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Abstract

The scale-free gravothermal fluid formalism has long proved effective in describing the evolution of self-
interacting dark matter halos with a constant dark matter particle cross section. However, whether the gravothermal
fluid solutions match numerical simulations for velocity-dependent cross-section scenarios remains untested. In
this work, we provide a fast mapping method that relates the constant-cross-section gravothermal solution to
models with arbitrary velocity dependence in the cross section. We show that the gravothermal solutions after
mapping are in good agreement with AREPO N-body simulation results. We illustrate the power of this approach by
applying this fast mapping method to a halo hosting a low-surface-brightness galaxy, UGC 128. We show that this
fast mapping method can be used to constrain free parameters in a physically motivated cross-section model and
illustrate the parameter space favored by the rotation curve measurement.

Unified Astronomy Thesaurus concepts: Dark matter (353); Milky Way dark matter halo (1049)

1. Introduction

Self-interacting dark matter (SIDM) is a promising class of
candidate to explain the cored dark matter (DM) halos implied
by observations of local dwarf galaxies (de Blok et al. 2008;
Oh et al. 2015), while maintaining the accurate reproduction of
large-scale cosmic properties provided by the cold dark matter
(CDM) paradigm (Peebles 1982; Planck Collaboration et al.
2011, 2014; Anderson et al. 2012). In the SIDM model, first
proposed by Spergel & Steinhardt (2000), in addition to the
gravitational interactions, DM particles also scatter with each
other. The effect of scattering is negligible on large scales due
to the low DM particle number density and the resulting long
relaxation time. However, the collisional mean free path of DM
particles can become smaller than the orbital Jeans scale near
the halo center, causing the formation of an isothermal core and
even the gravitational catastrophe (Lynden-Bell et al. 1968) at
small scales.

The gravothermal fluid formalism originally developed for
studying the gravitational catastrophe of stellar clusters
(Lynden-Bell et al. 1968; Eggleton 1971) has been extended
to isolated SIDM halos and provides rich physical insights into
the nature of SIDM halo evolution (e.g., Lynden-Bell &
Eggleton 1980; Balberg et al. 2002; Balberg & Shapiro 2002;
Shapiro 2018; Essig et al. 2019; Nishikawa et al. 2020).
Although it makes multiple simplifying assumptions, numerical
solutions to the gravothermal fluid formalism show surprisingly
good agreement with idealized N-body simulations and also
match reasonably well with cosmological SIDM zoom-in
simulations (Koda & Shapiro 2011; Elbert et al. 2015; Essig
et al. 2019; Outmezguine et al. 2022). A nice property of the
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gravothermal fluid formalism is that the fluid equations
themselves can be rewritten into a form that is independent
of the halo density and radius scales. Therefore, although
computationally expensive, the fluid formalism only needs to
be numerically solved once and can be rescaled to SIDM halos
with arbitrary masses, sizes, and concentrations.

All previous comparisons between the gravothermal solu-
tions and numerical simulations have assumed a constant DM
particle scattering cross section. However, if SIDM is the
explanation for the apparent deviations from CDM behavior on
small scales, then recent observations indicate that the
cross section, o, for DM particle self-interaction is likely
varying among systems of different scales. Specifically, o is
constrained to be of the order of 0.1 cm? g_l, 1 cm? g_], and
10 cm? g™ for galaxy cluster, galactic, and dwarf-galaxy halos,
respectively, where the velocity dlsll)ersion of DM particles
decreases from ~1000 to ~1 kms™ " (e.g., Kaplinghat et al.
2016; Elbert et al. 2018; Sagunski et al. 2021; Andrade et al.
2022). A velocity-dependent cross section oocv * at high
velocity is also motivated by particle physics, assuming a
Yukawa or Coulomb potential for the self-interaction (Feng
et al. 2009; Ackerman et al. 2009; Ibe & Yu 2010; Kummer
et al. 2018). Motivated by this, more recent SIDM numerical
simulations have started to focus on velocity-dependent cross-
section models (e.g., Nadler et al. 2020). Testing whether the
gravothermal fluid solutions are still in good agreement with
numerical simulations assuming a velocity-dependent cross-
section model becomes crucial in developing better under-
standing of the SIDM N-body simulations, as well as justifying
SIDM cross-section constraints derived by gravothermal fluid
formalism-based methods.

In this work, we show using an analytic gravothermal fluid
formalism that assuming different cross-section values/models
effectively rescales SIDM halo evolution rates. In particular,
there exists a one-on-one time mapping between any two
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SIDM halos simulated by the gravothermal fluid approach such
that their density, velocity, and all the other physical properties
are identical up to some rescaling factors. Based on this
finding, we propose a fast mapping method that transfers the
gravothermal numerical solutions assuming a constant SIDM
cross section to those with arbitrary velocity-dependent cross-
section models. To test the performance of this mapping
method we perform multiple idealized N-body simulations
assuming velocity-dependent cross-section scenarios with
AREPO (Springel 2010). We find excellent agreement between
the mapped gravothermal solutions and N-body simulation
results. This mapping approach is powerful because it
eliminates the degrees of freedom introduced by assumptions
in the SIDM cross-section model, such that one only needs to
solve the gravothermal fluid equations once and one can then
rescale the solution to halos of arbitrary sizes, masses, and
cross-section models. Due to the high computational efficiency,
this method is useful for exploring the continuous parameter
space and constraining SIDM cross sections. It is also
applicable to semianalytic galaxy formation models to
efficiently generate SIDM halo populations. To demonstrate
the utility of this approach, we combine the mapping method
with rotation curve measurements of the low-surface-brightness
(LSB) galaxy UGC 128 (van der Hulst et al. 1993) and
illustrate the parameters of the Navarro—Frenk—White (NFW)
density profile (Navarro et al. 1996) and velocity-dependent
cross-section models favored by observations.

As this work was nearing completion, Outmezguine et al.
(2022; hereafter 022) introduced a mapping method with a
similar spirit, but which differs in detail from our work. We
find that O22 only compared the mapped gravothermal
solutions with idealized N-body simulations that assume
constant cross sections (Koda & Shapiro 2011). Example
applications of their mapping method are also not discussed in
detail. We have therefore expanded this work to include
comparison of our approach with that of O22.

Calibrating the gravothermal fluid formalism to cosmologi-
cal zoom-in simulations is an even more interesting topic to
explore. However, cosmological simulations generally contain
more complicated physics and can break multiple assumptions
made in the current fluid model. As a first step, in this work we
will only compare gravothermal solutions with idealized SIDM
N-body simulations for isolated halos with constant or velocity-
dependent cross sections. We leave the more complicated
comparisons of gravothermal solution versus cosmological
simulation to future works.

The plan of this paper is as follows. In Section 2 we briefly
introduce our idealized SIDM halo simulation sets. Section 3 is
an introduction to the gravothermal fluid formalism. We briefly
review the long-mean-free-path (Imfp) gravothermal solution
mapping method among different constant-cross-section sce-
narios introduced by Balberg et al. (2002), Koda & Shapiro
(2011), and Essig et al. (2019) in Section 4. We then explain
the methodology of mapping the Imfp gravothermal solutions
from constant cross section o to velocity-dependent cross
section o(v) in Section 5 and comparing the mapped
gravothermal solutions with N-body simulation results as well
as 022 in Section 6. We briefly discuss the generalization of
this Imfp mapping method to the short-mean-free-path (smfp)
and intermediate regime in Section 7. In Section 8 we combine
the mapping method with observational data and show
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parameter constraints of the velocity-dependent cross-section
models. We conclude in Section 9.

2. Idealized SIDM N-body Simulation

In this work we perform idealized N-body simulations of an
isolated Milky Way-sized halo with NFW initial density
profile:

pS (1)

r r 2’
()

where p,=4.2 x 10° M., kpc™ and r,=24.54kpc. The halo
virial radius and mass, defined with overdensity A;, = 99.2 with
respect to the critical density, are ry;;=280.6kpc and
My =10"*" M. To guarantee a finite halo mass, we apply an
exponential cutoff to the halo density profile at r,;.. Convergence
test results show that such an exponential cutoff at » 2 10r, has
negligible influence on the gravothermal evolution of the SIDM
halo. The properties of this halo are chosen to be consistent with
those of the host halo from the CDM zoom-in simulation
presented in Nadler et al. (2020), which has also been resimulated
in velocity-dependent SIDM models.®

However, our selection of these halo properties is an
arbitrary choice for testing the performance of the gravothermal
solution mapping method introduced in Section 5. Since the
gravothermal fluid formalism is scale-free (i.e., independent of
p, and r; besides some rescaling factors), comparisons between
the gravothermal solutions and isolated SIDM halo simulations
of arbitrary sizes and masses are equivalent.

