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In this study, we analyze the mass spectra of meson systems within an N -dimensional space 
using the Killingbeck potential combined with an inversely quadratic potential. We employ 

the Nikifor ov–Uvar ov method along with the Pekeris approximation scheme to account 
for the centrifugal barrier. This approach enables us to compute numerical energy eigen- 
values , normalized eigenfunctions , and mass spectra for both heavy and heavy–light meson 

systems. We explore various scenarios of the potential and find that the resulting energy 

eigenvalues are consistent with those obtained through previous analytical methods and ex- 
perimental data. Additionally, we compute the thermodynamic properties of quarkonium 

particles, including mean energy, specific heat, free energy, and entrop y. Furthermor e, we 
investiga te the ef fects of tempera ture and the dimensional number on meson masses and 

thermodynamic pr operties, pr oviding valuable insights into the behavior of meson systems 
under different conditions. 
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1. Introduction 

Over the course of several decades, r esear chers have increasingly delved into exploring the ana-
lytical solutions of the Schrödinger equation for various physical potential models within quan-
tum mechanical systems. Researchers in multiple branches of physics, including nuclear physics,
atomic physics, and quantum chromodynamics (QCD), have shown keen interest in nonrel-
ati vistic wav e equa tions and energy eigenvalues. Quantum chromod ynamics (QCD) theory
serves as a valuable framework for understanding the strong force, with hadron spectroscopy
playing a pivotal role in both the nonperturbati v e and perturbati v e regimes. Recent advance-
ments in experimental techniques at Belle, BES, CLEO, CDF, LHC, and BaBar have yielded
enormous amounts of data, re v ealing many une xpected findings [ 1–5 ]. Se v eral ne w states, par-
ticularly within the meson sector, have been observed that do not fit into the conventional q ̄q
scheme. All these exotic states, which do not fit into the qqq and q ̄q schemes, r equir e further the-
oretical investigation [ 6–13 ]. Numerous aspects of these systems can be investigated by using
the nonrelativistic Schrödinger equation, assuming that the quar k–antiquar k strong interac-
tion is described by a phenomenological potential. Se v eral potential models offer robust de-
scriptions of meson mass spectra. Howe v er, it is essential for these potential models to embody
© The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. This is an Open Access article distributed under the 
terms of the Creati v e Commons Attribution License ( https://creati v ecommons.org/licenses/by/4.0/ ), which permits unrestricted reuse, distribution, and 
reproduction in any medium, provided the original work is properly cited. 
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asymptotic freedom and confinement as essential features of strong interactions. When sim- 
ulating the interaction potentials for these systems, confinement-type potentials are typically 

employed. The potential forms can vary, e.g. Martin, logarithmic, and Cornell potentials [ 14–
18 ]. For such systems, a successful potential model is one that agrees with the experimental
results within about 20 MeV [ 19 ]. The principal challenge in such studies arises from the ab-
sence of exact solutions to the Schrödinger equation for these systems, particularl y w hen the
centrifugal potential is included. To overcome this problem, r esear chers often resort to solving
the wave equa tion approxima tely using various techniques, both analytical and numerical [ 20 ].
These include the Nikifor ov–Uvar ov (NU) method [ 20–25 ], the asymptotic iterati v e method
(AIM) [ 26 ], the analytical exact iterative method (AEIM) [ 27 ], the Wentzel–Kramers–Brillouin
method (WKB) [ 28 ], the Laplace transformation method (LTM) [ 29 ], and the artificial neural
network method (ANN) [ 30 ]. 

It is noteworthy that meson masses have been widely investiga ted a t finite tempera ture within
the frame wor k of the linear sigma model in numerous wor ks, e.g. Refs. [ 31–33 ]. 

In this study, we have investigated the mass spectra of meson systems by solving the N -
dimensional Schrödinger equation under the interaction of the Killingbeck potential plus 
an inversely quadratic potential (KPIQP) within the frame wor k of the Nikifor ov–Uvar ov
method, and by using the Pekeris approximation scheme to account for the centrifugal
barrier. 

Additionally, we hav e e xamined the influence of the dimensional number on meson mass. As
a natural consequence of the unification of the two modern theories of quantum mechanics and
relativity, and the emergence of string theory, the investigation of Standard Model particles in
extra- or higher-dimensional space has become a hot topic. Recent wor ks [ 34 , 35 ] hav e focused
on the investigation of quarkonium in higher-dimensional space and have shown that the di-
mensional number plays a crucial role in altering binding energy and dissociation temperatures.
From an experimental point of view, the investigation of the existence of extra dimensions is
one of the primary goals of the LHC. The search for extra dimensions with the ATLAS and
CMS detectors is discussed in Ref. [ 36 ]. 

The obtained energies were then used to study the thermodynamic properties of mesons. This
is motivated by the significant role that thermodynamic properties play in describing the quark–
gluon plasma. For example, Modarres and Mohamadnejad [ 37 ] studied the thermodynamic
properties of the quark–gluon plasma, as well as its phase diagram as a function of baryon
density and temperatur e. Furthermor e, thermodynamic properties are investigated within the 
frame wor k of chiral quark models and in molecular physics using both relativistic and nonrel-
ativistic models [ 38 , 39 ]. 

The KPIQP has the form [ 23 , 27 ] of 

V KPIQP ( r ) = V KP ( r ) + V IQP ( r ) = A r 2 + B r − C 

r 
+ 

D 

r 2 
, (1) 

where V KP (r ) = ( A r 2 + B r − C 

r ) is the Killingbeck potential and V IQP (r ) = 

D 

r 2 is the inversely
quadratic potential. Here A , B, C , and D are positi v e potential parameters that will be deter-
mined based on experimental data at a later stage. 

When A = B = D = 0 , the KPIQP reduces to the Coulomb potential commonly employed
in describing the hydrogenic a tom. W hen A = D = 0 , the KPIQP simplifies to the Cornell po-
2/23 
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tential, wher e C r epr esents a coupling constant and B denotes a linear confinement parameter.
It is noteworthy that the Cornell potential is the sum of two components: a coulombic term
( −C 

r ) , resulting from one-gluon exchange between quarks and antiquarks at short distances
[ 40 ], and a linear term ( B r ), which r epr esents quark confinement at larger distances [ 41 ]. 

