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Abstract Fundamental particles, regarded as possible constituents of quarks and
leptons, are described classically in the framework of the Weyl-Dirac version of
Wesson’s Induced Matter Theory (IMT). There are neutral particles and particles
having charge ± 1

3 e. The particles appear on the 4D brane, our universe, and are
filled with an induced by the 5D bulk substance. This substance is taken to have
mass density, pressure, and (if charged) charge density, and is characterized by
the equation of state ρ + P = 0. The interior is separated from the surrounding
vacuum by a spherical boundary surface where the components of the 4D metric
tensor h00 = 1/h11 = 0. Outside of the boundary holds the Schwarzschild, or the
Reissner–Nordstrøm metric, while the particles are characterized by Mass, Radius,
Charge.

Keywords General relativity, Higher dimensions, Weyl-Dirac approach, Creation
of particles

1 Introduction

Matter and field are basic concepts of classical field theories. They play a funda-
mental role in the general relativity theory [1; 2], where the Einstein tensor Gν

µ is
expressed in terms of the geometry of space-time, and the matter is represented
by its momentum-energy density tensor T ν

µ . These two intrinsic concepts are con-
nected by the Einstein field equation

Gν
µ =−8πT ν

µ . (1)

According to Eq. (1), a given distribution of matter (-sources) determines the geo-
metric properties of space-time. One can regard this as the creation of space-time
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geometry by matter. Now, one can read Eq. (1) in the opposite direction, and
expect for the creation of matter by geometry. Thus, what geometry and which
mechanism have brought matter into being in our 4-dimensional world? Among
others theories Wesson’s Induced Matter Theory (IMT) [3; 4; 5; 6; 7; 8] pro-
vides an elegant answer based on the creation of matter by geometry of the 5-
dimensional (5D) bulk. In the Weyl-Dirac modification [9; 10; 11] of Wesson’s
IMT the bulk induces on the 4D brane both, gravitation and electromagnetism, as
well gravitational matter and electric current.

Now, as a considerable amount of conventional matter appears in the form of
particles, it would be interesting to look for a mechanism of creating fundamental
particles in the framework of the Weyl-Dirac modification of Wesson’s IMT.

In the present note we investigate the possibility of creation 4D neutral and
electrically charged particles, induced by the 5D bulk in the framework of the
Weyl-Dirac modification of Wesson’s theory.

The classical particles, built below, are characterized by their charge being
0;± 1

3 e, by radius and mass. They are spinless and have spherical symmetry. It is
expected that, when they are quantized, they will acquire a spin, as in the case of
a point particle described by the Dirac equations. Presumably the particles have
other properties such as color hypercolor etc. However, these will be left to be
dealt with in the future.

It is believed that after being completed by the above-mentioned non-classical
properties the fundamental particles may be regarded as constituents of elementary
particles like quarks and leptons.

In the present work following conventions are valid: Uppercase Latin indices
run from 0 to 4; lowercase Greek indices run from 0 to 3. Partial differentiation is
denoted by a comma (,), Riemannian covariant 4D differentiation by a semicolon
(;), and Riemannian covariant 5D differentiation by a colon (:). Further, the 5D
metric tensor is denoted by gAB, its 4D counterpart by hµν ; sometimes 5D quan-
tities will be marked by a tilde, so R1

2 is the component of the 4D Ricci tensor,
whereas R̃1

2 belongs to the 5D one, R≡ Rσ
σ is the 4D curvature scalar, R̃≡ R̃S

S - the
5D one.

2 The embedding formalism. The field equations

Following the ideas of Weyl [12; 13; 14] and Dirac [15], developed by Nathan
Rosen [16] and the present writer [17; 18; 19; 20; 21], the Weyl-Dirac version of
Wesson’s IMT was proposed recently [9; 10; 11].

In Wesson’s original IMT one considers a 5D manifold {M} (the bulk), mapped
by coordinates

{
xN
}

(N = 01234) and possessing the metric tensor gAB = gBA. As
shown in a previous paper [9] of the present writer, there are serious reasons for a
revision of Wesson’s IMT. It was found that the induced geometry on a 4D brane
is non-integrable. This non-integrability follows from the structure of the bulk.

Let us reconsider this framework. In Wesson’s original 5D IMT, one regards
the bulk as pure geometry without any additional fields. The geometry is described
by the metric tensor gAB. Thus, the principal phenomenon, which carries informa-
tion, is a metric perturbation propagating in the form of gravitational waves. In
order to avoid misinterpretations one must assume that all gravitational waves
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have the same speed. Therefore, in the 5D bulk, the isotropic interval dS2 = 0 has
to be invariant, whereas an arbitrary line element dS2 = gABdxAdxB may vary. The
situation resembles the 4D Weyl geometry, where the light cone is the principal
phenomenon describing the space-time and hence the light-like interval ds2 = 0
is invariant rather than an arbitrary line-element ds2 = hαβ dyα dyβ between two
space-time events (cf. [12; 13; 14]).

In the Weyl-Dirac version of Wesson’s IMT, the ideas of Weyl and Dirac were
adopted. In every point of the 5D bulk in addition to the metric tensor gAB

(
xD
)

=
gBA
(
xD
)

the existence of a Weylian length connection vector w̃A
(
xD
)

and of a
Dirac gauge function Ω was assumed. The three fields gAB, w̃C and Ω are integral
parts of the geometric framework, and no additional fields, sources or particles
exist in the bulk {M}. It is empty. In this 5D manifold, an action integral from
the geometrical variables gAB, w̃C and Ω was built and 5D field equations were
derived. It turns out that the equation for Ω is actually a corollary of the gAB-, and
w̃C- equations, so that the Dirac gauge function may be chosen arbitrarily. It must
be noted that in the action integral no matter Lagrangian is present, so that neither
matter, nor currents appear in the 5D EQ-s. Exactly, as in the original IMT, the
bulk is a pure geometric formation.

The 5D quantities, gAB, w̃C and the Weyl length curvature tensor W̃AB ≡ w̃A,B−
w̃B,A have 4D counterparts on the brane: the 4D metric tensor hµν , the potential
vector wµ and the Maxwell field tensor Wµν = wµ,ν −wν ,µ . Thus one has a 4D
geometrically based theory of gravitation and electromagnetism induced by the
5D bulk (cf. [9]).

Below follows a concise description of the general embedding formalism. The
notations as well as the geometric construction given below accord to these given
in works of Paul Wesson and Sanjeev S. Seahra [3; 4; 5; 6; 7], as well in works of
the present writer [9; 11].

