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In this study, we analyze the mass spectra of meson systems within an N-dimensional space
using the Killingbeck potential combined with an inversely quadratic potential. We employ
the Nikiforov—Uvarov method along with the Pekeris approximation scheme to account
for the centrifugal barrier. This approach enables us to compute numerical energy eigen-
values, normalized eigenfunctions, and mass spectra for both heavy and heavy-light meson
systems. We explore various scenarios of the potential and find that the resulting energy
eigenvalues are consistent with those obtained through previous analytical methods and ex-
perimental data. Additionally, we compute the thermodynamic properties of quarkonium
particles, including mean energy, specific heat, free energy, and entropy. Furthermore, we
investigate the effects of temperature and the dimensional number on meson masses and
thermodynamic properties, providing valuable insights into the behavior of meson systems
under different conditions.

Subject Index A73, A13

1. Introduction

Over the course of several decades, researchers have increasingly delved into exploring the ana-
lytical solutions of the Schrodinger equation for various physical potential models within quan-
tum mechanical systems. Researchers in multiple branches of physics, including nuclear physics,
atomic physics, and quantum chromodynamics (QCD), have shown keen interest in nonrel-
ativistic wave equations and energy eigenvalues. Quantum chromodynamics (QCD) theory
serves as a valuable framework for understanding the strong force, with hadron spectroscopy
playing a pivotal role in both the nonperturbative and perturbative regimes. Recent advance-
ments in experimental techniques at Belle, BES, CLEO, CDF, LHC, and BaBar have yielded
enormous amounts of data, revealing many unexpected findings [1-5]. Several new states, par-
ticularly within the meson sector, have been observed that do not fit into the conventional gg
scheme. All these exotic states, which do not fit into the gqq and gg schemes, require further the-
oretical investigation [6—13]. Numerous aspects of these systems can be investigated by using
the nonrelativistic Schrodinger equation, assuming that the quark—antiquark strong interac-
tion is described by a phenomenological potential. Several potential models offer robust de-
scriptions of meson mass spectra. However, it is essential for these potential models to embody
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asymptotic freedom and confinement as essential features of strong interactions. When sim-
ulating the interaction potentials for these systems, confinement-type potentials are typically
employed. The potential forms can vary, e.g. Martin, logarithmic, and Cornell potentials [14—
18]. For such systems, a successful potential model is one that agrees with the experimental
results within about 20 MeV [19]. The principal challenge in such studies arises from the ab-
sence of exact solutions to the Schrodinger equation for these systems, particularly when the
centrifugal potential is included. To overcome this problem, researchers often resort to solving
the wave equation approximately using various techniques, both analytical and numerical [20].
These include the Nikiforov—Uvarov (NU) method [20-25], the asymptotic iterative method
(AIM) [26], the analytical exact iterative method (AEIM) [27], the Wentzel-Kramers—Brillouin
method (WKB) [28], the Laplace transformation method (LTM) [29], and the artificial neural
network method (ANN) [30].

It is noteworthy that meson masses have been widely investigated at finite temperature within
the framework of the linear sigma model in numerous works, e.g. Refs. [31-33].

In this study, we have investigated the mass spectra of meson systems by solving the N-
dimensional Schrodinger equation under the interaction of the Killingbeck potential plus
an inversely quadratic potential (KPIQP) within the framework of the Nikiforov—Uvarov
method, and by using the Pekeris approximation scheme to account for the centrifugal
barrier.

Additionally, we have examined the influence of the dimensional number on meson mass. As
a natural consequence of the unification of the two modern theories of quantum mechanics and
relativity, and the emergence of string theory, the investigation of Standard Model particles in
extra- or higher-dimensional space has become a hot topic. Recent works [34, 35] have focused
on the investigation of quarkonium in higher-dimensional space and have shown that the di-
mensional number plays a crucial role in altering binding energy and dissociation temperatures.
From an experimental point of view, the investigation of the existence of extra dimensions is
one of the primary goals of the LHC. The search for extra dimensions with the ATLAS and
CMS detectors is discussed in Ref. [36].

The obtained energies were then used to study the thermodynamic properties of mesons. This
is motivated by the significant role that thermodynamic properties play in describing the quark—
gluon plasma. For example, Modarres and Mohamadnejad [37] studied the thermodynamic
properties of the quark—gluon plasma, as well as its phase diagram as a function of baryon
density and temperature. Furthermore, thermodynamic properties are investigated within the
framework of chiral quark models and in molecular physics using both relativistic and nonrel-
ativistic models [38, 39].

The KPIQP has the form [23, 27] of

C D
Vipige () = Vip () + Vige (r) = Ar* + Br — 7+ = (1)

r2’
where Vip(r) = (Ar* + Br — %) is the Killingbeck potential and Vigp(r) = er is the inversely
quadratic potential. Here 4, B, C, and D are positive potential parameters that will be deter-
mined based on experimental data at a later stage.
When A = B= D = 0, the KPIQP reduces to the Coulomb potential commonly employed
in describing the hydrogenic atom. When 4 = D = 0, the KPIQP simplifies to the Cornell po-
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tential, where C represents a coupling constant and B denotes a linear confinement parameter.
It is noteworthy that the Cornell potential is the sum of two components: a coulombic term
(—%), resulting from one-gluon exchange between quarks and antiquarks at short distances
[40], and a linear term (B r), which represents quark confinement at larger distances [41].

