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Abstract

In a groundbreaking work, Duplantier, Miller and
Sheffield showed that subcritical Liouville quantum
gravity (LQG) coupled with Schramm-Loewner evolu-
tions (SLE) can be obtained by gluing together a pair
of Brownian motions. In this paper, we study the coun-
terpart of their result in the critical case via a limiting
argument. In particular, we prove that as one sends x’ |
4 in the subcritical setting, the space-filling SLE,, in
a disk degenerates to the CLE, (where CLE is confor-
mal loop ensembles) exploration introduced by Werner
and Wu, along with a collection of independent and
identically distributed coin tosses indexed by the branch
points of the exploration. Furthermore, in the same
limit, we observe that although the pair of initial Brow-
nian motions collapses to a single one, one can still
extract two different independent Brownian motions
(A, B) from this pair, such that the Brownian motion
A encodes the LQG distance from the CLE loops to
the boundary of the disk and the Brownian motion B
encodes the boundary lengths of the CLE, loops. In con-
trast to the subcritical setting, the pair (A, B) does not
determine the CLE-decorated LQG surface. Our paper
also contains a discussion of relationships to random
planar maps, the conformally invariant CLE, metric and
growth fragmentations.
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1 | INTRODUCTION

The most classical object of random planar geometry is probably the two-dimensional Brownian
motion together with its variants. Over the past 20 years, a plenitude of other interesting random
geometric objects have been discovered and studied. Among those we find Liouville quantum
gravity (LQG) surfaces [19] and conformal loop ensembles (CLE) [56, 61]. LQG surfaces aim to
describe the fields appearing in the study of 2D LQG and can be viewed as canonical models for
random surfaces. They can be mathematically defined in terms of volume forms [19, 31, 50] (used
in this paper), but recently also in terms of random metrics [17, 26]. CLE is a random collection
of loops that correspond conjecturally to interfaces of the g-state Potts model and the FK random
cluster model in the continuum limit (see, for example, [42]).

In this paper we study a coupling of LQG measures, CLE and Brownian motions, taking a
form of the kind first discovered in [18]. On the one hand we consider a ‘uniform’ exploration of

85UB017 SUOWILLOD) BAIERID) @|GeD1jdde aup Aq peuLA0B 818 SPPIE YO 138N JO S3|N1 104 ARIGIT BUIIUO /B]1M UO (SUORIPUCO-PUR-SLLBILIOD" AB | 1M A .G U UO//SANY) SUORIPUOD PUe SWS L 8U} 89S *[7202/80/TT] U0 ARiq1 8ulluO AB1IM ‘6892T SWII/ZTTT OT/I0p/W0d A8 1M AReIq 1 BUIIUO™20SUTRWIPUO //SdNY WO.y papeojumoq ‘T €20¢ ‘05LL697T



BROWNIAN HALF-PLANE EXCURSION AND CRITICAL LIOUVILLE QUANTUM GRAVITY | 443

CLE, drawn on top of an independent LQG surface known as the critical LQG disk. On the other
hand, we take a seemingly simpler object: the Brownian half-plane excursion. In this coupling one
component of the Brownian excursion encodes the branching structure of the CLE, exploration,
together with a certain (LQG surface dependent) distance of CLE, loops from the boundary. The
other component of the Brownian excursion encodes the LQG boundary lengths of the discovered
CLE, loops.

Our result can be viewed as the critical (x’ = 4) analog of Duplantier-Miller-Sheffield’s mating
of trees theorem for x” > 4, [18]. The original mating of trees theorem first observes that the quan-
tum boundary length process defined by a space-filling SLE,, (where SLE is Schramm-Loewner
evolutions) curve drawn on a subcritical LQG surface is given by a certain correlated planar Brow-
nian motion. Moreover, it says that one can take the two components of this planar Brownian
motion, glue each one to itself (under its graph) to obtain two continuum random trees and then
mate these trees along their branches to obtain both the LQG surface and the space-filling SLE
curve wiggling between the trees in a measurable way. This theorem has had far-reaching conse-
quences and applications, for example, to the study of random planar maps and their limits [23, 25,
30], SLE and CLE [3, 5, 20, 43], and LQG itself [4, 41]. See the survey [21] for further applications.

Obtaining a critical analog of the mating of trees theorem was one of the main aims of this
paper. The problem one faces is that the above-described picture degenerates in many ways as
%' | 4 (for example, the correlation of the Brownian motions tends to one and the LQG measure
converges to the zero measure). However, it is known that the LQG measure can be renormalized
in a way that gives meaningful limits [6], and the starting point of the current project was the
observation that the pair of Brownian motions can be renormalized via an affine transformation
to give something meaningful as well.

Still, not all the information passes nicely to the limit, and in particular extra randomness
appears. Therefore, our limiting coupling is somewhat different in nature to that of [18] (or [2]
for the finite volume case of quantum disks). Most notably, one of the key results of [2, 18] is that
the CLE decorated LQG determines the Brownian motions, and vice versa. In our case neither
statement holds in the same way; see Section 5.2.1 for more details. For example, to define the
Brownian excursion from the branching CLE, exploration, one needs a binary variable at every
branching event to decide on an ordering of the branches.

We believe that in addition to completing the critical version of Duplantier-Miller-Sheffield’s
mating of trees theorem, the results of this paper are intriguing in their own right. Moreover, as
explained below, this paper opens the road for several interesting questions in the realm of SLE
theory, about LQG-related random metrics, in the setting of random planar maps decorated with
statistical physics models, and about links to growth-fragmentation processes.

1.1 | Contributions

Since quite some setup is required to describe our results for k¥ = 4 precisely, we postpone the
detailed statement to Theorem 5.5. Let us state here a caricature version of the final statement.
Some of the objects appearing in the statement will also be precisely defined only later, yet should
be relatively clear from their names.

Theorem 1.1. Let

* Lqg be the field of a critical quantum disk together with associated critical LQG measures (see
Section 4.1);
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* cle denote the uniform space-filling SLE, in the unit disk parameterized by critical LQG mass,
which is defined in terms of a uniform CLE, exploration plus a collection of independent coin
tosses (see Section 2.1.5);

* and be describe a Brownian (right) half-plane excursion (A, B) (see Section 4.3).

Then one can couple (cle, Lqg, be) such that cle and lqq are independent, A encodes a certain quan-
tum distance for CLE, loops from the boundary and B encodes the quantum boundary lengths of the
CLE loops. Moreover (cle, Lqg) determines be, but the opposite does not hold.

In terms of limit results, we, for example, prove the following:

* We show thata SLE,,(x’ — 6) in the disk converges to the uniform CLE, exploration introduced
by Werner and Wu [64], asx’ | 4 (Proposition 2.6). Here an extra level of randomness appears in
the limit, in the sense that new CLE, loops in the exploration are always added at a uniformly
chosen point on the boundary, in contrast to the ¥’ > 4 case where the loops are traced by a
continuous curve.

» Using a limiting argument, we also show in Section 3 how to make sense of a ‘uniform’
space-filling SLE, exploration, albeit no longer defined by a continuous curve. Again extra ran-
domness appears in the limit: contrary to the ¥’ > 4 case, the nested uniform CLE, exploration
does not uniquely determine this space-filling SLE,.

 Perhaps less surprisingly but nonetheless not without obstacles, we show that the nested CLE,,
in the unit disk converges to the nested CLE, with respect to Hausdorff distance (Proposi-
tion 2.18). We also show that after dividing the associated quantum gravity measures by (4 — 2y),
a y-LQG disk converges to a critical LQG disk.

In terms of connections and open directions, let us very briefly mention a few examples and
refer to Section 5.2.2 for more detail.

* First, as stated above in Theorem 1.1, (cle, [qg) determines be, but the opposite does not hold.
A natural question is whether there is another natural mating of trees type theorem for ¥ = 4
where one has measurability in both directions.

* Second, our coupling sheds light on the recent work of Aidékon and Da Silva [1] who identify a
(signed) growth fragmentation embedded naturally in the Brownian half-plane excursion. The
cells in this growth fragmentation correspond to very natural observables in our exploration.

* Third, as we have already mentioned, one of the coordinates in our Brownian excursion encodes
a certain LQG distance of CLE, loops from the boundary. It is reasonable to conjecture that this
distance should be related to the CLE, distance defined in [64] via a Lamperti transform.

» Fourth, several interesting questions can be asked in terms of convergence of discrete models.
Critical FK-decorated planar maps and stable maps are two immediate candidates.

1.2 | Outline

The rest of the paper is structured as follows. In Section 2, after reviewing background material
on branching SLE and CLE, we will prove the convergence of the SLE,,(x’ — 6) exploration in
the disk to the uniform CLE, exploration, and also show the convergence of the nested CLE with
respect to Hausdorff distance. In Section 3, we use the limiting procedure to give sense to a notion

fWe thank N. Curien for explaining this relation to us.
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of space-filling SLE,. In Section 4, we review the basics of LQG surfaces and of the mating of
trees story, and prove convergence of the Brownian motion functionals appearing in [2, 18] after
appropriate normalization. We also finalize a certain proof of Section 3, which is interestingly
(seemingly) much easier to prove in the mating of trees context. Finally, in Section 5 we conclude
the proof of joint convergence of Brownian motions, space-filling SLE and LQG. This allows us
to state and conclude the proof of our main theorem. We finish the paper with a small discussion
on connections, and an outlook on several interesting open questions.
Throughout, y € (\/E, 2] is related to parameters x, x’, € by

x=y% « =16/x, €=2-7. 1.1

2 | CONVERGENCE OF BRANCHING SLE,, AND CLE,, AS«’ | 4
2.1 | Background on branching SLE and conformal loop ensembles
2.1.1 | Spaces of domains

Let D be the space of D = {D, ; t > 0} such that

» foreveryt > 0,0 € D, C D and D; is simply connected planar domain;

* D,CcD forall0<s <t < oo;

 for every t > 0, if f; = f;[D] is the unique conformal map from D to D, that sends 0 to 0 and
has f(0) > 0, then f](0) = CR(0;D,) = e™".

We also write g, = g;[D] for the inverse of f,.

Recall that a sequence of simply connected domains (U"),,, containing 0 are said to converge
to a simply connected domain U in the Carathéodory topology (viewed from 0) if we have f;» —
fu uniformly in rD for any r < 1, where f;» (respectively, f;;) are the unique conformal maps
from D to U" (respectively, U) sending 0 to 0 and with positive real derivative at 0. Carathéodory
convergence viewed from z # 0 is defined in the analogous way.

We equip D with the natural extension of this topology: that is, we say that a sequence (D"),,,
in D converges to Din Difforanyr < 1and T € [0, c0)

sup sup |f{(z) - f,(2)] > 0 D

te[0,T] zerD

asn — oo, where f}' = f,[D"]and f, = f,[D]. With this topology, D is a metrizable and separable
space; see, for example, [37, Section 6.1].

2.1.2 | Radial Loewner chains
In order to introduce radial SLE, we first need to recall the definition of a (measure-driven) radial

Loewner chain. Such chains are closely related to the space D, as we will soon see. If 1 is a measure
on [0, c0) X dD whose marginal on [0, c0) is Lebesgue measure, we define the radial Loewner
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equation driven by 4 via

_ u + g4(z) ) B
g:(2) = /[O’t]an gS(Z)Lt——gs(Z) dA(s,u); 9(2) =z (2.2)

forz € Dandt > 0.Itis known (see, for example, [37, Proposition 6.1]) that for any such 4, (2.2) has
aunique solution g,(z) for each z € D, defined until time ¢, := sup{t > 0 : ¢,(z) € D}. Moreover,
ifonedefinesD, :={z €D : t, < t},thenD = {D,, t > 0}is an element of D, and g, from (2.2) is
equal to g,[D] = (f,[D])~! for each t. We call D the radial Loewner chain driven by A.

Note that if one restricts to measure of the form A(A, dt) = &y ()(A) dt with W : [0, 00) — 6D
piecewise continuous, this defines the more classical notion of a radial Loewner chain. In this
case we can rewrite the radial Loewner equation as

W, +g,(2)

; zeD, t<t, :=inf{s : g(z) =W} (2.3)
W, —g,(2) S S

0,9,(z) = g,(2)

and we refer to the corresponding Loewner chain as the radial Loewner evolution with driving
function W. In fact, this is the case that we will be interested in when defining radial SLE,, (x” — 6)
forx' > 4.

Remark 2.1. Let us further remark that if (1) are a sequence of driving measures as above, such
that A" converges weakly (that is, with respect to the weak topology on measures) to some 1 on
[0,T] x D for every T, then the corresponding Loewner chains (D"), D are such that D" — Din D
[37, Proposition 6.1]. In particular, one can check that if 1"(A, dt) = Syn()(A) dt and A(A, dt) =
S (1) (A) dt for some piecewise continuous functions W" : [0, 00) — dD, and W : [0, c0) — ID
then the corresponding Loewner chains converge in D ifforany T > Ofixedand F : [0,T] X D —
R bounded and continuous, we have

T T T
ANF) = /0 /aum F(u, 0)8yn(w)dt = /0 FW"(t),t)dt > A(F) = /0 F(W(),t)dt (2.4)

asn — oo.

Remark 2.2. In what follows we will sometimes need to consider evolving domains{D; ; t € [0, S]}
that satisfy the conditions to be an element of D up to some finite time S. In this case we may
extend the definition of D, for t > S by setting D, = f5(e~~5)D), where fs : D — Dy is the
unique conformal map sending 0 — 0 and with f g(O) = ¢~5.With this extension, D = {D, ; ¢ > 0}
defines an element of D.

If we have a sequence of such objects, then we say that they converge to a limiting object in D
if and only if these extensions converge. We will use this terminology without further comment
in the rest of the paper.

213 | Radial SLE, (¥’ — 6)

Let ¥’ € (4,8), and recall the relationship (1.1) between ¥’ € (4,8) and ¢ € (0,2 — \/E). Although
the use of ¢ is somewhat redundant at this point, we do so to avoid redefining certain notations
later on.
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Let B be a standard Brownian motion, and let 65 = {(6;), ; ¢ > 0} be the unique B-measurable
process taking values in [0, 2], with (6;), = x € [0, 2], which is instantaneously reflecting at
{0, 27}, and that solves the SDE

- )

d(©5), = V'dB, + = 2 cot <%> dt (2.5)

on time intervals for which (67), # {0, 27}. The existence and pathwise uniqueness of this process

is shown in [56, Propositions 3.15 and 4.2]. It follows from the strong Markov property of Brownian

motion that 67 has the strong Markov property. We let z{ be the first hitting time of 27 by &;.
Associated to 68, we can define a process W¢, taking values on D, by setting

t
(W), = exp <1((6 ) — / cot ((65);/2) ds)) t>0. (2.6)

This indeed gives rise to a continuous function W in time (see, for example, [45, 56]) and using
this as the driving function in the radial Loewner equation (2.3) defines a radial SLE,,(x’ — 6) in D
from 1 to 0, with a force point at e** (recall that (65)0 = x). We denote this by (D7) = {(Dg), ; ¢ > 0}
which is an element of D. In fact, there almost surely exists a continuous non-self-intersecting
curve g : [0, 00) — D such that (Dp);, is the connected component of D \ 750, ¢] containing 0 for
all £ [38, 51].

Usually we will start with x = 0, and then we say that the force point is at 17: everything in
the above discussion remains true in this case; see [56]. In this setting we refer to Dg and/or 7)8
(interchangeably) as simply a radial SLE,,(x’ — 6) targeted at 0.

The time 7 corresponds to the first time that 0 is surrounded by a counterclockwise loop; see
Figure 3. To begin, we will just consider the SLE stopped at this time. We write

- {(D )[ s 0} - {(D )TEAt H O}

for the corresponding element of D (see Remark 2.2).

2.1.4 | An approximation to radial SLE,,(x' — 6)

We will use the following approximations (Df)’”) nen to Dy in D (in order to show convergence to
the CLE, exploration). Fixing ¢, and taking the processes 67 and W as above, the idea is to remove
intervals of time where 65 is making tiny excursions away from 0, and then define D;" to be the
radial Loewner chain whose driving function is equal to W¢, but with these times cut out.

More precisely, we set T, := 0; and inductively define

RE" = inf{t > TS":(65), > 27"
ST" = supft < R}":(6)), = O}
TY" = inf{t > R7":(6(), = O};

Ry" =inf{t > Tj’”:(ef))t =27
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448 ARU ET AL.

S3" = sup{t < RS":(6;), = 0}

TS" = inf{t > RS":(65), = 0%

etc. so the intervals [S;", ;"] for i > 1 are precisely the intervals on which & is making an excur-
sion away from 0 whose max1mum height exceeds 27". Call the ith one of these excursions ei
Also set A>" :=sup{j : Sj’” < tf}and

lE,Yl

. g,n &N . JEN _qeh . El’l_ g,n en
.—l — S fori <A ,lAE,,—T Spyen s Ly —ZKJ\IIJ forl <i<g A

Now we define

W™, =W §senpeorny fort € [L7",Lo") and 1 < i <A™,

and set D;" to be the radial Loewner chain with driving function W". This is defined up to time
. E n
7" 1= Lyen- o
We will show in Section 2.2 that D" — Df) in D asn — oo (see Lemma 2.10).

2.1.5 | Uniform CLE, exploration targeted at the origin

Now suppose that we replace x” with 4, so that the solution 8, of (2.5) is simply a (speed 4) Brow-
nian motion reflected at {0, 27}. Then the integral in (2.6) does not converge, but it is finite for
any single excursion of 6,." For any n € N if we define 75, A" and (S!, T, 17, L"), as in the
sections above, we can therefore define a process Dj in D via the following procedure:

* sample random variables (X[");>; uniformly and independently on 0D;
* define (W), for t € [0,7() by setting

t+S™
(W), = X" exp <i((@0)t+sin - /s" cot((6y)s/2) ds)> 2.7)

i

forte[L” ,L)and 1 <i < A%
* let D" be the radial Loewner chain with driving function W{.

With these definitions we have that Dg = D, in D as n — oo, where the limit process is the
uniform CLE, exploration introduced in [64], and run until the outermost CLE, loop surrounding
0 is discovered.

More precisely, the uniform CLE, exploration toward 0 in D can be defined as follows. One
starts with a Poisson point process {(y;,¢;); j € J} with intensity given by M times Lebesgue
measure, where M is the SLE, bubble measure rooted uniformly over the unit circle; see [60,
Section 2.3.2]. In particular, for each j, y; is a simple continuous loop rooted at some point in dD.
We define int(y ;) to be the connected component of D \ y; that intersects D only at the root, and
set 7 = inf{t : t = ¢; with 0 € int(y;)} so that for all ¢; < 7, int(y;) does not contain the origin.
Therefore, for each such j we can associate a unique conformal map f; from D to the connected

 That is, if A is the Brownian excursion measure then the integral is finite for 1-almost all excursions; see [64, Section 2].
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component of D \ y; containing 0 to D, such that f;(0) = 0 and f ;.(0) > 0. For any ¢ < 7t itis then
possible to define (for example, by considering only loops with some minimum size and then let-
ting this size tend to 0, see again [60, 64]) f; to be the composition o <t f o where the composition
is done in reverse chronological order of the functions ¢;. The process

D t<t}i={f,(D); t <7} (2.8)

is then a process of simply connected subdomains of D containing O, which is decreasing
in the sense that D; C D; for all 0 < s <t <. This is the description of the uniform CLE,
exploration toward 0 most commonly found in the literature. Note that with this definition,
time is parameterized according to the underlying Poisson point process, and entire loops are
‘discovered instantaneously’.

Since we are considering processes in D, we need to reparameterize D’ by — log CR seen from
the origin. By definition, for each j € J, y; is a simple loop rooted at a point in 0D that does not
surround 0. If we declare the loop to be traversed counterclockwise, we can view it as a curve
¢t [0, f ;.(O)] — D parameterized so that CR(0; D \ ¢ j) = et for all t (the choice of direction
means that int(y ;) is surrounded by the left-hand side of ¢;). We then define D to be the unique
process in D such that for each j € Jwitht; < 7,and allt € [-1log f {j(O), —log f ;}_ (0) —log f ;(0)],

D, is the connected component of f [j(ID \ ¢;[0,¢ —log f; (0)]) containing 0. In other words, D
J

is a reparameterization of D’ by —log CR seen from 0, where instead of loops being discovered
instantaneously, they are traced continuously in a counterclockwise direction. The process is
defined until time 7, := —1log CR(0; f,(D \ v7,)), at which point the origin is surrounded by a
loop (the law of this loop is that of the outermost loop surrounding the origin in a nested CLE,
in D).

With this definition, the same argument as in [64, Section 4] shows that Dg => DyginDasn —
oco. Moreover, this convergence in law holds jointly with the convergence 7 = 7, (in particular, 7,
has the law of the first time that a reflected Brownian motion started from 0 hits 7, as was already
observed in [52]).

The CLE, exploration can be continued after this first loop exploration time 7, by iteration.
More precisely, given the process up to time 7,,, one next samples an independent CLE, explo-
ration in the interior of the discovered loop containing 0, but now with loops traced clockwise
instead of counterclockwise. When the next-level loop containing 0 is discovered, the procedure
is repeated, but going back to counterclockwise tracing. Continuing in this way, we define the
whole uniform CLE, exploration targeted at 0: D, = {(D,); ; t > 0}. Note that by definition D, is
then just the process D), stopped at time 7.

Remark 2.3. The ‘clockwise/counterclockwise’ switching defined above is consistent with what
happens in the SLE,,(x’ — 6) picture when x’ > 4. Indeed, it follows from the Markov property
of 68 (in the ¥’ > 4 case) that after time T(E), the evolution of 6 until it next hits 0 is independent
of the past and equal in law to (27 — Gg(t))telogfg }- This implies that the future of the curve
after time 7; has the law of an SLE,,(x’ —6) in the connected component of the remaining
domain containing 0, but now with force point starting infinitesimally counterclockwise from
the tip, until 0 is surrounded by a clockwise loop. This procedure alternates, just as in the x’ = 4
case.

8519017 SUOWIWOD aAITeaID 3|qedt|dde ayy Aq peusenob ae sspnte YO ‘8sn Jo S9N Joy Arig1T8uljUQ /8|1 UO (SUonIpUOD-pUR-SWBIALI0D A8 | 1M Ae.q 1 pUlUO//:SdNy) SUONIPUOD pUe WIS | 8U1 89S [7202/80/TT] U0 ARliqi 8uluO AB|IM ‘6892T SW|(ZTTT 0T/I0P/WO00" A8 1M AReIq I PUIUO"D0SYRWPUO|//:Sdny WOy pepeoumoq ‘T ‘€202 ‘0S.L69VT



450 | ARU ET AL.