To improve the behavior of the potential in the region as r → 0 and provide better confine-
ment, two terms are added to the Cornell potential: the inversely quadratic potential (the term
D / r 2 ) and the harmonic oscillator term. The KPIQP has also been used to compute the en-
ergy eigenvalue spectra of quantum dot systems [ 42 , 43 ] and diatomic molecules [ 44 ]. Recently,
Khokha et al. anal yticall y determined meson mass spectra by solving the N -dimensional radial
Schrödinger equation with the KPIQP using the exact iteration method [ 27 ]. 

The paper is structured as follows: In Section 2 , we deri v e the bound state solutions of 
the Schrödinger equation with the KPIQP using the Nikifor ov–Uvar ov (NU) method in N -
dimensional space. We discuss special cases of the obtained energy eigenvalues. In Section 3 , we
pr esent numerical r esults for the masses of the charmonium ( c ̄c ), bottomonium ( b ̄b ), bottom–
charm ( b ̄c ), and charm–strange ( c ̄s ) mesons. These r esults ar e compar ed with those obtained
from other analytical methods and available experimental data. The derivation and discussion
of the expressions for the thermodynamic properties of quarkonium particles are also discussed
in section 3. Finally, Section 4 provides a summary and conclusion of the paper. 

2. Theory 

2.1 Bound state solutions of the Schrödinger equation 

In this study, we employ the Nikifor ov–Uvar ov (NU) method to solve a second-order differen-
tial equation of the hypergeometric type. A comprehensi v e description of the methodology can
be found in the appendix. In N -dimensional Hilbert space, the Schrödinger equation describing
the interaction between two particles via a spherically symmetric potential can be written as in
Ref. [ 45 ]: 

ψ 

′′ (r ) + 

(
N − 1 

r 

)
ψ 

′ (r ) + 

(
2 μ

� 

2 
( E n� − V (r ) ) − � ( � + N − 2 ) 

r 2 

)
ψ (r ) = 0 (2) 

where μ = m q m q̄ / ( m q + m q̄ ) is the reduced mass of the system, � is the angular momentum
quantum number, and E n� is the energy eigenvalue with the corresponding radial wave function
ψ( r ). 

Setting the wave function ψ (r ) = r 
1 −N 

2 R (r ) , the following radial Schrödinger equation is ob-
tained: 

R 

′′ ( r ) + 

(
2 μ

� 

2 
( E n� − V ( r ) ) − ( N + 2 � − 1 ) ( N + 2 � − 3 ) 

4 r 2 

)
R ( r ) = 0 . (3) 

Substituting Eq. ( 1 ) into Eq. ( 3 ), we obtain 

R 

′′ ( r ) + 

(
2 μE n� 

� 

2 
+ 

2 μA 

� 

2 
r 2 − 2 μB 

� 

2 
r + 

2 μC 

� 

2 

1 

r 

−
(

2 μD 

� 

2 
+ 

( N + 2 � − 1 ) ( N + 2 � − 3 ) 
4 

)
1 

r 2 

)
R ( r ) = 0 . (4) 

Equation ( 4 ) can be simplified to the following equation: 

R 

′′ ( r ) + 

(
ε n� + a r 2 − br + 

c 
r 

− d 

r 2 

)
R ( r ) = 0 (5) 

where ε n� = 

2 μE n� 

� 

2 , a = 

2 μA 

� 

2 , b = 

2 μB 

� 

2 , c = 

2 μC 

� 

2 , d = 

2 μD 

� 

2 + 

( N+2 � −1 )( N+2 � −3 ) 
4 . 
3/23 
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Using the change of variable x = 

1 
r , Eq. ( 4 ) reduces to 

R 

′′ ( x ) + 

2 x 

x 

2 
R 

′ ( x ) + 

1 

x 

4 

(
ε n� + cx − b 

x 

+ 

a 

x 

2 
− d x 

2 
)

R ( x ) = 0 . (6) 

Equation ( 6 ) can be solved using the conventional Nikifor ov–Uvar ov appr oach for solving
second-order dif ferential equa tions of hyper geometric type. Ho we v er, we must put the equation
into a standard form using an approximation scheme by expanding 

b 
x and 

a 
x 2 in power series

to second-order around r 0 ( δ = 

1 
r 0 

where r 0 is the characteristic radius of the meson). Thus we
can write 

b 

x 

= b 

(
3 

δ
− 3 x 

δ2 
+ 

x 

2 

δ3 

)
(7 a) 

a 

x 

= a 

(
6 

δ2 
− 8 x 

δ3 
+ 

3 x 

2 

δ4 

)
. (7 b) 

This approximation is suitable for obtaining local solutions of the Schrödinger equation, 
when the range of the distance r is not far from its equilibrium position. We note that the
validity of this approximation depends on the magnitude of the rotational quantum number � .
In fact the relati v e discrepancies are multiplied by the factor � ( � + 1). In the present work, we
are studying the upper limit of the quantum number � so we can safely use this approximation.

Inserting Eqs. ( 7 a) and (7 b) into Eq. ( 6 ) results in 

R 

′′ ( x ) + 

2 x 

x 

2 
R 

′ ( x ) + 

1 

x 

4 

(−ε + Q x − P x 

2 )R ( x ) = 0 , (8) 

where 

ε = −ε n� + 

3 b 

δ
− 6 a 

δ2 
(9) 

Q = 

3 b 

δ2 
− 8 a 

δ3 
+ a (10) 

P = 

b 

δ3 
− 3 a 

δ4 
+ d . (11) 

Equation ( 8 ) is a standard form of the hypergeometric differential equation; it has the same
shape as Eq. ( A2 ) with the following parameters: 

˜ σ ( x ) = 

(−ε + Qx − P x 

2 ) (12) 

σ ( x ) = x 

2 (13) 

˜ τ ( x ) = 2 x. (14) 

Substituting Eqs. ( 12 ), ( 13 ), and ( 14 ) into Eq. ( A10 ), we obtain the polynomial π (x ) as 

π ( x ) = ±
√ 

( k + P ) x 

2 − Qx + ε . (15) 

Since π (x ) is a first-order polynomial, the terms under the square root must be equated to the
square of a linear function in x , say ( Zx + q ) 2 . Using this condition ( Zx + q ) 2 = ( k + P ) x 

2 −
Qx + ε and solving completely, we find 

k = 

Q 

2 

4 ε 
− P. (16) 
4/23 
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Substituting Eq. ( 16 ) into Eq. ( 15 ) with simplifications yields π ( x ) : 

