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Abstract In this paper we analyze some interesting features
of the thermodynamics of the rotating BTZ black hole from
the Carathéodory axiomatic postulate, for which, we exploit
the appropriate Pfaffian form. The allowed adiabatic trans-
formations are then obtained by solving the corresponding
Cauchy problem, and are studied accordingly. Furthermore,
we discuss the implications of our approach, regarding the
second and third laws of black hole thermodynamics. In par-
ticular, the merging of two extremal black holes is studied in
detail.
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1 Introduction

The (2+1)-dimensional topological gravity has appeared to
be of interest ever since the late twentieth century, espe-
cially because it can be used as a toy model for quantum
gravity; the property that was discovered after the argu-
ments presented regarding the possible connections between
the (2+1)-dimensional gravity and the Chern–Simons the-
ory [1,2]. In the same realm, the Chilean physicists, Baña-
dos, Teitelboim, and Zanelli (BTZ), proposed a black hole
solution in the SO(2, 2) gauge group with a negative cos-
mological constant, which resembled, remarkably, the prop-
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erties of the (3 + 1)-dimensional Schwarzschild and Kerr
black holes [3], and hence had a convincing physical signif-
icance. This solution was given further refinements, correc-
tions and generalizations [4–8], and later Witten calculated
the entropy of the BTZ black holes [9]. This solution, in
fact, has gone through numerous investigations, from differ-
ent perspectives. For instance, one addressed the geodesic
structure of the uncharged BTZ black holes [10], the scatter-
ing process of test particles [11,12], the quasi-normal modes
[13–16], the hydrostatic equilibrium conditions for finite dis-
tributions [17], and solutions for fluid distributions matching
the exterior BTZ spacetime [18–21]. Also, by considering a
non-constant coupling parameter with the energy-scale, the
scale-dependent version of the BTZ solution has been devel-
oped and discussed in Refs. [22–26]. It has been also argued
that, if the energy-momentum complexes of Landau–Lifshitz
and Weinberg are employed for a rotating BTZ black hole,
the same energy distribution is obtained from both prescrip-
tions [27]. This spacetime has been also generalized regard-
ing the inclusion of terms related to the non-linear electrody-
namics [28,29] and the conformal group [30]. Furthermore,
regarding the black hole thermodynamics, BTZ black holes
have been investigated in terms of their critical behavior and
phase transitions, by evaluating their equilibrium thermody-
namic fluctuations in Ref. [31], where it is shown that the
extremal BTZ black hole with angular momentum serves as
the critical point, and the density of states in the micro- and
grand-canonical ensembles has been calculated in Ref. [32].
For the case that the cosmological constant is considered as
a thermodynamic parameter, Kerr–(Anti-)de Sitter and the
BTZ black holes have been compared [33]. Furthermore, the
quantum corrections to the enthalpy and the equation of state
of the uncharged BTZ black holes were studied in Ref. [34].
In Ref. [35], a general class of BTZ black holes is stud-
ied regarding the Ruppeiner geometry of the thermodynamic
state space, and it is found that this geometry is flat for both
the rotating BTZ and the BTZ-Chern–Simons black holes,
in the canonical ensemble. However, a non-zero scalar cur-
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vature is introduced to the thermodynamic geometry, when
thermal fluctuations are included. In fact, this establishment
of geometrothermodynamics, as well as that introduced in
Ref. [36], is a formalism that is used to designate a flat two-
dimensional space of equilibrium states, which is endowed
with a thermodynamic metric. This way, the space allows
for the thermodynamic interaction, free of any kind of sin-
gularities (phase transitions). A more generalized consider-
ation of geometrothermodynamics is available in Ref. [37],
where the thermodynamics of the charged BTZ black hole
is investigated in the context of the Weinhold and Ruppeiner
geometries. There, it is shown that these geometries cannot
describe completely the black hole thermodynamics and the
corresponding criteria for the electric charge. To solve this
problem, in Ref. [38], a new metric (the HPEM metric) was
introduced through a specific formalism, and this way, the
corresponding Ricci scalar was shown to be able to bring
together different types of phase transitions. In Ref. [39], it
is proved that the HPEM metric gives a consistent picture in
the study of the thermodynamics of BTZ black holes. The
inclusion of quantum scalar fields in the study of black hole
thermodynamics was done thoroughly in Ref. [40], for the
case of a static BTZ black hole, which leads to the introduc-
tion of entanglement thermodynamics for mass-less scalar
fields. It has been also shown that the thermodynamics of
BTZ black holes can be deformed in the context of gravity’s
rainbow; however, the Gibbs free energy remains unchanged
[41]. Gravity’s rainbow has been also exploited to study the
black hole heat capacity and phase transition of BTZ black
holes in Refs. [42,43]. There are also some other extensions
of the BTZ black holes that are derived in alternative theories
of gravity. For example, in Ref. [44], the Noether symmetries
of the rotating BTZ black hole in f (R)gravity have been used
to generate new BTZ-type solutions. Along the same lines,
in Ref. [45], some thermodynamic aspects of the BTZ black
holes, such as the Carnot heat engine, are studied in the con-
text of massive gravity. Also, the authors in Ref. [46] consider
the Horndeski action as the source field of the BTZ black hole,
and reduce it to the common Einstein–Hilbert action includ-
ing a cosmological constant. This way, they regain the usual
three-dimensional Smarr formula by exploiting the scaling
symmetry of this reduced action. Moreover, rotating BTZ
black holes have been shown to exhibit no kind of superra-
diance, if the considered Dirac fields vanish at infinity [47].

