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Abstract

In this thesis, a strategy for constructing electric-magnetic (EM) duality-symmetric
N = 2 supersymmetric infrared effective actions (IREAs) is presented using harmonic
superspace. Our aim is to elevate the EM duality from being equivalent descriptions
of distinct IREAs to a symmetry of a single IREA under Sp(2r,Z) transformations.
Our strategy is to build the IREA out of geometric objects which are manifestly
Sp(2r,Z) invariant. We conjecture that a manifestly EM duality-symmetric action
can be constructed in this way on harmonic superspace. The main invariant geometric
object is the total space, X, of the Coulomb branch moduli space of the IREA,
which has a natural hyperkéahler structure, and is thus a suitable manifold to act
as the target space of an N = 2 supersymmetric nonlinear o-model (nlsm). We
build the IREA as a nlsm with target space the twistor space of X. The twistor
space is a fiber bundle with base space the projective line, CP!, and X as fiber. The
nlsm action is formed by pulling back the invariant holomorphic two-form on twistor
space by the hypermultiplet superfield in harmonic superspace, with the base CP!
identified with the internal CP! of harmonic superspace. We also conjecture, but
do not prove, that the pullback approach introduced in this thesis for constructing
the hypermultiplet nlsm is equivalent to using the standard harmonic superspace
procedure of constructing the nlsm action using a harmonic-analytic potential for the

hypermultiplet superfields.
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Chapter 1

Introduction

The idea of electric-magnetic (EM) duality probably goes back to Dirac who observed
that the source-free Maxwell equations are symmetric under the exchange of the
electric and magnetic fields. More precisely, the symmetry is E—Band B— —E ,
or

1
F;w — §€pypo'Fp0- (11)

(Here €, is the flat-space antisymmetric e-tensor with €923 = 11 and the Minkowski
metric 7, has signature —+++.) To maintain this symmetry in the presence of
sources, Dirac introduced in an ad hoc way magnetic monopoles with magnetic
charges ¢, in addition to the electric charges g., and showed that consistency of
the quantum theory requires a charge quantization condition ¢,,q. = 27n with inte-
ger n. Hence the minimal charges obey ¢,, = 27/q.. EM duality exchanges ¢. and
Gm, 1.e. ¢. and 27/q.. Now recall that the electric charge g, also is the coupling
constant. So EM duality exchanges the coupling constant with its inverse (up to the
factor of 27), hence exchanging strong and weak coupling. This is one reason why
EM duality is of so much interest to the field theory community: the hope is to learn
about strong-coupling physics from the weak-coupling physics of a dual formulation

of the theory. Of course, in classical Maxwell theory we know all we may want to
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know, but this is no longer true in quantum electrodynamics if both the electric and
magnetic sources are dynamical.

In this thesis we are interested in the application of EM duality to N = 2 super-
symmetric gauge theories. These theories are characterized by having a “Coulomb
branch” moduli space of vacua on which there is generically an infrared effective ac-
tion (IREA) consisting of r copies of Maxwell electromagnetism, for some integer r
which is also the complex dimension of the Coulomb branch. This low energy electro-
magnetism is just a free theory of  photons since it has only massive (non-dynamical)
sources. The strong-weak aspect of EM duality therefore plays a limited role in this
problem. Instead, EM duality is important for more subtle reasons to do with the
global structure of the Coulomb branch, to be explained below.

Following the seminal work of Seiberg and Witten [I, 2], it turns out that un-
derstanding EM duality on Coulomb branches is a powerful tool for understanding
the phase structure of N = 2 supersymmetric gauge theories. The study of N = 2
supersymmetric quantum field theories in four dimensions has been a fertile field for
theoretical physics for twenty years. These theories always have non-chiral matter
representations, and therefore can never be directly relevant for describing the real
world. That said, the existence of two sets of supersymmetries allows us to study
their properties in much greater detail than both non-supersymmetric theories and
N = 1 supersymmetric theories. Being able to do so is quite fun in itself, and hope-
fully the general lessons thus learned concerning N = 2 supersymmetric theories
might be useful when we study the dynamics of theories with less supersymmetry. At
least, the physical properties of N = 2 theories have been successfully used to point
mathematicians to a number of new mathematical phenomena previously unknown

to them.



A major difficulty in understanding EM duality on Coulomb branches is that there
are no satisfactory action principles for (super-)electromagnetism which make their

EM duality-invariance manifest. This is the problem this thesis will address.

1.1 Overview of the problem

Constructing actions that simultaneously combine manifest EM duality symmetry
with manifest Lorentz invariance has long been known to be problematic 3] 4 [6, [7,
8, [14, [15] 16l 12] 13, 17, 18, 25 19, 20, 21), 22} 23]. The problem is that the Maxwell
action is written in terms of the gauge potentials, and although EM duality acts on
the field strength tensor in a Lorentz covariant way as in , it does not act on
the gauge potentials in any local, Lorentz-covariant way. Many attempts during the
last four decades have attempted to build actions that have duality symmetry and
Lorentz invariance using different approaches and tricks. In doing so, the action is
usually augmented with other auxiliary fields on which constraints are imposed so
that the Maxwell action that contains the correct number of propagating degrees of
freedom is later recovered. In Chapter 2, these different methods and approaches will
be discussed in greater detail.

Adding N = 2 supersymmetry to the duality symmetry problem described in the
previous paragraph makes it even more challenging [26], 27, 29] 30} 31, [32, 33, 34] 35].
The basic problem is that N = 2 supersymmetry relates electromagnetic fields to
scalars and so EM duality transformations need to be extended to transformations of
the scalars as well if N = 2 supercovariance is to be maintained. However, the scalar
fields can be thought of as coordinates on an associated Riemannian manifold, My,
(as we will explain below) and the coordinates in which the EM duality transforma-

tions are linear do not linearize the geometry of My,. It is this tension that makes



formulating manifestly EM duality-symmetric and N = 2 supersymmetric actions so
difficult.

The manifold My mentioned above is the moduli space of vacua of the N = 2
supersymmetric field theory. This continuous family of inequivalent vacua are labelled
by the vacuum expectation values of the massless scalar fields in the theory, thus the
values (vevs) of these scalars are the coordinates on My. N = 2 field theories
always have such moduli spaces, and, in fact, their moduli spaces often have many
components. We are interested in the component, called the Coulomb branch, in which
the scalars with vevs are the superpartners of U(1) gauge fields (Maxwell fields). The
leading terms in a low energy or infrared effective action (IREA) on the Coulomb
branch will be the kinetic terms of the scalars and their photon superpartners (as
well as of their fermionic superpartners). The scalar field terms in such an IREA
are called a nonlinear o-model (nlsm), and have the general form g, (¢)0,¢™ 0"
where the ¢ label the scalars. Then the kinetic couplings g,.,(¢) can be interpreted
as a metric on My, thus giving My a Riemannian structure. (The kinetic terms for
the associated photons give other structures on My which give it the structure of a
special Kdhler manifold, and will be discussed at great length later.)

So far, EM duality transformations have not been realized as symmetries of the
IREA, but only as equivalences of apparently different free U (1)" field theories coupled
to classical massive sources under symplectic Sp(2r,Z) redefinitions of electric and
magnetic charges. The importance of this redundancy in the lagrangian description
of IREAs becomes apparent when there is a moduli space My, of inequivalent vacua.
In that case, upon traversing a closed loop in My, the physics must, by definition, be
the same at the beginning and end of the loop, but the Lagrangian description need
not because it may have suffered an EM duality transformation.

A central problem of N = 2 field theories is the construction of their IREAs. The

main technique that is used is analytic continuation of the IREA Lagrangian on the



Coulomb branch. The multi-valuedness of the Lagrangian under EM duality trans-
formations is the main technical hurdle in carrying out this continuation procedure.
A formulation of the IREA which is EM duality-symmetric would greatly simplify
this problem, as the object being analytically continued would be single-valued on
the Coulomb branch (and thus would be much easier to determine in terms of its

boundary values).

1.2 Thesis objective

The key goal of this thesis is to develop a strategy for constructing EM duality-
symmetric N = 2 IREAs. In other words, we want to construct N = 2 nlsm actions
where EM duality transformations are a manifest symmetry as opposed to a map
between different lagrangians. The key ingredient in achieving this goal is to refor-
mulate the nlsm in terms of mathematical objects which are manifestly EM-duality
invariant. The chief such object is the total space, X, of the Coulomb branch (and
not the Coulomb branch itself), and its inherent symplectic-invariant geometric data
(the complex structure, Hodge form, and Donagi-Witten two-form). It is thus natu-
ral to use X’ as the target space of the nlsm and its geometric data to construct its
Lagrangian.

Heuristically, we want to to build the EM duality-symmetric N = 2 nlsm action
by using superfields on harmonic superspace to pull back those invariant geometric
structures on the target space which can naturally be integrated over harmonic su-
perspace [30, B7]. We call this strategy the pullback approach to constructing EM
duality-symmetric actions.

To make this strategy more concrete, we need to describe in more detail what is
the geometry of the target space, X, and what is the geometry of harmonic super-

space. We will now give a very brief outline of these geometries, highlightling those



geometrical objects that will play central roles in what follows. Later chapters in the
thesis will be devoted to fleshing out the details of these geometries.

It is well known [T], 38, B9] that a Coulomb branch is a complex manifold with a
special Kdhler structure. A consequence of this [39] is that its total space, X, has
a natural hyperkahler structure which encodes the special Kahler geometry of the
Coulomb branch. Very succinctly, a hyperkahler space X supports three complex
structures .Ji, Js, J3 obeying the quaternion algebra: JyJ, = —JyJ; = J3, plus cyclic
permutations [40]. Any real linear combination of these, J(7) := 3.°_, r%J,, is again
a complex structure on X if Y (r*)* = 1, i.e., if 7 lies on a two-sphere S? ~ CP'.
Furthermore, each complex structure has an associated Kahler form — a real non-
degenerate closed 2-form which is of type (1,1) with respect to its complex structure.
It is traditional to denote the Kéhler form associated to J, by w,.

It will be convenient for us to use not the total space X as the target space, but
instead to use the equivalent twistor space, Z, associated to X as the target space.
The twistor space Z of a hyperkahler space X is a fiber bundle over the two-sphere
of complex structures of X with X as the fiber 41, 40]. Thus Z ~ X x CP! as
a topological space, but it is endowed with a special choice of complex structure,
JZ#, given by choosing the complex structure J(7) on the fiber over each point 7 €
CP!. Furthermore, it has a holomorphic (2,0)-form, 2, with respect to this complex
structure, given by Q = (w; + iws) + Cws — (*(wy + iws), where ¢ is a complex
coordinate on the CP!. It is a theorem [41] that given a complex space Z with such
a two-form €2, one can uniquely reconstruct the hyperkahler space X.

Harmonic superspace [37] is one way of dealing with supersymmetric theories with
N = 2 supersymmetry (SUSY) in four dimensions in a manifestly covariant manner.
4-dimensional N = 2 SUSY has eight hermitian spin-1/2 generators which can be
organized into a pair of complex 2-component (Weyl) spinors transforming in the

fundamental (doublet) representation of SU(2)g. Here SU(2)g is the internal sym-



metry group of the N = 2 SUSY algebra. The main feature of harmonic superspace
is that it makes N = 2 SUSY manifest in field theories by using superfields which
are functions not only of space-time coordinates, but also of eight anti-commuting
spinor coordinates corresponding to the SUSY generators, as well as further “internal”
(commuting) coordinates on a 2-sphere S? ~ CP!.

Two points will be important in what follows. First, we see from the short descrip-
tion given above that both the harmonic superspace and twistor space have an extra
2-sphere S? ~ CP!, a fact that will be key in the success of the strategy of pulling back
the Sp(2r, Z)-invariant geometric data from the twistor space to the harmonic super-
space. Second, the uniqueness of the complex structure JZ of the twistor space plays
a significant role in the success of the pullback approach as we will see in chapters 4,

5 and 6 when we describe the mathematical details of the pullback approach.

