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Abstract. We present a new framework unifying interactions in nature by introduc-

ing mirror fermions, explaining the hierarchy between the weak scale and the coupling

unification scale, which is found to lie close to Planck energies. A novel process lead-

ing to the emergence of symmetry is proposed, which not only reduces the arbitrariness

of the scenario proposed but is also followed by significant cosmological implications.

Phenomenology includes the probability of detection of mirror fermions via the corre-

sponding composite bosonic states and the relevant quantum corrections at the LHC.

1 Introduction
Attempts to unify fundamental interactions within a unique theory are not only based on aesthetic and

philosophical grounds, but are also reinforced by experiments implying a convergence of the gauge-

coupling strengths [1]. We report on previous work [2][3][4] explaining fermion family structure

and the hierarchy between the electroweak (EW) symmetry scale and the coupling unification scale

by introducing mirror fermions (“katoptrons"). Stabilization of the EW scale is achieved by using

a new gauge interaction S U(3)K becoming strong around 1 TeV. The Higgs mechanism is based on

mirror fermion condensates, similarly to, but differing significantly from, technicolor [5]. First, we

inquire whether a particular breaking chain of an initial gauge symmetry G = E8 × E′
8 down to the

Standard Model is compatible with the unification of the gauge couplings near the Planck scale and

leads naturally to dynamical electroweak symmetry breaking at scales of around 1 TeV. Next, we

incorporate the Lorentz group within G in order to judge whether this approach is compatible with

models of gravity based on spinors. Then, we justify the value of the gauge couplings at the unification

scale in terms of a symmetry-group invariant. Last, a novel mechanism of symmetry emergence is

proposed in order to reduce the arbitrariness of G and discuss cosmological consequences.

2 Coupling unification, symmetry breaking and spinor gravity
One of the results of [2] is coupling unification, including the S U(3)K coupling. The starting point

here is a different initial symmetry G breaking at energies ΛGUT down to S U(5) × U(1)X × S U(5)′ ×
U(1)′X × S U(3)K . We investigate the running of the gauge couplings in order to see if the energy

scales involved have acceptable values. Under this symmetry, left-handed ordinary fermions F and

right-handed katoptrons K transform as:

Fa
L = (5̄,−3, 1, 0, 1)a ⊕ (10, 1, 1, 0, 1)a ⊕ (1, 5, 1, 0, 1)a

KR = (1, 0, 5̄,−3, 3) ⊕ (1, 0, 10, 1, 3) ⊕ (1, 0, 1, 5, 3) (1)
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Figure 1. The renormalization of the gauge couplings at one loop [4]

where a = 1, 2, 3 is a fermion generation superscript, 1 and 0 denote non-abelian and abelian group

singlets respectively, ordinary fermions are singlets under S U(5)′ × U(1)′X × S U(3)K and appear in

3 generations, while katoptrons are singlets under S U(5) × U(1)X and triplets under S U(3)K , in an

assignment inspired by “flipped S U(5)" models [6].

The symmetry S U(5) × U(1)X × S U(5)′ × U(1)′X is assumed to break at energies Λ23 down to

the Standard Model (SM) group times an abelian U(1)′1 felt only by katoptrons. One is then left with

S U(3)C × S U(2)L × U(1)1 × U(1)′1 × S U(3)K , where U(1)1 is the hypercharge group with a rescaled

coupling. The fields leading to this breaking are neglected in the 1-loop calculation of coupling renor-

malization below. While katoptrons interact with the same S U(3)C × S U(2)L interaction as known

fermions at energies below Λ23, they carry their own U(1)′1 interaction down to the EW symmetry

scale. Moreover, S U(3)K becomes strong near ΛK , breaking itself and the EW symmetry [3]. The

renormalization of the gauge couplings gN at energy scales p for Nf fermions in the fundamental

