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Abstract. We present a new framework unifying interactions in nature by introduc-
ing mirror fermions, explaining the hierarchy between the weak scale and the coupling
unification scale, which is found to lie close to Planck energies. A novel process lead-
ing to the emergence of symmetry is proposed, which not only reduces the arbitrariness
of the scenario proposed but is also followed by significant cosmological implications.
Phenomenology includes the probability of detection of mirror fermions via the corre-
sponding composite bosonic states and the relevant quantum corrections at the LHC.

1 Introduction

Attempts to unify fundamental interactions within a unique theory are not only based on aesthetic and
philosophical grounds, but are also reinforced by experiments implying a convergence of the gauge-
coupling strengths [1]. We report on previous work [2][3][4] explaining fermion family structure
and the hierarchy between the electroweak (EW) symmetry scale and the coupling unification scale
by introducing mirror fermions (“katoptrons"). Stabilization of the EW scale is achieved by using
a new gauge interaction S U(3)k becoming strong around 1 TeV. The Higgs mechanism is based on
mirror fermion condensates, similarly to, but differing significantly from, technicolor [5]. First, we
inquire whether a particular breaking chain of an initial gauge symmetry G = E; X Eg down to the
Standard Model is compatible with the unification of the gauge couplings near the Planck scale and
leads naturally to dynamical electroweak symmetry breaking at scales of around 1 TeV. Next, we
incorporate the Lorentz group within G in order to judge whether this approach is compatible with
models of gravity based on spinors. Then, we justify the value of the gauge couplings at the unification
scale in terms of a symmetry-group invariant. Last, a novel mechanism of symmetry emergence is
proposed in order to reduce the arbitrariness of G and discuss cosmological consequences.

2 Coupling unification, symmetry breaking and spinor gravity

One of the results of [2] is coupling unification, including the S U(3)x coupling. The starting point
here is a different initial symmetry G breaking at energies Agyr down to SU(S) X U(1)x X SU(5)" X
U(1l)y x SU@B)g. We investigate the running of the gauge couplings in order to see if the energy
scales involved have acceptable values. Under this symmetry, left-handed ordinary fermions F and
right-handed katoptrons K transform as:
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Figure 1. The renormalization of the gauge couplings at one loop [4]

where a = 1,2,3 is a fermion generation superscript, 1 and 0 denote non-abelian and abelian group
singlets respectively, ordinary fermions are singlets under S U(5)" x U(1)}, x SU(3)k and appear in
3 generations, while katoptrons are singlets under S U(5) X U(1)x and triplets under S U(3)g, in an
assignment inspired by “flipped S U(5)" models [6].

The symmetry SU(5) X U(1)x X SU(5)" x U(1)} is assumed to break at energies A3 down to
the Standard Model (SM) group times an abelian U(1)] felt only by katoptrons. One is then left with
SUB)exSUR)Lx U(l); x U(1)] x SU3)k, where U(1); is the hypercharge group with a rescaled
coupling. The fields leading to this breaking are neglected in the 1-loop calculation of coupling renor-
malization below. While katoptrons interact with the same S U(3)¢ X S U(2), interaction as known
fermions at energies below Aoz, they carry their own U(1)] interaction down to the EW symmetry
scale. Moreover, S U(3)kx becomes strong near Ak, breaking itself and the EW symmetry [3]. The
renormalization of the gauge couplings gy at energy scales p for Ny fermions in the fundamental
representation of S U(N) at 1-loop is given by az_vl (p) = a;,l (po) + ¢(N,Ny)In(p/p,), with p, some
reference scale, ay = gjzv /4r and c¢(N, Ny) = (11N — 2Ny)/6n. The katoptron coupling g evolves at
scales ranging from Ak to the unification scale Agyr according to ¢(3,8) = 17/6x. The SU(2),, cou-
pling @, and the S U(3)¢ coupling a3 evolve according to ¢(N, 12) = (11N —24)/6x at energies where
both ordinary and katoptron fermions contribute to the beta functions, i.e. between Ax and A3. Ei-
ther below Ak, or when fermions and katoptrons interact with distinct groups, as is the case for all the
U(1) and the SU(5), SU(5)’ couplings, couplings evolve according to ¢(N, 6) = (11N — 12)/6m, with
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N = 0 for the ay, a, a1, ] couplings of U(1)x, U(1)%, U(1)1, U(1)] respectively, and N = 2,3,5
for the SU(2)r, S U(3)c couplings and the as, a couplings of S U(5), SU(S)" respectively. Taking
into account the relevant boundary conditions and noting that ax(Ag) ~ 1 and Mz ~ 91.2 GeV, we
estimate Agyr, A3, and Ak, assuming a “big desert” between these scales. In particular, we find (see
Figure 1) [4]: Agur = Mz X 107 ~ 10" GeV ~ Mpianck, A2z = Mz X 6 X 10 ~ 5 x 10" GeV
and Ay = Mz x 11 ~ 1 TeV, a(Agyr) ~ 0.029 and a3(A3) ~ 0.036. Moreover, we see that
Ak ~ Mbplanck €Xp (—% , a relation rendering transparent the solution of the hierarchy problem.
Furthermore, the value of A3 renders this scenario most probably safe with regards to proton decay.