To avoid extremely long collapsing timescales for halo cores,
and therefore expensive simulations, we select a large constant-
cross-section factor o, = 30 cm” g~ and consider a simple velocity-
dependent cross-section model introduced in Gilman et al. (2021),

@)

p(r) =

o(v) = X
(1 + v2/wh?’
where w is a characteristic velocity beyond which the cross
section drops as v—*. This asymptotic behavior is motivated by
Coulomb or Yukawa interactions (Feng et al. 2009; Ackerman
et al. 2009; Ibe & Yu 2010; Kummer et al. 2018). The factor 1
in the denominator is used to avoid a divergent cross section for
low-velocity particles in the numerical simulations.

We consider four different cross-section models where
w=o (e, oc=0, =30 cm’ g1 is a constant) and
w = 1000, 500, and 400 kms~'. Notice that since the 1D rms
velocity of DM particles at the halo center and at the moment
of core formation (when the halo central density reaches
minimum) is about 100 kms™', corresponding to a 3D rms
relative velocity of about 250 kms~!, those four scenarios
correspond to constant cross section, and weak, intermediate,
and strong cross-section velocity dependence, respectively.

We use SPHERIC (Garrison-Kimmel et al. 2013) to generate
five initial conditions with identical resolutions and halo proper-
ties, but different random seeds. Through this we can quantify the
effects of discreteness noise in the initial conditions on the
evolution of the halo in the N-body simulations. We set the

 This host halo was selected from the CDM cosmological simulation

C1251024, and its corresponding zoom-in simulation was first presented in Mao
et al. (2015).
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particle mass to 10° M., so the halo in each simulation is resolved
with 1.7 x 10° particles. For each cross-section scenario we
simulate five halos with the AREPO SIDM module, and we direct
the reader to Vogelsberger et al. (2012, 2014, 2019) for a detailed
introduction to the numerical method. This SIDM simulation
pipeline has been adopted by many previous works (e.g., Zeng
et al. 2022) and has been proved to generate valid simulation
results for cross sections up to 60 cm® g~

3. Gravothermal Fluid Formalism

Consider a spherically symmetric and isolated halo. Assum-
ing gravothermal equilibrium is achieved at every radius and
every moment, the halo evolution can be described by the
following four equations (see also Balberg et al. 2002; Essig
et al. 2019):

oM

E = 47Tr2p, 3)

O(pvims) __ GMp

= — s 4
or r2 @
L oT
= —KR—, 5
472 " or ©)
2 2

pvrms (2) 1n vrmS — _ 1 aL. (6)

v—1\0t)y, p! 4rr? Or

Throughout this paper we use M(r) to denote halo enclosed
mass at radius less than r. Then, p(r), vims(r), L(r), k(r), and
T(r) = mv2,,(r)/ksg correspond to halo density, 1D rms
velocity averaged over the Maxwell-Boltzmann (MB) dis-
tribution, luminosity, thermal conductivity, and temperature at
radius r respectively. Here, m is the DM particle mass and kg is
the Boltzmann constant. Since we do not consider the
movement of the halo center throughout this work, the rms
velocity and velocity dispersion among DM particles are
identical at all radii. Assuming the DM particles act as a
monatomic ideal gas, we set the adiabatic index y=5/3. The
Jeans equation (Equation (4)) forces gravothermal equilibrium
where the outward pressure 0(pv2,)/Or is balanced by the
gravitational force. Equation (5) defines the heat flux and
Equation (6) expresses the first law of thermodynamics.
Together Equations (5) and (6) govern the quasi-static time
evolution of an SIDM halo.

For ideal-gas environments where the heat conduction is
solely realized by the thermal motion and collisions among gas
particles, the kinetic theory of gases gives heat conductivity as

I’L)\sz

Rsmfp X P @)
r

and it is conventional to define Ksmpp = 2.1Vims kg /o, derived
from integration over the MB velocity distribution. Here,
n=p/m is the local DM particle number density, A= 1/(n o)
is the mean free path, and 7, = A\/vy, is the relaxation time.
Here we use o to denote DM particle scattering cross section,
which is either a constant or a velocity-dependent quantity. We
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use vy, to distinguish particle relative velocity from the 1D rms
velocity v, used for the temperature definition.

Equation (7) does not apply to gravothermal systems of low
density and low self-interaction cross section, where most of the
particles tend to orbit several times before colliding with one

another. Using the Jeans length H = /v2,./(47Gp) to approx-
imate particles’ characteristic orbital radii, Equation (7) is only

accurate when \ < H (also referred as the smfp regime). In this
work we only care about halo evolution processes that satisfy
A> H, also referred as the Imfp regime. To derive the heat
conductivity in the Imfp regime one just needs to replace the mean
free path A with the scale height H (Spitzer 1987):

nH sz

Rlmfp X . (8)

It is conventional to assume Kimgp = (36/2)nH%*g/t, =

0.276nv okg/(Gm), where (3 is an adjustable parameter to
match the fluid numerical solutions with N-body simulations.
The value of § cannot be derived from first principles and it is
therefore treated as a free parameter to be calibrated against V-
body simulations. It is known that calibration to N-body
simulations results in 3 of order unity, but with some variation
in the range 0.5-1.5 depending on the specific simulation and
cross-section parameters (Essig et al. 2019). We will show in
Section 6 that in the Imfp regime, it is valid to absorb constant
factors resulting from integration over the MB velocity
distributions into # when o is constant. However, we will
demonstrate that a more careful treatment is required for cases
of relative velocity-dependent cross section o(v;;).

A nice feature of this gravothermal fluid formalism is that,
given the halo initial density profile as NFW with characteristic
radius 7, and density p,, the set of Equations (3)—(6) can be
rewritten into the scale-free form such that the unitless
gravothermal solutions can be applied to an arbitrary halo by
rescaling. Specifically, all physical quantities in the equation set x
in the fluid formalism can be separated into a unit factor x, and a
scale-free factor & (i.e., x = xoX) such that Equations (3)—(6) can
be written into the unitless form:

M ..,
o
0Py Mp

o P
L o0k,
2 o

A3 r

pvﬁm(%)Mm ‘;“ :—%g—?. 9)

The unit variables are (Essig et al. 2019)
My = 47er3 o°,

to=1//47Gp,,

Lo=@4m)’2G32p3%r3,  (a/m)o = 1/(p;ry),  (10)

and it can be derived that Ajpgp = 0.27 X 4Wﬂf)€r3ms(07 m) and

n=r.  po= Py

Vims,0 = 47TG,03 Fsy

Rsmtp = 2.1\9rms/ (J/Am). Hereafter we will abbreviate (07 m) as

~—1

o for simplicity. We assume A = 1 / (f%];]lfp + Agmip) to join the
Imfp and smfp regimes smoothly.
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The steps to solve Equation (9) numerically are (Essig et al.
2019)

1. Determine input parameters (5 and &.

2. Grid the halo with NFW density profile p = (1/
#)/(1 + #)? into 150 log radial bins spread uniformly
in the range —2 < log# < 3.7 3 We assume boundary
conditions M = L = 0 at the inner radius and L = 0 at
the outer radius to solve for the radial profile of Vs
through the Jeans equation. Following Pollack et al.
(2015) and Essig et al. (2019), we take values of M; and
I:,- of the ith shell at the log radial grid #, while p;, Tims,
are taken as the averaged values between the (i — 1)th and
the ith shells.

3. Let the fluid code take a small time step df such that the
specific energy it = 392../2 changes by a factor of no
more than 10~ among all the shells:

da __OL (11)
di oM,

4. After taking one time step forward, perturb 7, p, and Vi
of each shell 10 times such that the gravothermal
equilibrium (Equation (4)) is established again through-
out the halo. During the perturbation, the mass, specific
energy, and entropy s = In(¥2,./p) of each shell are
conserved.

5. Repeat steps 2, 3, and 4 iteratively until core collapse.

We checked that the basic assumptions made in solving
Equation (9), i.e., (i) the halo is spherically symmetric, and (ii)
the halo mass and scale do not vary with time, are satisfied in
the idealized N-body simulations for isolated halos. However,
those assumptions may be not valid for cosmological
simulations due to halo interactions, mergers, and mass
accretion.

