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Abstract

There is no standard numerical implementation of the Hall effect, which is one of the nonideal
magnetohydrodynamic (MHD) effects. Numerical instability arises when a simple implementation is used, in
which the Hall electric field is added to the electric field to update magnetic fields without further modifications to
the numerical scheme. In this paper, several implementations proposed in the literature are compared to identify an
approach that provides stable and accurate results. We consider two types of implementations of the Hall effect.
One is a modified version of the Harten—Lax—van Leer method (HALL-HLL), in which the phase speeds of whistler
waves are adopted as the signal speeds; the other involves adding a fourth-order hyper-resistivity to a Hall-MHD
code. Based on an extensive series of test calculations, we find that hyper-resistivity yields more accurate results
than HALL-HLL, particularly in problems where the whistler wave timescale is shorter than the timescales of the
physical processes of interest. Through both von Neumann stability analysis and numerical experiments, an
appropriate coefficient for the hyper-resistivity is determined.

Unified Astronomy Thesaurus concepts: Computational methods (1965); Magnetohydrodynamical simulations

(1966); Magnetic fields (994)

1. Introduction

The Hall effect is one of the nonideal magnetohydrodynamic
(MHD) effects. It occurs in situations where electrons are
coupled to magnetic fields, while ions are decoupled. The
characteristics of the Hall effect differ between fully ionized
and weakly ionized gases (B. P. Pandey & M. Wardle 2008).

An intriguing property of the Hall effect is that it modifies
the dispersion relation of linear MHD waves, leading to the
generation of whistler and ion-cyclotron waves. In the long-
wavelength limit, these waves transition into Alfvén waves.
The phase speed of whistler waves increases proportionally to
the wavenumber, whereas that of ion-cyclotron waves remains
constant at higher wavenumbers.

Numerically implementing the Hall effect presents signifi-
cant challenges, unlike other nonideal MHD effects (ohmic
resistivity and ambipolar diffusion), which are relatively simple
to implement. One reason is that the Hall effect causes waves to
be dispersive. In particular, as whistler waves with shorter
wavelengths propagate faster, grid-scale disturbances in
magnetic fields can become significant under certain
conditions.

A simple implementation of the Hall effect involves adding
the Hall electric field to the electric field to update the magnetic
field without further modifications to the numerical scheme.
S. A. E. G. Falle (2003) conducted a von Neumann stability
analysis of such a naive implementation and found it to be
unconditionally unstable when using a first-order explicit time
integrator (forward-Euler integrator).

The stability of this simple implementation depends on the
accuracy of the time integrator (M. W. Kunz & G. Lesur 2013).
While third-order time integrators are conditionally stable,
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second-order time integrators may lead to numerical instability.
G. Lesur et al. (2014) confirmed that a third-order Runge—Kutta
(RK3) time integrator suppresses numerical instabilities in the
nonlinear development of Hall-dominated magnetorotational
instability using SNOOPY, an incompressible pseudo-spectral
code. However, no studies have shown that the RK3 integrator,
combined with a simple implementation, provides stable results
when using Godunov-type schemes with constrained transport
(CT) methods (C. R. Evans & J. F. Hawley 1988), which is a
popular combination used in many MHD simulation codes,
such as J. M. Stone et al. (2020; Athena++), S. Fromang et al.
(2006; RAMSES), A. Mignone et al. (2007; Pluto), and
D. C. Collins et al. (2010; Enzo).

Another issue with the simple implementation is that it does
not provide numerical dissipation, because the Hall electric
field is oriented perpendicular to the electric current. This lack
of numerical dissipation causes serious problems in magnetic
reconnection driven by the Hall effect (e.g., M. E. Mandt et al.
1994).

Several numerical methods have been proposed to suppress
the numerical instabilities caused by the Hall effect. G. T6th
et al. (2008) and G. Lesur et al. (2014) suggested modifying the
signal speeds in the Harten—-Lax—van Leer (HLL; A. Harten
et al. 1983) numerical fluxes by considering the phase speed of
whistler waves to estimate the signal speeds of the two
characteristics. This method is called HALL-HLL and is widely
used in numerical simulations of star and planet formation
(X.-N. Bai & J. M. Stone 2017; W. Béthune et al. 2017;
P. Marchand et al. 2018). P. Marchand et al. (2019) proposed a
modified HALL-HLL method to improve the conservation of
angular momentum in collapsing dense molecular cloud cores.

Alternative approaches for modifying time integration
methods have also been proposed. S. A. E. G. Falle (2003)
demonstrated that an implicit method stabilizes Hall-MHD.
Furthermore, G. T6th et al. (2008) showed that an implicit
Hall-MHD scheme is stable even without modifications to the
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numerical fluxes. S. O’Sullivan & T. P. Downes (2006, 2007)
found that the Hall-MHD stability is achieved when the
magnetic field is updated using a dimensionally split method
(also see X.-N. Bai 2014).

Another approach involves introducing artificial resistivity
into the induction equation. For instance, hyper-resistivity is
added to damp whistler waves with wavelengths comparable to
the grid scale in numerical simulations of magnetic reconnec-
tion involving the Hall effect (e.g., J. Birn et al. 2001;
Z. W. Ma & A. Bhattacharjee 2001; D. Vigano et al. 2021;
L. Chacén & D. A. Knoll 2003). However, an appropriate
choice of the hyper-resistivity coefficient has not been
thoroughly examined. Recently, O. Zier et al. (2024) proposed
a method in which the diffusion coefficient of ohmic resistivity
is artificially increased to stabilize the schemes.

As mentioned earlier, various implementations of the Hall
effect have been proposed in the literature. However,
comprehensive comparisons of their stability and accuracy
have not yet been conducted. In this paper, we compare the
results of HALL-HLL (G. Lesur et al. 2014), a modified version
of HALL-HLL (P. Marchand et al. 2019), and hyper-resistivity
(J. Birn et al. 2001).

This paper is organized as follows: Section 2 reviews the
basic properties of Hall-MHD and describes the implementa-
tions considered in this paper, while Section 3 presents
numerical experiments. We conclude in Section 4.

2. Basic Properties of Hall-MHD and Its Numerical
Implementations
2.1. Basic Equations
The basic equations of nonideal MHD are given by:

dp  Opv;
&Ly =0, 1
at 8)6,' ( )
8/)\11 + _( Vv 4 ) =0 (2)
o PVivj ij s
OFE
E + 8—X{EV, + ,:]'Vj + (Em X B),} = 0, (3)
and
88—B+V><( v X B+ E,;) =0, )

where p is the density, v is the velocity, B is the magnetic field,
P is the pressure, and E = pv*/2 + P/(y — 1) + B*/87
represents the total energy per unit volume. 7 denotes the
stress tensor, given by

2 B;B;
T = (P + B—)éi/‘ - — 5)
' 8w ) 4z

E; represents the electric field resulting from nonideal MHD
effects, expressed as

J x

B
, 6

4
E, = (770-] T
J = (¢/4m)V x B is the electric current density, and
J. =J — (J - B)/|B| is the J components perpendicular to
the local magnetic field direction. 7o, 7y, and 7, correspond to
the diffusion coefficients for ohmic resistivity, the Hall effect,
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Figure 1. Phase speeds of the fast-wave branch, Alfvén-wave branch, and
slow-wave branch as a function of wavenumber for & = 1/2 and 6 = /4. The
horizontal line represents the sound speed. The black circles correspond to the
six models used in the convergence test conducted in Section 3.4.

and ambipolar diffusion, respectively. In this study, ohmic
resistivity and ambipolar diffusion are not considered, because
the focus is on implementations that ensure stability and
accuracy even with 7o = n5 = 0.

2.2. Review of Properties of Linear Waves in Hall- MHD

Although linear Hall-MHD wave propagation tests are
widely used to evaluate various methods, most studies focus
primarily on incompressible waves propagating along the
unperturbed magnetic field. Thus, it remains unclear whether
these methods can accurately capture other types of linear
waves. In this study, we assess the performance of various
methods on all linear waves in Section 3.4. This section
provides a brief review of the physical properties of the linear
waves in Hall-MHD (e.g., E. Hameiri et al. 2005).