Next, the symmetry breaking chain from a group G down to SU(5) X U(1)x X SU(5)’ x U(1)}, X
S U(3)k and then down to the SM is explored using [7]. Non-zero vacuum expectation values (vevs)
of effective composite fields are taken to lead to the breaking channels needed. These are fermion
condensates arising non-perturbatively to safeguard gauge invariance at tree level. Denoting as LG
the symmetry SU(2) X SU(2)’, we assume that the following symmetry breaking chain is obtained,
triggered by the antisymmetric 248, condensate and starting from Mppnekx ~ Agur [4]:

Eg x E} (at Agur) —

SUB) x Uy x SUSY x U(1Yy x SUBR)k X LG (at Azz) —

SUB)e x SUR), x U(1); x U(1), x SUB)x x LG (at Ag) —
SUB)e X U()em X LG 2)

To proceed, we argue that SU(2) X SU(2)’ = LG contains the Lorentz symmetry SO(3, 1) (up
to discrete subgroups), an assumption motivated by the proximity of Agyr to Mpjanck. Formally, one
should decompose the Eg above as E7(C) X SL(2,C) c Eg(C) [8]. One then gets from the two Egs
the group SO(4,C) ~ SUR,C) x SU(2,C) (since SU(2,C) =~ SL(2,C)) which has both § O(4) and
SO@3,1) as subgroups. The LG group is therefore assumed to contain the Lorentz group and it is
taken to be a global, not a local symmetry. In order to render the relation between LG and the Lorentz
group consistent, one needs to equate the S O(3, 1) coupling with the gravitational coupling. Problems
related to the Coleman-Mandula theorem [9] are discussed in [4]. Within a framework similar to
[10], we consider a metric of the form g,, = EZ’(x)E(}(x)r]mn = EZ’(x)Evm(x), where y,v = 0,...,d
are spacetime indices, m,n = 0, ...,d are indices corresponding to the “internal” Lorentz symmetry
with 7, = diag(=1,1,..., 1), while Ej(x) =< EIT(x) >~ 0y Mpy o for g,m = 0,...,3 and Ej(x) =<
E[f(x) >~ 0 for u,m = 4, ...,d are soldering forms (vielbeins), i.e. vevs of operators Eﬂ’"(x) breaking
the Lorentz symmetry spontaneously. Symmetric fluctuations of such a metric around the Minkowski
spacetime are expected to produce Goldstone bosons identified with gravitons [10] [11]. In the spinor
gravity approach [11], these vevs have a dynamical origin since they are expressed as vevs of fermion
bilinear operators EZ’(x) = é{‘i’(x)y’”@l,‘{’(x) - 8,,‘?(x)ym‘1’(x)}, where y™ are Dirac matrices in d
dimensions and W, ¥ are Grassmann variables. A relevant partition function, effective action and
effective potential can then be formally defined, and these are expected to lead, in lowest order in
the effective potential expansion, to equations similar to the ones of General Relativity [11], in a way
that spacetime is not treated as background but is incorporated in the equations non-perturbatively. In
such a picture, physical distances are induced by fermion correlation functions and the appearance of a
metric is inherently quantum-mechanical. To make connection with our model, we use the unification
symmetry Eg X Eg¢, adopting the fermion-bilinear approach for the soldering forms [11] in order to
maintain the dynamical interpretation of the breaking of G = E¢ X Eg, where internal dimensions are
connected with the appearance of gauge symmetries in 4d. Non-zero vevs of antisymmetric fermion
bilinears sitting in the 248, of Eg and E} are expected to lead to the breaking sequence needed. The
S U(2) triplets in (1,3) and doublets in (56,2) contained in the decompositions of the 248, of each of
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the Eg, £ under E7 X S U(2) can break spontaneously LG after acquiring non-zero vevs, leading thus
to a dynamically generated metric, assuming that < ¥y"9,¥ >= 0 for m > 3. The vevs of fields
in the (1,3) of E7 X SU(2) and EJ X SU(2)" constitute the most attractive antisymmetric channel of
Eg X Eg breaking down to E, X E’, possibly justifying their dominance in determining spacetime
dimensionality over the (56,2) and (133,1) vevs breaking subsequently E, X E’ and the remnant of
LG. In any case, note that the same type of fermion condensate is responsible not only for metric
generation but for gauge symmetry breaking as well.