To improve the behavior of the potential in the region as r — 0 and provide better confine-
ment, two terms are added to the Cornell potential: the inversely quadratic potential (the term
D/r?) and the harmonic oscillator term. The KPIQP has also been used to compute the en-
ergy eigenvalue spectra of quantum dot systems [42, 43] and diatomic molecules [44]. Recently,
Khokha et al. analytically determined meson mass spectra by solving the N-dimensional radial
Schrédinger equation with the KPIQP using the exact iteration method [27].

The paper is structured as follows: In Section 2, we derive the bound state solutions of
the Schrodinger equation with the KPIQP using the Nikiforov—Uvarov (NU) method in N-
dimensional space. We discuss special cases of the obtained energy eigenvalues. In Section 3, we
present numerical results for the masses of the charmonium (c¢), bottomonium (bb), bottom—
charm (b¢), and charm-strange (¢5) mesons. These results are compared with those obtained
from other analytical methods and available experimental data. The derivation and discussion
of the expressions for the thermodynamic properties of quarkonium particles are also discussed
in section 3. Finally, Section 4 provides a summary and conclusion of the paper.

2. Theory

2.1  Bound state solutions of the Schridinger equation

In this study, we employ the Nikiforov—Uvarov (NU) method to solve a second-order differen-
tial equation of the hypergeometric type. A comprehensive description of the methodology can
be found in the appendix. In N-dimensional Hilbert space, the Schrodinger equation describing
the interaction between two particles via a spherically symmetric potential can be written as in
Ref. [45]:

v (S ) vers (v - o0 @
where = mymg/(my + mgy) is the reduced mass of the system, £ is the angular momentum
quantum number, and E,, is the energy eigenvalue with the corresponding radial wave function
v (r).

Setting the wave function v (r) = r R(r), the following radial Schrodinger equation is ob-
tained:

. 2u (N+2¢—1)(N+2¢-3)
R (r) + <ﬁ (Epe =V (1)) — 12 R(r)=0. (3)
Substituting Eq. (1) into Eq. (3), we obtain
. 2uEy  2pA ,  2uB 2uC1
R(VH( = R = R
2uD  (N4+26—1)(N+2¢—-3)\ 1
—(hz " ! S) R =0. o)
Equation (4) can be simplified to the following equation:
c d
R’ (r)+ (Sng—i-arz—br—i— o= r_2>R(V):O (5)
where e,y = b = 2 f— BB . WC g WD y (VDO

3/23

G20z Yole L0 uo 1senb Aq 995€£8//20VEZ L/ LIvZ0Z/e10ne/de1d/woo dnoojwepeoe//:sdiy wolj pepeojumod



PTEP 2024, 123A02 R. Horchani et al.

Using the change of variable x = %, Eq. (4) reduces to
2 1 b
R+ 2R () + — (em+ex— >+ —dx®)R(x)=0. 6)
x2 x4 x  x?

Equation (6) can be solved using the conventional Nikiforov—Uvarov approach for solving
second-order differential equations of hypergeometric type. However, we must put the equation
into a standard form using an approximation scheme by expanding % and 5 in power series
to second-order around ry (§ = % where r( is the characteristic radius of the meson). Thus we

can write
b 3 3x X2
}:b(5_5_2+3_3> 7o
a 6 8x 3x2

This approximation is suitable for obtaining local solutions of the Schrodinger equation,
when the range of the distance r is not far from its equilibrium position. We note that the
validity of this approximation depends on the magnitude of the rotational quantum number £.
In fact the relative discrepancies are multiplied by the factor £(¢ + 1). In the present work, we
are studying the upper limit of the quantum number £ so we can safely use this approximation.

Inserting Eqgs. (7 a) and (7 b) into Eq. (6) results in

2 1
R(x)+ SR+ = (~e+0x—PX)R(x) =0, )
X X
where
3b 6a
8=_8n€+?_6_2 )
3b  8a
Q=5—2—8—3+a (10)
b 3a
=5 td. (11)

Equation (8) is a standard form of the hypergeometric differential equation; it has the same
shape as Eq. (A2) with the following parameters:

& (x) = (—e+ Ox — Px?) (12)
o (x) = x? (13)
T (x) = 2x. (14)
Substituting Egs. (12), (13), and (14) into Eq. (A10), we obtain the polynomial 7 (x) as
7 (x) =+ (k+ P)x? — Ox + . (15)

Since 7 (x) is a first-order polynomial, the terms under the square root must be equated to the
square of a linear function in x, say (Zx + ¢)*. Using this condition (Zx + ¢)* = (k + P)x% —
Ox + ¢ and solving completely, we find

2
_9

k =
de

(16)
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Substituting Eq. (16) into Eq. (15) with simplifications yields 7 ( x):