1.3 New findings/results

In this section, we briefly summarize our key new findings:

e We give a recipe for how to construct EM duality-symmetric N = 2 IREAs
using the pullback approach. This construction is the main result of our inves-
tigations, and is nearly uniquely specified by the invariant geometric pullback
approach. However, we have not completed a proof that it gives the correct set

of propagating degrees of freedom.

e We conjecture the equivalence of our pullback approach for constructing hy-
perkahler nlsm harmonic superspace actions to the traditional harmonic super-
space method described in [37]. This conjectured equivalence gives a simple
geometric picture of harmonic superspace nlsms in terms of the twistor space

construction of hyperkahler manifolds.



e Finally, along the way we discover an extra geometric structure in the Donagi-
Witten formulation [38] of the special Kéhler geometry of the Coulomb branches
of N = 2 supersymmetric gauge theories. This extra structure may have inter-

esting implications for the low-energy physics on the Coulomb branch.

1.4 Thesis layout

In the rest of this thesis we proceed to flesh out this brief description of our problem
and solution approach.

Chapter 2 will review some of the literature related to constructing EM duality-
invariant nonsupersymmetric actions and the different methods and approaches de-
vised to restore the manifestly broken Lorentz invariance of the action. Along the
way we describe the SL(2,7Z) group of EM duality equivalences of a quantum theory
of a single photon.

Chapter 3 defines the central problem of why N = 2 IREAs on the Coulomb
branch in its current formulation are not EM duality-symmetric. This leads to a
concrete description of the special Kdahler structure of the Coulomb branch in terms
of the low energy physics of r photons and their N = 2 superpartners. Also the action
of the Sp(2r,Z) group EM duality transformations on this structure is described.

Chapter 4 describes in some detail three nearly equivalent descriptions of special
Kahler geometry which are manifestly Sp(2r, Z)-invariant. These are: (1) the “total
space” geometry described as a bundle of abelian varieties fibered over the Coulomb
branch; (2) the same space viewed as a hyperkidhler manifold; and (3) the “twistor
space” of the hyperkahler space fibered over an S? base space.

Chapter 5 briefly introduces harmonic superspace which is a superspace suited for

writing manifestly N = 2 SUSY-invariant actions.



With these mathematical results in hand, we can then describe in Chapter 6
in concrete terms our strategy for constructing actions symmetric under both EM-
duality and N = 2 SUSY transformations. This is done by pulling back geometric
structures of twistor space to harmonic superspace by hypermultiplet superfields, and
then gauging the isometries of twistor space using vector multiplet superfields.

Chapter 7 concludes the thesis with a brief recap of our results and an outlook

for future work.



Chapter 2

Background and Related Work

In this chapter we will review two major topics:
e attempts to construct non-supersymmetric EM duality-invariant actions, and
e attempts to construct EM duality-invariant actions with N = 1 supersymmetry.

We will then briefly critically evaluate the suitability of these formulations for con-
structing N = 2 supersymmetric EM duality-invariant actions. For a general intro-

duction to EM duality, pleaser refer to [42].

2.1 EM duality-symmetric actions

Attempts to build EM duality-symmetric actions go back to Dirac who originally
wrote down a non-local, Lorentz invariant Lagrangian [43]. In this formulation, the
magnetic current does not couple directly to the gauge field. Instead it only couples
through the Dirac string attached to each monopole, which makes calculations very

difficult.
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2.1.1 Zwanziger’s action and a first look at EM duality

Later, Zwanziger [4] reformulated the theory in terms of a local, but non-Lorentz
invariant lagrangian with two gauge potentials A, and B,,. Even though there are two
gauge potentials, the form of the non-Lorentz invariant kinetic mixing ensures that the
are only two on-shell degrees of freedom for the gauge fields. The advantage of having
two gauge potentials is that one, A,,, has a local coupling to electric currents, while B,
has a local coupling to magnetic currents. Although manifest Lorentz invariance is
lost in this formulation, after the Dirac quantization conditions are imposed, Lorentz
invariance is recovered at the level of the equations of motion.

Zwanziger’s goal was to construct an action leading to Maxwell’s equations,
O F" =€*jy, O, % F* =dmjl, (2.1)

in the presence of electric and magnetic currents j. and j,, which are separately

conserved,

Dujt = g = 0. (2.2)

Here e?/(47) is the fine structure constant. The normalization of the electric and

magnetic currents has been chosen so that electric and magnetic charges,

qz:/d?’xjf, gr:/d?’fcjg, (2.3)

satisfy the Dirac quantization condition [4] [43] in the form

NS

G9i — 49 = = (2.4)

11



where n is an integer and (g;, ;) is the electric and magnetic charge of the ith dyon.
(“Dyon” is the general name for a particle which may carry either or both electric
and magnetic charges.)

The dual field strength, xF', appearing in is defined by

1
* Fuy o= ~umn F™. (2.5)

2

It is convenient to introduce an indexless notation in which index contraction is
denoted by a dot, and index antisymmetrization by a wedge: p-q := p,¢" and
PAQ = DPuGy — Dvp-

Zwanziger substituted the following general parameterization of F' into (2.1
1
F:7§“nAm-@AAﬂy_anm-wABﬂﬂ, (2.6)

to obtain equations for the two A, and B,. Here n, is an arbitrary fixed space-like
four-vector (thus breaking manifest Lorentz invariance), which can be thought of as
the (arbitrarily chosen) space-like direction of the “Dirac string” singularity in A and
B emanating from any point magnetic or electric charges. The Lagrangian density

that generates the resulting equations of motion for A and B is

L= {M-@AAH{w*@ABﬂ—Mn@ABﬂ{w*@AAH

2e2n?

+[n-(6/\A)]2+[n-(8/\B)]2}—je-A—i—ng-B. (2.7)

This Lagrangian is invariant under the EM duality transformation

12



which inverts the coupling and exchanges electric and magnetic charges. Note that
in the absence of sources, the coupling can be absorbed in a rescaling of A and B, in
which case the EM duality transformation would be a manifest symmetry of the
lagrangian. This is the sense in which is manifestly EM duality-symmetric.
Note that for the theory with the coupling to sources present, the EM duality
transformation is mot a symmetry since it acts not only on the fields, but also
on the coupling constant, thus changing the theory itself.

Recently Csaki, Shirman and Terning [44] generalized this lagrangian to include
a f-angle parameter which plays a nontrivial role in the quantum theory with both
electric and magnetic sources. In particular, their action incorporates the “Witten
effect” [45] which states that the electric charges of dyons are effectively shifted by

0/(27) times their magnetic charges. Their lagrangian is

L=—Tm—{[n ON(A+iB)]-[n-0A(A—iB)]}
- Re87:n2 {In-OA(A+iB)]-[n-+0 A (A—iB)]}
—je'A—i_gjg'Bv (2'9)

where the fine structure constant and the 6-angle are combined into a complex

coupling

0 47
= — 4+ 1—. 2.10
4 2 T e2 ( )

This lagrangian is invariant under a discrete Sp(2,Z) ~ SL(2,Z) group of
transformations which acts on the fields and coupling as

J ajg + CJe dr —b
(A+iB), i S e L ot 2 (211)

Je bjy + dje a—er

A+1iB —

a — CT

13



where (%) € SL(2,Z), i.e., a,b,c,d are arbitrary integers satisfying ad — bc = 1.

The integrality of a,b, ¢, d is necessary to preserve the Dirac quantization condition
(2.4). This infinite discrete Sp(2,7Z) invariance is the full quantum-mechanical EM
duality group of Maxwell theory. Note that for a = d = 0 and —b = ¢ = 1 (2.11)

reduces to the classical EM duality transformation (2.8)).

2.1.2 Actions with an extra gauge invariance

The Zwanziger lagrangian (and its f-angle extension) suffers both from lack of
manifest Lorentz invariance, and from the obscure way in which the correct
counting of propagating degrees of freedom comes about. The latter problem was
solved independently in [6] and [I3] who proposed an apparently different
non-Lorentz-invariant but manifestly EM duality-invariant action. The new feature
of this action is that it has an added gauge invariance that makes the counting of
the degrees of freedom more obvious. (From now on, for simplicity, we give actions
with no electric or magnetic sources or 6 angles. We will also rescale the fields to
remove the coupling. Adding the sources and couplings back in as in is
straight forward.)

Henneaux and Teitelboim [10] and Schwarz and Sen [13] put two Abelian gauge
fields, A7, (a = 1,2), on an equal footing in the action

1 , ‘
S = —§/d4:p(Bwe“bEf + B'“BY), (2.12)

where E'“ := F§, and B'* := %eiijfk with F'* := 0 A A%, are the usual electric and
magnetic fields derived from each potential. Here 7,7,k = 1,2,3 are spatial indices,
and € is the antisymmetric unit matrix with €2 = 1. Note that (2.12) is not only

invariant under the usual Abelian gauge transformations of Aj, but also under the

14



additional local transformations,
Af — Aj + V() (2.13)

for arbitrary scalar functions W®. This extra gauge invariance is responsible for
reducing the number of propagating degrees of freedom from those of two Maxwell
fields to only one Maxwell field.

The action (2.12) is also manifestly invariant under global SO(2) transformations

mixing A} and A2, which contains the EM duality symmetry as a discrete subgroup:
a ab oAb
A% e A, (2.14)

Using the above local symmetries and the A} equations of motion, one can eliminate
one of the gauge fields and get the conventional Maxwell theory for the other one.
The EM duality symmetry is then reduced to the duality between the electric and
magnetic field strengths of the remaining Maxwell field.

The action can be slightly generalized [20] by using a constant vector n*

subject to the constraint, n - n # 0, to rewrite (2.12]) as
1 4 1 a a 1 a a
S=—[dz —§tr(F FY 4+ —n - F*-Fny, (2.15)

4 n-n

where

Fo = eFP — «F". (2.16)
In , the transformation in takes the form

Al — AL +n, V(7). (2.17)

15



If we take n, = 52, i.e. a unit time-like vector, it is easy to check that reduces
to .

It is also easy to see that is almost the same as the Zwanziger action
if we identify n,, A, and B, in the Zwanziger action with n,,, Ai, and AL in
, respectively. The only difference between the two actions is that the Zwanziger
action is but with a change in the relative sign between the two terms. This

sign difference is crucial since the Zwanziger action does not have the extra gauge

symmetry (2.17)).

2.1.3 Sorokin et. al.’s actions

Pasti, Sorokin and Tonin (PST) proposed [17, [I8] to generalize by turning the
constant vector n, into by a dynamical z-dependent vector field. The problem with
making n, a dynamical field is that it violates the local symmetry which was
crucial to ensure the correct number of propagating degrees of freedom. So the action
in must be modified to restore this symmetry. PST found the generalized

action

S = —l/d%; (—%tr(F“ FY) 4 PO F A (8/\71)]) . (2.18)

4 n-n

The last term ensures the invariance of the action with respect to (2.17)) provided the

auxiliary antisymmetric 2-index field A, transforms as
A= A+nA(n-F)U° (2.19)

Note that for constant normalized n,, the PST action ([2.18) reduces to (2.15)).
As before, one can eliminate one of the gauge fields (for example A?) from the
PST action using its equations of motion. This reduces (2.18) to the ordinary

Maxwell action plus a term which contains the decoupled auxiliary field A. Thus,
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PST constructed a manifestly Lorentz-invariant version of the EM
duality-symmetric action which contains two abelian gauge potentials, and an
additional decoupled redundant field.

One disadvantage of the PST action is the somewhat complicated form of the
Lagrange multiplier and of its transformation (2.19) under the auxiliary gauge
symmetry. PST noted, however, that the equation of motion for the A field is solved

in general by

n, () = dup(x) (2:20)

for an arbitrary scalar field ¢. Substituting this back into the PST action gives the

equivalent action [20]

o 1 4 1 a a 1 A (2 a
S = 4/d:p< 2tr(F F)+8<,0-8g0&'0]: F 890), (2.21)

which has only a single scalar Lagrange multiplier field, ¢.
Also, Maznytsia, Preitschopf and Sorokin showed explicitly [20] how (2.21)) is
equivalent to the original Zwanziger action (2.7)) through a procedure involving

dualizing ¢ to a 2-form auxiliary gauge field.

2.1.4 Siegel’s self-dual actions

The idea of PST to use Lagrange multiplier fields to make both Lorentz and EM
duality invariance manifest following Siegel, who was the first to use that idea in
duality-symmetric actions. In [I4] Siegel proposed manifestly Lorentz-invariant
actions for self-dual antisymmetric tensor gauge fields by using Lagrange multiplier
fields to eliminate half of the propagating degrees of freedom.

