢ + 7 € CP2. Due to the homogeneity and isotropy
of the distribution of steps in the random walk generated by the Hamiltonian in (RM), ()
solely depends on the Fubini—Study distance between ¢ + 7 and ¢, and not the point ¢ or the
direction of 7.

Let us demonstrate that when the particle’s state is confined to M =R, this equation
implies the conventional diffusion equation on R*. When (13) is restricted to Mg, we have
1Y = gp,o and 1) = Gate,o — 8a,0» Where erepresents a displacement vector in R3. As previously
established, the functional p,[a; gp, | is identified with the conventional density of particles in
space p;(a;b). Substituting this into (13), and replacing ~[n] with the equivalent probabil-
ity density function y(e) = Y[gate.oc — ga,s), We integrate over the space R? of all possible
vectors e:

pres h) = [ pr(ateb)y (o) (14)
Because ~y(e) only depends on the norm of e, this leads to the diffusion equation, in the same

way as in Einstein’s paper on Brownian motion [10]:

D) _ p g, (aih). (15)



J. Phys. A: Math. Theor. 58 (2025) 225302 A A Kryukov

where D is the diffusion coefficient. The solution to (15) for the particle initially at b yields
the normal probability density function, which aligns with the choice of functions gp, , in
M5 . Therefore, the relation (12) dynamically follows from the resulting normal probability
distribution on R3 and the derivation leading up to (8).

The conjecture (RM) specifies dynamics of microscopic particles under position meas-
urement. When the dynamics is constrained to M9, it describes the behavior of macroscopic
particles whose positions are being measured. Conversely, the constrained dynamics determ-
ines the probability distribution of the corresponding Hamiltonian entries in (RM), thereby
uniquely specifying the entire ensemble. Later in the paper, it will be argued that the con-
straint to M§ may result from a drift in the random walk described in (RM). Alternatively, the
apparent constraint may be related to the use of equivalence classes of states that are indis-
tinguishable by the detector. Thus, the conjecture (RM), with a possible drift term included,
may be capable of addressing position measurements for both microscopic and macroscopic
particles.

Let us emphasize once again that the diffusion equation and the Brownian motion it
describes are used here to model the positional measurement of a classical particle. The time
parameter in the probability density function for the position is identified with the mean obser-
vation period. While individual observation periods may vary, the mean period corresponds to
the variance, o2, of the observed normal distribution of the particle’s position. In turn, the vari-
ance depends on the resolution of the measuring device being used. In the absence of imposed
boundary conditions, solving the diffusion equation for a particle initially positioned at b yields
anormal distribution. However, the diffusion equation remains an appropriate method for mod-
eling the measurement of a classical particle’s position, even in scenarios where boundary
conditions like confinement in a box are applied. In such cases, the particle’s inability to exist
outside the box results in a probability distribution that differ from the normal distribution.
This aligns with the solution to the diffusion equation, which satisfies the prescribed boundary
conditions.

The imposition of boundary conditions restricts the Hilbert space of possible particle states.
For example, one might obtain the Hilbert space L, [a, b] of square-integrable functions on the
interval [a,b], rather than on the entire number line R. In the scenario where the endpoints
of the interval are absorbing, as in the infinite potential well, the admissible state functions
belong to a subspace of functions that are zero at a and b. These spaces are subspaces of the
total Hilbert space of states, such as L,(R), with no imposed boundaries. The random matrix
representing the Hamiltonian remains in the Gaussian unitary ensemble, albeit now acting on a
subspace of the original Hilbert space. The random walk in (RM) takes place on this subspace.
The distribution of steps of the walk continues to be homogeneous and isotropic in the new
space.

It follows that the probability of transition between states in the new space remains depend-
ent solely on the Fubini—Study distance between them. Since in addition steps in orthogonal
subspaces such as L,[a,b] and its orthogonal complement in L, (R) are independent, the prob-
ability of transition between states will adhere to the same rule. For instance, relative fre-
quencies of different measurement outcomes of the position in both L;[a, b] and L, (R) spaces
satisfy the Born rule. A comparison between the random walk of a Brownian particle on the
plane R? and that on the number line R serves to clarify this result. Namely, the probability
of a Brownian particle on R? reaching at a given time a rectangle of an arbitrary fixed height
e based on an interval [c,d] along the x-axis, for all ¢ and d, is proportional to the probability
of the particle constrained to R reaching the same interval. The relative frequencies of finding
the particle in the rectangles and the intervals are the same.
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The random walk defined in (RM) on the projective space of the space L, (R?) constrained
to the manifold M5 was shown to approximate a solution to the diffusion equation on R3. A
similar result holds true for the walk on L,(IR) constrained to the one-dimensional subman-
ifold M{ of L,(R) formed by the corresponding Gaussian states g. . This correspondence
between the walk in (RM) and the diffusion equation resulted in the correspondence between
the Born rule and the normal probability distribution law. When absorbing boundary condi-
tions of interest here are imposed, the solution to the diffusion equation changes. We therefore
need to identify a manifold of states in L? [a,b], denoted here by M| [a,b]» that represents the inter-
val [a,b] in R, such that the random walk in (RM) on the appropriate space of states constrained
to M|, ;) yields the diffusion equation with the required initial and boundary conditions.

Analogous to the case of the manifolds M =R* and M{ =R, the points rc, of M,
will be represented by the square root of the solution to the diffusion equation with an ini-
tial point-source at ¢ and absorbing boundaries at a and b. Since the variance ¢ is small, the
functions ., representing points of [a, b] that lie away from the boundaries are well approx-
imated by Gaussian functions g. .. In fact, the distribution of small steps originating from such
points, obtained by solving the diffusion equation with absorbing boundaries, is nearly normal.
Moreover, for interior points, these Gaussian functions can be generated by translating a single
such function. As before, the induced metric at these points is Euclidean. However, for points
in small neighborhoods near the boundaries, the corresponding functions are ‘squeezed’ to sat-
isfy the vanishing condition outside the interval. The decreased value of o affects the induced
metric near a and b. As a result, the step sizes of the walk constrained to M|, ;) become van-
ishingly small near the boundaries. (For the inner product of squeezed Gaussian functions
centered near the endpoints of [a,b] to remain unchanged, the Euclidean distance between
their centers must decrease. See equation (6)).

Effectively, the real line R is compressed into the interval (a, b), with points outside [a, b]
mapped into small neighborhoods near a and b. The endpoints a and b thus correspond to +c0
on R and serve as absorbing boundaries, i.e. points of no return. The random walk in (RM),
when considered on M|, ), becomes a walk with absorbing boundaries on [a, b], which, in the
proper limit, yields Brownian motion on [a, b]. Meanwhile, the state driven by the Hamiltonian
in (RM) does not freeze but continues to spread within the state space. The boundary condi-
tions are ingrained in the choice of the Hilbert space of states, while the properties of the walk
in (RM) remain unchanged.

We conclude that, with or without the considered boundary conditions, the random walk of
states defined in (RM) can be utilized to model the position measurement of both macroscopic
and microscopic particles. The Born rule emerges in two connected ways. When the classical
space R is identified with the manifold Mg, the Born rule emerges as the unique probability
law that depends solely on the Fubini—Study distance between states and remains compatible
with the normal distribution on R3. At a deeper level, the Born rule in the framework dynamic-
ally emerges from the homogeneity and isotropy of the probability distribution of steps in the
random walk and its transition to a walk approximating a solution of the diffusion equation.

Until now, we have aimed to highlight the similarities between measurements in classical
and quantum settings, putting them on equal footing. To illustrate the difference between these
measurements, consider that the Brownian motion of a measured particle occurs in three-
dimensional space, R?, where its position can be measured at any point. This is feasible because
position-measuring devices can be evenly distributed throughout space. However, the same
cannot be achieved in the space of states. Macroscopic position-measuring devices may only
occupy a submanifold, such as M5 or a product of n-copies of it in the space of states. For the
position of a microscopic particle to be defined and measured, its initial state must first traverse
the classical space submanifold M5 in the space of states. In classical terms, an analogy to this
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scenario would be measuring the position of a Brownian particle in R? using particle detect-
ors arranged along a line not passing through the initial position of the particle. To ascertain
its position in this case, the Brownian particle must first intersect the line. The probability of
reaching a particular segment of the line reflects the information provided by the Born rule.

The model based on the Schrodinger equation with a random Hamiltonian under discussion
here requires comparison with spontaneous collapse models [11, 12]. These latter models were
developed to address the process of measurement and the absence of macroscopic superposi-
tions in our surroundings. They employ a non-linear stochastic modification of the Schrodinger
equation to drive the state towards an eigenstate of the measured observable, such as position,
energy, momentum, or spin [13—15]. Among these, only the models ensuring collapse in the
position basis elucidate a definite position of macroscopic objects in space, as discussed herein.
The principal models of this kind include GRW, CSL, and QMUPL models, reviewed in [12].

