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Finding flows of a Navier—Stokes fluid through quantum

computing

Frank Gaitan®'*®

There is great interest in using quantum computers to efficiently simulate a quantum system’s dynamics as existing classical
computers cannot do this. Little attention, however, has been given to quantum simulation of a classical nonlinear continuum
system such as a viscous fluid even though this too is hard for classical computers. Such fluids obey the Navier-Stokes nonlinear
partial differential equations, whose solution is essential to the aerospace industry, weather forecasting, plasma magneto-
hydrodynamics, and astrophysics. Here we present a quantum algorithm for solving the Navier-Stokes equations. We test the
algorithm by using it to find the steady-state inviscid, compressible flow through a convergent-divergent nozzle when a
shockwave is (is not) present. We find excellent agreement between numerical simulation results and the exact solution, including
shockwave capture when present. Finally, we compare the algorithm’s computational cost to deterministic and random classical
algorithms and show that a significant speed-up is possible. Our work points to a large new application area for quantum
computing with substantial economic impact, including the trillion-dollar aerospace industry, weather-forecasting, and

engineered-plasma technologies.
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INTRODUCTION

In one of the earliest papers motivating the development of
quantum computers Feynman' pointed out that such computers
are better suited to simulate the dynamics of a quantum system
than existing classical digital computers. This is because classical
computers require computational resources that scale exponen-
tially with the size of the simulated quantum system, while
quantum computers do not. It is widely expected that quantum
simulation of quantum systems will be a major application area for
quantum computing.

Quantum systems are not unique in being difficult to simulate.
Many important classical systems exist whose dynamics strongly
couple many degrees of freedom over multiple length-scales,
making their simulation with classical computers hard. An
example is a viscous fluid whose flows satisfy the Navier-Stokes
nonlinear partial differential equations®™ (PDEs). Solving these
PDEs is the primary task for such diverse problems as aerospace
flight vehicle design, weather-forecasting, probing the dynamics
of turbulence, and determining the magneto-hydrodynamics of
plasmas in space and in earth-bound technologies. In spite of its
importance, little work has been done on finding quantum
algorithms for the Navier-Stokes equations. The earliest work we
know of°? is based on a quantum lattice-gas model. We are not
aware of any work that examines whether this algorithm might
provide a computational advantage over classical algorithms.
Recently, new works'®"” have appeared which also consider
quantum algorithms for the Navier-Stokes equations. It is
remarkable that so little work has been done on this problem
even though the US aerospace industry in 2018 was a nearly one
trillion (US) dollar industry'®, while weather-forecasting directly
impacts the near-term plans of businesses, militaries, and disaster-
relief agencies worldwide.

Here we introduce a quantum algorithm for solving the
Navier-Stokes equations. As will be clear from our presentation,
a similar treatment is applicable to arbitrary PDEs. Our algorithm

thus extends to a general quantum algorithm for solving PDEs. To
test our quantum algorithm, we use it to find the steady-state
inviscid, compressible flow through a convergent-divergent
nozzle. Such nozzles are used in rocket engines and in jet engines
for supersonic flight and display a rich range of flows, from
smooth acceleration from subsonic to supersonic speeds, to the
appearance of a normal shockwave in the divergent part of the
nozzle, which causes supersonic flow to decelerate to subsonic
speeds as it crosses the narrow shock region. We find excellent
agreement between numerical simulation of our algorithm and
the exact flow solution, including shockwave capture when
present. We then compare the quantum algorithm’s computa-
tional cost to deterministic and random classical algorithms, and
discuss flow regimes where there is a computational advantage.
Lastly, we point to the large new application area our quantum
PDE algorithm opens up for quantum computing which includes
many economically important problems. The quantum algorithm
we present is independent of the previously cited papers, and of a
quantum algorithm for elliptic PDEs'®.

