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Abstract

The era of gravitational wave astronomy started with the first direct deteaftea
gravitational wave on September 14, 2015. This measurement was acdwudplis
by the advanced Laser Interferometer Gravitational Wave Obser/a@bl§O)

in collaboration with an international gravitational wave detector (GWD) net-
work. GWDs are highly-complex systems incorporating hundreds of cheste

trol loops, required to reach the detector’s design sensitivities. Aiming for
further sensitivity increase, resulting in an increased volume of expéosalace

and hence a higher event rate, various upgrades for the advai¢Bag @nd the
development of third-generation GWDs are planned. The planneddgmyveill
inevitably lead to an increased complexity of the system.

In this thesis we propose and demonstrate the implementation of modern control
techniques for a range of possible applications, useful for the GWD caotitynu
and also the field of quantum optics in general. The important benefit of our
control approach is the inherent capability of handling multiple-input multiple-
output (MIMO) control problems.

We implemented an augmented linear quadratic Gaussian (LQG) controller,
which included integral action, for locking a three-mirror ring cavity to the fr
guency of a laser. The controller acquired a stable lock and the clospd-lo
performance was verified via step response data.

In a second experiment we implemented an autolocking scheme by applying
the combination of a linear quadratic regulator and a time-varying Kalman filter,
which is a significantly enhanced version of our previous control schébue
controller was able to deal with detunings corresponding to the non-liaganr

of the error signal. We achieved improved robustness to disturbandesfaster
locking time compared to a traditionad hog proportional-integral controller.
More importantly, our control scheme automatically reacquired lock for large
detunings where the error signal left its linear capture range. Thisréeeamnot



ABSTRACT

be accomplished by linear time-invariant controllers. The results demonstrate
the superior performance of our control scheme.

Further, this thesis includes investigations of describing the squeezesdigite

in our laboratory as a MIMO control problem, aiming for the generation effix
guadrature squeezing. Our result was that the feedback loops rfaptical
parametric oscillator and the pump phase lock were decoupled due to the ap-
plied modulation schemes. Adding the lock of the local oscillator, and defining
the readout angle as a third variable led to non-vanishing coupling termedretw
the implemented control loops. Thus, the control of a squeezed lightesoarnc

be described as a MIMO control problem, which can potentially benefih fro
modern control techniques.

Finally, a complex MIMO system presented by a triple pendulum suspension
for seismic isolation of optical components of GWDs was investigated. The
damping of the system resonances is commonly addressed via traditiotral con
approaches, based on transfer functions obtained via co-locateat/senuator
pairs attached to the upper mass. The limitation of this approach is the lack
of reliable information about the motion of the lower mass. We are the first to
propose a controller design which incorporates information about lowss ma
motion. A generalised control formulation was used to examine the implementa-
tion of H ., /H2 controller synthesis techniques allowing for controller frequency
weighting and the consideration of coloured noises. The result of aoupeta-

tion was a 75th-order controller achieving damping factors:60 dB without
significantly exciting other modes.

The results of this thesis demonstrate that modern control techniques loandse
ficial for complex systems such as they occur in quantum optics, and inyartic

in interferometric gravitational wave detectors. A mathematical control agpro

is advantageous, as it offers unique controller design possibilities.

Keywords:
Modern Control, Cavity locking, Autolocking, Squeezed states, Seismic-isola
tion



Kurzfassung

Die Ara der Gravitationswellenastronomie begann mit dem ersten direktdn Nac
weis einer Gravitationswelle am 14. September 2015. Der Nachweis wurde
durch die aLIGO-Gravitationswellendetektoren in Zusammenarbeit mit einem
internationalen Gravitationswellendetektoren-Netzwerk (GWD) geliefaDG
sind hochkomplexe Systeme, die hunderte verschachtelte Regelkreiakesmth
welche erforderlich sind, um die GWD im Detektionsmodus zu halten und die
gewiinschte Sensitivitdt des Detektors zu gewahrleisten.

Eine weitere Steigerung der Empfindlichkeit wird das erforschbare Vaiudas
Weltraums und damit die Rate der gemessenen Ereignisse erhéhen. Um dies
zu erreichen, sind verschiedene Verbesserungen fir die nachéie @nera-
tion vorgesehen, die Entwicklung einer dritten Generation ist bereits in Rjanu
Diese geplanten Verbesserungen werden unweigerlich zu einertenhiébm-
plexitat des Systems fiihren.

In der vorliegenden Arbeit empfehlen und demonstrieren wir die Anwegdu
moderner Regelungstechniken fir eine Vielfalt von Anwendungsmoditerk

die fur die GWD Gemeinschaft und auch fur den Bereich der Quantenioptik
Allgemeinen nitzlich sein kénnen. Der wichtige Vorteil unseres Regelungsa
satzes ist die inharente Fahigkeit, Multiple-Input-Multiple-Output-Regelonmgs
bleme (MIMO) handeln zu kénnen.

Wir implementierten einen linearen-quadratischen-Gaul3schen (LQG)rRagle
weitert um einen Integrator, zur Stabilisierung eines Drei-Spiegel-Rés@auf

die Frequenz eines Lasers. Der Regler ermdglichte eine stabile Regasng d
Resonators. Das Leistungsvermdgen des geschlossenen Regelkreide Giber
Sprungantworten verifiziert.

In einem zweiten Experiment realisierten wir einen vollautomatischen Regelkre
durch die Kombination eines LQ-Reglers mit einem zeitverdnderlichen Kalman
Filter. Der neu entworfene Regelkreis stellt eine deutlich weiterentwickelt un
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verbesserte Version des ersten Reglers dar. Unser Regler komatiecRezver-
stimmungen handeln, die dem nichtlinearen Bereich des Fehlersignalsehtspr
en. Wir erreichten eine verbesserte Unempfindlichkeit gegeniberngtmu
und eine schnellere Systemantwort, verglichen mit einem traditioneltthdq
Proportional-Integral-Regler. Wichtiger ist, dass unser Regler in dge kear

das System auch fir grof3e Verstimmungen vollautomatisch zu stabilisieren. Die
ses Leistungsmerkmal kann nicht mit linearen, zeitinvariante, Regler lerreic
werden. Die Ergebnisse legen die Uiberlegene Leistungsfahigkeitegrikegel-
kreises offenkundig dar.

Des Weiteren umfasst diese Arbeit Untersuchungen zur méglichen i@dsaig

der in unserem Labor aufgebauten Quetschlichtquelle als MIMO-R exgghoo-
blem. Hier ist das Ziel, die Varianz einer Quadratur gezielt zu verringéfin.
konnten feststellen, dass die Regelkreise flr den optischen paranmetri9sh
zillator und die Phase des Pumplichtes aufgrund der verwendeten Modulatio
sschemata zunachst entkoppelt sind. Die Beriicksichtigung des LoKalos-
Regelkreises, wodurch der Auslesewinkel als dritte zu kontrollierediaMe
eingefuhrt wird, fihrt dann zu nicht verschwindenden Kopplurrgste zwis-
chen den verwendeten Regelschleifen. Somit kann die Regelung eiatscQu
lichtquelle als MIMO-System beschrieben werden, die mdglicherweise eon d
Einsatz moderner Regelungstechniken profitieren kann.

Abschlie3end wurde ein komplexes MIMO-System, bestehend aus eiredm dr
fach aufgehangten Pendel zur seismischen Isolierung der Optiken@WW®s,
untersucht. Die Dampfung der Eigenfrequenzen des Systems wirdvighge

lich mittels traditioneller Regelungstechnikansétze realisiert, welche auf @bertr
gungsfunktionen basieren, die durch an der oberen Testmasseizinar ange-
brachte Sensoren/Aktuatoren Paare bestimmt werden. Dieser Ansatzcist d
den Mangel an zuverldssigen Informationen Uber die Bewegung derean
Masse limitiert. Zum ersten Mal wurde hier ein Regelungsentwurf vorgestellt,
der Informationen Uber die Bewegung der unteren Masse beinhaltetaligee
meine Kontrollformulierung wurde verwendet, um den mdéglichen Einsatz von
He/H2 Reglern zu untersuchen. Diese allgemeine Kontrollformulierung er-
maoglicht die Betrachtung von farbigem Rauschen und die Verwendumdree
guenzabhangigen Gewichtungsfunktionen. Das Ergebnis unseagieséawurfs
war ein Regler 75. Ordnung, welcher Dampfungsfaktoren vons0alB erre-
ichte, ohne anderweitige Eigenmoden anzuregen.

Die Ergebnisse dieser Arbeit verdeutlichen, dass moderne Regelcimgktéir

|



komplexe Systeme, wie sie in der Quantenoptik oder im Gebiet der laseninterfe
ometrischen Gravitationsphysik auftreten, vorteilhaft sein kann. Ein matteema
cher Regelungsansatz bietet einzigartige Mdglichkeiten fir Regelkreisda.

Stichworter:

Modern Regelungstechnik, Resonatorstabilisierung, vollautomatischeureg
gequetschte Zustande, Seismische Isolierung

vii
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Introduction

1.1 History of Gravitational Waves

The first direct detection of a gravitational wave (GW) event on the 1dfe®n-

ber 2015 opened a new era of astronomy [1]. Gravitational wave astpis

the only way to gain deep insight into the dynamics of black holes and other
stellar phenomena such as spinning neutron stars or binary systems [2, 3]

The foundation for this field of astronomy was built 100 years ago. Shaftly
ter Einstein published his General Theory of Relativity in 1915, the existenc
of gravitational waves was predicted [4, 5]. These waves, propapaith the
speed of light through our universe, are a direct consequenaeelesated mas-
sive objects, which perturb space-time. An indirect proof of gravitatimaaes

was accomplished by the astronomers Hulse and Taylor by exploring they bina
neutron star system PSR 1913+16 [6]. They observed a decreasearbital
period of the pulsar, travelling around its companion star, which matched Ein-
stein’s prediction and suggested that this system emits gravitational wgves [7
In 1993 Hulse and Taylor received the Nobel Prize for their discoj&r9].

It took another two decades of research for the first direct detecfi@\\ds,
which can be considered as one of the greatest experimental challErnoes
temporary physics. Even Einstein himself doubted that a direct detectiold wou
be possible. In the 60s one of the first detection schemes was desigWéabby

at the University of Maryland and the Argonne National Laboratory 1. It

was based on cylindrical aluminium bars, whose resonant mode showei be
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cited by a gravitational wave and the resulting motion could be detected by a
piezoelectric transducer. However, the narrow sensitivity bandwidtheobar
detectors was a drawback, since gravitational wave sources covea $pec-
trum [12].

A broadband detector, as it is formed by a laser interferometer, wasstegigoy
Gertsenshtein [13]. In the 70s Weiss, Drever and Thorne carrigdé®shtein’s

idea forward and conducted a realistic noise budget analysis for |deefieno-
metric gravitational wave detectors (GWD) [14]. That was the beginning of
detection scheme whose advanced generation finally managed to detaeta gr
tational wave emitted by a binary black hole merger.

1.2 Advanced Detectors

There exists an international network of advanced laser interferometwitay
tional wave detectors. It consists of the French-Italian VIRGO deteaar n
Pisa, with an armlength of 3 km [15], the two 4 km long American LIGO detec-
tors [16] in Livingston and Hanford, and the British-German detector GEO
[17] near Hannover with an effective armlength of 1.2 km. A Japaneseide
called KAGRA [18] is currently under construction at the Kamioka mine, and
there are also existing plans for a LIGO-like detector in India [19].

All detectors apply an improved topology of a basic Michelson interferonfieter
the detection of a gravitational wave. With the beamsplitter as reference point,
the effect of a GW is the shortening of one interferometer arm while extgndin
the other periodically. The size of the length variation and therefore the ampli-
tude of the gravitational wave is defined as strajrwhereh = AL/L is the
length changeA L over the armlengti.. The induced phase shift results in a
detectable change of the interferometer’s output power.

Although only the two advanced LIGO detectors were operating at the time of
the detection of the gravitational wave signal GW150914, it is noteworthy tha
key technologies required to achieve a adequately sensitivity (see Pigverd
provided by the GEO600 collaboration. Firstly the laser system [21], wikich
the core of a laser interferometric gravitational wave detector, is proigéie
GEO collaboration. Other contributions are the monolithic suspension [22] an
the signal recycling technique [23]. Another technique, proposeddwe£in
1981 [24], suggested to inject squeezed vacuum into the dark pore afrévi-
tational wave detector to improve its sensitivity corresponding to the shat nois



1.2. ADVANCED DETECTORS

e e S S S B S S = E - - = =g

~ 1= F | == Quantum noise [y

Seismic noise :_ _:—:—

T [ [| === Gravity Gradients (AR

- :_ Suspension thermal noise :_ _:_:'

-22 B Coating Brownian noise (N

10 (== Coating The: : P ==

“ccd oating rmo-optic noise| - J -

N —1= Substrate Brownian noise |-+ - H
T T

< Excess Gas -1

-, _| == Total noise L

TTTT T T T T IT1IT T T [N

.E -23 rrrre e [

© 10 ETEE SIS T ITETE S = —IorT

0 e e e~ s e

UL i o B B i . V. Vi~ R i B ) B o

——————— HH

4 H |

1

__________________ -

_24 |

10 = == Ho—— i

{ oIDd

----- [ls

10y

L ™ i L

o 3 4
10 10 10° 10 10

Frequency [Hz]

Figure 1.1: Simulated design sensitivity of advanced LIGO [20].

limited frequency range. This was implemented by Vahlbreical. in GEO600

[25, 26] and is now in permanent operation.

However, all these techniques would be useless without a suitable cestisshe,
which keeps the entire system at its desired operating point. This is therreaso
why the advanced gravitational wave detectors employ hundreds ofirfest
back loops.

This thesis aims to pave the way for the implementation of modern control tech-
niques to the field of quantum optics, and in particular interferometric GWD.
Mathematical control techniques, inherently capable of coping with uradesir
coupling terms, become advantageous for complex multiple-input multiple-out-
put systems, for which an intuitive controller design approach is notbieas
The benefits of a mathematical control approach were already demodstrate
1868 by James Clerk Maxwell (who not only postulated the well-known basis
for electromagnetic fields [27]) in his pap@&n Governorg28]. Maxwell used
differential equations to derive the flyball governor dynamics and waely

able to explain occurring instabilities. Modern control techniques follow a simi-
lar approach, where first-order differential equations link the inpuitpuis and
state variables for the derivation of a mathematical model of the considgsed s
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tem. Another powerful tool of modern control techniques is Kalman filtering
[29], named after its developer, enabling the estimation of inaccessiblaersyste
states, which need to be controlled. The capability of Kalman filtering was im-
pressively demonstrated during the Apollo program, which managed to land th
first humans on the Moon. Hereby a Kalman filter was used for Apollo’earth
trajectory estimation.

This thesis explores the benefits of a systematic controller design for &nairie
control problems that occur in a quantum optics laboratory. The coyems
lems include locking of an optical resonator, generation of stable nosicis
fixed quadrature light, and control of seismic isolation systems. This sear
can be beneficial for complex, coupled systems in general. A good exafple
such a system is th@oherent Quantum Noise Cancellatischeme [30], which
requires locking of at least two coupled cavities.

1.3 Structure of the Thesis

In Chapter 2 we introduce the theoretical description of light fields and ¢beir
responding quadrature operators required for the theoretical mbthed oavity
locking experiment.

Chapter 3 establishes the basics of non-linear optics. This theoreticaidyro
work is needed to describe the generation and detection of squeezadasidte
the impact of losses.

In Chapter 4 we investigate the properties of optical cavities, including their in
teracting light fields. We also introduce the non-linear error signal, wiosar
region is commonly used to acquire cavity lock if the cavity fulfils the stability
criterion.

In Chapter 5 we formulate the control theory framework used througthdsit
thesis. This framework extends the general ideas of feedback comtstdte-
space control and explains the functionality of optimal observers.

Chapter 6 makes use of the introduced state-space control methods farthe
pose of locking a three-mirror ring cavity to the frequency of a laser. Xjgere
imentally demonstrate the possibility to acquire cavity lock by the implementa-
tion of a linear quadratic Gaussian controller with additional integral actibe. T
results were published in [31].

In Chapter 7 we carried the previous controller design forward to denztes
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a powerful autolocking scheme for optical cavities. We applied a time-\vgryin
Kalman filter for the realisation of our control scheme, capable of handliag th
non-linear region of the error signal, and this allowed us to acquire lark fr
any operating point. The results validate our control scheme and arehmdblis
in [32].

Chapter 8 addresses the generation of squeezed states as a multiphatifiput
ple-output control problem, which can potentially benefit from a systemaiie ¢
trol approach.

In Chapter 9 we investigate the control problem dealing with the damping of
eigenfrequencies of triple pendulum suspensions, which are usedateisp-
tical components from seismic noise. We demonstrate a possibility to augment
the usually used upper mass to upper mass transfer functions with uppetomas
lower mass transfer functions, which have never been incorporatexbintialler
design before. The result ist& controller, obtained via a mixed-sensitivity con-
trol approach, controlling the three relevant degrees of freedom.

Chapter 10 concludes this work and summarises the advantages of modern ¢
trol approaches.






Theory of Electromagnetic Fields

This chapter outlines the quantisation of electromagnetic fields and introduces
the operator notation to describe coherent states. These states dasirigke-
mode laser field, which is the foundation of the quantum optical experiments
realised in our laboratory. Coherent states are also required to deeieput-
output formalism of optical cavities. This theoretical background previtie

basis for a systematic control approach which is applied to cavity length stabil-
isation. The description of the dynamics of quantum optical systems follows
[33, 34].

2.1 Quantised Electromagnetic Field

Maxwell's equations [27] classically describe freely propagating elewigmetic
fields. In the absence of matter, they can be written in Sl units as follows

V-B=0 V-E=0
A OE A 0B
B = poeo— E=-—
V x HO€EQ ot V x ot s
whereeg is the electric permittivity in vacuumnyg is the magnetic permeability

in vacuum ands andB are the electric and magnetic field vectors, respectively.
Applying the curl operator to the curl equations yields the wave equation

(2.1)

S O’E
V2E — HoCo g =0, (2.2)
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which describes the propagation of an electric field in vacuum.
Let z,y, z define the three spatial axes. Taking the special case of a lossless
one-dimensional standing wave cavity along the z-axis into consideratgim; a
gle mode electric field, polarised along the x-axis, satisfying Eq. (2.2) ean b
expressed as

2w?

Ey(z,t) = (Vm) ) q(t) sin(kz), (2.3)

with w the frequency of the single-mode ahdhe corresponding wave number.
V is the effective volume of the cavity ardt) acts as a canonical position.

The magnetic field associated with the electric field of the cavity can be written
as

1
o€ [ 2w?\? .
B, = — 24
J= (") (VGO) (t) cos(k2), (2.4)
whereg(t) can be regarded as a canonical momentum of a particle of unit mass
p(t) = q(t). (2.5)

The canonical position and momentum arise from Hamiltonian mechanics [35]
and are utilised below. The energy of the electromagnetic field is given by the
HamiltonianH,

1 [V 1
H= f/ v <60Eg(z,t) + B, t)) | (2.6)
2 Jo Ho

This expression can be reduced to [33]
1
H =30+, 2.7)

showing that the single-mode field is equivalent to a harmonic oscillator of unit
mass. In this context it is possible to exchange the canonical varialdes

g with their dedicated operatogsandg, satisfying the canonical commutation
relation

(4, 9] = ih. (2.8)
The Hamiltoninan then becomes
N 1

0= (5 + W), (2.9)

10
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allowing for the convenient introduction of the non-Hermitian, and theeafion-
observable, annihilationa] and creation ') operators. These operators are
defined as [33]

i = (2hw) 2 (wg + ip), (2.10)
it = (2hw) 3 (wd — i), (2.11)
with
h
h= (2.12)
2

whereh is the Planck constant [36]. The operators fulfil the commutation relation
[a,a') = aa’ —ala = 1. (2.13)
Now the Hamiltonian can be expressed as
H = hw (a*a + ;) . (2.14)

An energy eigenstate of the single-mode field with its related energy eigenvalu
E, is denoted byn) and leads to

A ln) = ho(@la + 3) ) = En In). (2.15)

|n) is know as anumberor Fock state which is a state with a defined photon
numbem.
Multiplying Eq. (2.15) bya' results in another eigenvalue equation
hiw (a*a*a + ;a) In) = Enal|n). (2.16)
Taking the Eqg. (2.13) into account Eqg. (2.16) becomes
1

hw(ata + 5)(aT n)) = (B, + hw)(a’ |n)). (2.17)

This shows the eigenvalue problem for the eigensidte:) with the energy

eigenvaluer,, + . From this relation it is obvious why' is called the creation
operator: itcreatesa quantumof energyfiw. Similarly, the eigenvalue problem

11
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for a |n) can be derived, showing that the annihilation operatestroysa quan-
tum of energy. The eigenstaién) has the energy eigenvaliig, —iw. Applying
the annihilation operator multiple times will lower the energy eigenvalue, but the
energy of the harmonic oscillator cannot be negative. Hence, therebauwst
ground state0) satisfying the following condition [33],

H(a|0)) = Ey — hw(a|0)) =0 (2.18)
with

al0) =0. (2.19)

The eigenvalue problem of the ground state

N 1 1
H|0) = hw (a*a + 2) 0) = 5hw|0) (2.20)

defines the lowest-energy eigenvalig = %hw The energy eigenvaluds, are
generally described by

E, = hw (n + ;) , (2.21)

regarding the effect of the creation and annihilation operators. Loaking
Eq. (2.15) suggests the definition of a number operatera'a, where

nn)y =nin). (2.22)
For the annihilation operator acting on a number state the expression
aln) =cpln—1), (2.23)

is obtained, where,, is a constant to be determined, which is derived via nor-
malisation

((n|a")(@|n)) = (n|afa|n) = n (2.24)
=(n-—-1cecyn—1)= ‘02‘_ (2.25)

Thus it appears that?| = n. Hence,
aln) =vnln—1) and a'jn)=vn+1|n+1). (2.26)

This expression highlights that an arbitrary number dtatean be created from
the ground stat#®), also known ayacuum stateby applying the creation oper-
atora' repeatedly

(ah)"

In) = 10). (2.27)

12



2.2. QUANTUM FLUCTUATIONS

2.2 Quantum Fluctuations

The previously determined energy of a number state is well defined in sbntra
to the electric field of such states

(n| By (2, 1) [n) = o sin(kz)((n| @ |n) + (n|a" |n)), (2.28)
where the mean field vanishes, but the energy density of the field is mon-ze
(n]E2(z,t) |n) = 262 sin?(kz) (n + ;) . (2.29)
The variance of the field is a suitable quantity to characterise these fluctuation
N A N 2
(ABu(2,1)?) = (B2(2,1)) = (Ba(z,1)) - (2.30)

For a number statg:) we obtain

AE, = 2¢sin(kz) (n + ;) ’ , (2.31)

yielding the fact that even a field with = 0 possesses non-zero energy. These
energy fluctuations are known @acuum fluctuations

2.3 Quadrature Operators

The quadrature operators are introduced for the description of efesgmetic
fields and can be expressed as linear combinations of the annihilationexnd cr
ation operators

N 1
X+t = (a+ ah, (2.32)
A 1
X = 27(@ —ah), (2.33)

whereX* andX ~ are known as thamplitudeandphase quadratureperators,
respectively. An arbitrary quadrature operator can be expressed a

Xy = X cos(0) + X~ sin(6). (2.34)

13
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Explicitly taking the time dependence of the electric field into account the fol-
lowing equation is obtained

E.(t) = eo(ae™™! + aTe™!) sin(kz). (2.35)
Using the quadrature operators Eq. 2.35 becomes
E.(t) = 2¢ sin(kz) [X+ cos(wt) + X~ sin(wt)} . (2.36)
Eq. (2.36) illustrates thak+ and X — act as field amplitudes oscillating out of

phase with each other 9)°. They satisfy the commutation relation

S
XX =3 (2.37)
which leads to the Heisenberg uncertainty relation [37]
A A 1
+32 —\2 L
(AXH)?) (AX7)?) > o (2.38)

For number states the expectation values for the quadrature operators ar

(n|X*|n) =0 (2.39)
(n| X~ |n) =0 (2.40)

but
(n| (XT)2|n) = % (n|a? + (a"?+2aa' +1|n) = i(Qn +1), (2.41)
(] (X2 |n) = —% (n] & + (a1)? +2a6! — 1) = i(Qn +1), (2.42)

showing that the fluctuations in both quadratures are identical and thabiied)
state minimises them

<(AX+)2>O == <(AX‘)2>O. (2.43)

Furthermore, a vacuum state is calfethimum uncertainty stat@s it minimises
the inner uncertainty product Eq. (2.38).