All existing spontaneous collapse models inducing collapse in the position basis lead to the
collapse of the state function in space. Collapse occurs more rapidly in larger systems. The
stochastic nature of collapse in the models is frequently attributed to a random field in space
that interacts with matter in a non-linear manner, leading to collapse. The noise associated with
the field could be white, with all frequencies contributing equally to collapse, or Gaussian. The
stochastic equation could also incorporate dissipative terms. The models may encompass only
systems of distinguishable particles or systems of identical particles. The collapse dynamics
in the models is equally applicable to all quantum processes, with or without measurement.
Measurements in the models yield a single outcome, distributed according to the Born rule. In
models lacking dissipative terms, the energy of the quantum system increases. Another com-
mon challenge of the spontaneous collapse models is their relativistic formulation, as collapse
must be nearly instantaneous.

In contrast to existing collapse models, the Schrodinger equation with the Hamiltonian in
(RM) is a linear stochastic equation. The evolution in the model does not disrupt superposi-
tions but rather causes the state to meander through the entire space of states. It was shown
that, for such an evolution, the probability of reaching a particular state in the classical space
submanifold M5 conforms to the Born rule. The functions in M¥ are approximate eigenstates
of the position operator. By applying a unitary transformation on L,(RR?), we alter the func-
tional form of the position operator and replace the manifold M5 with the set of approximate
eignenstates of the resulting operator. Under this mapping, the Hamiltonian in (RM) retains
its properties. Since distances are preserved, we conclude that the probability of reaching an
eigenstate of the new operator remains consistent with the Born rule.

In particular, the probability of reaching a specific eigenstate of the momentum operator
under the walk is in agreement with the Born rule. Because the probability of reaching a state
via the random walk in (RM) over a given time interval depends only on the Fubini—Study dis-
tance between the initial and final states, the evolution described by (RM) may be capable of
correctly characterizing the probabilities of measurement outcomes for other observables on
L,(R?). An additional process may be required to drive the state toward the manifold of eigen-
states of the measured observable. This process is expected to be governed by the quantum
theory of interaction between the measured particle, the measuring device, and the environ-
ment. Before examining this process and integrating it with (RM), let us first address some
general objections to the proposed model.

An immediate critique of the model arises from its reliance on the quantum dynamics,
which is inherently linear and therefore incapable of breaking superpositions. Additionally,
this approach appears to contravene established findings regarding the incompatibility of linear
dynamics with the Born rule. Let us first address this latter objection. It has been demonstrated
in the paper that the Born rule for transition rates can be derived solely from the Schrédinger
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equation with a Hamiltonian that satisfies (RM). This conclusion does not contradict [16] or
other related publications, as those works incorporate additional assumptions, most notably
stability (to be discussed separately), which inherently require some form of non-linearity.
Consequently, the categorical assertion that linear evolution cannot yield the Born rule is
inaccurate.

The notion that a linear transformation cannot break superpositions warrants further discus-
sion. It is important to recognize that our measuring devices possess finite positional resolu-
tion, meaning they cannot differentiate state functions with sufficiently small support. Consider
the ‘squeezing’ operator A, defined on single-variable functions by Axp(x) = v Ap(Ax) for
A > 0. This operator is linear and, in fact, unitary in L,(IR). Now, suppose we have a super-
position ¢ = ag, + Bg», Where g, and g, have small support and approximate the position
eigenstates for points a and b, respectively. By applying Ay to ¢ and selecting a sufficiently
large value of A, we can reduce the interval containing the support of the resulting function v
to an arbitrarily small size. In such a scenario, a detector with finite resolution would be unable
to distinguish ¢ from an eigenstate of the position. The feasibility of linear collapse models
in scenarios where eigenstates are replaced by specific equivalence classes of states should be
then re-examined.

As a side note, while not disputing the conclusion within accepted assumptions, it is worth
noting that the derivation in [16] is limited to a two-dimensional state space. The authors argue
that any collapse model must be capable of describing the collapse of a two-state superposition,
which is true. However, the fact that the initial state of a system is identified as a two-state
does not necessarily imply that the evolution of the state under collapse will be restricted to
a two-dimensional state space. Specifically, the two-space does not need to be an invariant
subspace of the evolution operator. For instance, when we measure the spin of a particle in
the Stern—Gerlach experiment with a blocker, we utilize the entanglement between spin and
position states and measure the particle’s position along the field gradient. In this scenario, the
appropriate collapse model may need to be formulated in the infinite-dimensional state space
that accounts for both the spin and position of the particle.

Before examining the concept of stability in the model, let us first address what charac-
terizes a macroscopic object according to conjecture (RM). In this framework, a microscopic
particle undergoing position measurement follows the trajectory dictated by the Schrodinger
equation with a stochastic Hamiltonian. The specific characteristics of the measuring appar-
atus are encapsulated by the distribution of elements in the Gaussian unitary ensemble random
matrix representing the Hamiltonian, which evolve with time. Consequently, the particle’s state
undergoes a random walk in the space of states, with the step distribution being both homo-
geneous and isotropic.

Assume the initial state of the particle lies in MY. By selectively sampling the steps of
the random walk that take place on Mg, we effectively simulate a random walk on MY that
approximates Brownian motion, described by the diffusion equation. As we scale up the size
of the particle, the diffusion coefficient D associated with this equation diminishes, gradually
approaching zero. We posit that the point at which ID becomes practically negligible denotes a
critical juncture, delineating the boundary between the macroscopic and microscopic realms
in the framework. Moreover, when the particle’s size is sufficiently large, its surroundings,
including nearby particles and electromagnetic radiation, inherently harbor information about
its position. The continuous measurement of position makes conjecture (RM) applicable even
without the need for a dedicated measurement device. When the particle is large enough that
its diffusion coefficient becomes negligible for environmental measurements, perhaps limited
to interactions with the cosmic microwave background, it may exhibit classical behavior nat-
urally, rather than only under specific conditions such as in a bubble chamber.
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As an analogy, consider a free Brownian particle in R? with no external potential. If the
diffusion coefficient D is nonzero, the particle undergoes stochastic motion, and at any time #,
the probability of finding it near a given point is described by a normal distribution. When D is
small, so that random environmental forces largely cancel, the particle remains effectively at
rest in R?. If an external potential is introduced and damping is negligible, the system exhibits
the classical behavior of a particle in a potential.

A similar situation arises with the state of a microscopic particle evolving under the rule
(RM). When the diffusion coefficient D of the induced Brownian motion on M5 is nonzero,
the state’s evolution is stochastic, and the probability of reaching a given state in M5 follows
the Born rule. However, when D approaches 0, diffusion into the full state space ceases, and
a state initially located on M5 remains there at rest—an example of Newtonian behavior for a
body at rest. The condition D = 0 is therefore essential; otherwise, the Hamiltonian in (RM)
would induce stochastic evolution that drives the state away from M9 . We conclude that (RM)
is capable of explaining both the Born rule for position measurements of microscopic particles
and the Newtonian behavior of macroscopic bodies at rest.

To derive the dynamics of macroscoplc bodies, it is useful to begin with the decomposition
of the state’s velocity, given by 7 d“” = h<p, where 71 denotes the conventional Hamiltonian

of a single particle in a potentlal V. As demonstrated in [6], the velocity of the state at an
arbitrary point ¢ in Mf 5 in CPL2 decomposes into three orthogonal components. The first
two components replicate the classical velocity and acceleration of the particle, remaining
tangent to the classical phase space manifold M¢ ;. The third component, orthogonal to the
manifold, signifies the spreading velocity of the particle’s state function. The squared norm of
the state velocity in the Fubini—Study metric is thus the sum of the squares of these components,
expressed by the following equation:

2 2w 2 2
d mw o h
s A — (16)
dr I 320%m
where v represents velocity, and w = — %’ denotes the acceleration of the particle.

Suppose now that an external potential V is added to the Hamiltonian in (RM), and that
D ~ 0 for the particle. In this case, Newtonian dynamics emerges only under an additional
assumption. The term 1% pushes the state along M5 ; with acceleration —VV m~!, which is
what we want. However, the corresponding path on R* x R? is not Newtonian, as only the
acceleration is accurately reproduced. To make it Newtonian, we need to assume that the velo-
city and acceleration of the point in R? x R? representing the state moving in M3 5 correspond
to the derivatives of position and velocity, respectively. That is, the manifold Mg ; may be iden-

tified with the classical phase space of the particle. In this case, the state’s path ga(,)eip(’)x/ h
describes Newtonian motion of a particle with position a(f) and momentum p(#). At any given
time ¢ along the path, the squared norm of the state’s velocity in the Fubini—Study metric is
the sum of the first two terms in (16).

So, outside the case of a body at rest, one way to address the transition to classicality is to
simply accept that the position, velocity, and acceleration of the point on R? x R? representing
the motion of the state are related in the usual way. Of course, this means that, except in the
case of rest, the evolution of the particle whose position is measured (including macroscopic
particles ‘measured’ by the environment) is not described solely by the Hamiltonian in (RM)
plus potential. Additional terms are needed, and their existence must be demonstrated.