RESULTS

The Navier-Stokes equations are nonlinear PDEs which express
the conservation of mass, linear momentum, and energy of a
viscous fluid. They incorporate dissipative effects such as friction
between adjacent fluid elements in relative motion (viscosity) and
heat flow due to a non-uniform temperature distribution (thermal
conductivity). Other dissipative effects can be included but we will
not consider them here. We also suppress the effects of gravity,
electric and magnetic fields, and volumetric heating sources. The
local state of a fluid is specified by the flow velocity v(x,t) and two
thermodynamic state variables such as mass density p(x,t) and
temperature T(x,t). For problems in aerodynamics it is often a
good approximation to treat a fluid as a calorically perfect gas®*,
which is an ideal gas with constant specific heats (see
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Supplementary Information Section SI-1). The pressure p(xt) is
then determined through the equation of state p = pRT, where R is
the specific gas constant. With an eye to our later test application,
and to limit a proliferation of terms, we write the Navier-Stokes
equations®~ in one spatial dimension:

%+%(W)=0~ (1A)
%(pv)+%(pv2+p—r):0. (1B)
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Here v is the local flow velocity; T=(2u+ Nov/ox is the
Newtonian viscous stress with first (second) viscosity coefficients
u (A); k is the thermal conductivity; and e(p, T) is the local internal
energy. For a particular flow problem, the local internal energy
e(p, T) and the pressure p(p, T) are known functions of mass
density and temperature and so can be eliminated from the
Navier-Stokes equations. This leaves the three Navier-Stokes
equations to be solved for the three unknowns v(x, t), p(x, t), and T
(x, t). Boundary and initial conditions will be discussed below.

In Supplementary Information Section SI-2 we put the Navier-

Stokes (NS) equations in one spatial dimension into conservation
form
oU oF[U,0U/ox]
3 + 3% =J|U], V)
where U= (Uy, Uy, Us)', F=(F,, F5, F3)', and J=()y, Jo, J3)" are
three-component column vectors for the flow variables, fluxes,
and sources, respectively, and T indicates the transpose operation.
Formulas for U, F, and J appear in Egs. (6), (10), and (11) of the
Supplementary Information.

Quantum algorithm for Navier-Stokes equations

As with all computational fluid dynamics calculations it is
necessary to discretize the NS dynamics**?% We do this by
replacing the spatial continuum parameterized by x with a spatial
grid of m points {x, ..., X;, ..., Xm}, and for simplicity, assume Ax =
Xj41 —X; is independent of j. This reduces the uncountable number
of degrees of freedom {..., U(xt), ...} to a finite number {U(7,1), ...,
uge, ..., Umpt} where U(t) = Ulx, t). As explained in
Supplementary Information Section SI-3, by introducing a finite
difference approximation for first and second spatial derivatives,
we can approximate the spatial derivatives in Eq. (2) by algebraic
expressions. Moving these terms to the RHS and combining them
with J[U] reduces the NS PDEs to a set of nonlinear ordinary
differential equations (ODEs)
du
dt
Examination of the formulas in Supplementary Information
Section SI-2 shows that only F[U,oU/0x]| contains terms that
depend on the viscosity coefficients, with these terms being
present (absent) for viscous (inviscid) flow. Thus, the presence or
absence of viscosity only affects the specific algebraic expression
for F[U,0U/9x], and the same is true for f(U). We will return to this
point below. We stress that our procedure for discretizing space is
just one possible choice. Alternative discretization procedures are
possible and each would lead to a different expression for the
driver function f(U). The alternative driver function for a given
discretization would be substituted for our driver function in the
quantum algorithm described below. This raises the interesting
question of how different spatial discretization choices impact the
stability of that quantum algorithm. As noted in Supplementary
Information Section SI-3, although we have focused on the NS
PDEs in one spatial dimension, a similar discretization procedure

F(U). 3)
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can be used to reduce an arbitrary set of PDEs to a corresponding
set of ODEs.