14
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2.4 Coherent States

Fock stategn) are appropriate to describe low photon number fields, but are
impractical to describe classical laser light, since they have a uniforne tiss
tribution and therefore the phase is not well-defined. Evemfor> oo the
expectation value of the electric field operator vanishés:, |n) = 0, although

it is known that a classical field periodically oscillates in time with respect to a
fixed point in space [33]. The concept of coherent states [38]covees these
problems and is better suited to describe classical fields, although it is fuquan
mechanical state.

It is derived that states describing a classical field in a suitable way e gy

the eigenstates of the annihilation operatdr. They fulfil the relation

ila) = ala), (2.44)

whereq is a complex number, sinceis a non-Hermitian operator. It is possible
to rewrite|«) in terms of number statés) forming a complete basis

la) = Z Cpn) . (2.45)
n=0
Then Eq. (2.44) becomes
alay=a>»  Cypln) (2.46)
n=0
=Y Cuvnln—-1)=a Y Cyln) (2.47)
n=1 n=0
(2.48)
and
Cnvn = aCy_q. (2.49)
Rearranging Eq. (2.49) yields
(0%
Cn — %C’nfl
2
«
= C’I’L— =
n(n —1) 2
an
- —(C). 2.50
N (2.50)

15
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Reformulating Eq. (2.45) leads to

la) = Conzzoﬁ In), (2.51)

where the constartt is again obtained via the normalisation requirement
(o) = 1, resulting in

— e zlof f: .l In) . (2.52)

Upon closer examination it can be seen that tlolserent statéas a

non-vanishing expectation value for the electric field operator. Moreigely

its expectation value reflects the dynamics of a classical field. Furthermore it
can be shown that a coherent state only exhibits vacuum fluctuations. theo
expectation value of the electric field operator in polar form

(a| By (r,t) |a) = 2o (2%)2 sin(wt — kr — 0), (2.53)

|a| can be seen as the amplitude of the field. Thus the expectation value of the
number operator is
= (| |a) = |af*, (2.54)

and the resultinga|2 is the average photon number. Resolving the fluctuations
of the photon numbeAn, it is necessary to derive the expectation valué-of

(a| 7% |a) =72 + 7, (2.55)

An =/ (h2) — (A)? = V7. (2.56)

This behaviour is characteristic of a Poisson process [33].
Another way of defining a coherent state is given by the application oftaryn
displacement operatdp to the ground stat#)

which leads to

la) = D(a)|0) (2.57)
= ¢ 3lol’ 3 s n .
HZZO 7 ) (2.58)

16
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2 4 AX=1/2

AX=12

= +
IAX:I/Z ®

NG 3
l > >

X X

Figure 2.1: The left illustration shows the ground state 0 with its correspond-
ing fluctuations associated with the field quadratures. On the right
hand side a coherent state of amplitudg phase® and uniformly
distributed minimal fluctuations is depicted.

where ) A
D(a) = elod!—o"a) (2.59)

A coherent state with an amplitude a phase angl® and field fluctuations
corresponding to uniform vacuum fluctuations

AX*:AX‘:% (2.60)

is illustrated in Fig. 2.1 in @hase-space representatif84]. It shows two coher-
ent states witm = 0 andn = «a. The derivation of coherent states, describing
a laser field, allows for introduction of an input/output formalism capablesef d
scribing the dynamics of optical cavities. This formalism is used in upcoming
chapters.
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3

Non-Linear Optics

In this chapter a quantum-mechanical description of squeezed states e} be
tablished. Furthermore the physical parameters for generating andimigtec
squeezed states are discussed and characterised. This theoretikcpbbad
gives helpful insights for designing control loops required for stable
cavity-enhanced squeezing, which is one goal of the thesis. The siisoln
this entire chapter follows the methodologies used in [33] and [39].

3.1 Squeezed States
Any two operators satisfying the commutation relati[o?n, E} — iC result in

[33] .
((@d2)(@aBy) =1 |(0)

SubstitutingX* for A, B and taking into account that coherent states are mini-
mum uncertainty states,

2
(3.1)

1

(AXH)?) = ((AX)?) = i (3.2)
Eq. (3.1) can be converted into
((AX+)?2) (%)) = % (3.3)

19
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This uncertainty product defines a lower limit for the product of the catade
fluctuations. However it does not prohibit the case of one quadraperator
exhibiting a lower uncertainty than the ground state, as long as the otharaguad
ture operator shows an increased uncertainty such that the commutatt@mnrela
is still valid. A state which has a non-uniform fluctuation distribution with

N 1
+12 1
(x%)?) < 1 (3.4)
is called asqueezed state

In a theoretical approach the generation of a squeezed state carideddly a
squeezing operator [33], acting on a state. The operator is defined as

A

S(f) = e[%(s*fﬂ—fflﬂ)]? (3.5)

where '
€ =re®. (3.6)

r and© are known asqueezing parametemd squeezing angleespectively,
with

0<r<oo, 0< 0O < 2. (3.7)
The squeezing operatélf(g) can be considered as a two-photon generalisation
of the displacement operator, see Egs. (2.57)-(2.58)) always creates or de-
stroys photons in pairs. To determine the variances of a squeezed sade; th

pectation values for the annihilation operator and its square must be calculate
The Baker-Hausdorff lemma leads to the following relations [33]

ST(€)aS(€) = acosh(r) — ale’® sinh(r),
ST(€)ats(¢) = al cosh(r) — ae™*© sinh(r), (3.8)

whereSt(¢) = §(—¢). Considering a squeezed state

[Ys) = S(€) [¥) (3.9)
we get R R
(sl @ |ibs) = (] ST(€)aS (&) [v) (3.10)
and R R A R
(Ws] &% [0s) = (] ST(©)aS(©)ST(©)aS (&) ) . (3.11)

20
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X" X"
A A
AX
AX —b—
+
AN | ax A ax
o »
\ / g L
[ ‘ X " 4 v X

Figure 3.1: Phase-space representation of two squeezed vacuuwsn Stadeft
picture shows squeezing in tH&" -quadrature, where the dashed cir-
cle illustrates the uniform noise distribution of a coherent state. The
second picture represents a squeeXedquadrature.

For these expressions, the variances of the two quadratures candralged to
<(AX+)2> = i (cosh2('r) + sinh?(r) — 2sinh(r) cosh(r) cos(@)) ,
<(AX'*)2> = i (coshQ(r) + sinh?(r) 4 2sinh(r) cosh(r) cos(@)) . (3.12)

By considering a fixed phase angle= 0, Eq. (3.12) can be simplified to
N 1
+\2\ _ - —2r
<(AX ) > =1¢

((ax)?) = %e% (3.13)
and squeezing will be obtained f&f+, whereasX ~ will be antisqueezed. For

a graphical illustration of squeezed states it is convenient to use the-pphase
representation [34]. Fig. 3.1 shows two examples of a squeezed gsbaied
also known asqueezed vacuymvith © = 0 and® = 7 and the resulting
squeezing in the&X * and X~ quadratures, respectively. It is possible to define
rotated quadrature operatdrs™ andY —, similar to Eq. (2.34), related to any
value of the squeezing angkeby

v+ cos(%) sin(?)) (XJr)
N = A . 3.14
) (—smc;)) cos(9)) X e
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The rotated quadrature operators satisfy
N 1
+\2\ _ - _—2r
((av*H)?) = 1€
O —\2 1 2r
((ay7)?) = 1€ (3.15)

for any squeezing angle. A general form for a coherent squestats describing
a squeezed field with a coherent amplitude, is given by

ja,€) = D(2)5(£) [0), (3.16)
and the expectation value of the number opergtpbecomes
(A) = |a|? + sinh?(r), (3.17)

showing that the squeezing operator creates photons. From Eg. {3id éy-
ident that squeezed vacuum has a non-zero photon number. Furthetimo
variances of a squeezed coherent state remain unchanged, abyken(3.14).
The fluctuations of a squeezed state are not influenced by the displaospren
erator or, more precisely, by a coherent amplitugéherefore the operators can
be interchanged. Fig. 3.2 shows a squeezed ground state where ¢leaiaguis

in the rotated quadratudé— and a squeezed coherent state illustrating the states
described above.

3.2 Non-Linear Optics

For the experimental realisation of squeezing a non-linear processuise.q
When a non-linear material is pumped with a strong field of frequencgome
photons of the pump field will be converted into pairs of identical photons with
frequencyw, = 2w, with w denoting the frequency of the signal field. This case
is calleddegenerate parametric down-conversi@and its Hamiltonian can be
expressed as [33]

H = hwata + hwpbtd + i (a2b" — af?b), (3.18)

wherea andb describe the signal and the pump modes, respectivels). is
the second-order non-linear susceptibility and is essential for the aj@renf
quadrature squeezing. Therefore, 1 non-linearity is further investigated
in the following. An extensive description of non-linear optics is given ][4
which is also the source upon which the upcoming subsections are based.
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AX —
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X'\ X ) AXH
la| /5
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Figure 3.2: On the left a vacuum state with a squeezed quadretuie shown.
The squeezing ellipse is rotated ®y2. On the right is an illustration
of a squeezed coherent state with amplitadand a squeezedl —-
guadrature.

3.2.1 Dielectric Polarisation

An electromagnetic field propagating through a dielectric medium can be viewed
as a force acting on charge carriers. The separation of chargeemdulipole
moment with a distinct strength given by the polarisation [40]

P = eo(xXWE(®) + xPE2 () + xPE (t) + ...) = PO + PIVD) | (3.19)

wherex(® are susceptibilities of theth order. For a single-mode field

E(t) = Ege ™! + c.c. (3.20)
the second-order polarisation can be expressed as
P® = 2¢0x (BoEj + Efe ) + c.c.. (3.21)

Eq. (3.21) shows that the second-order polarisation yields a field canpah
twice the frequency of the input field. In [40] it is demonstrated on the el@mp
of the sum-frequency generation case= w; + w, thaty(? interactions can be
expressed via an effective susceptibility vallyg

P (ws) = 4egdegE(wy)E(ws). (3.22)

Materials with a highy(?) value are within a range of(® ~ 10710 — 1013 2,
Sincex ™ is of the order of 1 it becomes clear that the intensity of the incident
field plays an important role for the generation of squeezed states.
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3.2.2 Optical Parametric Conversion

For this work they(® interactions of interest involve three modes of light (or
photons) and are described by the proceshi@fe-wave mixingTo be precise,
the focus lies on the two cases illustrated in Fig. 3.3, knowsuas-frequency
(SFG) andlifference-frequency generati¢DFG).

For sum-frequency generation two photons with frequenciesndws are con-

Figure 3.3: This picture shows energy-level diagrams, in which the sum-
frequency generation is illustrated on the left and the difference-
frequency generation on the right; denotes the interacting frequen-
cies.

verted by a dielectric medium (e.g. a non-linear crystal) into a photon with fre-
quency
w3 = w1 + wa. (3.23)

Forw; = wo the special case gskecond harmonic generatigSHG) or parametric-
up conversion is obtained.
Difference-frequency generation defineg@ interaction where a photon with
w1 is converted into two photons with, andws which again must satisfy energy
conservation, equivalent to Eq. (3.23). The case of
1

Wy = w3 = §w1, (3.24)
describes a special case of this, nanpelyametric down-conversigalso known
asdegenerate squeezing
Considering DFG under appropriate phase matching conditions, by injexting
strong pump field withu; and a weak field withu, into a dielectric medium,

24



3.2. NON-LINEAR OPTICS

the weak field is amplified via the non-linear process. This process is called
optical parametric amplificatiofOPA). Placing the dielectric medium inside a
resonant optical cavity increases the strength of the non-linear grotiethe
amplification factor exceeds the loss factor, related to the internal opticgdos

of the cavity, oscillations can arise. These oscillations result in the generatio
of fields withws andws via a pump field atv;, without the need of injecting an
additional weak field. This process is known@sical parametric oscillation
(OPO). The condition where the optical losses are identical to the amplification
corresponds to the OP@reshold Below this threshold an OPO effectively
becomes an OPA, which is the device used to generate quadratureisgurez
our laboratory. This is also denoted as a subthreshold OPO.

3.2.3 Phase Matching

Considering the SFG case for collimated, monochromatic, continuous waves th
intensity of the generated field withy can be written in S| units as [40]

d2qwi i I AkL
I = Senshlz p5 sian( ) (3.25)

N1NoN3€QCS 2

wheren; are the refractive indices of the non-linear media related to the inter-
acting fields.d.g is the effective susceptibility; the speed of light¢, the per-
mittivity of vacuum, I » intensity of the injected fields antl the length of the
non-linear medium. An important factor affecting the intensity of the generated
field and therefore the conversion efficiency is evevector mismatchk de-
scribed by the wavevectots as

Ak = ki + ky — ks. (3.26)

If Ak = 0 the intensity reaches its maximum. The effect of wavevector mis-
match is shown in Fig. 3.4. Fakk = 0 an optimal phase matching point is
achieved. The wavevector mismatch can also be expressed via thdivefrac
indices

niwi + now39 _ nsws —0 (327)

C C &

One option to fulfil the above stated requirement makes use of the birefdage
of the dielectric medium, whene is frequency- and temperature-dependent.
For the case shown in Fig. 3.4 the temperature of the non-linear medium is tuned
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Figure 3.4: Conversion efficiency of a non-linear interaction in relation ¢o th
wavevector mismatch.

to achieve the optimal phase matchi\g = 0, whereAk can be calculated via

the Sellmeier equations. The interested reader is referred to [41, 4&{de
details.

Another possibility to obtain phase matching without the need for temperature
tuning is known agjuasi-phase matchinddere phase matching is realised by a
periodically-poled dielectric medium; the fabrication is described in [43]. This
poling causes a periodic change of the orientation of the optical axis.debr e
interval the ratio of the refractive indices of the pump and generated fields
verted. By periodically varying this ratio the accumulated relative opticad@ha
from one interval is compensated for in the following interval. To good @apr
mation an appropriate periodicity/poling period length results in phase matching.
Since this kind of phase matching only depends on the dielectric medium’s grat-

ing periodA,
_ Niwr | Nows  ngw3 2 (3.28)

Ak =
c * c c A’
it is possible to use materials with a high&f, where the optimal phase match-

ing condition cannot be achieved via temperature tuning.
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The dielectric medium used for the experimental implementation of a squeezed
light source in this work is periodically-poled potassium titanyl phosphaee (P
KTP).

3.2.4 Impact of Losses

After the generation of squeezed states, it is essential to avoid any dpssal
channels in the experimental setup. This is a crucial point since losses-irre
cably reduce the squeezing strength. Loss channels introduced therisca

and unwanted absorption can be modelled via a beamsplitter (BS) interaction.
Hereby one BS port acts as an input for the squeezed state and theexbebes

the loss channel injecting vacuum fluctuations. Assuming the BS transfakmatr
from [34], the superposition of vacuum fluctuations and squeezinbeanitten

as
((X2) =(X?) Va+{(X?) Vi (329

vac

Here<(f()2>l and<(X)2> are the variances of a squeezed field and the vac-

uum, respectivelyn is a measure for lossésand defines the reflectivitg = [
and the transmissivity” = 1 — | = n of the BS. Eq. (3.29) is valid for any kind
of quadrature squeezing.
In general the squeezing strength is given in Decibel (dB), whereBheatlie
refers to a reduction of fluctuations with respect to those of a cohentand
can be expressed as

V[dB] = —10log(e™%"). (3.30)

r is the squeezing parameter introduced earlier Eqg. (3.6). With Eq. (3.30) it is
possible to calculate how losses affégtiB|

V[dB]
Vout[dB] = —101og (mom +(1- n)) . (3.31)

Eqg. (3.31) illustrates that strongly squeezed states are affected taargreant

by any kind of losses than less strongly squeezed states. This impacses los
on squeezed and accordingly anti-squeezed states is illustrated in Fighe.5.
detection efficiencyy,.; determines the apparent total loss factor of our experi-
mental setup. It is given by

Tltot = Tlprop 7IPD * Tlvis (332)
Nl 7

detection losses
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Figure 3.5: Impact of losses on the squeezing/antisqueezing strengim &br
two different initial squeezing/antisqueezing values.

where the first facton,,,.,, denotes the optical propagation loss and the two other
factorsnpp andn,;s define readout losses, specifically,p determines the quan-
tum efficiency of the detection ang;s is a measure of contrast discussed in the
upcoming subsection.

3.2.5 Detection of Quadrature Squeezing

A common single photodiode (PD) [44] produces a photocurrg@nbportional
to the power of the incident light field and therefore also proportional to the
number operato

ixala, (3.33)

wherea! anda are the annihilation and creation operators discussed in Chap. 2.
Introducing the linearised form of the incident light fieldfrom [34]

A=a+6A(), (3.34)
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HD HD
® PBS
_v_> vacuum = =
local oscillator 50:50 BS |J|:| N4
signal local oscillator + signal
(a) (b)
balanced homodyne detection polarisation based homodyne detection

Figure 3.6: Two possible detection schemes used for the characterisétion o
squeezed statesy denotes the phase of the local oscillator, HD is
the homodyne detector, BS and PBS denote a beamsplitter and a po-
larising beamsplitter, respectively.

with « denoting the mean of the amplitude ah?!(t) representing the fluctua-
tions of the field, Eq. (3.33) becomes approximately

ioca’+adXt. (3.35)

Eqg. (3.35) highlights that a PD is only capable of measuring power and {fluctu
ations in the amplitude quadrature. For this reason a PD is not an appropriate
device to detect arbitrarily squeezed states. For an accurate chigegiziarof
squeezed/antisqueezed states measurements of both quadraturesaiarre-
quired. The purity of a squeezed state and the detection efficiencygsée ),

can only be determined with knowledge of both quadrature variancessu2he
approach that is capable of measuring both quadratures is descrilit #b]

and is referred to abalanced homodyne detectioA modified version of the
balanced homodyne detection is f@arisation-based homodyne detectjdf].