B 0 2¢e

In Eq. (17), we choose the value of 7 (x) = —%(x - 25) that will give d’di’“) < 0. Then t(x)
can be written, according to Eq. (A8), as

20 2e
r(x):Zx——(x——). (18)
Ve Q0
Upon differentiation of Eq. (18) with respect to x, we obtain:
2
'(x)=2- 7Qg (19)
Referring to Eq. (A11), we define the constant A as
0 20
A==——-P——. 20
> = (20)
Upon differentiation of o (x) with respect to x from Eq. (13), we obtain
o”(x)=2. (21)
Substituting Egs. (19) and (21) into Eq. (A12), we obtain
2
Anz—n(2—7Qg)—n(n—1). (22)

By equating Egs. (20) and (22), we find
i 9 . (23)

2<n+§i,/1)+ %)

Inserting the constants P, O, and ¢ given in Egs. (9)-(11), Eq. (23) yields
2

. _3b _Ga c+ %% 24)
nt = "o T Ty T
5 9 2n+1+\/;‘—?—%+4d+1

Using the parameters for a, b, ¢, and d in Eq. (5) in Eq. (24) with some simplifications, the
energy spectra of the meson system are obtained in the N-dimensional space in terms of the

KPIQP constants as
2
3B _ 84
(82 53+C) :| ) (25)

I sz D+ 8B 28y 8D (N 20— 1) (N +20-3) + 1)
When we set N = 3 in Eq. (25), we obtain the results in Ref. [46].

To find the radial eigenfunctions, the relevant 7 (x) function must satisfy the following con-
dition (see Eq. (A5)):

(Y
6 () _ () _ (& ‘/E)z_ o Ve 26)
¢ (x) o (x) x2 2xe  x2 )
Solving a first-order differential equation, we obtain:
O (x) = x277Q?e7§. (27)
The other part of the wave function y,(x) is the hypergeometric type given by Eq. (A13):
B, 4"
Yn(x) = — (0" (x) p (x)). (28)
p(x)dx
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Here, B, represents a normalizing constant, and p(x) denotes the weight function, which is the
solution of the Pearson differential equation. The Pearson differential equation and p(x) for
our problem is given by Eq. (A14): (6p) = 1 p. Hence, we use Eq. (A14) to find the second

part of the wave function based on the definition of the weight function:

_9 JE
p(x)=x Ve 2%

(29)
Taking into account both components of the wave function ¢,(x) and y,(x) within Eq. (A3),
we derive the following expression:
Ed g0 L
F; N
- (x e ) . (30)
As the last step, we do the replacement x = 1/r, and using ¥,(r) = rR,(r) in Eq. (30) we get
the following:

0
Y, (x) = Byx¥ee

o d\" / e
Y (xX) = Byr 23§e’*/5(—r2—) (r 2 +¢Q?e_2"/g) . (31)
dr
The final form of the radial wave function v,,(r) can be written as:
-9 d\" [ opr2e 5.
Yy, (X) = Byr ! Zg?er*/g<—r2—> (r z +~%e_2"/g> (32)
dr

where B, is a normalization constant that can be obtained using the condition for the proba-
bility of finding a quantum particle in space:

| war=1. (33)
0
Special cases:

o S-wave: If weset N =3 and £ = 0in Eq. (25), we obtain the energy eigenvalue equation
for the s-wave of the KPIQP as

2

3B _ 84
3B_ 84 ¢
» 3B 64 2u (52 5 T ) ' (34)

2 2
58 Flontnt s 2t b
e Killingbeck potential: By taking D = Oand N = 3in Eq. (25), we obtain the energy eigen-
values for the Killingbeck potential:

2

B 64 2 3B_84 4 C
Ep=22_04 21 F-5+C) ET)

Qn+1)+ /%5 -2 L @+ 1) +1)

o Cornell potential: By taking A =D = 0and N = 3 in Eq. (25), we obtain the energy
eigenvalues for the Cornell potential:

2

3B
=Z+C
E, = ﬁ _ 2_“ (52 T ) ) (36)

2
S Plenrn+ JEE L@+ 4+

» Kratzer-type potential: By taking 4 = B = 0and N = 3in Eq. (25), we obtain the energy
eigenvalues for the Kratzer-type potential:

Ey =2 < . (37)

Plentn+ %2 ¢ @ee+ 1+
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o Coulomb potential: By taking A=B= D = 0,C = Ze¢*,and N = 3 in Eq. (25), we
obtain the energy eigenvalues for the Coulomb potential:
2
21 |: Ze? :| 21 Ze?

Rl @en+ )+ Jae+n+1n| B Cnt )+ Jae+ 1)

2

Enl =

702 2 7254
L[] -

R |ntre+1 122

where n, = n+ £ + 1 is the principal quantum number, Z is the atomic number, and e is the
charge of the electron.

2.2 Mass spectra of meson systems
The mass spectra can be obtained by using the approach from Refs. [47, 48]:

Mng = nmy + mg + Eng (39)

where m,, m;, and E,; are the masses of the quark and antiquark, and the derived energy
eigenvalues, respectively.

