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Abstract

The era of gravitational wave astronomy started with the first direct detection of a
gravitational wave on September 14, 2015. This measurement was accomplished
by the advanced Laser Interferometer Gravitational Wave Observatory(aLIGO)
in collaboration with an international gravitational wave detector (GWD) net-
work. GWDs are highly-complex systems incorporating hundreds of nested con-
trol loops, required to reach the detector’s design sensitivities. Aiming fora
further sensitivity increase, resulting in an increased volume of explorable space
and hence a higher event rate, various upgrades for the advanced GWDs and the
development of third-generation GWDs are planned. The planned upgrades will
inevitably lead to an increased complexity of the system.
In this thesis we propose and demonstrate the implementation of modern control
techniques for a range of possible applications, useful for the GWD community
and also the field of quantum optics in general. The important benefit of our
control approach is the inherent capability of handling multiple-input multiple-
output (MIMO) control problems.
We implemented an augmented linear quadratic Gaussian (LQG) controller,
which included integral action, for locking a three-mirror ring cavity to the fre-
quency of a laser. The controller acquired a stable lock and the closed-loop
performance was verified via step response data.
In a second experiment we implemented an autolocking scheme by applying
the combination of a linear quadratic regulator and a time-varying Kalman filter,
which is a significantly enhanced version of our previous control scheme. Our
controller was able to deal with detunings corresponding to the non-linear region
of the error signal. We achieved improved robustness to disturbances and a faster
locking time compared to a traditional (ad hoc) proportional-integral controller.
More importantly, our control scheme automatically reacquired lock for large
detunings where the error signal left its linear capture range. This feature cannot
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ABSTRACT

be accomplished by linear time-invariant controllers. The results demonstrate
the superior performance of our control scheme.
Further, this thesis includes investigations of describing the squeezed lightsource
in our laboratory as a MIMO control problem, aiming for the generation of fixed-
quadrature squeezing. Our result was that the feedback loops for our optical
parametric oscillator and the pump phase lock were decoupled due to the ap-
plied modulation schemes. Adding the lock of the local oscillator, and defining
the readout angle as a third variable led to non-vanishing coupling terms between
the implemented control loops. Thus, the control of a squeezed light source can
be described as a MIMO control problem, which can potentially benefit from
modern control techniques.
Finally, a complex MIMO system presented by a triple pendulum suspension
for seismic isolation of optical components of GWDs was investigated. The
damping of the system resonances is commonly addressed via traditional control
approaches, based on transfer functions obtained via co-located sensor/actuator
pairs attached to the upper mass. The limitation of this approach is the lack
of reliable information about the motion of the lower mass. We are the first to
propose a controller design which incorporates information about lower mass
motion. A generalised control formulation was used to examine the implementa-
tion of H∞/H2 controller synthesis techniques allowing for controller frequency
weighting and the consideration of coloured noises. The result of our computa-
tion was a 75th-order controller achieving damping factors of≈50 dB without
significantly exciting other modes.
The results of this thesis demonstrate that modern control techniques can bebene-
ficial for complex systems such as they occur in quantum optics, and in particular
in interferometric gravitational wave detectors. A mathematical control approach
is advantageous, as it offers unique controller design possibilities.

Keywords:
Modern Control, Cavity locking, Autolocking, Squeezed states, Seismic isola-
tion
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Kurzfassung

Die Ära der Gravitationswellenastronomie begann mit dem ersten direkten Nach-
weis einer Gravitationswelle am 14. September 2015. Der Nachweis wurde
durch die aLIGO-Gravitationswellendetektoren in Zusammenarbeit mit einem
internationalen Gravitationswellendetektoren-Netzwerk (GWD) geliefert. GWD
sind hochkomplexe Systeme, die hunderte verschachtelte Regelkreise enthalten,
welche erforderlich sind, um die GWD im Detektionsmodus zu halten und die
gewünschte Sensitivität des Detektors zu gewährleisten.
Eine weitere Steigerung der Empfindlichkeit wird das erforschbare Volumen des
Weltraums und damit die Rate der gemessenen Ereignisse erhöhen. Um dies
zu erreichen, sind verschiedene Verbesserungen für die nächste GWD Genera-
tion vorgesehen, die Entwicklung einer dritten Generation ist bereits in Planung.
Diese geplanten Verbesserungen werden unweigerlich zu einer erhöhten Kom-
plexität des Systems führen.
In der vorliegenden Arbeit empfehlen und demonstrieren wir die Anwendung
moderner Regelungstechniken für eine Vielfalt von Anwendungsmöglichkeiten,
die für die GWD Gemeinschaft und auch für den Bereich der Quantenoptikim
Allgemeinen nützlich sein können. Der wichtige Vorteil unseres Regelungsan-
satzes ist die inhärente Fähigkeit, Multiple-Input-Multiple-Output-Regelungspro-
bleme (MIMO) händeln zu können.
Wir implementierten einen linearen-quadratischen-Gaußschen (LQG) Regler, er-
weitert um einen Integrator, zur Stabilisierung eines Drei-Spiegel-Resonators auf
die Frequenz eines Lasers. Der Regler ermöglichte eine stabile Regelung des
Resonators. Das Leistungsvermögen des geschlossenen Regelkreises wurde über
Sprungantworten verifiziert.
In einem zweiten Experiment realisierten wir einen vollautomatischen Regelkreis
durch die Kombination eines LQ-Reglers mit einem zeitveränderlichen Kalman
Filter. Der neu entworfene Regelkreis stellt eine deutlich weiterentwickelt und
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KURZFASSUNG

verbesserte Version des ersten Reglers dar. Unser Regler konnte Frequenzver-
stimmungen händeln, die dem nichtlinearen Bereich des Fehlersignals entsprech-
en. Wir erreichten eine verbesserte Unempfindlichkeit gegenüber Störungen
und eine schnellere Systemantwort, verglichen mit einem traditionellen (ad hoc)
Proportional-Integral-Regler. Wichtiger ist, dass unser Regler in der Lage war
das System auch für große Verstimmungen vollautomatisch zu stabilisieren. Die-
ses Leistungsmerkmal kann nicht mit linearen, zeitinvariante, Regler erreicht
werden. Die Ergebnisse legen die überlegene Leistungsfähigkeit unseres Regel-
kreises offenkundig dar.
Des Weiteren umfasst diese Arbeit Untersuchungen zur möglichen Beschreibung
der in unserem Labor aufgebauten Quetschlichtquelle als MIMO-Regelungspro-
blem. Hier ist das Ziel, die Varianz einer Quadratur gezielt zu verringern.Wir
konnten feststellen, dass die Regelkreise für den optischen parametrischen Os-
zillator und die Phase des Pumplichtes aufgrund der verwendeten Modulation-
sschemata zunächst entkoppelt sind. Die Berücksichtigung des Lokaloszillator-
Regelkreises, wodurch der Auslesewinkel als dritte zu kontrollierende Variable
eingeführt wird, führt dann zu nicht verschwindenden Kopplungstermen zwis-
chen den verwendeten Regelschleifen. Somit kann die Regelung einer Quetsch-
lichtquelle als MIMO-System beschrieben werden, die möglicherweise von dem
Einsatz moderner Regelungstechniken profitieren kann.
Abschließend wurde ein komplexes MIMO-System, bestehend aus einem drei-
fach aufgehängten Pendel zur seismischen Isolierung der Optiken eines GWDs,
untersucht. Die Dämpfung der Eigenfrequenzen des Systems wird für gewöhn-
lich mittels traditioneller Regelungstechnikansätze realisiert, welche auf Übertra-
gungsfunktionen basieren, die durch an der oberen Testmasse nebeneiander ange-
brachte Sensoren/Aktuatoren Paare bestimmt werden. Dieser Ansatz ist durch
den Mangel an zuverlässigen Informationen über die Bewegung der unteren
Masse limitiert. Zum ersten Mal wurde hier ein Regelungsentwurf vorgestellt,
der Informationen über die Bewegung der unteren Masse beinhaltet. Eineallge-
meine Kontrollformulierung wurde verwendet, um den möglichen Einsatz von
H∞/H2 Reglern zu untersuchen. Diese allgemeine Kontrollformulierung er-
möglicht die Betrachtung von farbigem Rauschen und die Verwendung von fre-
quenzabhängigen Gewichtungsfunktionen. Das Ergebnis unseres Reglerentwurfs
war ein Regler 75. Ordnung, welcher Dämpfungsfaktoren von ca.50 dB erre-
ichte, ohne anderweitige Eigenmoden anzuregen.
Die Ergebnisse dieser Arbeit verdeutlichen, dass moderne Regelungstechnik für
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komplexe Systeme, wie sie in der Quantenoptik oder im Gebiet der laserinterfer-
ometrischen Gravitationsphysik auftreten, vorteilhaft sein kann. Ein mathematis-
cher Regelungsansatz bietet einzigartige Möglichkeiten für Regelkreisentwürfe.

Stichwörter:
Modern Regelungstechnik, Resonatorstabilisierung, vollautomatische Regelung,
gequetschte Zustände, Seismische Isolierung
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1
Introduction

1.1 History of Gravitational Waves

The first direct detection of a gravitational wave (GW) event on the 14th Septem-
ber 2015 opened a new era of astronomy [1]. Gravitational wave astronomy is
the only way to gain deep insight into the dynamics of black holes and other
stellar phenomena such as spinning neutron stars or binary systems [2, 3].
The foundation for this field of astronomy was built 100 years ago. Shortlyaf-
ter Einstein published his General Theory of Relativity in 1915, the existence
of gravitational waves was predicted [4, 5]. These waves, propagating with the
speed of light through our universe, are a direct consequence of accelerated mas-
sive objects, which perturb space-time. An indirect proof of gravitational waves
was accomplished by the astronomers Hulse and Taylor by exploring the binary
neutron star system PSR 1913+16 [6]. They observed a decrease in the orbital
period of the pulsar, travelling around its companion star, which matched Ein-
stein’s prediction and suggested that this system emits gravitational waves [7].
In 1993 Hulse and Taylor received the Nobel Prize for their discovery[8, 9].
It took another two decades of research for the first direct detection of GWs,
which can be considered as one of the greatest experimental challengesof con-
temporary physics. Even Einstein himself doubted that a direct detection would
be possible. In the 60s one of the first detection schemes was designed byWeber
at the University of Maryland and the Argonne National Laboratory [10, 11]. It
was based on cylindrical aluminium bars, whose resonant mode should beex-
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CHAPTER 1. INTRODUCTION

cited by a gravitational wave and the resulting motion could be detected by a
piezoelectric transducer. However, the narrow sensitivity bandwidth ofthe bar
detectors was a drawback, since gravitational wave sources cover a broad spec-
trum [12].
A broadband detector, as it is formed by a laser interferometer, was suggested by
Gertsenshtein [13]. In the 70s Weiss, Drever and Thorne carried Gertsenshtein’s
idea forward and conducted a realistic noise budget analysis for laser interfero-
metric gravitational wave detectors (GWD) [14]. That was the beginning ofa
detection scheme whose advanced generation finally managed to detect a gravi-
tational wave emitted by a binary black hole merger.

1.2 Advanced Detectors

There exists an international network of advanced laser interferometric gravita-
tional wave detectors. It consists of the French-Italian VIRGO detector near
Pisa, with an armlength of 3 km [15], the two 4 km long American LIGO detec-
tors [16] in Livingston and Hanford, and the British-German detector GEO600
[17] near Hannover with an effective armlength of 1.2 km. A Japanese detector
called KAGRA [18] is currently under construction at the Kamioka mine, and
there are also existing plans for a LIGO-like detector in India [19].
All detectors apply an improved topology of a basic Michelson interferometerfor
the detection of a gravitational wave. With the beamsplitter as reference point,
the effect of a GW is the shortening of one interferometer arm while extending
the other periodically. The size of the length variation and therefore the ampli-
tude of the gravitational wave is defined as strainh, whereh = ∆L/L is the
length change∆L over the armlengthL. The induced phase shift results in a
detectable change of the interferometer’s output power.
Although only the two advanced LIGO detectors were operating at the time of
the detection of the gravitational wave signal GW150914, it is noteworthy that
key technologies required to achieve a adequately sensitivity (see Fig. 1.1) were
provided by the GEO600 collaboration. Firstly the laser system [21], whichis
the core of a laser interferometric gravitational wave detector, is providedby the
GEO collaboration. Other contributions are the monolithic suspension [22] and
the signal recycling technique [23]. Another technique, proposed by Caves in
1981 [24], suggested to inject squeezed vacuum into the dark port of the gravi-
tational wave detector to improve its sensitivity corresponding to the shot noise
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Figure 1.1: Simulated design sensitivity of advanced LIGO [20].

limited frequency range. This was implemented by Vahlbruchet al. in GEO600
[25, 26] and is now in permanent operation.
However, all these techniques would be useless without a suitable controlscheme,
which keeps the entire system at its desired operating point. This is the reason
why the advanced gravitational wave detectors employ hundreds of nested feed-
back loops.
This thesis aims to pave the way for the implementation of modern control tech-
niques to the field of quantum optics, and in particular interferometric GWD.
Mathematical control techniques, inherently capable of coping with undesired
coupling terms, become advantageous for complex multiple-input multiple-out-
put systems, for which an intuitive controller design approach is not feasible.
The benefits of a mathematical control approach were already demonstrated in
1868 by James Clerk Maxwell (who not only postulated the well-known basis
for electromagnetic fields [27]) in his paperOn Governors[28]. Maxwell used
differential equations to derive the flyball governor dynamics and was thereby
able to explain occurring instabilities. Modern control techniques follow a simi-
lar approach, where first-order differential equations link the inputs, outputs and
state variables for the derivation of a mathematical model of the considered sys-
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tem. Another powerful tool of modern control techniques is Kalman filtering
[29], named after its developer, enabling the estimation of inaccessible system
states, which need to be controlled. The capability of Kalman filtering was im-
pressively demonstrated during the Apollo program, which managed to land the
first humans on the Moon. Hereby a Kalman filter was used for Apollo’s onboard
trajectory estimation.
This thesis explores the benefits of a systematic controller design for a variety of
control problems that occur in a quantum optics laboratory. The coveredprob-
lems include locking of an optical resonator, generation of stable non-classical
fixed quadrature light, and control of seismic isolation systems. This research
can be beneficial for complex, coupled systems in general. A good exampleof
such a system is theCoherent Quantum Noise Cancellationscheme [30], which
requires locking of at least two coupled cavities.

1.3 Structure of the Thesis

In Chapter 2 we introduce the theoretical description of light fields and theircor-
responding quadrature operators required for the theoretical model of the cavity
locking experiment.
Chapter 3 establishes the basics of non-linear optics. This theoretical ground-
work is needed to describe the generation and detection of squeezed states and
the impact of losses.
In Chapter 4 we investigate the properties of optical cavities, including their in-
teracting light fields. We also introduce the non-linear error signal, whoselinear
region is commonly used to acquire cavity lock if the cavity fulfils the stability
criterion.
In Chapter 5 we formulate the control theory framework used throughoutthis
thesis. This framework extends the general ideas of feedback controlto state-
space control and explains the functionality of optimal observers.
Chapter 6 makes use of the introduced state-space control methods for thepur-
pose of locking a three-mirror ring cavity to the frequency of a laser. We exper-
imentally demonstrate the possibility to acquire cavity lock by the implementa-
tion of a linear quadratic Gaussian controller with additional integral action. The
results were published in [31].
In Chapter 7 we carried the previous controller design forward to demonstrate
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a powerful autolocking scheme for optical cavities. We applied a time-varying
Kalman filter for the realisation of our control scheme, capable of handling the
non-linear region of the error signal, and this allowed us to acquire lock from
any operating point. The results validate our control scheme and are published
in [32].
Chapter 8 addresses the generation of squeezed states as a multiple-inputmulti-
ple-output control problem, which can potentially benefit from a systematic con-
trol approach.
In Chapter 9 we investigate the control problem dealing with the damping of
eigenfrequencies of triple pendulum suspensions, which are used to isolate op-
tical components from seismic noise. We demonstrate a possibility to augment
the usually used upper mass to upper mass transfer functions with upper mass to
lower mass transfer functions, which have never been incorporated in acontroller
design before. The result is aH2 controller, obtained via a mixed-sensitivity con-
trol approach, controlling the three relevant degrees of freedom.
Chapter 10 concludes this work and summarises the advantages of modern con-
trol approaches.
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2
Theory of Electromagnetic Fields

This chapter outlines the quantisation of electromagnetic fields and introduces
the operator notation to describe coherent states. These states describea single-
mode laser field, which is the foundation of the quantum optical experiments
realised in our laboratory. Coherent states are also required to derivethe input-
output formalism of optical cavities. This theoretical background provides the
basis for a systematic control approach which is applied to cavity length stabil-
isation. The description of the dynamics of quantum optical systems follows
[33, 34].

2.1 Quantised Electromagnetic Field

Maxwell’s equations [27] classically describe freely propagating electromagnetic
fields. In the absence of matter, they can be written in SI units as follows

~∇ · ~B = 0 ~∇ · ~E = 0

~∇ × ~B = µ0ǫ0
∂E

∂t
~∇ × ~E = −∂B

∂t
, (2.1)

whereǫ0 is the electric permittivity in vacuum,µ0 is the magnetic permeability
in vacuum and~E and~B are the electric and magnetic field vectors, respectively.
Applying the curl operator to the curl equations yields the wave equation

∇2~E − µ0ǫ0
∂2~E

∂t2
= 0, (2.2)
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CHAPTER 2. THEORY OF ELECTROMAGNETIC FIELDS

which describes the propagation of an electric field in vacuum.
Let x, y, z define the three spatial axes. Taking the special case of a lossless
one-dimensional standing wave cavity along the z-axis into consideration, asin-
gle mode electric field, polarised along the x-axis, satisfying Eq. (2.2) can be
expressed as

Ex(z, t) =

(

2ω2

V ǫ0

) 1
2

q(t) sin(kz), (2.3)

with ω the frequency of the single-mode andk the corresponding wave number.
V is the effective volume of the cavity andq(t) acts as a canonical position.
The magnetic field associated with the electric field of the cavity can be written
as

By =

(
µ0ǫ0
k

)(

2ω2

V ǫ0

) 1
2

q̇(t) cos(kz), (2.4)

whereq̇(t) can be regarded as a canonical momentum of a particle of unit mass

p(t) = q̇(t). (2.5)

The canonical position and momentum arise from Hamiltonian mechanics [35]
and are utilised below. The energy of the electromagnetic field is given by the
HamiltonianH,

H =
1

2

∫ V

0
dV

(

ǫ0E2
x(z, t) +

1

µ0
B2
y(z, t)

)

. (2.6)

This expression can be reduced to [33]

H =
1

2
(p2 + ω2q2), (2.7)

showing that the single-mode field is equivalent to a harmonic oscillator of unit
mass. In this context it is possible to exchange the canonical variablesp and
q with their dedicated operatorŝp and q̂, satisfying the canonical commutation
relation

[q̂, p̂] = i~. (2.8)

The Hamiltoninan then becomes

Ĥ =
1

2
(p̂2 + ω2q̂2), (2.9)
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2.1. QUANTISED ELECTROMAGNETIC FIELD

allowing for the convenient introduction of the non-Hermitian, and therefore non-
observable, annihilation (â) and creation (̂a†) operators. These operators are
defined as [33]

â = (2~ω)− 1
2 (ωq̂ + ip̂), (2.10)

â† = (2~ω)− 1
2 (ωq̂ − ip̂), (2.11)

with

~ =
h

2π
, (2.12)

whereh is the Planck constant [36]. The operators fulfil the commutation relation

[â, â†] = ââ† − â†â = 1. (2.13)

Now the Hamiltonian can be expressed as

Ĥ = ~ω

(

â†â+
1

2

)

. (2.14)

An energy eigenstate of the single-mode field with its related energy eigenvalue
En is denoted by|n〉 and leads to

Ĥ |n〉 = ~ω(â†â+
1

2
) |n〉 = En |n〉 . (2.15)

|n〉 is know as anumberor Fock state, which is a state with a defined photon
numbern.
Multiplying Eq. (2.15) byâ† results in another eigenvalue equation

~ω

(

â†â†â+
1

2
â†
)

|n〉 = Enâ
† |n〉 . (2.16)

Taking the Eq. (2.13) into account Eq. (2.16) becomes

~ω(â†â+
1

2
)(â† |n〉) = (En + ~ω)(â† |n〉). (2.17)

This shows the eigenvalue problem for the eigenstateâ† |n〉 with the energy
eigenvalueEn+~ω. From this relation it is obvious whŷa† is called the creation
operator: itcreatesa quantumof energy~ω. Similarly, the eigenvalue problem

11



CHAPTER 2. THEORY OF ELECTROMAGNETIC FIELDS

for â |n〉 can be derived, showing that the annihilation operatorâ destroysa quan-
tum of energy. The eigenstateâ |n〉 has the energy eigenvalueEn−~ω. Applying
the annihilation operator multiple times will lower the energy eigenvalue, but the
energy of the harmonic oscillator cannot be negative. Hence, there mustbe a
ground state|0〉 satisfying the following condition [33],

Ĥ(â |0〉) = E0 − ~ω(â |0〉) = 0 (2.18)

with
â |0〉 = 0. (2.19)

The eigenvalue problem of the ground state

Ĥ |0〉 = ~ω

(

â†â+
1

2

)

|0〉 =
1

2
~ω |0〉 (2.20)

defines the lowest-energy eigenvalueE0 = 1
2~ω. The energy eigenvaluesEn are

generally described by

En = ~ω

(

n+
1

2

)

, (2.21)

regarding the effect of the creation and annihilation operators. Lookingat
Eq. (2.15) suggests the definition of a number operatorn̂ = â†â, where

n̂ |n〉 = n |n〉 . (2.22)

For the annihilation operator acting on a number state the expression

â |n〉 = cn |n− 1〉 , (2.23)

is obtained, wherecn is a constant to be determined, which is derived via nor-
malisation

(〈n| â†)(â |n〉) = 〈n| â†â |n〉 = n (2.24)

= 〈n− 1| c∗
ncn |n− 1〉 =

∣
∣
∣c2
n

∣
∣
∣ . (2.25)

Thus it appears that
∣
∣c2
n

∣
∣ = n. Hence,

â |n〉 =
√
n |n− 1〉 and â† |n〉 =

√
n+ 1 |n+ 1〉 . (2.26)

This expression highlights that an arbitrary number state|n〉 can be created from
the ground state|0〉, also known asvacuum state, by applying the creation oper-
ator â† repeatedly

|n〉 =
(â†)n√
n!

|0〉 . (2.27)
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2.2 Quantum Fluctuations

The previously determined energy of a number state is well defined in contrast
to the electric field of such states

〈n| Êx(z, t) |n〉 = ǫ0 sin(kz)(〈n| â |n〉 + 〈n| â† |n〉), (2.28)

where the mean field vanishes, but the energy density of the field is non-zero

〈n| Ê2
x(z, t) |n〉 = 2ǫ20 sin2(kz)

(

n+
1

2

)

. (2.29)

The variance of the field is a suitable quantity to characterise these fluctuations

〈

(∆Êx(z, t))2
〉

=
〈

Ê2
x(z, t)

〉

−
〈

Êx(z, t)
〉2
. (2.30)

For a number state|n〉 we obtain

∆Ex =
√

2ǫ0 sin(kz)

(

n+
1

2

) 1
2

, (2.31)

yielding the fact that even a field withn = 0 possesses non-zero energy. These
energy fluctuations are known asvacuum fluctuations.