Suppose that we add the standard Schrodinger Hamiltonian for the particle to the
Hamiltonian in (RM), and assume that D ~ 0. This removes the stochastic component of the
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evolution but reintroduces the issue of spreading. Mathematically, the required additional term
is a drift that counteracts the spreading and drives the state back toward M5 5, thereby ensuring
that the last term in (16) vanishes. Assuming (RM) and applying the macroscopicity condition
D ~ 0, we conclude that the drift process must be nearly deterministic, just like the spreading.
In section 4, we will discuss the drift in more detail, including its potential physical origin and
possible dynamical scenarios for both microscopic and macroscopic particles.

Now, let us talk about the stability assumption, a common aspect of discussions about the
measurement problem. This assumption posits that following a measurement, a macroscopic
measuring device should yield a definite outcome without spontaneously altering its readings.
To investigate, let us consider a system of n particles and the tensor product manifold ®,M¢§
consisting of elements of the form g ® ... ® g,, where each g; € M represents the state of the
kth particle. Similarly, we introduce the manifold ®,M3 5, which consists of tensor products
of states of the particles in Mg ;. The transition from Schrédinger to Newtonian dynamics,
as explored for a single particle, naturally extends to systems comprising multiple interacting
particles. In particular, a system of two particles whose state is constrained to the manifold
M3 5 ® M3 5 adheres to Newtonian dynamics.

Additionally, it is worth noting that the Euclidean metric on M4 extends to the Euclidean
metric on the configuration space ®,Mg = R*" of the particle system. This metric arises from
the metric on the tensor product of Hilbert spaces of the particles’ states. Furthermore, when
an additional particle, described by a state ¢ is considered alongside the n-particle system in
®nM5 , the product state ¢ ® g1 ® ... ® g, of the total systemis close toastate g, ® g1 ® ... ®
&n in ®,,+1 M5 under this metric precisely when ¢ is close to g, in the Fubini—Study metric on
the state space of a single particle. This observation will allow us to focus on the state of the
particle rather than the state of the entire system when discussing the double-slit experiment
later in the paper. The same can be said about the classical phase space submanifold of an
n-particle system.

Consider a system comprising a small classical particle interacting with a macroscopic
measuring device. In Newtonian mechanics, the influence of the small particle on the meas-
uring device can be disregarded, allowing the dynamics of the device to be treated independ-
ently. This independent of the particle interaction of the device with the environment result
in its position being encoded in the environment, that is, measured. Consequently, conjecture
(RM) applies to the device alone. The Brownian motion on R? = M, arising from the ran-
dom walk in (RM), determines the probability distribution of the corresponding Hamiltonian
entries, thereby uniquely defining the entire ensemble. Given the device’s macroscopic nature,
its size surpasses the threshold for macroscopic behavior set by this interaction, rendering the
induced Brownian motion trivial. Thus, its state in the rest system, gpa -, belongs to the sub-
manifold M5 (or ®, M3, if the device’s components are considered) of the device’s state space
and remains unchanged. With the prior identification of Mg 5 as the classical phase space, or
alternatively, by incorporating drift as discussed in section 4, introducing an external potential
to the system results in its behavior being governed by Newtonian dynamics.

By embracing conjecture (RM), we have obtained knowledge of the state of the meas-
uring device during measurement. Consequently, the state of the particle-device system dur-
ing measurement in the model must be a product state. As long as the small particle itself is
macroscopic, it also follows Newtonian dynamics and evolves in the potential created by the
device. In this case, the particle-device system exists in a product state gpa.c ® gpa,s, Where
8pPa,c In M7 5 denotes the state of the particle. If the particle’s size decreases to fall below the
macroscopic threshold, its state ‘detaches’ from the manifold M5 5 and, during measurement,
undergoes a random walk on the space of states. The probability of reaching various position
eigenstates during this walk conforms to the Born rule. In both scenarios, the system’s state
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in the model remains a product, and there’s never a moment where the device and the particle
form a ‘cat-state.’

Traditionally, the examination of state measurement begins with an entangled state
involving a microscopic entity and the measuring apparatus. The challenge lies in demonstrat-
ing how this entangled state produces definite measurement outcomes during the measurement
process. However, under the conjecture (RM), the measurement process unfolds differently
from the outset. Here, entanglement exists solely between microscopic entities. Throughout the
measurement, the macroscopic measuring device and the measured particle exist in a product
state. At all times, the device satisfies the D — 0 limit and follows Newtonian dynamics.
Consequently, the stability of measurement outcomes recorded by the macroscopic device
in the model is inherently guaranteed by Newtonian dynamics and the minimal impact of the
environment on the device that follows from it.

In this framework, what characterizes the collapse of the state of the measured particle
under a position measurement? The interaction between a microscopic particle and the device
induces a random walk of the particle’s state, governed by the Schrédinger equation with the
Hamiltonian in (RM). Throughout the measurement, the particle-device system remains in a
product state, ensuring that the particle’s state by itself is defined, at least in principle. The
collapse occurs when the state assumes the form of a state g, , or one of the states in its equi-
valence class, defining a point in M5 . As is known, subsequent measurements in this case will
yield the same result if conducted immediately afterward, indicating that no further collapse
is occurring. Additionally, the presence of the measuring device at the time the state takes this
form is irrelevant. In particular, recording the measurement result merely confirms that the
state has attained the required form and does not contribute to the collapse.

It has been established that the conditional probability for the state of a measured particle
to arrive at a specific point on the manifold M{, given that the state has reached the mani-
fold, follows the Born rule. However, since the distribution of steps in the random walk of the
measured particle’s state is isotropic, we still need to explain why the state is capable of reach-
ing the manifold M5. As demonstrated in section 3, this can be achieved using equivalence
classes of eigenstates indistinguishable to the detector. Alternatively, introducing a drift term
into the state’s random walk, as also shown in section 3 and validated by computer simulations,
provides another approach. However, the challenge, not fully addressed in the paper, lies in
identifying the physical origin of this drift (see also section 4).

The collapse process in the model with a drift is effectively represented by two distinct
processes, both assumed to arise from the interaction between the measured particle and the
device: the evolution driven by a random matrix Hamiltonian and the narrowing of the state
function. The former ensures that the Born rule is satisfied for position measurements, and
potentially for other types of measurements as well. The role of the second process is to drive
the state of the measured system towards the manifold of equivalence classes of position eigen-
states without interfering with its orthogonal motion along the manifold, which is responsible
for the Born rule. Devices designed to measure different observables are distinguished by how
the second of these processes is correlated with the measured observable. While the position is
measured in any device, its association with the observable in question varies across different
devices. For instance, when measuring the momentum of a charged particle, one can employ
a magnetic spectrometer to bend the particle’s path and subsequently measure its position on
a screen to deduce its momentum during motion.

Here, we apply the conjecture (RM) to analyze a ‘which-way’ type of measurement in the
double-slit experiment. We re-derive the Born rule, which, in a specific case, emerges from
a simple ‘gambler’s ruin’ random walk. We then provide physical and mathematical insights
into the evolution of the state driven by the Hamiltonian in (RM), both with and without drift,
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and present computer simulations of the model. The path of the state between the source, the
screen with the slits, the detector, and the backstop screen is traced. It is demonstrated that
the space of states and the Fubini—Study metric on it provide a suitable framework for the
experiment, shedding new light on its mysteries. The general results presented in this section
and in [6] are made more tangible and useful for understanding the process of collapse in this
fundamental case.

3. The double-slit experiment with a measurement

Consider the double-slit experiment with a microscopic particle of mass m whose motion is
adequately described by the Schrodinger equation. Let us choose the z-axis on the screen with
the slits, orthogonal to the slits. Suppose the z-coordinates of the lower and upper slits are a
and b, respectively. Let the horizontal axis run along the particle’s path from left to right, as
shown in figure 1.

At a point immediately to the right of the slits, the particle is in a superposition of states g,
and g, representing the particle passing through one of the slits with the other slit closed. The
state of the particle at that point can be identified with a function ¢ = ag, + Sgp, where o and
B are complex constants. For this paper, the functions g, and g, immediately to the right of the
slits can be approximated by Gaussian functions of z of a certain ‘width’ 9, peaked at a and b
respectively. Interaction of the particle with the screen is described by the usual Schrédinger
equation. Thus, the Schrodinger evolution takes the initial state of the particle at the source to
the two-dimensional space of states C2 of linear combinations of g, and g, or, more precisely,
to the projective space CP! = S? formed by the unit states in C*> modulo the phase factor.

Let us now insert a particle detector by one of the slits on the right. By measuring the
particle’s position, the detector provides information about the slit near which the particle is
located at the time of measurement. This is an example of what is called the ‘which way’
measurement. To make the measurement successful, we need to assume that |a — b| > 4, so
that the states g, and g;, are nearly orthogonal. In fact, if the ‘overlap’ of g, and g, is significant,
no detector will be able to identify the slit by which the particle is located. In particular, the
detector should be placed sufficiently close to the screen, before g, and g, spread and start
interfering. With this in place, the measurement causes the collapse of the wave function and
results in a transition from wave to particle properties of the system. The common view is that
the measurement tells us which slit the particle went through.

