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Abstract

A measurement of total inclusive and fiducial W and Z boson production cross sec-
tions in pp collisions at

√
s = 13 TeV is presented. Electron and muon final states are

studied in a data sample collected with the CMS detector corresponding to an inte-
grated luminosity of up to 43± 2pb−1. The measured total inclusive cross sections
times branching fractions are σ(pp → W+X) × B(W+ → `+ν) = 11370 ± 50 (stat)
± 230 (syst) ± 550 (lumi) pb, σ(pp → W−X)× B(W− → `−ν̄) = 8580 ± 50 (stat) ±
160 (syst) ± 410 (lumi) pb, and σ(pp → ZX)× B(Z → `+`−) = 1910 ± 10 (stat) ±
40 (syst) ± 90 (lumi) pb for the dilepton mass in the range of 60 to 120 GeV. The mea-
sured values agree with next-to-next-to-leading-order QCD cross section calculations.
Inclusive cross sections and ratios of cross sections are reported.
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1 Introduction
The production of W and Z bosons is one of the most prominent examples of hard scatter-
ing processes at hadron colliders [1]. Theoretical predictions are available at next-to-next-to-
leading order (NNLO) [2–6] in perturbative quantum chromodynamics (QCD). The calcula-
tions are limited by uncertainties in parton distribution functions (PDFs), missing higher-order
QCD effects, and electroweak (EW) radiative corrections, which are available at next-to-leading
order (NLO) [7–10]. Precise measurements of inclusive cross sections provide tests of pertur-
bative QCD and validate the theoretical predictions of higher-order corrections. Additionally,
accurate measurements can be used to constrain PDFs.

Inclusive W and Z boson production cross sections, their ratios, and differential cross sections
were previously measured by the ATLAS and CMS Collaborations at the CERN large hadron
collider (LHC) in proton-proton collisions at

√
s = 7 TeV and 8 TeV [11–13].

This Summary describes the inclusive measurement at
√

s = 13 TeV, performed in the electron
and muon decay channels, with the CMS detector. A data sample collected in 2015 correspond-
ing to an integrated luminosity of up to 43± 2 pb−1 is used.

2 The CMS experiment
The central feature of the CMS apparatus is a superconducting solenoid, of 6 m internal diame-
ter, providing a field of 3.8 T. Within the field volume are a silicon pixel and strip tracker, a crys-
tal electromagnetic calorimeter (ECAL), and a brass/scintillator hadron calorimeter. Muons
are measured in gas-ionization detectors embedded in the steel flux-return yoke of the magnet.
CMS uses a right-handed coordinate system, with the origin at the nominal interaction point,
the x axis pointing to the center of the LHC, the y axis pointing upwards, perpendicular to the
plane of the LHC ring, and the z axis along the counterclockwise-beam direction. The polar
angle θ is measured from the positive z axis, and the azimuthal angle φ is measured in the x-y
plane. The pseudorapidity η is defined by η = − ln[tan(θ/2)]. Details of the CMS detector and
its performance can be found in Ref. [14].

3 Data and simulation events
Because of the high rate of collisions and the limited bandwidth for data processing, the data
acquisition system must be selective in deciding which events are sufficiently interesting to be
kept for analysis. The trigger makes rapid decisions by executing simplified muon and electron
reconstruction algorithms. For this analysis, the events are collected when triggered by the
presence of at least one electron with large transverse energy, ET > 23 GeV, and |η| < 2.5, or
at least one muon with large transverse momentum, pT > 20 GeV, and |η| < 2.4, with loose
isolation and identification requirements.

