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General Relativity is a priori a theory invariant under time reversal. Its integration with

the laws of thermodynamics allows for a formulation of non-equilibrium phenomena in
gravity and the introduction of an arrow of time, i.e. the the breaking of such invariance.

Even though most of the evolution of the universe takes place in local thermal equilib-

rium, the effects of irreversible processes on the expansion via entropic forces may be
phenomenologically relevant. We review our previous work on the covariant formulation

of non-equilibrium thermodynamics in General Relativity and the proposal to explain

the recent cosmic acceleration from it.

Keywords: General Relativity, thermodynamics, non-equilibrium phenomena, entropic

forces, cosmic acceleration.

1. Introduction

General Relativity is an extremely successful physical theory. More than a century

after its formulation, its predictions continue to be valid at all probed scales, albeit

an extension at short scales will be required in order to obtain a UV-complete

quantum theory of gravity and resolve space-time singularities.

Thermodynamics is an even older discipline. Its fundamental laws seem to re-

sist the passage of time and are still of great relevance today. On the one hand,

thermodynamics may help in building the bridge between classical and quantum

gravity, as the laws of black hole thermodynamics point towards the existence of a

microphysical description of gravity yet to be understood.

On the other hand, the second law of thermodynamics, i.e. the growth of entropy,

dictates the sign of the arrow of time. Physical laws are usually invariant under time

inversion. The increase in entropy with time in out-of-equilibrium phenomena, how-

ever, allows one to distinguish the future-directed from the past directed description

of a physical process.

There lacks a consistent and rigorous integration between General Relativity

and the laws of thermodynamics. Understanding the very notion of the arrow of

time is of particular interest for cosmology. In section 2 we argue for the need of

going beyond reversible cosmology. This can be achieved for any space-time metric

using variational techniques.1 We review our main results in this new approach to

non-equilibrium thermodynamics in General Relativity and present them in sections

3 to 6.
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The growth of entropy associated to the causal horizon in open inflation sce-

narios may explain the current accelerated expansion of the universe within the

general relativistic entropic acceleration (GREA) theory.2 We briefly describe how

this mechanism works in section 7 and finish with our conclusions.

2. Reversible cosmology

Let us begin the study of the problem of reversibility in gravity and cosmology

by reviewing a prototypic case of reversible gravitational system: a homogeneous

and isotropic universe. It is described by the Friedmann-Lemâıtre-Robertson-Walker

(FLRW) metric

ds2 = −dt2 + a(t)2
(

dr2

1− kr2
+ r2dΩ2

2

)
, (1)

where a(t) is the scale factor, k = −1, 0, 1 is the curvature parameter corresponding

to, respectively, an open, flat and closed universe; and dΩ2
2 is the solid angle element.

This space-time is filled with a perfect fluid, described by the stress-energy tensor

Tµν = (ρ+ p)uµuν + pgµν , (2)

where ρ and p are, respectively, the density and pressure of the fluid. The Einstein

field equations for this metric and matter content deliver the dynamics for the scale

factor, the well-known Friedmann equations

H2 +
k

a2
=

8πG

3
ρ ,

ä

a
= −4πG

3
(ρ+ 3p) , (3)

where H = ȧ/a is the Hubble parameter. There is a constraint on the stress-

energy tensor due to the Einstein field equations and the Bianchi identities, namely

its covariant conservation DµT
µν = 0. From this constraint one can derive the

continuity equation

ρ̇+ 3H(ρ+ p) = 0 . (4)

However, one can also derive this equation from the second law of thermodynamics.

Indeed, changes in entropy are related to changes in internal energy and work TdS =

δU + δW . If we apply this to a region of fixed comoving volume a(t)3 we get

T
dS

dt
=

d

dt

(
ρa3
)
+ p

d

dt

(
a3
)
. (5)

If the expansion of the universe is reversible, we can set the LHS to 0 and recover the

continuity equation. However, this is only true in thermodynamical equilibrium and,

in general, entropy is a monotonically increasing function of time. Most of the ex-

pansion history of the universe is indeed adiabatic. However, it is out-of-equilibrium

at certain key points such as (p)reheating, phase transitions or gravitational col-

lapse. Allowing for a time-varying entropy implies the addition of a term in the

continuity equation

ρ̇+ 3H(ρ+ p) =
T Ṡ

a3
. (6)
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Combining this with the first Friedmann equation we obtain a modified, non-

equilibrium second Friedmann equation

ä

a
= −4πG

3

(
ρ+ 3p− T Ṡ

a3H

)
. (7)