Both schemes are used in our laboratory and will be described in the uggomin
subsections and are illustrated in Fig. 3.6.
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Balanced Homodyne Detection

In this detection scheme a signal fieldnterferes on &0 : 50 BS with a strong
local oscillator field3 (LO). The resulting fields” and D are detected by a
homodyne detector (HD) consisting of two PDs, where the photocurreats a
subtracted. A perfect interference of the two fields is guaranteed ifibegess
the same frequency, spatial mode and polarisation. A measure of intexddase
given by the contrast [47] known &snge visibility

vis = m (3.36)

Vinax/min determine the maximal and minimal output voltages of a PD, while
the relative phase between signal and LO is tuned periodically. Furthetmer
fringe visibility defines the loss channg};s mentioned above in Eq. (3.32) as
follows

Tvis = Vis?. (3.37)

Assuming the case of lossless detection this scheme can be modelled as follows.
Using the beamsplitter matrix defined in [34] with the matched amplitude trans-
mission and reflection coefficient@andr for a50 : 50 beamsplitter leads to

5 )
S e

Hence, the output fields are given by

~ 1 - ~ ~ “ ~
C=_5A+B)  and  D=—5(A-B) (3.39)

The measured signals of the two output ports can be calculatedAndthd B
written in the linearised form

A=a+dA (3.40)
B=(B8+6B)e ", (3.41)
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wheree~? defines the relative phase between the signal and LO fields and the
knowledge that « 7. These assumptions lead to

A

Te X cte

%[az + 32 + 2a3 cos(¢)
+ 2« (5)?;{ + cos(¢)dX 5 — sin(¢)5X'§)

+20 (6X] + cos(9)sX ] +sin(9)0X;) | + 0%  (3.42)

and

A A A 1
igoc DID == [OP + 8% — 2a3 cos(4)

— 2« (cos(¢)5)§'§ — sin(¢)5)2'§ - 5X'X)
- 28 (cos((b)d)z';{ + sin(gb)df(g - 5)2';) } +0O(8%). (3.43)
Taking the following relations for an arbitrary operatbinto account
5+ 0o =X
i(6¢p —0p1) = 6X
5peti? 4 5T = 56X (3.44)

and considering that the local oscillator field is much stronger than the signal
field

BI* > |af?, (3.45)
the difference between the two detected photocurrents is approximately
i— X ie—1iq X f3 (cos(<b)5)zj4r + sin(¢))§j)
x B6X%. (3.46)
Thus, the fluctuations of th&¢ quadrature are amplified by the mean field am-
plitude of the LO. The detection angiedetermining the observed quadrature

can be addressed with a phase shifter, see Fig. 3.6a. The varianeesijrhal
field

V(i) x B2V(X9) (3.47)

is measured with a spectrum analyser and converted into the frequemado
via a Fast Fourier Transform (FFT).
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Polarisation-Based Homodyne Detection

In this scheme [46] the signal and LO fields are co-propagating. Thalsign
and LO fields have identical frequencies and spatial modes but differein th
polarisations. More precisely the polarisations of the fields are perpgadio

each other. An advantage of this scheme is that co-propagating fieldofie
source intrinsically show &is = 1. The combination of a BS and an external
LO is replaced by a\/4-waveplate, a polarising beamsplitter (PBS) and a co-
propagating LO. The mathematical model of this rearranged scheme is similar
to the balanced homodyne detector case. Eg. (3.38) is extended by twe Jon
calculus [48] for a quarter-waveplate

¢ 1 (1 0\ 1 /1 1\/[A
-5 )56 00 o

The waveplate allows for interference of the signal and LO fields, pusiyoor-
thogonally polarised to each other. Furthermore the waveplate introdpbesa
difference ofr/2 between the interacting fields. Consequently this scheme is
only capable of reading out the phase quadra:l?i];‘;eof the signal field.

This setup is also suitable for additional spectroscopy measurements.sifjthe
nal field interacts with a phase-sensitive object, it obtains a phase-sthiftey
spect to the LO. The signal field is now given by

A=+ ARV (3.49)
and the detected signal at the HD output becomes
i = —2afsin(Ap) + B5X ;. (3.50)

Since an optical cavity is a phase-sensitive device, this scheme candéuse
generate an error signal used to stabilise its length [46].

The polarisation-based homodyne detection can also be realised with emaéxte
LO. In this case the LO and signal fields are not co-propagating all the time,
which leads to the advantage that the HD output can look at both quadrature
A disadvantage is that the beneficial common-mode rejection of disturbances
does not occur in this case. An additional downside is that the intrinsicefring
visibility vis = 1 is not guaranteed anymore. We implemented and investigated
both polarisation-based homodyne detection setups in our laboratory.
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Basics of Optical Cavities

In this chapter the fundamentals of optical cavities are discussed followardgeth
scriptions presented in [49, 50]. These basics shall provide theatbessic dy-
namics of optical cavities and an explanation for the commonly required length
control, which is experimentally implemented and characterised in Chap. 6.

4.1 Field Amplitudes of a Fabry-Pérot Resonator

A linear optical cavity, known aBabry-Pérot resonatqris used as an example to
introduce the important properties of optical cavities. It consists of two nsirro
M1 and M2 with corresponding amplitude reflection and transmission coeffi-
cientsry o andt, o, respectively. The amplitude coefficients are related to optical
lossed caused by scattering or absorption via

rE i 41 =1, (4.1)

wherer? = R andt? = T are the power reflection and transmission coefficients.
For the description of light fields interacting with optical surfaces and grop
gating through vacuum/air, the notation given in [49] is used. The light fields
interacting with a cavity are defined by their parametgrs; corresponding to
the mirrorM; and its lengthl.. A schematic of a Fabry-Pérot resonator with light
fields a; is shown in Fig. 4.1. The field amplitudes in vacuum for plane waves
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Figure 4.1: Schematic of a two mirror linear cavity with amplitude reflection and
transmission coefficients andt; corresponding to mirrofZ;. The
cavity has a lengttL and the light field amplitudes are given by

can be expressed as follows

a; = rlalz + itay,
Qrefl = TQip + ita'Q,
all — ale_ikL,
Atrans = it2a,17
az = 7“26/1’
aly = age *E, (4.2)

By substituting one equation into the other the amplitudes of the reflected, trans-
mitted and circulating fields are derived. The circulating field amplitude after
one round trip is given by

- —2ikL
ah = amm. (4.3)
The reflected field amplitude becomes
r1 —ro(r} + 13)e 2L
Qref = in Tp———3 (4.4)
and the transmitted field amplitude is
s = g 212 (4.5)

1-— 7‘17‘2672%[’ '

Another more convenient way to compute the dynamics of optical cavities or
more complex systems is given by applying coupling matrices, which are able to

34



4.2. CHARACTERISTIC VALUES OF OPTICAL CAVITIES

describe every single part of the optical assembly. Hence, the behafithe
system is given by the product of the associated matrices. The intereatsat r
is referred to [49, 50] for a more complete treatment.

4.2 Characteristic Values of Optical Cavities

After deriving the field amplitudes important characteristics of optical cavities
can be determined. The performance of the optical cavity depends ongth len
L, the wavelength\ and the amplitude reflection and transmission coefficients
r; andt;.

The frequency-dependent transmission transfer function of a Fdmot res-
onator is given by an Airy function

—2ikL
Qtrans _ —titoe !
—2ikL’

= (4.6)
Qin 1 —riree

wherek = 27 f /c is the wavevector; is the speed of light and the frequency

of the light.

Eqg. (4.6) reaches its maximum when the cosine of the exponential function in

the denominator becomes one. This is the case for

o fL
L Nr o L:N%, (4.7)

C

whereN is a positive integer. This maximal transmittance definesebkenance
condition for an optical cavity. From Eq. (4.7) it is evident why cavity length
control is needed. External disturbances affecting the length of theabpticity

or frequency fluctuations of the incident light field [51] are the reasby the
resonance condition is not permanently satisfied. To keep the systensmn re
nance a controller is needed to compensate for these effects.

The frequency difference between two adjacent resonance corsdgioiefined

as thefree spectral rang¢FSR)

C
FSR = o (4.8)

The resonance of an optical cavity has a certain linewdsithit is usually given
as full width half maximum (FWHM). It describes the lifetime of photons inside
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an optical cavity. This photon lifetime is known aavity decay rate< and
depends on the reflectivity of the mirrors, lossek ¢ the speed of light and the
cavity lengthL.  is defined as [34, 50]

cln [r$r3 (1 —1)]

K=— o . (4.9)

The relation between the linewidth and the photon lifetime is

Kk = 2wAv. (4.10)

Furthermore the ratio of FSR and linewidth definesfihesseF, a commonly
utilised quality measure of a resonant system

FSR
Av

This Q-factorF can also be expressed via the reflectivity of the mirrors [49]

F=

. (4.11)

F= r : (4.12)
2 arcsin (%&%)

For the high finesse scenario the argument of the arcsin function becomadis
which allows for the approximation

Fr VT2 (4.13)
1-— T179

The frequency-dependent transmitted power of an optical cavity anakssuei-
ated parameterAr and FSR are illustrated in Fig. 4.2.

4.3 Error Signal

For the example of locking the length of an optical cavity to the frequency of
an incident laser an error signal is needed to keep the system onmesofi&e
error signal determines the discrepancy from the reference poineytstem.
Here the reference point is given by the resonance condition of theabpdicity

and the discrepancy is determined by the deturding

A=fo=fi=-=—f1 (4.14)
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/ FSR

resonance

Transmitted Power [a.u.]
)

Frequency Detuning [a.u.]

Figure 4.2: Frequency-dependent transmitted power of a Fabry-fé&anator.
The maxima correspond to the resonances of the optical system. The
FSR defines the frequency separation of two adjacent resonances as
sociated with a single fundamental mode, and the linewisithof
the optical cavity can be given in FWHM.
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Error Signal Airy Function

Error [a.u.]

(=}
Normalised Transmitted Power
wn

0 0
Detuning A [Hz] Detuning A [Hz]

Figure 4.3: Illustration of an appropriate error signal in dependendtiesodetun-
ing A and the corresponding transmitted power.

with f. the resonance of the cavity; the laser frequency, the speed of light

n the index of refraction and the cavity length. From Eq. (4.14) it can be seen
that the error signal is linear around the reference point and switchggfit®n
resonance. Why the linearity of the error signal plays an important roles-s d
cussed in Chap. 5. The mentioned requirement on the error signal ledds to
guestion: how can an appropriate error signal for cavity frequeagehnerated?
The transmitted power cannot be used as a suitable error signal, sineeificsp
power, away from resonance, does not provide a unique solutiahdaletun-
ing. Hence, the sign of the corresponding error signal is not well eiéf{for

a detuned cavity lock the transmitted power can be used as error signal. This
detuned case is known agdfringe locking52]). However, the derivative of the
Airy function describing the gradient of the transmitted power yields ancappr
priate error signal. The transmitted power and its derivative, which is aeiita
error signal, are shown in Fig. 4.3. An experimental generation of snar-a
ror signal can be achieved by utilising a modulation/demodulation scheme with
subsequent low-pass filtering. A well-known modulation scheme for cawit§ lo
ing is described in [53] and calldébund-Drever-Hall(PDH) technique. Other
typical techniques yielding error signals useful for cavity locking are tikiog

[54], Hansch-Couillaud locking [55] or homodyne locking [46]. An adtage

of these techniques is the lack of modulation, thereby avoiding additiona nois
channels. Tilt locking generates an error signal via the interferencalsig

the carrier with a non-resonant spatial mode. Hansch-Couillaud anddyom@o
locking perform polarisation spectroscopy of an optical cavity, wheeerdiha-
tive phase between the resonant and non-resonant polarisatioml isuehy a
polarisation-based homodyne detection scheme, see Chap. 3.
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4.4. CAVITY IMPEDANCE

The phase response of an optical cavity is affected by the reflectivitg ofir-
rors. The impedance of the cavity describes this effect.

4.4 Cavity Impedance

There are three possible impedance scenarios for a Fabry-Péoaras All
described cases assume a lossless setup and are defined via theefleatarity

of the mirrorsT; = ¢2.

e Impedance-matched cavity = T5

On resonance the light field in reflection of the Fabry-Pérot resonater v
ishes and the transmitted power reaches its maximum. More precisely the
transmitted power is equal to the power of the incoming light field. On
resonance the intracavity field is enhanced, with respect to the incoming
light field.

Overcoupled cavity} > Ty

On resonance the power of the reflected field reaches its minimum, but it is
still stronger than the power of the transmitted field. The circulating power
inside the resonator is significantly enhanced with respect to the power of
the incoming field.

Undercoupled cavityl} < 1y

On resonance the ratio of reflected to transmitted field power is comparable
to the overcoupled case, but this time the circulating field is not enhanced
with respect to the power of the incoming field. Also noteworthy is the
fact that the phase response of the reflected field is almost a constant.

The undercoupled case highlights the importance of a well-defined impedance

since a Hansch-Couillaud or polarisation-based homodyne lock, whéchpar
plied techniques in our laboratory, in reflection of an undercoupled ¢ty

does not provide a suitable locking scheme, due to near-constantrpspsese.
For a system which exhibits losséshe coupling conditions can be extended.
For example the impedance matched case becdmes T3l and the power

transmissioril; matches the power reduction obtained in one cavity round-trip.

These scenarios are discussed in more detail and illustrated in [49].
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4.5 Stability Criterion

Laser used for most metrology purposes emit a transverse Gau3diag)
mode. In order to determine if an optical cavity is stable, it is useful to define a
measure, which describes how well the Gaussian beam inside the optiital ca
reproduces itself after reflection on the mirrors. The properties aftetiim self
reproduction are the mirrors’ radii of curvature (ROC) and the ledgtif the
optical cavity, which are further used to formulate a stability criterion via tiie ra
transfer matrix analysis introduced in [56]

L L
< - — —— | <1 .
o< (1o ik ) (1 k) < 419

g1 92

The parameter space of Eq. (4.15) provides a range of stable combipasisih
bilities, which result in various optical cavity layouts, see Fig. 4.4 [56].

The ray transfer matrix analysis describes how a Gaussian beam iotraadf

by optical components and hence it can be used to match the spatial aed phas
profile of a beam to the resonant mode of a stable optical cavity. Thisggige
referred to asnode matching
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plane parallel
ROC;=ROC,= o0

confocal
ROC,=ROC,=L

-1
concentric
ROC;=ROC,=L/2

Figure 4.4: Stability diagram for various cavity configurations. The coaitd
axes are given by, andg.. Configurations satisfying Eq. (4.15) are
bounded to the white areas.
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5

Control Theory

The design of feedback controllers is essential for a wide range ofabiic
periments. For example continuous-wave laser sources require &ectivarol

to obtain a constant output field [57]; cavity locking and squeezing @xpais

are also dependent on feedback control [58]. Without the implementation o
suitable control schemes high performance operation cannot be ath&inee
many optics experiments are affected by external disturbances, suahia®ns

in temperature and acoustic disturbances, it is often also expected thanthe ¢
troller should suppress external disturbances to ensure long-tenatiope In
complex systems it can be phenomenally difficult to manually design feedback
controllers, particularly in the multiple-input multiple-output case. Modern con
troller synthesis techniques utilize system models and sophisticated algorithms
to handle this complexity. A systematic control approach may be beneficial not
only because it simplifies the controller design process, but also beitaizse
produce optimal controllers. Since the focus of this work lies on the implemen-
tation of model-based controllers a fundamental understanding of systém a
control theory is required and is introduced in this chapter.

5.1 Signals and Systems
All physical systems are non-linear. However, many systems can be prell a

proximated by linear, time-invariant models around a certain operating point.
Non-linear systems are in general computationally and conceptually difficult
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control [59]. Therefore if a system can be linearised this simplifies itsacteni-
sation and the design of an appropriate feedback controller. The systidires

in this work can often be well described bgear time-invariant(LTl) models
and these are considered in the remainder of this thesis. LTI systems Hadisfy
principles of superposition and homogeneity [60].

A system satisfies the principle of superposition if the input signgdlg can be
transformed into output signaig(t) in the following way

z1(t) = y1(t),
z2(t) = y2(t),
r1(t) + 22(t) = y1(t) + ya(t). (5.1)

The principle of homogeneity is described in a similar fashion. Here an excita-
tion z;(¢t) multiplied by a constant factoy leads to an output signal(¢) also
multiplied by~

vzi(t) = yyi(t). (5.2)

If these characteristics are constant over time, the system is LTI.
The time evolution of a systefd,, see Fig. 5.1, is determined by the convolution
integral

t
n(®) = [ ot =i, (5.3)
wherez(t) is the input signal ang, (¢) denotes the system output defined for
t € [0,00). g1(t) is the impulse response of the system; its Laplace transform
G1(s) is the transfer function of the system. An illustration of the signal flow is
usually shown in @lock diagram[59, 60], see Fig. 5.1. In control theory, the

system of interest is often referred to as filant It is convenient to convert
Eqg. (5.3) into the frequency domain via the Laplace transform

F(s) = /0  Ft)etdt, (5.4)

whereF (s) is the Laplace transform of(¢).
In the frequency domain Eq. (5.3) becomes

Yi(s) = Gi(s)Xa(s), (5.5)

wheres = o +iw is the complex angular frequency, aNd(s) andY(s) are the
input and output of the system in the frequency domain, respectively(5Ex)
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Y

Y
Q

Figure 5.1: Block diagram of a systef and its associated input and output
Y1

highlights the convenience of working in the frequency domain; the cotigalu
integrals in the time domain simplify to algebraic manipulation in the frequency
domain. Furthermore it can be seen that a transfer function is defined esith

of the output to input in the frequency domain. The transfer function ggtem
consisting of two systemé&’; and G2 connected in series can be determined
by taking into account that the output of the first systepjs) is the input of

the second oneYs(s) = Ga(s)Yi(s). SubstitutingY(s) from Eg. 5.5 leads to
Ya(s) = Ga(s)G1(s)X1(s). The transfer function of the overall syst&p,q;(s)

can be expressed as

Gtotal(s) = GI(S)G2(S) =

(5.6)
This form can be expandedtocascaded subsystems, where the transfer function
G1otai(s) completely characterises the overall system [61]
Giotal(s) = ﬁ Gi(s). (5.7)
=1
Analogouslyn systems in parallel can be described by

Gtotal(s) = ZGZ(S) (58)

i=1
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5.2 System Stability

An important property of a system is its stability. There are numerous defigition
for stability in control theory, including Lyapunov stability, asymptotic stability,
bounded-input bounded-output stability. We consider exponentialistebr

LTI systems in the following. An exponentially stable LTI system will never
produce an unbounded output.

A transfer functionz(s) can always be expressed in the following form [62]

N(s) (s—z1)(5—22)...(5 = 2m-1)(5 — 2m)

R T B PRy oy Fymmy e MR
wherez;, the systenzeros are the roots of the equation
N(s) =0, (5.10)
andp;, the systenpoles are the roots of the equation
D(s) = 0. (5.11)

The system poles define the modes of the plant. The zeros of the system es-
sentially determine how the modes of the system are combined to generate the
system response. The location of the sensors/actuators affect tameros

and therefore the overall input/output response of the system. The catiohin

of the poles and zeros define the system dynamics. The time evolution of a LTI
system can be expressed as [62]

y(t) = 3 cient, (5.12)
=1

wherep; are the system poles anrg are the weighting factors for each mode,
which depend upon the system zeros. From Eq. (5.12) it can be sdevhita

the system poleg; are in the right half plane, the response goes to infinity. As
a result, the system is termed unstable. Sibge) is real, all poles must either

be real or appear in complex conjugate pairs. Taking this into accou(bE@q)
leads to the fact that real negative poles describe an exponentiallyigcam-
ponent in the transient response and complex conjugate pole pairs @frthe f

p; = —o + iw describe an exponentially-decaying sinusoidal component. Note-
worthy are the marginally stable cases, where a pole is at the origin or a comple
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P(s) —>I—>
u Yy
e -Y+ r

C(s) @

Y

Figure 5.2: Block diagram of a feedback control loop consisting of d@rothar
and a plant with transfer functior(s(s) and P(s), respectivelyy is
the output of the plant; a reference signat, the error signal and
is the controller output.

pole pair is located on the imaginary axis, resulting in an integrator or a perfec
oscillator, respectively. A more in-depth review of these cases canunel fio
[63].

5.3 Feedback Control

The goal of many control loops is to keep the plant at a desired operaiing p
r. An exemplary control loop is represented as a block diagram in Fig. B2. T
control loop consists of a plar®(s) and a controlleiC(s). The goal of the
feedback loop is to control the plant in a way such that its ougpinacks the
defined reference. In the frequency domain, the outplit s) is given by

Y(s) = P(s)U(s), (5.13)

whereU (s) is the controller output. Since the output of the system is used for
control this scheme is known asitput feedbackThe deviation betweepnandr

due to external disturbances determines the error sigmhlich, in the frequency
domain, is the controller input

e=y—r. (5.14)

Ideally the controller converts the error signal into an output signalhich
counteracts the disturbances and enforces 0. A classical example for a
controller capable of driving the error signal to zero ipraportional integral
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— P(s) —

C(s) 4—’(—

Figure 5.3: Modified block diagram with additional noise inpuisdenotes an
input disturbance to the plant, whereadefines the sensor noise.

(PI) controller, consisting of a proportional gain and an integrator. éoRtroller
can be expressed in the frequency domain as

C(s) = K, + Ké (5.15)

where the controller is defined by two tunable varialiigsthe proportional gain
and K; the integral gain of the controller.

Fig. 5.3 illustrates a slightly modified block diagram of the control loop including
a port for an input disturbanae acting on the plant and a port for sensor noise
v that corrupts the readout. The input and output of the plant bedome + w
andz = y + v, respectively. A feedback loop in general is fully characterised by
considering the input/output responses from all inputs (including distods to

all outputs. It turns out that a set of four transfer functions completesgidbes

the performance of the feedback loop. The derivation of one of thesed:
loop transfer functions, simply from the plant input to its output, is included
here. Adhering to the mathematical description introduced in Sec. 5.1 and the
notation from Fig. 5.2 we obtain

Y(s) = P(s)C(s)E(s),
E(s) = R(s) — P(s)C(s) E(s),
R(s) = E(s) + P(s)C(s)E(s),
Y(s) _ P(s)C(s)E(s)
R(s) E(Sz J)r(f((j)c(S)E(S)
P(s)C(s
T 1+ P(s)C(s) (-16)
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The remaining transfer functions are calculated in a similar fashion. The com-

plete set is
PC 1 P C

1+PC" 1+PC" 1+PC 1+ PC’
The first two transfer functions are particularly important as they desc¢hié
tracking performance and disturbance rejection performance, tesbgcthey
are thecomplementary sensitivity functigf’) and thesensitivity function(.S).
It is worth mentioning that

(5.17)

T+58=1, (5.18)

which emphasises that compromises must be made in feedback control, since it
is not possible to independently defifi@ndT’. Fortunately the requirements for

S andT are usually complementary for good performance. Usuglig small

in the bandwidth of interest, which reduces the effects of output distadsan

and thereforél” =~ 1 which ensures good tracking performan@erolls off at

high frequencies, usually outside the bandwidth of interest, where seose
becomes more significant arftl~ 1 [60]. The third transfer function captures

the effect of an input disturbanae and is called théoad disturbance sensitiv-

ity function The fourth transfer function determines the effect of measurement
noisev and is known as theoise sensitivity function

A simple example demonstrates why it is necessary to examine the set of trans-
fer functions in Eq. (5.17). Considering an example [64] comparable tcbFg
highlights that examination of onl§ andT (as is commonly done) is inadequate

in completely describing the response of the closed-loop sysfemndC are

given by

1 s+ 0.02
P(s) = d C(s)= 5.19
O =Gomern " () s (-19)
and the four transfer functions describing the closed-loop system are
B 1 P B S
245+ 1 1+ PC  (5+0.02)(s2+s+1)
1 .02 1
_ s(s+1) C :(s+00)(s+ )7 (5.20)
s24+s+1 1+ PC s2+s+1

whose step responses are shown in Fig. 5.4. Here it can be seen tHstara
bance at the plant input has severe effects on the transient perfanitme rea-
son for the impractically large settling time is the low-frequency pole, which is
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Step Responses
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Figure 5.4: The performance of the closed-loop system can be chisadtby
the step responses of the set of four transfer functions. In this case
the set of four transfer functions represents the dynamics of a plant

- ; _ 5+0.02
P = ioon5n and a Pl controlled = =52,

not cancelled by the controller. Such examples highlight the importancéyf fu
characterising the feedback loop and not just examining the transfetidarof
interest. The stability of a closed-loop system is also crucial. The feedimsck
nection of two stable systems can produce an unstable system and improperly
designed feedback controllers can and do result in unstable closedystems.