representation of S U(N) at 1-loop is given by α−1
N (p) = α−1

N (po) + c(N,Nf ) ln (p/po), with po some

reference scale, aN = g2
N/4π and c(N,Nf ) = (11N − 2Nf )/6π. The katoptron coupling αK evolves at

scales ranging from ΛK to the unification scale ΛGUT according to c(3, 8) = 17/6π. The S U(2)L cou-

pling α2 and the S U(3)C coupling α3 evolve according to c(N, 12) = (11N − 24)/6π at energies where

both ordinary and katoptron fermions contribute to the beta functions, i.e. between ΛK and Λ23. Ei-

ther below ΛK , or when fermions and katoptrons interact with distinct groups, as is the case for all the

U(1) and the S U(5), S U(5)′ couplings, couplings evolve according to c(N, 6) = (11N − 12)/6π, with
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N = 0 for the αX , α′X , α1, α′1 couplings of U(1)X , U(1)′X , U(1)1, U(1)′1 respectively, and N = 2, 3, 5
for the S U(2)L, S U(3)C couplings and the α5, α′

5
couplings of S U(5), S U(5)′ respectively. Taking

into account the relevant boundary conditions and noting that αK(ΛK) ∼ 1 and MZ ∼ 91.2 GeV, we

estimate ΛGUT , Λ23, and ΛK , assuming a “big desert” between these scales. In particular, we find (see

Figure 1) [4]: ΛGUT = MZ × 1017 ∼ 1019 GeV ∼ MPlanck, Λ23 = MZ × 6 × 1015 ∼ 5 × 1017 GeV

and ΛK = MZ × 11 ∼ 1 TeV, α(ΛGUT ) ∼ 0.029 and α3(Λ23) ∼ 0.036. Moreover, we see that

ΛK ∼ MPlanck exp
(
− 6π

17α(ΛGUT )

)
, a relation rendering transparent the solution of the hierarchy problem.

Furthermore, the value of Λ23 renders this scenario most probably safe with regards to proton decay.

Next, the symmetry breaking chain from a group G down to S U(5) × U(1)X × S U(5)′ × U(1)′X ×
S U(3)K and then down to the SM is explored using [7]. Non-zero vacuum expectation values (vevs)

of effective composite fields are taken to lead to the breaking channels needed. These are fermion

condensates arising non-perturbatively to safeguard gauge invariance at tree level. Denoting as LG
the symmetry S U(2) × S U(2)′, we assume that the following symmetry breaking chain is obtained,

triggered by the antisymmetric 248a condensate and starting from MPlanck ∼ ΛGUT [4]:

E8 × E′
8 (at ΛGUT) →

S U(5) × U(1)X × S U(5)′ × U(1)′X × S U(3)K × LG (at Λ23) →
S U(3)C × S U(2)L × U(1)1 × U(1)′1 × S U(3)K × LG (at ΛK) →

S U(3)C × U(1)em × LG (2)

To proceed, we argue that S U(2) × S U(2)′ ≈ LG contains the Lorentz symmetry S O(3, 1) (up

to discrete subgroups), an assumption motivated by the proximity of ΛGUT to MPlanck. Formally, one

should decompose the E8 above as E7(C) × S L(2,C) ⊂ E8(C) [8]. One then gets from the two E8s

the group S O(4,C) ≈ S U(2,C) × S U(2,C)′ (since S U(2,C) ≈ S L(2,C)) which has both S O(4) and

S O(3, 1) as subgroups. The LG group is therefore assumed to contain the Lorentz group and it is

taken to be a global, not a local symmetry. In order to render the relation between LG and the Lorentz

group consistent, one needs to equate the S O(3, 1) coupling with the gravitational coupling. Problems

related to the Coleman-Mandula theorem [9] are discussed in [4]. Within a framework similar to