In order for LG to break down to its diagonal subgroup SO(3, 1), one could consider vevs of
4-fermion composite operators, corresponding to gauge-invariant terms in the initial action and trans-
forming as (1,3,1,3) under E7 X SU(2) X E7, X S U(2)’. One way to couple the two initial -in principle
decoupled- Eg sectors in a way having the same end result as such operators is to consider an ini-
tial symmetry of the form Eg x Eg X (ZZE8 /Zi9 U(z)), where the discrete Z, symmetries interchange
the two Eg groups and their S U(2) subgroups respectively, in a construction similar to [12][13]. A
deeper analysis of this scenario might have the potential of not only explaining the dimensionality
of our space-time, but its signature as well, i.e. why the group S O(3, 1) emerges instead of S O(4)
or SO(2,2) for instance. We then consider the effective fermionic action in 4d in a derivative and
fermion-field expansion to 1-loop: S.¢r ~ f d*xdet (EZ’(x))(cl + R+ 03‘T’(x)ymE’,f1(x)Dﬂ‘I’(x) + )

plus gauge kinetic terms, where det (Ef](x)) = 4/det(-gy,) # 0 while g, v,m = 0,...,3, ¢ 2,3 are con-
stants and D, is the gauge-covariant derivative corresponding to the E; X E, gauge symmetry after
compactification. This symmetry should probably be corrected by a multiplicative factor of the form
(Zé57 /Zg U(S)) interchanging the two E; groups and their respective S U(5) subgroups in a way that
couples the right- and left-handed sectors of the theory during compactification causing the breaking
of SU(5) x SU(5) to their diagonal subgroup at Ay; [4]. The first term of the action above gives a
cosmological constant A, the second the Ricci curvature, and the third the action in [10]. The result
above is expected to stem from an action expressed as S r ~ f d?x det (EZ’) before compactification.
We then investigate the dimensionality d of space to integrate our Lagrangian over. Naturalness
reasons lead us to consider the action as an integral over a manifold having the isometry Eg X E¢ up to
discrete factors. The proper number of (complex) dimensions is then d = 16, equal to the number of
roots of the groups involved. Integrating over the 14 extra internal dimensions gives us E; x E, which
by the way correspond to 2 lattices formed by the unit-norm imaginary Caley octonions, and should
leave us with 2 complex, i.e. 4 real, ordinary spacetime dimensions. The internal dimensions are then
assumed to be compactified at a size of around 1/Mpjyck to avoid the appearance of Kaluza-Klein
excited states at energies lower than Mpjack. It is conjectured below that the space with the isometries
needed is the quotient space of the 16d maximal torus T'® by the lattice 7T’y x 7T’y generated by the
roots of Eg X E¢ multiplied by integer multiples of 7. In the following, an effort is made to motivate
further our choice of E¢ X Eg as a unification symmetry group based on the special packing-density
and kissing-number properties of the Ejg lattice, in addition to its self-duality feature which might
prove to be unique and crucial for unifying spacetime with gauge symmetries. The 8d spaces of
the two Eg groups have to be treated distinctly, since, while each of the two Ejg lattices provide the
highest kissing (coordination) number and densest sphere packing in 8d, in 16d other lattices like the
Barnes-Wall (BW) lattice provide a higher kissing number and denser sphere packing than I'g X T,
even though they are not self-dual. In particular, the I's X I's kissing number equals 480, while the
BW lattice has a kissing number equal to 4,320. However, since lattices like BW do not correspond to
any root system, they cannot generate the symmetries needed. In general, densest sphere packings in
dimensions d > 8 are most likely either disordered, not corresponding to lattices, or the lattices they
correspond to are not associated with root systems and thus known gauge symmetries. Therefore, all
other cases for d > 8 cannot lead, on the basis of such arguments, to the symmetries needed. A related
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argument supporting this scenario is based on the concept of optimal lattices [4] [14]. In any case, the
above might be an indication that we are approaching a theory starting from an action as simple as
the one above and yielding the dimension not only of spacetime but also of the internal space and its
isometries by the dynamics of the action itself, without having to postulate them a priori.