To examine the stability of the closed-loop system we must examine the location
of the poles by solving + PC' = 0. Another useful concept is the idea of the
stability margins: how far is the system from instability? In practical settings
knowledge of the gain and phase margins, which are related to Bode plots of
the open-loop system, is often useful. Bode plots will be often used thootigh
this thesis and illustrate the frequency-dependent behaviour of mdasans-

fer functions. They consist of two plots: the gain of the system in dB and the
phase in degrees. According to [62] the gain and phase margins ofeal dtogp
transfer functionH (s) are defined as:
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e The gain margin is equal tg,, = —201log;, | H (iw1)|, wherew; = 27 fy
and f; corresponds to the phage= —180°. If the overall gain is larger
than the unity gain (0dB) af; the system is unstable. The gain margin
highlights how much the gain must increase before the system becomes
unstable. As a rule of thumb a gain margin of 6 dB or more is desirable.

e The phase margin in degree is given &y, = 180 + ¢(fy), where fj
refers to the unity gain frequency. A negative phase margin is related to an
unstable closed-loop system. As a rule of thumb a phase margit air
more is desirable in practice.

The example from Eq. (5.20) highlights the importance of a thoughtful cibertro
design process. Usually in physics the controllers are designed bycatdtb-

ods, focusing on loop shaping via tuning of electronic circuits. This ad hoc
approach works well for simple systems, but with an increased systenleomp

ity the controller implementation becomes very challenging. The reasons for this
are often due to cross-coupling between inputs and outputs whoseseffemot
always be intuitively accounted for.

One possible approach to control highly complex systems is the use of modern
control techniques. These systematic techniques require accurate systels

that account for the dynamics and cross-couplings between inputsuiputs

This work is primarily concerned with the application of modern control tech-
niques to experiments in quantum optics.

5.4 State-Space Control

To consider modern control techniques, it is necessary to introducesgiate
models. All LTI systems can be described vistate-space modekhich has the
form

& = Az + Bu, (5.21)
y = Cz + Du, (5.22)

wherez, € R" is the state vector;, € R™ is the input vector ang;, € R? is

the output vector at time instaht The matrixA € R™*" is called the system or
state matrix and it represents the system dynamics. The input niateiR"™ >
describes how the inputs affect the time-evolution of the system and thetoutpu
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Figure 5.5: The block diagram presents a LTI system in its state-spane for

matrix C' € RP*™ describes how the measured outputs depend on the system
states. The matrio € RP*™ represents a direct feedthrough from the input to
the output. Fig. 5.5 illustrates a block diagram of a LTI system in state-space
form. The internal state is sufficient to describe the complete system. For a
LTI system there exists a set of matriced, B, C, D} that generates the same

input/output response as the transfer functigz). The conversion of the state-
space representation into a transfer function can be highlighted by appiich
the Laplace transform [61]

W
S
—~
w
~—
Il

AX(s)+ BU(s)
CX(s)+ DU(s)

}.<
—~
Va)
~—
Il

(sI — A)X(s) = BU(s)
X(s) = (s — A)"'BU(s)
Y (s) = C(sI — A)"'BU(s) + DU(s)

=C(sI — A)7'B+D. (5.23)
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It is also important to mention that state-space models are not unique. In fact,
there are an infinite number of state-space models, which could descrid@na g
input/output response. Somsgstem identificatiomethods, known as subspace
identification, can convert measured data directly into a state-space rapthed f
purposes of system analysis and control.

Stability analysis of a state-space model highlights interesting relations between
the A matrix and the system poles. the system poles are the eigenvalues of the
A matrix.

The time evolution of a state-space model is given by

t
z(t) = ey —|—/ A7) Bu(r)dr,
0
t
y(t) = Cellzg +/ CeA'7) Bu(r)dr + Du(t), (5.24)
0

whereA, B, C'andD have appropriate dimensions and define state-space model,
z is the internal statey the measured output of the system anpds the initial

state. We see the matrix exponential plays an important role for the system re-
sponse. Given a diagonal matik

hy
ha
H— _ , (5.25)
h,

the matrix exponential”! can be easily calculated as
el = _ . (5.26)

If an arbitrary matrix¥ can be diagonalised such théat= UDU ! thene!” =
UePU~!. Since the eigenvalues do not change in such a transformation, they
define the index of the exponential i® or the system poles. Thus for a state-
space system to be exponentially stable all eigenvalues of the matmixst have
negative real parts.
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In feedback control problems, an important property of the state-gyatem is
controllability. In general, the concept of controllability relates to how easy it is
to move the system through its entire state space. Complete state controllability
means that it is possible to move the system state from any initial state to any
final state in a finite time using an external input [65, 66]. It is evident that
such a concept has huge implications for the performance of a congtansy

as it defines what can and cannot be accomplished with feedbacklcddire
approach to determine if a system is fully controllable is if

cz[B AB .. An—lB}, (5.27)

has full rank
rank(C) = n. (5.28)

There are sometimes practical issues with such binary rank tests as nlimerica
errors may state that a system is fully controllable when in fact it is not. More
sophisticated tests are available. The PBH test, which requires that

rank[sl —A B} =, (5.29)

may yield more reliable results. Techniques have also been devised to guantif
the controllability of specific modes [67-69].

The concept obbservabilityis also important and is the analog to controllabil-
ity. Observability means that it is possible to reconstruct the internal state fro
observations of the system inputs and outputs. In most situations the internal
states of the system are not directly accessible. Observability then determine
whether it is possible to estimate the state vector. One approach to determining
if a system is observable is if

= [C AC ... AHC} : (5.30)
has full rank
rank(O) = n. (5.31)

As stated above, there can be practical issues with rank tests, and agBiBHh
is an alternative observability test which requires that

(5.32)

ranklsjg A] =n.
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Figure 5.6: Block diagram of a static state feedback control loop with an con
troller K.

The technigues outlined in [67—69] are therefore applicable to obsktywab

For controller design it is clearly advantageous when the system is fully con
trollable and observable. Let's consider a simple control law for a stateesp
control system: static state feedback defined by

u=—Kuz, (5.33)

whereK is a proportional gain matrix. Here we assume that we have access to
the internal state. While this is not always possible, we address this limitation in
the following section. For now, we emphasise that this differs from ouged-f
back, which is performed when the system output is used for contrpbpas. A
block diagram for state feedback is illustrated in Fig. 5.6, with a gain mérix
applied to the state vector before the state is fed back to the input. Thenedere

r for this case is zero and thus the feedback loop illustrated in Fig. 5.6 can be
mathematically expressed by

i = (A— BK)z, (5.34)
y = (C — DK)z, (5.35)
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whereu = — Kz has been substituted into Eq. (5.22). One of the fundamen-
tal results in modern control theory is that it is possible to arbitrarily place the
closed-loop eigenvalues (or closed-loop polesfof BK via selection ofiK

if the system is fully controllable. The previously defined concept of stability
is also applicable in the closed-loop case; the system is exponentially stable if
all eigenvalues oA — BK have negative real parts. It is worth mentioning that
even if the system is not fully controllable, it may still be possible to achieve the
design objectives, but there are certain features of the system whicdotdae
modified.

The previous result suggests that we have unlimited flexibility in enhancing the
system performance, however there are practical limitations. To move $he sy
tem poles significantly often requires large control energy and this iswaya
feasible. There are physical limitations on the actuators. While the mathematical
result holds true, often we must find a compromise between system penficema
and control energy. This compromise between the system performaddbean
required control energy can be formulated as an optimisation problemcoEhe
functionis typically defined as a quadratic function; in optimal control the fol-
lowing cost function is used extensively

j:/ 2T Qx + v’ Ru dt, (5.36)
0

where@ € R™" andR € R™*™ are design parameters. Tgeterm penalises
the speed of convergence and tRegerm regulates the applied control energy.
This form of optimisation is known as the linear quadratic regulator (LQR)pro
lem and has been well studied. For a more in-depth treatment see [6&0I(}].
tion of this problem yields an interesting result: the optimal control law is static
state feedback

u=—Kuz. (5.37)

The full derivation has not been included here as this is a standadtiirespti-
mal control theory; the interested reader is referred to [71]. The ststblack
gain K is computed by

K =(BTSB+R)"'BT5A4, (5.38)
whereS satisfies the algebraic Riccati equation [59]

AT[S — SB(BTSB+ R)"'BS]A - S+ Q =0. (5.39)
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The optimal controller derived for the LQR problem is a static state feedback
controller, essentially a proportional controller. Such a controller E3gsesome
limitations such as steady-state error and the inability to cope with constant dis-
turbances. Furthermore state feedback cannot be realised if the irdiztesis

not accessible. Integrators can be used to overcome the inability of eliminat-
ing steady state errors as discussed in Chap. 6. To address the puojtitesn
inaccessible state vector, the concept of observers is introduced.

5.5 Optimal Observers

Since we usually do not have access to all internal states, we utilise theptonc
of observability and knowledge of the measured input and output to cahstr

a state estimate. For a sophisticated analysis, we consider the presence of
noise sources, both measurement noiaed process noige. It is assumed that
both noise processes are white Gaussian, which is typically not a limitation since
coloured noise sources can also be modelled by augmenting additionatidgna
into the system description. The modified system description is

& = Ax + Bu + w, (5.40)
y=Cx+ Du—+wv, (5.41)

wherew € R™ andv € RP.

In 1960, Kalman proposed th€alman filter, the optimal estimator capable of
producing minimum-variance state estimates from noisy measurements [29]. The
Kalman filter has found widespread application in aeronautics and spple ex
ration, navigation, economics and many others. We introduce the steaey-sta
Kalman filter and highlight how it can generate asymptotically-converging state
estimates.

Consider the estimator in Fig. 5.7. That is, the estimator is essentially a mathe-
matical model of the system. In fact, the estimator design problem is the dual
problem, the mathematical analog, to the previously introduced LQR problem,
where the tuning parameters reflect the process and measurement fidises
time evolution of the state estimate depends on both the measured output and the
mathematical model of the system dynamics. The objective is to design the op-
timal gain L, which determines whether the measured ougport the estimated
outputy = CZ should be trusted more; this depends on the noise statistics for
the given problem. The optimal observer for the system is given by [60]
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Figure 5.7: Block diagram of an optimal observer estimating the internalstate
of a system under consideration.

&= A%+ Bu+ L(y — C%)
=(A— LC)% + Bu+ Ly, (5.42)

wherez denotes the state estimate anis determined by
L=prctv- (5.43)
P is the solution of thalgebraicRiccati equation
AP + PAT — PCTV-lcP+W =0, (5.44)
andV andW are the covariances of the above mentioned noises expressed as
E(wl) =V,
E(ww’) = W. (5.45)

Ideally, the observer’s state estimatshould converge to the actual statast
goes toco. The estimation errog is defined as

e(t) = a(t) — 2(t). (5.46)
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Taking the time derivative of the estimation error and inserting it into Eq. (5.42)
leads to

é=Ax+ Bu— A% — Bu— L(y — C%),
é(t) = (A — LC)e(t). (5.47)

Here we see that the error between the actual and estimatedestatagerges to

0 when all eigenvalues oft — LC' have strictly negative real parts. Thus even
when we are not able to measure the state directly, an observer is capable o
generating a state estimate if the system is observable. In the system is not fully
observable, only estimates for the observable states can be generated.

Another incredibly useful result is the separation principle [72], whitcttes

that the design of an optimal feedback controller for a stochastic system ca
be achieved by designing an optimal estimator and feeding the optimal state es-
timate into the deterministic optimal feedback controller as shown in Fig. 5.8.
This combination is better known asliaear quadratic GaussiarfLQG) con-
troller. The derived LQG controller is a combination of a LQR and a stesatg-s
Kalman filter and is applied for a cavity locking experiment described in Chap. 6
A LQG controller can also be realised with a time-varying Kalman filter, which

is discussed in Chap. 7. The time-varying Kalman filter assumes the general
form of the Riccati equation

AP + PAT — pCTV-iCP+W = —P, (5.48)

whereas the time-invariant Kalman filter uses #igebraic Riccati equation
Eqg. (5.44).

5.6 Discrete-Time Systems

The analysis so far has dealt with continuous-time systems. Howevellyusua
estimators and controllers are digitally implemented with computers and are
discrete-time. While conceptually, there are many similarities between continuous
and discrete-time systems, it is important to acknowledge their differenbes. T
purpose of this section is to briefly outline the conversion of continuous-time
systems to discrete-time systems.

The bilinear transform, also known &@astin’s methogtransforms a continuous-
time system into a discrete-time system. Critical to this conversion is the sam-
pling time T of the digital system. The relation between characteristic values in
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Figure 5.8: Block diagram of a LQG controller. The optimal estimate of an un-
observable state is fed to an optimal controller stabilising the system.

the z-plane to those in the s-plane is given by [61]

_ sT,\,l—i_STl/2

N — 5.49
1—sT/2 (5-49)

This means for example that a polesat —a corresponds to a pole = e~*T

but the first-order approximation is often preferred siatk is infinite dimen-
sional. It can be seen that the poles of a stable continuous-time system, which
are located in the left half-plane, are mapped inside the unit dizcte 1 in the
z-plane.

The inverse mapping can also be approximated as

®
Il

Q

Q

Nl Nl N[=

1— 271
(1 " z_1> . (5.50)
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Linear Quadratic Gaussian Control for a
Three-Mirror Ring Cavity

Our demonstration of implemented systematic control approaches starts with a
controller design for a single input single output (SISO) system. It wasngi

by an optical cavity requiring a feedback loop for length control, or in othe
words the resonance frequency of the cavity was matched to the flgqoén
the incident laser field. The problem of frequency matching a cavity isllysua
known aslocking Although this SISO system was not highly complex, it is a
suitable test bed for modern control approaches and of interest foriadrof
experiments. For applications in fields such as spectroscopy [73, Uaiium
information [75, 76], optical imaging [77] and many others it is necessdocio

the cavity length of an optical resonator to the frequency of a laser (eveisa)

to achieve transmission of the light through the cavity (or a desired freguenc
noise reduction). Another reason for our investigations was that otte ahost
advanced applications that necessitates cavity locking is a interferometvie gr
tational wave detector (GWD) [17, 78].

We designed and implemented an integral linear quadratic Gaussian (LQG) co
troller to achieve cavity lock for a three-mirror ring cavity in cooperation with
the groups of Prof. I. R. Petersen and Prof. E. H. Huntington. Tédteeof our
novel test bed for modern control approaches, consisting of a thireer ring
cavity, were published in [31, 79]. Previous results published by thipe@dion
involved the locking of a linear optical cavity with a LQG controller [80, 81].
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Figure 6.1: Schematic of the optical plant including the optical fiéJdghe con-
trol input to the piezoelectric actuatarand the measured outputs
andy, corresponding to the error signal and the transmitted signal re-
spectively. HD, PDA/2 and /4 refer to homodyne detector, single
photodetector, half-wave and quarter-wave waveplate respectively.

6.1 Experimental Setup

We set up an impedance-matched three-mirror ring cavity as shown schemati-
cally in Fig. 6.1 to demonstrate operation of a modern controller. The length
control of an optical cavity can be realised by controlling a piezoelectntstra
ducer (PZT), which is attached to one of the cavity mirrors. The paramafters
the optical resonator (given in Table 6.1) were chosen to provide easyomve-

nient handling of the system to test new locking schemes. For this reasaw, a

ity with a low finesse ofF = 10 and a correspondingly large spectral linewidth

of Av ~ 65 MHz (equivalent to a decay rate~ 410 - 10° %) was constructed.

This results in a small power build-up within the optical resonator and a suitably
large linear region of the error signal, which simplifies the locking proecadur
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Table 6.1: Parameters of the optical ring cavity.

Parameter Value
Wavelength 1550 nm
Finesse ~10
Spectral linewidth ~ 65MHz
Waist 453um

Furthermore a ring cavity setup was chosen to simplify the implementation of
the homodyne locking scheme [46], since the incoming light field is spatially
separated from the reflected light field. Homodyne locking [46] genethteer-

ror signal via polarisation spectroscopy of the system. Hence, the twaineelas
output signals areg;, the phase quadrature of the reflected beam measured via a
HD, andys, the intensity of the transmitted beam measured by a single PD. Sig-
nal y is not required for the design process of a feedback control loapeVer

it is convenient to verify that the system is in lock via the maximised transmitted
power. The light source for our test bed was a fibre-coupled dio@e Veith a
wavelength ofA = 1550 nm. Since a systematic control approach is based on
a model describing the system dynamics, we derived a state-space nemlel, s
Chap. 5, describing the equations of motion for an optical cavity.

6.2 State Space Representation of Cavity
Dynamics

With the introduction of quantised electromagnetic fields and coherent states,
see Chap. 2, and the derivation of the field amplitudes for an optical cagity,
Chap. 4, we were able to formulate the quantum equations of motion for our
system in the Heisenberg picture [82]. The quantum equations of motidineor
intracavity field represented by the annihilation operatand the equation for

the reflected field,.; are given by [34], whereby for simplicity reasons the 'hat
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formalism’ will be dropped in the following equations,

a= (5~ 9D ) a = Vo (3 + W) Vb~ iz,
bout = \/%a + B+ bg. (61)

b is the annihilation operator of the input light field, which can be expressed
in a linearised form as a boson fiebld= 5 + by. Hereby the operatdb is
written as a combination of a complex numkedescribing the amplitude and
an operatob, describing a vacuum field. Hencl, describes the fluctuations

of the fieldb and defines them to be white Gaussian with unit variance. All of
these field equations were formulated in a rotating reference frame witbatesp
to the frequency of the boson field x is the total decay rate of the cavity and is
the sum of the individual decay rateg, «; andxy, of the optical fields, b; (the
vacuum field from the rear plane mirror/output coupler) apdthe optical loss
field) coupling to the cavity, respectively

K=Kyt K +KL. (6.2)

A is the frequency detuning, introduced in Chap. 4, between the opticity cav
and laser given by

A=fo—fr=0-+—f1, (6.3)

nL

wheref. is the resonance frequency of the cavjty,the laser frequency, L the
optical path length of the cavity, consisting of an index of refractiand L the
physical path length; the speed of light and a large integer indicating thg”
longitudinal cavity mode.
Due to the non-linear error signal of the system, the dynamics to be controlled
Eq. (6.1) also become non-linear. However the region of interest draus 0
corresponds to the linear region of the error signal. Hence, in orderdble
the use of linear control techniques we linearised the dynamics artusd0.
The intracavity field can be described by= o + a, wherea is the steady state
amplitude mean value of anda denotes the perturbation operator satisfying

a = —g& =+ ZACV — \/%bO - \/Flel - \/@b[n
Eout = \/%a + bo. (64)
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This set of equations describes the perturbed intracavity and outpus. fiefa
perturbed outpuf, which is a part of the feedback loop, can be expressed as
i1 =€ oy + €0

out
= /Ko (eii‘ﬁ& + ei‘de) + qo, (6.5)

whereq is a Gaussian white noise process describing the noise of the input field
qo = bo + bg and¢ is the homodyne measurement angle. For our polarisation-

based homodyne locking schemds determined by the orientation of the quarter-
wave/half-wave plate combination.

In the real physcial experiment we measure the amplitude and phaseyuadr
which are defined as

g=a+a, p:i(aT—a). (6.6)

Taking the perturbed form of the quadrature operators into accoungawe
rewrite the cavity dynamics in state space form

HEEEIBEEE

—\/EO[ cos ¢ singb}[qgl

_|_

—sing cos¢ Do

IR

yi = kQﬁo{COSQﬁ sinqﬁ}[g

ko | 1 0}[22

whereg; = b; + b} andp; = i(b! — b;) are the noise quadratures for= 0,1, L.

ko is the transfer impedance gain, including the quantum efficiency of the HD,
with electronic noisei;. The homodyne detection angleis set tor /2, since

the polarisation-based homodyne detection scheme is a phase-sensisueanea
ment. Before we were able to implement a suitable controller based on the de-

rived state-space model we had to overcome two challenges, explaineg in th
next sections.

1 0 q
(2] o

_l’_

+ 7, (6.8)
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Figure 6.2: Block diagram of the setup for measuring the transfer funcfitire
optical cavity, withu the controlled inputy the swept sine and the
error signal. [31]

6.3 Frequency Response and System Identification

Unfortunately, the analytically derived state space model does not coitgmlete
scribe the physical system. The true physical dynamics were more comyex d
to the dynamics of the piezoelectric actuator attached to one of the end mirrors
to control the cavity length. Hence, we measured the cavity transfer fanctio
which we were able to use to construct a state-space model, mirroring the true
dynamics, by utilising subspace system identification [83]. The relationétra

fer functions and a state-space model are described in Chap. 5.