Several Monte Carlo event generators are used to simulate the signal and background pro-
cesses. The MadGraph5 aMC@NLO program [15] provides event samples for the W and Z bo-
son signal and top background, using the NNPDF 3.0 [16] PDF and PYTHIA 8 [17, 18] for the
parton shower. Diboson backgrounds are generated using POWHEG [19–22] and PYTHIA 8.
For all processes, the detector response is simulated using a detailed description of the CMS
detector, based on the GEANT4 package [23]. Minimum bias events are superimposed on the
simulated events to emulate the additional pp interactions per bunch crossing (pileup). These
samples are reweighted to represent the pileup distribution as measured in the data. The aver-
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age number of pileup events per beam crossing in the analyzed data collected in 2015 is about
twenty.

4 Object and event selection
Leptonic W boson decays are characterized by a prompt, energetic, and isolated charged lep-
ton and a neutrino giving rise to significant missing transverse energy, Emiss

T . Events used in
the cross section measurement are not required to have a minimum reconstructed Emiss

T , but
the Emiss

T distribution is used as a discriminant against background from multijet events. The
Z boson decays to leptons are selected by requiring two energetic and isolated leptons of the
same flavor and, in the case of the muon channel, opposite charge. The Z boson candidates are
required to have a reconstructed dilepton mass between 60 and 120 GeV. Samples of Z boson
candidates satisfying looser lepton requirements are used to estimate efficiencies. Measure-
ments are performed in the electron and muon decay channels.

Electrons are identified as clusters of energy deposits in the ECAL matched to tracks measured
with the silicon tracker [24–28]. The ECAL fiducial region is defined by |η| < 1.444 (barrel) or
1.566 < |η| < 2.5 (endcap), where η is the pseudorapidity of the energy cluster. The barrel-
endcap transition region and the first ring of endcap trigger towers are excluded because they
are partially obscured by cables and services exiting between the barrel and endcaps. A clus-
ter is considered to be within the acceptance of the ECAL if it is within the ECAL fiducial
region and has transverse energy ET > 25 GeV. Electrons candidates are identified using the
simple cut-based approach using information of the cluster shape, hadronic activity, and track
quality. Electrons are required to be isolated from other reconstructed particles in a cone of
∆R = 0.3, where ∆R =

√
∆η2 + ∆φ2. Particle candidates are identified using a particle-flow al-

gorithm [29, 30] that provides a complete description of the event in terms of electrons, muons,
photons, charged hadrons, and neutral hadrons. An electron candidate is selected if the sum
of transverse momenta of particles in the cone is less than 11% of the candidate’s transverse
energy.

Muons are reconstructed from seed tracks in the muon detector combined with silicon strip
and pixel information using a global fit [31, 32]. In the pT range of interest, the momentum
resolution is driven by the inner tracking system. Muons with pT > 25 GeV and |η| < 2.4 are
selected, which is consistent with the acceptance of the single muon trigger. Muon candidates
are identified using the simple cut-based approach using information of the track and global
fit quality. A relative isolation variable is computed as discussed for electrons, but in a cone of
radius ∆R = 0.4 and with an isolation selection requirement of less than 12%.

5 Acceptance and efficiencies
The acceptance for W or Z boson events is the fraction of generated events for which the lep-
tons satisfy the restrictions on η and pT. The event selection criteria will select a subset of
the accepted events, and the efficiency specifies the fraction of events selected. Explicitly, the
electron are required to have pT > 25 GeV and |η| < 1.4442 or 1.566 < |η| < 2.5, while the
muons must have pT > 25 GeV and |η| < 2.4. For Z boson events, only events generated with
60 GeV < mZ < 120 GeV are considered. Other detector non-uniformities are accounted for in
the efficiency to reconstruct leptons. This acceptance definition is used to separate experimen-
tal from theoretical uncertainties in the measurement. Data to simulation ratios of efficiencies
are used as scale factors. No single event generator gives a reliable description of both EW
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and QCD effects. The acceptance is estimated using Monte Carlo simulation based on Mad-
Graph5 aMC@NLO. The effects of non-perturbative QCD, higher-order QCD, and electroweak
corrections on the estimated acceptance are investigated using specific simulation tools, from
which uncertainties are derived [7–10, 33, 34]. The experimental results are quoted for NNPDF
3.0. The uncertainty related to the PDF is estimated following the NNPDF prescription.