2.1.6 | Exploration of the (nested) CLE

In the previous subsections, we have seen how to construct SLE,,(x’ — 6) processes, denoted by
Df (e = e(x")) from 1to 0 in D, and that these are generated by curves 7°. We have also seen how
to construct a uniform CLE, exploration, D,,, targeted at O in D. The 0 in the subscripts here is
to indicate that O is a special target point. But we can also define the law of an SLE,,(x’ — 6), or a
CLE, exploration process, targeted at any point z in the unit disk. To do this we simply take the
law of $(Dg) or ¢(Dy), where ¢ : D — D is the unique conformal map sending 0 to z and 1 to 1.
We will denote these processes by (D¢), D, where the (D¢) are also clearly generated by curves 2
for € > 0. By definition, the time parameterization for D is such that —log CR(z; (D%),) = t for
all t, z, e (similarly for D,).

In fact, both SLE,,(x’ — 6) and the uniform CLE, exploration satisfy a special target invariance
property; see, for example, [53] for SLE,,(x’ — 6) and [64, Lemma 8] for CLE,. This means that
they can be targeted at a countable dense set of point in D simultaneously, in such a way that for
any distinct z, w € D, the processes targeted at z and w agree (modulo time reparameterization)
until the first time that z and w lie in different connected components of the yet-to-be-explored
domain. We will choose our dense set of points to be Q : = Q2 N D, and for € > 0 refer to the cou-
pled process (D%),co (or (177),c0) as the branching SLE,, in D. Similarly, we refer to the coupled
process (D,),<¢ as the branching CLE, exploration in D.

Note that in this setting we can associate a process 6 to each z € Q: we consider the image of
D¢ under the unique conformal map from D — D sending z = 0 and 1 ~ 1, and define 6 to be
the unique process such that this new radial Loewner chain is related to 6¢ via Equations (2.6) and
(2.3). Note that 6 has the same law as 6 for each fixed z (by definition), but the above procedure
produces a coupling of {6 ; z € Q}.

We will use the following property connecting chordal and radial SLE (that is closely related to
target invariance).

Lemma 2.4 [53, Theorem 3). Consider the radial SLE,,(x’' — 6) with force point at e~'* for x €
(0, 27), stopped at the first time that e~'* and 0 are separated. Then its law coincides (up to a time
change) with that of a chordal SLE,, from 1 to €'* in D, stopped at the equivalent time.

We remark that from (7%) <, we can almost surely define a curve »¢, for any fixed a € D, by tak-
ing the almost sure limit (with respect to the supremum norm on compacts of time) of the curves
nflk, where a; € Q isasequence tending to a ask — 0. This curve has the law of an SLE,, (k' — 6)
from1to a in D [45, Section 2.1]. Let us caution at this point that such a limiting construction does
not work simultaneously for all a. Indeed, there are almost surely certain exceptional points a,
the set of which almost surely has Lebesgue measure zero, for which the limit of ngk does not exist
for some sequence a; — a; see Figure 4.

Let us now explain how, for each x’ € (4, 8), we can use the branching SLE,, to define a (nested)
CLE,.. The conformal loop ensemble CLE,, in D is a collection of non-crossing (nested) loops in the
disk, [61], whose law is invariant under Mobius transforms D — D. The ensemble can therefore
be defined in any simply connected domain by conformal invariance, and the resulting family of
laws is conjectured (in some special cases proved, for example, [8, 16, 22, 33, 63]) to be a universal
scaling limit for collections of interfaces in critical statistical physics models.

For z € Q, the procedure to define Ei, the outermost CLE,, loop containing z, goes as follows.

e Let 7:; be the first time that G; hits 27, and let rf) . be the last time before this that G; is equal to
0.
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FIGURE 1 A simplistic sketch of the correspondence in Theorem 1.1. On the left: all the outermost CLE,
loops discovered by the space-filling SLE, before the dashed loop surrounding z is discovered, together with all of
the second-level nested CLE, loops discovered before the dotted loop surrounding z is discovered. On the right:
the corresponding half-planar Brownian excursion, with the coordinate axes switched for ease of viewing. The
subexcursion marked by the dashed (respectively, dotted) line, that is, the portion of Brownian path starting and
ending at the endpoints of this line ‘-’ corresponds to the exploration within the dashed (respectively, dotted)
loop. The lengths of these lines are the LQG lengths of the corresponding loops, and the duration of the
subexcursions are their LQG areas. The time that z is visited is marked by a dot, and the time that the dotted loop
is discovered is marked by a cross. When the dotted loop is discovered, a coin is tossed to determine which of the
two disconnected yet-to-be-explored domains is visited first by the space-filling SLE,; in this example, the
component containing z is visited second; see also Figure 2.

FIGURE 2 Anillustration of the subset of the unit disk, shaded gray, which has been explored by the
space-filling SLE, at two different times. On the left: at the time that the second-level CLE, loop surrounding z is
discovered (marked by a cross on the right-hand side of Figure 1). On the right: at the time that z is reached
(marked by a dot on the right-hand side of Figure 1). Note that, although this is not apparent from the sketch, the
explored subset of the unit disk at any given time is actually a connected set.
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(9@

FIGURE 3 From left to right, the process 6; does the following at the illustrated time: hits 0, hits 0, hits
neither 0 nor 27, hits 277. The rightmost image is, therefore, an illustration of the time 7.

3

(T

e
— e (10, 7%])

FIGURE 4  On the left: the curve g (in blue) is run up to time 7§ | (the last time that 6§ hits 0 before hitting
27). Point 770(1'00) is defined to be o] and we have that 7 ([0, T4, o)) = 77 ([0 7;]) for some time 7j. On the right: the
outermost CLE,, loop L{ containing 0 (marked in red) is defined to be' e ([T o0]). Note that we have a choice
about how to define ¢, : if we take it to be a limit of n where a; — 0 along the dotted line, this will be different
to if a; — op along the ‘dashed line. We choose the def1n1t10n that makes 0 into a double point for 7? s

* Letof =ni(z ). Infact, point of is one of the exceptional points for which the limit of 775 does
not exist for all sequences a; — oE so it is not immediately clear how to define 77 < see Flgure 4.

However, the limit is well defined if we insist that the sequence a;, — of is such that 0 and a;
are separated by 7 at time ¢ for each k.
* Define 77 to be the limit of the curves 77 ask — oo.In particular the condition on the sequence

ay means that of is almost surely a double point of 77 . With this definition of n 2 it follows
that

n: ([0, T(E),Z]) = 772;([0,?;]) almost surely for some 7, > 0.

¢ Set £ 1= ngi([%';,oo)).
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We write B for the connected component of D \ £{ containing z: note that this is equal to
(D¢ )T We will call this the (outermost) CLE,, interior bubble containing z.

We define the sequence of nested CLE,, loops (L ) for i > 1 by iteration (so £ =: L? ), and
denote the corresponding sequence of nested domalns (interior bubbles) containing z by (BZ Dis1-
More precisely, the ith loop is defined inside B, | in the same way that the first loop is defined
inside D, after mapping ]3’E _, conformally to D and considering the curve n:([7%, o)) rather than
;-

The uniform CLE, exploration defines a nested CLE, in a similar but less complicated manner;
see [64]. For any z € Q, to define £, (the outermost CLE, loop containing z) we consider the
Loewner chain D, and define the times 7, and 7, , (according to 6,) as in the k' > 4 case. Then
between times 7, , and 7, the Loewner chain D, is tracing a simple loop — starting and ending
at a point o,. This loop is what we define to be £,. We define B, to be the interior of £,: note that
this is also equal to (D), _. Finally, we define the nested collection of CLE, loops containing z and
their interiors by iteration, denoting these by (B, ;, £, ;)5 (S0 B,; :=B,and L, :=L,).

2.1.7 | Space-filling SLE

Now, for x’ € (4,8) we can also use the branching SLE,, (1%),co, to define a space-filling curve
7 known as space-filling SLE,,. This was first introduced in [18, 39]; see also [10, Appendix A.3]
for the precise definition of the space-filling loop that we will use. The presentation here closely
follows [21].

In our definition, the branches of (), are all SLE,/(x’ — 6) processes started from point
1, and with force points initially located infinitesimally clockwise from 1. This means that the
associated space-filling SLE,, will be a so-called counterclockwise space-filling SLE,, loop from 1
tolinD."

Given an instance (7?),<¢ of a branching SLE,,, to define the associated space-filling SLE,,, we
start by defining an ordering on the points of Q. For this we use a coloring procedure. First, we
color the boundary of D blue. Then, for each z € Q, we can consider the branch 772 of the branch-
ing SLE,, targeted toward z. We color the left-hand side of 7 red, and the right-hand side of 7¢
blue. Whenever 7 disconnects one region of D from another, we can then label the resulting con-
nected components as monocolored or bicolored, depending on whether the boundaries of these
components are made up of one or two colors, respectively.

For z and w distinct elements of Q, we know (by definition of the branching SLE) that n; and
nfu will agree until the first time that z and w are separated. When this occurs, it is not hard to
see that precisely one of z or w will be in a newly created monocolored component. If this is z we
declare that z < w, and otherwise that w < z. In this way, we define a consistent ordering < on
Q; see Figure 5.

It was shown in [39] that there is a unique continuous space-filling curve 7, parameterized by
Lebesgue area, which visits the points of Q in this order. This is the counterclockwise space-filling
SLE,, loop (we will tend to parameterize it differently in what follows, but will discuss this later).
We make the following remarks.

 Variants of this process, for example, chordal/whole-plane versions, a clockwise version, and version with another
starting point, can be defined by modifying the definition of the branching SLE; see, for example, [2, 21].
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FIGURE 5 Constructing the ordering from the space-filling SLE,,. When z and w, are separated, the
connected component containing z has entirely blue boundary, while the connected component containing w,
has red and blue on its boundary = z comes before w, in the ordering. By contrast, when z and w, are separated,
w, is in a monocolored component and z is not, which implies that z comes after w, in the ordering. So

w, < z < w, in this example.

* We can think of #® as a version of ordinary SLE,, that iteratively fills in bubbles, or disconnected
components, as it creates them. The ordering means that it will fill in monocolored components
first, and come back to bicolored components only later.

* The word counterclockwise in the definition refers to the fact that the boundary of D is covered
up by 5° in a counterclockwise order.

2.2 | Convergence of the SLE, (x’ — 6) branches

In this subsection and the next, we will show that for any z € Q, we have the joint convergence,
inlawasx’ | 4 of

* the SLE,,(x’ — 6) branch toward z to the CLE, exploration branch toward z; and
* the nested CLE,, loops surrounding z to the nested CLE, loops surrounding z.

The present subsection is devoted to proving the first statement.

Let us assume without loss of generality that our target point z is the origin. We first consider
the radial SLE,,(x’ — 6) branch targeting 0, DZ, up until the first time 7; that 0 is surrounded by
a counterclockwise loop. The basic result is as follows.

Proposition 2.5. (D, 7¢) = (Dy,7p)in DX Rase | 0.

By Remark 2.3 and the iterative definition of the CLE, exploration toward 0, the convergence
for all time follows immediately from the above.
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Proposition 2.6. D; = D, inDase | 0.

Our proof of Proposition 2.5 will go through the approximations Df)’" and Dg. Namely, we will
show that for any fixed level n of approximation, Df)’” — Df ase | 0, equivalently x’ | 4. Broadly
speaking, this holds since the macroscopic excursions of the underlying processes 6; converge,
and in between these macroscopic excursions we can show that the location of the tip of the curve
distributes itself uniformly on the boundary of the unexplored domain. We combine this with the
fact that the approximations Dg’” converge to Df) as n — oo, uniformly in ¢, to obtain the result.

The heuristic explanation for the mixing of the curve tip on the boundary is that the force
point in the definition of an SLE,,(x’ — 6) causes the curve to ‘whizz’ around the boundary more
and more quickly as x” | 4. This means that in any fixed amount of time (for example, between
macroscopic excursions), it will forget its initial position and become uniformly distributed in the
limit. Making this heuristic rigorous is the main technical step of this subsection, and is achieved
in Section 2.2.3.

2.2.1 | Excursion measures converge as k¥’ | 4

The first step toward proving Proposition 2.5 is to describe the sense in which the underlying
process 6 for the SLE,,(x’ — 6) branch converges to the process 6, for the CLE, exploration. It is
convenient to formulate this in the language of excursion theory; see Lemma 2.8.

To begin we observe, and record in the following remark, that when 9(5) is very small, it behaves
much like a Bessel process of a certain dimension.

Remark 2.7. Suppose that (67), = 0. By Girsanov’s theorem, if the law of {(Gg)t ; t > 0}is weighted
by the martingale

ZE ’_ t 95
exp (ZtE - { >[> ) Zp = x —4 1 _ 1cot ©0)s dB,,
2 Ve b \@), 2\ 2

the resulting law of {(67); ; ¢ < 7} is that of \/? times a Bessel process of dimension §(x') = 3 —
8/x’. Note that for y € [0, 27), (1/y — (1/2) cot(y/2)) is positive and increasing, and that for y €
[0,7],y/12 < (1/y — (1/2) cot(y/2)) < y/6, so in particular the integral in the definition of Z; is
well defined.

Now, observe that by the Markov property of 65, we can define its associated (infinite) excursion
measure on excursions from 0. We define m® to be the image of this measure under the operation
of stopping excursions if and when they reach height 27.

For n > 0, we write m¢, for m® restricted to excursions with maximum height exceeding 27",
and normalized to be a probability measure. It then follows from the strong Markov property that
the excursions of 6] during the intervals [S;", T;""] are independent samples from m¢, and A="
is the index of the first of these samples that actually reaches height 277. We also write m for the
measure m° restricted to excursions that reach 27, again normalized to be a probability measure.

Finally, we consider the excursion measure on excursions from 0 for Brownian motion. We
denote the image of this measure, after stopping excursions when they hit 27z, by m. Analogously
to above, we write m,, for m conditioned on the excursion exceeding height 27". We write m for
m conditioned on the excursion reaching height 27.
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The measures m, (im®), are supported on the excursion space
E ={e € C(R,,[0,27]); e(0) = 0,$(e) :=sup{s > 0 : e(s) € (0,27)} € (0, )}
on which we define the distance

dg(e,e’) = sup le(t) — €' (O] + 1£(e) — SN

Lemma 2.8. Foranyn >0, m; — m,, in law as € — 0, with respect to dg. The same holds with
(mS,m,) in place of (m{, m,,).

Proof. Fora > 0,set E¢ = {e € C(R,,[0,27 — a]); e(0) = 0,$%(e) :=supfs > 0 : e(s) € (0,27 —
a)} € (0, )}, and equip it with the metric dga(e,e’) = sup,, le(t) — ’(t)| + |$%(e) — §(e’)|. Set
8§ = 6(x/(¢)), recalling the definition §(x’) = 8 — 3/x’. We first state and prove the analogous
result for Bessel processes. [l

Lemma 2.9. Let b® be a sample from the Bessel-6 excursion measure away from 0, conditioned on
exceeding height 27", and stopped on the subsequent first hitting of O or 2 — a. Let b be a sample
from the Brownian excursion measure with the same conditioning and stopping.” Then forany a > 0,
b*=>base | 0, inthe space (E%, dga).

Proof of Lemma 2.9. For any ¢ € (0,2 — \/E), b® can be sampled (see [18, Section 3]) by

« firstsampling X¢ from the probability measure on [27", co) with density proportional to x°~3dx;

* then running a Bessel-(4 — &) process from 0 to X¢;

* stopping this process at 2z — a if X¢ > 27 — a; or

* placing it back to back with the time reversal of an independent Bessel-(4 — §) from 0 to X¢ if
Xt <2mr—a.

Since the time for a Bessel-(4 — §) to leave [0, a’] converges to 0 as a’ — 0 uniformly in § < 3/2,
and for any a’ < 27", a Bessel-(4 — &) from a’ to y converges in law to a Bessel—3 from a’ to y as
%’ | 4, uniformly in y € [27", 27}, this shows that b¢ = b in (E%, dga). O

Now we continue the proof of Lemma 2.8. Recalling the Radon-Nikodym derivative of
Remark 2.7 (note that ¥’ —4 — 0 as ¢ | 0), we conclude that if ef and e are sampled from m;,
and m,,, respectively, and stopped upon hitting {0, 2r — a} for the first time after hitting 27", then
e > einlawase | 0, in the space (E%, dga).

To complete the proof, it therefore suffices to show (now without stopping e® or e) that

¢(ef) —¢%ef) > 0 and sup lef(t) — 27| — 0
te(§a(ef),f(e))

as a — 0, uniformly in € (small enough). But by symmetry, if {%(e®) < {(ef) then 27 — e® from
time ¢%(e) onward has the law of 6¢ started from a and stopped upon hitting 0 or 27. Asa — 0
the probability that this process remains in [0, 7] tends to 1 uniformly in €, and then we can use

Of course this depends on a, but we drop this from the notation for simplicity.
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the same Radon-Nikodym considerations to deduce the result. The final statement of Lemma 2.8
can be justified in exactly the same manner.

2.2.2 | Strategy for the proof of Proposition 2.5

With Lemma 2.8 in hand the strategy to prove Proposition 2.5 is to establish the following two
lemmas.

Lemma 2.10. Let F be a continuous bounded function on D X [0, c0). Then [E[F(DS’",TE’”)] -
E[F(D§, 75)] as n — oo, uniformly in k' € (4,8), equivalently ¢ € (0,2 — \/5).

Proof. Fix ¢ as above, and let us assume that the processes Dg’" as n varies and Dj are coupled
together in the natural way: using the same underlying 67 and W{. By Remark 2.1, in particular
(2.4), it suffices to prove that

P (2.9)

in probability as n — co, uniformly in e. In other words, to show that the time spent by 6 in
excursions of maximum height less than 27" (before first hitting 277) goes to 0 uniformly in € as
n — oo.

To do this, let us consider the total (that is, cumulative) duration C%" of such excursions of 68,
before the first time o¢ that 6] reaches 7. The reason for restricting to this time interval is to use
the final observation in Remark 2.7: that the integrand in the definition of Z¢ is deterministically
bounded up to time o¢. This will allow us to transfer the question to one about Bessel processes.
And, indeed, since the number of times that 6(5) will reach 7 before time T(E) is a geometric random
variable with success probability uniformly bounded away from 0 (due to Lemma 2.8), it is enough
to show that C*" tends to 0 in probability as n — oo, uniformly in €.

For this, we first note that by Remark 2.7, for any a, S > 0 we can write

P(C™" > @) < P(6° > 8) + QF(eXp(—ZE. + 3(Z%)oe) Vycens oy lioeas)):

where Z¢ is as defined in Remark 2.7 and under Q¢, 9(5) has the law of \/P times a Bessel process
of dimension 8(x’) = 3 — 8/x’. Since P(c® > S) — 0 as S — oo, uniformly in ¢ (this is proved,
for example, in [52]), it suffices to show that for any fixed S, the second term in the above
equation tends to O uniformly in € as n — oo.

To this end, we begin by using Cauchy-Schwarz to obtain the upper bound

2
@E(GXP(—Zf,z + %<ZE>051]{CEv">a}1]{UE<S})) < @E(EXP(_zzgz + <Z€>O’f)ﬂ{05<S})@E(H{Cf'">a})'

Then, because we are on the event that o° < S, and the integrand in the definition of Z¢ is deter-
ministically bounded up to time ¢¢, we have that Q*(exp(—2Z¢. + (Z°)5:)ljgecsy) < € for some
constant ¢ = ¢(S) not depending on €. So it remains to show that the Q° expectation of C*", goes
to 0 uniformly in € as n — 0.
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Recall that under Q°, 6] has the law of \/P times a Bessel process of dimension §(x’) = 3 —
8/x’. Now, by [47, Theorem 1] we can construct a dimension §(x") Bessel process by concatenating
excursions from a Poisson point process A with intensity f0°° x5_3v§ dx times Lebesgue measure
on E X R, where vg‘ is a probability measure on Bessel excursions with maximum height x for
each x > 0. Moreover, by Brownian scaling, vg‘(e) = vé(ex), e (s) = xte(x%s) for0 < s < ¢(ey) =
x~2¢(e). (For proofs of these results, see, for example, [47].)

Now, if we let T = inf{t : (e, t) € A and supe(s) > x}, then conditionally on T, we can write
C¥'" as the sum of the excursion lifetimes ¢(e) over points (e, t) in a (conditionally independent)
Poisson point process with intensity

2*}’[
/ x5_3vg‘ dx x Leb([0, T]).
0

Note that by definition of the Poisson point process, T is an exponential random variable with
associated parameter fn°° x°73 dx, and so has uniformly bounded expectation in x’. Since Brown-
ian scaling also implies that v3({(e)) = xzvé(g’ (e,)) for excursions e, Campbell’s formula yields
that the expectation of C¥" is of order 2~"%. This indeed converges uniformly to 0 in & > 1
(equivalently x’, ¢), which completes the proof. O

Lemma 2.11. For any fixed n € N, (D;", ;") converges to (DY}, 7)) in law as € | 0, with respect to
the Carathéodory X Euclidean topology.

Proof of Proposition 2.5. This follows by combining Lemma 2.10 and Lemma 2.11, plus the fact that
(Dg,74) = (Dg,79) as n — co. O

2.2.3 | Convergence at a fixed level of approximation as ' | 4

The remainder of this section will now be devoted to proving Lemma 2.11. This is slightly trickier,
and so we will break down its proof further into Lemmas 2.12 and 2.13.

Let us first set up for the statements of these lemmas. For k¥’ € (4, 8) (equiv. € € (0,2 — \/E)) we
set XI.E’" = (W(E))Sis,n for 1 <i < A®" and then write

en __ E,n g,n e,n
XEM = (X0 X5 X

For the CLE, case, we write
X" = (X", X0, . X0,

where the X" are as defined in Section 2.1.5. Also recall the definition of the excursions
(e7™)1<i<aen Of 6 above height 27", Define the corresponding excursions (e/');sn for the uniform
CLE, exploration, and denote

e GEM oo

&n
€ _(el 2y T AER )y

e =(ef,e},...,eL,).
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Thus, X*", X" live in the space of sequences of finite length, taking values in dD. We equip this
space with topology such that X — X as n — o if and only if the vector length of X is equal
to the length of X for all n > N, large enough, and such that every component of X (for n > N,)
converges to the corresponding component of X with respect to the Euclidean distance. Similarly,
e=" e" live in the space of sequences of finite length, taking values in the space E of excursions
away from {0, 27}.