We obtained the transfer function of our plant, including the dynamics of the
PZT, by injecting a swept sineinto the controlled input: and measuring the
error signaly; generated via the homodyne detection scheme. The HP 35665A
2-channel digital signal analyser (DSA) generated the swept sineeandded

the input signal:. +r and the output signaj;. A block diagram of the setup used

for frequency response measurement is shown in Fig. 6.2. The sighalwas
enhanced by a high-voltage amplifier, driving the PZT and the desirqddrey
response dataransferfunction = Y'(s)/ (U(s) + R(s)) was generated via a
fast Fourier transform (FFT) performed by the DSA. During the dagaiaition

for the transfer function, we held the cavity in lock with a suitable PI controller
Keeping the system on resonance and choosing an appropriate inpaltsigr
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Figure 6.3: Bode plot of the experimentally acquired frequency regpohthe
plant in comparison to two simulated models. [31]

is essential to guarantee that the range of the outmarresponds to its linear
region. This was essential to ensure the applicability of linear control ipobs

The Bode plot illustrating the frequency response of the plant and twoplaah-

els are shown in Fig. 6.3. For the control design process we took theeiney

data up to the first resonance into account. This was done since usuabyly is
necessary to suppress the first resonant mode, as the primary moaeogtith

cal cavity/PZT combination should have the strongest impact on the dynamics
[84, 85], although this was not the case for our setup (third mode was datjin

We used truncated frequency response data, regarding a rangd ®®Hz to

400 Hz, for the subspace system identification. We fitted a third-orderIrtande
the data, which was then used for the controller design. We computed the model
with the help of the iterative prediction error minimisation (PEM) method from
Matlab’s system identification toolbox [86]. We also fitted a 20th-order model,
incorporating the complete frequency data. We could have used the &2&th-o
model for the controller design as well, but the third-order model was cempu
tationally more convenient. The third-order model describing the input/output
relation of the plant was used to construct a state-space model of thenealthk
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form, see Chap. 5,

& = Ax + Bu,
y = Cx + Du,

where

—0.0180 —0.2865 0.0573
A=10%- 101693 —0.0157 0.2339
0.0446  0.1109 —1.1449

[ 2.8394 ]
B=| 42852
| —24.9287)
[ 24.0014 17
C = | 37.3086
| —34.4903
D =0. (6.9)

6.4 Controller Design

The control objective is to drive the detunidgto zero. Since we cannot mea-
sure the state of the intracavity field directly an observer/estimator wasedquir
This lead to a LQG control approach, presented in detail in Chap. 5, wrdsh
augmented due to several limitations of static state feedback control. Firstly,
feedforward control is required to eliminate steady state tracking ermdthere-
fore perfect knowledge of the plant model is required. Secondly, w4ticstate
feedback, the states cannot converge in the presence of constatiourtput
disturbances. To regulate the detunifgto 0 in the presence of unmodelled
external disturbances, such Bsf laser phase noise, integral control must be
included. Integral action can be built into the LQG problem by adding anothe
system stateg,1 = qx + yx, Which integrates the system output. The discrete-
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time augmented state-space model then becomes

T A 0| |z B . .
lq} = [C I] q + 0 Uy + Wy, (6.10)
k41 k
X
k= |C 0 T, 6.11
o = | }Mk o (6.11)

with & = [v1v2)7. The LQG control design can be performed on the augmented
system{fl, B, C} where

A:[é ﬂ B:m; c=[c o x:m

We chose the following weighting factors for the implementation of the LQG
controller. The weighting matrices for the LQR and Kalman filter cost functiona
were

2
2 |03 0 . 1 0
Qr=oi=1, RL_[O agl_lo 107]’
Qx =q=75-10°, Rg =71=05. (6.12)

o1 is the standard deviation related to the process ndise, andos are the
measurement noises associated with the HD and the augmented integral output,
respectively. The noise covariances and weighting parameters wesielewed

to be design parameters and do not need to reflect physical covariahtiee
system [87]. We determined the above stated values to generate a comtithller

a sufficient bandwidth [88]. The resulting controller was robust torsiriroplant
modelling, was able to reject constant disturbances and was able to dgive th
detuning to0. A Bode plot of the LQG controller, defined by the ratio between
the controller output. and controller input (error signat) is shown in Fig. 6.4.

6.5 Controller Implementation

We implemented the discretised state-space model for the LQG controller includ-
ing integral action with a DS1104 dSPACE DSP system. The dSpace baard co
sists of 8 Digital-to-Analog-Converter (DAC) channels and 16 Analo®itital-
Converter (ADC) channels with a sampling rate36f kHz. The board is fully
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Figure 6.4: Bode plot of the LQG controller. [31]

programmable via Matlab’s Simulink toolbox and possesses a 12-bit resolution
With the help of this hardware we were able to successfully implement a LQG
controller based on a third-order model. The controller was capablehadvac

ing lock and its bandwidth was not limited by the hardware. A schematic of the
closed loop system is depicted in Fig. 6.5.

6.6 Results

The LQG controller state feedback gain was computed to obtain appropalate v
ues for the gain crossover frequency, gain margin, and phase méatbiloop

gain corresponding to the product of the augmented plant transfeiidarand

the integral LQG controller transfer function. We achieved suitable malyins
tuning the weighting parameters. Furthermore we used the loop gain transfer
function to characterise the designed feedback control loop [62] sifinglated
frequency response for the corresponding loop gain transfetiumnis shown

in Fig. 6.6, which has a gain margin 86.2dB at251 Hz, a phase margin of

47° at61 Hz, and a gain crossover frequency6dfHz. We chose these robust-
ness margin values in order to ensure closed-loop stability of the system. A
guide to adequate robustness margins for LQG controllers is describ8d]in [
We evaluated the performance of the closed-loop system with the integf@l LQ
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DAC Channel

Controller

ADC Channel

ay,
---------------------------------------------------------------

Figure 6.5: Schematic of the cavity locking experiment, including the combina-
tion of a time-invariant Kalman filter and a linear quadratic regulator.
The dashed lines depict electronic links.
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Figure 6.6: Loop gain of the three-mirror ring cavity test bed system withiiateg
LQG control. The cross sections of the dashed lines denote the gain
and phase margin. The gain margin2is2dB at 251 Hz and the
phase margin ig7° at61 Hz. [31]
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Figure 6.7: Comparison between a measured close loop step resporsssiand
ulation based on a 20th-order plant model. [31]

controller by injecting a step function and measuring the system resporese. W
compared the acquired data with a simulation, which used the 20th-order model
for the description of the plant. The comparison is shown in Fig. 6.7 and the
resulting closed-loop frequency response is plotted in Fig. 6.8. We applied
step input 0f0.04 V for the characterisation of the integral LQG controller. The
same step function was used for the simulation. The ougpof the plant, ini-
tially at 0V, settles within0.1 s to a mean value 6£0.0391 V. We demonstrated

that the performance of the closed-loop system was stable over altiopata
conditions. Furthermore the optical cavity lock was able to keep the system on
resonance over extended periods of time. Fig. 6.9 highlights the functiooglity
the controller. The controller satisfied its objective and kept the systerason r
nance, leading to an error signal close to zero, and the correspdnatisgitted
power is maximised. The reason for the observed noise in the experimiemtal s
response is assumed to be due to quantisation effects arising from tlierd2-b
olution of the ADCs. These quantisation effects could have been thenréaso

the noisy signals shown in Fig. 6.9. An option to solve this quantisation problem
is the acquisition of a new dSPACE board including ADCs with an improved
dynamic range.
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Figure 6.8: Closed loop frequency response of the three-mirror rivitycgs1]
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Figure 6.9: Measured time data of the error signal and the transmitted power,
while the system was in lock. The mean values of the plots are the red
and blue lines corresponding @/ and0.738 V, respectively. [31]
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6.7 Conclusions

In this chapter we demonstrated a successful implementation of a modern con-
troller by applying modern control techniques. We used a third-orderspatee

model model, describing the plant, for the computation of a LQG controller with
integral action. We satisfied the control objective by acquiring lock withhoaal-

ern controller. We verified the stability and performance of the feedbagklia

step response data. This data was compared with a simulated step redponse o
the plant. In addition to the successful control implementation, we also designe

a test bed for systematic modern control approaches regarding thengeadie
frequency locking optical cavities.
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7

Autolocking an Optical Cavity Using a Time-
Varying Kalman Filter

In the previous chapter we demonstrated a modern control approaableab
locking an optical resonator. A strict requirement for this locking schertteats

the initial system is not strongly detuned. Therefore the detudimdpes not
exceed the linear region of the error signal. Since the error signal iscinthe
non-linear lock cannot be acquired outside of its linear region via linearalo
techniques. In general the non-trivial lock acquisition is achieved bsao-
mated process which scans the cavity length with a PZT until the fundamental
resonance is found by detecting the transmitted power. At that point tine sca
stops and the controller is engaged. This process, knovautmdocking[90]
eases and speeds up the lock acquisition. This is important to guarantée a hig
duty-cycle for long-term experiments/projects like a gravitational wavecttate
(GWD).

In this chapter we introduce a new autolocking scheme based on a systematic
control approach utilising the combination of an integral LQR and a time-vguryin
Kalman filter (TVKF). This scheme was proposed in [91] and the simulated re-
sults highlighted that, with respect to the linear region of the error signal, the
lock acquisition was more robust and faster than PI control. Furthermere th
simulation showed that this control scheme was able to perform even when the
non-linear error signal was not in the linear region, which cannot leecowme

by PI control or a static integral LQG controller with a time-invariant Kalman
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filter.
We implemented and thereby verified the superior performance of the ihtegra
LQG/TVKF combination. The results are published in [32].

7.1 Experimental Setup

We used the constructed test bed, introduced in Chap. 6 (see Fig. &l&jnom-
strate the superior performance of our novel control scheme. Althingggxper-
imental setup stayed unchanged, we needed to reformulate the statergpite

of the system. Firstly the TVKF needs the information of a phase-sensitive an
an amplitude measurement to quantitatively determine the detuxingence

we needed to add an additional output sigmato the state-space model. The
phase-sensitive output signalis given by the error signal, generated via
polarisation-based homodyne detection [46]. The additional amplitude neeasu
mentys, is obtained by detecting the transmitted power with a single detector.
Secondly the state-space model given in Chap. 6 was based on a litiearisa
of the system around zero detuning. However for the TVKF approactoak

the non-linear region of the error signal into account as well, since vateddo
demonstrate that this approach is able to cope with this non-linear conti®sl pro
lem and acquires lock from any operating point.

We extend the quantum equations of motion [34] from Eq. (6.1) by the decon
output fieldb; 4,

az—(g—m)a—%(ﬁwo)—mbl—mbb

bout = \/FOCL + ﬁ + bo,
bi.out = v/Kia + 5+ by. (7.0

a is the annihilation operator of the intracavity field althe annihilation op-
erator of the incident light field. This laser input is expressed as a bfteldn

b = (3 + by, with 5 denoting the coherent field amplitude anddescribing the
field fluctuations.«x is the total decay rate of the cavity, which is given by the
sum of the individual decay rates of the optical field$;, withi = 0,1, L. The
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two detected outputs are expressed as

Y1 = 6_id)bout + eid)bT

out

= Vro(e a + e®a’) + 28 cos ¢ + qo (7.2)
Y2 = bioutbl,out
= mata + /mi(alb; + bfa) + biby, (7.3)

whereq is Gaussian white noise of the input field af\describes the homodyne
detection angle. With these sets of equations we were able to reformulate the
state-space model, where the staie described by the amplitudeand phase
guadrature

1) - 12 3L

—\/EO[ cos ¢ singb}[qol

—sing cos¢ Do

IR HFINS

yi = kQﬁo{COSQﬁ siné}[i]

+ha[1 0] [ 0 1 4 2%ksfcos d + B (7.5)
bo
Yy = 122<'Z(p2+q2)+\/f[q p]l; >+®2, (7.6)

wherek, andk; denote the transfer impedance of the HD and PD, respectively
and®; are sensor noises of the associated output. As mentioned in Chap. 6, the
mathematical state-space model does not describe the complete physamal dyn
ics, which were more complex due to the PZT attached to one of the mirrors
for the length actuation. We obtained the physically exact input/output relation
via a transfer function of the plant. The frequency data were used tratemna
state-space model via subspace system identification [83].
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7.2 Singular Perturbation Method

Until now all of the applied techniques correspond to linear control teciasig
although we consider a non-linear control problem. We tackled this issue by
simplifying the system via the singular perturbation method [92] and implement-
ing the TVKF. This ensured that a linear control approach can still béeabp

The singular perturbation method decomposes the plant, consisting of the opti-
cal cavity and the two readouts, into two subsystems which differ by their time
constants. This technique is known separation of time-scales~or our case

the dynamics of the light fields are fast compared to the mechanical assembly.
The slow mechanical block whose output is the detuninig the dominant ef-

fect. It is followed by a fast block representing a discrepancy frondtminant
behaviour. This discrepancy can be modelled as a static sensor narntyiaga

plied to the output. This approach enabled the use of linear control teclknique
Static non-linearities imply that the time derivatives- p = 0. With the help of

this relation we determined the behaviour of the static non-linearity

q __ —1 KBy/Ko
b = i s w0

For the homodyne locking scheme [46] the detection angle is gettar /2 and
the outputg;; andy, become

y1 = kav/kop + 2k23 cos ¢ + v1
2]{725/{0A
()
= [1(A) + vy, (7.8)
_ ka1 (P* + ¢*)

Y2 + v2

= f2(A) + va. (7.9)

If the optical cavity is perturbed strongly enough and the error signekeis
linear regime, we cannot unambiguously determine the detuningsfthe only
measurement, as shown in Fig. 7.4. Therefore we complemgnteith - to
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correctly ascertain the detuning. Even when hgtlandy, are considered, both
signals tend to zero for very large detuning and become very sensitivage. n
Because of this we set uptounded noise modeéstimating the actual state
of our system via noise-corrupted measurements. In our case the emaastir
noise was unknown but bounded. To fulfil this constraint at each timenintta
measurement noises ;, andv; 5, need to satisfy the inequalities

vip<pdy vd, <, (7.10)

wherep; andus are constants defining the upper magnitude bound of the noise.
In the next step we handled the problem of characterising the set ofssligi®

Ay, consistent with the measured outpyts, andys, ;. to determine the sef;,

that fulfils the inequalities in Eq. (7.10),

Si o= {AreR: (yix— fi(AN))? < 4if and
(yo — f2(Ak))* < 43} (7.11)

Using Eq. (7.8)-(7.10) it is straightforward to show tisatcorresponds to the set
of A; € R satisfying the inequalities
(164, + &) (yi . — 17) + 64A%k2Broys
+ BAR(BK3B7KG + K2yi ), — KopY)
+ 16AgkaBrok*y1 1 < 0, (7.12)
(16A% + £ (Y3 k — 13)
+ 8AL(K* Y3, — Aksko 2 ya e — K*13)
— 8K% k3B koyar + 16k331KE < 0. (7.13)
The setS;, is computed by solving the inequalities Eq. (7.12) and Eg. (7.13)
using a numerical analysis, known laaguerre’s method93, 94]. If we obtain
mroots as a solution, they will define + 1 regions of interest:
Skz,l = {Ak eER: -0 < Ak < A]ﬁl}
Skz = {Ak cR: Ak,l < Ak < Ak’g}

Skom = {Ar €ER: Apy1 <Ak <A}
Sk,m+1 = {Ak eR: Ak,m < AR < OO}
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The setS, consists of the subses ;, satisfying Eq. (7.12) and Eq. (7.13) at time
instantk. Let us briefly outline the reasons for this approach: To apply the TVKF,
we must transform the given measurementandy, into the mean detuning,

and its variance. Thus we present a heuristic approach, which attempts/grtc

the given information into the required quantities. The%etan be non-convex;

it is possible for two regions on either side of the resonance peak to sthiesfy
inequalities when the detuning is large. In this situation, we want to inform
the Kalman filter that there is a large uncertainty in this measurement, which is
reflected by a large variance. Therefore, when we have a norexanlution set

we considesSy, the convex hull ofS;, (i.e. we force the set to become convex
by including all possible values between the minimum and maximum values),
which makes the set significantly larger with a large variance. On the othdr ha
when S, only consists of one subsé), ;, the set is equal to its convex hull,

S = S, and the variance is small, reflecting our increased confidence that
this is in fact the actual detuning. Taking the convex hull of the solution set
is motivated intuitively and we developed the following equations for the mean
value forA, and the standard deviatian,, where we have assumed a uniform
distribution over the convex sé;,

Ay = L [ min (Ag) + max (Ak)l ) (7.14)
2 | AgeSy ARESK
1 (Ap) — min (Ag) (7.15)
0. = —— | max — min . .
b 2\/§ AkESk g Akesk g

The quantities\, ando? represent the new measurement for the mean detuning
and the measurement covariance. These quantities are the inputs to the TVKF
which is described in the following section. A schematic highlighting this algo-
rithm is shown in Fig. 7.1.

7.3 Time-Varying Kalman Filter

The Kalman filter utilises the mathematical model of the system and the measure-
ments to estimate inaccessible system states. For an optimal estimate, the pro-
cess and measurement noises must be known white Gaussian prodésses.

are two stages to the time-varying Kalman filter: grediction stepand theup-

date stepln the prediction step, the Kalman filter uses the current state estimate
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M
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Set 4 Time-varying
Membership 5 Kalman
—— Block Ok filter

Figure 7.1: Block diagram for the calculation of the state estimatg, v, are
the measured signalg is the estimated mean detuning, andis
the estimated measurement covariance.

z;, and error covarianc, to predict the state estimate and error covariance at
the next time step using the system model:

Ip = AZy+ Biy, (7.16)
P, = APA"+BWBT, (7.17)

whereW is the covariance of the process noise and is assumed to be diagonal.
Here,z, , P, denote thea priori state estimate and error covariance. The error
covariance in general is defined by the estimation erfas

€ = i’k — :Z'k and

P, =E [eke{] . (7.18)

Thea posterioristate estimate and error covariance are givety;ognd Py, re-
spectively.

In the update step, the Kalman filter compares the measured output to the pre-
dicted output. The Kalman gain, which is updated at each instant of time, weights
the difference between the predicted and measured outputptinually adjusts

the state estimate. The Kalman gdin is the optimal weighting factor, based

on the specified noise statistics, and it determines whether the measurement or
the model-generated state estimate is more reliable at each time inktaid.
optimal in the sense that it minimises the variance between the actual and esti-
mated states. The following equations summarise the update step, whereas the

81



CHAPTER 7. AUTOLOCKING AN OPTICAL CAVITY USING A
TIME-VARYING KALMAN FILTER

Calculate Kalman Gain
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Figure 7.2: Overview of the discrete-time time-varying Kalman filter.

error covariance’, satisfies the Riccati equation, see Eq. (5.44):

Ky =P, CT(CP; CT +oy) 7Y, Py = Puy; (7.19)
iy = 1 + Ki(g — Ciy,), Iy = Zo; (7.20)
P, = (I - K;O)P . (7.21)

The equations presented here can be found in any standard text ortiestjfoa
more information see [66, 95]. Fig. 7.2 highlights the recursive natureedittie-
varying Kalman filter algorithm. At each time instaitthe new measurement
gr = A, and the measurement covariangeare determined from equations
Eq. (7.14) and Eq. (7.15).

7.4 Control Implementation

As in the work presented in Chap. 6 we implemented the control scheme on a
dSpace DS1103 Power PC DSP Board. The dSpace board considisgitfa8
to-Analog-Converter (DAC) and 16 Analog-to-Digital-Converter (AD&)an-

nels with a sampling rate of 300kHz. The board is fully programmable via
Matlab’s Simulink toolbox and possesses a 16-bit resolution. The compuhtion
results related t&;, were obtained via a C-program; the update rate is 10 kHz to

82



7.4. CONTROL IMPLEMENTATION

HV Amplifier
— — LQR
I L 4
u H H
Time-varying
Kalman filter
1 1
N2 Set Membership
Block
Y, A A
A |
Intensity 14,
1
Y
4 |
M2 |
- |
' I
1
| . I
1
I ¥ YI  Phase .

Figure 7.3: Schematic of the cavity locking experiment, including the combina-
tion of a time-varying Kalman filter and a linear quadratic regulator.
The dashed lines depict electronic links.

guarantee a sufficient bandwidth. The result was a highly robustati@ntthat
successfully achieved frequency lock of the optical cavity to the laser &ny
initial operating point. While a twelfth-order polynomial is solved in the sim-
ulation [91], we chose to implement a simpler fourth-order model (thirdforde
plant model and an additional integrator), which did not include mode-splitting
We were able to safely neglect mode-splitting, because the gradients ofdhe e
signals corresponding to the non-degenerate s/p-polarised cavity diffdem

sign, as shown in Fig. 7.4. Hence it is only possible to lock to one mode at a time;
in our case we chose to lock to the p-polarisation. A schematic of the clospd-lo
system is depicted in Fig. 7.3.
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7.5 Results

We validated the proposed controller by comparing its performance to altypica
PI controller, designed such that the gains of the two controllers andidhere
their residual frequency noise reductions were approximately equei e
cavity was in lock. The resulting Pl controller had a gain of

0.1s + 316.5

Kp](s) = S

(7.22)
We first set up an experiment to demonstrate the control performancelinthe
ear region, where conventional controllers can successfully stabikseattity.
Then we demonstrated the superior operation of our control scheme ioithe n
linear region where the PI controller fails.
We determined the quality and robustness of our locks by injecting a distigban
in the form of a step function. For the resonant case the transmitted gignal
has its maximum value and the error sigpalvaries around zero, in contrast
to the unlocked case whefg andy, are both close to zero, see Fig. 7.4. For
the first test we applied a step voltage to a PZT mounted to one of the cavity
mirrors for length control. The voltage step w8V, which drove the detuning
to the edge of the linear region. This disturbance was equivalent to aigtoin
~ 32MHz or 0.5 k. Fig. 7.5 shows the influence of the input disturbance on the
plant locked with the PI controller. The PI controller reacquired lock a@ftets.
Fig. 7.6 highlights the response of our systematic control approach, \pkieh
formed much faster, reacquiring lock in jus03 s.