[10], we consider a metric of the form gμν = Em
μ (x)En

ν (x)ηmn = Em
μ (x)Eνm(x), where μ, ν = 0, ..., d

are spacetime indices, m, n = 0, ..., d are indices corresponding to the “internal” Lorentz symmetry

with ηmn = diag(−1, 1, ..., 1), while Em
μ (x) =< Ẽm

μ (x) >∼ δmμM
Planck

for μ,m = 0, ..., 3 and Em
μ (x) =<

Ẽm
μ (x) >∼ 0 for μ,m = 4, ..., d are soldering forms (vielbeins), i.e. vevs of operators Ẽm

μ (x) breaking

the Lorentz symmetry spontaneously. Symmetric fluctuations of such a metric around the Minkowski

spacetime are expected to produce Goldstone bosons identified with gravitons [10] [11]. In the spinor

gravity approach [11], these vevs have a dynamical origin since they are expressed as vevs of fermion

bilinear operators Ẽm
μ (x) = i

2
{Ψ̄(x)γm∂μΨ(x) − ∂μΨ̄(x)γmΨ(x)}, where γm are Dirac matrices in d

dimensions and Ψ, Ψ̄ are Grassmann variables. A relevant partition function, effective action and

effective potential can then be formally defined, and these are expected to lead, in lowest order in

the effective potential expansion, to equations similar to the ones of General Relativity [11], in a way

that spacetime is not treated as background but is incorporated in the equations non-perturbatively. In

such a picture, physical distances are induced by fermion correlation functions and the appearance of a

metric is inherently quantum-mechanical. To make connection with our model, we use the unification

symmetry E8 × E′
8, adopting the fermion-bilinear approach for the soldering forms [11] in order to

maintain the dynamical interpretation of the breaking of G = E8 × E′
8, where internal dimensions are

connected with the appearance of gauge symmetries in 4d. Non-zero vevs of antisymmetric fermion

bilinears sitting in the 248a of E8 and E′
8 are expected to lead to the breaking sequence needed. The

S U(2) triplets in (1,3) and doublets in (56,2) contained in the decompositions of the 248a of each of
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the E8, E′
8 under E7 × S U(2) can break spontaneously LG after acquiring non-zero vevs, leading thus

to a dynamically generated metric, assuming that < Ψ̄γm∂μΨ >= 0 for m > 3. The vevs of fields

in the (1,3) of E7 × S U(2) and E′
7 × S U(2)′ constitute the most attractive antisymmetric channel of

E8 × E′
8 breaking down to E7 × E′

7, possibly justifying their dominance in determining spacetime

dimensionality over the (56,2) and (133,1) vevs breaking subsequently E7 × E′
7 and the remnant of

LG. In any case, note that the same type of fermion condensate is responsible not only for metric

generation but for gauge symmetry breaking as well.

In order for LG to break down to its diagonal subgroup S O(3, 1), one could consider vevs of

4-fermion composite operators, corresponding to gauge-invariant terms in the initial action and trans-

forming as (1,3,1,3) under E7 × S U(2) × E′
7 × S U(2)′. One way to couple the two initial -in principle

decoupled- E8 sectors in a way having the same end result as such operators is to consider an ini-

tial symmetry of the form E8 × E′
8 ×

(
ZE8

2
/ZS U(2)

2

)
, where the discrete Z2 symmetries interchange

the two E8 groups and their S U(2) subgroups respectively, in a construction similar to [12][13]. A

deeper analysis of this scenario might have the potential of not only explaining the dimensionality

of our space-time, but its signature as well, i.e. why the group S O(3, 1) emerges instead of S O(4)

or S O(2, 2) for instance. We then consider the effective fermionic action in 4d in a derivative and

fermion-field expansion to 1-loop: S e f f ∼
∫

d4x det
(
Em
μ (x)

)(
c1 + c2R + c3Ψ̄(x)γmEμm(x)DμΨ(x) + ...