In principle, this evolution equation does not seem to be compatible with the Ein-

stein field equations. In order to achieve that, the laws of thermodynamics need to

be rigorously incorporated into the computation of the equations of motion. This

can be achieved by applying the variational formalism of non-equilibrium thermody-

namics, developed in another context by Gay-Balmaz and Yoshimura,3,4 to General

Relativity.

3. Entropic forces in mechanics and field theory

Entropic forces emerge naturally in any physical system out of equilibrium. They

are a consequence of the coarse-graining of physical degrees of freedom and the

laws of thermodynamics, which impose entropy to be a monotonically increasing

function of time. This breaks time reversibility.

The dynamics of the coarse-grained degrees of freedom is unknown or ignored

and so they do not appear in the action of the physical system. It would seem that a

variational treatment of an out-of-equilibrium system is not possible. However, both

the extremal-action principle and the second law of thermodynamics can be merged

consistently by imposing the latter as a constrain on the variational problem defined

by the action.3,4 On the other hand, the first law of thermodynamics is obtained

from the symmetries of the problem.

3.1. Entropic forces in mechanics

Let us start by reviewing the emergence of entropic forces in a mechanical system.

Consider the action

S =

∫
dtL(q, q̇, S) , (8)

where the Lagrangian depends on the generalized coordinate q(t), its time derivative

q̇(t) and the entropy S(t). The variation of the action gives

δS =

∫
dt

(
δL

δq
δq +

∂L

∂S
δS

)
. (9)

Setting δS = 0 defines the variational problem. In order to enforce the second law

of thermodynamics, we need to impose the variational constraint

∂L

∂S
δS = fδq , (10)

which simply states the relationship between variations of the entropy and the

generalized coordinate. If we plug this in the variation of the action, then we can
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readily obtain the equations of motion

δL

δq
=

∂L

∂q
− d

dt

(
∂L

∂q̇

)
= −f , (11)

which is the Euler-Lagrange equation modified by the addition of the entropic force

f . In order to know its precise form, we need to impose as well the phenomeno-

logical constraint, which is obtained by formally replacing the variations with time

derivatives

∂L

∂S
Ṡ = f q̇ . (12)

Note that usually temperature can be introduced as

T = −∂L

∂S
> 0 (13)

providing a clearer meaning to the variational and phenomenological constraint.

The imposition of the constraints and the emergence of an entropic force break

the symmetry under time inversion. First, note that formally the Euler-Lagrange

equation is invariant under the t → −t transformation, even with a non-vanishing

entropic force. Next, the positiveness of the temperature and the change of entropy

imposes f q̇ < 0. The entropic force has qualities of a generalized friction, as it

opposes the coordinate velocity. Now, if one performs time inversion, this sign con-

straint becomes f q̇ > 0, as the temperature remains positive but entropy decreases

with time. Before solving the equations of motion, q̇ is still a degree of freedom and,

thus, one must conclude a flip in the sign of f , which flips the overall sign of the

Euler-Lagrange equation. Hence, one concludes that the emergence of an entropic

force breaks symmetry under time reversal. The evolution of the system becomes

irreversible.

3.2. Entropic forces in classical field theory

The extension of the variational formalism of non-equilibrium thermodynamics to

the continuum is somewhat involved. We present a short-cut derivation that relies

on the introduction of an additional constraint. We refer the reader to the appendix

of Ref. 1 to check its equivalence with the full variational derivation originally

presented in Ref. 4.