As mentioned above, one considers a 5-dimensional manifold {M} (the “bulk”)
with the metric gAB. The latter has the signature sig(gAB) = (+,−,−,−,ε) with
ε = ±1. The manifold is mapped by coordinates {xA} and described by the line-
element

dS2 = gABdxAdxB (A,B = 0,1,2,3,4) (2)

One can introduce a scalar function l = l
(
xA
)

that defines the foliation of {M}
with 4D hyper-surfaces Σl at a chosen l = const, as well the vector nA normal to
Σl . If there is only one time-like direction in {M}, it will be assumed that nA is
space-like. If {M} possesses two time-like directions (ε = +1),nA is a time-like
vector. Thus, in any case the brane Σl contains three space-like directions and a
time-like one. The brane, our 4D space-time, is mapped by coordinates {yµ}, and
has the metric hµν = hνµ with sig

(
hµν

)
= (+,−,−,−). The line-element on the

brane is (cf. (2))

ds2 = hµν dyµ dyν (µ,ν = 0,1,2,3) (3)

It is supposed that the relations yν = yν
(
xA
)

and l = l
(
xA
)
, as well as the recip-

rocal one xA = xA (yν , l) are mathematically well-behaved functions. Thus, the 5D
bulk may be mapped either by

{
xA
}

or by {yν , l}.
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A given 5D quantity (vector, tensor) in the bulk has a 4D counterpart located
on the brane. These counterparts may be formed by means of the following system
of basis vectors, which are orthogonal to nA

eA
ν =

∂xA

∂yν
with nAeA

ν = 0 (4)

The brane Σl is stretched on four (ν = 0,1,2,3) five-dimensional basis vectors
eA

ν . In addition to the main basis
{

eA
ν ;nA

}
one can consider its associated one{

eν
A;nA

}
, which also satisfies the orthogonality condition eν

AnA = 0. The main
basis and its associated are connected by the following relations:

eA
ν eµ

A = δ
µ

ν ; eA
σ eσ

B = δ
A
B − εnAnB; nAnA = ε (5)

Let us consider a 5D vector VA;V A in the bulk {M}. Its 4D counterpart on the
brane Σl is given by

Vµ = eA
µVA; V ν = eν

BV B. (6)

On the other hand the 5D vector may be written as

VA = eµ

AVµ + ε
(
VSnS)nA; V A = eA

µV µ + ε
(
V SnS

)
nA (7)

Further, the 5D metric tensor, gAB;gAB and the 4D one, hµν ;hµν are related by

hµν = eA
µ eB

ν gAB; hµν = eµ

Aeν
BgAB; with hµν hλν = δ

λ
µ (8)

gAB = eµ

Aeν
Bhµν + εnAnB; gAB = eA

µ eB
ν hµν + εnAnB; with gABgCB = δ

C
A (9)

Considering the bulk of the Weyl-Dirac modification of Wesson’s IMT we have
to pay attention to the Weylian length connection vector w̃A and to the 5D field
tensor W̃AB ≡ w̃A,B− w̃B,A. There is also the Dirac gauge function Ω

(
xB
)

and its
partial derivative ΩA ≡ ∂Ω

∂xA . The vector w̃A induces on the brane its counterpart
wµ (cf. (6)), which is regarded as the potential vector of the 4D Maxwell field
Wµν = wµ,ν −wν ,µ , the latter being also the 4D counterpart of W̃AB. On the 4D
brane one has also the metric hµν (cf. (8)) and the Dirac gauge function Ω .

Starting from the 5D equations for the metric gAB and making use of the
Gauss–Codazzi equations the 4-D equations of gravitation was derived recently
[9; 10]

Gαβ = − 8π

Ω 2 Mαβ −
2ε

Ω 2

(
1
2

hαβ B−Bαβ

)
+

6
Ω 2 Ωα Ωβ −

3
Ω

(
Ωα;β −hαβ Ω

σ
;σ
)

+
3ε

Ω

(
ΩSnS)(hαβC−Cαβ

)
+ ε

[
Eαβ −hαβ E +hµνCµ[νCλ ]σ

×
(

hαβ hλσ −2δ
σ
α δ

λ

β

)]
− 1

2
hαβ Ω

2
Λ (10)
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Further from the equation of the source-free 5D Weylian field in the bulk
(
ΩW̃ AB

)
:B

= 0, the 4D equation for the Maxwell field Wµν on the brane was derived in [9].

W αβ

;β =−
Ωβ

Ω
W αβ + εnS

[
W̃ AS

(
eβ

Ahαλ − eα
A hβλ

)
Cβλ

+nCeα
A

(
W̃ AS

:C +W̃ AS ΩC

Ω

)]
(11)

In Eqs. (10, 11) appear the following quantities:

1. The conventional energy-momentum density tensor of the 4D electromagnetic
field

Mαβ =
1

4π

(
1
4

hαβWλσW λσ −WαλW ·λ
β

)
(12a)

2. Energy-momentum quantities formed from the 5D Weylian field W̃AB (cf. [9;
11])

Bαβ ≡ W̃ASW̃BLeA
α eB

β
nSnL and

B = hλσ Bλσ ≡ W̃ASW̃BLgABnSnL (12b)

3. The extrinsic curvature Cµν of the brane Σl , and its contraction C

Cµν = eA
µ eB

ν nB:A ≡ eA
µ eB

ν

(
∂nB

∂xA −nSΓ̃
S

AB

)
, C = hλσCλσ (12c)

4. A quantity formed from the 5D curvature tensor (cf. [4; 5; 6])

Eαβ ≡ R̃MANBnMnNeA
α eB

β
(12d)

5. as well its contraction

E ≡ hλσ Eλσ =−R̃MNnMnN (12e)

In (10, 11), Gµν stands for the Einstein tensor, Λ is the cosmological constant
and ΩA ≡Ω,A;Ω A ≡ gABΩ,B.

Finally, in the Einstein gauge, Ω = 1 and when w̃A = 0, equation (11) disap-
pears, and we are left with the original MIT of Wesson [3; 4; 5; 6; 7; 8], whereas
(10) becomes the gravitational equation of Wesson’s theory. Details may be found
in [9].

3 The static spherically symmetric case

To describe a particle-like entity in the 4D brane, mapped by the coordinates y0 =
t;
y1 = r;y2 = ϑ ;y3 = ϕ , one starts from the spherically symmetric static line
element
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ds2 = eν(r)dt2− eλ (r)dr2− r2 (dϑ
2 + sin2

ϑdϕ
2) (13)

It is believed that the entity is restricted by a spherical boundary surface of radius
r = rb; the interior (r ≤ rb) is filled with a substance induced by the bulk and
described by matter density ρ , charge density ρe and pressure P. These three char-
acteristic functions have no singularity at r = 0. Outside (r > rb) there is vacuum.

The bulk is be mapped by x0 = e−
1
2 N(l)y0;x1 = e−

1
2 L(l)y1;x2 = y2;x3 = y3;x4 =

l. and the 5D line element is given by

dS2 = gABdxAdxB

= eÑ(r,l) (dx0)2− eL̃(r,l) (dx1)2− r2 (dϑ
2 + sin2

ϑdϕ
2)+ εeF̃(r,l)dl2

(14)

Let us assume that for our metric functions the dependence on r and on l, may be
separated, so that

Ñ (r, l) = N (l)+ν (r) ; L̃(r, l) = L(l)+λ (r) ; F̃ (r, l) = F (l)+ψ (r) (15)

Hereafter, we denote a partial derivative with respect to r by a prime and that
with respect to the fifth coordinate l by a dot. Without any restriction we can
impose the condition N (l0) = L(l0) = F (l0) = 0 for the values on the brane l =
l0—our 4D space-time.