3 Critical behaviour and emergence of symmetry

In order to connect our action to the results above, one needs first to justify the value of a(Agyr)
calculated in section 2. We are dealing with a critical phenomenon breaking E, x E; and having
as order parameters the non-zero vevs related to the metric. The relevant critical parameters are the
couplings of the two Egs. The order parameters are assumed here to scale as E}' ~ % < PY¥ >
with fermions ¥ in the fundamental representations of Eg and Eg and [p™|,|p.| ~ Mpianck. The <
YY¥ > condensate, corresponding to the most attractive channel, is assumed to be the catalyst for the
formation of the antisymmetric condensates in the 248, of the two Egs. Since E x E} breaks at around
Mpyanck, the critical coupling a g is estimated by a modified Nambu-Jona-Lasinio formalism yielding
asg ~ C; '~ 0.03 ~ a(Agyr), with C, = 30 the quadratic Casimir invariant of Eg [4]. The wide
hierarchy between Mp.nck and the weak scale can then be traced back to the magnitude of C,, since
Ak ~ Mpianck €xp(—1.23 C>).

We now examine the dynamics leading to the emergence of symmetry by applying techniques bor-
rowed from solid-state physics, chemistry, biology and even sociology, the common starting ground
being the emergence of configurations exhibiting spontaneous self-organization transitions in ordered
structures and nucleation, like DNA, neural networks or crystals, i.e. processes characterized by “self-
organised criticality" [15]. We place our action on a lattice to see if its qualitative behaviour can be
inferred by simpler or similar systems in lattice gauge theories or solid-state systems. The effective
action S, to lowest order, apart from the Einstein-Hilbert terms, is written as S, = 3, _; > &Ei j‘i’i‘I’ s
where &;; is an antisymmetric matrix proportional to the system’s volume and encoding information
on EZ’, and the sum over the lattice sites i, j is restricted over nearest neighbours.

In order to study the emergence of the Eg lattices from first principles, we use a model suitable for
percolation phenomena, a “toy" model in our case, assumed here to belong to the same universality
class, i.e. the single-state (¢ = 1) Potts model, with Hamiltonian given by Hp = —J }._; ;5 6(S, S ),
where J > 0 is the coupling strength and 6(S;,S ;) = 1 when S; = §; = 1 and zero otherwise. The
partition function Z = ¥, ¢ ##* is given by

z=Y(-1)" 3)
C;

where the sum is over clusters C; consisting of E; edges and 1/8 = kgT. Here, the occupation
probability p is given by p = 1 — ¢/ and increases with decreasing 7. Such discrete models are
usually studied on lattices with given dimensionality d and coordination (kissing) number (number of
nearest neighbours) c. In the following, we explore the behaviour of a system of nodes minimizing
its free energy by adjusting its d and c in order to form an optimal lattice. For high T, w = é#/ — 1 ~
p ~ BJ < 1 in equation 3 implies that only clusters with few edges contribute significantly to the
partition function. In a competition between annihilation and aggregation of large clusters, those
of low d and ¢ dominate. This system of nodes, a rough model of the “pre bib-bang" world, lies
initially in a highly-probable state, 1.e. having large T and entropy S, obviating the need for contrived
cosmological boundary conditions. Evolution is dictated by the system’s need to reduce its energy,
which is achieved by lowering 7' and expanding. This irreversible gradual process might define an
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“arrow of time", the increase in S compensating the entropy loss due to the formation of the spacetime
“crystal", providing an explanation of the 2nd law of thermodynamics.