)
plus gauge kinetic terms, where det

(
Em
μ (x)

)
=

√
det (−gμν) � 0 while μ, ν,m = 0, ..., 3, c1,2,3 are con-

stants and Dμ is the gauge-covariant derivative corresponding to the E7 × E′
7 gauge symmetry after

compactification. This symmetry should probably be corrected by a multiplicative factor of the form(
ZE7

2
/ZS U(5)

2

)
interchanging the two E7 groups and their respective S U(5) subgroups in a way that

couples the right- and left-handed sectors of the theory during compactification causing the breaking

of S U(5) × S U(5)′ to their diagonal subgroup at Λ23 [4]. The first term of the action above gives a

cosmological constant Λ, the second the Ricci curvature, and the third the action in [10]. The result

above is expected to stem from an action expressed as S f ∼
∫

dd x det (Ẽm
μ ) before compactification.

We then investigate the dimensionality d of space to integrate our Lagrangian over. Naturalness

reasons lead us to consider the action as an integral over a manifold having the isometry E8 ×E′
8 up to

discrete factors. The proper number of (complex) dimensions is then d = 16, equal to the number of

roots of the groups involved. Integrating over the 14 extra internal dimensions gives us E7×E′
7, which

by the way correspond to 2 lattices formed by the unit-norm imaginary Caley octonions, and should

leave us with 2 complex, i.e. 4 real, ordinary spacetime dimensions. The internal dimensions are then

assumed to be compactified at a size of around 1/MPlanck to avoid the appearance of Kaluza-Klein

excited states at energies lower than MPlanck. It is conjectured below that the space with the isometries

needed is the quotient space of the 16d maximal torus T 16 by the lattice πΓ8 × πΓ8 generated by the

roots of E8 × E′
8 multiplied by integer multiples of π. In the following, an effort is made to motivate

further our choice of E8 × E′
8 as a unification symmetry group based on the special packing-density

and kissing-number properties of the E8 lattice, in addition to its self-duality feature which might

prove to be unique and crucial for unifying spacetime with gauge symmetries. The 8d spaces of

the two E8 groups have to be treated distinctly, since, while each of the two E8 lattices provide the

highest kissing (coordination) number and densest sphere packing in 8d, in 16d other lattices like the

Barnes-Wall (BW) lattice provide a higher kissing number and denser sphere packing than Γ8 × Γ8,

even though they are not self-dual. In particular, the Γ8 × Γ8 kissing number equals 480, while the

BW lattice has a kissing number equal to 4,320. However, since lattices like BW do not correspond to

any root system, they cannot generate the symmetries needed. In general, densest sphere packings in

dimensions d > 8 are most likely either disordered, not corresponding to lattices, or the lattices they

correspond to are not associated with root systems and thus known gauge symmetries. Therefore, all

other cases for d > 8 cannot lead, on the basis of such arguments, to the symmetries needed. A related
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argument supporting this scenario is based on the concept of optimal lattices [4] [14]. In any case, the

above might be an indication that we are approaching a theory starting from an action as simple as

the one above and yielding the dimension not only of spacetime but also of the internal space and its

isometries by the dynamics of the action itself, without having to postulate them a priori.

3 Critical behaviour and emergence of symmetry

In order to connect our action to the results above, one needs first to justify the value of α(ΛGUT )

calculated in section 2. We are dealing with a critical phenomenon breaking E8 × E′
8 and having

as order parameters the non-zero vevs related to the metric. The relevant critical parameters are the

couplings of the two E8s. The order parameters are assumed here to scale as Em
μ ∼ pm pμ

MPlanck
< Ψ̄Ψ >

with fermions Ψ in the fundamental representations of E8 and E′
8 and |pm|, |pμ| ∼ MPlanck. The <

Ψ̄Ψ > condensate, corresponding to the most attractive channel, is assumed to be the catalyst for the

formation of the antisymmetric condensates in the 248a of the two E8s. Since E8×E′
8 breaks at around

MPlanck, the critical coupling αS B is estimated by a modified Nambu-Jona-Lasinio formalism yielding

αS B ∼ C−1
2 ∼ 0.03 ∼ α(ΛGUT ), with C2 = 30 the quadratic Casimir invariant of E8 [4]. The wide

hierarchy between MPlanck and the weak scale can then be traced back to the magnitude of C2, since

ΛK ∼ MPlanck exp(−1.23 C2).