There is also an interesting issue, regrading the (2 + 1)-
dimensional exotic black hole solutions, whose spacetime
metric has the same form as that of the BTZ, however,
with mass and angular momentum being reversed in their
roles [48]. For this particular case, the entropy is propor-
tional to the length of the inner horizon. The inner and outer
horizons, in fact, limit the propagation of radial geodesics.
Therefore, they can be thermally quantized only beyond the
horizons. Accordingly, it has been shown in Ref. [49] that

the entropy of the BTZ black holes is in agreement with the
Bekenstein–Hawking formula, and the particles retain their
quantum ground level in the BTZ spacetime.

The reason of presenting such a relatively long introduc-
tion is to highlight the interest of the scientific community in
scrutinizing the thermodynamic of (2 + 1)-dimensional, and
in particular, the BTZ black holes. In this paper, based on the
same interest, we study some thermodynamic aspects of the
rotating BTZ black hole. Specifically, we base our discus-
sion on the Carathéodory postulate of adiabatic inaccessibil-
ity [50], which ensures the integrability of the Pfaffian form,
δQrev, which represents the infinitesimal heat exchanged
reversibly. This approach allows for constructing a proper
thermodynamic manifold by means of foliating the adiabatic
surfaces that satisfy the Pfaffian equation δQrev = 0. For the
case of the (3 + 1)-dimensional black holes, this type of con-
struction has been studied in detail in Refs. [51–53], which
gives rise to the isoareal transformations, i.e., transforma-
tions between the black hole states with the same areas. On
the other hand, for (2 + 1)-dimensional black holes, the adi-
abatic transformations correspond to the isoperimetral trans-
formations between states that reside in the non-extremal
manifold.

In order to elaborate on this, in Sect. 2, we introduce the
rotating BTZ solution, and the way we approach it is based on
the Carathéodory postulate. In Sect. 3, we study the allowed
adiabatic transformation for the thermodynamic states, given
the corresponding analytical solutions that constitute an adi-
abatic hypersurface. The second law of black hole thermo-
dynamics is then considered in more detail in Sect. 4, where
we consider the scattering of two extremal BTZ black holes.
We summarize the results in Sect. 5.

2 The rotating BTZ black hole and its thermodynamics

The (2+1)-dimensional, uncharged, black hole solution with
a negative cosmological constant Λ = −�−2 is obtained
from the action

I = c

2πG

∫ √−g
[
R + 2 �−2

]
d2x dt + B, (1)

where B is a surface term [3,4]. For the stationary circular
symmetry, the corresponding spacetime metric is given in
terms of the coordinates −∞ < t < ∞, 0 < r < ∞, and
0 ≤ φ ≤ 2π , and can be written as

ds2 = −N 2(r)c2dt2 +N−2(r)dr2+r2 [
Nφ(r)c dt + dφ

]2
,

(2)
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in which the square lapse function and the angular shift are
given, respectively, by

N 2(r) = −GM

c2 + r2

�2 + G2 J 2

4c6r2 , (3a)