The significance of the PDE — ODE reduction is that an (almost)
optimal quantum algorithm exists for finding an approximate
solution to a set of nonlinear ODEs®3. Thus, by combining spatial
discretization and the quantum ODE algorithm we obtain a
quantum algorithm for solving any set of PDEs. Note that although
ref. 2 appeared in 2006, it had escaped notice for 14 years that its
quantum ODE algorithm could be straightforwardly promoted to a
quantum PDE algorithm. As we show in Supplementary Informa-
tion Section SI-4, the quantum ODE algorithm in turn uses the
quantum amplitude estimation algorithm®* (QAEA) to obtain an
approximate ODE solution. A summary of the QAEA can be found
in Supplementary Information Section SI-6. Our quantum PDE
algorithm is thus the second extension in a sequence of quantum
algorithms that yield progressively more powerful applications of
quantum amplitude estimation: quantum amplitude estima-
tion** - quantum ODE solver®® — quantum PDE solver (this work).

We summarize the application of the quantum ODE algorithm
to Eq. (3). A detailed presentation appears in Supplementary
Information Section SI-4. Our task is to compute a bounded
function /(j,t) which approximates the exact solution U(j,t) for times
0<t<T subject to initial condition /(j,0) = U(j,0) = Uy(j). Refer-
ence?? assumes the driver function f(U) has r continuous, bounded
partial derivatives, with the components of the rth derivatives
satisfying the Holder condition

[0"F(U) — ' F(U)| < H|lU-U||". (4)

In Eq. (4): 1 <s <3 labels the components of f(U); 3" = 9;%9,°95°
with a+b+c=r H>0; ||v]| is the maximum norm which is the
largest of {|vq], |va|, |vs|}; and 0 <p < 1. The smoothness of the driver
flU) is parameterized by q=r+ p> 0. Functions satisfying these
conditions are known as Holder class functions®®?*® and are
elements of the Holder space F"°.

To begin, the interval 0 <t < T is partitioned into n subintervals
l; = [t;, t;, 1] of duration h = T/n using n + 1 times {t, =0, ..., t, =T}
Each /; is further subdivided into Ny = n*~" sub-subintervals I; = [t,
] of duration h = h/Ny, = T/n* using N+ 1 times {t°=t, ...,
tiNk:tiH}. At each time t; and grid-point j parameters y;i(j) are
introduced which approximate the exact solution U(jt;) = yi(j), and
provide the initial condition for the approximate solution /(jt) in /.
In each sub-subinterval i =[¢, t'*], li(j,t) is represented locally by
a truncated Taylor series /;(jt) about & (see Eg. (17) in the
Supplementary Information). By construction, f(jt) is continuous
throughout /; and /(j,t;) = yi(j). Thus, once the y;(j) are known, /(jt)
is uniquely determined. The {y;(j)} are determined iteratively using
the relation (see Supplementary Information Section SI-4)

Ne=1 7

) =)+ M3 Nﬂk / du £ (1, v)), )

for 0<i<n — 1. The QAEA is used to approximately evaluate the
second term on the RHS of Eq. (5). Note that this is the only part of
the algorithm that requires a quantum computer. A summary of
how the QAEA is used to evaluate this term is given in
Supplementary Information Section SI-6C. As explained above,
for the Navier-Stokes equations, whether a flow is viscous or not
only impacts the algebraic expression for f(U). For either type of
flow, the QAEA takes the relevant form of f(U) and returns an
estimate of the second term on the RHS of Eq. (5). The quantum
algorithm thus works for both viscous and inviscid flows. Once the
{yi()} are known, they determine the /(jt) for 0<i<n—1, and so
the desired approximate solution /(jt) = (jt) fort € land 0 <i<n—1.
For a Hélder class driver function f{U) € F"? the error ¢ in I(jt)
satisfies” (with 0<t<T; 1<j<m; and n25) e = O(1/n%) with
probability 1 —06. Here ay=kig+1) — 1 and g = r + p.
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Fig. 1 Flow through a convergent-divergent (de Laval) nozzle. The nozzle profile is specified by its cross-sectional area A(x). Steady-state
Mach number M(x), pressure P(x), mass density p(x), and temperature T(x) vary with nozzle position x as described in Supplementary
Information SI-5B. a Absent a shockwave the flow enters at low Mach number My~ 0, is accelerated in the convergent section to sonic speed
at the throat (M« = 1), then continues to accelerate to M. > 1 at the nozzle exit. b Here the flow contains a normal shockwave (red rectangle) in
the divergent section of the nozzle. This can occur for a wide range of exit pressure values P.. The flow enters at low Mach number My~ 0, is
accelerated in the convergent section to sonic speed at the throat, then continues to accelerate until just before reaching the shockwave
(M; > 1). The flow then decelerates to subsonic speed (M, < 1) in crossing the shockwave and continues to decelerate until reaching the

nozzle exit.