The action of a scalar field on Minkowski space-time contains now a dependency

on a scalar function s(t, x⃗) that encodes information related to coarse-grained de-

grees of freedom

S =

∫
d4xL (ϕ, ∂µϕ, s) . (14)

In a similar fashion as before, the extremal-action principle needs to be supple-

mented by a variational constraint

∂L
∂s

δs = fδϕ , (15)
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so that the equation of motion becomes

δL
δϕ

=
∂L
∂ϕ

− ∂µ
∂L
∂∂µϕ

= −f , (16)

which is nothing but the Euler-Lagrange equation of a scalar field with a new term

of entropic origin. As before, one can usually introduce a temperature as

T = −∂L
∂s

> 0 (17)

and we would like to interpret s as the entropy density. However, due to spatial

fluxes entropy does not need to necessarily increase locally and, thus, the constraint

would not have a fixed sign. Before proceeding, we inspect the corresponding phe-

nomenological constraint

∂L
∂s

∂0s = f∂0ϕ . (18)

Instead, we interpret δs and ∂0s as local entropy production and introduce a new

function stot which is the actual entropy density and whose changes δstot and ∂0stot
are indeed total local changes of the entropy density. Both are related as

∂0s = ∂0stot − ∂ij
i
s , (19)

where jis is the entropy flux. This latter equation is an additional constraint we

impose for the variational formalism to be consistent. Now one can check that

f∂0ϕ < 0 and time reversibility is broken by the same argument used in the

mechanics example.

3.3. Entropic forces in presence of additional symmetries

The generalization of the above formalism to higher order tensors or to represen-

tations of some internal symmetry group is straightforward. Let us consider a field

tensor z of contravariant rank r, which is also in some representation of an internal

symmetry labelled by an index A. Then one builds the variational constraint as

∂L
∂s

δs = fA;µ1,...µr
δzµ1,...µr

A , (20)

which delivers the equation of motion

δL
δzµ1,...µr

A ,
= −fA;µ1,...µr . (21)

4. Entropic forces in General Relativity

The previous discussion makes us ready to study entropic forces in General Rela-

tivity. However, with the introduction of a dynamical space-time the very notion of

time evolution becomes non-trivial. As we will see shortly, it is possible to obtain

a modification of entropic origin to Einstein’s field equation in the Lagrangian for-

mulation of General Relativity. Its proper interpretation will require, nevertheless,

the use of the Hamiltonian formalism.
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4.1. Lagrangian formulation

Let us consider the Einstein-Hilbert action plus a matter term

S =
1

2κ

∫
d4x

√
−gR+

∫
d4xLm(gµν , s) , (22)

where κ = 8πG is the gravitational coupling and we allow for the dependence of

the matter Lagrangian on a function s(t, x⃗), which will have a similar interpreta-

tion to the one presented in the previous section. The extremal-action principle is

supplemented by the variational constraint.

∂Lm

∂s
=

1

2

√
−gfµνδg

µν . (23)

From the extremal-action principle and the variational constraint we obtain the

modified Einstein’s field equations

Rµν − 1

2
gµνR = κ (Tµν − fµν) , (24)

where there is an additional term fµν of entropic origin. In order to obtain an

expression for this term and to check the breaking of symmetry under time inversion

we need to work in the Hamiltonian formulation of General Relativity.

4.2. Hamiltonian formulation

General Relativity admits a Hamiltonian formulation in the Arnowitt-Deser-Misner

(ADM) formalism. Space-time is foliated in constant time hypersurfaces with normal

unit vector nµ, being the 4-metric split as

gµν = hµν − nµnν , (25)

where hµν is the 3-metric induced on the hypersurfaces. Analogously, one can

parametrize the 4-metric in terms of the 3-metric hij and the lapse and shift func-

tions N and N i

ds2 = −(Ndt)2 + hij(dx
i +N idt)(dxj +N jdt) . (26)

Greek indices run from 0 to 3, while Latin ones do from 1 to 3 and are raised and

lowered by hij . The normal vector can be written as

nµ = (−N, 0, 0, 0) . (27)

Note that hij is the purely spatial part of hµν and is also the pull-back of gµν onto

the hypersurface.

The Einstein-Hilbert action for this parametrization of the metric is given by

the following gravitational Lagrangian:

LG =
√
−gR =

1

2κ
N
√
h
(
(3)R+KijK

ij −K2
)
, (28)
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where Kij is the extrinsic curvature of the 3-hypersurface Σ and is given by the Lie

derivative along the normal vector n

Kij =
1

2
£nhij =

1

2N
(∂0hij −∇iNj −∇jNi) , (29)

where ∇ denotes the covariant derivative on Σ with respect to the 3-metric hij . Its

trace and traceless part are:

K = hijKij =
1

N

(
∂0 ln

√
h−∇iN

i
)

K̄ij = Kij −
1

3
Khij .

(30)

Unlike the intrinsic curvature, described by the Riemann tensor Rρ
µνλ and its con-

tractions, the extrinsic curvature is a quantity that depends on the embedding of a

surface in a larger manifold.