2.3 Quadrature Operators

The quadrature operators are introduced for the description of electromagnetic
fields and can be expressed as linear combinations of the annihilation and cre-
ation operators

X̂+ =
1

2
(â+ â†), (2.32)

X̂− =
1

2i
(â− â†), (2.33)

whereX̂+ andX̂− are known as theamplitudeandphase quadratureoperators,
respectively. An arbitrary quadrature operator can be expressed as

X̂θ = X̂+ cos(θ) + X̂− sin(θ). (2.34)
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Explicitly taking the time dependence of the electric field into account the fol-
lowing equation is obtained

Êx(t) = ǫ0(âe−iωt + â†eiωt) sin(kz). (2.35)

Using the quadrature operators Eq. 2.35 becomes

Êx(t) = 2ǫ0 sin(kz)
[

X̂+ cos(ωt) + X̂− sin(ωt)
]

. (2.36)

Eq. (2.36) illustrates that̂X+ andX̂− act as field amplitudes oscillating out of
phase with each other by90◦. They satisfy the commutation relation

[

X̂+, X̂−
]

=
i

2
, (2.37)

which leads to the Heisenberg uncertainty relation [37]

〈

(∆X̂+)2
〉〈

(∆X̂−)2
〉

≥ 1

16
. (2.38)

For number states the expectation values for the quadrature operators are

〈n| X̂+ |n〉 = 0 (2.39)

〈n| X̂− |n〉 = 0 (2.40)

but

〈n| (X̂+)2 |n〉 =
1

4
〈n| â2 + (â†)2 + 2ââ† + 1 |n〉 =

1

4
(2n+ 1), (2.41)

〈n| (X̂−)2 |n〉 = −1

4
〈n| â2 + (â†)2 + 2ââ† − 1 |n〉 =

1

4
(2n+ 1), (2.42)

showing that the fluctuations in both quadratures are identical and that the ground
state minimises them

〈

(∆X̂+)2
〉

0
=

1

4
=
〈

(∆X̂−)2
〉

0
. (2.43)

Furthermore, a vacuum state is calledminimum uncertainty state, as it minimises
the inner uncertainty product Eq. (2.38).
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2.4 Coherent States

Fock states|n〉 are appropriate to describe low photon number fields, but are
impractical to describe classical laser light, since they have a uniform phase dis-
tribution and therefore the phase is not well-defined. Even forn → ∞ the
expectation value of the electric field operator vanishes〈n| Êx |n〉 = 0, although
it is known that a classical field periodically oscillates in time with respect to a
fixed point in space [33]. The concept of coherent states [38] overcomes these
problems and is better suited to describe classical fields, although it is a quantum
mechanical state.
It is derived that states describing a classical field in a suitable way are given by
the eigenstates of the annihilation operator|α〉. They fulfil the relation

â |α〉 = α |α〉 , (2.44)

whereα is a complex number, sincêa is a non-Hermitian operator. It is possible
to rewrite|α〉 in terms of number states|n〉 forming a complete basis

|α〉 =
∞∑

n=0

Cn |n〉 . (2.45)

Then Eq. (2.44) becomes

â |α〉 = â
∞∑

n=0

Cn |n〉 (2.46)

=
∞∑

n=1

Cn
√
n |n− 1〉 !

= α
∞∑

n=0

Cn |n〉 (2.47)

(2.48)

and
Cn

√
n = αCn−1. (2.49)

Rearranging Eq. (2.49) yields

Cn =
α√
n
Cn−1

=
α2

√

n(n− 1)
Cn−2 = ...

=
αn√
n!
C0. (2.50)
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Reformulating Eq. (2.45) leads to

|α〉 = C0

∞∑

n=0

αn√
n!

|n〉 , (2.51)

where the constantC0 is again obtained via the normalisation requirement
〈α|α〉 = 1, resulting in

|α〉 = e− 1
2

|α|2
∞∑

n=0

αn√
n!

|n〉 . (2.52)

Upon closer examination it can be seen that thiscoherent statehas a
non-vanishing expectation value for the electric field operator. More precisely
its expectation value reflects the dynamics of a classical field. Furthermore it
can be shown that a coherent state only exhibits vacuum fluctuations. From the
expectation value of the electric field operator in polar form

〈α| Êx(r, t) |α〉 = 2 |α|
(

~ω

2ǫV

) 1
2

sin(ωt− kr − θ), (2.53)

|α| can be seen as the amplitude of the field. Thus the expectation value of the
number operator is

n = 〈α| n̂ |α〉 = |α|2 , (2.54)

and the resulting|α|2 is the average photon number. Resolving the fluctuations
of the photon number∆n, it is necessary to derive the expectation value ofn̂2

〈α| n̂2 |α〉 = n2 + n, (2.55)

which leads to
∆n =

√

〈n̂2〉 − 〈n̂〉2 =
√
n. (2.56)

This behaviour is characteristic of a Poisson process [33].
Another way of defining a coherent state is given by the application of a unitary
displacement operator̂D to the ground state|0〉

|α〉 = D̂(α) |0〉 (2.57)

= e− 1
2

|α|2
∞∑

n=0

αn√
n!

|n〉 (2.58)
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Figure 2.1: The left illustration shows the ground staten = 0 with its correspond-
ing fluctuations associated with the field quadratures. On the right
hand side a coherent state of amplitude|α|, phaseΘ and uniformly
distributed minimal fluctuations is depicted.

where
D̂(α) = e(αâ†−α∗â). (2.59)

A coherent state with an amplitudeα, a phase angleΘ and field fluctuations
corresponding to uniform vacuum fluctuations

∆X̂+ = ∆X̂− =
1

2
(2.60)

is illustrated in Fig. 2.1 in aphase-space representation[34]. It shows two coher-
ent states withn = 0 andn = α. The derivation of coherent states, describing
a laser field, allows for introduction of an input/output formalism capable of de-
scribing the dynamics of optical cavities. This formalism is used in upcoming
chapters.
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3
Non-Linear Optics

In this chapter a quantum-mechanical description of squeezed states will bees-
tablished. Furthermore the physical parameters for generating and detecting
squeezed states are discussed and characterised. This theoretical background
gives helpful insights for designing control loops required for stable
cavity-enhanced squeezing, which is one goal of the thesis. The discussion in
this entire chapter follows the methodologies used in [33] and [39].

3.1 Squeezed States

Any two operators satisfying the commutation relation
[

Â, B̂
]

= iĈ result in
[33]

〈

(∆Â)2
〉〈

(∆B̂)2
〉

≥ 1

4

∣
∣
∣

〈

Ĉ
〉∣
∣
∣

2
. (3.1)

SubstitutingX̂± for Â, B̂ and taking into account that coherent states are mini-
mum uncertainty states,

〈

(∆X̂+)2
〉

=
〈

(∆X̂−)2
〉

=
1

4
, (3.2)

Eq. (3.1) can be converted into

〈

(∆X̂+)2
〉〈

(∆X̂−)2
〉

=
1

16
. (3.3)
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This uncertainty product defines a lower limit for the product of the quadrature
fluctuations. However it does not prohibit the case of one quadrature operator
exhibiting a lower uncertainty than the ground state, as long as the other quadra-
ture operator shows an increased uncertainty such that the commutation relation
is still valid. A state which has a non-uniform fluctuation distribution with

〈

(X̂±)2
〉

<
1

4
(3.4)

is called asqueezed state.
In a theoretical approach the generation of a squeezed state can be achieved by a
squeezing operator [33], acting on a state. The operator is defined as

Ŝ(ξ) = e[
1
2

(ξ∗â2−ξâ†2)], (3.5)

where
ξ = reiΘ. (3.6)

r andΘ are known assqueezing parameterandsqueezing angle, respectively,
with

0 ≤ r < ∞, 0 ≤ Θ ≤ 2π. (3.7)

The squeezing operator̂S(ξ) can be considered as a two-photon generalisation
of the displacement operator, see Eqs. (2.57)-(2.58).Ŝ(ξ) always creates or de-
stroys photons in pairs. To determine the variances of a squeezed state, the ex-
pectation values for the annihilation operator and its square must be calculated.
The Baker-Hausdorff lemma leads to the following relations [33]

Ŝ†(ξ)âŜ(ξ) = â cosh(r) − â†eiΘ sinh(r),

Ŝ†(ξ)â†Ŝ(ξ) = â† cosh(r) − âe−iΘ sinh(r), (3.8)

whereŜ†(ξ) = Ŝ(−ξ). Considering a squeezed state

|ψs〉 = Ŝ(ξ) |ψ〉 , (3.9)

we get
〈ψs| â |ψs〉 = 〈ψ| Ŝ†(ξ)âŜ(ξ) |ψ〉 (3.10)

and
〈ψs| â2 |ψs〉 = 〈ψ| Ŝ†(ξ)âŜ(ξ)Ŝ†(ξ)âŜ(ξ) |ψ〉 . (3.11)
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Figure 3.1: Phase-space representation of two squeezed vacuum states. The left
picture shows squeezing in thêX+-quadrature, where the dashed cir-
cle illustrates the uniform noise distribution of a coherent state. The
second picture represents a squeezedX̂−-quadrature.

For these expressions, the variances of the two quadratures can be generalised to

〈

(∆X̂+)2
〉

=
1

4

(

cosh2(r) + sinh2(r) − 2 sinh(r) cosh(r) cos(Θ)
)

,

〈

(∆X̂−)2
〉

=
1

4

(

cosh2(r) + sinh2(r) + 2 sinh(r) cosh(r) cos(Θ)
)

. (3.12)

By considering a fixed phase angleΘ = 0, Eq. (3.12) can be simplified to

〈

(∆X̂+)2
〉

=
1

4
e−2r

〈

(∆X̂−)2
〉

=
1

4
e2r (3.13)

and squeezing will be obtained for̂X+, whereasX̂− will be antisqueezed. For
a graphical illustration of squeezed states it is convenient to use the phase-space
representation [34]. Fig. 3.1 shows two examples of a squeezed groundstate,
also known assqueezed vacuum, with Θ = 0 and Θ = π and the resulting
squeezing in thêX+ andX̂− quadratures, respectively. It is possible to define
rotated quadrature operatorŝY + and Ŷ −, similar to Eq. (2.34), related to any
value of the squeezing angleΘ by

(

Ŷ +

Ŷ −

)

=

(
cos(Θ

2 ) sin(Θ
2 )

− sin(Θ
2 ) cos(Θ

2 )

)(

X̂+

X̂−

)

. (3.14)
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The rotated quadrature operators satisfy
〈

(∆Ŷ +)2
〉

=
1

4
e−2r

〈

(∆Ŷ −)2
〉

=
1

4
e2r (3.15)

for any squeezing angle. A general form for a coherent squeezedstate, describing
a squeezed field with a coherent amplitude, is given by

|α, ξ〉 = D̂(α)Ŝ(ξ) |0〉 , (3.16)

and the expectation value of the number operator|n̂〉 becomes

〈n̂〉 = |α|2 + sinh2(r), (3.17)

showing that the squeezing operator creates photons. From Eq. (3.17)it is ev-
ident that squeezed vacuum has a non-zero photon number. Furthermore, the
variances of a squeezed coherent state remain unchanged, as givenby Eq. (3.14).
The fluctuations of a squeezed state are not influenced by the displacement op-
erator or, more precisely, by a coherent amplitudeα, therefore the operators can
be interchanged. Fig. 3.2 shows a squeezed ground state where the squeezing is
in the rotated quadraturêY − and a squeezed coherent state illustrating the states
described above.

3.2 Non-Linear Optics

For the experimental realisation of squeezing a non-linear process is required.
When a non-linear material is pumped with a strong field of frequencyωp, some
photons of the pump field will be converted into pairs of identical photons with
frequencyωp = 2ω, with ω denoting the frequency of the signal field. This case
is calleddegenerate parametric down-conversion, and its Hamiltonian can be
expressed as [33]

Ĥ = ~ωâ†â+ ~ωpb̂
†b̂+ i~χ(2)(â2b̂† − â†2b̂), (3.18)

where â and b̂ describe the signal and the pump modes, respectively.χ(2) is
the second-order non-linear susceptibility and is essential for the generation of
quadrature squeezing. Therefore, theχ(2) non-linearity is further investigated
in the following. An extensive description of non-linear optics is given in [40],
which is also the source upon which the upcoming subsections are based.

22



3.2. NON-LINEAR OPTICS

X

X-

+

ΔX  

│α│

ΔX 

-

+

X-

ΔX  

α│

ΔX 

-

+XX

X-

+

ΔY
ΔY -

+

X

X

+X

ΔY
ΔY -

+Y

Y-Y+

Figure 3.2: On the left a vacuum state with a squeezed quadratureŶ − is shown.
The squeezing ellipse is rotated byΘ/2. On the right is an illustration
of a squeezed coherent state with amplitudeα and a squeezed̂X−-
quadrature.

3.2.1 Dielectric Polarisation

An electromagnetic field propagating through a dielectric medium can be viewed
as a force acting on charge carriers. The separation of charges induces a dipole
moment with a distinct strength given by the polarisation [40]

~P = ǫ0(χ(1)~E(t) + χ(2)~E2(t) + χ(3)~E3(t) + ...) = ~P (1) + ~P (NL), (3.19)

whereχ(i) are susceptibilities of thei-th order. For a single-mode field

E(t) = E0e
−iωt + c.c. (3.20)

the second-order polarisation can be expressed as

P (2) = 2ǫ0χ
(2)
(

E0E∗
0 + E2

0e
−2iωt

)

+ c.c.. (3.21)

Eq. (3.21) shows that the second-order polarisation yields a field component at
twice the frequency of the input field. In [40] it is demonstrated on the example
of the sum-frequency generation caseω3 = ω1 +ω2 thatχ(2) interactions can be
expressed via an effective susceptibility valuedeff

P (2)(w3) = 4ǫ0deffE(ω1)E(ω2). (3.22)

Materials with a highχ(2) value are within a range ofχ(2) ≈ 10−10 − 10−13 m
V .

Sinceχ(1) is of the order of 1 it becomes clear that the intensity of the incident
field plays an important role for the generation of squeezed states.
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3.2.2 Optical Parametric Conversion

For this work theχ(2) interactions of interest involve three modes of light (or
photons) and are described by the process ofthree-wave mixing. To be precise,
the focus lies on the two cases illustrated in Fig. 3.3, known assum-frequency
(SFG) anddifference-frequency generation(DFG).
For sum-frequency generation two photons with frequenciesω1 andω2 are con-

ω

ω

ω ω

ω

ω

1

1

2

3

2

3

Figure 3.3: This picture shows energy-level diagrams, in which the sum-
frequency generation is illustrated on the left and the difference-
frequency generation on the right.ωi denotes the interacting frequen-
cies.

verted by a dielectric medium (e.g. a non-linear crystal) into a photon with fre-
quency

ω3 = ω1 + ω2. (3.23)

Forω1 = ω2 the special case ofsecond harmonic generation(SHG) or parametric-
up conversion is obtained.
Difference-frequency generation defines aχ(2) interaction where a photon with
ω1 is converted into two photons withω2 andω3 which again must satisfy energy
conservation, equivalent to Eq. (3.23). The case of

ω2 = ω3 =
1

2
ω1, (3.24)

describes a special case of this, namelyparametric down-conversion, also known
asdegenerate squeezing.
Considering DFG under appropriate phase matching conditions, by injectinga
strong pump field withω1 and a weak field withω2 into a dielectric medium,
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the weak field is amplified via the non-linear process. This process is called
optical parametric amplification(OPA). Placing the dielectric medium inside a
resonant optical cavity increases the strength of the non-linear process. If the
amplification factor exceeds the loss factor, related to the internal optical losses
of the cavity, oscillations can arise. These oscillations result in the generation
of fields withω2 andω3 via a pump field atω1, without the need of injecting an
additional weak field. This process is known asoptical parametric oscillation
(OPO). The condition where the optical losses are identical to the amplification
corresponds to the OPOthreshold. Below this threshold an OPO effectively
becomes an OPA, which is the device used to generate quadrature squeezing in
our laboratory. This is also denoted as a subthreshold OPO.

3.2.3 Phase Matching

Considering the SFG case for collimated, monochromatic, continuous waves the
intensity of the generated field withω3 can be written in SI units as [40]

I3 =
8d2

effω
2
3I1I2

n1n2n3ǫ0c3
L2 sinc2

(
∆kL

2

)

, (3.25)

whereni are the refractive indices of the non-linear media related to the inter-
acting fields.deff is the effective susceptibility,c the speed of light,ǫ0 the per-
mittivity of vacuum,I1,2 intensity of the injected fields andL the length of the
non-linear medium. An important factor affecting the intensity of the generated
field and therefore the conversion efficiency is thewavevector mismatch∆k de-
scribed by the wavevectorski as

∆k = k1 + k2 − k3. (3.26)

If ∆k = 0 the intensity reaches its maximum. The effect of wavevector mis-
match is shown in Fig. 3.4. For∆k = 0 an optimal phase matching point is
achieved. The wavevector mismatch can also be expressed via the refractive
indices

n1ω1

c
+
n2ω2

c
− n3ω3

c
= 0. (3.27)

One option to fulfil the above stated requirement makes use of the birefringence
of the dielectric medium, wheren is frequency- and temperature-dependent.
For the case shown in Fig. 3.4 the temperature of the non-linear medium is tuned
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Figure 3.4: Conversion efficiency of a non-linear interaction in relation to the
wavevector mismatch.

to achieve the optimal phase matching∆k = 0, where∆k can be calculated via
the Sellmeier equations. The interested reader is referred to [41, 42] formore
details.
Another possibility to obtain phase matching without the need for temperature
tuning is known asquasi-phase matching. Here phase matching is realised by a
periodically-poled dielectric medium; the fabrication is described in [43]. This
poling causes a periodic change of the orientation of the optical axis. For each
interval the ratio of the refractive indices of the pump and generated fieldsis in-
verted. By periodically varying this ratio the accumulated relative optical phase
from one interval is compensated for in the following interval. To good approxi-
mation an appropriate periodicity/poling period length results in phase matching.
Since this kind of phase matching only depends on the dielectric medium’s grat-
ing periodΛ,

∆k =
n1ω1

c
+
n2ω2

c
− n3ω3

c
− 2π

Λ
, (3.28)

it is possible to use materials with a higherdeff , where the optimal phase match-
ing condition cannot be achieved via temperature tuning.
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The dielectric medium used for the experimental implementation of a squeezed
light source in this work is periodically-poled potassium titanyl phosphate (PP-
KTP).

3.2.4 Impact of Losses

After the generation of squeezed states, it is essential to avoid any opticalloss
channels in the experimental setup. This is a crucial point since losses irrevo-
cably reduce the squeezing strength. Loss channels introduced by scattering
and unwanted absorption can be modelled via a beamsplitter (BS) interaction.
Hereby one BS port acts as an input for the squeezed state and the otherdescribes
the loss channel injecting vacuum fluctuations. Assuming the BS transfer matrix
from [34], the superposition of vacuum fluctuations and squeezing canbe written
as 〈

(X̂)2
〉

in
=
〈

(X̂)2
〉

out

√
η +

〈

(X̂)2
〉

vac

√

1 − η. (3.29)

Here
〈

(X̂)2
〉

i
and

〈

(X̂)2
〉

vac
are the variances of a squeezed field and the vac-

uum, respectively.η is a measure for lossesl and defines the reflectivityR = l
and the transmissivityT = 1 − l = η of the BS. Eq. (3.29) is valid for any kind
of quadrature squeezing.
In general the squeezing strength is given in Decibel (dB), where the dB value
refers to a reduction of fluctuations with respect to those of a coherent state and
can be expressed as

V [dB] = −10 log(e−2r). (3.30)

r is the squeezing parameter introduced earlier Eq. (3.6). With Eq. (3.30) it is
possible to calculate how losses affectV [dB]

Vout[dB] = −10 log

(

η10
V [dB]

10 + (1 − η)

)

. (3.31)

Eq. (3.31) illustrates that strongly squeezed states are affected to a greater extent
by any kind of losses than less strongly squeezed states. This impact of losses
on squeezed and accordingly anti-squeezed states is illustrated in Fig. 3.5.The
detection efficiencyηtot determines the apparent total loss factor of our experi-
mental setup. It is given by

ηtot = ηprop ηPD · ηvis
︸ ︷︷ ︸

detection losses

, (3.32)
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Figure 3.5: Impact of losses on the squeezing/antisqueezing strength, shown for
two different initial squeezing/antisqueezing values.

where the first factorηprop denotes the optical propagation loss and the two other
factorsηPD andηvis define readout losses, specifically,ηPD determines the quan-
tum efficiency of the detection andηvis is a measure of contrast discussed in the
upcoming subsection.