Notice that most of the current gravothermal fluid studies are
interested in SIDM models with moderate cross section and
values near unity. Such a setup results in the halo remaining in
the Imfp regime for most of its life until core collapse occurs.
Moreover, o decreases drastically with v, at v, 2 w under
the scenario of a velocity-dependent cross section, leaving the
heat conduction more likely to be dominated by the Imfp term.
We therefore focus on the gravothermal solutions in the lmfp
regime in this work. Specifically, we choose input parameters
6 =0.01, 6=0.6 in step 1 and solve Equation (9) numeri-
cally to derive the gravothermal solutions, which will be used
by the mapping method introduced in Sections 4-6. We stop
the evolution of the fluid code when (357 reaches 173. At the
last time step, the halo is still in the Imfp regime and has
entered the core-collapsing stage, where its central density
increases rapidly. The time evolution of the ratio between Ay,
and Asmgp at the halo center is shown in Figure 1 by the blue
solid curve.

We notice that the halos simulated in Section 2 adopt a much
greater cross section of & = 0.65. To check the validity of the
Imfp assumption we numerically solve Equation (9) for another
set of input parameters, {3 = 0.82, & = 0.65}, and present the
time evolution of the halo central density as the red dashed

7 In this work log denotes a base-10 logarithm and In denotes a natural

logarithm.
8 We have tested that setting the halo outer bound at log# = 1, 2, 3 or the
inner bound at log# = —3, —2 has negligible influence on the fluid solutions.
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curve of Figure 1. This halo still evolves in the Imfp regime
during most of its lifetime before core collapse, although the
increase in cross section boosts the halo to be closer to the smfp
regime since /%lmfp//%smfp o (362, Ideally we would like to
simulate a halo with smaller cross section to better match the
assumption made in this work. However, this will delay the
onset of core collapse and lead to more expensive and unstable
idealized N-body simulations. We will show later that even for
this large constant cross section & = 0.65 the Imfp assumption
still holds, and the simulated halo evolution matches the Imfp
gravothermal solution well. The smfp tension will be further
alleviated when we consider the velocity-dependent cross-
section scenarios, where the velocity dependence will largely
decrease the effective cross section and bring the halo further
away from the smfp regime.

The gravothermal evolution of SIDM halos described by
Equation (9) is shown in Figure 2. Specifically, at the NFW
initial state (shown by the red solid curves) where
p=(1/7)/(1 + 7)?, the halo temperature is highest at
7 =~ 0.8. The heat therefore flows to both the halo center and
outskirts. The halo center keeps absorbing heat until local
thermal equilibrium is reached. At this point a cored region is
formed where the density and the rms velocity are uniform, as
shown by the green dashed curves. DM particles in the halo
cored region continuously lose energy due to outward heat
transfer. In this process their orbital scale decreases and the
kinetic temperature increases. As shown by the blue dashed—
dotted curves, the halo core density and temperature will keep
increasing and will move further away from thermal equili-
brium with the halo outskirts. Such a regime is also referred to
as gravothermal catastrophe or core collapse.

While the gravothermal model is computationally much
more efficient than running an N-body simulation it is still too
slow to apply to large ensembles of halos as might be required
in a semianalytic model of subhalo evolution, or when
generating realizations of subhalo populations for analysis of
gravitational lensing systems (e.g., Benson 2012; Gilman et al.
2021). For example, the calculations shown in this section
required around 24 CPU hours to compute. While this is
trivially manageable for a single halo, it is impractical to apply
to ensembles of millions of halos. As such it is useful to be able
to map a single solution of the gravothermal model to more
general cases. We will explore this possibility in the remainder
of this paper.

Additionally, in the Appendix we provide a triple power-law
empirical model calibrated to this set of fully Imfp solutions
with high precision. The advantage of this analytical model is
that it captures the halo core size, core collapsing time, and the
radius where the cored density profile joins smoothly to the
halo NFW outskirts with simple formulas, and can be easily
implemented into semianalytic models of galaxy formation.

4. Mapping Gravothermal Solutions between Constant
Cross Sections

In this section we briefly review the mapping method
discussed in Balberg et al. (2002), Koda & Shapiro (2011), and
Essig et al. (2019) that transfers the gravothermal solutions
under a constant cross section 47 to another constant cross
section 0,, assuming the halo is mostly evolving in the Imfp
regime.

The third and fourth equations in Equation (9) show that the
halo evolution rate is degenerated with radius-independent
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Figure 1. Time evolution of the ratio between the Imfp and the smfp heat
conductivities at the halo center, assuming two different sets of parameters
{6 = 0.01, 8 = 0.6} (blue solid) and {& = 0.65, 5 = 0.82} (red dashed). For
the {& = 0.01, 3 = 0.6} set of gravothermal solutions Aimfy < Agmfp through-
out the halo evolution process, so the total heat conductivity is always

dominated by the Imfp term. In the {6 = 0.65, 3 = 0.82} case the halo also
evolves mostly in the Imfp regime, but it enters the smfp regime at 367 = 155.

103 i

101 i

— NFW
-—-- core formed
—-— core collapse

0.2

0.1 - . .
1072 1071 10° 10! 102

r

Figure 2. Gravothermal evolution phases of an SIDM halo described by the
fluid formalism. The top/bottom panel shows the halo density/rms velocity
profiles at different evolution stages. The red solid curves show the NFW initial
condition at/ = 0. The green dashed curves present the moment when the halo
central density reaches minimum, and an isothermal core is formed at the halo
center. The blue dashed—dotted curves show the subsequent process of core
collapse.

A

factors in the heat conductivity A. In the Imfp regime
Rimtp oc 35, therefore 36 and the inverse of the halo evolution
time 7 are degenerate such that the time evolution of the
gravothermal solution can be parameterized by (567. In other
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—— B=0.60,6=0.01
---- B=0.82,6=0.65

100 : . . .

1071 10° 10? 102
Baot

Figure 3. Time evolution of the central density of the SIDM halo given by the

gravothermal fluid formalism at parameters {3 = 0.6, & = 0.01} (blue solid)

and {# = 0.82, & = 0.65} (red dashed). The halo evolution is almost identical
with time parameter 357 when & is dominated by the Imfp term.

words, there exists a one-to-one mapping 3,6.% < Bu0uhy
between two sets of gravothermal solutions with parameters
{Ba, 62} and {By, 6} such that

Bv 0y

£ ) = )eb(f, i x —ﬁ“"“), (12)

where £(7, ) stands for an arbitrary scale-free halo property at
radius 7 and time 7, including p, Vs, M, L, etc. We show the
scale-free halo central density 4. versus (367 for two sets of
gravothermal solutions with very different input parameters in
Figure 3. The time evolution of these two halos is almost
identical after the first few time steps, where A, is
comparable to Asng for the & = 0.65 case, and the Imfp
assumption is not very accurate (see Figure 1).

Although the gravothermal fluid formalism considers a very
simplified picture, it provides numerical solutions in surpris-
ingly good agreement with idealized N-body simulations of
isolated halos up to a slightly varying (3 factor. As an example,
in Figure 4 we present comparisons of the evolution of the halo
central density over time between the gravothermal solutions
(red solid curve) and the averaged Arepo N-body simulations
(black solid curve) for a Milky Way-sized SIDM halo with
ps=4.2x10° M, kpc™, ry=24.54kpc, and o/m =30 cm?
2! (see Section 2 for simulation details). To test convergence,
we reduce the particle number by a factor of 4 in each N-body
realization and present the averaged simulation results as the
cyan dashed curve. We find the rescaled Imfp gravothermal
solution with 3= 0.82 captures the overall halo evolution and
reproduces the core collapsing time in the Arepo simulation
results. We notice that the fluid numerical solution has a halo
central density that drops faster than the N-body results prior to
isothermal core formation (0 < ¢/Gyr < 2). The central density
also grows slightly faster than N-body at 72> 18 Gyr. Those
differences are, again, caused by the fact that we have selected
a very large cross section for the N-body simulations. The basic
assumption of this mapping method, that the halo is always in
the Imfp regime, is not of high accuracy. Since our focus is to
extend the Imfp gravothermal fluid formalism to the velocity-
dependent cross-section scenario and capture the overall halo
evolution in the N-body simulations, in this work we will
accept this slight disagreement. Moreover, the smfp problem is
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Figure 4. Comparisons of halo central density evolution between the averaged
results of the Arepo N-body simulation (black solid curve) and the numerical
solutions of the gravothermal fluid formalism (red solid curve). The gray band
encloses the maximum and minimum halo central density among the five
AREPO realizations. The cyan band shows convergence test results where the
particle Islumber in each N-body realization is decreased from 1.7 x 10° to
4.2 x 107,

alleviated when we simulate velocity-dependent cross-section
models.