We consider a uniform static gas with a density of p, and a
uniform magnetic field of By as the unperturbed state. The
sound speed and Alfvén speed in the unperturbed state are
denoted by c¢; and o respectlvely We analyze perturbations
proportional to e ), where k is the wavenumber vector
and w is the angular frequency. Linearizing Equations (1)-(4)
with no = na = 0 yields the following dispersion relation:

=) @+ 1+ o0+ (KLnP cos? 0} (2 )
(=) )

2
(G2 (kLu)? cos2 0 + (222 + 1)cos? 9}(%)
ca
—&rcos*9 =0, (7)

where & = c¢;/ca, k = |k|, and 6 is the angle between k and B,.
The Hall scale, Ly, is defined as

Ly =1 (8)

CA
(B. P. Pandey & M. Wardle 2008). For a fully ionized plasma,
Ly corresponds to the ion skin depth. When kLy > 1, the
dispersion relation deviates from that of ideal MHD due to the
Hall effect.

Figure 1 shows the dispersion relation for ¢ = 1/2 and
0 = /4. As in ideal MHD, three branches appear. In ascending
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order of phase speeds, they are referred to as the “slow-wave
branch,” the “Alfvén-wave branch,” and the “fast-wave
branch.” In the low-wavenumber limit, kLy; < 1, the slow-
wave branch, Alfvén-wave branch, and fast-wave branch
correspond to the slow, Alfvén, and fast waves, respectively.
For kLy > 1, the phase speeds of the fast-wave and slow-
wave branches are no longer constant with respect to the
wavenumber, due to the Hall effect. The fast-wave branch
corresponds to whistler waves, for which the phase speed is

Yoo kLy cos 0. )
CAk

Whistler waves are right-hand circularly polarized. The
magnetic field perturbations oscillate rapidly, while the gas
remains nearly static. The velocity perturbations are negligible
compared to the magnetic field perturbations divided by
J4mp,, where po is the unperturbed density.

For kLy > 1, the slow-wave branch asymptotically
approaches the ion-cyclotron wave, for which the phase speed
is given by

ik ~ (kLg) "' cos 6. (10)

CA

Ion-cyclotron waves, which are left-hand circularly polarized,
cannot oscillate at frequencies higher than the ion-cyclotron
frequency, which is given by ca /Ly for 6 = 0. Unlike whistler
waves, velocity perturbations dominate relative to magnetic
field perturbations divided by ./4mp,,.

As kLy increases, the Alfvén-wave branch transitions from
an Alfvén wave to a sound wave around kLy; ~ 1. Thus, in the
Hall-dominated regime (kLy > 1), the compressible mode
(sound wave) decouples from the incompressible modes
(whistler and ion-cyclotron waves).

For & = 1/2, a mode exchange occurs around klLy ~ 1
between the Alfvén-wave and slow-wave branches. The Alfvén-
wave (slow-wave) branch transitions from an incompressible
(compressible) state to a compressible (incompressible) state. For
gases with & larger than unity, a similar mode exchange occurs
between the fast-wave and Alfvén-wave branches.

2.3. Implementations of Hall Effect Considered in This Study

A simple implementation of the Hall effect involves adding
the Hall electric field to the electric field used to update the
magnetic field, without further modifications to the numerical
scheme (see Section 2.4). As mentioned in Section 1, a third-
order time integrator is conditionally stable against infinitesi-
mally small perturbations, whereas first- and second-order time
integrators are unstable (S. A. E. G. Falle 2003; M. W. Kunz &
G. Lesur 2013). As demonstrated in Section 3.1, even with a
third-order time integrator, nonlinear numerical instabilities
arise near the Nyquist wavelength when perturbation ampli-
tudes are large.

To suppress numerical instabilities, various implementations
have been proposed in the literature. In this section, in addition
to the simple implementation, we introduce three methods for
comparison in this study. The implementation details of these
methods in Athena++ are described in Section 2.4.

2.3.1. HALL-HLL

Since the Hall effect modifies the phase speeds of linear
waves (Section 3.4), it is natural to modify the Riemann solver

Iwasaki & Tomida

used to compute the numerical fluxes. The Hall effect makes
the phase speeds of waves wavenumber-dependent (Figure 1).
It is challenging to construct a Riemann solver incorporating
the Hall effect, because self-similarity no longer holds in the
Riemann problem. Among various approximate Riemann
solvers, the HLL method (A. Harten et al. 1983) can be
applied to any problem by setting signal speeds appropriately.
G. Lesur et al. (2014) modified the HLL numerical flux by
incorporating the phase speed of whistler waves. This method
is referred to as HALL-HLL.

In the HLL scheme (A. Harten et al. 1983), by considering
two waves propagating at the signal speeds S; and Sg from the
initial discontinuity at the cell boundary, the numerical flux at
the cell boundary is constructed as follows:

F. St >0
Fr SR <0
FuLL =\ SpS (U — Up) + SkFy — Sy Fx otherwise.
Sr — SL

Y

where Uy and Uy are the conserved variables of the left and
right states, and F; and Fy are the corresponding fluxes.
Expressions of the signal speeds Si, and Sy are replaced with

SL = min(VL, — Cmax,L> VR — Cmax,R) (12)
and
Sr = max(vy + Cmax,L» VR + Cmax,R)’ (13)

respectively (S. F. Davis 1988), where v and vy are the normal
velocities of the left and right states, respectively. cpaxL
(Cmax.r) 1s the maximum phase speed cpax Of the left (right)
state. In ideal MHD, the phase speed of fast waves c; is
assigned to cpnux. Note that there are other options for the
expressions of Sy g (e.g., B. Einfeldt 1988).

In HALL-HLL, ¢« is given by

Cmax = max(cf, Cw(kmax))v (14)

where c,, is the phase speed of whistler waves propagating
along the magnetic field,

k k>
co(k) = % T (%) e, (15)

and k.« is the maximum wavenumber that can be resolved in
numerical simulations.

Various values of ky,x were used in previous studies.
G. Lesur et al. (2014) and X.-N. Bai & J. M. Stone (2017)
adopted Kkpa = Ax~!, while P. Marchand et al. (2018)
employed a larger value of ke = mAx~! that corresponds
to the Nyquist wavenumber. In this study, kmax = Ax~! is
adopted, because the results of G. Lesur et al. (2014) and
X.-N. Bai & J. M. Stone (2017) demonstrate that ky,, = Ax~!
is sufficiently large to suppress numerical instabilities caused
by the Hall effect.

The numerical dissipation introduced by HALL-HLL is
estimated from the induction equation. For simplicity, we
consider a one-dimensional problem where the Hall effect
dominates (c,(Ax~") > ¢p) and the flow speed is significantly
lower than ¢y (Ax ™). From Equations (12), (13), and (14), the
signal speeds are given by S = —cu(Ax ') and
S = cW(Ax_l). G. Téth et al. (2008) derived the following
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Table 1
List of the Implementations Evaluated in This Paper

Method Name Description of Implementation

HLLD No modifications are made in Athena++ except for the addition of the Hall term to the electric field used to update the magnetic field in the CT
method.
HALL-HLL The HALL-HLL numerical flux is used instead of HLLD (Equation (11); G. Lesur et al. 2014).

HALL-HLLMOD
replacing cmax With ¢¢ (P. Marchand et al. 2019).

The HALL-HLL numerical flux is used to update the magnetic field (Equation (11)). For other variables, the numerical fluxes are calculated by

HYP-RESIS A fourth-order hyper-resistivity is added into the electric field (Equation (17); J. Birn et al. 2001).
equation: in the long-wavelength limit. Comparison between Equations
OB, co(Axr-)AX? 9B, (16) and (19) shows that their dissipation terms are identical
— ~— 2 when Gy, = 0.125.
Ot JHALL-HLL 8 Ox
o~ Ny Ax? 0B (16) 2.4. Implementations of Hall Effect in Athena++
8 ox4’

where Equation (15) is applied in the limit 7z Ax~" > ca.

