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Abstract

In this thesis, a strategy for constructing electric-magnetic (EM) duality-symmetric

N = 2 supersymmetric infrared effective actions (IREAs) is presented using harmonic

superspace. Our aim is to elevate the EM duality from being equivalent descriptions

of distinct IREAs to a symmetry of a single IREA under Sp(2r,Z) transformations.

Our strategy is to build the IREA out of geometric objects which are manifestly

Sp(2r,Z) invariant. We conjecture that a manifestly EM duality-symmetric action

can be constructed in this way on harmonic superspace. The main invariant geometric

object is the total space, X , of the Coulomb branch moduli space of the IREA,

which has a natural hyperkähler structure, and is thus a suitable manifold to act

as the target space of an N = 2 supersymmetric nonlinear σ-model (nlsm). We

build the IREA as a nlsm with target space the twistor space of X . The twistor

space is a fiber bundle with base space the projective line, CP1, and X as fiber. The

nlsm action is formed by pulling back the invariant holomorphic two-form on twistor

space by the hypermultiplet superfield in harmonic superspace, with the base CP1

identified with the internal CP1 of harmonic superspace. We also conjecture, but

do not prove, that the pullback approach introduced in this thesis for constructing

the hypermultiplet nlsm is equivalent to using the standard harmonic superspace

procedure of constructing the nlsm action using a harmonic-analytic potential for the

hypermultiplet superfields.
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Chapter 1

Introduction

The idea of electric-magnetic (EM) duality probably goes back to Dirac who observed

that the source-free Maxwell equations are symmetric under the exchange of the

electric and magnetic fields. More precisely, the symmetry is ~E → ~B and ~B → − ~E,

or

Fµν →
1

2
εµνρσF

ρσ. (1.1)

(Here εµνρσ is the flat-space antisymmetric ε-tensor with ε0123 = +1 and the Minkowski

metric ηµν has signature −+++.) To maintain this symmetry in the presence of

sources, Dirac introduced in an ad hoc way magnetic monopoles with magnetic

charges qm in addition to the electric charges qe, and showed that consistency of

the quantum theory requires a charge quantization condition qmqe = 2πn with inte-

ger n. Hence the minimal charges obey qm = 2π/qe. EM duality exchanges qe and

qm, i.e. qe and 2π/qe. Now recall that the electric charge qe also is the coupling

constant. So EM duality exchanges the coupling constant with its inverse (up to the

factor of 2π), hence exchanging strong and weak coupling. This is one reason why

EM duality is of so much interest to the field theory community: the hope is to learn

about strong-coupling physics from the weak-coupling physics of a dual formulation

of the theory. Of course, in classical Maxwell theory we know all we may want to
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know, but this is no longer true in quantum electrodynamics if both the electric and

magnetic sources are dynamical.

In this thesis we are interested in the application of EM duality to N = 2 super-

symmetric gauge theories. These theories are characterized by having a “Coulomb

branch” moduli space of vacua on which there is generically an infrared effective ac-

tion (IREA) consisting of r copies of Maxwell electromagnetism, for some integer r

which is also the complex dimension of the Coulomb branch. This low energy electro-

magnetism is just a free theory of r photons since it has only massive (non-dynamical)

sources. The strong-weak aspect of EM duality therefore plays a limited role in this

problem. Instead, EM duality is important for more subtle reasons to do with the

global structure of the Coulomb branch, to be explained below.

Following the seminal work of Seiberg and Witten [1, 2], it turns out that un-

derstanding EM duality on Coulomb branches is a powerful tool for understanding

the phase structure of N = 2 supersymmetric gauge theories. The study of N = 2

supersymmetric quantum field theories in four dimensions has been a fertile field for

theoretical physics for twenty years. These theories always have non-chiral matter

representations, and therefore can never be directly relevant for describing the real

world. That said, the existence of two sets of supersymmetries allows us to study

their properties in much greater detail than both non-supersymmetric theories and

N = 1 supersymmetric theories. Being able to do so is quite fun in itself, and hope-

fully the general lessons thus learned concerning N = 2 supersymmetric theories

might be useful when we study the dynamics of theories with less supersymmetry. At

least, the physical properties of N = 2 theories have been successfully used to point

mathematicians to a number of new mathematical phenomena previously unknown

to them.
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A major difficulty in understanding EM duality on Coulomb branches is that there

are no satisfactory action principles for (super-)electromagnetism which make their

EM duality-invariance manifest. This is the problem this thesis will address.

1.1 Overview of the problem

Constructing actions that simultaneously combine manifest EM duality symmetry

with manifest Lorentz invariance has long been known to be problematic [3, 4, 6, 7,

8, 14, 15, 16, 12, 13, 17, 18, 25, 19, 20, 21, 22, 23]. The problem is that the Maxwell

action is written in terms of the gauge potentials, and although EM duality acts on

the field strength tensor in a Lorentz covariant way as in (1.1), it does not act on

the gauge potentials in any local, Lorentz-covariant way. Many attempts during the

last four decades have attempted to build actions that have duality symmetry and

Lorentz invariance using different approaches and tricks. In doing so, the action is

usually augmented with other auxiliary fields on which constraints are imposed so

that the Maxwell action that contains the correct number of propagating degrees of

freedom is later recovered. In Chapter 2, these different methods and approaches will

be discussed in greater detail.

Adding N = 2 supersymmetry to the duality symmetry problem described in the

previous paragraph makes it even more challenging [26, 27, 29, 30, 31, 32, 33, 34, 35].

The basic problem is that N = 2 supersymmetry relates electromagnetic fields to

scalars and so EM duality transformations need to be extended to transformations of

the scalars as well if N = 2 supercovariance is to be maintained. However, the scalar

fields can be thought of as coordinates on an associated Riemannian manifold, MV ,

(as we will explain below) and the coordinates in which the EM duality transforma-

tions are linear do not linearize the geometry of MV . It is this tension that makes
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formulating manifestly EM duality-symmetric and N = 2 supersymmetric actions so

difficult.

The manifold MV mentioned above is the moduli space of vacua of the N = 2

supersymmetric field theory. This continuous family of inequivalent vacua are labelled

by the vacuum expectation values of the massless scalar fields in the theory, thus the

values (vevs) of these scalars are the coordinates on MV . N = 2 field theories

always have such moduli spaces, and, in fact, their moduli spaces often have many

components. We are interested in the component, called the Coulomb branch, in which

the scalars with vevs are the superpartners of U(1) gauge fields (Maxwell fields). The

leading terms in a low energy or infrared effective action (IREA) on the Coulomb

branch will be the kinetic terms of the scalars and their photon superpartners (as

well as of their fermionic superpartners). The scalar field terms in such an IREA

are called a nonlinear σ-model (nlsm), and have the general form gmn(ϕ)∂µϕ
m∂µϕn

where the ϕm label the scalars. Then the kinetic couplings gmn(ϕ) can be interpreted

as a metric onMV , thus givingMV a Riemannian structure. (The kinetic terms for

the associated photons give other structures on MV which give it the structure of a

special Kähler manifold, and will be discussed at great length later.)

So far, EM duality transformations have not been realized as symmetries of the

IREA, but only as equivalences of apparently different free U(1)r field theories coupled

to classical massive sources under symplectic Sp(2r,Z) redefinitions of electric and

magnetic charges. The importance of this redundancy in the lagrangian description

of IREAs becomes apparent when there is a moduli spaceMV of inequivalent vacua.

In that case, upon traversing a closed loop inMV the physics must, by definition, be

the same at the beginning and end of the loop, but the Lagrangian description need

not because it may have suffered an EM duality transformation.

A central problem of N = 2 field theories is the construction of their IREAs. The

main technique that is used is analytic continuation of the IREA Lagrangian on the
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Coulomb branch. The multi-valuedness of the Lagrangian under EM duality trans-

formations is the main technical hurdle in carrying out this continuation procedure.

A formulation of the IREA which is EM duality-symmetric would greatly simplify

this problem, as the object being analytically continued would be single-valued on

the Coulomb branch (and thus would be much easier to determine in terms of its

boundary values).

1.2 Thesis objective

The key goal of this thesis is to develop a strategy for constructing EM duality-

symmetric N = 2 IREAs. In other words, we want to construct N = 2 nlsm actions

where EM duality transformations are a manifest symmetry as opposed to a map

between different lagrangians. The key ingredient in achieving this goal is to refor-

mulate the nlsm in terms of mathematical objects which are manifestly EM-duality

invariant. The chief such object is the total space, X , of the Coulomb branch (and

not the Coulomb branch itself), and its inherent symplectic-invariant geometric data

(the complex structure, Hodge form, and Donagi-Witten two-form). It is thus natu-

ral to use X as the target space of the nlsm and its geometric data to construct its

Lagrangian.

Heuristically, we want to to build the EM duality-symmetric N = 2 nlsm action

by using superfields on harmonic superspace to pull back those invariant geometric

structures on the target space which can naturally be integrated over harmonic su-

perspace [36, 37]. We call this strategy the pullback approach to constructing EM

duality-symmetric actions.

To make this strategy more concrete, we need to describe in more detail what is

the geometry of the target space, X , and what is the geometry of harmonic super-

space. We will now give a very brief outline of these geometries, highlightling those

5



geometrical objects that will play central roles in what follows. Later chapters in the

thesis will be devoted to fleshing out the details of these geometries.

It is well known [1, 38, 39] that a Coulomb branch is a complex manifold with a

special Kähler structure. A consequence of this [39] is that its total space, X , has

a natural hyperkähler structure which encodes the special Kähler geometry of the

Coulomb branch. Very succinctly, a hyperkähler space X supports three complex

structures J1, J2, J3 obeying the quaternion algebra: J1J2 = −J2J1 = J3, plus cyclic

permutations [40]. Any real linear combination of these, J(~r) :=
∑3

a=1 r
aJa, is again

a complex structure on X if
∑

a(r
a)2 = 1, i.e., if ~r lies on a two-sphere S2 ' CP1.

Furthermore, each complex structure has an associated Kähler form — a real non-

degenerate closed 2-form which is of type (1,1) with respect to its complex structure.

It is traditional to denote the Kähler form associated to Ja by ωa.

It will be convenient for us to use not the total space X as the target space, but

instead to use the equivalent twistor space, Z, associated to X as the target space.

The twistor space Z of a hyperkähler space X is a fiber bundle over the two-sphere

of complex structures of X with X as the fiber [41, 40]. Thus Z ' X × CP1 as

a topological space, but it is endowed with a special choice of complex structure,

JZ , given by choosing the complex structure J(~r) on the fiber over each point ~r ∈

CP1. Furthermore, it has a holomorphic (2,0)-form, Ω, with respect to this complex

structure, given by Ω := (ω1 + iω3) + ζω2 − ζ2(ω1 + iω3), where ζ is a complex

coordinate on the CP1. It is a theorem [41] that given a complex space Z with such

a two-form Ω, one can uniquely reconstruct the hyperkähler space X .

Harmonic superspace [37] is one way of dealing with supersymmetric theories with

N = 2 supersymmetry (SUSY) in four dimensions in a manifestly covariant manner.

4-dimensional N = 2 SUSY has eight hermitian spin-1/2 generators which can be

organized into a pair of complex 2-component (Weyl) spinors transforming in the

fundamental (doublet) representation of SU(2)R. Here SU(2)R is the internal sym-
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metry group of the N = 2 SUSY algebra. The main feature of harmonic superspace

is that it makes N = 2 SUSY manifest in field theories by using superfields which

are functions not only of space-time coordinates, but also of eight anti-commuting

spinor coordinates corresponding to the SUSY generators, as well as further “internal”

(commuting) coordinates on a 2-sphere S2 ' CP1.

Two points will be important in what follows. First, we see from the short descrip-

tion given above that both the harmonic superspace and twistor space have an extra

2-sphere S2 ' CP1, a fact that will be key in the success of the strategy of pulling back

the Sp(2r,Z)-invariant geometric data from the twistor space to the harmonic super-

space. Second, the uniqueness of the complex structure JZ of the twistor space plays

a significant role in the success of the pullback approach as we will see in chapters 4,

5 and 6 when we describe the mathematical details of the pullback approach.

1.3 New findings/results

In this section, we briefly summarize our key new findings:

• We give a recipe for how to construct EM duality-symmetric N = 2 IREAs

using the pullback approach. This construction is the main result of our inves-

tigations, and is nearly uniquely specified by the invariant geometric pullback

approach. However, we have not completed a proof that it gives the correct set

of propagating degrees of freedom.

• We conjecture the equivalence of our pullback approach for constructing hy-

perkähler nlsm harmonic superspace actions to the traditional harmonic super-

space method described in [37]. This conjectured equivalence gives a simple

geometric picture of harmonic superspace nlsms in terms of the twistor space

construction of hyperkähler manifolds.
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• Finally, along the way we discover an extra geometric structure in the Donagi-

Witten formulation [38] of the special Kähler geometry of the Coulomb branches

of N = 2 supersymmetric gauge theories. This extra structure may have inter-

esting implications for the low-energy physics on the Coulomb branch.

1.4 Thesis layout

In the rest of this thesis we proceed to flesh out this brief description of our problem

and solution approach.