We now examine the dynamics leading to the emergence of symmetry by applying techniques bor-

rowed from solid-state physics, chemistry, biology and even sociology, the common starting ground

being the emergence of configurations exhibiting spontaneous self-organization transitions in ordered

structures and nucleation, like DNA, neural networks or crystals, i.e. processes characterized by “self-

organised criticality" [15]. We place our action on a lattice to see if its qualitative behaviour can be

inferred by simpler or similar systems in lattice gauge theories or solid-state systems. The effective

action S lat to lowest order, apart from the Einstein-Hilbert terms, is written as S lat =
∑
<i, j> Ei jΨ̄iΨ j,

where Ei j is an antisymmetric matrix proportional to the system’s volume and encoding information

on Em
μ , and the sum over the lattice sites i, j is restricted over nearest neighbours.

In order to study the emergence of the E8 lattices from first principles, we use a model suitable for

percolation phenomena, a “toy" model in our case, assumed here to belong to the same universality

class, i.e. the single-state (q = 1) Potts model, with Hamiltonian given by HP = −J
∑
<i, j> δ(S i, S j),

where J > 0 is the coupling strength and δ(S i, S j) = 1 when S i = S j = 1 and zero otherwise. The

partition function Z =
∑

Ci
e−βHP is given by

Z =
∑
Ci

(
eβJ − 1

)Ei
(3)

where the sum is over clusters Ci consisting of Ei edges and 1/β = kBT . Here, the occupation

probability p is given by p = 1 − e−βJ and increases with decreasing T . Such discrete models are

usually studied on lattices with given dimensionality d and coordination (kissing) number (number of

nearest neighbours) c. In the following, we explore the behaviour of a system of nodes minimizing

its free energy by adjusting its d and c in order to form an optimal lattice. For high T , w ≡ eβJ − 1 ∼
p ∼ βJ 	 1 in equation 3 implies that only clusters with few edges contribute significantly to the

partition function. In a competition between annihilation and aggregation of large clusters, those

of low d and c dominate. This system of nodes, a rough model of the “pre bib-bang" world, lies

initially in a highly-probable state, ı.e. having large T and entropy S , obviating the need for contrived

cosmological boundary conditions. Evolution is dictated by the system’s need to reduce its energy,

which is achieved by lowering T and expanding. This irreversible gradual process might define an
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“arrow of time", the increase in S compensating the entropy loss due to the formation of the spacetime

“crystal", providing an explanation of the 2nd law of thermodynamics.

There is a certain T however for which the behaviour of the partition function Z in equation 3

changes dramatically. This change proves to be crucial for our argument towards symmetry emer-

gence. For low T such that kBT ≤ kBTc = J/ ln 2 ∼ 1.4J, we find p ≥ 1/2 and w ≥ 1, implying

that large clusters consisting of many edges dominate over the smaller ones! Those familiar with the

q-state Potts model recognize in this expression Tc given by eβc J = (1 +
√

q)/
√

q for q = 1. This

has a highly non-trivial and far-reaching impact on the topology of the network of nodes. Since for

a network to have any sense we assume that min (Ei) = c, a lattice like the one of E8 with c = 240

contributes much more to the partition function than the conventional Z8 lattice having c = 16. Ap-

proaching Tc amounts therefore to having a E8 lattice emerge spontaneously from the dynamics. We

leave for future investigations the study of how a more complicated variant of this lattice, like the

E8×E′
8×

(
ZE8

2
/ZS U(2)

2

)
appearing here, possibly with the extra factor

(
ZE7

2
/ZS U(5)

2

)
arising during com-

pactification, finally emerges. The relevance of densest-sphere packing and “highest kissing number"

arguments presented in the previous section is now apparent, since this particular lattice offers an opti-

mal configuration with regards to c and might be preferred over alternative arrangements not offering

so many edges per node. Note moreover that “crystal" clusters with Ei = 240 evolve even when

T > Tc. However, such clusters should lie within limited regions. Moreover, at T = Tc we expect a

latent heat, or enthalpy, given by H = 478J [4]. A more careful calculation of enthalpy might produce

a smaller value for H due to the action of the Z2 discrete symmetries.