6 Signal extraction
The W boson candidate events are required to have an identified electron or muon. The W bo-
son signal and background yields are obtained from the Emiss

T distributions using a unbinned
maximum-likelihood fit. The missing transverse energy is calculated with the particle-flow
algorithm by adding the transverse energy vectors of all identified particles. Particle-flow
candidates with absolute pseudorapidity larger than 3.0 are not considered in the Emiss

T cal-
culation. These are measured using the forward hadronic calorimeter (HF) which is not fully
commissioned for the analyzed data. Based on its properties, each particle is associated with
a weight, which describes its probability to originate from pileup and is used to rescale its
four-momentum [35]. After rescaling, particles with a very small weight or a very small trans-
verse momentum are discarded. The transverse energy vectors of the pileup corrected particles
are then added up to determine Emiss

T . Since the missing transverse energy reconstruction al-
gorithm already includes pileup jet removal, no further pileup corrections are applied. An
accurate Emiss

T measurement is essential to distinguish the W boson signal from QCD multi-
jet backgrounds. The missing transverse energy response and resolution is derived from a Z
boson sample. The recoil in these events is studied in data and the measured performance is
applied to the simulation as a function of the pT of the generated W boson. Other background
processes from W → τν, Drell–Yan, diboson, and top-pair production also become significant
at high Emiss

T , contributing about 10% of the total selected yield. The background contribution
from cosmic rays in the W→ µν channel is negligible. The Emiss

T model is fitted to the observed
distribution as the sum of three contributions: the W boson signal, the QCD background, and
other backgrounds. The QCD background is modeled by an analytic function, while the signal
and EW backgrounds are modeled with simulation-based fitting functions [11]. The EW contri-
butions are normalized to the W boson signal yield in the fit through the ratios of the theoretical
cross sections. Figure 1 shows the Emiss

T distributions of the inclusive W boson samples and the
results of the fit.

To extract the Z boson yield, the events in the dilepton mass window are counted. The yields
contain a contribution of about 3% from γ∗-mediated processes, including interference effects,
as estimated with MCFM [36]. Background contamination is estimated from simulation to be
about 0.6%. Figure 2 shows the dilepton mass distributions of the inclusive Z samples. The
signal yields, the acceptances, and the efficiencies are summarized in Table 1.

7 Systematic uncertainties
The systematic uncertainties are summarized in Table 2 for the electron channel and in Table 3
for the muon channel. The leading experimental uncertainty in the measurement of inclusive
cross sections comes from the integrated luminosity of the data sample. The luminosity of the
data sample is measured with an uncertainty of 4.8%. Future calibrations of the luminosity,
by means of a procedure pioneered by van der Meer [37], consisting of beam scans along the
vertical and horizontal directions, will improve this uncertainty significantly and might lead to
a shift of the mean value of the inclusive cross sections. In measurements of the ratios of cross



4 8 Results

Figure 1: The missing transverse energy distributions for W+ (left) and W− (right) boson candi-
date events in the electron (top) and muon (bottom) final states. The dotted orange lines shows
the distribution of the W boson signal.

sections this uncertainty cancels. The second leading experimental uncertainty comes from the
measurement of the lepton reconstruction and identification efficiency, which is larger in the
electron channel. Other uncertainties come from theoretical uncertainties, which are dominated
by the resummation and initial state radiation uncertainties. For the measurement of the ratios
of cross sections the correlations for the theoretical uncertainties are taken into account.

The systematic uncertainties affecting the shape of the Emiss
T distribution are considered with

alternative shapes in the maximum-likelihood fit. These include uncertainties in modeling the
lepton momentum scale and resolution and also in the Emiss

T scale and resolution.