Chapter 2 will review some of the literature related to constructing EM duality-

invariant nonsupersymmetric actions and the different methods and approaches de-

vised to restore the manifestly broken Lorentz invariance of the action. Along the

way we describe the SL(2,Z) group of EM duality equivalences of a quantum theory

of a single photon.

Chapter 3 defines the central problem of why N = 2 IREAs on the Coulomb

branch in its current formulation are not EM duality-symmetric. This leads to a

concrete description of the special Kähler structure of the Coulomb branch in terms

of the low energy physics of r photons and their N = 2 superpartners. Also the action

of the Sp(2r,Z) group EM duality transformations on this structure is described.

Chapter 4 describes in some detail three nearly equivalent descriptions of special

Kähler geometry which are manifestly Sp(2r,Z)-invariant. These are: (1) the “total

space” geometry described as a bundle of abelian varieties fibered over the Coulomb

branch; (2) the same space viewed as a hyperkähler manifold; and (3) the “twistor

space” of the hyperkähler space fibered over an S2 base space.

Chapter 5 briefly introduces harmonic superspace which is a superspace suited for

writing manifestly N = 2 SUSY-invariant actions.
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With these mathematical results in hand, we can then describe in Chapter 6

in concrete terms our strategy for constructing actions symmetric under both EM-

duality and N = 2 SUSY transformations. This is done by pulling back geometric

structures of twistor space to harmonic superspace by hypermultiplet superfields, and

then gauging the isometries of twistor space using vector multiplet superfields.

Chapter 7 concludes the thesis with a brief recap of our results and an outlook

for future work.
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Chapter 2

Background and Related Work

In this chapter we will review two major topics:

• attempts to construct non-supersymmetric EM duality-invariant actions, and

• attempts to construct EM duality-invariant actions with N = 1 supersymmetry.

We will then briefly critically evaluate the suitability of these formulations for con-

structing N = 2 supersymmetric EM duality-invariant actions. For a general intro-

duction to EM duality, pleaser refer to [42].

2.1 EM duality-symmetric actions

Attempts to build EM duality-symmetric actions go back to Dirac who originally

wrote down a non-local, Lorentz invariant Lagrangian [43]. In this formulation, the

magnetic current does not couple directly to the gauge field. Instead it only couples

through the Dirac string attached to each monopole, which makes calculations very

difficult.

10



2.1.1 Zwanziger’s action and a first look at EM duality

Later, Zwanziger [4] reformulated the theory in terms of a local, but non-Lorentz

invariant lagrangian with two gauge potentials Aµ and Bµ. Even though there are two

gauge potentials, the form of the non-Lorentz invariant kinetic mixing ensures that the

are only two on-shell degrees of freedom for the gauge fields. The advantage of having

two gauge potentials is that one, Aµ, has a local coupling to electric currents, while Bµ

has a local coupling to magnetic currents. Although manifest Lorentz invariance is

lost in this formulation, after the Dirac quantization conditions are imposed, Lorentz

invariance is recovered at the level of the equations of motion.

Zwanziger’s goal was to construct an action leading to Maxwell’s equations,

∂µF
µν = e2jνe , ∂µ ? F

µν = 4πjνg , (2.1)

in the presence of electric and magnetic currents je and jg, which are separately

conserved,

∂νj
ν
e = ∂νj

ν
g = 0. (2.2)

Here e2/(4π) is the fine structure constant. The normalization of the electric and

magnetic currents has been chosen so that electric and magnetic charges,

q :=

∫
d3x j0

e , g :=

∫
d3x j0

g , (2.3)

satisfy the Dirac quantization condition [4, 43] in the form

qigj − qjgi =
n

2
, (2.4)

11



where n is an integer and (qi, gi) is the electric and magnetic charge of the ith dyon.

(“Dyon” is the general name for a particle which may carry either or both electric

and magnetic charges.)

The dual field strength, ?F , appearing in (2.1) is defined by

? Fµν :=
1

2
εµνκλF

κλ. (2.5)

It is convenient to introduce an indexless notation in which index contraction is

denoted by a dot, and index antisymmetrization by a wedge: p · q := pµq
µ and

p ∧ q := pµqν − pνqµ.

Zwanziger substituted the following general parameterization of F into (2.1)

F =
1

n2

[
{n ∧ [n · (∂ ∧ A)]} − ?{n ∧ [n · (∂ ∧B)]}

]
, (2.6)

to obtain equations for the two Aµ and Bµ. Here nµ is an arbitrary fixed space-like

four-vector (thus breaking manifest Lorentz invariance), which can be thought of as

the (arbitrarily chosen) space-like direction of the “Dirac string” singularity in A and

B emanating from any point magnetic or electric charges. The Lagrangian density

that generates the resulting equations of motion for A and B is

L = − 1

2e2n2

{
[n · (∂ ∧ A)] · [n · ?(∂ ∧B)]− [n · (∂ ∧B)] · [n · ?(∂ ∧ A)]

+ [n · (∂ ∧ A)]2 + [n · (∂ ∧B)]2
}
− je · A−

4π

e2
jg ·B. (2.7)

This Lagrangian is invariant under the EM duality transformation

B
A

→ 4π

e2

 A

−B

 ,

jg
je

→
 je

−jg

 , e2 → (4π)2

e2
, (2.8)
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which inverts the coupling and exchanges electric and magnetic charges. Note that

in the absence of sources, the coupling can be absorbed in a rescaling of A and B, in

which case the EM duality transformation would be a manifest symmetry of the

lagrangian. This is the sense in which (2.7) is manifestly EM duality-symmetric.

Note that for the theory with the coupling to sources present, the EM duality

transformation (2.8) is not a symmetry since it acts not only on the fields, but also

on the coupling constant, thus changing the theory itself.

Recently Csaki, Shirman and Terning [44] generalized this lagrangian to include

a θ-angle parameter which plays a nontrivial role in the quantum theory with both

electric and magnetic sources. In particular, their action incorporates the “Witten

effect” [45] which states that the electric charges of dyons are effectively shifted by

θ/(2π) times their magnetic charges. Their lagrangian is

L = −Im
τ

8πn2
{[n · ∂ ∧ (A+ iB)] · [n · ∂ ∧ (A− iB)]}

− Re
τ

8πn2
{[n · ∂ ∧ (A+ iB)] · [n · ?∂ ∧ (A− iB)]}

− je · A−
4π

e2
jg ·B, (2.9)

where the fine structure constant and the θ-angle are combined into a complex

coupling

τ :=
θ

2π
+ i

4π

e2
. (2.10)

This lagrangian is invariant under a discrete Sp(2,Z) ' SL(2,Z) group of

transformations which acts on the fields and coupling as

A+ iB → 1

a− cτ
(A+ iB),

jg
je

→
ajg + cje

bjg + dje

 , τ → dτ − b
a− cτ

, (2.11)
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where
(
a b
c d

)
∈ SL(2,Z), i.e., a, b, c, d are arbitrary integers satisfying ad − bc = 1.

The integrality of a, b, c, d is necessary to preserve the Dirac quantization condition

(2.4). This infinite discrete Sp(2,Z) invariance is the full quantum-mechanical EM

duality group of Maxwell theory. Note that for a = d = 0 and −b = c = 1 (2.11)

reduces to the classical EM duality transformation (2.8).

2.1.2 Actions with an extra gauge invariance

The Zwanziger lagrangian (and its θ-angle extension) suffers both from lack of

manifest Lorentz invariance, and from the obscure way in which the correct

counting of propagating degrees of freedom comes about. The latter problem was

solved independently in [6] and [13] who proposed an apparently different

non-Lorentz-invariant but manifestly EM duality-invariant action. The new feature

of this action is that it has an added gauge invariance that makes the counting of

the degrees of freedom more obvious. (From now on, for simplicity, we give actions

with no electric or magnetic sources or θ angles. We will also rescale the fields to

remove the coupling. Adding the sources and couplings back in as in (2.9) is

straight forward.)

Henneaux and Teitelboim [10] and Schwarz and Sen [13] put two Abelian gauge

fields, Aaµ (a = 1, 2), on an equal footing in the action

S = −1

2

∫
d4x(Bi aεabEb

i +Bi aBa
i ), (2.12)

where Ei a := F a
0i and Bi a := 1

2
εijkF a

jk with F a := ∂ ∧ Aa, are the usual electric and

magnetic fields derived from each potential. Here i, j, k = 1, 2, 3 are spatial indices,

and εab is the antisymmetric unit matrix with ε12 = 1. Note that (2.12) is not only

invariant under the usual Abelian gauge transformations of Aaµ, but also under the
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additional local transformations,

Aa0 → Aa0 + Ψa(x) (2.13)

for arbitrary scalar functions Ψa. This extra gauge invariance is responsible for

reducing the number of propagating degrees of freedom from those of two Maxwell

fields to only one Maxwell field.

The action (2.12) is also manifestly invariant under global SO(2) transformations

mixing A1
µ and A2

µ, which contains the EM duality symmetry as a discrete subgroup:

Aaµ → eabAbµ. (2.14)

Using the above local symmetries and the Aaµ equations of motion, one can eliminate

one of the gauge fields and get the conventional Maxwell theory for the other one.

The EM duality symmetry is then reduced to the duality between the electric and

magnetic field strengths of the remaining Maxwell field.

The action (2.12) can be slightly generalized [20] by using a constant vector nµ

subject to the constraint, n · n 6= 0, to rewrite (2.12) as

S = −1

4

∫
d4x

{
−1

2
tr(F a · F a) +

1

n · n
n · Fa · Fa · n

}
, (2.15)

where

Fa := εabF b − ?F a. (2.16)

In (2.15), the transformation in (2.13) takes the form

Aaµ → Aaµ + nµΨa(x). (2.17)
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If we take nµ = δ0
µ, i.e. a unit time-like vector, it is easy to check that (2.15) reduces

to (2.12).

It is also easy to see that (2.15) is almost the same as the Zwanziger action

(2.7) if we identify nµ, Aµ and Bµ in the Zwanziger action with nµ, A2
µ, and A1

µ in

(2.15), respectively. The only difference between the two actions is that the Zwanziger

action is (2.15) but with a change in the relative sign between the two terms. This

sign difference is crucial since the Zwanziger action does not have the extra gauge

symmetry (2.17).

2.1.3 Sorokin et. al.’s actions

Pasti, Sorokin and Tonin (PST) proposed [17, 18] to generalize (2.15) by turning the

constant vector nµ into by a dynamical x-dependent vector field. The problem with

making nµ a dynamical field is that it violates the local symmetry (2.17) which was

crucial to ensure the correct number of propagating degrees of freedom. So the action

in (2.15) must be modified to restore this symmetry. PST found the generalized

action

S = −1

4

∫
d4x

(
−1

2
tr(F a · F a) +

1

n · n
n · Fa · Fa · n− tr[?Λ · (∂ ∧ n)]

)
. (2.18)

The last term ensures the invariance of the action with respect to (2.17) provided the

auxiliary antisymmetric 2-index field Λµν transforms as

Λ→ Λ + n ∧ (n · Fa) Ψa. (2.19)

Note that for constant normalized nµ, the PST action (2.18) reduces to (2.15).

As before, one can eliminate one of the gauge fields (for example A2) from the

PST action using its equations of motion. This reduces (2.18) to the ordinary

Maxwell action plus a term which contains the decoupled auxiliary field Λ. Thus,
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PST constructed a manifestly Lorentz-invariant version of the EM

duality-symmetric action (2.15) which contains two abelian gauge potentials, and an

additional decoupled redundant field.

One disadvantage of the PST action is the somewhat complicated form of the

Lagrange multiplier and of its transformation (2.19) under the auxiliary gauge

symmetry. PST noted, however, that the equation of motion for the Λ field is solved

in general by

nµ(x) = ∂µϕ(x) (2.20)

for an arbitrary scalar field ϕ. Substituting this back into the PST action gives the

equivalent action [20]

S = −1

4

∫
d4x

(
−1

2
tr(F a · F a) +

1

∂ϕ · ∂ϕ
∂ϕ · Fa · Fa · ∂ϕ

)
, (2.21)

which has only a single scalar Lagrange multiplier field, ϕ.

Also, Maznytsia, Preitschopf and Sorokin showed explicitly [20] how (2.21) is

equivalent to the original Zwanziger action (2.7) through a procedure involving

dualizing ϕ to a 2-form auxiliary gauge field.

2.1.4 Siegel’s self-dual actions

The idea of PST to use Lagrange multiplier fields to make both Lorentz and EM

duality invariance manifest following Siegel, who was the first to use that idea in

duality-symmetric actions. In [14] Siegel proposed manifestly Lorentz-invariant

actions for self-dual antisymmetric tensor gauge fields by using Lagrange multiplier

fields to eliminate half of the propagating degrees of freedom.

Self-dual fields are rank-p antisymmetric tensor gauge potentials in D = 2(p+ 1)

space-time dimensions with p an even integer. (Thus the space-time dimension is 2
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mod 4.) Denote such a p-form field by A and its gauge-invariant p + 1-form field

strength tensor by F := ∂ ∧ A. Then self-dual fields satisfy, in addition to the

usual free Maxwell-type equations, the additional constraint that F = ?F , where ?

generalizes (2.5) to D dimensions. (This constraint is only consistent for p even in

Minkowski space-times, and cannot be imposed when p is odd.) Siegel’s action is

then

S = −1

2

∫
dDx

{
1

(p+ 1)!
Fµ1···µp+1F

µ1···µp+1 − λαβFαν1·νpFβν1·νp
}
, (2.22)

where

F := F − ?F. (2.23)

λαβ(x) is a rank-2 symmetric tensor Lagrange multiplier field. Although this is a

simple-looking action, the λ and A equations of motion enforce the self-duality

constraint together with the free Maxwell equations in a non-trivial way. These

actions were generalized in [17, 18, 23].