2.3.2. Modified HALL-HLL

P. Marchand et al. (2018) found that the use of HALL-HLL
significantly violates angular momentum conservation in
simulations of gravitational collapse of dense cores in Cartesian
coordinates.

A modified version of HALL-HLL was proposed by
P. Marchand et al. (2019). This method is referred to as
HALL-HLLMOD in this paper. In HALL-HLLMOD, Equation
(14) is exclusively used to compute the numerical fluxes for the
magnetic field. For other components of the numerical fluxes
used to update the hydrodynamic variables (p, pv, E), the
original HLL numerical flux is applied. It has been found that
HALL-HLLMOD significantly improves angular momentum
conservation in collapsing dense cores.

2.3.3. Hyper-resistivity

Hyper-resistivity is introduced into the electric field as
follows:

4
Epyp = —Tﬁnhyp vy, (17)

where 7y, is a coefficient (J. Birn et al. 2001; Z. W. Ma &
A. Bhattacharjee 2001). The coefficient 7y, must be
sufficiently large to suppress numerical instabilities but small
enough to ensure accurate results.

To ensure that the time-step limitation imposed by hyper-
resistivity is less restrictive than that imposed by the Hall effect
for any Ax and 7y, the coefficient is defined as follows:

nhyp = ChYPnHsz’ (18)

where Cyyp, is a free parameter. L. Chacon & D. A. Knoll
(2003) employed a similar coefficient to develop a two-
dimensional implicit Hall-MHD solver. A possible range of
Chyp is estimated in Section 3.2.2.

In a one-dimensional problem, the dissipation term due to
the hyper-resistivity is expressed as

(2

) 0B,
Ot Juyp_resis

Ox*

= —Chypny Ax? (19)

We implement the four methods listed in Table 1 in Athena++
(J. M. Stone et al. 2020). For all methods, we use the third-order
strong-stability-preserving Runge—Kutta time integrator that is
referred to as RK3 (S. Gottlieb et al. 2009, Equation (3.1)) and the
piecewise linear spatial reconstruction with the van Leer limiter
(B. van Leer 1974). Except for HALL-HLL and HALL-HLLMOD,
the HLLD numerical flux without modifying the signal speeds is
used (T. Miyoshi & K. Kusano 2005).

Athena++ employs a staggered grid for the CT scheme.
The conserved hydrodynamical variables (p, pv, E) are
averaged within the cell volume and defined at the cell volume
center. The normal components of the magnetic field B are
averaged on cell surfaces and are defined at the cell surface
center. In this paper, we consider only Cartesian coordinates.

The cell center coordinates are denoted by (x;, y;, zx), where i,
J» k represent the discrete cell indices. A cell-centered variable,
U, at (x;, ¥, zx) is expressed as Uj . The positions of the cell
surfaces between the (i, j, k)th and (i + 1, j, k)th cells are
denoted as (x;y1/2, ¥j» 2. The x-component of the magnetic
field defined at (x;11/2, yj» 2%) 18 (Bo)iv1/2,.4- Similarly, the y-
and z-components of the magnetic field are denoted as
(By)ij+1/2.k and (B.);jx41/2, respectively.

The hydrodynamical variables (p, pv, E) are updated by
computing the numerical fluxes using a Riemann solver. In
deriving the numerical fluxes, the cell-centered magnetic fields
are computed as follows:

Bk = 3 ((Boi- 1k + Bir 1k}
(By)i,j,k = %{(By)i,jfé,k + (By)i,j+%,k}
Boijk = 3 Bkt + (Boijur 1} (20)

To update the surface-centered components of the magnetic
field, the electric field components at the cell edges are computed
—namely, (Ey)ijy1/2k+1/2, EViv1/2jk+1/20 EDdiv1/2j41/2.k
The electric fields from ideal MHD (—v x B) are calculated
using the method proposed by T. A. Gardiner & J. M. Stone
(2005, 2008).

2.4.1. Inclusion of the Hall Term in the Induction Equation

Similar to ohmic diffusion and ambipolar diffusion, the Hall
effect is incorporated into the cell-edge electric fields.
Discretized expressions of the electric currents, defined at the
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cell edges, are given by

(Bz)i,j+1,k+; - (Bz)i,j,kJr%

(Jx)i,j+%,k+% = Ay

Blorhan = Bege
Az .

The remaining components, (Jy)i+1/2,j.k+1/2 and (S 1/2,j+1/2.k>
are computed in the same manner.

The x-component of the electric field induced by the Hall
effect is given by

(M), L g
Hz,j+2,k+2

(Ex)l“ Ll =
Jt 5kt
272 B 1,1

I l,j+§,k+§|

X [(‘]y)i,j+%,k+%(Bz)i,_i+%,k+%

- (‘]Z)i,j+%,k+%(By)i,j+%,k+ %]' (22)

The quantities in Equation (22) defined at the cell edge
(Xi» Yjt+1/2> Zx+1,2) are calculated as follows:

R
Mij+ Lt = ZZ > ijjtes s
H=0j1=0
R
(By)ij+ L+l = gz oD BIiLvitjritktis
i1=0 jI=0kI=0

1
(By)i,j+%,k+% = E{(B,V)i,j—%,k + (B,V)i,jJr%,k}’

1
(BZ)[’jJr%’kJr% = E{(Bz)[,j,k,% + (Bz)i’j,]ﬁL%},

R
>3 ()it it jtjl e+

(i Lt = 1
i1=0,j1=0

and

1 1 1
B bart = => 0 > (it yitj k-
4il:0kl:0
2.4.2. Implementations of Hyper-resistivity

The hyper-resistivity coefficient 7y, shown in Equation (18)
can be applied only when Ax = Ay = Az. To satisfy the
stability condition, Ax* in Equation (18) is replaced with
min(Ax2, Ay?, Az?). The discretized form of hyper-resistivity
is given as follows:

(Ex,hyp)i,jJr%,kJr% = Chyp(nl-[)i,j+%,k+%
x min(Ax?, Ay?, Az?)
X AL(Jx)i,jJr;,kJr;» (23)

where A; represents the discrete Laplacian operator, defined as
ALQijk = ﬁ(Qifl,j,k —2Qijk + Qit1j4)
+ ﬁ(Qi,jfl,k = 20ijk + Qijr1,0)
+ 55 Qijk 1 — 20k + Qijr), (24)

assuming a uniform grid spacing.
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2.4.3. Time-step Constraint due to the Hall Effect

Based on the von Neumann stability analysis (see the
Appendix), the time-step constraint imposed by the Hall effect
is expressed as

. 2 2 2
Ay = ﬁ\Emin min(Ax%, Ay%, A (25)
4 \d ijk (Meij k

where d represents the spatial dimension. In this study, Cy is
set to 0.8.

3. Numerical Experiments
3.1. Stability of Hall-MHD with HLLD

M. W. Kunz & G. Lesur (2013) demonstrated that Hall-
MHD with third-order time integrators is conditionally stable in
the absence of dissipation, whereas second-order time inte-
grators lead to numerical instability for any At (see also
S. A. E. G. Falle 2003). In this section, we analyze the stability
of the RK3 integrator through whistler wave propagation tests.

In the whistler wave propagation test, most studies focus on
waves propagating exclusively along the unperturbed magnetic
field. To explore a more general situation, we examine a
whistler wave propagating at an angle relative to the
wavenumber vector k.

The wavenumber vector is inclined relative to the grid
(T. A. Gardiner & J. M. Stone 2008; A. Mignone et al. 2010).
The wavenumber vector k is set to 27 (1, 2, 2)/3. The unit vector
along the x-axis is converted into k/|k| using the rotation matrix:

cosf; —sinf; O cost, 0 —sinb,
R =]sinf; cost O0]- 0 1 ) (26)
0 0 1 sinf, 0 cos6,

where tan6, = 2 and tanf, = 2/4/5.