Nφ(r) = − GJ

2c3r2 , (3b)

where M and J indicate the mass and the angular momentum
of the black hole. This spacetime possesses an inner (r−) and
an event (r+) horizon, which are located at

r± = c τ± (M,J )√
2

, (4)

where

τ± (M,J ) =
√
M ±

√
M2 − J 2 (5)

and

M ≡ M

mp Ω2
ext

, (6a)

J ≡ tp J

h̄ Ωext
. (6b)

Here the subscript “p′′ refers to the Planck quantities in (2+1)
dimensions,1 and Ωext = c/� is the angular velocity of the
extremal black hole. Note that the physical dimension of M
and J is [time2], while the function τ± has the dimension
of [time]. Also, in the extremal case the relation M = J is
satisfied.

The Bekenstein–Hawking entropy formula, if applied to
the BTZ black hole, gives the entropy proportional to the
event horizon’s perimeter Pbh = 2πr+ instead of its area
Abh, as expected on dimensional grounds. Therefore

S = kB
4

Pbh

�p
= kB

4

(
2πr+
c tp

)
= aτ+, (7)

where S is the entropy, kB is the Boltzmann constant, and
a = (π/

√
8)(kB/tp) ≈ 1.1(kB/tp). Defining S ≡ S/a =

τ+, and using Eqs. (5) and (7), we obtain a Christodoulou-
type mass formula, which relates the total mass (energy) M
to the entropy and the angular momentum, in the following
form:

M(S,J ) = 1

2
S2 + 1

2

J 2

S2 . (8)

1 In (2+1)-dimensional gravity, the gravitational constant G has the
physical dimension of

[
length2/(mass × time2)

]
(see Ref. [54]). There-

fore, the Planck mass, length and time become mp = c2/G, l p =
Gh̄/c3, and tp = l p/c.

We base our study on the framework of Carathéodory’s
approach to thermodynamics, which postulates the integra-
bility of the Pfaffian form δQrev, representing the infinitesi-
mal heat exchanged reversibly [50–53,55–68]. In particular,
we assume that the so-called metrical entropy S and absolute
temperature T exist. Therefore, we can write

δQrev = T dS, (9)

where T ≥ 0 is an integrating factor which satisfies

∂S
∂M ≡ 1

T > 0, (10)

so that

T (M,J ) =
(
M + √

M2 − J 2
)2 − J 2

(
M + √

M2 − J 2
)3/2 . (11)

In fact, if we choose the pair (M,J ) as the extensive, inde-
pendent variables in the equilibrium thermodynamics (i.e.
homogeneous functions of degree one), then the homogene-
ity of the system is reflected in the integrability of the Pfaffian
form

δQrev = dM − W dJ , (12)

where W is the angular velocity of the black hole, given by

W(M,J ) = J
M + √

M2 − J 2
. (13)

Therefore, it is straightforward to show that, under the scaling
transformation (M,J ) 	→ (λM, λJ ), we get δQrev 	→
λδQrev, which means that the Pfaffian form is homogeneous
of degree one. Consequently, we have an Euler vectorial field,
or a Liouville operator, as the infinitesimal generator of the
homogeneous transformations

D = M ∂

∂M + J ∂

∂J , (14)

using which we obtain

DS = 1

2
S, (15)

meaning that S is homogeneous of degree 1/2. Similarly,
the temperature is also homogeneous of degree 1/2. Further-
more, it is straightforward to check that the angular velocity
is a homogeneous function of degree zero, or DW = 0, and
therefore, it is an intensive variable.
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It is naturally tempting to address a comparison with the
natural (3+1)-dimensional counterpart (i.e. the Kerr–(Anti-
)de Sitter black hole). In fact, there are some differences
between these cases that should be analyzed carefully. Fur-
thermore, we have found a mathematical equivalence of a
remarkable theoretical potential. However, keeping within
the scope of this study, for now, we strive to present some
immediate results of the above discussed concepts, and leave
the aforementioned mathematical comparison to future work.

3 The adiabatic-isoperimetral transformations

An important result of the above approach is that it allows for
the generation of a non-extremal manifold foliation. In fact,
the non-extremal thermodynamic space is foliated by those
submanifolds of co-dimension one, which are solutions of
the Pfaffian equation δQrev = 0 [51].