There is a certain 7 however for which the behaviour of the partition function Z in equation 3
changes dramatically. This change proves to be crucial for our argument towards symmetry emer-
gence. For low T such that kg7 < kgT, = J/In2 ~ 1.4J, we find p > 1/2 and w > 1, implying
that large clusters consisting of many edges dominate over the smaller ones! Those familiar with the
g-state Potts model recognize in this expression 7, given by €’/ = (1 + \/q)/ /g for ¢ = 1. This
has a highly non-trivial and far-reaching impact on the topology of the network of nodes. Since for
a network to have any sense we assume that min (E;) = c, a lattice like the one of Eg with ¢ = 240
contributes much more to the partition function than the conventional Z?* lattice having ¢ = 16. Ap-
proaching T, amounts therefore to having a Eg lattice emerge spontaneously from the dynamics. We
leave for future investigations the study of how a more complicated variant of this lattice, like the
Eg X E§ X (Zf8 /Z2S U(z)) appearing here, possibly with the extra factor (Zf7 /Z§ ve )) arising during com-
pactification, finally emerges. The relevance of densest-sphere packing and “highest kissing number"
arguments presented in the previous section is now apparent, since this particular lattice offers an opti-
mal configuration with regards to ¢ and might be preferred over alternative arrangements not offering
so many edges per node. Note moreover that “crystal” clusters with E; = 240 evolve even when
T > T.. However, such clusters should lie within limited regions. Moreover, at T = T, we expect a
latent heat, or enthalpy, given by H = 478J [4]. A more careful calculation of enthalpy might produce
a smaller value for H due to the action of the Z, discrete symmetries.

At this critical point other lattices with even higher d and ¢ could also form. These however
do not lead to the symmetries observed in our world, as explained in the last section. This implies
that we might be living within a metastable region, with other Universe domains corresponding to
different configurations of lattice points, devoid of the known interactions. This is consistent with
Ostwald’s rule in polymorphic and allotropic crystallography, according to which the least stable
polymorphs crystallize first, leading to transformations between closest phases with regards to free
energy. Metastability of the two Ejg lattices is central to the argument presented, should be studied
more thoroughly, and is at least qualitatively supported from the fact that these lattices offer a local
maximum for a properly-normalized kissing number (nKN) and for the centre density, defined as
the ratio of sphere-packing density over the unit-sphere volume for certain dimensions d. Indeed,
the Ejg lattice offers a centre density higher than the maximum achievable for 8 < d < 12 [16]. In
parallel, regarding known sphere packings, it offers maximal centre density for 6 < d < 18 and a local
maximum for nKN (see Figure 2) [17]. The next dimension probably providing a local maximum
for the centre density and for nKN hosts the even unimodular (i.e. self-dual) Leech lattice in d = 24
offering maximal centre density for 0 < d < 28 and a kissing number equal to 196,560, exhibiting
symmetries not associated with the known Lie groups. (Instead, it is closely connected to the largest
sporadic finite simple group.) Such lattices I are usually studied via theta functions defined as Or(z) =
S er €™ (Im(z) > 0), which are modular forms of weight d/2 if T is even and self-dual, which
implies that d = 0 mod(8).

Next, we describe some potentially interesting cosmological implications of this critical behaviour.
We take the measured A ~ 2 x 1073 eV to correspond to the free energy of a minimal cluster of the
Eg X E; lattice having 240 edges from each of the two Eg’s, i.e. E; = 480, and Tepr ~ 2.7 X
10~* eV of the cosmic background radiation to be equal to the system’s temperature. Then, the
critical free-energy expression yields A ~ 7kgTepr ~ 10J and € = (Tepr — To)/T. ~ 1% [4].
This implies a certain fine-tuning close to criticality for 7. Taking the Universe to be in a “glass-to-
crystal” transition, typical relaxation and equilibration times 7 for glassy dynamics are huge compared
to the microscopic ones of ferromagnetic-type systems. This leads us to considering non-adiabatic
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Figure 2. A function (nKN) of the maximum lattice kissing number 7, in R” for 0 < n < 33 [17]

phenomena where relaxation times are of cosmological scale, and we might be living within such
a critical period. Another issue to address is the smallness of A in comparison to Mpjanck. The
solution might be coming from the Hamiltonian we started with, which includes only local, nearest-
neighbour, interactions, effectively introducing a very large infrared cut-off. One may introduce a
phenomenological potential V(r) between lattice sites being separated from each other by a distance

d-3 d
r given by V(r) = —2E,J (L) (1 — Ma(a) ) with Lpianck = 1/Mpianck, d = 16 and a having