π ( x ) = ± Q 

2 

√ 

ε 

(
x − 2 ε 

Q 

)
. (17) 

In Eq. ( 17 ), we choose the value of π (x ) = − Q 

2 
√ 

ε 
( x − 2 ε 

Q 

) that will gi v e dτ (x ) 
dx < 0 . Then τ (x )

can be written, according to Eq. ( A8 ), as 

τ ( x ) = 2 x − 2 Q √ 

ε 

(
x − 2 ε 

Q 

)
. (18) 

Upon dif ferentia tion of Eq. ( 18 ) with respect to x , we obtain: 

τ ′ ( x ) = 2 − 2 Q √ 

ε 
. (19) 

Referring to Eq. ( A11 ), we define the constant λ as 

λ = 

Q 

2 

2 ε 
− P − 2 Q √ 

ε 
. (20) 

Upon dif ferentia tion of σ ( x ) with respect to x from Eq. ( 13 ), we obtain 

σ ′′ ( x ) = 2 . (21) 

Substituting Eqs. ( 19 ) and ( 21 ) into Eq. ( A12 ), we obtain 

λn = −n 

(
2 − 2 Q √ 

ε 

)
− n ( n − 1 ) . (22) 

By equating Eqs. ( 20 ) and ( 22 ), we find 

√ 

ε = 

Q 

2 

(
n + 

1 
2 ±

√ 

P + 

1 
4 

) . (23) 

Inserting the constants P , Q , and ε gi v en in Eqs. ( 9 )–( 11 ), Eq. ( 23 ) yields 

ε n� = 

3 b 

δ
− 6 a 

δ2 
−
⎛ 

⎝ 

c + 

3 b 
δ2 − 8 a 

δ3 

2 n + 1 + 

√ 

4 b 
δ3 − 12 a 

δ4 + 4 d + 1 

⎞ 

⎠ 

2 

. (24) 

Using the parameters for a , b, c , and d in Eq. ( 5 ) in Eq. ( 24 ) with some simplifications, the
energy spectra of the meson system are obtained in the N -dimensional space in terms of the
KPIQP constants as 

E n� = 

3 B 

δ
− 6 A 

δ2 
− 2 μ

� 

2 

⎡ 

⎣ 

( 3 B 
δ2 − 8 A 

δ3 + C 

)
( 2 n + 1 ) + 

√ 

8 μB 
� 2 δ3 − 24 μA 

� 2 δ4 + 

8 μD 

� 2 
+ ( ( N + 2 � − 1 ) ( N + 2 � − 3 ) + 1 ) 

⎤ 

⎦ 

2 

. (25) 

When we set N = 3 in Eq. ( 25 ), we obtain the results in Ref. [ 46 ]. 
To find the radial eigenfunctions, the relevant π (x ) function must satisfy the following con-

dition (see Eq. ( A5 )): 

φ′ 
n ( x ) 

φn ( x ) 
= 

π ( x ) 
σ ( x ) 

= 

−
(

Qx 
2 
√ 

ε 
− √ 

ε 
)

x 

2 
= −

(
Q 

2 x 

√ 

ε 
−

√ 

ε 

x 

2 

)
. (26) 

Solving a first-order differential equation, we obtain: 

φn ( x ) = x 

−Q 
2 
√ 

ε e −
√ 

ε 

x . (27) 

The other part of the wave function y n (x ) is the hypergeometric type given by Eq. ( A13 ): 

y n ( x ) = 

B n 

ρ ( x ) 
d 

n 

d x 

n 
( σ n ( x ) ρ ( x ) ) . (28) 
5/23 
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Her e, B n r epr esents a normalizing constant, and ρ(x ) denotes the weight function, which is the
solution of the Pearson dif ferential equa tion. The Pearson dif ferential equa tion and ρ(x ) for
our problem is given by Eq. ( A14 ): ( σρ ) ′ = τ ρ. Hence, we use Eq. ( A14 ) to find the second
part of the wave function based on the definition of the weight function: 

ρ ( x ) = x 

− Q √ 
ε e −2 

√ 
ε 

x . (29) 

Taking into account both components of the wave function φn (x ) and y n (x ) within Eq. ( A3 ),
we deri v e the following e xpression: 

ψ n ( x ) = B n x 

Q 
2 
√ 

ε e 
√ 

ε 

x 
d 

n 

d x 

n 

(
x 

2 n − Q √ 
ε e −2 

√ 
ε 

x 

)
. (30) 

As the last step, we do the replacement x = 1 /r , and using ψ n (r ) = r R n (r ) in Eq. ( 30 ) we get
the following: 

ψ n ( x ) = B n r 
− Q 

2 
√ 

ε e r 
√ 

ε 

(
−r 2 

d 

dr 

)n (
r −2 n + 

Q √ 
ε e −2 r 

√ 

ε 
)

. (31) 

The final form of the radial wave function ψ n (r ) can be written as: 

ψ n ( x ) = B n r 
−1 − Q 

2 
√ 

ε e r 
√ 

ε 

(
−r 2 

d 

dr 

)n (
r −2 n + 

Q √ 
ε e −2 r 

√ 

ε 
)

(32) 

where B n is a normalization constant that can be obtained using the condition for the proba-
bility of finding a quantum particle in space: ∫ ∞ 

0 
| ψ n ( r ) | 2 dr = 1 . (33) 

Special cases: 

� S-wave: If we set N = 3 and � = 0 in Eq. ( 25 ), we obtain the energy eigenvalue equation
for the s-wave of the KPIQP as 

E n 0 = 

3 B 

δ
− 6 A 

δ2 
− 2 μ

� 

2 

⎡ 

⎣ 

( 3 B 

δ2 − 8 A 

δ3 + C 

)
( 2 n + 1 ) + 

√ 

8 μB 

� 

2 δ3 − 24 μA 

� 

2 δ4 + 

8 μD 

� 

2 + 1 

⎤ 

⎦ 

2 

. (34) 

� Killingbeck potential : By taking D = 0 and N = 3 in Eq. ( 25 ), we obtain the energy eigen-
values for the Killingbeck potential: 

E n� = 

3 B 

δ
− 6 A 

δ2 
− 2 μ

� 

2 

⎡ 

⎣ 

( 3 B 

δ2 − 8 A 

δ3 + C 

)
( 2 n + 1 ) + 

√ 

8 μB 

� 

2 δ3 − 24 μA 

� 

2 δ4 + ( 4 � ( � + 1 ) + 1 ) 