3.2.5 Detection of Quadrature Squeezing

A common single photodiode (PD) [44] produces a photocurrenti proportional
to the power of the incident light field and therefore also proportional to the
number operator̂n

i ∝ â†â, (3.33)

whereâ† andâ are the annihilation and creation operators discussed in Chap. 2.
Introducing the linearised form of the incident light field̂A from [34]

Â = α+ δÂ(t), (3.34)
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balanced homodyne detection polarisation based homodyne detection

Figure 3.6: Two possible detection schemes used for the characterisation of
squeezed states.φ denotes the phase of the local oscillator, HD is
the homodyne detector, BS and PBS denote a beamsplitter and a po-
larising beamsplitter, respectively.

with α denoting the mean of the amplitude andδÂ(t) representing the fluctua-
tions of the field, Eq. (3.33) becomes approximately

i ∝ α2 + αδX̂+. (3.35)

Eq. (3.35) highlights that a PD is only capable of measuring power and fluctu-
ations in the amplitude quadrature. For this reason a PD is not an appropriate
device to detect arbitrarily squeezed states. For an accurate characterisation of
squeezed/antisqueezed states measurements of both quadrature variances are re-
quired. The purity of a squeezed state and the detection efficiency, see Eq. (3.32),
can only be determined with knowledge of both quadrature variances. Onesuch
approach that is capable of measuring both quadratures is described in [34, 45]
and is referred to asbalanced homodyne detection. A modified version of the
balanced homodyne detection is thepolarisation-based homodyne detection[46].
Both schemes are used in our laboratory and will be described in the upcoming
subsections and are illustrated in Fig. 3.6.
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Balanced Homodyne Detection

In this detection scheme a signal field̂A interferes on a50 : 50 BS with a strong
local oscillator fieldB̂ (LO). The resulting fieldsĈ and D̂ are detected by a
homodyne detector (HD) consisting of two PDs, where the photocurrents are
subtracted. A perfect interference of the two fields is guaranteed if theypossess
the same frequency, spatial mode and polarisation. A measure of interference is
given by the contrast [47] known asfringe visibility

vis =
Vmax − Vmin

Vmax + Vmin
. (3.36)

Vmax/min determine the maximal and minimal output voltages of a PD, while
the relative phase between signal and LO is tuned periodically. Furthermore the
fringe visibility defines the loss channelηvis mentioned above in Eq. (3.32) as
follows

ηvis = vis2. (3.37)

Assuming the case of lossless detection this scheme can be modelled as follows.
Using the beamsplitter matrix defined in [34] with the matched amplitude trans-
mission and reflection coefficientst andr for a50 : 50 beamsplitter leads to

(

Ĉ

D̂

)

=

(

t r
r −t

)(

Â

B̂

)

=
1√
2

(

1 1
1 −1

)(

Â

B̂

)

. (3.38)

Hence, the output fields are given by

Ĉ =
1√
2

(Â+ B̂) and D̂ =
1√
2

(Â− B̂). (3.39)

The measured signals of the two output ports can be calculated withÂ andB̂
written in the linearised form

Â = α+ δÂ (3.40)

B̂ = (β + δB̂)e−iφ, (3.41)
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wheree−iφ defines the relative phase between the signal and LO fields and the
knowledge thati ∝ n̂. These assumptions lead to

îc ∝ Ĉ†Ĉ =
1

2

[

α2 + β2 + 2αβ cos(φ)

+ 2α
(

δX̂+
A + cos(φ)δX̂+

B − sin(φ)δX̂−
B

)

+ 2β
(

δX̂+
A + cos(φ)δX̂+

A + sin(φ)δX̂−
A

) ]

+ O(δ2) (3.42)

and

îd ∝ D̂†D̂ =
1

2

[

α2 + β2 − 2αβ cos(φ)

− 2α
(

cos(φ)δX̂+
B − sin(φ)δX̂−

B − δX̂+
A

)

− 2β
(

cos(φ)δX̂+
A + sin(φ)δX̂−

A − δX̂−
B

) ]

+ O(δ2). (3.43)

Taking the following relations for an arbitrary operatorϕ̂ into account

δϕ̂+ δϕ̂† = δX̂+
ϕ

i(δϕ̂− δϕ̂†) = δX̂−
ϕ

δϕ̂e±iφ + δϕ̂†e∓iφ = δX̂φ
ϕ (3.44)

and considering that the local oscillator field is much stronger than the signal
field

|β|2 ≫ |α|2 , (3.45)

the difference between the two detected photocurrents is approximately

i− ∝ ic − id ∝ β
(

cos(φ)δX̂+
A + sin(φ)X̂−

A

)

∝ βδX̂φ
A. (3.46)

Thus, the fluctuations of thêXφ quadrature are amplified by the mean field am-
plitude of the LO. The detection angleφ determining the observed quadrature
can be addressed with a phase shifter, see Fig. 3.6a. The variance of the signal
field

V (i−) ∝ β2V (X̂φ
A) (3.47)

is measured with a spectrum analyser and converted into the frequency domain
via a Fast Fourier Transform (FFT).
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Polarisation-Based Homodyne Detection

In this scheme [46] the signal and LO fields are co-propagating. The signal
and LO fields have identical frequencies and spatial modes but differ in their
polarisations. More precisely the polarisations of the fields are perpendicular to
each other. An advantage of this scheme is that co-propagating fields from one
source intrinsically show avis = 1. The combination of a BS and an external
LO is replaced by aλ/4-waveplate, a polarising beamsplitter (PBS) and a co-
propagating LO. The mathematical model of this rearranged scheme is similar
to the balanced homodyne detector case. Eq. (3.38) is extended by the Jones
calculus [48] for a quarter-waveplate

(

Ĉ

D̂

)

=
1√
2




ei

π
4 0

0 e−iπ
4




1√
2

(

1 1
1 −1

)(

Â

B̂

)

. (3.48)

The waveplate allows for interference of the signal and LO fields, previously or-
thogonally polarised to each other. Furthermore the waveplate introduces aphase
difference ofπ/2 between the interacting fields. Consequently this scheme is
only capable of reading out the phase quadratureX̂−

A of the signal field.
This setup is also suitable for additional spectroscopy measurements. If thesig-
nal field interacts with a phase-sensitive object, it obtains a phase-shift with re-
spect to the LO. The signal field is now given by

Â = α+ δÂei∆ψ (3.49)

and the detected signal at the HD output becomes

i− = −2αβ sin(∆ψ) + βδX̂−
A . (3.50)

Since an optical cavity is a phase-sensitive device, this scheme can be used to
generate an error signal used to stabilise its length [46].
The polarisation-based homodyne detection can also be realised with an external
LO. In this case the LO and signal fields are not co-propagating all the time,
which leads to the advantage that the HD output can look at both quadratures.
A disadvantage is that the beneficial common-mode rejection of disturbances
does not occur in this case. An additional downside is that the intrinsic fringe
visibility vis = 1 is not guaranteed anymore. We implemented and investigated
both polarisation-based homodyne detection setups in our laboratory.
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4
Basics of Optical Cavities

In this chapter the fundamentals of optical cavities are discussed following the de-
scriptions presented in [49, 50]. These basics shall provide the characteristic dy-
namics of optical cavities and an explanation for the commonly required length
control, which is experimentally implemented and characterised in Chap. 6.

4.1 Field Amplitudes of a Fabry-Pérot Resonator

A linear optical cavity, known asFabry-Pérot resonator, is used as an example to
introduce the important properties of optical cavities. It consists of two mirrors
M1 andM2 with corresponding amplitude reflection and transmission coeffi-
cientsr1,2 andt1,2, respectively. The amplitude coefficients are related to optical
lossesl caused by scattering or absorption via

r2
i + t2i + l = 1, (4.1)

wherer2
i = R andt2i = T are the power reflection and transmission coefficients.

For the description of light fields interacting with optical surfaces and propa-
gating through vacuum/air, the notation given in [49] is used. The light fields
interacting with a cavity are defined by their parametersri, ti corresponding to
the mirrorMi and its lengthL. A schematic of a Fabry-Pérot resonator with light
fieldsai is shown in Fig. 4.1. The field amplitudes in vacuum for plane waves
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Figure 4.1: Schematic of a two mirror linear cavity with amplitude reflection and
transmission coefficientsri andti corresponding to mirrorMi. The
cavity has a lengthL and the light field amplitudes are given byai.

can be expressed as follows

a1 = r1a
′
2 + itain,

arefl = rain + ita′
2,

a′
1 = a1e

−ikL,

atrans = it2a
′
1,

a2 = r2a
′
1,

a′
2 = a2e

−ikL. (4.2)

By substituting one equation into the other the amplitudes of the reflected, trans-
mitted and circulating fields are derived. The circulating field amplitude after
one round trip is given by

a′
2 = ain

ir2t1e
−2ikL

1 − r1r2e−2ikL
. (4.3)

The reflected field amplitude becomes

aref = ain
r1 − r2(r2

1 + t21)e−2ikL

1 − r1r2e−2ikL
(4.4)

and the transmitted field amplitude is

atrans = ain
−t1t2e−2ikL

1 − r1r2e−2ikL
. (4.5)

Another more convenient way to compute the dynamics of optical cavities or
more complex systems is given by applying coupling matrices, which are able to
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describe every single part of the optical assembly. Hence, the behaviour of the
system is given by the product of the associated matrices. The interested reader
is referred to [49, 50] for a more complete treatment.

4.2 Characteristic Values of Optical Cavities

After deriving the field amplitudes important characteristics of optical cavities
can be determined. The performance of the optical cavity depends on its length
L, the wavelengthλ and the amplitude reflection and transmission coefficients
ri andti.
The frequency-dependent transmission transfer function of a Fabry-Pérot res-
onator is given by an Airy function

atrans
ain

=
−t1t2e−2ikL

1 − r1r2e−2ikL
, (4.6)

wherek = 2πf/c is the wavevector,c is the speed of light andf the frequency
of the light.
Eq. (4.6) reaches its maximum when the cosine of the exponential function in
the denominator becomes one. This is the case for

2πfL

c
= Nπ or L = N

λ

2
, (4.7)

whereN is a positive integer. This maximal transmittance defines theresonance
condition for an optical cavity. From Eq. (4.7) it is evident why cavity length
control is needed. External disturbances affecting the length of the optical cavity
or frequency fluctuations of the incident light field [51] are the reason why the
resonance condition is not permanently satisfied. To keep the system on reso-
nance a controller is needed to compensate for these effects.
The frequency difference between two adjacent resonance conditions is defined
as thefree spectral range(FSR)

FSR =
c

2L
. (4.8)

The resonance of an optical cavity has a certain linewidth∆ν, it is usually given
as full width half maximum (FWHM). It describes the lifetime of photons inside
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an optical cavity. This photon lifetime is known ascavity decay rateκ and
depends on the reflectivityri of the mirrors, lossesl, c the speed of light and the
cavity lengthL. κ is defined as [34, 50]

κ = −c ln
[
r2

1r
2
2 (1 − l)

]

4L
. (4.9)

The relation between the linewidth and the photon lifetime is

κ = 2π∆ν. (4.10)

Furthermore the ratio of FSR and linewidth defines thefinesseF , a commonly
utilised quality measure of a resonant system

F =
FSR

∆ν
. (4.11)

This Q-factorF can also be expressed via the reflectivity of the mirrors [49]

F =
π

2 arcsin
(

1−r1r2
2
√
r1r2

) . (4.12)

For the high finesse scenario the argument of the arcsin function becomessmall,
which allows for the approximation

F ≈ π
√
r1r2

1 − r1r2
. (4.13)

The frequency-dependent transmitted power of an optical cavity and theassoci-
ated parameters∆ν and FSR are illustrated in Fig. 4.2.

4.3 Error Signal

For the example of locking the length of an optical cavity to the frequency of
an incident laser an error signal is needed to keep the system on resonance. The
error signal determines the discrepancy from the reference point of the system.
Here the reference point is given by the resonance condition of the optical cavity
and the discrepancy is determined by the detuning∆

∆ = fc − fL =
c

nL
− fL, (4.14)
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Figure 4.2: Frequency-dependent transmitted power of a Fabry-Pérot resonator.
The maxima correspond to the resonances of the optical system. The
FSR defines the frequency separation of two adjacent resonances as-
sociated with a single fundamental mode, and the linewidth∆ν of
the optical cavity can be given in FWHM.
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Figure 4.3: Illustration of an appropriate error signal in dependence onthe detun-
ing ∆ and the corresponding transmitted power.

with fc the resonance of the cavity,fL the laser frequency,c the speed of light
n the index of refraction andL the cavity length. From Eq. (4.14) it can be seen
that the error signal is linear around the reference point and switches itssign on
resonance. Why the linearity of the error signal plays an important role is dis-
cussed in Chap. 5. The mentioned requirement on the error signal leads tothe
question: how can an appropriate error signal for cavity frequency be generated?
The transmitted power cannot be used as a suitable error signal, since a specific
power, away from resonance, does not provide a unique solution forthe detun-
ing. Hence, the sign of the corresponding error signal is not well defined (for
a detuned cavity lock the transmitted power can be used as error signal. This
detuned case is known asmidfringe locking[52]). However, the derivative of the
Airy function describing the gradient of the transmitted power yields an appro-
priate error signal. The transmitted power and its derivative, which is a suitable
error signal, are shown in Fig. 4.3. An experimental generation of such an er-
ror signal can be achieved by utilising a modulation/demodulation scheme with
subsequent low-pass filtering. A well-known modulation scheme for cavity lock-
ing is described in [53] and calledPound-Drever-Hall(PDH) technique. Other
typical techniques yielding error signals useful for cavity locking are tilt locking
[54], Hänsch-Couillaud locking [55] or homodyne locking [46]. An advantage
of these techniques is the lack of modulation, thereby avoiding additional noise
channels. Tilt locking generates an error signal via the interference signal of
the carrier with a non-resonant spatial mode. Hänsch-Couillaud and homodyne
locking perform polarisation spectroscopy of an optical cavity, where the rela-
tive phase between the resonant and non-resonant polarisation is read out by a
polarisation-based homodyne detection scheme, see Chap. 3.
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The phase response of an optical cavity is affected by the reflectivity ofits mir-
rors. The impedance of the cavity describes this effect.

4.4 Cavity Impedance

There are three possible impedance scenarios for a Fabry-Pérot resonator. All
described cases assume a lossless setup and are defined via the power reflectivity
of the mirrorsTi = t2i .

• Impedance-matched cavity:T1 = T2

On resonance the light field in reflection of the Fabry-Pérot resonator van-
ishes and the transmitted power reaches its maximum. More precisely the
transmitted power is equal to the power of the incoming light field. On
resonance the intracavity field is enhanced, with respect to the incoming
light field.

• Overcoupled cavity:T1 > T2

On resonance the power of the reflected field reaches its minimum, but it is
still stronger than the power of the transmitted field. The circulating power
inside the resonator is significantly enhanced with respect to the power of
the incoming field.

• Undercoupled cavity:T1 < T2

On resonance the ratio of reflected to transmitted field power is comparable
to the overcoupled case, but this time the circulating field is not enhanced
with respect to the power of the incoming field. Also noteworthy is the
fact that the phase response of the reflected field is almost a constant.

The undercoupled case highlights the importance of a well-defined impedance,
since a Hänsch-Couillaud or polarisation-based homodyne lock, which are ap-
plied techniques in our laboratory, in reflection of an undercoupled optical cavity
does not provide a suitable locking scheme, due to near-constant phaseresponse.
For a system which exhibits lossesl the coupling conditions can be extended.
For example the impedance matched case becomesT1 = T2l and the power
transmissionT1 matches the power reduction obtained in one cavity round-trip.
These scenarios are discussed in more detail and illustrated in [49].
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4.5 Stability Criterion

Laser used for most metrology purposes emit a transverse Gaussian (TEM00)
mode. In order to determine if an optical cavity is stable, it is useful to define a
measure, which describes how well the Gaussian beam inside the optical cavity
reproduces itself after reflection on the mirrors. The properties affecting the self
reproduction are the mirrors’ radii of curvature (ROC) and the lengthL of the
optical cavity, which are further used to formulate a stability criterion via the ray
transfer matrix analysis introduced in [56]

0 ≤
(

1 − L

ROC1

)

︸ ︷︷ ︸

g1

(

1 − L

ROC2

)

︸ ︷︷ ︸

g2

≤ 1. (4.15)

The parameter space of Eq. (4.15) provides a range of stable combinationpossi-
bilities, which result in various optical cavity layouts, see Fig. 4.4 [56].
The ray transfer matrix analysis describes how a Gaussian beam is transformed

by optical components and hence it can be used to match the spatial and phase
profile of a beam to the resonant mode of a stable optical cavity. This process is
referred to asmode matching.

40



4.5. STABILITY CRITERION

x

x

x

1-1 0

-1

1

confocal
ROC  = ROC  = L

1 2

plane parallel
ROC  = ROC  = ∞

concentric
ROC  = ROC  = L/21 2

1 2

g   = 1 - L
ROC11

g   = 1 - L
ROC22

Figure 4.4: Stability diagram for various cavity configurations. The coordinate
axes are given byg1 andg2. Configurations satisfying Eq. (4.15) are
bounded to the white areas.

41





5
Control Theory

The design of feedback controllers is essential for a wide range of optical ex-
periments. For example continuous-wave laser sources require feedback control
to obtain a constant output field [57]; cavity locking and squeezing experiments
are also dependent on feedback control [58]. Without the implementation of
suitable control schemes high performance operation cannot be achieved. Since
many optics experiments are affected by external disturbances, such asvariations
in temperature and acoustic disturbances, it is often also expected that the con-
troller should suppress external disturbances to ensure long-term operation. In
complex systems it can be phenomenally difficult to manually design feedback
controllers, particularly in the multiple-input multiple-output case. Modern con-
troller synthesis techniques utilize system models and sophisticated algorithms
to handle this complexity. A systematic control approach may be beneficial not
only because it simplifies the controller design process, but also becauseit can
produce optimal controllers. Since the focus of this work lies on the implemen-
tation of model-based controllers a fundamental understanding of system and
control theory is required and is introduced in this chapter.

5.1 Signals and Systems

All physical systems are non-linear. However, many systems can be well ap-
proximated by linear, time-invariant models around a certain operating point.
Non-linear systems are in general computationally and conceptually difficultto
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control [59]. Therefore if a system can be linearised this simplifies its characteri-
sation and the design of an appropriate feedback controller. The systemsutilized
in this work can often be well described bylinear time-invariant(LTI) models
and these are considered in the remainder of this thesis. LTI systems satisfythe
principles of superposition and homogeneity [60].
A system satisfies the principle of superposition if the input signalsxi(t) can be
transformed into output signalsyi(t) in the following way

x1(t) ⇒ y1(t),

x2(t) ⇒ y2(t),

x1(t) + x2(t) ⇒ y1(t) + y2(t). (5.1)

The principle of homogeneity is described in a similar fashion. Here an excita-
tion xi(t) multiplied by a constant factorγ leads to an output signalyi(t) also
multiplied byγ

γxi(t) ⇒ γyi(t). (5.2)

If these characteristics are constant over time, the system is LTI.
The time evolution of a systemG1, see Fig. 5.1, is determined by the convolution
integral

y1(t) =

∫ t

0
g1(t− τ)x1(τ)dτ, (5.3)

wherex1(t) is the input signal andy1(t) denotes the system output defined for
t ∈ [0,∞). g1(t) is the impulse response of the system; its Laplace transform
G1(s) is the transfer function of the system. An illustration of the signal flow is
usually shown in ablock diagram[59, 60], see Fig. 5.1. In control theory, the
system of interest is often referred to as theplant. It is convenient to convert
Eq. (5.3) into the frequency domain via the Laplace transform

F (s) =

∫ ∞

0
f(t)e−stdt, (5.4)

whereF (s) is the Laplace transform off(t).
In the frequency domain Eq. (5.3) becomes

Y1(s) = G1(s)X1(s), (5.5)

wheres = σ+ iω is the complex angular frequency, andX1(s) andY1(s) are the
input and output of the system in the frequency domain, respectively. Eq. (5.5)
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Figure 5.1: Block diagram of a systemG1 and its associated inputx1 and output
y1.

highlights the convenience of working in the frequency domain; the convolution
integrals in the time domain simplify to algebraic manipulation in the frequency
domain. Furthermore it can be seen that a transfer function is defined as the ratio
of the output to input in the frequency domain. The transfer function of a system
consisting of two systemsG1 andG2 connected in series can be determined
by taking into account that the output of the first systemY1(s) is the input of
the second one:Y2(s) = G2(s)Y1(s). SubstitutingY1(s) from Eq. 5.5 leads to
Y2(s) = G2(s)G1(s)X1(s). The transfer function of the overall systemGtotal(s)
can be expressed as

Gtotal(s) = G1(s)G2(s) =
Y2(s)

X1(s)
. (5.6)

This form can be expanded ton cascaded subsystems, where the transfer function
Gtotal(s) completely characterises the overall system [61]

Gtotal(s) =
n∏

i=1

Gi(s). (5.7)

Analogouslyn systems in parallel can be described by

Gtotal(s) =
n∑

i=1

Gi(s). (5.8)
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5.2 System Stability

An important property of a system is its stability. There are numerous definitions
for stability in control theory, including Lyapunov stability, asymptotic stability,
bounded-input bounded-output stability. We consider exponential stability for
LTI systems in the following. An exponentially stable LTI system will never
produce an unbounded output.
A transfer functionG(s) can always be expressed in the following form [62]

G(s) =
N(s)

D(s)
= K

(s− z1)(s− z2)...(s− zm−1)(s− zm)

(s− p1)(s− p2)...(s− pn−1)(s− pn)
, m ≤ n, (5.9)

wherezi, the systemzeros, are the roots of the equation

N(s) = 0, (5.10)

andpi, the systempoles, are the roots of the equation

D(s) = 0. (5.11)

The system poles define the modes of the plant. The zeros of the system es-
sentially determine how the modes of the system are combined to generate the
system response. The location of the sensors/actuators affect the system zeros
and therefore the overall input/output response of the system. The combination
of the poles and zeros define the system dynamics. The time evolution of a LTI
system can be expressed as [62]

y(t) =
n∑

i=1

cie
pit, (5.12)

wherepi are the system poles andci are the weighting factors for each mode,
which depend upon the system zeros. From Eq. (5.12) it can be seen that when
the system polespi are in the right half plane, the response goes to infinity. As
a result, the system is termed unstable. SinceD(s) is real, all poles must either
be real or appear in complex conjugate pairs. Taking this into account Eq.(5.12)
leads to the fact that real negative poles describe an exponentially decaying com-
ponent in the transient response and complex conjugate pole pairs of the form
pi = −σ ± iω describe an exponentially-decaying sinusoidal component. Note-
worthy are the marginally stable cases, where a pole is at the origin or a complex
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C(s)

y

P(s)

u

r-e +

Figure 5.2: Block diagram of a feedback control loop consisting of a controller
and a plant with transfer functionsC(s) andP (s), respectively.y is
the output of the plant,r a reference signal,e the error signal andu
is the controller output.

pole pair is located on the imaginary axis, resulting in an integrator or a perfect
oscillator, respectively. A more in-depth review of these cases can be found in
[63].

5.3 Feedback Control

The goal of many control loops is to keep the plant at a desired operating point
r. An exemplary control loop is represented as a block diagram in Fig. 5.2. The
control loop consists of a plantP (s) and a controllerC(s). The goal of the
feedback loop is to control the plant in a way such that its outputy tracks the
defined referencer. In the frequency domain, the outputY (s) is given by

Y (s) = P (s)U(s), (5.13)

whereU(s) is the controller output. Since the output of the system is used for
control this scheme is known asoutput feedback. The deviation betweeny andr
due to external disturbances determines the error signalewhich, in the frequency
domain, is the controller input

e = y − r. (5.14)

Ideally the controller converts the error signal into an output signalu which
counteracts the disturbances and enforcese = 0. A classical example for a
controller capable of driving the error signal to zero is aproportional integral
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C(s)

y
P(s)

u

r-e

v

w ++ d

z

Figure 5.3: Modified block diagram with additional noise inputs.w denotes an
input disturbance to the plant, whereasv defines the sensor noise.