8 Results
The theoretical predictions of cross sections and cross section ratios are computed at NNLO
with the program FEWZ [38–41] and the NNPDF 3.0 set of PDFs. The uncertainties in these pre-
dictions, at the 68% CL, include contributions from the uncertainty of the strong coupling con-
stant αs [42, 43], the choice of heavy-quark masses (charm and bottom quarks) [44], as well as
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Figure 2: The dilepton mass distributions for Z boson candidate events in the electron (left) and
muon (right) final states.

Table 1: The background subtracted signal yields, acceptances, and efficiencies. The Z bo-
son yield uncertainties are given by Poisson statistics, while the W boson yield uncertainties
are determined from the fit. Uncertainties in the acceptances and efficiencies are discussed in
Section 7.

Source Z→ e+e− W+ → e+ν W− → e−ν

Yields 15290± 120 122320± 980 98200± 950
Acceptance 0.33± 0.01 0.43± 0.01 0.44± 0.01
Efficiency 0.56± 0.04 0.58± 0.02 0.60± 0.02
Source Z→ µ+µ− W+ → µ+ν W− → µ−ν

Yields 23670± 150 167710± 830 131250± 910
Acceptance 0.36± 0.01 0.44± 0.01 0.46± 0.01
Efficiency 0.80± 0.02 0.78± 0.01 0.79± 0.01

Table 2: Systematic uncertainties in percent for the electron channel. “NA” means that the
source either does not apply or is negligible.

Source W+ W− W W+/W− Z W+/Z W−/Z W/Z
Lepton charge, reco. & id. [%] 2.1 2.0 2.1 0.6 2.5 1.2 1.0 1.0
Bkg. subtraction / modeling [%] 1.4 1.4 1.4 0.9 0.6 1.5 1.5 1.5
Emiss

T scale and resolution shape NA shape
Electron scale and resolution shape NA shape
Total experimental [%] 2.5 2.5 2.5 1.1 2.6 1.9 1.8 1.8
Theoretical uncertainty [%] 1.6 1.4 1.4 1.9 1.6 1.9 1.9 1.7
Lumi [%] 4.8 4.8 4.8 NA 4.8 NA NA NA
Total [%] 5.6 5.6 5.6 2.1 5.7 2.7 2.6 2.5
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Table 3: Systematic uncertainties in percent for the muon channel. “NA” means that the source
either does not apply or is negligible.

Source W+ W− W W+/W− Z W+/Z W−/Z W/Z
Lepton charge, reco. & id. [%] 1.9 1.7 1.8 0.3 2.2 0.6 0.6 0.6
Bkg. subtraction / modeling [%] 0.6 0.6 0.6 0.4 0.6 0.8 0.8 0.8
Emiss

T scale and resolution shape NA shape
Muon scale and resolution shape NA shape
Total experimental [%] 2.0 1.8 1.9 0.5 2.3 1.1 1.1 1.1
Theoretical Uncertainty [%] 2.0 1.7 1.3 2.3 1.5 2.0 1.9 1.6
Lumi [%] 4.8 4.8 4.8 NA 4.8 NA NA NA
Total [%] 5.6 5.4 5.3 2.3 5.5 2.3 2.2 1.9

neglected higher-order corrections beyond NNLO, which are estimated by allowing the renor-
malization and factorization scales to vary within a factor of two. Both scales are varied up and
down together. The NNLO predictions for the total cross sections times branching fractions are
11330± 300 pb for W+, 8370± 230 pb for W−, and 1870± 50 pb for Z boson production. The
Z boson cross section requires an invariant mass within the range 60 to 120 GeV, and it includes
the effects of virtual photons.

The results are presented as total and fiducial inclusive cross section measurement. For fiducial
measurements the systematic uncertainties are reduced because no theoretical extrapolation of
the result to the full phase space is performed. The measurements of the W and Z boson cross
sections in the electron and muon channel yield a test of lepton universality. The results in the
electron and muon decay channels are compatible with a p-value of 0.85. Figure 3 shows the
ratios of the total inclusive cross sections compared to previous experimental checks of lepton
universality and the standard-model expectation. Assuming universality of lepton couplings
to W and Z bosons, the channels are combined by calculating an average cross section value
weighted by their statistical and systematic uncertainties. In the combination the luminosity
uncertainty is assumed to be fully correlated and the other uncertainties are treated as uncor-
related.