In Supplementary Information Section SI-5E we explain how the
time partition parameters n and k are assigned values.

Inviscid compressible flow through de Laval nozzle

We were guided by two criteria in choosing a first application for
our quantum algorithm: (i) the flow problem should be physically
interesting, while (ii) not swamping our first effort with too many
technical complications. Although a problem giving rise to
turbulent/non-smooth flow, say boundary-layer flow over a flat
plate, would satisfy criterion (i), it would violate criterion (ii) as the
interesting effect is the transition from laminar to turbulent flow,
which produces an adverse pressure gradient and boundary-layer
separation. The de Laval nozzle flow problem considered below
better balanced our criteria, even though the flow is laminar/
smooth, and so not expected to show a quantum speed-up (see
the section on “Computational complexity” below). We stress that
the purpose of the following simulation is to show that our
quantum algorithm does in fact find the non-trivial exact solution
of this compressible nozzle flow problem. Although our first
application is to an inviscid flow problem, we saw in the previous
section that our quantum Navier-Stokes algorithm works for both
viscous and inviscid flows. We will examine simulation of viscous
flows in future work.

We thus test the quantum Navier-Stokes algorithm by applying
it to inviscid A=u=k=0) compressible flow through a
convergent-divergent (de Laval) nozzle (see Fig. 1). Such nozzles
are used in rocket engines and in jet engines for supersonic flight.
We suppose the fluid is air which, for flow temperatures below
1000 K, can be treated as a calorically perfect gas. The nozzle has
length L and cross-sectional area A(x) which smoothly decreases
(convergent section) in going from the nozzle entrance to the
throat, and then increases (divergent section) in continuing on to
the nozzle exit. When A(x) is slowly varying the flow is quasi-1
dimensional (see Supplementary Information Section SI-5A). The
flow enters the nozzle from a reservoir at small velocity,
accelerates in the convergent section to sonic speed at the throat
(Mach number M=v/a=1), and in the absence of a shockwave
(Fig. 1a), the flow is supersonic throughout the divergent section,
reaching maximum speed at the nozzle exit. For a wide range of
exit pressure, a normal shockwave forms in the divergent section
of the nozzle (Fig. 1b). The flow is supersonic in the divergent
section ahead of the shockwave, decelerates to subsonic speed as
it crosses the shock region, and continues to decelerate until
reaching the nozzle exit. The location of the shockwave is
determined by the exit pressure p. and nozzle exit area A.. The
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exact solution for steady-state nozzle flow with and without a
shockwave is given in Supplementary Information Section SI-5B.

We used numerical simulation to examine how well the
quantum Navier-Stokes algorithm succeeds in finding the
steady-state flow through a de Laval nozzle. In Supplementary
Information Section SI-5A we describe the derivation of the
Navier-Stokes equations in the quasi-1D approximation. As
expected, they take the conservation form which allows expres-
sions for U, F, and J to be determined (see Egs. (24) in
the Supplementary Information). We then show how these lead
to the driver function f(U) for the Navier-Stokes ODEs (see Egs.
(27) in the Supplementary Information). It proves convenient to
introduce dimensionless flow variables which are defined in
Supplementary Information section SI-5A. The boundary and initial
conditions for the simulation are given, respectively, in Supple-
mentary Information sections SI-5C, D. The simulation evolves the
initial condition until the steady-state flow is reached and this is
compared to the exact flow solution.