2.1.5 Miao et. al.’s actions

Miao et. al. [23] unified the actions (2.21) and (2.22) in a single series of Lorentz-

invariant actions in D = 2(p + 1) dimensions for abelian p-form gauge fields with

manifest EM-duality (for p odd) or self-duality (for p even). Their action has the

Siegel-type form but uses one or two q-form fields, Y a, as Lagrange multipliers,

S = − 1

2∆

∫
dDx

{
F a
µ1···µp+1

F aµ1···µp+1

(p+ 1)!
−
T bµσ1···σqT bνσ1···σq

T 2
Faµµ1···µpF

a νµ1···µp

}
,(2.24)
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where

F a := ∂ ∧ Aa, Fa := ΓabF b − ?F a,

T a := ∂ ∧ Y a, T 2 := T aµ1···µq+1
T aµ1···µq+1 . (2.25)

Thus F a is the (p+ 1)-form field strength for the p-form gauge potentials Aa, and T a

is a (q+1)-form “field strength” for the q-form “gauge potential” lagrange multipliers

Y a. The explicit definition of the Hodge star is

?F a
µ1···µp+1

:=
1

(p+ 1)!
εµ1···µp+1ν1···νp+1F

a ν1···νp+1 , (2.26)

which satisfies ?2 = (−)p. Furthermore the constants and a, b indices are defined by

∆ =

 1 for even p

2 for odd p
, Γab =

 δab (a, b ∈ {1}) for even p

εab (a, b ∈ {1, 2}) for odd p
. (2.27)

Note that q ∈ {0, 1, · · · , p} can be chosen arbitrarily. In particular, one can choose

q = 0, in which case the Lagrange multipliers Y a are scalar fields. For p even (i.e.,

space-time dimensions 2 mod 4) we retrieve Siegel’s action (2.22) with his symmetric

tensor Lagrange multiplier replaced essentially by the square of T := ∂∧Y . For p = 1

(i.e., space-time dimension 4) we retrieve the PST EM duality-invariant action (2.21)

but with two scalar auxiliary fields, Y a. It is easy to see that one of the Y a can be

eliminated by its equations of motion, after which the remaining one can be identified

with ϕ.

2.2 Supersymmetric EM duality-invariant actions

Relatively recently, Bunster and Henneaux in [46] provided an N = 1 supersymmetric

extension of the two-potential formulation of Maxwell’s theory of [10, 13] described
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above. Their action for a photon and photino is manifestly invariant under EM

duality transformations at the price of manifest Lorentz invariance.

In order to properly implement EM duality together with supersymmetry it was

necessary for Bunster and Henneaux to define EM duality as acting chirally on the

spinors. Their starting point was the two-potential action (2.12) given in [6]. Their

supersymmetric action for the photon and its superpartner the photino is

SSUSY = Sbose + Sfermi, (2.28)

where Sbose is the action (2.12) for the photon, and

Sfermi = − i
2

∫
d4xψγµ∂µψ. (2.29)

Here ψ is an anticommuting Majorana spinor. Sfermi is invariant under the chirality

transformation, ψ → eβγ5ψ, which is an SO(2)-rotation because (γ5)2 = −I. They

then showed that supersymmetry and EM duality transformations only commute if

the latter are defined as the simultaneous transformation of both the vectors ~Aa and

the spinor ψ given by

~A → exp{αε} ~A, ψ → exp{αγ5}ψ. (2.30)

2.3 Towards N=2 supersymmetric EM duality

Now that we have briefly summarized the key efforts to date for constructing EM

duality-symmetric actions, we will move on in chapter 3 to precisely define the problem

of constructing EM duality-symmetric N = 2 supersymmetric nlsm actions, which is

the main topic of this thesis. However, it will be useful to first make a preliminary
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evaluation of the utility of the above approaches to manifest EM duality invariance

for N = 2 nlsms.

As outlined in the last chapter, the new feature of EM duality in N = 2 nlsms

is that the effective gauge couplings of the IREA vary continuously on the Coulomb

branch, and upon traversing closed loops in the Coulomb branch may return to their

original values only up to a discrete EM duality transformation. Thus N = 2 nlsms

must necessarily carry an explicit dependence on the gauge couplings: the couplings

cannot be (continuously) reabsorbed in a rescaling of the Maxwell fields everywhere

on the Coulomb branch.

This should be contrasted with all the EM duality-invariant actions described

above. There we saw in the discussion of Zwanziger’s action that true EM duality-

symmetry is not attained if the coupling is made explicit, since the coupling changes

under duality transformations. It was only when the coupling was absorbed into the

gauge fields by a rescaling that EM duality transformations acted as true symmetries.

Thus it is clear that the EM duality-invariant formulations reviewed above are

not capable of giving a duality-symmetric formulation of N = 2 nlsms. Clearly a new

idea is needed.
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Chapter 3

Problem Definition

The main purpose of this chapter is to provide a clear and precise definition of the

problem we are trying to address in this thesis without clouding its simplicity with

intricate mathematical details. The mathematical details of our work will be

presented in chapters 4, 5, and 6. We will begin this chapter with a very quick

review of the N = 2 supersymmetry algebra before we present the general form of

an N = 2 IREA and define the vacuum structure of the theory. In my presentation,

I closely follow the discussion and sequence in [32]. Other excellent references on the

dynamics of N = 2 supersymmetric gauge theories are [26, 28, 27, 29, 33, 34, 35].

3.1 N=2 supersymmetric nonlinear sigma-models

The basic N = 2 supertranslation algebra (i.e., the N = 2 supersymmetry algebra

after dropping the Lorentz generators and any central charges) is, in a notation

suppressing space-time indices,

{Qi, Q
j} = δijP, {Qi, Qj} = 0, i, j ∈ {1, 2}, (3.1)
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where Qi are two Weyl spinor supercharges, and P is the energy-momentum 4-vector.

Qi transforms as a doublet under the SU(2)R group of automorphisms.

On shell irreducible field representations of (3.1) are easy to construct. There

are two solutions with no spins greater than one: the hypermultiplet, containing two

propagating complex scalars, φi, as well as two Weyl fermions ψi; and a vector

multiplet, made from one complex scalar a, two Weyl spinors λi, and a vector field

Aµ. An important distinguishing factor of the hypermultiplet is that its scalars form

a complex SU(2)R doublet. The bosonic degrees of freedom of the vector multiplet

are a single complex scalar and a vector field, both transforming in the adjoint

representation of the gauge group, and both are singlets under SU(2)R. In

particular, in the case of a U(1)r gauge group, which we are interested in for

describing IREAs, the vector multiplet scalars are necessarily neutral. More

generally, all the massless scalars, whether they are in vector multiplets or

hypermultiplets, whose vevs parameterize the moduli space of the theory must be

neutral because, when a charged scalar gets a vev, it Higgses the U(1) it is charged

under and thereby gets a mass.

The leading (2-derivative) bosonic terms of an IREA action on a moduli spaceM

with an abelian gauge group and neutral hypermultiplets, a priori has an action of

the following form

L = gmn(ϕ) ∂ϕm · ∂ϕn + Im[τIJ(ϕ)F I · FJ ], (3.2)

where the dots denote contraction of space-time indices. The ϕm are the real scalar

fields in both the vector and hypermultiplets, and the kinetic coefficient function gmn

is real, symmetric, and positive definite, and can be interpreted as a metric on M.

(No potential term is allowed since, by hypothesis, the scalar vevs parameterize the

vacuum manifold, M.) The second term in (3.2) is a generalized Maxwell term for
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the U(1) field strengths F I
µν := ∂µA

I
ν − ∂νAIµ where I, J ∈ {1, . . . , r} run over the r

U(1) gauge groups, and we have defined the complex self-dual field strength,

F I := F I − i ? F I , (3.3)

which satisfies ?F I = iF I . The gauge kinetic coefficient, τIJ — the central object

of our study — is a complex function of the scalars ϕm, symmetric in I and J and

whose imaginary part is positive definite by unitarity. For if we define the real and

imaginary parts of the coupling by

τIJ :=
θIJ
2π

+ i
4π

(e2)IJ
, (3.4)

then the generalized Maxwell term can be expanded as

LU(1)r =
4π

(e2)IJ
F I · F J +

θIJ
2π

F I · ?F J (3.5)

which shows that the imaginary part of τIJ is a matrix of couplings and the real part

are theta angles.

However, compatibility with N = 2 supersymmetry tightly constrains this action;

see, for example, [32]. The result is that the general N = 2 IREA with gauge group

U(1)r and nf neutral hypermultiplets (labeled by indices m,n ∈ {1, . . . , nf}) has the

following form

L = gmn(φ, φ)∂φim · ∂φni + Im τIJ(a)
(
∂aI · ∂aJ + F I · FJ

)
. (3.6)

Here φim are the complex scalars of the hypermultiplets, aI the complex scalars of

the vector multiplets, and F I are the complex self-dual U(1) field strengths of the

vector multiplets. The U(1)r couplings, τIJ , are locally holomorphic functions of the
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aI which satisfy the special Kähler condition

∂[IτJ ]K = 0, (3.7)

where ∂I := ∂/∂aI and square brackets denote antisymmetrization. Globally τIJ can

be a multi-valued function of the aI because of EM duality identifications; as we will

describe below they are more properly holomorphic sections of an Sp(2r,Z) bundle

over the moduli space. The special Kähler condition can be locally integrated to give

τJK =
∂bJ
∂aK

(3.8)

for some holomorphic functions bI(a). A set {aI , bI} of holomorphic functions on the

moduli space satisfying (3.8) are called a basis of special coordinates.

N = 2 SUSY implies that there are no kinetic cross terms between the vector and

hypermultiplet scalars, implying in turn that the moduli space has a natural (local)

product structureM =MH×MV , whereMH is the subspace ofM along which only

the hypermultiplet vevs vary while the vector multiplet vevs remain fixed, and vice

versa for MV . In cases where MV is a point, M =MH is called a Higgs branch of

the moduli space; whenMH is trivialMV is called the Coulomb branch (since there

are always the massless U(1) vector bosons from the vector multiplets). Cases where

both MH and MV are non-trivial are called mixed branches. We are interested in

the Coulomb branch, MV , since that is the part of the moduli space involving U(1)

gauge fields, and so is the only part of the IREA where EM duality plays a role. So

from now on we will be concerned only with the vector multiplet part of the general

IREA:

LCB = Im τIJ(a)
(
∂aI · ∂aJ + F I · FJ

)
. (3.9)
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3.2 EM duality transformations

The most important point of this chapter is the following. The IR free low energy

U(1)r physics is invariant under EM duality transformations, but the lagrangian (3.9)

describing this physics is not. As explained in the last chapter for a single U(1)

gauge group, EM duality transformations relabel the fields, interchanges electric and

magnetic charges, and inverts the couplings. Also, 2π shifts of the theta angles shift

electric charges by multiples of the magnetic charges, and makes integer shifts of the

real part of τ . When applied to the matrix τIJ of couplings these transformations

generate the infinite discrete Sp(2r,Z) group of duality transformations:

τIJ →
(
ALI τLM +BIM

) (
CJNτNM +DJ

M

)−1
(3.10)

where

M :=

A B

C D

 ∈ Sp(2r,Z). (3.11)

The conditions on the r×r integer matrices, A, B, C, and D for M to be in Sp(2r,Z)

are

ABT = BTA, BTD = DTB,

ATC = CTA, DTC = CDT ,

ATD − CTB = ADT −BCT = 1,

(3.12)

where T denotes the transpose. These imply that

M−1 =

 DT −BT

−CT AT

 . (3.13)
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The action of an EM duality transformation on the 2r-component row vector of

magnetic and electric charges (nIm me,J) of massive states is

(nm me)→ (nm ne)M
−1. (3.14)

Also, from (3.10) and (3.8) it follows that the column vector of special coordinates

(bI , a
I)T transforms as

b
a

→M

b
a

 . (3.15)

The fact that the coupling matrix τIJ transforms under Sp(2r,Z) means that

EM duality transformations are not symmetry transformations of the IREA since

they change the couplings of the theory. Instead, they simply express the

equivalence of free U(1)r field theories coupled to classical massive sources under

symplectic Sp(2r,Z) redefinitions of electric magnetic and magnetic charges. The

importance of this redundancy in the Lagrangian description of IREAs becomes

apparent upon traversing a closed loop in MV . The physics must, by definition, be

the same at the beginning and end of the loop, but the lagrangian description need

not because it may have suffered an EM duality transformation. This possibility is

often expressed by saying that the coupling matrix τIJ , in addition to being

symmetric and having positive definite imaginary part, is also a section of a (flat)

Sp(2r,Z) bundle over MV with action given by (3.10).