Self-dual fields are rank-p antisymmetric tensor gauge potentials in D = 2(p + 1)

space-time dimensions with p an even integer. (Thus the space-time dimension is 2
17



mod 4.) Denote such a p-form field by A and its gauge-invariant p + 1-form field
strength tensor by F := 0 A A. Then self-dual fields satisfy, in addition to the
usual free Maxwell-type equations, the additional constraint that F' = xF', where %
generalizes to D dimensions. (This constraint is only consistent for p even in
Minkowski space-times, and cannot be imposed when p is odd.) Siegel’s action is

then

1 1
§=—3 / Pz {—(p+ 7 Fonm P = aﬂfayl,ypfﬁ”l'”p} : (2.22)

where
F:=F —%xF. (2.23)

A (z) is a rank-2 symmetric tensor Lagrange multiplier field. Although this is a
simple-looking action, the A and A equations of motion enforce the self-duality
constraint together with the free Maxwell equations in a non-trivial way. These

actions were generalized in [17, [18] 23].

2.1.5 Miao et. al.’s actions

Miao et. al. [23] unified the actions (2.21]) and (2.22)) in a single series of Lorentz-
invariant actions in D = 2(p + 1) dimensions for abelian p-form gauge fields with
manifest EM-duality (for p odd) or self-duality (for p even). Their action has the

Siegel-type form but uses one or two g-form fields, Y%, as Lagrange multipliers,

1 D F:l(fl“';“p+lqulmuzhLl Tb#glmaunbar"Uq a AV
Y x{ (p+1)! a T2 Fapeeg T (2.24)
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where

Fo =9 A A°, Fo .= %Rt e

T =9 AY", T =T} T H1Hatt (2.25)

1o pg 1

Thus F* is the (p+ 1)-form field strength for the p-form gauge potentials A%, and T
is a (¢+1)-form “field strength” for the g-form “gauge potential” lagrange multipliers

Y®. The explicit definition of the Hodge star is

1
*F° - Fovivpst (2.26)

M1 Hp+1 (p + 1)!6H1"'ﬂp+1V1--.up+l

which satisfies x> = (—)P. Furthermore the constants and a, b indices are defined by

1 for even 5% (a,b e {1 for even
A= p, e = ( ) P (2.27)

2 for odd p € (a,be€ {1,2}) for odd p

Note that ¢ € {0,1,---,p} can be chosen arbitrarily. In particular, one can choose
g = 0, in which case the Lagrange multipliers Y* are scalar fields. For p even (i.e.,
space-time dimensions 2 mod 4) we retrieve Siegel’s action with his symmetric
tensor Lagrange multiplier replaced essentially by the square of T := AY. Forp =1
(i.e., space-time dimension 4) we retrieve the PST EM duality-invariant action ([2.21])
but with two scalar auxiliary fields, Y*. It is easy to see that one of the Y* can be
eliminated by its equations of motion, after which the remaining one can be identified

with ¢.

2.2 Supersymmetric EM duality-invariant actions

Relatively recently, Bunster and Henneaux in [46] provided an N = 1 supersymmetric

extension of the two-potential formulation of Maxwell’s theory of [10, [I3] described
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above. Their action for a photon and photino is manifestly invariant under EM
duality transformations at the price of manifest Lorentz invariance.

In order to properly implement EM duality together with supersymmetry it was
necessary for Bunster and Henneaux to define EM duality as acting chirally on the
spinors. Their starting point was the two-potential action given in [6]. Their

supersymmetric action for the photon and its superpartner the photino is
SSUSY = Sbose + Sfermi; (228>

where Spose is the action (2.12)) for the photon, and

Sfermi - —%/d%E’Y“@uw (229)

Here v is an anticommuting Majorana spinor. Sgem; is invariant under the chirality
transformation, 1) — €774, which is an SO(2)-rotation because (v5)? = —I. They
then showed that supersymmetry and EM duality transformations only commute if
the latter are defined as the simultaneous transformation of both the vectors A® and

the spinor ¢ given by

A — exp{ac} 4, v — exp{ays} . (2.30)

2.3 Towards N=2 supersymmetric EM duality

Now that we have briefly summarized the key efforts to date for constructing EM
duality-symmetric actions, we will move on in chapter 3 to precisely define the problem
of constructing EM duality-symmetric N = 2 supersymmetric nlsm actions, which is

the main topic of this thesis. However, it will be useful to first make a preliminary
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evaluation of the utility of the above approaches to manifest EM duality invariance
for N = 2 nlsms.

As outlined in the last chapter, the new feature of EM duality in N = 2 nlsms
is that the effective gauge couplings of the IREA vary continuously on the Coulomb
branch, and upon traversing closed loops in the Coulomb branch may return to their
original values only up to a discrete EM duality transformation. Thus N = 2 nlsms
must necessarily carry an explicit dependence on the gauge couplings: the couplings
cannot be (continuously) reabsorbed in a rescaling of the Maxwell fields everywhere
on the Coulomb branch.

This should be contrasted with all the EM duality-invariant actions described
above. There we saw in the discussion of Zwanziger’s action that true EM duality-
symmetry is not attained if the coupling is made explicit, since the coupling changes
under duality transformations. It was only when the coupling was absorbed into the
gauge fields by a rescaling that EM duality transformations acted as true symmetries.

Thus it is clear that the EM duality-invariant formulations reviewed above are
not capable of giving a duality-symmetric formulation of N = 2 nlsms. Clearly a new

idea is needed.
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Chapter 3

Problem Definition

The main purpose of this chapter is to provide a clear and precise definition of the
problem we are trying to address in this thesis without clouding its simplicity with
intricate mathematical details. The mathematical details of our work will be
presented in chapters 4, 5, and 6. We will begin this chapter with a very quick
review of the N = 2 supersymmetry algebra before we present the general form of
an N = 2 IREA and define the vacuum structure of the theory. In my presentation,
I closely follow the discussion and sequence in [32]. Other excellent references on the

dynamics of N = 2 supersymmetric gauge theories are [20, 28| 27, 29] 33, [34] [35].

3.1 N=2 supersymmetric nonlinear sigma-models

The basic N = 2 supertranslation algebra (i.e., the N = 2 supersymmetry algebra
after dropping the Lorentz generators and any central charges) is, in a notation

suppressing space-time indices,

(Q.Qy=0"P,  {Q,Q}=0, ije{1,2}, (3.1)
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where Q¢ are two Weyl spinor supercharges, and P is the energy-momentum 4-vector.
Q' transforms as a doublet under the SU(2)x group of automorphisms.

On shell irreducible field representations of are easy to construct. There
are two solutions with no spins greater than one: the hypermultiplet, containing two
propagating complex scalars, ¢’, as well as two Weyl fermions ¢%; and a wvector
multiplet, made from one complex scalar a, two Weyl spinors A, and a vector field
A,. An important distinguishing factor of the hypermultiplet is that its scalars form
a complex SU(2)g doublet. The bosonic degrees of freedom of the vector multiplet
are a single complex scalar and a vector field, both transforming in the adjoint
representation of the gauge group, and both are singlets under SU(2)g. In
particular, in the case of a U(1)" gauge group, which we are interested in for
describing IREAs, the vector multiplet scalars are necessarily neutral. More
generally, all the massless scalars, whether they are in vector multiplets or
hypermultiplets, whose vevs parameterize the moduli space of the theory must be
neutral because, when a charged scalar gets a vev, it Higgses the U(1) it is charged
under and thereby gets a mass.

The leading (2-derivative) bosonic terms of an IREA action on a moduli space M
with an abelian gauge group and neutral hypermultiplets, a priori has an action of

the following form

L = gun(p) 9™ - 9" + Im[rry () F' - F7], (3.2)

where the dots denote contraction of space-time indices. The ¢ are the real scalar
fields in both the vector and hypermultiplets, and the kinetic coefficient function g,,,
is real, symmetric, and positive definite, and can be interpreted as a metric on M.
(No potential term is allowed since, by hypothesis, the scalar vevs parameterize the

vacuum manifold, M.) The second term in (3.2)) is a generalized Maxwell term for
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the U(1) field strengths F., := 9,A] — 9,Al, where I,.J € {1,...,7} run over the r

U(1) gauge groups, and we have defined the complex self-dual field strength,

Fli=F' —ixF", (3.3)

which satisfies *xF! = iF!. The gauge kinetic coefficient, 7;; — the central object
of our study — is a complex function of the scalars ¢, symmetric in / and J and
whose imaginary part is positive definite by unitarity. For if we define the real and

imaginary parts of the coupling by

(9[] . 47
T1J ‘— % + ZW, (34)
then the generalized Maxwell term can be expanded as
Amr g O J
‘CU(l)’” = (eQ)IJF . F —+ %F . *F (35)

which shows that the imaginary part of 77; is a matrix of couplings and the real part
are theta angles.

However, compatibility with N = 2 supersymmetry tightly constrains this action;
see, for example, [32]. The result is that the general N = 2 IREA with gauge group
U(1)" and ny neutral hypermultiplets (labeled by indices m,n € {1,...,ns}) has the

following form
L = Gun(9, 9)06™ - 9¢; + Im 715(a) (9a’ - 0@’ + F' - F7). (3.6)

Here ¢'™ are the complex scalars of the hypermultiplets, a! the complex scalars of
the vector multiplets, and F’ are the complex self-dual U(1) field strengths of the

vector multiplets. The U(1)" couplings, 777, are locally holomorphic functions of the
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a’ which satisfy the special Kdhler condition

Irtnr =0, (3.7)

where 07 := 0/0a’ and square brackets denote antisymmetrization. Globally 777 can
be a multi-valued function of the a’ because of EM duality identifications; as we will
describe below they are more properly holomorphic sections of an Sp(2r,Z) bundle

over the moduli space. The special Kahler condition can be locally integrated to give

0b

TIK = 5% (3.8)

for some holomorphic functions b;(a). A set {a’,b;} of holomorphic functions on the
moduli space satisfying are called a basis of special coordinates.

N =2 SUSY implies that there are no kinetic cross terms between the vector and
hypermultiplet scalars, implying in turn that the moduli space has a natural (local)
product structure M = My x M,,, where My is the subspace of M along which only
the hypermultiplet vevs vary while the vector multiplet vevs remain fixed, and vice
versa for My,. In cases where My, is a point, M = My is called a Higgs branch of
the moduli space; when My is trivial My is called the Coulomb branch (since there
are always the massless U(1) vector bosons from the vector multiplets). Cases where
both Mg and My, are non-trivial are called mixed branches. We are interested in
the Coulomb branch, My, since that is the part of the moduli space involving U(1)
gauge fields, and so is the only part of the IREA where EM duality plays a role. So
from now on we will be concerned only with the vector multiplet part of the general
IREA:

Lo =1Im 775(a) (9a’ - 0a” + F' - F7). (3.9)
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3.2 EM duality transformations

The most important point of this chapter is the following. The IR free low energy
U(1)" physics is invariant under EM duality transformations, but the lagrangian (3.9)
describing this physics is not. As explained in the last chapter for a single U(1)
gauge group, EM duality transformations relabel the fields, interchanges electric and
magnetic charges, and inverts the couplings. Also, 27 shifts of the theta angles shift
electric charges by multiples of the magnetic charges, and makes integer shifts of the
real part of 7. When applied to the matrix 7;; of couplings these transformations

generate the infinite discrete Sp(2r,Z) group of duality transformations:

1

Trj] — (A%TLM—FB]M) (OJNTNM+D%4)_ (310)

where

A B
M = € Sp(2r,Z). (3.11)
C D

The conditions on the r x r integer matrices, A, B, C, and D for M to be in Sp(2r,Z)

are

ABT = BT A, BTD = D"B,
ATC = CT A, DTC =CD7T, (3.12)
ATD —CT™B = ADT — BCT =1,

where T" denotes the transpose. These imply that

) DT _BT
M= : (3.13)
—-ct AT
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The action of an EM duality transformation on the 2r-component row vector of

magnetic and electric charges (nl, m. ;) of massive states is

(N Me) — (M M) M1 (3.14)

Also, from (3.10) and (3.8)) it follows that the column vector of special coordinates

(br,a!)T transforms as

—~ M . (3.15)

The fact that the coupling matrix 7;; transforms under Sp(2r,Z) means that
EM duality transformations are not symmetry transformations of the IREA since
they change the couplings of the theory. Instead, they simply express the
equivalence of free U(1)" field theories coupled to classical massive sources under
symplectic Sp(2r,7Z) redefinitions of electric magnetic and magnetic charges. The
importance of this redundancy in the Lagrangian description of IREAs becomes
apparent upon traversing a closed loop in My,. The physics must, by definition, be
the same at the beginning and end of the loop, but the lagrangian description need
not because it may have suffered an EM duality transformation. This possibility is
often expressed by saying that the coupling matrix 7;;, in addition to being
symmetric and having positive definite imaginary part, is also a section of a (flat)
Sp(2r, Z) bundle over My, with action given by (3.10).