A summary of total and fiducial inclusive W+, W−, W, and Z production cross sections times
branching fractions, W+, W−, and W to Z and W+ to W− ratios, and their theoretical predic-
tions are shown in Table 4 and Table 5. Figure 4 and Figure 5 show the ratio of the experimental
results and the theoretical predictions.

The predictions of the total and fiducial inclusive cross sections and their ratios have been cal-
culated for five PDF sets: NNPDF3.0, CT14 [45], MMHT2014 [46], ABM12LHC [47], and HERA-
PDF15 [48]. As discussed earlier, the theoretical predictions are derived with FEWZ. The uncer-
tainties have contributions from the uncertainty of αs, the choice of heavy-quark masses (charm
and bottom quarks), as well as neglected higher-order corrections beyond NNLO, which are
estimated by allowing the renormalization and factorization scales to vary within a factor of
two. The predictions are summarized in Table 6 and shown in comparison with the measured
results for cross sections and ratios of cross sections of the W+ and W− to Z and W+ to W−

fiducial cross sections in Figure 6 and Figure 7. The predictions agree well with the measure-
ments. The experimental precision is already comparable with theoretical uncertainties. The
uncertainty on the preliminary luminosity calibration dominates the comparison.

Figure 8 and Figure 9 show the measured and predicted W+ versus W− and the W versus Z
fiducial cross sections for five different PDF sets.

Figure 10 shows the measurements of the total W+, W−, W, and Z production cross sections
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Table 4: Summary of total inclusive W+, W−, W, and Z production cross sections times branch-
ing fractions, W+, W−, and W to Z and W+ to W− ratios, and their theoretical predictions.

Channel σ×B [pb] (total) NNLO [pb]
e+ν 11390± 90 (stat)± 340 (syst)± 550 (lumi)

W+ µ+ν 11350± 60 (stat)± 320 (syst)± 550 (lumi) 11330+320
−270

`+ν 11370± 50 (stat)± 230 (syst)± 550 (lumi)
e−ν 8680± 80 (stat)± 250 (syst)± 420 (lumi)

W− µ−ν 8510± 60 (stat)± 210 (syst)± 410 (lumi) 8370+240
−210

`−ν 8580± 50 (stat)± 160 (syst)± 410 (lumi)
eν 20070± 120 (stat)± 570 (syst)± 960 (lumi)

W µν 19870± 80 (stat)± 460 (syst)± 950 (lumi) 19700+560
−470

`ν 19950± 70 (stat)± 360 (syst)± 960 (lumi)
e+e− 1920± 20 (stat)± 60 (syst)± 90 (lumi)

Z µ+µ− 1900± 10 (stat)± 50 (syst)± 90 (lumi) 1870+50
−40

`+`− 1910± 10 (stat)± 40 (syst)± 90 (lumi)
Quantity Ratio (total) NNLO

e 1.313± 0.016 (stat)± 0.028 (syst)
RW+/W− µ 1.334± 0.011 (stat)± 0.031 (syst) 1.354+0.011

−0.012
` 1.323± 0.010 (stat)± 0.021 (syst)
e 5.94± 0.07 (stat)± 0.16 (syst)

RW+/Z µ 5.98± 0.05 (stat)± 0.14 (syst) 6.06+0.04
−0.05

` 5.96± 0.04 (stat)± 0.10 (syst)
e 4.52± 0.06 (stat)± 0.12 (syst)

RW−/Z µ 4.49± 0.04 (stat)± 0.10 (syst) 4.48+0.03
−0.02

` 4.50± 0.03 (stat)± 0.08 (syst)
e 10.46± 0.11 (stat)± 0.26 (syst)

RW/Z µ 10.47± 0.08 (stat)± 0.20 (syst) 10.55+0.07
−0.06

` 10.46± 0.06 (stat)± 0.16 (syst)
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Figure 3: Ratios of the W and Z boson total inclusive cross sections in the electron and muon
channels compared to previous experimental checks of lepton universality and the standard-
model expectation. The contour obtained from the data (full circle) represent the 68% CL (full
line) area accounting for the full set of statistical and systematic uncertainties.