The key goal of this thesis is to develop a strategy for constructing EM

duality-symmetric N = 2 IREAs. In other words, we want to construct N = 2 nlsm

actions where EM duality transformations are a manifest symmetry as opposed to a

map between different lagrangians. The key ingredient in achieving this goal is to

reformulate the nlsm in terms of mathematical objects which are manifestly EM

27



duality-invariant. The chief such object is the total space, X , of the Coulomb branch

(and not the Coulomb branch itself), and its inherent symplectic-invariant

geometric data (the complex structure, Hodge form, and Donagi-Witten two-form).

It is thus natural to use X as the target space of the nlsm and its geometric data to

construct its Lagrangian.

Heuristically, we want to to build the EM duality-symmetric N = 2 nlsm action

by using the harmonic superspace superfields to pull back those invariant geometric

structures on the target space which can naturally be integrated over harmonic

superspace. We call this strategy the pullback approach to constructing EM

duality-symmetric actions.

To make this strategy more concrete, we need to describe in more detail what the

geometry of the target space is, X , and what the geometry of harmonic superspace is.

The next two chapters will be devoted to fleshing out the details of these geometries.

In chapter 4, we will give an in-depth presentation of the target space geometry

where we will describe it in terms of special Kähler and hyperkähler manifolds as well

the twistor space construction of the latter. In chapter 5 we will briefly introduce

harmonic superspace.
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Chapter 4

Geometry of the Coulomb Branch

In this chapter we describe several nearly equivalent formulations of the special Kähler

(SK) structure of the Coulomb branch (CB), MV . In particular, we show how the

SK structure is encoded in the Donagi-Witten (DW) geometry of the total space,

X , of the CB. Then we show how DW geometry gives rise to a hyperkähler (HK)

structure on X . Then we describe how an HK structure on X is encoded in the

complex geometry of the twistor space, Z, associated to X .

We will illustrate all these constructions by computing the relevant geometrical

objects (complex structures, metrics, symplectic forms, etc.) explicitly in coordinates.

Along the way we will see that the DW geometry has extra structure compared to

that of the SK, HK, or twistor geometries.

4.1 Special Kähler structures

In the last chapter we found the following basic structures in the IREA on the CB,

MV :1

1.) MV is an r-dimensional complex manifold.

1We change notation slightly from that used in chapter 3: we now use lower case roman indices
i, j ∈ {1, . . . , r} to label the complex coordinates and tangent space directions.
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2.) There exists a symmetric rank-2 tensor, τij, which is a holomorphic section of

an Sp(2r,Z) bundle over MV transforming as in (3.10).

3.) Im τ is positive definite.

4.) τ satisfies the special Kähler condition (3.7).

From these it followed that:

• The special Kähler condition can be locally integrated as (3.8) to give special

coordinates c := (ai, bi) which form a holomorphic section of an Sp(2r,Z) bundle

transforming as

c→ cMT (4.1)

for M ∈ Sp(2r,Z).

• In a special coordinate basis the metric components on MV are given by gi =

Im τij.

Though this determines a geometry, it leaves out two additional closely related

structures on MV which are part of the IR physics on the CB and so also of the

definition of an SK structure:

5.) the Schwinger product of dyon charges, and

6.) the central charge of the N = 2 SUSY algebra.

The rest of this section will define these last two SK structures.

If the 2r-component row vector of magnetic and electric charges of a dyon is

z = (pi, qi), then the Schwinger product of the charges of two dyons is

〈z1, z2〉 := z1JzT2 , (4.2)
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where J is the symplectic form given by J = Ir⊗ε where Ir is the r×r identity matrix

and ε = ( 0 1
−1 0 ). Since the charges transform under Sp(2r,Z) duality transformations

as in (3.14), that is as

z→ zM−1 (4.3)

for M−1 ∈ Sp(2r,Z), and since by definition elements of Sp(2r,Z) leave J invariant,

MJMT = J , it follows that the Schwinger product is also Sp(2r,Z) invariant.

Physically the Schwinger product measures the angular momentum (in units of ~)

carried by the electromagnetic fields in the presence of two static dyons.

The central charge, Zz, is a complex linear combination of the dyon charge vector

z and the vector of special coordinates, c := (bi, a
i). Thus

Zz = z cT . (4.4)

From (4.1) and (4.3) we see that Zz is invariant under Sp(2r,Z) transformations.

Also, since c is a holomorphic section on MV , it follows that Zz is a holomorphic

function on MV . Physically, the norm of Zz is the BPS mass of dyons of charge z.2

SK structure is described here in an explicitly Sp(2r,Z) non-invariant way. This

is unavoidable since the basic structures, {τ, c, z}, all transform under Sp(2r,Z). So

this is not an EM duality-invariant description. We should note that Freed [39] has

proposed an Sp(2r,Z)-invariant definition of SK geometry which is intrinsic to the CB

manifold,MV . But this proposal leaves out the dyon charge vectors z, the Schwinger

inner product, and the central charge structures. An Sp(2r,Z)-invariant description

of all the SK structures requires enlarging the geometry beyond that of the CB,MV .

This is the subject of the next section.

2There can be other contributions to the central charge coming from other global U(1) charges
that states might carry. We suppress them here for simplicity.
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4.2 Donagi-Witten geometry

Donagi and Witten [38], following on earlier work of [47, 2], pointed out that a natural

EM duality-invariant geometric object encoding the SK structure of the Coulomb

branch, MV , is the total space, X , of a fiber bundle of abelian varieties over MV .

The total space, X , of an SK manifold, MV , is defined [1, 2, 38, 47] to be a

2r-dimC complex manifold with three additional geometric structures (π, tu, L).

They are:

• π : X → MV is a holomorphic surjection whose fibers, Xu := π−1(u), are r-dimC

abelian varieties;

• tu is a Hodge form on Xu which varies continuously with u ∈MV ;

• L is a holomorphic symplectic form having the Xu as lagrangian submanifolds.

We will call such a space a Donagi-Witten (DW) geometry. The rest of this section

explains the definitions of these structures by writing them out explicitly in

coordinates. We then show how they encode an SK structure on MV .

4.2.1 Fiber bundle structure

The projection map π makes X a fiber bundle over MV with the fiber Xu over a

point u ∈MV . Since Xu is r-dimC, so mustMV be. From now on we will only work

locally in MV , so we may think of MV concretely as a polydisk in Cr with complex

coordinates ũi, i ∈ {1, . . . , r}.

The fibers Xu are r-dimC abelian varieties. An abelian variety is a complex torus

with additional properties described below. Any complex torus T 2r is equivalent to

Cr/Λ with Λ a rank-2r lattice in R2r. We choose a basis of the lattice, {eα}, and a

basis of dual coordinates, {xα}, α ∈ {1, . . . , 2r}, such that
∫
eβ
dxα = δαβ . This implies

that the xα are identified up to integer shifts, xα ∼ xα + 1.
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These coordinates trivialize the fiber bundle. That is, the projection map is simply

π : (xα, ũi) 7→ ũi.

Choose a complex basis {fi} of Cr, and a dual basis of complex coordinates zi,

such that
∫
fi
dzj = δji . By an appropriate GL(r,C) transformation we can always

rotate {fi} so that zi = ∆i
jx
j + τ ijxr+j + µi for any given invertible real r× r matrix

∆. Here tij is some r × r complex matrix and µi a vector of complex constants. So

rename x̂i := xr+i for i ∈ {1, . . . , r}, so that

zi := ∆i
jx
j + τ ijx̂j + µi. (4.5)

The identification of the x’s by integer shifts implies that the z’s are similarly identified

under constant shifts zi ∼ zi + ∆i
jn

j + τ ijmj with ni,mi ∈ Z.

An abelian variety can be defined3 as a complex torus for which there exists a basis

of complex coordinates as in (4.5) such that: 1) ∆i
j = δiδ

i
j is a diagonal matrix whose

entries are positive integers δi ∈ Z+ satisfying the divisibility condtions δi | δi+1; and,

2) τ ij is a symmetric matrix, τ = τT , with positive definite imaginary part, Im τ > 0.

Since X is a holomorphic fiber bundle (i.e., π is a holomorphic map), the zi must

depend holomorphically on the ũ coordinates onMV , i.e., τ ij = τ ij(ũ), and µi = µi(ũ)

in (4.5).

Mathematically, τ ij(ũ) is called the complex modulus of the abelian variety Xu.

We will identify τ ij with the matrix of complex U(1)r couplings that appeared in

the description of the SK structure on MV . We saw in the last paragraph that the

symmetry and positive-definiteness of τ are built into the definition of an abelian

variety. The condition that τ ij is a section of an Sp(2r,Z) bundle is also built into

it, as we will see below when we discuss polarizations on abelian varieties.

3Abelian varieties also have a coordinate-independent definition as complex tori which can be
embedded in projective space by polynomial equations.
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We now deduce some basic properties of the complex coordinates we have

introduced on X . The important point is that while the real coordinates, {x, x̂},

trivialized the fiber bundle structure of X , the complex coordinates {z, z} defined by

(4.5) do not because they depend on the coordinates {ũ, ũ} of the base. To make the

change of variables from the real to the complex coordinates on the fibers, introduce

the two sets of coordinates {z, z, u, u} and {x, x̂, ũ, ũ}. They are related by

z = ∆x+ τ x̂+ µ, u = ũ,

z = ∆x+ τ x̂+ µ, u = ũ, (4.6)

with inverses

x =
1

∆

(
τ

1

τ−
(z − µ)− τ 1

τ−
(z − µ)

)
, ũ = u,

x̂ =
1

τ−
(z − z − µ+ µ), ũ = u. (4.7)

Here we are using a vector notation where the coordinates and µ are all r-component

column vectors, and τ and ∆ are r × r matrices. Also, we have defined τ± := τ ± τ ;

thus, τ+ = 2 Re τ , and τ− = 2i Im τ .

Since x and x̂ are identified by constant (integer) shifts, it follows that

{∂x, ∂x̂, ∂ũ, ∂ũ} form a basis of globally defined vector fields on X , and that

{dx, dx̂, dũ, dũ} form a dual basis of globally defined one-forms on X . But this is

not true of the coordinate vector fields and one-forms in the {z, z, u, u} basis. For,

by the chain rule, we compute that

∂z = − 1

τ−
τ

1

∆
∂x +

1

τ−
∂x̂, ∂u = ∂ũ − (x̂T∂uτ + ∂uµ)∂z,

∂z = +
1

τ−
τ

1

∆
∂x −

1

τ−
∂x̂, ∂u = ∂ũ − (x̂T∂uτ + ∂uµ)∂z. (4.8)
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Thus ∂z and ∂z are globally defined vector fields, but ∂u and ∂u are not because of

their explicit dependence on x and x̂ which are not single-valued on the fibers. (For

later use, note that

∂x = ∆∂z + ∆∂z, ∂x̂ = τ∂z + τ∂z, (4.9)

invert the relations (4.8).) Similarly, we compute from (4.8) the one-forms

dz = ∆dx+ τdx̂+ duτ · x̂+ duµ, du = dũ, (4.10)

and their complex conjugates, in a notation where duX := ∂uiX dui. This implies

that du and du are global one-forms, but dz and dz are not because of their explicit

x̂-dependence.

So, we define the following, globally defined, vector fields and one-forms in the

{z, u} coordinate system:

U := ∂ũ, θ := ∆dx+ τdx̂,

U := ∂ũ, θ := ∆dx+ τdx̂ (4.11)

(with

dx =
1

∆

(
τ

1

τ−
θ − τ 1

τ−
θ

)
, dx̂ =

1

τ−
(θ − θ) (4.12)

as useful inverse relations). Then {∂z, U} is a basis of global holomorphic vector fields

on X and {θ, du} is a dual basis of global (1,0)-forms on X .

It is important to realize that, since θ is not a coordinate differential, it is

neither closed nor holomorphic! Indeed, from their definition, (4.11), it follows that

dθ = duτ dx̂ = dτ 1
τ−

(θ − θ). Decomposing the exterior derivative into the Dolbeault
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operators, d = ∂ + ∂, this implies

∂θ =
1

τ−
θ, ∂θ =

1

τ−
θ, (4.13)

and complex conjugated relations for θ.

4.2.2 Polarization

A Hodge form, tu, on an abelian variety, Xu, is defined as a positive-definite, integral,

(1,1)-form on Xu. In fact, the existence of such a form on a complex torus can be

taken as the definition of an abelian variety. In the coordinate definition of abelian

variety we gave above, such a form is manifest. In the real basis for the fibers, it is

simply

tu := δi dx
i ∧ dx̂i = dxT ∆ dx̂ (4.14)

where matrix multiplication and wedge products are understood in the last expression.

A given abelian variety typically admits many different Hodge forms. A choice of

a Hodge form on an abelian variety is called a polarization. We will take (4.14) as our

choice of polarization. If the integers δi = 1 for all i, then the polarization is called a

principal polarization.

A basis {eα} of the torus fiber lattice Λ such that tu has above the above form is

called a canonical basis. There is a freedom in choosing a canonical basis. A general

Λ basis change is a linear map G ∈ GL(2r,Z). To preserve the form of tu we need

GZGT = Z where Z :=
(

0 ∆
−∆ 0

)
. This defines a subgroup of Sp(2r,Z); in the case of

a principal polarization, ∆ = Ir, it is just Sp(2r,Z) itself.