(PI) controller, consisting of a proportional gain and an integrator. A PIcontroller
can be expressed in the frequency domain as

C(s) = Kp +Ki
1

s
, (5.15)

where the controller is defined by two tunable variablesKp the proportional gain
andKi the integral gain of the controller.
Fig. 5.3 illustrates a slightly modified block diagram of the control loop including
a port for an input disturbancew acting on the plant and a port for sensor noise
v that corrupts the readout. The input and output of the plant becomed = u+w
andz = y+ v, respectively. A feedback loop in general is fully characterised by
considering the input/output responses from all inputs (including disturbances) to
all outputs. It turns out that a set of four transfer functions completely describes
the performance of the feedback loop. The derivation of one of these closed-
loop transfer functions, simply from the plant input to its output, is included
here. Adhering to the mathematical description introduced in Sec. 5.1 and the
notation from Fig. 5.2 we obtain

Y (s) = P (s)C(s)E(s),

E(s) = R(s) − P (s)C(s)E(s),

R(s) = E(s) + P (s)C(s)E(s),

Y (s)

R(s)
=

P (s)C(s)E(s)

E(s) + P (s)C(s)E(s)

=
P (s)C(s)

1 + P (s)C(s)
. (5.16)
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The remaining transfer functions are calculated in a similar fashion. The com-
plete set is

PC

1 + PC
,

1

1 + PC
,

P

1 + PC
,

C

1 + PC
. (5.17)

The first two transfer functions are particularly important as they describe the
tracking performance and disturbance rejection performance, respectively; they
are thecomplementary sensitivity function(T ) and thesensitivity function(S).
It is worth mentioning that

T + S = 1, (5.18)

which emphasises that compromises must be made in feedback control, since it
is not possible to independently defineS andT . Fortunately the requirements for
S andT are usually complementary for good performance. UsuallyS is small
in the bandwidth of interest, which reduces the effects of output disturbances,
and thereforeT ≈ 1 which ensures good tracking performance.T rolls off at
high frequencies, usually outside the bandwidth of interest, where sensor noise
becomes more significant andS ≈ 1 [60]. The third transfer function captures
the effect of an input disturbancew and is called theload disturbance sensitiv-
ity function. The fourth transfer function determines the effect of measurement
noisev and is known as thenoise sensitivity function.
A simple example demonstrates why it is necessary to examine the set of trans-
fer functions in Eq. (5.17). Considering an example [64] comparable to Fig. 5.3
highlights that examination of onlyS andT (as is commonly done) is inadequate
in completely describing the response of the closed-loop system.P andC are
given by

P (s) =
1

(s+ 0.02)(s+ 1)
and C(s) =

s+ 0.02

s
(5.19)

and the four transfer functions describing the closed-loop system are

T =
1

s2 + s+ 1

P

1 + PC
=

s

(s+ 0.02)(s2 + s+ 1)

S =
s(s+ 1)

s2 + s+ 1

C

1 + PC
=

(s+ 0.02)(s+ 1)

s2 + s+ 1
, (5.20)

whose step responses are shown in Fig. 5.4. Here it can be seen that a adistur-
bance at the plant input has severe effects on the transient performance. The rea-
son for the impractically large settling time is the low-frequency pole, which is
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Figure 5.4: The performance of the closed-loop system can be characterised by
the step responses of the set of four transfer functions. In this case
the set of four transfer functions represents the dynamics of a plant
P = 1

(s+0.02)(s+1) and a PI controllerC = s+0.02
s .

not cancelled by the controller. Such examples highlight the importance of fully
characterising the feedback loop and not just examining the transfer function of
interest. The stability of a closed-loop system is also crucial. The feedbackcon-
nection of two stable systems can produce an unstable system and improperly
designed feedback controllers can and do result in unstable closed-loop systems.
To examine the stability of the closed-loop system we must examine the location
of the poles by solving1 + PC = 0. Another useful concept is the idea of the
stability margins: how far is the system from instability? In practical settings
knowledge of the gain and phase margins, which are related to Bode plots of
the open-loop system, is often useful. Bode plots will be often used throughout
this thesis and illustrate the frequency-dependent behaviour of measured trans-
fer functions. They consist of two plots: the gain of the system in dB and the
phase in degrees. According to [62] the gain and phase margins of a closed loop
transfer functionH(s) are defined as:
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• The gain margin is equal togm = −20 log10 |H(iω1)|, whereω1 = 2πf1

andf1 corresponds to the phaseφ = −180◦. If the overall gain is larger
than the unity gain (0 dB) atf1 the system is unstable. The gain margin
highlights how much the gain must increase before the system becomes
unstable. As a rule of thumb a gain margin of 6 dB or more is desirable.

• The phase margin in degree is given byφm = 180 + φ(f0), wheref0

refers to the unity gain frequency. A negative phase margin is related to an
unstable closed-loop system. As a rule of thumb a phase margin of60◦ or
more is desirable in practice.

The example from Eq. (5.20) highlights the importance of a thoughtful controller
design process. Usually in physics the controllers are designed by ad hoc meth-
ods, focusing on loop shaping via tuning of electronic circuits. This ad hoc
approach works well for simple systems, but with an increased system complex-
ity the controller implementation becomes very challenging. The reasons for this
are often due to cross-coupling between inputs and outputs whose effects can not
always be intuitively accounted for.
One possible approach to control highly complex systems is the use of modern
control techniques. These systematic techniques require accurate system models
that account for the dynamics and cross-couplings between inputs and outputs.
This work is primarily concerned with the application of modern control tech-
niques to experiments in quantum optics.

5.4 State-Space Control

To consider modern control techniques, it is necessary to introduce state-space
models. All LTI systems can be described via astate-space model, which has the
form

ẋ = Ax+Bu, (5.21)

y = Cx+Du, (5.22)

wherexk ∈ R
n is the state vector,uk ∈ R

m is the input vector andyk ∈ R
p is

the output vector at time instantk. The matrixA ∈ R
n×n is called the system or

state matrix and it represents the system dynamics. The input matrixB ∈ R
n×m

describes how the inputs affect the time-evolution of the system and the output

51



CHAPTER 5. CONTROL THEORY

y
B

A

C

D

u xx
.

ȓ
+

Figure 5.5: The block diagram presents a LTI system in its state-space form.

matrix C ∈ R
p×n describes how the measured outputs depend on the system

states. The matrixD ∈ R
p×m represents a direct feedthrough from the input to

the output. Fig. 5.5 illustrates a block diagram of a LTI system in state-space
form. The internal statex is sufficient to describe the complete system. For a
LTI system there exists a set of matrices{A,B,C,D} that generates the same
input/output response as the transfer functionG(s). The conversion of the state-
space representation into a transfer function can be highlighted by application of
the Laplace transform [61]

sX(s) = AX(s) +BU(s)

Y (s) = CX(s) +DU(s)

(sI −A)X(s) = BU(s)

X(s) = (sI −A)−1BU(s)

Y (s) = C(sI −A)−1BU(s) +DU(s)

G(s) =
Y (s)

U(s)

= C(sI −A)−1B +D. (5.23)
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It is also important to mention that state-space models are not unique. In fact,
there are an infinite number of state-space models, which could describe a given
input/output response. Somesystem identificationmethods, known as subspace
identification, can convert measured data directly into a state-space model for the
purposes of system analysis and control.
Stability analysis of a state-space model highlights interesting relations between
theAmatrix and the system polespi: the system poles are the eigenvalues of the
A matrix.
The time evolution of a state-space model is given by

x(t) = eAtx0 +

∫ t

0
eA(t−τ)Bu(τ)dτ,

y(t) = CeAtx0 +

∫ t

0
CeA(t−τ)Bu(τ)dτ +Du(t), (5.24)

whereA,B,C andD have appropriate dimensions and define state-space model,
x is the internal state,y the measured output of the system andx0 is the initial
state. We see the matrix exponential plays an important role for the system re-
sponse. Given a diagonal matrixH

H =









h1

h2

. . .
hn









, (5.25)

the matrix exponentialeH can be easily calculated as

eH =









eh1

eh2

. ..
ehn









. (5.26)

If an arbitrary matrixF can be diagonalised such thatF = UDU−1 theneF =
UeDU−1. Since the eigenvalues do not change in such a transformation, they
define the index of the exponential ineD or the system poles. Thus for a state-
space system to be exponentially stable all eigenvalues of the matrixAmust have
negative real parts.
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In feedback control problems, an important property of the state-spacesystem is
controllability. In general, the concept of controllability relates to how easy it is
to move the system through its entire state space. Complete state controllability
means that it is possible to move the system state from any initial state to any
final state in a finite time using an external input [65, 66]. It is evident that
such a concept has huge implications for the performance of a control system
as it defines what can and cannot be accomplished with feedback control. One
approach to determine if a system is fully controllable is if

C =
[

B AB ... An−1B
]

, (5.27)

has full rank
rank(C) = n. (5.28)

There are sometimes practical issues with such binary rank tests as numerical
errors may state that a system is fully controllable when in fact it is not. More
sophisticated tests are available. The PBH test, which requires that

rank
[

sI −A B
]

= n, (5.29)

may yield more reliable results. Techniques have also been devised to quantify
the controllability of specific modes [67–69].
The concept ofobservabilityis also important and is the analog to controllabil-
ity. Observability means that it is possible to reconstruct the internal state from
observations of the system inputs and outputs. In most situations the internal
states of the system are not directly accessible. Observability then determines
whether it is possible to estimate the state vector. One approach to determining
if a system is observable is if

O =
[

C AC ... An−1C
]

, (5.30)

has full rank
rank(O) = n. (5.31)

As stated above, there can be practical issues with rank tests, and again the PBH
is an alternative observability test which requires that

rank

[

sI −A
C

]

= n. (5.32)
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Figure 5.6: Block diagram of a static state feedback control loop with an con-
trollerK.

The techniques outlined in [67–69] are therefore applicable to observability.
For controller design it is clearly advantageous when the system is fully con-
trollable and observable. Let’s consider a simple control law for a state-space
control system: static state feedback defined by

u = −Kx, (5.33)

whereK is a proportional gain matrix. Here we assume that we have access to
the internal state. While this is not always possible, we address this limitation in
the following section. For now, we emphasise that this differs from output feed-
back, which is performed when the system output is used for control purposes. A
block diagram for state feedback is illustrated in Fig. 5.6, with a gain matrixK
applied to the state vector before the state is fed back to the input. The reference
r for this case is zero and thus the feedback loop illustrated in Fig. 5.6 can be
mathematically expressed by

ẋ = (A−BK)x, (5.34)

y = (C −DK)x, (5.35)
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whereu = −Kx has been substituted into Eq. (5.22). One of the fundamen-
tal results in modern control theory is that it is possible to arbitrarily place the
closed-loop eigenvalues (or closed-loop poles) ofA − BK via selection ofK
if the system is fully controllable. The previously defined concept of stability
is also applicable in the closed-loop case; the system is exponentially stable if
all eigenvalues ofA − BK have negative real parts. It is worth mentioning that
even if the system is not fully controllable, it may still be possible to achieve the
design objectives, but there are certain features of the system which cannot be
modified.
The previous result suggests that we have unlimited flexibility in enhancing the
system performance, however there are practical limitations. To move the sys-
tem poles significantly often requires large control energy and this is not always
feasible. There are physical limitations on the actuators. While the mathematical
result holds true, often we must find a compromise between system performance
and control energy. This compromise between the system performance and the
required control energy can be formulated as an optimisation problem. Thecost
function is typically defined as a quadratic function; in optimal control the fol-
lowing cost function is used extensively

J =

∫ ∞

0
xTQx+ uTRudt, (5.36)

whereQ ∈ R
n×n andR ∈ R

m×m are design parameters. TheQ term penalises
the speed of convergence and theR term regulates the applied control energy.
This form of optimisation is known as the linear quadratic regulator (LQR) prob-
lem and has been well studied. For a more in-depth treatment see [60, 70].Solu-
tion of this problem yields an interesting result: the optimal control law is static
state feedback

u = −Kx. (5.37)

The full derivation has not been included here as this is a standard result in opti-
mal control theory; the interested reader is referred to [71]. The static feedback
gainK is computed by

K = (BTSB +R)−1BTSA, (5.38)

whereS satisfies the algebraic Riccati equation [59]

AT [S − SB(BTSB +R)−1BS]A− S +Q = 0. (5.39)
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The optimal controller derived for the LQR problem is a static state feedback
controller, essentially a proportional controller. Such a controller possesses some
limitations such as steady-state error and the inability to cope with constant dis-
turbances. Furthermore state feedback cannot be realised if the internal state is
not accessible. Integrators can be used to overcome the inability of eliminat-
ing steady state errors as discussed in Chap. 6. To address the problemof the
inaccessible state vector, the concept of observers is introduced.

5.5 Optimal Observers

Since we usually do not have access to all internal states, we utilise the concept
of observability and knowledge of the measured input and output to construct
a state estimatêx. For a sophisticated analysis, we consider the presence of
noise sources, both measurement noisev and process noisew. It is assumed that
both noise processes are white Gaussian, which is typically not a limitation since
coloured noise sources can also be modelled by augmenting additional dynamics
into the system description. The modified system description is

ẋ = Ax+Bu+ w, (5.40)

y = Cx+Du+ v, (5.41)

wherew ∈ R
n andv ∈ R

p.
In 1960, Kalman proposed theKalman filter, the optimal estimator capable of
producing minimum-variance state estimates from noisy measurements [29]. The
Kalman filter has found widespread application in aeronautics and space explo-
ration, navigation, economics and many others. We introduce the steady-state
Kalman filter and highlight how it can generate asymptotically-converging state
estimates.
Consider the estimator in Fig. 5.7. That is, the estimator is essentially a mathe-
matical model of the system. In fact, the estimator design problem is the dual
problem, the mathematical analog, to the previously introduced LQR problem,
where the tuning parameters reflect the process and measurement noises. The
time evolution of the state estimate depends on both the measured output and the
mathematical model of the system dynamics. The objective is to design the op-
timal gainL, which determines whether the measured outputy or the estimated
output ŷ = Cx̂ should be trusted more; this depends on the noise statistics for
the given problem. The optimal observer for the system is given by [60]
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Figure 5.7: Block diagram of an optimal observer estimating the internal statex
of a system under consideration.

˙̂x = Ax̂+Bu+ L(y − Cx̂)

= (A− LC)x̂+Bu+ Ly, (5.42)

wherex̂ denotes the state estimate andL is determined by

L = PCTV −1. (5.43)

P is the solution of thealgebraicRiccati equation

AP + PAT − PCTV −1CP +W = 0, (5.44)

andV andW are the covariances of the above mentioned noises expressed as

E(vvT ) = V,

E(wwT ) = W. (5.45)

Ideally, the observer’s state estimatex̂ should converge to the actual statex ast
goes to∞. The estimation errore is defined as

e(t) = x(t) − x̂(t). (5.46)
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Taking the time derivative of the estimation error and inserting it into Eq. (5.42)
leads to

ė = Ax+Bu−Ax̂−Bu− L(y − Cx̂),

˙̂e(t) = (A− LC)e(t). (5.47)

Here we see that the error between the actual and estimated statese converges to
0 when all eigenvalues ofA − LC have strictly negative real parts. Thus even
when we are not able to measure the state directly, an observer is capable of
generating a state estimate if the system is observable. In the system is not fully
observable, only estimates for the observable states can be generated.
Another incredibly useful result is the separation principle [72], which states
that the design of an optimal feedback controller for a stochastic system can
be achieved by designing an optimal estimator and feeding the optimal state es-
timate into the deterministic optimal feedback controller as shown in Fig. 5.8.
This combination is better known as alinear quadratic Gaussian(LQG) con-
troller. The derived LQG controller is a combination of a LQR and a steady-state
Kalman filter and is applied for a cavity locking experiment described in Chap. 6.
A LQG controller can also be realised with a time-varying Kalman filter, which
is discussed in Chap. 7. The time-varying Kalman filter assumes the general
form of the Riccati equation

AP + PAT − PCTV −1CP +W = −Ṗ , (5.48)

whereas the time-invariant Kalman filter uses thealgebraic Riccati equation
Eq. (5.44).

5.6 Discrete-Time Systems

The analysis so far has dealt with continuous-time systems. However, usually
estimators and controllers are digitally implemented with computers and are
discrete-time. While conceptually, there are many similarities between continuous-
and discrete-time systems, it is important to acknowledge their differences. The
purpose of this section is to briefly outline the conversion of continuous-time
systems to discrete-time systems.
The bilinear transform, also known asTustin’s method, transforms a continuous-
time system into a discrete-time system. Critical to this conversion is the sam-
pling timeT of the digital system. The relation between characteristic values in
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Figure 5.8: Block diagram of a LQG controller. The optimal estimate of an un-
observable state is fed to an optimal controller stabilising the system.

the z-plane to those in the s-plane is given by [61]

z = esT ≈ 1 + sT/2

1 − sT/2
, (5.49)

This means for example that a pole ats = −a corresponds to a polez = e−aT ,
but the first-order approximation is often preferred sinceesT is infinite dimen-
sional. It can be seen that the poles of a stable continuous-time system, which
are located in the left half-plane, are mapped inside the unit circle|z| = 1 in the
z-plane.
The inverse mapping can also be approximated as

s =
1

T
ln(z),

≈ 2

T

(
z − 1

z + 1

)

,

≈ 2

T

(

1 − z−1

1 + z−1

)

. (5.50)
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6
Linear Quadratic Gaussian Control for a
Three-Mirror Ring Cavity

Our demonstration of implemented systematic control approaches starts with a
controller design for a single input single output (SISO) system. It was given
by an optical cavity requiring a feedback loop for length control, or in other
words the resonance frequency of the cavity was matched to the frequency of
the incident laser field. The problem of frequency matching a cavity is usually
known aslocking. Although this SISO system was not highly complex, it is a
suitable test bed for modern control approaches and of interest for a myriad of
experiments. For applications in fields such as spectroscopy [73, 74], quantum
information [75, 76], optical imaging [77] and many others it is necessary tolock
the cavity length of an optical resonator to the frequency of a laser (or vice versa)
to achieve transmission of the light through the cavity (or a desired frequency
noise reduction). Another reason for our investigations was that one ofthe most
advanced applications that necessitates cavity locking is a interferometric gravi-
tational wave detector (GWD) [17, 78].
We designed and implemented an integral linear quadratic Gaussian (LQG) con-
troller to achieve cavity lock for a three-mirror ring cavity in cooperation with
the groups of Prof. I. R. Petersen and Prof. E. H. Huntington. The results of our
novel test bed for modern control approaches, consisting of a three-mirror ring
cavity, were published in [31, 79]. Previous results published by this cooperation
involved the locking of a linear optical cavity with a LQG controller [80, 81].
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Figure 6.1: Schematic of the optical plant including the optical fieldsbi, the con-
trol input to the piezoelectric actuatoru and the measured outputsy1

andy2 corresponding to the error signal and the transmitted signal re-
spectively. HD, PD,λ/2 andλ/4 refer to homodyne detector, single
photodetector, half-wave and quarter-wave waveplate respectively.

6.1 Experimental Setup

We set up an impedance-matched three-mirror ring cavity as shown schemati-
cally in Fig. 6.1 to demonstrate operation of a modern controller. The length
control of an optical cavity can be realised by controlling a piezoelectric trans-
ducer (PZT), which is attached to one of the cavity mirrors. The parametersof
the optical resonator (given in Table 6.1) were chosen to provide easy and conve-
nient handling of the system to test new locking schemes. For this reason, acav-
ity with a low finesse ofF ≈ 10 and a correspondingly large spectral linewidth
of ∆ν ≈ 65 MHz (equivalent to a decay rateκ ≈ 410 · 106 rad

s ) was constructed.
This results in a small power build-up within the optical resonator and a suitably
large linear region of the error signal, which simplifies the locking procedure.
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Table 6.1: Parameters of the optical ring cavity.

Parameter Value
Wavelength 1550 nm
Finesse ≈ 10
Spectral linewidth ≈ 65 MHz
Waist 453µm

Furthermore a ring cavity setup was chosen to simplify the implementation of
the homodyne locking scheme [46], since the incoming light field is spatially
separated from the reflected light field. Homodyne locking [46] generates the er-
ror signal via polarisation spectroscopy of the system. Hence, the two measured
output signals arey1, the phase quadrature of the reflected beam measured via a
HD, andy2, the intensity of the transmitted beam measured by a single PD. Sig-
naly2 is not required for the design process of a feedback control loop, however
it is convenient to verify that the system is in lock via the maximised transmitted
power. The light source for our test bed was a fibre-coupled diode laser with a
wavelength ofλ = 1550 nm. Since a systematic control approach is based on
a model describing the system dynamics, we derived a state-space model, see
Chap. 5, describing the equations of motion for an optical cavity.