Table 5: Summary of fiducial inclusive W+, W−, W, and Z production cross sections times
branching fractions, W+, W−, and W to Z and W+ to W− ratios, and their theoretical predic-
tions.

Channel σ×B [pb] (fiducial) NNLO [pb]

W+ e+ν 4900± 40 (stat)± 120 (syst)± 240 (lumi) 4870+160
−140

µ+ν 5040± 20 (stat)± 100 (syst)± 240 (lumi) 5030+180
−160

W−
e−ν 3830± 40 (stat)± 90 (syst)± 180 (lumi) 3690+150

−110
µ−ν 3900± 30 (stat)± 70 (syst)± 190 (lumi) 3840+160

−120

W
eν 8730± 50 (stat)± 220 (syst)± 420 (lumi) 8570+340

−240
µν 8950± 40 (stat)± 170 (syst)± 430 (lumi) 8870+350

−240

Z
e+e− 640± 10 (stat)± 20 (syst)± 30 (lumi) 620+20

−20
µ+µ− 690± 10 (stat)± 20 (syst)± 30 (lumi) 680+30

−20
Quantity Ratio (fiducial) NNLO

RW+/W−
e 1.28± 0.02 (stat)± 0.01 (syst) 1.32+0.03

−0.03
µ 1.29± 0.01 (stat)± 0.01 (syst) 1.31+0.03

−0.03

RW+/Z
e 7.65± 0.09 (stat)± 0.15 (syst) 7.82+0.17

−0.16
µ 7.33± 0.06 (stat)± 0.08 (syst) 7.43+0.17

−0.16

RW−/Z
e 5.97± 0.08 (stat)± 0.11 (syst) 5.92+0.12

−0.11
µ 5.67± 0.05 (stat)± 0.06 (syst) 5.67+0.11

−0.11

RW/Z
e 13.62± 0.14 (stat)± 0.25 (syst) 13.74+0.26

−0.25
µ 13.00± 0.10 (stat)± 0.14 (syst) 13.10+0.24

−0.23
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Figure 4: Summary of total inclusive W+, W−, W, and Z production cross sections times
branching fractions, W to Z and W+ to W− ratios, and their theoretical predictions. The shaded
box indicates the uncertainties in the luminosity measurement. The inner error bars represent
the experimental uncertainties, while outer error bars also include the uncertainties in the theo-
retical predictions. The individual measurements and theoretical predictions are given numer-
ically on the right.

Table 6: Summary of predicted total inclusive cross sections and their ratios. The predictions
were calculated with FEWZ. The PDF uncertainty and scale uncertainty are given for each
prediction.