We equip this sequence space with topology such thateX) — eask — oo if and only if the vector
length of e®) is equal to the vector length of e for all k large enough, together with component-wise
convergence with respect to d.

Lemma 2.12. Foranyn € N, (e*", ") = (e",7") ase — 0.
Proof. This is a direct consequence of Lemma 2.8 and the definition of 75", 7. O
Lemma 2.13. Foranyn € N, X" - X" inlawase — 0.

This second lemma will take a bit more work to prove. However, we can immediately see how
the two together imply Lemma 2.11.

Proof of Lemma 2.11. Lemmas 2.12 and 2.13 imply that the driving functions of Df)’” converge in
law to the driving function of Dy with respect to the Skorokhod topology. This implies the result
by Remark 2.1. Ol

Our new goal is therefore to prove Lemma 2.13. The main ingredient is the following (recall
that Si’” is the start time of the first excursion of 67 away from 0 that reaches height 27").

Lemma 2.14. Forany u # 0 and n € N fixed,

st
E[X]"]= [E[exp(iu/o cot((65);/2)ds)] — Oase | 0. (2.10)

For the proof of Lemma 2.14, we are going to use Remark 2.7. That is, the fact that 67 behaves

very much like 1/x’ times a Bessel process of dimension § = 3 — 8/x’ € (1,2). The Bessel pro-
cess is much more convenient to work with (in terms of exact calculations) because of its scaling
properties. Indeed, for Bessel processes we have the following lemma:

Lemma 2.15. Let 6° be \/x' = \/x(¢) times a Bessel process of dimension 3 — 8 /x’ (started from 0)
and S&™ be the start time of the first excursion in which it exceeds 2~™. Then for u # 0,

Sv‘s,m
|E[exp <2iu/ @) ds>]| -0
0

ase | 0 for any m large enough.

(The assumption that m is sufficiently large here is made simply for convenience of proof.)
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Proof. By changing the value of u appropriately, we can instead take 6 to be a Bessel process of
dimension §(x") = 3 — 8/x’ (that is, we forget about the multiplicative factor of \/17 ). Note that
8(x') € (1,2) forx’ < 8and 8(x’) | 1asx’ | 4. By standard Ité excursion theory, 6¢ can be formed
by gluing together the excursions of a Poisson point process A with intensity v,y X Lebyg )
where v; is the Bessel-6 excursion measure. As mentioned previously, it is a classical result that we
can decompose v5(-) = 0°° x9 ‘31/3‘(-) dx (there is a multiplicative constant that we can set to one
without loss of generality) where vg‘ is a probability measure on excursions with maximum height
exactly x for each x > 0 and that moreover by Brownian scaling, vg‘ (e) = vé(ex), e, (s) = x le(x?s)
for 0 < s <¢(e,) = x7%¢(e).
Let

' (d) (2—m)5—2

be the smallest ¢ such that (e, ) is in the Poisson process for some e with sup(e) > 27™. Then
conditionally on T;’, the collection of points (e, t) in the Poisson process with ¢ < Tfr; is simply a

Poisson process A(Tﬁ;) with intensity /02% x5‘3v3‘ x Leb([0, T%]). So, if for any given excursion

e € E, we define
OR
(e) = / —ds
/ 0 e(s)

(setting f(e) = oo if the interval diverges), we have

gEm , 2iu NIC) , , 2 .
[E(eZIM'/O (63) lds IT:;) — [E<e Z(e,t)eA(Tm) | T;Cﬂ) = exp <Tfn A x5_3v§(1 _ e21uf(e))>’

(2.12)

where in the final equality we have applied Campbell’s formula for the Poisson point process
A(TX).

The real part of 1 —e?'%/(®) is bounded above by 2u?f(e)?. Then using the Brownian scal-
ing property of v} explained before, we can bound vX(R(1 — e*1*/(©)) by u?x?v1(f?). Using
the fact that v;( f?) < 00, which can be obtained from a direct calculation, it follows that

foz—m x5_3v§(2R(1 —e21uf@))dx < (2 = 8)127m0=2) for all m > M, = My(u), where M, < o

does not depend on § < 3/2 (say). This allows us to take expectations over T’;; in (2.12) (recall
the distribution of T;' from (2.11)) to obtain that

-1

gem ~ 2=
E(e2iulo BT sy = |1 — M- _ §) / x°739X((1 = cos(2uf(e)) + isin(2uf(e)))) dx
0

-1

/N

o—m
223 _ §) / x°73vX(sin(uf (e))) dx
0

-1

VA

(2.13)

1
@=8) [ 5} sinus@dy
0

forallm > M, and § € (1,3/2).
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We now fix u # 0 and m > M, for the rest of the proof. Our aim is to show that the final
expression in (2.13) converges to 0 as § | 1 (equivalently ¢ | 0). To do this, we use the Brown-
ian scaling property of vg‘ again to write vf;my (sinRuf(e))) = v;(sin(Z‘m“uy f(e))) for each y.
We also observe that

Yy va(sin@ uy f(e)) — vy2T" uf(e))
as y } 0, which follows by dominated convergence since sin(z)/z — 1 as z | 0. Moreover (by
Lemma 2.8, say) the convergence is uniform in é. This means that for some Y, ,,, € (0,1) and
k, » < oo depending only on u and m, we have that

[v;(sin2~"*uyf(e))) > k, y forally > Y, .

It follows that

1
@—&A)ﬁ%g”@mMﬂmwy

Yu,m 1
>@—&mm/' ﬁ*@—@—&/'y*wy
Yu,m

0
> > 6—2
Zﬁ_(l_yu’ )

forall § € (1,3/2). Since this expression converges to oo as § | 1, and the final term in (2.13) is its
reciprocal, the proof is complete. O

With this in hand, the proof of Lemma 2.14 follows in a straightforward manner.

Proof of Lemma 2.14. In order to do a Bessel process comparison and use Lemma 2.15, we need
to replace the fixed n in (2.10) by some m which is very large (so we are only dealing with time
intervals where 6 is tiny). However, this is not a problem, since for m > n we can write

§on

it 5" :
/0 cot((65)s/2) ds = /0 cot((85)s/2) ds + /

g,m
1

cot((6);/2) ds,

&N

S
where the two integrals are independent. This means that |E[ exp(iu /o b ocot((8g)/2)ds) ]| is
actually increasing in n for any fixed ¢, so proving (2.10) for m > n also proves it for n.

So we can write, forany m > n

g,m

s s
E lexp(iu / cot((85)/2) ds)] < |E lexp(iu /
0 0

which is, by the triangle inequality, less than

cot((65),/2) ds)]

5UBD |7 SUOWWOD aAIIeaID a|eal|dde sy Aq peutonod ake saonJe YO ‘asn Jo Sa|NJ 104 ArIq 1T auljuQ AS|IAN UO (SUOIIPUOD-pUE-SWLLB)0Y A3 [ IM Azeiq 1 pUUO//:Sd)Y) SUOIIIPUOD pue SWd | a1 39S *[7202/80/TT] Uo ARiqiauljuQ A1 ‘6892T SW|(/ZTTT OT/IOP/W0d A3 [IM Afe.d 1 pUl[U0"d0SYIWPUO /ANy Wo.j papeojumoq ‘T ‘€202 ‘0S.L697T



462 ARU ET AL.

§s,m
E 2i 6)1d
lexp( 1u/0 (CH) s)]
sem sem-
+|E lexp (iu/ cot((6)s/2) ds)] —-E lexp <Ziu/ (65)_1 ds>] .
0 0

Now, using that (1/y — (1/2)cot(y/2)) | 0asy | 0, and an argument almost identical to the first
half of the proof of Lemma 2.10, the second term above converges to 0 as m — oo, uniformly in
€. Since Lemma 2.15 says that the first term converges to 0 as ¢ — 0 for any m large enough, this
completes the proof. O

Proof of Lemma 2.13. Equation (2.10) implies that the law of Xi’” converges to the uniform

distribution on the unit circle as x’ | 4. The full result then follows by the Markov property

of 6%. O
0

2.2.4 | Summary

So, we have now tied up all the loose ends from the proof of Proposition 2.5. Recall that this propo-
sition asserted the convergence in law of a single SLE,/(x” — 6) branch in D, targeted at 0, to the
corresponding uniform CLE, exploration branch. Let us conclude this subsection by noting that
the same result holds when we change the target point.

For z € D not necessarily equal to 0, we define D, to be the space of evolving domains whose
image after applying the conformal map f(w) = (w — z)/(1 — Zw) from D — D, z - 0, lies in D.

From the convergence in Proposition 2.6, plus the target invariance of radial SLE,(x" — 6) and
the uniform CLE, exploration, it is immediate that

Corollary 2.16. Foranyz € Q, (D%,7.) = (D,,7,)inD, XRase — 0.

Recall that 7  is the last time that 6; hits 0 before first hitting 27 and [z, ,,7,] is the time

interval during which D, traces the outermost CLE, loop surrounding z. Note that 7} — 7 _ is
&n

equal to the length of the excursion e, and similarly 7, — 7 , is the length of the excursion e»
(for every n), so that by Lemma 2.12 the following extension holds.

Corollary 2.17. For any fixed z € Q
(Dza T;: T(S),Z) = (Dz7 Tz TO,Z)

ase — 0.

2.3 | Convergence of the CLE,, loops

Recall that for z € Q, L¢ (respectively, £,) denotes the outermost CLE,, loop (respectively, CLE,
loop) containing z and 53 (respectively, B,) denotes the connected component of the complement
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of L£¢ (respectively, L£,) containing z. By definition we have

B, = (D);: and B, = (D), , (2.14)

where {(D%),; t > 0} and {(D,), ; t > 0} are processes in D, describing radial SLE,,(x’ — 6) pro-
cesses and a uniform CLE, exploration, respectively, toward z. See Section 2.1.6 for more details.

In this subsection we will prove the convergence of £ = £, with respect to the Hausdorff
distance. That this might be non-obvious is illustrated by the following difference: in the limit
0D, = L,, whereas this is not at all the case for € > 0. Nevertheless, we have

Proposition 2.18. Foranyz € Q

(Dis [-"25 Bi) = (Dz, Ez’ Bz)

as € | 0, with respect to the product topology generated by (D, X Hausdorff x Carathéodory viewed
from z) convergence.

Given (2.14), and that we already know the convergence of Dg as ¢ | 0, the proof of
Proposition 2.18 boils down to the following lemma.

Lemma 2.19. Suppose that (D, L, B,) is a subsequential limit in law of (D, L{, B]) as € | 0 (with
the topology of Proposition 2.18). Then we have L = L, almost surely.

Proof of Proposition 2.18 given Lemma 2.19. By conformal invariance we may assume that z = 0.
Observe that by Corollary 2.16, we already know that (DZ, Bg) = (D, By) as¢ — 0, with respect to
the product (D x Carathéodory ) topology. Indeed, if one takes a sequence ¢, converging to 0, and
a coupling of (D, ‘L'(E)” Jnen and (Dg, ) so that (D, Tf)”) — (D, 7y) almost surely as n — oo, it is
clear due to (2.14) that each Bf)” also converges to B, almost surely. Also note that (£{) is tight in
¢ with respect to the Hausdorff topology, since all the sets in question are almost surely contained
in D. Thus (D¢, B, L) is tight in the desired topology, and the limit is uniquely characterized by

0
the above observation and Lemma 2.19. This yields the proposition. O

2.3.1 | Strategy for the proof of Lemma 2.19

At this point, we know the convergence in law of (D¢, B(E)) — (D, By) as € | 0, and we know that
B is the connected component of D \ £{ containing 0 for every e. Given a subsequential limit
(Dy, By, L£) in law of (D, Bf), Eg), the difficulty in concluding that £ = L, lies in the fact that
Carathéodory convergence (which is what we have for 3;) does not ‘see’ bottlenecks; see Figure 6.

To proceed with the proof, we first show that any part of the supposed limit £ that does not

coincide with £, must lie outside of 13,.
Lemma 2.20. With the setup of Lemma 2.19, we have £ C C \ B, almost surely.
Once we have this ‘one-sided’ result, it suffices to prove that the laws of £ and L, coincide.

Lemma 2.21. Suppose that L is as in Lemma 2.19. Then the law of L is equal to the law of L,,.

8519017 SUOWIWOD aAITeaID 3|qedt|dde ayy Aq peusenob ae sspnte YO ‘8sn Jo S9N Joy Arig1T8uljUQ /8|1 UO (SUonIpUOD-pUR-SWBIALI0D A8 | 1M Ae.q 1 pUlUO//:SdNy) SUONIPUOD pUe WIS | 8U1 89S [7202/80/TT] U0 ARliqi 8uluO AB|IM ‘6892T SW|(ZTTT 0T/I0P/WO00" A8 1M AReIq I PUIUO"D0SYRWPUO|//:Sdny WOy pepeoumoq ‘T ‘€202 ‘0S.L69VT



464 ARU ET AL.

FIGURE 6 The sequence of domains enclosed by the thick black curves will converge in the Carathéodory
sense (viewed from 0), but not in the Hausdorff sense, to the dotted domain. This is the type of behavior that must
be ruled out to deduce convergence of CLE loops (in the Hausdorff sense) from convergence of the radial SLE (in
the Carathéodory sense).

The first lemma follows almost immediately from the Carathéodory convergence of By — 5
(see the next subsection). To prove the second lemma, we use the fact that CLE, for x € (0, 8) is
inversion invariant: more correctly, a whole-plane version of CLE,, is invariant under the mapping
z — 1/z.Roughly speaking, this means that for whole-plane CLE, we can use inversion invariance
to obtain the complementary result to Lemma 2.20, and deduce Hausdorff convergence in law of
the analogous loops. We then have to do a little work, using the relation between whole-plane
CLE and CLE in the disk (a Markov property), to translate this back to the disk setting and obtain
Lemma 2.21.

2.3.2 | Preliminaries on Carathéodory convergence

We first record the following standard lemma concerning Carathéodory convergence, which will
be useful in what follows.

Lemma 2.22 (Carathéodory kernel theorem). Suppose that (U,),; is a sequence of simply con-
nected domains containing 0, and for each n, write V,, for the connected component of the interior of
Niesn Uy containing 0. Define the kernel of (U),),,» to be U,V if this is non-empty, otherwise declare
it to be {0}.

Suppose that (U,),; and U are simply connected domains containing 0. Then U, — U with
respect to the Carathéodory topology (viewed from 0) if and only if every subsequence of the U,, has
kernel U.

One immediate consequence of this is the following.

Corollary 2.23. Suppose that (K,,,D,)= (K,D) as n — oo for the product (Hausdorff X
Carathéodory topology), where for each fixed n, the coupling of K,, and D, is such that D,, is a simply
connected domain with 0 € D,,, and K,, is a compact subset of C with K, C C \ D,, almost surely.
Then K C C \ D almost surely.

Proof. By Skorokhod embedding, we may assume without loss of generality that (K,,,D,) —
(K, D) almost surely as n — 0.
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For j € N write V; for the connected component of int(N; ;D) containing 0. By assump-
tion, K,, C C\ D, for every n almost surely, which means that K,, C C\ V; for all n > j almost
surely. Since K, converges to K in the Hausdorff topology, we have K C C \ V; for each j, which
implies that K C C \ U;V; almost surely. Finally, because D,, — D in the Carathéodory topology,
the Carathéodory kernel theorem gives that U;V; = D almost surely. Hence K C C \ D almost
surely, as desired. O

In particular:
Proof of Lemma 2.20. This is a direct consequence of Corollary 2.23. [

Now,if U, C Caresuchthat1/U, :={z : 1/z € U, }isasimply connected domain containing
0 for each n, we say that U,, — U with respect to the Carathéodory topology seen from oo, if and
only if 1/U,, — 1/U with respect to the Carathéodory topology seen from 0. It is clear from this
definition and the above arguments (or similar) that the following properties hold.

Lemma 2.24. Suppose that U, € C are simply connected domains such that 1/U,, is simply
connected containing 0 for each n. Then

» if (U,,K,,) = (U,K) jointly with respect the product (Carathéodory seen from cox Hausdorff)
topology, for some compact sets K, with K,, C C \ U,, for each n, then K C C \ U almost surely;

* if(U,,D,) = (U, D) jointly with respect the product (Carathéodory seen from cox Carathéodory
seen from 0) topology, for some simply connected domains D 2 D,, © Owith D,y C C\ U,, foreach
n, then D C C \ U almost surely.

Proof. The first bullet point follows from Corollary 2.23 by considering 1/U,,,1/U and 1/K,,, 1/K.
For the second, let us assume by Skorohod embedding that (U,,, D,)) — (U, D) almost surely in the
claimed topology. Then the compactsets D, := D, \ D,, C D are tight for the Hausdorff topology,
and hence have some subsequential limit 8. (The argument of) Corollary 2.23 implies that 6 C C \
U and d C C\ D almost surely. Since U is an open simply connected domain containing oo and D
is an open simply connected domain containing 0, this implies that D C C \ U almost surely. []

2.3.3 | Whole-plane CLE and conclusion of the proofs

As mentioned previously, we would now like to use some kind of symmetry argument to prove
Lemma 2.21. However, the symmetry we wish to exploit is not present for CLE in the unit disk,
and so we have to go through an argument using whole-plane CLE instead. Whole-plane CLE
was first introduced in [34] and is, roughly speaking, the local limit of CLE in (any) sequence of
domains with size tending to co. The key symmetry property of whole-plane CLE,, that we will
use is its invariance under applying the inversion map z — 1/z [27, 34]. More precisely:

Lemma 2.25. Let T*' be a whole-plane CLE,, with x’ € [4,8).

* (Inversion invariance) The image of I underz — 1 /z has the same law as .

* (Markov property) Consider the collection of loops in T that lie entirely inside D and surround 0.
Write I; (with e = e(x) as usual) for the connected component containing 0 of the complement of
the outermost loop in this collection. Write I for the second outermost loop in this collection. Then
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the image of 15 under the conformal map I; — D sending z to O with positive derivative at 0 has
the same law as the outermost loop surrounding O for a CLE,, in D.

Proof. The inversion invariance is shown in [34, Theorem 1.1] for ¥’ = 4 and [27, Theorem 1.1] for
%' € (4,8). The Markov property follows from [27, Lemma 2.9] when x’ > 4 and [34, Theorem 1]
when x’ = 4. N

Let us now state the convergence result that we will prove for whole-plane CLE,, asx’ | 4, and
show how it implies Lemma 2.21.

For ¢ > 0, we extend the above definitions and write I, [£ for the largest and second largest
whole-plane CLE,/ loops containing 0, which are entirely contained in the unit disk. We let I? be
the connected component of C \ I{ containing 0 fori = 1,2 and let E{ be the connected component
containing co. When € = 0 we write [, [, for the corresponding loops of a whole-plane CLE,, and
I, E,, 15, E, for the corresponding domains containing 0 and co. Note that in this case we have

I;=C\E;andE; =C\ I fori = 1,2.

Lemma 2.26. (Ig EE I‘€ E;) = (I, E,,1,,E,) as € — 0, with respect to the product
Carathéodory (seen from (0, 0,0, 00) in the four coordinates) topology.

Proof of Lemma 2.21 given Lemma 2.26. Suppose that (I5, %) converges in law to (I;, ) along some
subsequence, with respect to the product (Carathéodory seen from 0 X Hausdorff) topology. By
the above lemma, we can extend this convergence to the joint convergence of (I3, 15, E5, I5) —
(1,1, E,, I,). But then Corollary 2.23 and Lemma 2.24 imply that { C C\ I, = E,and[ C C\ E, =
I, almost surely. This implies that I C [, = 4(E,) = (I,) almost surely. Moreover, it is not hard to
see (using the definition of Hausdorff convergence) that [, \ | = §J, else I would not disconnect
0 from oo for small €. So | = [, almost surely.

Now consider, for each ¢, the unique conformal map g; : I; — D that sends 0 — 0 and has
(g5 €)(0) > 0. Then the above considerations imply that if g;(I5) converges in law along some sub-
sequence with respect to the Hausdorff topology, then the hmlt must have the law of ¢, (1,), where

: I > Disdefined in the same way as g} but with I] replaced by I;. Since the law of g7 (L%) is the
same as that of £{ for every ¢ and the law of g,(I,) has the law of L, this proves Lemma 2.21. []

Proof of Lemma 2.19 and Proposition 2.18. Combining Lemmas 2.20 and 2.21 yields Lemma 2.19.
As explained previously, this implies Proposition 2.18. O

So, we are left only to prove Lemma 2.26, concerning whole-plane CLE. We will build up to this
with a sequence of lemmas: first proving convergence of nested CLE loops in very large domains,
then transferring this to whole-plane CLE and finally appealing to inversion invariance to obtain
the result.

Lemma 2.27. FixR > 1. Forx’ € (4,8) and a CLE,, in RD, denote by (I£);>1 the sequence of nested
loops containing 0, starting with the second smallest loop to fully enclose the unit disk (set equal to the
boundary of RD if only one or no loops in RD actually surround D) and such that I surrounds 7 | for
alli. Write (b?);5, for the connected components containing 0 of the complements of the (I )l-21 Then
(b7)is1 converges in law to its CLE, counterpart as € — 0, with respect to the product Carathéodory
topology viewed from 0.
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Proof. By Corollary 2.16 and scale invariance of CLE, together with the iterative nature of the
construction of nested loops, we already know that the sequence of nested loops in RD containing
0, starting from the outermost one, converges as ¢ — 0, with respect to the product Carathéodory
topology viewed from 0. Taking a coupling where this convergence holds almost surely, it suffices
to prove that the index of the smallest loop containing the unit disk also converges almost surely.
This is a straightforward consequence of the kernel theorem — Lemma 2.22 — plus the fact that
the smallest CLE, loop in RD that contains D actually contains (1 + r)D for some strictly positive
r almost surely. O

Lemma 2.28. The statement of the above lemma holds true if we replace the CLEs in RD with whole-
plane versions.

Proof. For fixed x € [4,8), let I'“, I'RP denote whole-plane CLE,, and CLE,, on RD, respectively.
The key to this lemma is [46, Theorem 9.1], which states (in particular) that I'R® rapidly converges
to I'“ in the following sense. For some C,« > 0, I'R® and I'* can be coupled so that for any r > 0
and R > r, with probability at least 1 — C(R/r)~%, there is a conformal map ¢ from some D D
(R/r)Y/*D to D’ > (R/r)"/*D, which maps the nested loops of I'XP — starting with the smallest
containing rD — to the corresponding nested loops of I'®, and has low distortion in the sense that
l¢’(z) — 1] < C(R/r)~* on RY/*D.

