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5 Abstract

% The EuPRAXIA project aims at designing the world's
5 S first accelerator based on advanced plasma-wakefield tech-
2niques to deliver 5 GeV electron beams that simultane-
"g ously have high charge, low emittance and low energy
s spread which are required for applications by future user
= £ communities. Meeting this challenging objective will only
0 be possible through dedicated effort. Many injection/accel-
= eratlon schemes and techniques have been explored by
;;“means of thorough simulations in more than ten European
E research institutes. This enables selection of the most ap-
'; propriate methods for solving each particular problem. The
_%:’ specific challenge of generating, extracting and transport-
o ing high charge beams, while maintaining the high quality
% needed for user applications, are being tackled using inno-
S vative approaches. This article highlights preliminary re-
~§ sults obtained by the EuPRAXIA collaboration, which also
= exhibit the required laser and plasma parameters.

INTRODUCTION

Particle acceleration using plasma wakefields have field
g gradients several orders of magnitude higher than conven-
M tional RF fields. This concept has been extensively studied
B experimentally and theoretically [1-3]. The EuPRAXIA
= £ collaboration [4] aims to advance a step further, by design-
%5 ing the worldwide first plasma-based accelerator as a user
§ facility. Such an infrastructure should be able to run 24/7,
Ewith an industrial-level reliability and reproducibility, at a
£ high repetition rate > 10 Hz. The requirements on beam pa-
S rameters are quite challenging, especially for the Free Elec-
Z'tron Laser application, as the beam should simultaneously
.reach high energy, while also achieving high beam charge
and high beam quality (Table 1).

must maintain

e (©2019). A

2 Table 1: Beam Parameter Requirements at the Exit of the
8 Laser-Plasma (LP), RF Injector, and Plasma Accelerator

C

E Parameter LP RF Accel-
- injector injector  erator
P Energy (GeV) 0.150  0.28-0.5 5(D
S Charge (pC) 30 30 30
£ Bunch lengthyym (fs) 10 10 10
E RMS en.spread (%) 5 0.2 1

g Slice en.spread (%) n.a. n.a. 0.1
é RMS emittance (um) 1 1 1

é Slice emittance (pm) n.a. n.a. 1

5 In order to progress from acceleration as a physics ex-

g periment to an accelerator as a facility with unprecedented
5 5 beam requirements, specific studies should be developed.
3 > This article describes the strategy and methods used in this
E process: broad exploration and downselection, decoupling
‘6 injection and acceleration, tackling the beam quality issue,
3 the beam charge issue, and the beam transfer issue. Finally,
= £ the required laser and plasma parameters are given.

=
2 * This work was supported by the European Union’s Horizon 2020
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BROAD EXPLORATION AND
DOWNSELECTION

We adopt here the design strategy combining experience
from plasma accelerators with well-proven approaches in
conventional accelerators: first the desired beam parame-
ters are defined, then all the configurations capable of ful-
filling them are explored through simulations, and, depend-
ing on the selected configuration, specifications for laser
and plasma systems are deduced consequently.

Many different injection/acceleration schemes were ini-
tially considered, with an RF or LP injector followed or not
by one or two acceleration plasma stages, in LWFA (laser
driven), or PWFA (particle driven), or hybrid modes. Rap-
idly, studies converged on the schemes sketched in Fig. 1.
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A

Figure 1: The studied Inject./Accelerat. schemes. LPI, RFI,
LPAS, PPAS, LETL, HETL stand for, resp., Laser-Plasma
/ RF Injector, Laser-Plasma Acceleration / Particle-driven
Plasma Acceleration Stage, Low Energy / High Energy
Transfer Line. The laser beams are presented in red.

For the RF injection technique, two linacs have been de-
signed as external injector of the LWFA mode: one accel-
erating to 240 MeV, based on S-band technology with an
RF and magnetic bunch compressor [5], and another reach-
ing 500 MeV by combining S-band and X-band structures
[6]. The latter can also provide driver and witness beams to
the PWFA mode via the Comb technique [7, 8].

Different injection techniques are also studied for the
150 MeV LP injector. The simplest is self-injection by
wave breaking followed by acceleration in the nonlinear
regime [9]. Two more sophisticated techniques, shock-
front injection in the blowout regime [10] and ionization

injection in the quasilinear regime [11, 12], produce beams -

closer to requirements. Only two more complex techniques
of these two ones, down-ramp injection [13] and Resonant
Multi-Pulse Ionization Injection (ReMPI) [14, 15] respec-
tively, can achieve all beam requirements. See Fig. 2.