For simplicity and to be specific, let us assume the detector is a small scintillation screen
positioned near the slit at z=>,. The detector’s role is to confirm or deny the particle’s loca-
tion by the slit at the time of observation. Let the state function of the particle detected at a
point of the scintillation screen be denoted by 7. Realistically,  cannot be the Dirac’s delta
function; its support must be at least the size of the scintillator material’s atom on the screen.
We divide the screen into cells of the corresponding small size d,, and identify the state of
the particle detected in the kth cell by the normalized characteristic function n; of the cell.
An ideal detector would detects the particle in a state 7, with probability 1. The probabilit-
ies P, =", |(g»,m)|* and P, = ", |(ga»7k)|*, where (, ) denotes the inner product between
states, quantify the effectiveness of an ideal detector in the experiment. These probabilities
depend on the functions g, and g; as well as the position, size, and the ‘granularity’ parameter
d,, of the detector. Note that P, must be sufficiently high, and P, must be sufficiently small
to identify the slit by which the particle was found. We then say that the particle in state ¢ is
near the slit z="5 if >, |(¢,7)|*> = Pj, — € for some € >0, sufficiently small for the state to
identify the slit. This condition is met by a range of states ¢ that are all identified with g;, in the
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Figure 1. Double-slit experiment with a measurement.

experiment. The resulting equivalence class of states will be called the physical eigenstate of
the position operator on the z-axis. In this case, we will also say that the state ¢ is measurable
without dispacement by the detector.

Note that for functions ¢ that do not vary significantly across the cells, the term >, | (¢, m¢) |*
in the definition of a physical eigenstate is approximately equal to the squared norm of the com-
ponent ¢p of ¢, obtained by setting it to zero outside the interval D occupied by the detector.
If np is the characteristic function of D, then ¢p = ¢ - np. The state ¢ is in the equivalence
class of g if the ‘tails’ of ¢ outside D are sufficiently small, i.e. the norm of ¢ — ¢p is small.
For an arbitrary value of ¢ in z, the equivalence class {g. } of the state g. is defined in the same
way as for the class {g;}, by translating the interval D. Note that a state in the equivalence
class {g,} of g, is approximately orthogonal to a state in the equivalence class {gp} of g,. In
what follows, we will assume that such orthogonality of states is fulfilled.

Let us define the Fubini-Study distance between a state ¢ and the equivalence class {g,}
by

p(o;{gn}) = wggb}p(w;w% a7

where p(p;1) is the Fubini-Study distance between states. In particular, for the distance
between ¢ = ag, + g, and {g,} under the accepted conditions, we have cos p(p;{g,}) =
| B|. For the state ¢ to reach the physical eigenstate {g;}, it is necessary and sufficient that
p(p;{gr}) = 0. Note that the equivalence class {g,} of the eigenstate g, is rather ‘large’.
In particular, it contains functions with support in the interval D occupied by the detector,
provided their total variation is not too large. It follows that {g,} contains many orthogonal
states, i.e. states at the Fubini—Study distance equal to the maximal possible value of 7 /2 from
each other.

To clarify the role of the equivalence class during a measurement, let us consider a few
examples. We assume a slit separation of 10™>m, a slit-width of 10~°m, and that the width
parameter ¢ of the states g, and g, is comparable to the slit-width. These values are typical for
a successful experiment of this sort. The length of the detecting scintillation screen by the slit
is taken to be about half the slit separation. Suppose the initial state g,, denoted as g, s here,
moves to the point represented by the Gaussian state g, 1005 With a width of 1004. Taking the
inner product of the states yields |(gs.s,85,1005)| = cos p, where p = p(gp.s5, 8b.1005) denotes the
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Fubini-Study distance between the states. We then have p ~ 1.43 radians or about §2°. Because
1006 = 10~ "m, the width of the state 8h,1005 18 less than the size of a scintillation screen. In
particular, the condition ", |(g5,1006,7%)|> = Py — € is satisfied for a small e. It follows that
the state g, 1005 is still within the equivalence class of g;, and thus, it represents the same
physical eigenstate. On the other hand, we also have |(g4.5,85.1005)| < exp(—10%), which is
an extremely small number. So, by any measure the states g, s and gp.100s can be considered
orthogonal, as needed for the experiment.

For the second example, consider that the state g, = g5 is displaced by a distance
of 105 = 10~® along the z-axis. We then have |(gp,s,85—10-.5)| < exp(—12), correspond-
ing to a Fubini-Study distance of about 89.999°. So, the states are nearly orthogonal.
However, because 10~% is much smaller than the size of the detector, the condition
Zk|(8b—10**,6a7lk)|2 > P, — e is satisfied for a small e. It follows that the states g, s and
8p—10-¢ belong to the same equivalence class. At the same time, the states g, s and g,_o-s
remain orthogonal to a very high degree of accuracy, as required for successful measurement.

Suppose now that the initial state is a superposition ¢ = ag, + 8g, with moduli || and | 3|
that are away from zero, for example, p = % gu+ %@ g». Unlike the states g, and g, the state
© cannot be ‘measured without displacement’ by the detector capable of resolving the slits. In
other words, such a state does not satisfy the condition Y, |(¢,m¢)|*> > P, — € with a small € or
a similar condition for the detector located at z=a. In other words, the superposition ¢ is far
from the physical eigenstates of the measured particle. The measurement happens only if and
when the initial state ¢ is moved to the equivalence class of either g, or g;. The Fubini—Study
distance from the state ¢ = %ga + %gb to {gp} is

d(pi{gs}) = Grad (18)

So, the initial state ¢ traveling the distance of 7 /4 along the shortest geodesics towards the
physical eigenstate {g} will reach the physical eigenstate and become directly measurable
by the detector. At the same time, the state ¢ = ag,y10-3 5 + B38s—10-3,6 based on the earlier
example travels almost twice the distance from the initial state ag, s + 3gp,s but is still at the
same distance from the physical eigenstate {g,}. The reason for the difference between the
first two and the last example is due to the fact that the detector stretches along interval D in
the z-axis. This makes displacements in D or relatively small changes in the width parameter
of g, possible without affecting the distance of the resulting state to the equivalence class {g }.

Let us return to the double-slit experiment with both slits open and the detector near the
slit z=>b. According to (RM), the observed state ¢ will be acted upon by the Hamiltonian
represented by a random matrix and will perform a random walk on the space of states. As a
result of this walk, the state may be able to reach one of the physical eigenstates of the measured
observable. Our main goal is to find the probability of transition of the initial state to physical
eigenstates {g,} and {g,} for this experiment. Additionally, because the distribution of steps
of the random walk of the state is isotropic and the space of states CPPX is infinite-dimensional,
we need to ensure that the probability of reaching an eigenstate is non-vanishing to begin with.

To achieve these goals, let us utilize the expected value y, and the standard deviation d,
of the z-coordinate to identify a submanifold of CIP* helpful for describing the measurement
and to establish a coordinate system on it. We have:

m:/ﬂwama (19)
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and
5 = / (z— 1) | (2) [Pdz. (20)

Given an initial state ¢ with a finite expected value p, and standard deviation §, consider the
two-dimensional manifold M, parametrically defined by

Prr (@) = VAo (A2 —p —7) + p1z). Q1)

The numeric parameters 7 and \ serve as coordinates on the manifold. Along the path ¢, =
- 5, With a fixed value of A, the expected value changes from pi; to . + 7, while the
standard deviation remains constant. Similarly, along the path ¢y = ¢, /\|r:m with fixed 7,
the standard deviation changes from §, to ¢,/ ), while the expected value stays the same.

The motion along ¢, ‘squeezes’ or ‘stretches’ the state function without altering its shape
or translation. This motion can relocate the state from its initial position in the state space CIP"2
to the z-axis represented by the family of equivalence classes {g.}, where ¢ = p, lies on the
z-axis. Similarly, motion along ¢ translates the state along the z-axis. This motion can bring
the ‘squeezed’ state to the detector. The role of the equivalence class is crucial in this process:
squeezing a state may not move it closer to a g -state by itself, but it will bring it closer to an
equivalence class {g.}.

Unlike the Fubini-Study distance between states, the expected value p, and standard devi-
ation §, have the advantage in being familiar spatial quantities. Moreover, the condition that
the initial state ( has reached the detector or, equivalently, that it became a physical eigenstate
of z can be expressed in terms of the corresponding change in the variables p, and 6, of .
Specifically, for this to happen, it is sufficient that the interval (p, — rd, u, + rd;) for a proper
value of the parameter r for the final state ¢y is contained in the interval D occupied by the
detector. First, for the given values of §, and . of the initial state ¢, the parameter r > 0 is
selected to ensure that the tails of ¢ outside the interval D, = (u, — rd;, i, + rd,) are small
enough to satisfy the condition X;|(¢,7)|*> > P — € on the interval. Then, the coordinates 7
and A (i.e. the corresponding values of y, and §,) are selected to make sure that the interval
(w; — 1o, piz + rd;) is in D. The range of possible values of i, and J, that satisfy this condition
determines the end-states oy in M, that are elements in the corresponding physical eigenstate
of z.