6.2 State Space Representation of Cavity
Dynamics

With the introduction of quantised electromagnetic fields and coherent states,
see Chap. 2, and the derivation of the field amplitudes for an optical cavity,see
Chap. 4, we were able to formulate the quantum equations of motion for our
system in the Heisenberg picture [82]. The quantum equations of motion forthe
intracavity field represented by the annihilation operatorâ and the equation for
the reflected field̂bout are given by [34], whereby for simplicity reasons the ’hat
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formalism’ will be dropped in the following equations,

ȧ = −
(
κ

2
− i∆

)

a− √
κ0 (β + b0) − √

κlbl − √
κLbL,

bout =
√
κ0a+ β + b0. (6.1)

b is the annihilation operator of the input light field, which can be expressed
in a linearised form as a boson fieldb = β + b0. Hereby the operatorb is
written as a combination of a complex numberβ describing the amplitude and
an operatorb0 describing a vacuum field. Hence,b0 describes the fluctuations
of the fieldb and defines them to be white Gaussian with unit variance. All of
these field equations were formulated in a rotating reference frame with respect
to the frequency of the boson fieldb. κ is the total decay rate of the cavity and is
the sum of the individual decay ratesκ0, κl andκL of the optical fieldsb, bl (the
vacuum field from the rear plane mirror/output coupler) andbL (the optical loss
field) coupling to the cavity, respectively

κ = κ0 + κl + κL. (6.2)

∆ is the frequency detuning, introduced in Chap. 4, between the optical cavity
and laser given by

∆ = fc − fL = q
c

nL
− fL, (6.3)

wherefc is the resonance frequency of the cavity,fL the laser frequency,nL the
optical path length of the cavity, consisting of an index of refractionn andL the
physical path length,c the speed of light andq a large integer indicating theqth

longitudinal cavity mode.
Due to the non-linear error signal∆ of the system, the dynamics to be controlled
Eq. (6.1) also become non-linear. However the region of interest around ∆ = 0
corresponds to the linear region of the error signal. Hence, in order to enable
the use of linear control techniques we linearised the dynamics around∆ = 0.
The intracavity field can be described bya = α+ ã, whereα is the steady state
amplitude mean value ofa andã denotes the perturbation operator satisfying

˙̃a = −κ

2
ã+ i∆α− √

κ0b0 − √
κlbl − √

κLbL,

b̃out =
√
κ0ã+ b0. (6.4)
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This set of equations describes the perturbed intracavity and output fields. The
perturbed output̃y1, which is a part of the feedback loop, can be expressed as

ỹ1 = e−iφbout + eiφb†
out

=
√
κ0

(

e−iφã+ eiφã†
)

+ q0, (6.5)

whereq0 is a Gaussian white noise process describing the noise of the input field
q0 = b0 + b†

0 andφ is the homodyne measurement angle. For our polarisation-
based homodyne locking scheme,φ is determined by the orientation of the quarter-
wave/half-wave plate combination.
In the real physcial experiment we measure the amplitude and phase quadrature,
which are defined as

q = a+ a†, p = i(a† − a). (6.6)

Taking the perturbed form of the quadrature operators into account, wecan
rewrite the cavity dynamics in state space form

[
˙̃q
˙̃p

]

=

[

−κ
2 0

0 −κ
2

] [

q̃
p̃

]

+

[

0
2α

]

∆

−
√
κ0

[

cosφ sinφ
− sinφ cosφ

] [

q0

p0

]

−
√
κl

[

1 0
0 1

] [

ql
pl

]

−
√
κL

[

1 0
0 1

] [

qL
pL

]

(6.7)

y1 = k2

√
κ0

[

cosφ sinφ
]
[

q̃
p̃

]

+

k2

[

1 0
]
[

q0

p0

]

+ ṽ1, (6.8)

whereqi = bi + b†
i andpi = i(b†

i − bi) are the noise quadratures fori = 0, l, L.
k2 is the transfer impedance gain, including the quantum efficiency of the HD,
with electronic noisẽv1. The homodyne detection angleφ is set toπ/2, since
the polarisation-based homodyne detection scheme is a phase-sensitive measure-
ment. Before we were able to implement a suitable controller based on the de-
rived state-space model we had to overcome two challenges, explained in the
next sections.
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Figure 6.2: Block diagram of the setup for measuring the transfer functionof the
optical cavity, withu the controlled input,r the swept sine andy the
error signal. [31]

6.3 Frequency Response and System Identification

Unfortunately, the analytically derived state space model does not completely de-
scribe the physical system. The true physical dynamics were more complex due
to the dynamics of the piezoelectric actuator attached to one of the end mirrors
to control the cavity length. Hence, we measured the cavity transfer function
which we were able to use to construct a state-space model, mirroring the true
dynamics, by utilising subspace system identification [83]. The relation of trans-
fer functions and a state-space model are described in Chap. 5.
We obtained the transfer function of our plant, including the dynamics of the
PZT, by injecting a swept siner into the controlled inputu and measuring the
error signaly1 generated via the homodyne detection scheme. The HP 35665A
2-channel digital signal analyser (DSA) generated the swept sine andrecorded
the input signalu+r and the output signaly1. A block diagram of the setup used
for frequency response measurement is shown in Fig. 6.2. The signalu+ r was
enhanced by a high-voltage amplifier, driving the PZT and the desired frequency
response datatransferfunction = Y (s)/ (U(s) +R(s)) was generated via a
fast Fourier transform (FFT) performed by the DSA. During the data acquisition
for the transfer function, we held the cavity in lock with a suitable PI controller.
Keeping the system on resonance and choosing an appropriate input signalu+ r
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Figure 6.3: Bode plot of the experimentally acquired frequency response of the
plant in comparison to two simulated models. [31]

is essential to guarantee that the range of the outputy corresponds to its linear
region. This was essential to ensure the applicability of linear control techniques.
The Bode plot illustrating the frequency response of the plant and two plant mod-
els are shown in Fig. 6.3. For the control design process we took the frequency
data up to the first resonance into account. This was done since usually it isonly
necessary to suppress the first resonant mode, as the primary mode of the opti-
cal cavity/PZT combination should have the strongest impact on the dynamics
[84, 85], although this was not the case for our setup (third mode was dominant).
We used truncated frequency response data, regarding a range from 100 Hz to
400 Hz, for the subspace system identification. We fitted a third-order model to
the data, which was then used for the controller design. We computed the model
with the help of the iterative prediction error minimisation (PEM) method from
Matlab’s system identification toolbox [86]. We also fitted a 20th-order model,
incorporating the complete frequency data. We could have used the 20th-order
model for the controller design as well, but the third-order model was compu-
tationally more convenient. The third-order model describing the input/output
relation of the plant was used to construct a state-space model of the well-known
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form, see Chap. 5,

ẋ = Ax+Bu,

y = Cx+Du,

where

A = 104 ·







−0.0180 −0.2865 0.0573

0.1693 −0.0157 0.2339

0.0446 0.1109 −1.1449







B =







2.8394

4.2852

−24.9287







C =







24.0014

37.3086

−34.4903







T

D = 0. (6.9)

6.4 Controller Design

The control objective is to drive the detuning∆ to zero. Since we cannot mea-
sure the state of the intracavity field directly an observer/estimator was required.
This lead to a LQG control approach, presented in detail in Chap. 5, whichwas
augmented due to several limitations of static state feedback control. Firstly,
feedforward control is required to eliminate steady state tracking error, and there-
fore perfect knowledge of the plant model is required. Secondly, with static state
feedback, the states cannot converge in the presence of constant input/output
disturbances. To regulate the detuning∆ to 0 in the presence of unmodelled
external disturbances, such as1/f laser phase noise, integral control must be
included. Integral action can be built into the LQG problem by adding another
system state,qk+1 = qk + yk, which integrates the system output. The discrete-
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time augmented state-space model then becomes
[

x
q

]

k+1

=

[

A 0
C I

] [

x
q

]

k

+

[

B
0

]

ũk + w̃k (6.10)

ỹk =
[

C 0
]
[

x
q

]

k

+ ṽk, (6.11)

with ṽ = [v1v2]T . The LQG control design can be performed on the augmented

system
{

Ã, B̃, C̃
}

where

Ã =

[

A 0
C I

]

; B̃ =

[

B
0

]

; C̃ =
[

C 0
]

; x̃ =

[

x
q

]

.

We chose the following weighting factors for the implementation of the LQG
controller. The weighting matrices for the LQR and Kalman filter cost functional
were

QL = σ2
1 = 1, RL =

[

σ2
2 0

0 σ2
3

]

=

[

1 0
0 10−7

]

,

QK = q = 5 · 105, RK = r = 0.5. (6.12)

σ1 is the standard deviation related to the process noisew̃, σ2 andσ3 are the
measurement noises associated with the HD and the augmented integral output,
respectively. The noise covariances and weighting parameters were considered
to be design parameters and do not need to reflect physical covariances of the
system [87]. We determined the above stated values to generate a controllerwith
a sufficient bandwidth [88]. The resulting controller was robust to errors in plant
modelling, was able to reject constant disturbances and was able to drive the
detuning to0. A Bode plot of the LQG controller, defined by the ratio between
the controller outputu and controller input (error signal)e, is shown in Fig. 6.4.

6.5 Controller Implementation

We implemented the discretised state-space model for the LQG controller includ-
ing integral action with a DS1104 dSPACE DSP system. The dSpace board con-
sists of 8 Digital-to-Analog-Converter (DAC) channels and 16 Analog-to-Digital-
Converter (ADC) channels with a sampling rate of300 kHz. The board is fully
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Figure 6.4: Bode plot of the LQG controller. [31]

programmable via Matlab’s Simulink toolbox and possesses a 12-bit resolution.
With the help of this hardware we were able to successfully implement a LQG
controller based on a third-order model. The controller was capable of achiev-
ing lock and its bandwidth was not limited by the hardware. A schematic of the
closed loop system is depicted in Fig. 6.5.

6.6 Results

The LQG controller state feedback gain was computed to obtain appropriate val-
ues for the gain crossover frequency, gain margin, and phase margin of the loop
gain corresponding to the product of the augmented plant transfer function and
the integral LQG controller transfer function. We achieved suitable marginsby
tuning the weighting parameters. Furthermore we used the loop gain transfer
function to characterise the designed feedback control loop [62]. Thesimulated
frequency response for the corresponding loop gain transfer function is shown
in Fig. 6.6, which has a gain margin of20.2 dB at 251 Hz, a phase margin of
47◦ at 61 Hz, and a gain crossover frequency of61 Hz. We chose these robust-
ness margin values in order to ensure closed-loop stability of the system. A
guide to adequate robustness margins for LQG controllers is described in [89].
We evaluated the performance of the closed-loop system with the integral LQG

70



6.6. RESULTS

y
1

y
2

u

b

Piezo

λ/2

λ/4

λ/2

outb

1,out
b

1
b

Lb

PD

HD

HV Amplifier

DAC Channel

Controller

ADC Channel

Figure 6.5: Schematic of the cavity locking experiment, including the combina-
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Figure 6.7: Comparison between a measured close loop step response anda sim-
ulation based on a 20th-order plant model. [31]

controller by injecting a step function and measuring the system response. We
compared the acquired data with a simulation, which used the 20th-order model
for the description of the plant. The comparison is shown in Fig. 6.7 and the
resulting closed-loop frequency response is plotted in Fig. 6.8. We applieda
step input of0.04 V for the characterisation of the integral LQG controller. The
same step function was used for the simulation. The outputy1 of the plant, ini-
tially at 0 V, settles within0.1 s to a mean value of−0.0391 V. We demonstrated
that the performance of the closed-loop system was stable over all operational
conditions. Furthermore the optical cavity lock was able to keep the system on
resonance over extended periods of time. Fig. 6.9 highlights the functionalityof
the controller. The controller satisfied its objective and kept the system on reso-
nance, leading to an error signal close to zero, and the correspondingtransmitted
power is maximised. The reason for the observed noise in the experimental step
response is assumed to be due to quantisation effects arising from the 12-bit res-
olution of the ADCs. These quantisation effects could have been the reason for
the noisy signals shown in Fig. 6.9. An option to solve this quantisation problem
is the acquisition of a new dSPACE board including ADCs with an improved
dynamic range.
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Figure 6.8: Closed loop frequency response of the three-mirror ring cavity. [31]
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6.7 Conclusions

In this chapter we demonstrated a successful implementation of a modern con-
troller by applying modern control techniques. We used a third-order state-space
model model, describing the plant, for the computation of a LQG controller with
integral action. We satisfied the control objective by acquiring lock with ourmod-
ern controller. We verified the stability and performance of the feedback loop via
step response data. This data was compared with a simulated step response of
the plant. In addition to the successful control implementation, we also designed
a test bed for systematic modern control approaches regarding the challenge of
frequency locking optical cavities.
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7
Autolocking an Optical Cavity Using a Time-
Varying Kalman Filter

In the previous chapter we demonstrated a modern control approach capable of
locking an optical resonator. A strict requirement for this locking scheme isthat
the initial system is not strongly detuned. Therefore the detuning∆ does not
exceed the linear region of the error signal. Since the error signal is inherently
non-linear lock cannot be acquired outside of its linear region via linear control
techniques. In general the non-trivial lock acquisition is achieved by anauto-
mated process which scans the cavity length with a PZT until the fundamental
resonance is found by detecting the transmitted power. At that point the scan
stops and the controller is engaged. This process, known asautolocking[90]
eases and speeds up the lock acquisition. This is important to guarantee a high
duty-cycle for long-term experiments/projects like a gravitational wave detector
(GWD).
In this chapter we introduce a new autolocking scheme based on a systematic
control approach utilising the combination of an integral LQR and a time-varying
Kalman filter (TVKF). This scheme was proposed in [91] and the simulated re-
sults highlighted that, with respect to the linear region of the error signal, the
lock acquisition was more robust and faster than PI control. Furthermore the
simulation showed that this control scheme was able to perform even when the
non-linear error signal was not in the linear region, which cannot be overcome
by PI control or a static integral LQG controller with a time-invariant Kalman
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filter.
We implemented and thereby verified the superior performance of the integral
LQG/TVKF combination. The results are published in [32].

7.1 Experimental Setup

We used the constructed test bed, introduced in Chap. 6 (see Fig. 6.1), todemon-
strate the superior performance of our novel control scheme. Althoughthe exper-
imental setup stayed unchanged, we needed to reformulate the state-spacemodel
of the system. Firstly the TVKF needs the information of a phase-sensitive and
an amplitude measurement to quantitatively determine the detuning∆. Hence
we needed to add an additional output signaly2 to the state-space model. The
phase-sensitive output signaly1 is given by the error signal, generated via
polarisation-based homodyne detection [46]. The additional amplitude measure-
menty2 is obtained by detecting the transmitted power with a single detector.
Secondly the state-space model given in Chap. 6 was based on a linearisation
of the system around zero detuning. However for the TVKF approach we took
the non-linear region of the error signal into account as well, since we wanted to
demonstrate that this approach is able to cope with this non-linear control prob-
lem and acquires lock from any operating point.
We extend the quantum equations of motion [34] from Eq. (6.1) by the second
output fieldbl,out

ȧ = −
(
κ

2
− i∆

)

a− √
κ0 (β + b0) − √

κlbl − √
κLbL,

bout =
√
κ0a+ β + b0,

bl,out =
√
κla+ β + bl. (7.1)

a is the annihilation operator of the intracavity field andb the annihilation op-
erator of the incident light field. This laser input is expressed as a bosonfield
b = β + b0, with β denoting the coherent field amplitude andb0 describing the
field fluctuations.κ is the total decay rate of the cavity, which is given by the
sum of the individual decay ratesκi of the optical fieldsbi, with i = 0, l, L. The
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two detected outputs are expressed as

y1 = e−iφbout + eiφb†
out

=
√
κ0(e−iφa+ eiφa†) + 2β cosφ+ q0 (7.2)

y2 = b†
1,outb1,out

= κla
†a+

√
κl(a

†bl + b†
l a) + b†

l bl, (7.3)

whereq0 is Gaussian white noise of the input field andφ describes the homodyne
detection angle. With these sets of equations we were able to reformulate the
state-space model, where the statex is described by the amplitudeq and phasep
quadrature

[

q̇
ṗ

]

=

[

−κ
2 −∆

∆ −κ
2

] [

q
p

]

−
[

2β
√
κ0

0

]

−
√
κ0

[

cosφ sinφ
− sinφ cosφ

] [

q0

p0

]

−
√
κl

[

1 0
0 1

] [

ql
pl

]

−
√
κL

[

1 0
0 1

] [

qL
pL

]

(7.4)

y1 = k2

√
κ0

[

cosφ sinφ
]
[

q
p

]

+k2

[

1 0
]
[

q0

p0

]

+ 2k2β cosφ+ ṽ1 (7.5)

y2 = k̃2

(

κl
4

(p2 + q2) +

√
κl
2

[

q p
]
[

ql
pl

])

+ ṽ2, (7.6)

wherek2 andk̃2 denote the transfer impedance of the HD and PD, respectively
andṽi are sensor noises of the associated output. As mentioned in Chap. 6, the
mathematical state-space model does not describe the complete physical dynam-
ics, which were more complex due to the PZT attached to one of the mirrors
for the length actuation. We obtained the physically exact input/output relation
via a transfer function of the plant. The frequency data were used to generate a
state-space model via subspace system identification [83].
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7.2 Singular Perturbation Method

Until now all of the applied techniques correspond to linear control techniques,
although we consider a non-linear control problem. We tackled this issue by
simplifying the system via the singular perturbation method [92] and implement-
ing the TVKF. This ensured that a linear control approach can still be applied.
The singular perturbation method decomposes the plant, consisting of the opti-
cal cavity and the two readouts, into two subsystems which differ by their time
constants. This technique is known asseparation of time-scales. For our case
the dynamics of the light fields are fast compared to the mechanical assembly.
The slow mechanical block whose output is the detuning∆ is the dominant ef-
fect. It is followed by a fast block representing a discrepancy from thedominant
behaviour. This discrepancy can be modelled as a static sensor non-linearity ap-
plied to the output. This approach enabled the use of linear control techniques.
Static non-linearities imply that the time derivativesq̇ = ṗ = 0. With the help of
this relation we determined the behaviour of the static non-linearity

[

q
p

]

=
−1

(
κ
2

)2
+ ∆2

[

κβ
√
κ0

2β
√
κ0∆

]

. (7.7)

For the homodyne locking scheme [46] the detection angle is set toφ = π/2 and
the outputsy1 andy2 become

y1 = k2
√
κ0p+ 2k2β cosφ+ v1

= − 2k2βκ0∆
(
κ
2

)2
+ ∆2

+ v1

= f1(∆) + v1, (7.8)

y2 =
k̃2κ1

(
p2 + q2

)

2
+ v2

=
1

2

k̃2κ1κ0β
2

(
κ
2

)2
+ ∆2

+ v2

= f2(∆) + v2. (7.9)

If the optical cavity is perturbed strongly enough and the error signal leaves its
linear regime, we cannot unambiguously determine the detuning ify1 is the only
measurement, as shown in Fig. 7.4. Therefore we complementedy1 with y2 to
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correctly ascertain the detuning. Even when bothy1 andy2 are considered, both
signals tend to zero for very large detuning and become very sensitive to noise.
Because of this we set up abounded noise model, estimating the actual state
of our system via noise-corrupted measurements. In our case the measurement
noise was unknown but bounded. To fulfil this constraint at each time instant the
measurement noisesv1,k andv2,k need to satisfy the inequalities

v2
1,k ≤ µ2

1; v2
2,k ≤ µ2

2, (7.10)

whereµ1 andµ2 are constants defining the upper magnitude bound of the noise.
In the next step we handled the problem of characterising the set of all possible
∆k consistent with the measured outputsy1,k andy2,k to determine the setSk
that fulfils the inequalities in Eq. (7.10),

Sk =
{

∆k ∈ R : (y1,k − f1(∆k))
2 ≤ µ2

1 and

(y2,k − f2(∆k))
2 ≤ µ2

2

}

. (7.11)

Using Eq. (7.8)-(7.10) it is straightforward to show thatSk corresponds to the set
of ∆k ∈ R satisfying the inequalities

(16∆4
k + κ4)(y2

1,k − µ2
1) + 64∆3

kk2βκ0y1,k

+ 8∆2
k(8k

2
2β

2κ2
0 + κ2y2

1,k − κ2µ2
1)

+ 16∆kk2βκ0κ
2y1,k ≤ 0, (7.12)

(16∆4
k + κ4)(y2

2,k − µ2
2)

+ 8∆2
k(κ

2y2
2,k − 4k3κ0β

2y2,k − κ2µ2
2)

− 8κ2k3β
2κ0y2,k + 16k2

3β
4κ2

0 ≤ 0. (7.13)

The setSk is computed by solving the inequalities Eq. (7.12) and Eq. (7.13)
using a numerical analysis, known asLaguerre’s method[93, 94]. If we obtain
m roots as a solution, they will definem+ 1 regions of interest:

Sk,1 = {∆k ∈ R : −∞ < ∆k < ∆k,1}
Sk,2 = {∆k ∈ R : ∆k,1 < ∆k < ∆k,2}

...

Sk,m = {∆k ∈ R : ∆k,m−1 < ∆k < ∆k,m}
Sk,m+1 = {∆k ∈ R : ∆k,m < ∆k < ∞} .
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The setSk consists of the subsetsSk,i, satisfying Eq. (7.12) and Eq. (7.13) at time
instantk. Let us briefly outline the reasons for this approach: To apply the TVKF,
we must transform the given measurementsy1 andy2 into the mean detuninḡ∆k

and its variance. Thus we present a heuristic approach, which attempts to convert
the given information into the required quantities. The setSk can be non-convex;
it is possible for two regions on either side of the resonance peak to satisfythe
inequalities when the detuning is large. In this situation, we want to inform
the Kalman filter that there is a large uncertainty in this measurement, which is
reflected by a large variance. Therefore, when we have a non-convex solution set
we considerS̄k, the convex hull ofSk (i.e. we force the set to become convex
by including all possible values between the minimum and maximum values),
which makes the set significantly larger with a large variance. On the other hand,
when Sk only consists of one subsetSk,i, the set is equal to its convex hull,
Sk = S̄k, and the variance is small, reflecting our increased confidence that
this is in fact the actual detuning. Taking the convex hull of the solution set
is motivated intuitively and we developed the following equations for the mean
value for∆̄k and the standard deviationσk, where we have assumed a uniform
distribution over the convex set̄Sk,

∆̄k =
1

2

[

min
∆k∈S̄k

(∆k) + max
∆k∈S̄k

(∆k)

]

, (7.14)

σk =
1

2
√

3

[

max
∆k∈S̄k

(∆k) − min
∆k∈S̄k

(∆k)

]

. (7.15)

The quantities̄∆k andσ2
k represent the new measurement for the mean detuning

and the measurement covariance. These quantities are the inputs to the TVKF,
which is described in the following section. A schematic highlighting this algo-
rithm is shown in Fig. 7.1.

7.3 Time-Varying Kalman Filter

The Kalman filter utilises the mathematical model of the system and the measure-
ments to estimate inaccessible system states. For an optimal estimate, the pro-
cess and measurement noises must be known white Gaussian processes.There
are two stages to the time-varying Kalman filter: theprediction stepand theup-
date step. In the prediction step, the Kalman filter uses the current state estimate
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Figure 7.1: Block diagram for the calculation of the state estimateˆ̃x. y1, y2 are
the measured signals,̄∆ is the estimated mean detuning, andσ2 is
the estimated measurement covariance.

ˆ̃xk and error covariancePk to predict the state estimate and error covariance at
the next time step using the system model:

ˆ̃x−
k+1 = Ãˆ̃xk + B̃ũk, (7.16)

P−
k+1 = ÃPkÃ

T + B̃WB̃T , (7.17)

whereW is the covariance of the process noise and is assumed to be diagonal.
Here, ˆ̃x−

k , P
−
k denote thea priori state estimate and error covariance. The error

covariance in general is defined by the estimation errorek as

ek = x̃k − ˆ̃xk and

Pk = E
[

eke
T
k

]

. (7.18)

Thea posterioristate estimate and error covariance are given byˆ̃xk andPk, re-
spectively.
In the update step, the Kalman filter compares the measured output to the pre-
dicted output. The Kalman gain, which is updated at each instant of time, weights
the difference between the predicted and measured outputs andoptimally adjusts
the state estimate. The Kalman gainKk is the optimal weighting factor, based
on the specified noise statistics, and it determines whether the measurement or
the model-generated state estimate is more reliable at each time instant.Kk is
optimal in the sense that it minimises the variance between the actual and esti-
mated states. The following equations summarise the update step, whereas the
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Figure 7.2: Overview of the discrete-time time-varying Kalman filter.

error covarianceP−
k satisfies the Riccati equation, see Eq. (5.44):

Kk = P−
k C̃

T (C̃P−
k C̃

T + σk)
−1, P−

0 = Px0 ; (7.19)

ˆ̃xk = ˆ̃x−
k +Kk(ỹk − C̃ ˆ̃x−

k ), ˆ̃x−
0 = ¯̃x0; (7.20)

Pk = (I −KkC̃)P−
k . (7.21)

The equations presented here can be found in any standard text on estimation, for
more information see [66, 95]. Fig. 7.2 highlights the recursive nature of the time-
varying Kalman filter algorithm. At each time instantk, the new measurement
ỹk = ∆̄k and the measurement covarianceσk are determined from equations
Eq. (7.14) and Eq. (7.15).