The key goal of this thesis is to develop a strategy for constructing EM
duality-symmetric N = 2 IREAs. In other words, we want to construct N = 2 nlsm
actions where EM duality transformations are a manifest symmetry as opposed to a
map between different lagrangians. The key ingredient in achieving this goal is to

reformulate the nlsm in terms of mathematical objects which are manifestly EM
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duality-invariant. The chief such object is the total space, X, of the Coulomb branch
(and not the Coulomb branch itself), and its inherent symplectic-invariant
geometric data (the complex structure, Hodge form, and Donagi-Witten two-form).
It is thus natural to use X as the target space of the nlsm and its geometric data to
construct its Lagrangian.

Heuristically, we want to to build the EM duality-symmetric N = 2 nlsm action
by using the harmonic superspace superfields to pull back those invariant geometric
structures on the target space which can naturally be integrated over harmonic
superspace. We call this strategy the pullback approach to constructing EM
duality-symmetric actions.

To make this strategy more concrete, we need to describe in more detail what the
geometry of the target space is, X', and what the geometry of harmonic superspace is.
The next two chapters will be devoted to fleshing out the details of these geometries.
In chapter 4, we will give an in-depth presentation of the target space geometry
where we will describe it in terms of special Kahler and hyperkahler manifolds as well
the twistor space construction of the latter. In chapter 5 we will briefly introduce

harmonic superspace.
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Chapter 4

Geometry of the Coulomb Branch

In this chapter we describe several nearly equivalent formulations of the special Kahler
(SK) structure of the Coulomb branch (CB), My. In particular, we show how the
SK structure is encoded in the Donagi-Witten (DW) geometry of the total space,
X, of the CB. Then we show how DW geometry gives rise to a hyperkdhler (HK)
structure on X. Then we describe how an HK structure on X is encoded in the
complex geometry of the twistor space, Z, associated to X.

We will illustrate all these constructions by computing the relevant geometrical
objects (complex structures, metrics, symplectic forms, etc.) explicitly in coordinates.
Along the way we will see that the DW geometry has extra structure compared to

that of the SK, HK, or twistor geometries.

4.1 Special Kahler structures

In the last chapter we found the following basic structures in the IREA on the CB,

My AT

1.) My is an r-dimensional complex manifold.

"'We change notation slightly from that used in chapter [3; we now use lower case roman indices
i, € {1,...,7} to label the complex coordinates and tangent space directions.
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2.) There exists a symmetric rank-2 tensor, 7;;, which is a holomorphic section of

an Sp(2r,7Z) bundle over My transforming as in (3.10)).
3.) Im 7 is positive definite.
4.) T satisfies the special Kéahler condition ({3.7)).
From these it followed that:

e The special Kéahler condition can be locally integrated as (3.8) to give special
coordinates ¢ := (a’, b;) which form a holomorphic section of an Sp(2r, Z) bundle

transforming as

c—cM” (4.1)

for M € Sp(2r,Z).

e In a special coordinate basis the metric components on My, are given by g;; =

Im Tij-

Though this determines a geometry, it leaves out two additional closely related
structures on My which are part of the IR physics on the CB and so also of the

definition of an SK structure:
5.) the Schwinger product of dyon charges, and
6.) the central charge of the N =2 SUSY algebra.

The rest of this section will define these last two SK structures.
If the 2r-component row vector of magnetic and electric charges of a dyon is

z = (p', ¢;), then the Schwinger product of the charges of two dyons is

(z1,25) =2, J7], (4.2)
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where J is the symplectic form given by J = I, ® e where I, is the r x r identity matrix

and € = (% ). Since the charges transform under Sp(2r,Z) duality transformations
10

as in (3.14]), that is as

z—zM* (4.3)

for M~! € Sp(2r,Z), and since by definition elements of Sp(2r,Z) leave J invariant,
MJMT = J, it follows that the Schwinger product is also Sp(2r,Z) invariant.
Physically the Schwinger product measures the angular momentum (in units of h)
carried by the electromagnetic fields in the presence of two static dyons.

The central charge, Z,, is a complex linear combination of the dyon charge vector

z and the vector of special coordinates, ¢ := (b;,a’). Thus

Z,=1zc’. (4.4)

From and we see that Z, is invariant under Sp(2r,Z) transformations.
Also, since ¢ is a holomorphic section on My, it follows that Z, is a holomorphic
function on My,. Physically, the norm of Z, is the BPS mass of dyons of charge ZE|

SK structure is described here in an explicitly Sp(2r, Z) non-invariant way. This
is unavoidable since the basic structures, {7, c,z}, all transform under Sp(2r,Z). So
this is not an EM duality-invariant description. We should note that Freed [39] has
proposed an Sp(2r, Z)-invariant definition of SK geometry which is intrinsic to the CB
manifold, My . But this proposal leaves out the dyon charge vectors z, the Schwinger
inner product, and the central charge structures. An Sp(2r, Z)-invariant description
of all the SK structures requires enlarging the geometry beyond that of the CB, My, .

This is the subject of the next section.

2There can be other contributions to the central charge coming from other global U(1) charges
that states might carry. We suppress them here for simplicity.
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4.2 Donagi-Witten geometry

Donagi and Witten [38], following on earlier work of [47, 2], pointed out that a natural

EM duality-invariant geometric object encoding the SK structure of the Coulomb

branch, My, is the total space, X, of a fiber bundle of abelian varieties over My, .
The total space, X, of an SK manifold, My, is defined [I], 2, B8, 47] to be a

2r-dimc complex manifold with three additional geometric structures (m, t,, L).

They are:

e 7:X — My is a holomorphic surjection whose fibers, X, := 771(u), are r-dim¢

abelian varieties;

e t,is a Hodge form on X, which varies continuously with u € My;

e [ is a holomorphic symplectic form having the &, as lagrangian submanifolds.

We will call such a space a Donagi- Witten (DW) geometry. The rest of this section

explains the definitions of these structures by writing them out explicitly in

coordinates. We then show how they encode an SK structure on My, .

4.2.1 Fiber bundle structure

The projection map m makes X a fiber bundle over My with the fiber X, over a
point u € My,. Since X, is r-dim¢, so must My, be. From now on we will only work
locally in My, so we may think of My, concretely as a polydisk in C" with complex
coordinates u', i € {1,...,r}.

The fibers X, are r-dim¢ abelian varieties. An abelian variety is a complex torus
with additional properties described below. Any complex torus 72" is equivalent to
C"/A with A a rank-2r lattice in R*. We choose a basis of the lattice, {e,}, and a
basis of dual coordinates, {z*}, a € {1,...,2r}, such that feﬁ dz® = 5. This implies

that the x® are identified up to integer shifts, 2% ~ z® + 1.
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These coordinates trivialize the fiber bundle. That is, the projection map is simply
7o (22, 00) — U

Choose a complex basis {f;} of C", and a dual basis of complex coordinates z',
such that | £ dzl = (5£ . By an appropriate GL(r,C) transformation we can always
rotate {f;} so that 2* = Aéwj + 74" 4 it for any given invertible real r X r matrix
A. Here tY is some r x r complex matrix and p¢ a vector of complex constants. So

rename Z; := 2" for i € {1,...,r}, so that
2= Noad + 79T 4 ) (4.5)

The identification of the x’s by integer shifts implies that the z’s are similarly identified
under constant shifts z* ~ 2* 4 A;'-nj + 7%m; with n',m; € Z.

An abelian variety can be deﬁnedﬂ as a complex torus for which there exists a basis
of complex coordinates as in such that: 1) A; = (52-(5; is a diagonal matrix whose
entries are positive integers ¢; € Z* satisfying the divisibility condtions ; | d;41; and,
2) 79 is a symmetric matrix, 7 = 77, with positive definite imaginary part, Im 7 > 0.

Since X is a holomorphic fiber bundle (i.e., 7 is a holomorphic map), the 2* must
depend holomorphically on the @ coordinates on My, i.e., 7% = 79 (%), and p' = p(u)
in ([{@5).

Mathematically, 7/ (u) is called the complex modulus of the abelian variety X,,.
We will identify 7% with the matrix of complex U(1)" couplings that appeared in
the description of the SK structure on My. We saw in the last paragraph that the
symmetry and positive-definiteness of 7 are built into the definition of an abelian
variety. The condition that 7% is a section of an Sp(2r,Z) bundle is also built into

it, as we will see below when we discuss polarizations on abelian varieties.

3Abelian varieties also have a coordinate-independent definition as complex tori which can be
embedded in projective space by polynomial equations.
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We now deduce some basic properties of the complex coordinates we have
introduced on X. The important point is that while the real coordinates, {x,7},
trivialized the fiber bundle structure of X, the complex coordinates {z,z} defined by
do not because they depend on the coordinates {u, Z} of the base. To make the
change of variables from the real to the complex coordinates on the fibers, introduce

the two sets of coordinates {z,%Z,u,@} and {z,Z, %, u}. They are related by

z2=Ax+ 7T+ L, u =1,
Z=Az 47T+, T =, (4.6)
with inverses
1 1 1 ~
17:z(72(5—l7)—?z(2—u>>, u = u,
.1 =
T=—(2—-Z—-p+n), u=1u (4.7)
T_

Here we are using a vector notation where the coordinates and p are all r-component
column vectors, and 7 and A are r X r matrices. Also, we have defined 74 := 7 £ T;
thus, 7, =2Re7, and 7 = 2iIm .

Since  and T are identified by constant (integer) shifts, it follows that
{0y, 05, 04,05} form a basis of globally defined vector fields on X, and that
{dx,dz,du, du} form a dual basis of globally defined one-forms on X. But this is
not true of the coordinate vector fields and one-forms in the {z,%z,u,u} basis. For,

by the chain rule, we compute that

1_1 1 A e

0, = —T—_Tzam + T—_ax, Oy = Ox (:E OuT + au,u)am

0=+ 10, — 0 O = 0 — (37047 + Oam)0=. (48)
T_ T_
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Thus 0, and 0 are globally defined vector fields, but 9, and Jd; are not because of
their explicit dependence on = and T which are not single-valued on the fibers. (For

later use, note that

0, = AO, + Ads, 0z = 70, + 705, (4.9)

invert the relations (4.8).) Similarly, we compute from (4.8)) the one-forms

dz = Adx + 7dx + d,7 - T + dyp, du = du, (4.10)

and their complex conjugates, in a notation where d,X := 9,;X du’. This implies
that du and du are global one-forms, but dz and dz are not because of their explicit
Z-dependence.

So, we define the following, globally defined, vector fields and one-forms in the

{z,u} coordinate system:

U := 05, 0 := Adx + 7dZ,
U := 0=, 0 := Adx + 7dz (4.11)
(with
1/ 1. _1 1,
dx = x (T:@ - 729> , dx = — (0 —0) (4.12)

as useful inverse relations). Then {0,, U} is a basis of global holomorphic vector fields
on X and {6, du} is a dual basis of global (1,0)-forms on X'

It is important to realize that, since # is not a coordinate differential, it is
neither closed nor holomorphic! Indeed, from their definition, , it follows that

do = d,7dx = dTT%(G — 0). Decomposing the exterior derivative into the Dolbeault
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operators, d = 0 + 0, this implies

00 = ie, 00 = —0, (4.13)

T— T—

and complex conjugated relations for 6.

4.2.2 Polarization

A Hodge form, t,, on an abelian variety, X, is defined as a positive-definite, integral,
(1,1)-form on X,. In fact, the existence of such a form on a complex torus can be
taken as the definition of an abelian variety. In the coordinate definition of abelian
variety we gave above, such a form is manifest. In the real basis for the fibers, it is
simply

ty = 06;dz' N dz; = det Adz (4.14)

where matrix multiplication and wedge products are understood in the last expression.