Note that such a change of canonical basis preserves ∆, but changes τ by a

fractional linear transformation as in (3.10). Thus, in the case of a principal

polarization, we see that τ is indeed a holomorphic section of an Sp(2r,Z) bundle.

36



(The case of a non-principal polarization corresponds to a restriction on the allowed

transformations of τ .)

Once tu is chosen as in (4.14) for one u ∈ MV , continuity in u fixes it for all

other u. This is because tu depends on discrete data (a choice of lattice basis and

the integers δi) and so must be constant if it is continuous. Thus in our {x, x̂, ũ, ũ}

coordinate system, tu is independent of u. It thus defines a unique closed, real (1,1)-

form, t, on all of X by the same formula as for tu, (4.14). (In coordinate invariant

language, t is the unique closed 2-form on X which coincides with tu when restricted

to Xu, and which has rank 2r at every point, i.e., there is a 2r-dimR subspace of the

tangent space to X at each point on which t vanishes.)

In the complex coordinate basis {z, u}, a short computation using (4.12) shows

that

t = −θT 1

τ−
θ. (4.15)

4.2.3 Holomorphic symplectic structure

The last structure of a DW geometry is the holomorphic symplectic form, L, which

we will call a “DW form” for short.

A holomorphic symplectic form is a closed, non-degenerate, (2,0)-form on X .

The condition that the fibers, Xu, are lagrangian means that, when acting on pairs

of vectors in the tangent bundle to the fibers, L vanishes. Being a (2,0)-form with

vanishing restriction to the fiber, implies L has the general form in the {u, z}

coordinate system

L = λjiθ
iduj + µijduiduj, (4.16)

with λji and µij holomorphic functions of z and u. L being non-degenerate means

that 0 6= det
(

0 λ
−λT µ

)
= det2 λ which implies detλ 6= 0. Being a closed (2,0)-form
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means that dL = 0. This leads to a system of differential equations which can be

shown to imply that τ ij, λji , and µij are holomorphic functions of u alone, and satisfy

0 = ∂[iτ j]k,

0 = ∂[iµjk], (4.17)

0 = ∂[jλ
k]
i ,

where ∂i := ∂/∂ui.

The first equation in (4.17) is precisely the SK condition on τ , (3.7), found in the

last chapter. Thus we see that DW geometry encodes the first four SK conditions

listed in section 4.1. We will see how the last two SK conditions are encoded in the

next subsection.

The second equation in 4.17 implies that µjk = ∂[jAk] for some holomorphic

functions Ak(u) on MV . Note that Ak is only determined by this equation up to

“gauge” equivalences of the form Ak ∼ Ak + ∂kΛ, for an arbitrary holomorphic

function Λ(u) on MV . Define a holomorphic 1-form on MV by A := Ai(u)dui, then

the above gauge equivalence is

A ∼ A+ dΛ. (4.18)

Thus A is a holomorphic connection on a U(1)rC-bundle over MV .

The third equation in 4.17 together with detλ 6= 0 implies that there exists a

holomorphic change of variables to new coordinates u′k = u′k(u) such that du′k = λjkduj.

In these coordinates (dropping the primes on u′) the DW 2-form takes the simple form

L = θTdu+ dA. (4.19)
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To summarize, we have derived coordinate expressions for the Hodge form t in

(4.15) and for the DW form L in (4.19). They depend on a holomorphic matrix τ

which satisfies all the conditions that the matrix of U(1)r couplings τ does in an SK

geometry. Thus DW geometry encodes these SK conditions in an Sp(2r,Z)-invariant

way.

One surprise is that there is an extra structure — namely, the dA term in (4.19)

— in the DW geometry that does not appear in the SK structure. The existence

of this structure is implicitly recognized in the work of Donagi [47] and Freed [39],

but they simply set it to zero as an extra condition on DW geometry. While this

can always be done locally on MV , it may not be consistent to do so globally. We

speculate on the possible physical interpretation of this extra structure in chapter 7.

Another surprise, pointed out by Donagi and Witten [38], is that since L is a

symplectic form and it has tori as Lagrangian submanifolds, it endows the total space

X with the structure of a phase space of a (complex) classical integrable dynamical

system. The physical interpretation of this classical integrable system is unclear. We

will see at the end of chapter 6 that another complex classical dynamical system enters

in the harmonic superspace description of N = 2 supersymmetric hypermultiplet

nlsms. We speculate on the possible relation of these two classical dynamical systems

in chapter 7.

4.2.4 Recovery of SK structures from DW geometry

So far we have recovered the SK conditions on the matrix τ of complex U(1)r couplings

from DW geometry. But we have not seen how the Schwinger product of dyon charges,

(4.2), and the central charge, (4.4), are encoded in DW geometry.

The first thing we need to locate in DW geometry are the dyon charge vectors,

z ∈ Z2r. The first homology group of the fiber is H1(Xu) ' Z2r since Xu is a T 2r

torus. We will thus identify H1(Xu) with the lattice of EM charges. Therefore a dyon

39



charge vector, z, is identified with the homology class, [γz] ∈ H1(Xu), of some 1-cycle

(closed curve) γz wrapping certain cycles of the Xu torus.

The Schwinger product is an alternating, integer-valued product of two charges,

y and z. It is naturally identified with the period of the Hodge form over the 2-cycle

in Xu given by the Pontryagin product of the two 1-cycles, γy and γz, representing

the charges y and z. That is

〈y, z〉 =

∫
γy∗γz

tu. (4.20)

Here ∗ denotes the Pontryagin product, which can be thought of as forming the 2-cycle

defined by the surface swept out by translating the first curve along the second in the

product. The Pontryagin product is alternating since reversing the order reverses the

orientation. Since the Hodge form is closed, the value of the integral only depends

on the homology classes of the various cycles. Since the Hodge form is integral, the

value of the integral will be an integer. Thus (4.20) has all the necessary properties

to define the Schwinger product.

It can be easily evaluated in the {x, x̂} coordinate system. Denote the basis of

the torus’ lattice Λ dual to these coordinates by {ei, êi}, which therefore specify a

basis [e] := {[ei], [êi]} of H1(Xu). Then any two homology classes, [γy] and [γz], can

be expressed in this basis as [γy] = yT [e] and [γz] = zT [e]. It then immediately

follows from (4.14) that
∮
γy∗γz tu = y JzT where J = ∆⊗ ε. In case the polarization

is principal, ∆ = Ir, then this is precisely the Schwinger product (4.2). In case

the polarization is not principal, this gives a generalization of the Schwinger product

where there can be different units of charge quantization with respect to the r different

U(1) gauge groups. This is a physically sensible generalization, and gives a physical

interpretation of the ∆ matrix appearing in the Hodge form.
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The central charge, Zz(u), is a holomorphic function which depends linearly on

the charges z. Because the DW 2-form, L, has vanishing restriction to the fibers of

X , it is well-defined to integrate L over 1-cycles in Xu to get a 1-form on MV . Thus∮
γz
L is a 1-form which is holomorphic onMV and linear in z. It thus has the natural

intepretation as the differential of the central charge:

∮
γz

L = dZz, (4.21)

where the “d” on the right side is the exterior derivative onMV . Since L is closed, the

right side is indeed exact. Since L is (2,0), the right side is (1,0), so Zz is holomorphic.

Thus the DW 2-form determines the central charge (up to some integration constants)

by (4.21). This completes the determination of all the basic SK structures from

Sp(2r,Z)-invariant geometrical objects on the total space X .

For later use, it will be convenient to also derive explicit coordinate expressions

for the Kähler form, ω, and hermitian metric, g, on MV , from the DW geometry

data. The Kähler form is given by [DW95]

ω(u) :=

∫
Xu
tr−1
u LL, (4.22)

which, after some algebraic manipulation using the expressions (4.15) and (4.19) for

t and L, can be written as

ω = −(det ∆) duT τ− du. (4.23)

The metric on MV can be derived from the Kähler form as

g(∂u, ∂u) := ω(i∂u, ∂u) = −i(det ∆) τ− = 2(det ∆) Im τ. (4.24)
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Since Im τ > 0, it follows that the metric is also positive definite.

4.3 Hyperkähler structure

In this section we will follow a construction of Freed’s [39] to find explicit coordinate

expressions for a canonical HK structure on X . But first we give a quick overview of

the basic definition [40] of a HK structure.

A HK manifold X has three complex structures Ja, a ∈ {1, 2, 3}, obeying the

quaternion algebra, JaJb = εabcJc − δab1. Any real linear combination of these,

J(~r) := raJa, (4.25)

is again a complex structure on X if
∑

a(r
a)2 = 1, i.e., if ~r lies on a two-sphere

S2 ' CP1. Furthermore, each complex structure has an associated Kähler form — a

real non-degenerate closed 2-form of type (1,1) with respect to its complex structure.

We denote the Kähler form associated to Ja by ωa. Then the HK metric is given by

g(·, ·) := ωa(Ja·, ·) independent of a. So to specify a HK structure we need give only

the Kähler forms, ωa, and one complex structure, J1, since the metric, g, can then be

deduced from ω1 and J1, and the remaining complex structures can be deduced from

g and ω2,3.

According to a theorem by Cecotti, Ferrara, and Girardello [48], the cotangent

bundle T ∗MV of a special Kähler (SK) manifoldMV carries a canonical HK structure

given by identifying J1 with the natural complex structure of T ∗MV , and defining

the Kähler forms by

ω1(q1 ⊕ p1, q2 ⊕ p2) := ω(q1, q2) + ω−1(p1, p2),

[ω2 + iω3](q1 ⊕ p1, q2 ⊕ p2) :=
1

2
[p1([1− iJ1]q2)− p2([1− iJ1]q1)] , (4.26)
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for any qi ∈ TMV and pi ∈ T ∗MV . Here ω is the Kähler form on MV found above

(4.23), and ω−1 is its inverse (which is therefore a rank-2 antisymmetric tensor field,

and so naturally acts on pairs of one-forms).

Freed [39] shows that the DW 2-form on X provides an isomorphism between the

cotangent space T ∗uMV and the tangent space to the fiber TpXu at any point p ∈ Xu.

Since Xu ' R2r/Λ is a torus, it is translation invariant, and so TpXu ' Tp′Xu for any

points p, p′ ∈ Xu. Denote Vu := TpXu, and form the “vertical” fiber bundle V →MV

with fibers Vu. Using the total space fiber bundle projection, π : X →MV , and the

inverse of the DW 2-form, L−1, Freed defines the map π∗L−1 : T ∗MV → V . The

non-degeneracy of L implies this map is an isomorphism. Thus T ∗MV ' V , and so

V has a HK structure.

Finally, Freed notes that since Xu ' R2r/Λ for some lattice Λ, it follows that

Xu ' Vu/Λ, and thus X ' V/Λ. Since the HK structure on V is translation-invariant

along the fibers, X inherits an HK structure from V simply by modding out by the

action of Λ.

After going through the algebra of the three steps given above, we obtain the

following coordinate expressions for the HK structures on X :

J1 = +i
(
∂Tz ⊗ θ + UT ⊗ du

)
+ c.c.

J2 = −i
(
|∆|
κ
∂Tz τ− ⊗ du+

κ

|∆|
UT 1

τ−
⊗ θ
)

+ c.c.

J3 = +

(
|∆|
κ
∂Tz τ− ⊗ du+

κ

|∆|
UT 1

τ−
⊗ θ
)

+ c.c.

ω1 = −|∆| duT τ− ∧ du+
κ2

|∆|
θT

1

τ−
∧ θ + c.c. (4.27)

ω2 = +κ θT ∧ du+ c.c.

ω3 = −iκ θT ∧ du+ c.c.

g = −i|∆| duT τ− ⊗ du+ i
κ2

|∆|
θT

1

τ−
⊗ θ + c.c.
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Here |∆| := det ∆ and κ is an arbitrary positive constant. This arbitrary constant

implies that there is actually a one-parameter family of HK structures on X . κ can

be interpreted as the arbitrary scale of the HK metric on the torus fibers of X .

Note that the holomorphic U(1)rC connection on MV , dA, that appeared as part

of the DW form does not appear in the HK structure of X . The reason is that the

projection pullback, π∗, in Freed’s cotangent to vertical bundle isomorphism, π∗L−1,

annihilates dA. Also, by a rescaling of κ, the dependence on |∆| can be removed from

the HK structures in 4.27. Thus the HK structure of X carries less information than

the full DW geometry does.

4.4 Twistor space geometry

We have seen that a HK manifold, X , admits a whole S2 ' CP1 of complex structures

compatible with the metric. The main idea of the twistor space approach is to

incorporate all these structures into one complex structure on a larger manifold, the

twistor space, Z. The specification of a holomorphic 2-form, Ω++, on Z allows one

to recover the full HK structure on X . Thus HK manifolds and twistor spaces are

effectively equivalent [41, 40].

This is useful because, as we will see in chapter 5, construction of supersymmetric

nlsms requires that one chooses a complex structure on the target space. Choosing one

complex structure out of the whole 2-sphere of them on a HK target space destroys

the symmetry among them. However, the equivalent twistor space has a unique

complex structure which combines the S2 of complex structures of the HK manifold

in a symmetric way. Thus it is natural to formulate HK nlsms using the twistor space

as target space.
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After briefly explaining the key properties of the twistor space associated to a HK

manifold, we will quote Hitchin et. al.’s theorem [41] on the equivalence of twistor

spaces to HK geometries.