⎤ 

⎦ 

2 

. (35) 

� Cornell potential : By taking A = D = 0 and N = 3 in Eq. ( 25 ), we obtain the energy
eigen values f or the Cornell potential: 

E nl = 

3 B 

δ
− 2 μ

� 

2 

⎡ 

⎣ 

( 3 B 

δ2 + C 

)
( 2 n + 1 ) + 

√ 

8 μB 

� 

2 δ3 + ( 4 � ( � + 1 ) + 1 ) 

⎤ 

⎦ 

2 

. (36) 

� Kratzer-type potential : By taking A = B = 0 and N = 3 in Eq. ( 25 ), we obtain the energy
eigen values f or the Kratzer-type potential: 

E n� = −2 μ

� 

2 

⎡ 

⎣ 

C 

( 2 n + 1 ) + 

√ 

8 μD 

� 

2 + ( 4 � ( � + 1 ) + 1 ) 

⎤ 

⎦ 

2 

. (37) 
6/23 
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� Coulomb potential : By taking A = B = D = 0 , C = Z e 2 , and N = 3 in Eq. ( 25 ), we
obtain the energy eigenvalues for the Coulomb potential: 

E n� = −2 μ

� 

2 

[ 

Z e 2 

( 2 n + 1 ) + 

√ 

( 4 � ( � + 1 ) + 1 ) 

] 2 

− 2 μ

� 

2 

⎡ 

⎣ 

Z e 2 

( 2 n + 1 ) + 

√ 

4 

(
� + 

1 
2 

)2 
⎤ 

⎦ 

2 

= − μ

� 

2 

[
Z e 2 

n + � + 1 

]2 

= − μZ 

2 e 4 

� 

2 n 

2 
p 

(38) 

where n p = n + � + 1 is the principal quantum number, Z is the atomic number, and e is the
charge of the electron. 

2.2 Mass spectra of meson systems 
The mass spectra can be obtained by using the approach from Refs. [ 47 , 48 ]: 

M n� = m q + m q̄ + E n� (39) 

where m q , m q̄ , and E nl are the masses of the quark and antiquark, and the deri v ed energy
eigenvalues, respecti v ely. 

Inserting Eq. ( 25 ) into Eq. ( 39 ), we obtain the mass spectrum of the meson systems for any
arbitr ary r adial and angular momentum quantum numbers in N -dimensional space as follows: 

M n� = m q + m q̄ + 

3 B 

δ
− 6 A 

δ2 

− 2 μ

� 

2 

⎡ 

⎣ 

( 3 B 

δ2 − 8 A 

δ3 + C 

)
( 2 n + 1 ) + 

√ 

8 μB 

� 

2 δ3 − 24 μA 

� 

2 δ4 + 

8 μD 

� 

2 + ( ( N + 2 � − 1 ) ( N + 2 � − 3 ) + 1 ) 

⎤ 

⎦ 

2 

. 

(40) 

2.4 Mass–r adius r elationship 

In this section, we examine the mass–radius relationship by using the virial theorem for each
gi v en eigenstate | ψ 〉 [ 49 ]. It is worth noting that the term “radius” means the average distance
between the quark and antiquark (or the root mean square radius). We note that defining the
charmonium (bottomonium) root mean square radius r rms (or 〈 r 〉 ) is one of the basic properties
of charmonium (bottomonium). If the distance between the quar k and antiquar k in charmo-
nium (bottomonium) is r , charmonium (bottomonium) may be considered to have the radius
r/ 2 fm. The root mean square radii, r rms , can be directly obtained from the numerical solution
of the radial equation with the normalized Schrödinger wave equation: 

( r rms ) 
2 = 

∫ ∞ 

0 
r 2 | R nl ( r ) | 2 dr (41) 

where the symbols n and l stand for the principal and orbital angular momentum quantum
numbers of the meson, respecti v ely. 

The relation of the mean kinetic energy, K E , and the potential energy is gi v en by: 

〈 K E 

〉 = 

〈 ψ | K E | ψ 

〉 = 

1 

2 

〈
ψ 

∣∣∣∣r dV ( r ) 
dr 

∣∣∣∣ψ 

〉
, (42) 
7/23 
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In the case of V KPIQP , we obtain 

E = 

〈 ψ | K E | ψ 

〉 + 

〈 ψ | V | ψ 

〉 = 

1 

2 

〈
ψ | r dV ( r ) 

dr 
| ψ 

〉
+ 

〈 ψ | V | ψ 

〉 = 2 A 

〈
r 2 
〉+ 

3 B 

2 

〈 r 〉 − C 

2 

〈
1 

r 

〉
. 

(43) 

Adding the quark masses, this leads to 

M = 2 m q + E = 2 m q + 2 A 

〈
r 2 
〉+ 

3 B 

2 

〈 r 〉 − C 

2 

〈
1 

r 

〉
. (44) 

The mean square velocity is 〈
v 2 
〉 = 

2 

M 

〈 K E 

〉 = 

2 

M 

(
A 

〈
r 2 
〉+ 

B 

2 

〈 r 〉 + 

C 

2 

〈
1 

r 

〉
− D 

〈
1 

r 2 

〉)
. (45) 

2.4 Thermodynamic pr oper ties 
In this section, we provide numerical findings concerning the thermodynamic properties of 
selected meson systems. As demonstrated in Section 3 , the KPIQP serves as a promising model
for characterizing meson masses. The thermodynamic properties of the KPIQP can be deri v ed
from the partition function, which can be expressed as [ 50–52 ]: 

Z ( T ) = 

n max ∑ 

n =0 

e −
E nl 
k B T = 

n max ∑ 

n =0 

e −βE nl (46) 

where k B 

is the Boltzmann constant, T is the absolute temperature, n is the principal quantum
number ( n = 0 , 1 , 2 , 3 , …), and n max is an upper bound of the vibrational quantum number,
obtained from the numerical solution of d E nl 

dn = 0 . 
In the classical limit, at high temperature T , the sum can be replaced by an integral [ 23 , 53 ],

in which the partition function is defined as 

Z ( β ) = 

∫ n max 

n =0 
e −βE nl dn. (47) 

Integrating Eq. ( 40 ), we obtain the partition function as 

Z(β ) = 

1 

2 

e −Kβ

[ 

−M e −
Lβ

M 

2 + ( M + 2 n max ) e 
− Lβ

( M+ n max ) 2 (48) 