The basic vectors, the metrics as well the Christoffel symbols of (13–15) are
given by (A-1)–(A-5) in the Appendix.

Besides the metric tensor gAB, the bulk possesses the Weyl vector w̃A, which
we take having the following non-zero components

w̃0
(
x1, l
)

; w̃4
(
x1, l
)

(16)

From it one forms the 5D Weylian field

W̃01 = w̃0,1; W̃ 01 =−e−(L̃+Ñ)w̃0,1; W̃14 =−w̃4,1;

W̃ 14 = εe−(L̃+F̃)w̃4,1; W̃04 = ˙̃w0; W̃ 04 = εe−(Ñ+F̃) ˙̃w0

(17)

and as N (l0) = L(l0) = F (l0) = 0 we have for the 4D Maxwell field on the brane
(cf. (6))

W01 = w̃′0 (r, l0) = w′0 (18)

There is also the Dirac gauge function Ω and its partial derivative ΩA ≡ ∂Ω

∂xA . We
assume Ω = Ω (r) so that

ΩA = 0 for A 6= 1 (19)

It must be emphasized that the 5D bulk is empty—it possesses no matter or other
field sources. The functions Ω , w̃0

(
x1, l
)

; w̃4
(
x1, l
)

as well W̃AB are essential parts
of the 5D Weyl-Dirac geometric framework in the bulk. On the other hand their
4D counterparts w′0 and W01 are regarded as representing the Maxwell field with
sources induced by the bulk (cf. (11)).
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It is convenient to write the gravitational equation (10) in its co-contravariant
form. We take into account that by (19) and (A-3) ΩSnS = 0; further, as we con-
sider spatially small regions, we discard terms with the cosmological constant.
Thus, from (10) we obtain

Gβ

α = − 8π

Ω 2 Mβ

α −
2ε

Ω 2

(
1
2

δ
β

α B−Bβ

α

)
+

6hβλ

Ω 2 Ωα Ωλ −
3
Ω

(
hβλ

Ωα;λ −δ
β

α Ω
σ
;σ

)
+ε

[
Eβ

α −δ
β

α E +hµνCµ[νCλ ]σ

(
δ

β

α hλσ −2δ
σ
α hλβ

)]
(20)

The quantities appearing in (20) and listed in (12a–12e) may be accounted making
use of (16–18), as well of (A-3)–(A-5). The result is listed in (A-6)

Turning to an auxiliary gauge function ω (r) = lnΩ (r), and making use of
(A-6a–A-6e), we obtain from (20) the explicitly written gravitational equations
on the brane

G0
0 = −e−2ω e−(λ+ν) (w̃′0)2 + εe−(2ω+ψ)

⌊
e−ν

(
˙̃w0
)2 + e−λ (w̃4,1)

2
⌋

−1
2

e−λ

[
ψ
′′+

1
2
(
ψ
′)2− 1

2
λ
′
ψ
′+2

ψ ′

r

]
−3e−λ

[
ω
′′+
(
ω
′)2− 1

2
λ
′
ω
′+2

ω ′

r

]
+

ε

2
e−ψ

[
L̈+

1
2
(
L̇
)2− 1

2
ḞL̇
]

(21)

G1
1 = −e−2ω e−(λ+ν) (w̃′0)2− εe−(2ω+ψ)

[
e−ν

(
˙̃w0
)2 + e−λ (w̃4,1)

2
]

−1
2

e−λ

(
1
2

ν
′
ψ
′+2

ψ ′

r

)
−3e−λ

[
2
(
ω
′)2 +

1
2

ν
′
ω
′+2

ω ′

r

]
+

ε

2
e−ψ

[
N̈ +

1
2
(
Ṅ
)2− 1

2
ḞṄ
]

(22)

G2
2 = e−2ω e−(λ+ν) (w̃′0)2− εe−(2ω+ψ)

⌊
e−ν

(
˙̃w0
)2− e−λ (w̃4,1)

2
⌋

−1
2

e−λ

[
ψ
′′+

1
2
(
ψ
′)2 +

1
2

ψ
′ (

ν
′−λ

′)+ ψ ′

r

]
−3e−λ

[
ω
′′+
(
ω
′)2 +

1
2

ω
′ (

ν
′−λ

′)+ ω ′

r

]
+

ε

2
e−ψ

[
N̈ + L̈+

1
2
(
L̇
)2 +

1
2
(
Ṅ
)2− 1

2
Ḟ
(
L̇+ Ṅ

)
+

1
2

L̇Ṅ
]

(23)

For the case under consideration (cf. (13)–(16)) the Maxwell equation (11) takes
the form

∂

∂ r

(
e−

1
2 (λ+ν+ψ)r2

Ωw′0
)

=−εe
1
2 (λ−ν−3ψ)

[
¨̃w0 +

1
2
(
Ḟ + L̇+ Ṅ

)
˙̃w0

]
r2

Ω (24)
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Integrating (24) one obtains

w′0 = − ε

r2 e
1
2 (λ+ν+ψ−2ω)

 r∫
0

e
1
2 (λ−ν−3ψ+2ω)

[
¨̃w0 +

1
2
(
Ḟ + L̇+ Ṅ

)
˙̃w0

]

×r2dr + Const.

 (25)

In the above procedure are 4 equations (21–23, 25) for six functions, λ ,ν ,ψ,ω, w̃0,
w̃4 depending on r (The quantities L̈, N̈, L̇, Ṅ, Ḟ are constants on the brane l = l0).
Thus, one can impose two conditions. This freedom can be used in order to regard
the interior substance of our entity as a non-rotating perfect fluid satisfying a very
special equation of state, ρ +P = 0. Let us rewrite (21–23) as

G0
0 ≡ e−λ

(
−λ ′

r
+

1
r2

)
− 1

r2 =− q̃2

r4 −8πρ (21a)

G1
1 ≡ e−λ

(
ν ′

r
+

1
r2

)
− 1

r2 =− q̃2

r4 +8πPn (22a)

G2
2 ≡ e−λ

[
ν ′′

2
− λ ′ν ′

4
+

(ν ′)2

4
+

ν ′−λ ′

2r

]
=

q̃2

r4 +8πPτ (23a)

The quantity q̃(r) is regarded as the effective charge inside a sphere of radius r
and according to (21) and (25) it is given by

q̃ =−εe
1
2 (ψ−4ω)

r∫
0

e
1
2 (λ−ν−3ψ+2ω)

[
¨̃w0 +

1
2
(
Ḟ + L̇+ Ṅ

)
˙̃w0

]
r2dr (26)

(The constant term in (25), which leads to a singular point charge, was discarded.)
The term in (21a–23a) q̃2

r4 ≡ e−(λ+ν+2ω) (w̃′0)
2 in (21a–23a) is the electromag-

netic energy inside the sphere of radius r. Further, 8πρ (r), which includes the
remaining terms in the RHS of (21), is the matter density inside the spherically
symmetric entity, Pn (r) is the radial pressure and Pτ (r) stands for the tangential
pressure.