Inserting Eq. (25) into Eq. (39), we obtain the mass spectrum of the meson systems for any
arbitrary radial and angular momentum quantum numbers in N-dimensional space as follows:

3B 64
Mne:mq—i-mq%—?—a—z
y 2
2 (7 -5 +C)
2
WL@n 1)+ J3E Bl D (V420 — 1) (N +20—3)+ 1)

(40)

2.4 Mass—radius relationship

In this section, we examine the mass—radius relationship by using the virial theorem for each
given eigenstate |v) [49]. It is worth noting that the term “radius” means the average distance
between the quark and antiquark (or the root mean square radius). We note that defining the
charmonium (bottomonium) root mean square radius ryys (or (r)) is one of the basic properties
of charmonium (bottomonium). If the distance between the quark and antiquark in charmo-
nium (bottomonium) is r, charmonium (bottomonium) may be considered to have the radius
r/2 fm. The root mean square radii, s, can be directly obtained from the numerical solution
of the radial equation with the normalized Schrodinger wave equation:

(s = /0 T2\ Ry (1) 1)

where the symbols n and / stand for the principal and orbital angular momentum quantum
numbers of the meson, respectively.
The relation of the mean kinetic energy, KE, and the potential energy is given by:

dV (r)
"0, @)

r

1
(KE) = (Y |KE|Y) = §<1ﬂ
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In the case of Vkpigp, We obtain

1 dv 3B c/1
E=WIKEWY)+ (YIVIy) = §<¢IF%IW>+ WIVIy) =247+ = (1) — —<—>-
r 2 2 \r
(43)
Adding the quark masses, this leads to
5 3B C/1
M =2mg+ E =2my;+ 2A4(r*) + 7(1’)—5<;>. (44)
The mean square velocity is
e 2 ke = 2 (4 By SN plL
(V)= M(KE>_M<A<r)+ 2(r)+2<r> D<r2>>. (45)

2.4  Thermodynamic properties

In this section, we provide numerical findings concerning the thermodynamic properties of
selected meson systems. As demonstrated in Section 3, the KPIQP serves as a promising model
for characterizing meson masses. The thermodynamic properties of the KPIQP can be derived
from the partition function, which can be expressed as [50-52]:

nmax En nmax
Z(T)= Y emr = P (46)
n=0 n=0

where kp is the Boltzmann constant, 7" is the absolute temperature, 7 is the principal quantum
number (n = 0, 1, 2, 3,...), and ny,y 1s an upper bound of the vibrational quantum number,
obtained from the numerical solution of % =0.

In the classical limit, at high temperature 7', the sum can be replaced by an integral [23, 53],
in which the partition function is defined as

Mmax
Z(B) = / e PEudn. 47)
n=0
Integrating Eq. (40), we obtain the partition function as

1 L _ Lp
Z(p) =3¢ [_M € + (M + 2y )e Oma? (48)
L A/
+ Lnﬂ(erﬁ [—ﬂ] —erfi [i})}
M M + 21,k
where
3B 64
M ="—4+= 49
5t 5 (49)
3B 84 ?
L:2u(8—2+8—3+C> (50)
8uB 8uD  24uA
K:1+\/W+((N+21_1)(N+2l_3)+1)_FJFW (51)

1 L
Nmax = 5 (\/; - M) . (52)

The imaginary error function erfi (x) is defined as follows:

2 x
erfi(x) = —— [e"dt. (53)
T
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Table 1. Potential parameters obtained for each meson system. The units of 4, B, D, and § are GeV?,
GeV?, GeV~!, and GeV, respectively. C is dimensionless.

Cornell potential KPIQP

cc A=D=0,B=0.224, A=0.012, D=2.458, B=0.162,
C =4.608,5 =0.216 C =4.997,5 = 0.250

bb A=D=0,B=0.263, A =0.0261, D =0.100, B = 0.438,
C =2.570,8 = 0.497 C =2.034,5 =0.331

bé A=D=0,B=0.224, A=0.012, D=2.458, B=0.162,
C =17.340,5 = 0.156 C =6.700, 5 = 0.180

s A=D=0,B=0.306, A=0.012, D =2.458, B=0.563,
C =5.493,5 = 0.449 C =17.656,5 = 0.867

bs A=D=0,B=0.224, A=0.012,D=2458, B=0.162,
C =5.315,8 = 0.393 C =12.559,8 = 0.305

bg A=D=0,B=0.224, A=0.012, D=2.458, B=0.162,
C =8.256,8 = 0.256 C=17.640,6 = 1.244

3. Results and discussion

In the literature, the masses of the charm and bottom quarks are taken between 1.2 and 1.8 GeV
and 4.8 and 5.3 GeV, respectively [54-56]. In this work, we have chosen m, = 1.209 GeV,
my = 4.823 GeV, m; = 0.419 GeV, and my = m, = 0.220 GeV [57, 58].

In this work, a Killingbeck potential combined with an inversely quadratic potential (KPIQP)
is used to study some properties of mesons. The eigenvalues in the N-dimensional space and
the corresponding wave functions are found by using the NU method.