For the second test we applied a step voltage.o¥ to the PZT. This drove
the detuning into the non-linear region, which is equivalent to a detuning of
~ 43MHz or 0.66 . As a result, the PI controller was unable to maintain/reac-
quire cavity lock as shown in Fig. 7.7. On the other hand, our propossigoto
scheme reacquired lock | 35 ms as shown in Fig. 7.8. Fig. 7.9 illustrates the
transfer functions of the proposed controller at fixed instants of time abiely-
ing the step input 00.4V att = 0s. The controller transfer function varies in
time since it depends on the operating point of the system and therefore on th
estimate of the detuning. The evolution of the controller transfer function is the
reason why the time-varying Kalman filter is capable of handling the non-linear
regime. Note that the plots fer= —5 ms, where the system was in lock before
it was disturbed at = 0s, andt = 35ms, where the system reacquired lock
overlap and describe the optimal controller for the plant on resonanceéenW
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Figure 7.4: Frequency response of the optical cavity, showing the sigoal
from the homodyne detectes (top) and the transmitted signg
(bottom). The main Airy peak/error signal & = 0MHz corre-
sponds to the p-polarised cavity input, whereas the Airy peak/error
signal atA ~ —230 MHz belong to the s-polarised field utilised as
local oscillator of our homodyne locking scheme.

85



CHAPTER 7. AUTOLOCKING AN OPTICAL CAVITY USING A
TIME-VARYING KALMAN FILTER

Disturbance Response to a 0.3V input at plant input with PI controller
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Figure 7.5: Response of optical system locked with a traditional propattion
integral controller to an input disturbance step function0gfV,
equivalent to a detunings ~ 32MHz ~ 0.5x. The PI controller
reacquires lock afted.14 s.

the detuning is very large, the measured output is essentially white noise. Sinc
the augmented system integrates the white noise output, we obtain a Wiener pro-
cess for large detunings. The Wiener process describes a rand&rengaring

that the controller moves in a direction unfil andy2 become significant.

7.6 Conclusion

We have successfully demonstrated the operation of our time-varying Kéilman
ter locking scheme, highlighting its ability to automatically reacquire cavity lock
—without scanning the frequency — in an automated way from any giveratipg
point. Our novel autolocking scheme successfully overcomes the irthresan
linearity of the considered control problem. We utilised the singular pertiorba
method to simplify the non-linear control problem to enable the implementation
of convenient linear control techniques. Compared to a traditional Riattar

our controller was able to reacquire lock in a significantly shorter time (0.83s a
opposed to 0.14 s) while in the linear region. Furthermore we demonstrated tha
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ol Disturbance Response to a 0.3V input at plant input with TVKF
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Figure 7.6: Response of optical system locked with a time-varying Kalman filter
to an input disturbance step function®8 V, equivalent to a detun-
ing A =~ 32 MHz =~ 0.5«. Our controller reacquires lock aftér03 s
which is faster compared to the PI controller.

our autolocking scheme is capable of autonomously bringing the systemdiack
resonance even in the presence of large disturbances, which calsestim to
leave the linear region of the error signal, where linear time-invariant aierts
fail. Our autolocking scheme significantly improved the robustness of thig/cav
lock and thereby increased the duty-cycle of the experiment. This sujperio
formance of the feedback loop could be beneficial in a myriad of application
fields such as spectroscopy [73, 74] or quantum information [75, 76].
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01 Disturbance Response to a 0.4V input at plant input with PI controller
N T T T T T

0
Z. 01 |
02|
03 ; i i ‘ ‘
-0.05 0 0.05 0.1 0.15 0.2
3 T T T T T
> 2
>‘N
1
0 ‘
-0.05 0 0.05 0.1 0.15 0.2
8
5 6
4
2 i i i ‘ ‘
-0.05 0 0.05 0.1 0.15 0.2
Time(s)

Figure 7.7: Response of optical system locked with a proportional-irtegna
troller to an input disturbance step function of 0.4V, equivalent to a
detuningA =~ 43MHz = 0.66x. The PI controller was not able to
reacquire lock.
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Disturbance Response to a 0.4V input at plant input with TVKF
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Figure 7.8: Response of optical system locked with a time-varying Kalman filter
to an input disturbance step function of 0.4V, equivalent to a detuning
A =~ 43MHz = 0.66x. Our control scheme reacquired lock after
35ms, whereas the PI controller failed to relock the cavity.
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Figure 7.9: The time-varying Kalman filter gives rise to a range of contradiers
various instants of time, after applying a 0.4V step function distur-
bance at = 0s.
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Control Investigations for a Squeezed Light
Source

In 1981 Caves proposed that the injection of non-classical (in partisolaalled
squeezed statex light [96]) can improve the sensitivity of shot noise limited
optical interferometers [24]. In 1985 Slustedral. generated the first vacuum
squeezed states [96] and 25 years later Vahlbatch. realised Cave’s idea by
injecting squeezed vacuum into the dark port of the GWD GEOG600 [25,187]
order to ensure the required permanent injection of squeezed statéaldesu
control scheme is needed [98, 99].

In our laboratory we wanted to produce long-term stable, fixed quaérsquieez-

ing for a high-precision spectroscopy experiment described and simLulate
[100]. A control scheme consisting of two individual feedback loogseaed

this requirement, where both loops applied PI control. The first feedloagk
locked the optical cavity, which surrounded the non-linear medium to agdlyn
enhance the strength of the non-linear process. The second cormiposia-
bilised the relative phase between the pump and intracavity field and treerefor
defined the squeezed quadrature. As the cavity lock also affects ttiearplaase
between the two fields, the question arose if this cross-coupling wouldthpoil
desired performance of our squeezed light source. We examined ¢is&ayu

in regards to the possibility to describe the squeezed light source as leadoup
MIMO system, whose performance could benefit from the implementation of
modern control techniques.
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out

Figure 8.1: Bow-tie resonator includingy@ medium. The schematic presents
all optical fields, which are required to derive the system dynamics.

8.1 Non-Linear y® Cavity Dynamics

We derive the cavity dynamics for a cavity enhanced squeezing prosess
Fig. 8.1, whereby the cavity is only resonant for the fundamental figld The
pump fieldB;,, passes the non-linear medium once. The Hamiltonian describing
the non-linear interaction is given by [34]

H = ilix (BTaQ - aﬂz}) , (8.1)

whered, b anda, b are the annihilation and creation operators of the fundamen-
tal/pump field, respectivelyy denotes the coupling strength. Taking the cavity
dynamics (see Chap. 6) into account the equations of motion for the pump and
fundamental field are

= —2xPa'h — (ko +i0a)a + V204 A + /2610 ALin

b= X(Q)fl2 — Iib[; + QIQBEM + QHl,bBla (8.2)

=

wherex 4 andk g are the loss rates of the input mirrors for the input mades
andB;,. Ki.q:51 denote the internal loss rates related to the loss még@,sBl
andk,,k;, are the total loss rates related to the intracavity fielfls.describes

the detuning of the cavity.

We assume an intense pump field which is undepleted by the interaction with
the dielectric medium. The undepleted case allows for the following substitution
G = 2x@b, whereb can be expressed in a linearised fornb ef 3ei® + 5b [34].
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This leads to the restructured version of the cavity dynamics of interest

0= —(fq +i0a)a — Gal + V2haAin + /2610 A1im,
if = —(ka — i8a)a — ¢+ v2raAl, + /264 A] (8.3)

lin®

Considering the linearisatioh= « + da leads to the equations of motion for the
mean field amplitudes

& =0=—(kq +iAg)a — qa* + V2K A0in + /26100 in,
" = 0= —(kq — iAa)a" — ¢"a + V2K10], + /261407 4, (8.4)
and fluctuation terms
da = — (kg + 1A4)0a — 5q5cﬂL + V26400, + 2K1,4001 i,
dat = —(ka — ia)dal — 8q'6a + V2rabal, + /261 000f,,.  (8.5)

For the derivation of the output variance we need to convert the fluctuiios
to the Fourier domain HEa(t)/dt] = —iwFT[a](w), take the relations from
Eg. 3.44 into account and use the boundary conditions defined in [101]

V2KA0 = Aout + Aina
V2raat = AT, + Al (8.6)

For the cavity on resonancg, = 0 and the above stated assumptions the ampli-
tude/phase quadrature f&A,,,; can be expressed as

. -+ -+
SRt (264 — Kq —iw £ \q[?éXAm + 2~/RA/£16XAZ
Kq + 1w F |¢|

Ao = (8.7)

and the variance, see Chap. 3, which is the measure of interest farzauge
experiments becomes

((2/@4 — ka % |q))? + w2) me + 4f<:mAVgtl

+ _
. f<a2+w2$\q]2
a

Ao = (8.8)
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Figure 8.2: Experimental setup for the generation of cavity-enhanaeskzng.
The squeezed states were generated inside a sub-threshold bow-tie
OPO.

8.2 Generation of Squeezed Light

The experimental setup for the generation of cavity enhanced squeszingr
sented in Fig. 8.2, where the main laser source was a continuous wave,
neodymium-doped yttrium aluminium garnet (Nd:YAG) laser at 1064 nm with
a maximal output of 2W from Innolight GmbH [102]. The 532 nm pump field
driving the generation of squeezed states was obtained via type | ptasked
SHG, which was realised by a hemilithic Fabry-Pérot resonator. Heraby th
curved rear of the non-linear crystal was used as a cavity mirror. Tiliged

@ medium was magnesium oxide-doped lithium niobate (MgO:LiNb@ith
dimensiong x 2.5 x 7.5mm? and a phase matching temperaturd'of 67°C.
The temperature controller assuring a constant temperature consistetegf a
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Table 8.1: Parameters of the SHG.

Parameter Value
Non-linear medium MgO:LiNb®
Cavity length 40 mm
Finesse 76

Free spectral range 4.6 GHz
Spectral linewidth 65 MHz
Reflectivity of coupling mirror 9%

Waist gs4 m40,um

Table 8.2: Parameters of the OPO.

Parameter Value
Non-linear Medium PPKTP
Cavity length 1.52m
Finesse 58

Free spectral range 197.4 MHz
Spectral linewidth 3.96 MHz
Reflectivity of coupling mirror 9%
Waistss ~18um

ative temperature coefficient (NTC) thermistor as the sensor and a Péltier e
ement as the actuator. The Fabry-Pérot resonator was kept oranesohy

the polarisation-based homodyne locking scheme [46]. Further detadlisdreg
ing the hemilithic SHG cavity provided by the Quantum Interferometry group
of our institute can be found in Table 8.1. The generated 532 nm light fiedd wa
directed through a modecleaner (MC) cavity, which acts as a polarisattbn an
spatial mode filter. The MC provided a high quality fundamental transvégse e
tromagnetic mode (TEM), which then was matched to the TMmode of

the OPO, used as squeezed light source. The parameters of the eslibpttir
bow-tie OPO, see Fig. 8.2, are given in Table 8.2. We utilised PPKTP as the
@ medium, with dimension$ x 2 x 10 mn?. The required temperature for
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the generation of squeezed states with quasi-phase matchirg <. It was
again stabilised by the combination of a NTC thermistor and a Peltier element.
For a detailed characterisation of the bow-tie OPO we locked the optical cavity
via polarisation-based homodyne detection [46] and blocked the beanmigpath
the PDH PD. The front light field, which impinged on the partially reflective
coupling mirror had a ratio of 3:100 between the s/p-polarisation, which define
the signal/local oscillator field, respectively. The ratio slightly differearfrine
1:100 ratio, given by aule of thumb which shall ensure a non-varying shot
noise level, since we needed to increase the error signal for the OPQNeekk-
plained in Chap. 3, the polarisation-based homodyne locking schememsidio
phase-sensitive measurement, thus we read out the phase quadkatilveked

the relative phase between pump and intracavity field with the help of the dither
locking technique [103]. Hereby the PZT driven mirror placed in the bpath

of the pump field was used as a phase actuator and the applied modulation fre-
qguency for the dither lock wag = 52 kHz. All feedback loops were realised by
traditional PI control.

The variance of the phase quadrature was acquired with a signal @enéhgs

ilent MXA N9020A). The resolution/video bandwidths of the signal analyse
were 1.5 MHz and 91 Hz, respectively, the sweep time was 1.8 s, the agrag
factor was 10 and the internal attenuation was 6 dB. The results of a sEan me
surement are presented in Fig. 8.3. With a pump power of 68 mW, we were
able to observe antisqueezing/squeezing values of 3.78/1.96 dB, tresiye &
zerospan measurement at the firSR = 197.4 MHz demonstrated that (OPO

in lock) we were able to lock the pump to the maxima/minima of its sweep
which corresponds to antisqueezing/squeezing, respectively. ik demon-
strates the realisation of stable squeezing of a fixed quadrature. Wedhted
determine the total losseg.i.1 = 0.5 of our setup to verify our detected anti-
squeezing/squeezing values [104, 104)..: is the product of the propagation
efficiencynpop = 0.92, the homodyne visibility,is = 0.64, the quantum effi-
ciency of the photodiodes (Perkin EImer C306%4%) = 0.98 and the escape
efficiencynesc = 0.85. Fig. 8.5 compares the measured antisqueezing/squeezing
values, which depend on the pump power with a simulated model [104, 105]

4x
(1F2)%+402
Vi =10log;o(Rx+), (8.10)

R:t =1+ Ttotal (89)
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Figure 8.3: We observed antisqueezing/squeezing values of 3.78/1 /6 éB

pump power of 68 mW relative to the shot noise (blue). The mea-
sured data shows the frequency-dependence of cavity enhariced an
squeezing/squeezing (orange/yellow), which is directly related to the
resonance condition of the optical cavity.
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Figure 8.4: A zerospan measurement at the #itSR = 197.4 M Hz demon-
strated that we were able to lock the pump field to the maxi-
ma/minima of its sweep (orange) which corresponds to antisqueez-
ing/squeezing (purple/yellow), respectively. These results demon-
strated the realisation of stable squeezing of a fixed quadrature.
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Figure 8.5: Comparison between power-dependent antisqueezingZgtyigal-
ues and a fitted model Eq. (8.10).

where(2 describes the detuning of the cavity ane- \/P,;,/ P is the normalised
pump power with the pump threshaldl;, and the pump poweP. Fig. 8.5 high-
lights the good agreement between experiment and model.

After the characterisation of the squeezed light source we changeapbe e
imental setup, since the squeezed output should be utilised for highiprecis
spectroscopy described in [100]. We kept the dither lock of the pumgep itvait
replaced the polarisation-based homodyne locking scheme by a PDH scheme
whereas the s-polarised control light field was coupled into the cavity ft®m
rear plane mirror and was co-propagating with the squeezed output. Tdhe mo
ulation frequency of the PDH scheme wAs= 12 MHz. For the detection of
squeezed states we set up the polarisation-based homodyne detectiore sch
with an external LO. The external LO was given by a p-polarised lighd,fie
which impinged on the coupling mirror of the bow-tie OPO and was directly re-
flected, since the p-polarisation was non-resonant. The relative pleaseen
LO and squeezed output could be varied by a PZT driven mirror. It ishwo
mentioning that this homodyne detection scheme can observe both quagirature
but it can only be locked to the phase quadrature.
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8.3 Control Problem and Conclusions

We investigated the control scheme of our squeezer, which shouldagersta-

ble, fixed quadrature squeezing, as a potential MIMO control problemMIMO
problem is present, if the output of one feedback control loop has arctropa

the other control loop. In our case, we characterised the influence afatlity

lock on the pump lock and vice versa. The result was that the two fee ¢tk

are completely decoupled, due to the utilised modulation schemes. A disturbance
injected by one of the considered control loops is frequency shifted hehfge-
guencies by the demodulation stage of the other feedback loop. The rgsultin
up-shifted frequency part is well above the unity gain frequency ascimere-
fore no impact on the performance of the feedback loop. Even more inmporta
is that the relation between the injected disturbanead the frequency-shifted
signaly is not linear. There is no meaningful TF(s) = y(s)/x(s) and thus
linear control techniques can not be applied. To conclude, we can ssatin¢h
two control loops can be seen as two decoupled SISO systems.

It is possible to extend the control problem by adding a third variablendiye

the feedback loop, which controls the phase of the LO and thereby defiae
detection angle of the HD. The consideration of the LO lock can be sensible f
a detailed investigation of phase fluctuatighsaused by the two other locks,
which would degrade the squeezing strength [104, 106]

R, ~ Ry cos?(0) + R sin?(0). (8.11)

Another sensible case including the LO lock is given by experiments trying to
measure small signals via a homodyne detection scheme, since these signals
would be amplified by the strong LO. Due to these examples, we investigated the
case including our LO lock. Although we did not need a highly stable LO lock
at that moment, these investigations point out options for future experiments.

In analogy to the first investigations, we were able to directly state that a-distur
bance injected by the LO feedback loop has no impact on the dither and cavity
control loops, because of the implemented modulation schemes. However distu
bances injected by the other two feedback loops had an impact on the Li@jock
loop, which is realised via a modulation-free, polarisation-based homatkme
tection scheme. Firstly a disturbance injected by the OPO lock directly affects
the relative phase between the squeezed output and the LO, which imakfda

by the phase response of a cavity with respect to detuning, induced bisthe
bance. Secondly a disturbance injected by the dither lock, where theaaifia
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Figure 8.6: Spectrum of a twice modulated carrier light field, With> Q5. The
spectrum demonstrates that a disturbande,as preserved.

the control loop also acts as the phase modulator, can be expresseshamndil
of sidebands related to a electromagnetic figlg = Eye’ot [107]

Eout — Eoeiwoteiml cos Q21t+p1 eimg cos Qgt+<p27 (812)
wherem, » are the modulation indice; » the modulation phases afit » the
modulation frequencies(); denotes the dither modulation frequency dns

denotes a disturbance with this specific frequency. Expanding Eq. Botzd
for a frequency analysis df,;

N .
. . m . .
Eout — 2 anezwnt — EO |:ezw0t + 21 (e(zwo—i-Ql)t + e(zwo—Ql)t)
n=0

+ WJ (e(iwoJer)t + e(iwofﬂz)t)

2

_onmame (e(iwo+91+92)t 4 e(iw()leJng)t + G(WO*QIJFQ2)1L
4

e .

With the help of this frequency analysis, illustrated in Fig. 8.6, it was evidet th
a disturbance &, would have an impact on the LO feedback loop and that we
would be able to characterise the system via transfer functions, sincesthe d
bance af2; is preserved.

These non-vanishing coupling terms lead to the fact, that the control of a
squeezer, including feedback loops for the OPO, the pump and the b(neca
described as a MIMO control problem. Although we did not implement a MIMO
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control scheme, it is important to recognise that the control scheme otazagu

can be improved and benefit from a suitable modern control approddbh w

is inherently capable of handling the unwanted coupling terms, if needed in the
future.
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Local Control of a Triple Pendulum Suspen-
sion

Earthbound interferometric gravitational wave detectors need to isolatetheir
tical components from seismic noise to reach their desired sensitivity. Without
a seismic isolation system, seismic noise would limit the capability of detect-
ing elusive signals like gravitational waves. Usually this isolation is realised by
suspended optics, where the optical component can be seen as anssndfma
a pendulum. The frequency response of such a driven, damped tiarom
cillator rolls of with 1/ f? above its resonance. This suppression 6f? is not
sufficient, which is why state-of-the-art GWDs utilise triple/quadruple p&nd
suspensions reaching a suppressioh/gf or 1/ f® above their resonances, re-
spectively. However on resonance the root mean square (RMS) mdtibe o
lower test mass (end mass) is excited. Due to this RMS motion enhancement
triple pendulum suspensions require active control loops, damping tidupe
lum eigenmodes of each degree of freedom (DOF). The damping of titaipe
lum resonances is known &scal control and needs to be distinguished from
global control which describes the feedback loops keeping the interferometer at
its required operating point. The multiple input multiple output (MIMO) local
control problem is usually addressed by traditional control appraaetieereas

the system transfer functions, used for the control design, haverheasured
from co-located sensor/actuator pairs on the upper stage of the sispddow-
ever, the limitation of this approach is the lack of direct information about tie en
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mass motion, which needs to be minimised. That's why we directly measured
the motion of the lower test mass with respect to an excitation injected at the
upper mass. It is noteworthy that we operated the system in the small displace
ment regime, assuming that linearised models are able to accurately deseribe th
system. With the help of the obtained frequency response data we intraduce
host of modern control tools potentially enhancing the performance ofuihe s
pension system. The advantage of a systematic control approach is itditapa

of dealing with inherent cross-correlations of the triple pendulum sisémenit

is therefore suitable for controlling a complex MIMO system.

9.1 Harmonic Oscillator

The theoretical concept of why suspended optics are suitable as seislaiiois
systems is based on the frequency response of a one dimensional, dewged
harmonic oscillator given in the time domain by

mi(t) + 2mya(t) + kx(t) = Fep(t). 9.1)

Herem denotes the mask,the spring constanty the damping factor, which is
proportional to the velocity:(t) and F,, the external force acting on the system
[108]. Taking the Fourier transform of(t)

1 [ :
X(w) = — e “tat 9.2
@)= 5= |, () ©2)
and the relation
n 1 [ 0mx(t) _iu
X = w .
(iw)" X (w) Wer /0 5o € dt (9.3)

into account results in the frequency domain expression of the drizenped
harmonic oscillator

m (2i’yw +wi — wz) X(w) = Fegt(w), (9.4)

with w the angular frequency and, = /k/m the resonance frequency of the
oscillator. Rearranging Eq. (9.4) results in a transfer function, whstpiency-
dependently describes how the oscillator is displaced by an external forc
X(w)
Fewt(w) ’

G(iw) = (9.5)
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Figure 9.1: Bode plot for a driven, damped harmonic oscillator with varying
damping factors and a resonance frequenfy= 1 Hz.

Gain and phase of the transfer function G(s) are given by

1
|G(iw)| = : (9.6)
- m\/(wg — w?)? + (2yw)?
¢(w) = arctan (w;a_}zﬁ) (9.7)

and shown for a varying and a resonance frequengy = 1Hz in Fig. 9.1.