The simulation inputs are: the (dimensionless) nozzle length
L = 3; the number of spatial grid-points Ngiq = 31(61) used when a
shockwave is absent (present); the (dimensionless) nozzle area A
() =1+ 2.2(x- 1.5)* for 0 < x < 3; the ratio of specific heats for air
y=1.4; the number of time derivatives appearing in the Taylor
polynomials r = 2; the error ¢; = 0.001 in the QAEA estimate for
the average of f(U) over a subinterval /; the probability 6 = 0.001
that the approximate flow solution exceeds the O(1/n°) error; the
number of Courant-Friedrichs-Lewy (CFL) time-steps (see Supple-
mentary Information Section SI-5E) Ny, = 1400 used in all
simulations; and the (dimensionless) exit pressure p.=0.6784
used to produce a normal shock-wave in the divergent section of
the nozzle at x=2.1. All simulations used the time partition
parameters n=16 and k=3. How these values are assigned is
explained in Supplementary Information Section SI-5E. The
simulation results and the exact solution for the steady-state flow
appear in Fig. 2. The flow without (with) a normal shock-wave
appear in Fig. 2a—c (2d-f). The agreement is seen to be excellent,
including the location of the shockwave which is clearly visible at
x=2.1in Fig. 2d-f as expected from the exact solution.

Computational complexity analysis

Here, we discuss the computational complexity of finding an
approximate solution to a set of PDEs. For both quantum and
classical algorithms it is necessary to discretize the problem and
we focus on algorithms that reduce the PDEs to the same set of
ODEs. The discretization costs are then identical and so the

npj Quantum Information (2020) 61
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Fig.2 Comparison of quantum Navier-Stokes simulation results and exact solution for steady-state, inviscid, compressible flow through
a de Laval nozzle. The quantum Navier-Stokes simulation results for the steady-state mass density p(x), temperature T(x), and Mach number
M(x) are presented along with the exact results found in Supplementary Information SI-5B. a-c (d-f) show the mass density, temperature, and
Mach number, respectively, for flow without (with) a shockwave in the divergent section of the nozzle. The circles are the exact solution values
and the solid lines are the simulation results. The agreement is excellent and the shockwave is clearly visible in d-f at the expected location

x=2.1.

comparison of quantum versus classical PDE solvers is determined
by the relative complexity of their respective ODE solvers.

To solve ODEs it is necessary to evaluate the driver function f(U).
It is assumed that an oracle for f(U) is available. For classical
algorithms the oracle can be a black-box/function that evaluates
flU) (and possibly its partial derivatives), while for quantum
algorithms the oracle is a query operator whose action on
quantum states encodes f(U). The action of the quantum oracle
used in the QAEA is given by Egs. (50) of the Supplementary
Information. In both cases, an ODE algorithm’s complexity will
be measured by the number of oracle calls/queries used to
produce an approximate ODE solution. Since each oracle call takes
some amount of time, the algorithm complexity is a rough proxy
for the time to determine an approximate solution.

The following analysis of ODE algorithms follows Kacewicz
If an ODE algorithm A returns an approximate solution /(jt), the
algorithm’s error for a given f(U) was defined in Supplementary
Information Section SI-4 as
e(A,f)=Sup0<r<T:1<j<m||U(j,t)f/(j,t)H, (6)

23,27-29

where U(j;t) is the exact solution and ||... || is the maximum norm.
For a classical deterministic algorithm, its error e%*%(A,F"*) over
Holder class functions is then

™ (A, FP) = suprc oo e(A, ). )
For a classical random algorithm A, its error over Holder class

functions is

e (A, F"P) = supsc o E(e(A, f)2>, (8

where E denotes expectation value. For a quantum algorithm the

Holder class error is defined probabilistically: given 6 € (0, 1/2):

eI (A, F'P . 8) = supserroinf{a|Prob(e(A, f)>a) <&}. 9)
Equation (6) is used on the RHS of Egs. (7-9).
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For an algorithm A, its computational cost is defined to be the
maximum number of oracle queries needed to compute an
approximate solution /(jt) (over all f € F"). For a given £> 0, the
e-complexity comp' (F"Pg) for an algorithm of type t =
{deterministic, random, quantum} is the minimum cost over all
algorithms A of type t such that

e'(A, FP)<e,
where the LHS of Eq. (10) is defined in Egs. (7-9).