The coordinates £ = (£, 1, {) are defined as Rx, aligning the
wavenumber vector k to the &-axis. The unperturbed magnetic
field By, is tilted by 0 with respect to the £-axis in the (£, 7)
plane, where By = (Bgo cos 0, B,y sin 0, 0).

The Hall coefficient 7y is set so that kLy = 2 X 10*7. For
kLy > 1, the gas remains static in the fast-wave branch, which
corresponds to whistler waves. Thus, perturbations are
introduced exclusively in the magnetic field as follows:

6B; = 0, 6B, = Asin(k§), 6B; = Acos(kf), (7

where A represents the initial amplitude and k = |k|. The
dispersion relation of the whistler waves is

2
+ \/(nHk (;OS GB) + C/i cos? 0g. (28)

w  nykcosfy
k 2

The computational box spans 0 <x<2and0<y,z< 1, and
is discretized into N x (N/2) x (N/2) cells. Periodic boundary
conditions are imposed in all directions. Numerical instabilities
caused by the Hall effect are expected to develop around the
Nyquist wavelength. A small value of N = 16 is used to
promote numerical instabilities.

We consider two values for the initial amplitude (A = 107>
and 107" and analyze how the propagation of the whistler
waves depends on A and 0g.

Figure 2(a) presents the results for the smaller amplitude,
A = 1073, For all fg, the time evolution of OB =
((6BZ) + (6B}) + (6BZ))'/? is consistent with the predictions



THE ASTROPHYSICAL JOURNAL, 984:50 (16pp), 2025 May 1

2.0 —
(a)Ale _GB:OO — 931600
——— fp=30° mer=ms g =80°
15 ------ GB—45O

0.0 T : i - —
0.000 0.002 0.004 0.006 0.008 0.010
time

2.0
(h) A=10"1
1.5] | :

0.0 T T T T
0.000 0.002 0.004 0.006 0.008 0.010
time
Figure 2. Time evolution of 8B = ((6B?) + (8B7) + (6BZ)!/2 for (a)
A =10"%and (b) A = 10~". The results with five different 65 (0°, 30°, 45°,
60°, and 80°) are shown. The thin lines represent the predictions from the von

Neumann stability analysis presented in the Appendix. The differences in the
line style indicate variations in .

from the von Neumann stability analysis presented in the
Appendix. Minor discrepancies between the numerical results
and theoretical predictions are attributed to numerical dissipa-
tion introduced by the HLLD solver that is not considered in the
von Neumann stability analysis.

When A increases from 107> to 1071, its behavior changes
significantly. Numerical instabilities occur suddenly and 6B
increases rapidly at the grid scale for all the cases. Figure 3
compares the B, maps at t = 0 and shortly after the onset of the
numerical instability. Grid-scale fluctuations in the magnetic
field increase.

3.2. Turbulent Magnetic Field

In this test problem, we first measure the growth rate of the
numerical instability induced by the Hall effect in
Section 3.2.1. Using both the growth rate and the results of
the von Neumann stability analysis of Hall-MHD with hyper-
resistivity (Appendix), we determine an appropriate range of
Chyp in Section 3.2.2. The implementations listed in Table 1 are
compared in Section 3.2.3.

Numerical instabilities caused by the Hall effect typically
occur around the Nyquist wavelength. To evaluate the
performance of the methods listed in Table 1, we initialize a
uniform static gas (p = 1, P = 1/, v = 0) with turbulent
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Figure 3. Two-dimensional slice of 6B, at y = 0.5. The top panel shows the
initial condition, and the bottom panel shows the 6B, map when the amplitude
of 0B, has increased by a factor of 2.

magnetic fields that exhibit white noise, where v = 5/3. No net
magnetic field is present.

To ensure that V- B = 0 within roundoff errors, the initial
magnetic field is derived from a turbulent vector potential field,
with a power spectrum designed to generate white noise in the
face-centered magnetic field fluctuation. The initial amplitude
of the magnetic field perturbation is defined as /(6B?) =

4, where (Q) denotes the volume average of Q. Note that
the results do not depend on the field strength, because the
induction equation, which considers only the Hall electric field,
is linear with respect to B when 7y is constant, as long as the
phase speed of the whistler wave at the grid scale is
significantly larger than the Alfvén speed and sound speed.

In addition, as shown in Section 2.2, in whistler waves,
magnetic field perturbations dominate over other perturbations.
In other words, the gas is almost static during the development
of the magnetic field.

The computational domain spans 0<x, y, z<L and is
discretized into 323 cells, with periodic boundary conditions
applied in all directions.

3.2.1. Measuring a Growth Rate of the Numerical Instabilities due to
the Hall Effect

Before presenting the results of the four implementations, we
estimate the growth rate of the numerical instabilities caused by
the Hall effect. In this test, HLLD is used.

Since the numerical instabilities primarily develop around
the Nyquist wavelength, the characteristic timescale is expected
to correspond to the crossing time of the whistler wave across
this wavelength:

2
i 29)
Ty

where we use the phase speed of the whistler wave at the
Nyquist wavelength ngm/Ax. Thus, the growth rate o can be
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Figure 4. Time evolution of /(6B for the two parameter sets
(i = 10, L = 4) and (nu = 10°, L = 8). The thin dashed line represents
the estimated growth rate.

parameterized as

"

Oinst = Co Ar2’ (30)
where C, is a parameter that is determined by the numerical
experiment shown below.

Figure 4 shows the time evolution of /(§B?) for the two
parameter sets, (ny = 10%, L = 4) and (ng = 107, L = 8). The
two lines are almost identical when the normalized time
Nut/ Ax? is taken as the horizontal axis. This clearly shows that
the growth rate oy, is proportional to 7' ~ Ny Ax—2. Fitting
the results with exp(ojg?) yields C, = 0.5.

3.2.2. Appropriate Range of the Hyper-resistivity Coefficient

The minimum value of Cyy, is determined by the condition
that the damping rate caused by the hyper-resistivity exceeds
the growth rate o of the numerical instability.

By linearizing the discretized induction equation solved in
Athena++, we obtain a damping rate of Guypny 16d1\21yAx‘2,
considering only the hyper-resistivity in the linear analysis,
assuming cubic cells (Ax = Ay = Az), where dyy denotes the
number of directions containing Nyquist wavelength fluctua-
tions. Therefore, Cpy, must meet the condition

Chyp > Chyp.min ~ 0.03dy. (31

Note that since dyy, = 1 is adopted to obtain a stricter condition
for Chyp, Chyp,min ~ 0.03 should be regarded as an upper limit
of Chyp,min‘

The maximum value of Cyy, is determined by the condition
that the time-step constraint caused by hyper-resistivity, Atyyy,
is greater than Aty. From the von Neumann stability analysis,
Atpyp X d*Ax* /my can be obtained. By conducting numerical
experiments on the turbulent magnetic field with different Cy,
d, and Cyyp, we found that Cpy, must satisfy the following
condition,

d\ 32y Y
Cogp < chyp,max:o.og(g) (ﬁ) , (32)
in order for Afyy, not to affect the CFL condition
(Section 2.4.3).
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Figure 5. Time evolution of the magnetic field fluctuations. The results

obtained using various methods (HLLD, HALL-HLL, and HYP-RESIS with
Chyp = 0.01, 0.02, 0.05, and 0.1) are shown.

3.2.3. Comparison Between Different Implementations

We compare the results from the four implementations listed
in Table 1. Here, we set ng = 10* and L = 4. The results for
HALL-HLLMOD are omitted in this section, as they are nearly
identical to those of HALL-HLL, because the gas remains
nearly static in this test.