5. Mapping Gravothermal Solutions from Constant to
Velocity-dependent Cross Section

In this section we introduce a mapping method to transfer the
gravothermal solutions under a constant cross section & to
those under a velocity-dependent cross-section model o(v). In
numerical simulations the velocity used to determine the
scattering probability between two particles is generally the
particle relative velocity v, but in this section we will consider
a simpler case where the cross section is determined by the
particle rms velocity. We will discuss this mapping method
under the more practical o(v,,) scenario in Section 6.

In this paper we will use the cross-section model introduced
by Equation (2) as an example, but this mapping method is
applicable to an arbitrary o(v) model.

In Section 4 we have shown that there exists a one-to-one
mapping 3, 0.%, < Byopl, between two sets of gravothermal
solutions with different 8 and constant cross sections. Now
consider two sets of gravothermal solutions, one with constant
cross section {(3,, 6,} and the other with a velocity-dependent
cross section {Bp, 6b(Vrms, b)}. The linear time mapping does
not hold anymore since &y (Viys, b) 1S @ function of radius and
time rather than a constant. However, if in every small time
interval we may assume a characteristic halo-wide cross section
(or, equivalently, a characteristic velocity) such that we can
drop the radial dependence of the cross section
& (Bems, (P, 1)) & & (Vs b (%)), then there exists the following
one-to-one mapping for every small time step:

/Baa'adfa = /Bba—b(ﬁ:r-ns, b(fb))dﬁn
= B0 (Pims, a () . (13)

Here the second equation holds because alternating a time-
dependent yet radius-independent SIDM cross section has no
influence on the gravothermal fluid solution besides nonlinearly
stretching the time axis. In other words, there still exists the
following one-to-one mapping between these two sets of
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Figure 5. Mapping relation for the time variable in the gravothermal solution.
The x-axis present the scale-free time 7 of the gravothermal solution under
constant cross section & = 0.01. We map 7 to the velocity-dependent cross-
section model & = &./(1 + $2,,/@?)2, with 3, = 0.01 and & = 0.01, 0.1, 0.3,
and 1.0. The rescaled time is presented on the y-axis for each case. For
simplicity we have fixed 5= 0.6 in this test.

gravothermal solutions:

Xa(F, 1) = 2o (7, B)

PN PN fa ﬁaaa ~
= s — T} 14
Xb(ﬁ‘f; /Bba'b(ﬁrc;rms,a(f/a))dt J ( )

In practice one has the constant-cross-section gravothermal
solution that specifies the radial profiles of halo density and rms
velocity at an array of time 7, = {7, 7.,....5"} (here 7' is the
time of the ith step), and aims to map it to some velocity-
dependent cross-section scenario. To achieve this one will need
to first compute the time step &, = {70, £} — £9,..,f¥ — iN-1,
and then use Equation (13) to compute the mapped time step
bty = [Ba6a/ B 06 (Dins. 2 (fa))]167,. Summing 67, up, a new time
axis #, is derived such that £, (7, f,) = £, (7, £,).

The remaining problem is to determine how to choose the
characteristic rms velocity vy, at each time. Since the SIDM
core evolves the most with time, while the halo outskirts show
very little time evolution (see Figure 2), we find that simply
using the halo central rms velocity shows very good mapping
performance:

‘3rcmq(f) = ﬁrms(f = Fnins f) (15)

Here 7y, = 1072 is the innermost radial bin of the fluid
formalism.

To test this mapping method, we assume &, = 0.01, 3= 0.6,
and numerically solve Equation (9) for two cross-section
models. For the first test we assume a constant cross section
0 = 0., while for the second test we assume & =
a./(1 4+ 92../@*)?2 We consider four velocity-dependent
cross-section models with @ = 0.01, 0.1, 0.3, and 1.0,
corresponding to very strong, strong, intermediate, and weak
velocity dependence. Figure 5 presents the unitless time of the
constant-cross-section gravothermal solution rescaled by this
mapping method. Notice that the 1D velocity dispersion of dark
matter particles Vs varies from 0.1 to 0.4 near the halo center
(see Figure 2 bottom panel), which is small compared to 1.0.
The halo SIDM cross section for the & = 1.0 case is therefore
almost a constant & = &, corresponding to a nearly trivial time
mapping relation shown by the magenta dotted curve.
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Figure 6. Scale-free evolution of the SIDM halo central density under a constant-cross-section model (red solid) and a velocity-dependent cross-section model (black
solid). In each panel the rescaled constant-cross-section gravothermal solutions given by the methods introduced in Section 5 and 022 are shown by the green dashed
curve and the magenta dotted curve, respectively. We consider four different cross-section models with @ = 0.01, 0.1, 0.3, and 1.0 and compare the numerical solution
with the rescaled results in the top left, top right, bottom left, and bottom right panels. Both mapping methods show reasonable agreement with the gravothermal
numerical solutions. We notice that O22 is slightly more accurate in mapping the core collapsing time, while this work more accurately reproduces the halo evolution

before its central density reaches a minimum.

Decreasing & suppresses the total cross-section value & and
also boosts the velocity dependence of the particle scattering
probabilities. As a result, the rescaled 7 enlarges for the lower &
cases, and the time mapping nonlinearity becomes more
significant.

Comparisons between the mapped constant-cross-section
gravothermal solutions (green dashed lines) and the actual
velocity-dependent gravothermal solutions (black solid curves)
are shown in Figure 6. We find this simple remapping method
can successfully reproduce the gravothermal solutions in
velocity-dependent cross-section models in all the cases,
although it overestimates the core collapsing time by 14%,
13%, 7.5%, and 1.3%, respectively. This overestimation is
caused by Equation (15), where we set the halo central rms
velocity as a characteristic velocity that determines the overall
DM particle cross section at every moment. A true character-
istic vy, 1s generally lower than the central velocity, and
therefore our method slightly underestimates the effective cross
section at each time and will further overestimate the core
collapsing time.

We also check the performance of the mapping method
introduced in O22. Instead of using a time-varying character-
istic rms velocity V5, 022 makes a more simplified
assumption to use the rms velocity at the halo center and at
the instance of maximum core size as the characteristic value.
Effectively the characteristic rms velocity is assumed to be

(16)

We show the time evolution of the halo central density mapped
by O22 as magenta dotted curves in Figure 6. We show that
the 022 method only underestimates the core collapsing time
by 6%, 5%, 2.3%, and 0.3% for the & = 0.01, 0.1, 0.3, and 1.0
scenarios, but it cannot correctly capture the halo evolution
prior to the instance of maximum core size.

The accuracy of our mapping method can be further boosted
if we compute the characteristic v, or, equivalently, the
characteristic cross section, at each time step more carefully.
Specifically, at every time step we can define the characteristic
cross section as the averaged cross section weighted by the
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Figure 7. Comparisons of the time evolution of the halo central density between the averaged AREPO N-body simulation results (black solid curve) and the mapped
gravothermal solutions (green dashed curves) in different velocity-dependent cross-section models. In each panel, the maximum and minimum halo central density
among the five AREPO realizations are enclosed by the gray band. The red curve shows the gravothermal solution that matches with N-body assuming a constant cross
section o = 30 cm? g, which is identical to the red curve shown in Figure 2. We use 3 = 0.82 as calibrated in Figure 4, and assume it does not vary with w. We find
the mapping method introduced in this work matches with AREPO N-body simulation results extremely well. It outperforms the (kjmg) o< K3 definition, which is
assumed as an ansatz in O22. We also find under a linear time rescaling that the definition of the averaged heat conductivity (Kimg) < Ks performs equally as well as

Equation (21).

mass of multiple shells:

i A2 cA A A ~
5o — 26’”147”’,' 6ripi0b,c(vrms,i) (17)
- Slowd 72 §7: 5 ’
0 FTH O p;

where i is the shell index, and i, corresponds to the shell that
joins smoothly to the halo NFW outskirts, beyond which the DM
particle self-interaction is negligible. The radius of shell i, is
given by Equation (A4) and Equation (A8) in the Appendix.
After this step we can map the time step of the constant-cross-
section gravothermal solution as &%, = [, ./ B 61 (f2)] 67,. We
find that this more careful way of computing the characteristic
cross section effectively decreases the fractional error of the
mapping method in predicting the core collapsing moment to
6.4%, 5.6%, 2.9%, and 0.5% for & = 0.01, 0.1, 0.3, and 1.0
cases, providing performance equally as good as O22 while
maintaining a good match to the actual gravothermal
numerical solutions before the instance of maximum core
size. However, we do not use this more complicated
treatment as the default method because it can be computa-
tionally expensive when applied to a large number of halos.
Furthermore, in practice the mapping error in the core
collapsing time of ~10% at most is small compared to the
uncertainties in the (3 factor.