We are looking for a non-rotating entity filled with perfect fluid, therefore we
impose

Pτ = Pn = P (27)

The second condition will be imposed in order to get the prematter equation of
state1

ρ +P = 0 (28)

1 Following previous papers [22; 23] we will refer to matter in such a state as “prematter” and
regard it as a primary substance.
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Condition (27) imposed on (22, 23) yields

2εe−(λ+ψ+2ω) (w̃4,1)
2 = −ε

2
e−ψ

[
L̈+

1
2
(
L̇
)2− 1

2
ḞL̇+

1
2

L̇Ṅ
]

+
1
2

e−λ

[
ψ
′′+

1
2
(
ψ
′)2− 1

2
λ
′
ψ
′− ψ ′

r

]
+3e−λ

[
ω
′′−
(
ω
′)2− 1

2
λ
′
ω
′− ω ′

r

]
(29)

The prematter condition (28) leads to

2εe−(ν+ψ+2ω) ( ˙̃w0
)2 = e−λ

(
1
2

ψ
′+3ω

′
)(

1
r
− 1

2
ν
′
)

+
ε

2
e−ψ

[
N̈ +

1
2
(
Ṅ
)2− 1

2
ḞṄ +

1
2

L̇Ṅ
]

(30)

There is, however, a restriction. For the metric as given in (13) one obtains

G01 = 0 and this leads to B01 = 0. As according to (A-6c) B01 =−e−
1
2 (L+N+2F̃) ˙̃w0w̃4,1,

there are two possibilities, either

˙̃w0 = 0 (31)

or

w̃4,1 = 0 (32)

Equations (21–23, 25) with conditions (29, 30) describe a charged spherically
symmetric, static prematter entity. Below we will make use of these equations in
order to get models of neutral and charged particles.

4 A neutral particle in the Einstein gauge

In this section a spatially restricted entity in the Einstein gauge will be considered.
Consequently we set Λ = 0 and Ω = 1;⇒ ω = 0.
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Let us take the coordinates on the 4D brane as well the static, spherically
symmetric line-element as given by (13). But in (15) we take L(l)≡ 0 so that the
bulk is now mapped by

x0 = e−
1
2 N(l)t; x1,2,3 = y1,2,3; x4 = l (33)

and the 5D metric tensor is

g00 = eÑ(r,l) ≡ eN(l)+ν(r); g11 = h11; g22 = h22;g33 = h33; g44 = εeF̃ (34)

The corresponding basis and normal vectors are given by (A-3), but now
L(l)≡ 0. In addition we choose the metric functions so that

Ḟ (l0) = Ṅ (l0) = 0 (35)

Being guided by symmetry reasons and by the restriction (31, 32) we take for
the 5-D Weyl connection vector w̃A only one non-zero component

w̃0 (r, l) 6= 0; w̃1 = w̃2 = w̃3 = w̃4 ≡ 0 (36)

On the brane one has for the 4D Weyl vector

w0 (r) = w̃0 (r, l0) ; w1 = w2 = w3 = 0; (37)

Taking into account (33–37) one obtains from (21–23) the gravitational EQ-s on
the brane

G0
0 = −e−(λ+ν) (w′0)2 + εe−(ν+ψ) ( ˙̃w0

)2

−1
2

e−λ

[
ψ
′′+

1
2
(
ψ
′)2− 1

2
ψ
′
λ
′+

2ψ ′

r

]
(21b)

G1
1 = −e−(λ+ν) (w′0)2− εe−(ν+ψ) ( ˙̃w0

)2

−1
2

e−λ

[
1
2

ν
′
ψ
′+

2ψ ′

r

]
+

ε

2
e−ψ N̈ (22b)

G2
2 = e−(λ+ν) (w′0)2− εe−(ν+ψ) ( ˙̃w0

)2

−1
2

e−λ

[
ψ
′′+

1
2
(
ψ
′)2 +

1
2

ψ
′ (

ν
′−λ

′)+ ψ ′

r

]
+

ε

2
e−ψ N̈ (23b)

In order to have a non-rotating fluid (cf. 27) (Pτ = Pn = P) we impose (29).
The latter with w̃4 = 0;L(l)≡ 0;ω ′ = 0, is satisfied by ψ ′ ≡ 0, so that ψ = const.
As in Eqs. (21b–23b) the multiplier eψ=const can cause only rescaling of ˙̃w0 and
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N̈, we set ψ = 0 . Finally, with the explicit expression of the Einstein tensor Gν
µ ,

EQ-s (21b–23b) become

e−λ

(
−λ ′

r
+

1
r2

)
− 1

r2 =−e−(λ+ν) (w′0)2 + εe−ν
(

˙̃w0
)2 (38)

e−λ

(
ν ′

r
+

1
r2

)
− 1

r2 =−e−(λ+ν) (w′0)2− εe−ν
(

˙̃w0
)2 +

ε

2
N̈ (39)

e−λ

[
ν ′′

2
− λ ′ν ′

4
+

(ν ′)2

4
+

ν ′−λ ′

2r

]
= e−(λ+ν) (w′0)2− εe−ν

(
˙̃w0
)2 +

ε

2
N̈ (40)

The 4D Maxwell Eq. (25) in our case (cf. (33, 35) is

w′0 =−ε
e

1
2 (λ+ν)

r2

r∫
0

¨̃w0e
1
2 (λ−ν)r2dr + ε

Const.e
1
2 (λ+ν)

r2 (41)

In order to avoid singularity at r = 0, we take Const. = 0 and write

w′0 =−ε
e

1
2 (λ+ν)

r2

r∫
0

¨̃w0e
1
2 (λ−ν)r2dr (41a)

We can compare (41a) with the expression that follows from the Maxwell equation

in the framework of Einstein’s general relativity w′ =− e
1
2 (λ+ν)q

r2 , with q being the

charge within a sphere of radius r, given by q = 4π
∫ r

0 e
1
2 λ ρer2dr. We see that in

our case the charge is q = ε
∫ r

0
¨̃w0e

1
2 (λ−ν)r2dr, whereas the charge density is given

by 4πρe = εe−
1
2 ν ¨̃w0.

The equations (38)–(41a) describe a spherically symmetric distribution of charged
matter. However, choosing a suitable expression for w̃0 (r, l) one can obtain an
interesting model of a neutral spatially closed entity—a particle.