+ 

√ 

Lπβ

( 

erfi

[ √ 

Lβ

M 

] 

− erfi

[ √ 

Lβ

M + 2 n max 

] ) ] 

where 

M = 

3 B 

δ
+ 

6 A 

δ2 
(49) 

L = 2 μ

(
3 B 

δ2 
+ 

8 A 

δ3 
+ C 

)2 

(50) 

K = 1 + 

√ 

8 μB 

� 

2 δ3 
+ ( ( N + 2 l − 1 ) ( N + 2 l − 3 ) + 1 ) − 8 μD 

� 

2 
+ 

24 μA 

� 

2 δ4 
(51) 

n max = 

1 

2 

( √ 

L 

K 

− M 

) 

. (52) 

The imaginary error function erfi (x ) is defined as follows: 

erfi ( x ) = 

2 √ 

π

x 
∫ 

0 
e t 

2 
dt. (53) 
8/23 



PTEP 2024 , 123A02 R. Horchani et al. 

Table 1. Potential parameters obtained for each meson system. The units of A , B, D , and δ are GeV 

3 , 
GeV 

2 , GeV 

−1 , and GeV , respecti v ely. C is dimensionless. 

Cornell potential KPIQP 

c ̄c A = D = 0 , B = 0 . 224 , 
C = 4 . 608 , δ = 0 . 216 

A = 0 . 012 , D = 2 . 458 , B = 0 . 162 , 
C = 4 . 997 , δ = 0 . 250 

b ̄b A = D = 0 , B = 0 . 263 , 
C = 2 . 570 , δ = 0 . 497 

A = 0 . 0261 , D = 0 . 100 , B = 0 . 438 , 
C = 2 . 034 , δ = 0 . 331 

b ̄c A = D = 0 , B = 0 . 224 , 
C = 7 . 340 , δ = 0 . 156 

A = 0 . 012 , D = 2 . 458 , B = 0 . 162 , 
C = 6 . 700 , δ = 0 . 180 

c ̄s A = D = 0 , B = 0 . 306 , 
C = 5 . 493 , δ = 0 . 449 

A = 0 . 012 , D = 2 . 458 , B = 0 . 563 , 
C = 7 . 656 , δ = 0 . 867 

b ̄s A = D = 0 , B = 0 . 224 , 
C = 5 . 315 , δ = 0 . 393 

A = 0 . 012 , D = 2 . 458 , B = 0 . 162 , 
C = 12 . 559 , δ = 0 . 305 

b ̄q A = D = 0 , B = 0 . 224 , 
C = 8 . 256 , δ = 0 . 256 

A = 0 . 012 , D = 2 . 458 , B = 0 . 162 , 
C = 7 . 640 , δ = 1 . 244 
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3. Results and discussion 

In the literature, the masses of the charm and bottom quarks are taken between 1.2 and 1.8 GeV
and 4.8 and 5.3 GeV, respecti v ely [ 54–56 ]. In this work, we have chosen m c = 1 . 209 GeV ,
m b = 4 . 823 GeV , m s = 0 . 419 GeV , and m d = m u = 0 . 220 GeV [ 57 , 58 ]. 

In this work, a Killingbeck potential combined with an inversely quadratic potential (KPIQP)
is used to study some properties of mesons. The eigenvalues in the N -dimensional space and
the corresponding wave functions are found by using the NU method. 

The free parameters of the present calculations are A , B, C, D , and δ, which are fitted by
fitting Eq. ( 40 ) in 3D space ( N = 3) with the experimental data [ 59 ]. The results for the systems
under consideration are gi v en in Tab le 1 . For each meson system, we substituted the exper-
imental data into Eq. ( 40 ) and obtained the free parameters of the potential by solving the
corresponding algebraic equations. For the charmonium and bottomonium mesons, we sub-
stituted the experimental values for the 1S , 2S , and 3S states into Eq. ( 40 ) to obtain the free
parameters for the Cornell potential. Howe v er, for the KPIQP, we used data for the 1S , 2S , 3S ,
1P, and 2P states to determine the free parameters. For the bottom–charm mesons, only two
experimental values were available in the literature. We used the values of A , B, and D obtained
from the charmonium fit with the 1S and 2S experimental data, which were then substituted
into Eq. ( 40 ) to deri v e parameters C and δ. The free parameters for the charm–strange mesons
were determined by inserting the parameter B and the experimental data for the 1S and 2S
states into Eq. ( 40 ). This enabled us to determine the values of the parameters C and δ from
two algebraic equations. 

By using the potential parameters in Table 1 , we plot in Fig. 1 the variations of the potential
energy of the quar k–antiquar k interaction (Cornell potential and KPIQP) with the separation
distance between the quark pairs, r , for the 1S state of different meson systems. 

The plots obtained for the range of distances 0 . 1 fm ≤ r ≤ 1 fm characteristic of 
charmonia and bottomonia have the same view as the plots of the potentials used in
9/23 
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Fig. 1. The KPIQP (solid line) and the Cornell potential (dashed line) of the quar k–antiquar k interaction 

in (a) c ̄c , (b) b ̄b , (c) b ̄c , (d) c ̄s , (e) b ̄s , and (f) b ̄q as a function of the quar k–antiquar k distance for the 1S 

state. The potential parameters are the same as in Table 1 . 
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other works (see e.g. Refs. [ 60 , 61 ]) for describing experimental data on these particle
families. 

By utilizing Eq. ( 40 ) and Table 1 , we get the mass spectra of the dif ferent quantum sta tes
as shown in Tables 2 –7 . The obtained masses are in good agreement with experimental data,
particularly for the S states. The slight deviations observed for the P states are attributed
to the nonrelativistic approach used in our calculations. One needs to consider the spin–
spin and spin–orbital interaction terms within the potential. Thus, the reason is not related
to the correct choice of the parameters or making a better fit. These terms should be con-
sidered within the rela tivistic equa tions such as within the Klein–Fock–Gordon and Dirac
equations. 

We compared our findings with both experimental data [ 59 ] and results obtained using dif-
ferent methodologies, including the asymptotic iterati v e method (AIM) [ 26 ], the analytical ex-
10/23 
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Table 2. Charmonium ( c ̄c ) mass spectra energy in GeV . 