The twistor space Z of a HK space X is a fiber bundle over the two-sphere of

complex structures of X with X as the fiber. Thus Z ' X × CP1 as a topological

space, but it is endowed with a special choice of complex structure, JZ , given by

choosing the complex structure J(~r), defined in (4.25), on the fiber over each point

~r ∈ CP1. Thus there is a holomorphic projection map p : Z → CP1 defining the

fiber bundle structure. Choosing a complex coordinate, ζ, on the CP1 base, we have

p : (m, ζ) 7→ ζ where m ∈ X . In these coordinates, the complex structure JZ acting

on T(m,ζ)Z ' TmX ⊕ TζCP1 is

JZ =

(
1− ζζ
1 + ζζ

J1 +
ζ + ζ

1 + ζζ
J2 + i

ζ − ζ
1 + ζζ

J3

)
⊕ J0, (4.28)

where J0 is the unique complex structure on CP1 (i.e., J0 : ∂ζ 7→ i∂ζ). Note that the

ζ-dependence of JZ means that although ζ is a complex coordinate on the CP1 base,

it is not a complex coordinate on the total twistor space, Z.

For each ζ ∈ CP1 we define the 2-form

Ω++ := (ω1 + iω3) + ζω2 − ζ2(ω1 − iω3), (4.29)

built out of the three Kähler forms on X . One can check that Ω++ is a symplectic

(2,0)-form on the fibers Zζ := p−1(ζ) with respect to the JZ complex structure. The

quadratic dependence of Ω++ on ζ is signalled by the ++ superscript. In global

terms, this dependence means that Ω++ is a holomorphic section of an O(2) complex

line bundle over CP1 (which can be pulled back to an O(2) bundle over Z by the

projection map). Another way of saying this is that Ω++ transforms as a charge

+2 field under the U(1) group of phase rotations of the homogeneous projective
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coordinates describing the CP1. This U(1) group will play an important role in

chapter 6.

A final structure on twistor space is an automorphism, σ : Z → Z, satisfying

σ2 = 1 and acting without fixed points. It is given in coordinates simply by the

antipodal map on the CP1 base and the identity map on the fibers,

σ : (m, ζ) 7→ (m,−1/ζ). (4.30)

It is easy to check that JZ ◦ dσ = −dσ ◦ JZ , showing that σ is antiholomorphic. It is

also true that Ω++ is invariant under σ in the sense that σ∗Ω++ = Ω++.

This construction of the (JZ ,Ω++, σ) structures on Z is interesting because of

a theorem of Hitchin et. al. [41, 40], which says that from any space Z with these

structures the HK space X can be reconstructed. More precisely, let Z be a (2r+ 1)-

dimC complex manifold such that

• Z is a holomorphic fiber bundle p : Z → CP1 over the projective line;

• there exists a holomorphic section Ω++ of Λ2T ∗F ⊗ O(2) defining a symplectic

form on each fiber, where TF is the bundle of tangent spaces to the fibers of p;

• Z has a free antiholomorphic involutive automorphism σ preserving Ω++ and

inducing the antipodal map on CP1.

Then the parameter space of holomorphic sections of p invariant under σ is a 4r-dimR

manifold, X , with a natural HK structure for which Z is the twistor space.
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Chapter 5

Harmonic Superspace

In this chapter we give a brief overview of the harmonic superpace formalism [36, 37]

for making N = 2 SUSY manifest in quantum field theory actions. We first review the

geometric setup of harmonic superspace, which extends space-time by both additional

fermionic coordinates as well as by additional bosonic coordinates parameterizing an

internal 2-sphere. We then summarize the properties of superfields which describe

hyper- and vector multiplets, and give their action principles. Next we describe

how the harmonic superspace action for hypermultiplets is related to the hyperkähler

geometry of the nlsm target space. We end with a brief comment on the relation

of harmonic superspace to “projective superspace”, which gives a slightly different

N = 2 covariant formalism.

5.1 Geometry of harmonic superspace (HSS)

Harmonic superspace [36, 37] is one way of dealing with supersymmetric theories with

8 real SUSY generators in a manifestly covariant manner.

In four space-time dimensions the 8 real SUSY generators form an SU(2)R doublet

of 2-component (Weyl) spinors, Qi
α, where i ∈ {1, 2} is the doublet index and α ∈

{1, 2} is the spinor index. SU(2)R is (part of) the automorphism group of the N = 2
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SUSY algebra, (3.1). The other generator of the N = 2 supertranslation algebra is

P µ, the generator of space-time translations.

Superspace is a space with one coordinate for each supertranslation generator.

Thus N = 2 superspace has the usual Minkowski space (R3,1) coordinates, xµ,

corresponding to P µ, and anticommuting (Grassmann) coordinates, θiα,

corresponding to Qi
α (as well as their complex conjugates). This space is denoted

R3,1|8, where the “8” superscript refers to the number of real Grassmann

coordinates. Scalar superfields, Φ(x, θ, θ), are maps from superspace to other spaces,

Φ : R3,1|8 →M, (5.1)

whereM might be R or C for a real or complex superfield, or might be a more general

manifold, M, to describe a nlsm with target space M.

Manifestly supersymmetric actions can now be written as scalar

translation-invariant functionals of superfields, i.e., as integrals over superspace of

superlagrangians which are local scalar functions of superfields. The problem with

this approach is that superfields on R3,1|8 give highly reducible representations of

the SUSY algebra, so the superlagrangians describe too many propagating degrees

of freedom, typically of high spins. It is generally a difficult problem to formulate

actions that preserve manifest supersymmetry and restrict to the desired set of

degrees of freedom (e.g., some number of hypermultiplets and vector multiplets) at

the same time.

Harmonic superspace (HSS) solves this problem for N = 2 supersymmetric field

theories by defining a subspace of N = 2 superspace which has half the anticommuting

coordinates while still preserving N = 2 supersymmetry. However, in order to define

this subspace, an extra 2-sphere must be added to the commuting coordinates. Thus

(the analytic subspace of) HSS is R3,1|4 × S2.

48



In [37] the S2 is identified with the coset space SU(2)S/U(1)S, and “harmonic

coordinates” u±i , i ∈ {1, 2} are introduced on the SU(2)S group. Note that this

U(1)S has nothing to do with the electromagnetic U(1) gauge group! To make this

clear, we have put an “S” — for “sphere” — subscript on the internal SU(2)S and

U(1)S groups used in the coset construction of the S2.

In particular, u±i are complex coordinates transforming as a doublet of SU(2)S,

and with charges ±1 under the U(1)S, and satisfy

u±i := εiju±j , u±i = ±u∓i , u+ju−i − u−ju+
i = δji . (5.2)

As a result of the last relation, any analytic function of the u±i can be expanded

in a power series in symmetrized products of the u±i . Non-vanishing functions on

S2 ' SU(2)S/U(1)S are those with vanishing net U(1)S charge.

U(1)S-covariant differential operators on the S2 are given by

D++ := u+i ∂

∂u−i
, D−− := u−i

∂

∂u+i
, D0 := u+i ∂

∂u+i
− u−i ∂

∂u−i
, (5.3)

whose commutators satisfy the SU(2)S algebra. A function, f (q), of definite U(1)S

charge q, satisfies D0f (q) = qf (q). The exterior derivative of any function, f , on the

S2 is given by

df = (D++f)ω−− + (D−−f)ω++, (5.4)

where ω±± := ∓2iu±jdu±j are covariant one-forms on the S2.

Invariant integration, “
∫
du”, over the S2 is very simple in harmonic coordinates,

giving convenient relations such as

∫
du 1 = 1,

∫
du u+

(i1
· · ·u+

in
u−j1 · · ·u

−
jm) = 0, (5.5)
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and many others [37].

A final important property of the S2 is that it has a fixed-point-free orientation-

reversing Z2 automorphism, the antipodal map, τ ′ : S2 → S2, which is inversion

through the origin if the S2 is realized as the unit sphere in R3. τ ′ acts on the u±i

coordinates by

τ ′ : u±i 7→ ±u∓i . (5.6)

Note that (τ ′)2 = −1 on the u±i , reflecting the fact that they are double-valued

coordinates on S2.

Introduce the new spinor and space-time coordinates

θ±α := u±i θ
i
α, θ

±
α̇ := u±i θ

i

α̇, xµA := xµ − i(θ+σµθ
−

+ θ−σµθ
+

), (5.7)

where the σµαα̇ are the usual Weyl spinor σ-matrices [49]. Note in particular that the

θ
±

are not the complex conjugates of the θ±; rather

(θ
±

) = ±θ∓. (5.8)

Then the analytic subspace of HSS is the space ' R3,1|4×S2 described by the subset

of coordinates

{xµA, θ
+
α , θ

+

α̇ , u
±
i }. (5.9)

Thus analytic superfields are just local functions of these coordinates. Note that the

combination of complex conjugation and the antipodal map on the S2 preserves the

analytic subspace of HSS. Denoting this combination of conjugations by a tilde, we

have

(̃u±i ) = u±i, (̃u±i) = −u±i , (̃θ±) = θ
±
, (̃θ

±
) = −θ±, (̃xµA) = xµA. (5.10)
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Note also that in this “analytic basis” (5.9), expressions like (5.3) are no longer valid,

and have to be modified by the usual change of basis manipulations.

It is remarkable that N = 2 SUSY transformations preserve the analytic

subspace of HSS. Superfields defined on the analytic subspace are called analytic,

and their components therefore form representations of the N = 2 SUSY algebra.

This analytic subspace of HSS plays in N = 2 SUSY a role similar to that played by

the chiral subspace in N = 1 SUSY. It is evident that any analytic superfield

contains the same number of anticommuting coordinates as a general (non-chiral)

N = 1 superfield. This leads to reducing the number of independent components in

comparison with general N = 2 superfields. However, all component fields depend

now on extra bosonic coordinates u±i . Therefore, any analytic superfield contains an

infinite number of component fields from the point of view of conventional field

theory. Nevertheless, we will see that actions can be formulated for which all but a

finite number of these component fields are non-propagating: they are “auxiliary”

fields which can be completely eliminated in favor of the propagating fields by

solving their algebraic equations of motion.

Differentiation with respect to the spinor coordinates is most conveniently

expressed in terms of the standard N = 2 supercovariant spinor derivatives, Di
α, D

i

α̇

in N = 2 superspace [49] by forming the combinations

D±α = u±i D
i
α, D

±
α̇ = u±i D

i

α̇. (5.11)

Thus, for example, D+
α is a supercovariant version of ∂/∂θ−α. One can show that an

analytic superfield, Φ, satisfies

D+
αΦ = D

+

α̇Φ = 0, (5.12)
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and, in fact, these conditions completely define the analytic subspace of HSS. The

algebra of the supercovariant derivatives (suppressing space-time indices and

irrelevant normalization constants) is

0 = {D±, D±} = {D±, D±} = {D±, D±}, ∂ ∝ {D±, D∓},

0 = {∂,D±} = {∂,D±} = {∂,D±±}, (5.13)

0 = [D±, D±±] = [D
±
, D±±], D∓ ∝ [D±, D∓∓], D

∓ ∝ [D
±
, D
∓∓

],

0 = [D±±, D±±], D0 ∝ [D±±, D∓∓], qX(q) = [D0, X(q)],

where in the last commutator, X(q) is any operator carrying U(1)S charge q. Thus

{∂,D+, D
+
, D++} is a maximal (anti)commuting subset of the supercovariant algebra,

showing that (5.12) is integrable, and, furthermore, that if Φ is analytic, then so is

any local functional of ∂m(D++)nΦ, ∂m(D++)nΦ̃, and the harmonic coordinates u±.

Integration over the anticommuting coordinates is, as usual, essentially the same

as differentiation. Thus the invariant measure on the analytic subspace of HSS is

∫
dθ(−4) :=

∫
d2θ+d2θ

+
:= (D−)2(D

−
)2
∣∣∣
θ=0

, (5.14)

where the vertical line in the last expression means that it should be evauated at

θ± = θ
±

= 0 after differentiation. Note that this measure carries U(1)S charge −4,

therefore only integrands with U(1)S charge +4 can give non-vanishing answers upon

integration.
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5.2 Hyper- and vector multiplet superfields

5.2.1 Hypermultiplets

The most general action for hypermultiplets can be written in terms of a complex

scalar analytic superfield, q+ (or a set of such superfields in the case of several

hypermultiplets) (Chapter 5 of [37]). It carries U(1)S charge +1, and its lowest

component has mass scaling dimension 0. Thus the leading (2-derivative) terms of a

general N = 2 IREA action for hypermultiplets is

SH =

∫
d4x du dθ(−4)L(+4)(q+, q̃+, u±, D++). (5.15)

Here L(+4) is a general analytic local real superfield functional of q+ with U(1)S

charge +4. As such it is a functional of q+, q̃+, and their D++ derivatives. Reality

is with respect to tilde-conjugation introduced in (5.10). This action describes a

hypermultiplet nlsm once (infinitely many) auxiliary component fields are eliminated

by their equations of motion.