A given abelian variety typically admits many different Hodge forms. A choice of
a Hodge form on an abelian variety is called a polarization. We will take as our
choice of polarization. If the integers §; = 1 for all 7, then the polarization is called a
principal polarization.

A basis {e,} of the torus fiber lattice A such that ¢, has above the above form is
called a canonical basis. There is a freedom in choosing a canonical basis. A general
A basis change is a linear map G € GL(2r,Z). To preserve the form of ¢, we need
GZGT = Z where Z := (PA %). This defines a subgroup of Sp(2r,Z); in the case of
a principal polarization, A = 1., it is just Sp(2r, Z) itself.

Note that such a change of canonical basis preserves A, but changes 7 by a
fractional linear transformation as in (3.10). Thus, in the case of a principal

polarization, we see that 7 is indeed a holomorphic section of an Sp(2r,Z) bundle.
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(The case of a non-principal polarization corresponds to a restriction on the allowed
transformations of 7.)

Once t, is chosen as in for one u € My, continuity in u fixes it for all
other w. This is because t, depends on discrete data (a choice of lattice basis and
the integers d;) and so must be constant if it is continuous. Thus in our {x, 7, %, u}
coordinate system, t, is independent of u. It thus defines a unique closed, real (1,1)-
form, ¢, on all of X by the same formula as for ¢, . (In coordinate invariant
language, t is the unique closed 2-form on X which coincides with ¢, when restricted
to X, and which has rank 2r at every point, i.e., there is a 2r-dimg subspace of the
tangent space to X at each point on which ¢ vanishes.)

In the complex coordinate basis {z,u}, a short computation using shows

that

] (4.15)

T_

4.2.3 Holomorphic symplectic structure

The last structure of a DW geometry is the holomorphic symplectic form, L, which
we will call a “DW form” for short.

A holomorphic symplectic form is a closed, non-degenerate, (2,0)-form on X.
The condition that the fibers, &, are lagrangian means that, when acting on pairs
of vectors in the tangent bundle to the fibers, L vanishes. Being a (2,0)-form with
vanishing restriction to the fiber, implies L has the general form in the {u,z}
coordinate system

L = No'duj + p dudu;, (4.16)

with A/ and g% holomorphic functions of z and u. L being non-degenerate means

that 0 # det (_Sr 2) = det® \ which implies det A # 0. Being a closed (2,0)-form
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means that dL. = 0. This leads to a system of differential equations which can be

shown to imply that 797, X, and ;¥ are holomorphic functions of u alone, and satisfy

0 = oliplk,
0= 9l ¥, (4.17)
0=\,

where 0° := 0/du;.

The first equation in (4.17)) is precisely the SK condition on 7, , found in the
last chapter. Thus we see that DW geometry encodes the first four SK conditions
listed in section 4.1l We will see how the last two SK conditions are encoded in the
next subsection.

The second equation in implies that p/* = 0VA¥ for some holomorphic
functions A¥(u) on My.. Note that A* is only determined by this equation up to
“gauge” equivalences of the form A* ~ A* 4+ 9¥A, for an arbitrary holomorphic
function A(u) on My, Define a holomorphic 1-form on My by A := A%(u)du;, then

the above gauge equivalence is
A~ A+ dA. (4.18)

Thus A is a holomorphic connection on a U(1)g-bundle over My, .
The third equation in together with det A # 0 implies that there exists a
holomorphic change of variables to new coordinates u}, = wuj,(u) such that duj, = X du;.

In these coordinates (dropping the primes on u') the DW 2-form takes the simple form

L =0"du+ dA. (4.19)
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To summarize, we have derived coordinate expressions for the Hodge form ¢ in
and for the DW form L in (4.19). They depend on a holomorphic matrix 7
which satisfies all the conditions that the matrix of U(1)" couplings 7 does in an SK
geometry. Thus DW geometry encodes these SK conditions in an Sp(2r, Z)-invariant
way.

One surprise is that there is an extra structure — namely, the dA term in
— in the DW geometry that does not appear in the SK structure. The existence
of this structure is implicitly recognized in the work of Donagi [47] and Freed [39],
but they simply set it to zero as an extra condition on DW geometry. While this
can always be done locally on My, it may not be consistent to do so globally. We
speculate on the possible physical interpretation of this extra structure in chapter [7]

Another surprise, pointed out by Donagi and Witten [38], is that since L is a
symplectic form and it has tori as Lagrangian submanifolds, it endows the total space
X with the structure of a phase space of a (complex) classical integrable dynamical
system. The physical interpretation of this classical integrable system is unclear. We
will see at the end of chapter [6]that another complex classical dynamical system enters
in the harmonic superspace description of N = 2 supersymmetric hypermultiplet
nlsms. We speculate on the possible relation of these two classical dynamical systems

in chapter

4.2.4 Recovery of SK structures from DW geometry

So far we have recovered the SK conditions on the matrix 7 of complex U(1)" couplings
from DW geometry. But we have not seen how the Schwinger product of dyon charges,
(4.2), and the central charge, (4.4]), are encoded in DW geometry.

The first thing we need to locate in DW geometry are the dyon charge vectors,
z € Z*". The first homology group of the fiber is Hy(X,) ~ Z*" since X, is a T*"

torus. We will thus identify H;(X,) with the lattice of EM charges. Therefore a dyon
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charge vector, z, is identified with the homology class, [y,] € Hi(X,), of some 1-cycle
(closed curve) 7, wrapping certain cycles of the X, torus.

The Schwinger product is an alternating, integer-valued product of two charges,
y and z. It is naturally identified with the period of the Hodge form over the 2-cycle
in X, given by the Pontryagin product of the two 1-cycles, 7y and 7,, representing

the charges y and z. That is

(v.2) = / L. (4.20)

Here * denotes the Pontryagin product, which can be thought of as forming the 2-cycle
defined by the surface swept out by translating the first curve along the second in the
product. The Pontryagin product is alternating since reversing the order reverses the
orientation. Since the Hodge form is closed, the value of the integral only depends
on the homology classes of the various cycles. Since the Hodge form is integral, the
value of the integral will be an integer. Thus has all the necessary properties
to define the Schwinger product.

It can be easily evaluated in the {x,Z} coordinate system. Denote the basis of
the torus’ lattice A dual to these coordinates by {e‘,€;}, which therefore specify a
basis [e] := {[¢'], [¢:]} of H1(X,). Then any two homology classes, [yy] and [7,], can
be expressed in this basis as [yy] = y’[e] and [y,] = z'[e]. It then immediately
follows from that fwy*% tu =y Jz! where J = A ® €. In case the polarization
is principal, A = I, then this is precisely the Schwinger product . In case
the polarization is not principal, this gives a generalization of the Schwinger product
where there can be different units of charge quantization with respect to the r different
U(1) gauge groups. This is a physically sensible generalization, and gives a physical

interpretation of the A matrix appearing in the Hodge form.
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The central charge, Z,(u), is a holomorphic function which depends linearly on
the charges z. Because the DW 2-form, L, has vanishing restriction to the fibers of
X, it is well-defined to integrate L over 1-cycles in X, to get a 1-form on M,y,. Thus
f% L is a 1-form which is holomorphic on My, and linear in z. It thus has the natural

intepretation as the differential of the central charge:

7{ L =dz,, (4.21)
Yz

where the “d” on the right side is the exterior derivative on My . Since L is closed, the
right side is indeed exact. Since L is (2,0), the right side is (1,0), so Z, is holomorphic.
Thus the DW 2-form determines the central charge (up to some integration constants)
by . This completes the determination of all the basic SK structures from
Sp(2r, Z)-invariant geometrical objects on the total space X.

For later use, it will be convenient to also derive explicit coordinate expressions
for the Kahler form, w, and hermitian metric, g, on My, from the DW geometry

data. The Kéhler form is given by [DW95]

w(u) = / t"'LL, (4.22)

which, after some algebraic manipulation using the expressions (4.15) and (4.19)) for

t and L, can be written as
w = —(det A) du” 7_ du. (4.23)
The metric on My, can be derived from the Kéahler form as

9(Oy, Og) = w(i0y, Oy) = —i(det A) 7_ = 2(det A) Im 7. (4.24)
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Since Im 7 > 0, it follows that the metric is also positive definite.

4.3 Hyperkahler structure

In this section we will follow a construction of Freed’s [39] to find explicit coordinate
expressions for a canonical HK structure on X'. But first we give a quick overview of
the basic definition [40] of a HK structure.

A HK manifold X has three complex structures J,, a € {1,2,3}, obeying the

quaternion algebra, J,.J, = €uped. — dqpl. Any real linear combination of these,
J(7) =1, (4.25)

is again a complex structure on X if Y (r*)* = 1, i.e., if 7 lies on a two-sphere
S? ~ CP!. Furthermore, each complex structure has an associated Kahler form — a
real non-degenerate closed 2-form of type (1,1) with respect to its complex structure.
We denote the Kahler form associated to J, by w,. Then the HK metric is given by
g(+,+) = wa(Jar, -) independent of a. So to specify a HK structure we need give only
the Kahler forms, w,, and one complex structure, .J;, since the metric, g, can then be
deduced from w; and J;, and the remaining complex structures can be deduced from
g and wsy 3.

According to a theorem by Cecotti, Ferrara, and Girardello [48], the cotangent
bundle T* My of a special Kéhler (SK) manifold My carries a canonical HK structure
given by identifying J; with the natural complex structure of T* My, and defining

the Kahler forms by

wi(q1 ®p1, @ @ pa) = w(qr, @) +w H(p1, p2),

[wa 4 iws](q1 © p1, G2 © p2) 1= % [p1([1 = iJi]q2) — po([1 —iJi]qu)], (4.26)
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for any ¢; € TMy and p; € T*My,. Here w is the Kahler form on My, found above
, and w™! is its inverse (which is therefore a rank-2 antisymmetric tensor field,
and so naturally acts on pairs of one-forms).

Freed [39] shows that the DW 2-form on X’ provides an isomorphism between the
cotangent space 1), My and the tangent space to the fiber 7, X, at any point p € &,.
Since X, ~ R?" /A is a torus, it is translation invariant, and so T,X, ~ Ty X, for any
points p,p’ € &,. Denote V, := T, X, and form the “vertical” fiber bundle ¥V — My,
with fibers V,. Using the total space fiber bundle projection, 7 : X — M, , and the
inverse of the DW 2-form, L', Freed defines the map 7*L~! : T*My — V. The
non-degeneracy of L implies this map is an isomorphism. Thus T* My ~ V), and so
V has a HK structure.

Finally, Freed notes that since X, ~ R? /A for some lattice A, it follows that
X, ~V, /A, and thus X ~ V/A. Since the HK structure on V is translation-invariant
along the fibers, X inherits an HK structure from V simply by modding out by the
action of A.

After going through the algebra of the three steps given above, we obtain the

following coordinate expressions for the HK structures on X'

J1:+i(8ZT®6+UT®du)+C.C.

A 1 -
Jo = —i uafr_ Qdi+ —UT—®0) +cc.
K Al T

A 1
Jy =+ | |<9TT Qdi+ —UT = ®8) +c.c.
IAI T

1
w1 :—\AlduTt/\dﬂ—l—WﬁT—/\Q—i—cc (4.27)
= +k07 Adu+c.c.

w3 = —ik 07 A du + c.c.

1 —_
= —i|A|du” - @ du + i 0T 28+ cc.
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Here |A] := det A and & is an arbitrary positive constant. This arbitrary constant
implies that there is actually a one-parameter family of HK structures on X. s can
be interpreted as the arbitrary scale of the HK metric on the torus fibers of X.
Note that the holomorphic U(1)f connection on My, dA, that appeared as part
of the DW form does not appear in the HK structure of X. The reason is that the
projection pullback, 7*, in Freed’s cotangent to vertical bundle isomorphism, 7* L1,
annihilates dA. Also, by a rescaling of x, the dependence on |A| can be removed from
the HK structures in [4.27] Thus the HK structure of X" carries less information than

the full DW geometry does.

4.4 Twistor space geometry

We have seen that a HK manifold, X, admits a whole S? ~ CP! of complex structures
compatible with the metric. The main idea of the twistor space approach is to
incorporate all these structures into one complex structure on a larger manifold, the
twistor space, Z. The specification of a holomorphic 2-form, Q*t*, on Z allows one
to recover the full HK structure on X. Thus HK manifolds and twistor spaces are
effectively equivalent [41], [40].