6. Calibrating the Mapping Method to N-body Simulation

To calibrate the gravothermal solution remapping method
introduced in Section 5 to N-body simulations, we consider
cross-section models that are determined by the relative
velocity vy, between two scattering particles. Such velocity-
dependent models will influence the heat conductivity averaged
over the MB velocity distribution (Kimfp), resulting in
additional complexity.

It is worth recalling how (ki) is computed for the case of
constant cross section. By convention,

kB o 35](3 no »

3
Kimfp (V12) = =FnH>—= = — Ve V12, 18
1mfp (V12) zﬁ L 8aG m mV12 (18)

and the relative velocity can be defined as vy =

\/ V12 + v22 — 2vyv, cos By, where 60,5 is the angle between the
velocity vectors v, of particle 1 and v, of particle 2. To

compute the averaged heat conductivity over the MB velocity
distribution, previous works compute the averaged vi,.
Specifically, let us define the MB distribution and the averaged
Vip as

3/2
Fup (A = fis (VV2dv sin(0)dOde = v2( n )
27TkBT

2
X exp (— 2’ZVT) sin(0)dvdods,
B

T 27 2
<V12>:L/(; sinﬁldﬁlj(; d¢lj; d¢12
00
X L/(‘) vlszB(vl)dvl

XL szfMB(Vz)dvzfo vi2 sin(012)db1»

— i kB_T = ivrms = 2.26vrm5.
JoN\N m NG
(19)

Using this result for (v,) in Equation (18) gives the definition
assuming a constant DM particle cross section:

_ 3pkg no

(Kimfp) = e ;vﬁns<v12> = 0.276nv> . okg/(Gm). (20)

One may argue that a better definition of the averaged heat
conductivity might be (Kimg) oc (i va via), or (v), or
(v /i3, where n is an arbitrary number. The specific choice
does not matter for constant-cross-section scenarios because
those different integrations will only cause a difference of a
constant factor in Equation (20), which can be absorbed into
the free parameter (. This is no longer true if a velocity-
dependent cross section is assumed. Specifically, the definition
(Kimfp) o< (V"o (v12)>/(vr'r'n;3crc) results in (v”>/vr’,’m_s3 for w— o00.
However, with finite w the v " term serves as a weight in the
integration. Larger n biases the integration over the MB
distribution toward higher velocities, corresponding to a
smaller effective cross section and longer halo core collapse
timescale. Therefore it is necessary to define (Kimgp) in a
physically motivated way that matches N-body results.
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Notice that the heat flux is determined by the product of the
conductivity and the temperature gradient: HOT/0r ~ AT ~ AE
is the characteristic temperature variation and energy transferred
within a particle’s orbit. Here temperature is also a statistical
property averaged over the MB distribution T o< (v3), so the
energy transfer rate is proportional to v132 o (v12) (Colquhoun et al.

2021). We therefore define the averaged heat conductivity as

(vivaviyo (V1))

(Kimfp) = 0.27Bnvpnikn/(Gm) -
(vivavi)

ey

Here the v; v, term in the numerator comes from the scale
height H*. One v, term is contributed by 1/z,, and the other v
term comes from the temperature gradient. The numerator is
defined such that Equation (21) reduces to Equation (20) at
w — 00 . This definition is slightly different from the ansatz
assumed in 022, where (Kimfp) o (v (v12)). We notice that

the triple integral (viv,vy0(v12)) needs to be computed for
every time interval, which significantly slows down the
mapping calculations. However, it can be shown that the
integration results are only sensitive to w//T o w/ Vs times
08 o., we therefore create a lookup table for the integration
result spanning the parameter range 0.01 < w/v,m, < 100 and
use the linearly interpolated integration results to achieve fast
mapping.

To map a set of constant-cross-section gravothermal
solutions with parameters {f,, 6.,} to those assuming a
velocity-dependent cross-section model with parameters
{Bb, Gc5, @}, we perform the following steps:

1. Compute the time step 67, = {7v, ) — 7o,...0N — iN 71

2. Compute the mapped time step Oty =[(3.0c.a/8b]
[(vivavid)i, [ (vivavih 8, (v12));,16%,. Here (x);, implies com-
puting the averaged x over an MB distribution where the
temperature is given by the constant-cross-section
gravothermal solutions at the innermost radius and time
f,. We choose the halo central temperature as a
characteristic value at every time step with the same
argument as discussed in Section 5.

3. Sum over all &f to obtain a new time axis such
that )?b(f, fb) = XAa(}/’\, fa).

Assuming that in the idealized N-body simulation 3 does not
vary with w, we compare the mapped gravothermal solutions
and AREPO N-body simulations in velocity-dependent cross-
section models introduced by Equation (2) with different w. We
find excellent matches, as presented in Figure 7. We notice that
this comparison is only performed in a limited w > 400 km s~
range for this Milky Way-sized halo. Ideally, we would extend
this comparison to cross-section models with stronger velocity
dependence, i.e., with even lower characteristic velocity w.
However, a halo collapses more slowly as w decreases, which
makes the N-body simulation less stable and computationally
more expensive. Furthermore, for the Milky Way-sized halo we
simulate in this work w <400 kms™' is a less interesting
scenario, where the halo collapsing time is much longer than
the age of the universe.

We also show the gravothermal solution mapped by O22 by
the magenta dotted curves in Figure 7. Specifically, 022
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suggests to define the averaged heat conductivity as

(viao(v12))

,n=23. 22)
(v2)

<Hlmfp> x K, =

Tmins tﬂ(', min

It is emphasized in O22 that the assumption (Kime) < K3
should be further tested by N-body simulations. We find this
assumption overestimates the effective cross section as well as
the heat conductivity, leading to a faster core collapse than the
N-body results. However, we find assuming (mmfp> x K5 and a
linear time rescaling gives mapping performance as precise as
Equation (21). This good match is also proved independently
by Yang & Yu (2022) through N-body simulations.

7. Extend the Imfp Mapping Method to More General
Cases

The Imfp gravothermal solution mapping method introduced
in Sections 4—6 can be easily generalized to the smfp regime as
well as to the intermediate regime. However, in this work we
do not test the validity of the smfp and intermediate-regime
mapping methods introduced in this section due to difficulties
in both computation and physics. Neither will we apply these
mappings in the following sections. From the computational
aspect, we find the gravothermal fluid formalism introduced in
Section 3 runs into numerical issues when solving systems with
very large cross section. Furthermore, the AREPO idealized
SIDM simulation pipeline introduced in Section 2 is not tested
for isolated halos with cross section greater than 60 cm?® g
From the aspect of physics, a very large SIDM cross section
may change the formation of structure from that of CDM. The
initial density profile of the SIDM halo with large cross section
is also uncertain and unlikely to be NFW (Ahn & Shapiro
2003).

Let us first revisit Equation (9) in the fully smfp regime.
Now, since we switch focus from Rimg, 0¢ 85 t0 Rgmgp o< 1/5, it
becomes clear that the time mapping relation changes from
B406,L, > By0p1, to £,/ 8, < 1,/ 8, for the models with constant
SIDM cross section. For the relative velocity-dependent cross-
section scenarios one only needs to modify the time interval
mapping as

3\ A
= 2 O, (23)

(viy /8 (v12)i,

to map gravothermal solutions computed under constant cross
sections 0., to those assuming velocity-dependent cross-
section models &;,(v;,). Here one v, term in the MB integration
comes from the mean free path )\ and another v term comes
from the energy transfer as has been discussed in Section 6.
The two key differences between the Imfp and smfp mapping
methods are: (1) The smfp heat conductivity and therefore the
gravothermal solutions are no longer dependent on the free
parameter (. (2) In the Imfp regime a halo collapses faster with
a larger cross section, but the situation is reversed in the smfp
regime.