We are now ready to introduce the Hamiltonian formulation of the theory. Note

that the only quantity whose time derivative appears in the gravitational Lagrangian

is the 3-spatial metric hij and, thus, it is the only dynamical or propagating d.o.f.

Correspondingly, one defines its conjugate momentum as:

Πij =
∂LG

∂ḣij

=
√
h
(
Kij −Khij

)
. (31)

With this, the gravitational Lagrangian can be rewritten as

LG = N
√
h
(3)

R− N√
h

(
ΠijΠ

ij − 1

2
Π2

)
− 2Πij∇iNj

= Πij ḣij −NH−NiHi − 2∇i

(
ΠijNj

)
,

(32)

where Π = hijΠ
ij and we introduced the functions:

H = −
√
h
(3)

R+
1√
h

(
ΠijΠ

ij − 1

2
Π2

)
Hi = −2∇j

(
h−1/2Πij

)
.

(33)

Since N and Ni are not dynamical variables, they merely enter the gravitational

Lagrangian as Lagrange multipliers. One defines the gravitational Hamiltonian as:

HG = Πij ḣij − LG

= NH+NiHi +∇i

(
ΠijNj

)
,

(34)

with the Hamiltonian and momentum constraints:

δHG

δN
= H = 0

δHG

δNi
= Hi = 0 .

(35)
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The Hamiltonian evolution equations are obtained from the variations of the action

with respect to the metric and conjugate momentum

δS =

∫
d4x

[(
−Π̇ij − δHG

δhij
− κN

√
hf̃ ij + 2κ

∂Lm

∂hij

)
δhij +

(
ḣij −

δHG

δΠij

)
δΠij

]
,

(36)

where the variational constraint

∂Lm

∂s
δs = −1

2
N
√
hf̃ ijδhij (37)

was already implemented. Note that the minus sign arises from

∂hij

∂hkl
= −1

2
(hikhjl + hilhjk) (38)

and that f̃ij is the pull-back of fµν onto the hypersurfaces. By setting the variation

to 0 we obtain the two Hamilton equations

δHG

δhij
= −Π̇ij − κN

√
hf ij + 2κ

∂Lm

∂hij

δHG

δΠij
= ḣij ,

(39)

which completes the derivation of the entropic modification to the gravitational

equations of motion in the Hamiltonian formulation.

The tensor f̃ij can be obtained from the phenomenological constraint, which

can now be stated rigorously. In the ADM formalism, a well-defined notion of time

evolution is given by the flow along the normal vector nµ. Hence, the time derivative

is generalized to the Lie derivative along nµ. Then the phenomenological constraint

is given by

∂L
∂s

£ns =
1

2
N
√
hf̃ij£nh

ij , (40)

where growth in entropy by local processes is related to total entropy density growth

by

£ns = £ns
tot −∇ij

i
s . (41)

Entropy produced locally is expected to grow over time, i.e. with the flow along

the hypersurfaces, in compliance with the second law of thermodynamics. This

completes the variational formulation of entropic forces in General Relativity.

4.3. The Raychauduri equation

Let us explore an immediate dynamical consequence of the inclusion of entropic

forces, namely its effect on a congruence of worldlines with tangent vector nµ. The

congruence is then characterized by the tensor

Θµν = Dνnµ =
1

3
Θhµν + σµν + ωµν − aµnν , (42)
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where θ is the expansion rate of the congruence, σµν is its shear or symmetric trace-

less part and ωµν is its vorticity or antisymmetric part. If the worldline is not a

geodesic, then the congruence suffers an acceleration given by:

aµ = nνDνnµ . (43)

One can compute the Lie derivative of the expansion of the congruence along its

tangent vector and find the Raychauduri equation5:

£nΘ = −1

3
Θ2 − σµνσ

µν + ωµνω
µν −Rµνn

µnν +Dµa
µ . (44)

