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General Relativity is a priori a theory invariant under time reversal. Its integration with
the laws of thermodynamics allows for a formulation of non-equilibrium phenomena in
gravity and the introduction of an arrow of time, i.e. the the breaking of such invariance.
Even though most of the evolution of the universe takes place in local thermal equilib-
rium, the effects of irreversible processes on the expansion via entropic forces may be
phenomenologically relevant. We review our previous work on the covariant formulation
of non-equilibrium thermodynamics in General Relativity and the proposal to explain
the recent cosmic acceleration from it.
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1. Introduction

General Relativity is an extremely successful physical theory. More than a century
after its formulation, its predictions continue to be valid at all probed scales, albeit
an extension at short scales will be required in order to obtain a UV-complete
quantum theory of gravity and resolve space-time singularities.

Thermodynamics is an even older discipline. Its fundamental laws seem to re-
sist the passage of time and are still of great relevance today. On the one hand,
thermodynamics may help in building the bridge between classical and quantum
gravity, as the laws of black hole thermodynamics point towards the existence of a
microphysical description of gravity yet to be understood.

On the other hand, the second law of thermodynamics, i.e. the growth of entropy,
dictates the sign of the arrow of time. Physical laws are usually invariant under time
inversion. The increase in entropy with time in out-of-equilibrium phenomena, how-
ever, allows one to distinguish the future-directed from the past directed description
of a physical process.

There lacks a consistent and rigorous integration between General Relativity
and the laws of thermodynamics. Understanding the very notion of the arrow of
time is of particular interest for cosmology. In section 2 we argue for the need of
going beyond reversible cosmology. This can be achieved for any space-time metric
using variational techniques.! We review our main results in this new approach to
non-equilibrium thermodynamics in General Relativity and present them in sections
3 to 6.
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The growth of entropy associated to the causal horizon in open inflation sce-
narios may explain the current accelerated expansion of the universe within the
general relativistic entropic acceleration (GREA) theory.? We briefly describe how
this mechanism works in section 7 and finish with our conclusions.

2. Reversible cosmology

Let us begin the study of the problem of reversibility in gravity and cosmology
by reviewing a prototypic case of reversible gravitational system: a homogeneous
and isotropic universe. It is described by the Friedmann-Lemaitre-Robertson-Walker
(FLRW) metric

ds* = —dt* + a(t)? ( + r2dQ§) : (1)

1—Fkr?
where a(t) is the scale factor, k = —1,0, 1 is the curvature parameter corresponding

to, respectively, an open, flat and closed universe; and d3 is the solid angle element.
This space-time is filled with a perfect fluid, described by the stress-energy tensor

T,uu = (,0 + p)u,uuu + P9, (2)

where p and p are, respectively, the density and pressure of the fluid. The Einstein
field equations for this metric and matter content deliver the dynamics for the scale
factor, the well-known Friedmann equations

where H = a/a is the Hubble parameter. There is a constraint on the stress-
energy tensor due to the Einstein field equations and the Bianchi identities, namely
its covariant conservation D,T*¥ = 0. From this constraint one can derive the

continuity equation
p+3H(p+p)=0. (4)

However, one can also derive this equation from the second law of thermodynamics.
Indeed, changes in entropy are related to changes in internal energy and work T'dS =
SU + §W. If we apply this to a region of fixed comoving volume a(t)® we get

% = % (pa?’) +p% (a3) . (5)
If the expansion of the universe is reversible, we can set the LHS to 0 and recover the
continuity equation. However, this is only true in thermodynamical equilibrium and,
in general, entropy is a monotonically increasing function of time. Most of the ex-
pansion history of the universe is indeed adiabatic. However, it is out-of-equilibrium
at certain key points such as (p)reheating, phase transitions or gravitational col-
lapse. Allowing for a time-varying entropy implies the addition of a term in the

continuity equation

. TS
p+3H(p+p)=—5. (6)
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Combining this with the first Friedmann equation we obtain a modified, non-
equilibrium second Friedmann equation

i 4AnG TS
a30+@@g>~ @

In principle, this evolution equation does not seem to be compatible with the Ein-
stein field equations. In order to achieve that, the laws of thermodynamics need to
be rigorously incorporated into the computation of the equations of motion. This
can be achieved by applying the variational formalism of non-equilibrium thermody-
namics, developed in another context by Gay-Balmaz and Yoshimura,** to General
Relativity.