A comparison of the results obtained using HLLD, HALL-HLL,
and HYP-RESIS is shown in Figure 5. For HYP-RESIS, the runs
with 0.01 < Gy, < 0.1 produce stable results, whereas those with
Chyp = 0.01 and 0.1 show numerical instabilities. This is roughly
consistent with the requirement that Cyy,, should be greater than
Chyp,min ~ 0.03 and less than Cpyp max (Section 3.2.2). HALL-

HLL is also stable, but it reduces (v/6B? ) faster than HYP-RESIS.

In order to examine the magnetic field structure of the stable
results, we present the B, slice map at z = L/2 in Figure 6.
First, the results with HYP-RESIS are analyzed. Grid-scale
fluctuations, which persist for Cyy, = 0.02, disappear in the B,
maps for Cyyp, = 0.05.

HALL-HLL exhibits significantly distinct features compared
to HYP-RESIS, as shown in Figure 6. At t = 10¢,,, grid-scale
disturbances remain in HALL-HLL, whereas large-scale
fluctuations are less pronounced in HALL-HLL compared to
HYP-RESIS with Cyy, = 0.05. This is due to the fact that HALL-
HLL utilizes the cell-centered transverse magnetic fields rather
than the face-centered magnetic fields when computing the
numerical fluxes (Section 2.4). Since cell-centered magnetic
fields are derived by using a simple arithmetic average of face-
centered magnetic fields (Equation (20)), grid-scale distur-
bances of the face-centered magnetic fields are significantly
reduced during the conversion from the face-centered B to the
cell-centered B. By contrast, the face-centered magnetic fields
are used to compute the edge-centered electric field due to the
hyper-resistivity. Thus, HALL-HLL is less effective in reducing
pre-existing grid-scale perturbations in B than HYP-RESIS,
which directly utilizes the face-centered B.

3.3. Density-shear Instability

In this section, we investigate the density-shear instability as
a numerical experiment involving variable ny. This instability
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Figure 6. The B, slice at z = 2 for HALL-HLL and HYP-RESIS (Cyy, = 0.02
and 0.05). The maps are taken at t = 10¢.

occurs in situations where both the unperturbed magnetic field
By and the electron number density have steep gradients
perpendicular to By (T. S. Wood et al. 2014). The Hall effect

Iwasaki & Tomida

coefficient 7y is given by ngy = c¢B/(4wen,), where ¢ is the
speed of light, B is the magnetic field strength, e is the
elementary electric charge, and n, is the electron number
density.

K. N. Gourgouliatos et al. (2015) conducted numerical
simulations of the density-shear instability. We solve the full
set of Hall-MHD equations (Equations (1)—(4)), whereas they
considered the induction equation taking into account only the
Hall electric field using a pseudo-spectral code. However, the
results are expected to be consistent with those of K. N. Gour-
gouliatos et al. (2015), because the gas remains nearly static as
the magnetic field evolves, similar to the turbulent magnetic
field test (Section 3.2).

Following K. N. Gourgouliatos et al. (2015), we assume an
unperturbed plane-parallel magnetic field, localized around
y = 0 with a characteristic length scale of a, as follows:

2
&z&%mt%J+@}m=&=Q (33)
a

where €5 = 102 represents the magnetic field floor. The
electron number density has a similar functional form to B,:

2
Ne = no{exp(—y_z) + 6,1}, (34)
a

where ¢, = 1072 is a floor bound for n,. We consider a fully
ionized gas in which the density is proportional to n, and is
po = 1 at y = 0. The initial gas pressure is set so that the total
pressure P + BX2 /8w is spatially constant. The results are
insensitive to the total pressure, because the gas remains nearly
static throughout the evolution. In this study, we set
87P/B?> = 0.1 fory = 0 and By = 1.

From Equation (34), the Hall effect coefficient is
expressed as

B|/B
77H:77H0| / 3 (35)
p/ Py
where nyo = cBo/(4meny) is the reference Hall effect

coefficient and is assigned a value of 100.

T. S. Wood et al. (2014) demonstrated through linear
analysis that the growth rate reaches its maximum when the
perturbation wavenumber vector is aligned to the x-axis. The
dispersion relation is given by

o(k) = %V(ka)z{Z — (ka)*}, (36)

where o represents the growth rate and k denotes the
wavenumber along the x-axis (T. S. Wood et al. 2014). The
maximum growth rate oia, = 7y0/@> is obtained at k = a” .

The fastest-growing mode is applied to B, as follows:
By = 6Bcos(x/a), 37

where 6B = 10~ *B, is the initial amplitude. No perturbations
are introduced for the other variables.

The simulations are performed in two dimensions. The box
size in the (x, y) 2plane spans —37ma <x, y<3ma and is
discretized by 128 cells, where the characteristic scale is
a = 0.1. The width a is resolved by ~14 cells. We evaluate the
four different implementations: HLLD, HALL-HLL, HALL-
HLLMOD, and HYP-RESIS. To investigate an appropriate value
of Chyp, We test Cyyp, = 0.01, 0.02, 0.05, 0.1.



THE ASTROPHYSICAL JOURNAL, 984:50 (16pp), 2025 May 1

== = HLLD
e ALL-HLL
== = HaLL-HLLMOD

m—— Hyp-RESIS (0.01)
== = Hyp-REsIS (0.02)

= Hyp-REsis (0.05)
Hyp-REsIs (0.1)

1073

10744

( 13>/ exp(Tat)

1075<

107°

5 10 15 20
to’nl&lx
Figure 7. Time evolution of /(B?) divided by exp(omax?) for the four different

implementations (HLLD, HALL—HLL, HALL-HLLMOD, and HYP-RESIS with
Chyp = 0.01, 0.02, 0.05, and 0.1). The horizontal axis is normalized by a;llm.

3.3.1. Linear Growth

First, the early-time evolution of (B}})!/2 is compared to the
theoretical predictions from the linear analysis in Figure 7. For
HLLD, the evolution of (B})!/? agrees with the expected trend
exp(Omax t) until toy,,x ~ 8, after which the numerical instability
rapidly increases.

For HALL-HLL, <By2>1/ 2 increases significantly slower than
exp(omax?), due to the large dissipation introduced in both the
velocity and magnetic fields. The initially concentrated
distributions of p and B, along the y-axis (Equations (33) and
(34)) become significantly diffused.

Next, we analyze the HYP-RESIS runs. When Gy, = 0.01,
the growth rate agrees with opax, but as Cyy, increases from
0.01, the growth rate departs from oy,,x. Counterintuitively,
increasing Cyy,, leads to an increased growth rate. This occurs
because artificial diffusion is introduced exclusively in the
magnetic field. As a result, the profiles of B, undergo diffusion,
while those of p remain nearly unchanged. This can be
interpreted as setting a nonperturbed state where the width of
the B, profile (ap) is slightly greater than that of the p profile
(a,). The growth rate increases with ap at a fixed a,
(K. N. Gourgouliatos et al. 2015).

HYP-RESIS with lower Cpy, may experience numerical
instabilities. Figure 7 indicates that the numerical instability
arises for HYP-RESIS with Cyy, = 0.01 around ¢ ~ 14.5. The
HYP-RESIS runs with Cpy, > 0.01 appear to provide
numerically stable results.

HALL-HLLMOD produces more accurate results than HALL-
HLL. The time evolution of (B})!/? is close to that of HYP-
RESIS with Cyy, = 0.1. This occurs because the density profile
diffusion is suppressed in HALL-HLLMOD.

3.3.2. Nonlinear Evolution

Next, we investigate the nonlinear evolution of the density-
shear instability. The snapshots at + = 25 are displayed in
Figure 8. Corrugations in the magnetic field around y = 0
develop over time. When magnetic fields deform sufficiently,
magnetic reconnection is triggered around pinched magnetic
fields.
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Figure 8. Color maps of the current density along the z-axis, J., for four
different implementations (HLLD, HALL-HLL, HALL-HLLMOD, and HYP-
RESIS with Cpy, = 0.01, 0.02, 0.05, and 0.1). The gray lines indicate the field
lines in the x—y plane. The snapshots are taken at ¢/fy; = 25. For HYP-RESIS
with Cyyp, = 0.01, the J, map is shown at the time when the numerical
instability occurs.