Fig. 9.1 highlights that for frequenciet < f, the system shows a constant
response to an external force, whereas on resonance the sysgnge is in-
creased significantly and the phase of the system drodsty The damping
factor~y effects the magnitude of the system response, the steepness of the phase
loss and therefore the FWHM f of the resonance used to define the qualty

for harmonic oscillators) = fy/Af. For frequencies above the resonance the
external force is suppressed by a fact@y?, pointing out that seismic isolation
can be realised by harmonic oscillators. If the suppression factbf & is not
sufficient, it can be enhanced by cascading multiple harmonic oscillators. Re
garding Eq. (5.6):-cascaded harmonic oscillators result in a suppression factor
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Figure 9.2: Amplitude spectral densities of a harmonic oscillator for various
andT = 296 K, m = 1 kg andfy, = 1 Hz.

of 1/ %" above thenth resonance.

Avoiding an increased RMS motion of the harmonic oscillators requires active
damping of their eigenmodes and cannot be achieved by increased ddaging
tors+. The reason for this is given by the fluctuation-dissipation theorem with
an associated power spectrum of the system'’s fluctuating motion [109]

4kBT’y

2
X 2 2 2,2’
m (w§ — w)” + 72w

therm —

(9.8)

wherekp is the Boltzmann constant afdthe temperature. The amplitude spec-
tral densities,/ X2 (w) of the motion of a single harmonic oscillator for var-

therm

ious~y is shown in Fig. 9.2 withl" = 296K, m = 1kg andfy = 1Hz. The
simulation shown in Fig. 9.2 demonstrates that an increased damping factor
results in a broadband increase of the amplitude spectral dayl%ﬁ;mm(w)

of the motion of the harmonic oscillator. The energy of the resonance dissipa
into the system and thereby decreases the sensitivity. To evade thisvitgnsiti
limit small damping factors are desired, resulting in an enhancement of RMS
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Figure 9.3: Modified lower mass of the suspension.

motion on resonance, which can be suppressed by active dampingiegterc
ergy from the system.

9.2 Characterisation of a Triple Pendulum
Suspension

We characterised a triple pendulum suspension by transfer functioasunigy

the motion of the upper (top-top) and lower (top-bottom) test mass with respect
to an excited motion of the upper mass. We wanted to augment the commonly
used top-top measurements with direct information about lower mass motion to
enable a host of systematic control approaches to enhance the perferafa

the system. Our investigated triple pendulum suspension is almost identical with
the suspension used for the 10 m prototype [110] reference cawity;ige9.4,

and its design was inspired by the suspension system for the GEO600 mode
cleaner [111]. The only difference between our setup and the 10 totppe

setup was the lower test mass. Instead of a low loss Suprasil 2 Grade, miror
utilised a compound aluminium/brass structure with a highly reflective mirror
(» = linch)in its centre, see Fig. 9.3. Our end mass had the same mass and mo-
ments of inertia as the original end mass to guarantee an identical perferwfanc
the suspension, but at significantly lower cost, and offering increzagability.

The important design parameters of the triple pendulum suspension ane isho
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Table 9.1: Parameters of the reference cavity suspension [112].

Parameter Value
Total length 774.2mm
Total mass 27149
Upper mass 995¢
Intermediate mass 873¢g
Lower mass 8469
Wire diameter upper stage 152uh
Wire diameter intermediate stage 1048
Wire diameter lower stage 55u2n

Table 9.1, and Fig. 9.4 presents a schematic of our system. The triple pendulu
suspension provided two vertical isolation stages. The first was giydwd
cantilevers located at the top of a cage and holding the upper mass. Timelsec
stage was built into the upper mass. It is noteworthy that the centre of mass of
the lowest mass was not identical with its suspension point. This was desired to
ensure a suitable restoring force, although it introduces coupling betwedes.

The interested reader is referred to [112] for a detailed descriptioreafehlign
process of the reference cavity suspensions.

9.3 Degrees of Freedom

There are six degrees of freedom for a rigid body, see Fig. 9.5. Ioake of
suspended optics, these correspond to

e Longitudinal: Parallel mirror motion with respect to the optical axis.

Sideways: Horizontal motion with respect to the optical path.

Vertical: Vertical motion with respect to the optical axis.

Yaw: Rotation around the vertical axis.

Pitch: Rotation around the sideways axis.

Roll: Rotation around the longitudinal axis.
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IIIIIIVA i

2214

200.0

350.0

Figure 9.4: Technical drawing of the triple pendulum suspension includiing
mensions. The upper mass is attached to cantilevers at the top, which
provide a vertical isolation stage. A second vertical isolation stage is
located inside the upper mass. The centre of mass of the lower mass
is not identical with the suspension point, which is desired to ensure
a suitable restoring force, although it introduces coupling between
modes.

109



CHAPTER 9. LOCAL CONTROL OF A TRIPLE PENDULUM
SUSPENSION

Vertical

Longitudinal

Pitch

Figure 9.5: Six degrees of freedom for a rigid body.

The DOFs are usually not decoupled from each other, introducing
cross-correlations, which are inherently addressed by a modermkapproach.
This is a significant advantage of modern control techniques in companson
traditional control, where the coupling terms need to be addressed inallyidu
leading to an increased complexity of the control scheme.

9.4 Co-located Sensor/Actuator

Six co-located sensor/actuator pairs at the upper mass were used to dmp a
read out the eigenmodes of the suspension system. The sensor/aciiratare
known as Birmingham Optical Sensor and Electro-Magnetic actuatorsEB35
[113], see Fig. 9.6 [114]. A BOSEM consists of a light-emitting diode (LED),
whose light field is collimated by two lenses before it propagates through an
aperture. This aperture creates a flat-top beam needed to ensure tihetetted
intensity is linearly dependent on the position of the flag. The magnetic flag is
attached to the upper mass, which allows for sensing its motion, since a chang-
ing position directly affects the detected intensity. The position of the flag can
be changed by the coil actuator, which generates a magnetic field acting on th
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Figure 9.6: The assembly and functionality of a BOSEM consists of a LED,
whose light is converted into a flat-top beam by the combination of
two lenses and an aperture. The detected intensity is proportional to
the position of the magnetic flag, attached to the upper mass. The
position of the flag/upper mass can be controlled by a coil actuator,
which generates a magnetic field acting on the flag [114].

magnetic flag. The direction of the actuation depends on the sign of the voltage
applied to the coils. Since the BOSEM assembly is able to sense and act on the
upper mass motion, it provides a suitable sensor/actuator pair for active-da
ing of the system’s resonances. To enable the implementation of linear control
techniques, the output voltage of the PD must be linearly dependent oaghe fl
position. We tested this requirement by mounting the flag onto a micrometer
table and shifting it through the beam path. The results are shown in Fig. 9.7
and demonstrated that the normalised voltage curve of all six BOSEMs exhib-
ited a wide linear range. The slopes of all curves were identical, meanihg tha
the system responses of the BOSEMs were identical and that there wiagto

for additional scaling factors. The rest positidhnim) was set t&0% of the
maximum voltage to maximise the dynamic range of the system.

Another requirement to guarantee a linear behaviour of the system viaheha
magnetic force of the coil acting on the flag is position independent. The fulfil-
ment of this requirement was shown via a Mathematica script written by Mark
Barton [115]. The script demonstrated that the force reaches a maximum f
given geometry parameters of coil and flag with respect to the distancedretw
the centres of coil and magnet. The maximum is the desirable operating point,
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Figure 9.7: Normalised voltage response of all six BOSEM PDs with respect
flag displacement.

since the force becomes position independent, considering a lineaxaparo
tion. The simulation results of [115] are shown in Fig. 9.8 and were verifyed b
[113], where a detailed BOSEM design study and characterisation dauie.
Furthermore the utilised custom made BOSEM driver/readout electronichwh
satisfies the noise requirements of the 10 m prototype reference cavigypree
vided by the 10 m prototype group and designed by Tobias Westphdl [112

9.5 Optical Levers

The results presented in [113] show that BOSEMSs are suitable actuatwsyrs

for linear systems. Furthermore our modern control approach shoudpinc

rate the frequency-dependent motion of the lower mass as well. For temrea
we set up two optical levers measuring the lower mass motion for three DOFs
with respect to an excitation injected via the designated BOSEMs [116]. We
decided to measure only yaw, pitch and longitudinal motion, since these DOFs
strongly disturb the output of interferometric measurements with respect to the
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Figure 9.8: Desirable operating point for the coil/magnetic flag assemblyhwhic
is given by the maximum force (taken from [115]). The maximum
describes the point where the force becomes approximately position
independent.

other DOFs. The three other DOFs describe motions which are perpkndcu

the optical axis and therefore theoretically don’t disturb the output of teefer-
ometer. Realistically a generic coupling factor of 1:1000 can be assumed. Th
optical levers consisted of collimated laser beams, required to ensurerslysea

tem response by avoiding motion-dependent beam size variations. Tdennc
laser beams impinged on the mirror of the end mass under afygdesnd got
reflected. Two quadrant photodiodes (QRPat a distance of; » detected the

light and the measured data was used to compute the actual lower mass motion
of the considered DOFs. A schematic of this setup is shown in Fig. 9.9.

9.5.1 Signal Processing of QPD Signals

A quadrant photodiode consists of four photosensitive areas (AwDissschemat-
ically illustrated in Fig. 9.10. The location of an impinging laser beam can be
calculated by

(IB—l-ID)—(IA—l-Ic)

T = and (9.9)
Itotal
Ip+14)— (Ip+ 1,
Yy = (Up+14) = Up + C), where (9.10)
Itotal
Liotal = 1o+ Ip + Ic + Ip. (9.11)
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lower testmass

@ QPD,

beamsplitter

fibre coupler

Figure 9.9: Schematic of the two optical levers consisting of two collimated laser
beams, which impinge with anglés » on the lower test mass. The
reflected beams are detected(bEDL2 at a distancé, ».

Figure 9.10: Schematic of a QPD consisting of four photosensitive areas.
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Intensity (a.u.)

Displacement (a.u.)

Figure 9.11: The dashed line defines the border betweer. left A + C and
right R = B + D halves of the QPD. The orange Gaussian profile
is displaced byAx with respect to the centred blue Gaussian profile.

The differences between the detected intenstties, of the left and right halves

or upper and lower halves determine the beam position for x/y, respgciive
normalisation factoll;..; is needed to eliminate the influence of intensity fluc-
tuations. To determine the exact position of the laser beam, we needed to take a
Gaussian beam profile into account. We derived the intensity vdiu®s) for

a displacemenf\x of the beam along the-axis. For reasons of simplicity we
neglected thd8 um gap between the photosensitive areas [117]. This is a rea-
sonable assumption as the beam spot size is always much larger than thie size
the gap. Fig. 9.11 illustrates the considered problem, where the orangsi@au
beam is displaced with respect to the centred blue Gaussian. It is sufficien
consider only the lefi. = A + C and rightR = B + D halves of the QPD

to calculate a displacement along thaxis. The total detected intensity of a
Gaussian beam is given by

TLiotar = I (w(z))/ T3 dr = Io\/ng, (9.12)

— 00

with w(z) = wy, since the laser beam is collimated. The intensity difference
between the left/right halves of the QPD introduced ky:adisplacement of the
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laser beam can be expressed as

o r Az 0 r Az
IL,R:IQ/ evo 1”0d7“—2[0/ ewo wo dr

—00 —00

0 r _ Az
= liotal — 2_[[)/ ewo wo dr (913)

—00

orange hatched area

IR Azy/2
=1 —erfc

wo

) = I(Aw), (9.14)

with erfc the complementary error function. For reasons of symmetry thiaduhtc
area is subtracted twice from the total intengity,; to obtain/ (Ax). I(Ay) can
be calculated analogously {§Ax) and is given by

Iy Ayv2
=1 —erfc
0

w

I total

> = I(Ay), (9.15)

Itotal

whereU/L define the upper/lower halves, respectively. For small displacements
Ax andAy the Eqg. (9.14) and Eq. (9.15) can be linearised via a Taylor expansion
of the error function [118], which results in

2 Azv2

I(Ax)linear - _ﬁ i}o (916)
2 Ayv/2

H(A s = === = (9.17)

This linearised form is essential for our investigations, since our systentatic

trol approach considers LTI systems. After the derivation of the motepeddent
intensity values, we needed to determine the relation between the motion of the
end mass to the laser beam position on the QPD. The relation was determined
for the three DOFs of interest.

For a longitudinal motior\ L of the lower test mass, see Fig. 9.12, we obtained
the following relations regarding an incident laser beam, which is reflecigeru

an angled

Axlong,i

sin(20;) = =L, (9.18)
cos(6;) = A“”Tllg (9.19)
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Figure 9.12: Longitudinal motioi L of the end mass with the resultant displace-
mentAz of the laser beam reflected under an arfgle
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Figure 9.13: An end mass displaced by an angtesults in a displacemertx
on the QPD. To obtain the resulting displacement the arc of the
sought angle is projected onto the surface of the QPD at a distance
[. B denotes the angle of incidence for the undisplaced case.

2h; is the additional path length of the light, whereas 1,2 denotes the asso-
ciated optical lever. Solving one of the equations/ipand inserting the result
into the other leads to the longitudinal displacemant,,., ;

AZong,i = 2sin(6;)AL. (9.20)

A lower test mass displaced by the angleesults in a displacemem{xy.,, ;
on the QPD. To obtain the resulting displacement the arc of the sought angle is
projected onto the surface of the QP& a distancé; andAxy,,,; becomes

Al‘yaw,i = 2lia. (921)

It is evident from Eq. (9.20) and Eq. (9.21) that both motions yaw/longialdin
result in aAz. Hence, the total displacement for theaxis is given by the
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combination
Ax; = Awlong,i + Al'yaw,i =2 Sin(9i>AL + 2[;0u. (922)

We set up two optical levers under different angles (see Table 9.2¢ able
to decomposé\z; into its individual components. Considering two QPDs and
Eq. (9.22) leads to an equation system

Az = 2sin(0;)AL + 21 v,
Azy = 2sin(f2) AL + 2lz0r. (9.23)

Solving one equation foA L or o and substituting the result into the other leads
to

lQAZEl — llAl'Q
2 (ZQ sin(&l) - ll Sin(eg)) ’
_ wgsin(fy) — 1 sin(6s)
T 2 (lasin(61) — L sin(6a))

AL = (9.24)

(9.25)

With the known parametelis and¥; it is possible to computé . and« from
the measured data of the QRD

An angular pitch displacemenptof the end mass results infsy; displaced laser
beam on the QPDand is determined analogously to a yaw displacement

9.5.2 Characterisation of the Optical Levers

We set up two optical levers, see Fig. 9.9, to measure the transfer fushction
guired for a systematic control approach, whereby the measured Istenass
motion defines the output and an excitation injected via the BOSEMSs the input
of our system. The laser beam of the inner optical lever impinged onto the end
mass mirror under an angle éf = 8° and was detected by QR[2t a distance

Iy = 42cm, with respect to the lower mass. The parameters of the outer opti-
cal lever werdds = 38° andly, = 27 cm. Both QPDs were placed in the waist
wg = 700 um of their nearly collimated beams. The mode matching was needed
to ensure that a displaced laser beam was not changing its diameter afidrther
spoiling the outcome of the measurement. For example a displacement, which
would also reduce the beam size, with respect to the plane of the QPD, would
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Table 9.2: Parameters of the optical levers.

Parameter Value
Length/; of the inner optical lever 42.0cm
Lengthl, of the outer optical lever 27.0cm
Angle 6, of the inner optical lever 8°

Angle 6, of the outer optical lever 38°
Waistwyg of the laser beams 700 pm

result in an erroneously large displacement value. The parametersaytibal

levers are presented in Table 9.2.

To verify the functionality of our setup we needed to calibrate the opticatdeve
[119]. Firstly we replaced the lower test mass by a mirror, which was mounted
onto a multi-axis micrometer table capable of simulating a pure yaw/pitch dis-
placement of the end mass. Secondly the mirror was mounted onto another mi-
crometer table, which simulated a longitudinal displacement. Intensity curves
measured by the QRIvere compared to theoretically expected intensity curves
given by Eq. (9.14-9.17). We used the above derived relations

Azi = Azjong; = 2sin(0;) AL
Axi = Al'yaw’i = 2[10&

for the calculation off (Ax;)/1(Ay;). The results for a yaw, pitch and longitu-
dinal motion are shown in Figs. 9.14-9.16, whereas the black curvesspomd

to the measuredy, the red curves to the measurad, the blue curves to sim-
ulated displacements and the green curves to linear fits of the displacement. Th
results for an angular yaw displacement, see Fig. 9.14, demonstratedehat th
optical levers worked as required. The simulat®d displacements (in blue)

are in very good agreement with the obtained data (in red). The inner loptica
lever (QPLQQ) was more sensitive to angular displacements, which was expected,
sincel; > lo. The linear fits (in green) match the linear region of the measured
data and set an upper limit for the excitation used to generate the system trans
fer functions. A matched excitation ensures that the system responseirstay
the linear regime. This is required, since we consider LTI systems. Ahe
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Figure 9.14: The upper graph shows the measured results for a yalacdisp

120

ment Az, /y; and compares them with the theoretically expected
displacement and a linear fit. The linear fit determines the linear
region of system, which is essential for the implementation of lin-
ear control techniques. The lower graph presents the results for the
second optical lever. It can be seen that the first optical lever is
more sensitive to a yaw displacement than the second one, since
l1 > 12.[119]
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Figure 9.15: The upper graph shows the measured results for a pitdhcdisp
ment Az, /y; and compares them with the theoretically expected
displacement and a linear fit. The linear fit determines the linear re-
gion of system, which is essential for the implementation of linear
control techniques. The lower graph presents the results for the sec-
ond optical lever. It can be seen that the first optical lever is more
sensitive to a pitch displacement than the second optical lever, since
l1 > 12.[119]

displacement should ideally be zero for a yaw motidyy of the inner optical

lever is in very good agreement with this assumption, but the outer optical leve
showed a non-zero response. The behaviour of the outer opticaWesgealso
observed forAz /y of the pitch/longitudinal calibrations, respectively. This lead

to the conclusion that the orientation of QP slightly rotated relative to the
optical axis. We circumvented this problem by choosing appropriately small e
citations, which allow us to neglect the effect of the rotation. Another pibiggib
would have been the application of a rotation matrix in the post-processing of
the measured data. The results for pitch are comparable with the yaw results.
The simulated displacements are again in very good agreement with the mea-
sured data (in black) and the linear fit defines the upper limit for the excitation
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Figure 9.16: The upper graph shows the measured results for a longitddin
placementAz; /y; and compares them with the theoretically ex-
pected displacement and a linear fit. The linear fit determines the
linear region of system, which is essential for the implementation
of linear control techniques. The lower graph presents the results
for the second optical lever. It can be seen that the second optical
lever is more sensitive to a longitudinal displacement than the first
optical lever, sincé; < 6,.[119]

As mentioned above, QRBZhowed a non-vanishinfyz response, which is due

to its rotated mounting. The longitudinal results show an excellent agreement
between the simulated and measured data, with the outer optical lever more sen-
sitive to a longitudinal motion. This was expected, sifige< 6,. The upper
excitation limit was again obtained from the linear fit and the outer optical lever
showed again the characteristic behaviour of a rotated QM2 demonstrated

with this calibration that the two optical levers performed as required.
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9.6 Characterisation of the Suspension Dynamics

For the implementation of a modern controller, which actively damps the eigen-
frequencies of the triple pendulum suspension, we needed to determisgsthe
tem dynamics corresponding to the three DOFs of interest. For a complete sys
tem description a transfer function matrix determining every possible input/out-
put relation was required. How the outputs of the optical levers are retatbd
DOFs is derived in Eqgs. (9.24)-(9.26). We considered the controlksnjoube
virtual actuators, which directly excite one mode of the three DOFs. Thealirtu
actuatorsu;, u, andu, refer to specific BOSEM combinations. The BOSEMS
attached to the upper mass named with Latin letters are shown in Fig. 9.17 [112]
and the derived combinations are given by the utilised BOSEMs (D,E,B and C)
where the indexut denotes the force of a BOSEM acting on the upper mass

1

up = §<D0ut + Eout)y (928)
1

Uy = i(Dout - Eout)y (929)
1

Up = i(Bout - Cout)~ (9.30)

To address the correct mode the relatidhg; = EF,; andB,,; = C,,; heeded

to be satisfied, where the force acting on the upper mass depends onttge inp
of the coil actuatorsD..ii, Fcoil, Beoit @nd Cpyp. Ideally Doy = FE..;; and
B..ii = C.»i due to the identical BOSEM design. We checked these relations
for each DOF by applying constant voltages to the coil inputs and comparing
the responses of the system with the calibration curves of the optical.lG\ers
resultsB,,;; = C..; satisfied the relatiol,,; = C,y:. HoweverD,..;; = Eeoil

did not satisfy the relatio®,,; = E,.:. We needed to apply an additional scal-
ing factor D..;; = 0.8725 - E,,; to fulfil the requirementD,,,; = FE,:. The
reason for this factor was a missing magnetic flag holder of BOSEM D, which
decreased the magnetic force.

9.7 Control and Data Acquisition System

We used the digital control and data acquisition system (CDS) [120] totectua
the triple pendulum suspension and read out its response. CDS waseagksig
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Figure 9.17: The schematic (taken from [112]) shows the upper masengr
with attached co-located sensor/actuator pairs. A frame (yellow)
connected with the cage of the suspension clamps the actuator and
readout units (red) of the BOSEMSs, whereas the magnetic flag (light
green) is attached to the freely movable upper mass.
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at Caltech to facilitate the operation of GWDs. The CDS front-end runs un-
der a real-time Linux system providing 32 ADC-channels and 16 DAC-uklan
with a 16 bit resolution. The ADC/DAC-channels incorporate matched anti-
aliasing/anti-imaging filters, respectively. The sampling rate of the system is
65.536 kHz. Real-time signal processing is achieved by the implementation of
Simulink models. These models run on the core of a selected central pngcess
unit of the front-end. The real-time data is displayed via a graphical usar in
face, called MEDM. We used built-in software called Digital Test Tools (PTT
to obtain the frequency response data of the triple pendulum suspemsidn.
computes the desired transfer function via assigned measurements ofute inp
s/outputs. An interface between DTT and another program called Fotavsallo
for shaping of the excitation signals with the help of digital filters.