The free parameters of the present calculations are 4, B, C, D, and §, which are fitted by
fitting Eq. (40) in 3D space (N = 3) with the experimental data [59]. The results for the systems
under consideration are given in Table 1. For each meson system, we substituted the exper-
imental data into Eq. (40) and obtained the free parameters of the potential by solving the
corresponding algebraic equations. For the charmonium and bottomonium mesons, we sub-
stituted the experimental values for the 1S, 2S, and 3S states into Eq. (40) to obtain the free
parameters for the Cornell potential. However, for the KPIQP, we used data for the 18, 28, 3S,
1P, and 2P states to determine the free parameters. For the bottom—charm mesons, only two
experimental values were available in the literature. We used the values of 4, B, and D obtained
from the charmonium fit with the 1S and 2S experimental data, which were then substituted
into Eq. (40) to derive parameters C and 8. The free parameters for the charm-strange mesons
were determined by inserting the parameter B and the experimental data for the 1S and 2S
states into Eq. (40). This enabled us to determine the values of the parameters C and § from
two algebraic equations.

By using the potential parameters in Table 1, we plot in Fig. 1 the variations of the potential
energy of the quark—antiquark interaction (Cornell potential and KPIQP) with the separation
distance between the quark pairs, r, for the 1S state of different meson systems.

The plots obtained for the range of distances 0.1 fm < r < 1 fm characteristic of
charmonia and bottomonia have the same view as the plots of the potentials used in
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Fig. 1. The KPIQP (solid line) and the Cornell potential (dashed line) of the quark-antiquark interaction
in (a) c¢, (b) bb, (c) be, (d) ¢s5, (e) bs, and (f) bg as a function of the quark—antiquark distance for the 1S
state. The potential parameters are the same as in Table 1.

other works (see e.g. Refs. [60, 61]) for describing experimental data on these particle
families.

By utilizing Eq. (40) and Table 1, we get the mass spectra of the different quantum states
as shown in Tables 2-7. The obtained masses are in good agreement with experimental data,
particularly for the S states. The slight deviations observed for the P states are attributed
to the nonrelativistic approach used in our calculations. One needs to consider the spin—
spin and spin—orbital interaction terms within the potential. Thus, the reason is not related
to the correct choice of the parameters or making a better fit. These terms should be con-
sidered within the relativistic equations such as within the Klein—-Fock—Gordon and Dirac
equations.

We compared our findings with both experimental data [59] and results obtained using dif-
ferent methodologies, including the asymptotic iterative method (AIM) [26], the analytical ex-
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Table 2. Charmonium (c¢) mass spectra energy in GeV.

Ref. Ref. Ref.

States Exp. [59] Cornell KPIQP [26] Ref. [27] [28] [29] Ref. [30] Relativistic [62]
1S 3.097 3.097 3.097 3.096 3.095481 3.098 3.098 3.0963 3.096

2S 3.686 3.686 3.686 3.686 3.567354 3.689 3.688 3.5681 3.686

3S 4.040 4.039 4.040 4.275 4.039226 4.041 4.029 4.0400 4.088

4S 4.263 4.267 4.267 4.865 4.511098 4.266 4.5119

1P 3.525 3.297 3.396 3.214 3.567735 3.262 3.516 3.5687 3.510

2P 3.773 3.802 3.902 3.773 4.039 607 3.784 3.925 4.0406 3.929

1D 3.770 3.585 3.784 3412 4.039 683 3.515 3.779 4.0407 3.789

o (%) 1.756 1.082 5.465 3.501 2.108 0.819 3.508 1.050

Table 3. Bottomonium (bb) mass spectra energy in GeV.

Ref. Ref. Ref.

States Exp. [59] Cornell KPIQP [26] Ref. [27] [28] [29] Ref. [30] Relativistic [62]
1S 9.460 9.460 9.460 9.460 9.74473 9.461 9.460 9.745 9.460

28 10.023 10.023 10.023 10.023 10.02315 10.023 10.026 10.023 10.023

3S 10.355 10.355 10.355 10.585 10.301 58 10.365 10.354 10.3016 10.355

4S 10.579 10.567 10.567 11.148 10.580 00 10.588 10.572 10.580

1P 9.899 9.660 9.760 9.492 10.024 06 9.608 9.891 10.0246 9.892

2P 10.260 10.138 10.238 10.038 10.30248 10.110 10.258 10.3029 10.255

1D 10.164 9.943 10.143 9.551 10.302 66 9.841 10.156 10.3032 10.153

o (%) 0.842 0.277 2.844 0.940 1.110 0.041 0.942 0.038

Table 4. Bottom—charm (b¢) mass spectra energy in GeV.

Ref. Ref. Ref.