Indeed, let us choose

w̃0 (l,r) = sinκ (l− l0)e
ν
2 (42)

In (42) κ stands for an arbitrary constant, and ν = ν (r). By (42) one has on the
brane Σl0

w̃0 (l0) = w′0 (l0) = ¨̃w0 (l0) = 0; but ˙̃w0 = κe
ν
2 ; (43)
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Thus, (41a) is satisfied identically2 and we are left with

e−λ

(
−λ ′

r
+

1
r2

)
− 1

r2 = εκ
2 (44)

e−λ

(
ν ′

r
+

1
r2

)
− 1

r2 =−εκ
2 +

ε

2
N̈ (45)

e−λ

[
ν ′′

2
− λ ′ν ′

4
+

(ν ′)2

4
+

ν ′−λ ′

2r

]
=−εκ

2 +
ε

2
N̈ (46)

From (44–46) we have for the matter density and for the pressure

8πρ =−εκ
2; 8πP =−εκ

2 + ε
1
2

N̈ (47)

It must be noted that N̈ is constant on the brane and κ is an arbitrary constant. Let
us choose the latter so that

κ
2 =

1
4

N̈ (48)

Then from (47) one has

ρ =−P =− 1
8π

εκ
2 (49)

For ε =−1 the matter density is positive and the pressure negative. According to
(49) one has the prematter equation of state ρ +P = 0 (cf. (28))

Let us go back to the equations (44–46). Instead of solving (46) one can make
use of the equilibrium equation 8πP′+8π

ν ′
2 (ρ +P)= 2 qq′

r4 =−8πe−
ν
2 ρew′0. How-

ever, this is obviously satisfied identically by (43) and (49), so that we are left with
(44) and (45), which by (48), (49) take the form

e−λ

(
−λ ′

r
+

1
r2

)
− 1

r2 = −8πρ (44a)

e−λ

(
ν ′

r
+

1
r2

)
− 1

r2 = 8πP (45a)

As by (49) one has λ +ν = 0, he can write down the solution of (44a, 45a)

e−λ = eν = 1− r2

a2 with a2 ≡ 3
8πρ

=
3

κ2 (50)

2 Generally we cannot take w̃ = Φ(l)φ(r), as that would lead to an a’ la Proca equation
instead of the wanted Maxwell one. One can, however, choose the function Φ(l) as being zero
at l = l0 and having there a turning point, so that Φ(l0) = Φ̈(l0) = 0. In this case the Maxwell
equation (41a) is satisfied identically, being an “empty” equation.
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We are looking for a spatially restricted spherically symmetric entity having a
boundary at radius rb. At r = rb there must hold P = 0, however, this is impossi-
ble, as according to (49) the pressure is constant. One can overcome this obstacle
taking rb = a. Then the metric inside the entity is

ds2 =
(

1− r2

r2
b

)
dt2−

(
1− r2

r2
b

)−1

dr2− r2 (dϑ
2 + sin2

ϑdϕ
2)(r ≤ rr) (51)

This is the metric of a de Sitter universe with a positive cosmological constant. If
one introduces r = rb sin χ

(
0≤ χ ≤ π

2

)
, he can rewrite the line-element (51) as

ds2 = cos2
χdt2−a2 (dχ

2 + sin2
χdΩ

2) ;
(
dΩ

2 ≡ dϑ
2 + sin2

ϑdϕ
2) , (51a)

This can be interpreted as describing a closed universe. Hence there is no boundary
and therefore no boundary condition on P.

Outside of the entity (r > rb) one has the Schwarzschild solution

ds2 =
(

1− 2M
r

)
dt2−

(
1− 2M

r

)−1

dr2− r2dΩ
2 (52)

with the mass M given by

M =
4π

3
ρr3

b =
1
2

rb =
1
2

a =
√

3
2κ

(53)

We recall that the mass density is given by 8πρ = −εe−ν
(

˙̃w0
)2 (cf. (42)). Thus,

matter arises from the presence of the fifth dimension. The described spatially
closed entity may be regarded as a classical model of a neutral particle induced by
the bulk.

5 A neutral particle in an appropriate gauge

In this section a neutral spherically symmetric entity with an arbitrary gauge func-
tion will be considered. As we are interested in spatially restricted entities, we
neglect the Cosmological constant Λ . We adopt Eqs. (13)–(15), (19) but now we
take L(l)≡ 0. In order to have no Maxwell field on the 4D brane, we assume that
the Weylian vector in the bulk w̃A has only one non-zero component, w̃4 (r, l) so
that the 5D Weylian field is given by W̃14 =−w̃′4, and on the brane wν = 0;Wµν =
0. As L(l) ≡ 0 and Ω = Ω (r) one has by (A-3, A-6c) Cµ[ν Cλ ]σ = 0 as well
ΩSnS = 0, so that the gravitational Eq. (cf. (10), (20)) takes the simple form

Gβ

α = − 2ε

Ω 2

(
1
2

δ
β

α B−Bβ

α

)
+

6
Ω 2 Ωα Ωλ hλβ

− 3
Ω

(
Ωα;λ hλβ −δ

β

α Ω
σ
;σ

)
+ ε

[
Eβ

α −δ
β

α E
]

(20a)
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From (20a) (or alternatively from (21)–(23)) one obtains the gravitational equa-
tions.

G0
0 = εe−(λ+ψ+2ω) (w̃′4)2 +3e−λ

(
1
2

ω
′
λ
′− 2

r
ω
′−
(
ω
′)2−ω

′′
)

−1
2

e−λ

[
ψ
′′+

1
2
(
ψ
′)2 +

2
r

ψ
′− 1

2
ψ
′
λ
′
]

(54)

G1
1 = −εe−(λ+ψ+2ω) (w̃′4)2−3e−λ

[
2
(
ω
′)2 +ω

′
(

1
2

ν
′+

2
r

)]
−ψ ′

2
e−λ

(
1
2

ν
′+

2
r

)
+

ε

2
e−ψ

[
N̈ +

1
2
(
Ṅ
)2− 1

2
ḞṄ
]

(55)

G2
2 = εe−(λ+ψ+2ω) (w̃′4)2−3e−λ

[
ω
′′+
(
ω
′)2 +ω

′
(

1
2

ν
′− 1

2
λ
′+

1
r

)]
−e−λ

2

[
ψ
′′+

1
2
(
ψ
′)2 +

1
2

ψ
′
(

ν
′−λ

′+
2
r

)]
+

ε

2
e−ψ

[
N̈ +

1
2
(
Ṅ
)2− 1

2
ḞṄ
]

(56)

It must be noted that actually, ψ,ω , and w̃′4 are arbitrary functions and on the

brane, the constant, CN ≡
[
N̈ + 1

2

(
Ṅ
)2− 1

2 ḞṄ
]
, is also arbitrary. In order to have

a spherically symmetric non-rotating entity one equates the RHS of (55) and (56)
obtaining the following condition (cf. (27), (29))

−2εe−(λ+ψ+2ω) (w̃′4)2−3e−λ

[(
ω
′)2 +

ω ′

r
−ω

′′+
1
2

λ
′
ω
′
]

=−e−λ

2

[
ψ
′′+

1
2
(
ψ
′)2− 1

2
λ
′
ψ
′− ψ ′

r

]
(57)

Equation (57) can be regarded as a condition imposed on three functions ψ,ω, w̃′4.
In order to get prematter, ρ + P = 0 we can compare the RHS of (54) and (56).
The result is a second condition (cf. (28), (30))

− e−λ

[
3ω

′+
1
2

ψ
′
](

1
r
− 1

2
ν
′
)

= εe−ψCN (58)

We can choose N (l) and F (l), so that CN ≡
[
N̈ + 1

2

(
Ṅ
)2− 1

2 ḞṄ
]

= 0, on the
brane Σl0 . Then we obtain a very simple gauge condition

ω
′ =−1

6
ψ
′ (59)

Inserting (59) into (57) one obtains:

e2ω
(
ω
′)2 =

ε

3
e−ψ

(
w̃′4
)2 (60)