In fact, it is straightforward to see that C and « (which in principle depend on x) may be chosen
uniformly for x € [4, 6] (say). Indeed, it follows from the proof in [46] that they depend only on
the law of the log conformal radius of the outermost loop containing 0 for a CLE,, in D, and
this varies continuously in x, [52]. Hence, the result follows by letting R - oo in Lemma 2.27
and noting that the second smallest loop containing D is contained in rD with arbitrarily high
probability as r — oo, uniformly in x. [l

Proof of Lemma 2.26. Lemmas 2.28 and 2.25 (inversion invariance) imply that (I5,15) = (I;,1,)
and (E¢ ,E;) = (E|,E,) as € — 0. This ensures that (I° Eil;Eg) is tight in ¢, so we need only
prove that if (I}, Ey, I, E,) is a subsequential limit of (I, ES, IS, ES), then E; = E; = int(C \ )
and E, = E, = int(C \ I,) almost surely. Note that (£, E,) has the same law as (E;, E,), and since
I; C C\ Ef for all ¢, Lemma 2.24 implies that I; C C\ E,. In other words E; C E; almost surely.
Then because E; and E; have the same law, we may deduce that they are equal almost surely.
Similarly, we see that £, = E, almost surely. O

2.3.4 | Conclusion

Recall that for z € D, (J3 ., E; z‘)i>1 (respectively, (B,;, L, ;);5;) denotes the sequence of nested

z,i

CLE,, (respectively, CLE,) bubbles and loops containing z. By the Markov property and iterative
nature of the construction, it is immediate from Proposition 2.18 that

Corollary 2.29. For fixed z € Q
(D3, (L5 Dis1, B Diz1) = Dy, (£ )51, (B )is1)

as € | 0, with respect to the product topology generated by (D, X || Hausdorff X [] Carathéodory
viewed from z) convergence.
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3 | THE UNIFORM SPACE-FILLING SLE,

In this section we show that the ordering on points (with rational coordinates) in the disk,
induced by space-filling SLE,, with k¥’ > 4, converges to a limiting ordering as x’ | 4. We call
this the uniform space-filling SLE,.” Nonetheless, we can describe explicitly the law of this
ordering, which for any two fixed points comes down to the toss of a fair coin. As for x’ > 4, there
would be other ways to define a space-filling SLE, process, by considering different explorations
of CLE,.

Let us now recall some notation in order to properly state the result. For ¢ € (0,2 — \/5) and
z,w € 9, we define Oi,w to be the indicator function of the event that the space-filling SLE,, n*
hits z before w (see Section 2.1.7). By convention we set this equal to 1 when z = w.

To describe the limitasx” | 0, we define © = (O, ), ,,co to be a collection of random variables,
coupled with (D), such that conditionally given (D,),cq:

*0,,=1 for all z € Q almost surely;

* O,,isa Bernoulli(%) random variable for all z, w € Q with z # w;

* 0,,=1-0,,forall z,w € Q with z # w almost surely;

* forall z,w;,w, € Q with z # w;, w,, if D, separates z from w, at the same time as it separates
z from w, then O, ,, =0O,,,, otherwise O, ,, and O, are independent.

Lemma 3.1. There is a unique joint law on ((D,),cq, O) satisfying the above requirements, and
such that the marginal law of (D), is that of a branching uniform CLE, exploration. With this
law, © almost surely defines an order on any finite subset of Q by declaring that z < w if and only if
O,,=1

Z,Ww

We will prove the lemma in just a moment. The main result of this section is the following.

Proposition 3.2. ((D%),cq,(O% ), weo) converges to (D,),c0,(0;,,),weo) in law as € | 0,
with respect to the product topology ([[o D, X [lgxo discrete), where (O, ), o is as defined in
Lemma 3.1.

Proof of Lemma 3.1. The main observation is that if a joint law ((D,),co, O) as in the lemma exists,
then for all z, w,y € Q we almost surely have

{Oz,w =1n {Ow,y =1}= {Oz,y =1} 3.1

To verify this, we assume that z, w, y are distinct (else the statement is trivial) with O, ,, = 1 and
Oy, = 1.Since O, , =1 - 0O, , = 0 this implies that y and z are not separated from w by D, at
the same time. If D, separates z from w strictly before separating y from w, then D, separates
y and w from z at the same time, so O, , = O, ,, = 1. If D, separates y from w strictly before
separating z from w, then D, separates z and w from y at the same time, s0 O,, =1-0, , =
1-0,, = 0,, = 1. Ineither case it must be that 0, , = 1.

We now show why this implies that for any {z,, ..., z; } with z; € Q distinct, there exists a unique

a conditional law on (@zi,zj)1<i, j<k given (D), o, satisfying the requirements of the lemma. We

7 This name is partially inspired from the fact that the process is constructed via a uniform CLE, exploration, and partly
since, every time the domain of exploration is split into two components, the components are ordered uniformly at random.
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argue by induction on the number of points. Indeed, suppose it is true with 1 < k <n —1 for
some n and take {z}, ..., z,} in Q distinct. We construct the conditional law of ((921_,21,)1@-’ j<n given
(D,),co as follows.

* To define (O, ; )i<i<n:

- partition the indices {2, ..., n} into equivalence classes {C}, ..., Cr} such that i ~ j if and only
if D, separates z; from z; and z; at the same time;

- for each equivalence class sample an independent Bernoulli(1/2) random variable; and

- set O, . to be the random variable associated with class [i] for every i.

* Given (O, ; )i<icn and (D), g, define 0,z with [i] # [j] by setting it equal to O,z if z; and
z, are separated from z; at the same time, or O, , ifz; and z, are separated from z; at the same
time.

* For each 1 <1 < K consider the connected component U; C D in the branching CLE, explo-
ration that contains points z; with [i] = C; when they are separated from z,. The CLE,
explorations inside these components are mutually independent, independent of the CLE,
exploration before this separation time, and each has the same law as (D,), after mapping to
the unit disk. Thus, since each equivalence class contains strictly less than n points, using the
induction hypothesis, we can define (Ozi,zj)i;é jlil=ljl=c, for 1 < I < K such that
- the collections for different | are mutually independent; and
- ((921,’2]_)# jlil=1j1=c, for each [ is independent of the CLE, exploration outside of U;, and after

conformally mapping everything to the unit disk, is coupled the exploration inside U, as in
the statement of Lemma 3.1.

Using the induction hypothesis, it is straightforward to see that this defines a conditional law on
© ,zj)lsi;e j<n given (D), that satisfies the conditions of the Lemma. Moreover, note that the
first two bullet points above, together with (3.1), define the law of ((DZI’ZJ,)1< j<n and ((DZi,Zj)[i]# il
(satisfying the requirements) uniquely. Combining with the uniqueness in the induction hypoth-
esis, it follows easily that the conditional law of (Ozi,zj)lgi# j<n given (D)o (satisfying the
requirements) is unique.

Consequently, given (D,),cq, there exists a unique conditional law on the product space
{0,1}2%2 equipped with the product o-algebra, such that if © = (O, ), ,co has this law then
it satisfies the conditions above Lemma 3.1.

This concludes the existence and uniqueness statement of the lemma. The property (3.1) implies
that © does almost surely define an order on any finite subset of Q. 1

In the coming subsections we will prove Proposition 3.2. Since tightness of all the random
variables in question is immediate (either by definition or from our previous work) it suffices
to characterize any limiting law. We begin in Section 3.1 by showing this for the order of two
points; see just below for an outline of the strategy. Then, we will prove that the time at which
they are separated by the SLE,,(x” — 6) converges (for the — log CR parameterization with respect
to either of the points). This is important for characterizing joint limits, when there are three or
more points being considered. It also turns out to be non-trivial, due to pathological behavior that
cannot be ruled out when one only knows convergence of the SLE branches in the spaces D,. We
conclude the proof in a third subsection, and finally combine this with the results of Section 2 to
summarize the ‘Euclidean’ part of this paper in Proposition 3.12.
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3.1 | Convergence of order for two points

In this section we show that for two distinct points z, w € D, the law of the order in which they
are visited by the space-filling SLE,, n¢, converges to the result of a fair coin toss as ¥’ | 4. That
is, O , converges to a Bernoulli(1 /2) random variable as ¢ | 0. The rough outline of the proof is
as follows

Recall that »° is determined by an SLE,,(x’ — 6) branching tree, in which 7 denotes the
SLE,/(x’ — 6) branch toward z (parameterized according to minus log conformal radius as seen
from z). If we consider the time of at which 7 separates z and w, then for every ¢ > 0, O;, |
actually measurable with respect to nZ([O ot ,D- So what we are trying to show is that this mea—
surability turns to independence in the ¢ | 0 hmit. This means that we will not get very far if we
consider the conditional law of &  given n;([o 05 ) s0 instead we have to look at times just
before of . Namely, we will cons1der the timeso? 0.6 that w is sent first sent to within distance & of
the boundary by the Loewner maps associated with 7;. We will show that for any fixed 6 € (0, 1),
the conditional probability that O = 1, givennZ([0, az,w’ 1), convergesto1/2ase — 0. Knowing
this for every & allows us to reach the desired conclusion.

To show that these conditional probabilities do tend to 1/2 for fixed &, we apply the Markov
property at time o w5 This tells us that after mapping (Dz)g; s to the unit disc, the remainder of

7; evolves as a radial SLE,, (k" — 6) with a force point somewhere on the unit circle. And we know
the law of this curve: initially it evolves as a chordal SLE,, targeted at the force point, and after the
force point is swallowed, it evolves as a radial SLE,,(x” — 6) in the to-be-discovered domain with
force point starting adjacent to the tip. So we need to show that for such a process, the behavior
is ‘symmetric’ in an appropriate sense. In fact, we have to deal with two scenarios, according to
whether the images of z and w are separated or not when the force point is swallowed. If they are
separated, our argument becomes a symmetry argument for chordal SLE,,. If they are not, our
argument becomes a symmetry argument for space-filling SLE,,. For a more detailed outline of
the strategy, and the bulk of the proof, see Lemma 3.8.

At this point, let us just record the required symmetry property of space-filling SLE,, in the
following lemma.

Lemma 3.3. Let n° be a space-filling SLE,/ (. in D, as above. Then for any x € D:

P(n° hits 0 before x) — 5 ase — 0.

Proof. For this we use a conformal invariance argument. Namely, we note that by conformal
invariance of n%, applying the map

1-Xz—x

1-x1—-xz

from D to D that sends 1 to 1 and x to 0, we have
P[5° hits 0 before x] = P[5® hits £ before 0] = 1 — P[5® hits 0 before %],

where £ = —x(1 — X)(1 — x)~! is the image of 0 under the conformal map, and |%| = |x|. Hence
it suffices to show that

P[7° hits 0 before x] — P[1° hits 0 before ] - 0
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as ¢ — 0. By rotational invariance, if we write 772 for a space-filling SLE,, starting at e/, then it is
enough to show that

P[ng hits 0 before |x|] — P[#; hits 0 before |x|] — 0

ase — 0, for any 6 € [0, 27].

However, this is easily justified, because we can couple an SLE,,(x’ — 6) from 1 to 0 and another
from e’ to 0, so that they successfully couple (that is, coincide for all later times) before 0 is
separated from |x| with arbitrarily high probability (uniformly in 6) as x’ | 4. This follows from
Lemma 2.14, target invariance of the SLE,,(x” — 6) and (2.9); that is, because in an arbitrarily small
amount of time as ¥’ | 4, the SLE,,(x’ — 6) will have swallowed every point on D. O

Now we proceed with the setup for the main result of this section (Proposition 3.4). Recall
that D, € D is the sequence of domains formed by the branch of the uniform CLE, exploration
toward z in D. For w # z, we write g, , for the first time that D, separates z from w and let O, ,
be a Bernoulli random variable (taking values {0, 1} each with probability 1/2) that is independent
of {(D,), ; t € 0,0,

We define elements

D;, = {(Di)t,\gg’w ;1> 0tand D, ={(D,)ps, 3 £ >0}

of D. These are, respectively, the domain sequences formed by the SLE,,(x’ — 6) and the uniform
CLE, exploration branches toward z, stopped when z and w become separated. By definition, they
are parameterized such that —log CR(0; (D% ),) =t Ac:  forallt.

Proposition 3.4. Fixz # w € Q. Then if (D, O) is a subsequential limit in law of (D%, (9;w) (with
respect to the product D, X discrete topology), (D, ©) must satisfy the following property. If D is equal
to D stopped at the first time that w is separated from z, then

(law)
(D,0) =" Dzu0,)-

Note that this does not yet imply that the times at which z and w are separated converge.

To set up for the proof of this proposition, we define for ¢,6 > 0, o - to be the first time ¢
that, under the conformal map g, [Di], the image of w is at distance & from dD; see Figure 7 for an
illustration. Define o, , 5 in the same way for € = 0. Write D¢ . and D, , s for the same things

W, z,w,8 Z,w,
asDf  and D, ,, but with the time now cut off at ¢ '~ and o, s, respectively.
, > z,w,8 Z,W,

Lemma 3.5.

(@) (D, 505 ,5) = (Dzws 0706) ase — 0 forevery fixed § > 0.

zw,8’ z

(b) (Dz,wﬁ’ Gz:w:5) = (Dz,w’ Gz,w) asd — 0.

Proof. For (a) we use that D} = D, in D,. Taking a coupling (D,, (D¢),.) such that this con-
vergence is almost sure, it is clear from the definition of convergence in D, that, under this
coupling, (D¢ . 5’02,w, 5) — (D,.5,9,15) almost surely for every 6 > 0. Statement (b) holds
because o, ,, 5 — 0, almost surely as § — 0. Indeed, 0, ,, 5 is almost surely increasing in § and
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T2

FIGURE 7 TheSLE, (¥ — 6) branch 7, run up to time o'; e This is the first time that under the Loewner
map, w is sent within distance & of the boundary. The future of the curve has image #° under this map, and is an
SLE,, (¥’ — 6) starting from x, = »¢ (cr;w’ 5) with a force point at x, € JD. z is visited before w by the original
space-filling SLE,, if and only if when 7 separates 0 and w’ (the image of w), the component containing 0 is
‘monocolored’.

bounded above by o, ,, so must have a limit o* < 0, ,, as § — 0. On the other hand, w cannot
be mapped anywhere at positive distance from the boundary under g,.[D,], so it must be that

o* 20, O
Thus, we can reduce the proof of Proposition 3.4 to the following lemma.

Lemma 3.6. For any continuous bounded function F with respect to D,, and any fixed § > 0, we
have that

z,

1
[E[(9;wF(D‘E w,5)] — E[E[F(Dz,w,d)]
ase — 0.

Proof of Proposition 3.4 given Lemma 3.6. Consider a subsequential limit as in Proposition 3.4.
Write Dy for D stopped at the first time that w is sent within distance & of dD under the Loewner
flow. Then itis clear (by taking a coupling where the convergence holds almost surely) that (D 5:0)
is equal to the limit in law of (D 0.6 Oi,w) as € — 0 along the subsequence.

On the other hand, Lemma 3.6 implies that the law of such a limit is that of D, , 5 together
with an independent Bernoulli random variable. Indeed, any continuous bounded function with
respect to the product topology on D, X {0, 1} is of the form (D,x) — 1;,_}F(D) + 1;,_;,G(D)
for F,G bounded and continuous with respect to D,. Moreover, 1y,_3G = G — 153G and we
already know that [E[G(Di . 5)] — E[G(D, )] ase — 0.

So (D5, ©) has the law of D, , 5 plus an independent Bernoulli random variable for each § > 0.
Combining with (b) of Lemma 3.5 yields the proposition. O
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The proof of Lemma 3.6 will take up the remainder of this subsection. An important ingredient
is the following result of [32], about the convergence of SLE,, to SLE, as x | 4.

Theorem 3.7 [32, Theorem 1.10]. Chordal SLE,, between two boundary points in the disk converges
in law to chordal SLE, as ¥’ | 4. This is with respect to supremum norm on curves viewed up to
time reparameterization.

Proof of Lemma 3.6. Since F is bounded, subsequential limits of [E[(9E F(Df 5)] always exist.
Therefore, we need only to show that such a limit must be equal to (1/ 2)[E [F (DZ w.s)]- For this, we
apply the map 9ot [DE |: recall that this is the unique conformal map from (D), to D that

sends z to 0 and has positive real derivative at z; see Figure 7. We then use the Markov property of
SLE,/(x’ — 6). This tells us that conditionally on D¢ w5 the image of ¢ under this map is that of an
SLE,,(x’ — 6) started at some x, € 8D with a force point at x, € 4D (where x;, x, are measurable
with respect to D¢ . 5). Let us call this curve 7. Let w’ be the image of w under 2 [DZ ], which

is also measurable with respect to D; w5 and has |w’| = 1 — & almost surely. Then the conditional
expectation of O}  given D¢ s Can be written as a probability for 7¢. Namely, it is just the proba-
bility that when 7 first separates w’ and 0, the component containing 0 either has boundary made
up of entirely of the left-hand side of 7 and the clockwise arc from x; to X,, or the right-hand side
of #* and the complementary counterclockwise arc. We denote this event for #° by .A°.
Therefore, by dominated convergence, Lemma 3.6 follows from Lemma 3.8 stated and proved
below. O

Lemma 3.8. Let 7 be an SLE,,(x” — 6) started at some x, € dD with a force point at x, € dD. Fix
w’ € D. Let A° be the event that when 7 first separates w' and 0, the component containing 0 either
has boundary made up of entirely of the left-hand side of * and the clockwise arc from x; to x,, or
the right-hand side of 7* and the complementary counterclockwise arc.

P(A%) — % as e — 0 (equivalently asx’ | 4). (3.2)

Another way to describe the event .A° is the following. If the clockwise boundary arc from x;
to x, together with the left-hand side of 7 is colored red, and the counterclockwise boundary arc
together with the right-hand side of 7 is colored blue (as in Figures 7 and 8) then .A¢ is the event
that when 0 and w’ are separated, the component containing 0 is ‘monocolored’.

Outline for the proof of Lemma 3.8. Note that until the first time that 0 is separated from x,, 7
has the law (up to time reparameterization) of a chordal SLE,, from x; to x, in D; see Lemma 2.4.
Importantly, we know by Theorem 3.7 that this converges to chordal SLE, as ¥’ | 4.

This is the main ingredient going into the proof, for which the heuristic is as follows. If 7* is
very close to a chordal SLE,, then after some small initial time it should not hit the boundary of
D again until getting very close to x,. At this point either w’ and 0 will be on the ‘same side of the
curve’ (scenario on the right-hand side of Figure 8) or they will be on ‘different sides’ (scenario on
the left-hand side of Figure 8).

* Inthelatter case (left-hand side of Figure 8), note that 7 is very unlikely to return anywhere near
to 0 or w’ before swallowing the force point at x,. Hence, whether or not .A¢ occurs depends
only on whether the curve goes on to hit the boundary ‘just to the left’ of x,, or ‘just to the right’.
Indeed, hitting on one side will correspond to 0 being in a monocolored red bubble when it is
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FIGURE 8 [Illustration of Lemma 3.8. The two scenarios that can occur when the force point x, is
swallowed by 7. On the left, 0 and w’ are on opposite sides of the curve (there is also an analogous scenario when
0 is on the ‘blue side’ and w’ is on the ‘red side’). If this happens, we are interested whether 7 hits the blue or the
red part of D first. On the right, they are on the same side of the curve and we are interested in what happens

after x, is swallowed.

separated from w’, meaning that .A¢ will occur, while hitting on the other side will correspond to
w’ being in a monocolored blue bubble, and it will not. By the Markov property and symmetry,
we will argue that each of these happen with (conditional) probability close to 1/2.

* In the former case (right-hand side of Figure 8), 7/ will go on to swallow the force point x, before
separating 0 and w’, with high probability as x’ | 4. Once this has occurred, 7¢ will continue
to evolve in the cut-off component containing 0 and w’, as an SLE,,(x’ — 6) with force point
initially adjacent to the tip. But then by mapping to the unit disk again, the conditional proba-
bility of .A® becomes the probability that a space-filling SLE,, visits one particular point before
another. This converges to 1/2 as ¥’ | 4 by Lemma 3.3.

Proof of Lemma 3.8. Let us now proceed with the details. For u > 0 small, let 77¢, be 7° run until the
first entry time T of D N B, (u). By Theorem 3.7, the probability that 77* separates 0 or w’ from x,
before time T, tends to 0 as ¢ — 0 for any fixed u < |x, — x,|. We write E_ b for this event.

We also fix a u’ > 0, chosen such that x;,0 and w’ are contained in the closure of D \Bx2 ).
Again from the convergence to SLE, we can deduce that

P(ﬁa revisits D \ B,, (u') after time TZ ) — 0asu — 0, uniformly in ¢. (3.3)

The point of this is that 7#° cannot ‘change between the configurations in Figure 8 without going
back into D \ sz(”/ ). Write:

. EZ | for the intersection of (EZ b)C and the event that 777, U Bx2(u) separates 0 and w’ in D, with
0 on the left of 7’;‘;; ’
* E . for the same thing but with left replaced by right; and
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. E;,S for the intersection of (EZ ’b)‘f and the event that 7, U B, (u) does not separate 0 and w’ in
D.

Then we can decompose
P(A®) = E[P(A® | E], b)]]Esb + P(A* |Ef”)1]Es1 + P(A* |Ef4,r)“E;r + P(A° |EZ’S)T]E;S]

= [E[AEHE;b] + E[P(A® |EZ’1)HE;1] + E[P(A° |E;’r)11E;J] + E[P(A° |E§,s)“E;,S]-
o @ © @

By the observations of the previous paragraph, P(Ei b) — 0ase — 0for any fixed u, and therefore
also ’

@ — 0as¢e — 0 for any fixed u. (3.4)

Let us now describe what is going on with the terms @), @ and @. The term ) corresponds
to the left-hand side scenario of Figure 8, and the term (3) corresponds to the same scenario, but
when 0 and w’ lie on opposite sides of the curve to those illustrated in the figure. We will show
that

lin}) lin(l) @+03)= %[F"(SLE4 from x; to x, in D separates w’ and 0) =: 1—2) (3.5)
u—-0¢eg—

The term @ corresponds to the scenario on the right-hand side of Figure 8. We will show that

lirr(1) lir% @ = %(1 —p)= %[P’(SLE4 from x; to x, in D does not separate w’ and 0). (3.6)
u—0¢e—
Combining (3.5), (3.6), (3.4) and the decomposition P(A¢) = D + @ + @ + @ gives (3.2), and
thus completes the proof. So all that remains is to show (3.5) and (3.6).