3. Entropic forces in mechanics and field theory

Entropic forces emerge naturally in any physical system out of equilibrium. They
are a consequence of the coarse-graining of physical degrees of freedom and the
laws of thermodynamics, which impose entropy to be a monotonically increasing
function of time. This breaks time reversibility.

The dynamics of the coarse-grained degrees of freedom is unknown or ignored
and so they do not appear in the action of the physical system. It would seem that a
variational treatment of an out-of-equilibrium system is not possible. However, both
the extremal-action principle and the second law of thermodynamics can be merged
consistently by imposing the latter as a constrain on the variational problem defined
by the action.>* On the other hand, the first law of thermodynamics is obtained
from the symmetries of the problem.

3.1. Entropic forces in mechanics

Let us start by reviewing the emergence of entropic forces in a mechanical system.
Consider the action

5= [ aLi.q5). (®)
where the Lagrangian depends on the generalized coordinate ¢(t), its time derivative
G(t) and the entropy S(t). The variation of the action gives

oL oL

Setting dS = 0 defines the variational problem. In order to enforce the second law
of thermodynamics, we need to impose the variational constraint

oL
as
which simply states the relationship between variations of the entropy and the
generalized coordinate. If we plug this in the variation of the action, then we can

59 = féq, (10)
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readily obtain the equations of motion
oL OL d (OL
Y e ) (1)
d0g  Oq dt \ 04
which is the Euler-Lagrange equation modified by the addition of the entropic force
f. In order to know its precise form, we need to impose as well the phenomeno-

logical constraint, which is obtained by formally replacing the variations with time
derivatives

OL .
=8 = fg. 12
55> = fd (12)
Note that usually temperature can be introduced as
oL
T=——>0 13

providing a clearer meaning to the variational and phenomenological constraint.

The imposition of the constraints and the emergence of an entropic force break
the symmetry under time inversion. First, note that formally the Euler-Lagrange
equation is invariant under the ¢t — —t transformation, even with a non-vanishing
entropic force. Next, the positiveness of the temperature and the change of entropy
imposes f¢ < 0. The entropic force has qualities of a generalized friction, as it
opposes the coordinate velocity. Now, if one performs time inversion, this sign con-
straint becomes f¢ > 0, as the temperature remains positive but entropy decreases
with time. Before solving the equations of motion, ¢ is still a degree of freedom and,
thus, one must conclude a flip in the sign of f, which flips the overall sign of the
Euler-Lagrange equation. Hence, one concludes that the emergence of an entropic
force breaks symmetry under time reversal. The evolution of the system becomes
irreversible.

3.2. Entropic forces in classical field theory

The extension of the variational formalism of non-equilibrium thermodynamics to
the continuum is somewhat involved. We present a short-cut derivation that relies
on the introduction of an additional constraint. We refer the reader to the appendix
of Ref. 1 to check its equivalence with the full variational derivation originally
presented in Ref. 4.

The action of a scalar field on Minkowski space-time contains now a dependency
on a scalar function s(t,Z) that encodes information related to coarse-grained de-
grees of freedom

S [ L (0.0,0.5). (14)

In a similar fashion as before, the extremal-action principle needs to be supple-
mented by a variational constraint

oL

505 = fo0, (15)
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so that the equation of motion becomes
0oL _, oL "
op  0¢ 90,9
which is nothing but the Euler-Lagrange equation of a scalar field with a new term
of entropic origin. As before, one can usually introduce a temperature as
T= s >0 (17)
and we would like to interpret s as the entropy density. However, due to spatial
fluxes entropy does not need to necessarily increase locally and, thus, the constraint
would not have a fixed sign. Before proceeding, we inspect the corresponding phe-
nomenological constraint

oL

—0ps = fOp. 18

550 JOoo (18)
Instead, we interpret ds and Jys as local entropy production and introduce a new
function s,y which is the actual entropy density and whose changes dso; and JgSiot

are indeed total local changes of the entropy density. Both are related as
0os = DoStot — aij;: ) (19)

where ji is the entropy flux. This latter equation is an additional constraint we
impose for the variational formalism to be consistent. Now one can check that
fOop < 0 and time reversibility is broken by the same argument used in the
mechanics example.