States Exp. [59] Cornell KPIQP [26] Ref. [27] [28] [29] Ref. [30] Relativistic [62]
1S 6.275 6.275 6.275 6.277 6.277473 6.274 6.274 6.2770 6.332

2S 6.842 6.842 6.842 6.814 7.037 641 6.845 6.839 7.0372 6.881

3S 7.290 7.290 7.351 7.797 808 7.125 7.245 7.7973 7.235

4S 7.652 7.652 7.889 7.038 623 7.283 7.552

1P 6.336 6.335 6.340 7.798 791 6.519 6.743 7.0381 6.734

2P 6.889 6.889 6.851 6.959 7.187 7.7983 7.126

1D 6.451 6.451 6.452 6.813 7.046 7.072

Table 5. Charm-strange (c§) mass spectra energy in GeV.

Ref. Ref.
States Exp. Cornell KPIQP [26] [64] Ref. [28] Relativistic [65]
N 1.968 49 [59] 1.968 1.968 2.512 1.968 1.969 2.129
28 2.709 [63] 2.709 2.709 2.709 2.709 2.709 2.732
3S 3.054 3.054 2.906 2.932 2913 3.193
4S 3.242 3.243 3.102 2.998 3.575
1P 2.452 2.550 2.649 2.566 2.601 2.549
2P 2.927 3.021 2.860 2.876 3.018
1D 2.859 [63] 2.859 2.859 2.859 2.857 2.862 2.899

11/23

G20z Yole L0 uo 1senb Aq 995€£8//20VEZ L/ LIvZ0Z/e10ne/de1d/woo dnoojwepeoe//:sdiy wolj pepeojumod



PTEP 2024, 123A02 R. Horchani et al.

Table 6. Bottom—strange (b5) mass spectra energy in GeV.

States Exp. [62, 66] Cornell KPIQP  Ref. [26] Relativistic [65]

1S 5.415 5.415 5.415 5.415 5.450
2S 5.920 6.196 6.819 6.012
3S 6.128 6.594 8.225 6.429
4S 6.233 6.826 9.629 6.773
1P 5.830 5.830 5.830 5.830 5.857
2P 6.086 6.400 6.786 6.279
1D 6.072 6.268 6.264 6.182

Table 7. g mass spectra energy in GeV.

States Exp. [62, 66] Cornell KPIQP Ref. [26] Relativistic [65]
1S 5.325 5.325 5.325 5.325 5.371
25 5.765 6.331 6.413 5.933
3S 5.936 6.905 7.501 6.355
4S 6.017 6.262 8.589 6.703
1P 5.723 5.723 5.723 5.723 5.777
2P 5.916 6.550 6.786 6.197
1D 5.910 6.250 6.131 6.110

act iterative method (AEIM) [27], the Wentzel-Kramers—Brillouin method (WKB) [28], the
Laplace transformation method (LTM) [29], the artificial neural network method (ANN) [30],
and a relativistic model [62]. Additionally, we calculated the average deviations between our
results and those obtained through different methods from available experimental data. The
average deviation is defined as:

o (0/0) _ @ Z M, (EXp) — My (Cal)

N M, (Exp)

where N is the number of experimental data points, and M,,;(Exp) and M,,(cal) are the experi-
mental mass and the calculated mass, respectively. We found that the KPIQP is better than the
Cornell potential in modeling the mass spectra of meson systems.

It is worth noting that, despite the Cornell potential having fewer parameters compared to
the KPIQP, the resulting outcomes are not significantly different. Therefore, we may conclude
that our observation for the meson masses does not depend much more on the number of
parameters. Besides that, our results are improved in comparison with the results obtained by
other methods, as shown in Tables 2—7.

We investigated the variations of the mass spectra energy of the systems under considera-
tion as a function of the parameter § for different states. The results are shown in Fig. 2. We
observed a consistent decrease as the potential strength § increases. Figure 3 displays the vari-
ations of charmonium (¢¢) and bottomonium (bb) mass spectra energy as a function of the
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Fig. 2. Variation of the mass spectra energy with the parameter § of (a) ¢¢, (b) bb, (c) b, (d) c5, (¢) b3,
and (f) bq for the 1S, 2S, 1P, and 2D states. The potential parameters are the same as in Table 1.

P GeV) ¥ (GeV)

Fig. 3. Variation of the mass spectra energy with the reduced mass of charmonium and bottomonium
for the 18, 2S, 1P, and 2D states. The potential parameters are the same as in Table 1.
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Mass (GeV)

Mass [GeV)

Mass (GeV)

Fig. 4. Variation of the mass spectra energy with the dimensional number N of (a) ¢¢, (b) bb, (c) b, (d)
¢§, (e) b3, and (f) bg for the 1S, 2S, 1P, and 2D states. The potential parameters are the same as in Table 1.

reduced mass p for different states. The mass spectra energy initially decreases to a minimum
and then increases as the reduced mass u increases, with this behavior observed across various
angular quantum numbers.

We also investigated the effect of the dimensional number on the masses of mesons. The re-
sults are graphically presented in Fig. 4. We observed that the charmonium mass increases with
increasing dimensional number for P and D states due to the increasing binding energy. There-
fore, the binding energy is larger than the constituents of charmonium, giving us the limitations
of nonrelativistic models. The effect of dimensionality is the same as that of charmonium for
all other studied meson systems. However, it is easily seen that the S state seems to be unlike the
other states. The mass decreases when the dimensional number is less than 3 and then increases
for higher dimensional numbers.
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Table 8. Radii of charmonium and bottomonium in fm.