While collapse can be modeled using the variables p, and §, for more general states, we
will, for now, focus on superpositions ¢ = ag, + g, which are relevant to the double-slit
experiment. As discussed, these state functions can be viewed as elements of the space C2,
though operations such as ‘squeezing’ and translating a function act in an infinite-dimensional
function space. The manifold M, forms an overcomplete frame (basis) in the space L(R),
analogous to the manifold MJ = R3, and it will similarly be used to establish a connection
between the normal probability distribution and the Born rule. Under (RM), the evolution of a
quantum system’s state in infinite-dimensional state space provides the most general approach
to collapse. We will demonstrate that the obtained results also apply to spin-state collapse.

Let us prove that the steps of the random walk of the state ¢ = ag, + Bgp along the paths
¢r and ) on M, are independent random variables. As we know, the probability distribution
of the random vector representing a step in (RM) is a normal isotropic distribution. The ortho-
gonal components of such a vector are independent random variables. Therefore, we need to
check that the steps along these paths take place in the projective space of states and that they
are orthogonal in the Fubini—Study metric. Let us first check that this is true for the steps ori-
ginating at the initial state ¢ = ag, + [Sgp. First of all, because the norm of the state along
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the paths ¢, and ¢, is preserved, the paths take values on the unit sphere S22 in the space of

states. In particular, the vectors d“‘“ and d“"* are tangent to the sphere. Also, df; = —%’
7=0
and dd“% - =1 +4 ‘& (z— pz), and for the state ¢ = ag, + Bg, we have
d
Re (i 0, — 50) 0 22)
dz
and
.1 dy
e <1<P» 2t uz)> (23)
by the properties of states g, and g. It follows that the vectors d“’* and d“"* are orthogonal to

the fiber of the fibration S© — CP2. In particular, they can be thought of as vectors tangent
to the projective space of states CP™2. Now,

doa dy 1 dy
Re —2 = Re| 2, —p+ " (7— . 24
e( T_O) e(dz,2<p+ iz (z—p2) (24)

dA
Using the orthogonality of ¢ and %‘f, the approximate orthogonality of g,, g5, and their deriv-

der
A=l T odr

atives, the equality (g,, ‘ﬁ—zg{l) = (g, %), along with the expression for ¢ and the definition of
(4, the resulting expression (24) can be rewritten and evaluated as follows:
2

d d’g,
Re (- e= ). G5 ) = (1o (a =) + 3P (0= ) (8 G5 ) =0 es)

This proves the orthogonality of steps from the initial state  along the paths ¢, and . The
application of the chain rule demonstrates that the preceding calculations remain valid for steps
from any point on M.

The established orthogonality confirms that steps of the random walk from any state ¢
in M, along the direction tangent to paths ¢, and ¢, through ¢ are independent random
variables. Furthermore, it is possible to re-parametrize the paths ¢, to make the Fubini—Study
metric on M, in the new coordinates explicitly Euclidean. Specifically, by setting s = In A, we
obtain the new parametrization of ¢ in the form ¢,(z) = e3p(e*(z — p, — 7o) + pt-). We can
see that the norm of the tangent vector d(ﬁj is preserved along the path. The same is true for
df; , which, together with the orthogonality of these vectors, signifies that the induced metric
is Euclidean. The coordinates 7 and s are then Cartesian coordinates on M, = R%.

An arbitrary state on M, has the form ¢y = ag. + g4, where g, and g, are Gaussian func-
tions with equal width, and (8c,84) = (84,8p)- The expected value of the z-coordinate for an
arbitrary state + in M, is given by

Ha= / zagc + B2al*dz = |af’c + |5 d. (26)
The variance is given by
2 = [ Plag+ Gz 42 = laP I3 (e . @

Provided the coefficients o and 8 do not vanish, equations (26) and (27) can be solved for ¢
and d. If one of the coefficients is 0, the state is an eigenstate of z. In either case, we see that
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the pair (c, d) for the states on M, can be represented by the pair (u.,d.), identified in this
context with coordinates 7 and s. It follows that the Fubini—Study distance from a state in M,
to the eigenstates g, and g, can be expressed through the values of u, and §, for the state. The
Fubini—Study distance dp between two neighboring points of M, can be expressed through
the differentials d7 and ds for the points as follows:

dp? = dr* + ds>. (28)

As discussed in section 2, the motion of states under the Schrodinger equation with a
Hamiltonian in (RM) results in Brownian motion that satisfies the diffusion equation on the
classical space submanifold in the space of states. In the case of state functions depending on a
single variable z € R, the Hilbert space of states is L,(IR), and the classical space submanifold,
denoted here as M¢, is R. The point source solutions to the diffusion equation are single-
variable Gaussian functions p;. The classical space manifold comprises Gaussian functions
& = \/p: for a fixed value of ¢, corresponding to the width parameter ¢ of g.. This manifold
inherits the Euclidean metric from the Fubini—Study metric on the projective space of states
CPPL2, making it isometric to R.

By altering the state space of the system, we obtain Brownian motion on R, which satisfies
the diffusion equation with suitable boundary conditions. Although the distribution of steps
in the random walk that approximates the Brownian motion will change, for small steps it
remains approximately normal. Thus, the random walk that satisfies the imposed boundary
conditions can still be considered as having Gaussian steps. Alternatively, one can substitute
functions g, with functions . in the equivalence class, whose square yields the density p, for
a fixed ¢. In either case, the Born rule will be valid on R or the appropriate interval thereof,
and therefore on the entire space of states.

Let us use the manifold M, to illustrate the process of collapse and the emergence of the
Born rule from the random walk associated with (RM), both in cases where the boundary
conditions are imposed and where they are not. Suppose first that the random walk of the initial
state ¢ = ag, + g, generated by the Hamiltonian / in (RM) takes place on the manifold M., .
That is, we select only those steps of the walk generated by 71 that begin and end on M. We
will address the known isotropy of the distribution of steps later. Note that the states g, and
g» are the points of M, where 11, = a or 11, = b and 6, = . The classical space manifold M3,
representing the z-axis in the Hilbert space of states L,(IR), will consist of equivalence classes
of states in M ,. Each class comprises functions 1) with a fixed expected value u, and a standard
deviation 4, satisfying J, < 4. The equivalence classes represent physical eigenstates of z._

For our first example, no boundary conditions are imposed. From the properties of % in
(RM) and from the isometry between M, and R2, we infer that the random walk of the state
on M, is a random walk with Gaussian steps on R?. The coordinates 7 and s are orthogonal
and the steps in 7 and s are independent, identically distributed normal random variables. It
follows that the probability density function of the random vector of the final state ¢, at the
time of observation is a normal, circularly symmetric function of 7 and s on R?. Therefore, the
probability of the particle being located near a or b is the product of the probability that the
expected value pi, is near a or b and the probability that the standard deviation ¢, is less than
d. However, for a given initial state, the probability of §, being less than ¢ is just a constant
coefficient, which is the same for the convergence of the initial state to either g, or g,. In other
words, the probability we are considering is proportional to the probability of y, being near a
or b on the z-axis.
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From ¢, (z) = ¢(z— 7), we have d7 = du, = —dz, so that we are dealing with a random
walk on the z-axis. This random walk approximates Brownian motion, which solves the diffu-
sion equation on R. If function v represents a point on the z-axis, then, in the given approxim-
ation, [1|> = |a|*g? + | 8|*g3. The function |¢/|? serves as a solution to the diffusion equation
at a fixed time, given the initial condition of two point sources located at two nearby points ¢
and d on the z-axis. It follows that the Born rule, when applied to the states constituting M?¢,
yields the probability density function that solves the diffusion equation. Conversely, because
the Fubini-Study distance between states in M{ spans all values from 0 to /2, and because the
probability of transition between any two states linked by the random walk specified in (RM)
depends solely on this distance, the validity of the Born rule for all states can be inferred from
its validity on Mf (see section 2). Also note that as the parameter ¢, approaches 0, the ini-
tial condition of two point sources converges to the delta function. Consequently, we could
equally well use Gaussian functions to represent equivalence classes of points on the z-axis.
In particular, this derivation closely parallels the one leading to equation (8) in section 2.

For a more ‘visual’ derivation of the Born rule from the state walk on the manifold M, let
us note that in the considered approximation, the states g, and g; are orthogonal, indicating
that they occupy opposite points in the state space. It follows that in this approximation, the
expected value p, of the coordinate z cannot exceed the value b or be smaller than a. It also
follows that there is a maximum possible value of the standard deviation §, of z. According
to (27), this value is equal to |«||3||a — b|. These constraints are acceptable because there
is a very small probability for the particle to be found beyond a small neighborhood of the
interval [a, b], which separates the slits in a properly set up experiment. In effect, we place the
particle in a box. Our second example of deriving the Born rule in the model will use these
constraints as boundary conditions for a random walk on the interval [a,b]. As previously
discussed, under (RM), the random walk on the interval [a, b] alone already ensures the Born
rule on the state space L;[a,b]. The random walk in the standard deviation variable (without
drift) serves primarily as an illustration of the squeezing of the state during the collapse process
in the model.

