

Breakup of deuteron from ${}^7\text{Be} + \text{d}$ reaction at 5 MeV/u

S. Maity^{1,*}, D. Gupta^{1,†}, Sk M. Ali¹, K. Kundalia¹, Swapan K. Saha^{1,‡}, O. Tengblad², J.D. Ovejas², A. Perea², I. Martel³, J. Cederkall⁴, and J. Park^{4§}

¹Department of Physics, Bose Institute,
93/1 APC Road, Kolkata 700009, India

²Instituto de Estructura de la Materia – CSIC,
Serrano 113 bis, ES-28006 Madrid, Spain

³University of Huelva, Avenida Fuerzas Armadas sin
numero Campus “El Carmen”, 21007, Huelva, Spain and

⁴Department of Physics, Lund University, Box 118, SE-221 00 Lund, Sweden

Introduction

The deuteron has been studied for decades in the context of breakup and stripping nuclear reactions [1–8]. Since the deuteron is loosely bound with binding energy 2.225 MeV, it is also studied in the context of loosely bound stable and unstable nuclei. The deuteron projectile breakup on several targets [2, 3] and the deuteron target breakup with different projectile nuclei [4–7] were carried out earlier, involving stable nuclei. An earlier study [8] of the deuteron breakup reactions on ${}^7\text{Li}$ shows that the stripping process is more important than the elastic breakup process. However, similar studies with the radioactive counterpart ${}^7\text{Be}$ does not exist. The ${}^7\text{Be}(\text{d},\text{p})$ transfer reaction is studied in Ref. [9]. To compare it with the breakup of deuteron yielding a three-body final state, the ${}^7\text{Be}(\text{d},\text{pn})$ needs to be studied. The deuteron being loosely bound disintegrates into a proton and a neutron. Neutron yields from the missing mass spectra can be obtained to study deuteron breakup.

Experimental Results

The experiment was carried out at HIE-ISOLDE, CERN with 5 MeV/u ${}^7\text{Be}$ beam

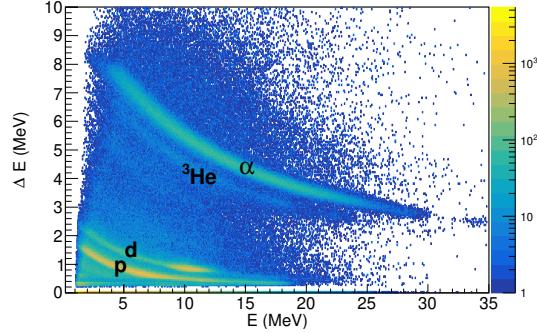


FIG. 1: The $\Delta E - E$ spectrum of p, d, ${}^3\text{He}$, and α , detected at W1 + Pad pentagon telescopes, from 5 MeV/u ${}^7\text{Be}$ on CD_2 target.

on a 15 μm CD_2 target. A 15 μm CH_2 and a 1 mg/cm^2 ${}^{208}\text{Pb}$ target were also used for background subtractions and normalization respectively. The setup consisted of an annular detector S3 covering $8^\circ - 25^\circ$, a set of 5 W1 DSSDs in a pentagon geometry covering $40^\circ - 80^\circ$. The back angles $127^\circ - 165^\circ$ were covered by BB7 DSSDs. The DSSDs were backed by Silicon pad detectors. The details of the setup are given in Ref. [9, 10]. The Monte Carlo simulations for the deuteron breakup from ${}^7\text{Be} + \text{d}$ reaction were carried out with NPTool [11]. The neutron is considered as the missing mass in the simulations as it is not detected in the experiment. Using energy momentum conservation in ${}^7\text{Be}(\text{d},\text{pn})$, the missing mass can be obtained from the en-

*Electronic address: subhankar@jcbose.ac.in

†Electronic address: dhruba@jcbose.ac.in

‡Former faculty

§Present Address: Center for Exotic Nuclear Studies, Institute for Basic Science, 34126 Daejeon, South Korea

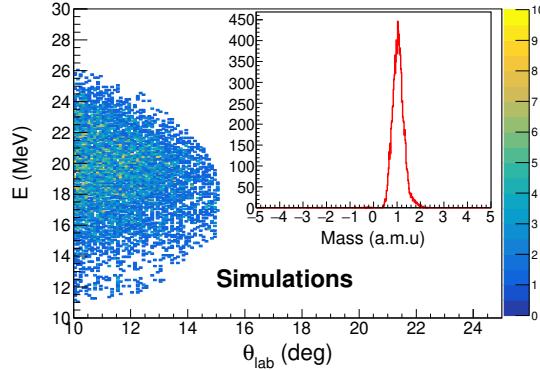


FIG. 2: $E - \theta$ plot from simulations for ${}^7\text{Be}$ detected in coincidence with protons from the breakup reaction ${}^7\text{Be}(\text{d},\text{pn})$ at 5 MeV/u. The inset shows the resulting missing mass spectrum.

ergy of protons and ${}^7\text{Be}$,

$$E_{beam} = E_p + E_n + E_{{}^7\text{Be}} + 2.225 \text{ MeV} \quad (1)$$

$$\vec{P}_{beam} = \vec{P}_p + \vec{P}_n + \vec{P}_{{}^7\text{Be}}. \quad (2)$$

The particles in the pentagon W1 telescopes are identified from $\Delta E - E$ spectra (Fig. 1). In S3, there is no particle identification. Thus Monte-Carlo simulations, $E - \theta$ plots, etc of particles detected in S3 were used to identify ${}^7\text{Be}$. The protons and ${}^7\text{Be}$ were detected in coincidence for identification of deuteron breakup events.

Discussion

Fig. 2 shows $E - \theta$ plot from the Monte-Carlo simulations of the deuteron breakup reaction ${}^7\text{Be}(\text{d},\text{pn})$ at 5 MeV/u. The energy and angular range of the detected ${}^7\text{Be}$ in coincidence with protons is apparent from the plot. The resulting missing mass distribution is also shown in the inset of the figure. Preliminary analysis of the missing mass distributions

from the experimental data gives a value of 1.152 ± 0.443 a.m.u as compared to the mass of the neutron 1.008 a.m.u. Angular distributions of the breakup fragments and detailed theoretical studies are in progress.

Acknowledgments

The authors thank the ISOLDE engineers in charge, RILIS team and Target Group at CERN for their support. D. Gupta acknowledges research funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 654002 (ENSAR2) and ISRO, Govt. of India under grant no. ISRO/RES/2/378/15-16.

References

- [1] G. Baur and D. Trautmann, Phys. Lett. 42, 31-34 (1972).
- [2] B. V. Rybakov et al., Nucl. Phys. 23, 491-498 (1961).
- [3] M. Avrigeanu et al., EPJ Web of Conferences 21, 07003 (2012).
- [4] S. Bertelli et al., SIF Congress 2010 34C, 5 (2011).
- [5] C. E. Macdowell et al., Nucl. Phys. B 49, 333-344 (1972).
- [6] T. Tanabe et al., J. Phys. Soc. Jpn. 25, 1 (1968).
- [7] S. Kikuchi et al., J. Phys. Soc. Jpn. 15, 5 (1960).
- [8] T. Ye et al., Phys. Rev. C 80, 014604 (2009).
- [9] Sk M. Ali et al., Phys. Rev. Lett. 128, 252701 (2022).
- [10] K. Kundalia et al., Phys. Lett. B 833, 137294 (2022).
- [11] A. Matta et al., J. Phys. G: Nucl. Part. Phys. 43, 045113 (2016). <https://github.com/adrien-matta/nptool>