At this critical point other lattices with even higher d and c could also form. These however

do not lead to the symmetries observed in our world, as explained in the last section. This implies

that we might be living within a metastable region, with other Universe domains corresponding to

different configurations of lattice points, devoid of the known interactions. This is consistent with

Ostwald’s rule in polymorphic and allotropic crystallography, according to which the least stable

polymorphs crystallize first, leading to transformations between closest phases with regards to free

energy. Metastability of the two E8 lattices is central to the argument presented, should be studied

more thoroughly, and is at least qualitatively supported from the fact that these lattices offer a local

maximum for a properly-normalized kissing number (nKN) and for the centre density, defined as

the ratio of sphere-packing density over the unit-sphere volume for certain dimensions d. Indeed,

the E8 lattice offers a centre density higher than the maximum achievable for 8 < d < 12 [16]. In

parallel, regarding known sphere packings, it offers maximal centre density for 6 < d < 18 and a local

maximum for nKN (see Figure 2) [17]. The next dimension probably providing a local maximum

for the centre density and for nKN hosts the even unimodular (i.e. self-dual) Leech lattice in d = 24

offering maximal centre density for 0 < d < 28 and a kissing number equal to 196,560, exhibiting

symmetries not associated with the known Lie groups. (Instead, it is closely connected to the largest

sporadic finite simple group.) Such lattices Γ are usually studied via theta functions defined as ΘΓ(z) =∑
λ∈Γ eiπz|λ|2 (Im(z) > 0), which are modular forms of weight d/2 if Γ is even and self-dual, which

implies that d = 0 mod(8).

Next, we describe some potentially interesting cosmological implications of this critical behaviour.

We take the measured Λ ∼ 2 × 10−3 eV to correspond to the free energy of a minimal cluster of the

E8 × E′
8 lattice having 240 edges from each of the two E8’s, i.e. Ei = 480, and TCBR ∼ 2.7 ×

10−4 eV of the cosmic background radiation to be equal to the system’s temperature. Then, the

critical free-energy expression yields Λ ∼ 7kBTCBR ∼ 10J and ε ≡ (TCBR − Tc)/Tc ∼ 1% [4].

This implies a certain fine-tuning close to criticality for T . Taking the Universe to be in a “glass-to-

crystal" transition, typical relaxation and equilibration times τ for glassy dynamics are huge compared

to the microscopic ones of ferromagnetic-type systems. This leads us to considering non-adiabatic
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Figure 2. A function (nKN) of the maximum lattice kissing number τn in Rn for 0 < n < 33 [17]

phenomena where relaxation times are of cosmological scale, and we might be living within such

a critical period. Another issue to address is the smallness of Λ in comparison to MPlanck. The

solution might be coming from the Hamiltonian we started with, which includes only local, nearest-

neighbour, interactions, effectively introducing a very large infrared cut-off. One may introduce a

phenomenological potential V(r) between lattice sites being separated from each other by a distance

r given by V(r) = −2EiJ
(

LPlanck

r

)d−3
(
1 −

√
Ja
2

(
a
r

)d
)
, with LPlanck = 1/MPlanck, d = 16 and a having

dimensions of length corresponding to the distance where “repulsive" effects become important. For

large r, V(r) vanishes like 1/rd−3, since the 2-point correlation function in position space falls as

1/rd−2. Using the relation JLPlanck =
(

LPlanck

a

)2d+1
and taking a ∼ 9.3LPlanck gives the required hierarchy

Λ ∼ 10−31 MPlanck.