Proof of (3.5). First, by (3.3), we can pick u small enough such that the differences

<@ — E[P(%|12 o) hits the clockwise arc between x; and x; first |El‘i’1) 1 EZ,1]> and
(@ — E[P(#H* |72 0 hits the counterclockwise arc between x; and x, first | E; )1 EL])

are arbitrarily small, uniformly in €. All we are doing here is using the fact that if u is small enough,
77* will not return anywhere close to 0 or w’ after time T¢. This allows us to reduce the problem to
estimating conditional probabilities for chordal SLE,,. To estimate these probabilities (the condi-
tional probabilities in the displayed equations above) we can use Theorem 3.7, plus symmetry. In
particular, Theorem 3.7 implies that for a chordal SLE,, curve on H from 0 to oo, the probability
that it hits [R, co) before (—oo, —L] for any fixed L, R € (0, c0) can be made arbitrary close to the
probability that it hits [max(L, R), o) before (—oo, — max(L,R)] as ' | 4. This is because SLE,
does not hit the boundary apart from at the end points and the convergence is in the uniform
topology. Since the probability that chordal SLE,, in H from 0 to oo hits [max(L, R), o) before
(=00, —max(L,R)] is 1/2 for every ¥’ by symmetry, we see that the probability of hitting [R, co)
before (—oo0, —L] converges to 1/2 as x’ | 4.
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‘We use this to observe, by conformally mapping to H that

P(ﬁf |72 00 hits the clockwise arc between x; and x, first | 7°([0, T¢ ])) %
almost surely as € — 0. Using this along with dominated convergence, we obtain (3.5).

Proof of (3.6). Write E* for the event that #* swallows the force point x, before separating 0 and
w’. Then we can rewrite 4 as

E[AT (15— 1)l + E[AST ], (3.7)

Applying (3.3) shows that the first term tends to 0 as u — 0, uniformly in e. Let us now show that
the second tends to (1/2)(1 — p) ase — 0.

To do this, we condition on 7* run up to the time T that the force point x, is swallowed. Con-
ditioned on this initial segment we can use the Markov property of SLE,/(x” — 6) to describe the
future evolution of 7%. Indeed, it is simply that of a radial SLE,,(x” — 6) started from 7* (Tg) € 0D
and targeted toward 0, with force point located infinitesimally close to the starting point. Viewing
the evolution of 77 after time T/ as one branch of a space-filling SLE,, we then have

E[A®1:] = E[P(space-filling SLE,, started from 7°(T¢) hits 0 before w')1:]
which we further decompose as
%[P’(EE) +E [([P’(space-filling SLE,. started from #7°(T5) hits 0 before w’) — 1/2)1 Ee] )

Since the first term above tends to (1/2)(1 — p) as € — 0, it again suffices by dominated
convergence (and by applying a rotation) to show that for any x € D:

P(n* hits 0 before x) — % ase — 0.

This is precisely the statement of Lemma 3.3. Thus we conclude the proof of (3.6), and therefore
Lemma 3.8. Ol

3.2 | Convergence of separation times

We now want to prove that for z # w the actual separation times o}, converge to the separation
time o, , in law (jointly with the exploration) ase — 0. The dlfflculty is as follows. Suppose we are
ona probablhty space where 7° converges almost surely to 77,. Then we can deduce (by Lemma 3.5)
that any limit of Gé,w must be greater than or equal to o, ,,. But it still could be the case that z and
w are ‘almost separated’ at some sequence of times that converge to o, , as € | 0, but that the 7¢
then go on to do something else for a macroscopic amount of time before coming back to finally
separate z and w. Note that in this situation the 7 would be creating ‘bottlenecks’ at the almost
separation times, so it would not contradict Proposition 3.4).
The main result of this subsection is the following.
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Proposition 3.9. Foranyz # w € Q
(Di, O';w) = (D,,0,,) 3.8)

as € — 0, with respect to Carathéodory convergence in D in the first coordinate, and convergence in
R in the second.

Remark 3.10. 1t is easy to see that of  is tight in ¢ for any fixed z # w € D. For example, this
follows from Corollary 2.29, which 1mp11es that minus the log conformal radius, seen from z, of
the first CLE,, loop containing z and not w, is tight. Since o7  is bounded above by this minus
log conformal radius, tightness of o7, follows.

There is one situation where convergence of the separation times is already easy to see from
our work so far. Namely, when z and w are separated (in the limit) at a time when a CLE, loop
has just been drawn. More precisely:

Lemma 3.11. Suppose that e, | 0 is such that

(D2, D, Z”w,aiﬁ"z, "w) = (D5, Dy, 07,0, ,0)asn — oo
(where at this point we know that D, D} have the same marginal laws as D,, D, but not necessarily
the same joint law). Then on the event that D, separates w from z at a time g, ,, when a CLE, loop
L is completed, we have that almost surely:

e

. D* is equal to D, (modulo time reparameterization), up to the time o, , that z is separated from
w;

* 0, =Oyzsand

* conditionally on the above event occurring, O* is independent of D,, D} and has the law of a

Bernoulli(%) random variable.

Proof. Without loss of generality, by switching the roles of z and w if necessary and by the Markov
property of the explorations, it suffices to consider the case that £ = £, is the outermost CLE, loop
(generated by D,) containing z.

By Skorokhod embedding together with Corollary 2.17 and Proposition 2.18, we may assume
that we are working on a probability space where the convergence assumed in the lemma holds
almost surely, jointly with the convergence E;" — L, (in the Hausdorff sense), Bi" = (Di" )T;n -

= (DZ)TZ = int(£,) (in the Carthéodory sense) and (T;t‘z,fin) — (7g,,T,). (Recall the defini-
tions of these times from Section 2.1.6). We may also assume that the convergence ci" =008

\w,0
holds almost surely as n — oo for all rational § > 0.
Now we restrict to the event E that D, separates z from w at time 7, so that in particular w is at

positive distance from £, U (D,), = (D). . The Hausdorff convergence £ - L, thus implies
thatw € D \ B for all n large enough (that is, w is outside of the first CLE,/(, ) loop containing

z), and therefore that az v S 77 for all n large enough (that s, separatlon occurs no later than this
loop closure time). Since oz w18 defined to be the almost sure limit of az’w asn — oo, and we have

assumed that ‘L’i" — 7, almost surely, this implies that o = < 7, almost surely on the event E. On
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the other hand, we know that as > cri”w sand cr wo ~ TzwsaSn — 00 for all rational positive J,
sothato} >0, sforalld and therefore o, 11m5_, zws = Oz = T, almostsurely. Together
this implies that o, ,, = 7, o, 0n the event E.

Next, observe that by the same argument as in the penultimate sentence above, we have o, , >
o,z With probability 1. Moreover, we saw that on the event E,w € D \ B2 for all n large enough.
But we also have that o , so that ¢, > r ' and therefore w € (D )Tznz \ B for all n

Z w
large enough. Hence,

of = h};n o, < lirrln—log CR(w, (D?’lw)féf'z \ B") = —log CR(w, (D), \ B,) =0y,

w,z

Combining the two inequalities above gives the third bullet point of the lemma, and since DZ’}Z
and D?:w agree up to time parameterization until z and w are separated for every n, we also obtain
the second bullet point.

For the final bullet point, if we write D, , for D, stopped at time o, ,,, we already know from
the previous subsection that the law of O* given D, ,, is fair Bernoulli. Moreover, since (95” nd
(9, o [ (DS 2 s +o¥n, ); s = 0) are independent for every n, it follows that O* is mdependent of

(95 [ 1(Dy)g 4ot ) s > 0). So in general (that is, without restrlctlng to the event E) we can

say that given (ga [ 1(Dy)g 0% ) s> 0)and (D,);; t 2.w)» OF has the conditional law of
a Bernoulli(1/2) random variable. Since the event E (that 0,w = T,) is measurable with respect
to ((D,);; t < 0,,,), and we have already seen thato, , = O'Z’w on this event, we deduce the final
statement of the lemma. O

Proof of Proposition 3.9. By tightness (Remark 3.10), and since we already know the convergence
in law of (Dg, (O’ )5>0) to (D,,(0,,4,.5)s-0) » it suffices to prove that any joint subsequential
limit in law of (DZ, (aZ 0,650, T4 ) Of (DS, (O’Z w, 5050095 ) hasa =0, almost surely. So let
us assume that we have such a subsequentlal limit (along some sequence ¢, | 0) and that we
are working on a probability space where the convergence holds almost surely. As remarked pre-
viously, since oi > o;” 5 for each 6 > 0 and limg lim,, a s = =limso,, s = 0,,, we already
know that o} >0, almost surely. So we just need to prove that P(o,, +s <0} ,) =0, or

zw =
alternatively, that lims_,, P(oz ws +s<0;,)=0for any s > 0 fixed. Since 0, ,, 5 and o  are

the almost sure limits of o s and o ', @S n — o0, it is sufficient to prove that for each s > 0

lim sup lim sup [P’(a wes TS< w) =0.
60 e—0

The strategy of the proof is to use Lemma 3.11 to say that (when & and ¢ are small), n; will separate
lots of CLE,, loops from z during the time interval [o® 0.8 o s + s]. Then we will argue that
this is very unlikely to happen during the time interval [o s O -], which means that oF <
eyl wstS with high probability.

More precisely, let us assume from now on that s > 0 is fixed, and write S, for the collection
of faces (squares) of rZ? that intersect D. We write §;J for the event that there exists S € S, that
is separated by 7; from z during the interval [o? s cr;w, st s] and such that z is visited by the
space-filling SLE,, before S. We write Sg’r for the same event but with the interval [a; s aé’w]
instead. So if the event {a;w’ sHs< oj’w} occurs, then either Sg’r occurs or §§’r does not. Hence,
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for any r > 0:

lim sup lim sup [P’(crz we TSS crz ») < limsup lim sup [P’(S5 D+ hm sup hm sup [P’((S5 0.
5—-0 e—0 §—0 e—0

We will show that

lim inf lim inf P(S§ ) —» lasr — 0, (3.9)
510 lo r

and that for any r > 0,

3 —
lg{glslg)lﬂ)(s )=0. (3.10)

Let us start with (3.9). First, Lemma 3.11 tells us that since many S € S, will be separated from z
by the CLE, exploration during the time interval o, ,,,0,,, + s] asr | 0, the same will be true for
the space-filling SLE,, on the time interval [c® 0. 05 we T s)when ¢, § are small. More precisely,
for any fixed k € N, § > 0, the lemma implies that

11m 1nf P(ni([of 0.5 a;w’d + s]) separates k squares in S, from z) > ps .,

where ps ;. - is the probability that D, disconnects at least k squares in S, from z by distinct CLE,
loops during the time interval [0, , 5,0, ,, 5 + s]. Moreover, since 0, ,, s — 0, ,, as § — 0 almost
surely, liminf s, ps - is equal to the probability p; . that D, disconnects at least k squares in S,
from z by distinct CLE, loops during the time interval [0, ,,, 0, , + 5]. Note that since s is positive
(and fixed), py, — 1asr — 0 for any fixed k.

This is almost exactly what we need. However, recall that although Sg,r only requiresone S € S,
to be disconnected from z by nz([crz 0o’ cri wst s]), it also requires that this z is visited by the
space-filling SLE,, before S. This is why we ask for k squares to be separated because then by
Lemma 3.11, whether they are visited before or after z converges to a sequence of independent
coin tosses. Namely, for any k € N,

.. o TE Vs _—k
hrgl&)nf llngll%)nf P(S 5’r) >(1 )hm 1nf hm 1nf P[0t +s])

z,w,8’ z w,5
separates k squares in S, from z)

> (1 -27% liminf
/( ) 510 pé,k,r

> (1 - 2_k)pk,r'

The liminf as r — 0 of the left-hand side above is therefore greater than or equal to (1 —
278)1im, _ py, = (1 — 27%) for every k. Since k was arbitrary this concludes the proof of (3.9).
Hence, to conclude the proof of the proposition, it suffices to justify (3.10). Although this is a
statement purely about SLE, it turns out to be somewhat easier to prove using the connection
with LQG in [18]. Thus we postpone the proof of (3.10) to Section 4.4, at which point we will have
introduced the necessary objects and stated the relevant theorem of [18]. Let us emphasize that
this proof will rely only on [18] and basic properties of LQG (and could be read immediately by
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someone already familiar with the theory) so it is safe from now on to treat Proposition 3.9 as
being proved. O

3.3 | Convergence of the partial order: Proof of Proposition 3.2

Recall that Proposition 3.2, stated at the very beginning of Section 3, asserts the joint convergence
of the branching SLE,, and the collection of order variables to the limit

((Dz)zeQ’ (OZ,LU)Z,LUEQ)

defined in Lemma 3.1. Completing the proof is now simply a case of putting together our
previous results.

Proof of Proposition 3.2. The following three claims are the main ingredients. O
Claim1. (D),co = (D) ,c0-

Proof. This follows from Corollary 2.16, Proposition 3.9 and the fact that for every ¢ and
zZ,w€E Q, D; and Di) agree (up to time change) until z and w are separated, and then evolve
independently. O

Claim 2. For any z,w € Q, (D5, D5, 0; )= (D;, Dy, 0, ).

Proof. Asusual, due to tightness, it is enough to show that any subsequential limit (D}, D} , O*) of
(D%, D%, OF ), along a sequence €, | 0, has the correct joint distribution. In fact, we may assume
that
€n 5n En €n En * k
(D, D, 04 0;,)=> (DD, o) O")

zw’ w,z? z,w’ wz’
and verify the same statement, where by Proposition 3.9 and Claim 1, we already know that

; @
(D* D* : ) - (Dz’Dwsaz w? wz)

w’ z w’
(in particular, D} and Dj; agree up to time reparameterization until z and w are separated at times
G: w’ O-I’U z)
Now, Proposition 3.4 implies that, given D] and D, stopped at times o7,
the conditional law of O@* is fair Bernoulli. On the other hand, since

0,,.,» respectively,

En ”l n n n
O (g, [DZ DI, )3 5 > 0) and (g, [DFIDE), g )3 5> 0)
are mutually independent for every n, it follows that (O* is independent of

(ga; [D*]((D )s+g ) 0) (gcr [D;]((Dw)s+gz)z)a N> 0)

This provides the claim. O
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Claim 3. Forany z,w € Q, ((D;)yEQ, (9;w) = ((D))ye0s Oz w)-

Proof. The same argument as for Claim 2 extends directly to this slightly more general setting (we
omit the details).

With Claim 1 in hand (and the argument proving Lemma 3.1) all we need to show is that for
any subsequential limit in law ((D,),<0, (OZ*’w )zweo) of (D)0, (Oi,w )zweo) as € — 0, the con-
ditional law of (O ) weo given (D,),co satisfies the bullet points above Lemma 3.1. That is,
(a) O} , = 1forall ze Q; (b) (9* =1-0; , forall z,w € Q distinct; (c) (9* is (conditionally)
Bernoulh(l /2) for any such z, w; and (d) for all z, w;, w, € Q with z # w,, wz, if D, separates z
from w, at the same time as it separates z from w; then (9:, =0 w, ; otherwise O, and (9;w2
are (conditionally) independent.

Observe that (a) and (b) follow by definition of the ©¢  , and (c) follows from Claim 3. The first
case of (d) also follows by definition, and the second follows from the definition of @¢ , (¢

zZ,Wwy’ 7 Z,W,
together with the branching property of (Df),c and the convergence of the separation times. O

3.4 | Joint convergence of SLE, CLE and the order variables
The results of Sections 2 and 3 give the final combined result:

Proposition 3.12.

((DE)ZEQ’ ([“;i)zeg,izl’ (B;i)ZEQ,l}l’ (Oi,w)z,weg)

=

((Dz)zeQ’ ([“z,i)zeg,izl’ (Bz,i)zeQ,izl’ (Oz,w)z,weQ)

as ¢ | 0, with respect to the product topology

H D, x H Hausdorff x H Carathéodory viewed from z X H discrete.
OxN OxN oOxQ

Proof. Since we know that all the individual elements in the above tuples converge, the
laws are tight in €. Combining Proposition 3.2 and Corollary 2.29 (in particular, using that
(£;.)ze0.1»B;i)zc0.>1 are deterministic functions of (D,),c) ensures that any subsequential
limit has the correct law. O
4 | LIOUVILLE QUANTUM GRAVITY AND MATING OF TREES

4.1 | Liouville quantum gravity

Let D C C be a simply connected domain with harmonically non-trivial boundary. For f,g €
C*(D) define the Dirichlet inner product by

(fs9v = % /D Vf(z)- Vg(z)dz.
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Let H(D) be the Hilbert space closure of the subspace of functions f € C*(D) for which (f, f)y <
oo, where we identify two functions that differ by a constant. Letting (f,,) be an orthonormal basis
for H(D), the free boundary Gaussian free field (GFF) h on D is defined by

h = Z % f s
n=1

where («,,) is a sequence of independent and identically distributed standard normal random vari-
ables and the convergence is almost sure in the space of generalized functions modulo constants.
The free boundary GFF is only defined modulo additive constant here, but we remark that there
are several natural ways to fix the additive constant, for example, by requiring that testing the
field against a fixed test function gives zero. If this is done in an arbitrary way (that is, picking
some arbitrary test function in the previous sentence) the resulting field almost surely lives in the
space H| i (D): this is the space of generalized functions whose restriction to any bounded domain
U C D is an element of the Sobolev space H~(U); see [11, 55] for more details.

Let S = R X (0, ) denote the infinite strip. By, for example, [18, Lemma 4.3], H(S) has an
orthogonal decomposition H(S) = H,(S) @ H,(S), where H,(S) is the subspace of H(S) consist-
ing of functions (modulo constants) which are constant on vertical lines of the form u + [0,i 7]
and H,(S) is the subspace of H(S) consisting of functions which have mean zero on all such ver-
tical lines. This leads to a decomposition h = h; + h, of the free boundary GFF h on S, where
h, (respectively, h,) is the projection of h onto H,(S) (respectively, H,(S)). We call h, the lateral
component of h.

Now let D C C be as before, and let f) be an instance of the free-boundary GFF on D with the
additive constant fixed in an arbitrary way. Set h = §) + f, where f is a (possibly random) contin-
uous function on D. For § > 0 and z € D let hs(z) denote the average of h on the circle 0Bs(z)
if B5(z) C D; otherwise set hs(z) = 0. For y € (\/5, 2) and € = 2 — y the field h induces an area
measure y; on D, which is defined by the following limit in probability for any bounded open set
ACD:

5(A) = lim(2e)”? / exp (hs(2)67 /2 d’z.
- A

Note that the definitions for ¢ > 0 differ by a factor of 2¢ from the definitions normally found in
the literature. This is natural in the context of this paper, where we will be concerned with taking
¢ | 0 (see below). Indeed, for y = 2 (which will correspond to the limit as ¢ | 0) we define:

piA) = lim [ (=h + 10g(1/8)) exp(2hs ()8 .
-0Ja
If f extends continuously to dD, boundary measures v; and v, can be defined similarly by
€ T -1 4 Y2 /4
vi(4) = lim (2¢) /A exp (Lhs(@)87"/ dz,
. hs
v,(A) = lim / —— +1og(1/9) ) 6 exp(hs(z))dz.
6—0 A 2

See [9, 19, 48] for proofs of these facts.
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A pair (D, h) defines a so-called y-LQG surface. More precisely, a y-LQG surface is an equiv-
alence class of pairs (D, h) where D is as above and 4 is a distribution, and we define two pairs
(Dq, hy) and (D,, h,) to be equivalent if there is a conformal map ¢ : D; — D, such that

hy = hyop +Q,log|¢’|,  Q, :=2/y+v/2 (4.

With this definition, if h;, h, are absolutely continuous with respect to a GFF plus a continuous
function we have “ZZ = qb*(,u;l) and vzz = ¢*(v;1) fore € (0,2 — \/5). The analogous identities
also hold for ¢ = 0.

The LQG disk is an LQG surface of special interest, since it arises in scaling limit results con-
cerning random planar maps, for example, [13, 24]. The following is our definition of the unit
boundary length y-LQG disk in the subcritical case. Our field is equal to —2y~! log(2¢) plus the
field defined in, for example, [18]: this is because we want it to have boundary length 1 for our
definition of v; (which is (2¢)~! times the usual one).

Definition 4.1 (Unit boundary length y-LQG disk for y € (\/5, 2)). Let h, be a field on the strip
S =R % (0,i7) with the law of the lateral component of a free boundary GFF on S. Let h] be a
function on S such that h{(s +iy) = B;, where

(i) (B)sso has the law of B,; —(2/y —y/2)s conditioned to be negative for all time, for B a
standard Brownian motion started from 0; and

d
(ii) (B )ss0 is independent of (1), and satisfies (B° )so = (BBS)s50-

Set hi = h$ + h;, and let K be the distribution on S whose law is given by
h —2y~'logv;.(8S)  reweighted by v;E(aS)‘*/ r’-1, (4.2)

Then the surface defined by (S, h®) has the law of a unit boundary length y-LQG disk.

See [30, Definition 2.4 and Remark 2.5] for a proof that the above does correspond to
—2y~!log(2¢) + the unit boundary length disk of [18]. Note that (see, for example, [18, Lemma
4.20]) v; (8S) is finite for each fixed ¢ > 0, so that the above definition makes sense. In fact, we

can say something stronger, namely Lemma 4.2. We remark that the power 1/17 in the lemma
has not been optimized.