To consider the intermediate regime where the mean free
path and the scale height are comparable, the time mapping
relation among constant-cross-section models has the form
Rala < Rply, where & = 1/(Rinf, + Rep). For the relative
velocity-dependent cross-section scenarios the time interval
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P 2
N RagV12)t, on
8ty = 7&“ 122>’“ 8
KpV12)i,

(24)

where the v, terms in the MB integration again come from the
energy transfer. The challenge of computing Equation (24)
compared to the asymptotic Imfp and smfp scenarios is that
constant parameters (3, &, as well as the scale-free density p can
no longer be pulled out from the integration due to this more
complicated expression for heat conductivity. It is therefore
necessary to prepare a 4D lookup table that simultaneously
covers the variations of {3, &, &/Vims, P} to achieve fast
mapping calculations.

8. Observational Constraints on the Cross-section Model

Both the gravothermal fluid formalism and idealized N-body
simulations are computationally expensive in the sense that
they cannot be directly used to explore the continuous SIDM
particle parameter space. The strength of the Imfp mapping
method introduced in this work is that one needs to numerically
solve for the gravothermal fluid equations only once, and can
then extend this solution to halos with arbitrary cross-section
models, as long as the halo is mostly evolving in the Imfp
regime. It therefore serves as a powerful tool for deriving
constraints on SIDM cross-section model parameters.

Halos hosting dwarfs and LSB galaxies are promising
laboratories for constraining SIDM models because these small
galaxies serve as powerful tracers of the DM halo density
profile, while their shallow baryonic potentials have little
influence on the DM dynamics (although see Pontzen &
Governato 2012; Read et al. 2016, for example). As a
demonstration of the utility of this work, we constrain the
cross-section model parameter space favored by the measure-
ment of the rotation curve of the LSB dwarf galaxy UGC 128
(van der Hulst et al. 1993; Kamada et al. 2017). We select UGC
128 because in this system the circular velocity is mostly
determined by the dark matter component, while the stellar disk
has negligible effect (Kamada et al. 2017). The fact that our
model does not capture baryonic physics is therefore not
expected to significantly influence the SIDM parameters
inferred from UGC 128’s rotation curve. We notice that the
rotation curves of dozens of dwarf/LSB galaxies have been
measured carefully (e.g., Kuzio de Naray et al. 2008; Oh et al.
2015; Essig et al. 2019). Some of the measurements have been
used to derive stringent upper bounds on cross-section models
(e.g., Read et al. 2018; Jiang et al. 2021). While a careful and
thorough exploration of the SIDM cross-section model
parameter space using all the available dwarf/LSB observa-
tional data will be an important step to take, in this work we
choose to show just an example application of the gravothermal
solution mapping method. We therefore illustrate regions of
parameter space favored by the data on UGC 128 alone and
defer a more complete analysis of a larger sample of dwarf/
LSB galaxies to a subsequent work. In this work we trust the
measurement of UGC 128’s rotation curve and ignore potential
underestimation of the error caused by beam smearing,
coherent turbulence, the lack of determination of pressure
support, and the treatment of inclination errors (Oman et al.
2019; Sellwood et al. 2021). The derived constraints can
therefore be overtightened.

10

Yang et al.

We assume 3= 0.5 and a halo evolution time of 10 Gyr. We
then use EMCEE (Foreman-Mackey et al. 2013) to conduct the
Markov Chain Monte Carlo (MCMC) sampling over the 4D
parameter space —2.5 < log(o./cm? g™!) < 4.0, 0.0 < log
(w/kms™!) < 4.0, 5.0 < log(p,/M kpe™3) < 8.0, and —1.0
<log(r;/kpc) < 2.0, assuming uniform priors on these loga-
rithmic variables. Here 0. and w are parameters introduced
by the velocity-dependent cross-section model o (vs)
=0./(1 + va/w??, and {p,, r,} are the NFW profile scaling
parameters. In each MCMC step we use the gravothermal
mapping method introduced in Section 6 to compute
the halo density profile at r=10Gyr, and transfer the
dark matter density profile to the rotation curve through
Veire () = JGM (<r)/r. Here v(r) is the circular velocity at
radius r. We adopt a Gaussian likelihood function to direct 20
MCMC random walkers with the measurement of UGC 128’s
rotation curve. To get a quantitative sense of how strongly the
baryonic gravitational potential in this system may influence
the parameter fitting results, we perform two independent
MCMC fits for the total rotation curve and the rotation curve of
the dark matter halo, respectively. Contributions to the rotation
curve from stars and gas are fit by Kamada et al. (2017). A
triangle plot for the parameter constraints is presented in
Figure 8(left panel).

The MCMC fitting results show that the NFW parameters p;
and r, are more sensitive to the differences between the total
and DM-only rotation curves, while the logo, — logr
parameter constraints show little response to this data variation.
This is fortunate as we are generally more interested in learning
about the cross-section parameters rather than fitting NFW
parameters of different halos with high accuracy. However, the
generality of this feature should be further tested using a larger
observational sample.

The MCMC results also show that the NFW scaling
parameters p, and ry are degenerate. This is expected since
the increase in amplitude of the density profile caused by
increasing p; can be compensated by decreasing r,, which
effectively shifts the halo density profile to smaller radii.
Despite this parameter degeneracy we are still able to constrain
{ps, 15} within a range much narrower than the flat priors. The
best-fit NFW parameters for this halo fitted from the total
rotation curve are log(p,/Ms kpe—?) = 6.497017  and
log(r,/kpc) = 1.34 £+ 0.09 (1o errors). For the rotation curve
with the fitted stellar disk and gas components subtracted, the
best-fit NFW scales are log(p,/M:, kpc™) = 6.40 + 0.17 and
log(r;/kpe) = 1.35 £+ 0.10. There is a “L”-shaped degeneracy
between the cross-section parameters log o, and log w. One can
also see such a degeneracy from the asymptotic behavior of the
cross-section model. Specifically, the cross-section model
reduces to the constant factor o, for high w, and the parameter
constraints become independent of w. On the other hand,
lowering w effectively decreases the cross section, resulting in a
weaker upper bound on o.. The turnover of this “L”-shaped
band occurs on a scale comparable to the characteristic rms
velocity of the halo. Therefore, the degeneracy between o, and
w can be at least partially broken by combining similar
parameter constraints for systems of different sizes, masses,
and characteristic velocity dispersions, and we defer a more
careful analysis to a future work. We also emphasize that in this
fit we have assumed 3=0.5 and a halo evolution time of
10 Gyr. Due to the 3567 degeneracy introduced in Sections 4-6,
assuming alternative values for [ and halo evolution time
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Figure 8. Parameter constraints for the NFW initial condition Equation (1) and the cross-section model Equation (2) resulting from measurements of the rotation curve
of dwarf galaxy UGC 128 (van der Hulst et al. 1993; Kamada et al. 2017). We fix 8 = 0.5 and a halo evolution time of 10 Gyr. We assume Gaussian likelihood for the
total/DM-only rotation curve measurements and show the parameter space favored by observation in red/blue regions. The contours enclose parameter constraints at
68% and 95% confidence levels. The left panel shows MCMC fitting results derived from the original UGC 128 rotation curve, while for the right panel the error bars
on the rotation curve for the innermost three radius bins (r < 5 kpc) are enlarged by a factor of 2 to account for potential underestimation of measurement uncertainty.

would rescale the o, constraints by a factor of 1/(5 7). The
constraints on parameters {w, p,, r;} are insensitive to the
assumptions on 3 and halo age.