3.3. Entropic forces in presence of additional symmetries

The generalization of the above formalism to higher order tensors or to represen-
tations of some internal symmetry group is straightforward. Let us consider a field
tensor z of contravariant rank r, which is also in some representation of an internal
symmetry labelled by an index A. Then one builds the variational constraint as

oL

b5 = Fann S (20)
which delivers the equation of motion
oL
S = —fApepir - (21)

4. Entropic forces in General Relativity

The previous discussion makes us ready to study entropic forces in General Rela-
tivity. However, with the introduction of a dynamical space-time the very notion of
time evolution becomes non-trivial. As we will see shortly, it is possible to obtain
a modification of entropic origin to Einstein’s field equation in the Lagrangian for-
mulation of General Relativity. Its proper interpretation will require, nevertheless,
the use of the Hamiltonian formalism.
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4.1. Lagrangian formulation

Let us consider the Einstein-Hilbert action plus a matter term

1
S = o /d4x\/ng—|- /d4x£m(g/w’3)’ (22)

where x = 87 is the gravitational coupling and we allow for the dependence of
the matter Lagrangian on a function s(¢,Z), which will have a similar interpreta-
tion to the one presented in the previous section. The extremal-action principle is
supplemented by the variational constraint.

oLy, 1

= V=9 g™ . 23

as 2 gfl/“j g ( )

From the extremal-action principle and the variational constraint we obtain the
modified Einstein’s field equations

1

Ry — 59,“,1-2 =& (T — fu) (24)

where there is an additional term f,, of entropic origin. In order to obtain an
expression for this term and to check the breaking of symmetry under time inversion

we need to work in the Hamiltonian formulation of General Relativity.

4.2. Hamultonian formulation

General Relativity admits a Hamiltonian formulation in the Arnowitt-Deser-Misner
(ADM) formalism. Space-time is foliated in constant time hypersurfaces with normal
unit vector n*, being the 4-metric split as

G = hypw —npny (25)

where h,, is the 3-metric induced on the hypersurfaces. Analogously, one can
parametrize the 4-metric in terms of the 3-metric h;; and the lapse and shift func-
tions N and N’

ds® = —(Ndt)? + hy;(da’ + N'dt)(da? + N7 dt). (26)

Greek indices run from 0 to 3, while Latin ones do from 1 to 3 and are raised and
lowered by h;;. The normal vector can be written as

n, = (=N,0,0,0). (27)

Note that h;; is the purely spatial part of h,, and is also the pull-back of g,,,, onto
the hypersurface.

The Einstein-Hilbert action for this parametrization of the metric is given by
the following gravitational Lagrangian:

1 -
Le==gR=3-NVh (R + KK~ K2) (28)
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where K; is the extrinsic curvature of the 3-hypersurface ¥ and is given by the Lie
derivative along the normal vector n

1 1
Kij = 5Lnhij = 555 (Gohij = VilNj = V;Ni) (29)

where V denotes the covariant derivative on ¥ with respect to the 3-metric h;;. Its
trace and traceless part are:

K =hik;; = % (60m Vi - ViN')

K=K~ »

ij = hij T3

Unlike the intrinsic curvature, described by the Riemann tensor RZM and its con-

tractions, the extrinsic curvature is a quantity that depends on the embedding of a
surface in a larger manifold.

We are now ready to introduce the Hamiltonian formulation of the theory. Note
that the only quantity whose time derivative appears in the gravitational Lagrangian
is the 3-spatial metric h;; and, thus, it is the only dynamical or propagating d.o.f.
Correspondingly, one defines its conjugate momentum as:

i = 256 _ g (K" — Kh') . (31)

ij

(30)
Khij .

With this, the gravitational Lagrangian can be rewritten as

N T 5
Lo=NVET R - = <Hin” - 2112) 29V, N,

Vh (32)
="h;j — NH — N;H' — 2V, (II7N;) |,
where II = hinij and we introduced the functions:
3 1 o1
H=-vViR+ — (HUH” - H2>
Vvh 2 (33)

Hi = -2V, (ifl/?rm) .

Since N and N; are not dynamical variables, they merely enter the gravitational
Lagrangian as Lagrange multipliers. One defines the gravitational Hamiltonian as:

HG = H”hw - ﬁG

. . (34)
=NH+ N;H' +V; (IN;) ,
with the Hamiltonian and momentum constraints:
1)
He —H =0
0N (35)
) .
e _ iy,

ON;
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The Hamiltonian evolution equations are obtained from the variations of the action
with respect to the metric and conjugate momentum

Ohij Ohj OITé
(36)
where the variational constraint
O 5 — le\/ﬁfijéhvv (37)
s 2 “
was already implemented. Note that the minus sign arises from
gZZ = —% (hikhji + hahjk) (38)

and that fij is the pull-back of f,,, onto the hypersurfaces. By setting the variation
to 0 we obtain the two Hamilton equations

e _ —IY — kNVhfY + 2/<;a£m

5hij 8]1” (39)
(SHG o h

DITCEEE

which completes the derivation of the entropic modification to the gravitational
equations of motion in the Hamiltonian formulation.