Lemma 4.2. There exists C € (0, c0) not depending on e € (0,2 — \/5) such that
P[v;.(8S) > x] < Cx ' forall x > 1.
Moreover, for any fixed x, IP[VZs((—oo, —K)U (KU ) Xxi{0,7}) > x] - 0 as K — oo, uniformly
ine. :
Finally, if hg is defined in the same way as h above but instead letting (B;); have the law of

(—\/E) times a three-dimensional Bessel process, then we also have that

P[v), (8S) > x] < Cx™ '/ forall x > 1.
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Proof. Let us first deal with the subcritical measures. In this case, we write
b, =v; ([k,k+1]x{0,ix})
2

for k € 7. Then the law of b; does not depend on k since the law of h, is translation invariant; see,
for example, [11, Remark 5.48]. Furthermore, by [49, Theorem 1.1], E((b;)?) is uniformly bounded
ineforany g < 1.(The result of [49] shows uniform boundedness of the moment for a field that dif-
fers from h, in [0, 1] X {0} or [0, 1] X {i 7r} by a centered Gaussian function with uniformly bounded
variance.) Letting a; = supe(y k41 e"/25 we then have that

v} (0S) < Y’ ajbf.
kez

Thus, since Y, o, (|k| v 1)~2 < 10, a union bound gives

P[v$.(8S) > x] < 2 (P[a; > x|kl v D™ + P[bE > 0.1x"/*(Jk| v 1)2]). (4.3)
s kez

Taking g = 3/4 (for example), using the uniform bound on E((b})?) and applying Chebyshev’s
inequality gives that Y, ., P[b > 0.1x"/2(Jk| v 1)?] < ¢ox~3/# for some universal constant c,.

Furthermore, since B¢ is stochastically dominated by (— \/5) times a three-dimensional Bessel
process; see [35, Lemma 12.4], we have that for (Z(¢)),., such a process and (W (1)), a standard
linear Brownian motion:

PlaS > x/2(lk| v 1)™] < P[ inf  Z(s) < y'log (x—1/2(|k| v 1)4)]
se€lk,k+1]

3

for all x and k, where we used to get the second inequality that Z d (W, Wy, W3)|for W, W,, W,
independent copies of W. The probability on the right side is 0 if |k| < x!/® and otherwise it
is bounded above by ¢, |k|~1/2y~!log(x~/?(|k| v 1)*) where ¢, is another universal constant.
Therefore, for a final universal constant ¢, > 0,

3
z Pla; > x2(k|v1) ™ <2 Z (cllkl_l/z)/_1 log <x_1/2(|k| \Y 1)4>) < czx_l/”.
kez kez : |k|>x1/8

The same bounds yield the second statement of the lemma.

Finally, exactly the same proof works in the case of the critical measure, using [49, Section 1.1.1]
tosee that by, = vy, ([k, k + 1]) has a finite gth moment, which does not depend on k by translation
invariance. O

‘We may now define the critical unit boundary length LQG disk as follows.
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Definition 4.3 (Unit boundary length 2-LQG disk). Letting h, be as in Lemma 4.2 we define the
unit boundary length 2-LQG disk to be the surface (S, h), where

~

h 1= hg—logvy, (85).
Note that v, (85) is finite by Lemma 4.2.

Remark 4.4. Readers may have previously encountered the above as the definition of a quantum
disk with two marked boundary points. A quantum surface with k marked points is an equivalence
classof (D, h, x, ..., X)) with x, ..., X € D, using the equivalence relation described by (4.1), but
with the additional requirement that ¢ maps marked points to marked points. In this paper we
will use Definitions 4.1 and 4.3 to define specific equivalence class representatives of quantum
disks, but we will always consider them as quantum surfaces without any marked points. That is,
we will consider their equivalence classes under the simple relation (4.1).

The following lemma says that the subcritical disk converges to the critical disk as ¢ | 0 (equiv-
alently, y 1 2). We say that a sequence of measures (f,,),cy On a metric space E (equipped with
the Borel o-algebra) converges weakly to a measure j if for all A C E such that fi((dA) = 0 we have

f(A) = (A

Lemma 4.5. For ¢ > 0 let h° be the field of Definition 4.1 and h be the field of Definition 4.3.
Then (h®, ,u%s, V%E) = (h, up, vy), where the first coordinate is equipped with the H,_ l(S) topology
and the second and third coordinates are equipped with the weak topology of measures on S and
dS, respectively.

Proof. To conclude it is sufficient to prove the following, for an arbitrary sequence ¢,, | 0:

i) we have convergence in law along the sequence ¢, if we rep ace h y hg, an hen y h," for

@) h g in 1 long th  if lace h by hy dhfbhzf
every n; and

i1) there exists a coupling of the (v, <, ) such that v % ~F —>1linL"'asn — o.

To see (i), first observe that the processes /3¢ converge to B in law as ¢ — 0, with respect to the
topology of uniform convergence on compacts of time. Indeed for any fixed § > 0, if Tg (respec-
tively, T's) is the first time that 3° (respectively, B) hits —6, it is easy to see that B°(- + T) converges
to B(- + T5) in law in the specified topology as ¢ — 0: a consequence of the fact that the drift coef-
ficient in B¢ goes to 0, and by applying the Markov property at time T<, Ts. Moreover, T5,Tg
converge to 0 in probability as § — 0, uniformly in e: this is true since T}, Tg are stochastically
dominated by their counterparts for non-conditioned (drifted) Brownian motion, and the result
plainly holds for the non-conditioned versions. Combining these observations yields the assertion.

We may therefore couple hz" and hg so that their lateral components are identical, and the
components that are constant on vertical lines converge almost surely on compacts as n — 0.
For this coupling, the result of [6] implies that

v, (A) = v, (A) and 4t (U) — y, (U) (4.4)

in probability as n — oo, for any bounded subsets A C S and U C S. More precisely [6, Sections
4.1.1 and 4.1.2] proves that v;" (A) —» v;" (A), when h is a specific field on S that differs from hg
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by a bounded continuous function on A (similarly for u). Since adding a continuous function f
to h modifies the boundary measure locally by exp((y/2)f) and the bulk measure by exp(y f) we
deduce (4.4). To conclude that

(hEn yén > lu En ) (hs’ vhsy Iuhs)

in probability for this coupling (with the correct topology), and thus complete the proof of
(i), it remains to show that v ., (0S) - Vp, (0S) and " i (S) - M, (S) in probability as n —

co. For this, we use the second assertion of Lemma 4. 2 together with the fact that Vp, (8S) =
limg_, Vhs(( —K,K) x i{0, 7r}) by definition. Combining with (4.4) yields the desired conclus10n
for the boundary measures. A similar argument can be applied for the bulk measures, where we
may use, for example, [2, Theorem 1.2; 4, Theorem 1.2] to get the uniform gth moment bound for
q < 1 asin the proof of 4.2.

For (ii), first observe that

v, @Sl =1

in law since

4/y> =1 - Oandv (55) = Vp, 09).

Furthermore, Lemma 4.2 gives the uniform integrability of v;ﬁ(asy‘/ rLling, Combining these

two results we get (ii). O

Remark 4.6. We reiterate that (;(S) < co and v;(3S) = 1 almost surely. Moreover, we have the
convergence ,LL%E(S) => up(S) <ocoase — 0.

Remark 4.7. For b > 0 we define the b-boundary length disk to be a surface with the law of (S, h?),
where h? = h + 2y~!log(b) for h as in Definition 4.1 or 4.3. Lemma 4.5 also holds if we assume
all the disks are b-boundary length disks.

The fields that appear in the statement of our main theorem are defined as follows.
Definition 4.8. We define fields h¢ (respectively, h) to be parameterizations of unit boundary
length y-LQG disks (respectively, the 2-LQG disk) by D instead of S. More specifically we take

¢ : D — S to be the conformal map from S to D that sends +o0, —00,i7 to 1, —1, i, respectively.
Then we set

B = Rfog +Q, log|¢'| and h = hog + 2log ¢/,

where he (respectively, h) is the field in the strip S corresponding to Definition 4.1 (respectively,
Definition 4.3).

Remark 4.9. Lemma 4.5 clearly also implies the convergence

(h®, Hyes Vi) = (B, s vp)
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as € —» 0 (with respect to H i(ID) convergence in the first coordinate, and weak convergence of
measures on D, dD in the final coordinates).

In fact, it implies the convergence of various embeddings of quantum disks. Of particular use
to us will be the following:

Lemma 4.10. Suppose that for each e, W is as in Remark 4.7 for some b > 0 and that h¢ is defined
by choosing a point z¢ from ,u%g in S, defining Y¢ : S — D conformal such that Y*(zF) = 0 and
@) (z%) > 0, and setting

R 1= Reo() T 4Q, log ().

Suppose similarly that (h, 1) is defined by taking the field I in Remark 4.7 with the same b > 0,
picking a point z from ug; takingy : S — D conformal with ' (z) > 0 and Y(z) = 0; and setting

h=h+y ' +2log|@7|, = uj.
Then as € — 0, we have that
(7,5 ) = (B o).
Moreover, forany m > 0
P(,u%g([D \(1-8)D)>m)—>0asé >0 (4.5)
uniformly in €. This convergence is also uniform over b € [0, C] for any 0 < C < oo.

Proof. We assume that b = 1; the result for other b and the uniform convergence in (4.5) follows
immediately from the definition in Remark 4.7.

The proof then follows from Lemma 4.5. We take a coupling where the convergence is almost
sure: in particular, the fields he converge almost surely to Rin H i(S) and the measures ,u%e con-
verge weakly almost surely to (4 in S. This means that we can sample a sequence of z° from the
/,t%E and z from up, such that z° — z € S almost surely. Since z € S is at positive distance from
0S8, this implies that the conformal maps ¢ converge to ¢ almost surely on compacts of S and
therefore that h* — h in H i([D) and /,t%E converges weakly to fi. Finally, (4.5) follows from the
convergence proved above, and the fact that it holds for the limit measure u;. O

Later, we will also need to consider fields obtained from the field h¢ of Lemma 4.10 via a random
rotation. For this purpose, we record the following remark.

Remark 4.11. Suppose that h, are a sequence of fields coupled with some rotations 8, such
that h, = h,06, — 2y; ' logv, (D) has the law of hen from Lemma 4.10 with b = 1, for some
€, 1 0,7, = y(g,). Suppose further that (h,, Y, (oD), K, (D)) = (h,v*, u*) in ngi(lD) XRXR as
n — oo. Then v* = v, (0D) and u* = u;,(D) almost surely. Indeed, (hn,vhn(aﬂ])),yhn(ﬂ])), 8,,h,)
is tight in n, and any subsequential limit (k, v*,,u*,@,fz) has (h,v*,u*) coupled as above.
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FIGURE 9 The left-hand side figure is an illustration of the branch of a space-filling SLE,, (x’ > 4) toward
some point z € D, and stopped at some time before it reaches z. The space-filling SLE itself will fill in the
monocolored components that are separated from z as it creates them, so if ¢ is equal to the total y-LQG area of
the gray-shaded region on the right-hand side figure, then the space-filling SLE has visited precisely this gray
region at time ¢. We then define the left (respectively, right) boundary length of the space-filling SLE at time ¢ to
be the y-LQG boundary length of the red (respectively, blue) curve shown on the right-hand side figure.

Since A = (vhn (aID))Z/,tﬁn ©, 1(A)) for every n and A C D it follows from Lemma 4.10 that
w = (v*)’u;(D) and v;(8D) = 1 almost surely. On the other hand, it is not hard to see that h
must be equal to ho6 — log v* almost surely, which implies the result.

4.2 | Mating of trees

Mating of trees theory, [18], provides a powerful encoding of LQG and SLE in terms of Brownian
motion. We will state the version in the unit disk D below.

Let « € (—1,1) and let Z(© be ¢ times a standard planar Brownian motion with correlation
a > 0, started from (1,0) or (0,1). Condition on the event that Z first leaves the first quadrant at
the origin (0,0); this is a zero probability event but can be made sense of via a limiting procedure;
see, for example, [2, Proposition 4.2]. We call the resulting conditioned process (restricted until the
time at which the process first leaves the first quadrant) a Brownian cone excursion with correlation
a. Note that we use the same terminology for the resulting process for any c and either choice of
(1,0) or (0,1) for the starting point.

To state the mating of trees theorem (disk version) we first introduce some notation. Let (D, h®)
denote a unit boundary length y-LQG disk for y € (\/5, 2), embedded as described in Defini-
tion 4.8. Let n° denote a space-filling SLE,, in D, starting and ending at 1, which is independent
of h. Recall that this is defined from a branching SLE,, as described in Section 2.1.7, where the
branch targeted toward z € D is denoted by 7 (one can obtain ¢ from 7° by deleting time inter-
vals on which #°¢ is exploring regions of D that have been disconnected from z). Parameterize 7°
by the area measure induced by k. Let Z* = (L, R®) denote the process started at (0,1) and ending
at (0,0) which encodes the evolution of the left-hand side and right-hand side boundary lengths
of n¢; see Figure 9.
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The following theorem follows essentially from [18]. For precise statements, see [40, Theorem
2.1] for the law of Z¢ and see [40, Theorem 7.3] for the law of the monocolored components.

Theorem 4.12 [18, 40]. In the setting above, Z¢ has the law of a Brownian cone excursion with
correlation — cos(rwy?/4). The pair (h%,7) is measurable with respect to the o-algebra generated
by Z¢. Furthermore, if z is sampled from ,uile renormalized to be a probability measure, then the
monocolored complementary components of n);, define independent y-LQG disks conditioned on their
y-LQG boundary lengths and areas, that is, if we condition on the ordered sequence of boundary
lengths and areas of the monocolored domains U disconnected from z by 7¢ then the corresponding
LQG surfaces (U, h|;) are independent y-LQG disks with the given boundary lengths and areas.

Remark 4.13. In fact, we now know from [4] that the variance c? of the Brownian motion from
which the law of Z¢ can be constructed is equal to 1/(esin(ry?/4)), where y = y(¢) = 2 —¢. In
particular, the variance is of order e ~2.

For each fixed z € D there is a natural parameterization of 7 called its quantum natural param-
eterization which is defined in terms of Z¢ as follows. First define t = inf{t > 0 : 5°(t) = z} to be
the time at which »¢ first hits z. Then let 75! denote the set of s € [0, t] for which we cannot find a
cone excursionJ C [0, ] (thatis,J = [t;,t,] C [0, ] such that (X£,Y%) > (X 82, Yth) onJ, and either
X fl =X fz or Yfl = Yfz) such thats € J. We call the times in 75! ancestor-free times relative to time t.
It is possible to show (see [18, Section 1.4.2]) that the local time of 75! is well defined.” Let (¢ f’t)tzo
denote the increasing function describing the local time of 75! such that ff]’t =0and /' = ff’t
fort >t. ThenletT f’t fort € [0, ff’t] denote the right-continuous inverse of et

Definition 4.14 (Quantum natural parameterization). With the above definitions
t
02T Drepo o

defines a parameterization of ¢ which is called its quantum natural parameterization.

4.3 | Convergence of the mating of trees Brownian functionals
Let Z¢ be the process from Theorem 4.12 and let X* = (Af, Bf), where

1+ cos(ry?/4)

Al =a(l;+R), B =R -L, P ——
t E( t t) t t t € 1— COS(7T)/2/4)

Note that a, =em/2+o0(c) and that X® is an uncorrelated Brownian excursion with

variance 2(1 + cos(ry?/4))(esin(my?/4))™! = = + o(¢) in the cone {z € C : arg(z) € [-7/2 +

tan~!(a,), 7/2 — tan~!(a,))}, starting from (a,, 1) and ending at the origin (see Figure 10). Also

TThis local time (and the corresponding local time for € = 0 defined below) is defined only up to a deterministic
multiplicative constant. We fix this constant in the proof of Lemma 4.15.
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Z° = (L*, R°) X© = (A%, B°)

(0, 1)T

(z,y) = (ac(z +y),y — )
————————— > (0,0)

(0,0)

—> tan~1(a.)

FIGURE 10 The transformation from Z¢ to X*¢

define the processes X¢t = (A%t, B&t) for each t < uf(D), by setting

E’:t ;6> 0.
S

et
X =

We will prove in this subsection that all the quantities defined above have a joint limit in law
as¢ | 0. Namely, let us consider an uncorrelated Brownian excursion X = (A, B) in the right half-
plane from (0,1) to (0,0); the process can, for example, be constructed via a limiting procedure
where we condition a standard planar Brownian motion from (0,1) to (0,0) on first leaving {z :
Re(z) > —&} at a point Z where | Im(2)| < &. For t less than the total duration of X, let Z! c [0, t]
denote the set of times at which A has a backward running infimum relative to time t, that is,
seItifA, > A, forallu € (s, t]. Let (zft‘),>0 denote the increasing function describing the local
time of Zt such that f(‘) =0and ¢! = ft‘ for t > t. Then let T* denote the right-continuous inverse
of £, and define X' = (4", B) by X} = X!,

We set I

beE = (Xga (Ia’t)t’ (l’ﬂa’t)ta (TE’t)b (Xg,t)t)

and
be = (X, (I, (Y, (T, (X1)y)

where the indexing is over t € R, N Q.
Then we have the following convergence.

Lemma 4.15. be‘ = beasc | 0, where we use the Hausdorff topology on the second coordinate and
the Skorokhod topology on the remaining coordinates.

Proof. First we consider the infinite volume case where X¢ is a two-sided planar Brown-
ian motion started from 0, with the same variance and covariance as before, namely variance
2(1 + cos(ry?/4))(e sin(mry? /4))~! =  + o(e) and covariance 0. In this infinite volume setting we
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define (Z51),, (£°1),, (T*1),, (X51), similar to before, such that for ¢ € (0,2 — V2), I8t C (oo, 1)
is the set of ancestor-free times relative to time t, 7! : R — (—o0, 0] is an increasing process given
by the local time of 7% satisfying #5' = 0 for s > t, T*! : (—00,0) — (—o0,0) is the right-inverse
of 75t and X' = X ; .- We make a similar adaptation of the definition to the infinite volume set-

s

ting for € = 0; in particular, X is (\/; times) a standard uncorrelated two-sided Brownian motion
planar motion. By translation invariance in law of X* and X, and since X¢ and X determine the
rest of the objects in question, it is sufficient to show convergence for t = 0.

First we claim that for all € € [0,2 — \/5) we can sample I¢° by considering a PPP in the sec-
ond quadrant with intensity dx x y~*©dy for a(¢) = 1 + 2/(2 — €)> = 1 + 2/y?, such that points
(x,y) of this PPP are in bijection with the complementary components of Z¢° with y representing
the length of the component and x representing the relative ordering of the components. (In the
case ¢ = 0, I°0 refers to 1°.) For ¢ = 0 the claim follows since A restricted to the complemen-
tary components of 7° has law given by the Brownian excursion measure. For ¢ € (0,2 — \/5) the
claim follows from [18]: It is explained in [18, Section 1.4.2] that 7¢° has the law of the zero set of
some Bessel process, which verifies the claim modulo the formula for a(¢). The dimension of Z¢°
is 2/y? [20, Table 1 and Example 2.3], and we get the formula for a(¢) by adding 1 to this number.

Next we argue that the marginal law of Z¢° converges to the marginal law of Z°. Consider the
definition of these sets via PPP as described in the previous paragraph. Since lim,_,, at(e) = a(0) =
3/2,the PPPfore € (0,2 — \/5) converge in law to the PPP for ¢ = 0 on all sets bounded away from
y = 0. This implies that for any compact interval I we have convergence inlaw of Z¢°NIto 19N 1T
for the Hausdorff distance.

Now we will argue that if 76° C (—o0,0) denotes the backward running infima of A° relative
to time O, then

X519, 1% = (X,1°,1°).

Since (X¢, I°°) = (X, 1°) and 7¢° = I°, we need only to prove that for any almost surely sub-
sequential limit (X, Z°,7°) we have 7° = T° almost surely. Observe that 7¢° c 750 since 7°°
denotes the backward running infima of Af, 150 denotes the set of ancestor-free times of A€
relative to time 0, and a time which is a backward running infimum of A® relative to time 0
cannot be inside a cone excursion, hence it is ancestor-free. The observation 7¢° ¢ 70 implies

that 7° ¢ 7° almost surely in any subsequential limit (X, 7°, I°). Since 7° 1 0, this implies that
1° = 70 almost surely.

Next we will argue that (250,750, T¢0) = (19, #9, T?), assuming we choose the multiplicative
constant consistently when defining #5° and #°. The convergence result follows again from the
construction of 7¢° and 7Y via a PPP, since the x coordinate of the PPP defines the local time
(modulo multiplication by a deterministic constant).

Using that (280, #5°0, T%0) = (1°,¢°, T?), that 750 and I° determine the other two elements in
this tuple and that (X¢, 7¢°) = (X, I°), we get

(XE, IE’O, LpE,O, TE,O) = (XO, IO, pr, TO)
We conclude that the lemma holds in the infinite volume setting by using that
X0 = X oo and X, = X .

N
N
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To conclude the proof we will transfer from the infinite volume setting to the finite volume set-
ting. Let us start by recalling that there is a natural infinite measure 6, on Brownian excursions in
the cone C, :={z € C : arg(z) € (-7 /2 + tan"'(a,), 7 /2 — tan~!(a,))} which is uniquely char-
acterized (modulo multiplication by a constant) by the following property. Let X¢ be as in the
previous paragraph, let § > 0 and let J, = [t1,¢,] C R_ be the interval with largest left end point
t; of length at least § during which X makes an excursion in the cone C,. Here a cone excursion
in C, is a path starting at (ba,, b) + z, for some b > 0 and z, € C, ending at z;, and otherwise
staying inside z, + C,. Define

Yi= (X5, —X5) (4.6)
fort € [0,t, —t;] so that Y* is a path that starts at (ba,, b) for some b > 0, ends at the origin and
otherwise stays inside C,. Then Y* has law 6, restricted to excursions of length at least 6. (Here
and in the rest of the proof, when we work with a non-probability measure of finite mass, we will
often assume that it been renormalized to be a probability measure.); see [62].

The measure 6, allows a disintegration 6, = f0°° Gf db, where a path sampled from 6? almost
surely starts at (ba,, b). Furthermore, for b, b’ > 0, a path sampled from 65 and rescaled by b’ /b so
itends at (b’a,, b") (and with Brownian scaling of time), has law 6?’. Finally, an excursion sampled
from 651 is equal in law to the excursion in the statement of the lemma; see [2].

Let us now use these facts to complete the proof. We define a function f¢ such that for X*
a two-sided planar Brownian motion as above we have f¢(X¢) = ((I!),, (£51);, (T5Y),, (X°1),)
almost surely. For Y¢ a Brownian cone excursion in C, starting at (a,, 1) we define f¢(Y*) such
that (Y¢, f¢(Y®)) is equal in law to the tuple be® in the theorem statement. We also extend the
definition of f¢ to the case of Brownian excursions Y¢ in C, starting at (ba,, b) for general b > 0
in the natural way.