The single “L”-shaped band in the log o, — log w parameter
space favored by the observed rotation curve was a surprise to
us. Specifically, we have assumed an NFW initial density
profile, for which the halo central density first decreases,
reaching a maximum core size, and then increases with time.
There will be in general two (3 ¢ ¢ instances where the cored
halo density profiles are very similar to each other (unless the
halo is measured to be precisely at the moment of maximum
core size, or the halo has entered the late core collapsing stage
where its central density is higher than in the initial state): one
from the core formation process and another one from the core
collapsing process. The existence of two gravothermal
solutions with similar halo density profiles but very different
(367 is one of the causes of the huge dispersion in SIDM cross-
section constraints among different works (Kamada et al.
2020). For example, SIDM cross sections of the Milky Way’s
dwarf satellite galaxies constrained by isothermal models such
as those of Kamada et al. (2017) and Valli & Yu (2018) only
pick out the low-cross-section solution because the isothermal
models by design only work for the SIDM halo core formation
process. Cross sections constrained by isothermal-based
methods are therefore relatively low, ranging from 0.1 to 40
cm?® g”'. On the other hand, previous studies such as Correa
(2021) that use the gravothermal fluid formalism to constrain
SIDM cross sections may only focus on the halo core
collapsing process, and give higher constraints of 30-200
ecm?® g”' for similar systems. We find the “L”-shaped band
favored by UGC 128’s rotation curve points to one solution
during the core formation process. As an example, we pick one
point in the best-fit parameter space o, =1 cm® g, w=10*
km s~ ', and compare the mapped halo density profile as well as
the rotation curve at = 10 Gyr with observations in Figure 9.
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We show the best-fit gravothermal solutions to the total and
DM-only rotation curves as black and blue solid curves,
respectively. We find fixing the best-fit p;, r,, and w values, but
enlarging o, to about 100 cm” g~' gives very similar mapped
halo density profile at t = 10 Gyr, although under such a large
cross section the halo has started core collapse. The
gravothermal solutions with identical halo central density to
the best-fit solution, but a much larger cross section, are shown
by dashed lines in Figure 9. The red/green dashed line
corresponds to the case of total/DM-only rotation curve. We
show in the right panel of Figure 9 that, for either the total or
the DM-only case, rotation curve measurements of UGC 128 at
radii less than about 5 kpc do not favor either one of those two
gravothermal solutions, owning to their similar halo central
densities. To clarify the origin of this tight cross-section
constraint from UGC 128, in the left panel of Figure 9 we
compare these two sets of gravothermal solutions to NFW
profiles with the best-fit {p,, r,} parameters to the total/DM-
only rotation curve, shown by the black/blue dotted curve.
During the halo core formation process where o, =1 cm® g!,
the halo density profile is only suppressed in the cored region
(r <5 kpe) compared to the NFW initial condition. However,
for the o, =~ 100 cm® g' case the halo density is altered by DM
self-interactions over a larger radial range (r < 100 kpc). As a
result the halo density profile outside the cored region becomes
steeper than the initial NFW profile. This subtle difference is
distinguishable by the rotation curve measurements outside the
isothermal core. However, we emphasize that all the above
analysis relies on the assumption that the data on UGC 128’s
rotation curve and its measurement uncertainties are statisti-
cally valid. The error bars on the rotation curve can be
underestimated, especially in the central region of the galaxy,
due to center offsets, noncircular motions, inclination, the
effects of pressure support, and many other observational
uncertainties (see de Blok 2010 for a review). While a careful
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Figure 9. The best-fit halo density profiles (left) and rotation curves (right) at 10 Gyr, assuming (3 = 0.5 but different SIDM cross sections. The black/blue solid
curves show the best-fit mapped gravothermal solution to the total/DM-only rotation curve. These two best-fit solutions correspond to a small cross section o, = 1
em? g and w =10 km s~ . The red/green dashed lines show mapped gravothermal solutions under a larger cross section . ~ 100 em? g and w=10* kms™',
but identical halo central densities to the best-fit solutions to the total/DM-only rotation curve. Compared to the NFW profiles with the best-fit { p;, r,} parameters for
the total/DM-only rotation curve shown by the black /blue dotted curves, density profiles for the o, =1 em? g' case are only suppressed in the cored region, while a
larger region in the halo is influenced by the DM self-interaction for the o, ~ 100 cm? g™' case. Only the solutions for small cross section match the observed total /
DM-only rotation curves, shown by black /blue data points. The purple and pink dotted curves show rotation curves contributed by gas and stars in UGC 128, fitted by

Kamada et al. (2017).

reprocessing of the data on UGC 128’s rotation curve is beyond
the scope of this work, we attempt to account for potentially
underestimated uncertainties by increasing the error bars on
UGC 128’s rotation curve of the innermost three radius bins,
where the radius is less than 5kpc, by a factor of 2. The
MCMC fitting results are shown in Figure 8(right panel).
Assuming larger measurement uncertainties near the galaxy
center, the “L”-shaped bands in the logo, — logw space
become signiﬁcantl1y wider such that cross sections as large as
0. ~100 cm® g' can be preferred by the rotation curve
measurement at 95% confidence level.

We note that dissipative cooling processes (Essig et al.
2019), the effects of a baryonic disk (Jiang et al. 2022), and
tidal effects (Zeng et al. 2022) can all speed up the onset of halo
core collapse. On the other hand, Meshveliani et al. (2022)
suggests that halo mass accretion and merger can delay the core
collapse process, and proposes a correction term to the halo
core collapsing time in order to account for this effect.
However, the goal of this work is simply to introduce a
convenient nonlinear method for rescaling time for the
gravothermal fluid formalism without considering any of the
above effects. Nevertheless, such a preliminary constraint
already shows the advantage of our mapping method in the
sense that it can rapidly explore the continuous parameter space
and clearly present the parameter degeneracies.

9. Conclusion and Discussion

In this work we introduce a fast mapping method that
transfers the gravothermal fluid formalism solutions from the
constant-cross-section scenario to arbitrary velocity-dependent
cross-section models. Such a mapping is intrinsically built into
the gravothermal fluid formalism. Specifically, when a halo is
evolved fully in either the Imfp or the smfp regime, the cross
section only influences the heat conductivity of the isolated
halo at each radius and moment, which further determines the
halo evolution rate. Varying the assumptions of the cross-
section model therefore only remaps the time axis of the halo
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evolution, and has no effect on the radial profile amplitudes/
shapes of halo density, velocity, enclosed mass, etc. Such a
time remapping is linear between two different constant cross
sections, but becomes nonlinear between constant and velocity-
dependent cross-section models.

The thermal conductivity of an SIDM halo varies at different
radii and times. To achieve fast mapping we use the thermal
conductivity at the halo center at each instance as a
characteristic value. We test the performance of this mapping
method through comparing the mapped gravothermal solutions,
assuming a constant cross section, with actual gravothermal
numerical solutions assuming different velocity-dependent
cross-section models. We find that the fast mapping method
introduced in this work nicely captures the full time evolution
of an SIDM halo, although it slightly overestimates the core
collapsing time due to the simplified assumption about the
instantaneous heat conductivity of the halo. We show that the
accuracy of this mapping method can be further boosted
through a more careful treatment of the calculation of
instantaneous heat conductivity, but argue that since the
fractional error of the default mapping is small compared to
the uncertainties of halo evolution time and the free parameter
0, the more complicated mapping method is unnecessary.

Calibrating gravothermal solutions with N-body simulations
under the assumption of a velocity-dependent cross section is
more challenging since in numerical simulations the scattering
probabilities of particles are generally determined by their
relative velocities, while the constant-cross-section gravother-
mal fluid formalism only cares about the particle rms velocity/
velocity dispersion in each radial shell. Assuming the SIDM
particle velocity in each halo shell follows the Maxwell—
Boltzmann distribution, we define the averaged thermal
conductivity as (Kimgp) < (Viv2 vy (vi2)), where v, v, are the
velocities of two particles, and vy, is their relative velocity. The
velocity terms in the averaging bracket of the MB distribution
are contributed by particle orbiting scales, collisional relaxation
times, and energy transfer. We show that this physically
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motivated definition of the averaged heat conductivity provides
an excellent match between the mapped gravothermal solutions
and AREPO idealized N-body simulation results, assuming
multiple different velocity-dependent cross-section models.

The advantage of this mapping method lies in its high
computational efficiency. Specifically, it takes about 24 CPU
hours of computation with our gravothermal fluid code to reach
the core-collapse regime for an SIDM halo in the Imfp regime,
and introducing a velocity-dependent cross-section model
brings at least two extra degrees of freedom. It is therefore
impractical to continuously explore the cross-section model
parameter space directly with the gravothermal fluid code.
Luckily, by adopting the mapping method introduced in this
work one only needs to solve the fluid code once, and one can
fast map this set of numerical solutions to halos with arbitrary
assumptions on cross section. Besides deriving parameter
constraints, this mapping method is also suitable to be
implemented into semianalytic galaxy formation models in
order to achieve fast generation of SIDM halo populations.