Let us impose absorbing boundaries at 7 = a and 7 = b. To ensure the product form of
the joint probability and satisfy the constraint on §,, we also impose a reflecting boundary
condition at , = |«||3||a — b|. The required probability is the product of the probability that
1, is near a or b, and the probability that §, is less than §. Once again, the probability that
6, < d is a constant factor, identical for the convergence of the initial state to either g, or g,. It
follows that the problem of finding the probability of transition of the initial state to g, or g;
can be solved by studying the random walk with Gaussian steps on the interval [a,b]. When
the number of steps is large, the obtained walk with Gaussian steps can be approximated by
the walk whose steps have a fixed length. The end-points of the interval [a,b] are absorbing.
The probability of reaching the point p, = b for the state ¢ = ag, + g, is then given by the
usual gambler’s ruin formula that yields in this case

number of steps from p;toa  p,

Py = :; =8 (29)

number of steps fromatob b

Here the definition (26) together with normalization |«|? +|3|> = 1 were used. Similarly, the
probability P, for the initial state ¢ of reaching the state g, (equivalently, reaching p, = a)
is given by P, = |a|2. The Born rule is thus derived for the constrained state in M, and,
consequently, for arbitrary states in the state space.
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Let us emphasize that the collapse of the state in the model is associated with the state
approaching a physical eigenstate of position during the random walk. The state becomes well-
localized, positioned at either point a or b, indicating that a collapse has occurred. Although
the presence of absorbing boundaries in the second example alters the walk by changing the
space of states, the absorption process itself is not equivalent to collapse. In particular, the
state becomes well-localized as it approaches the endpoints before being absorbed. The meas-
uring device in the model influences the state’s evolution by subjecting it to a random walk,
as described in (RM). However, the device’s role after the state reaches g, or g, is simply to
register this outcome. Moreover, whether or not the outcome has been recorded, the collapse
has already occurred. As explained in section 2, stability of a macroscopic measuring device in
this framework is ensured by the transition to Newtonian dynamics in the D — 0 limit. Since
the Born rule for the particle’s state is also satisfied, collapse in the framework is equivalent
to a dynamic approach to a physical eigenstate of position.

The random walk of the state in the model was constrained to remain on the manifold
M. Even with this constraint, reaching the eigenstates g, and g, depends on the standard
deviation 9, falling below the value J, associated with the size of the measuring component
of a detector. The isotropic distribution of state steps, driven by the Hamiltonian in (RM),
enables propagation into the space of states CIP2, seemingly reducing further the likelihood
of reaching an eigenstate. This issue can be addressed mathematically either by adding a drift
term to the random walk in (RM) or by considering equivalence classes of states that are
indistinguishable to the measuring device. In the latter case, the initial state evolving under
(RM) can still reach the equivalence classes {g,} and {g,} with probabilities consistent with
observations.

To describe the propagation of the state into CIPX2, we must consider superpositions of more
than two Gaussian states. It is known that the set of finite linear combinations of translations
of a single Gaussian function is dense in L,(IR) (see, for example, [17]). This observation
is important when working with superpositions of Gaussians and also provides meaningful
context for the foliation construction in state space that follows. At the same time, the assump-
tion of approximate orthogonality of Gaussian functions in a superposition appears physically
appropriate, given the finite resolution of real-world measuring devices and the need to work
with equivalence classes of states that are indistinguishable by the device.

Consider the space V of finite linear combinations of Gaussian functions g, used earlier in
the paper, where ¢ = z; corresponds to some partition {z;}, k=1,2,...,N (N > 3) of the z-
axis. Assume, as before, that the functions g, are sufficiently narrow so that the orthogonality
condition holds for different z; and z,, in the partition. In this setting, the proof of the orthogon-
ality of d¢.- /d7 and dp) /d ) follows the same reasoning as presented earlier. Thus, regardless
of the specific form of ¢ in V, in particular, regardless of how many Gaussian functions appear
in ¢, these two directions at ¢ remain orthogonal.

For an arbitrary state ¢ € V, where V is as defined above, consider the manifold M, with
coordinates (7, A), as defined in (21). (The fact that not all functions in M, belong to V does
not pose a problem, since M, lies in L,(IR), the space where orthogonality is required, and any
function in L,(R) can be approximated by a finite linear combination of the g.’s from some
space V.) For each point (7, A) € M, consider the set of all functions in V with yi; = 7 and 6, =
A. This defines a foliation of V of codimension 2. The leaves {¢} - x consist of all functions in
V that share the same values of i, and §,. As discussed, the 7 and s = In A coordinates on each
M, form Cartesian coordinates that identify M., with R2. The corresponding components of
a step of the random walk in (RM) from any ¢ are independent random variables.

Due to the homogeneity of the step distribution in (RM), the probability distributions for the
7 and s components are identical at all points ¢. By definition, y, and , do not vary along the
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leaves. Moreover, the values of i, and J, are the only quantities needed to determine whether
the state has reached an equivalence class of the position eigenstate. Components of a step
from ¢ that are tangent to the leaf through ¢ do not affect u, and 4., and therefore do not
contribute to collapse to a physical eigenstate of position. Thus, the walk on the manifold M,
identified with the (7,s) plane R?, is sufficient to describe the collapse in this setting.

The set of points with §, < on the s-axis forms a half-line. As the number of steps
increases, the probability that the state under the random walk in (RM) satisfies this condition
approaches 1/2. A drift in the s-coordinate on the leaf {¢}, » can guide the state toward the
z-axis, increasing the probability of satisfying §, < d to nearly 1 after just a few steps, given a
suitable choice of parameters. Meanwhile, the walk in 7 determines the relative probabilities
of reaching eigenstates, in accordance with the Born rule. A possible physical origin of the
drift will be examined in section 4.

As established, the collapse process in the model reduces to a random walk of the initial
state on the manifold M, identified with the (7,s) plane R2. The 7 and s components of the
steps in the random walk, generated by the Hamiltonian 7in (RM), are independent identic-
ally distributed normal random variables. The walk of the initial state along M, consists of
a random walk without drift in the 7-coordinate and a random walk with drift in the positive
direction of the s-axis. In other words, the walk is represented as follows:

Tk = Ti—1 + & (30)
and
Sk = Sg—1 +h 4+, (3D

where & and n; are independent identically distributed normal random variables, and £ is a
positive number equal to the step of the drift. Using sy =0, we have, for the Nth step of the
walk in s:

N
sNzh-N—i-an. (32)
k=1

Given that A = ¢ and §, = A~'§,,, we see that §, = e ~*6,,. Therefore, the variance exponen-
tially approaches zero with an increase in s. In this case, even a few steps of the walk of the
state may be sufficient to reach a neighborhood of the z-axis. The gambler’s ruin process in the
variable 7 in the second example is then guaranteed to take the state to {g,} or {g,} with the
probability satisfying the Born rule, as derived in (29). The time interval of collapse (the mean
observation period) of a given state ¢ in the model depends on the frequency and the distribu-
tion of steps of the walk, the value of the parameter %, and the parameters in the definition of
the equivalence classes {g,} and {g,}.

A computer simulation illustrating three runs of the random walk of the initial state ¢ =
agq + Pgp inthe second example, where || = 1/2 and | 3| = v/3/2, is depicted in figure 2. The
simulation uses parameters a = —10, b = 10, step sizes || = || = 1, and a drift parameter
h = 1/2. The figure illustrates the evolution of the expected value 7, and the standard deviation
6, of the z-coordinate throughout the walk. Figure 3 displays a bar graph showing the counts
of the state reaching the detector at positions a and b over 1500 runs of the walk, using the
same parameters, along with its consistency with the Born rule.

If the drift parameter / vanishes, on average, more steps will be needed to satisfy both
conditions, d; < d and u, = a or u, = b. Nevertheless, if s is unbounded in R, the probability of
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Figure 2. Computer simulation of three runs of the random walk.
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Figure 3. Relative frequency of reaching the detector.

sy meeting the half-line condition 0, < ¢ will converge to 1/2 as the number of steps increases;
in the bounded case, this probability will be even higher. Given that only a fraction of particles
in a double-slit experiment reach the detector, this result indicates that the proposed collapse
model, based on (RM) and equivalence classes of eigenstates, remains feasible even in the
absence of drift. A detailed analysis of the model with various values of the parameters will
be presented in a separate work.