Now let Y* be coupled with X¢ as in (4.6) for some fixed § > 0, and let E® be the event that Y*
starts at (ba,, b) for b € [1,2]. Define f, E similarly for € = 0. We claim that

(X5, fEXO), Y5, fE(YO),E) = (X, f(X), Y, f(Y),E) (4.7)

as € — 0. In fact, this claim is immediate since if (X¢, f¢(X®)) converges to (X, f(X)) then (by
convergence of 7¢°) we also have convergence of the interval J,, which further gives convergence
of (Y¢, f&(Y9),E®) to (Y, f(Y),E).

With Y¢ as in the previous paragraph let Y denote a random variable which is obtained by
conditioning on E¢ and then applying a Brownian rescaling of Y¢ so that Y* starts at (a, 1).
We get from (4.7) that (Y€, f6(Y%)) = (Y, f(Y)). Note that if we condition the excursions in the
statement of the lemma to have duration at least §, then these have exactly the same laws as
(Y, f6(Y9),Y, f(Y)) conditioned to have duration at least . Thus the lemma follows upon tak-
ing & — 0, since the probability that the considered excursions have duration at least § tends to 1,
uniformly in e. O

4.4 | Proofof (3.10)

Let us first recall the statement of (3.10). We have fixed z,w € D, and as usual, #° denotes a
space-filling SLE,, in D, while 7¢ denotes the branch in the associated branching SLE,, toward
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z, parameterized by —log conformal radius seen from z. For § > 0, we have defined the times
0'; s that w is sent first sent to within distance 6 of dD by the Loewner maps associated with 7;,
and o*g =0 zwo 1O be the first time that z and w are separated by 7:. For r > 0, we denote the

collectlon of faces (squares) of rZ? that intersect D by S,. Finally, we write Sg for the event that
there exists S € S, that is separated by 7: from z during the interval az 0. cr ] and such that z

is visited by the space-filling SLE,, n¢, before S. The statement of (3.10) is then that

lim lim [P’(S‘S ) =0.
610 €l0

The mating of trees theorem (Theorem 4.12) together with the convergence proved in the previ-
ous subsection now make the proof of this statement reasonably straightforward. Indeed, in plain
language, it says that the probability of an SLE,,(x’ — 6) branch almost separating two points z
and w (where ‘almost’ is encoded by a small parameter §) but then going on to separate a bicolored
component of macroscopic size from z at some time ¢ strictly before separating z from w, goes to
0 as § — 0, uniformly in x’. The idea is to couple this SLE with an independent y-LQG disk and
note that if the event mentioned above were to occur, then the component U containing z and w
at time ¢ would have a small ‘bottleneck’ and hence define a very strange distribution of y-LQG
mass when viewed as a y-LQG surface. On the other hand, if we sample several points from the
y-LQG area measure on the disk, then one of these is likely to be in the bicolored component sep-
arated from z and w at time ¢. So the mating of trees theorem says that U should really look like a
quantum disk, and in particular, have a rather well behaved distribution of y-LQG mass without
bottlenecks. This contradiction will lead us to the proof of (3.10).

Let us now get on with the details. For € € (0,2 — \/E) we consider a CLE,, exploration along-
side an independent unit boundary length quantum disk s° as in Definition 4.8. We write u® for
its associated LQG area measure and let y¢ be a point in D sampled from u® normalized to be a
probability measure. We let z € Q be fixed.

Corollary 4.16. Consider the event A5 = that

* O . = 1(thatis, the component containing z when y* and z are separated is monocolored);

. when D¢ oye (this monocolored component) is mapped to D, with a point in the interior chosen
proportionally to u |Ds sent to 0, the resulting quantum mass of D \ (1 — 108D) is greater than
m.

Then for every m we have that

hm lim sup P(A =0.

§-0 ¢—0

5mv)

Proof. Theorem 4.12 says that the monocolored components separated from y© by 77; . are quantum
disks conditionally on their boundary lengths and areas. Moreover, we know that the total mass
of the original disk h¢ converges in law to something almost surely finite as € — 0, by Lemma 4.5
and Remark 4.6. Recalling the definition of B from Section 4.3, we also know that the largest
quantum boundary length among all monocolored components separated from y* has law given
by the largest jump of BY, for t chosen uniformly in (0, u(D)). Indeed, if t corresponds to ¢ as in
the paragraph above Definition 4.14, then t is a uniform time in (0, (D)) and the jumps of B! are
precisely the quantum boundary lengths of the monocolored components disconnected from y©.
By Lemma 4.15 we may deduce that the law of this largest jump converges to something almost
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surely finite as ¢ — 0. Thus, by choosing N, L large enough, we may work on an event with arbi-
trarily high probability (uniformly in £) where there are fewer than N monocolored components
separated for y* with mass at least m, and where they all have »* boundary length less than L.
Lemma 4.10 then provides the result. [l

We also need one more elementary property of radial Loewner chains to assist with the proof
of (3.10).

Lemma 4.17. Consider theimage (g,(2)),, of a point z € D under the radial Loewner flow (g,);~o =
(9:[D]);5¢ corresponding to D € D. Then with probability one, |g,(z)| is a non-decreasing function
of time (until point z is swallowed).

Proof. From the radial Loewner equation one can compute directly that, until point z is
swallowed,

+9:(2)
5,12 = 219z )m(;)
9:(2)
Since R((1 + x)/(1 — x)) > 0 for any x € D, the right-hand side above must be positive. O

Proof of (310). Fixr > 0 and suppose that P(S5 ) > a for some a > 0. Recall that SE is the event
that there exists S € S, that is separated by 77E from z during the interval [ ws »] and such
that the disconnected component containing z is monocolored. Let h¢, uf, yE be as above Corol-
lary 4.16, and leta’ = inf ., ming s, P(y* € S).Then a’ is strictly positive, due to the convergence
result Lemma 4.8, plus the fact that ming s, P(y € S) > 0 when y is picked from the critical LQG
area measure for a critical unit boundary length disk. By independence, we then have P(E}) > ad’,
where E7 is the event that o, . € [cZ w59 : pland OF Ly =L

We can also choose v, m small enough and K large enough that on an event F; . with
probability > 1 — aa’/2, uniformly in €:

* B,(v) C [ (respectively, B, (v) C [£) where [, (respectively, [ ) is the first nested CLE,, bubble
containing z (respectively, w) that is entirely contained in B,(|z — w|/3)) (respectively, B,,(|z —
wl/3);

* B,(v) and B,,(v) have u-mass greater than or equal to m;

* if we map [ (respectively, [f ) to D with z (respectively, w) sent to 0, then the images of B,(v)
and B,,(v) are contained in (1/2)D; and

« u*(D)<K.

Again this is possible because such v, m, K can be chosen when ¢ = 0,x” = 4, and we can appeal

to the convergence results Proposition 2.18 and Lemma 4.8. Note that on the event F}

(i) B, (v)and B,(v) are contalned in (D), forall ¢ € (o7 0.8

(ii) foranyt € (crZ i ¢ ) and conformal map sending (D), to D with z’ € B,(v) sent to 0, the
image of Bw(v) is contalned in a 108 neighborhood of oD.

2w

Point (ii) follows because any such conformal map can be written as the composition of a confor-
mal map (D), to D sending z to 0, and then a conformal map from D — D sending the image of
z/, which lies in (1/2)D, to 0. By Lemma 4.17, v is sent to distance at most § from the boundary by
the first of these two maps. The third bullet point in the definition of F,, ,, ¢ then implies that the
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whole of B,,(v) is actually sent within distance 49 of dD. Distortion estimates near the boundary
for the second conformal map allow one to deduce (ii).

To finish the proof, we consider the event E§ N an which has probability > aa’/2 by con-
struction. Conditionally on this event, if we sample a pomt from D¢ e . according to the measure
U, then this point will lie in B, (v) with conditional probability > m /K. If this happens, then upon
mapping to the unit disk with this point sent to the origin, a set of u* mass > m (namely B, (v))
will necessarily be sent to D \ (1 — 108)D (see point (ii) above). Note that m /K is a function c(a)
of a only (and in particular does not depend on ¢, 9).

So in summary, if [P’(SS ) a, then [FD(AE ) > aad’c(a) for some m(a),v(a),c(a) depending
only on a, where Aj mo is as in Corollary 4 16 This means that if (3.10) does not hold, then
limg_q limsup,_ IP(AE ) > 0 for some m, v. This contradicts Corollary 4.16, and hence (3.10)
is proved. O

5 | MATING OF TREES FOR x = 4 AND JOINT CONVERGENCE OF
CLE, LQG AND BROWNIAN MOTIONS AS «’ | 4

Before stating the main theorems, let us briefly take stock of the progress so far. Recall that to
eache € (0,2 — \/5) we associate k' = x/(¢) = 16/(2 — €)?, and write (D%),, for the SLE,/(x’ —
6) branches from 1 to z in a branching SLE,, in D. These are generated by curves (7),c0, SO
that (D), is the connected component of D \ 7; containing z for every z and ¢. Recall that this
branching SLE defines a nested CLE,, which we denote by I'?, and a space-filling SLE,, which we
denote by n°. The space-filling SLE,, ° then determines an order on the pointsin Q: forz,w € Q
we denote by O , the random variable that is 1 if z is visited before w by 7 (or z=w) and 0
otherwise. We combine these and set

ele® = (D), T, (% ), )

for each ¢, where z, w are indexed by Q.

When ' = 4 we have analogous objects. We write T for a nested CLE, in D, and we assume that
T is coupled with a branching uniform CLE, exploration that explores its loops. We write D, for
the branch toward each z € Q in this exploration. Finally, we define a collection of independent
coin tosses (O, ), weo s described at the start of Section 3. Combining these, we set

cle = ((DZ)Z; r’ (Oz,w)z,w)'

The processes D, D, are each parameterized by —log conformal radius seen from z, and
equipped with the topology of D, for every z € Q. The loop ensembles I'*, I' are equipped with
the topology of Hausdorff convergence for the countable collection of loops surrounding each
z € Q.

We also consider, for each ¢, a unit boundary length LQG disk as in Definition 4.8, independent
of cle® and write

lqg° = (U}, v}es h°)
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for the associated area measure, boundary length measure and field. We denote by

qu = (:uh’ Vh? h)

its critical counterpart, which we also sample independently of cle. We equip the fields with
the H™'(D) topology, and the measures with the weak topology for measures on D and
0D, respectively.

Then by Remark 4.9, Proposition 3.12 and the independence of cle® and Iqqg° (respectively, cle
and lqg), we have that

Proposition 5.1. (cle®,[qg®) = (cle,lqg) ase — 0.

Additionally, forevery e € (0,2 — /2) by the mating of trees theorem, Theorem 4.12, (cle®, [qg°)
determines a collection of Brownian observables

Bes = (XE, (Is’t)t’ (fg’t)t’ (Tg’t)b (X\E’t)t)

as explained in Section 4.3. Recall that X* is 1/7 times an uncorrelated Brownian excursion in the
cone{z € C : arg(z) € [-7/2 + tan"Y(a,), 7/2 — tan~!(a,))}, starting from (a,, 1) and ending at
the origin, where a, = \/ (1 + cos(my?/4))/(1 — cos(zy? /4))) = me/2 + o(e). The indexing of the
above processes is over t € R, N Q. If we also write

be = (X, (It)t, (bﬂt)u (Tt)t: ()?t)t),
for a tuple with law as described in Section 4.3, then by Lemma 4.15 we have that
Proposition 5.2. be® = be ase — 0.

Here, 75!, It are equipped with the Hausdorff topology, and the stochastic processes in the
definition of be®, be are equipped with the Skorokhod topology.

We now wish to describe the joint limit of (cle®, [qg®, be®) as ¢ — 0. For this, we first need to
introduce a little notation.

Forz,w € Q,z # w, we can consider the first time o7 | (defined by cle®) at which z and w are in
different complementary components of D \ 7;. We let U® = U®(z, w) C D denote the component
which is visited first by the space-filling SLE,, n°. We say that U¢ = U®(z, w) is the monocolored
component when z and w are separated. Let us define

U :={UCD: U= U’(z,w) for some z # w with OZ’w =0}

to be the set of monocolored components separated from z by n:. Note that these are natu-
rally ordered, according to the order that they are visited by #°. In fact, we may also associate
orientations to the elements of U’ : we say that U € U is ordered clockwise (respectively, coun-
terclockwise) if the boundary of U is visited by 7; in a clockwise (respectively, counterclockwise)
order, and in this case we write sgn(U) = —1 (respectively, +1).

Remark 5.3. Fore € (0,2 — \/5), by Theorem 4.12 and the definitions above, we have that
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* the duration of Z¢ is equal to x; (D), hence X° = 0 for all ¢ > ;. (D) almost surely;

* forz € Q, the time ¢{ at which »° visits z is almost surely given by #ZE(UUeug U)= Zu; M5, (U);

* the ordered vig boundary lengths of the components of U? are almost surely equal to the ordered
jumps of (B%'z), and the sign of each jump is equal to the sign of the corresponding element of
U5 and

* the ordered “ZE masses of the components of U are almost surely equal to the ordered jumps
of T%.

We can also define analogous objects associated with the CLE, exploration: if z and w are
separated at time o, ,, by the CLE, exploration branch toward z, and O, ,, = 1 we set U(z, w) =
(D), ;1O , =0wesetU(z,w) = (D), _.Thesetl, isthen defined in exactly the same way.
Note that in this case the elements of U, are ordered by declaring that U comes before U’ if and
onlyif U = U(z,w)and U’ = U(z,w’) for w # w’ such that @, , = 0. We now say that U € 2, is
ordered clockwise (respectively, counterclockwise) if there is an even (respectively, odd) number
of loops which enclose U, and write sgn(U) = —1 (respectively, +1).

The main ingredient that will allow us to describe the joint limit of (cle®, [qq®, be®) is the
following:

Proposition 5.4. Given (cle®,lqg®), denote by z¢ a point sampled from M;. in D (normalized to
be a probability measure) and given (cle, Lqg), denote by z a point sampled in the same way from
M- For given § > 0, write (U3, ..., Uy,.) for the ordered components of U7, with w; . area > 6, and
define (Uy, ..., Uy) similarly for the ordered components of U, with y, area > 8. Suppose that w;
for1 <i < N, (respectively, w; for1 < i < N) aresampled from i |y« (respectively, |y ) normalized
to be probability measures, and g : U; — D (respectively, g; : U; N D) are the conformal maps that
send w; to O (respectively, w; to 0) with positive real derivative at w; (respectively, w;). Set sgn(U?) =
w; = 0 (respectively, sgn(U;) = w; = 0) and g; (h®) (respectively, g,(h)) to be the O function fori > N*
(respectively, i > N). Then

(cle®, Lqg®, 2%, (Sgn(UiE))i;p (wig)igl’ (gis(hs))i>1) = (cle,lqg, z, (Sgn(Ui))izla (wi)l;p (gi(h))igl)
ase — 0." Thefields g;(h®) and g(h) above are defined using the change of coordinates formula (4.1).

In other words, the ordered and signed sequence of monocolored quantum surfaces separated
from z®» converges almost surely, as a sequence of quantum surfaces (see above (4.1)) to the
ordered sequence of monocolored quantum surfaces separated from z as n — oo.

From this, we can deduce our main theorem.

Theorem 5.5. (cle®,Lqq®, be®) converges jointly in law to a tuple (cle,Lqq, be) as € | 0. In the lim-
iting tuple, cle,lqg, be have marginal laws as above, cle and lqg are independent, and (cle,lqg)
determines be.

TWith respect to the Euclidean topology in the third coordinate, and the topology in the final coordinates defined such
that ((s)iz1, (Wis1, (h)iz1) = (i1, (Wis1, (hy)iz1) @s n — oo if and only if the number of non-zero components on
the left-hand side is equal to the number N,, of non-zero components on the right-hand side for all n large enough, and
the first N components converge in the product discrete x Euclidean x H~!(D) topology.
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TABLE 1

be (cle,lqg)

Duration of X (D)

{t, <t} {0,,; = 1} ='w ordered before z’

t, uh(m) =‘quantum area of points ordered before z’

A, Quantum natural distance of z from dD

Jumps of B’ LQG boundary lengths of ‘components ordered before z’

Sign of jump Parity of # {CLE, loops surrounding component}

Jumps of T LQG areas of ‘components ordered before z’

CRT encoded by A CLE, exploration branches parameterized by quantum natural distance

Furthermore, we have the following explicit description of the correspondence between (cle,Lqg)
and be in the limit. Suppose that z € D is sampled from the critical Liouville measure u normalized
to be a probability measure. Then

* X; =0forallt > u(D) almost surely and the conditional law of

t. = un(Upen, V) (5.1)

given (cle, Lqg, be) is uniform on (0, u(D)),
* X, = (A, ,B, ) satisfies the following for a deterministic constant ¢ > 0:

A = cli%n i(I)lf 6Ns and B, =1+ Z sgn(U)v,(U) (5.2)
- vuel,

almost surely, where for § > 0, N is the number of domains U € U, such thatv,(0U) € (§/2,6),
* the ordered collection (u;,(U), sgn(U)v;, (8 U))Ueuz is almost surely equal to the ordered collection

of jumps of (T'z, B'z) (where (T'z, B'z) are defined from be as in Section 4.3).
Note that
-~ tz
Atz = AKZ = flz (5.3)

is the limitase — 0 of the total length of the SLE,,(x” — 6) branch toward z in the quantum natural
parameterization. We can therefore view 4, as a limiting ‘quantum natural distance’ of z from
the boundary of the disk. In a similar vein, we record in Table 1 some of the correspondences
between the CLE, decorated critical LQG disk with order variables (c¢le, [qg) and the Brownian
excursion be, where z, w are points sampled from the critical LQG measure y;, in the bulk.

Proof of Theorem 5.5 given Proposition 5.4. Since we know the marginal convergence of each com-
ponent of (clef, [qg®, be®), we know that the triple is tight in e. Thus our task is to characterize
any subsequential limit (cle, Lqq, be) of (c(e®, [qg®, be®). Note that Proposition 5.1 already tells us
that (cle, [qg) are independent, and Proposition 5.2 tells us that the marginal law of be is that of a
Brownian half-plane excursion plus associated observables.

8519017 SUOWIWOD aAITeaID 3|qedt|dde ayy Aq peusenob ae sspnte YO ‘8sn Jo S9N Joy Arig1T8uljUQ /8|1 UO (SUonIpUOD-pUR-SWBIALI0D A8 | 1M Ae.q 1 pUlUO//:SdNy) SUONIPUOD pUe WIS | 8U1 89S [7202/80/TT] U0 ARliqi 8uluO AB|IM ‘6892T SW|(ZTTT 0T/I0P/WO00" A8 1M AReIq I PUIUO"D0SYRWPUO|//:Sdny WOy pepeoumoq ‘T ‘€202 ‘0S.L69VT



BROWNIAN HALF-PLANE EXCURSION AND CRITICAL LIOUVILLE QUANTUM GRAVITY | 499

To characterize the law of (cle, Lqg, be) we will prove that if z € D is sampled according to u;,
in D, conditionally independently of the rest of (cle, [qg, be) then

(i) the duration of X is equal to u;, (D) almost surely;
(ii) t, defined by (5.1) is conditionally uniform on (0, u;, (D)) given (cle, Lqg, be);
(iii) the ordered collection (u,(U),sgn(U)v,(0U))yey, is almost surely equal to the ordered
collection of jumps of (T'z, B'z) (defined from be as in Section 4.3); and
(iv) A B, satisfy (5.2) almost surely.

Let us remark already that the above claim is enough to complete the proof of the theorem.
Indeed, suppose that (cle,[qg, be) is a subsequential limit in law of (cle®,Iqg®, be®) as ¢ —» 0
and let (cle, Lqg, be, be') be coupled so that (cle, lqg, be) is equal in law to (cle,lqg, be'), while
be, be’ are conditionally independent given cle, [qg. Further sample z from y, in D, condition-
ally independently of the rest of (cle, [qq, be, be’), so that (i)~(iv) hold for (cle, [qg, be, z) and for
(cle,lqg, be’, z) (with X, A, B replaced by their counterparts X’, A’, B’ for be’.) Then by (i) and
(i), and since X(be), X(be’) are almost surely continuous, if P(be # be’) were strictly positive
then P(X (be)tZ #X (be’)[z) would be strictly positive as well. This would contradict (iii) and (iv),
so we conclude that be = be’ almost surely. This means that be is determined by (cle, lqg), and
the explicit description in the statement of the theorem also follows immediately.

The same argument implies that the law of any subsequential limit is unique. More concretely,
suppose that ¢,, €/ are two sequences tending to 0 as n — oo, such that (cle®, [qg®, be*) =
(cle, Xqg, be) and (cle‘, Iqq®, ben) = (cle, [qg’, be’) as n — co. Then we can also take a joint
subsequential limit of (cle, [qg®, be®, clen, Lqg®n, be™); call it (cle, qg, be, cle’, Iqq’, be’) where
necessarily cle = cle’ and lqg = lqqg’, since we already know the convergence (cle®,(qq%) =
(cle,Lqqg). Repeating the argument of the previous paragraph gives that be = be’ almost surely.
In particular, the marginal law of (cle, [qg’, be’) is the same as that of (cle, Iqg, be).

So we are left to justify the above claim. To this end, let

(cle,Lqg, be) (5.4)

be a subsequential limit, along some subsequence of €. By Proposition 5.4 and passing to a further
subsequence if necessary we may extend this to the convergence

n n n n E"’a En,5 n
(cte, Lag®, 250, Be, ((sgn (U Dpon. (o B ),

=
(CIQ, qus z, be, ((Sgn(U?))l}l! (gia(h))izl ) 56@0(0,1)) (55)
along some ¢, | 0, where for every d€ Q n (0, 1) the joint law of
(dén, Lag™, 2, be'n, ((sgn (U™ N, (g ()1 )56@n o 1)> )

and (CIQ, lag, z, (Sgn(U?)z;l’ gia(h)izl))

are as in Proposition 5.4 (now with the dependence on § indicated for clarity) and the joint law of
(cle,Lqg, be) is the one assumed in (5.4). Note that the conditional law of z given (cle, Lqg, be) is
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that of a sample from y;,, since the same is true at every approximate level and since ,ufl'}n converges
as part of [qg™.
We next argue that the convergence (5.5) necessarily implies the joint convergence

s (1)) 4 00) 6. ()
(cIe ,Lqg®r, z°, be ,((sgn(Ui o1 g."" (k) 1 Mpen \ U o1’
(v, (sU7)). >
21/ sean(o,1)

=
(cle,1qg, z, be, ((Sgn(Uf))gla (gié(h))izla (/lh(U?))izl, (Vh(ané))izl)ge@n(o)l)) (5.6)

as n — oo, where the initial components are exactly as in (5.5). Indeed, we know that the tuple
on the left is tight in n, because the first six terms are tight by above and both (/JZ’QH(UiE "’5))i>1

and (7/;’;” (tiUl.E"’é))i21 are sequences with only a tight number of non-zero terms, and with all
non-zero terms bounded by convergent quantities in ({qg®, be*r). On the other hand, for any
fixed &, i and n,

€ €,,0 € € €,,0 €
"UT)=u" D)andv,” QU ) =v™" oD),
'uh n( i ) lugf”'d(hsn)( ) h n( i ) g;"’5(h5n)( )

so by Theorem 4.12, (g:”’5(h£n), ,u;’;n (Ul.g"’5), v;’;n @ Ul.E"’é)) is a sequence of y(g,)-quantum disks
together with their quantum boundary lengths and areas. We can therefore apply Remark 4.11 to
deduce that any subsequential limit in law (g,(h), u*, v*) of (g7 (h), w5 (U, v (0U™))
must be equal to

(920D, 51y (D), 15, (OD) = (92 (), (UD), v (BT)).