Kacewicz®® introduced a classical random algorithm with the
following asymptotic upper bound for its e-complexity,

compran (fﬂp’ 8) — O ( (%> ‘7+7V> 7

where g =r+ p is the Holder class smoothness parameter, and
the result holds for any y € (0, 1). He also introduced a quantum
algorithm which, for 6 € (0, 1/2), has e-complexity

_1
comp™" (74, ¢, 6) = 0((1) )

where we suppress a factor of log(1/6) and y is as above.
Kacewicz*®% also found asymptotic lower bounds that apply to all
classical random and quantum algorithms, respectively,

1
compran(]_-r,p7£) _ Q<(l)q7>

N\
compd@N(FP g 8) = Q((g) ),

where 0<6< 1/4. These random and quantum algorithms are
thus (almost) optimal, as their respective upper and lower bounds
match-up to a small parameter y in the exponent, and in the
quantum case, to within a logarithmic factor. The same then

(10)

(1m

(12)

(13A)

(13B)
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applies to our quantum PDE algorithm. Finally, Kacewicz*” found
asymptotic tight bounds for worst-case classical deterministic
algorithms where the oracle only returns f(U) and/or its partial
derivatives:

compet(FP g) = @(G)q> (14)

With Egs. (11-14) in hand we are now ready to compare the ¢-
complexity of these three types of algorithms. From the above
results we see that this complexity is controlled by the Holder
class smoothness parameter g. For smooth functions f(U) which
have continuous, bounded derivatives to very high order r, the
smoothness parameter g>> 1. On the other hand, for rough/non-
smooth functions such as continuous, non-differentiable func-
tions, r=0, and g=p<1. If we insist that f(U) be a Lipschitz
function, then p = 1. In the smooth limit (g > 1) the deterministic,
random, and quantum algorithms all have the same complexity ©
((1/6)"?) which is a slowly varying function of €. In this limit the
quantum ODE algorithm has no computational advantage/speed-
up. However, in the rough limit, the quantum ODE algorithm does
give a speed-up. This follows since the exponent in its complexity
upper bound is smaller than that in the upper bounds for random
and deterministic algorithms. The amount of speed up depends
on the Holder parameter g, the smaller the better. The rough limit
speed-up is most pronounced for g, y< 1. Here the quantum
algorithm’s complexity is (1/¢), while a classical random algorithm
has complexity ((1/€)?). The quantum algorithm thus has a square-
root reduction in e-complexity over the classical random
algorithm. This corresponds to a square-root reduction in oracle
calls and to a quadratic speed-up in runtime. The speed-up is
significantly larger when compared to a classical deterministic
algorithm whose complexity is ((1/£)"/?) which is exponential in 1/
g>> 1. The quantum algorithm’s complexity, on the other hand, is
independent of g and so, in this regime, the speed-up over
classical deterministic is exponential.

We see that the quantum ODE algorithm does provide a
computational advantage over classical deterministic and random
algorithms in the interesting/difficult case of rough/non-smooth
driver functions f(U). We have also seen that a rough/non-smooth
regime exists (r=0; g, y< 1), where a quadratic (exponential)
speed-up is possible over classical random (deterministic) algo-
rithms. To indicate more clearly how large this speed-up can be, if
a classical random ODE algorithm uses 1 billion (10°) oracle calls
the quantum ODE algorithm will use approximately 30,000 oracle
calls. Similarly, if g=0.1 and a classical deterministic algorithm
uses one billion oracle calls, the quantum ODE algorithm will use
approximately eight oracle calls. As argued at the beginning of
this section, the same remarks apply to the quantum PDE
algorithm.

DISCUSSION

In this article, we have presented a quantum algorithm for solving
arbitrary sets of PDEs and applied it to the Navier-Stokes
equations. We tested the resulting quantum Navier-Stokes
algorithm by applying it to finding the steady-state inviscid,
compressible flow through a de Laval nozzle with and without a
shockwave. We found excellent agreement between our numer-
ical simulation results and the exact solutions, including shock-
wave capture when present. We examined the computational
complexity of the quantum PDE algorithm and compared it to the
complexity of classical random and deterministic algorithms. We
saw that there is a quantum speed-up for rough/non-smooth
flows (which is the computationally interesting/difficult case) and
showed that a regime exists, where the speed-up is quadratic
(exponential) over classical random (deterministic) algorithms.
This suggests that the quantum Navier-Stokes algorithm run on a
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scalable quantum computer may provide a quantum speed-up for
direct numerical simulation of fully-developed turbulence at large
Reynolds number which track the flow dynamics from the
integral-scale down to the Kolomogorov-scale.