7.4 Control Implementation

As in the work presented in Chap. 6 we implemented the control scheme on a
dSpace DS1103 Power PC DSP Board. The dSpace board consists of 8Digital-
to-Analog-Converter (DAC) and 16 Analog-to-Digital-Converter (ADC)chan-
nels with a sampling rate of 300 kHz. The board is fully programmable via
Matlab’s Simulink toolbox and possesses a 16-bit resolution. The computational
results related tōSk were obtained via a C-program; the update rate is 10 kHz to
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Figure 7.3: Schematic of the cavity locking experiment, including the combina-
tion of a time-varying Kalman filter and a linear quadratic regulator.
The dashed lines depict electronic links.

guarantee a sufficient bandwidth. The result was a highly robust controller that
successfully achieved frequency lock of the optical cavity to the laser from any
initial operating point. While a twelfth-order polynomial is solved in the sim-
ulation [91], we chose to implement a simpler fourth-order model (third-order
plant model and an additional integrator), which did not include mode-splitting.
We were able to safely neglect mode-splitting, because the gradients of the error
signals corresponding to the non-degenerate s/p-polarised cavity modesdiffer in
sign, as shown in Fig. 7.4. Hence it is only possible to lock to one mode at a time;
in our case we chose to lock to the p-polarisation. A schematic of the closed-loop
system is depicted in Fig. 7.3.
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7.5 Results

We validated the proposed controller by comparing its performance to a typical
PI controller, designed such that the gains of the two controllers and therefore
their residual frequency noise reductions were approximately equal when the
cavity was in lock. The resulting PI controller had a gain of

KPI(s) =
0.1s+ 316.5

s
. (7.22)

We first set up an experiment to demonstrate the control performance in thelin-
ear region, where conventional controllers can successfully stabilise the cavity.
Then we demonstrated the superior operation of our control scheme in the non-
linear region where the PI controller fails.
We determined the quality and robustness of our locks by injecting a disturbance
in the form of a step function. For the resonant case the transmitted signaly1

has its maximum value and the error signaly2 varies around zero, in contrast
to the unlocked case wherey1 andy2 are both close to zero, see Fig. 7.4. For
the first test we applied a step voltage to a PZT mounted to one of the cavity
mirrors for length control. The voltage step was0.3 V, which drove the detuning
to the edge of the linear region. This disturbance was equivalent to a detuning of
≈ 32 MHz or 0.5κ. Fig. 7.5 shows the influence of the input disturbance on the
plant locked with the PI controller. The PI controller reacquired lock after0.14 s.
Fig. 7.6 highlights the response of our systematic control approach, whichper-
formed much faster, reacquiring lock in just0.03 s.
For the second test we applied a step voltage of0.4 V to the PZT. This drove

the detuning into the non-linear region, which is equivalent to a detuning of
≈ 43 MHz or 0.66κ. As a result, the PI controller was unable to maintain/reac-
quire cavity lock as shown in Fig. 7.7. On the other hand, our proposed control
scheme reacquired lock in≈ 35 ms as shown in Fig. 7.8. Fig. 7.9 illustrates the
transfer functions of the proposed controller at fixed instants of time afterapply-
ing the step input of0.4 V at t = 0 s. The controller transfer function varies in
time since it depends on the operating point of the system and therefore on the
estimate of the detuning. The evolution of the controller transfer function is the
reason why the time-varying Kalman filter is capable of handling the non-linear
regime. Note that the plots fort = −5 ms, where the system was in lock before
it was disturbed att = 0 s, andt = 35 ms, where the system reacquired lock
overlap and describe the optimal controller for the plant on resonance. When
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Figure 7.4: Frequency response of the optical cavity, showing the error signal
from the homodyne detectory1 (top) and the transmitted signaly2

(bottom). The main Airy peak/error signal at∆ = 0 MHz corre-
sponds to the p-polarised cavity input, whereas the Airy peak/error
signal at∆ ≈ −230 MHz belong to the s-polarised field utilised as
local oscillator of our homodyne locking scheme.

85



CHAPTER 7. AUTOLOCKING AN OPTICAL CAVITY USING A
TIME-VARYING KALMAN FILTER

Disturbance Response to a 0.3V input at plant input with PI controller
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Figure 7.5: Response of optical system locked with a traditional proportional-
integral controller to an input disturbance step function of0.3 V,
equivalent to a detuning∆ ≈ 32 MHz ≈ 0.5κ. The PI controller
reacquires lock after0.14 s.

the detuning is very large, the measured output is essentially white noise. Since
the augmented system integrates the white noise output, we obtain a Wiener pro-
cess for large detunings. The Wiener process describes a random walk ensuring
that the controller moves in a direction untily1 andy2 become significant.

7.6 Conclusion

We have successfully demonstrated the operation of our time-varying Kalmanfil-
ter locking scheme, highlighting its ability to automatically reacquire cavity lock
– without scanning the frequency – in an automated way from any given operating
point. Our novel autolocking scheme successfully overcomes the inherent non-
linearity of the considered control problem. We utilised the singular perturbation
method to simplify the non-linear control problem to enable the implementation
of convenient linear control techniques. Compared to a traditional PI controller
our controller was able to reacquire lock in a significantly shorter time (0.03 s as
opposed to 0.14 s) while in the linear region. Furthermore we demonstrated that
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Figure 7.6: Response of optical system locked with a time-varying Kalman filter
to an input disturbance step function of0.3 V, equivalent to a detun-
ing ∆ ≈ 32 MHz ≈ 0.5κ. Our controller reacquires lock after0.03 s
which is faster compared to the PI controller.

our autolocking scheme is capable of autonomously bringing the system backto
resonance even in the presence of large disturbances, which cause the system to
leave the linear region of the error signal, where linear time-invariant controllers
fail. Our autolocking scheme significantly improved the robustness of the cavity
lock and thereby increased the duty-cycle of the experiment. This superior per-
formance of the feedback loop could be beneficial in a myriad of applications in
fields such as spectroscopy [73, 74] or quantum information [75, 76].
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Disturbance Response to a 0.4V input at plant input with PI controller
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Figure 7.7: Response of optical system locked with a proportional-integral con-
troller to an input disturbance step function of 0.4 V, equivalent to a
detuning∆ ≈ 43 MHz ≈ 0.66κ. The PI controller was not able to
reacquire lock.
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∆ ≈ 43 MHz ≈ 0.66κ. Our control scheme reacquired lock after
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8
Control Investigations for a Squeezed Light
Source

In 1981 Caves proposed that the injection of non-classical (in particularso-called
squeezed statesof light [96]) can improve the sensitivity of shot noise limited
optical interferometers [24]. In 1985 Slusheret al. generated the first vacuum
squeezed states [96] and 25 years later Vahlbruchet al. realised Cave’s idea by
injecting squeezed vacuum into the dark port of the GWD GEO600 [25, 97]. In
order to ensure the required permanent injection of squeezed states a suitable
control scheme is needed [98, 99].
In our laboratory we wanted to produce long-term stable, fixed quadrature squeez-
ing for a high-precision spectroscopy experiment described and simulated in
[100]. A control scheme consisting of two individual feedback loops achieved
this requirement, where both loops applied PI control. The first feedbackloop
locked the optical cavity, which surrounded the non-linear medium to resonantly
enhance the strength of the non-linear process. The second control loop sta-
bilised the relative phase between the pump and intracavity field and therefore
defined the squeezed quadrature. As the cavity lock also affects the relative phase
between the two fields, the question arose if this cross-coupling would spoilthe
desired performance of our squeezed light source. We examined the question
in regards to the possibility to describe the squeezed light source as a coupled
MIMO system, whose performance could benefit from the implementation of
modern control techniques.
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Figure 8.1: Bow-tie resonator including aχ(2) medium. The schematic presents
all optical fields, which are required to derive the system dynamics.

8.1 Non-Linear χ
(2) Cavity Dynamics

We derive the cavity dynamics for a cavity enhanced squeezing process, see
Fig. 8.1, whereby the cavity is only resonant for the fundamental fieldAin. The
pump fieldBin passes the non-linear medium once. The Hamiltonian describing
the non-linear interaction is given by [34]

H = i~χ
(

b̂†â2 − â†2b̂
)

, (8.1)

whereâ, b̂ andâ†, b̂† are the annihilation and creation operators of the fundamen-
tal/pump field, respectively.χ denotes the coupling strength. Taking the cavity
dynamics (see Chap. 6) into account the equations of motion for the pump and
fundamental field are

˙̂a = −2χ(2)â†b̂− (κa + i∆a)â+
√

2κAÂin +
√

2κl,aÂl,in

˙̂
b = χ(2)â2 − κbb̂+

√
2κBB̂in +

√

2κl,bB̂l, (8.2)

whereκA andκB are the loss rates of the input mirrors for the input modesÂin
andB̂in. κl,a,κl,b denote the internal loss rates related to the loss modesÂl,in,Bl
andκa,κb are the total loss rates related to the intracavity fields.∆a describes
the detuning of the cavity.
We assume an intense pump field which is undepleted by the interaction with
the dielectric medium. The undepleted case allows for the following substitution
q̂ = 2χ(2)b̂, wherêb can be expressed in a linearised form ofb̂ = βeiθb + δb [34].
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This leads to the restructured version of the cavity dynamics of interest

˙̂a = −(κa + i∆a)â− q̂â† +
√

2κAÂin +
√

2κl,aÂl,in,

˙̂a† = −(κa − i∆a)â
† − q̂†â+

√
2κAÂ

†
in +

√

2κl,aÂ
†
l,in. (8.3)

Considering the linearisation̂a = α+δa leads to the equations of motion for the
mean field amplitudes

α̇ = 0 = −(κa + i∆a)α− qα∗ +
√

2κAαin +
√

2κl,aαl,in,

α̇∗ = 0 = −(κa − i∆a)α
∗ − q∗α+

√
2κAα

∗
in +

√

2κl,aα
∗
l,in (8.4)

and fluctuation terms

δȧ = −(κa + i∆a)δa− δqδa† +
√

2κAδain +
√

2κl,aδal,in,

δȧ† = −(κa − i∆a)δa
† − δq†δa+

√
2κAδa

†
in +

√

2κl,aδa
†
l,in. (8.5)

For the derivation of the output variance we need to convert the fluctuation terms
to the Fourier domain FT[da(t)/dt] = −iωFT[a](ω), take the relations from
Eq. 3.44 into account and use the boundary conditions defined in [101]

√
2κAâ = Âout + Âin,

√
2κAâ

† = Â†
out + Â†

in. (8.6)

For the cavity on resonance∆a = 0 and the above stated assumptions the ampli-
tude/phase quadrature forδÂout can be expressed as

δX̂±
Aout

=
(2κA − κa − iω ± |q|)δX̂±

Ain
+ 2

√
κAκlδX̂

±
Al

κa + iω ∓ |q| (8.7)

and the variance, see Chap. 3, which is the measure of interest for squeezing
experiments becomes

V ±
Aout

=

(

(2κA − κa ± |q|)2 + ω2
)

V ±
Ain

+ 4κlκAV
±
Al

κ2
a + ω2 ∓ |q|2

. (8.8)
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Figure 8.2: Experimental setup for the generation of cavity-enhanced squeezing.
The squeezed states were generated inside a sub-threshold bow-tie
OPO.

8.2 Generation of Squeezed Light

The experimental setup for the generation of cavity enhanced squeezingis pre-
sented in Fig. 8.2, where the main laser source was a continuous wave,
neodymium-doped yttrium aluminium garnet (Nd:YAG) laser at 1064 nm with
a maximal output of 2 W from Innolight GmbH [102]. The 532 nm pump field
driving the generation of squeezed states was obtained via type I phase-matched
SHG, which was realised by a hemilithic Fabry-Pérot resonator. Hereby the
curved rear of the non-linear crystal was used as a cavity mirror. The utilised
χ(2) medium was magnesium oxide-doped lithium niobate (MgO:LiNbO3), with
dimensions2 × 2.5 × 7.5 mm3 and a phase matching temperature ofT ≈ 67◦C.
The temperature controller assuring a constant temperature consisted of aneg-
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Table 8.1: Parameters of the SHG.

Parameter Value
Non-linear medium MgO:LiNbO3
Cavity length 40 mm
Finesse 76
Free spectral range 4.6 GHz
Spectral linewidth 65 MHz
Reflectivity of coupling mirror 92%
Waist1064 ≈40µm

Table 8.2: Parameters of the OPO.

Parameter Value
Non-linear Medium PPKTP
Cavity length 1.52 m
Finesse 58
Free spectral range 197.4 MHz
Spectral linewidth 3.96 MHz
Reflectivity of coupling mirror 90%
Waist532 ≈18µm

ative temperature coefficient (NTC) thermistor as the sensor and a Peltier el-
ement as the actuator. The Fabry-Pérot resonator was kept on resonance by
the polarisation-based homodyne locking scheme [46]. Further details regard-
ing the hemilithic SHG cavity provided by the Quantum Interferometry group
of our institute can be found in Table 8.1. The generated 532 nm light field was
directed through a modecleaner (MC) cavity, which acts as a polarisation and
spatial mode filter. The MC provided a high quality fundamental transverse elec-
tromagnetic mode (TEM00), which then was matched to the TEM00 mode of
the OPO, used as squeezed light source. The parameters of the sub-threshold
bow-tie OPO, see Fig. 8.2, are given in Table 8.2. We utilised PPKTP as the
χ(2) medium, with dimensions1 × 2 × 10 mm3. The required temperature for
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the generation of squeezed states with quasi-phase matching was≈ 30◦C. It was
again stabilised by the combination of a NTC thermistor and a Peltier element.
For a detailed characterisation of the bow-tie OPO we locked the optical cavity
via polarisation-based homodyne detection [46] and blocked the beam pathto
the PDH PD. The front light field, which impinged on the partially reflective
coupling mirror had a ratio of 3:100 between the s/p-polarisation, which defined
the signal/local oscillator field, respectively. The ratio slightly differed from the
1:100 ratio, given by arule of thumb, which shall ensure a non-varying shot
noise level, since we needed to increase the error signal for the OPO lock. As ex-
plained in Chap. 3, the polarisation-based homodyne locking scheme performs a
phase-sensitive measurement, thus we read out the phase quadrature.We locked
the relative phase between pump and intracavity field with the help of the dither
locking technique [103]. Hereby the PZT driven mirror placed in the beampath
of the pump field was used as a phase actuator and the applied modulation fre-
quency for the dither lock wasf = 52 kHz. All feedback loops were realised by
traditional PI control.
The variance of the phase quadrature was acquired with a signal analyser (Ag-
ilent MXA N9020A). The resolution/video bandwidths of the signal analyser
were 1.5 MHz and 91 Hz, respectively, the sweep time was 1.8 s, the averaging
factor was 10 and the internal attenuation was 6 dB. The results of a span mea-
surement are presented in Fig. 8.3. With a pump power of 68 mW, we were
able to observe antisqueezing/squeezing values of 3.78/1.96 dB, respectively. A
zerospan measurement at the firstFSR = 197.4 MHz demonstrated that (OPO
in lock) we were able to lock the pump to the maxima/minima of its sweep
which corresponds to antisqueezing/squeezing, respectively. This result demon-
strates the realisation of stable squeezing of a fixed quadrature. We needed to
determine the total lossesηtotal = 0.5 of our setup to verify our detected anti-
squeezing/squeezing values [104, 105].ηtotal is the product of the propagation
efficiencyηprop = 0.92, the homodyne visibilityηvis = 0.64, the quantum effi-
ciency of the photodiodes (Perkin Elmer C30617)ηPD = 0.98 and the escape
efficiencyηesc = 0.85. Fig. 8.5 compares the measured antisqueezing/squeezing
values, which depend on the pump power with a simulated model [104, 105]

R± = 1 ± ηtotal
4x

(1 ∓ x)2 + 4Ω2
, (8.9)

V ±
Aout

= 10 log10(R±), (8.10)
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Figure 8.3: We observed antisqueezing/squeezing values of 3.78/1.96 dBfor a
pump power of 68 mW relative to the shot noise (blue). The mea-
sured data shows the frequency-dependence of cavity enhanced anti-
squeezing/squeezing (orange/yellow), which is directly related to the
resonance condition of the optical cavity.
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ing/squeezing (purple/yellow), respectively. These results demon-
strated the realisation of stable squeezing of a fixed quadrature.
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Figure 8.5: Comparison between power-dependent antisqueezing/squeezing val-
ues and a fitted model Eq. (8.10).

whereΩ describes the detuning of the cavity andx =
√

Pth/P is the normalised
pump power with the pump thresholdPth and the pump powerP . Fig. 8.5 high-
lights the good agreement between experiment and model.
After the characterisation of the squeezed light source we changed the exper-

imental setup, since the squeezed output should be utilised for high-precision
spectroscopy described in [100]. We kept the dither lock of the pump phase, but
replaced the polarisation-based homodyne locking scheme by a PDH scheme,
whereas the s-polarised control light field was coupled into the cavity fromits
rear plane mirror and was co-propagating with the squeezed output. The mod-
ulation frequency of the PDH scheme wasf = 12 MHz. For the detection of
squeezed states we set up the polarisation-based homodyne detection scheme
with an external LO. The external LO was given by a p-polarised light field,
which impinged on the coupling mirror of the bow-tie OPO and was directly re-
flected, since the p-polarisation was non-resonant. The relative phasebetween
LO and squeezed output could be varied by a PZT driven mirror. It is worth
mentioning that this homodyne detection scheme can observe both quadratures,
but it can only be locked to the phase quadrature.
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8.3 Control Problem and Conclusions

We investigated the control scheme of our squeezer, which should generate sta-
ble, fixed quadrature squeezing, as a potential MIMO control problem. AMIMO
problem is present, if the output of one feedback control loop has an impact on
the other control loop. In our case, we characterised the influence of the cavity
lock on the pump lock and vice versa. The result was that the two feedbackloops
are completely decoupled, due to the utilised modulation schemes. A disturbance
injected by one of the considered control loops is frequency shifted to higher fre-
quencies by the demodulation stage of the other feedback loop. The resulting
up-shifted frequency part is well above the unity gain frequency and has there-
fore no impact on the performance of the feedback loop. Even more important
is that the relation between the injected disturbancex and the frequency-shifted
signaly is not linear. There is no meaningful TFG(s) = y(s)/x(s) and thus
linear control techniques can not be applied. To conclude, we can state that the
two control loops can be seen as two decoupled SISO systems.
It is possible to extend the control problem by adding a third variable, given by
the feedback loop, which controls the phase of the LO and thereby defines the
detection angle of the HD. The consideration of the LO lock can be sensible for
a detailed investigation of phase fluctuationsθ̃ caused by the two other locks,
which would degrade the squeezing strength [104, 106]

R
′

± ≈ R± cos2(θ̃) +R∓ sin2(θ̃). (8.11)

Another sensible case including the LO lock is given by experiments trying to
measure small signals via a homodyne detection scheme, since these signals
would be amplified by the strong LO. Due to these examples, we investigated the
case including our LO lock. Although we did not need a highly stable LO lock
at that moment, these investigations point out options for future experiments.
In analogy to the first investigations, we were able to directly state that a distur-
bance injected by the LO feedback loop has no impact on the dither and cavity
control loops, because of the implemented modulation schemes. However distur-
bances injected by the other two feedback loops had an impact on the LO locking
loop, which is realised via a modulation-free, polarisation-based homodynede-
tection scheme. Firstly a disturbance injected by the OPO lock directly affects
the relative phase between the squeezed output and the LO, which is explainable
by the phase response of a cavity with respect to detuning, induced by thedistur-
bance. Secondly a disturbance injected by the dither lock, where the actuator of
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Figure 8.6: Spectrum of a twice modulated carrier light field, withΩ1 > Ω2. The
spectrum demonstrates that a disturbance atΩ2 is preserved.

the control loop also acts as the phase modulator, can be expressed as sidebands
of sidebands related to a electromagnetic fieldEin = E0e

iω0t [107]

Eout = E0e
iω0teim1 cos Ω1t+ϕ1eim2 cos Ω2t+ϕ2 , (8.12)

wherem1,2 are the modulation indices,ϕ1,2 the modulation phases andΩ1,2 the
modulation frequencies.Ω1 denotes the dither modulation frequency andΩ2

denotes a disturbance with this specific frequency. Expanding Eq. 8.12 allowed
for a frequency analysis ofEout

Eout =
N∑

n=0

ane
iωnt = E0

[

eiω0t +
im1

2

(

e(iω0+Ω1)t + e(iω0−Ω1)t
)

+
im2

2

(

e(iω0+Ω2)t + e(iω0−Ω2)t
)

− m1m2

4

(

e(iω0+Ω1+Ω2)t + e(iω0−Ω1+Ω2)t + e(iω0−Ω1+Ω2)t

+ e(iω0−Ω1−Ω2)t
)]

(8.13)

With the help of this frequency analysis, illustrated in Fig. 8.6, it was evident that
a disturbance atΩ2 would have an impact on the LO feedback loop and that we
would be able to characterise the system via transfer functions, since the distur-
bance atΩ2 is preserved.

These non-vanishing coupling terms lead to the fact, that the control of a
squeezer, including feedback loops for the OPO, the pump and the LO, can be
described as a MIMO control problem. Although we did not implement a MIMO
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control scheme, it is important to recognise that the control scheme of a squeezer
can be improved and benefit from a suitable modern control approach, which
is inherently capable of handling the unwanted coupling terms, if needed in the
future.
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9
Local Control of a Triple Pendulum Suspen-
sion

Earthbound interferometric gravitational wave detectors need to isolate theirop-
tical components from seismic noise to reach their desired sensitivity. Without
a seismic isolation system, seismic noise would limit the capability of detect-
ing elusive signals like gravitational waves. Usually this isolation is realised by
suspended optics, where the optical component can be seen as an end mass of
a pendulum. The frequency response of such a driven, damped harmonic os-
cillator rolls of with 1/f2 above its resonance. This suppression of1/f2 is not
sufficient, which is why state-of-the-art GWDs utilise triple/quadruple pendulum
suspensions reaching a suppression of1/f6 or 1/f8 above their resonances, re-
spectively. However on resonance the root mean square (RMS) motion of the
lower test mass (end mass) is excited. Due to this RMS motion enhancement
triple pendulum suspensions require active control loops, damping the pendu-
lum eigenmodes of each degree of freedom (DOF). The damping of the pendu-
lum resonances is known aslocal control and needs to be distinguished from
global control, which describes the feedback loops keeping the interferometer at
its required operating point. The multiple input multiple output (MIMO) local
control problem is usually addressed by traditional control approaches, whereas
the system transfer functions, used for the control design, have beenmeasured
from co-located sensor/actuator pairs on the upper stage of the suspension. How-
ever, the limitation of this approach is the lack of direct information about the end
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mass motion, which needs to be minimised. That’s why we directly measured
the motion of the lower test mass with respect to an excitation injected at the
upper mass. It is noteworthy that we operated the system in the small displace-
ment regime, assuming that linearised models are able to accurately describe the
system. With the help of the obtained frequency response data we introducea
host of modern control tools potentially enhancing the performance of the sus-
pension system. The advantage of a systematic control approach is its capability
of dealing with inherent cross-correlations of the triple pendulum suspension. It
is therefore suitable for controlling a complex MIMO system.