This is useful because, as we will see in chapter [5], construction of supersymmetric
nlsms requires that one chooses a complex structure on the target space. Choosing one
complex structure out of the whole 2-sphere of them on a HK target space destroys
the symmetry among them. However, the equivalent twistor space has a unique
complex structure which combines the S? of complex structures of the HK manifold
in a symmetric way. Thus it is natural to formulate HK nlsms using the twistor space

as target space.
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After briefly explaining the key properties of the twistor space associated to a HK
manifold, we will quote Hitchin et. al.’s theorem [41] on the equivalence of twistor
spaces to HK geometries.

The twistor space Z of a HK space X is a fiber bundle over the two-sphere of
complex structures of X with X as the fiber. Thus Z ~ X x CP! as a topological
space, but it is endowed with a special choice of complex structure, JZ, given by
choosing the complex structure J(7), defined in , on the fiber over each point
7 € CP!. Thus there is a holomorphic projection map p : £ — CP! defining the
fiber bundle structure. Choosing a complex coordinate, ¢, on the CP! base, we have
p:(m,¢) — ¢ where m € X. In these coordinates, the complex structure JZ acting

on Timo) Z =~ T,nX & T,CP! is

Jz:<1—czj+ (+C, ,.6=¢

et CZJQ = CZJ3> & Jo, (4.28)

where Jy is the unique complex structure on CP! (i.e., Jy : 9, — i0;). Note that the
(-dependence of JZ means that although ¢ is a complex coordinate on the CP' base,
it is mot a complex coordinate on the total twistor space, Z.

For each ¢ € CP! we define the 2-form
O = (w1 + iws) + Cwe — Cwy — iws), (4.29)

built out of the three Kahler forms on X'. One can check that Q7" is a symplectic
(2,0)-form on the fibers Z; := p~'(¢) with respect to the JZ complex structure. The
quadratic dependence of Q™" on ( is signalled by the +-+ superscript. In global
terms, this dependence means that Q" is a holomorphic section of an O(2) complex
line bundle over CP' (which can be pulled back to an O(2) bundle over Z by the
projection map). Another way of saying this is that QT+ transforms as a charge
+2 field under the U(1) group of phase rotations of the homogeneous projective
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coordinates describing the CP'. This U(1) group will play an important role in
chapter [6]

A final structure on twistor space is an automorphism, o : Z — Z, satisfying
0?2 = 1 and acting without fixed points. It is given in coordinates simply by the

antipodal map on the CP! base and the identity map on the fibers,

o:(m,¢) — (m,—1/0). (4.30)

It is easy to check that JZ odo = —do o JZ, showing that ¢ is antiholomorphic. It is
also true that Q™" is invariant under o in the sense that *Q** = Q.

This construction of the (JZ,Q%" o) structures on Z is interesting because of
a theorem of Hitchin et. al. [41] [40], which says that from any space Z with these
structures the HK space X’ can be reconstructed. More precisely, let Z be a (2r 4 1)-

dim¢ complex manifold such that
e Z is a holomorphic fiber bundle p : Z — CP! over the projective line;

e there exists a holomorphic section Q7 of A*Ty ® O(2) defining a symplectic

form on each fiber, where Tx is the bundle of tangent spaces to the fibers of p;

e Z has a free antiholomorphic involutive automorphism o preserving Q*t+ and

inducing the antipodal map on CP!.

Then the parameter space of holomorphic sections of p invariant under o is a 4r-dimg

manifold, X, with a natural HK structure for which Z is the twistor space.
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Chapter 5

Harmonic Superspace

In this chapter we give a brief overview of the harmonic superpace formalism [36), [37]
for making N = 2 SUSY manifest in quantum field theory actions. We first review the
geometric setup of harmonic superspace, which extends space-time by both additional
fermionic coordinates as well as by additional bosonic coordinates parameterizing an
internal 2-sphere. We then summarize the properties of superfields which describe
hyper- and vector multiplets, and give their action principles. Next we describe
how the harmonic superspace action for hypermultiplets is related to the hyperkéhler
geometry of the nlsm target space. We end with a brief comment on the relation
of harmonic superspace to “projective superspace”, which gives a slightly different

N = 2 covariant formalism.

5.1 Geometry of harmonic superspace (HSS)

Harmonic superspace [36, 37] is one way of dealing with supersymmetric theories with
8 real SUSY generators in a manifestly covariant manner.

In four space-time dimensions the 8 real SUSY generators form an SU(2) iz doublet
of 2-component (Weyl) spinors, ¢, where i € {1,2} is the doublet index and a €
{1,2} is the spinor index. SU(2)g is (part of) the automorphism group of the N = 2
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SUSY algebra, . The other generator of the N = 2 supertranslation algebra is
P*, the generator of space-time translations.

Superspace is a space with one coordinate for each supertranslation generator.
Thus N = 2 superspace has the usual Minkowski space (R*!) coordinates, x*,
corresponding to P, and anticommuting (Grassmann) coordinates, 67
corresponding to Q! (as well as their complex conjugates). This space is denoted
R*1®  where the “8” superscript refers to the number of real Grassmann

coordinates. Scalar superfields, ®(x,#,6), are maps from superspace to other spaces,

d:RME - M, (5.1)

where M might be R or C for a real or complex superfield, or might be a more general
manifold, M, to describe a nlsm with target space M.

Manifestly —supersymmetric actions can now be written as scalar
translation-invariant functionals of superfields, i.e., as integrals over superspace of
superlagrangians which are local scalar functions of superfields. The problem with
this approach is that superfields on R*'® give highly reducible representations of
the SUSY algebra, so the superlagrangians describe too many propagating degrees
of freedom, typically of high spins. It is generally a difficult problem to formulate
actions that preserve manifest supersymmetry and restrict to the desired set of
degrees of freedom (e.g., some number of hypermultiplets and vector multiplets) at
the same time.

Harmonic superspace (HSS) solves this problem for N = 2 supersymmetric field
theories by defining a subspace of N = 2 superspace which has half the anticommuting
coordinates while still preserving N = 2 supersymmetry. However, in order to define
this subspace, an extra 2-sphere must be added to the commuting coordinates. Thus

(the analytic subspace of) HSS is R34 x 2,
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In [37] the S? is identified with the coset space SU(2)s/U(1)s, and “harmonic

coordinates” ui, i € {1,2} are introduced on the SU(2)s group. Note that this

U(1)s has nothing to do with the electromagnetic U(1) gauge group! To make this
clear, we have put an “S” — for “sphere” — subscript on the internal SU(2)s and

U(1)s groups used in the coset construction of the S2.

+

In particular, u;" are complex coordinates transforming as a doublet of SU(2)g,

and with charges +1 under the U(1)g, and satisfy

+i._ g, +i ¥ i, = gt — 87
u™ = ey, utt = tuf, uHu; —uul = 6. (5.2)

As a result of the last relation, any analytic function of the uf can be expanded

+

in a power series in symmetrized products of the u;-. Non-vanishing functions on

S% ~ SU(2)s/U(1)g are those with vanishing net U(1)g charge.

U(1)g-covariant differential operators on the S? are given by

-0 -0 o, ;0
++ —_— 0 0._ ,,+i —1i
D =Uu W’ D =Uu au+i’ D’ =u au+i — U W, (53)

whose commutators satisfy the SU(2)g algebra. A function, f@, of definite U(1)g
charge ¢, satisfies DOf@ = ¢f@. The exterior derivative of any function, f, on the

S? is given by
df = (DY flw™ + (D™ flwt™, (5.4)

++

where w** = F2jut7 aluji are covariant one-forms on the S2.

Invariant integration, “[ du”, over the S? is very simple in harmonic coordinates,

giving convenient relations such as

/dul = 1, /duuzglu;uj_luj_m) = 0, (5.5)
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and many others [37].

A final important property of the S? is that it has a fixed-point-free orientation-
reversing Z, automorphism, the antipodal map, ™ : S* — S?, which is inversion
through the origin if the S? is realized as the unit sphere in R3. 7/ acts on the u;-

coordinates by
7w e fuf (5.6)

Note that (7/)2 = —1 on the uf

1)

reflecting the fact that they are double-valued
coordinates on S2.

Introduce the new spinor and space-time coordinates

0F = uFo, 0. = uEgL, ot =gt — (00" + 0 0"0), (5.7)

« «

where the o/, are the usual Weyl spinor o-matrices [49]. Note in particular that the

g" are not the complex conjugates of the 6%; rather
) = +07. (5.8)

Then the analytic subspace of HSS is the space ~ R34 x §2 described by the subset
of coordinates

{4,605, 0, u}. (5.9)

Thus analytic superfields are just local functions of these coordinates. Note that the
combination of complex conjugation and the antipodal map on the S? preserves the
analytic subspace of HSS. Denoting this combination of conjugations by a tilde, we

have

(i) =v™, () =—ui, (0H) =0, @ )=-0% (h)=24  (510)



Note also that in this “analytic basis” , expressions like are no longer valid,
and have to be modified by the usual change of basis manipulations.

It is remarkable that N = 2 SUSY transformations preserve the analytic
subspace of HSS. Superfields defined on the analytic subspace are called analytic,
and their components therefore form representations of the N = 2 SUSY algebra.
This analytic subspace of HSS plays in N = 2 SUSY a role similar to that played by
the chiral subspace in N = 1 SUSY. It is evident that any analytic superfield
contains the same number of anticommuting coordinates as a general (non-chiral)
N =1 superfield. This leads to reducing the number of independent components in
comparison with general N = 2 superfields. However, all component fields depend
now on extra bosonic coordinates uzjE Therefore, any analytic superfield contains an
infinite number of component fields from the point of view of conventional field
theory. Nevertheless, we will see that actions can be formulated for which all but a
finite number of these component fields are non-propagating: they are “auxiliary”
fields which can be completely eliminated in favor of the propagating fields by
solving their algebraic equations of motion.

Differentiation with respect to the spinor coordinates is most conveniently
expressed in terms of the standard N = 2 supercovariant spinor derivatives, D’ ﬁ;
in N = 2 superspace [49] by forming the combinations

D =uiD.,  Dj =uiD,. (5.11)
Thus, for example, DI is a supercovariant version of 9/00~*. One can show that an

analytic superfield, ®, satisfies

DI®=D.d =0, (5.12)
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and, in fact, these conditions completely define the analytic subspace of HSS. The
algebra of the supercovariant derivatives (suppressing space-time indices and

irrelevant normalization constants) is

0={D* D*}={D" D"} ={D* D"}, 9o {D* D},

0=1{0,D*} = {8,D"} = {9, D**}, (5.13)
0=[D*,D¥|=[D",D**], D¥«x[D*, D], D «[D,D ],
0=[D**, D], Do [D**,DTF],  ¢X@ =[D° X7,

where in the last commutator, X(9 is any operator carrying U(1)g charge ¢. Thus
{0,D™, EJr, D7t} is a maximal (anti)commuting subset of the supercovariant algebra,
showing that is integrable, and, furthermore, that if ® is analytic, then so is
any local functional of 9™(D+H)"®, ™ (D++)"®, and the harmonic coordinates u*

Integration over the anticommuting coordinates is, as usual, essentially the same
as differentiation. Thus the invariant measure on the analytic subspace of HSS is

/de(—4> = /0529+cl2§+ = (D)*D)? (5.14)

0=0

where the vertical line in the last expression means that it should be evauated at
6* =@ = 0 after differentiation. Note that this measure carries U (1)g charge —4,
therefore only integrands with U(1)g charge +4 can give non-vanishing answers upon

integration.
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5.2 Hyper- and vector multiplet superfields

5.2.1 Hypermultiplets

The most general action for hypermultiplets can be written in terms of a complex
scalar analytic superfield, ¢© (or a set of such superfields in the case of several
hypermultiplets) (Chapter 5 of [37]). It carries U(1)s charge +1, and its lowest
component has mass scaling dimension 0. Thus the leading (2-derivative) terms of a

general N = 2 IREA action for hypermultiplets is
Sy = / 'z dudd=Y L (gt gt ut, D). (5.15)

Here £ is a general analytic local real superfield functional of ¢* with U(1)g
charge +4. As such it is a functional of ¢*, ¢+, and their D+* derivatives. Reality
is with respect to tilde-conjugation introduced in (5.10). This action describes a
hypermultiplet nlsm once (infinitely many) auxiliary component fields are eliminated
by their equations of motion.