2

dimensions of length corresponding to the distance where “repulsive” effects become important. For
large r, V(r) vanishes like 1/r3, since the 2-point correlation function in position space falls as

-2 . . Lpianc 2d+1 . . . .
1/r472, Using the relation JLpjypcx = (%) and taking a ~ 9.3 Lpj,nck gives the required hierarchy
A~ 10_31 MPlanck~

Consequently, a higher-dimensional analogue of spin-glass phase transitions might provide a pic-
ture for the emergence of Eg X Eg at the beginning of our Universe, as a kind of “liquid-to-solid",
freezing phase transition, or a kind of disorder-order, “glass-to-crystal" transition. Regarding entropy
S, the only way for the system to compensate for the loss of S within a spacetime volume Vol dur-
ing a time dt is to expand, changing its volume by d(Vol). We note that large values for E; imply a
period resembling inflation. Other cosmological implications include the existence of macroscopic
domains in the Universe not having the symmetries observed in our neighbourhood. Particles within
such regions would not interact in familiar ways, for instance not feeling electromagnetic interactions
and supplying an explanation for Dark Matter (DM). The luminous parts of galaxies would occupy
regions corresponding to the “jammed", ordered phase of spacetime, domain states of ferromagnetic
type, like “crystal bubbles" within a glass-type, amorphous spacetime structure. For a solid-state
Physics analogy in the interdisciplinary spirit of this Conference, compare the galaxy distribution
within DM regions (for instance, see relevant pictures from NASA, ESA, C. Heymans, M. Gray,
STAGES Coll.(2008) ) with quartz (silicon crystal) distribution within silicon glass regions (see for
instance M. Chen, W. Xiao, X. Xie, E. Plan. Sc. Lett. 297 (2010) 306). An order-of-magnitude
estimate of the ratio R of crystal-to-glass-type volumes is given by R = 1 —exp(—AF/kgT), where AF
is the free energy gained by the system by being in the “crystal” state. It is possible that “spacetime”
nucleation continues today, implying a growth of the luminous-to-DM ratio on cosmological time-
scales. A detailed relevant analysis would allow the prediction of galactic DM concentrations and of
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the average structure of the underlying spacetime lattice. It would allow answering questions like “is
the structure of spacetime within the intergalactic voids of glass- or crystal-type?". Assuming that all
“crystal" domains are occupied by visible galaxies implies that R ~ 5%, while taking intergalactic
voids to be also “crystal"-like raises R to around 77%. Other possibilities include DM regions cor-
responding either to alternative E; symmetry breakings, or to denser “sphere packings" not linked to
a group’s root system. The latter would imply that our vacuum has already started decaying towards
a more stable configuration like the Leech lattice, leading to growing DM and shrinking luminous
domains.