Ref. Ref.
States Present work  Ref. [67] [68] Present work  Ref. [67] [68]
1S 0.397 0.439 0.41 0.186 0.225  0.233
28 0.852 0.915 0.91 0.448 0.488  0.545
3S 1.237 1.352 1.38 0.657 0.737  0.805
4S 1.740 1.762 1.87 0.937 0972  1.030
1P 0.676 0.697 0.71 0.364 0.370  0.435
2P 1.091 1.155 1.19 0.583 0.628  0.711
1D 0.896 0.936 0.96 0.502 0.507  0.593
44
(a) 1081 (o)

42
10.4 <

4.0
10.2 4
a8
10.0 4

36

M(GeV)

9.8 4

34 .

32 M(r)=2.373 + 1.960 r — 0.499 2 M(r) = 8.896 + 3.126r — 1.42r*
8.4
30 i T —T T T T L T T T T T 1
0.2 04 0.6 08 1.0 1.2 14 1.6 18 0.1 02 0.3 0.4 0.5 0.6 o7 0.8 0.9 1.0
r (fm) r(fm)

Fig. 5. Variation of the mass as a function of the radius of the states of charmonium (a) and bottomo-
nium (b). The solid line corresponds to a quadratic fit.

Using the parameters in Table 1 and Eq. (41), we computed the radii (1) for different
states of charmonium and bottomonium. The obtained results are listed in Table 8 and are
in good agreement with the values obtained for other potential energy functions in the existing
literature [67, 68]. The results show the validity of the method used. From Table 8, we ob-
serve that bottomonium objects are more compact than the corresponding charmonium ones.
Furthermore, the charmonium sizes are roughly twice as large as those of similar states of
bottomonium.

Finally, we investigated the mass-radius dependence for charmonium and bottomonium in-
cluding all states. Figure 5 shows the variation of the charmonium and bottomonium masses
obtained by our calculation (from Tables 2 and 3) as a function of the radii provided in Table 8.
A quadratic fit reflects perfectly the dependence of mass and radius (solid line in Fig. 5). The
equations corresponding to the fitted curve are provided alongside the figure. We find that all
the states that we considered are dominated by the quadratic part of the potential and thus
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Fig. 6. Variation of the partition function as a function of B for different dimensional numbers: (a) c¢,
(b) bb, (c) be, (d) cs, (e) bs, and (f) bg. The potential parameters are the same as in Table 1.

the small correction from the Coulomb term in the quadratic mass-radius relation (50) can be
neglected.

The thermal properties for the studied meson systems (for the 1S state) are plotted as
shown in Figs. 6-10. Figure 6 shows that the partition function of mesons (1S state) de-
creases as the parameter 8 increases (the temperature decreases). Notably, at certain tem-
perature values, the partition function remains constant. The observed results are in agree-
ment with the findings reported in Refs. [25, 66, 67]. We note that, at a certain temperature
range, the meson melts to its constituent quarks. Additionally, increasing the dimensional
number leads to an overall decrease in the partition function across all meson systems under
consideration.

In Fig. 7, we see that the mean energy of mesons consistently decreases as 8 increases, which is
in agreement with other works [25, 69, 70]. However, the mean energy increases with increasing
dimensional number. This effect was likewise observed in Ref. [25].
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Fig. 7. Variation of the mean energy as a function of g for different dimensional numbers: (a) ¢¢, (b) bb,
(¢) bé, (d) ¢§, (e) bs, and (f) bg. The potential parameters are the same as in Table 1.

Figure 8 shows that the free energy increases as § increases (the temperature decreases). As
B approaches a certain value, the free energy tends to stabilize. This behavior of charm quark
matter is in qualitative agreement with the findings of Refs. [37, 71]. Furthermore, the free
energy increases with increasing dimensional number.

The variation of specific heat capacity with g for various dimensional numbers is displayed
in Fig. 9. The specific heat capacity increases to a peak and then decreases towards zero as
B increases. In addition, Fig. 9 indicates that the peak position of the specific heat capacity
shifts to higher 8 values with increasing dimensionality. The specific heat behavior has been
previously studied and our findings are in qualitative agreement with the studies in Refs. [69,
70].

The variation of the entropy as a function of S for various dimensional numbers is plotted
in Fig. 10. We observe that the entropy decreases as 8 increases. In addition, the entropy shifts

17/23

G20z Yole L0 uo 1senb Aq 995€£8//20VEZ L/ LIvZ0Z/e10ne/de1d/woo dnoojwepeoe//:sdiy wolj pepeojumod



PTEP 2024, 123A02 R. Horchani et al.

o] [®

L ©

-

FlGev)

-4

-5F 3

-%F ]

=TF

1.0 1.5 20

FiGev)

0.5 1.0 1.5 20 1.0 1.5 2.0
#(Gev) 8 Gev-)

Fig. 8. Variation of the free energy as a function of g for different dimensional numbers: (a) ¢¢, (b) bb,
(c) be, (d) cs, (e) bs, and (f) bg. The potential parameters are the same as in Table 1.

to higher values with increasing dimensional number N. We obtained the same conclusion as
in Ref. [70].