There is a great deal of redundancy — different lagrangians describing the same

physics — in (5.15). It turns out (Chapter 11 of [37]) that the most general

hypermultiplet nlsm can be written in the form

SH =

∫
d4x du dθ(−4)

[
−q̃+D++q+ +

1

2
L(+4)(q+, q̃+, u−)

]
(5.16)

which depends on only a single D++ derivative, and has no explicit dependence on u+.

The first term describes a free hypermultiplet while the second encodes interactions

(the nonlinear terms in the nlsm). The equations of motion for q+ and q̃+ following
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from (5.16) are

D++q+ = +
1

2

∂L(+4)

∂q̃+
, D++q̃+ = −1

2

∂L(+4)

∂q+
. (5.17)

(Invariance of L(+4) under tilde conjugation implies that the second equation is just

the tilde conjugate of the first.) Expanding this equation in powers of q±, θ+, and

θ
+

gives an infinite set of coupled, nonlinear, 2nd order differential equations. In

the case of vanishing interaction term it is easy to eliminate an infinite number of

auxiliary fields, leaving the free equations of motion of a massless hypermultiplet.

(Hypermultiplet masses can only be described in a slight generalization of HSS which

includes central charges [37]; this will not be needed for our purposes.) In the case

of non-vanishing interactions elimination of the auxiliary fields is considerably more

complicated, and will essentially be the subject of section 5.3, where we will also see

the straight forward generalization of the above action to multiple hypermultiplet

superfields.

5.2.2 Vector multiplets

General N = 2 IREAs for U(1) vector multiplets in HSS are considerably more

complicated to describe. (There exists a simple description in chiral N = 2

superspace, but it does not seem to be able to be made EM duality-invariant, so we

will not describe it here.) However our pullback approach to constructing EM

duality-symmetric N = 2 actions will only require coupling U(1) vector multiplets

to a hypermultiplet nlsm by “gauging U(1) isometries” of the target space. This can

achieved in HSS in a way that is closely analogous to the usual minimal coupling of

gauge fields (i.e., the operation of “gauging global symmetries”) in

non-supersymmetric quantum field theory (chapter 7 of [37]).
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In particular, to construct a hypermultiplet nlsm with gauged U(1) isometries,

one simply replaces the D++ derivative on the S2 everywhere by its gauge-covariant

version,

∇++ := D++ + iV ++, (5.18)

where V ++ is a real analytic superfield with U(1)S charge +2. Reality means that

Ṽ ++ = V ++. This gauge field transforms under U(1) gauge transformations as

δV ++ = D++λ (5.19)

where λ is an arbitrary real analytic superfield with vanishing U(1)S charge. λ can

be used to gauge away all but the leading term of the harmonic expansion of V ++ so

that after gauge fixing,

V ++
gauge-fixed = u+

i u
+
j V (ij)(xA, θ

+, θ
+

). (5.20)

Thus there are only finitely many propagating component fields, and it is not difficult

to show that they correspond those of a U(1) vector multiplet.

The kinetic (Maxwell) action for V ++ is [GIOS, ch 7]

SV =
1

4e2

∫
d4x d8θ

∫
du1du2

V ++(x, θ, u1)V ++(x, θ, u2)

(u+
1 u

+
2 )2

, (5.21)

where (u+
1 u

+
2 ) := u+i

1 u
+
2i and e2 is the coupling. Note that this action is given as an

integral over the whole of N = 2 superspace (not just the analytic subspace) and is

non-local on the S2. An integration by parts together with the identityD++
1 (u+

1 u
+
2 )2 =

D−−1 δ(u1− u2) shows that the gauge variation of this action with respect to (5.19) is
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proportional to
∫
d8θV ++D−−λ ∝

∫
dθ(−4)V ++(D+)4D−−λ = 0 using the analyticity

of V ++ and of λ in the last 2 steps. Thus SV is indeed gauge-invariant.

The generalization of the above action to multiple vector multiplet superfields is

straight forward.

5.3 HSS construction of N=2 nlsm

As mentioned in the last section, it is a difficult problem to eliminate the auxiliary

component fields in the hypermultiplet nlsm action (5.16). Thus the connection

between the HSS hypermultiplet “potential” L(+4) and the IREA for the

propagating fields is obscure. As explained in chapter 3, the nlsm IREA is

completely determined by the target space geometry, X . A hypermultiplet nlsm has

a hyperkähler target space. So the question is, what is the connection between a

given hyperkähler metric, gMN , and the HSS potential L(+4)? We will now briefly

summarize the answer, following [37], by showing how to calculate L(+4) given gMN .

First, we introduce a convenient labelling for the r hypermultiplet superfields, q+i,

i ∈ {1, . . . , r}, and their tilde-conjugates, q̃+i. We combine them into a 2r-component

vector of superfields, q+α, α ∈ {1, . . . , 2r}, satisfying the reality condition

q̃+α := q+
α = Ωαβq

+β, (5.22)

where Ωαβ is the symplectic form Ω = Ir ⊗ ε where Ir is the r × r identity matrix,

and ε is the 2-index antisymmetric tensor normalized by ε12 = −ε12 = 1. Note that

Ω2 = −I2r, so q̃+
α = −q+α.

Now start with an r quaternionic-dimensional hyperkähler manifold X with given

metric gMN and complex structures (Ja)NM , a ∈ {1, 2, 3}, in a coordinate system ξ̃M

where M,N ∈ {1, . . . , 4r}.
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1. Change coordinates to ξµi with µ, ν ∈ {1, . . . , 2r} and i, j ∈ {1, 2} such that

the complex structures have the simple form

(Ja)νjµi = iδνµ(τa)ji , (5.23)

where τa are the Pauli matrices. Then,

2. Express the metric in these coordinates in terms of vielbeins,

gµi νj = Eαk
µi Ωαβεk`E

β`
νj , (5.24)

and their inverses, eµjαi , defined by eµjαiE
βk
µj = δβαδ

k
i .

3. Define ξµ± := ξµiu±i and e+µ±
α := ui+eµjαiu

±
j with u±i harmonic coordinates on an

S2. Then solve the linear first order system of PDEs,

e+µ+
α (δνµ + ∂µ+v

ν+) + e+µ−
α ∂µ−v

ν+ = 0, (5.25)

for the “harmonic bridge”, vµ+(ξνi, u±i ), where ∂µ± := ∂/∂ξµ±.

4. Define “analytic coordinates” by

ξµ+
A := ξµ+ + vµ+(ξνi, u±i ), (5.26)

and then define functions H++µ+ of them by

H++µ+(ξν+
A , u±i ) := D++vµ+(ξνi, u±i ), (5.27)

where D++ is given in (5.3). Note that (5.27) requires one to invert (5.26) to

find ξµ+ = ξµ+(ξν+
A , u±i ).
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5. Finally one inverts H++µ+ = 1
2
Ωµν∂Aν+L

(+4) to find L(+4), where ∂Aν+ := ∂/∂ξν+
A .

That is,

L(+4)(q+a, u) = 2

∫ q+a

∗
dζµ ΩµνH

++ν+(ζ, u). (5.28)

The fact that each of these steps can be carried out in principle follows non-trivially

from properties of hyperkähler geometry. All of these steps, except for the last one,

are difficult to carry out analytically except in a few special cases. Note that there

are infinitely many solutions to the PDEs (5.25), but that a unique one exists for

which H++µ defined by (5.27) is a function only of ξν+
A and u−i (i.e., has no explicit

u+
i -dependence).

These steps can be reversed to calculate gMN from L(+4). In this case, (5.27)

becomes a nonlinear differential equation for the bridge vµ+. Once a bridge is found,

the metric gµi νj can be reconstructed in a straight forward manner as outlined in

chapter 11 of [37].

5.4 Projective superspace

An alternative formalism to HSS for writing N = 2 covariant actions is “projective

superspace”, introduced in [50, 51, 52]. The projective superspace and HSS

formalisms are closely related. The geometry of projective superspace is the same as

that of HSS: both take place on the same supermanifold R3,1|8 × CP1. In projective

superspace, different coordinates are used to parameterize the CP1, namely a pair of

complex “isotwistor” coordinates, vi, which are simply the usual homogeneous

coordinates realizing CP1 as C2/C∗. They are related to the harmonic coordinates

by

ui+ =
vi√
vkvk

, u−i =
vi√
vkvk

. (5.29)
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In projective superspace, complex analyticity with respect to the isotwistor

coordinates plays the role of harmonic analyticity in HSS. This leads to projective

superspace superfields which are allowed to have singularities (poles) on CP1, in

contrast to the HSS superfields which are well-defined on the whole S2 ' CP1.

Finally, projective superspace actions are similar to those in HSS except that

instead of integrating lagrangians over the whole CP1 internal space, in projective

superspace one only integrates over a closed path (avoiding the poles) in the CP1.

Recently, Jain and Siegel [53] and Butter [54] have shown that the projective

superspace formalism can be derived from the HSS one in a simple way. They perform

a kind of analytic continuation of the 2-dimensional
∫
du integration of HSS to show

that one of the integrations can be reduced to boundary terms, thus leaving a one-

dimensional integral along a path in CP1.

Since the two formalisms are equivalent, we have not restricted ourselves by

focussing on the HSS formalism.
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Chapter 6

Proposed Solution

After having described all the necessary ingredients of our solution, we can finally

present a recipe combining them to create EM duality-symmetric N = 2 IREA

actions. We start by presenting a summary of the key ideas that are instrumental in

making our strategy successful. We then outline the four specific steps to be

followed in implementing it. Finally, we provide some details for step number 2.

6.1 Key ideas

The first key idea we use in our construction of the HSS N = 2 nlsm is to use the

total space, X , of DW geometry as the target space. In the traditional formulation

of the N = 2 IREA, the vector multiplet scalar fields are maps from space-time R3,1

into the Coulomb branch (CB),MV , which is an r-dimensional special Kähler space.

However, as we saw in chapter 3, the coupling matrix τIJ transforms under the action

of the Sp(2r,Z) EM duality group, thus breaking the EM duality-invariance of the

action. In contrast, the total space, X , of the CB is invariant with respect to Sp(2r,Z)

transformations, thus making X the natural geometrical object to use to construct a

duality-symmetric formulation of the IREA.
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The next major idea in our recipe is to use the facts: (1) that the target space

of an N = 2 hypermultiplet nlsm is necessarily a hyperkähler manifold [57]; and (2)

that the total space X has a natural hyperkähler structure, as described in chapter

4. Thus the natural N = 2 supersymmetric nlsm on X is a hypermultiplet nlsm.

The third idea we use is the harmonic superspace (HSS) construction of

hypermultiplet nlsms [36, 37]. This gives a manifestly N = 2 supersymmetric

formulation of our theory. However, it is important that we construct this nlsm in a

way that keeps the invariant geometric structures of X manifest. The existing HSS

constructions, reviewed in the last chapter, do not do this. The reason is that X as

a hyperkähler manifold has a whole 2-sphere of complex structures, and choosing

one of them to pull back with a HSS hypermultiplet analytic superfield destroys the

symmetry between these complex structures.

Our fourth idea is to use the twistor space Z formulation of X as the target

space of the HSS nlsm. As we have explained in chapter 4, the twistor space is the

Cartesian product Z = X ×CP1 endowed with a unique complex structure. Thus we

can naturally identify HSS analyticity with complex analyticity in Z by pulling back

geometrical objects on Z with HSS hypermultiplet analytic superfields. Furthermore,

the extra CP1 ' S2 dimension of Z can be naturally identified with the internal S2

of HSS by pulling back with the identity map.

Fifth, we notice that there is a natural invariant geometric object on Z, namely

the holomorphic (2,0) form Ω++ described in chapter 4, which when pulled back as

described above, can be integrated over HSS. It is thus the natural candidate for the

EM duality symmetric Lagrangian of our N = 2 nlsm. We will detail this step in more

detail in section 6.3 below. We conjecture that it is equivalent to the traditional HSS

procedure for constructing nlsm lagrangian reviewed in section 5.3; the difference is

simply that we avoid making coordinate choices which obscure the invariant geometric

structures of the target space.
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Finally, the hyperkahler nlsm constructed in this way has no propagating vector

multiplets. The solution to this is well known: vector multiplets can be naturally (and

N = 2 super-covariantly) coupled to a hypermultiplet nlsm by gauging isometries

of the target space. X has 2r isometries corresponding to translations along the

2r independent cycles of the T 2r fibers. Thus we can couple 2r vector multiplets,

corresponding to r “electric” and r “magnetic” gauge potentials. This is reminiscent

of the original trick of Zwanziger, reviewed in chapter 2, of doubling the number of

gauge potentials to achieve EM duality invariance. Gauging the isometries of X lifts

(higgses) the flat directions, reducing the nlsm target space to r complex dimensions,

the correct dimension to describe the degrees of freedom of the CB.

6.2 Recipe for constructing the solution

We now give an outline of the key steps that need to be completed in order to

implement the above ideas to construct N = 2 HSS EM duality-symmetric IREAs.

1. Construct the hyperkähler structures on X , and the complex structure on Z

from the CB data. This was completed in chapter 4.

2. Write a hypermultiplet nlsm on X in HSS using the pullback of the holomorphic

(2, 0)-form Ω++ on the twistor space by the hypermultiplet superfield q+. This

will be described in more detail in section 6.3 below.