9.8 System Identification

Obtaining good quality transfer functions was not easy, due to the dynamic
range of 150dB between signals. The white noise excitation signals réquire
frequency-dependent shaping. We accomplished this via digital filtdrighw
had the shape of the inverted suspension transfer function regardirgdthed
DOF. This shaping and an appropriate amplitude of the white noise ensated th
no sensor saturation effects occurred and that the input was stroongleto dis-
tinguish test mass motion from the existent noise floor. Furthermore the digital
filter had to account for the transfer function of the coil driver elega®given

by

(s +50)2
(s+1)2°
We operated the system in the small displacement regime, assuming that lin-
earised models are able to exactly describe the system. This assumption allows
for the usage of linear control techniques, although the overall systemnis
linear.

For our input-output model we considered three inputs and six outputs.uBe

of this highly coupled and resonant system, automated system identification too
performed poorly. The Matlab subspace routine (n4sid) and the predatior
algorithm (PEM) were unable to properly fit models to the frequency resgpo
data. Commonly the zeros, affecting the transient response, could mabdbe
elled. As an outcome of this we manually fitted individual transfer functions,

Gariver(s) = (9.31)
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where we needed to place the poles and zeros of the system. We also had to
address the Q-factor of the poles and zeros and the systenk gdinransfer
function containing only resonant poles and zeros can be formulated as

mo(82 4 2¢,w,,8 + W
H(s)=h—— ( ) : (9.32)
T (82 + 2¢p;wp; 5 + wg],)

wherew,, andw,, are the frequencies of the system zeros/poles(gnand(,;

are the corresponding damping factors. The Q-factq is 1/2¢ andm < n.

An advantage of our approach was the fact that we could choosetas/peros
manually, since the resonance frequencies of the system shifted bgmeaiy
amounts over time. Concerning an automated system identification method a
frequency shift could raise a problem, since one mode could be addrbgs
two or more frequencies. We characterised the system by determining tvge tra
fer function matrices. The first was given by top-top transfer functiareere

the co-located sensors/actuators were used as outputs/inputs. The s&tax

was given by top-bottom transfer functions, where the system was éxdée
the coil actuator and the output was given by the readout of the optieaklefs
presented in Fig. 9.18 and Fig. 9.19 the fitted models were in very good-agree
ment with the measured frequency response data. Only the transféiofunc
corresponding to a longitudinal excitation and the pitch output showedctesr
istics we were not able to adequately model or interpret. A further sophadica
investigation of the closed-loop performance regarding this transfetifumis
required to describe the present dynamics. Not only the resonanpefreies

for longitudinal, yaw and pitch, shown in Table 9.3, contributed to the overall
system dynamics, since resonance frequencies (not explicitly mepasticttder
DOFs (roll/vertical) could also be observed. It is also worth mentioning tleat th
determination of the Q-factors was challenging for a variety of modes, which
could affect the performance of the control design. A solution for troblem is
given by measuring the transient response of a selectively excited nvbotdn,
would yield a more exact Q-factor.

An important requirement was that the system is described by one state equa
tion describing the system evolution, although we used top-top and top-bottom
frequency data. The reason for this is that the system states evolveslyniqu
where the measured differences were caused by the C matrix, whichtsvtigh
states to the outputs. We compiled the fitted transfer functions into a 6x3 transfe
function matrix and used the Matlab functiobalreal and modredyielding an
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Figure 9.18: Comparison of the fitted models (in red) and the measured fre-
quency response data (in black) for the top-top transfer functions.
The fitted models are in good agreement with the measured data.

Table 9.3: Resonance frequencies of the three DOFs of interest.

Parameter Value
Longitudinal 0.64Hz
1.38Hz
2.51Hz
Yaw 0.88Hz
1.66 Hz
3.14Hz
Pitch 1.03Hz
5.20Hz
10.51 Hz
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Figure 9.19: Comparison of the fitted models (in red) and the measured fre-
guency response data (in black) for the top-bottom transfer func-
tions. The fitted models are in good agreement with the measured
data.
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accurate model containirrg 60 states. A state-space model was formulated

& = Az + Bu (9.33)
y=Czx+ Du (9.34)
| Cw Dy,
_ les T+ Dbs] u, (9.35)

whered € R™" B € R™*3, C € R andD € R*3. We defined”y;,, Cys €
R3*™ and Dy,, Dy, € R3*3 to distinguish between the subsystems. The state-
space model can be converted into a transfer function, see Chap. 5, via

G(s)=C(sI — A)"'B+ D. (9.36)

Gls) = l%‘%} . (9.37)

We defined the subsystenis;, and Gy, describing the transfer functions for
top-bottom and top-top, respectively by

A| B A| B
Gu(s) = [W] , Ghs(s) = [ G D, ] : (9.38)

which when combined yield

A common notation is

G(s)=| Cw

Cbs

(9.39)

9.9 Modern Controller Synthesis

Commonly utilised controllers, which actively damp the eigenmodes of the sys-
tem, use for examplgelocity feedback Hereby Bu = —G4, directly affect-

ing the damping term, such that = C + G. A limitation of velocity feed-
back is spillover, where unmodelled high-frequency dynamics can dastse
bilities [121]. Another disadvantage is the increasing control effort tdwa
high frequencies, injecting noise into the system [122]. Another example is th
modal control approachimplemented for LIGO’s quadruple mirror suspensions
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[122, 123], modelling the system as a second-order matrix differentieitio.
While this approach is promising, it must be noted that an estimator was needed
to determine all system states [122, 124] and hence the performance apthis
proach depends on the accuracy of the system model.

Our control design incorporated the motion of the lower test mass, whicluis us
ally not assessed for control approaches, although the RMS motion ehthe
mass defines the performance of the suspension system. There asviooipr
studies examining the effect of controllers on the end mass motion. We exam-
ined the implementation of nomin&{, controller synthesis techniques, which
were developed for highly complex MIMO systems. With a general contirel f
mulation it is also straightforward to examift&,, synthesis techniques.

9.9.1 Generalised Control Formulation

We introduce the generalised feedback configuration to convert aotpriablem
into ats/Hoo Optimisation problem [125]. For this approach these signals need
to be modelled:

u, control input/s,

w, disturbance input/s - the impact of the disturbance on the system must
be minimised,

y, the measured output/s and

z, the performance objective to be minimised.

Fig. 9.20 presents the standardised framework which can be written as

z w Pi1(s) Pia(s)| |w

= P S = 5 940

[y] (5) [u} [Pgl(s) Py(s)| |u ( )
with vectorsu, w, y andz and the transfer function matri. Eq. (9.40) shows,
how the controlled input: and the input disturbance are related to the out-
puts of a closed-loop system. Hegeis the measured output anddefines a
performance objective, which shall be minimised. In generiala virtual out-
put, whereas in our casecan be measured, since our performance criterion is

the minimisation of the lower mass motion. We can relatéo = by the lin-
ear fractional transforndF;( P, K') describing the closed-loop system dynamics
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z

w Plant P :
~ >

K (—

u y

Figure 9.20: A generalised feedback interconnection is shown in this biaek
gram. The input/output relation af/z is given by the linear frac-
tional transformZ;(P, K'). The control objective is to compute a
controller K that minimises the impact of a disturbanegeon the
performance criterion.

including the controller equation = Ky
z = Fi(P, K)w, (9.41)

where

Fi(P,K) = Py + Pio(I — KPy) ' Py (9.42)
and K is the controllerHz/H -, control designs provoke the minimisation of the
Ha/Hoo nOrms of F; (P, K'), respectively.
9.9.2 H, Optimal Control

The solution to thé{, optimal control problem is the controlléf, which min-
imises the#, norm [125]

1P, = ¢ o | trlPH G Gw)) do, 043)

where F(s) := F;(P,K). Minimising this norm minimises the RMS output
powerz of the generalised system in the presence of a unit-intensity white noise
disturbance input [125].

In our case the unknown disturbance is seismic noise. Fig. 9.21 showsithe s
mic noise spectrum (black)in the x-direction, obtained via geophones tbicate
our laboratory, and an associated 15th-order model (red). Ththahndrnotation

131



CHAPTER 9. LOCAL CONTROL OF A TRIPLE PENDULUM
SUSPENSION

Noise Power (um/\Hz)

10> 10t 10" 100 10

Frequency (Hz)

Figure 9.21: Seismic noise spectrum in the x-direction in the laboratory and its
associated fit.
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u > —>

Figure 9.22: Coloured noise disturbances can be modelled with additional dy
namicsW,,. In our casédV,, was chosen such that the noise spec-
trum @ matched the seismic noise spectrum. We reformulated the
plant dynamics to include the augmented noise.

of the seismic noise model is given by

W (s) = l‘%%} . (9.44)

The seismic noise spectrum shows an overafl characteristic and is therefore

a non-white noise. To adequately include the effect of the disturbarebad

to augment the plant with additional dynamics, which coloured the noise. The
plant and noise dynamics are given by Eqgs. (9.37), (9.44), respbctie take

an additional step to point out the series connection of two state-space models
presented in Fig. 9.22. The state space equations are expressed as
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T = ATy + Byl (9.45)
W = CyToy + Dypliy (9.46)
& = Ax + B + Bu (9.47)
y = Cx + D + Du, (9.48)

with C' and D defined in Eq. (9.35). The series connection of the two systems
was calculated by substituting Eq. (9.46) into Egs. (9.47),(9.48)

& = Az + B(Cyxy + Dyyw) + Bu (9.49)
y = Cx + D(Cyxy + Dyw) + Du (9.50)

and the dynamics of the augmented system were

T A BC,| | =x BD,, B
[x.w] = lo Aw] - + B, w + 0l (9.51)
x
y = [(J Dcw} + DDyw + Du. (9.52)
This was transformed into a generalised plant P
A BC, | BD, B
0 A B 0
P= w v , 9.53
Cu DuCu | DuDy Dy (9:53)
Cbs Dbst DbsDw Dbs

wherez = Gyu(u + w) describes how the controlled inputand the distur-
bancew couple from the upper mass to lower mass motion. Thugfines the
performance criterion we wanted to minimise, which is the RMS motion of the
end massy is the measured output, which is utilised for feedback control. In
our casey is given by the output of the BOSEMSs. It is also possible to define
additional performance criteria.

9.9.3 H, Mixed-Sensitivity Control

Up to now we only considered to minimise z. We enforced no constraints on
the characteristic behaviour of the controller or the applied control gnerg
A well-known H, mixed-sensitivity technique is the LQG problem, see Chap. 5
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Figure 9.23: The generaliséd, mixed-sensitivity design enables the frequency
weighting to optimise the control performance. In our case we want
to minimise the RMS maotion of the lower mass of the triple pendu-
lum z; = Gy (u 4+ w) and weight the control inpu, = W, u. The
weighting functioniV,, affects the controller bandwidth.

or [125]. Mixed-sensitivity techniques were first introduced#n, optimisa-
tion problems [126, 127], but can be transferredg problems with the help
of the generalised framework. To achieve suitable feedback loops, treslmix
sensitivity techniques allows for frequency-dependent shapinguwfgantroller
[125]. We now show how such constraints and weights can be incaegbireo
the generalised plant regarding our system. Let us consider the rparfoe
variablesz; andzs

21 = Gp(u+w) and 29 = Wyu. (9.54)

z1 corresponds to the earlier introduced performance criterion, whioksomjih
the minimisation of the lower mass motion. In additionzfowe introducezs,

a weighted version of the controlled input setting constraints on the applied
control energy. The weight/,, can be expressed as

A, | By
W, = [TM‘TU] . (9.55)

Such a weighting is desirable as it enables us to define the bandwidth of the
designed controller. Furthermore such a weighting is a more intuitive way to
define the bandwidth in comparison to the LQG approach. A block diagram
of the optimisation problem is presented in Fig. 9.23, and the generalised plant
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becomes
A BC,, 0 BD,, B
0 Ay, 0 By 0
P = 0 0 A, 0 B, |. (9.56)

Ciw DwCw 0 | DDy Dy

Cbs Dbst 0 DbsDw Dbs
The Matlab functiorh2synwas used for the controller synthesis. The result was
a complex controller consisting of 75 states whose outpgbt weighted by a
transfer function

G(s) = 0.003s% + 0.0065s + 0.003
s?2 +100s + 2500
The weighting of the controlled input ensured that the computed controller
did not have a differentiator characteristic. The Bode diagram oftth&on-
troller, which should actively damp the suspension resonances, is illustrate
Fig. 9.24. Herebyy;, vy, y, andu, uy, u, are the outputs of the plant and the
controlled inputs to the plant corresponding to the three DOFs of interest, re
spectively. Furthermore we simulated the closed-loop response of ttearsys
highlighting the performance of this control approach (in orange) in cosgpa
to the undamped case (in blue), see Fig 9.25. The simulation points out that
some of the modes are suppressedd®dp dB without exciting other modes sig-
nificantly (or at all). It is worth mentioning thak{s synthesis techniques are
extremely useful with very accurate knowledge of the plant. Howevee taer
no stability guarantees for model mismatches [89]. This point is essential for
resonant systems, where a small shift in the resonance frequencyaveaylis-
astrous consequences. Robust control techniques could handlevaraibns,
but require modelling/estimation of uncertainties. These uncertainties limit the
performance of robust controllers. For a triple pendulum suspenseomdi-
elling of uncertainties is phenomenally complex.

(9.57)

9.9.4 H_, Optimal Control

The procedure fo#{., control can be described in analogy to tHe scenario.
This time theH ., norm is minimised

J(K) = | F(P. K)o, = max o (Fi(P,K)(jw),  (9.58)

lloo

whereg is the largest single valuet ., control techniques try to minimise the
maximum gain value of the plant. In practise it is more convenient to design a

135



CHAPTER 9. LOCAL CONTROL OF A TRIPLE PENDULUM
SUSPENSION

10°

SN
-
! =
e
s
—~
3
<
=
= =
<
- >
Q
& -
o= < Q
= =3
o = g
= = =
o e~
=2]
>
=] =
o =
s
SO O O =3 =) [=3 oo O === [=E=N=3"=1 =} C:
=g} v\ o Ve 0 < el v \O N
— (S ~ © <t v~ o~
) To) A — " n

[n:of, [n:oJ, " fn 0],  An:oJ, dn:oJ, dn:oJ,

(89p) eseyd : (gp) aprarusejy
Figure 9.24: Bode plot of the computéf}, controller. The input of the transfer
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controlled input, ,, ,, associated with the considered DOFs.
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Figure 9.25: Simulated closed-loop performance offfaecontrol approach (in
orange) in comparison to the undamped case (in blue), highlight-
ing the capability of damping modes by50 dB without exciting
other modes significantly. The disturbance inputs and the perfor-
mance criteria with respect to the controlled DOFs are denoted as
wy, Wy, wp aNdzy, 2y, 2, respectively.
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suboptimal controller, which satisfies
[F1(P, K)o < - (9.59)

This control challenge can be solved by decreasiitgratively until an optimal
solution is reached [125]. It is also possible to incorporate elements fodim b
techniquegis /H . for sophisticated multi-objective optimisation schemes.

9.10 Conclusions

We set up a triple pendulum suspension with the help of the 10 m prototype
group for a systematic controller design, which should actively damp tlee res
nant system. Our control design incorporated the RMS motion of the lowex, mas
which has never been directly addressed before, although the desired| ob-
jective for suspension control is to minimise the lower mass motion. Detailed
information of this motion was obtained via two fully calibrated optical levers,
which were able to detect the motion corresponding to a longitudinal, yaw and
pitch displacement. These DOFs have the strongest impact on the output of a
Michelson interferometer. We measured the system dynamics by exciting a sys
tem mode at the top stage and detecting the top/bottom system response for all
three DOFs. The result was a 6x3 transfer function matrix, which was fose
system identification. The manually fitted system model was put into the context
of a generalised control formulation, which was used to examine the applica-
tion of Hy/H~ controller synthesis techniques. The generalised control formu-
lation allowed for aH, mixed-sensitivity control approach incorporating con-
troller weighting functions. We computed a powerfd} controller, suitable to
control this highly complex MIMO system including inherent cross-coti@te.

The simulated closed-loop performance of the system highlighted the ability of
achieving damping factors ef50 dB without exciting other modes significantly.
The current task is the experimental implementation of our control schenge. Th
task also includes the derivation of a simpler controller, which can be obtained
by applyingmodel order reductiotechniques, to lower the computational com-
plexity.

Itis difficult to intuitively design controllers for MIMO systems. Therefonath-
ematical techniques become advantageous, although the generatedlazrsntro
have the same number of states as the plant, which can be impractical due to the
computational complexity. For this reason model order reduction is in gearera
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area of active researclis/H, techniques require more complex problem for-
mulations, but offer sophisticated and unique control design possibilitiEshw
could increase the performance of suspension systems.
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Summary and Outlook

The goal of this thesis was to pave the way for the implementation of modern
control techniques in our research field. Mathematical control techsiguiger-
ently capable of coping with undesired coupling terms, become advantageou
for complex MIMO systems for which an intuitive controller design apprdach
not feasible. An example of such a complex MIMO system is a laser interfero
metric GWD consisting of numerous nested loops; the complexity of GWDs will
be further increased by the implementation of some of the advanced techniques
considered for next generation gravitational wave detectors [128, TBus, the
application of modern control techniques can be beneficial for a systetneeatic
ment of control challenges and potentially improve the performance of a GWD
The first step towards the defined goal was the construction of a suitaaie q
tum optical test bed for the implementation of modern control approaches. Th
test bed was a three-mirror ring cavity, whose length needed to be lockiee to
frequency of a laser. We measured transfer functions to characteesys-
tem. The frequency response data was used to derive a third-orteesgtee
model describing the plant required for the computation of a LQG contrller.
augmented the LQG controller by integral action, as with static state feedback
control the states of the system cannot converge in the presencesthicbim-
put/output disturbances. Our LQG controller with additional integral actias w
able to lock the cavity, and the closed-loop stability and performance were ve
ified via step response data. We published the results in [31], and the&uquan
optical test bed was already further utilised for a negative imaginary aaaytr
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proach [130].

We extended the previous locking scheme by substituting the time-invariant with
a time-varying Kalman filter. This substitution allowed for the implementation
of an optimal controller, which was capable of coping with large detunings-
tween laser and optical resonator, exceeding the linear region of tiresegnal.
Thus, this approach was suitable as an autolocking scheme. We realisashthis
trol approach by utilising the singular perturbation method to simplify our system
dynamics and to permit the application of linear control techniques. The combi-
nation of error signal and detected transmitted power was used to estimate the
detuning of the cavity. We made use of this estimate to compute and implement
an optimal controller, which is able to lock the cavity from any given operating
point. The results demonstrated improved robustness to disturbancesstard f
locking times in comparison to a traditional Pl controller. More importantly, our
controller, incorporating a time-varying Kalman filter, automatically acquired
lock for large detunings, which correspond to the non-linear regioneoétior
signal, a feat which cannot be achieved by linear time-invariant consollére
results obtained show the superior performance of our control schemneere
published in [32]. It is noteworthy that such a control approach coate ¢he
reacquisition of locks and therefore enhance the duty cycle of GWDs.

We further investigated the possibility of placing our squeezed light sdarce
the context of MIMO control problems, for which a modern control applois
beneficial. After a detailed theoretical and experimental characterisdtimur o
bow-tie OPO, we tried to identify possible couplings between the pump lock and
the OPO cavity lock. The result was that the two feedback loops were ctatyple
decoupled, this is due to the applied modulation schemes; A PDH scheme for the
OPO lock and a dither locking scheme for the stabilisation of the relative phase
between the intracavity and pump field. We added the LO lock as a third pa-
rameter, which is sensible for experiments incorporating a homodyne detectio
scheme in order to amplify the detected signals. We found that the LO lock has
no impact on the other feedback loops, whereas the control loops fputhp

and OPO influence the LO loop. Due to these non-vanishing coupling terens, w
can state that the control of our squeezed light source, including thedkQdan

be described as a MIMO control problem.

An example of a complex MIMO system is a triple pendulum suspension for op-
tical components of GWDs or other high-precision measurements, which nee
to strongly isolate their components from seismic noise. Triple pendulum sus-
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pensions make use of the characteristic behaviour of cascaded haosoitii-

tors and reach a suppression of seismic noisg/¢f above their resonance fre-
guencies. However, on resonance the RMS motion of the lower mass isdexcite
and therefore suspended optics require active control to damp thereiden of

the system. This MIMO control problem is commonly addressed by traditional
control approaches, where the system transfer functions haveobégned via
co-located sensor/actuator pairs attached to the upper mass of thessmispen
The limitation of this control approach is the lack of information concerning the
lower mass motion, which needs to be minimised. We set up two optical levers
capable of reading out the lower mass motion with respect to the yaw, pitch
and longitudinal DOF, which are the DOFs with the strongest influence on the
output of an interferometer. We injected a disturbance at the upper mdss an
measured the response of the lower mass with the help of the calibrated optical
levers. We utilised this frequency data to augment the commonly used upper
mass-upper mass measurements with upper mass-lower mass measurements to
enable a host of systematic control approaches, thereby enhanciegsteen
performance. The result of these measurements was a 60th-ordespstate-
model, which was put into the context of a general control formulation aed u

to examine the implementation &f, /# ., controller synthesis techniques. This
generalised formulation allowed forf#é mixed-sensitivity control approach, in-
cluding frequency-dependent controller weighting functions and theidera-

tion of coloured noise. We calculated a poweff(y 75th-order controller which
achieved damping factors ef50 dB, without significantly exciting other modes.
The next step will be the implementation of our control scheme. One part of
the implementation is the derivation of a simpler controller via model order re-
duction techniques in order to lower the computational complexity which could
limit the control loop performance. Fortunately, model order reduction &s@a

of active research, as the mathematically compieX#H., control approaches
offer sophisticated and unique control design possibilities for MIMO syste
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