As stated above, for the non-extremal manifold (T > 0),
the Pfaffian form is given by Eq. (12). Accordingly, perform-
ing the changes of variable x = M2 and y = J 2, we get

δQrev = 1

2
√
x

dx − 1

2(
√
x + √

x − y)
dy, (16)

which respects the condition x ≥ y. Thus, for the isoperime-
tral transformation δQrev = 0, which connects, adiabatically,
the initial state i ≡ (xi , yi ) to the final state f ≡ (x f , y f ), the
adiabatic trajectories are solutions to the Cauchy problem

dy

dx
= 1 +

√
1 − y

x
, (17a)

y(xi ) = yi , (17b)

with yi < xi . It is then straightforward to show that the
solutions to this problem are

ya(x) = 2
√

ζa
√
x − ζa, (18a)

yb(x) = 2
√

ζb
√
x − ζb, (18b)

where the constants ζa,b ≡ ζa,b(xi , yi ) are given by

ζa,b = 2xi − yi ± 2
√
xi (xi − yi ), (19)

with xi > yi .
Each function vanishes at the point (x0, 0), with x0 =

ζa,b/4, which corresponds to the static BTZ black hole.
The thermodynamic (extremal) limit, on the other hand, is
reached at (xe, xe), with xe = ζa,b (see Fig. 1, showing the
two functions intersecting at the initial point i). We will come
back to these concepts later in this section.

Fig. 1 The plots of the adiabatic solutions to the Cauchy problem,
given in Eqs. (18a), (18b), (21a) and (21b). The static black hole limit,
for each case, is where the curves hit the x coordinate, whereas the
extremal limit corresponds to the line y = x

Note that it is important to be cautious about the condi-
tions on the extremal submanifold, on which the condition
δQrev = 0 is still satisfied. This implies that the extremal
submanifold is an integral submanifold of the Pfaffian form
[51,53]. In fact, considering the extremal point i′ ≡ (xi , xi )
as initial state, the Cauchy problem becomes

dy

dx
= 1 +

√
1 − y

x
, (20a)

y(xi ) = xi , (20b)

which allows for the two solutions

yc(x) = x, (21a)

yd(x) = 2
√
xi

√
x − xi . (21b)

Now that the solutions to both the non-extremal and extremal
cases have been given, it is of importance to discuss their
physical features, regarding the adiabatic processes. In par-
ticular, the solution ya given by Eq. (21a) indicates that the
extremal states are adiabatically connected to each other.
However, the solution yb in Eq. (21b) presents a more com-
plicated situation, because it connects, adiabatically, the non-
extremal states with the extremal ones. This, in fact, poses a
contradiction to the second law of thermodynamics, since it
provides the possibility to construct a Carnot cycle with one
hundred percent thermal efficiency, and this violates Ost-
wald’s postulate of the second law. Furthermore, it would be
possible to transform completely the heat into work, which is
also in contrast with the second law. To eliminate this singu-
lar behavior of the thermodynamic foliation, we assume that
the surface T = 0 is a leaf itself, that is, we exclude it from
the set of solutions. Accordingly, by introducing a discon-
tinuity in S between the extremal and non-extremal states,
we construct a foliation of the thermodynamic variety, whose
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leaves are distinguished by

S(M,J ) =
{
P/4, non-extremal states,
0, extremal states.

(22)

The choice of the value S = 0 for the extremal states stems
from some topological preferences [69,70] and has been
explicitly proposed by Carroll in Ref. [71]. Nevertheless,
it has been shown that this choice is a particular case of
a well-behaved area-dependent function, which can opt for
non-zero values [72]. In particular, the thin shells (rings) in
(2+1)-dimensional gravity, can change their entropy values
during their evolution to a black hole (see Refs. [73–75]).

We can now establish the criteria for the physically accept-
able solutions, based on the results obtained above:

1. Due to the homogeneity of the extensive variables
(M,J ) or (x, y), every adiabatic process must satisfy

dy

dx
> 0. (23)

2. An initial state belonging to the submanifold T > 0
can only be adiabatically connected to another state, if
it neither belongs to the submanifold T = 0 nor passes
through it.

3. In the neighborhood of any equilibrium state of the
system, there exist states that are inaccessible by the
reversible adiabatic processes (Carathéodory postulate)
[50,55,56].