For the 5 GeV Laser Plasma Acceleration Stage (LPAS)
injected either by an RF or LP injector, as described above,
the quasilinear regime is explored for a single stage [16-
18], while the blowout regime is assumed for a two-stage
setup with a magnetic chicane in between [19]. The Particle
Plasma Acceleration Stage (PPAS) is simulated in the
weakly nonlinear regime up to 1 GeV for now. The PPAS
of the Hybrid scheme is simulated in the blowout regime,
with either the Trojan Horse [20] or the Wakefield Induced

= . . .

%‘) T E-mail: phu-anh-phi.nghiem@cea. fr injection [21, 22] techniques. Figure 3 summarizes the
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beam parameters obtained compared to the requirements.
Four configurations lead to results close to all require-
ments. Moreover, three configurations with an LPAS fol-
lowing a RF or LP injector, use similar laser and plasma
parameters to obtain similar results, despite the different
injector technologies, beam energies and the radically dif-
ferent simulations codes. This is a remarkable result: there
exists a solution meeting the EuPRAXIA objectives and
this solution has a highly promising robustness as regard to
the large range of input parameters and assumptions.
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LPI shock-front Inj.
—&~ LPI ionization Inj.

=6~ LPI rempi
=~ LPI downramp Inj.
Required value

Energy Charge ¢
(MeV)  (pC)
300 50

X € coE/E
(%)
10 ¢

TFWHM

2.f>“m) 2éfs)

250

200

Figure 2: Results obtained for different injection / acceler-
ation configurations at 150 MeV. See text.
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Figure 3: Results obtained for different injection/ accelera-
tion configurations at 5 GeV. See text.

DECOUPLING INJECTION AND
ACCELERATION
The above downselection procedure shows that a certain

degree of sophistication of the accelerator setups is
necessary. A single plasma stage combining injection and
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acceleration is likely not enough. At least two stages, one
dedicated to injection and the other to acceleration are
needed, as two independent knobs are necessary for tuning
high beam charge and high beam quality.

Yet, even better beam quality is predicted in our studies
when in the injector stage the processes of injection and
acceleration are uncoupled. This is the case for the RF
injector, where injection, acceleration and shaping of the
beam are independently performed. For the LP injector, we
see in Fig. 2 that a simple shock-front injection, with a
steep increase then immediately decrease of the density at
the plasma entrance, does not deliver the required
performances. A more sophisticated density profile, where
a small plateau separating the increasing and decreasing
parts, combined to a tunable down ramp, allows to tune the
injection duration and the acceleration process separately,
and promises improved beam quality.

A similar case is observed for ionization injection. A sin-
gle laser beam does not allow to obtain high beam charge
and high energy at once, and furthermore lead to a much
higher emittance in the laser polarization direction. In con-
trast, the ReMPI technique is more complex as it requires
to split the laser pulse into three pulses (see Fig. 4), the first
of small energy for ionizing the gas, the second containing
the main part of energy itself decomposed in a series of 4
sub-pulses to excite the wakefield without ionizing the gas,
and the third pulse carrying a tiny fraction of energy to
symmetrize the beam in the perpendicular direction. Yet,
this process generates a 30 pC, 150 MeV beam with

0.2 um emittance and energy spread less than 2%.

Driving laser pulse train
lonizing laser pulse
Symmetrizing laser pulse
M8 On-axis wakefield E,
® Extracted particles

Figure 4: The ReMPI technique with a laser beam split into
three beams (see text).

BEAM QUALITY AND CHARGE ISSUES

The beam quality must be assured everywhere in the
chain of injection, acceleration and transportation, since
the slightest degradation in a given section can be difficult
to compensate for downstream. The challenge is initially
minimizing then preserving as much as possible the 6D-
phase space. In the LWFA case, a powerful laser beam cre-
ates the wakefield structure while external injection en-
sures the beam quality. The beam quality injected by a LP
injector has been discussed above. The use of an RF injec-
tor would ensure a very small emittance at injection, but in
our context of high charge and short bunch, additional ef-
forts are needed to compress the bunch length when high
space charge is present. In the case of Trojan Horse Injec-
tion, the reverse is achieved: a strong particle beam excites
the wakefield and a weak laser beam delicately ionizes the
gas to generate small emittance beams [20].
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and D

Applications also require a small energy spread. Due to
E’the variation of the accelerating field with the phase of the
Z wakefield, it is well known that minimizing the bunch
= 2 length reduces the energy spread. But in the case of high
o beam charge in the quasilinear regime, the beam-loading
° field is substantial, and its effect on the energy spread not
0 2only depends on the bunch length but also on the bunch
% radius [23]. As a consequence, for a given configuration
& where the beam radius is optimized, there exists a bunch
= length that minimizes the energy spread (Fig.5a). In
£ contrast, the slice energy spread depends only on the beam-
_c loading field which is governed by the beam density and
ﬁ the laser strength. Optimizing jointly these two parameters
£ allows to minimize the slice energy spread (Flg 5b). In the
= blowout regime, as the beam-loading field is smaller, the
0 additional injection of a tailored escort beam induces the
2 appropriate beam-loading field [24]. Introducing a
§ magnetic chicane in between two plasma stages to dechirp
g the energy spread is also a promising solution [19].
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= Figure 5: (a) Minimization of energy spread with the bunch
";length. (b) Minimization of slice energy spread with the
& laser strength and the plasma density.