This concludes the proof of (5.6).

So to summarize, if we have any subsequential limit (cle, Iqg, be) of (cle?, Lqg®, be®) we can
couple it with z (whose conditional law given (cle, [qg, be) is that of a sample from ;,) and with
(Ui, 9)i51 for every positive § € Q, such that the joint convergence (5.6) holds along some sub-
sequence ¢, | 0. By Skorokhod embedding we may assume that this convergence is almost sure,
and so just need to prove that (i)-(iv) hold for the limit. This essentially follows from Remark 5.3
and the convergence of the final coordinates in (5.6); we give the details for each point below.

(i) This holds since X = 0 for all t > u®+(D) almost surely for every n, and (,uZ’;” (D), X*n) -
(u (D), X) almost surely.
(ii) The convergence of the areas in (5.6) implies that

£ &
=) un ()
&n
ztn

converges almost surely to ¢, defined in (5.1) along the subsequence ¢, | 0. On the other
hand, t." is conditionally uniform on (0, ,u;’;n (D)) given (cle®r, Lqg®r, be®n) for every n.
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(iii) The ordered collection of jumps of (TE"’i?n ,B\E"’ti?n ) converge almost surely to the ordered col-
lection of jumps of (T%z, B'z) on the one hand, by definition of the convergence (be‘, zn) —
(be, z) (and by considering a sequence z" € Q converging to z). On the other hand, they are
equal to the ordered collection (/,t;’;n (0), sgn(U)v;’;n @ U))Ueui’l for every n. Since this latter
collection converges almost surely to the ordered collection (u,(U), sgn(U)v, (0 U))Uellz , We
obtain (iii).

(iv) This follows from (iii) and the fact that the marginal law of X = (A, B) is that of a Brownian
excursion in the right half-plane. Specifically, the first coordinate of X at a given time ¢ can
almost surely be recovered from the jumps of its inverse local time at backward running
infima with respect to time ¢, see (5.3), and the second coordinate can also be recovered from
the collection of its signed jumps when reparameterized by this inverse local time. When
t = t,, the values are recovered exactly using the formula (5.2) after using (iii) to translate
between (u,(U), sgn(U)v,(0U))yey, and (T*, B'2). O

5.1 | Proof of Proposition 5.4

In this subsection, 9§ is fixed, so we omit it from the notation (just as in the statement of Propo-
sition 5.4). Since the convergence of ;. to y, is included in the convergence of (clef, Iqq®) to
(cle,Lqg) it is clear (for example, by working on a probability space where the convergence holds
almost surely) that (cle®, Iqq%, z°) = (cle,1qg, z) as € — 0. From here, the proof proceeds via the
following steps.

(1) The tuples on the left-hand side in Proposition 5.4 are tight in €, so we may take a subsequen-
tial limit (cle, Lqg, z, (5;);51, (W;);51, (1;);51) (that we will work with for the remainder of the
proof).

(2) w; € D\ I (thatis, w; is not on any nested CLE, loop) for all i almost surely.

(3) If g; : U(z,w;)—D are conformal with g¢;(w;) = 0 and 'gji’(wi) > 0, then h; = g;(h) for each i
almost surely.”

(4) Given (cle,lqg, z), the w; are conditionally independent and distributed according to u;, in
each U(z, w,).

5) {U e, : u,(U) > 6} ={U(z,w;)};»; almost surely, where the set on the left is ordered as
usual.

(6) s; =sgn(U(z,w;)) for each i almost surely.

These clearly suffice for the proposition.

Proof of (1). Tightness of the first five components follows from the fact that (cle®, Iqg°, z¢) =
(cle,Xqg,z) as € — 0, plus the tightness of the quantum boundary lengths in U’ (recall that these
converge when be® converges). To see the tightness of ( gl?(ha))i21 we note that there are at most
/,(ZE (D)/é non-zero terms, where ,uflg([D) is tight in €. Moreover, each non-zero g:(h®) has the law
of hfo06¢ + af, where h¢ is as in Lemma 4.10, 6¢ are random rotations (which automatically form
a tight sequence in €) and a® are some tight sequence of real numbers. This implies the result by
Lemma 4.10. |

 Once we have point (5), it follows that these are equal to the ( 9 )fi 1
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Proof of (2). Suppose that (y;) j>1 are sampled conditionally independently according to ;. in
D, normalized to be a probability measure. Then (cle®, [qg®, (yj)])l) = (cle,lqg, (¥;);>1) Where
the (y;) 5, are sampled conditionally independently from p;, and almost surely all lie in D \ T.
On the other hand, since cle® and [qg® are independent, one can sample (wf);5; by taking
(cle®, Xqqg®, (J@j;l) and then setting w? = yj for each i, with j = min{k : y, € Ut} O

Proof of (3). By Skorokhod’s theorem, we may work on a probability space where we have the
almost sure convergence

(cle®, 1qg™, z°, (Sgn(Uf"))i, (wiin)i’ (gign(hg” i) — (cle, Lqg, z, (5;);, (wy);, (hy);) (5.7)

along a sequence ¢,, | 0. It is then natural to expect, since the wf” converge almost surely to the
w; and cle®r converges almost surely to cle, that the maps gig" will converge to g; described in (3).
Since hn also converges almost surely to h (as part of the convergence [qg*" — [qq) it therefore
follows h; will almost surely be equal to g;(h) for each i. This is the essence of the proof. However,
one needs to take a little care with the statement concerning the convergence g:" — 7;, since the
domains Ul.g" and U(z, w;) are defined in terms of points that are not necessarily in Q, while the
convergence of cle® — cle is stated in terms pairs of points in Q.

To carry out the careful argument, let us fix i > 1. Since w; € D\ T' almost surely by (2),
there exists r > 0 and y € Q such that B(y,r) C B(w;,2r) C U(z,w;) = (Dwi)aw. .- By taking r
smaller if necessary, we can also find x € Q with B(x,r) C B(z,2r) C (DZ)GZ o N(;te that O, =

(9x’y = 0 by definition. Due to the almost sure convergence zt — z, wf” — w;, and clen — cle
it then follows that U (z®n, wf") =U(x,y) = (D;" )oen » and Oi”y =0©" . =0 forall nlarge
y.x > zfn,wi”

enough. Moreover, we know that the maps f : D — U (z, wf”) = (D;" )UN with f&(0) =y,
(f%)'(0) > 0 converge on compacts of D to f : D - U(x,y) = (Dy)ay,x sending 0 to y and with
f'(©)>o.

On the other hand, (3;)~! = fo¢ where ¢ : D — D sends 0 — f~!(w;) and has ¢/(0) > 0, and
(g:”)—1 = ffnogcn for each ¢,, where ¢°» : D — D has ¢ (0) = (fan)‘l(wf”) and (¢)'(0) > 0.
Since wig" — w; almost surely, and the wf” are uniformly close to y and bounded away from the
boundary of U®(x, y), this implies that (gf” )~! converges to g~ uniformly on compacts of D.
In turn, this implies that h; restricted to any compact of D is equal to g;(h), which verifies that
h; = g;(h) almost surely. O

Proof of (4). For this it suffices to prove that for each i,

(cle™, Lag™n, 25, w'™, g (hr), uj;n ) = (€1 108,20, B 1)

as n — oo, where the convergence of the final components is in the sense of weak convergence
for measures on D. Note that if we work on a space where all but the last components con-
verge almost surely, as in (3), then the proof of (3) shows that h; = g;(h) and that (gig")—1 -
(,)~! almost surely when restricted to compact subsets of D. This implies the almost sure

convergence of the measures :“E'Z:n(hg ) to u;, when restricted to compact subsets of D. On the
g; (hn !

other hand, e (hgn)([D) is a tight sequence in n, and by Remark 4.11, any subsequential limit
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&n
g;" (hen
Combining these observations yields the result. [l

(cle,Lqg, z, w;, h;, m) of (cle®, Lqg®, z°n, wf", gf" (hén), u )(D)) hasm = ,uhi(ID) almost surely.

Proof of (5). Asin (3) we assume that we are working on a probability space where we have almost
sure convergence along a sequence ¢, | 0, so we need to show that the limiting domains U(z, w;)
are precisely the elements of [, that have u,, area greater than or equal to §. The same argument
as for (4) gives that each U(z, w;) is a component of L[, with u;, area greater than or equal to §. So
it remains to show that they are the only such elements of 2L ,.

For this, suppose that U € U, has u,(U) > 6. Then u,(U) = & + r for some r > 0 with proba-
bility 1. Choosingw € 9, a > Osuch that U = U(z, w) D B(w, a) itis easy to see that U(z, w) is the
almost sure Carathéodory limit seen from w of U®(z*, w) as ¢, — 0. Using the convergence of
,u;’;n to u;, and Corollary 2.23, we therefore see that lim,, ,u;’;n(UEn (0, w)) 2 up(Uz,w)) =6 +r
and so U (z&,w) = Ul.E" = Utn(z*n, wig”) for some i and all n large enough. From here we may
argue as in the proof of (3) to deduce that the Carathéodory limit of U®(z%, wf”) is equal to
U(z,w;). Thus, since U = U(z,w) is the Carathéodory limit of U®(z%,w) which is equal to
Utn(zE, wf”) for all n large enough, we conclude that U = U(z, w;).

The fact that the orders of the collections in (3) coincide follows from the convergence of the
order variables as part of cle® — cle (and the argument we have now used several times that allows
one to transfer from z¢, wf to points in Q: we omit the details). O

Proof of (6). Let us work under almost sure convergence as in the proof of (3), fix i > 1 and define
X, y,r asin the proof of (3). By Proposition 3.2, we know that O';f'x — 0, , almost surelyasn — oo,

and that sgn(Uf”) is determined by the number of loops nested around y which D;” discovers

before or at time o;f’x (see the definition of CLE loops from the space-filling/branching SLE,,
in Section 2.1.6). If 0, occurs between two such times for Dy, it is clear from the almost sure
convergence of a;f‘x and D;" that the number of loop closure times for D;" occurring before or at

a;’jx converges to the number of loop closure times for D, , occurring before or attime o, . If o, ,
is a loop closure time for Dy, the result follows from Lemma 3.11. O

5.2 | Discussion and outlook

The results obtained above open the road to several very natural questions related to the critical
mating of trees picture. We will describe some of those below. Roughly, they can be stated as
follows:

1. Can one obtain a version of critical mating of trees where there is bi-measurability between the
decorated LQG surface and the pair of Brownian motions (with possibly additional information
included)?

2. There is an interesting relation to growth-fragmentation processes studied in [1]. Can one
combine these two point of views in a fruitful way?

3. The Brownian motion A encodes a distance of each point to the boundary, and in particular
between any CLE, loop and the boundary. What is its relation to the CLE, metric introduced
in [59]?

4. Can one prove convergence of observables in critical FK-decorated random planar maps
toward the observables in the critical mating of trees picture?
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Let us finally mention that there are also other interesting questions in the realm of critical LQG,
for example, the behavior of height functions on top of critical planar maps, which are certainly
worth exploring too.

5.21 | Measurability

In the subcritical mating of trees, that is, when ¥’ > 4, y < 2 and we consider the coupling
(cle,Lqg, be) described in the introduction or in Section 5 (for simplicity without subscripts), [18]
proves that in the infinite-volume setting the pair (cle, [qg) determines be and vice versa. In par-
ticular, (cle,Iqg) can be obtained from be via a measurable map. This result is extended to the
finite volume case of LQG disks in [2].

By contrast, some of this measurability gets lost when we consider our critical setting. The
easier direction to consider is whether (cle, [qg) determine be. In the subcritical case this comes
basically from the construction, and it does not matter what we really mean by cle: the nested
CLE,/, the space-filling SLE,, and the radial exploration tree of CLE,, are all measurable with
respect to one another. This, however, gets more complicated in the critical case. First, the ques-
tion of whether the nested CLE, determines the uniform exploration tree of CLE, is already not
straightforward; this is a theorem of an unpublished work [59]. Moreover, the nested CLE, no
longer determines the space-filling exploration from Section 3: indeed, we saw that to go from the
uniform exploration tree to the ordering on points, some additional order variables are needed.
These order variables are, however, the only missing information when going from (cle, Iqg) to be:
the conclusion of Theorem 5.5 is that when we include the order variables in cle (in other words
consider the space-filling exploration) then indeed be is measurable with respect to (cle, Iqg).

In the converse direction, things are trickier. In the coupling considered in this paper, be does
not determine the pair (cle, [qg); however, we conjecture that (cle, [qg) is determined modulo a
countable number of ‘rotations’. Informally, one can think of these rotations as follows: a rotation
is an operation where we stop the CLE, exploration at a time when the domain of exploration
is split into two domains D and D', we consider the LQG surfaces (D, k) and (D \ D, h), and we
conformally weld these two surfaces together differently. The field and loop ensemble (c/I\e, I/q\g)
of the new surface will be different than the pair (cle, lqg) of the original surface, but their law
is unchanged if we choose the new welding appropriately (for example, if we rotate by a fixed
amount of LQG length), and be is pathwise unchanged. Therefore performing such a rotation gives
us two different pairs (cle, [qg) and (cI/\e, I/q\g) with the same law, and which are associated with the
same be. We believe that these rotations are the only missing part needed to obtain measurability
in this coupling. In fact, by considering a different CLE, exploration, where loops are pinned
in a predetermined way (for example, where all loops are pinned to some trunk, such as in, for
example, [36]), one could imagine obtaining a different coupling of (cle, [qg, be), where be does
determine (cle, lqg).

5.2.2 | Growth fragmentation

We saw below the statement of Theorem 5.5 how certain observables in the Brownian excursion be
map to observables (for example, quantum boundary lengths and areas of discovered CLE loops)
in (cle, lqg), when we restrict to a single uniform CLE, exploration branch. Given the definition
of the branching CLE, exploration (recall that the explorations toward any two points coincide
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exactly until they are separated by the discovered loops and then evolve independently) this is one
way to define an entire branching process from the Brownian excursion.

In fact, this embedded branching process was already described completely, and independently,
in an earlier work of Aidekon and Da Silva [1]. Namely, given X = (A, B) with law as in Theo-
rem 5.5, one can consider for any a > 0 the countable collection of excursions of X to the right
side of the vertical line with horizontal component a. Associated with each such excursion is
a total displacement (the difference between the vertical coordinate of the start and end points)
and a sign (depending on which of these coordinates is larger). In [1], the authors prove that if one
considers the evolution of these signed displacements as a increases, then one obtains a signed
growth fragmentation process with completely explicit law. The fact that this process is a growth
fragmentation means, roughly speaking, that it can be described by the evolving ‘mass’ of a family
of cells: the mass of the initial cell evolves according to a positive self-similar Markov process, and
every time this mass has a jump, a new cell with exactly this mass is introduced into the system.
Each such new cell initiates an independent cell system with the same law. In the setting of signed
growth fragmentations, masses may be both positive and negative.

In the coupling (cle, Lqg, be), such a growth fragmentation is therefore naturally embedded in
be. It corresponds to a parameterization of the branching uniform CLE, exploration by quantum
natural distance from the boundary (that is, by the value of the A component), and branching
occurs whenever components of the disk become disconnected in the exploration. At any given
time, the absolute mass of a fragment is equal to the quantum boundary length of the correspond-
ing component, and the sign of the fragment is determined by the number of CLE, loops that
surround this component.

Let us also mention that growth fragmentations in the setting of CLE on LQG were also studied
in [43, 44], and coincide with the growth fragmentations obtained as scaling limits from random
planar map explorations in [12]. Taking ¥ — 4 in these settings (either ¥ T 4 in [43] or x | 4 in
[44]) is also very natural and would give other insights about x¥ = 4 than those obtained in this
paper. Lehmkuehler takes this approach in [36].

5.2.3 | Link with the conformally invariant metric on CLE,

Recall the uniform CLE, exploration from Section 2.1.5, which was introduced by Werner and Wu
[64]. Werner and Wu interpret the time ¢ at which a loop £ of the CLE, I is added, with the time
parameterization (2.8), as the distance of £ to the boundary 0D; we refer to it here as the CLE,
exploration distance of £ to dD. In an unpublished work, Sheffield, Watson and Wu [59] prove
that this distance is the distance as measured by a conformally invariant metric on I' U {0D}. This
metric is conjectured to be the limit of the adjacency metric on CLE,, loops as «’ | 4. It is also
argued in [59] that the uniform exploration of T is determined by T

Our process A also provides a way to measure the distance of a CLE, loop L to dD, as we pre-
viously discussed below (5.3) in the case of a point. Namely, for an arbitrary point z enclosed by
L define

(L) 1=, (uUeuZU \ int(ﬁ)), (5.8)

where int(£) C D is the domain enclosed by L. It is not hard to see that t(£) does not depend on
the choice of z. We call A,y the quantum natural distance of L to dD. Note that A, can also
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be defined similarly as in (5.2) by counting the number of CLE, loops of length in (§/2, §) that
are encountered before £ in the CLE, exploration and then sending 6 — 0 while renormalizing
appropriately. We remark that, in contrast to the CLE, exploration distances, we do not expect
that the quantum natural distances to the boundary defined here correspond to a conformally
invariant metric on T.

It is natural to conjecture that the CLE, exploration distance and the quantum natural distance
are related via a Lamperti type transform

T
A[(C) = CO/ vh(th)dt (59)
0

for some deterministic constant ¢, > 0, where T is the CLE, exploration distance of a loop £ from
oD and for t € [0, T), D, is the connected component containing £ of D minus the loops at CLE,
exploration distance less than ¢ from dD. This is natural since the distances are invariant under
the application of a conformal map (where the field h is modified as in (4.1)), since the CLE,
exploration is uniform for both distances (so if two loops £, £’ have CLE, exploration distance t, t/,
respectively, to oD then ¢ < t"ifand only if A,,) < A;(,r)), and since the left and right sides of (5.9)
transform similarly upon adding a constant c to the field & (namely, both sides are multiplied by
e‘). Proving or disproving (5.9) is left as an open problem. We remark that several earlier papers [7,
26, 30, 54, 57] have proved uniqueness of lengths or distances in LQG via an axiomatic approach,
with axioms of a rather similar flavor to the above, but these proofs do not immediately apply to
our setting.

5.2.4 | Discrete models

The mating of trees approach to LQG coupled with CLE is inspired by certain random walk encod-
ings of random planar maps decorated by statistical physics models. The first such encoding is
the hamburger/cheeseburger bijection of Sheffield [58] for random planar maps decorated by the
critical Fortuin—Kasteleyn random cluster model (FK-decorated planar map).

In the FK-decorated planar map each configuration is a planar map with an edge subset, whose
weight is assigned according to the critical FK model with parameter g > 0. Sheffield encodes this
model by five-letter words whose symbol set consists of hamburger, cheeseburger, hamburger
order, cheeseburger order and fresh order. The fraction p of fresh orders within all orders is given
by \/_ = 12_—’;. As we read the word, a hamburger (respectively, cheeseburger) will be consumed
by either a hamburger (respectively, cheeseburger) order or a fresh order, in a last-come-first-serve
manner. In this setting, the discrete analog of our Brownian motion (A4, B) is the net change in the
burger count and the burger discrepancy since time zero, which we denote by (C,,, D,,).

It was proved in [58] that €(C, /.2, D, /.2) converges in law to (B}, BZ,), where B!, B* are inde-
pendent standard one-dimensional Brownian motions and o = max{l — 2p, 0}. When p € (0, %),
the correlation of (B} + B2, B} — B2)) is the same as for the left and right boundary length pro-
cesses of space-filling SLE,, decorated y-LQG (cf. Theorem 4.12) where q = 2 + 2 cos(87/x’) and
y? = 16/x’. This is consistent with the conjecture that under these parameter relations, LQG cou-
pled with CLE (equivalently, space-filling SLE) is the scaling limit of the FK-decorated planar map
for g € (0, 4). Indeed, based on the Brownian motion convergence in [58], it was shown in [22, 28,
29] that geometric quantities such as loop lengths and areas converge as desired.
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Wheng =4and p = %, we have Biz = 0, just as in the ¥’ | 4 limit of LQG coupled with CLE,
where the correlation of the left and right boundary length processes tend to 1. We believe that
the process (eC; Je2s Var[D.-.]"'D, /Ez) converges in law to (B!, Btz); moreover, based on this con-
vergence and results in our paper, it should be possible to extract the convergence of the loop
lengths and areas for FK decorated planar map to the corresponding observables in critical LQG
coupled with CLE,. We leave this as an open question. It would also be very interesting to identify
the order of the normalization Var[D,—.]~!, which is related to the asymptotic of the partition
function of the FK-decorated planar map with g = 4.

Another model of decorated random planar maps that is believed to converge (after uniformiza-
tion) to CLE decorated LQG is the O(n) loop model, where the critical case ¥ = 4 corresponds to
n = 2. It is therefore also interesting to ask whether our Brownian half-plane excursion be can
be obtained as a scaling limit of a suitable boundary length exploration process in this discrete
setting. In fact, a very closely related question was considered in [15], where the authors iden-
tify the scaling limit of the perimeter process in peeling explorations of infinite volume critical
Boltzmann random planar maps (see [14] for the relationship between these maps and the O(2)
model). Modulo finite/infinite volume differences, this scaling limit, which is a Cauchy process,
corresponds to a single ‘branch’ in our Brownian motion (see Section 5.2.2).
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