NNPDF3.0 CT14 MMHT2014 ABM12LHC HERAPDF15
σtot

W+ [pb] 11330+320
−270 11500+330

−310 11580+260
−210 11730+150

−130 11780+570
−250

σtot
W− [pb] 8370+240

−210 8520+230
−240 8590+190

−170 8550+110
−90 8700+400

−170
σtot

W [pb] 19700+560
−470 20020+560

−550 20170+430
−390 20280+260

−220 20480+960
−410

σtot
Z [pb] 1870+50

−40 1900+50
−50 1920+40

−40 1920+20
−20 1930+90

−40
σtot

W+/σtot
W− 1.354+0.011

−0.012 1.350+0.014
−0.014 1.348+0.011

−0.008 1.371+0.003
−0.004 1.353+0.014

−0.013
σtot

W+/σtot
Z 6.06+0.04

−0.05 6.06+0.06
−0.06 6.04+0.05

−0.05 6.11+0.02
−0.01 6.10+0.06

−0.06
σtot

W−/σtot
Z 4.48+0.03

−0.02 4.49+0.03
−0.03 4.48+0.03

−0.04 4.46+0.02
−0.01 4.51+0.04

−0.03
σtot

W /σtot
Z 10.55+0.07

−0.06 10.55+0.09
−0.09 10.53+0.08

−0.09 10.56+0.04
−0.02 10.61+0.11

−0.09
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Figure 5: Summary of fiducial inclusive W+, W−, W, and Z production cross sections times
branching fractions, W to Z and W+ to W− ratios, and their theoretical predictions for the
electron and muon channel. The shaded box indicates the uncertainties in the luminosity mea-
surement. The inner error bars represent the experimental uncertainties, while outer error bars
also include the uncertainties in the theoretical predictions. The individual measurements and
theoretical predictions are given numerically on the right.
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Figure 6: Comparison of measured total inclusive cross sections with predictions for five PDF
sets: NNPDF3.0, CT14, MMHT2014, ABM12LHC, and HERAPDF15. The W+(top left), W−

(top right), W (bottom left), and Z (bottom right) total inclusive cross sections are shown.
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Figure 7: Comparison of measured total inclusive cross section ratios with predictions for five
PDF sets: NNPDF3.0, CT14, MMHT2014, ABM12LHC, and HERAPDF15. Ratios of W+(top
left) and W− (top right), and W (bottom left) to Z and W+ to W− (bottom right) total inclusive
cross sections are shown.
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times branching fractions versus center-of-mass energy for CMS and experiments at lower-
energy colliders [49–54]. The predicted increase of the cross sections with center-of-mass en-
ergy is confirmed by the measurements.

9 Summary
In summary, a measurement of total inclusive and fiducial W and Z boson production cross
sections in pp collisions at

√
s = 13 TeV is presented. Electron and muon final states are studied

in a data sample collected with the CMS detector corresponding to an integrated luminosity of
up to 43± 2 pb−1. The measured total inclusive cross sections times branching fractions are
σ(pp → W+X) × B(W+ → `+ν) = 11370 ± 50 (stat) ± 230 (syst) ± 550 (lumi) pb, σ(pp →
W−X) × B(W− → `−ν) = 8580± 50 (stat)± 160 (syst)± 410 (lumi) pb, and σ(pp → ZX) ×
B(Z → `+`−) = 1910± 10 (stat)± 40 (syst)± 90 (lumi) pb for the dilepton mass in the range
of 60 to 120 GeV. The measured values agree with next-to-next-to-leading-order QCD cross
section calculations. Inclusive cross sections and ratios of cross sections are reported.
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Figure 8: Measured and predicted W− versus W+ fiducial inclusive production cross sections
times branching fractions. The ellipses illustrate the 68% CL coverage for total uncertainties
(open) and excluding the luminosity uncertainty (filled). The plots show results for the elec-
tron channel (top) and the muon channel (bottom). The uncertainties in the theoretical predic-
tions correspond to the PDF uncertainty components only and are evaluated for five PDF sets:
NNPDF3.0, CT14, MMHT2014, ABM12LHC, and HERAPDF15.
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Figure 9: Measured and predicted W versus Z boson fiducial inclusive production cross sec-
tions times branching fractions. The ellipses illustrate the 68% CL coverage for total uncertain-
ties (open) and excluding the luminosity uncertainty (filled). The plots show results for the
electron channel (top) and muon channel (bottom). The uncertainties in the theoretical predic-
tions correspond to the PDF uncertainty components only and are evaluated for five PDF sets:
NNPDF3.0, CT14, MMHT2014, ABM12LHC, and HERAPDF15.
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