States Exp. [ 59 ] Cornell KPIQP 

Ref. 
[ 26 ] Ref. [ 27 ] 

Ref. 
[ 28 ] 

Ref. 
[ 29 ] Ref. [ 30 ] Relativistic [ 62 ] 

1S 3.097 3.097 3.097 3.096 3 .095 481 3.098 3.098 3 .0963 3.096 
2S 3.686 3.686 3.686 3.686 3 .567 354 3.689 3.688 3 .5681 3.686 
3S 4.040 4.039 4.040 4.275 4 .039 226 4.041 4.029 4 .0400 4.088 
4S 4.263 4.267 4.267 4.865 4 .511 098 4.266 4 .5119 
1P 3.525 3.297 3.396 3.214 3 .567 735 3.262 3.516 3 .5687 3.510 
2P 3.773 3.802 3.902 3.773 4 .039 607 3.784 3.925 4 .0406 3.929 
1D 3.770 3.585 3.784 3.412 4 .039 683 3.515 3.779 4 .0407 3.789 

σ ( % ) 1.756 1.082 5.465 3 .501 2.108 0.819 3 .508 1.050 

Table 3. Bottomonium ( b ̄b ) mass spectra energy in GeV . 

States Exp. [ 59 ] Cornell KPIQP 

Ref. 
[ 26 ] Ref. [ 27 ] 

Ref. 
[ 28 ] 

Ref. 
[ 29 ] Ref. [ 30 ] Relativistic [ 62 ] 

1S 9 .460 9 .460 9 .460 9 .460 9 .744 73 9 .461 9 .460 9 .745 9 .460 
2S 10 .023 10 .023 10 .023 10 .023 10 .023 15 10 .023 10 .026 10 .023 10 .023 
3S 10 .355 10 .355 10 .355 10 .585 10 .301 58 10 .365 10 .354 10 .3016 10 .355 
4S 10 .579 10 .567 10 .567 11 .148 10 .580 00 10 .588 10 .572 10 .580 
1P 9 .899 9 .660 9 .760 9 .492 10 .024 06 9 .608 9 .891 10 .0246 9 .892 
2P 10 .260 10 .138 10 .238 10 .038 10 .302 48 10 .110 10 .258 10 .3029 10 .255 
1D 10 .164 9 .943 10 .143 9 .551 10 .302 66 9 .841 10 .156 10 .3032 10 .153 

σ ( % ) 0 .842 0 .277 2 .844 0 .940 1 .110 0 .041 0 .942 0 .038 

Table 4. Bottom–charm ( b ̄c ) mass spectra energy in GeV . 

States Exp. [ 59 ] Cornell KPIQP 

Ref. 
[ 26 ] Ref. [ 27 ] 

Ref. 
[ 28 ] 

Ref. 
[ 29 ] Ref. [ 30 ] Relativistic [ 62 ] 

1S 6 .275 6 .275 6 .275 6 .277 6 .277 473 6 .274 6 .274 6 .2770 6 .332 
2S 6 .842 6 .842 6 .842 6 .814 7 .037 641 6 .845 6 .839 7 .0372 6 .881 
3S 7 .290 7 .290 7 .351 7 .797 808 7 .125 7 .245 7 .7973 7 .235 
4S 7 .652 7 .652 7 .889 7 .038 623 7 .283 7 .552 
1P 6 .336 6 .335 6 .340 7 .798 791 6 .519 6 .743 7 .0381 6 .734 
2P 6 .889 6 .889 6 .851 6 .959 7 .187 7 .7983 7 .126 
1D 6 .451 6 .451 6 .452 6 .813 7 .046 7 .072 

Table 5. Charm–strange ( c ̄s ) mass spectra energy in GeV . 

States Exp. Cornell KPIQP 

Ref. 
[ 26 ] 

Ref. 
[ 64 ] Ref. [ 28 ] Relativistic [ 65 ] 

1S 1 .968 49 [ 59 ] 1.968 1.968 2.512 1.968 1.969 2.129 

2S 2 .709 [ 63 ] 2.709 2.709 2.709 2.709 2.709 2.732 

3S 3.054 3.054 2.906 2.932 2.913 3.193 

4S 3.242 3.243 3.102 2.998 3.575 

1P 2.452 2.550 2.649 2.566 2.601 2.549 

2P 2.927 3.021 2.860 2.876 3.018 

1D 2 .859 [ 63 ] 2.859 2.859 2.859 2.857 2.862 2.899 
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Table 6. Bottom–strange ( b ̄s ) mass spectra energy in GeV . 

States Exp. [ 62 , 66 ] Cornell KPIQP Ref. [ 26 ] Relativistic [ 65 ] 

1S 5.415 5.415 5.415 5.415 5.450 

2S 5.920 6.196 6.819 6.012 

3S 6.128 6.594 8.225 6.429 

4S 6.233 6.826 9.629 6.773 

1P 5.830 5.830 5.830 5.830 5.857 

2P 6.086 6.400 6.786 6.279 

1D 6.072 6.268 6.264 6.182 

Table 7. q̄ mass spectra energy in GeV . 

States Exp. [ 62 , 66 ] Cornell KPIQP Ref. [ 26 ] Relativistic [ 65 ] 

1S 5.325 5.325 5.325 5.325 5.371 

2S 5.765 6.331 6.413 5.933 

3S 5.936 6.905 7.501 6.355 

4S 6.017 6.262 8.589 6.703 

1P 5.723 5.723 5.723 5.723 5.777 

2P 5.916 6.550 6.786 6.197 

1D 5.910 6.250 6.131 6.110 
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act iterati v e method (AEIM) [ 27 ], the Wentzel–Kramers–Brillouin method (WKB) [ 28 ], the
Laplace transformation method (LTM) [ 29 ], the artificial neural network method (ANN) [ 30 ],
and a relativistic model [ 62 ]. Additionally, we calculated the average deviations between our
results and those obtained through different methods from availab le e xperimental data. The
av erage de viation is defined as: 

σ ( % ) = 

100 

N 

∑ 

∣∣∣∣M nl ( Exp ) − M nl ( cal ) 
M nl ( Exp ) 

∣∣∣∣
where N is the number of experimental data points, and M nl ( Exp ) and M nl ( cal ) are the experi-
mental mass and the calculated mass, respecti v ely. We found that the KPIQP is better than the
Cornell potential in modeling the mass spectra of meson systems. 

It is worth noting that, despite the Cornell potential having fewer parameters compared to
the KPIQP, the resulting outcomes are not significantly different. Therefore, we may conclude
tha t our observa tion for the meson masses does not depend much more on the number of 
parameters. Besides that, our results are improved in comparison with the results obtained by
other methods, as shown in Tables 2 –7 . 