The tensor fij can be obtained from the phenomenological constraint, which
can now be stated rigorously. In the ADM formalism, a well-defined notion of time
evolution is given by the flow along the normal vector n*. Hence, the time derivative
is generalized to the Lie derivative along n*. Then the phenomenological constraint
is given by

oL

1 - .
gi’ns = 5N\/E fij £nh" (40)

where growth in entropy by local processes is related to total entropy density growth
by

£ns = £, — Vijé . (41)

Entropy produced locally is expected to grow over time, i.e. with the flow along
the hypersurfaces, in compliance with the second law of thermodynamics. This
completes the variational formulation of entropic forces in General Relativity.

4.3. The Raychauduri equation

Let us explore an immediate dynamical consequence of the inclusion of entropic
forces, namely its effect on a congruence of worldlines with tangent vector n*. The
congruence is then characterized by the tensor

1
O =Dyn, = §®hw + o W —aun,, (42)
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where 0 is the expansion rate of the congruence, o, is its shear or symmetric trace-
less part and w,, is its vorticity or antisymmetric part. If the worldline is not a
geodesic, then the congruence suffers an acceleration given by:

a, =n"Dyn, . (43)

One can compute the Lie derivative of the expansion of the congruence along its
tangent vector and find the Raychauduri equation®:

1
£,0 = 7592 — oo +w " — Ryntn” + Dyat. (44)

Let us perform the standard analysis of the sign of this equation. It is clear that
oot > 0 and ©% > 0. On the other hand, if the congruence is chosen to be
orthogonal to the spatial hypersurfaces, as we have been considering, then the vor-
ticity vanishes w,, = 0. Lastly, it is left to consider the term R,,n"n", which we
can rewrite with the help of the field equations:

1 1
R, n'n" =8rG (Twn“n” + §T — funtn? — 2f) . (45)
If the strong energy condition is satisfied, then
1
Tuyn“ny > —§T (46)

and, in the absence of intrinsic acceleration, a, = 0, we can establish the bound:
1 1
£,0 + 592 < 817G (fwn“n" + 2f) . (47)

For a vanishing entropic force f,, = 0, this means that an expanding congruence
cannot indefinitely sustain its divergence and will eventually recollapse. On the
contrary, a positive and sufficiently large entropic contribution can avoid such rec-
ollapse. This may become relevant for an expanding universe, but also to generic
gravitational collapse and the singularity theorems.®®

5. Sources of entropy

A main ingredient in the variational formulation of non-equilibrium thermodynam-
ics in General Relativity is the inclusion of entropy at the Lagrangian level and the
derivation of a notion of temperature from it. In this section we present two relevant
examples: hydrodynamical matter, which is a prototypical case, and horizons.

5.1. Entropy from hydrodynamical matter

A classical fluid is the simplest matter content that can be considered in General
Relativity and it is of particular relevance in Cosmology. Without paying attention
to microphysical details, the Lagrangian of hydrodynamical matter can be written
as

»Cm = _\/jgp(g;wa S) ) (48)
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the temperature being then simply given by

1 9L, Op
= 0 o5 (49)

This is analogous to the case of a mechanical system, where the Lagrangian is

generically given by a kinetic and a potential energy

and temperature can be defined as

oL ou
T=—=——.
oS oS
Thus, the energy density of a fluid can be readily interpreted as the thermodynamic

(51)
internal energy.

5.2. Entropy from gravity and horizons

Gravity itself has thermodynamical features. It is known since the discovery of the
laws of black hole mechanics and their promotion to laws of black hole thermody-
namics, allowed by the introduction of Bekenstein entropy and Hawking tempera-
ture. We propose to include the entropy associated with a horizon H by extending
the Einstein-Hilbert actions with surface terms of Gibbons-Hawking-York (GHY)

type
1
Sery = —— / FyVIK (52)
87TG H

where h is the determinant of the induced 3-metric on the horizon and K is the
trace of its extrinsic curvature. Definitions are analogous to the ones used in the
ADM formalism, but we stress that here the hypersurface of interest is a horizon
and not constant-time hypersurfaces.