Condition 1 is nothing but the result of expressing the ther-
modynamic system in terms of the extensive variables, which
are, of course, homogeneous of degree one. Condition 2
ensures satisfaction of the second and third laws of thermo-
dynamics. From the geometric point of view, this guarantees
that the black hole topology does not change. The above state-
ments have been visualized, qualitatively, in Fig. 2. There,
we have exemplified the allowed processes by o ↔ p, r ↔ s,
and q ↔ t, and the forbidden processes by p ↔ q, and q ↔
r. Accordingly, the non-extremal initial state i is connected
with the final states, by the adiabatic solution curves

y(x) =
{
ya(x), for x0 ≤ x < xi ,
yb(x), for xi ≤ x < ∞.

(24)

In this sense, we can ramify the physically allowed branches
of the solutions, as shown in Fig. 3. In this diagram, the
physically accepted parts of the solution y(x) are those that
connect, adiabatically, the initial state i ≡ (xi , yi ), with yi <

xi , to another state f ≡ (x f , y f ), with y f < x f , following
the ya branch, if x f < xi , and the yb branch, if x f > xi .

Fig. 2 The adiabatic solutions to the Cauchy problem and the extremal
limit. In order to avoid violation of the second law, the only allowed
processes are o ↔ p; r ↔ s; q ↔ t. The processes p ↔ q; q ↔ r are, on
the other hand, prohibited

Fig. 3 The physically allowed solutions to the Cauchy problem for
the BTZ black hole. The initial state i ≡ (xi , yi ), with yi < xi , can be
connected adiabatically to the final state f ≡ (x f , y f ), with y f < x f ,
following the path ya (red curve) if x f < xi , and the path yb (blue
curve) if x f > xi

A direct consequence of the condition 3 is that it prevents
from forming an adiabatic cycle (as desired by engineering).
Such a cycle is illustrated in Fig. 4. Referring to the triangular
path in this diagram, the state i, residing in the submanifold
T > 0, is first connected adiabatically to the state i′, and
then to the state i′′, which both reside in the submanifold
T = 0, and finally, it is returned to i. Note that the process
i′ → i′′ is adiabatic and isothermal. In fact, since these states
are inaccessible by the Carathéodory’s postulate, the above
adiabatic cycle is not allowed to form.

Accordingly, the extremal limit should be excluded from
the adiabatic hypersurface, since there is no adiabatic process
that can reach this state. In fact, either of the solutions (18a)
and (18b) can produce an adiabatic surface that lies between
the extremal (y = x) and the static (y = 0) black hole limits
(see Fig. 5).
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Fig. 4 The Carathéodory’s postulate prevents the formation of an adi-
abatic cycle. In such a cycle, the equilibrium state i is adiabatically
connected, respectively, to the extremal states i′ and i′′, and then is
returned to itself (see the green triangular path). Such a cycle is prohib-
ited, because the states i′ and i′′ are inaccessible for the state i

Fig. 5 The adiabatic surface plotted for ζa = 1.2, which is confined
by the extremal, and the static black hole (BH) limits. The adiabatic
processes ya and yb, can connect the initial state i to other points on the
surface. The same holds for the adiabatic process yc on the extremal
limit, connecting the initial point i′ to other points on the same line.
The transmission i → i′ is, however, prohibited by the Carathéodory’s
postulate

Note that, since the conditional solution given by Eq. (24)
excludes the extremal states (the T = 0 leaf), we can ensure
the satisfaction of the third law through all isoperimetral (or
adiabatic) processes.

4 Scattering of two extremal black holes and the second
law

In this section, we explore the possibility of an isolated
merger occurring of two extremal BTZ black holes with the

initial states (M1,J1) and (M2,J2), to produce the final
state (M1+M2,J1+J2). As in Refs. [53,76,77], we define
the quantity

α2(M,J ) = M2 − J 2, (25)

so that for the initial black holes we have αin = α1 + α2,
where

α2
1(M1,J1) = M2

1 − J 2
1 ≥ 0, (26a)

α2
2(M2,J2) = M2

2 − J 2
2 ≥ 0, (26b)

and for the final black hole, αfin = α12, with

α2
12(M1 + M2,J1 + J2) = (M1 + M2)

2 − (J1 + J2)
2

= α2
1(M1,J1)+α2

1(M2,J2)+2 (M1 M2 − J1 J2) .