We investigated the variations of the mass spectra energy of the systems under considera-
tion as a function of the parameter δ for different states. The r esults ar e shown in Fig. 2 . We
observed a consistent decrease as the potential strength δ increases. Figure 3 displays the vari-
ations of charmonium ( c ̄c ) and bottomonium ( b ̄b ) mass spectra energy as a function of the
12/23 
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Fig. 2. Variation of the mass spectra energy with the parameter δ of (a) c ̄c , (b) b ̄b , (c) b ̄c , (d) c ̄s , (e) b ̄s , 
and (f) b ̄q for the 1S, 2S, 1P, and 2D states. The potential parameters are the same as in Table 1 . 

Fig. 3. Variation of the mass spectra energy with the reduced mass of charmonium and bottomonium 

for the 1S, 2S, 1P, and 2D states. The potential parameters are the same as in Table 1 . 
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Fig. 4. Variation of the mass spectra energy with the dimensional number N of (a) c ̄c , (b) b ̄b , (c) b ̄c , (d) 
c ̄s , (e) b ̄s , and (f) b ̄q for the 1S, 2S, 1P, and 2D states. The potential parameters are the same as in Table 1 . 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2024/12/123A02/7833566 by guest on 07 M

arch 2025
reduced mass μ for different states. The mass spectra energy initially decreases to a minimum
and then increases as the reduced mass μ increases, with this behavior observed across various
angular quantum numbers. 

We also investigated the effect of the dimensional number on the masses of mesons. The re-
sults are gra phicall y presented in Fig. 4 . We observed that the charmonium mass increases with
increasing dimensional number for P and D states due to the increasing binding energy. There-
fore, the binding energy is larger than the constituents of charmonium, giving us the limitations
of nonrela tivistic models. The ef fect of dimensionality is the same as that of charmonium for
all other studied meson systems. Howe v er, it is easily seen that the S state seems to be unlike the
other states. The mass decreases when the dimensional number is less than 3 and then increases
for higher dimensional numbers. 
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Table 8. Radii of charmonium and bottomonium in fm. 

States Present work Ref. [ 67 ] 
Ref. 
[ 68 ] Present work Ref. [ 67 ] 

Ref. 
[ 68 ] 

1S 0.397 0.439 0.41 0.186 0.225 0.233 

2S 0.852 0.915 0.91 0.448 0.488 0.545 

3S 1.237 1.352 1.38 0.657 0.737 0.805 

4S 1.740 1.762 1.87 0.937 0.972 1.030 

1P 0.676 0.697 0.71 0.364 0.370 0.435 

2P 1.091 1.155 1.19 0.583 0.628 0.711 

1D 0.896 0.936 0.96 0.502 0.507 0.593 

Fig. 5. Variation of the mass as a function of the radius of the states of charmonium (a) and bottomo- 
nium (b). The solid line corresponds to a quadratic fit. 
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Using the parameters in Table 1 and Eq. ( 41 ), we computed the radii ( r rms ) for different
states of charmonium and bottomonium. The obtained r esults ar e listed in Table 8 and are
in good agreement with the values obtained for other potential energy functions in the existing
literatur e [ 67 , 68 ]. The r esults show the validity of the method used. From Table 8 , we ob-
serve that bottomonium objects are more compact than the corresponding charmonium ones.
Further more, the char monium sizes are roughly twice as large as those of similar states of 
bottomonium. 

Finally, we investigated the mass–radius dependence for charmonium and bottomonium in-
cluding all states. Figure 5 shows the variation of the charmonium and bottomonium masses
obtained by our calculation (from Tables 2 and 3 ) as a function of the radii provided in Table 8 .
A quadratic fit reflects perfectly the dependence of mass and radius (solid line in Fig. 5 ). The
equations corresponding to the fitted curve are provided alongside the figure. We find that all
the sta tes tha t we consider ed ar e dominated by the quadratic part of the potential and thus
15/23 
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Fig. 6. Variation of the partition function as a function of β for different dimensional numbers: (a) c ̄c , 
(b) b ̄b , (c) b ̄c , (d) c ̄s , (e) b ̄s , and (f) b ̄q . The potential parameters are the same as in Table 1 . 
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the small correction from the Coulomb term in the quadr atic mass–r adius relation ( 50 ) can be
neglected. 

The thermal properties for the studied meson systems (for the 1S state) are plotted as
shown in Figs. 6 –10 . Figure 6 shows that the partition function of mesons (1S state) de-
creases as the parameter β increases (the temperature decreases). Notably, at certain tem- 
perature values, the partition function remains constant. The observed results are in agree-
ment with the findings reported in Refs. [ 25 , 66 , 67 ]. We note tha t, a t a certain temperature
range, the meson melts to its constituent quarks. Additionally, increasing the dimensional 
number leads to an overall decrease in the partition function across all meson systems under
consideration. 

In Fig. 7 , we see that the mean energy of mesons consistently decreases as β increases, which is
in agreement with other works [ 25 , 69 , 70 ]. However, the mean energy increases with increasing
dimensional number. This effect was likewise observed in Ref. [ 25 ]. 
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Fig. 7. Variation of the mean energy as a function of β for different dimensional numbers: (a) c ̄c , (b) b ̄b , 
(c) b ̄c , (d) c ̄s , (e) b ̄s , and (f) b ̄q . The potential parameters are the same as in Table 1 . 
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Figure 8 shows that the free energy increases as β increases (the temperatur e decr eases). As
β approaches a certain value, the free energy tends to stabilize. This behavior of charm quark
matter is in qualitati v e agreement with the findings of Refs. [ 37 , 71 ]. Furthermore, the free
energy increases with increasing dimensional number. 

The variation of specific heat capacity with β for various dimensional numbers is displayed
in Fig. 9 . The specific heat capacity increases to a peak and then decreases towards zero as
β increases. In addition, Fig. 9 indicates that the peak position of the specific heat capacity
shifts to higher β values with increasing dimensionality. The specific heat behavior has been
previously studied and our findings are in qualitati v e agreement with the studies in Refs. [ 69 ,
70 ]. 