From the thermodynamic point of view, the GHY term contributes to the inter-
nal energy of the system. Hence, it can be rewritten as a function of the temperature
and entropy of the horizon

Sony = — / AN TS. (53)

We have kept the lapse function N(t), to indicate that the variation of the total
action with respect to it will generate a Hamiltonian constraint with an entropy
term together with the ordinary matter/energy terms. In order to illustrate this, let
us now compute the GHY for the event horizon of a Schwarzschild black hole.

The space-time of a Schwarzschild black hole of mass M is described by the
static metric

—1
ds? = — <1 - 2GM) dt? + (1 — 2GM> dr? + r2d03 . (54)
r T
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We foliate it with spherical hypersurfaces, i.e. their intersection with constant time
hypersurfaces is a 2-sphere around the origin of coordinates. The corresponding

normal vector is
2GM
n:ﬂ/pGTaT. (55)

With this, the trace of the extrinsic curvature for such a sphere scaled by the metric
determinant is

VhEK = (3GM — 2r)sinf. (56)

Integrating over the angular coordinates and setting the 2-sphere at the event hori-
zon, i.e. r = 2G M, and restoring for a moment & and ¢, the GHY becomes

1
SGHy = —§/dtM02 = —/dtTBHSBH, (57)

where Ty is the Hawking temperature and Spy is the Bekenstein entropy of the
Schwarzschild black hole:

_ he? AP AnGM?
T8rGM’ TPH T 4GR T he
This favors the interpretation of the GHY term of a horizon as a contribution to
the internal energy in the thermodynamic sense.

Tpu (58)

6. Irreversible cosmology

We derived in section 4 a powerful, generic tool to describe non-equilibrium ther-
modynamic effects in gravity. In the Hamiltonian formulation of General Relativity
it is possible to obtain the modified equations of motion and rigorously impose the
time-evolution of the entropy as dictated by the second law of thermodynamics.
In section 2 we motivated the study of these phenomena by our interest in
understanding the dynamics of irreversible cosmology and justifying its equations
of motion. One can obtain them using the Hamilton equations.! Here, however, we
present a slightly different approach. Due to the symmetries of the FLRW universe,
homogeneity and isotropy, there is a preferred slicing and time evolution is well-
defined even at the Lagrangian level. Therefore, we can obtain the equations of
non-equilibrium cosmology by imposing these symmetries, i.e. making an ansatz for

the metric
2

2 2 142 2

+ r2dQ§) , (59)
where the lapse function N(t) accounts for the freedom in choosing the time coor-
dinate, i.e. the symmetry under ¢ — f(t). The Ricci scalar associated to this metric
is

2

6 [ ad a
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Let us stress that this result is imposed by symmetry, not dynamics. Without loss
of generality, we can restrict the action to a region of comoving volume 1 and write
it as

S = /dtL— o G/dtN (++k> +/dtNa3£m(N,a,S). (61)

Effectively, this action describes a mechanical system, for the scale factor a(t) has
no spatial dependency and we got rid of the integral over spatial coordinates. The
first term can be rewritten using integration by parts in order to get only terms
with at most the first derivative of a

3 a?
=— [dtNa|—— Na*L,, (N : 2
S 87rG/dt a( N2+I<:>+/dt a’Ly,(N,a,S) (62)
The variational constraint is here given by the usual expression for a mechanical
system
oL — 08 = fda. (63)
oS
The Hamiltonian of the system is
oL 3 a’a
H=a——-L=——|-——— —kaN | — Na®L,,. 4
a@a 8rG ( N “ ) L (64)
For an arbitrary lapse function N(t) this can be rewritten as
0Ly,
H = N?%q® 65
BN (65)

which gives the Hamiltonian constraint of the system. On the other hand, the
dynamics is obtained from the equation of motion for a

(E
da

Let us now consider the matter Lagrangian to be that of a perfect fluid, i.e.

~f. (66)

Ly =—p(a,S). (67)
Its stress-energy tensor is given in terms of the density p and pressure p by
TH — (p +p)u11.1/ +pg/Lv (68)

and u™u = (N,0,0,0) is the unit vector tangent to a comoving observer. Pressure
is then obtained as

1 da’p
204 da
Using the expressions for p and p and rearranging the terms in the Hamiltonian
constraint and the equation of motion for a(t) we arrive at the modified Friedmann

a? ..
p= ?T”(Sij =- (69)
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equations
(a>2+ ko_81G
z ==
a a 3 (70)
a 4G f
—=——1p+3p+ = -
a 3 a

The expression for the entropic force F' is obtained from the phenomenological
constraint

oL\ - .
— |S=-TS=fa<0, 71
(5) f (M)
which determines the sign f < 0 whenever dealing with an expanding universe
a > 0. We express finally the second Friedmann equation as

i arG TS
Rk S 2
. 3 (p +3p a2d> (72)

From this equation we can conclude that entropic forces generally drive an accel-
eration of the expansion of the universe. Whether this can dominate the dynamics
of the scale factor will depend on the particular thermodynamic process. Most of
the expansion history of the universe takes place in equilibrium. Out of equilib-
rium processes, such as (p)reheating, phase transitions or gravitational collapse are
short-lived. Should their associated entropic force dominate, we still only expect a
short period of accelerated expansion.