Creation of fundamental particles in Wesson’s IMT 15

Finally, making use of (59)–(60), and substituting the explicit expression for the
Einstein tensor into (54–56) we obtain

e−λ

(
−λ ′

r
+

1
r2

)
− 1

r2 =−3εe−(λ+ψ+2ω) (w̃′4)=̇−9e−λ
(
ω
′)2 (54a)

e−λ

(
ν ′

r
+

1
r2

)
− 1

r2 =−3εe−(λ+ψ+2ω) (w̃′4)=̇−9e−λ (ω ′)2 (55a)

e−λ

(
ν ′′

2
− λ ′ν ′

4
+

(ν ′)2

4
+

ν ′−λ ′

2r

)
=−3εe−(λ+ψ+2ω) (w̃′4)=̇−9e−λ

(
ω
′)2

(56a)

Instead of solving (56a) one can make use of the equilibrium equation P′ +
ν ′
2 (ρ +P) = 0, which by P =−ρ (cf. (54a, 55a)), gives P′ = 0, so that

8πρ =−8πP = 3εe−(λ+ψ+2ω) (w̃′4)= const = 8πρ0 (61)

Thus, the entity is filled with prematter having constant density and pressure. In
order to have positive matter density, one must take ε = 1.

From (54a), (55a) one has λ +ν = 0, so that the solution is

e−λ = eν = 1− r2

r2
b

with r2
b =

3
8πρ0

(62)

and the according line-element is

ds2 =
(

1− r2

r2
b

)
dt2−

(
1− r2

r2
b

)−1

dr2− r2 (dϑ
2 + sin2

ϑdϕ
2)(r ≤ rr) (63)

This is formally identical with that obtained in the previous model (cf. (51)). One
sees that there is a de Sitter universe with a positive cosmological constant, and if
one introduces r = rb sin χ

(
0≤ χ ≤ π

2

)
, one obtains again (51a). The latter can

be interpreted as describing a closed universe with no boundaries and hence no
boundary condition on the pressure at r = rb. Outside of the entity (r > rb) one
has, as in the previous model, the Schwarzschild solution (52) with the mass M
given by M = 4π

3 ρr3
b = 1

2 rb (cf. (53)).
The described entity may be regarded as a classical model of a neutral fun-

damental particle induced by the 5D bulk. It must be emphasized that the present
model is obtained by the choice (59) of the gauge function and that the constant
mass density inside the particle according to (61) is given by 8πρ = 3εe−(λ+ψ+2ω) (w̃′4).
Thus, this particle is evoked by the fifth component of the bulk Weyl vector.

It is believed that more models of neutral particles may be found in addition
to the two presented in Sects. 4 and 5.
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6 A charged particle

To get an entity, which may be regarded as a charged particle, we will adopt the
static spherically symmetric 4D line element (13), but for the metric functions
given in (15) we will set

N (l)≡ 0; L(l)≡ 0; (64)

Thus, the 5D line element is dS2 = eν (dt)2 − eλ (dr)2 − r2
(
dϑ 2 + sin2

ϑdϕ2
)

+ εeF̃(r,l)dl2 (cf. (14)) with F̃ = F (l)+ψ (r).

Having in mind the restriction B01 = −e−
1
2 (2F̃) ˙̃w0w̃4,1 = 0 (cf. (31, 32)) we

will choose the possibility (31) ˙̃w0 = 0. Further, imposing the prematter condition
(28) and taking into account (31, 64) one obtains from (30)

(
1
2

ψ
′+3ω

′
)(

1
r
− 1

2
ν
′
)

= 0 (65)

This results in the very simple gauge condition (cf. (59))

ω
′ =−1

6
ψ
′; ω =−1

6
ψ (66)

(We discard a possible constant in the second relation (66)) As we are looking for
a non-rotating entity filled with perfect fluid, we take Pτ = Pn = P (cf. (27)) and
impose Eq. (29). Inserting into (29) the relations (64) and (66) we obtain

2εe−(λ+ψ+2ω) (w̃4,1)
2 =

1
6

e−λ
(
ψ
′)2 (67)

Making use of (31), (64), (66), and (67) (the cosmological term is discarded as
irrelevant for a spatially restricted entity) one obtains from (21–23) the following
equations:

G0
0 = −e−(λ+ν−ψ

3 ) (w̃′0)2− e−λ (ψ ′)2

4
(68)

G1
1 = −e−(λ+ν−ψ

3 ) (w̃′0)2− e−λ (ψ ′)2

4
(69)

G2
2 = e−(λ+ν−ψ

3 ) (w̃′0)2− e−λ (ψ ′)2

4
(70)

From (68) and (69) one concludes that λ +ν = 0
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Let us go back to the Maxwell EQ. for the spherically symmetric static case
(25). Taking into account the condition (31), and relations (64, 66), as well the
relation λ + ν = 0, one obtains the Maxwell EQ. for the model discussed in the
present section

w′0 =− ε

r2 e
2
3 ψ

r∫
0

e(λ− 5
3 ψ) ¨̃w0r2dr (71)

According to (68) and (71) we can introduce the effective charge inside the sphere
of radius r (cf. (26))

q̃(r) = e
5
6 ψ

r∫
0

e(λ− 5
3 ψ) ¨̃w0r2dr (72)

With (72) one can write e−(λ+ν−ψ

3 ) (w̃′0)
2 = q̃2

r4 for the electromagnetic energy
inside the sphere of radius r. Further, from (68–70) follows that inside the entity

8πρ =−8πP =
1
4

e−λ
(
ψ
′)2 (72a)

i.e. the substance is in the state of prematter.
With (71) and (72, 72a) one rewrites Eqs. (68–70) as

G0
0 ≡ e−λ

(
−λ ′

r
+

1
r2

)
− 1

r2 =−8πρ− q̃2

r4 (68a)

G1
1 ≡ e−λ

(
ν ′

r
+

1
r2

)
− 1

r2 = 8πP− q̃2

r4 (69a)

G2
2 ≡

e−λ

2

(
ν
′′− λ ′ν ′

2
+

(ν ′)2

2
+

ν ′−λ ′

r

)
= 8πP+

q̃2

r4 (70a)

As noted above, the entity is restricted by a sphere of radius rb. Inside there is
the prematter substance, outside one has vacuum. Introducing the function y(r)≡
e−λ ≡ eν one obtains the following solution of (68a) and (69a)

y(r)≡ eν ≡ e−λ = 1− 8π

r

r∫
0

ρr2dr− 1
r

r∫
0

q̃2

r2 dr; for r ≤ rb (73)

and

y(r) = 1− 2M
r

+
Q2

r2 ; for r > rb; and with Q≡ q̃(rb) (74)

In Eq. (74),M stands for the mass of the whole entity, while, according to (72), the
total charge Q is given by

Q≡ q̃(rb) = e
5
6 ψ

rb∫
0

e(λ− 5
3 ψ) ¨̃w0r2dr (75)
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From the two equations (73, 74) we obtain for the mass as seen by an external
observer

M =
Q2

2rb
+4π

rb∫
0

ρr2dr +
1
2

rb∫
0

q̃2

r2 dr (76)

