
RSpec Testing in Beholder 
Saud Ahmed, Lewis University, mentored by Jeny Teheran and Jason E. Ormes

Role of RSpec Testing in Beholder
▪ RSpec testing in Beholder is crucial for ensuring the 

application's reliability, data integrity, and security.
▪ It validates the core functionalities of the system, including 

the processing of security events and data transfer 
between components.

▪ RSpec tests help detect and prevent security 
vulnerabilities by simulating various scenarios and edge 
cases.

▪ Maintaining code quality is facilitated by RSpec, 
encouraging clean, modular, and maintainable code 
through Test-Driven Development (TDD) principles.

▪ RSpec tests serve as living documentation of the 
application, aiding communication and debugging among 
team members.

In the realm of cybersecurity, safeguarding sensitive data and 
protecting critical infrastructure are of utmost importance. 
Beholder, a custom Ruby on Rails system, plays a pivotal 
role in fortifying network security at Fermilab. With Beholder 
as its central hub, security events from a range of detection 
systems can be efficiently and effectively collected and 
processed. This includes Nessus, IDS, honeypots, and 
firewalls. Seamlessly coordinating the flow of information, it 
ensures the swift and accurate transfer of these events to our 
blocking systems, encompassing firewalls, proxies, DNS 
systems, and other indispensable defense mechanisms. 
Taking note of the sophistication of Beholder's approach, it 
plays a crucial role in enhancing cybersecurity 

When the RSpec test suite is executed, it runs through each 
example, evaluating whether the actual behavior matches the 
expected behavior. If the expectations are met, the example 
passes, indicating that the code works as intended. However, if 
the expectations are not met, the example fails, indicating a 
potential issue in the code that needs to be addressed.

The sample report displays various scenarios, models, and test cases, presenting 
a comprehensive number of examples.

Security and Emergency Management Division, Cybersecurity Team, Fermi National Accelerator Laboratory, Batavia, Illinois 60510

This work was produced by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. 
Department of Energy. Publisher acknowledges the U.S. Government license to provide public access under the DOE 
Public Access Plan DOE Public Access Plan

This research was supported in part by the U.S. Department of Energy (DOE), Omni Technology Alliance Internship Program. The 
program is championed by the DOE’s Office of Chief Information Officer (OCIO) and represents a partnership with the leadership of 
the Office of Economic Impact and Diversity, the Office of Science, the Office of Nuclear Energy, and the National Nuclear Security 
Agency. The program is administered by the Oak Ridge Institute for Science and Education.

Introduction
How does RSpec work ?
RSpec works as a testing framework that allows 
developers to verify and validate the functionality of their 
code. It follows a behavior-driven development (BDD) 
approach, where tests are written in a human-readable 
format. RSpec enables developers to define test cases, 
known as examples, that describe the expected behavior of 
the code. These examples are organized into groups, 
called contexts, to provide better readability and structure.

RSpec also provides various matchers that allow 
developers to define specific expectations for their code. 
Matchers are used to compare actual values to expected 
values, enabling developers to check for conditions such as 
equality, containment, or truthiness.

Implement RSpec in Beholder

Model Testing:
Create separate spec files for each model under the spec/model's 
directory.Use RSpec syntax (describe, context, it) and matchers to 
test model methods and validations.

View and Controller Testing:
Create spec/views and spec/controllers' directories for view and 
controller tests.For view testing, create a spec file for each view 
under spec/views and utilize the render_template matcher.
For controller testing, create a spec file for each controller under 
spec/controllers. Utilize RSpec's methods (get, post, patch, put, 
delete) to simulate HTTP requests and test controller actions..
.

FERMILAB-POSTER-23-254-STUDENT


	Slide 1