Let us perform the standard analysis of the sign of this equation. It is clear that

σµνσ
µν > 0 and Θ2 > 0. On the other hand, if the congruence is chosen to be

orthogonal to the spatial hypersurfaces, as we have been considering, then the vor-

ticity vanishes ωµν = 0. Lastly, it is left to consider the term Rµνn
νnν , which we

can rewrite with the help of the field equations:

Rµνn
µnν = 8πG

(
Tµνn

µnν +
1

2
T − fµνn

µnν − 1

2
f

)
. (45)

If the strong energy condition is satisfied, then

Tµνn
µnν ≥ −1

2
T (46)

and, in the absence of intrinsic acceleration, aµ = 0, we can establish the bound:

£nΘ+
1

3
Θ2 ≤ 8πG

(
fµνn

µnν +
1

2
f

)
. (47)

For a vanishing entropic force fµν = 0, this means that an expanding congruence

cannot indefinitely sustain its divergence and will eventually recollapse. On the

contrary, a positive and sufficiently large entropic contribution can avoid such rec-

ollapse. This may become relevant for an expanding universe, but also to generic

gravitational collapse and the singularity theorems.6–8

5. Sources of entropy

A main ingredient in the variational formulation of non-equilibrium thermodynam-

ics in General Relativity is the inclusion of entropy at the Lagrangian level and the

derivation of a notion of temperature from it. In this section we present two relevant

examples: hydrodynamical matter, which is a prototypical case, and horizons.

5.1. Entropy from hydrodynamical matter

A classical fluid is the simplest matter content that can be considered in General

Relativity and it is of particular relevance in Cosmology. Without paying attention

to microphysical details, the Lagrangian of hydrodynamical matter can be written

as

Lm = −
√
−gρ(gµν , s) , (48)
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the temperature being then simply given by

T = − 1√
−g

∂Lm

∂s
=

∂ρ

∂s
. (49)

This is analogous to the case of a mechanical system, where the Lagrangian is

generically given by a kinetic and a potential energy

L = EK(q, q̇)− U(q, S) (50)

and temperature can be defined as

T =
∂L

∂S
= −∂U

∂S
. (51)

Thus, the energy density of a fluid can be readily interpreted as the thermodynamic

internal energy.

5.2. Entropy from gravity and horizons

Gravity itself has thermodynamical features. It is known since the discovery of the

laws of black hole mechanics and their promotion to laws of black hole thermody-

namics, allowed by the introduction of Bekenstein entropy and Hawking tempera-

ture. We propose to include the entropy associated with a horizon H by extending

the Einstein-Hilbert actions with surface terms of Gibbons-Hawking-York (GHY)

type

SGHY =
1

8πG

∫
H
d3y

√
hK , (52)

where h is the determinant of the induced 3-metric on the horizon and K is the

trace of its extrinsic curvature. Definitions are analogous to the ones used in the

ADM formalism, but we stress that here the hypersurface of interest is a horizon

and not constant-time hypersurfaces.

From the thermodynamic point of view, the GHY term contributes to the inter-

nal energy of the system. Hence, it can be rewritten as a function of the temperature

and entropy of the horizon

SGHY = −
∫

dtN(t)TS . (53)

We have kept the lapse function N(t), to indicate that the variation of the total

action with respect to it will generate a Hamiltonian constraint with an entropy

term together with the ordinary matter/energy terms. In order to illustrate this, let

us now compute the GHY for the event horizon of a Schwarzschild black hole.

The space-time of a Schwarzschild black hole of mass M is described by the

static metric

ds2 = −
(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2
2 . (54)
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We foliate it with spherical hypersurfaces, i.e. their intersection with constant time

hypersurfaces is a 2-sphere around the origin of coordinates. The corresponding

normal vector is

n = −
√

1− 2GM

r
∂r . (55)

With this, the trace of the extrinsic curvature for such a sphere scaled by the metric

determinant is
√
hK = (3GM − 2r) sin θ . (56)

Integrating over the angular coordinates and setting the 2-sphere at the event hori-

zon, i.e. r = 2GM , and restoring for a moment ℏ and c, the GHY becomes

SGHY = −1

2

∫
dtMc2 = −

∫
dtTBHSBH , (57)

where TBH is the Hawking temperature and SBH is the Bekenstein entropy of the

Schwarzschild black hole:

TBH =
ℏc3

8πGM
, SBH =

Ac3

4Gℏ
=

4πGM2

ℏc
. (58)

This favors the interpretation of the GHY term of a horizon as a contribution to

the internal energy in the thermodynamic sense.