As discussed in Section 3.3.1, the numerical instability arises
at t = 14.5 in the HYP-RESIS case with Cy,, = 0.01,
particularly in the reconnection regions where J, exhibits
significant fluctuations. In the J, map of HYP-RESIS with
Chyp = 0.02, numerical wiggles are also seen around
(x, ¥) ~ (0.5, 0.2) and (—0.5, —0.2). This indicates that
Chyp = 0.02 leads to numerical fluctuations, due to insufficient
dissipation. This is consistent with the fact that Cy,y, = 0.02 is
less than Cpyp min ~ 0.03 (Equation (31)). No numerical
oscillations are visible in the map of HYP-RESIS with
Chyp = 0.05.

Compared to HYP-RESIS, HALL-HLL produces significantly
more diffused results. The field lines are almost straight,
indicating that the density-shear instability is almost sup-
pressed. While HALL-HLLMOD significantly improves the
dissipative distribution of J,, Figure 8 reveals that J, in HALL-
HLLMOD remains more diffusive than HYP-RESIS with
Chyp = 01



THE ASTROPHYSICAL JOURNAL, 984:50 (16pp), 2025 May 1

3.4. Linear Wave Convergence Test

In Section 2.2, the physical properties of the fast-wave
branch, Alfvén-wave branch, and slow-wave branch are
discussed. In this section, we conduct convergence tests of
linear waves in both uniform and static mesh refinement (SMR)
grids.

The setup is as follows: we consider the propagation of
linear waves at an inclination relative to the grid cells. The
numerical setup follows that of Section 3.1, except that all
types of linear waves are considered in this section. In the
coordinate system & = (& 1, (), defined as R -x, the
perturbation vector is defined as

6B 6B, 6B
60 = |22, bve, vy, b, ——e, 22| (35
Po \/ 4mp \/ 4mp, \/ 4mp,

and has a spatial dependence of ¢'* . The initial perturbation
amplitude is set to [6Q] = 10 Cca.

The simulation box spans 0 <x <L, 0<y, z<L/2 and is
divided by N x (N/2) x (N/2) cells, where L = 67 /k. For a
given k, the eigenfunctions of the three branches are considered
in the coordinates (x, y, z) as the initial conditions. The volume-
weighted L, norm is measured at # = 27/w(k) and defined as
follows:

ani’j’k((SQn,i,j,k — 6O exact ®ij1))* AVijk
€= 5

Zi,j,kA Vi

where x; jr = (X;, ¥j» 21)> 0O exact Tepresents the exact solution
of the nth component of 6Q at r = 27/w(k), and AV, denotes
the volume of the cell centered at x;;,. We consider the case
where ¢ = 1/2 and § = w/4, with the dispersion relation
shown in Figure 1.

We compare the results obtained by the four different
methods (HLLD, HALL-HLL, HALL-HLLMOD, and HYP-
RESIS). For the HYP-RESIS runs, Cyy,, is fixed to 0.05, because
this value provides the minimum dissipation required to
eliminate the numerical fluctuations (Sections 3.2 and 3.3).

(39)

3.4.1. Uniform Grids

For the uniform grids, we consider three different wave-
lengths (kLy = 0.2, 2, 20), spanning from the ideal MHD
regime to the Hall-dominated regime (Figure 1). The
convergence test is performed by changing N (N = 32, 64,
and 128) using 3 x 3 x 4 combination: the three branches, the
three different wavelengths, and the four different methods
(HLLD, HALL-HLL, HALL-HLLMOD, and HYP-RESIS). The
results are summarized in Figure 9.

Both HYP-RESIS and HLLD exhibit second-order conv-
ergence across all the branches and wavelengths. The errors for
HYP-RESIS and HLLD are nearly identical, indicating that the
hyper-resistivity with Cyy, = 0.05 does not significantly
dampen linear waves.

Next, the results of HALL-HLL are compared with those of
HLLD. The importance of the Hall effect in the signal speed of
the HALL-HLL flux is illustrated in Table 2, which shows that
the values of cy(Ax~1)/ «/c,f + cs2 increase with increasing
kLy and N.

For kLy = 0.2, the Hall effect does not significantly affect
the signal speed of the HALL-HLL flux, since

10
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coy(Ax~h) ~ \/cs2 + ¢2. HALL-HLL exhibits second-order
convergence, similar to HYP-RESIS and HLLD, for all branches.
In the slow-wave branch, the error ¢ in HALL-HLL is
approximately twice as large as that in HLLD, whereas the
errors are comparable for the fast-wave and Alfvén-wave
branches. This discrepancy arises because the numerical
dissipation in HALL-HLL is determined by the phase speed
of fast waves.

At larger wavenumbers, kLy = 2 and 20, Hall-HLL behaves
differently from HYP-RESIS and HLLD, because the signal
speeds in the HALL-HLL solver are determined by whistler
waves. For the fast-wave branch, HALL-HLL shows second-
order convergence, and the errors e are comparable to those of
HYP-RESIS and HLLD, because the fast-wave branch corre-
sponds to whistler waves. However, for the Alfvén-wave and
slow-wave branches, especially at the largest wavenumber
kLy = 20, the errors in HALL-HLL are much larger than those
of HYP-RESIS and HLLD, and decrease with N at a slower rate
than second-order convergence, at least in the range N < 128.
This occurs because the HALL-HLL solver incorporates the
phase speed of the whistler waves, leading to significant
numerical dissipation that dampens the linear waves with phase
speeds much smaller than c,, (Table 2). Both sound and ion-
cyclotron waves are significantly dampened at kLy = 2 and 20,
as shown in Figure 9.

Figure 9 shows that HALL-HLLMOD significantly improves
the dissipative properties of HALL-HLL for the Alfvén-wave
and slow-wave branches, and restores second-order conv-
ergence. However, the errors € in HALL-HLLMOD are still
larger than those in HYP-RESIS. This indicates that HYP-RESIS
can capture all MHD linear waves more accurately than both
HALL-HLL and HALL-HLLMOD.

We compare the performance of HLLD, HALL-HLLMOD,
and HYP-RESIS at the highest resolution, N = 128. These
calculations are conducted on a single HPE Cray XD2000 node
with dual Intel Xeon CPU Max 9480 processors. The
calculation using HYP-RESIS is only 3% slower than those
using HLLD, indicating that the computational cost of the
hyper-resistivity term is negligible. The computational speed of
HALL-HLLMOD is about 11% (12%) faster than that of HLLD
(HYP-RESIS), since the Riemann solver of HALL-HLLMOD is
computationally cheaper than that of the HLLD solver.
However, to achieve the desired accuracy in the simulations,
the total number of cells required with HYP-RESIS can be
reduced by a factor of 232238 compared to HALL-HLL. In
this argument, we use the fact that € o« N~ 2 and the errors of
HYP-RESIS are about half of those of HALL-HLL (Figure 9).

3.4.2. SMR Grids

In this section, we examine whistler wave propagation in
SMR grids to evaluate the effect of mesh refinement on
numerical stability and global convergence rates. In this
analysis, only the fast-wave branch with kLy = 20 is
considered.

The root grid resolution is set as Nyoor X WNroot/2) X Nroot/2)-
Refined grids are introduced in the central region,
0.25L < x<0.75L and 0.125L <y, 7 < 0.625L, with cell sizes
reduced to half of the root grid size.

Figure 10 shows the B, maps at z = L/4 for HLLD, HYP-RESIS
with Cyyp, = 0.05, and HALL-HLL. Unlike uniform grids,
numerical instabilities arise in SMR grids. Small-scale waves
are excited near the level boundaries and grow over time. Both
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1/2 and 6 = 7/4) for HLLD, HALL-HLL, HALL-HLLMOD, and HYP-RESIS with Cp,y,, = 0.05. The left, middle, and

right columns correspond to the results for kLy = 0.2, kLy = 2, and kLy = 20, respectively. The top, middle, and bottom rows correspond to the slow-wave branch,
Alfvén-wave branch, and fast-wave branch, respectively. For reference, the black solid lines proportional to N~ are plotted.