9.1 Harmonic Oscillator

The theoretical concept of why suspended optics are suitable as seismic isolation
systems is based on the frequency response of a one dimensional, driven, damped
harmonic oscillator given in the time domain by

mẍ(t) + 2mγẋ(t) + kx(t) = Fext(t). (9.1)

Herem denotes the mass,k the spring constant,γ the damping factor, which is
proportional to the velocitẏx(t) andFext the external force acting on the system
[108]. Taking the Fourier transform ofx(t)

X(ω) =
1√
2π

∫ ∞

0
x(t)e−iωtdt (9.2)

and the relation

(iω)nX(ω) =
1√
2π

∫ ∞

0

δnx(t)

δtn
e−iωtdt (9.3)

into account results in the frequency domain expression of the driven, damped
harmonic oscillator

m
(

2iγω + ω2
0 − ω2

)

X(ω) = Fext(ω), (9.4)

with ω the angular frequency andω0 =
√

k/m the resonance frequency of the
oscillator. Rearranging Eq. (9.4) results in a transfer function, which frequency-
dependently describes how the oscillator is displaced by an external force

G(iω) =
X(ω)

Fext(ω)
. (9.5)
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Figure 9.1: Bode plot for a driven, damped harmonic oscillator with varying
damping factorsγ and a resonance frequencyf0 = 1 Hz.

Gain and phase of the transfer function G(s) are given by

|G(iω)| =
1

m
√
(
ω2

0 − ω2
)2

+ (2γω)2
, (9.6)

ϕ(ω) = arctan

(
2ωγ

ω2
0 − ω2

)

(9.7)

and shown for a varyingγ and a resonance frequencyf0 = 1 Hz in Fig. 9.1.
Fig. 9.1 highlights that for frequenciesf < f0 the system shows a constant
response to an external force, whereas on resonance the system response is in-
creased significantly and the phase of the system drops by180◦. The damping
factorγ effects the magnitude of the system response, the steepness of the phase
loss and therefore the FWHM∆f of the resonance used to define the qualityQ
for harmonic oscillatorsQ = f0/∆f . For frequencies above the resonance the
external force is suppressed by a factor1/f2, pointing out that seismic isolation
can be realised by harmonic oscillators. If the suppression factor of1/f2 is not
sufficient, it can be enhanced by cascading multiple harmonic oscillators. Re-
garding Eq. (5.6)n-cascaded harmonic oscillators result in a suppression factor
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Figure 9.2: Amplitude spectral densities of a harmonic oscillator for variousγ
andT = 296 K, m = 1 kg andf0 = 1 Hz.

of 1/f2n above thenth resonance.
Avoiding an increased RMS motion of the harmonic oscillators requires active
damping of their eigenmodes and cannot be achieved by increased dampingfac-
torsγ. The reason for this is given by the fluctuation-dissipation theorem with
an associated power spectrum of the system’s fluctuating motion [109]

X2
therm =

4kBTγ

m
(
ω2

0 − ω
)2

+ γ2ω2
, (9.8)

wherekB is the Boltzmann constant andT the temperature. The amplitude spec-

tral densities
√

X2
therm(ω) of the motion of a single harmonic oscillator for var-

ious γ is shown in Fig. 9.2 withT = 296 K, m = 1 kg andf0 = 1 Hz. The
simulation shown in Fig. 9.2 demonstrates that an increased damping factorγ

results in a broadband increase of the amplitude spectral density
√

X2
therm(ω)

of the motion of the harmonic oscillator. The energy of the resonance dissipates
into the system and thereby decreases the sensitivity. To evade this sensitivity
limit small damping factors are desired, resulting in an enhancement of RMS
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Figure 9.3: Modified lower mass of the suspension.

motion on resonance, which can be suppressed by active damping extracting en-
ergy from the system.

9.2 Characterisation of a Triple Pendulum
Suspension

We characterised a triple pendulum suspension by transfer functions, measuring
the motion of the upper (top-top) and lower (top-bottom) test mass with respect
to an excited motion of the upper mass. We wanted to augment the commonly
used top-top measurements with direct information about lower mass motion to
enable a host of systematic control approaches to enhance the performance of
the system. Our investigated triple pendulum suspension is almost identical with
the suspension used for the 10 m prototype [110] reference cavity, see Fig. 9.4,
and its design was inspired by the suspension system for the GEO600 mode
cleaner [111]. The only difference between our setup and the 10 m prototype
setup was the lower test mass. Instead of a low loss Suprasil 2 Grade mirror, we
utilised a compound aluminium/brass structure with a highly reflective mirror
(⊘ = 1 inch) in its centre, see Fig. 9.3. Our end mass had the same mass and mo-
ments of inertia as the original end mass to guarantee an identical performance of
the suspension, but at significantly lower cost, and offering increasedvariability.
The important design parameters of the triple pendulum suspension are shown in
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Table 9.1: Parameters of the reference cavity suspension [112].

Parameter Value
Total length 774.2 mm
Total mass 2714 g
Upper mass 995 g
Intermediate mass 873 g
Lower mass 846 g
Wire diameter upper stage 152.4µm
Wire diameter intermediate stage 101.6µm
Wire diameter lower stage 55.2µm

Table 9.1, and Fig. 9.4 presents a schematic of our system. The triple pendulum
suspension provided two vertical isolation stages. The first was given by two
cantilevers located at the top of a cage and holding the upper mass. The second
stage was built into the upper mass. It is noteworthy that the centre of mass of
the lowest mass was not identical with its suspension point. This was desired to
ensure a suitable restoring force, although it introduces coupling between modes.
The interested reader is referred to [112] for a detailed description of the design
process of the reference cavity suspensions.

9.3 Degrees of Freedom

There are six degrees of freedom for a rigid body, see Fig. 9.5. In thecase of
suspended optics, these correspond to

• Longitudinal: Parallel mirror motion with respect to the optical axis.

• Sideways: Horizontal motion with respect to the optical path.

• Vertical: Vertical motion with respect to the optical axis.

• Yaw: Rotation around the vertical axis.

• Pitch: Rotation around the sideways axis.

• Roll: Rotation around the longitudinal axis.
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Figure 9.4: Technical drawing of the triple pendulum suspension includingdi-
mensions. The upper mass is attached to cantilevers at the top, which
provide a vertical isolation stage. A second vertical isolation stage is
located inside the upper mass. The centre of mass of the lower mass
is not identical with the suspension point, which is desired to ensure
a suitable restoring force, although it introduces coupling between
modes.
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Figure 9.5: Six degrees of freedom for a rigid body.

The DOFs are usually not decoupled from each other, introducing
cross-correlations, which are inherently addressed by a modern control approach.
This is a significant advantage of modern control techniques in comparisonto
traditional control, where the coupling terms need to be addressed individually
leading to an increased complexity of the control scheme.

9.4 Co-located Sensor/Actuator

Six co-located sensor/actuator pairs at the upper mass were used to damp and
read out the eigenmodes of the suspension system. The sensor/actuator pairs are
known as Birmingham Optical Sensor and Electro-Magnetic actuators (BOSEMs)
[113], see Fig. 9.6 [114]. A BOSEM consists of a light-emitting diode (LED),
whose light field is collimated by two lenses before it propagates through an
aperture. This aperture creates a flat-top beam needed to ensure that the detected
intensity is linearly dependent on the position of the flag. The magnetic flag is
attached to the upper mass, which allows for sensing its motion, since a chang-
ing position directly affects the detected intensity. The position of the flag can
be changed by the coil actuator, which generates a magnetic field acting on the
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Figure 9.6: The assembly and functionality of a BOSEM consists of a LED,
whose light is converted into a flat-top beam by the combination of
two lenses and an aperture. The detected intensity is proportional to
the position of the magnetic flag, attached to the upper mass. The
position of the flag/upper mass can be controlled by a coil actuator,
which generates a magnetic field acting on the flag [114].

magnetic flag. The direction of the actuation depends on the sign of the voltage
applied to the coils. Since the BOSEM assembly is able to sense and act on the
upper mass motion, it provides a suitable sensor/actuator pair for active damp-
ing of the system’s resonances. To enable the implementation of linear control
techniques, the output voltage of the PD must be linearly dependent on the flag
position. We tested this requirement by mounting the flag onto a micrometer
table and shifting it through the beam path. The results are shown in Fig. 9.7
and demonstrated that the normalised voltage curve of all six BOSEMs exhib-
ited a wide linear range. The slopes of all curves were identical, meaning that
the system responses of the BOSEMs were identical and that there was noneed
for additional scaling factors. The rest position (0 mm) was set to50% of the
maximum voltage to maximise the dynamic range of the system.
Another requirement to guarantee a linear behaviour of the system was that the
magnetic force of the coil acting on the flag is position independent. The fulfil-
ment of this requirement was shown via a Mathematica script written by Mark
Barton [115]. The script demonstrated that the force reaches a maximum for
given geometry parameters of coil and flag with respect to the distance between
the centres of coil and magnet. The maximum is the desirable operating point,
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Figure 9.7: Normalised voltage response of all six BOSEM PDs with respectto
flag displacement.

since the force becomes position independent, considering a linear approxima-
tion. The simulation results of [115] are shown in Fig. 9.8 and were verified by
[113], where a detailed BOSEM design study and characterisation can befound.
Furthermore the utilised custom made BOSEM driver/readout electronic, which
satisfies the noise requirements of the 10 m prototype reference cavity, were pro-
vided by the 10 m prototype group and designed by Tobias Westphal [112].

9.5 Optical Levers

The results presented in [113] show that BOSEMs are suitable actuators/sensors
for linear systems. Furthermore our modern control approach should incorpo-
rate the frequency-dependent motion of the lower mass as well. For this reason
we set up two optical levers measuring the lower mass motion for three DOFs
with respect to an excitation injected via the designated BOSEMs [116]. We
decided to measure only yaw, pitch and longitudinal motion, since these DOFs
strongly disturb the output of interferometric measurements with respect to the
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is given by the maximum force (taken from [115]). The maximum
describes the point where the force becomes approximately position
independent.

other DOFs. The three other DOFs describe motions which are perpendicular to
the optical axis and therefore theoretically don’t disturb the output of the interfer-
ometer. Realistically a generic coupling factor of 1:1000 can be assumed. The
optical levers consisted of collimated laser beams, required to ensure a linear sys-
tem response by avoiding motion-dependent beam size variations. The incident
laser beams impinged on the mirror of the end mass under anglesθ1,2 and got
reflected. Two quadrant photodiodes (QPD1,2) at a distance ofl1,2 detected the
light and the measured data was used to compute the actual lower mass motion
of the considered DOFs. A schematic of this setup is shown in Fig. 9.9.

9.5.1 Signal Processing of QPD Signals

A quadrant photodiode consists of four photosensitive areas (A-D) and is schemat-
ically illustrated in Fig. 9.10. The location of an impinging laser beam can be
calculated by

x =
(IB + ID) − (IA + IC)

Itotal
and (9.9)

y =
(IB + IA) − (ID + IC)

Itotal
, where (9.10)

Itotal = IA + IB + IC + ID. (9.11)
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Figure 9.9: Schematic of the two optical levers consisting of two collimated laser
beams, which impinge with anglesθ1,2 on the lower test mass. The
reflected beams are detected byQPD1,2 at a distancel1,2.
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Figure 9.10: Schematic of a QPD consisting of four photosensitive areas.
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Figure 9.11: The dashed line defines the border between leftL = A + C and
rightR = B + D halves of the QPD. The orange Gaussian profile
is displaced by∆xwith respect to the centred blue Gaussian profile.

The differences between the detected intensitiesIA−D of the left and right halves
or upper and lower halves determine the beam position for x/y, respectively. The
normalisation factorItotal is needed to eliminate the influence of intensity fluc-
tuations. To determine the exact position of the laser beam, we needed to take a
Gaussian beam profile into account. We derived the intensity valuesI(∆x) for
a displacement∆x of the beam along thex-axis. For reasons of simplicity we
neglected the18µm gap between the photosensitive areas [117]. This is a rea-
sonable assumption as the beam spot size is always much larger than the sizeof
the gap. Fig. 9.11 illustrates the considered problem, where the orange Gaussian
beam is displaced with respect to the centred blue Gaussian. It is sufficient to
consider only the leftL = A + C and rightR = B + D halves of the QPD
to calculate a displacement along thex-axis. The total detected intensity of a
Gaussian beam is given by

Itotal = I0 (w(z))

∫ ∞

−∞
e

r
w(z)dr = I0

√
π

2
w0, (9.12)

with w(z) = w0, since the laser beam is collimated. The intensity difference
between the left/right halves of the QPD introduced by a∆x displacement of the
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laser beam can be expressed as

IL−R = I0

∫ ∞

−∞
e

r
w0

− ∆x
w0 dr − 2I0

∫ 0

−∞
e

r
w0

− ∆x
w0 dr

= Itotal − 2 I0

∫ 0

−∞
e

r
w0

− ∆x
w0 dr

︸ ︷︷ ︸

orange hatched area

(9.13)

IL−R
Itotal

= 1 − erfc

(

∆x
√

2

w0

)

= I(∆x), (9.14)

with erfc the complementary error function. For reasons of symmetry the hatched
area is subtracted twice from the total intensityItotal to obtainI(∆x). I(∆y) can
be calculated analogously toI(∆x) and is given by

IU−L
Itotal

= 1 − erfc

(

∆y
√

2

w0

)

= I(∆y), (9.15)

whereU /L define the upper/lower halves, respectively. For small displacements
∆x and∆y the Eq. (9.14) and Eq. (9.15) can be linearised via a Taylor expansion
of the error function [118], which results in

I(∆x)linear = − 2√
π

∆x
√

2

w0
, (9.16)

I(∆y)linear = − 2√
π

∆y
√

2

w0
. (9.17)

This linearised form is essential for our investigations, since our systematiccon-
trol approach considers LTI systems. After the derivation of the motion-dependent
intensity values, we needed to determine the relation between the motion of the
end mass to the laser beam position on the QPD. The relation was determined
for the three DOFs of interest.
For a longitudinal motion∆L of the lower test mass, see Fig. 9.12, we obtained

the following relations regarding an incident laser beam, which is reflected under
an angleθ

sin(2θi) =
∆xlong,i

hi
, (9.18)

cos(θi) =
∆xlong,i

hi
. (9.19)
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∆xθ

θ

Figure 9.12: Longitudinal motion∆L of the end mass with the resultant displace-
ment∆x of the laser beam reflected under an angleθ.

?
β

2α

α

α

Figure 9.13: An end mass displaced by an angleα results in a displacement∆x
on the QPD. To obtain the resulting displacement the arc of the
sought angle is projected onto the surface of the QPD at a distance
l. β denotes the angle of incidence for the undisplaced case.

2hi is the additional path length of the light, whereasi = 1, 2 denotes the asso-
ciated optical lever. Solving one of the equations forhi and inserting the result
into the other leads to the longitudinal displacement∆xlong,i

∆xlong,i = 2 sin(θi)∆L. (9.20)

A lower test mass displaced by the angleα results in a displacement∆xyaw,i

on the QPD. To obtain the resulting displacement the arc of the sought angle is
projected onto the surface of the QPDi at a distanceli and∆xyaw,i becomes

∆xyaw,i = 2liα. (9.21)

It is evident from Eq. (9.20) and Eq. (9.21) that both motions yaw/longitudinal
result in a∆x. Hence, the total displacement for thex-axis is given by the
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combination

∆xi = ∆xlong,i + ∆xyaw,i = 2 sin(θi)∆L+ 2liα. (9.22)

We set up two optical levers under different angles (see Table 9.2), to be able
to decompose∆xi into its individual components. Considering two QPDs and
Eq. (9.22) leads to an equation system

∆x1 = 2 sin(θ1)∆L+ 2l1α,

∆x2 = 2 sin(θ2)∆L+ 2l2α. (9.23)

Solving one equation for∆L orα and substituting the result into the other leads
to

∆L =
l2∆x1 − l1∆x2

2 (l2 sin(θ1) − l1 sin(θ2))
, (9.24)

α =
x2 sin(θ1) − x1 sin(θ2)

2 (l2 sin(θ1) − l1 sin(θ2))
. (9.25)

With the known parametersli andθi it is possible to compute∆L andα from
the measured data of the QPDi.
An angular pitch displacementρ of the end mass results in a∆yi displaced laser
beam on the QPDi and is determined analogously to a yaw displacement

∆yi = 2liρ. (9.26)

9.5.2 Characterisation of the Optical Levers

We set up two optical levers, see Fig. 9.9, to measure the transfer functions re-
quired for a systematic control approach, whereby the measured lower test mass
motion defines the output and an excitation injected via the BOSEMs the input
of our system. The laser beam of the inner optical lever impinged onto the end
mass mirror under an angle ofθ1 = 8◦ and was detected by QPD1 at a distance
l1 = 42 cm, with respect to the lower mass. The parameters of the outer opti-
cal lever wereθ2 = 38◦ andl2 = 27 cm. Both QPDs were placed in the waist
w0 = 700µm of their nearly collimated beams. The mode matching was needed
to ensure that a displaced laser beam was not changing its diameter and therefore
spoiling the outcome of the measurement. For example a displacement, which
would also reduce the beam size, with respect to the plane of the QPD, would
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Table 9.2: Parameters of the optical levers.

Parameter Value
Lengthl1 of the inner optical lever 42.0 cm
Lengthl2 of the outer optical lever 27.0 cm
Angleθ1 of the inner optical lever 8◦

Angleθ2 of the outer optical lever 38◦

Waistw0 of the laser beams 700µm

result in an erroneously large displacement value. The parameters of theoptical
levers are presented in Table 9.2.
To verify the functionality of our setup we needed to calibrate the optical levers

[119]. Firstly we replaced the lower test mass by a mirror, which was mounted
onto a multi-axis micrometer table capable of simulating a pure yaw/pitch dis-
placement of the end mass. Secondly the mirror was mounted onto another mi-
crometer table, which simulated a longitudinal displacement. Intensity curves
measured by the QPDi were compared to theoretically expected intensity curves
given by Eq. (9.14-9.17). We used the above derived relations

∆xi = ∆xlong,i = 2 sin(θi)∆L

∆xi = ∆xyaw,i = 2liα

∆yi = 2liρ (9.27)

for the calculation ofI(∆xi)/I(∆yi). The results for a yaw, pitch and longitu-
dinal motion are shown in Figs. 9.14-9.16, whereas the black curves correspond
to the measured∆y, the red curves to the measured∆x, the blue curves to sim-
ulated displacements and the green curves to linear fits of the displacement. The
results for an angular yaw displacement, see Fig. 9.14, demonstrated that the
optical levers worked as required. The simulated∆x displacements (in blue)
are in very good agreement with the obtained data (in red). The inner optical
lever (QPD1) was more sensitive to angular displacements, which was expected,
sincel1 > l2. The linear fits (in green) match the linear region of the measured
data and set an upper limit for the excitation used to generate the system trans-
fer functions. A matched excitation ensures that the system response stays in
the linear regime. This is required, since we consider LTI systems. The∆y
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Figure 9.14: The upper graph shows the measured results for a yaw displace-
ment∆x1/y1 and compares them with the theoretically expected
displacement and a linear fit. The linear fit determines the linear
region of system, which is essential for the implementation of lin-
ear control techniques. The lower graph presents the results for the
second optical lever. It can be seen that the first optical lever is
more sensitive to a yaw displacement than the second one, since
l1 > l2.[119]
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Figure 9.15: The upper graph shows the measured results for a pitch displace-
ment∆x1/y1 and compares them with the theoretically expected
displacement and a linear fit. The linear fit determines the linear re-
gion of system, which is essential for the implementation of linear
control techniques. The lower graph presents the results for the sec-
ond optical lever. It can be seen that the first optical lever is more
sensitive to a pitch displacement than the second optical lever, since
l1 > l2.[119]

displacement should ideally be zero for a yaw motion.∆y of the inner optical
lever is in very good agreement with this assumption, but the outer optical lever
showed a non-zero response. The behaviour of the outer optical lever was also
observed for∆x/y of the pitch/longitudinal calibrations, respectively. This lead
to the conclusion that the orientation of QPD2 is slightly rotated relative to the
optical axis. We circumvented this problem by choosing appropriately small ex-
citations, which allow us to neglect the effect of the rotation. Another possibility
would have been the application of a rotation matrix in the post-processing of
the measured data. The results for pitch are comparable with the yaw results.
The simulated displacements are again in very good agreement with the mea-
sured data (in black) and the linear fit defines the upper limit for the excitation.
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Figure 9.16: The upper graph shows the measured results for a longitudinal dis-
placement∆x1/y1 and compares them with the theoretically ex-
pected displacement and a linear fit. The linear fit determines the
linear region of system, which is essential for the implementation
of linear control techniques. The lower graph presents the results
for the second optical lever. It can be seen that the second optical
lever is more sensitive to a longitudinal displacement than the first
optical lever, sinceθ1 < θ2.[119]

As mentioned above, QPD2 showed a non-vanishing∆x response, which is due
to its rotated mounting. The longitudinal results show an excellent agreement
between the simulated and measured data, with the outer optical lever more sen-
sitive to a longitudinal motion. This was expected, sinceθ1 < θ2. The upper
excitation limit was again obtained from the linear fit and the outer optical lever
showed again the characteristic behaviour of a rotated QPD2. We demonstrated
with this calibration that the two optical levers performed as required.
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9.6 Characterisation of the Suspension Dynamics

For the implementation of a modern controller, which actively damps the eigen-
frequencies of the triple pendulum suspension, we needed to determine thesys-
tem dynamics corresponding to the three DOFs of interest. For a complete sys-
tem description a transfer function matrix determining every possible input/out-
put relation was required. How the outputs of the optical levers are relatedto the
DOFs is derived in Eqs. (9.24)-(9.26). We considered the control inputs to be
virtual actuators, which directly excite one mode of the three DOFs. The virtual
actuatorsul, uy andup refer to specific BOSEM combinations. The BOSEMS
attached to the upper mass named with Latin letters are shown in Fig. 9.17 [112]
and the derived combinations are given by the utilised BOSEMs (D,E,B and C),
where the indexout denotes the force of a BOSEM acting on the upper mass

ul =
1

2
(Dout + Eout), (9.28)

uy =
1

2
(Dout − Eout), (9.29)

up =
1

2
(Bout − Cout). (9.30)

To address the correct mode the relationsDout = Eout andBout = Cout needed
to be satisfied, where the force acting on the upper mass depends on the inputs
of the coil actuatorsDcoil, Ecoil, Bcoil andCcoil. Ideally Dcoil = Ecoil and
Bcoil = Ccoil due to the identical BOSEM design. We checked these relations
for each DOF by applying constant voltages to the coil inputs and comparing
the responses of the system with the calibration curves of the optical levers. The
resultsBcoil = Ccoil satisfied the relationBout = Cout. HoweverDcoil = Ecoil
did not satisfy the relationDout = Eout. We needed to apply an additional scal-
ing factorDcoil = 0.8725 · Ecoil to fulfil the requirementDout = Eout. The
reason for this factor was a missing magnetic flag holder of BOSEM D, which
decreased the magnetic force.