3. Construct coordinate-invariant expressions for the Killing vectors generating

the isometries of X .

4. Gauge the isometries by coupling the Killing vectors to 2r HSS vector

superfields, V ++ : HSS → R2r ' T ∗pMV . This is simply done by replacing

D++ derivatives with U(1)-covariant ∇++ derivatives given by (5.18) in the

HSS hypermultiplet nlsm.
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5. Count the massless propagating degrees of freedom remaining after the Higgs

mechanism takes place. If there are more photons than are physically

required, then we will need to additionally couple a Siegel-type term to a

Lagrange multiplier field (as reviewed in chapter 2) to eliminate additional

degrees of freedom.

In the following section, we will show how our pullback method by HSS

hypermultiplet superfields is supposed to actually work. We will also conjecture the

equivalence of our pullback approach for constructing hyperkähler nlsm harmonic

superspace actions to the method described in [36, 37] and reviewed in section 5.3

above. This conjectured equivalence gives a simple geometric picture of harmonic

superspace nlsms in terms of the twistor space construction of hyperkähler

manifolds.

We will not address the last three steps of the above recipe in this thesis.

6.3 Pullback method for constructing nlsm action

We propose the following simple geometrical picture of harmonic superspace

hypermultiplet nlsms in terms of the twistor space description of the hyperkähler

target space X .

It is important to point out that Lindstrom and Roček [55] proposed a way of

writing an N = 2 lagrangian in projective superspace using the twistor space 2-

form. This construction is almost certainly equivalent to our approach in harmonic

superspace, though the details of how the two approaches are related have not been

worked out yet in concrete terms.

Recall that the twistor space Z ' X × CP1 has a natural holomorphic closed

(2,0)-form Ω++ which is a section of an O(2) bundle over the CP1 base of Z. This

latter simply means that Ω++ carries charge +2 with respect to the U(1) symmetry
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that acts by phase rotations of the complex coordinates on the CP1. Closure means

that dΩ++ = 0, where d is the exterior derivative on Z. Thus locally

Ω++ = dΘ++ (6.1)

for some holomorphic (1,0)-form Θ++ carrying U(1) charge +2.

Recall also that hypermultiplet superfields in HSS are maps

q+ : HSS→ X , (6.2)

carrying U(1)S charge +1. If we identify the CP1 base of Z ' X × CP1 with the

“internal” CP1 ' S2 of HSS, then q+ can be extended by this identification to a map,

q+ : HSS→ Z, which acts as the identity on the CP1 factors on the two sides. U(1)S

charges on HSS are then identified with the U(1) charges on Z. Thus q+ is really a

map to a section of an O(1) bundle over the CP1 base of Z:

q+ : HSS→ O(1). (6.3)

Finally, CP1 has a unique holomorphic (1,0)-form of U(1)S charge +2, namely ω++

introduced below eq. (5.4). Thus one can naturally integrate 1-forms such as Θ++

over CP1 to give the coordinate invariant quantity
∫
CP1 ω

++ ∧ Θ++. This quantity

is uninteresting on Z because it vanishes identically there, since the two 1-forms in

the integrand are both (1,0)-forms. However, upon pulling Θ++ back to HSS using

q+ it becomes a linear combination of (1,0)- and (0,1)-forms, and so can give a non-

vanishing answer.

In particular, complex coordinates, ξ+µ, on the O(1) bundle over Z, are maps

ξ+µ : O(1)→ C, (6.4)
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so the pullback of these coordinate functions by q+ are complex valued functions on

HSS:

q+∗(ξ+µ) := q+µ = ξ+µ ◦ q+ : HSS→ C, (6.5)

which we identify with hypermultiplet HSS superfields. In these coordinates, the

holomorphic (1,0)-form Θ++ on Z has the form

Θ++ = Θ+
µ (ξ+ν , u±i ) dξ+µ + Θ(ξ+ν , u±i )ω++ + Θ(+4)(ξ+ν , u±i )ω−−. (6.6)

Therefore, by definition of the pullback,

q+∗Θ++ = (Θ+
µ ◦ q+) dq+µ + (Θ ◦ q+)ω++ + (Θ(+4) ◦ q+)ω−−

= Θ+
µ (q+ν , u±i ) dq+µ + Θ(q+ν , u±i )ω++ + Θ(+4)(q+ν , u±i )ω−−. (6.7)

Now, by (5.4), dq+µ = (D++q+µ)ω−−+(D−−q+µ)ω++, and, using the fact that
∫
ω++∧

ω−− =
∫
du, we get

∫
CP1

ω++ ∧ q+∗Θ++ =

∫
du
[
Θ+
µ (q+ν , u±i )D++q+µ + Θ(+4)(q+ν , u±i )

]
. (6.8)

This has net U(1)S charge +4, so is suitable to integrate over the analytic subspace

of HSS. Also, the invariance of Ω++ under the involutive automorphism of Z pulls

back to the reality of the above integrand with respect to tilde conjugation on HSS.

Thus, a natural, coordinate invariant, candidate for the hypermultiplet nlsm action

is

SH =

∫
R3,1|4
d4x dθ(−4)

∫
CP1

ω++ ∧ q+∗Θ++. (6.9)
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(6.9) is our main result. It gives a coordinate-invariant construction of the

harmonic superspace action for a hypermultiplet nlsm. Note that its expression in

coordinates, (6.8), is very similar to the traditional HSS form of the hypermultiplet

nlsm action, given in (5.16). The main difference is that in place of q̃+ in (5.16),

(6.8) has the more complicated function Θ(q+, u±). This is presumably a reflection

of the fact that in writing (6.8) we did not make the special coordinate choices that

were made in arriving at (5.16).

Note that (6.9) involves only the (1,0)-form Θ++ on twistor space, related to the

(2,0)-form Ω++ by (6.1). We saw in chapter 4 that Ω++ encodes the hyperkähler

structures on X . Thus, as long as this action gives the right counting of the

propagating degrees of freedom, it can only be the hypermultiplet nlsm with target

space X . To actually prove this, though, we will have to expand our pullback action

in component fields and eliminate the auxiliary fields.
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Chapter 7

Conclusions and Outlook

7.1 What we have learned

Here is a list of the key new lessons we have learned in this thesis

• We gave a recipe for how to construct EM duality-symmetric N = 2 IREAs

using the pullback approach. This recipe is the main result of our

investigations, and is nearly uniquely specified by the invariant geometric

pullback approach. However, we have not completed a proof that it gives the

correct set of propagating degrees of freedom.

• We conjectured the equivalence of our pullback approach for constructing

hyperkähler nlsm harmonic superspace actions to the traditional method

described in [37]. This conjectured equivalence gives a simple geometric

picture of harmonic superspace nlsms in terms of the twistor space

construction of hyperkähler manifolds.

• Finally, along the way we discovered an extra geometric structure in the Donagi-

Witten formulation [38] of the special Kähler geometry of the Coulomb branches

of N = 2 supersymmetric gauge theories. The possible interpretation and

implications of this extra structure is discussed below.
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7.2 What is left to do

Here are the tasks that need to be completed in the scenario outlined back in chapter

4:

1. Write a hypermultiplet nlsm on X in HSS using the pullback of the holomorphic

(2, 0)-form Ω++ on the twistor space by the hypermultiplet superfield q+.

2. Construct coordinate-invariant expressions for the Killing vectors generating

the isometries of X .

3. Gauge the isometries by coupling the Killing vectors to 2r HSS vector

superfields.

4. Count the massless propagating degrees of freedom remaining after the Higgs

mechanism takes place. If there are more photons than what is physically

required, then we may need to additionally couple a Siegel-type term to a

Lagrange multiplier to eliminate additional degrees of freedom.

Task 1 is a computation using coordinate expressions derived in chapter 4.

However, the main difficulty is to find coordinates on the twistor space, Z, which

are complex with respect to the complex structure JZ . The coordinates introduced

in chapter 4 do not satisfy this constraint. We may need to solve a coupled set of

partial differential equations to find those holomorphic coordinates, a task that may

or may not be as difficult as solving the differential equations (5.25) for the bridge

functions in HSS as explained in chapter 5.

Task 2 involves first a straightforward computation using the coordinate

expressions found in chapter 4 to find the Killing vectors. The next step then is to

rewrite these expressions in terms of the holomorphic twistor coordinates found in

task 1.
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Task 3 is then simply the substitutionD++ → ∇++ in the Lagrangian, as described

in chapter 5.

Task 4 is a potentially difficult one. One possible difficulty is the need to find a

possibly nonlinear Lagrange multiplier superfield. Another difficulty is the need to

find the appropriate term to couple it to in the Lagrangian so that it may correctly

eliminate the correct number of propagating degrees of freedom using its equation of

motion.

7.3 Interesting questions

7.3.1 Extra structure in the DW formulation of SK geometry

We have seen that there exist coordinates, (x, x̂, u), on the total space X , in terms of

which local complex coordinates are given by z = ∆x + τ(u) x̂ and u. We have also

defined θ = ∆dx + τ(u)dx̂ to be a global (1,0)-form and computed that ∂θ = dτ 1
τ−
θ

and ∂θ = dτ 1
τ−
θ. This implies that the set of 1-forms {θ, θ} is “in involution”, which,

by Frobenius’ theorem, implies that the subbundle H ⊂ TX annihilated by θ and θ

is integrable. That is to say that there exists a submanifold Γ ⊂ X whose tangent

space at a point p is Hp and is annihilated by {θ, θ}, i.e., θ(v) = θ(v) = 0 for all

v ∈ Hp.

Γ is actually a section of π : X → MV simply because the tangent space to the

fiber at p is the kernel of dπ: TpXu = ker(dπ) = {∂z, ∂z} which further implies that

TpXu
⋂
Hp = {0}. Hence, the projection map π is an isomorphism from Hp into the

tangent space to MV . We will denote this isomorphism by s : Hp ↔ Tπ(p)MV .

Donagi and Markman [47] and Freed [39] put an extra condition on Γ such that

it is lagrangian with respect to the DW form L, i.e., L = dθTdu without any terms

proportional to duiduj. This basically means that they set by hand dA = 0 in (4.19).

69



However there is nothing in the low energy physics on the CB that requires this

condition.

There are two interesting questions that one can ask in this context:

(1) Is the dA part of L observable mathematically? In other words, is there a

coordinate-invariant way of describing it?

(2) Is the dA part of L observable physically, i.e., in the low energy Coulomb

branch physics?

The answer to the first question is simply, yes. The dA terms in L define a (2,0)-

form that lives in the cotangent bundle of the Coulomb branch, i.e., dA ∈ Λ2T ∗MV ,

defined by dA(v, w) := L(s−1v, s−1w) for any two vectors v and w ∈ TMV . This

gives a coordinate-invariant definition of dA. To justify calling it dA, we need to show

that it is closed. But since dL = 0, d(dA) = 0 immediately follows, and implies that

dA is locally exact.

The answer to the second question may potentially have very interesting

implications. We have seen from the discussion at the end of section 4.2.3 that dA

does not appear in the 2-derivative terms of IREA on the Coulomb branch. But

how about in the (i) central charge and (ii) higher-derivative terms on the Coulomb

branch?

For the central charge, we mentioned before that
∮
γ
L = dZγ which implies that

Zγ ∼
∫

Σ
where Σ ∈ H2(X ) is a 2-cycle satisfying appropriate boundary conditions. If

MV ∼ Cr with r ≥ 2, there exists a non-trivial Σ ∈ H2(MV ) homologous to a 2-torus

which winds the transverse intersection of two complex codimension 1 singularities of

MV . So perhaps the integral of the DW 2-form along this non-trivial cycle,
∮

Σ
L =∮

Σ
dA computes some global property of Zγ on MV .

Also, note the absence of a local observable of dA on the Coulomb branch. This

follows because for any 2-surface Σ with boundary ∂Σ = C,
∫

Σ
dA =

∮
C
A. Since

A(u) is a holomorphic 1-form, its integral along the boundary vanishes,
∮
C
A = 0,
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by Cauchy’s theorem. However, if there exists a co-dim-1 singularity linking C, then∫
Σ
dA =

∮
C
A 6= 0 if A(u) has a pole as u approaches the singularity. Thus poles in A

at singularities on the Coulomb branch could also lead to contributions to the central

charge.

As for the physical possible relationship of dA to 4-derivative terms, it has been

shown in [56] that there exists 4-derivative terms on r ≥ 2 Coulomb branches that are

holomorphically protected. Thus these terms could in principle be calculated in terms

of holomorphic structures on the Coulomb branch. Could this structure possibly be

related to dA?

7.3.2 Relation of the DW 2-form to the twistor 2-form

Two a priori different 2-forms have played an important role in our program. The

DW 2-form L and the twistor space 2-form Ω++, both described in chapter 4, are

closed (2,0) forms. The DW 2-form is a symplectic form on X , while Ω++ restricts

to a symplectic form on the fibers of twistor space, which are isomorphic ot X . As

symplectic forms they each give X the structure of a phase space of a complex classical

dynamical system (which is integrable, to boot). What is the relation between these

two auxiliary dynamical systems? After coupling in the vector superfields, do these

two systems become equivalent? That’s one question we hope to find an answer to.
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