Table 2 HYP-RESIS and HALL-HLL produce stable results, as illustrated

The Values of ¢y (kmax = Ax~!) Divided by +/c2 + ¢Z, Which Is the in Figures 10(b) and (c). A comparison of these panels reveals no
Maximum Value of c¢ significant difference in B between HYP-RESIS and HALL-HLL.

KL N =32 N — 128 Figure 11 presents the global convergence rates. Both HALL-
HLL and HYP-RESIS demonstrate second-order global conv-

02 1.06 1.69 ergence. As shown in Figure 9, the errors € are slightly smaller
2 3.28 12.2 for HYP-RESIS than for HALL-HLL. Furthermore, in each
20 16.9 1 implementation, the SMR grid results in smaller errors

compared to the uniform grid, as expected.

11
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Figure 10. B, maps at the plane z = L/4 for (a) HLLD, (b) HYP-RESIS with

Chyp = 0.05, and (c) HALL-HLL. The snapshots are taken at t = 7/w(k). In
each panel, the rectangle encloses the refined region.
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3.5. Kelvin—Helmholtz Instability

The Kelvin—Helmholtz (KH) instability in the presence of the
Hall effect was investigated by S. P. Talwar & G. L. Kalra (1967)
and A. K. Sen & C. K. Chou (1968). Their findings indicate that
for super-Alfvénic shear flows, the Hall effect enhances the
growth rate. B. P. Pandey (2018) demonstrated that the Hall effect
destabilizes sub-Alfvénic shear flows, which are stable under ideal
MHD conditions (S. Chandrasekhar 1961).

3.5.1. Predictions from Linear Analyses

Before presenting the numerical setup, we provide a brief
overview of the growth rate derived by B. P. Pandey (2018).
The unperturbed state consists of a uniform gas with
V() = Mpcy for y >0 and v, (y) = —Maucy for y < 0,
where c, denotes the Alfvén speed of the unperturbed state,
and M, is the Alfvén Mach number of the shear flow. The
magnetic field is uniform and aligned with the shear flow
along the x-axis. By considering perturbations in the form
e * the following dispersion relation is obtained by
applying the appropriate boundary conditions (S. P. Talwar
& G. L. Kalra 1967; A. K. Sen & C. K. Chou 1968;
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Figure 11. Convergent test of whistler waves with & = 1/2 and kLy = 20 for
HALL-HLL and HYP-RESIS. The L2 norms measured at t = 27/w(k) are plotted
as a function of N, For comparison, the results for the uniform grid are
shown with dashed lines.
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Figure 12. Growth rate of the KH instability as a function of kLy for M, = 8,
2,1, 0.5, and 0.3.

B. P. Pandey 2018):
Q2+ 355 + aD{Q151(55 + 1) + 0:252(57 + 1)}

+ kLy(57 — 51)* =0, (40)
where &1 = o /(kcy) + iMa, 5> = o/(kcy) — iM, and
0 = J@kLu? + (37 + 12 1)

Figure 12 shows the growth rate of the purely growing
mode, which develops without oscillations, as a function of
kLy for various values of M,.

For the Hall-dominated limit (kLy > 1), Q; can be
approximated as GkLy. Consequently, Equation (40) becomes
independent of kLy and simplifies to:

{(k—)2 + (Ma — 1)2} {(,{—)2 + (Ma + 1)2}

x(i“mMQG%+A@):Q 42)
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Equation (42) has one purely growing mode, given by

Ohall = kca Ma. (43)

This behavior differs significantly from the ideal MHD case,
where sub-Alfvénic shear flows are stabilized by the Lorentz
force.

For small values of kLy, the properties of o differ between
super- and sub-Alfvénic cases. In the super-Alfvénic regime, at
kLy = 0, the growth rate is identical to that in ideal MHD:

Oideal = kca Y M%\ -1

(S. Chandrasekhar 1961). As kLy increases, o increases and
asymptotically approaches oy,;. Conversely, in the sub-
Alfvénic regime, Figure 12 shows that purely growing modes
exist only when kLy exceeds a critical value, which is larger for
smaller values of M, (B. P. Pandey 2018).

(44)

3.5.2. Numerical Setting

The two-dimensional computational domain is defined as
|x| <1/2 and |y| < 1, and is discretized into 256 x 512 cells. A
uniform gas with density py and pressure P is considered. The
initial unperturbed gas flow and magnetic field are aligned with
the x-axis. To impose periodic boundary conditions in all
directions, two initial discontinuities are set at y = =+1/2.
Instead of considering perfect discontinuities in the v, profile,
which is consistent with the unperturbed state in the linear
analysis presented above, a smoothed v, profile is employed, to
achieve convergence of results (D. Lecoanet et al. 2016). The
unperturbed gas flow is given by

Ve (y) = Maca
X {tanh (%) — tanh (%) - 1}, (45)

where woy = 0.1 is a parameter that controls the smoothness of
the profile, and cx = By/./47p, is the initial Alfvén speed. To
track the time evolution of the initial discontinuities of v,, we
solve a scalar field S governed by the advection equation
0S/0t + v - VS = 0. The initial profile of S is given by

S = l{tanh(M) - tanh(yil/z)}. (46)
2 wo wo

The following perturbation is introduced in the vertical velocity
field:

vy (x, y) = v sin(kx)

2 - 2
X {exP(—g(yti]z/z) ) + eXp(—i() vilz/z) )}

(47)

where 6v = 0.01 is the perturbation amplitude, w; = 0.2 is a
parameter showing the spatial extent of the v, perturbation
around the initial discontinuities, and k is the wavenumber and
set to 27r. No perturbations are added in other variables.

We consider three different Alfvén Mach numbers:
Ma =8, 2, and 0.5. The nondimensional parameter kLy is
set to 4. All cases are in the Hall-dominated regime, and the
growth rates o are close to oy, (Equation (43)).
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Hyp-REsis HaLL-HLLMoDp HAaLL-HLL

No-HALL

0.0 0.2 0.4 0.6 0.8 1.0

Figure 13. Snapshots of the scalar field S at r = 4 M5! for M, = 0.8 (top
row), M, = 2 (middle row), and M, = 0.5 (bottom row). For each M,, the
results of HLLD, HYP-RESIS with Chyp = 0.05, HALL-HLLMOD, and HALL-
HLL are shown from left to right. In the rightmost column, the results without
the Hall effect are presented (NO-HALL).

3.5.3. Comparison of Different Implementations

Figures 13 and 14 show the z = 0 slices of the scalar fields at
t =4M, and the time evolution of dv, =,/ (vy2 + vf) ,

respectively.

For reference, the results without the Hall effect, which are
labeled “NO-HALL,” are shown in the rightmost column of
Figure 13. Only the M, = 0.5 run without the Hall effect
shows a stable result in Figure 13 (also see Figures 14(b), (c),
and (d)). This is consistent with the results of the linear analysis
by S. Chandrasekhar (1961).

Figure 14(a) shows that for HLLD, the perpendicular velocity
dispersions év, with different M, grow following almost the
same lines in the range &v, < 1072 when the time is
normalized using the growth rate predicted from Equation (40).
Thus, the M, dependence of the growth rates is consistent with
the results of the linear analysis, and the sub-Alfénic case
(Ma = 0.5) is destabilized by the Hall effect. Note that the
growth rates obtained from the simulations are about half the
predicted values. This is probably because the settings of the
simulations are not exactly the same as those of the linear
analysis presented above. For instance, in the simulations, the
smoothed profile of the shear flow is considered and the
periodic boundary conditions are imposed in all directions.