4. Conclusions

In the present study, we employ the Nikiforov—Uvarov method (NU) for determining the
energy eigenvalues and the wave functions of the multidimensional radial Schrédinger
equation with the Killingbeck potential combined with an inversely quadratic potential
(KPIQP).

The meson masses are analytically obtained in the N-dimensional space and special cases are
obtained in comparison with other studies. The effect of the dimensional number on the mass
spectra of different mesons is studied. The results show excellent agreement in comparison with
experimental data and the results obtained by alternative analytical methods, which offers new
insights into the properties of interactions in hadronic systems.
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Fig. 9. Variation of the specific heat capacity as a function of B for different dimensional numbers: (a)
¢, (b) bb, (c) be, (d) s, (e) bs, and (f) bg. The potential parameters are the same as in Table 1.

In addition, the mean radii of the bound states of the charmonium meson and the bot-
tomonium meson are computed. The radius of b is smaller than the radius of ¢. This ob-
servation refers to one of the characteristics of quarkonium that heavy quarkonia have smaller
radii.

The relationships between the theoretical masses that we obtained and the radii are shown.
As pointed out previously, the quadratic fit reflects perfectly the dependence of mass and
radius.

Finally, our investigation explored the thermodynamic properties of mesons, including free
energy, internal energy, entropy, and specific heat capacity, across different selected dimension-
alities. Through various plots, we have identified distinct behaviors of these thermodynamic
properties as they vary with temperature. The effect of the dimensional number on the ther-
modynamic properties of mesons is investigated. We noted from the figures that the internal
energy, the free energy, the specific heat, and the entropy shift to higher values with increasing
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Fig. 10. Variation of the entropy as a function of g for different dimensional numbers: (a) ¢z, (b) bb, (c)
bé, (d) cs, (e) b, and (f) bg. The potential parameters are the same as in Table 1.

dimensional number. This work will be extended to include spin—spin interaction and spin—
orbital interaction. In addition, the effect of external magnetic field on heavy meson proper-
ties, which gives more information about the quark—gluon plasma, will be studied in future
work.
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Appendix. Overview of the Nikiforov—Uvarov method

The Nikiforov—Uvarov (NU) method is based on the solutions to a generalized second-order
linear differential equation with special orthogonal functions [18]. A Schrédinger equation of
the type

U )+ (E =V () ¥ (5) =0 (A1)
could be solved by this method. This can be done by transforming Eq. (A1) into an equation
of hypergeometric type with appropriate coordinate transformation z = z(r) to get

v+ Dy 20y 9 =0, (A2)
o(s) o2 (s)
where o (s) and 6 (s) are polynomials, at most of second degree, and 7(s) is a first-degree poly-
nomial.
In order to find the exact solution to Eq. (A1), we set the wave function as

Vn () = @n () Yu (s). (A3)
Substituting Eq. (A3) into Eq. (A2) reduces Eq. (A2) into a hypergeometric type, given as
o (5) ¢, (5)+ T ()Y, (s)+ Aya(s) =0 (Ad)

where the wave function ¢,(s) is defined as the logarithmic derivative:
¢, (s) _ 7 (s)
G (s) 0 (s)
where 7 (s) is at most a first-degree polynomial. In addition, the hypergeometric type function
vu(s) in Eq. (4) for a fixed n is given by the Rodrigues relation:

(A5)

B” d" n
Yn (8) = —— 0" (s) p (5)] (A6)
o (s)ds
where B, is the normalization constant and the weight function, o(s) must satisfy the condition:
(@ ()p(s)) =1(s)p(5) (A7)
with
T(8)= T(s5)+ 27 (5). (A8)

For the weight function p(s) to be satisfied, it is necessary that the classical orthogonal poly-
nomials 7(s) be equal to zero in an interval (a, b) and its derivative at this interval at o (s) > 0
be negative. That is,

7' (s) = 0. (A9)
Thus, the function 7 (s) and the parameter A required for the NU methods are defined as
follows

l ~ 2\ 2
n(s):oz_fi\/("zf) —6 +ko (A10)

r=k+71'(s). (A1)

The k-values in the square root of Eq. (A11) can be evaluated if the expression under the
square root is the square of the polynomials. This is possible if and only if its discriminant is
zero. Therefore, the new eigenvalue equation for the Schrodinger equation becomes

nn—1)o"
a 2
On comparing Egs. (A11) and (A12), we obtain the energy eigenvalues.

A=A, = —nt ,n=0,1,2... (A12)
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Furthermore, the other part y,(s) of the wave function in Eq. (33) is a hypergeometric-type
function whose polynomial solutions are given by the Rodrigues relation:

B, d"
yn(s) = —= (0" (5) p (5)) (A13)
p(s)ds"
where B, is a normalizing constant and the weight function p(s) must satisfy the condition [18]
(0p) = T p. (Al4)
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