Symmetry under time inversion is broken by the same arguments presented
in section 3. Hence, the Friedmann equations together with the phenomenologi-
cal constraint, i.e. the second law of thermodynamics, describe cosmic irreversible
dynamics.

We currently live in a universe that is undergoing an accelerated expansion. The
possibility of explaining this by means of an entropic force is fascinating. In the next
section we review our proposal to achieve this by means of the sustained growth of
the entropy associated to a causal horizon.

7. Cosmic acceleration as an entropic force

The growth of entropy associated to the cosmic horizon may be responsible for the
current observed accelerated expansion of the universe. The choice of horizon is in
principle not unique. The only available one which can be defined locally in time is
the cosmic apparent horizon, but it fails to significantly affect the expansion.?
There is another option in the framework of eternal inflation, according to which
we live in an open universe nucleated by quantum tunneling from a false to a true
vacuum. After nucleation the bubble universe undergoes its own inflationary era,
which renders the local metric almost flat. However, due to the presence of the



The Sixteenth Marcel Grossmann Meeting Downloaded from www.worl dscientific.com

by GERMAN ELECTRON SYNCHROTRON @ HAMBURG on 01/30/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

2750

bubble wall, the true causal horizon is located at a finite distance. It induces an
entropic fluid via GHY term with energy density
o TuSu _ xo

1-0 T\ 2
pPH G = =30 sinh(2agHon), o= % 0 _ ¢g=2N (TeZ) (14 zeq)

(73)

where 7) is the conformal time, )y is the density parameter, T}y, is the reheating
temperature, Toq and zeq are, respectively, the temperature and redshift at matter-
radiation equality. Introducing 7 = agHyn one can write the second Friedmann
equation in conformal time as

a\? a a\? 4r a)?
() _ 0y () Ok () L () snb(27),  (74)
ao ao ao 3 ao

where €2, is the matter density paremeter and 2k is the curvature parameter. We
call this the general relatvistic entropic acceleration (GREA) theory.

By solving this equation with cosmological parameters consistent with the CMB
values (Planck 2018: Q,; ~ 0.31, Qx ~ 0.0006, hy ~ 0.68) and initial conditions
deep in the matter era, a;(7) = ag Qn7%/4, we find generic accelerating behaviour
beyond the scale factor a ~ 1/2 (i.e. z ~ 1), see Fig. 1. This is consistent with
the current observed acceleration of the universe and may even resolve the Hubble
tension,? providing a way to obtain from the CMB a present value of Hj that is
consistent with late-universe observations, see Fig. 2.
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Fig. 1. The left plot shows the evolution of the inverse comoving horizon with the coasting point
for each model, at z ~ 0.65 for ACDM (in green) and z ~ 0.83 for GREA (in red). The right
plot shows the evolution of the rate of expansion. For GREA the present rate of expansion is
approximately 74 km/s/Mpc, compared with the value of 68 km/s/Mpc predicted by ACDM, in
agreement with the asymptotic value at the CMB.

8. Conclusions

The consistent inclusion of non-equilibrium phenomena in General Relativity leads
to the modification of the Einstein field equations, as can be checked both in the
Lagrangian and Hamiltonian formulations of the theory. This breaks symmetry
under time inversion and allows for the introduction of an arrow of time.
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Fig. 2. The effective equation of state of the non-matter component of the GREA theory, as
a function of thee sale factor. Note that the predicted effective PCL parameters (wo, wq) agree
remarkably well with present observations.

In cosmology this implies the appearance of a term of entropic origin in the
second Friedmann equation, which tends to accelerate the expansion of the universe
as a result of the increase in entropy. Some physical processes such as (p)reheating,
phase transitions or gravitational collapse may lead to phenomenologically relevant
applications of this formalism. We look forward to further developments.

The sustained entropy growth associated to a causal horizon in the open universe
scenario leads to an acceleration consistent with current observations and it may
even solve the Hj tension. Further research will be required to establish the full
viability of the GREA theory.
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