The variation of the entropy as a function of β for various dimensional numbers is plotted
in Fig. 10 . We observe that the entropy decreases as β increases. In addition, the entropy shifts
17/23 
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Fig. 8. Variation of the free energy as a function of β for different dimensional numbers: (a) c ̄c , (b) b ̄b , 
(c) b ̄c , (d) c ̄s , (e) b ̄s , and (f) b ̄q . The potential parameters are the same as in Table 1 . 
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to higher values with increasing dimensional number N . We obtained the same conclusion as
in Ref. [ 70 ]. 

4. Conclusions 
In the present study, we employ the Nikifor ov–Uvar ov method (NU) for determining the
energy eigenvalues and the wave functions of the multidimensional radial Schrödinger 
equation with the Killingbeck potential combined with an inversely quadratic potential 
(KPIQP). 

The meson masses are anal yticall y obtained in the N -dimensional space and special cases are
obtained in comparison with other studies. The effect of the dimensional number on the mass
spectra of different mesons is studied. The results show excellent agreement in comparison with
experimental data and the results obtained by alternati v e anal ytical methods, w hich offers new
insights into the properties of interactions in hadronic systems. 
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Fig. 9. Variation of the specific heat capacity as a function of β for different dimensional numbers: (a) 
c ̄c , (b) b ̄b , (c) b ̄c , (d) c ̄s , (e) b ̄s , and (f) b ̄q . The potential parameters are the same as in Table 1 . 
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In addition, the mean radii of the bound states of the charmonium meson and the bot-
tomonium meson are computed. The radius of b ̄b is smaller than the radius of c ̄c . This ob-
servation refers to one of the characteristics of quarkonium that heavy quar konia hav e smaller
radii. 

The relationships between the theoretical masses that we obtained and the radii are shown.
As pointed out previously, the quadratic fit reflects perfectly the dependence of mass and
radius. 

Finally, our inv estigation e xplored the thermodynamic properties of mesons, including free
ener gy, internal ener gy, entropy, and specific heat capacity, across different selected dimension-
alities. Through various plots, we have identified distinct behaviors of these thermodynamic
properties as they vary with temperature. The effect of the dimensional number on the ther-
modynamic properties of mesons is investigated. We noted from the figures that the internal
ener gy, the free ener gy, the specific heat, and the entropy shift to higher values with increasing
19/23 
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Fig. 10. Variation of the entropy as a function of β for different dimensional numbers: (a) c ̄c , (b) b ̄b , (c) 
b ̄c , (d) c ̄s , (e) b ̄s , and (f) b ̄q . The potential parameters are the same as in Table 1 . 
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dimensional number. This work will be extended to include spin–spin interaction and spin–
orbital interaction. In addition, the effect of external magnetic field on heavy meson proper-
ties, which gi v es more information about the quar k–gluon plasma, will be studied in future
work. 
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Appendix. Ov ervie w of the Nikifor ov–Uvar ov method 

The Nikifor ov–Uvar ov (NU) method is based on the solutions to a generalized second-order
linear dif ferential equa tion with special orthogonal functions [ 18 ]. A Schrödinger equation of 
the type 

ψ 

′′ 
n ( s ) + ( E − V ( s ) ) ψ n ( s ) = 0 (A1) 

could be solved by this method. This can be done by transforming Eq. ( A1 ) into an equation
of hypergeometric type with appropriate coordinate transformation z = z (r ) to get 

ψ 

′′ 
n ( s ) + 

˜ τ ( s ) 
σ ( s ) 

ψ 

′ ( s ) + 

˜ σ ( s ) 
σ 2 ( s ) 

ψ n ( s ) = 0 , (A2) 

where σ (s) and ˜ σ (s) are polynomials, at most of second degree, and ˜ τ (s) is a first-degree poly-
nomial. 

In order to find the exact solution to Eq. ( A1 ), we set the wave function as 

ψ n ( s ) = φn ( s ) y n ( s ) . (A3) 

Substituting Eq. ( A3 ) into Eq. ( A2 ) reduces Eq. ( A2 ) into a hypergeometric type, gi v en as 

σ ( s ) φ
′′ 
n ( s ) + τ ( s ) y 

′ 
n ( s ) + λy n ( s ) = 0 (A4) 

where the wave function φn (s ) is defined as the logarithmic deri vati v e: 
φ′ 

n ( s ) 
φn ( s ) 

= 

π ( s ) 
σ ( s ) 

(A5) 

where π (s ) is at most a first-degree polynomial. In addition, the hypergeometric type function
y n (s ) in Eq. ( 4 ) for a fixed n is gi v en by the Rodrigues relation: 

y n ( s ) = 

B n 

ρ ( s ) 
d 

n 

d s n 
[ σ n ( s ) ρ ( s ) ] (A6) 

where B n is the normalization constant and the weight function, ρ(s ) must satisfy the condition: 

( σ ( s ) ρ ( s ) ) ′ = τ ( s ) ρ ( s ) (A7) 

with 

τ ( s ) = ˜ τ ( s ) + 2 π ( s ) . (A8) 

For the weight function ρ(s ) to be satisfied, it is necessary that the classical orthogonal poly-
nomials τ (s ) be equal to zero in an interval ( a , b ) and its deri vati v e at this interval at σ (s ) > 0
be negati v e. That is, 

τ ′ ( s ) = 0 . (A9) 

Thus, the function π (s ) and the parameter λ r equir ed for the NU methods are defined as
follows 

: 

π ( s ) = 

σ ′ − ˜ τ
2 

±
√ (

σ ′ − ˜ τ
2 

)2 

− ˜ σ + kσ (A10) 

λ = k + π ′ ( s ) . (A11) 

The k -values in the square root of Eq. ( A11 ) can be evaluated if the expression under the
square root is the square of the polynomials. This is possible if and only if its discriminant is
zero. Ther efor e, the new eigenvalue equation for the Schrödinger equation becomes 

λ = λn = −nτ ′ − n ( n − 1 ) σ ′′ 

2 

, n = 0 , 1 , 2 . . . (A12) 

On comparing Eqs. ( A11 ) and ( A12 ), we obtain the energy eigenvalues. 
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Furthermore, the other part y n (s ) of the wave function in Eq. ( 33 ) is a hypergeometric-type
function whose polynomial solutions are gi v en by the Rodrigues relation: 

y n ( s ) = 

B n 

ρ ( s ) 
d 

n 

d s n 
( σ n ( s ) ρ ( s ) ) (A13) 

where B n is a normalizing constant and the weight function ρ(s ) must satisfy the condition [ 18 ]

( σρ ) ′ = τ ρ. (A14) 
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