9.7 Control and Data Acquisition System

We used the digital control and data acquisition system (CDS) [120] to actuate
the triple pendulum suspension and read out its response. CDS was designed
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Figure 9.17: The schematic (taken from [112]) shows the upper mass (green)
with attached co-located sensor/actuator pairs. A frame (yellow)
connected with the cage of the suspension clamps the actuator and
readout units (red) of the BOSEMs, whereas the magnetic flag (light
green) is attached to the freely movable upper mass.
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at Caltech to facilitate the operation of GWDs. The CDS front-end runs un-
der a real-time Linux system providing 32 ADC-channels and 16 DAC-channels
with a 16 bit resolution. The ADC/DAC-channels incorporate matched anti-
aliasing/anti-imaging filters, respectively. The sampling rate of the system is
65.536 kHz. Real-time signal processing is achieved by the implementation of
Simulink models. These models run on the core of a selected central processing
unit of the front-end. The real-time data is displayed via a graphical user inter-
face, called MEDM. We used built-in software called Digital Test Tools (DTT)
to obtain the frequency response data of the triple pendulum suspension.DTT
computes the desired transfer function via assigned measurements of the input-
s/outputs. An interface between DTT and another program called Foton allows
for shaping of the excitation signals with the help of digital filters.

9.8 System Identification

Obtaining good quality transfer functions was not easy, due to the dynamic
range of 150 dB between signals. The white noise excitation signals required
frequency-dependent shaping. We accomplished this via digital filters, which
had the shape of the inverted suspension transfer function regarding the excited
DOF. This shaping and an appropriate amplitude of the white noise ensured that
no sensor saturation effects occurred and that the input was strong enough to dis-
tinguish test mass motion from the existent noise floor. Furthermore the digital
filter had to account for the transfer function of the coil driver electronics given
by

Gdriver(s) =
(s+ 50)2

(s+ 1)2
. (9.31)

We operated the system in the small displacement regime, assuming that lin-
earised models are able to exactly describe the system. This assumption allows
for the usage of linear control techniques, although the overall system isnon-
linear.
For our input-output model we considered three inputs and six outputs. Because
of this highly coupled and resonant system, automated system identification tools
performed poorly. The Matlab subspace routine (n4sid) and the prediction error
algorithm (PEM) were unable to properly fit models to the frequency response
data. Commonly the zeros, affecting the transient response, could not bemod-
elled. As an outcome of this we manually fitted individual transfer functions,
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where we needed to place the poles and zeros of the system. We also had to
address the Q-factor of the poles and zeros and the system gaink. A transfer
function containing only resonant poles and zeros can be formulated as

H(s) = k

∏m
i=1

(

s2 + 2ζzi
ωzi

s+ ω2
zi

)

∏n
j=1

(

s2 + 2ζpj
ωpj

s+ ω2
pj

) , (9.32)

whereωzi
andωpj

are the frequencies of the system zeros/poles andζzi
andζpj

are the corresponding damping factors. The Q-factor isQ = 1/2ζ andm < n.
An advantage of our approach was the fact that we could choose our poles/zeros
manually, since the resonance frequencies of the system shifted by verysmall
amounts over time. Concerning an automated system identification method a
frequency shift could raise a problem, since one mode could be addressed by
two or more frequencies. We characterised the system by determining two trans-
fer function matrices. The first was given by top-top transfer functions, where
the co-located sensors/actuators were used as outputs/inputs. The second matrix
was given by top-bottom transfer functions, where the system was excited via
the coil actuator and the output was given by the readout of the optical levers. As
presented in Fig. 9.18 and Fig. 9.19 the fitted models were in very good agree-
ment with the measured frequency response data. Only the transfer function
corresponding to a longitudinal excitation and the pitch output showed character-
istics we were not able to adequately model or interpret. A further sophisticated
investigation of the closed-loop performance regarding this transfer function is
required to describe the present dynamics. Not only the resonance frequencies
for longitudinal, yaw and pitch, shown in Table 9.3, contributed to the overall
system dynamics, since resonance frequencies (not explicitly measured) of other
DOFs (roll/vertical) could also be observed. It is also worth mentioning that the
determination of the Q-factors was challenging for a variety of modes, which
could affect the performance of the control design. A solution for this problem is
given by measuring the transient response of a selectively excited mode,which
would yield a more exact Q-factor.

An important requirement was that the system is described by one state equa-
tion describing the system evolution, although we used top-top and top-bottom
frequency data. The reason for this is that the system states evolve uniquely,
where the measured differences were caused by the C matrix, which weights the
states to the outputs. We compiled the fitted transfer functions into a 6x3 transfer
function matrix and used the Matlab functionsbalreal andmodredyielding an
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Figure 9.18: Comparison of the fitted models (in red) and the measured fre-
quency response data (in black) for the top-top transfer functions.
The fitted models are in good agreement with the measured data.

Table 9.3: Resonance frequencies of the three DOFs of interest.

Parameter Value
Longitudinal 0.64 Hz

1.38 Hz
2.51 Hz

Yaw 0.88 Hz
1.66 Hz
3.14 Hz

Pitch 1.03 Hz
5.20 Hz
10.51 Hz
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tions. The fitted models are in good agreement with the measured
data.
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accurate model containing≈ 60 states. A state-space model was formulated

ẋ = Ax+Bu (9.33)

y = Cx+Du (9.34)

=

[

Ctb
Cbs

]

x+

[

Dtb

Dbs

]

u, (9.35)

whereA ∈ R
n×n,B ∈ R

n×3,C ∈ R
6×n andD ∈ R

6×3. We definedCtb, Cbs ∈
R

3×n andDtb, Dbs ∈ R
3×3 to distinguish between the subsystems. The state-

space model can be converted into a transfer function, see Chap. 5, via

G(s) = C(sI −A)−1B +D. (9.36)

A common notation is

G(s) =

[

A B

C D

]

. (9.37)

We defined the subsystemsGtb andGbs, describing the transfer functions for
top-bottom and top-top, respectively by

Gtb(s) =

[

A B

Ctb Dtb

]

, Gbs(s) =

[

A B

Cbs Dbs

]

, (9.38)

which when combined yield

G(s) =






A B

Ctb Dtb

Cbs Dbs




 . (9.39)

9.9 Modern Controller Synthesis

Commonly utilised controllers, which actively damp the eigenmodes of the sys-
tem, use for examplevelocity feedback. HerebyBu = −Gẋ, directly affect-
ing the damping term, such that̃C = C + G. A limitation of velocity feed-
back is spillover, where unmodelled high-frequency dynamics can causeinsta-
bilities [121]. Another disadvantage is the increasing control effort towards
high frequencies, injecting noise into the system [122]. Another example is the
modal control approach, implemented for LIGO’s quadruple mirror suspensions
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[122, 123], modelling the system as a second-order matrix differential equation.
While this approach is promising, it must be noted that an estimator was needed
to determine all system states [122, 124] and hence the performance of thisap-
proach depends on the accuracy of the system model.
Our control design incorporated the motion of the lower test mass, which is usu-
ally not assessed for control approaches, although the RMS motion of theend
mass defines the performance of the suspension system. There are no previous
studies examining the effect of controllers on the end mass motion. We exam-
ined the implementation of nominalH2 controller synthesis techniques, which
were developed for highly complex MIMO systems. With a general control for-
mulation it is also straightforward to examineH∞ synthesis techniques.

9.9.1 Generalised Control Formulation

We introduce the generalised feedback configuration to convert a control problem
into aH2/H∞ optimisation problem [125]. For this approach these signals need
to be modelled:

• u, control input/s,

• w, disturbance input/s - the impact of the disturbance on the system must
be minimised,

• y, the measured output/s and

• z, the performance objective to be minimised.

Fig. 9.20 presents the standardised framework which can be written as
[

z
y

]

= P (s)

[

w
u

]

=

[

P11(s) P12(s)
P21(s) P22(s)

] [

w
u

]

, (9.40)

with vectorsu,w, y andz and the transfer function matrixP . Eq. (9.40) shows,
how the controlled inputu and the input disturbancew are related to the out-
puts of a closed-loop system. Herey is the measured output andz defines a
performance objective, which shall be minimised. In generalz is a virtual out-
put, whereas in our casez can be measured, since our performance criterion is
the minimisation of the lower mass motion. We can relatew to z by the lin-
ear fractional transformFl(P,K) describing the closed-loop system dynamics
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Plant P

K
u y

w z

Figure 9.20: A generalised feedback interconnection is shown in this blockdia-
gram. The input/output relation ofw/z is given by the linear frac-
tional transformFl(P,K). The control objective is to compute a
controllerK that minimises the impact of a disturbancew on the
performance criterionz.

including the controller equationu = Ky

z = Fl(P,K)w, (9.41)

where
Fl(P,K) = P11 + P12(I −KP22)−1P21 (9.42)

and K is the controller.H2/H∞ control designs provoke the minimisation of the
H2/H∞ norms ofFl(P,K), respectively.

9.9.2 H2 Optimal Control

The solution to theH2 optimal control problem is the controllerK, which min-
imises theH2 norm [125]

‖F (s)‖2 =

√

1

2π

∫ ∞

−∞
tr [FH(jω)F (jω)] dω, (9.43)

whereF (s) := Fl(P,K). Minimising this norm minimises the RMS output
powerz of the generalised system in the presence of a unit-intensity white noise
disturbance input [125].
In our case the unknown disturbance is seismic noise. Fig. 9.21 shows the seis-
mic noise spectrum (black)in the x-direction, obtained via geophones located in
our laboratory, and an associated 15th-order model (red). The shorthand notation
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Figure 9.21: Seismic noise spectrum in the x-direction in the laboratory and its
associated fit.

Plant P
y

w z

u

~w
Ww

Figure 9.22: Coloured noise disturbances can be modelled with additional dy-
namicsWw. In our caseWw was chosen such that the noise spec-
trum w̃ matched the seismic noise spectrum. We reformulated the
plant dynamics to include the augmented noise.

of the seismic noise model is given by

Ww(s) =

[

Aw Bw
Cw Dw

]

. (9.44)

The seismic noise spectrum shows an overall1/f characteristic and is therefore
a non-white noise. To adequately include the effect of the disturbance, we had
to augment the plant with additional dynamics, which coloured the noise. The
plant and noise dynamics are given by Eqs. (9.37), (9.44), respectively. We take
an additional step to point out the series connection of two state-space models
presented in Fig. 9.22. The state space equations are expressed as
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ẋw = Awxw +Bwuw (9.45)

w̃ = Cwxw +Dwuw (9.46)

ẋ = Ax+Bw̃ +Bu (9.47)

y = Cx+Dw̃ +Du, (9.48)

with C andD defined in Eq. (9.35). The series connection of the two systems
was calculated by substituting Eq. (9.46) into Eqs. (9.47),(9.48)

ẋ = Ax+B(Cwxw +Dww) +Bu (9.49)

y = Cx+D(Cwxw +Dww) +Du (9.50)

and the dynamics of the augmented system were
[

ẋ
ẋw

]

=

[

A BCw
0 Aw

] [

x
xw

]

+

[

BDw

Bw

]

w +

[

B
0

]

u (9.51)

y =
[

C DCw
]
[

x
xw

]

+DDww +Du. (9.52)

This was transformed into a generalised plant P

P =








A BCw BDw B
0 Aw Bw 0

Ctb DtbCw DtbDw Dtb

Cbs DbsCw DbsDw Dbs







, (9.53)

wherez = Gtb(u + w̃) describes how the controlled inputu and the distur-
bancew couple from the upper mass to lower mass motion. Thus,z defines the
performance criterion we wanted to minimise, which is the RMS motion of the
end mass.y is the measured output, which is utilised for feedback control. In
our casey is given by the output of the BOSEMs. It is also possible to define
additional performance criteria.

9.9.3 H2 Mixed-Sensitivity Control

Up to now we only considered to minimise z. We enforced no constraints on
the characteristic behaviour of the controller or the applied control energy yet.
A well-known H2 mixed-sensitivity technique is the LQG problem, see Chap. 5
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Figure 9.23: The generalisedH2 mixed-sensitivity design enables the frequency
weighting to optimise the control performance. In our case we want
to minimise the RMS motion of the lower mass of the triple pendu-
lum z1 = Gtb(u+ w̃) and weight the control inputz2 = Wuu. The
weighting functionWu affects the controller bandwidth.

or [125]. Mixed-sensitivity techniques were first introduced inH∞ optimisa-
tion problems [126, 127], but can be transferred toH2 problems with the help
of the generalised framework. To achieve suitable feedback loops, the mixed-
sensitivity techniques allows for frequency-dependent shaping of your controller
[125]. We now show how such constraints and weights can be incorporated into
the generalised plant regarding our system. Let us consider the performance
variablesz1 andz2

z1 = Gtb(u+ w̃) and z2 = Wuu. (9.54)

z1 corresponds to the earlier introduced performance criterion, which copes with
the minimisation of the lower mass motion. In addition toz1 we introducez2,
a weighted version of the controlled inputu, setting constraints on the applied
control energy. The weightWu can be expressed as

Wu =

[

Au Bu
Cu Du

]

. (9.55)

Such a weighting is desirable as it enables us to define the bandwidth of the
designed controller. Furthermore such a weighting is a more intuitive way to
define the bandwidth in comparison to the LQG approach. A block diagram
of the optimisation problem is presented in Fig. 9.23, and the generalised plant
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becomes

P =










A BCw 0 BDw B
0 Aw 0 Bw 0
0 0 Au 0 Bu
Ctb DtbCw 0 DtbDw Dtb

Cbs DbsCw 0 DbsDw Dbs










. (9.56)

The Matlab functionh2synwas used for the controller synthesis. The result was
a complex controller consisting of 75 states whose outputu got weighted by a
transfer function

G(s) =
0.003s2 + 0.006s+ 0.003

s2 + 100s+ 2500
. (9.57)

The weighting of the controlled inputu ensured that the computed controller
did not have a differentiator characteristic. The Bode diagram of theH2 con-
troller, which should actively damp the suspension resonances, is illustrated in
Fig. 9.24. Herebyyl, yy, yp andul, uy, up are the outputs of the plant and the
controlled inputs to the plant corresponding to the three DOFs of interest, re-
spectively. Furthermore we simulated the closed-loop response of the system,
highlighting the performance of this control approach (in orange) in comparison
to the undamped case (in blue), see Fig 9.25. The simulation points out that
some of the modes are suppressed by≈50 dB without exciting other modes sig-
nificantly (or at all). It is worth mentioning thatH2 synthesis techniques are
extremely useful with very accurate knowledge of the plant. However there are
no stability guarantees for model mismatches [89]. This point is essential for
resonant systems, where a small shift in the resonance frequency may have dis-
astrous consequences. Robust control techniques could handle smallvariations,
but require modelling/estimation of uncertainties. These uncertainties limit the
performance of robust controllers. For a triple pendulum suspension the mod-
elling of uncertainties is phenomenally complex.

9.9.4 H∞ Optimal Control

The procedure forH∞ control can be described in analogy to theH2 scenario.
This time theH∞ norm is minimised

J(K) = ‖Fl(P,K)‖∞ = max
ω

σ̄ (Fl(P,K)(jω)) , (9.58)

whereσ̄ is the largest single value.H∞ control techniques try to minimise the
maximum gain value of the plant. In practise it is more convenient to design a
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Figure 9.24: Bode plot of the computedH2 controller. The input of the transfer
function is the system outputyl,y,p and the output is given by the
controlled inputul,y,p associated with the considered DOFs.
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Figure 9.25: Simulated closed-loop performance of theH2 control approach (in
orange) in comparison to the undamped case (in blue), highlight-
ing the capability of damping modes by≈50 dB without exciting
other modes significantly. The disturbance inputs and the perfor-
mance criteria with respect to the controlled DOFs are denoted as
wl, wy, wp andzl, zy, zy, respectively.
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suboptimal controller, which satisfies

‖Fl(P,K)‖∞ < γ. (9.59)

This control challenge can be solved by decreasingγ iteratively until an optimal
solution is reached [125]. It is also possible to incorporate elements from both
techniquesH2/H∞ for sophisticated multi-objective optimisation schemes.

9.10 Conclusions

We set up a triple pendulum suspension with the help of the 10 m prototype
group for a systematic controller design, which should actively damp the reso-
nant system. Our control design incorporated the RMS motion of the lower mass,
which has never been directly addressed before, although the desiredcontrol ob-
jective for suspension control is to minimise the lower mass motion. Detailed
information of this motion was obtained via two fully calibrated optical levers,
which were able to detect the motion corresponding to a longitudinal, yaw and
pitch displacement. These DOFs have the strongest impact on the output of a
Michelson interferometer. We measured the system dynamics by exciting a sys-
tem mode at the top stage and detecting the top/bottom system response for all
three DOFs. The result was a 6x3 transfer function matrix, which was used for
system identification. The manually fitted system model was put into the context
of a generalised control formulation, which was used to examine the applica-
tion of H2/H∞ controller synthesis techniques. The generalised control formu-
lation allowed for aH2 mixed-sensitivity control approach incorporating con-
troller weighting functions. We computed a powerfulH2 controller, suitable to
control this highly complex MIMO system including inherent cross-correlations.
The simulated closed-loop performance of the system highlighted the ability of
achieving damping factors of≈50 dB without exciting other modes significantly.
The current task is the experimental implementation of our control scheme. This
task also includes the derivation of a simpler controller, which can be obtained
by applyingmodel order reductiontechniques, to lower the computational com-
plexity.
It is difficult to intuitively design controllers for MIMO systems. Thereforemath-
ematical techniques become advantageous, although the generated controllers
have the same number of states as the plant, which can be impractical due to the
computational complexity. For this reason model order reduction is in general an
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area of active research.H2/H∞ techniques require more complex problem for-
mulations, but offer sophisticated and unique control design possibilities, which
could increase the performance of suspension systems.
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10
Summary and Outlook

The goal of this thesis was to pave the way for the implementation of modern
control techniques in our research field. Mathematical control techniques, inher-
ently capable of coping with undesired coupling terms, become advantageous
for complex MIMO systems for which an intuitive controller design approachis
not feasible. An example of such a complex MIMO system is a laser interfero-
metric GWD consisting of numerous nested loops; the complexity of GWDs will
be further increased by the implementation of some of the advanced techniques
considered for next generation gravitational wave detectors [128, 129]. Thus, the
application of modern control techniques can be beneficial for a systematictreat-
ment of control challenges and potentially improve the performance of a GWD.
The first step towards the defined goal was the construction of a suitable quan-
tum optical test bed for the implementation of modern control approaches. The
test bed was a three-mirror ring cavity, whose length needed to be locked tothe
frequency of a laser. We measured transfer functions to characterisethe sys-
tem. The frequency response data was used to derive a third-order state-space
model describing the plant required for the computation of a LQG controller.We
augmented the LQG controller by integral action, as with static state feedback
control the states of the system cannot converge in the presence of constant in-
put/output disturbances. Our LQG controller with additional integral action was
able to lock the cavity, and the closed-loop stability and performance were ver-
ified via step response data. We published the results in [31], and the quantum
optical test bed was already further utilised for a negative imaginary control ap-
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proach [130].
We extended the previous locking scheme by substituting the time-invariant with
a time-varying Kalman filter. This substitution allowed for the implementation
of an optimal controller, which was capable of coping with large detunings∆ be-
tween laser and optical resonator, exceeding the linear region of the error signal.
Thus, this approach was suitable as an autolocking scheme. We realised thiscon-
trol approach by utilising the singular perturbation method to simplify our system
dynamics and to permit the application of linear control techniques. The combi-
nation of error signal and detected transmitted power was used to estimate the
detuning of the cavity. We made use of this estimate to compute and implement
an optimal controller, which is able to lock the cavity from any given operating
point. The results demonstrated improved robustness to disturbances and faster
locking times in comparison to a traditional PI controller. More importantly, our
controller, incorporating a time-varying Kalman filter, automatically acquired
lock for large detunings, which correspond to the non-linear region of the error
signal, a feat which cannot be achieved by linear time-invariant controllers. The
results obtained show the superior performance of our control scheme and were
published in [32]. It is noteworthy that such a control approach could ease the
reacquisition of locks and therefore enhance the duty cycle of GWDs.
We further investigated the possibility of placing our squeezed light sourcein
the context of MIMO control problems, for which a modern control approach is
beneficial. After a detailed theoretical and experimental characterisation of our
bow-tie OPO, we tried to identify possible couplings between the pump lock and
the OPO cavity lock. The result was that the two feedback loops were completely
decoupled, this is due to the applied modulation schemes; A PDH scheme for the
OPO lock and a dither locking scheme for the stabilisation of the relative phase
between the intracavity and pump field. We added the LO lock as a third pa-
rameter, which is sensible for experiments incorporating a homodyne detection
scheme in order to amplify the detected signals. We found that the LO lock has
no impact on the other feedback loops, whereas the control loops for thepump
and OPO influence the LO loop. Due to these non-vanishing coupling terms, we
can state that the control of our squeezed light source, including the LO lock, can
be described as a MIMO control problem.
An example of a complex MIMO system is a triple pendulum suspension for op-
tical components of GWDs or other high-precision measurements, which need
to strongly isolate their components from seismic noise. Triple pendulum sus-
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pensions make use of the characteristic behaviour of cascaded harmonicoscilla-
tors and reach a suppression of seismic noise of1/f6 above their resonance fre-
quencies. However, on resonance the RMS motion of the lower mass is excited
and therefore suspended optics require active control to damp the eigenmodes of
the system. This MIMO control problem is commonly addressed by traditional
control approaches, where the system transfer functions have beenobtained via
co-located sensor/actuator pairs attached to the upper mass of the suspension.
The limitation of this control approach is the lack of information concerning the
lower mass motion, which needs to be minimised. We set up two optical levers
capable of reading out the lower mass motion with respect to the yaw, pitch
and longitudinal DOF, which are the DOFs with the strongest influence on the
output of an interferometer. We injected a disturbance at the upper mass and
measured the response of the lower mass with the help of the calibrated optical
levers. We utilised this frequency data to augment the commonly used upper
mass-upper mass measurements with upper mass-lower mass measurements to
enable a host of systematic control approaches, thereby enhancing thesystem
performance. The result of these measurements was a 60th-order state-space
model, which was put into the context of a general control formulation and used
to examine the implementation ofH2/H∞ controller synthesis techniques. This
generalised formulation allowed for aH2 mixed-sensitivity control approach, in-
cluding frequency-dependent controller weighting functions and the considera-
tion of coloured noise. We calculated a powerfulH2 75th-order controller which
achieved damping factors of≈50 dB, without significantly exciting other modes.
The next step will be the implementation of our control scheme. One part of
the implementation is the derivation of a simpler controller via model order re-
duction techniques in order to lower the computational complexity which could
limit the control loop performance. Fortunately, model order reduction is anarea
of active research, as the mathematically complexH2/H∞ control approaches
offer sophisticated and unique control design possibilities for MIMO systems.
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