Consequently, a higher-dimensional analogue of spin-glass phase transitions might provide a pic-

ture for the emergence of E8 × E′
8 at the beginning of our Universe, as a kind of “liquid-to-solid",

freezing phase transition, or a kind of disorder-order, “glass-to-crystal" transition. Regarding entropy

S , the only way for the system to compensate for the loss of S within a spacetime volume Vol dur-

ing a time dt is to expand, changing its volume by d(Vol). We note that large values for Ei imply a

period resembling inflation. Other cosmological implications include the existence of macroscopic

domains in the Universe not having the symmetries observed in our neighbourhood. Particles within

such regions would not interact in familiar ways, for instance not feeling electromagnetic interactions

and supplying an explanation for Dark Matter (DM). The luminous parts of galaxies would occupy

regions corresponding to the “jammed", ordered phase of spacetime, domain states of ferromagnetic

type, like “crystal bubbles" within a glass-type, amorphous spacetime structure. For a solid-state

Physics analogy in the interdisciplinary spirit of this Conference, compare the galaxy distribution

within DM regions (for instance, see relevant pictures from NASA, ESA, C. Heymans, M. Gray,

STAGES Coll.(2008) ) with quartz (silicon crystal) distribution within silicon glass regions (see for

instance M. Chen, W. Xiao, X. Xie, E. Plan. Sc. Lett. 297 (2010) 306). An order-of-magnitude

estimate of the ratio R of crystal-to-glass-type volumes is given by R = 1− exp(−ΔF/kBT ), where ΔF
is the free energy gained by the system by being in the “crystal" state. It is possible that “spacetime"

nucleation continues today, implying a growth of the luminous-to-DM ratio on cosmological time-

scales. A detailed relevant analysis would allow the prediction of galactic DM concentrations and of
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the average structure of the underlying spacetime lattice. It would allow answering questions like “is

the structure of spacetime within the intergalactic voids of glass- or crystal-type?". Assuming that all

“crystal" domains are occupied by visible galaxies implies that R ∼ 5%, while taking intergalactic

voids to be also “crystal"-like raises R to around 77%. Other possibilities include DM regions cor-

responding either to alternative E7 symmetry breakings, or to denser “sphere packings" not linked to

a group’s root system. The latter would imply that our vacuum has already started decaying towards

a more stable configuration like the Leech lattice, leading to growing DM and shrinking luminous

domains.

Alternatively, in off-equilibrium phenomena of crystal and glass formation, the fluctuation-

dissipation theorem in fast transitions is violated, since the system does not have enough time to

relax to its new equilibrium, forcing us to consider “effective temperatures" Te f f larger than the heat-

bath ones [18]. Here, R ∼ 50% implies Te f f ∼ 10TCBR, while R ∼ 80% implies Te f f ∼ 5TCBR. If

the universe expanded and cooled too fast to have relaxed to equilibrium, Te f f for “crystal" formation

is larger than TCBR. Such values of Te f f are consistent with treating particles as topological or va-

cancy defects on the lattice background described above, analogous to positively-charged holes in an

electron sea or lattice, their number density dp in the Universe being a function of enthalpy cost and

approximately equal to the ratio of their entropy S p ∼ kB1089 to the Universe entropy S B ∼ kB10122

assuming a Bekenstein-bound saturation [19], ı.e. dp ∼ S p/S B ∼ 10−33 ∼ exp (−H/kBTe f f ) implying

that Te f f ∼ 4.4TCBR. This result favours the characterization of intergalactic voids as “crystal-like".