BEAM TRANSPORT ISSUES

As for any accelerator, simulations must be carried out
o from start to end, including injection into and extraction
§fr0m plasma stages as well as beam transport. The main
= concern in the latter is emittance growth by a factor of 10
s or more, when the beam abruptly leaves the very strong
% focusing field of the plasma to enter into free space. Many
O theoretical studies have been undertaken on this subject
2[25, 26, 27]. An efficient process is still to be set to avoid
55 emittance growth in the case of significant beam loading as
« with EuPRAXIA. A study is carried out, revealing all the
5 parameters governing the phase emittance growth through
é a free drift, the trace emittance growth when crossing a
Efocusing element, and pointing out these two emittances
§ are equal at any beam waist [28]. Based on this model, the
—afollowmg three recommendations can be suggested for
gmltlgatmg emittance growth effectively: 1) minimizing
8 emittance and energy spread during acceleration, which
Z'should be done exclusively in the plasma acceleration part;
+2) minimizing the Twiss parameter y at the plasma exit,
BWhICh should be done exclusively in the plasma down
-Zramp, with the reservation that the latter would not itself
£ induce significant emittance growth; 3) minimizing the
£ total length and integrated focusing strength in the transfer
g hne which should be the exclusive role of the focusing
g 2 elements in the transfer line. Optimizing all these aspects

ce (©2019).
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at each of those three components ensures a minimized
emittance growth. If, however, it is not properly achieved
at a given stage, it cannot be compensated elsewhere.

It is then demonstrated that transport lines composed of
six quadrupoles for achieving the required beam size, di-
vergence and emittance, associated to the plasma up and
down ramps with optimized lengths (whatever the shape),
allow to limit emittance growth to ~20% through injection,
acceleration, extraction and transport to the user. Current
efforts are focused on lengthening slightly these transport
lines to introduce diagnostics, driver removals, chicanes,
etc. State-of-the-art techniques, some still under develop-
ment, will be used to monitor the full 6D phase space. R&D
work is ongoing, in particular to improve the compactness
and single shot capabilities of diagnostic systems [29].

LASER AND PLASMA REQUIREMENTS

Once the configurations giving beam parameters closest
to the requirements are identified, the specifications for the
laser and plasma physical parameters can be determined.
For the LPI at 150 MeV, in the case of ReMPI, the required
laser parameters are (A = 800 nm): P = 125 TW, E =51,
strength ap = 1 (split into three beams as explained above);
and for the plasma: N°*, uniform density no= 5x10'7 cm,
3.5 mm long, 1 mm down ramp and a 3 mm passive plasma
lens, ng = 1.4x10' ¢cm™. In the case of down-ramp injec-
tion, the laser parameters are much relaxed: P=35 TW, E =
1J, ap = 1.8; but the plasma is more complex: ny =
6x10'® cm™, density increase then decrease with a plateau
between, on a few 0.1 mm, 0.15 mm down ramp at the exit,
and a 4 mm passive plasma lens with ng=1 x10'® cm™.

For the LPAS at 5 GeV, the required laser parameters
are: P =400 TW, E = 60 J, ap = 2.42; and for the plasma:
radially parabolic, longitudinally uniform, 300-500 mm
long, no=1 to 2x10'7 cm™, entrance / exit ramps ~20 mm.

These laser specifications are under consideration for de-
signing a viable solution based on Ti:Sa amplifiers with the
most advanced kW-scale concepts, aiming at a high repeti-
tion rate up to 100 Hz, with exploration toward 1 kHz [30].
Developments of required plasmas are also underway.
Plasma for the LPI have been achieved experimentally as
tailored density profiles inside custom-designed gas cells
[31]. Several schemes are being explored to develop stable,
long plasmas for the LPAS at high repetition rate, including
optically [32] or discharge [33] preformed channels.

CONCLUSION

Tremendous simulation and optimization efforts have
been performed on a broad range of injection / acceleration
schemes and techniques, thanks to the involvement of
many EuPRAXIA member institutes. The issues of beam
quality, beam charge and beam transport are being ad-
dressed using innovative approaches. Despite the chal-
lenges imposed by a highly demanding plasma-based ac-
celerator, it is found that solutions do exist. Studies of sen-
sitivity to errors are being finalized. Developments are on
the way for laser, plasma and diagnostic systems, aiming
for high reliability, reproducibility and repetition rate.
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