Alternatively, in off-equilibrium phenomena of crystal and glass formation, the fluctuation-
dissipation theorem in fast transitions is violated, since the system does not have enough time to
relax to its new equilibrium, forcing us to consider “effective temperatures” T,y larger than the heat-
bath ones [18]. Here, R ~ 50% implies T,ss ~ 10T¢cpg, while R ~ 80% implies T,z ~ 5Tcpg. If
the universe expanded and cooled too fast to have relaxed to equilibrium, 7 for “crystal" formation
is larger than Tcpg. Such values of T,y are consistent with treating particles as topological or va-
cancy defects on the lattice background described above, analogous to positively-charged holes in an
electron sea or lattice, their number density d,, in the Universe being a function of enthalpy cost and
approximately equal to the ratio of their entropy S, ~ k510% to the Universe entropy S 5 ~ kg10'*
assuming a Bekenstein-bound saturation [19], 1.e. d, ~ S ,/Sp ~ 107 ~ exp (~H/kgT.ss) implying
that T,rs ~ 4.4T¢cpg. This result favours the characterization of intergalactic voids as “crystal-like".
Note that the discrepancy between Tcpg and T,y might be smaller if a more careful calculation of
H is performed. This approach has far-reaching implications on structure formation, consistent with
the view that stars are born within DM halos. It might lead to an understanding of the shape of spiral
galaxies on the basis of “helicoidal dislocations" in crystals. It might explain the large voids between
galactic clusters, which are usually found to be larger than what simulations suggest, since crystals
usually displace vacancies and other impurities towards boundaries of different phases and form va-
cancy clusters to minimize their energy. Here, the role of impurities is played by DM “amorphous”
regions containing small crystal “islands", i.e. galaxies, full of vacancies corresponding to elementary
particles. For a solid-state Physics analogy in the interdisciplinary spirit of this Conference, compare
the galaxy number density field (see for instance W. Shaap, PhD Thesis, U. Groningen 2007) with
vacancy clusters in copper (see for instance M. Kiritani, Jour. Nucl. Mat. 276 (2000) 41). Future
experiments could probe the spacetime structure within DM domains, or measure the energy release,
perhaps in the form of, hitherto unexplained, ultra-high energy cosmic rays, when the “crystal" forms.

Next, we discuss briefly quantization of our action. By having I'g X I'; emerge with lattice spacing
equal to Lppnck, one achieves a cellular decomposition of spacetime with a UV cut-off equal to Mpjnck
avoiding singularities plaguing quantum gravity. This might have a dramatic impact not only on the
general renormalization programme but also on black holes, the initial singularity of spacetime and
gravitational collapse, analogous to the false prediction of atom collapse before the advent of quantum
mechanics. In an approach close to spin networks and lattice Yang-Mills, we have lattice nodes
corresponding to 4d spacetime points, a “world crystal". On each node there is a fiber corresponding to
E, x E’, stemming from 14 compactified dimensions. This provides an understanding of Heisenberg’s
uncertainty principle, since a particle, seen as a vacancy defect, extends at least between 2 adjacent
nodes, reminding us of Wheeler considering particles as “quantum geometrodynamic excitons" [20].
Experiments around Mpjnck should distinguish such a spacetime fabric from models treating particles
as extended objects on a continuous background. Ideas along these lines might include far in the
future a gravitational analogue of Bragg spectroscopy probing the microstructure of spacetime.
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4 Discussion

A phenomenological issue related to the fermion content considered here is that it is usually associ-
ated with a large S parameter. However, it is possible that vertex corrections can drive the S parameter
close to zero [21]. On the other hand, LEP and Fermilab results at the 2 — 30 level suggest mass-
dependent anomalous quark couplings [22] and an excess of dijet plus W events [23], signals compat-
ible with quark-katoptron mixing and katoptron bound states. Moreover, assuming that this theory is
correct, recent LHC results regarding a new boson having a mass of around 125-6 GeV correspond to
the lightest member of a series of katoptronic mesons analogous to QCD or technicolor mesons. This
lightest meson, a “katoptronic pion" corresponding to the lightest katoptrons, is expected to have com-
paratively very small couplings to third-generation ordinary fermions, like the bottom and top quark,
due to the comparatively small mixing of the lightest katoptrons to third-generation ordinary fermions
[24]. To conclude, while waiting for new relevant results from the LHC, we exposed an attempt to
unify gauge with gravitational interactions using E¢ X E} emerging naturally from first principles. It
leads to coupling unification and to an understanding of the unification coupling strength from an in-
variant of the emergent symmetry group; it reproduces the symmetries, the family structure of matter
and the dimensionality of spacetime, not treating it as background; it solves the hierarchy problem
between the Planck, the weak and the cosmological constant scale. Moreover, it exhibits a unique
vacua sequence with cosmological implications like the interpretation of DM as having a topological
origin. Securing the above on a firm basis needs a new physical principle which is more fundamental
than a given spacetime or gauge symmetry and lies presumably at the heart of several other scien-
tific areas as well (like crystallography, cognitive science etc.); according to it, spacetime, matter, and
their symmetries, emerge naturally from a set of identical, distinct elementary fields connected to each
other optimally.
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