The significance of the quantum Navier-Stokes algorithm lies
with a number of economically important problems, whose
central task is solving the Navier-Stokes equations: designing
aerospace flight vehicles (and their engines) for flight at subsonic
to hypersonic speeds; weather-forecasting; determining non-
equilibrium high-temperature gas flows; and determining the
magneto-hydrodynamics of engineered-plasmas. As pointed out
earlier, the aerospace industry is a trillion (US) dollar industry'®.
Finding Navier-Stokes solutions is also central to important
scientific problems such as understanding turbulence, and
determining stellar structure and dynamics. Furthermore, our
quantum PDE algorithm makes possible the quantum simulation
of general relativistic systems, as well as interacting-soliton
systems, and can be used to study the time-dependent properties
of non-equilibrium systems by determining solutions to the
Fokker-Planck equation or the Boltzmann equation. The quantum
algorithms presented here thus give rise to a large new
application area for quantum computing with significant eco-
nomic and scientific interest: quantum simulation of classical
nonlinear/linear continuum systems.

To close we list some important problems for future work. (1)
Extending the explicit time-evolution procedure of the quantum
algorithm introduced here to implicit methods, which can
produce an unconditionally numerically stable quantum PDE
algorithm. (2) Incorporating our quantum PDE algorithm into the
method of characteristics used to solve hyperbolic PDEs. (3)
Applying the quantum Navier-Stokes algorithm to finding the
steady-state hypersonic flow through a de Laval nozzle which
introduces vibrational modes and chemical reactions into the
analysis due to the elevated temperatures that occur. (4) Using the
quantum Navier-Stokes algorithm (with a sufficiently fine spatial
grid) to estimate the roughness of a turbulent flow, and so the
degree of quantum speed-up that might be possible for such
flows. (5) Finally, we would like to work out the quantum circuit
implementation of our quantum PDE algorithm.

METHODS

In an attempt to make the arguments presented in the “Results” section
more transparent, we have at times pointed the reader to sections of the
Supplementary Information where technical details could be found. For
the reader’s convenience, we collect those pointers here so that they are
easier to find.

Quantum algorithm

The detailed construction of the quantum Navier-Stokes algorithm is
presented in the accompanying Supplementary Information. Specifically,
the derivation of the conservation form of the Navier-Stokes equations in
1-spatial dimension is given in Supplementary Information Section SI-2,
and the procedure used in the spatial discretization of these equations is
described in Supplementary Information Section SI-3. A presentation of
Kacewicz' quantum ODE algorithm?® is given in Supplementary Informa-
tion Section SI-4, including the derivation of Eq. (5) in the “Results” section.
The manner in which the second term on the RHS of Eq. (5) is evaluated
using the QAEA is described in Supplementary Information Section SI-6C
and the construction of the QAEA is explained in Supplementary
Information Section SI-6A, B.

de Laval nozzle flow problem

The details associated with solving the de Laval nozzle flow problem
considered in the “Results” section is given in Supplementary Information
Section SI-5. The equations of motion in the quasi-1D approximation are
derived in Supplementary Information Section SI-5A. This Section also
explains how the computational flow variables U(j, t) and driver function
f(U) are identified. A careful presentation of the exact solution to this flow
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problem is given in Supplementary Information Section SI-5B. Comparison
of this solution with the numerical simulation results of the quantum
Navier-Stokes algorithm applied to this problem allowed a direct test of
the quality of the solution found by the quantum algorithm. The boundary
and initial conditions used to determine a unique solution of the equations
of motion appear in Supplementary Information Sections SI-5C, D,
respectively, and finally, how the time partition parameters n and k are
chosen is explained in Supplementary Information Section SI-5E.
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