There is an interesting geometric interpretation that relates the considered walk on M, with
a walk of a spin-state [a, 3] on the sphere S* = CP!. Namely, by a proper choice of the unit
and the origin on the z-axis, one can always ensure that a = —1 and b = 1. With this, we have
for the initial state ¢ = ag, + Bgp:

pe =18 —laf? (33)
and

02 =1—p; =4|aP’|B. (34)
Expressions (33) and (34) are intimately related to the expressions for Cartesian coordinates

of the spin-state [c, 3] € C? under the usual bundle projection 7 : §> — CP! = §2. These
coordinates are given by
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x=aB+ap, (35)
y=i(af—-ap), (36)
z=|pP —laf*. (37

From these equations, we see that i, = z and 62 = x> +y?. The coefficients « and /3 of ¢ may
also have a phase difference 6. Adding the variable 6 to the pair (p.,d;), we obtain cylindrical
coordinates on the sphere S2.

For our third realization of the model, let us use the triple (y;,d,,0) to describe the walk of
state ¢ as a motion on the sphere. Namely, given a state 1) = ag. + 5g4 evolving on M,, we
identify the coordinates (1, d;,6) and find the corresponding point (x,y,z) on the sphere with
the help of equations (33)—(37). In such a way, we identify the change in the values of ¢ and d
with the corresponding change in the coefficients a and S of the initial state ¢ = ag, + 5g5-
In this case, the basis states g, and g, remain fixed during the evolution while the values of the
coefficients « and (8 are obtained from the equations (33) and (34). The evolution of the state
is thus confined to the space C2.

The issue with this geometric realization of the evolution is that it imposes a relationship
between p, and §,. Specifically, it necessitates 612 =1- uf, which is invalid when the state,
during its evolution, is not confined to the space C?. Note also that the change in the parameter
0 during the walk cannot be determined from equations (33) and (34). However, imposing the
relationship (SZ2 =1- ,u? without changing the walk in 7 preserves the probabilities of reach-
ing the eigenstates. Furthermore, it makes reaching the values p, = a of u, = b equivalent to
reaching the eigenstates, which is similar to what the drift in s has achieved. Although impos-
ing this relationship is rather arbitrary, the change in p1, = z and 62 = x*> +y? when the state
approaches the poles of S? gives us a nice illustration of collapse in the model. Note that the
actual random walk of state studied in the paper does not happen on CP' = §2, which, unlike
the manifold M, does not even include the z-axis. In particular, the walk does not converge
to Brownian motion on the sphere.

4. Directions for future research

Thus far, the presented approach to (RM) and the drift has been primarily mathematical.
Several immediate tasks must be addressed to further develop the proposed model. First, it
is highly desirable to present clear arguments supporting the use of random matrices and the
conjecture (RM) to address the problem of quantum measurement and the transition to clas-
sicality. The results should also be compared with those of well-developed theories of deco-
herence and quantum measurement, including models of continuous measurement [18-20].
Second, it is important to investigate how the parameters of the random walk in (RM) relate to
the properties of the measuring device, the environment, and the system itself, and how these
properties influence the diffusion coefficient D. Third, in the version of the model that includes
a drift term, it is necessary to establish a plausible physical origin for the drift. In section 6, we
take initial steps toward addressing the first task, while our focus here is on the third, leaving
the second for a forthcoming paper.

As previously discussed, the drift term, responsible for the squeezing of the state func-
tion, is important for explaining the stability of measurement outcomes and for understanding
the dynamics of macroscopic bodies in the context of Schrodinger dynamics constrained to
M3 5. Furthermore, under the assumption of (RM) and the macroscopicity condition I ~ 0
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(which eliminates the stochasticity of evolution during measurement), the process respons-
ible for the drift must be nearly deterministic. That is, like the spreading under conventional
Schrédinger evolution, the squeezing must occur with near certainty. A natural example of
the state-squeezing phenomenon, which may be associated with drift in the parameter s, is
observed in spontaneous emission. When an atom transitions from a higher to a lower energy
state and emits a photon, the electron’s state function narrows, converging to the spatial extent
of the atom in its ground state. Under typical conditions, the process is nearly deterministic
in the sense that the transition to a lower energy level occurs with near certainty. Although
explaining such transitions requires the use of a quantized electromagnetic field, the theory
has been well established since Dirac’s seminal work [21]. The governing equations are linear;
however, the process becomes non-unitary and irreversible due to the averaging over photon
modes required to compute the transition amplitude.

A similar process that causes the narrowing of a particle’s state function occurs spontan-
eously and universally under general conditions in molecules or when a particle is confined to
a potential well. The released energy may manifest as radiation or phonons. It is proposed that
under proper conditions this process may be responsible for the narrowing of the state function
of a measured particle during its interaction with a measuring device, such as a scintillation
screen. In practice, this interaction with the screen involves exciting numerous atoms, resulting
in spontaneous emission until the particle, assumed to be distinct from the material’s particles,
loses most of its energy and becomes trapped by one of the molecules.

When the potential of the system, consisting of the weakened particle and particles of the
screen it interacts with, can be assumed harmonic, the energy levels of the trapped particle
are given in natural units by E, = % + n. In this scenario, a calculation yields the expression
for the variance as 62 = % + 4n. As the excited state descends the ladder of energy levels, the
standard deviation for the state decreases to a small value, comparable to the size of a molecule
of the screen. The same occurs for a potential that is approximately harmonic or quartic near
the stable point, or, more generally, is U-shaped. While the particle may not reach the ground
state in practice, and the ground state itself may not be a Gaussian state, these specifics are
inconsequential. What matters is that the state function ‘contracts’ to a sufficiently small size
to fall within the equivalence class of a position eigenstate.

The physical basis for this drift under measurement remains speculative and will be
explored in future work. The idea is to construct a full Hamiltonian incorporating: (1) the
standard Schrédinger Hamiltonian (with potential, if present), (2) the (RM) Hamiltonian, (3)
the electromagnetic field Hamiltonian, and (4) the interaction Hamiltonian between the particle
and the field. The relative significance of these terms depends on how the particle’s position is
measured. Consider the following three scenarios.

The position of a microscopic particle is measured by scattering of light. The (RM) term
dominates, while other components of the Hamiltonian are negligible over the observation
period. The Born rule emerges as the state localizes near one of the slits (in the double-slit
experiment). After localization, the particle may shift and be detected elsewhere (i.e. it is not
trapped). Photons involved are assumed to be sufficiently weak.

The position of a microscopic particle is measured by a scintillation screen. Both the (RM)
term and the ‘spontaneous emission term’ (the interaction Hamiltonian associated with a pro-
cess similar to spontaneous emission resulting in a drift toward M3 ;) are relevant. The out-
come is consistent with the Born rule and additionally involves localization to M§ and trapping
within the potential of a screen atom or molecule.
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A macroscopic particle whose postion is measured by the environment. The (RM) term
becomes negligible (D ~ 0). Schrédinger evolution and ‘spontaneous emission’ combine, with
the latter inducing drift toward Mg 5, ultimately recovering Newtonian dynamics.

To reiterate, these scenarios are only outlined briefly here and are not explored in the present
paper. This work focuses on two scenarios: measurement governed by (RM) without drift, and
measurement governed by (RM) with a mathematical drift in standard deviation (i.e. toward
Mg3). In both scenarios, measured eigenstates are defined via equivalence classes.

5. Electrons versus bullets

In a version of Feynman’s experiment with bullets, a machine gun shoots a stream of bullets
into a screen with two slits. Behind the slits, there is a wooden screen that absorbs bullets. A
small movable sandbox in front of the screen is used as a detector of bullets along the z-axis on
the screen. The setup of this experiment is, therefore, very similar to the one with a microscopic
particle such as electron considered in the paper. Furthermore, we saw that classical space R? is
isometric to the submanifold Mg of the space of states CP%2. A point a in classical space R3 is
represented by the state g, » in M5, defined in (3). Similarly, the classical phase space R3 x R3
for a particle is isometric to the submanifold Mg 5 of the space of states of the particle. Most
importantly, it was verified that Newtonian motion of a particle is equivalent to the Schrodinger
evolution of its state, provided the state is constrained to the manifold M¥ ;. Based on that, we
can identify the path of a classical particle with the corresponding path in M¥ 5 in a physically
meaningful way. In particular, neglecting other coordinates in R, the path z = ¢(¢) of a particle
going through point a in R is represented by the path ¢ = g.(;) of its state going through the
point g, in L,(R). This mathematically rigorous and physically valid identification, together
with the conjecture (RM), give us a perfect setup for analyzing and comparing the double-slit
experiments with electrons and bullets.

Let us consider the experiment with electrons first. The electron’s spin properties in the
experiment will be neglected. At the beginning of the experiment, an electron gun fires elec-
trons one by one. We may assume that state of the initial electron is a Gaussian wave packet
moving towards the screen with the slits. In particular, the state is near the manifold M5 5 in
the space of states CP™2. That is, the Fubini-Study distance from the state to M3 5 is small.

During this time, the state propagates by the usual Hamiltonian / = % + V(x), where V(x)
is an external potential including the one associated with the screen with the slits. Interaction
of the electron with the surrounding matter in the experiment can be neglected. Upon inter-
action with the screen, the wave packet splits into a superposition of two wave packets. That
means that the state is no longer on the manifold M§’3. In fact, assuming, for example, that
¢ = aga+ gy with |a| <[], the cosine of the smallest distance between the state and M7 ;
is given by

| (aega + Bgr,8v) | = |B]- (38)

It follows that the state is close to M3 5 only when « is close to 0. This is not the case imme-
diately to the right of the screen with both slits open.