Let us consider Eq. (70a). Instead of solving it, we can make use of the equi-

librium relation 8πρ ′+8π (ρ +P) =− 2q̃q̃′
r4 =−(q̃2)′

r4 , stemming from the Bianchi
identity. For prematter this relation gives

8πρ
′ =−

(
q̃2
)′

r4 (77)

Consequently

(q̃)2 =−8πr4
ρ +32π

r∫
0

ρr3dr (78)

However, as noted above ρ (rb) = 0. Thus, the total charge of the entity is given
by

Q2 = +32π

rb∫
0

ρr3dr (79)

Now, let us go back to (68a, 69a). Substituting y(r) = e−λ = eν as well (78) we
obtain

y′r3 + yr2− r2 =−32π

r∫
0

ρr3dr (80)

Thus, our entity is described by the following equation

y′′+
4
r

y′+
2
r2 y− 2

r2 =−32πρ (81)

Assume we have a known expression for y(r). Then we can account from (81)
the matter density ρ (r), from (78, 79) the charges q̃(r) and Q as well from (76) the
mass M. There are of course many possibilities of choosing an appropriate y(r).
It turns out that in the interior of the entity (0 ≤ r ≤ rb) a suitable representation
is the bell-like function

y =
1

k2r2 sin2 (kr) (82)

with k ≡ π

rb
;(|k| = cm−1). This is a well-behaving function: y(r) ≥ 0;y(0) = 1;

y(rb) = 0.
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Inserting (82) into (81) one obtains

8πρ =
1− cos(2kr)

2r2 =
sin2 (kr)

r2 ≡ k2y (83)

Thus, for the mass density ρ (r)≥ 0;8πρ (0) = k2;ρ (rb) = 0.
Further, substituting ρ into (78), and choosing a suitable value of the constant

of integration, we obtain the effective charge inside a sphere of radius r(r ≤ rb).

q̃2 (r) =
[

r cos(kr)− 1
k

sin(kr)
]2

;

and q̃(r) = ±
[

r cos(kr)− 1
k

sin(kr)
]

(84)

According to (84)

q̃(0) = 0; and |Q| ≡ |q̃(rb)|= rb (85)

To obtain ψ one can equate (72a) and (83). This leads to the result(
ψ
′)2 = 4k2 => ψ

′ =±2k; and ψ =±2kr +Const (86)

Choosing Const =∓2π we have

ψ =±(2kr−2π) (87)

so that ψ (r = 0) =∓2π and ψ (r = rb) = 0. We will also assume ψ = 0 for r > rb.
To account the external mass M, one starts from (76) and makes use of (83)

and (84).
As a result one obtains

M =
1
2

rb +
Q2

2rb
(88)

and making use of (85) one has

M = Q = rb (89)

It is interesting that for neutral particles (Sects. 4, 5) there was Mneutral = 1
2 rb.

Thus, we can interpret (88) as consisting of two parts, the first representing the
proper gravitational mass, the second being the electromagnetic mass.

In order to obtain the charge density ρe inside the entity we recall that for a
spherically symmetric distribution of matter the charge is given by q = 4π

∫ r
0 e

λ
2 ρer2dr.

Making use of (82) and (84) one obtains

4π |ρe|=
sin2 kr

r2 (90)

Comparing this with (83) we conclude that

|ρe|= 2ρ (91)
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It would be of course interesting to obtain the function ¨̃w0, which invoked the
charge. Taking into account (84) ¨̃w0 may be obtained from (72)

¨̃w0 = e
5
3 (kr−π)

[
5
3

sin(kr)
r2 − 5

3
k cos(kr)

r
− k

sin(kr)
r

]
sin2 (kr)

k2r2 (92)

From (92) one obtain | ¨̃w0 (0)| = e−
5
3 π k2 ≡ e−

5
3 π π2

r2
b

and ¨̃w0 (rb) = 0; so that there

is no singularity at the center, whereas at the boundary ¨̃w0 vanishes.
In the present section a plausible model of charged fundamental particles cre-

ated by the bulk in the Weyl-Dirac modification of Wesson’s IMT was obtained.
It is believed that more models may be found besides the considered above.

7 Discussion

Is it possible to describe singularity-free particles from the classical (non-quantum)
standpoint? Einstein and collaborators were certain that particles having inner
structure can be considered in the framework of general relativity. As long ago
in 1935 Albert Einstein and Nathan Rosen in their celebrated work [24] pre-
sented an interesting solution to the problem, with a charged particle described
as a “bridge”.3

Later, in 1991, N, Rosen and the present writer presented general relativistic
models [25; 26] of fundamental particles consisting of prematter, the latter satis-
fying the equation of state ρ +P = 0.

In the present paper, models of fundamental neutral and charged particles in
the Weyl – Dirac version [9; 10] of Wesson’s IMT [3; 4; 5; 6; 7; 8] are presented.
These are induced by the 5D Weyl-Dirac-Wesson bulk in the empty 4D brane, our
universe. In this framework models of neutral and electrically charged fundamen-
tal particles are carried out. In all considered models, the interior is filled with a
substance, being in the state of prematter (cf. [22; 23]).

The reason for taking prematter as a substance suitable for describing the
inside of particles is the following. Let us suppose one is looking for extremely
small fundamental particles having a noticeable mass. This seems to be possi-
ble only with an enormous mass density ρ . One can expect that at such densi-
ties the properties of matter will be very different from those, with which we are
acquainted. Bearing in mind that we lack any knowledge whatsoever of the con-
stitution of matter and its behavior under such extreme conditions, let us assume
that inside the particle the matter tensor is simply related to the metric tensor in
the sense that

Tµν = ρhµν ; T ν
µ = ρδ

ν
µ , (93)

(This approach was used first by E. Gliner [27; 28] in the seventies.) From (93)
one is led to T 0

0 = ρ;T 1
1 = T 2

2 = T 3
3 =−P = ρ; and finally to ρ +P = 0. It must be

emphasized that inside the entity one has an enormous tension (negative pressure),
making for the particle’s stability.

3 In this celebrated work the basic concept of the “Einstein–Rosen Bridge”, a precursor of
wormholes was introduced.
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In carrying out the models we started from the static spherically symmetric
line-elements (13–15). The interior of neutral particles, considered in the present
work, is filled with induced matter of constant density being in the state of pre-
matter. The first model (Sect. 4.) is carried out in the Einstein Gauge, Ω = 1, and
the prematter substance is invoked by the component w̃0 of the Weyl length con-
nection vector of the bulk. The matter density of this model is positive when the
fifth dimension is space-like (ε =−1).

In the second model (Sect. 5.) the gauge function ω (r) = lnΩ (r) is chosen
so that the mass density 8πρ = −8πP = 3εe−(λ+ψ+2ω) (w̃′4) = const = 8πρ0 is
invoked by the fifth component of the 5D Weyl vector w̃4; this particle has a posi-
tive mass density for a time-like fifth dimension (ε = 1).

In both above-mentioned models,4 the filled by prematter interior is separated
from the surrounding vacuum by a spherical boundary surface of radius rb where
eν = −e−λ = 0. The interior may be described as a closed de Sitter universe.
Outside of the boundary (r > rb) one has the Schwarzschild solution. For both
models the mass is given as M = 4π

3 ρr3
b and it is connected with the radius of the

particle by the simple relation M = 1
2 rb.