6. Irreversible cosmology

We derived in section 4 a powerful, generic tool to describe non-equilibrium ther-

modynamic effects in gravity. In the Hamiltonian formulation of General Relativity

it is possible to obtain the modified equations of motion and rigorously impose the

time-evolution of the entropy as dictated by the second law of thermodynamics.

In section 2 we motivated the study of these phenomena by our interest in

understanding the dynamics of irreversible cosmology and justifying its equations

of motion. One can obtain them using the Hamilton equations.1 Here, however, we

present a slightly different approach. Due to the symmetries of the FLRW universe,

homogeneity and isotropy, there is a preferred slicing and time evolution is well-

defined even at the Lagrangian level. Therefore, we can obtain the equations of

non-equilibrium cosmology by imposing these symmetries, i.e. making an ansatz for

the metric

ds2 = −N(t)2dt2 + a(t)2
(

dr2

1− kr2
+ r2dΩ2

2

)
, (59)

where the lapse function N(t) accounts for the freedom in choosing the time coor-

dinate, i.e. the symmetry under t → f(t). The Ricci scalar associated to this metric

is

R =
6

a2

(
aä

N2
+

ȧ2

N2
+ k

)
. (60)
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Let us stress that this result is imposed by symmetry, not dynamics. Without loss

of generality, we can restrict the action to a region of comoving volume 1 and write

it as

S =

∫
dtL =

3

8πG

∫
dtNa

(
aä

N2
+

ȧ2

N2
+ k

)
+

∫
dtNa3Lm(N, a, S) . (61)

Effectively, this action describes a mechanical system, for the scale factor a(t) has

no spatial dependency and we got rid of the integral over spatial coordinates. The

first term can be rewritten using integration by parts in order to get only terms

with at most the first derivative of a

S =
3

8πG

∫
dtNa

(
− ȧ2

N2
+ k

)
+

∫
dtNa3Lm(N, a, S) . (62)

The variational constraint is here given by the usual expression for a mechanical

system

∂L

∂S
δS = fδa . (63)

The Hamiltonian of the system is

H = ȧ
∂L

∂ȧ
− L =

3

8πG

(
− ȧ2a

N
− kaN

)
−Na3Lm . (64)

For an arbitrary lapse function N(t) this can be rewritten as

H = N2a3
∂Lm

∂N
, (65)

which gives the Hamiltonian constraint of the system. On the other hand, the

dynamics is obtained from the equation of motion for a

δL

δa
= −f . (66)

Let us now consider the matter Lagrangian to be that of a perfect fluid, i.e.

Lm = −ρ(a, S) . (67)

Its stress-energy tensor is given in terms of the density ρ and pressure p by

Tµν = (ρ+ p)uµν + pgµν (68)

and umu = (N, 0, 0, 0) is the unit vector tangent to a comoving observer. Pressure

is then obtained as

p =
a2

3
T ijδij = − 1

2a4
∂a3ρ

∂a
. (69)

Using the expressions for ρ and p and rearranging the terms in the Hamiltonian

constraint and the equation of motion for a(t) we arrive at the modified Friedmann
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equations (
ȧ

a

)2

+
k

a2
=

8πG

3
ρ

ä

a
= −4πG

3

(
ρ+ 3p+

f

a2

)
.

(70)

The expression for the entropic force F is obtained from the phenomenological

constraint (
∂L

∂S

)
Ṡ = −T Ṡ = fȧ < 0 , (71)

which determines the sign f < 0 whenever dealing with an expanding universe

ȧ > 0. We express finally the second Friedmann equation as

ä

a
= −4πG

3

(
ρ+ 3p− T Ṡ

a2ȧ

)
. (72)

From this equation we can conclude that entropic forces generally drive an accel-

eration of the expansion of the universe. Whether this can dominate the dynamics

of the scale factor will depend on the particular thermodynamic process. Most of

the expansion history of the universe takes place in equilibrium. Out of equilib-

rium processes, such as (p)reheating, phase transitions or gravitational collapse are

short-lived. Should their associated entropic force dominate, we still only expect a

short period of accelerated expansion.