Note that nothing special has happened to the state at this time. It simply moved away from
the classical phase space submanifold Mg ; into CP. In particular, the path of the state did not
go through the points g, or g, or any other point g. with ¢ on the z-axis. It passed in the space
of states ‘over’ the z-axis and the screen. However, for the electron to have any position in R?
at all, the electron’s state must be in M§,3, which is not the case when the electron interacts
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with the screen. So, the electron position is not defined at this time. It is not given by a or b
on the z-axis, or by any other point in R3. At the same time, whenever the electron’s state is
in M7 5, it identifies the electron’s position in R? correctly, as a dynamical variable, in a way
consistent with Newtonian dynamics. In this sense, the state variable ¢ is an extension of the
classical position variable of the particle. Instead of saying that the electron’s position is not
defined when the particle interacts with the screen, we can say that the electron’s path takes
off the classical space and passes ‘over’ the screen in the space of states. Its position along the
path is well-defined but requires additional dimensions provided by the space of states CP2.
In particular, the electron’s path does not ‘split’ to go through two slits at once. It is only when
we insist that the electron’s state must always be on M7 5 that we run into this paradox.

What happens to the right of the screen, when the particle interacts with the detector? The
Born rule for the probability density function for the particle’s position, in the considered
approximation, yields P(z) = |aga(2) + Bg(2)|* = |*|ga(2)* + | B[*|gs(2)*. Integrating
this over the area occupied by the detector near point a, we get approximately |cr|2. The probab-
ility of being near b is then | 3|2. This result is identical to the one obtained from the conjecture
(RM) in the paper. According to (RM), the state ¢ is driven by the Hamiltonian represented
by a random matrix. The random walk of state brings it back to the classical space subman-
ifold M9 to the equivalence class of one of the eigenstates g, or g, by the process described
in the previous sections. The electron is then positioned near the point a or point b with the
probabilities |a|? and |3|? respectively.

Suppose now that the detected particle is able to continue its motion towards the screen on
the right of the detector. It will then arrive at the screen as a spread-out version g, (or g;) of the
detected Gaussian state g, (or g,). The probability density function for the electron’s position
on the screen is then given by either P(z) = [g,(z)|* or |g,(z)|* and no interference pattern is
observed on the screen. The resulting ‘corpuscular’ properties of the detected electron are due
to the closeness of its ‘post-detector” state to the classical phase space manifold M¥ ; during
its motion from the detector to the backstop screen. As we know, when the electron’s state is
on M3 5, it satisfies Newtonian dynamics and behaves like a particle.

If the experiment is repeated without the detector, the state ¢ = ag, + Sg, obtained to
the right of the slits will continue its motion towards the backstop screen along a path that
is away from M3 ;. Interaction of the particle with the backstop screen happens in the same
way as its interaction with the detector. However, this time the spread-out states g, and g,
may not be considered orthogonal. As shown earlier in this paper and in [6], the conjecture
(RM), when applied to this case, yields the Born rule as before. Provided the particle has been
detected by the screen, the probability density function for the position is given by P(z) =
|ag.(z) + Bg5(z)|*. The interference term is now present. The observed ‘wave’ properties of
the electron are caused by its state being distant from the classical phase space submanifold
M3 5 during its motion from the screen with the slits to the backstop screen. That is, the state
arrives at the backstop screen as a superposition ag, + 8¢5, and such a superposition is away
from M7 ;. When the state of the particle in the experiment moves away from the classical phase
space submanifold M7 5, the standard deviation ¢, increases and the particle demonstrates its
wave properties. When the state is brought back to the manifold Mg 5, the standard deviation
decreases, and the particle demonstrates classical corpuscular properties.

What is different about the experiment with bullets? Measuring the position of a small
electron in the experiment requires a detector or a backstop screen that the electron interacts
with. On the other hand, the bullet interacts randomly and continuously in time with particles
of the surroundings even before it reaches the sandbox or the backstop screen. Because of this
continuous interaction, the surroundings (particles of air, radiation) contain information about
the bullet’s position at all times. In other words, the bullet’s position is constantly measured
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by the surroundings. It follows that the conjecture (RM), when accepted, needs to be applied
to the entire motion of the bullet in the experiment.

As shown in section 2, the state driven by the Hamiltonian in (RM), and conditioned to
stay on the manifold Mg, describes the Brownian motion of the particle. When the particle is
sufficiently large, the diffusion coefficient for the Brownian motion vanishes, and the particle
is at rest in the lab system. The isotropy of the probability distribution of steps of the random
walk of the state signifies that the state of the particle in the space of states CPP%?> must then
be at rest as well. If an external potential is applied to such a system, the particle, under the
accepted assumptions (i.e. (RM) and Mg’)3 as the classical phase space, or, alternatively, (RM)
combined with the drift), will move in accordance with Newtonian dynamics. A bullet is large
enough for its Brownian motion in natural environment to be trivial. It follows that the state of
the bullet is confined to Mg ;. Thus, the dynamics of the bullet in the framework is described
by Newton’s equations of motion.

6. Why random matrices?

The conjecture (RM) provides a unified model of measurement that applies to both macro-
scopic and microscopic particles. The constraint relating the random walk on the state space
to the corresponding random walk on the manifold MY is consistent with the condition estab-
lished in section 2, which connects Schrédinger and Newtonian dynamics. Since Brownian
motion can, under certain statistical assumptions, be derived from the Newtonian dynamics
of a particle in a thermal bath, and since the distribution of steps in the random walk on M%
defines the Gaussian unitary ensemble in (RM), this opens the possibility of supporting (RM)
through underlying dynamical considerations. Moreover, the translational and rotational sym-
metries observed in macroscopic measurements are preserved in the model. The irreversibility
of measurement arises from the lack of time-reversal invariance in Hamiltonians drawn from
the Gaussian unitary ensemble [6], and potentially also from the inherent irreversibility of the
process generating the drift. The model not only leads to a derivation of the Born rule but also
accounts for the outcomes of the double-slit experiment, both with and without a detector.
These compelling results and the new avenues of research they open provide indirect support
for the conjecture. However, a fundamental question remains: why should the Hamiltonian
during measurement be represented by a random matrix?

Random matrices were introduced into quantum mechanics by Wigner [7] in a study of
excitation spectra of heavy nuclei. Wigner reasoned that the complexity of the motion of nuc-
leons in the nucleus could be handled by modeling the Hamiltonian of the system with a ran-
dom matrix. The ensemble of matrices only had to respect the symmetries of the system. The
correlations in the spectrum of random matrices that Wigner discovered turned out to be applic-
able to a remarkably large number of quantum systems with many as well as few degrees of
freedom. Experimental evidence suggests that all quantum systems whose classical counter-
part is chaotic demonstrate random matrix statistics, as proposed in the BGS conjecture [8].
On another note, classical measurement can be modeled by Brownian motion. It is known
that Brownian motion can be characterized as a chaotic process [22—24]. The complex nature
of the interaction between the measured particle and atoms of the detector, coupled with the
chaotic features of Brownian motion, suggests that the system’s Hamiltonian can be effectively
represented by a random matrix.

Decoherence theory [18] seeks to explain the process of position measurement based on the
Schrodinger evolution of the system interacting with the environment. A typical Hamiltonian
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modeling this situation would describe a particle linearly coupled to a set of harmonic oscil-
lators. Alternatively, the scattering matrix can be used to determine the effect of the collective
scattering of particles on the particle whose position is measured. The evolution of the dens-
ity matrix of the measured particle would then exhibit a damping of interference terms in the
matrix. The theory has been successful in explaining the emergence of classical probabilit-
ies. However, it falls short in explaining how a single classical outcome arises as a result of
measurement [25] and does not lead to the Born rule.

In loose terms, deriving evolution equations for the density matrix in decoherence theory
is akin to attempting to derive Brownian motion from the Newtonian dynamics of a system of
particles. While both endeavors offer proof of concept, they rely on several crucial assump-
tions and fall short of providing a fundamental explanation of the phenomena. For example,
deriving Brownian motion typically involves making simplifying assumptions about the form
of the Hamiltonian (such as a harmonic bath and bilinear interaction) and the spectral density.
Attempting to derive Brownian motion as the limit of a deterministic system of hard spheres is
mathematically highly complex and also requires additional assumptions beyond Newtonian
dynamics [26]. Ultimately, these endeavors serve as useful models. However, to significantly
simplify the description and gain deeper insight into the phenomena, additional symmetry-
based assumptions about the dynamics, such as those proposed by Einstein in the theory of
Brownian motion or by Wigner in the study of spectra of heavy nuclei, are still necessary.
Similarly, the universal applicability of random matrix theory to fluctuations in quantum sys-
tems, together with the results derived here, suggests that random matrices may offer a sim-
plifying mechanism and the missing insight into the process of measurement.
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