As an example application, we select the LSB system UGC
128 where the baryonic disk potential has negligible influence
on the galaxy rotation curve, and use the mapping method to
constrain four free parameters in the NFW and velocity-
dependent cross-section models. We have assumed 3= 0.5 and
a halo evolution time of 10 Gyr, but we show analytically that
the (3 t assumption will only rescale constraints on the cross-
section scaling parameter o.. The other three parameters {w, p;,
r¢} are not sensitive to the assumed values for § and halo age.
To get a quantitative sense of how much the baryonic
gravitational potential in this system may influence the
parameter fitting results, we perform two independent MCMC
fits for the total rotation curve and the dark matter halo rotation
curve, respectively, finding that the SIDM parameters of
interest are unaffected. We also show that the accurately
measured rotation curve of UGC 128 can distinguish two very
similar gravothermal solutions during the core formation and
core collapsing phases, and favors the low-cross-section
solution. We notice that the constraints derived in this work
do not account for other possible nonlinear effects that can
influence the halo core collapsing time, including cooling, an
additional gravitational potential contributed by a baryonic disk
or black hole, tidal effects, halo mass accretion, and merger.
The constraints can be too tight since we have trusted the
measurements of UGC 128’s rotation curve, and have ignored
possible underestimation of the error. Nevertheless the
advantage of this fast gravothermal solution mapping method
is recognized in the sense that it can quickly explore the
continuous 4D parameter space with the first-principles
gravothermal solutions, and effectively capture degeneracies
among the SIDM halo parameters of interest.

We also compare the performance of this mapping method
with a similar strategy proposed in 0O22. We find the simpler
method introduced in 022, where the characteristic heat
conductivity is assumed to be a time- and radius-independent
constant, outperforms the method introduced in this work in
reproducing the core collapse time when mapping between
gravothermal solutions with v,,s-dependent cross-section mod-
els. However, this work performs better in mapping the full halo
evolution process, while O22 fails to capture the evolution of the
halo central density before the instant of maximum core size if
the cross-section model has strong velocity dependence.
Correctly mapping the SIDM halo core formation process is as
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important as capturing the core collapse time because: (1) most
current SIDM cosmological simulations evolve halos with mild
self-interaction cross section for only around 10 Gyr, such that
the simulation stops before an isothermal core has been
completely formed (e.g., Elbert et al. 2015; Nadler et al.
2020), and (2) observations may prefer an SIDM model with
small cross section. If this is the case, most halos hosting
observable galaxy clusters/galaxies/dwarfs are still approaching
their maximum core size. O22 propose to estimate the averaged
thermal conductivity in a particle relative velocity-dependent
scenario as (Kimfp) o (V30 (v12)), where n is to be calibrated to
N-body simulations. We find that a physically motivated
definition (Kimp) o< (Viv2 vy (v2)) outperforms the ansatz
assumed in 022, where n=23. However, we show that
combining the linear time rescaling method introduced by 022
and the definition (Kimey) o< (v (v12)), also suggested by Yang
& Yu (2022), gives an equally good match to the N-body
simulation results as (Kimgp) o (vivavio (V1))

We thank Yiming Zhong for sharing his gravothermal fluid
code and for many helpful discussions. We thank Mark
Vogelsberger for sharing the AREPO N-body simulation
package including the SIDM module. Computing resources
used in this work were made available by a generous grant
from the Ahmanson Foundation. This work was supported in
part by the NASA Astrophysics Theory Program under grant
No. 8ONSSC18K1014.

Appendix
An Empirical Model for the Imfp Gravothermal Density
Profiles

In this appendix we introduce a convenient empirical model
for the density profile of SIDM halos, calibrated to the Imfp
gravothermal solution used in this work.

Balberg et al. (2002) has proved that the gravothermal
density profile evolves with time self-similarly, and the density
in the halo outskirts falls with radius as p oc #~%!°. This
derivation is elegant, but not directly applicable to most of the
numerical SIDM simulations. Specifically, in most idealized N-
body as well as some cosmological simulations the halo starts
from an NFW initial state where p oc 773 at large radii. As a
result, when a core has been formed the halo density still drops
as p oc 77219 slightly outside the core radius. At even larger
radii the density profile joins smoothly with the NFW initial
condition, and drops as p oc #73. At this stage the halo density
profile can be captured by a triple power law.

We first define the instant of halo core collapse as the time at
which the halo central density diverges:

log(B61) = E = 2.238, (A1)

and the instant of maximum core size as the time when the halo
central density reaches its minimum:

log(B61) = F = 1.341. (A2)

We find at the early stage of the halo evolution, i.e.,
log(861) < F, the halo density profile can still be described
by the NFW profile multiplied by a tanh central cut:

tanh (f/ rcore)

: A3
A1+ 7)? A9

ﬁ:
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where we use free parameter reore {0 capture the core size. We
find the following empirical model described the time evolution

of the halo core size at log(357) < 1.341 with high accuracy:
108 7oore = A, (108(861))* + By, log(B67) + Cp,..  (A4)

Here A, . = —0.1078, B, = 03737, and C, = —0.7720
are calibrated to the gravothermal solutions.

As mentioned before, in later phases of halo evolution,
log(356%) > 1.341, when a core has been formed, the density
profile can be described by triple power law:

p(F)

Teore

pCOIC

1+ Pl reoe)’ (4 + P o)

Here s =2.19 is provided by the gravothermal solution self-
similar analysis of Balberg et al. (2002). Again we use free
parameter 7. to trace the characteristic halo core size at each
time step. Similarly, the parameter p. . captures the halo
central density, and r,,, traces the radius where the density
profile influenced by self-interaction joins smoothly to the
NFW outskirts. We develop the following empirical model for
Peores Tcores and roy, calibrated to the Imfp gravothermal
solution:

108 Peore = A, (log 86T — (E 4 3))* + C,

(A5)

core

Peore

" (E 4 0.0001 — log (51)002" (A6)
where A, = 0.05771,C, = —-21.64,D, =21.1],
108 Teore = Ap,,, (log 857 — (E + 2))* + Cy,,
Drcore (A7)

+ A~ ’
(E + 0.0001 — log 367)%095
where A, == —0.04049, C, = 43.07, D, = —43.07, and

- (E + 2))2 + Crom
Droul
+ A~ b
(E + 0.04 — log Bo1)0-005
where A, = 0.02403, C, = —4.724, D,,, = 5.011.
We compare the halo density profile given by the

gravothermal solution and this empirical model at five
characteristic moments in Figure 10. This simple empirical

log ron = A, (log 557

(A8)
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Figure 10. Comparisons of density profile between the gravothermal solutions
and the empirical model introduced in the appendix. We compare the numerical
solution and empirical model at the halo initial state 367 = 0 (red), core
formation state 367 < F = 1.341 (green), maximum core moment 367 = F
(blue), early core collapse 367 = 150 (magenta), and the late core collapse
state (36f = E = 2.238 (cyan). The density profiles of the gravothermal
solution are shown as faint solid curves, while the empirical model predictions
are shown by the dashed lines.

model accurately captures the overall time evolution and radial
trend of the gravothermal solutions throughout the halo
evolution process. We also show the halo central density using
the exact result from the gravothermal fluid model and our
empirical model (along with their fractional difference) in
Figure 11. The fractional error of this empirical model is better
than 10% at most times. Even at the very late core collapsing
stage its accuracy is still better than 50%. This degree of
accuracy is sufficient for many applications, considering the
fact that the random fluctuations in N-body simulation results
can cause the halo central density to fluctuate at a similar level.
The fractional error shows noncontinuous behavior at the
maximum core moment 367 = 1.341 because we switch the
empirical description of the density profile from a tanh cutoff to
the triple power law here.

This analytic empirical model has wide applications. For
example, it can be implemented into semianalytic galaxy
formation models for fast SIDM halo simulation. As another
example, we show in Section 5 that the characteristic radius 7y,
provided by this model can be used to boost the accuracy of the
mapping method introduced in this work.
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Figure 11. Left: comparison of the time evolution of the halo central density between the gravothermal solutions (black solid curve) and empirical model (red dashed
curve) introduced in this section. Right: fractional error of the empirical model in reproducing the halo central density given by the gravothermal solutions.
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