Symmetry under time inversion is broken by the same arguments presented

in section 3. Hence, the Friedmann equations together with the phenomenologi-

cal constraint, i.e. the second law of thermodynamics, describe cosmic irreversible

dynamics.

We currently live in a universe that is undergoing an accelerated expansion. The

possibility of explaining this by means of an entropic force is fascinating. In the next

section we review our proposal to achieve this by means of the sustained growth of

the entropy associated to a causal horizon.

7. Cosmic acceleration as an entropic force

The growth of entropy associated to the cosmic horizon may be responsible for the

current observed accelerated expansion of the universe. The choice of horizon is in

principle not unique. The only available one which can be defined locally in time is

the cosmic apparent horizon, but it fails to significantly affect the expansion.2

There is another option in the framework of eternal inflation, according to which

we live in an open universe nucleated by quantum tunneling from a false to a true

vacuum. After nucleation the bubble universe undergoes its own inflationary era,

which renders the local metric almost flat. However, due to the presence of the
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bubble wall, the true causal horizon is located at a finite distance. It induces an

entropic fluid via GHY term with energy density

ρH a2 =
THSH

a
=

x0

2G
sinh(2a0H0η) , x0 ≡ 1− Ω0

Ω0
= e−2N

(
Trh

Teq

)2

(1 + zeq) ,

(73)

where η is the conformal time, Ω0 is the density parameter, Trh is the reheating

temperature, Teq and zeq are, respectively, the temperature and redshift at matter-

radiation equality. Introducing τ = a0H0η one can write the second Friedmann

equation in conformal time as(
a′

a0

)2

= ΩM

(
a

a0

)
+ΩK

(
a

a0

)2

+
4π

3
ΩK

(
a

a0

)2

sinh(2τ) , (74)

where ΩM is the matter density paremeter and ΩK is the curvature parameter. We

call this the general relatvistic entropic acceleration (GREA) theory.

By solving this equation with cosmological parameters consistent with the CMB

values (Planck 2018: ΩM ≃ 0.31, ΩK ≃ 0.0006, h0 ≃ 0.68) and initial conditions

deep in the matter era, ai(τ) = a0 ΩMτ2/4, we find generic accelerating behaviour

beyond the scale factor a ∼ 1/2 (i.e. z ∼ 1), see Fig. 1. This is consistent with

the current observed acceleration of the universe and may even resolve the Hubble

tension,9 providing a way to obtain from the CMB a present value of H0 that is

consistent with late-universe observations, see Fig. 2.
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ΛCDM
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Fig. 1. The left plot shows the evolution of the inverse comoving horizon with the coasting point

for each model, at z ≃ 0.65 for ΛCDM (in green) and z ≃ 0.83 for GREA (in red). The right
plot shows the evolution of the rate of expansion. For GREA the present rate of expansion is

approximately 74 km/s/Mpc, compared with the value of 68 km/s/Mpc predicted by ΛCDM, in
agreement with the asymptotic value at the CMB.

8. Conclusions

The consistent inclusion of non-equilibrium phenomena in General Relativity leads

to the modification of the Einstein field equations, as can be checked both in the

Lagrangian and Hamiltonian formulations of the theory. This breaks symmetry

under time inversion and allows for the introduction of an arrow of time.
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Fig. 2. The effective equation of state of the non-matter component of the GREA theory, as

a function of thee sale factor. Note that the predicted effective PCL parameters (wo, wa) agree

remarkably well with present observations.

In cosmology this implies the appearance of a term of entropic origin in the

second Friedmann equation, which tends to accelerate the expansion of the universe

as a result of the increase in entropy. Some physical processes such as (p)reheating,

phase transitions or gravitational collapse may lead to phenomenologically relevant

applications of this formalism. We look forward to further developments.

The sustained entropy growth associated to a causal horizon in the open universe

scenario leads to an acceleration consistent with current observations and it may

even solve the H0 tension. Further research will be required to establish the full

viability of the GREA theory.
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