There is a great deal of redundancy — different lagrangians describing the same
physics — in (5.15). It turns out (Chapter 11 of [37]) that the most general

hypermultiplet nlsm can be written in the form
— 1 —
Sy = / d*z dudo = [—q+D++q+ + 5L<+4> (¢t q+,u) (5.16)

which depends on only a single D derivative, and has no explicit dependence on u™.
The first term describes a free hypermultiplet while the second encodes interactions

(the nonlinear terms in the nlsm). The equations of motion for ¢+ and &: following
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from (5.16) are

1LY — 1L+
Dt rgt = 42— D gt = —= )

(5.17)

(Invariance of L*% under tilde conjugation implies that the second equation is just
the tilde conjugate of the first.) Expanding this equation in powers of ¢&, 6, and
g" gives an infinite set of coupled, nonlinear, 2nd order differential equations. In
the case of vanishing interaction term it is easy to eliminate an infinite number of
auxiliary fields, leaving the free equations of motion of a massless hypermultiplet.
(Hypermultiplet masses can only be described in a slight generalization of HSS which
includes central charges [37]; this will not be needed for our purposes.) In the case
of non-vanishing interactions elimination of the auxiliary fields is considerably more
complicated, and will essentially be the subject of section [5.3] where we will also see

the straight forward generalization of the above action to multiple hypermultiplet

superfields.

5.2.2 Vector multiplets

General N = 2 IREAs for U(1) vector multiplets in HSS are considerably more
complicated to describe. (There exists a simple description in chiral N = 2
superspace, but it does not seem to be able to be made EM duality-invariant, so we
will not describe it here.) However our pullback approach to constructing EM
duality-symmetric N = 2 actions will only require coupling U(1) vector multiplets
to a hypermultiplet nlsm by “gauging U(1) isometries” of the target space. This can
achieved in HSS in a way that is closely analogous to the usual minimal coupling of
gauge fields (i.e., the operation of “gauging global symmetries”) in

non-supersymmetric quantum field theory (chapter 7 of [37]).
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In particular, to construct a hypermultiplet nlsm with gauged U(1) isometries,
one simply replaces the D** derivative on the S? everywhere by its gauge-covariant

version,
Vit =Dt vt (5.18)

where VT is a real analytic superfield with U(1)g charge +2. Reality means that

V- = V++. This gauge field transforms under U(1) gauge transformations as
SVt =Dt (5.19)

where A is an arbitrary real analytic superfield with vanishing U(1)g charge. A can
be used to gauge away all but the leading term of the harmonic expansion of V7 so
that after gauge fixing,

‘/Vg—gllge-ﬁxed = U’j_uj_ V(Z]) (:L'Aa ‘9+7a+)' (520)

Thus there are only finitely many propagating component fields, and it is not difficult
to show that they correspond those of a U(1) vector multiplet.
The kinetic (Maxwell) action for V7 is [GIOS, ch 7]

1 4 8 V++<x797ul)v++(:€707u2)
Sy = 1 /d rd 9/ duydus ()2 , (5.21)

where (ujug) := uf"ud; and €? is the coupling. Note that this action is given as an

integral over the whole of N = 2 superspace (not just the analytic subspace) and is
non-local on the S2. An integration by parts together with the identity D (ujug)? =

D77 (uy — ug) shows that the gauge variation of this action with respect to (5.19)) is
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proportional to [ d*0VFTTD~ "X oc [dOHYVHH(D+)*D~~\ = 0 using the analyticity
of V1 and of X in the last 2 steps. Thus Sy is indeed gauge-invariant.
The generalization of the above action to multiple vector multiplet superfields is

straight forward.

5.3 HSS construction of N=2 nlsm

As mentioned in the last section, it is a difficult problem to eliminate the auxiliary
component fields in the hypermultiplet nlsm action . Thus the connection
between the HSS hypermultiplet “potential” L% and the IREA for the
propagating fields is obscure. As explained in chapter [3, the nlsm IREA is
completely determined by the target space geometry, X. A hypermultiplet nlsm has
a hyperkahler target space. So the question is, what is the connection between a
given hyperkihler metric, gyn, and the HSS potential L7 We will now briefly
summarize the answer, following [37], by showing how to calculate L™ given gay.

First, we introduce a convenient labelling for the » hypermultiplet superfields, ¢*,
i €{1,...,r}, and their tilde-conjugates, qfv“ We combine them into a 2r-component

vector of superfields, ¢™, o € {1,...,2r}, satisfying the reality condition
q/:LE = q" = Qupq™, (5.22)

where (2,4 is the symplectic form Q = I, ® € where I, is the r x r identity matrix,
and € is the 2-index antisymmetric tensor normalized by €;5 = —€'2 = 1. Note that
02 = I, so qF = —q™.

Now start with an r quaternionic-dimensional hyperkéahler manifold X with given

metric gyy and complex structures (J)3,, a € {1,2,3}, in a coordinate system EM

where M, N € {1,..., 4r}.
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1. Change coordinates to &% with u,v € {1,...,2r} and 4,5 € {1,2} such that

the complex structures have the simple form

(JU)d = ish (), (5.23)

vj
i
where 7 are the Pauli matrices. Then,

2. Express the metric in these coordinates in terms of vielbeins,

Gui vi = B Qugere B (5.24)

and their inverses, /7, defined by ¢/ Egjk = 6Pk

3. Define &"* := ¢Mu; and ef#* := u'elJuz with u; harmonic coordinates on an

S2. Then solve the linear first order system of PDEs,

for the “harmonic bridge”, v**(£”%, u;"), where 0,4 = 0/9¢H*.
4. Define “analytic coordinates” by
= 6T o (€ ), (5.26)
and then define functions H* ™ of them by
HAH (€55 uF) == Dot (g7 i), (5.27)

i

where Dt is given in (5.3). Note that (5.27) requires one to invert (5.26) to

find £ = ert (4t u).
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5. Finally one inverts H " = 10m98 L to find LY, where 07, := 0/0¢4".
That is,

q+a

LY (gt u) =2 / d¢H Qu, H (¢ ). (5.28)

*

The fact that each of these steps can be carried out in principle follows non-trivially
from properties of hyperkéahler geometry. All of these steps, except for the last one,
are difficult to carry out analytically except in a few special cases. Note that there
are infinitely many solutions to the PDEs , but that a unique one exists for
which HT1# defined by is a function only of ¢4+ and u; (i.e., has no explicit
u; -dependence).

These steps can be reversed to calculate gp;y from L. In this case,
becomes a nonlinear differential equation for the bridge v**. Once a bridge is found,
the metric g,; ,; can be reconstructed in a straight forward manner as outlined in

chapter 11 of [37].

5.4 Projective superspace

An alternative formalism to HSS for writing N = 2 covariant actions is “projective
superspace”, introduced in [50, 51, 52]. The projective superspace and HSS
formalisms are closely related. The geometry of projective superspace is the same as
that of HSS: both take place on the same supermanifold R*'® x CP'. In projective
superspace, different coordinates are used to parameterize the CP!, namely a pair of
complex “isotwistor” coordinates, v‘, which are simply the usual homogeneous

coordinates realizing CP' as C2/C*. They are related to the harmonic coordinates

by

Uit = U = (5.29)
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In projective superspace, complex analyticity with respect to the isotwistor
coordinates plays the role of harmonic analyticity in HSS. This leads to projective
superspace superfields which are allowed to have singularities (poles) on CP!, in
contrast to the HSS superfields which are well-defined on the whole S? ~ CP!.
Finally, projective superspace actions are similar to those in HSS except that
instead of integrating lagrangians over the whole CP! internal space, in projective
superspace one only integrates over a closed path (avoiding the poles) in the CP'.

Recently, Jain and Siegel [53] and Butter [54] have shown that the projective
superspace formalism can be derived from the HSS one in a simple way. They perform
a kind of analytic continuation of the 2-dimensional [ du integration of HSS to show
that one of the integrations can be reduced to boundary terms, thus leaving a one-
dimensional integral along a path in CP!.

Since the two formalisms are equivalent, we have not restricted ourselves by

focussing on the HSS formalism.
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Chapter 6

Proposed Solution

After having described all the necessary ingredients of our solution, we can finally
present a recipe combining them to create EM duality-symmetric N = 2 IREA
actions. We start by presenting a summary of the key ideas that are instrumental in
making our strategy successful. We then outline the four specific steps to be

followed in implementing it. Finally, we provide some details for step number 2.

6.1 Key ideas

The first key idea we use in our construction of the HSS N = 2 nlsm is to use the
total space, X', of DW geometry as the target space. In the traditional formulation
of the N = 2 IREA, the vector multiplet scalar fields are maps from space-time R>!
into the Coulomb branch (CB), My, which is an r-dimensional special Kéhler space.
However, as we saw in chapter 3, the coupling matrix 7;; transforms under the action
of the Sp(2r,Z) EM duality group, thus breaking the EM duality-invariance of the
action. In contrast, the total space, X, of the CB is invariant with respect to Sp(2r, Z)
transformations, thus making X the natural geometrical object to use to construct a

duality-symmetric formulation of the IREA.
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The next major idea in our recipe is to use the facts: (1) that the target space
of an N = 2 hypermultiplet nlsm is necessarily a hyperkéhler manifold [57]; and (2)
that the total space X has a natural hyperkahler structure, as described in chapter
[ Thus the natural N = 2 supersymmetric nlsm on X is a hypermultiplet nlsm.

The third idea we use is the harmonic superspace (HSS) construction of
hypermultiplet nlsms [36, B7]. This gives a manifestly N = 2 supersymmetric
formulation of our theory. However, it is important that we construct this nlsm in a
way that keeps the invariant geometric structures of X manifest. The existing HSS
constructions, reviewed in the last chapter, do not do this. The reason is that X as
a hyperkahler manifold has a whole 2-sphere of complex structures, and choosing
one of them to pull back with a HSS hypermultiplet analytic superfield destroys the
symmetry between these complex structures.

Our fourth idea is to use the twistor space Z formulation of X as the target
space of the HSS nlsm. As we have explained in chapter [4, the twistor space is the
Cartesian product Z = X x CP! endowed with a unigue complex structure. Thus we
can naturally identify HSS analyticity with complex analyticity in Z by pulling back
geometrical objects on Z with HSS hypermultiplet analytic superfields. Furthermore,
the extra CP! ~ S? dimension of Z can be naturally identified with the internal S?
of HSS by pulling back with the identity map.

Fifth, we notice that there is a natural invariant geometric object on Z, namely
the holomorphic (2,0) form Q*+ described in chapter , which when pulled back as
described above, can be integrated over HSS. It is thus the natural candidate for the
EM duality symmetric Lagrangian of our N = 2 nlsm. We will detail this step in more
detail in section [6.3| below. We conjecture that it is equivalent to the traditional HSS
procedure for constructing nlsm lagrangian reviewed in section the difference is
simply that we avoid making coordinate choices which obscure the invariant geometric

structures of the target space.
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Finally, the hyperkahler nlsm constructed in this way has no propagating vector
multiplets. The solution to this is well known: vector multiplets can be naturally (and
N = 2 super-covariantly) coupled to a hypermultiplet nlsm by gauging isometries
of the target space. X has 2r isometries corresponding to translations along the
2r independent cycles of the T% fibers. Thus we can couple 2r vector multiplets,
corresponding to r “electric” and r “magnetic” gauge potentials. This is reminiscent
of the original trick of Zwanziger, reviewed in chapter 2, of doubling the number of
gauge potentials to achieve EM duality invariance. Gauging the isometries of X lifts
(higgses) the flat directions, reducing the nlsm target space to r complex dimensions,

the correct dimension to describe the degrees of freedom of the CB.

6.2 Recipe for constructing the solution

We now give an outline of the key steps that need to be completed in order to

implement the above ideas to construct N = 2 HSS EM duality-symmetric IREAs.

1. Construct the hyperkahler structures on X, and the complex structure on Z

from the CB data. This was completed in chapter [4]

2. Write a hypermultiplet nlsm on X in HSS using the pullback of the holomorphic
(2,0)-form Q7 on the twistor space by the hypermultiplet superfield ¢*. This

will be described in more detail in section [6.3] below.