The results for HLLD are shown in the leftmost panels of
Figure 13. Clear rolled-up vortices are seen only for My = 0.5
and 2, and the magnetic field lines are almost straight in the
(x—y) plane. The M, =8 model suffers from numerical
instability due to the Hall effect. This is because strong rolling-
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Figure 14. Time evolution of the vertical velocity perturbations

v = /(W +v2). The horizontal axis represents the time normalized by
keao™ " for kLy = 4 and k = 2m.

up motions bend the magnetic field lines significantly for
M, = 8. The onset of numerical instability is observed as a
sudden increase in év, around to/(cak) ~ 3.4 in Figure 14(a).

Next, the results for HYP-RESIS with Cy,, = 0.05 are
investigated. For M, = 2 and 0.5, the S maps are almost
identical to those for HLLD. For M, = 8, the hyper-resistivity
suppresses the numerical instability that occurs for HLLD. This
feature is quantitatively evident in Figures 14(b)—(d). For all
values of My, the time evolution of év, for HYP-RESIS is
almost identical to that for HLLD except for the numerical
instability. This indicates that hyper-resistivity does not
introduce significant dissipation.
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In contrast, HALL-HLL produces dissipative results, while
the amount of numerical dissipation depends on M,. For
Ma = 2, the results of HALL-HLL show clearly rolled-up
vortices, although the number of rotations of the vortex sheet is
lower than that for HYP-RESIS (Figure 13). Figures 14(b) and
(c) show that large numerical dissipation due to HALL-HLL
slows the growth of év, compared to HYP-RESIS. For the sub-
Alfvénic case (M, = 0.5), the development of vortices is
strongly suppressed in Figure 13. The linear growth rate and
saturation level of v, are both significantly lower for HALL-
HLL than those for HYP-RESIS.

These properties of HALL-HLL are consistent with the
results of the convergence test in the Hall-dominated regime
(kLy = 20) shown in Section 3.4. The development of the KH
instability for super-Alfvénic cases is influenced by whistler
waves, which are captured reasonably well by HALL-HLL (see
the fast-wave branch in Figure 9). However, for sub-Alfvénic
cases, ion-cyclotron waves, which are strongly damped by
HALL-HLL, play an important role in the development of the
KH instability.

In a similar way to Section 3.4, HALL-HLLMOD signifi-
cantly improves the dissipative results of HALL-HLL, espe-
cially for smaller M,. However, HALL-HLLMOD produces
more dissipative results than HYP-RESIS. We will publicly
release our implementation of the Hall effect shortly.

4. Conclusions

In this paper, we evaluate the performance of several
numerical methods for the Hall effect found in the literature,
which are listed in Table 1, based on an extensive series of test
calculations. The Hall effect is implemented in Athena++
(J. M. Stone et al. 2020; see Section 2.4). Two types of
implementations of the Hall effect are considered. One is
HALL-HLL, where the phase speed of whistler waves is taken
into account to compute the signal speeds in the HLL
numerical fluxes (G. Lesur et al. 2014). The modified version
of HALL-HLL (HALL-HLLMOD) proposed by P. Marchand
et al. (2019) is also tested. In HALL-HLLMOD, the hydro-
dynamical variables (the density, momentum, and total energy)
are updated by using the original HLL numerical fluxes,
whereas the HALL-HLL numerical fluxes are used to update the
magnetic field. The other implementation (HYP-RESIS) intro-
duces a fourth-order hyper-resistivity into the induction
equation.

An appropriate hyper-resistivity coefficient (Cyyp, ~ 0.05) is
determined to ensure both numerical stability and high
accuracy based on numerical experiments and the von
Neumann stability analysis (Sections 3.2.2, 3.3, and also see
the Appendix).

The difference in the performance of the methods is clearly
observed in the convergence test of linear waves (see
Section 3.4). In the Hall-dominated regime, HYP-RESIS
exhibits second-order convergence for all types of Hall-MHD
linear waves, and numerical dissipation caused by the hyper-
resistivity term does not significantly affect the accuracy of the
solutions. By contrast, HALL-HLL shows significantly slower
convergence than second order due to numerical dissipation in
the ion-cyclotron wave and sound wave, whereas it exhibits
second-order convergence for the whistler wave. This occurs
because the numerical dissipation in HALL-HLL is determined
by the fastest phase speed among the linear waves, which is the
whistler wave phase speed. This behavior is also seen in the
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KH instability test (Section 3.5). HALL-HLLMOD significantly
reduces numerical dissipation compared to HALL-HLL but
produces more diffusive results than HYP-RESIS.

Section 3.4.1 demonstrated that HYP-RESIS with Cyy,, ~ 0.05
is also a suitable choice in terms of computational performance.
The computational cost of calculating the hyper-resistivity term
is negligible compared to the total cost. HYP-RESIS is slightly
slower than HALL-HLLMOD for the same resolution, but it can
achieve the same accuracy with considerably fewer grid points.
In other words, it can achieve better accuracy for the same
computational cost.

In summary, hyper-resistivity with an appropriate coefficient
ensures both numerical stability and high accuracy, making it
the optimal choice for simulating phenomena involving the
Hall effect.
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Appendix
Von Neumann Analysis for Hall-MHD

We present the results of the von Neumann analysis for Hall-
MHD. For whistler waves whose wavenumbers satisfy
Nk > ca, the ideal term V' x (v x B) is much smaller than
the Hall term in the induction equation. In addition, the gas is
nearly static, because the velocity perturbations év are much
smaller than 6B/,/4mp,. Thus, we consider the following
induction equation:

B gy T imn)

E» (A1)

The computational volume is divided into cells with a size of
AxAyAz. We assume uniform grids, for simplicity. The cell
centers are defined at (iAx, jAy, kAz) and the variable Q is
denoted as Q; ;. The magnetic fields are defined at the cell
surfaces: (By)i—1/2,jk» (By)ij—1/2.k> and (B,);jx—1/2.

For the unperturbed state, we consider a static gas with
constant density and pressure and a uniform magnetic field of
By = (B, By, By). A plane wave perturbation with a
wavenumber vector of K = (ky, Ky, K;) is considered. The
magnetic field components are given by:

(Boi_ 54 = Buo + 8B elos-Draiach)
(By)i,j—%,k =B, + 5BVel(a,,i+a“.(j7%)+azk)’

(Bz)i’jf%!k =B, + 5BZel(mi+<xy(j—%)+o,,k)’ (A2)

where o, = K AxX, o, = KAy, @, = KAz, and [ is the
imaginary unit. Substituting Equation (A2) into the discretized
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form of Equation (A1), one obtains

@ = R6B, (A3)
ot
where 6B = (6B,, (5By, 0B,),
R = 2nyC
0 —sin(a,/2)/ Az sin(a,/2)/Ay
x| sin(a./2)/Az 0 —sin(a,/2)/Ax |, (A4)
—sin(ay/2)/Ay  sin(a,/2)/Ax 0
and
cC=2?2 H cos(ﬂ) Z [M]. (AS)
I=x,y,z 2 I=x,y,z BOAI

C is reduced to k - B/By in the small-wavenumber limit
(oy < 1.

With third-order time integrators, one obtains 6B"*! = QJ&B",
where Q = 7 + RAt + R2At?/2 + R3A3/6. The discrete
form is stable if the absolute values of the eigenvalues A of Q are
less than unity, or

52 2 3 2
I\ = (1—%‘] +[§H—?H) <1, (A6)
where
. 2
€= nHAtC\/ D (251n§)léz/2)) . (A7)
I=x,y,z

For small-wavenumber limits, Equation (A6) reduces to that
derived by M. W. Kunz & G. Lesur (2013; see their
Appendix B).

Equation (A6) is reduced to {y < J3. A conservative
criterion for ensuring the stability of any linear wave is

430y A
. 3yt < 3.
min (Ax?, Ay?, Az?)

that C < 2/min(Ax, Ay, Az)

(A8)

where we use the fact
and sin (oy/2) < 1.

For second-order time integrators
RAt + R*Ar?/2, || becomes /1 + &;/4, indicating that
the discretization form is unconditionally unstable
(S. A. E. G. Falle 2003; M. W. Kunz & G. Lesur 2013).

where Q=7+
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