(27)

Therefore, for two extremal black holes of the initial states
α2

1(M(1)
ext,J

(1)
ext ) = α2

2(M(2)
ext,J

(2)
ext ) = 0, and for the positive

masses Mext = |Jext| > 0, Eq. (27) becomes

α2
12

(
M(1)

ext + M(2)
ext,J

(1)
ext + J (2)

ext

)

= 2
(
M(1)

ext M
(2)
ext − J (1)

ext J
(2)
ext

)

= 2
(∣∣∣J (1)

ext

∣∣∣
∣∣∣J (2)

ext

∣∣∣ − J (1)
ext J

(2)
ext

)

= 2
∣∣∣J (1)

ext

∣∣∣
∣∣∣J (2)

ext

∣∣∣ (1 − cos β) , (28)

where β = �(J (1)
ext ,J (2)

ext ). Thus, for extremal black holes
rotating in the same direction (β = 0), the final black hole
will be, as well, an extremal one. This is because, for those
rotating in opposite directions (β = π ), the final black hole
will not be extremal.

In the case of an extremal final state, a possible violation
of the second law may occur, since, in fact, the process is
irreversible and the entropy of the final state should be greater
than that of the initial states (under the assumption that the
system is isolated and there is no exchange of energy with the
rest of the universe). On the other hand, if the final state is non-
extremal, then its entropy is, naturally, greater than that of
the initial states. As given in Eq. (22), the entropy of the BTZ
black hole isS = gP/4, whereP is the perimeter of the event
horizon and g is the genus, which characterizes the topology
of the thermodynamic manifold. In this sense, the extremal
and non-extremal black holes are characterized, respectively,
by g = 0 and g = 1. Hence, the latter corresponds to the
change of the topology of the black hole.

In fact, passing from one black hole topology to another,
we encounter the spacetime singularities. And since the
above processes occur in the classical environment, these
singularities are inevitable. Therefore, to avoid the complex-
ities associated with the change in topology, it is convenient
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to infer that the scattering of two initially extremal BTZ black
holes leads to an extremal BTZ black hole, and this violates
the second law. The above statements can be summarized as

β =
{

0 ⇒ violation of the second law, π

⇒ change of the black hole topology.
(29)

5 Discussion and final remarks

In this paper we studied the thermodynamics of the BTZ
black hole, based on the axiomatic approach of Carathéodory.
We introduced the Pfaffian form δQrev to represent the
infinitesimal heat exchanged reversibly, which gives a defi-
nition to the metric entropy and temperature, with the latter
as an integrating factor for the Pfaffian form. The natural
extensive variables of the uncharged BTZ black hole in the
equilibrium thermodynamics space (i.e. the homogeneous
variables of degree one) are (M,J ), which has an associ-
ated Pfaffian form δQrev = dM − WdJ . The symmetry of
the homogeneity for δQrev can then be inspected by means of
the Euler vector field (Liouville operator) in Eq. (14), which
indicates the consistency of the methods given here with the
thermodynamic definition of the temperature.

As a first application of the approach presented, we studied
adiabatic processes, by analyzing the corresponding Cauchy
problem. In this sense, the problem is equivalent to the adia-
batic processes in the Reissner–Nordström (RN) black hole
spacetime [53], since, regarding the adiabatic transforma-
tions, the electric charge for the RN black hole plays the
same role as the angular momentum for the BTZ black hole.
We will address this issue in future work.

Since the obtained adiabatic solutions allow for two def-
inite constants, they can be therefore employed in the cor-
rect physical description of the acceptable adiabatic paths.
This way, and to respect the second, and especially the third
law, the extremal submanifold (T = 0) must be discon-
nected from the non-extremal one (T > 0). In fact, the ther-
modynamic foliation of the non-extremal states allows us
to have a consistent construction of thermodynamics, since
there are proven arguments to connect the approaches of
Carathéodory and Gibbs [65]. Consequently, the Hawking–
Bekenstein entropy formula is found to be valid only for the
non-extremal states. The entropy of the extremal states is, on
the other hand, considered to be zero.

The classical merging of two extremal rotating BTZ black
holes provided us another tool to inspect the leaf T = 0 and
the corresponding property S = 0. The unconformity of
the second law with the aforementioned entropy condition
necessitates the inclusion of a net electrical charge for the
black hole. In this sense, a new equivalence with the RN
black hole could be found, which in that case relaxes the

problem by introducing a definite angular momentum to the
system [53].
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