In Sect. 6, a model of charged particles was considered as a spherically sym-
metric entity filled with induced charged prematter in the brane. This entity is
restricted by a border surface of radius rb so that beyond it one has vacuum.
A special, very interesting analytical solution for a plausible model was found.
In the interior one has the metric y(r) = e−λ = eν = 1

k2r2 sin2 (kr) with k ≡ π

rb
,

the prematter filling the interior is characterized by a mass density and pressure-
tension 8πρ (r) =−8πP(r) = k2y(r) and by a charge density ρe = 2ρ , both van-
ishing (together with y(r)) at the border r = rb. In the center one has no sin-
gularities. In the interior acts the electric field given by w′0 = − ε

r2 e
1
3 (π−kr)q̃(r)

with q̃(r) being the effective charge inside the sphere of radius r, whereas for
r > rb one has w′0 = − ε

r2 Q with Q = q̃(rb). Beyond the border surface (r > rb)

the well known Reissner–Nordstrøm metric y(r) = 1− 2M
r + Q2

r2 is valid. It is
shown that M = |Q| = rb, so that the exterior metric may also be written as
y =

(
1− M

r

)2 ;r > rb and there is no black hole surrounding the particle.
It is rather remarkable that there exist the considered analytic solution, and it is

proposed that this be taken as describing models of classical charged fundamental
particles.

The particles presented in this paper are characterized by their charge being
0;± 1

3 e, by radius (rb = 1
3 e ≈ 4.59× 10−35cm) and mass. They are spinless and

have spherical symmetry. When the particle, considered as a point particle, will be
quantized it can acquire a spin (As in the case of a point particle described by the
Dirac equation). Presumably the particles have additional properties such as color
hypercolor etc. It is believed that after being completed by these characteristics the
considered particles will be regarded as fundamental constituents of elementary
particles (like quarks and leptons).

The considered particles are characterized by their charge being 0;± 1
3 e, with

e—the electron charge, as well by radius and mass. It is assumed that every

4 A recently published paper by Paul S. Wesson [8] as well a paper by S. Jalazadeh [29] may
be noted in connection with the phenomena discussed in the present work.
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quark or lepton is made up of three of these particles. For the neutral particle
the relation Mneutral = 1

2 rb is obtained, whereas for the charged fundamental parti-
cle Mcharged = rb is holding. One would expect them to belong to the same family
and to have some properties in common. It may be that the charged and the neutral
particles have the same value of mass Mcharged = Mneutral, or it may be they have
the same radius, so that Mcharged = 2Mneutral. It may also be that there are two neu-
tral particles with each of these masses; although from the aesthetic point of view
it seems desirable to have as few different fundamental particles as possible.

Appendix

The metric tensors as given in Eqs. (13), (14) are

h00 = eν ; h11 =−eλ ; h22 =−r2; h33 =−r2 sin2
ϑ (A-1)

g00 = eÑ(r,l) ≡ eN(l)h00; g11 =−eL̃(r.l) = eL(l)h11;

g22 = h22; g33 = h33; g44 = εeF̃ (A-2)

The basis that accords to (A-1, -2) may be written as

eA
0 = e−

1
2 N ,0,0,0,0. e0

A = e
1
2 N ,0,0,0,0.

eA
1 = 0,e−

1
2 L,0,0,0. e1

A = 0,e
1
2 L,0,0,0.

eA
2 = 0,0,1,0,0. e2

A = 0,0,1,0,0.

eA
3 = 0,0,0,1,0. e3

A = 0,0,0,1,0.

nA = 0,0,0,0,εe
1
2 F̃ . nA = 0,0,0,0,e−

1
2 F̃ .

(A-3)

Hereafter a dot will denote partial differentiation with respect to l, while a prime
will stand for the partial derivative with respect to r. Taking into account the r, l
separation (cf. (15)) we can rewrite the 5D Christoffel symbols

Γ̃
0

01 =
1
2

ν
′; Γ̃

0
04 =

1
2

Ṅ; Γ̃
1

00 =
1
2

eÑ−L̃
ν
′; Γ̃

1
11 =

1
2

λ
′; Γ̃

1
14 =

1
2

L̇;

Γ̃
1

22 =−re−L̃; Γ̃
1

33 =−r sin2
ϑe−L̃; Γ̃

1
44 =

ε

2
eF̃−L̃

ψ
′; Γ̃

2
12 =

1
r

;

Γ̃
2

33 =−sinϑ cosϑ ; Γ̃
3

13 =
1
r

; Γ̃
3

23 = cotϑ ; Γ̃
4

00 =−ε

2
eÑ−F̃ Ṅ;

Γ̃
4

11 =
ε

2
eL̃−F̃ L̇; Γ̃

4
14 =

1
2

ψ
′; Γ̃

4
44 =

1
2

Ḟ ; (A-4)

and the 4D Christoffel symbols

Γ
0

01 =
1
2

ν
′; Γ

1
00 =

1
2

eν−λ
ν
′; Γ

1
11 =

1
2

λ
′; Γ

1
22 =−re−λ ;

Γ
1

33 =−re−λ sin2
ϑ ; Γ

2
12 =

1
r

; Γ
2

33 =−sinϑ cosϑ ; Γ
3

13 =
1
r

;

Γ
3

23 = cotϑ ; (A-5)
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Making use of Eq. (16)–(18) as well of (A-3)–(A-5) one obtains for the quantities
appearing in (20) and listed in (12a)–(12e)

M0
0 = M1

1 =−M2
2 =−M3

3 =
1

8π
e−(λ+ν) (w′0)2 (A-6a)

B01 ≡ B10 =−e−
1
2 (L+N+2F̃) ˙̃w0w̃4,1; B0

0 = e−(ν+ψ) ( ˙̃w0
)2 ; (A-6b)

B1
1 =−e−(λ+ψ) (w̃4,1)

2 ; B = e−(ν+ψ) ( ˙̃w0
)2− e−(λ+ψ) (w̃4,1)

2

C00 =
1
2

eν− 1
2 ψ Ṅ; C11 =−1

2
eλ− 1

2 ψ L̇ (A-6c)

E0
0 =

ε

4
e−λ

ν
′
ψ
′− 1

2
e−ψ

[
N̈ +

1
2
(
Ṅ
)2− 1

2
ṄḞ
]

E1
1 =

ε

2
e−λ

[
ψ
′′+

1
2
(
ψ
′)2− 1

2
λ
′
ψ
′
]
− 1

2
e−ψ

[
L̈+

1
2
(
L̇
)2− 1

2
L̇Ḟ
]

(A-6d)

E2
2 = E3

3 =
ε

2
e−λ ψ ′

r
; E01 = 0.

E ≡ Eσ
σ =

ε

2
e−λ

[
ψ
′′+

1
2
(
ψ
′)2 +

1
2

ψ
′ (

ν
′−λ

′)+2
ψ ′

r

]
−1

2
e−ψ

[
N̈ + L̈+

1
2
(
Ṅ
)2 +

1
2
(
L̇
)2− 1

2
Ḟ
(
Ṅ + L̇

)]
(A-6e)
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