3. Construct coordinate-invariant expressions for the Killing vectors generating

the isometries of X.

4. Gauge the isometries by coupling the Killing vectors to 2r HSS vector
superfields, V** : HSS — R* ~ T*My. This is simply done by replacing
DTt derivatives with U(1)-covariant V1 derivatives given by (5.18) in the

HSS hypermultiplet nlsm.
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5. Count the massless propagating degrees of freedom remaining after the Higgs
mechanism takes place. If there are more photons than are physically
required, then we will need to additionally couple a Siegel-type term to a
Lagrange multiplier field (as reviewed in chapter 2) to eliminate additional

degrees of freedom.

In the following section, we will show how our pullback method by HSS
hypermultiplet superfields is supposed to actually work. We will also conjecture the
equivalence of our pullback approach for constructing hyperkahler nlsm harmonic
superspace actions to the method described in [30], B7] and reviewed in section
above. This conjectured equivalence gives a simple geometric picture of harmonic
superspace nlsms in terms of the twistor space construction of hyperkéahler
manifolds.

We will not address the last three steps of the above recipe in this thesis.

6.3 Pullback method for constructing nlsm action

We propose the following simple geometrical picture of harmonic superspace
hypermultiplet nlsms in terms of the twistor space description of the hyperkahler
target space X.

It is important to point out that Lindstrom and Rocek [55] proposed a way of
writing an N = 2 lagrangian in projective superspace using the twistor space 2-
form. This construction is almost certainly equivalent to our approach in harmonic
superspace, though the details of how the two approaches are related have not been
worked out yet in concrete terms.

Recall that the twistor space Z ~ X x CP! has a natural holomorphic closed
(2,0)-form QT which is a section of an O(2) bundle over the CP! base of Z. This

latter simply means that Q™" carries charge +2 with respect to the U(1) symmetry

63



that acts by phase rotations of the complex coordinates on the CP!. Closure means

that dQ™t = 0, where d is the exterior derivative on Z. Thus locally

Ot =dott (6.1)

for some holomorphic (1,0)-form ©%* carrying U(1) charge +2.

Recall also that hypermultiplet superfields in HSS are maps

q" :HSS — X, (6.2)

carrying U(1)g charge +1. If we identify the CP! base of Z ~ X x CP! with the
“internal” CP! ~ S? of HSS, then ¢* can be extended by this identification to a map,
q" : HSS — Z, which acts as the identity on the CP* factors on the two sides. U(1)g
charges on HSS are then identified with the U(1) charges on Z. Thus ¢ is really a

map to a section of an O(1) bundle over the CP! base of Z:

g - HSS — O(1). (6.3)

Finally, CP! has a unique holomorphic (1,0)-form of U(1)g charge +2, namely w™™"
introduced below eq. . Thus one can naturally integrate 1-forms such as ©1+
over CP' to give the coordinate invariant quantity [., w™* A ©**. This quantity
is uninteresting on Z because it vanishes identically there, since the two 1-forms in
the integrand are both (1,0)-forms. However, upon pulling ©** back to HSS using
g it becomes a linear combination of (1,0)- and (0,1)-forms, and so can give a non-
vanishing answer.

In particular, complex coordinates, {4, on the O(1) bundle over Z, are maps

£ 0(1) — C, (6.4)
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so the pullback of these coordinate functions by ¢* are complex valued functions on

HSS:
q(ETH) =g =T ogt  HSS — C, (6.5)

which we identify with hypermultiplet HSS superfields. In these coordinates, the

holomorphic (1,0)-form ©** on Z has the form
v =+ v =+ 4 v =+ ——
@++ = @:(5—1— , Uy )d§+'u + @(§+ ) Uy )w++ + ®(+ )(£+ , Uy )w . (66)
Therefore, by definition of the pullback,

Ot = (0) oq")dg™ + (O og")w + (0 o gt w ™

_ (Y T + N +4)( v o\, ——
_@u(q ,Uz)dq M+@(q+ 7ui)w ++@( )<q 7ui)w : (67)
Now, by (5.4), dg*t* = (D**¢™*)w™~+(D~ " ¢")w*™, and, using the fact that [ WA

w™ " = [ du, we get

[t

/ wtt /\q—i—*@—i-—i- — /du [@/—i—(q—i-u?u;t) D—H-q—wt + @(+4)(q+u uﬂ:)] ) (6.8)
CP?

This has net U(1)g charge +4, so is suitable to integrate over the analytic subspace
of HSS. Also, the invariance of Q" under the involutive automorphism of Z pulls
back to the reality of the above integrand with respect to tilde conjugation on HSS.
Thus, a natural, coordinate invariant, candidate for the hypermultiplet nlsm action
is

Sy = / d*x d9(4)/ wrt Agtrett. (6.9)
R

3,114 CP?
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is our main result. It gives a coordinate-invariant construction of the
harmonic superspace action for a hypermultiplet nlsm. Note that its expression in
coordinates, , is very similar to the traditional HSS form of the hypermultiplet
nlsm action, given in (5.16). The main difference is that in place of &I in ,
has the more complicated function ©(g* u*). This is presumably a reflection
of the fact that in writing we did not make the special coordinate choices that
were made in arriving at .

Note that involves only the (1,0)-form ©F on twistor space, related to the
(2,0)-form Q™ by (6.1). We saw in chapter [4] that Q™" encodes the hyperkahler
structures on X. Thus, as long as this action gives the right counting of the
propagating degrees of freedom, it can only be the hypermultiplet nlsm with target
space X. To actually prove this, though, we will have to expand our pullback action

in component fields and eliminate the auxiliary fields.
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Chapter 7

Conclusions and Outlook

7.1 What we have learned

Here is a list of the key new lessons we have learned in this thesis

e We gave a recipe for how to construct EM duality-symmetric N = 2 TREAs
using the pullback approach. This recipe is the main result of our
investigations, and is nearly uniquely specified by the invariant geometric
pullback approach. However, we have not completed a proof that it gives the

correct set of propagating degrees of freedom.

e We conjectured the equivalence of our pullback approach for constructing
hyperkéahler nlsm harmonic superspace actions to the traditional method
described in [37]. This conjectured equivalence gives a simple geometric
picture of harmonic superspace nlsms in terms of the twistor space

construction of hyperkahler manifolds.

e Finally, along the way we discovered an extra geometric structure in the Donagi-
Witten formulation [38] of the special Kéhler geometry of the Coulomb branches
of N = 2 supersymmetric gauge theories. The possible interpretation and

implications of this extra structure is discussed below.
67



7.2 What is left to do

Here are the tasks that need to be completed in the scenario outlined back in chapter

(4

. Write a hypermultiplet nlsm on X in HSS using the pullback of the holomorphic

(2,0)-form 2 on the twistor space by the hypermultiplet superfield ¢*.

. Construct coordinate-invariant expressions for the Killing vectors generating

the isometries of X.

. Gauge the isometries by coupling the Killing vectors to 2r HSS vector

superfields.

. Count the massless propagating degrees of freedom remaining after the Higgs

mechanism takes place. If there are more photons than what is physically
required, then we may need to additionally couple a Siegel-type term to a

Lagrange multiplier to eliminate additional degrees of freedom.

Task 1 is a computation using coordinate expressions derived in chapter [4]

However, the main difficulty is to find coordinates on the twistor space, Z, which

are complex with respect to the complex structure JZ. The coordinates introduced

in chapter 4| do not satisfy this constraint. We may need to solve a coupled set of

partial differential equations to find those holomorphic coordinates, a task that may

or may not be as difficult as solving the differential equations ([5.25)) for the bridge

functions in HSS as explained in chapter [5]

Task 2 involves first a straightforward computation using the coordinate

expressions found in chapter [4] to find the Killing vectors. The next step then is to

rewrite these expressions in terms of the holomorphic twistor coordinates found in

task 1.
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Task 3 is then simply the substitution D" — V1 in the Lagrangian, as described
in chapter

Task 4 is a potentially difficult one. One possible difficulty is the need to find a
possibly nonlinear Lagrange multiplier superfield. Another difficulty is the need to
find the appropriate term to couple it to in the Lagrangian so that it may correctly
eliminate the correct number of propagating degrees of freedom using its equation of

motion.

7.3 Interesting questions

7.3.1 Extra structure in the DW formulation of SK geometry

We have seen that there exist coordinates, (z, ¥, u), on the total space X, in terms of
which local complex coordinates are given by z = Az + 7(u)Z and u. We have also
defined § = Adz + 7(u)dZ to be a global (1,0)-form and computed that 0 = dr=-0
and 00 = dTT%g. This implies that the set of 1-forms {6, 0} is “in involution”, which,
by Frobenius’ theorem, implies that the subbundle H C T'X annihilated by 6 and 6
is integrable. That is to say that there exists a submanifold I' C X whose tangent
space at a point p is H, and is annihilated by {6,0}, i.e., 8(v) = 0(v) = 0 for all
v e H,.

I' is actually a section of 7 : X — My, simply because the tangent space to the
fiber at p is the kernel of dr: T,X, = ker(dr) = {0,, 0z} which further implies that
T,X. () H, = {0}. Hence, the projection map 7 is an isomorphism from H, into the
tangent space to My . We will denote this isomorphism by s : H), <> T, My.

Donagi and Markman [47] and Freed [39] put an extra condition on I' such that
it is lagrangian with respect to the DW form L, i.e., L = df*du without any terms
proportional to du'du’. This basically means that they set by hand dA = 0 in (4.19).
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However there is nothing in the low energy physics on the CB that requires this
condition.

There are two interesting questions that one can ask in this context:

(1) Is the dA part of L observable mathematically? In other words, is there a
coordinate-invariant way of describing it?

(2) Is the dA part of L observable physically, i.e., in the low energy Coulomb
branch physics?

The answer to the first question is simply, yes. The dA terms in L define a (2,0)-
form that lives in the cotangent bundle of the Coulomb branch, i.e., dA € A*T* My,
defined by dA(v,w) := L(s 'v,s 'w) for any two vectors v and w € TMy . This
gives a coordinate-invariant definition of dA. To justify calling it dA, we need to show
that it is closed. But since dL = 0, d(dA) = 0 immediately follows, and implies that
dA is locally exact.

The answer to the second question may potentially have very interesting
implications. We have seen from the discussion at the end of section 4.2.3 that dA
does not appear in the 2-derivative terms of IREA on the Coulomb branch. But
how about in the (i) central charge and (ii) higher-derivative terms on the Coulomb
branch?

For the central charge, we mentioned before that fy L = dZ, which implies that
Ly~ fz where ¥ € Hy(X) is a 2-cycle satisfying appropriate boundary conditions. If
My ~ C" with r > 2, there exists a non-trivial ¥ € Hy(M)y ) homologous to a 2-torus
which winds the transverse intersection of two complex codimension 1 singularities of
M. So perhaps the integral of the DW 2-form along this non-trivial cycle, fz L=
fz dA computes some global property of Z, on My.

Also, note the absence of a local observable of dA on the Coulomb branch. This
follows because for any 2-surface ¥ with boundary 0¥ = C, [, dA = fo A. Since

A(u) is a holomorphic 1-form, its integral along the boundary vanishes, fCA = 0,
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by Cauchy’s theorem. However, if there exists a co-dim-1 singularity linking C', then
JodA = fc A # 0if A(u) has a pole as u approaches the singularity. Thus poles in A
at singularities on the Coulomb branch could also lead to contributions to the central
charge.

As for the physical possible relationship of dA to 4-derivative terms, it has been
shown in [56] that there exists 4-derivative terms on 7 > 2 Coulomb branches that are
holomorphically protected. Thus these terms could in principle be calculated in terms
of holomorphic structures on the Coulomb branch. Could this structure possibly be

related to dA?

7.3.2 Relation of the DW 2-form to the twistor 2-form

Two a priori different 2-forms have played an important role in our program. The
DW 2-form L and the twistor space 2-form Q. both described in chapter 4, are
closed (2,0) forms. The DW 2-form is a symplectic form on X', while Q" restricts
to a symplectic form on the fibers of twistor space, which are isomorphic ot X. As
symplectic forms they each give X" the structure of a phase space of a complex classical
dynamical system (which is integrable, to boot). What is the relation between these
two auxiliary dynamical systems? After coupling in the vector superfields, do these

two systems become equivalent? That’s one question we hope to find an answer to.
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