Note that the discrepancy between TCBR and Te f f might be smaller if a more careful calculation of

H is performed. This approach has far-reaching implications on structure formation, consistent with

the view that stars are born within DM halos. It might lead to an understanding of the shape of spiral

galaxies on the basis of “helicoidal dislocations" in crystals. It might explain the large voids between

galactic clusters, which are usually found to be larger than what simulations suggest, since crystals

usually displace vacancies and other impurities towards boundaries of different phases and form va-

cancy clusters to minimize their energy. Here, the role of impurities is played by DM “amorphous"

regions containing small crystal “islands", i.e. galaxies, full of vacancies corresponding to elementary

particles. For a solid-state Physics analogy in the interdisciplinary spirit of this Conference, compare

the galaxy number density field (see for instance W. Shaap, PhD Thesis, U. Groningen 2007) with

vacancy clusters in copper (see for instance M. Kiritani, Jour. Nucl. Mat. 276 (2000) 41). Future

experiments could probe the spacetime structure within DM domains, or measure the energy release,

perhaps in the form of, hitherto unexplained, ultra-high energy cosmic rays, when the “crystal" forms.

Next, we discuss briefly quantization of our action. By having Γ
8 ×Γ′8 emerge with lattice spacing

equal to LPlanck, one achieves a cellular decomposition of spacetime with a UV cut-off equal to MPlanck

avoiding singularities plaguing quantum gravity. This might have a dramatic impact not only on the

general renormalization programme but also on black holes, the initial singularity of spacetime and

gravitational collapse, analogous to the false prediction of atom collapse before the advent of quantum

mechanics. In an approach close to spin networks and lattice Yang-Mills, we have lattice nodes

corresponding to 4d spacetime points, a “world crystal". On each node there is a fiber corresponding to

E7 ×E′
7 stemming from 14 compactified dimensions. This provides an understanding of Heisenberg’s

uncertainty principle, since a particle, seen as a vacancy defect, extends at least between 2 adjacent

nodes, reminding us of Wheeler considering particles as “quantum geometrodynamic excitons" [20].

Experiments around MPlanck should distinguish such a spacetime fabric from models treating particles

as extended objects on a continuous background. Ideas along these lines might include far in the

future a gravitational analogue of Bragg spectroscopy probing the microstructure of spacetime.
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4 Discussion

A phenomenological issue related to the fermion content considered here is that it is usually associ-

ated with a large S parameter. However, it is possible that vertex corrections can drive the S parameter

close to zero [21]. On the other hand, LEP and Fermilab results at the 2 − 3σ level suggest mass-

dependent anomalous quark couplings [22] and an excess of dijet plus W events [23], signals compat-

ible with quark-katoptron mixing and katoptron bound states. Moreover, assuming that this theory is

correct, recent LHC results regarding a new boson having a mass of around 125-6 GeV correspond to

the lightest member of a series of katoptronic mesons analogous to QCD or technicolor mesons. This

lightest meson, a “katoptronic pion" corresponding to the lightest katoptrons, is expected to have com-

paratively very small couplings to third-generation ordinary fermions, like the bottom and top quark,

due to the comparatively small mixing of the lightest katoptrons to third-generation ordinary fermions

[24]. To conclude, while waiting for new relevant results from the LHC, we exposed an attempt to

unify gauge with gravitational interactions using E8 × E′
8 emerging naturally from first principles. It

leads to coupling unification and to an understanding of the unification coupling strength from an in-

variant of the emergent symmetry group; it reproduces the symmetries, the family structure of matter

and the dimensionality of spacetime, not treating it as background; it solves the hierarchy problem

between the Planck, the weak and the cosmological constant scale. Moreover, it exhibits a unique

vacua sequence with cosmological implications like the interpretation of DM as having a topological

origin. Securing the above on a firm basis needs a new physical principle which is more fundamental

than a given spacetime or gauge symmetry and lies presumably at the heart of several other scien-

tific areas as well (like crystallography, cognitive science etc.); according to it, spacetime, matter, and

their symmetries, emerge naturally from a set of identical, distinct elementary fields connected to each

other optimally.
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